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ABSTRACT

The scope of this thesis is to present a framework for the modelling of two-
component, liquid/solid mixtures using the finite element method. The presentation
is applicable to a wide range of two-component phenomena, however, special
attention is paid to the liquefaction of sandy soils which is of particular concemn to the

civil engineer.

In the past, much of the focus of research has been placed on the creation
of models capable of capturing the mechanism of excess pore pressure
development leading to liquefaction. Comparatively little attention has been placed
on modeliing the post-liquefaction event. This thesis provides a framework that
aliows the civil engineer to model soil deposits, predicting the onset of liquefaction
and simulating the events that follow, namely post-liquefaction flow and the re-

consolidation of the soil.

The mixtures considered in this thesis are treated as two viscous fluids
having momentum exchange between them via hydrodynamic drag. Two sets of
Navier-Stokes equations are used to model the two-component mixture. The thesis
presents the derivation of these equations along with the closure equations required
to model the hydrodynamic drag and shear stress constitutive behaviour. A simple,

novel approach to modelling the compaction/dilation behaviour of granular materials
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under the action of shear strain is also presented. Itis shown that a recasting of the
equations with a new set of variablies is helpful in solving the equations via standard
Galerkin finite element methods. An outgrowth of this recasting is also presented,
that allows, for one-dimensional probiems, to reduce the variable set from four

unknowns to one, greatly simplifying the solution process and computation effort.

Finally, several applications of the model are presented in order to validate

the model and to demonstrate the wide range for which the model may be used.
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INTRODUCTION

Earthquakes are of particular interest to civil engineering fields as
they represent one of the highest potentials for devastation of structures for
which these engineers are responsible. Results of the destructive forces of
earthquakes are well known to all. Therefore, the ability of the civil engineer

to estimate the effects of earthquakes on their structures is vitally important.

The most obvious effect of earthquakes is the elevated loads that are
imposed on buildings, dams, retaining walls, etc. A less common, but
potentially more destructive, effect of earthquakes is the liquefaction of the
soil on which these structures are constructed. Liquefaction occurs under
the special conditions where fluid, trapped in the spaces between individual
soil grains, increases in pressure under the action of the earthquake and
unloads the soil skeleton. When the soil is unloaded, itloses its stiffness and
behaves similarly to a very viscous fluid. This phenomenon (known as
liquefaction) can lead to the rapid collapse of structures, large movement of

the soil and considerabie settiement.

Considerable attention has been paid to explaining and predicting the
onset of liquefaction under earthquake loading. Many finite element codes

have been developed to model this complex phenomenon. However, these
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models are notintended to estimate the response of the soil after liquefaction
has occurred. Rather, the engineer is often limited to design guidelines and
rules of thumb (Seed, 1987). In addition to applied mechanics approaches
involving finite element modelling, practical guidelines have beeninvestigated
employing standard soil property tests such as penetration tests to evaluate
potential for liquefaction (Robertson and Campanella, 1985, Ishihara, 1985,

Seed and ldriss, 1982)

The intent of this study is to provide a framework within which a
model may be created to study the flow of liquefied materials. In the
following chapters, the resulits ofinvestigations on the constitutive and finite
element modelling of liquefied (and fluidized) liquid/solid mixtures is
presented. The focus of this thesis is on modelling the liquefied system as
a two-component fluid, with associated constitutive models, rather than on
taking the more traditional approach of viewing the soil as an elasto-plastic

solid.

As is often the case, in creating such a model, many unforeseen
obstacles have provided opportunities to contribute to the body of knowledge
both directly in the field of post-liquefaction analysis and in the related field of
fluidization modelling. This chapter contains an overview of these

contributions which are described in greater detail in the chapters that follow.
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The following sections of this chapter provide an introduction to the
phenomenon of liquefaction and show how it is a true, two-component
problem. This is followed by an outline of the current state of modeliing soils
in the liquefied state. Next, the governing equations used in this thesis are
presented. Finally, each contribution to the body of knowledge is

summarized in brief.

Effects of Liquefaction

The loss of soil strength associated with liquefaction can have
devastating effects on structures. There are many ways in which liquefied

soils can cause damage:

> Loss of soil strength allows structures to overtum

> Increased pressure in soil collapses foundations and
buried structures

> Loss of soil strength causes failure of soil structures

such as earth dams

> Fluid nature of liquefied soil can result in landslides

There have been several major earthquakes which have caused
significant damage due to liquefaction. A classical example is the 1964
Niigata earthquake where liquefaction caused the overtumning of several
apartment complexes as shown in Figure 1.1. In the same year, Alaska
suffered a very large earthquake that caused landslides and buckling of

roadways. In 1971, the San Femando earthquake very nearly caused severe
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devastation. The earthquake caused the liquefaction of a very large earth
dam and the soil beneath the dam. The dam barely avoided collapsing,
which would have caused the flooding of downstream, populated areas.
More recently, the 1995 earthquake near Kobe, Japan caused liquefaction
damage to waterfront pier areas, where container handling equipment and
wharf areas suffered collapse due to structural overturing and lateral

spreading of the surface.

Figure 1.1: Overturned Buildings, Niigata, Japan, 1964 (University
of Washington, Soil Liquefaction Web Site)

Liquefaction is not the only example of devastating two-component
flows encountered in the field of civil engineering. The failure oftailings dams
results in the flow of soil/water mixtures that can often lead to disaster
(Blight, 1997, Chandler and Tosatti, 1995). Finally, it appears that there is
interest in modelling the fluidization of soil in situ to determine the potential
for remediating contaminated soils (Niven and Kalili, 1998). The model

described herein would be suitable for such applications.
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The Concept of Effective Stress
In this research, saturated soils (more specifically sands) will be
treated as a continuum. However, referring to Figure 1.2, one mustnot lose
sight of the fact that the soil is comprised of solid granular particles and a
pore fluid (usually water and/or air). This distinction is vital to understanding

the behaviour of soils subject to both self weight and external loading.

Figure 1.2: Soil Particles with Pore Fluid
(University of Washington, Soil
Liquefaction Web Site)

it has long been recognized that the shear strength of a soil, unlike
many continuous materials, is highly dependent on the confining pressure
applied to the particles. A common criterion to describe the condition for soil
failure is the Mohr-Colomb model in which the shear strength of the soil is
proportional to the normal effective stress on the failure plane in the soil.
Figure 1.3 shows this relationship graphically. In a non-cohesive soil, such
as sand, when the normal stress of the soil is reduced to zero, the shear

resistance becomes negligible.
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Figure 1.3: Mohr-Coulomb Failure Criteria (University of
West England, 2000)

Consider the volume of soil shown in Figure 1.2. Using indicial
notation (Maivern, 1969), the total stress in the soil, 6;, may be divided into
two parts, that carried by the pressure of the pore fluid, p, and that carried by
the soil skeleton, ¢';. The stress associated with the soil skeleton is referred

to as the effective stress of the soil and is defined as:

o, = 0, - po, (1.1)

where compressive stresses are taken as positive here.

Terzaghi (1936) recognized that the response of the soil should be
a function of the effective stress only and not the total stress. He provides
the following definition:

“the effective stress represents the part of the total stress which

produces measurable effects such as compaction or an increase of

shearing resistance”
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Stolle (2000) provides a short review of the effective stress principle.

It follows from Terzaghi’s observation that changes in effective stress
(and not total stress) must, in general, be accompanied by a change in the

strain of the soil skeleton. Mathematically, one may define this statementas:

do, = D,de, (1.2)

where the constitutive matrix D,y is the tangent modulus of the soil, which

depends in general on the effective stress conditions and strain history

(Malvern, 19689).

Pore Pressure Response to Straining

A sandy soil consisting of a collection of particles is packed in a
certain state, with a given amount of void space (filled by water in the
saturated condition). In the case of loose sands, the particles are packedin
an inefficient manner with large void spaces. As the soil is strained, the
particles reorient themselves in a more efficient manner, leaving less void

space, provided that the fluid is free to drain.

If the soil is highly permeable, the pore fiuid rapidly seeps out of the
collapsing voids, making way for the more densely packed particles of the
soil. Under such conditions, the pore pressure is little affected by the
straining action. This type of behaviour is referred to in soil mechanics as

the drained response of the soil. On the other hand, if the soil is
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impermeable (or if drainage is artificially prevented in the laboratory), the fluid
will be unable to escape the pores. if it is assumed that the solid particles
are incompressible when compared to the compressibility of the fiuid, any
change in the packing of the particies, must be accompanied by a
compression of the pore fiuid. The volumetric strain of the fiuid, causes a
change of fluid density proportional to the change in pressure via (Malvern,

1969):

dp= c*dp (1.3)

where p is the density of the fluid and ¢ is the sound speed of the fluid.

itmay be observed, that if a loose, saturated, sandy soil is strained
either mechanically in a laboratory, or by the influence of an earthquake in the
field, the resulting shear strains can cause an increase in the pore pressure
and a decrease in the effective confining pressure in the soil skeleton. Ifthe
strains are sufficiently large and occur quickly enough, the pressure increase
in the fluid may be sufficient to reduce the effective spherical stress to zero.
As mentioned previously, if this occurs, the shear resistance of the soil

becomes negligible, yielding a material that behaves as a viscous fluid.

Figure 1.4 shows the results of a combined centrifuge/finite element
study on the response of the pore water pressure to shaking. One can
observe that, as the shaking progresses, the pore fluid pressure rises to a

maximum that is equal to the total stress. Atthis point, the soil liquefies, so
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that the resistance to shear is only a function of the viscosity of the mixture.

0.0
J

"o
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Dy - «

—— Recorded
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19
1
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Figure 1.4: Measured and Computed Pore Pressures (NRC, 1985)

1.4 Liquefaction of Real Soils
In the laboratory, liquefaction is most often studied by artificially

preventing the escape of pore fluid (undrained conditions). Of course, soils
in situ, have a finite permeability, which allows some of the pore fiuid to drain
as the soil is strained. This drainage delays, or even prevents, liquefaction
from occurring. The pore pressure increase depends therefore, on the
following (Pande & Zienkiewicz, 1982):

> the permeability of the soil

> the distance to a free drainage point

> the rate of straining
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The permeability has an obvious effect on the potential for
liquefaction. If it is very high, then the fluid drains easily without significant
pressure build up. Conversely, if the permeability is very low, pressure in the
soil initially builds up quickly and then slowly decreases as the fiuid drains

and the soil settles into a new configuration (consolidation).

in a similar manner, if a drainage point is very close to a point of

interest, then the fluid can drain even in a low permeability soil. Figure 1.5
demonstrates this point. This figure shows the pore pressures at various
times and depths for three soils having different permeability. Although the

pore pressure in the lowest permeability soil can build up to a value that is

— k=016 ms
| — —-k=01"2 mA
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\‘ \\ \‘ \
‘\ \ or ‘: \\
oo : :
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Figure 1.5: Simulated Pore Pressure Response (Pande & Zienkiewicz, 1982)
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equal to the initial vertical effective stress (0’,,) at depths ranging from 1m
to 6m, the pore pressure cannot build up in the top layer because of its

proximity to the surface.

The time scale of straining (via a seismic event, for instance) must
also be considered. If straining occurs quickly, relative to the time scale for
drainage, even a very porous soil may undergo a significant pore pressure

increase.

It is apparent that the phenomenon of earthquake induced liquefaction
is complex and not easily modelied via continuum mechanics. In an effort
to provide a simple basis for predicting liquefaction, a variety of modeis have
been developed. For exampie, Davis and Berrill (1982) attempt to predict
liquefaction statistically using dissipated seismic energy as a measure ofthe
liquefaction potential. Seed forwarded an attractive idea of excess pore
pressure as a function of equivalent stress cycles (Martin et al., 1975 for

example).

Current State of Post-Liquefaction Modelling

A great deal of research has been focussed on the development of
models for predicting the behaviour of soils up to the point when the soil (or
a portion of the soil) liquefies. These modeis are capable of successfuily
capturing the behaviour of real soils as observed in laboratory testing and

field observations; see for example, Figure 1.5. Figure 1.6 shows typical
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results of one of these numerical models. Owing to the incremental
stress/strain form of these models, and due to the loss of static shear
strength upon liquefaction, these models break down when the effective
stress is zero. This may be seen in Figure 1.6, whereupon the horizontali

displacement of the soil increases without bound following liquefaction.

or

B

o

Horizontal displacement 102 m

5

-&0

Figure 1.6: Typical Liquefaction Analysis Results (Pande & Zienkiewicz,
1982)

In a more recent review, (Isihara, 1993), the progress of soil
modelling was outlined as shown in Figure 1.7. This chart shows that the
analysis of post-liquefaction was limited to cases where the soil does not
flow; ie., ground movement is caused only by settiement following
consolidation of the soil. In addition to the types of analyses outlined by

Isihara, there have been a limited number of attempts to model the
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Figure 1.7: Flow Chart of Liquefaction Analysis (Isihara, 1993)

behaviour of soils after liquefaction. For example, Hamada et al. (1987)
attempted to predict the movement of a solid surface layer “floating” on a
layer of liquefied soil having zero shear strength. This layer was subject to
gravity loads and boundary conditions of zero axial stress where cracks

were found, since the cracks cannot resist axial loads.

Several authors (Pillai & Stewart, 1994, Pillai & Salgado, 1994, Byme
et al, 1994, Vaid & Thomas, 1995, Talaganov, 1996, Vaid et. al., 1989,
Poulos, 1981, Seed, 1979) suggest that the steady-state or residual strength
concept may be used to model post-liquefaction behaviour. Itis postulated,

in these works, that beyond a certain level of straining, the soil maintains a
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fixed level of strength that depends on, among other things, the initial stress
level and ratio of shear stress to normal stress. Poulos (1981) points out
that the steady state strength also depends heavily on the rate of deformation
of the soil (ie., flow velocity), which is consistent with an analysis based on
viscous flow. A review by Ishihara (1993) outlines the significant effort that
has been made over the past forty years to develop effective modelling

techniques to predict liquefaction response.

in any case, analyses based on the steady strength principle fail to
include the coupling between the pore pressure and the fiow. From a fiuid
mechanics perspective, such coupling woulid allow the flow of liquefied soils
to be driven by pressure and for the flow of the soil to potentially relieve pore
pressures. A further problem with the steady state types of analyses, is that
they do not consider the draining and re-consolidation of the soil after
liquefaction which may be responsible for haiting flows sooner than the

models predict.

Only very recently has the analysis of post-liquefaction flows involved
treating the liquefied material as a viscous fluid. Uzuoka etal. (1998) present
a model that treats the soil as a Bingham fluid (Malvem, 1969). The shear
stress to initiate flow is based on the so-called steady state stress (Castro,
1975) and the Bingham viscosity is based on the experimentally determined
strain rate/stress response of sand/water mixtures. Tamte and Towhata

(1999) also treat the soil as a fiuid, but with a rather simplistic constant
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viscosity assumption.

The Bingham fluid assumption appears to be consistent with the
behaviour of a fluidized saturated soil. Itis also a relatively simple model to
incorporate into a finite element analysis. It does however have a major
drawback, in thatitis difficult to reliably predictliquefaction and subsequent

consolidation when the two-component nature of the soil is neglected.

Two-Component, Two-Phase Flow Model of Liquefied Soils

This study proposes a model where soil in aliquefied state is treated
as a two-component mixture. Itis shown that the model can capture, both
the liquefied soil's fluid like behaviour, without neglecting the essentials of

liquefaction, and consolidation.

Hydrodynamic Model

The granular and fluid components in this mode! are each treated as
a fluid having viscous properties (referred to as a two-fluid model) with
velocity, pressure and porosity being the principal unknowns of the system.
The hydrodynamic model is comprised of the conservation of mass and the
conservation of momentum equations, for both the solid particle and the pore
fiuid components. Itis assumed that the soil is isothermal and hence energy
conservation is not considered. These equations are the Navier-Stokes
equations for each phase, amended by the addition of an interphase

momentum exchange term and statement of volume conservation. The
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resulting four equations, summarized by Gidaspow (1994), for the five

unknowns (fluid and solid velocity, ucand u,, pressure p,and p,, and porosity,
n) are given in Table 1.1. It should be noted that the pressure terms are

included in the stress tensor in the conservation of momentum equation
which is discussed in later sections. Tension is defined to be positive. The
nomenciature of Table 1.1 is given at the end of this chapter and a compiete

description of the equations is given in Chapter 2.

Conservation of Mass for Pore Fluid Phase
Z _
b-t-(npf) +V -(npfu,) =0

Conservation of Mass for Solid Particle Phase

3
5((1- mp,)+V-((1-n)p,4,)= 0

Conservation of Momentum for Pore Fiuid Phase

0,8 758 9, (5,5

Conservation of Momentum for Solid Particle Phase

g(u -mpa,)+ V- ((1-mpu,)=V 0, + A5, - 8)+ (- mpf

Table 1.1: Basic Hydrodynamic Equations (Gidaspow, 1994)
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1.6.2 Expansion of The Stress Tensor

The total stress on a fluid (o) or solid (c,) element may be divided
into two parts; the deviatoric portion (t) and the mean stress portion; i.e.
generically, one has (Malvern, 1969)

Oy = T;= 0P (1.4)

where t; is assumed to obey the following constitutive equation:

. 1 .

and p is the shear viscosity.

The rate of deformation tensor, €, may be defined in terms of the velocity

gradients; i.e.,

(é‘_' + é‘_/_.] (1.6)

In order to determine the stress in a fluid, therefore, the shear

viscosity (u) and bulk viscosity (£) must be provided for each component
under consideration. The pore fluid viscosity () may of course be found in

any fluid mechanics handbook and may be treated as a constant for
isothermal conditions. Furthermore, there appears to be little evidence ofthe
existence of a bulk viscosity for fluids and this term is therefore generally

ignored (Zienkiewicz & Taylor, 1991).
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Unfortunately, the corresponding terms for the granular component
are not as simple. It has been found, in both this and other investigations,
that the viscosity for a liquid/granular solid mixture exhibits complex
behaviour. This viscosity depends on the following factors:
> material properties of the granular component (size, shape,

roughness, uniformity)

> liquid component properties
> proportion of the granular component suspended in the liquid
> shear rate, in mixtures with a large proportion of granular
component
CONTRIBUTION #1

The viscous behaviour of fluidized sand/water mixtures has been
tested over a wide range of porosity values and over a wide range of
shear rates using a Brookfield viscometer immersed in a fluidization
chamber. A new correlation equation has been developed that fits the
data with a very high coefficient of determination. The data collected is
in good agreement with previous studies which use more complex

experimental methods.

The four hydrodynamic equations (Table 1.1) allow four principal
unknowns to be determined. In order to solve for the additional unknowns,

the use of closure relations are required that express the additional
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unknowns as a function of the principal unknowns. One such additional

unknown is the pressure in the granular component.

Granular material behaviour is further complicated by the fact that
under the influence of shear strains, the material has a tendency to change
volume (compaction or dilation). As discussed previously, this behaviouris
responsible for the liquefaction during earthquakes. There are a wide range
of models available for simulating this behaviour, unfortunately they tend to
be complex and computationally intensive. Owing to the focus of this study
on post-liquefaction behaviour, a simple alternative to the complex

elasto/plastic constitutive models for soils was developed.

CONTRIBUTION #2

A novel constitutive model for the granular component pressure

as a function of porosity has been developed. The validity of this model

has been tested in the simulation of settlement experiments.
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CONTRIBUTION #3

An artificial neural network (ANN) has been implemented to model
the volume change behaviour of the granular component. This network
was trained using a commercial neural network software package and the
resulting non-linear matrix equations were added to the hydrodynamic

equations for closure.

Itis believed that this is the first use of an ANN in a transient finite
element simulation to model soil volumetric strain behaviour. This model
was used to analyse the liquefaction of a one-dimensional soil deposit.

It provided predictions that were qualitatively similar to those obtained

using more complex constitutive descriptions.

1.6.3 Hydrodynamic Drag
The fiuid and solid components interact through the hydrodynamic

drag, which transfers momentum from one phase to the other. Forinstance,
if the fluid is travelling with high velocity and the solid particles are moving
slowty, the fluid will tend to speed up the particles, while the particles will tend
to slow down (or reduce the pressure of) the fluid phase. This phenomenon
couples the two conservation of momentum equations and is a large source

of non-linearity in the system
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The drag term may be developed in several ways. A soil mechanist
may choose to treatit using the conventional seepage theory of Darcy (Bear,

1972), which, for horizontal flow is
| = —— = —(uf- u:)— (1.7)

where i is the hydraulic gradient. This approach is however, generally

applicable only to a narrow range of volume fractions and soil particle size.

in order to improve the above statement of Darcy’s law, many authors
(Pritchett et. al. 1979, Gidaspow, 1986, Bouillard et. al. 1989, Hong et. al.
1995, Boemeret. al. 1997) have chosen to model the drag with a non-linear

coefficient, B.

n%= ,B(uf - u,) (1.8)

where n is the porosity of the granular component. Two separate
expressions for § have been used by these authors; that of Ergun (1952) for
dense flow (n <0.6) and the drag on an individual sphere for dilute flow (n >

0.6). The two expressions are discussed in detail in Chapter 3.

Revised Equation Set
In the early stages of using the hydrodynamic models for studying
fluidization, it was found that the equations are highly unstable and that

solutions to practical probiems were very difficult to achieve.
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In order to overcome this, two new variables were introduced:

V = nU, + (1-mU,

W = nU, - (1-n)U, (1.9)

Chapter 2 shows that the substitution of V and W into the

hydrodynamic equations linearize the originaily non-linear conservation of
mass equations. This linearization greatly stabilizes the solution, permitting
the standard Galerkin formulation of the finite element equations. Bird,
Stewart and Lightfoot (1960) report on the use of the first variable given in
Equation 1.9. However, the use of both of these variables in an effort to

stabilize a finite element code for two-component flow is original.

CONTRIBUTION #4

it has been shown in this research that replacing the primitive
velocities in the hydrodynamic equations with the pseudo-velocities V and
W (cross sectional averaged) creates a more stable equation set, which

permits solutions to practical problems using standard finite element

techniques.

Reduced Variable Model

In addition to the very significant benefit of making the conservation of mass
equations linear, the use of V and W, along with discretization of the
equations, permits the reduction of the full equation setto a single unknown

system for one-dimensional problems.
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CONTRIBUTION #5

For one-dimensional problems, the full hydrodynamic model has
been reduced to a single unknown system. This has clear benefits with

respect to solution stability and computational efficiency.

Summary

The objective of this thesis is to present a framework for a model of
the flow of liquefied and fluidized materials. In the following chapters, the
results of investigations on the constitutive and finite element modelling of

liquefied (and fluidized) liquid/solid mixtures are presented.

The body of the thesis is divided into four chapters. Chapter2 covers
the presentation of the hydrodynamic model, which is a revised set of

hydrodynamic equations that allow a stable solution to be achieved.

Chapter 3 is concemed with the closure relations required to solve
the basic hydrodynamic equations. Specifically, the drag between the solid
and liquid components and the shear stress and the volumetric strain

behavior of the solid component are discussed.

Chapter 4 presents the finite elementequivalent of the hydrodynamic

equations. Details of the solution technique are provided along with a
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reduced variable equation that allows, in certain situations, for a single

equation to replace the full hydrodynamic equation set.

Chapter 5 demonstrates the capacity of the model to analyze an

array of flow situations, which include:

> One and two dimensional fluidization
> One dimensional settlement and consolidation
> One dimensional liquefaction

Finally, conclusions and recommendations for future work are

provided in Chapter 6.
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NOMENCLATURE

c Speed of sound in fluid

Dy Tensor of elastic constants

Epg Elastic modulus of fluid component
B Elastic modulus of solid component

i Hydraulic gradient

k Hydraulic conductivity

n Porosity

p Pressure

Py Pressure in fluid component

P, Pressure in solid component

U, Velocity of fluid component

u, Velocity of fluid component

v Pseudo mixture velocity (cross sectional averaged)
W Pseudo difference velocity (cross sectional averaged)

Greek Symbols

8 Kronecker delta function

€ Strain tensor

€ Rate of Deformation Tensor
1] Viscosity

3 Bulk viscosity

G Stress tensor

c' Effective stress tensor

G Initial effective vertical stress

T Shear stress tensor
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HYDRODYNAMIC MODEL

The laws of mass, momentum and energy conservation are the most
widely used principles in engineering and science. They provide the
fundamental governing relations for the class of problems considered in this
thesis and therefore a review of their derivation will prove useful to the
understanding of the specific, two-phase flow models that are developed

later.

As mentioned in the opening chapter, the class of problem addressed
is comprised of two components; a fluid component and a granular solid
component, which consists of discrete particles. Given the small size and
large number of solid particles, it is assumed, that their behavior may be
averaged in such a way that the principles of continuum mechanics apply.
This assumption is consistent with the work of many previous researchers

(Bear, 1972).

This chapter presents a series of partial differential equations that
model the fiow behavior of a two-component mixture of a granular material
and a fluid. These equations have been used extensively in other studies to
model fluidized beds. Aithough the use of the spatial description outlined

here may be considered uncharacteristic for the analysis of soil liquefaction,

31
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it has been used extensively in other studies to model fluidization (Boemer
etal., 1997, Di Felice, 1994, for exampie). The main purpose of adopting
this framework, rather than the usual Lagrangian description, is to better

model the behavior of a soil that can flow in a liquefied condition.

The General Conservation Equation

In many engineering analyses, the conservation of specific properties
such as mass, momentum and energy is vital to understanding the behavior
of a system. The problems addressed in this research consider the
conservation of both mass and momentum. It is useful therefore, to first
consider the conservation of a generic property and then derive specific
equations for the conservation of mass and momentum. Itis assumed that
the systems addressed in this study are isothermal and energy conservation
is therefore not considered. The reader should note that the exposition

presented in this section follows loosely that of Brodkey and Hershey (1988).

Consider the concentration of a generic quantity (y) (amount of the

property per unit volume) and the associated flux (¥) of this quantity

(quantity of the property transferred per unit area per unit time). For

example, when considering heat transfer, the concentration y would be the
amount of heat per unit voilume, and the flux, ¥ woulid be the flow rate of this

heat. In order to simplify the presentation, let us restrict ourseives to a two-

dimensional volume of unit thickness (such as that shown in Figure 2.1),
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given by:
dV =1-dx-dy=dx-dy (2.1)

Although the presentation is in two dimensions, the vector form of the

equations apply to three dimensions as well.

(T AL

|

2

v =0 (TA)\

7

A

(L

(TA) o=—=——CTo=

Figure 2.1: General Property Balance for a Two-
dimensional Region

In general, the balance of influx, outflux and intemal generation of a
property results in a net change in accumulation of this property. The rate
of accumulation and internal generation of a generic property within the

region (dV) may be written as

N ay (2-2)

a

and

we-dV (2.3)
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respectively, with the net flux of the property into (or out of) the region given

by:
Y, dy+¥, ax-¥, -dy-V¥, -d& (2.4)

(noting again that ¥ is the flux associated with the property )

Now, applying a first order Taylor's expansion:

é\y"-dx
o

Y, =¥, +
(2.5)

and substituting equation 2.5 into equation 2.4 yields the net flux into the

region:

¥ aP]
_ =+ Y dx- .
( + 3 dy (2.6)

Since the net flux plus the internal generation must equal the accumuilation

of the property, we have:

V72 4
ég-dx-dy=y}6-dx-dy—(&y‘+ ”)dx-ay 2.0
a &
or,
W yovy as
a

Equation 2.8 is the conservation equation in its most general form.
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A generic property can move (transport) via two processes; through
molecular level interactions (such as heat conducting through a body due to

molecularinteraction) or by physically moving the quantity from one location
to another. These modes of transferring the quantity (y) are referred to as

diffusion and convection, respectively (Brodkey and Hershey, 1988).

The process of diffusion is a complex phenomenon. Fortunately, it
has been found that the flux generated is often proportional to the gradient of
the property, as in Fourier's Law for heat conduction, Fick's Law for mass

diffusion and Newton’'s Law for laminar flow for example; i.e.,

Y spision = -3V W (2.9)

where () is a constant of proportionality (thermal conductivity (k), as an
example).
The rate with which the property is transferred convectively is simply
the concentration multiplied by the velocity at which it is traveling, i.e.:
¥

convection = WU (2'10)

where U is the velocity vector of the quantity.

Substituting equations 2.9 and 2.10 into equation 2.8, we arrive ata generai

expression for the conservation of (y).

%=WG+V'(3VW—W) (2.11)
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Equation 2.11 is the basis for the equations used to describe the flow of the

two-component systems considered in this study.

Single Component Systems

A description of the mass and momentum equations for a single
component system is given first, in order to simplify the presentation.

Thereafter, the extension of these equations to two phases is presented.

Conservation of Mass

Fora single component system, the concentration of mass is simply
the mass per unit of volume; i.e., density (y = p). In this study, there is no
internal generation or dissipation of mass. The constant of proportionality is
often represented by the symbol D, the diffusion constant (Brodkey and

Hershey, 1988). Therefore, the mass conservation equation analogous to

equation 2.11 for a single component is:
op
3 =V -(DVp - pU) (2.12)

For incompressible fluids, V-p = 0, so equation 2.12 becomes the

familiar conservation of mass equation for a single component,

incompressible fluid:

Pp

o _pV.U (2.13)
a P
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2.2.2 Conservation of Momentum

Newton observed that the momentum of a body is conserved. The
same has been shown to be true for all physical systems. Therefore, we
may apply the general conservation equation to the momentum
concentration (y = pU). Unlike the conservation of mass however, there will
be internal momentum generation and dissipation. This topic and the
diffusion of momentum will be discussed below. It should be noted that the

quantity y is now a vector.

() Momentum Diffusion

It has been found that the momentum flux due to molecular
interaction (diffusion) is related to the deviatoric stress in the fluid (1)

(Malvern, 1969). The deviatoric stress in a viscous fluid is:

1= u[VU+ UV - %V .Ul] (2.14)

where p is the viscosity which, depending on the particular material, may be
a function of such quantities as shear rate, pressure, etc. The momentum

diffusion is therefore taken as

$Vy=V.1 (2.15)

(i) Momentum Generation
For the moment, let us consider an element of ideal fluid with
negligible viscosity, having distributed normal and body forces acting upon

it (as shown in Figure 2.2).
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For incompressible fluids, Newton's Second law requires, in the x-

direction for example, that

au
Po-dy= (P +AR,)-dy+ F,p-ds-dy=p-d-dy-—= (2.16)
A similar relation may be formed for the y-direction.
Recalling that
AP, = &, - ox (2.17)
07.9
and dividing by dx-dy yields
dP, dUu
= Fp= X (2.18)
g P =P o
and if the fluid is incompressible, this relation reduces to
dP. dpU .
-—*+F p= L= (2.19)
e P p Ve,
Note that the vector equivalent of equation 2.18 is
W =-VP+pF (2.20)

The presence of a pressure gradient and/or body forces (such as
gravity) may be interpreted as internal generation of momentum and
substituted into the conservation equation as such. In traditional
developments of the momentum balance equation, the stresses are treated
in a force balance, which must be in equilibrium with both the body forces

and the acceleration of the fluid element. However, the treatment presented
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here attempts to explain the stresses in a manner consistent with the generic

property balance containing diffusion, generation and convection.

P, o= —F, === PAP,

P,

Y

Figure 2.2: Nomal Forces and Body Loads

(i)  Momentum Balance Equation for a Single Phase Fluid

Substituting v = pU and equations 2.15 and 2.20 into the general
property balance equation, eq 2.11, yields the momentum balance equation
for a single component fluid:

4p)

—5 = "VP+ PF+ 7 -(t- pUU) (2.21)

2.3 Two-Component Systems
As previously mentioned, the problems addressed in this research
deal primarily with two component systems. The equations describing the
flow of such mixtures are very similarto those describing single component

systems. The differences are primarily:
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> separate mass and momentum conservation

equations for each component

> control volume occupied by two components
> exchange of momentum (but not mass) between
components

The sections that follow outline the additional terms that are added to the

basic conservation equations.

Porosity Defined

In single component systems, the control volume is occupied by only one
material. However, in two component systems, that volume is shared by two
materials. In general flow scenarios of two-component mixtures, the
proportion of the two components will vary both temporally and spatially. As
aresult, a new variable has to be defined to monitor these proportions. In

fluidization and soil mechanics, there are a few choices for such a variable.

Porosity (n) has been selected here.

Porosity (or void fraction, &;, in some sources) is defined as the proportion

of the total volume occupied by the continuous fluid phase; i.e. (Hoitz and

Kovacs, 1981):

n= = i (2.22)
total void Vparn'de:
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The range of porosity is from 0 (100% solid component) to 1 (100% fiuid
component). Clearly, ifthere are only two components in the control volume,
then that space not taken by one component must be occupied by the other.

Therefore,

v, particles =1- Vvo:d

4

total

=l-n (2.23)

Mass Conservation Equations for Two Component Systems

The mass concentration of each of the two components in a control volume
is the density of the component muitiplied by the proportion of the space
occupied by that component. The mass concentration of each component,
then, is

Vy=nps
W: =(1—n)'p:

(2.24)
By substituting these equations into the general conservation equation (eq.
2.11), the conservation of mass equations (known as the continuity

equations) for the fluid and solid components, are as follows

Are;)

— -V -(DV(npf)— npr,)

. (2.25)
A(1-n)p,)
a

=-V(DV((1-n)p,)- (1-m)p,U,)

The velocities U,and U, in equation 2.25, refer to the actual velocities of the

components, and not-mass averaged velocities.
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(i) Discussion of the Diffusion of Mass in Solid/Fluid Systems
Included in the continuity equations (equation 2.25) are the diffusion

terms (assuming constant diffusivity coefficient):

DV(np,), DV((1-n)p,)

For the solidfliquid systems, such as those addressed in this study, it is
reasonable to assume that both components are incompressible such that

the diffusion terms become:

p,DV(n), p,DV(1-n)

These terms suggest that the presence of a gradient in the void
fraction may be sufficient to induce a flux of the individual components. This
phenomenon was possibly first observed by Richards (1906) when
photographs of fluidized beds revealed a wider dispersion of particles than
would be predicted by segregation due to variations in particle size alone.
Several researchers (Kennedy and Bretton, 1966, Yutani and Fan, 1985,
Dutta et al., 1988) have investigated this phenomenon and attribute it to the
random movement of particles due to stochastic variation in the properties

of individual particies.

Itis certainly reasonable to assume that such variations and hence
such diffusion will occur in any and all fluidized systems. However, it has
been observed that the diffusion coefficient is small (order 10 m?/s) and

becomes even smaller as porosity is reduced. Therefore diffusion due to
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porosity gradients will be ignored in this study. The resulting continuity

equations thus become:

Aney)
a

2LV (np,U,)=0

(2.26)
1-n
M+V~((1—n)p,v,)=o
07
which for a system with uniform material properties yields:
%’- +V-(nU,)=0
(2.27)

ﬁ(lc; ") eV (=)U,)=0

The presence of mass diffusion in fluidized and liquefied systems
presents an intriguing concept. itis suggested that this area, in the context
of adiffusion coefficient for continuum models, would be an interesting area
of study for improving such models in cases where this phenomenon may

be important to the overall fiow.

N
[
w

Momentum Conservation Equations for Two-Component Systems

Similar to the mass conservation equation, the presence of muitiple
components in the fiow slightly complicates the momentum conservation
equation. Inthe case of a two component mixture, the conserved properties

are

wy=np;U,

2.28
v, = (1 - n)p:U: ( )
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Both components have nearly identical equations for momentum
conservation. However, there is a key difference in the treatment of pressure
relating to the averaging of the granular solid component as was discussed

eariier.

) Pressure in the Individual Components

The stress in the single phase fluid is divided into a deviatoric (or
shear) portion and a spherical portion, usually referred to as pressure. The
same stress division is applied to the individual constituents of a two-

component flow.

The fluid component pressure (P) is real and exerts itseif on both the

fluid and solid components. Each granular particle may be considered a

buoyant body, and so any pressure gradient in the fiuid will resuit in a net
force exerted on the particle. The solid component pressure (P,) on the

other hand, is a contrived term, which is defined as the averaging of contact
forces between individual granular particles. Since these contactforces are
not transmitted to the fluid component, neither will the solids component
pressure be transmitted. Further explanation of this pressure is provided in

the following chapter.

(i) Momentum Source (or sink) Through Hydrodynamic Drag

Whenever a fluid phase is moving with a velocity different than that

ofthe solid particle phase, there is a hydrodynamic drag force exerted by one
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phase on the other. Consider a solidfluid mixture. In the absence of
acceleration, velocity gradients and self weight, the momentum equation for

the fluid component reduces to (in the y-direction for example):

_d('le) + My =0 (2.29)

dy

that is, the pressure drop in the fluid is equal to the momentum flux lostto the
solid phase through hydrodynamic drag. In order to conserve the overall

momentum of the mixture, any loss from one phase must equal the gain to

the other phase. This momentum source (or sink) is represented by M D-

A dot has been introduced to reinforce the notion that the pressure drop is
function of the rate of momentum loss. This term is discussed further in the

following chapter.

il Conservation of Momentum _Equations for the _Individual
Components

The resulting conservation of momentum equations for the fluid and

granular solid components, respectively, are

ﬁ(nprf)

= -V(nP)+np,F+Mp +V-(nt,-np, U, U,) 230

and

a((l—n)P,U:) = _V((l_,,)pf + Ps)+(1—n)p,F-MD

a (2.31)

+V-(1-m7, ~(1-mp,U,U,)
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These equations, combined with the continuity equations, equation
2.27, form the set of simuitaneous relations that must be solved to predict

the fiow response of a two component system. The corresponding

unknowns are the fluid component velocity (Uy), the solid particle component
velocity (U,), the fluid pressure (P;) and the porosity (n). Quantities such as

1, T and P, are functions of these unknowns. These quantities will be

addressed in detail in Chapter 3.

Several researchers have applied the conservation equations to
develop solutions for complex flows of fluidized materials in the chemical
process areas. Jackson (1963),Pritchettetal. (1978), Gidaspow (1986) and
Ding (1990) are widely cited and provide good insight into the utility of this
model. Gidaspow (1994) provides an excelient introduction and summary
ofthe formulation as well as various forms of constitutive models. However,
the research described in this thesis appears to be the first to use such a

form in the modeling of soilfluid systems under liquefaction conditions.

Reviewing equations 2.30 and 2.31 reveals several coefficients and

secondary unknowns that must be determined as functions of the primary

unknowns. These include the fluid phase shear stress (1), the solid phase

shear stress (t,), the momentum source (and sink) term due to

hydrodynamic drag ( M p ) and the solids phase pressure (P,). A portion of
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this researchis dedicated to collecting expressions for these via the following
> direct implementation of previous findings reported in
the literature
> re-interpreting previous findings reported in the
literature that were intended for application in other
systems

> development of new concepts

Revised Hydrodynamic Model

A simple finite element solution of the hydrodynamic equations
(equations. 2.27, 2.30 and 2.31) of asimple, cross sectional averaged, one-
dimensional flow scenario was performed to determine whether a stable
solution can be found. In this simple analysis, a column containing a
fluidized mixture was subjected to a step change in the inlet flow velocity of

the fluid. A schematic representation of this is given in Figure 2.3.

In this simple example, a tube containing the mixture is fluidized by
the fluid flowing through a porous plate atthe bottom ofthe tube. Attime t=t,,
the fluid flow rate is increased causing a disturbance to propagate upwards
through the mixture. Att=t,,, the disturbance has traveled halfway up the

bed. Finally, att=t,, the bed has reached a new equilibrium porosity level.

in the preliminary numerical analyses, it was very difficult (usually

impossible) to achieve a stable solution for even this simple probiem. Itwas
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found that the numerical instability developed quickly with porosity taking on
u.nrealistic values. To overcome these difficulties, the equations were re-
arranged in conjunction with newly defined variables to reduce the non-

linearity of the equation set.

rerr o1 11

Vi=Vp V=V, Vi=Vjq

Figure 2.3: Simple, One-Dimensional Fluidization
Analysis

2.4.1 Revised Continuity Equations
Recall the continuity equations (equation 2.26):

a((1-nyp,) (2.32)



49
assuming that the fluid and solid are incompressible, and noting that V-(1-n)

= -V-n, equation 2.32 simplifies to

%+V-(nUf)=O

n (2.33)
-—+V-((1-nU,)=0
Z+v-(a-mu,)
These two equations can be summed to
v-[nU, +- n)U,] =0 (2.34)
whereas taking their difference resuits in
on
23+V-[nUI —(1-n)U,]_o (2.35)
Two new variables are introduced at this time
V=nU,+(1-n)U,
(2.36)

W=nU, -(1-n)U,

Substituting these new variables into the revised continuity equations yields

V.-v=0

» 2.37
22 V.- W=0 (237)
a

Whereas the original continuity equations are non-linear, due to the coupling
of velocity and porosity, equations 2.37 are uncoupied, linear partial

differential equations. This improvement greatly simplifies the solution
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process.

The reader may recognize that the pseudo-velocity V is the area
averaged volume flux of the mixture whereas the pseudo-velocity W may be

interpreted as the area averaged volume flux of the fluid with respect to the

solid. In any case, both V and W may be regarded as numerical

conveniences, created to achieve the linearization objectives.

2.4.2 Conservation of Momentum Equations

Recalling the original conservation of momentum equations

f(%_éuf_)=—V(nPf)+npfF+MD+V.(an—nprfo) (2.38)

and,

a((l—n)p,U,) = —V((l—n)Pf + P,)+(l—n)p,F—MD

a (2.39)
+V-((1-nm)zs - (1-n)p,U,U,)
The addition of these two momentum equations yields
4nprf +(1- n)p:U,]
= L=~VP, - VP, +[np, +(1-n)p,|F .40

+V -[nrf +(1- n)r:] -V ~[np/UfU/ +(1- ”)P:U:Us]
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Observing that

V+W V-W
nU, = > (1-nU, = 2

(2.41)

and substituting these into equations 2.38 and 2.40, the two revised

momentum conservation equations become

Pr O Py 1
v+ W+ 2LV VU, +WU,|-=V: |r, +1
2 o‘t[ ] 2 [ s f] 2 [fv f"] (2.42)
+V(nP)+M,, - p,ng=0
for the fluid phase, and
L v(L*&Jw(P_&) L9 [, -]+ VP,
a 2 2 2 .o
(2.43)

2

U,-p/U
+VPS+V~[V(p‘U::prfJ—w[p: s~ Prs f)]_5g=o

for the mixture with p being the bulk density of the mixture.

Note: The specific form of equations 2.42 and 2.43 takes advantage of
a simplification stemming from the discretization process. The
reader is referred to chapter 4 for more details.
2.5 Summary
A general conservation equation was developed in this chapter. This general
equation served as the foundation for the development of a set of

hydrodynamic equations for a single component fluid. This in turn provided
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a basis for the development of partial differential equations to describe the
flow of a two-component mixture of granular solids and a continuous fiuid
(summarized in Table 2.1). A new, more stable set of equations was

developed to facilitate a numerical solution.

The set of four equations requires additional closure relations to be soived.
These include relations for the shear stress in both components and the
pressure in the granular solid component. These relations are developed in

the following chapter.

Conservation of Mass
V-V=0

2—+V-W=0

Conservation of Momentum

e
2 a
-png=0

’ p:+p/ p:_pf 1
E[V(T] W2 |57 e e

+V’[V(p‘U’+pr/) _w(pxU:—p/Uf]}_5g=o

[V+ W]+ %v.[vu, + wu,]--zl-v-[r,v + r,']+ V(nP)+ M,

2

Table 2.1: Summary of Reformulated Hydrodynamic Equations
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NOMENCLATURE

dv Elemental volume (scalar) (L%)

D Mass diffusion constant (L2t")

F Body force (vector) (F-M™)

M, Momentum source (or sink) due to hydrodynamic drag (vector) (F-L°
%)

n Void Ratio (scalar) (dimensionless)

P Pressure (scalar) (F-L?)

u Velocity (vector) (L-t")

v Mixture pseudo-velocity (vector) (L-t")

V artices Volume occupied by granular particles (scalar) (L*)

Vi Volume occupied by granular particles and fluid (scalar) (L3)

V o Volume occupied by fluid (scalar) (L)

w Difference pseudo-velocity (vector) (L-t")

Greek Symbols

5 Diffusion coefficient of proportionality (scalar) (units depend on
application)

n Viscosity (scalar) (F-t-L?)
Concentration of a general quantity (scalar) (X-L?)

W Internal generation of y (scalar) (X-L3-t")

L 4 Flux of y (vector) (X-Lt")

P ficion Flux of v attributed to diffusion (vector) (X-L2t")

P mvecton Flux of y attributed to convection (vector) (X-L2-t")

p Density (scalar) (M-L)

T Shear stress (2™ order tensor) (F-L?)

T Shear stress of component p based on pseudo-velocity q (2™ order

tensor) (F-L?) (p=fs; q=fs)
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NOMENCLATURE (CONT'D)

Operator
VA A, where A is a vector field

Subscripts
f denotes fluid component
s denotes solid component
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CLOSURE EQUATIONS

in the preceding chapter, the equations for the conservation of mass
and momentum were developed for a two component mixture comprised of
a granular solid component and a fluid component. Recall that the mass
conservation equations are:

V-¥V=0

2% L v.w-o0 3.1
ar

and the momentum conservation equations are
pf d pf . - 1 .
——[V+W]+—2-V [VU,«»WU’] EV [‘r

2 ot K
- ) + i, - o = O

: f"'] (3.2)

for the fluid phase, and

L7 I -2 2 | S R
V{ 2 u{ 2 ]J PR R
+ VP + V. p{p:Ul+leIf) _ u{"s”s“’/”f]

2

9
ot

(3.3)

for the mixture. All symbols used above are the same as defined in the

preceding chapter.

Reviewing these equations reveals the need for additional relations

in order that only the mixture pseudo-velocity (V), the difference pseudo-

57
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velocity (W), the fluid pressure (P,) and the porosity (n) remain as unknowns.
These additional relations are known as closure equations. For this

particular model, the following closure equations are required for:

Hydrodynamic drag (M )

v

v

Fluid component shear stress (ty)

v

Solid component pressure (P,)

v

Solid component shear behavior (t,)

Individual relations are presented, for each quantity, in the following sections.

Momentum Source (or sink) Through Hydrodynamic Drag

Whenever the fluid phase is moving with a velocity different from that
ofthe solid particie phase, there is a hydrodynamic drag force exerted by one
phase on the other. One can consider, for example, a solid/fluid mixture. in
the absence of acceleration, velocity gradients and gravity, the momentum

equation (in the y-direction for example) for the fluid component reduces to

i:—f) + My, =0 (3.4)

y

indicating that, the pressure drop in the fluid is equal to the momentum flux
lost to the solid phase through hydrodynamic drag. Of course, in order to
conserve the overall momentum of the mixture, any loss from one phase
must exactly equal the gain to the other phase. Considerable attention has
been paid to the quantization of this hydrodynamic drag. Owing to the fact

that a large number of successful relations available in the literature, it was
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decided that selected relations would be adopted in this study rather than

attempting to develop new ones in this area.

As is common, the hydrodynamic correlations adopted in this study
are separated according to the porosity regime of the two component
mixture. See, forexample, Bird et al. (1960), Gidaspow (1986), Gidaspow
(1994). In this study two regimes are used:

> dilute conditions (0.6 < n < 1.0)

> dense conditions (0.3 <n < 0.6)

Dense Conditions

Most drag correlations found in the fluidized bed literature for dense
conditions have their basis in early research on pressure loss through
packed and sediment beds. These are found extensively in chemical

process industries and in soil mechanics (especially for dense solids ratios).

itwas recognized by early researchers that the pressure loss can be
attributed to two sources in this regime; (i) viscous losses and (ii) kinetic
energy losses due to turbulent flow around the particles (Ergun, 1952).
Blake, as reported in Carman (1937) presents correlations based on two

dimensionless groups

APi n3 and AP dp n3 dppU

Ui L 1-n U2 L 1-nul-n) B8
p p

for kinetic and viscous losses, respectively (where d, is a representative
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particle diameter and L is the length (height) of the bed).

Carmen recognized that the correlations of Blake reduces to the

Kozeny equation for low flow velocities

AP _ k (1-n)? WU
A I (3.6)
p

(with k,=180, civil engineers commonly use equation 3.6 to find a correlation
for permeability with state parameters and fundamental material properties).

U is the discharge relative velocity between the fluid and solid phases.

For high velocities, Blake (Carmen, 1937) proposes
— = k —_— (3.7)

As a direct extension of equations 3.6 and 3.7 for a more general range of
flow velocities, Ergun (1952) proposes the following equation, widely used
for packed beds, which has found acceptance among some researchers in
modeling fluidized bed systems

AP _lisoQ=mf WU, | 55(1-m) pU?

n? d: nd d,

(3.8)

Equation 3.8 is limited due to the narrow porosity range tested by
Ergun;i.e., n=0.4. As aresult, the appropriateness of applying equation 3.8
to intermediate situations (0.6 < n < 0.8) as many researchers do, may be

questioned. In this study, the use of equation 3.8 is limited strictly to dense
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flow situations where porosity is below 0.6.

Equation 3.8, in its current form, is not suitable for direct substitution
into the hydrodynamic equations. It must first be modified somewhat.
Recalling equation 3.4 and assuming uniform porosity, one may write

ar M,
dy n

(3.9)

Although the choice of the form for the mode! of M, is somewhat

arbitrary, itis convenient to select one of the unknowns in the hydrodynamic

equations as an independent variable

M,=8-V, (3.10)
where B is an experimentally determined drag coefficientand V,, the relative

velocity between the granular solid component and the fluid component.

Relating the relative velocity to the superficial relative velocity (U) via

U=Vn (3.11)

allows us to establish an expression for f. Substituting equations 3.11 into

3.8, 3.9 into 3.4 and equating the resuits, yields the following

B = lSOMi + 1_75(1‘") PV
P

(3.12)
P

Itis importantto recognize that this relation for B is assumed to be applicable

for packed bed conditions only.
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In the case of slow flow (R,<1), equation 3.12 simplifies to

B = 1500 &

n 2
dP

(3.13)

which reduces the non-linearity of the drag term when compared with
equation 3.12. Figure 3.1 shows the variation of drag coefficientwith porosity

and flow velocity for a specific particle size and sphericity.

Hydrodynamic Drag
1E+08
& = 0.80 mm
\ dye= 0.16 mm
\ 0=0913
-\ 1 |
@ 1E+07 "}-T
E \
2 \
&)
% \
S 1E+06
S E \
iy T \
o -+ \
1E+05 L
:
T | conmm ROV oo RE®1 ol RO*10 e R*100 e Re=1000
1E+04 + + + } 18 + T
20% 30% 40% 50% 60%
Porosity

Figure 3.1: Drag Coefficient for Dense Flow Conditions

3.1.2 Dilute Conditions

Richardson and Zaki (1954) provide an approach for determining
pressure loss through a fluidized bed for dilute conditions. In theirwork, they

analyze the terminal velocity of particles, determined through both
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fluidization and sedimentation experiments, to determine pressure losses.
Consider, for example, a spherical particle of diameter d,, with density p,,
falling through a fiuid having a density p; and a viscosity u,. The buoyant

weight of the particle is
nd’
- P -
WP = T(p‘ p Jk (3.14)

with, the upward force due to the hydrodynamic drag on a single isolated

sphere being given by

1 2
Fp = SCopf, (3.15)

where V. is the relative velocity between the fluid and the particle and C, is
the coefficient of drag on a single, isolated particle. Richardson and Zaki

show that, in the range of the porosity considered (0.65 < n < 1.0), the
upward force on a particle within a suspension of similar particles (Fy) can

be reiated to that of an isolated particle by the relation:

D D
— = — = fn 3.16
F, T, Sf(n) (3.16)

where C; is the coefficient of drag on a single particle.

In steady fluidization or sedimentation (no acceleration of the solid
particles) the upward force must equal the downward weight of the particle,

therefore
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1
Vz = Ed3 P 1
r 3 P(p-!’ ) pf CD f(n) (3. 7)

Now, when the solid particies are fully suspended in a steady, stationary
suspension, the pressure drop mustequai the weight of the suspension; i.e:

_% - [(1-,,)9: + np/]g (3.18)

Once again, consider equation 3.4, for steady, uniform mixtures, where

M
a _ ¥p (3.19)
dy n
and
M, =8B-V (3.20)

One obtains, after substituting equations 3.20, 3.4 and 3.17 into 3.18

4 g
340 -0) — 8
ﬂ[3 6,7 0)

After rearranging terms, B is given by

= -[a-np, « mp] gV, (3.21)

3p,Cp f(n)[ P,
4 dp lpx - P

B = - n}V,In (3.22)

Over awide range of porosities and flow regimes, Richardson and Zaki found

that

flin) = n383 (3.23)
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According to Rowe (1961), the drag coefficient for an isolated sphere is

241+0.15R°%"") , R, < 1000
R

C, = R, (3.24)
0.44 , R, > 1000

where the Reynolds number is defined as
p,V d
R‘ =L re (3.25)

o
The findings of Richardson and Zaki were later updated by Kahn and

Richardson (1987, 1990) to include a correction in the intermediate range of
0.2<R,<500. Since the simulations of this study are limited, in general, to

low Reynold’'s number flows, this correction is not considered in this thesis.

[0)] A Modification to the Richardson-Zaki Relation
A controversial topic (Gibilaro & Foscolo, 1984, Clift et al., 1987,
Gibilaro et al., 1987) in the development of drag correlations for fluidization

and sedimentation is the so-called buoyancy force (F,) on the particle. Any

introductory fiuid mechanics textbook will show this force to be given by:
7I:d3
F = A (3.26)
b ~Pr & 3
However, this force is not strictly due to “the volume of fluid displaced” as is
sometimes indicated, but rather is due to the asymmetric pressure

distribution on the body due to the pressure gradient is given by:

P _
5 - e @-21
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that occurs in a static fluid column. Equation 3.26 is a convenient

expression for highly specific, although quite common conditions.

Strictly speaking, equation 3.27 applies only for the case of an
isolated particle suspended or moving in a homogenous fluid. In the steady
fluidization or sedimentation (the conditions under which the measurements
of Richardson and Zaki are made), the fluid pressure gradient is

%f = -[a-mp, + mp) g (3.28)

This pressure gradient is real and measurable by a piezometer and is not
simply localized around individual particies. By recognizing that the pressure
gradient in the fluid is given by equation 3.28, the buoyant weight of the

particle becomes
nd’
A -
Wp - —6-—-”@‘ p) g (3'29)
not that given in eq. 3.14.

When the correct net weight on the particle is introduced, equation 3.17

becomes
2 _ M3 1
V. = §dpﬁ’: P E (3.30)

In order for this expression to match the data of Richardson and Zaki,

fitn) = n48 (3.31)
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the drag coefficient becomes

30,Co @) o,

a dp lpx - Py

- nj¥|n? (3.32)

F =N

(i) Simplification of the Modified Richardson-Zaki Drag Coefficient

For low Reynolds number flows, equation 3.24 reduces to Stokes

Law for flow around a sphere, that is

24
co.28 %y

= — = (3.33)
b R, Py Vv, dp
Substituting this into equation 3.32 yields
') o,
B - 182 [ - np? (3.34)
a |p - o

[4
which substantially reduces the non-linearity ofthe drag term. Equation 3.34

is plotted in figure 3.2 for typical properties found in this study.

jii A Note on Drag Correlations for General Fluidization
The data collected by Richardson and Zaki (1954), as well as

numerous other investigators have a common limitation. The data was
collected at the steady state fiuidization or sedimentation velocity for a
particular porosity value. In general however, the relative fluid velocity may

not be limited to the sedimentation velocity due to the inertia of the particles.
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Hydrodynamic Drag

Dilute Conditions
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Figure 3.2 Hydro?ynamic Drag for Dilute Conditions

In otherwords, under steady conditions of fiuidization, each state of porosity
has an associated relative velocity between the particle and the fluid. Onthe
other hand, for more general fluidization conditions, this is not the case.
Transient conditions will resultin other relative velocities, either greater and
less than those of steady fluidization. The correlations summarized here are

therefore extrapolations beyond the test conditions.

It is recommended that future work be devoted to determining the
accuracy ofthe drag correlations at various porosities, for relative velocities

that differ from the steady fluidization values.
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Shear Stress in the Fluid Component
The fluid under investigation in this study is water, which may be
treated as a Newtonian fiuid. Therefore, the shear stress (t;) in this

component is simply:

: Eyu
T, = pr(s,j -9, —) (3.35)

where i, is the temperature dependant viscosity of the water and é,j is the

rate of deformation tensor. Malvermn (1969) provides an excellentdescription

of the stress/strain rate behavior in viscous fluids.

Constitutive Modeling of the Granular Phase

In contrast to the simplicity of the fluid component, the granular
component is a complex materiai with behavior dependent on a wide range
of conditions. Any reasonable model has to accommodate these conditions.
The shear stress-strain behavior is highly non-linear and shear straininQ in
a packed bed of granuiar material is accompanied by volumetric straining
that is the cause of liquefaction as outlined in the introductory chapter.
Therefore, modeling this medium presents significant challenges. The
objective of this section is to develop equations to describe the shear stress

and volumetric straining when shear strains are applied.

Findings reported in the literature (Henriksen & @stergaard, 1974,
Darton, R.C., 1985,Cheremisinoff, 1984, Jeffrey & Acrivos, 1976, Schiger
et al.,, 1961, Savage and McKeown, 1983, Tsuchiya et al., 1997) and
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experiments carried out for this study suggest that the shear stress in the
granular component can be characterized by two distinct regimes:
> Newtonian, porosity dependent, viscous region

> Non-linear, shear-rate dependent region.

The description of the behavior of the granular component in these

two regions is outlined below. This is followed by a description of the

modeling of the volumetric strain behavior.

Newtonian Region

Itis regularly reported in the literature (Tsuchiya, 1997 for a recent
example) that for low solids concentration, a mixture of a fluid and a granular
solid component behaves as a Newtonian fluid. Thatis, the shear stress is
proportional to the shear strain rate (via the viscosity). Owing to the
Newtonian behavior of the mixture, albeit with a porosity-dependent viscosity,
the characterization of this behavior has tended towards simple correlations

of viscosity to solids concentration.

Alarge number of references in the literature that report the results
of various measurements of viscosity as a function of solids concentration
for a wide variety of granular and fluid materials. To describe eachis beyond
the scope of this research. It is sufficient to outiine the following:

> the rheological properties of liquid/granular mixtures

> the procedures used to measure such a quantity
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> the resuits for materials similar to those of interest in this

research

[0)] Variability of Rheology for Granular/Fluid Mixtures
Although, somewhat dated, Rutgers (1962) provides a

comprehensive survey of many previously published experimental findings
on the viscosity of granular solids suspended in Newtonian fluids. The
results of this work are summarized in Figure 3.3. The following summary
provides some key insight into the behavior of liquid-solid mixtures as
identified in his report:
> Newtonian behavior of the liquid-solid mixture may be
expected up to a solids concentration of at least 25% and
possibly as high as 45%
> For solids concentration below 20%, the relative viscosity
(that is, the viscosity of the mixture normalized by the
viscosity of the fluid component) for all mixtures is grouped
within one order of magnitude. Above this concentration
however, there is very high dispersion of the data.
> Each individual combination of liquid and granular material
has a unique porosity/viscosity.
> The Newtonian behavior depends on “loose and random”
contacts between solid particles, as one would expect,

without any “structure” forming between the solid grains.
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These findings provide limits for the expected region of Newtonian
behavior and motivation for determining the viscosity/porosity relationship for

the material of interest in this research.
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Figure 3.3: Viscosity/Solids Volume Fraction Dependancy (Rutgers, 1962)

(ii) Viscosity Measurement

There are three methods commonly used for the measurement of

viscosity in mixtures of granular solids with fluids.
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> Couette parallel plate viscometer (Savage & McKeown, 1983,
Schageri et al., 1961)
> Brookfield type viscometer
> Rising bubble (Henriksen & Ostergaard, 1974,
Tsuchiya et al., 1997)

The vast majority of the measurements for fluidized beds reported in
the literature use the third method. This method is described in detail in
Darton and Harrison (1974) and more recently in Tsuchiya et al. (1997). In
brief, the experiment is based on the assumption that the viscosity of the
mixture may be estimated from the rise velocity of a bubble using a Stokes
flow approximation, with the realization of course that the bubble diameter

grows as the bubble rises through the mixture.

The shear stress measurement used in both the Couette and
Brookfieid devices, on the other hand, allow a more direct determination of
the mixture viscosity and precise control over shear rate. Owing to these
advantages, a Brookfield device was selected for this research. The
Brookfield device was chosen over the Couette type as itis believed that it
would be difficult, if notimpossible, to properly fluidize a mixture uniformly,
given the close proximity of the walls of the rotor and stator in a Couette
device. The use of direct measurement aiso allows the findings of this
research to be compared to that of similar materials measured by others via

the rising bubble method.
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Although Brookfield type devices have been used to investigate the
rheological properties of suspensions, its use in determining properties of

liquefied sands is unique.

(i)  Experimental Viscosity Measurement

Adevice was designed and fabricated to allow the fluidization of sand
in water, and to allow the viscosity of this mixture to be measured by a
Brookfield type viscometer. Figure 3.4 shows schematically the operation

of the device.

N constant
viscometer head

|

INU NN

graduated
beaker

Figure 3.4: Schematic Diagram of Viscosity Measuring Device

The operation of the device is simple. Areservoir, filled with ordinary
tap water, and having constant head is piped to the inlet of the fluidization
chamber, measuring 100mm in diameter and 100mm in height. The water
is introduced through two inlet pipes and a porous stone is used to disperse
the flow uniformly across the cross section of the fluidized bed. The

chamber contains a known mass of Bames sand, the fluidized granular
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material. Knowing of the volume of the vessel (and accounting for the
presence of the viscometer rotor), the mass of the sand and assuming
homogenous fluidization, the porosity of the bed can calcuiated to a high
degree of accuracy. The fluidization chamber is topped by an expansion
chamber which slows the flow of water and prevents the flow of sand above

the desired height of the fluidized region.

The outlet flow of water is directed to a graduated container allowing
the flow rate to be accurately measured. The height of the constant head
reservoir may be adjusted to accommodate a range of bed porosities. Direct
reading piezometers were used to determine the pressure drop across the

fluidized bed.

As previously mentioned, the fluidized granular material was sand,
specifically #40 Barnes sand. The sand was sieved to produce a material
with a more homogenous particle size distribution. Three particle size
distributions were analyzed. Two of these distributions where normal while
the third is a bimodal mixture of equal proportions of the first two.
Specifically, the particle size ranges are:

> 100% 75um - 150pum (WS 75/150)

> 100% 150pm - 300um (WS 150/300)

> 50% 75uym - 150um + 50% 150um - 300um (WS

75/150+150/300)
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A photograph of the sand taken under a microscope showing the particle

shape is given in Figure 3.5.

Figure 3.5: Photograph of Barnes Sand

The viscometer is a rotating cylinder, immersed in the fluidized
mixture. The torque (and hence shear stress) on the cylinder was
measured, which in tum converted to the viscosity of the mixture. The
resulting viscosity measurements for the grain size distributions considered
are given in Figure 3.6. Figure 3.7, shows viscosity as a function of shear

rate. it can be seen that above 50% solids concentration (e, = 1-n), the

relative viscosity decreases strongly with shear rate and so the mixture may

no longer be considered Newtonian.
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Figure 3.6: Viscosity Measurements using Brookfield Viscometer

It may be observed that viscosity depends weakly on shear rate
below £,=0.5. However, itrapidly becomes shear-rate dependent above this
concentration. An examination of the curves in Figure 3.7 indicates that the
material is shear thinning in the non-Newtonian region. Rutgers (1962)
indicates that Newtonian behaviour of the mixture depends on “loose and
random” contact between the granular particles to achieve momentum
diffusion. Atlow porosity levels (0.5 in this case) this contact becomes more
structured and the momentum no longer diffuses via the Newtonian

description.
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Figure 3.7: Dependance of Viscosity on Shear Rate

3.3.2 Comparison of Results to Previous Work

Given the very large variability of the mixture viscosities found in the
literature, itis of particularimportance that the currentfindings be compared
to previous studies. As previously mentioned, Rutger provides viscosities for
a wide range of mixtures in suspension, while Tsuchiya reports data from
fluidized sands and glass beads. Figure 3.8 shows Rutger's “average
curve’ of the data as well as that reported by Tsuchiya. Superimposed on

this figure is the data from the current research.

Itcan be seen that the results from this research lie within the region
reported in the previous studies. The agreement of the data reported herein

with that provided in the literature provides support:
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that the measurements made for sand water systems are

repeatable

that the measurements are not specific to the apparatus

used

that correlations developed by other researchers are

applicable

Relative Viscosity
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study. This has the form

4 k, +kle,

Figure 3.8: Comparison of Current Findings to Previous Research

A slightly modified form of Mooney's (1951) correlation is considered in this

(3.36)
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where &, is the solids volume fraction (,= 1 - n). This equation may be

rearranged as
1 1 2
m = k,,(;_—:) +k, (3.37)
Hy

which is of a form suitable for determining the constants using the slope and
vertical intercept of the plot of 1In(In(u./ o) versus 1/g,, as shownin Figure

3.8.

I Viscosity Correlation

/
/ =107
. ki=-1.7172

T Q
1
-
1.5 2 25 3 35 4 4.5 S
Reciprocal of Solids Fraction

Recip. of In(In(Relative Viscosity))
[

Figure 3.9: Linearized Viscosity Data

Itis apparent, in Figure 3.6 that the various size distributions of sand
give slightly different viscous behaviors. However, for the purpose of
demonstrating the utility of the model, these differences are neglected and

a single group of correlation constants is used for all sands. A linear
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regression analysis of the data plotted in Figure 3.9, yields the correlation
constants:
k,'= 1.1721
kz2=-1.7172
The coefficient of determination (R?) is 0.9724, indicating an exceptionally

good fit of the data.

The above constants are strictly applicable only to the particular sand
under consideration. If other materials are to be considered, new constants
(or even new correlation equations) should be developed based on applicable

experimental data.

Non-Newtonian Region

When a fluid/granular mixture becomes densely packed (n <0.5), it's

behavior changes from a viscous Newtonian fluid to the highly non-linear
behavior shown in Figure 3.7. In this study, it is assumed that the material

goes from a viscous fluid at n < 0.5, to a non-linear elastic solid that behaves

as a more classical geo-material. With this assumption, a wide range of
constitutive models becomes available for the stress/strain behavior. The
reader should note that the usual elastic description is not strictly consistent
with the Eulerian representation of the conservation equations used in this
thesis. However, when the granular component is densely packed, the

strains are very small such that:

s;' = é;At (3.38)
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Therefore, the Eulerian and Lagrangian equations appear similar, thus

allowing us to move from one description to another (Malvemn, 1969).

As was mentioned in the opening chapter, constitutive models are
available for geo-materials with a wide range of complexity. Itis important
when selecting a model to consider the importance of the stress response
ofthe material within the context of the overali behavior ofthe system. inthe
current research, the post-liquefaction response is of primary importance.
Therefore, a simple stress/strain constitutive model is sufficient for the
granular component prior to liquefaction, provided that a build-up of pore

pressure due to shear induced volume changes can be accounted for.

[0} Stress/Strain Constitutive Model
Hosni (1992) provides a simple, effective stress/strain constitutive

model suitable for the needs of this study. The model is for a non-linear
elastic material where the shear stresses (t;) are proportional to the

deviatoric strains in the usual elastic manner:

T, = Ge; (3.39)

with the shear modulus (G) being given by the simple engineering

approximation:

s

(S 20k - p:
G - ( ?.,) 20K, -P (kPa) (3.40)

where (G/G,) is a decreasing function with strain (as shown in figure 3.10).
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K., iS @ constant, ranging from 0.4 to 0.6 for sandy soils, that depends on
the relative density. Finally, P, is, as previously defined, the pressure in the

granular component.

The decreasing shear moduius with increasing shear strain can be
readily seen when the stress/strain behavior of equation 3.40 is plotted in

Figure 3.11 for a range of confining pressures in the granular material.

G/G,

IR WYY bbbkl dedeadededaad el

0.
.0001 .001 .01 .1 1
Shear strain (%)

Figure 3.10: Effect of Shear Strain on Shear Modulus



84

t———
R

Non-Linear Elastic Material
1E6
| ]
1E5 —""'H Pressur
—_ - et
v
& L]
 1E4 a =uurtll [ TS
8 d T -
7 T 100 kPa
5 1E3
Q —
& ’;‘ 1MPa
1E2
10 MPa
1E1
I 0.0001 0.001 0.01 0.1 1
Shear Strain (%)
——

Figure 3.11: Stress/Strain Behavior

(i) Confining Pressure in The Granular Component
A key objective of this study is the analysis of post-liquefaction in

sandy soils. As outlined in the introductory chapter, liquefaction is triggered
by the soil skeleton tendency to compact under the action of shear strains.
This compaction is prevented by the presence of the pore fluid. The pore
fluid is "squeezed" by the grains attempting to compact, which, in turn,
increases the pressure of the fiuid and begins to transfer the spherical stress
from the granular component to the fluid. At a critical point, the spherical
stress (confining pressure) in the granular material is reduced to zero (or
close to zero). Itis well known that a granular material relies on confining
pressure to provide shear resistance. In a non-cohesive material such as

a sandy soil, when the confining pressure is reduced to zero, the shear
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strength aiso vanishes. (This behavior is reflected in the stress/strain

constitutive model of equations 3.39 and 3.40)

Owing to the strong dependance of the shear strength on the
tendency of the granular material to compact, it is vital that an accurate
model of this behavior be included in the hydrodynamic model.
Unfortunately, many of the traditional constitutive models employed in soil
mechanics for this purpose are highly complex and computationally
unwieldy. Thus, a simple constitutive model has been developed using the
more traditional concepts of soil mechanics. The following derivation is

original.

An accepted notion in soil mechanics is that changes in confining
pressure are accompanied by volumetric strain (Malvern, 1969). A standard

expression for this behavior is

i 3.41
dP P: ( M )

where &, is the volumetric strain and A is a proportionality constant. The

volumetric strain can be re-written as

de
de. =
v Py (3.42)

where ¢ is the void ratio and ¢ is the void ratio at the beginning of a strain

increment. The void ratio may be expressed in terms of porosity
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n

e=—
1-n

Taking the derivative of eq. 3.43 with respect to porosity yields

g _ 1
dn  (1-ny
or
de= dn
(1-ny
Let
— n
e = ———
-n

Condensing equations 3.42 through 3.46 allows one to write
de, = dn 7P
(1-ny?

Substituting equation 3.47 into equation 3.41 yields
P, P, 1-n

5

dn 4 (1-np

Re-arranging equation 3.48 and integrating both sides provides
fi dP: = -uf 1 dn + C
P, 4 7 (1-np

which after performing the integration gives

hP :—1_-'11 +C
y A 1-n

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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or

P, = exp-+1" . ¢ (3.51)
Al-n

with C being an integration constant.

At this point, itis insightful to interpret the meaning of equation 3.51.
This equation shows that, in this model, the confining pressure is essentially
an exponential function of the ratio between porosity, n, and a reference
porosity,n. As n becomes less than n, this ratio becomes greater than unity
and the confining pressure increases rapidly due to the exponential nature
of equation 3.51. In evaluating the constant, C, the conditions at the

reference porosity must be considered. It is convenient to define this

reference porosity as the level at which the confining pressure has some

very low value. IfP, is set to unity when n =10, a simple expression results

l =e -1 + (3.52)
y .

and therefore,

1
C - —
1 (3.53)
Substitution of equation 3.53 into 3.51 yields
1 1-n
P =exp—| 1-— 3.54
‘ ’“’{A( l-n) &




The confining pressure at any porosity is thus a function of two

variables; a flexibility term A and a reference porosity n. Equation 3.54
indicates that decreasing A results in increasing confining pressure. The

effect of this constant can be seen in Figure 3.12 (with n = 0.5).

Solids Pressure Constitutive Response
Effect of Constant "A”
1E14
= 1E12->.\-
2 1e10 ‘\-\‘\
o
a 1Ea_>q
g 1E6 fmr :\T\’%«R\-_
_§ 1E4 Tl ] w
B 12 .
N
0.3 0.35 0.4 0.45 0.5
Porosity
—a— A=0.010 _g A=0.015 _o- A=0.020

Figure 3.12: Effect of Flexibility Constant (A)

A well known characteristic of granular materials is that the same
grains may exist at different porosities at exactly the same confining

pressure. The reference porosity, n, in equation 3.54 provides a vehicle to
capture this behavior. n in essence “offsets"” the response of the soil. This
effect can be seen in Figure 3.13 (with A = 0.015). The reference porosity

thus provides a powerful indicator of the state of the granular material, which
is similar to the use of void ratio as an indication of state in critical state

mechanics (Castro, 1969, 1975).
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Solids Pressure Constitutive Response
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Figure 3.13: Effect of Reference Porosity ()

As indicated previously, the behavior of the granular material is tied
to the fluid occupying the void space. There are two extreme cases of
granular/fluid behavior often referred to in soil mechanics as drained and
undrained response. In the first case, the permeability of the granular
material is very high (as compared to the rate of loading) such that the pore
fluid is instantaneously squeezed out of the voids spaces when the granular
material experiences changes in volume. As such, there is no increase of
pressure in the fluid and the granular material supports any new loads
without delay. In the undrained case, the permeability of the soil is reduced
to zero, such that the fluid cannot escape the void spaces. Hence any new
loads cause a squeezing of the incompressible fluid rather than straining the
granular material and loads are transferred to the fluid rather than to the solid.

In the extreme event of liquefaction, the confining pressure in the granular
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material is reduced to zero.

The use of equation 3.54 in the context of the overall hydrodynamic
equations provides a vehicle for capturing both of these extreme cases, as
well as intermediate situations. In simple terms, the tendency towards
volume change is reflected by changes to the reference porosity. The basic
hydrodynamic equations control the rate at which the actual porosity may
change by controlling the flow of the fluid in the void space. Graphically, this
is shown in Figure 3.14. In the drained case, the tendency to compact (say

due to a shear strain) is reflected by a change in the reference porosity from

0, to n,. Since the fluid is free to flow uninhibited, the porosity changes such
that the (effective) confining pressure, P,, remains constant. In the undrained

case, again the tendency to compact is reflected by a “desired” change inn.

This time however, the porosity cannot change. Eq. 3.54 predicts a
reduction in confining pressure which, to maintain static equilibrium, mustbe
transferred to the fluid. This is consistentwith experimental results. In areal
scenario, there is no such thing as undrained conditions. Eventually, over
time, the fluid escapes allowing the porosity to change. This is referred to as
consolidation, shown graphically in Figure 3.14. Again, the hydrodynamic

equations combined with eq. 3.54 will predict this response.
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A final issue remains. Changes in o due to shear strains must

accurately model the behavior of the granular component. The following

section describes the methodology used in this study.

iill Modeling Changes in the Reference Porosity

Relations quantifying changes in the reference porosity must
accurately reflect the behavior of the granular component. A model to
quantify this change could take on the form of traditional complex constitutive
models found in soil mechanics. Again the problem of computational

efficiency surfaces.

Recently however, artificial neural networks (ANN's) have appeared
in the soil mechanics literature for the purpose of modeling a wide range of

soil behavior. Owing to the ability of neural networks to model complex, non-
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linear behavior, such a method could be useful for predicting changes in n

due to straining. A thorough description of the principals behind ANN's is
beyond the scope of this thesis. However, there are several introductory
texts on the subject, which can provide a deeper understanding. (Rocha,
1992, Nelson, 1991, Khanna, 1990). In brief, the ANN is comprised of a
series of simultaneous, non-linear equations. These equations contain
several multipliers and constants which are determined via an optimization
procedure to minimize the error between predicted and actual outputs from

the network for a given series of input combinations.

In this study, a commercial neural network software package known
as EasyNN (Woistenholme, 1999) was employed to determine the
multipliers (weights) and constants (biases). The values determined by the
neural network mode! were implemented in the finite element code for
solving various case studies. To train the network, data is required for the
behavior of a granular material. Fortunately, the VELACS (1997) (VErification
of Liquefaction Analysis by Centrifuge Studies) program has made tabulated
data for undrained, cyclic, triaxial tests on sandy soils available. This data
was inputinto the neural network software and the weights and biases where
recorded. The structure of the neural network is displayed in Figure 3.15.
The solids pressure model provides changes in the reference porosity as a

function of shear strains.
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Figure 3.15: Neural Network Structure

Figure 3.16 shows plots of three training data histories, along with a
test case showing both the measured and ANN predicted fi values for triaxial
tests. It can be seen that there is good agreement between the measured
and predicted response. The reader is referred to Appendix 3.1 for details

on the implementation of an artificial neural network in a finite element code.

Summary
In the second chapter, a series of basic hydrodynamic equations
were presented to model the flow of two-component mixtures of granular

solids in a fluid. The fundamental unknowns in these equations are the

mixture pseudo velocity (V), the difference pseudo velocity (W), the fluid
pressure (P,) and the porosity (n). Unfortunately, several terms in the

equations contained other variables as well. To be able to solve the
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Figure 3.16: Results of ANN Training

hydrodynamic equations, another set of equations referred to as closure
equations had to be developed so that only the fundamental unknowns

remained. These closure equations were the subject of this chapter.

The three areas requiring closure equations, which were developed in the
preceding sections, are:

> hydrodynamic drag between the two components

> granular component shear stress

> granular component pressure



95

APPENDIX 3.1 IMPLEMENTING AN ARTIFICIAL NEURAL NETWORK

IN A NON-LINEAR ELASTIC ANALYSIS CODE

An artificial neural network (ANN) is used in this study to update the
reference porosity as described in section 3.3.3. Neural network may be

expressed in terms of a series of simple matrix operations.

In this study, the inputs to the ANN are (refer to figure 3.15):

> Change in deviatoric strain, Ay
> Log of the total deviatoric strain, Log(y)
> Current reference porosity, 0.,

The output is the new reference porosity i,.

In practice, the neural network code is organized as a subroutine.
The inputs from the main program are passed to the subroutine and the

output is passed from the subroutine back to the main program.

The firststep in the ANN code is to normalize the inputs (x;) between

minimum and maximum values of 0 and 1 respectively. This is performed

by the following operation:

- i inia

X - X.
'-u lnin

where x; are the normalized inputs and X;pi» and X;n,, are the minimum and
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maximum values of the i input, respectively.

The normalized inputs are then multiplied by the first hidden layer weights
(W*,) and a vector of biases (b*,) are added. This may be expressed as:

- h 3
= . .
v, x,Wy b]

where v, are the initial hidden layer values. Note thatrepeated indices imply

summation. At this point, the initial hidden layer values are processed by a
non-linear function. In this study, the function is of the following form:

1

V = ——
’ 1 +e™™

where V; are the hidden layer outputs (having values between 0 and 1) (e

here is the exponential function notthe void ratio). Ifthere is more than one
hidden layer, these values would go through a similar procedure for each
hidden layer. In this study, there is only one hidden layer. The output from
the hidden layer is passed to the output layer. First, these hidden layer
outputs are multiplied by the output layer weights (W°,) and another vector

of biases (b°,) is added:

Ve = V,W;: + by

where y, are the initial output values.

The initial output values are themselves processed by the same function as

the initial hidden layer outputs:



where Y, are the normalized output values. The following converts the

normalized values to the actual output values (Y,):

Yt = Yl(ymu - Ymin)+Ymin
where Yim and Yinn are the maximum and minimum output values,
respectively, of the k™ output. These output values (which in this study is a

single value, n,) are returned to the main program.

For details on Artificial Neural Networks, the reader is referred to
Rocha (1992), Neison (1991) and Khanna (1990).

The neural network used in this study consists of three input values
(log of total shear strain, shear strain increment and the currentvalue ofnnin
that order). There are three hidden nodes and one output node (giving the
new value of n). The hidden layer weights (W*,) are:

-1.159932 -2.163154 8.074500
-1.153477 -2.234670 7.259948
1.555892 -5.063079 8.430298

and the hidden layer biases (b*) are:

-6.2368 -5.4514 0.6681
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The output layer weights (W°,) are:

3.256640 2.570816 2.172821

and the output layer bias (b°)) is:

1.8695
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NOMENCLATURE

A Solids pressure compressibility

b" Hidden layer bias

b° Output iayer bias

K,, ky Correlation constants

k', K3, Correlation constants for mixture viscosity

Komax Correlation constant for shear modulus of sand

C Integration constant

Co Drag coefficient on a single particle

Co Drag coefficient on a single particle in a granuiar/fluid mixture of
similar particles

d, Diameter of particle

e Void ratio

f(n) Function of porosity

f(n) Modified function of porosity

Fs Buoyant force

Fo Force on particle due to drag

Fp Drag force on a single particle in a granular/fluid mixture of similar
particles

g Gravitational acceleration

G Shear moduius

L Dimensionless length

M, Momentum flux due to hydrodynamic drag

P Pressure

R, Reynoids number

v Initial hidden layer output

Y Final hidden layer output

v Mixture pseudo-velocity

V.V, Relative velocity

uu Velocity

w Hidden layer weights
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W Output layer weights

w Difference pseudo-velocity
W, Net weight of a particle
w, Modified net weight of a particle
X Neural network input

y Initial output layer output
Y Final output layer output
Greek Symbols

B Interfacial drag

g Deviatoric strain

& Volume ratio of granular particles
g, Volumetric strain

Y Shear strain

v Viscosity

p Density

T Shear stress

Subscripts

f Fluid component

! Liquid

m Mixture

s Granular component
Superscripts

N Reference quantity

- Normalized quantity (ANN)
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FINITE ELEMENT MODELING

In the second chapter, a series of partial differential equations were
presented that describe the flow behavior of a two-component mixture of soil
and fluid. This chapter presents these equations in their integral form and
thenin a discretized form via the finite element method. As is usual with the
finite element method, the discretization process allows the unknown

quantities to be determined at discrete locations within the domain.

Similar to the presentation of Chapter 2, single component flow
equations are presented first followed by their extension to two-component
mixtures. This allows the finite element concepts to be more clearty
understood without the complication of the large number of terms that are

present in the two component systems.

Principle of Virtual Work (Malvern, 1969)

The principle of virtual work, which is closely related to Galerkin
procedures, provides a basis for the development of the integral form of
equations from the continuous partial differential equations. This in turn
allows the unknown quantities to be determined at a finite number of

locations within the domain, via the finite element discretization.
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This principle is in essence, a statement that the internal work done
on a body must be equal to the external work applied. For example, consider

a body having a stress field (), and both internal body forces (b) and
external forces (t) applied on the surface (I'). If the body is moved through
arbitrary displacements (6u) and stretched by corresponding strains (¢ =
S&u, where Sis a linear operator defining strains in terms of displacements),

the internal and external virtual work in the domain, 2 must be equal,

fzssTc aQ - fSU"b aQ = faU’x dr 1)
Q Q r

The reader should note that the analogy in fluid dynamics is the
application of an arbitrary velocity field rather than a displacement field. In
this case, itis the rate of internal work done on the body that must equal the

rate of external work applied to the body.

Finite Element Equations for Single Component Flows

Single component fluids are considered first, to simplify the
introduction of the finite element equations. Following this, the extensionto
two-component flows is presented. Since extensive literature exists on the
finite element methodology ( Zienkiewicz and Taylor, 1989, Bathe, 1996,
Oden, 1976), only the important points with regard to the solution of the

equations in this study are considered here.
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4.2.1 Continuity Equation
Recall from the second chapter that the continuity equation for a

single component incompressible flow is

VU =0 4.2)
The integrated equivalent for the continuity equation is obtained by multiplying
equation 4.2 by the virtual pressure 8P. Afterintegrating over the domain, we

have

f SP(V-U] dQ = 0 4.3)
Q

At this point a fundamental concept in finite element analysis is
introduced, that of the discretization of an unknown. In the finite element
method, the domain is divided into smaller volumes referred to as elements.
The unknown field (velocity, pressure and porosity in this work) within each
elementis defined in terms of interpolation functions and unknowns at a finite

number of special locations, referred to as nodes. These functions are also
appropriately termed, shape functions (N) and depend only on position
within the element. Any quantity of interest, y for example, may be

determined at a point within the element via

v = Ny (4.4)

where iy are the values of y at the nodes. Although there are an infinite

variety of shape function forms that may be envisaged, except for special

circumstances, these are usually of polynomial form. More information on
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shape functions and the finite element method in general can be found in

Zienkiewicz and Tayior (1989).

Using the finite element method, one can approximate the exact
unknown field by the shape functions and a select number of nodal

unknowns. In the case of the continuity equation, equation 4.3 becomes

num. elements -7 -
f ) o NPT[V.N UU ] melaunl =0 (4.5)
Q

clemant

=1

i.e., the integration over the domain is replaced by the summation of the
integrations over the elements. Note that for clarity, the remaining
integrations will be assumed to be over an element with the summation
implied unless noted otherwise. According to the convention followed here,

the subscript indicates to which variable the interpolation belongs.
The nodal quantities are independent of position within the element

and can therefore be removed from the integrand. Therefore, equation 4.5

becomes
P '[ [ Ny [V:Ny| dQ) U-=0 “6)
Q
Since 8P is arbitrary, the term inside the brackets must vanish, yielding

( £ NA[V-N,] dﬂ] U=0 wn
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Equation 4.7 is the finite elementintegrated equivalent of equation 4.2. The
integral in brackets is the contribution of the continuity equation to the overall
system matrix, which contains U, the nodal velocity unknowns. This
equation is combined with the conservation of momentum equation, which

is presented in the next section, to form the overail system matrix.

Conservation of Momentum Equation

Again, from Chapter 2, recall the conservation of momentum equation

for a single component incompressibie fluid

P:—U + VP - V{v - pUU) + pF = 0 (4.8)

Similar to the continuity equation, the integrated equivalent of equation 4.8 is

fav(p—*-VP V‘l'-pUU)*l-deQ=0 (4.9)

Following the usual practice to reduce the inter-element continuity
requirements and maintain symmetry in the system matrix, the shear stress

and pressure terms are integrated by parts; i.e.,

(4.10)

f&U(VP - V1)dQ = fSU(P - 7)dl - fV-SU(P - 7)dQ
o r Q

where I is the bounding surface of Q. It should be noted that pressure is
added to only the normal stress terms. Also, the gradient V-8U can be

replaced by &€ due to the symmetry associated with the stress tensor.
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Now, Zienkiewicz and Taylor (1989) show that for functions
containing derivatives of the n™ order, the finite element representation of that
function must be continuous to the n™* order. Therefore, equation 4.10
accomplishes two things. First, itreduces the maximum order of derivatives
of U from second to first order. Secondly, it provides a vehicle for applying
boundary tractions via the boundary term. For clarity at this point however,
it will be assumed that either the velocity is prescribed along the boundary

(i.e., 8U = 0) or that the boundary is traction free. In either case, the

boundary term vanishes. Substituting equation 4.10into equation 4.8 yields

ISL{paa—lt] + V'pUU + pF)d) + fV'SU(-P + f)d) = 0 (4.11)
Q Q

applying a finite element discretization and recognizing that 8U is arbitrary

requires that:

[INJoN,U + NJoUVN,T + NJoF) dfa +
Q
— (4.12)
[[-9NNP + w-NJx) da = 0
Q
Equation 4.12 is the momentum equation’s contribution to the system matrix

equation.

System Matrices and Load Vector for a Single Component Fluid

Equations 4.7 and 4.12 govemn the flow of a single component fluid.

In finite element form, they form a matrix equation which, when inverted
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allows the unknown nodal velocities and pressures to be determined.

Combining equations 4.7 and 4.12 in matrix form yields:

[

The reader is referred to Appendix 4.1 for the individual matrix components.

£, K, o7
o7 o|P

M, olz';
+

0 ofp

Finite Element Equations for Two-Component Flow

In this section, the ideas presented in the preceding section will be
extended to two-component flows, the subject of this study. To preserve the
clarity of the presentation, only those concepts that are unique to two-
component systems are outlined. The general notions of the finite element

equations for the mixtures are identical to those presented earlier.

Continuity Equations for Two-Component Mixtures

Recalling the continuity relations from Chapter 2,

VeV =0 (4.14)

and

d
26—': + VW =0 (4.15)

Equations 4.14 and 4.15 are muitiplied by virtual fluid pressures (5P,) and

virtual porosities (6n), respectively. After following the integration and
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discretization process outlined for a single component fluid, the resuiting

finite element continuity equations are

[NSVN, a2V =0
Q

(4.16)

and

[N2N, dQ b+ [NJUN, 2 W -0 847)
Q Q

The shape function subscripts refer to the particular polynomial form used

for each unknown. A discussion of this follows later in this chapter.

Conservation of Momentum Equations for Two-Component Flows

Recall the conservation of momentum equation for the mixture, noting
that only slow flows are dealt with in this study. Due to the siow flows, the

advective terms have been eliminated, yielding

O rpsa —

a[Vp - WAy - %V-[‘r,v—r"] + VP, + VP -pg =0 (4.18)
where

n P, * P Py = P —

p = 3 f’ Ap = 3 f’ p = p: - n@’- p) (4.19)

with the granular component stress, P,, a function of porosity as outlined in

Chapter 3. The conservation of momentum equation for the fiuid phase is:

S ar[V + W - %V-[r,; 1.'/'] + VinP) - BU, - U) - ppg =0 (4.20)
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The mixture momentum requires no further explanation and its finite
element equivalent results from multiplying it by the virtual velocity 8V,

integrating over the domain and descritizing according to the finite element

procedure. The resulting finite element equation is

fN,,’ BN,V - NJApN W dQ + fv-N,,' %[r,v- r,'] dQ
Q Q

- fV-NJNPI-’., + V:N,P, dQ + fNJ(p,- PENA dQ = fN:p,g dQ“m)
o o o

Similarty, the fluid componentequation is straight forward. However,

the drag term mustbe converted from the original component velocities (U,,

Uy into the new pseudo velocities (V. W). Recall that

View V-w
v, - v -
s s 7 2-n) (4.22)

which, after some simple algebra, means that
1 1
W|—| -V]|] - — .
(Zn) ( 2'!)] “s

Substituting equation 4.23 into equation 4.20 and once again going

o, - v) - £

through the process of forming finite element equations, the finite element

equivalent of the fluid component conservation of momentum equation is:
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fN”’fNV N”’fzv W dQ + fvzv [, AR
fVNWnN,PdQ

r B (.1
fNWl n( ZnJNWW N ¥1- n(l 2n
- fN,,p;N_n aQ =0

- (4.24)
)N,,V aQ

The four finite element equations (equations 4.16, 4.17, 4.21 and

4.24) can be combined to form the simultaneous, non-symmetrical equations

allowing the unknowns (V, W, P, n) to be solved. This matrix equation takes

the form:
- .3 K _K - .
My 0 0|y i w O {V [ +fp
.| |K+R K~R -Q ~ !
0 0| Y% p, Lu | |w
" AR T =] Y | e
0 0 0{|B] | o o o ||| |0
0 0 M/, o o o o |la] Lo

The readeris referred to Appendix 4.2 for the individual matrix components.

Transient Solution Technique
In a simplified format, the goveming set of equations (equation 4.13
for a single component fluid or equation 4.25 for a two component mixture)

may be written in compact form as:

Mi + Ka = f (4.26)
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where a is the vector of unknowns, a” ={V, W, P,, n}for the two component

mixture (the overbar notation for nodal unknowns has been dropped here for

clarity).

Now, assuming a finite difference scheme for a:

A _
i=94 "4 (4.27)
At
Equation 4.26 becomes:
Ma*¥ - a' + KAta"™ = fAr (4.28)
or:
[M + AtK]a*% = fAr + Ma* (4.29)

This form of time integration is referred to as an implicit scheme, where the
system matrix and load vector are evaluated at the end of the time step. It
is often difficult for non-linear properties to obtain these in an appropriate

form and so one must therefore, resort to predictor-corrector schemes.

Step 1: solve 4.29 using with matrices evaluated at
the beginning of the time step.
Step 2: use the new values of the variables to

evaluate the matrices at the end of the time
step.
Step 3: Repeat Steps 1 and 2 until convergence is

achieved.
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Where possibie, it is more efficient to implicitly include the values
of various quantities at the end of the time step. One method to achieve this
is to use a Taylor's expansion to estimate these values. This is especially
important when a quantity undergoes large changes with small changes in
the unknowns. Consider, for example, the exponential nature of the granular

component pressure (P,) mode! where small changes in porosity (n) can

result in large changes in the P,. Given that (refer to Chapter 3)

1, 1-4
P =exp—| 1--—2 :
s CX%A( 1 _n)] (4.30)

an implicit scheme requires that P, be evaluated at the end of the time step.

To estimate this, a truncated, first-order Taylor's expansion is employed

where:
\¢
Pth: - Pt + aP.r An
E s \ an)
aP \ [ 4

= P!+ an’) = - nl) (4.31)
\¢ [

. pt. aP: et _ ap, nt

! on | on

The granular stress component of the momentum equation is therefore:
[VNSP d =
Q

o oP,)" oP, oar
fv-N,,P, aQ - fv-zv,, n'dQ + fv-zv,, N4 dQ
a A on 9 on

] ' (4.32)

This modification eliminates the need for a predictor-corrector iteration, thus
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improving the efficiency of the solution procedure.

General Element Selection Criteria

Reviewing the four finite element equations, and the boundary terms
in particular, itmay be observed that the unknown variables have associated
with them derivatives of various order which implies different minimum

continuity requirements

Highest Continuity
Unknown
Order Derivative Requirements
\% 1 Co
w 1 Co
P 0 no requirement
n 0 no requirement

The continuity requirements provide a minimum standard for the
elements. Beyond this requirement however, the underlying equations
should be examined to determine whether different orders of interpolation of

the variables with respect to one another are appropriate.

Forexample, consider a slow, steady single component flow through
aone-dimensional expansion, the fluid momentum equation for this system

reduces to:

d*U
p———dx =0 (4.33)

+

&8
w| &

2
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An examination of this equation suggests that pressure should be
interpoiated with a function having one degree less than that used for
velocity, to ensure that both terms vary in similar ways. For example, if a
quadratic interpolation were to be used for velocity, pressure should vary
linearty. Similar arguments can be presented for the integral equations ofa

two component mixture.

In general, the order of interpolation for the element is chosen as a
compromise between accuracy (higher order interpolation being more
accurate for equal element size) and computational efficiency (lower order

interpolation having fewer degrees of freedom for a given element size).

A note on Porosity Interpolation

As just noted, it is not necessary for porosity to be continuous
between elements. In fact there are good reasons to allow it to be
discontinuous. Consider the sedimentation of granules in a fluid, a process
distinguished by a sharp interface between clear liquid and a mixture of solid
and liquid. The use of a discontinuous porosity interpolation allows this

discontinuity to be more accurately modeled than a continuous interpolation.

The second reason for choosing a discontinuous interpolation (and
more specifically a constantinterpolation) is one of convenience. in several

locations in the equations there are terms resembling:
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V-(no) (4.34)

which, after applying the chain rule, becomes:

nvV.9 + -Vn (4.35)

The second term above drops outif porosity is assumed to be constant over
the element. By introducing constant porosity in each element, the
discretized hydrodynamic equations are greatly simplified. Of course, such
asimplification does introduce numerical errors. However, this error canbe

decreased by increasing the number of elements.

One-Dimensional Problems

There are a few circumstances where the flow of a two-phase
mixture can be considered to be one-dimensional. A few examples are
pneumatic conveying of granular solids, slurry flow and certain classes of
consolidation and liquefaction problems in soil mechanics. In addition to the
analysis of these special cases, one-dimensional models allow the
numerical solution technique to be verified with less complication than arises
in two-dimensional analysis. For this reason, the finite element solution to

some simple one-dimensional problems is considered first.

One-Dimensional Elements
A one-dimensional element considered in this section for two-phase

flow has the following features:
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> Unknowns: V, W, P, n
> Variable area

> Arbitrary inclination with respect to gravity

Figure 4.1 shows the general one-dimensional element. Two

element types that were used and compared are:
1VWI/OP/On Linear velocity (V,W), constant (and discontinuous)
pressure and porosity
2VW/1P/IOn  Quadratic velocity (V, W), constant porosity and linear

pressure

Figure 4.1: Flow Geometry

To compare the performance of the two elements, an analysis of a

simple scenario was performed. The analysis considered is one-
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dimensional fluidization in a vertical column for a stationary mixture having
an initial porosity of 0.65. The fluid inflow velocity was then changed to a
level that produced a porosity of approximately 0.71 at steady state. The
solid component was composed of individual grains, each having densities
of 2600 kg/m® and a diameter of 0.30 mm. The fluidizing liquid was water at
20°C.

Figure 4.2 compares the porosity distribution in the column at an
intermediate time (i.e., before reaching steady state). For this analysis,
equal element sizes were used. The simulated column heightis 1.0m and
100 elements were used:; i.e., the element length is therefore 1cm.

Itmay be observed from the predicted porosity distribution shown in Figure

One-Dimensional Two-Component Flow
Step Change in Fluid Infow

0.74
0.72
> 07
B
9 -
& 0.68
0.66 1 \
0.64 $ + } t
0 0.2 04 0.6 0.8 1
Depth
—a— Linear Velocity (1VW/0P/On) —a— Quadratic Velocity (2VW/1P/0n)

Figure 4.2: Comparison of 1-D Elements
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4.2, that the two elements perform nearly identically. it appears thatthere is
a very small shift in the response but this is quite slight. It may also be
observed in Figure 4.2 that there is an overshoot of the final porosity levei
(0.716). The overshoot is not affected by the element density nor the time
step size and so it is not a function of the numerical method. Rather, itis a
function of the model itseif. The simulation predicts that the solid particles
are swept up by the rapid change in the fluid velocity. This rapid propulsion
of the particles creates a zone that is partially devoid of particles and an
adjacent zone that has surplus particles. As the wavefront passes, an
oscillation between these two zones is created which takes some time to die
out. This suggests that there may be some energy dissipation mechanism
missing from the model. However, it should be noted that the overshoot is
small (a maximum of + 2% porosity) and the overall response is in good

agreement with experimental results (refer to Chapter 5).

Although the above example is quite simpie, it does test the
movement of a porosity front sweeping through the column, which, in our
experience is a challenge to model because of the sharp transition from one
porosity level to ancther. It may be concluded that both of the proposed
element formulations for one-dimensional fiow analysis of two-component
mixtures are adequate. The reader is referred to Chapter 5 for a more
thorough description of this simulation, complete with sensitivity analysis to

different properties, time increments and element sizes.
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46.2 Reduced Variable Model

Lyczkowski et al. (1978) analyzed the character of the hydrodynamic
equation set for two component mixtures and found that the equations are
ill-posed. Therefore, a stable solution may be difficult or impossible to find
(although our experience has shown this is not aiways the case). In order
to overcome this problem, they recommend a revised set of momentum
equations where fluid pressure is eliminated from the solids phase

momentum equation by introducing a revised drag coefficient (Bg). For one

dimensional flow with variable area, the revised equation set becomes

d d
51mP) + 5l (436)

a%(A(l -n)p,) + %(A(l -n)p,U,) @.37)

as
%(4(1 -n)p,U,) + ax‘ - AB(U, - U,) + A((1-n)p, + npj)gcose = 0 (4.38)

d
P nij) + %(APJ) + ABB(Uf - U:) + Apgeosd = 0 (4.39)

where S, is the solids phase stress tensor. Equations 4.36 - 4.39 are

convenient because they allow an extremely efficient form of one-

dimensional problems to be extracted.

Using a procedure similar to that outlined in the previous chapter for

the simplified hydrodynamic model (i.e., replacing the fluid and solid
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velocities with pseudo-velocities V and W), the continuity equations become

a_;{ =0 4.40
ax ( e )
on ow
2" L W
ot ox (4.41)

where in this case

V = A@Uj + (1 -n)U‘) w A(nUf - -n)U,) (4.42)

Inequation4.42, V is the volume flow rate. Integrating equation 4.40yields
V=c (4.43)
ie., the volume flow rate is constant throughout the domain (as one might
expect) and equal to the boundary value flow rate, which may be prescribed
ateithertheinletoroutlet. This resultieaves only the difference velocity and

porosity to be determined. The porosity may be eliminated via the following

finite element and temporal discretization process.
The integrated equivalent of equation 4.41 is

I
fﬁn{ZA‘?—n + a—W)dx =0 (4.44)
5 ot ox

Given constant porosity and linear interpolation for velocity, equation 4.44

becomes
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W, - W.
A, + 4,) 1@[ ML 2] =0 (4.45)

Equation 4.45 is strictly for a linear interpolation element but that an
analogous expression can be produced forany 1-D, element type). Finally,
if an implicit finite difference scheme is employed for porosity, then

T N S - (Wl'Wz
4, + A, 1

(4.46)

By substituting equations 4.43, 4.44 and 4.46 into the granular component
momentum equation (eq. 4.38), W becomes the only variable remaining to

be solved. The resulting equation is (neglecting the granular stress):

The implication of equation 4.47 is that a system formally having four
simultaneous equations for four unknowns has been reduced to one equation
with a single unknown. This reduces the computational effort to solve this
system significantly. The other variables (porosity and pressure) are

updated after each time step.

Chapter 5 provides detailed discussions of simulations based on the
reduced variable formulation complete with a comparison to the standard

element formulations that were discussed in section 4.6.1.
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Two-Dimensional Problems

Although there are several classes of problems that may be
described as one-dimensional, two-dimensions are often required to analyze
more general problems. The continuity and interpolation criteria described
for the one-dimensional elements have also been used for the two-

dimensional elements.

Previous Research on Two-Dimensional Elements

The vast majority of computational work in fluid dynamics has been
devoted to the finite difference (FDM) and finite volume (FVM) approaches.
For both tangible and less tangible reasons, the finite element method was
selected to model the two-component flows under consideration in this
thesis. Owing to the limited volume of work reported in the literature for finite
element applications in both single and two-component flow modeling,
determining suitable element formulations presented a unique challenge in
this thesis. However, some work in the use of finite elements for two-

component flow has been reported.

As a whole, workers in the field of two-component flows have
encountered stability issues when using standard Galerkin formulations
applied to the primitive variable equation set. These instabilities appear to
manifest themselves as oscillations in the pressure field and macroscopic
solution instability due to sharp gradients. Both of these instabilities are

consistent with findings from initial work performed for this thesis (see
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Chapter2). Inorderto solve these stability issues, it appears thatthree main

approaches have been used.

A greatdeal of research has and continues to be performed in dealing
with the problem of spurious pressure oscillation (known also as
“checkerboarding”™). This is especially true for the very popular bi-linear
velocity constant pressure element. Two avenues of dealing with this
instability are to (i) choose selectively the interpolation of the velocity and
pressure degrees of freedom and (ii) add so-called stabilization terms to the

continuity equation.

Itmay be stated in general that the steady component of the system

matrix for the Navier-Stokes equation has the following form:

o

(4.48)
2" o

Several authors have attributed the pressure instability to the null
diagonal term and suggest the addition of a stabilization term ( Zienkiewicz

and Taylor, 1989, Nigro et al., 1994, Pastor et al., 1997).

Another method of dealing with the pressure oscillation problemis the
addition of a so-called bubble function to the interpolation of velocity. The
bubble function assumes a value of unity at the center of an element and

zero atthe edges. One can immediately see that since this additional term
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reduces to zero along the boundary, it has the effect of “relaxing” the
constraints on velocity between elements. An excellent review of this

method may be found in Fortin and Fortin (1985).

The second instability reported in the literature is due to sharp
gradients in porosity. Hiltunen (1997) proposes a “discontinuity capturing
operator” in his work on two-component flow modeling. A description of this
method is beyond the scope of this thesis and the reader is referred to the
original paper. Inageneral sense, the operator acts as an artificial diffusivity

term with the gradient of porosity acting as the driving force, i.e.:

D_: = Bx(an) (4.49)

where x is a diffusivity constant. It is felt that such an additional term is

artificial and, in the context of the revised equation set presented herein,

unnecessary and so will be avoided in this thesis.

A third approach to stabilizing a finite element solution for both
pressure and porosity induced oscillations is to disguise a finite volume
method as a finite element solution. This method uses interpolation
characteristics of the finite element method but employs a control volume
approach to integrating the goverming equations, thus avoiding the problem

of extreme porosity gradients (Masson and Baliga, 1994).
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472

Two-Dimensional Elements

Owing to the fact thatin our equation set, the continuity equations are
linear and the hydrodynamic drag term appears in only one of the two
momentum equations, standard finite elements were successful in the
solution of the equations, in spite of the negative findings of previous
research mentioned in section4.7.1. Several element types were evaluated
for their performance in solving the flow of mixtures of granular solids and
fluids. Table 4.1 summarizes the elements that were evaluated in the
research in this thesis. Figure 4.3 gives a diagram of each of the elements
studied including the node locations. To compare the elements, the simple
fluidization simulation that was used to validate the one-dimensional code

was again used for the two-dimensional code.

'@e 4.1: ng-Dimensional Element Descriptions

Reference Element Number Velocity Pressurs Porosity
Number Shape of V.W) Interpolation Interpolation
Nodes Interpolation
2DT1 Triangular 7 Quadratic Linear Constant
2DT2 Triangular 6 Quadratic Linear Linear
2DT3 Triangular 4 Linear Constant Constant
2074 Trianguiar 10 4-Linear Linear 4-Constant
Elements Elements
2DT5 Triangular 3 Linear Co-Located Constant
Constant
2DQ1 Quadrilater 5 Bi-Linear Constant Constant
al
2DQ2 Quadrilater 5 Bi-Linear Co-Located Constant
al Constant
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2444

2DTH 20T3 2DT4 © Pressure

[ -]
®
2075 20Q1

Figure 4.3: Element Configurations

X Porosty

Each of the two-dimensional elements of Table 4.1 was used to
model an essentially one-dimensional problem. No special solution
techniques, such as stabilization schemes, were employed. The porosity
distribution in the simulated fluidization column was recorded at an
intermediate time before steady state was achieved. In many cases, the
solution became wildly unstable before this time. Figure 4.4 shows a plot of

the porosity distributions for each of the four stable elements.

it was found that there are stability problems with those elements
employing quadratic interpolation for velocity. This may be attributed to the
response of quadratic interpolation to the propagation of a wave front.
Therefore, only linear velocity interpolation was subsequently employed for
two-dimensional analyses completed for this thesis. Figure 4.4 reveals that
there are some differences in the transient response of the four stable

elements (noting that the steady state resuits for all stable elements were
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identical). These are characterised by minor differences in the timing of the
response whichis attributable to spatial differences in the integration domain

of the variables owing to the specific make-up of each element.

2-D Element Comparison
Step Change in Inlet Fluid Flow

0.82

0.8 1 ’Ji

078 I | %
0.76 ﬁ Y
0.74 b

0.72

Porosity

o oo
3383

o
o
N
o
»
o
)]
o
[}
-

Depth

—»— 2DT3 -e-— 2075 —a- 20Q172DQ2

Figure 4.4: Comparison of 2-D Element Response

Referring to Figure 4.5, suppose a wave front travels through an
elementwhere velocity goes from one level to another with a sharp gradient.
Owing to the characteristic of the quadratic interpolation, the element is
forced to predict a reversal of the velocity change through the element,
whereas a linearly interpolated element is able to correctly track the wave
front. This reversal of the velocity is believed to initiate an instability in the

solution, which increases with successive time steps.
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Velocity

Figure 4.5: Velocity Reversal due to Quadratic
Iinterpolation

Four of the two-dimensional linear velocity interpolation elements
provided stable solutions for the one-dimensional test problem.
Unfortunately, two of those elements have fatal flaws preventing their use in
fully two-dimensional analyses. The first of these elements is the linear
velocity, constantpressure element (2DT3). As explained in Zienkiewicz and
Taylor (1989), this element suffers from locking due to the incompressible
condition. Consider Figure 4.6 which shows two elements in a comer of the
domain. Incompressibility in element 1 limits the movement of node A to
horizontal velocities only. Additionally, incompressibility in element 2 limits
the velocity of node A to the vertical direction. Therefore, the only admissible
velocity of node A is zero in both directions. This locking propagates
throughout the domain, and hence, this elementis not useful in general two-

dimensional elements.
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Figure 4.6: Incompressible Locking

To possibly overcome this locking phenomenon, a staggered mesh
approach incorporating triangular elements was attempted, whereby the
continuity equations were integrated over local domains different than those
corresponding to the momentum equations. This scheme led to the linear
velocity co-located pressure element (2DT5). Unfortunately, this element
suffered from severe pressure “checker-boarding” where the pressure from
one element to the next would oscillate about the correct value. The reader
is referred to Figure 4.7 for a plot of the pressure distribution for the one-
dimensional test problem. Although solutions to this problem were not
pursued, this approach, if the checker-boarding can be overcome, is very

attractive, as the 3-node triangular element is highly versatile.

Solutions to the pressure oscillation problem of the 2DT5 element

were not pursued because success in modeling two-dimensional problems



was achieved using the bi-linear constant pressure, constant porosity
element2DQ1. This element did not suffer from the locking of its triangular
brethren, for the problems analyzed in this thesis, and it had the additional
benefit of being a simple, low-bandwidth element. Forthese reasons, itwas
selected for all future two-dimensional simulations. Chapter 5 presents
exampies of simulations used to validate the code using this element. It
should be noted that the performance of a co-located pressure version of this

element (2DQ2) was also tried. It suffered from the same checker-boarding
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as 2DT5.
Co-Located Pressure Scheme
Pressure Checkerboarding
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Figure 4.7: Pressure Checker-Boarding in 2DT5
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47.3 Axi-symmetric Element with Out of Plane Velocity

Axi-symmetric analyses are a simple extension of a two-dimensional
model. A description of the formulation of such analyses is covered
thoroughly in Zienkiewicz and Taylor (1989) for example. In usual axi-
symmetric analyses, velocity is confined to the plane of symmetry. insome
cases however, it is beneficial to include out of plane velocity components
in an otherwise axi-symmetric problem. [n such problems the inherent
computational efficiency of the axi-symmetric formulation (having only a
planar domain) may be exploited over a fully three-dimensional analysis
(requiring a full three dimensional domain with an associated increase in

elements, nodes and degrees of freedom).

Such a case is that of the rotating viscometer discussed in Chapter
3. Inthis apparatus, the fluid and solid velocity components have, in addition
to the usual planar components, an out of plane component generated by the
rotating spindle. This results in helical streamlines which may be described

using only two co-ordinates.

The generation ofthe finite element equations is identical to the pianar
case outlined previously. There are only three things that need to be
changed from the standard two-dimensional analysis:

. A third velocity component needs to be added (the

three co-ordinate directions are r, z and 8)

> The integration area becomes a toroid traced by the
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planar element about the axis of symmetry. In the
case of the rotating viscometer, this is the spindle
axis.

> The rate of deformation tensor becomes:

Ou, Ou, u, Ou  Ou, Ouy u, OJu,
—r = T, = 8.8 8 (4.50)
0z r 0Oz oOor Or r Oz

where u is a general velocity vector such as the fluid or solid

component velocity.

As an initial check on the derivation of the model, a finite element
analysis was performed on the rotating viscometer with an imaginary single
component fiuid having properties similar to a fluidized mixture of sand and
water (density of 1600 kg/m® and a viscosity of 1 Pa-s). Figure 4.8 shows

the geometry of the problem including the finite element mesh.

The boundary conditions (see Figure 4.8) consist of a uniform inlet
velocity and no slip conditions applied to the wall and rotating cylinder.
Figures 4.9, 4.10 and 4.11 show the resulting in-plane and out of plane
velocity profiles respectively. Figure 4.12 shows the caiculated pressure
distribution (with the hydrostatic component removed). The resuits of the
finite element solution in the fully developed region were compared with
analytical flow profiles and the resulting error for both in plane and out of

plane velocity was less than 2 percent (see Table 4.2).
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Figure 4.8: Rotating Viscometer Geometry

Table 4.2: Fiow Velocity Error

Flow Velocity Error
In plane (z-direction) 1.8%
Out of Plane (6- 1.6%
direction)

Itmay be observed in Figure 4.12 that there is slight checker boarding
of the pressure field which is to be expected with the 4-node quadrilateral
element (LeTallec and Ruas, 1986, Fortin and Fortin, 1985). The effect is
slight when compared to the overall distribution of pressure and may be

removed via post-processing smoothing.

A similar analysis has been completed with a two-component

sand/water mixture. The results of this analysis is found in Chapter 5.
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Fluid Velocity Vectors (U-V)
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Figure 4.9: In-plane (r-z) Velocity Vectors for Rotating Cylinder Viscometer (scale 30mm

1.0 m/s)
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Fluid Velocity Vectors (W)
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Z=0 025 (near inlet) Z=0.04375 (near rotor bottom)

W"““nn.

Z=0.075 (middte of rotor) Z=0.10 (outlet)

Figure 4.11: Section Views of Out of Plane (r-8) Velocity Vectors for

Rotating Cylinder Viscometer (scale 65mm = 1.0 m/s)

Figure 4.12: Pressure Field (in Pa) for Rotating Cylinder Viscometer
(Hydrostatic head removed)
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Summary
The governing equations derived in Chapter 2 have been recast in
their finite element form in this chapter. A detailed explanation of the finite
element equations has been provided for one-component systems for clarity.
Similar procedures were followed for the two-component equations, the

results of which are provided.

Both one and two-dimensional elements were considered and the
factors for proper element selection were discussed. A brief discussion of
the transient soiution technique is provided along with a novel, reduced
variable model. Finally, the use of an axi-symmetric formulation for problems

having out of plane velocity was presented.



142

APPENDIX 4.1 MATRIX ELEMENTS FOR SINGLE COMPONENT

FLow

The following are the individual matrix components for the single component

equation system eq. 4.13, i.e..

U

P

M, 0
()

N

where the integration is performed over the element volume.

+1?,,+11’,,Q¢7=
o7 o|P

r
M, - fNUpNU dv

K, = [NjUN,av K, - [B,uDB, av
Q = [VNyN, dv

F = fN,,’pg dv
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APPENDIX 4.2 MATRIX ELEMENTS FOR TWO-COMPONENT FLOW

The following are the individual matrix components for the two-component

mixture equation system eq. 4.26, i.e.:

- v | K, K, -@p Lp+L =1 .
My My 0 0|[p] | B e O BRI e,
M, M, 0 ol (BRER QG L g |
o o o0 o0|A |Q o0 o o (lp| |0
(0 0 OMili] o o o o |lm L0
where the integration is performed over the element volume.
Py P _ Py P,
M, - fN,,’( zf)N,,dV M, - fN,,'( zf)N,, dv
M, - fN,:(%’)NW dv M, = [N2N, av
T T
K, - fsyppsy dv K, - fBprBW dv
r
K, - fBW;pBWW
Q, = [VN/N, av Q, = [VNgnN, dV
Q, = [VN,N, dv
- . P, _ T,
L, - fv.lv‘( aﬂ)N. dv L, - fN,,(p:-pj)gN, av

T
L, - fNijgN_ dv

dav

f= [Nyog v £, = fv-N,f{P,-( ;)n
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APPENDIX 4.3 ANALYTIC SOLUTIONS FOR ROTATING CYLINDER

VISCOMETER

In the annular region between the rotating cylinder and the stationary vessel

wall, the Navier Stokes Equation is (Brodkey, 1967):

P d’U +1dU
dz_#dr2 r dar

integrating this equation twice yields:

-

r dp rJU 2U Ar+ B
—_— = - e +
6dz Y67 4

where r; is the radius of the rotor, r, is the radius of the vessel and:

ldP(r.3—r3j B r,.dP(2 r.3—r3)

Which may be solved for U,.

The out of plane velocity (U,) is given by (Brodkey, 1967)

2.2

) rer

_ 2 _ Lo
Ug= = rz[ir'} }

r

{ ]
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NOMENCLATURE

General unknown vector

Body force vector

Reduced variable model boundary condition
General load vector

Body force vector

General stiffness or system matrix
General mass matrix

Porosity

Reference porosity (this chapter only)
Shape function (vector)

Pressure

Strain operator

Time

Applied tractions

Displacement vector

Velocity vector

Mixture pseudo-velocity

~~ ® UV Z>> XN -0 O &

s < cCc¢c

Difference pseudo-velocity

Greek Symbols
B Drag coefficient

) Denotes virtual quantity

™

Strain tensor
Viscosity
Integration domain
General unknown

Density

a © € ©H =®

Stress tensor



146

) Inclination with respect to vertical
Subscripts

f Fluid component

n Porosity

P Pressure

S Granular component

U Velocity

Vv Mixture pseudo-velocity

w Difference Pseudo-Velocity

Superscripts

Nodal quantity (except as given in eq. 4.20)
Time derivative
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MODEL VERIFICATION AND ANALYSES

The preceding chapters have presented the hydrodynamic model
used, the additional models required for closure of the differential equations,
and the finite element solution methods that are applicable to the class of
problems addressed in this thesis. This chapter verifies the appropriateness
of the models by comparing their predictions to the experimental and

numerical results of others.

Five basic scenarios have been analyzed using the models
developed in this study. The finite element resuits have been compared to
experimental resuits published in the literature and they have been found to
agree to a reasonable degree. The selection of experimental resuits was
made to allow the verification of the models in stages of increasing
complexity. In addition to verifying the model, some interesting conclusions
have been drawn from the numerical results, which, in some cases, are able
to provide a possible explanation for a phenomenon for which a mechanism

had not been previously provided.

The first simulation analyzes the transient behavior of a two
component mixture that is fluidized in a one-dimensional bed after being

subjected to a step change in the fluid inlet velocity. Experimenters have

149
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noticed an asymmetry between step increases and step decreases in the
flow rate. This phenomenon is captured by the numerical model. A

mechanistic explanation of this asymmetry is also provided.

The second simulation tests the capability of the model to simulate
the settlement of the solid particles from a state of fluidization to a packed
bed configuration. This analysis employs the granular component stress
model presented in the third chapter. The resuits compare favorably to

experimental values over the entire duration of the settiement.

The third simulation adds a significant complexity associated with
two-dimensional flows. The model is used to simulate the transition to fully
developed flow of a two-component mixture in a pipe. The computed velocity

vectors and porosity values compare favorably to the measured resuits.

The fourth simulation is of a one-dimensional column of loose sand
thatis “subjected” to the El Centro earthquake and the ensuing liquefaction
and post liquefaction response is monitored. Owing to the lack of data on
such anevent, the presentmodel is compared to previous numerical resullts.
The simulations compare favourably, and the capacity to monitor post
liquefaction response represents a significantimprovement over previously
developed models. The post-liquefaction consolidation and settlement is

also simulated.
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Finally, a flow analysis of the rotating cylinder viscometer discussed
in Chapter 3 is presented. The results of this analysis are provided for
demonstration only and no verification of the results are included. The
analysis shows that the assumptions made in the experimental phase were
warranted. An interesting comparison of the flow profile in the two-

component mixture to single phase flow is also provided.

Transient Response of a Solid-Liquid Fluidized Bed to a Step Change
in Fluid Inlet Velocity

Several researchers have reported both experimental and theoretical
investigations of the transient response of a one-dimensional fluidized bed
to step changes in the fluidization velocity. Owing to the thoroughness ofthe
reported work, this scenario provides an excellent vehicle to verify some of
the capabilities of the model developed in this study. Slis et al. (1958)
provide a substantial body of experimental results for a variety of particle
sizes, initial conditions and for both bed expansions and contractions. 'The
results of the comparison between the numerical model and the

experimental findings are presented in the following sections.

Comparison of Finite Element Simulations to Experimental Results
The drag relation used by Slis et al. (1958) differs substantially in

form from that used in the current numerical model, however the results of
the following simulations demonstrate that the experimentally determined

behavior is in fact reproduced by the model. Figures 5.1 and 5.2 show
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typical predicted porosity distributions through the bed at several time
increments. It may be observed that the distribution compares favorably with
that described in Slis etal. (1958). Table 5.1 gives the material properties of

the solid component. Ordinary tap water was used as the fluidizing liquid.

Table 5.1: Material Properties of Solid Component

Particle Particle

Material Diameter Density

(mm) (kg/m?)
| nylon 3 1140
] nyion 4 1140
Hi nylon 5 1140

The numerical model was started assuming aninitial uniform porosity
distribution (table 5.2) over the entire height (0.275 m) of the fluidization
column. The inlet veiocity of the fluid was then changed to a new value and

the transient behavior was observed.

Figure 5.1 shows the porosity distribution profile through the fluidized
bed at four different times in the analysis. The important feature in this plot
is the decreasing slope of the interface between the original porosity and the
final one. This decreasing slope shows thatthis interface is widening as the
disturbance propagates upwards which is exactly what Slis et al. (1958) both

predicted and found experimentally. The oscillations aboutn =0.75, evident

in Figure 5.1, are a function of the hydrodynamic model as discussed in

Chapter 4.
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Response to a Step increase in Fudization Vidacity
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Figure 5.1: Typical response to a step increase in fluidization velocity

Slis et al. (1958), performed several experiments on the transient
response of fluidized beds to both step increases and step decreases in the
flow of the fluidizing liquid. Water was used as the fluidizing liquid and nylon
spheres was the granular solid. Unfortunately, the mean particle size (with
no definition of “mean”) and particle density were the only parameters
available on the granular materials. Information on the roundness and

distribution of particle size would have been helpful information for explaining

discrepancies between the experimental and numerical results.
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Figure 5.2: Typical response to a step decrease in fluidization velocity

The given parameters were programmed into the model and the
simulations were performed for a variety of the test conditions measured by
Slis etal. (1958). Table 5.2 compares the time to reach a new steady state
(t,) following a step change in the fluidizing velocity. It may be observed that
the results, while not perfect, provide good engineering approximations of
the observed results. Itshould be noted that these results were obtained by
providing nothing more than the mean particle diameter and density. One
would expect that, had more information been available, the drag model

could have been improved and the resulting simulations would have been
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more accurate. itmay be noted that the results are generally better when the
final porosity is relatively high. This is due to the fact that the drag model
predictions are closer to the experimentally measured values given in Slis et

al. (1958) at higher porosities than at the lower ones.

Owing to the ability of the numerical model to capture the essential
elements of this one-dimensionai fluidization problem (including the
asymmetric response) with reasonable engineering accuracy given a
minimum of information on the components in the flow, it may be concluded
that the model! provides a reasonable description of two component flow for

medium to high porosity levels.
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Table 5.2: Experimental vs. Finite Element Results for Fiuiziding Velocity Step

_ Change
Material lnitial- Final t,(exp) t,(FEA) % Difference
Porosity | Porosity ) ©
I 0.54 0.76 15 138 8.7
1 0.68 0.80 19 18 53
)| 0.53 0.83 17 16 59
I 0.62 0.73 9 72 20.0
m 0.66 0.85 18 15 16.7
m 0.72 0.78 10 1 10.0
I 0.63 0.54 9.3 56 39.7
I 0.73 0.53 10 74 26.0
)1 | 0.70 0.61 6.8 49 279
)1 0.67 0.57 6.0 43 28.3
I 0.68 0.64 52 4.0 23.1
m 0.80 0.73 1 73 336

5.1.2 Qualitative Behavior to Increased and Decreased Fluidization Velocity

it is well established in the literature that there are important
similarities and differences in the response of a fluidized bed to step
increases and step decreases in the fluidization velocity; see for example,
Slis et al. (1958), Thelen and Ramirez (1999). When a fluidized bed is
subjected to a step increase in the fluidization velocity, the porosity of the
bed near the inlet changes rapidly from an initial porosity (n,) to a new steady
state value (n,), which creates an interface between the initial and final
porosities. This interface propagates upwards through the bed until the

entire bed is at the final state. Owing to the qualities of the drag/porosity
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relationship, this interface becomes gradually larger as it propagates
upwards. In other words, the interface is not as well defined at later stages

of the propagation.

The response of the fluidized bed to a step decrease in fluidization
velocity is similar in that an interface between the initial and final states
begins at the inlet and propagates upwards. However, due to the nature of
the drag/porosity relationship, this interface begins and remains sharp as it

propagates upwards. Figures 5.1 and 5.2 illustrate these features.

The differences in behavior have been explained by Slis et al. (1958),
paraphrased below, to which the reader is referred for greater detail. The
relationship between fluidization (U,) velocity and porosity for a steady (no

movement of particles) fluidized bed can be expressed by:

U =Unt* (5.1)

where U, and k are parameters of individual particie/fluid combinations. The

relationship of equation 5.1 differs substantially from the drag law relationship
of the hydrodynamic model in that, equation 5.1 is a simple correlation of
experimental data whereas the drag model presented in Chapter 3 is a
mechanistic model. However, there is an important similarity between the
two models in the power relation between fluidization velocity and porosity.
Owing to this similarity, itis possible to use equation 5.1 to explain the overall

qualitative behavior. A similar, but much more complex, explanation may be
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made using the drag mode! of Chapter 3. The resuits of the simulations

show that this is indeed the case.

The continuity equation for the granular component yields:

o(1-nu . o(l-n) _ 0
ox ot

(5.2)

where u is the velocity of the granular component. Defining the actual fluid

velocity as:
Ul
uf = 7 (5.3)
where U, is the superficial fluid velocity. it may be stated that:
u - u=Un*' (5.4)

Now, if the inlet flow is increased to U,°®, then the equation of overall

continuity requires that:

mu, + (L-mu = U[® (55)

Combining equations 5.4 and 5.5 yields:

U™ - u = Unt (5.6)

ifeq. 5.6 is substituted into eq. 5.2, the resulting partial differential equation
is:

(kn“ - (k+Dnt ’+U”'°)@+9'1 =0 5.7
[ ( )n]U, "7 ox ot &N



Oy

W

159

Equation 5.7 reveals that a disturbance 6n travels with a velocity w equal to

the bracketed expression (Slis et al., 1958):

w = [kt - ey - U (5.8)

This means that the disturbance propagation velocity increases as
ndecreases. The ramification of this is that, if n,>n,, the interface between
the two regions will grow as it travels upward since the leading edge of the
disturbance is at alower porosity (and hence this leading edge travels faster
than the trailing edge). Conversely, if n,<n,, the discontinuity will remain

sharp as the trailing edge always keeps pace with the leading edge.

The above explanation for the asymmetric behaviorwas given by Slis
etal. (1958) and it has been, in essence, re-transcribed here for the benefit

ofthe reader. For more details, the reader is referred to the original source.

Parameter Sensitivity

An important consideration of any modeling effortis the sensitivity of
the resuits to changes in the parameters. If a model is overly sensitive to the
parameters, the model will likely provide erroneous results when no

validation data are available.

In order to determine the effect of the parameters (see Table 5.3) on
the solution, the time to reach steady state (i.e., t1) for the first case

presented in Table 5.2 is compared against the original solution for small



changes (10% increase) in parameters. The resulits are givenin Table 5.3.

160

Table 5.3: Effect of Changes in Numerical Model Parameters

Parameter o\;i:'::‘:' In;roa.,a.so t1 % Change
Original Result - - 138 -
Particle 3 mm 3.3 mm 13.0 -5.8
Diameter
Time Step 0.01s 0.011s 139 <0.1
Element Size 9 mm 9.9 mm 14.0 1.1

It may be observed from these results that simulations are quite

insensitive to changes in the parameter values.

Transient Response with Settling

Inthe previous model verification example, the granular component
was held in suspensionin the fluid component. Thatis, little or no interaction
was assumed to occur between individual granules. However, this
interaction cannot be ignored in the case where the particles settle out of
suspension. In this, section, the capability of the numerical model, with the
addition of the granular component spherical stress model, will be verified
against experimental results for a two component mixture settling out of
suspension. As in the previous section, a comparison between the finite

element and experimental results is first presented followed by a brief

theoretical explanation of the qualitative behavior.
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5.2.1 Comparison of Finite Element Simulations to Experimental Results

Shihetal. (1986) present experimental results for the settling of fine
illite particles (a clay-like material) in toluene. This experiment was simulated
with the currentmodel. The parameters provided by Shih et al. for the model
were the effective particie diameter, particle density, fluid viscosity, fluid
density and the initial concentration of solid particles. Estimates of the solids
pressure model parameters, A and i were also provided. Table 5.4 lists
these parameters. It should be noted that clay particles are plate-like and not
spherical. Thus, one should expect some deviation of predictions from

experimental results.

Using the particie diameter of 62.5 um as given in the paper resuited
in settling rates much higher than those observed experimentally. This can
be explained by the fact thatillite, being a clay-like material, has plate shaped
particles rather than spheroids. Gidaspow (1994) provides animprovement
to the drag model for cases such as this, where the particles differ from a

spherical shape.

The particle diameter as found in the drag model is replaced by a

corrected diameter, ie.:

d,=ed, (5.9)

where @ is the sphericity of the particie. For these experimental resuilts,

@=0.088 provided excellent results.
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Table 5.4: Settling Model Parameters

Parameter Value
Particle Diameter 62.5 ym
Sphericity 0.088
Particle Density 2460 kg/m®
Fiuid Viscosity 0.586 c.p.
Fluid Density 870 kg/m?
A 0.1075
n 0.95
Element Length 6.25 mm
Time Step 0.1s
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Figure 5.3: Comparison of experimental and numerical results (t=90s)
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Figures 5.3 through 5.5 show plots of the porosity distribution in the
column atthree different times for both the numerical model (solid line) and
experimental resuits (open circles). Table 5.5 lists the average error in the

porosity prediction at three times during settlement. The error was

Settiement: Expanmental Vs. Nurencal Results
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Figure 5.4: Comparison of experimental and numerical results (t=180s)

calculated from the difference between the experimental and numerical
values at each of the three times and dividing by the range of experimental
determined porosities (in this case approximately 1.0-0.87 =0.13). Average

error was chosen over maximum error as the overall behavior is of primary
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Figure 5.5: Comparison of experimental and numerical results (t=300s)

interest. One observes that the current model predictions agree well with the
experimental resuits. Such agreementlends support for the appropriateness

of the model for simulating settlement scenarios.

Table 5.5: Error in Settling Results

Time (8) Average Error
90 12.4%
180 8.0%
300 17.2%
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5.2.2 Qualitative Behavior of Settling
According to Gidaspow (1994), the particle mass balance (assuming

incompressibility of both components) is

o(1-n) . va(l -n) _ 0
ot ox

(5.10)

where v is the settling velocity of the particles. If one assumes that the

particles reach the settling velocity instantaneously, equation 5.9 is equivalent

to
d(1-n)
= 7 =0
7 (5.11)
along the path
— =V 5.12
dt (512

Equations 5.10 and 5.11 reveal that during settling, there exists a zone in
which the porosity remains constant, at its initial value. The simulations
presented in the preceding section confirm this trait (see Figures 5.3 and

5.4).

o
N
[A)

Parameter Sensitivity

Toimprove the confidence in the numerical results, the sensitivity to
variability in the model parameters must be determined. To this end,
simulations were performed for the first ninety seconds of settling and the
average error was calculated for ten percent increases to each of the

parameters listed in Table 5.4 (exceptfor nsince anincrease of ten percent
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would make this value greater than unity, an impossibility). The results of
this analysis are given in Table 5.6, which lists the change in error at t=90s
resulting from a change in a parameter. It can be seen thatin all cases, an
increase of a parameter by ten percent causes only small change in the
error. In fact, in some cases, the error at t=90s was significantly reduced.
Such insensitivity to changes in model parameters is important as it gives
confidence that the good agreement is not a result of a contrived
combination of parameters. The reader should further note that two
numerical parameters, element length and time step, did not change the
solution significantly. Itis therefore expected, the chosen elementlength and

time step do not require further refinement.

Table 5.6: Sensitivity Analysis of Model Parameters (t=90s)

Change in
Average Average
increased Ervor with Error due to
Parameter Value Increased i i
Parameter ;croasot n
Value arameter
Value
Particle Diameter 68.75 ym 5.5% 8.9%
Sphericity 0.0968 5.5% -6.9%
Particle Density 2706 kg/m® 5.7% -8.7%
Fluid Viscosity 0.645 c.p. 13.0% 0.6%
Fiuid Density 957 kg/m* 12.8% 0.4%
A 0.1183 13.3% 0.9%
n 0.9665 14.6% 2.2%
Eiement Length 6.875 mm 12.5% 0.1%
Time Step 0.11s 12.4% 0%
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Steady Two-Dimensional Pipe Flow

The first two validation resuits were for one-dimensional flow. In
many practical situations, the one-dimensional model is adequate. However,
there are many other cases where the flow is truly two-dimensional or axi-
symmetric and hence a two-dimensional model is required. Clearly, it is
much more difficult to determine flow velocities and porosity distributions
experimentally in a two-dimensional domain. Furthermore, many
experimental flows, which may seem superficially two-dimensional, are in
fact three-dimensional due to the effects of end walls. Owing to these
problems, suitable experimental results against which the numerical model
may be verified are few in number. An article by Liang and Zhu (1997) on the
flow structure of a liquid-solid (tap water/glass-beads) mixture on a pipe has
been selected for comparison purposes as it provides experimental results

for two-dimensional, axi-symmetric conditions.

As in the previous examples, the information required for the model
are the granular component particle diameter and density as well as the fluid
component density and viscosity. The fluid component in this case is tap
water and the solid component is glass beads. Table 5.7 lists the
parameters used in this analysis. Figure 5.6 shows the boundary conditions

for the simulation.
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Figure 5.6: Finite Element Mesh (100 vertical X 50 horizontal elements) and
Boundary Conditions

Table 5.7: Two Dimensional Model Parameters

Parameter Value

Particle Diameter 403 ym
Particle Density 2460 kg/m®

Fluid Viscosity 1.75¢p
Fluid Density 1000 kg/m*

Aftransient analysis was carried out until steady state, fully developed
conditions were reached. The resulting distributions of liquid velocity and
porosity ata fully developed elevation were compared to the experimentally

determined values. These comparisons are plotted in figures 5.7 and 5.8.
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Figure 5.7: Comparison of numerical and experimental radial plane fluid velocity
distribution resuits

These figures show that the numerical results (solid line) follow the
general trends provided by the experimental results with good agreement for
the porosity distribution. Table 5.8 lists the error in the numerical fluid
velocity and porosity profiles as compared to the experimental resuits. Once
again, support has been given for the appropriateness of the numerical
model for the simulation of two-dimensional flows of granular solid/liquid

mixtures.
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Figure 5.8: Comparison of numerical and experimental radial plane porosity
distribution results

Table 5.8: Two-Dimensional Flow Analysis Error

Varia:Io Average Error Il
Fluid Velocity 37.3%
Porosity 5.5% Il

The error in porosity was calculated as described in section 5.2.1.
It may be seen that there is both good qualitative and quantitative agreement
between the experimental and simulated porosity distributions. However,
there is considerable error in the fluid velocity profile. An approximate

integration of the velocity profile reported in Liang and Zhu (1997), reveals



o

171
that the volume flow rate is substantially different than the reported inlet flow
rate. Therefore, the differences between the finite element simulation and
the reported results may be attributable not only to errors in the numerical

results but to errors in the reported data.

Parameter Sensitivity

Once again, to improve our confidence in the results of the finite
element analysis, the sensitivity of the results to changes in the parameters
was assessed. Since the effects of material properties on the results have
been established in the previous sections and because reliable
measurements of the properties can be made, the sensitivity analysis of this
case focuses on the finite element mesh and on the boundary conditions.
Table 5.9 lists the effect on both the fluid velocity and porosity errors of
increases of ten percent of specific model parameters from the values listed

in Table 5.8.

Table 5.9: Sensitivity Analysis of Model Parameters

Pa;:'l':‘:t" Change in Change in
Parameter after 10% Avera.go Fluid Average
Increase Velocity Error | Porosity Error
Element Size 22 mm 0.1% 1.3%
" inlet Fluid Velocity | 0.0847 nvs 5.1% -1.4%

it may be observed that again, increases of ten percent in these
parameters resuits in a less than ten percent change in the error. As with

previous analyses, the effect of the mesh size was minor. Since the results
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are for steady state, the time step has no effect on the resuits.

Liquefaction of One-Dimensional Sandy Soils Under Earthquake
Loading

The following analysis demonstrates the objective of the thesis, that
of modeling the liquefaction of soils under the influence of earthquake
loading. The mechanism of liquefaction was considered in the introductory

chapter. This type of analysis makes use of all the components of the model

including:
> Granular component spherical stress
> Neural network model of changes in the reference
porosity
> Fluidization
» Settlement

While this is a one dimensional problem, with depth being the only co-
ordinate system required, there is motion in both the horizontal and vertical
directions. Therefore, the one-dimensional element mustbe supplemented
by an additional equilibrium equation for the granular component (ignoring the

effect of the fluid component in the horizontal direction):

ooV, (5.13)

Itis assumed that the shear stress in the fluid is negligible compared

to that in the granular component. The additional equation enables the
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horizontal velocity of the soil deposit to be calculated via the finite element
method in a manner identical to that outlined in Chapter 4. The reader is
referred to Pietruszczak and Stolle (1987) for greater detail. Unfortunately,
there is little or no field data with which to compare the numerical resulits.
Instead, it will be shown that the resuits compare favorably, in a qualitative
sense, with another numerical simulation provided in Pietruszczak and Stoile

(1987).

Figure 5.9 shows the soil deposit under consideration and lists the
parameters of the model. The soil deposit was “constructed” by allowing
solid particles to settie out of suspension. The soil modeled is that tested by
the VELCAS program as described in Chapter 3. The N-S E!l Centro strong
motion record was used as the simulated earthquake. The motion was
scaled to a maximum of 0.1g acceleration to be consistent with the
Pietruszczak and Stolle (1987) study. Figure 5.10 shows the power
spectrum of the ground motion. Most of the significant motion occurs in the

region of 2 Hz with smaller peaks near 4 and 6 Hz.

The reader should note that Pietruszczak and Stolle’s model is
fundamentally different from the current model of the soil behavior. Their
model treats the soil as a solid and uses a Lagrangian framework to describe
equilibrium. Therefore, one should expect that the results from each model
will differ quantitatively and in some respects qualitatively. However, it is

shown, that there are key similarities in the qualitative behavior.
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Figure 5.11 shows the results of Pietruszczak and Stolle (1987) for
a soil permeability of k=10*m/s. Although the current model has no direct
provision for a permeability value (rather, the permeability is a consequence
of the drag model), the particle diameter was set to give a similar
permeability. This is an important advantage of the proposed model when
compared with more traditional methods since it accommodates the effect
of porosity changes on the evolution of hydraulic conductivity during the

liquefaction and post-liquefaction event.

b § 8
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Figure 5.11: Liquefaction of a Soil Deposit (Pietruszczak and Stolle (1987)

The results of a simulation using the current model is presented in
Figures 5.12 and 5.13. The effective vertical stress plotted in Figure 5.12

was normalized by the effective vertical stress at time zero. It may be
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Liquefaction Analysis
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Figure 5.12:  Results of Liquefaction Analysis Using Current Model
(d,=0.8mm)

observed, when comparing the resuits of the current study to that of Figure
5.11, that significant differences are present. For instance, in Figure 5.12,
the plot of normalized effective vertical stress at a depth of 2.28m
(corresponding to Pietruszczak and Stolle (1987) element #9) shows that for
the soil considered in the present study, liquefaction nearly occurs at around
1.8 seconds. The sand modeled by the artificial neural network tended to
experience rapid drops in fi, which explains the sudden liquefaction at a
depth of 2.28m. However, because of it's proximity to the surface, the
excess pore pressure quickly dissipates to the surface. This is in contrast
with Pietruszczak and Stolle (1987) which does not exhibit this build up of
pore pressure at a shaliow depth. The reader shouid note however, that

differences between the two resuits were not a surprise. These differences
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stem from at least three potential sources; (i) two different sands are being
modeled; (ii) in Pietruszczak and Stolle’'s model the shear moduius of the
soilis constantwhereas in the current model it changes; (iii) the permeability
of the soil deposit evolves over time in thg current model but is constant in

the Pietruszczak and Stolle model.

An important similarity exists however between the two models in that
both predict the onset of liquefaction at an intermediate depth. It may be
observed in Figures 5.11 and 5.12 that liquefaction is predicted at a depth of
5.32 m before it occurs at either deeper or more shallow depths. A
significant benefit of the current model however, is that the analysis may
continue, after the onset of liquefaction, to observe the growth and
propagation of liquefaction zones (refer to Figure 5.13). With the other, more
traditional analysis approaches, the simulations are typically terminated upon

the onset of liquefaction.

Additional analyses were performed using different particle diameters
for the granular phase, d,=0.08 mm and d,=8mm, which represent a very
fine sand and a fine gravel. The resulting pore pressure and total vertical
stress are givenin Figures 5.14 and 5.15. itmay be seen that, as expected:;
(i) the fine sand produces a more extensive liquefaction zone because of it's
low permeability, whereas the gravel deposit is not able to liquefy at all; (ii)

owing to its proximity to drainage, the surface does not liquefy.
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Liquefaction Analysis
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Figure 5.15: Zone of Liquefaction for Gravel at 6s (d,=8.0mm)

It may be observed that there are several qualitative similarities

between the current study and the results of Pietruszczak and Stolle (1987)

such as:
> Similar time to initial liquefaction
> Isolated zone of liquefaction for d,=0.8mm
> Expanded zone of liquefaction for smaller particle diameter

These similarities are largely qualitative, given that the sand for each
constitutive model was different. Despite the differences thatexistbetween
the two results, it has been shown that the simple constitutive model used
in this thesis is suitable for modeling liquefaction in a soil deposit. The

reader should further note that the constitutive modei of the current analysis
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was calibrated against experimental data whereas the Pietruszczak and
Stolle model did not; owing to the focus on conceptual development in that
study.

Re-consolidation and Settlement

One significant advantage of the current model over more traditional
techniques is the ability to capture pdst-liquefaction phenomenon. One such
phenomenon is the re-consolidation and settlement of the soil following
liquefaction. After an earthquake has ceased motion, excess pore pressures
in the soil deposit will gradually dissipate. As the pore pressure retumns to
hydrostatic equilibrium, vertical stress is transferred from the pore fiuid to the
granular soil. This, as discussed previously will cause the granular structure
to compress, which in turn results in settiement of the soil surface below its

original level.

As a demonstration of this phenomenon, consider the soil deposit
modeled in Section 5.4. The simulated earthquake shakes this deposit for
the first six seconds of the analysis. At this point, there is localized
liquefaction (see Figure 5.13). For the remainder of the analysis, the excess
pore pressure dissipates as the soil deposit consolidates, resulting in the
settlement of the soil nearty 40 cm below it's original height. This represents

a settlement of approximately 3% of the original deposit depth.



The pore fluid pressure profile at the base of the soil depositis plotted
in Figure 5.16. Itmay be observed thatthe pressure here peaks shortly after
the end of the earthquake. This may be attributed to the continued shaking
in the deposit after the earthquake has ended. Once this shaking dies out,

the pore pressure begins to dissipate and the seftlement takes place more
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gradually due to consolidation.
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Figure 5.16: Base Pore Pressure Profile

Finally, Figure 5.17 shows the surface settlement as a function of
time. It may be observed that a littie more than half of the total settlement
occurs during the earthquake with the remainder taking place thereafter. It
should be noted that the analysis was stopped 3 minutes after the initiation

of ground excitation. It may be observed in Figure 5.16 that there is still a
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small amount of excess pore pressure at the base.
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Figure 5.17: Surface Settlement

Porosity Distribution in Rotating Cylinder Viscometer

Arotating cylinder viscometer was used to determine the rheological
properties of fluidized sand/water mixtures. A discussion of these results
was presented in Chapter 3. A basic assumption of that study was that the
porosity of the mixture was generally uniform through out the testregion. In
order to determine the validity of that assumption, a finite element analysis
of the experiment was performed using the current model. The reader
should note that the following analysis is presented as a demonstration

rather than a verification of the model.
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The geometry of the device is given in Figure 5.18. It should be noted
that, as discussed in Chapter 4, the problem is axi-symmetrical with out of
plane velocity components due to the rotating cylinder. The resulting porosity
distribution as well as the solid and fluid velocity components are given in

Figures 5.19 through 5.21 for steady state conditions.
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Figure 5.18: Rotating Viscometer

Figure 5.19 shows thatindeed, the porosity distribution is reasonably
uniform in the region of the rotating cylinder. There is a small area in the
vicinity of the bottom end of the cylinder where the porosity is nearly unity,
indicating that there is little or no sand in that location. This is caused by the
disturbance in the fluid flow field from the cylinder. Directly below the

cylinder, the fiuid velocity is low (see Figure 5.21) causing the sand to “drop”
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(see Figure 5.20) out of that region. The resulting high porosity in this region
is visible in Figure 5.19. To the right side of the cylinder tip, the fluid velocity

is comparatively high causing the sand to be “pushed” out of that region.

Another interesting feature of the analysis is the fluid flow profile (see
Figure 5.21) in the fully developed region which is clearly very flat. This is
contrastto the parabolic shape of a single-component pipe flow (see figure
5.22). The unique shape of the fluid flow in a static, two-component fluidized
bed may be attributed to the hydrodynamic drag caused by the sand. Were
this notthe case, and the fluid had a more parabolic distribution, there would
be a great deal of solids circulation with particles flowing upwards in the
middle ofthe bed and downwards towards the sides. This result agrees well
with the numerical findings of Durst et al. (1984). The reader should note
thatthe anomalous features of the two-component flow profile at X=0.015m
and 0.045m are numerical. These result from the steep flow gradients atthe
end points. Itis anticipated that a finer mesh could reduce these features.

Unfortunately, computational limitations prevented the use of a finer mesh.



185

L REE L bt B ;
- 5
i s B
RARZ °y
= " g &
; b & o <
. 3 N od
g
N i < td .
¥ ~.LF"7'—— IR "
1A EELL > b0 ds

002 003 004 005 00 007

Figure 5.19: Porosity Distribution

in Rotating Cylinder Viscometer




186

Solids Velocity Vectors Fiuid Velocity Vi
. T EILEEEEEE]
3

o ERE .

'3 u‘- r i
:
::.; 11
. i

] 0.02 0.04 0.02 004 i}
Figure 5.20:  Solid Component Velocity Figure 5.21:  Fluid Component Velocity
Profile (scale 30mm = 1.0 Profile (30 mm=1.0 m/s)

cm/s)



187

0.16

o
—r

0.06

Flow Velocity (m/s

0.02

Flow Profile Comparison

0.14 ]

= 0.12 ]

0.08 ]

B

2

|
Ilf \.\\

J N R

0.01 0.02 0.03 0.04 0.05 0.06
X- Coordinate (m)

-@- One Component _g. Two Component

Figure 5.22: Fluid Flow Profile Comparison for One and Two Component Flows

Summary

Ithas been shown that the model presented in Chapters 2 through 4

is capable of a wide range of analyses of liquid-solid, two component flows.

The resuits of the numerical simulations using the current model compares

favorably with experimental and numerical resuits outlined in this chapter.

The types of analyses considered include:

>

One-dimensional, transient fluidization
One-dimensional, transient setlement
Two-dimensional, transient fluidization
One-dimensional, transient liquefaction

One-dimensional, post liquefaction
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NOMENCLATURE

A Granular component compressibility parameter

Representative particle diameter

Kk Fluidization parameter

n Porosity

n Reference porosity

t, Time to reach steady state

u Granular component velocity

U, Superficial fluidization velocity

Uy Fluidization parameter

Vo Solid component velocity in x-direction
v Fluid velocity (section 5.1.2)

v Settling velocity of particles (section 5.2.2)
w Disturbance velocity

Greek Symbols
¢ Sphericity
Ps Solid component density

Coy Shear stress in solid component
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CONCLUDING REMARKS AND RECOMMENDATIONS

Summary

The scope of this thesis is to present a framework for studying the
flow of liquefied and fluidized materais. In the preceding chapters, the
results of investigations on the constitutive and finite element modelling of

liquefied (and fluidized) liquid/solid mixtures have been outlined.

There are five main contributions stemming from the work detailed
herein, which have been presented in Chapters 2 through 4. Chapter 5
confirms the utility of these contributions through comparison of resuits from

the numerical model to experimental and numerical resuits of others.

Chapter 2 begins by developing the Navier-Stokes equations for a
single component fluid. This is followed by an extension of these principles
to a two component fluid wherein the solid component is treated as a
continuous media. The fundamental unknowns of these equations for two

component flow are:

> The solid component velocity

> The fluid component velocity

. The fluid pressure

> The porosity of the solid component
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Stemming from the basic hydrodynamic equations are several
secondary unknowns in addition to the four fundamental ones. To solve
these equations, closure relations have been provided, which make the
secondary unknowns functions of the fundamental variables. The need for

these closure equations is identified in Chapter 2.

Finally, through preliminary analyses, the author observed that
numerical solutions of the hydrodynamic equations can be difficult or
impossible to achieve due to numerical stability problems. A revised set of
equations is presented in which the solid and fluid component velocities are
substituted by two new variables. This revised equation set is shown to be
stable and solutions can be found. This revised set of equations constitutes

the first contribution of the thesis.

Chapter 3 focuses on the closure equations, the need for which was
identified in the second chapter. The two components are strongly coupled
via the hydrodynamic drag between the fluid and the granular solid particles.
Owing to the thoroughness and success of previous work on this
phenomenon, the drag model used in this work has been taken from

published literature.

The shear stress in the solid component presented the most
significant challenge of the thesis. The shear stress in dilute two component

mixtures is discussed first. Owing to the uniqueness of the behavior in dilute
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mixtures, an experimental investigation was performed on mixtures of a
particular sand type in water. An apparatus was designed and fabricated for
this investigation that allowed a Brookfield type viscometer to be immersed
in a fluidized bed. A new correlation, that achieves a coefficient of
determination of over 97%, is presented for this mixture, indicating an
excellent fit of the data. The data also compared favorably to previous
studies using more complex measurement techniques. When the porosity
of the mixture is reduced to a particuiar threshold, a Newtonian description
ofthe shear stress no longer applies. A simple constitutive model presented

in the literature was adopted when such conditions apply.

Finally, owing to the particulate nature of the solid component, a
model of its volumetric strain behavior is critical to capturing both the
consolidation and liquefaction phenomena. A novel model for the solid
component pressure is presented based on the use of porosity as a state
variable. The pressure in the solid component is assumed to be a function
of the difference between the current porosity and a reference porosity.
Furthermore, Artificial Neural Networks (ANN) are used to determine the
variation of the reference porosity in the presence of shear strain. The use
of this novel model and the ANN represent two further contributions of the

thesis.

Chapter 4 is primarily concerned with the formulation of the finite

element equivalents of the revised hydrodynamic equations. In keeping with
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the presentation of the second chapter, the finite element equations for a
single component fluid are presented first. These are followed by the
extension to a two component mixture. Owing to the numerically stable form
ofthe revised equation set, itis shown that standard Galerkin techniques are
sufficient for generating the finite element equations. This contrasts with the
use of complex stabilizing schemes and staggered grid techniques others
have used to solve the basic hydrodynamic equations. Chapter 4 aiso
outlines a manipulation of the revised equation set that permits, for certain
circumstances, the equations to be reduced from four in number to one. The
use of such a reduction has clear computational benefits and this

manipulation represents the final contribution to the thesis.

To the model presented in Chapters 2 through 4, resulits from the
numerical model were compared to experimental and numerical resulits of
others. To this end, Chapter 5 contains five examples of applications for the
model. Simulations using the current model are compared with experimental
results on transient fluidization in one and two dimensions, and one-
dimensional settiement. Finally, the full capacity of the model has been
verified in analyzing liquefaction of a one-dimensional soil deposit and the
results are compared to previously published numerical predictions. In all

cases, the model was found to provide reasonable predictions.
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Recommendations
As with all things, a thesis must come to an end, even when there
remains several questions which remain partially answered. Of course

these questions may lead to extensions of the work by others in the future.

Some questions, which remain to be answered, are:

1) Quantifying the mass diffusionin the solid component
due to gradients of porosity (Chapter 2)

2) Providing a mechanistic explanation for the
rheological behavior of dilute two component,
liquid/solid mixtures (Chapter 3)

3) Improving the efficiency of the finite element solution
method for the current model to aliow more complex
simulations to be performed (Chapter 4)

4) Using the current model to simulate two-dimensional

post-liquefaction events.





