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Abstract

In this thesis, various multivariate statistical regression methods are investigated
for estimating process models from the process input-output data. These identified
models are to be used for designing model based controllers and experimental optimisation
of multivariate processes. The following issues are explored: (i) identification of finite
impulse response models for model based control; (ii) multi-output identification for
multivariate processes; (iil) recursive updating of process models for adaptive control and
prediction; and (iv) experimental design in latent variables for high dimensional systems.

In the first part of the thesis, various approaches to identifying non-parsimonious
finite impulse response (FIR) models are compared on the basis of closeness of fit to the
true process, robust stability provided by the resulting model, and the control performance
obtained. The major conclusion by all assessments is that obtaining FIR models by first
identifying low order transfer function models by prediction error methods is much
superior to any of the methods which directly identify the FIR models.

In the second part, the potential of multi-output identification for multivariate
processes is investigated via simulations on two process examples: a quality control
example and an extractive distillation column. The identification of both the parsimonious
transfer function models using multivariate prediction error methods and of non-
parsimonious FIR models using multivariate statistical regression methods such as two-
block partial least squares (PLS2), canonical correlation regression (CCR), reduced rank
regression (RRR) are considered. The multi-output identification methods provide better
results when compared to the single-output identification methods based on essentially all
comparison criteria. The benefits for using multi-output identification are most obvious
when there are limited amount of data and when the secondary output variables have

better signal to noise ratios.



In the third part of this thesis, an improvement to the PLS algorithm is made. It is
shown that only one of either the X or the Y matrix needs to be deflated during the
sequential process of computing latent vectors. This result then leads to two ver’ fast
PLS kernel algorithms. Using these improved kemel algorithms, a new and fast recursive,
exponentially weighted PLS algorithm is developed. The recursive PLS algorithm
provides much better performance than the recursive least squares algorithm when applied
to adaptive control of a simulated 2 by 2 multivariable continuous stirred tank reactor and
updating of a multi-output prediction model for an industrial mineral flotation circuit.

Finally, a design methodology similar to the evolutionary operation (EVOP) and
the response surface methodology (RSM) for optimisation of high dimensional system is
proposed. A variation of the PLS algorithm, called selective PLS, is developed. It can be
used to analyse the process data and select meaningful groupings of the process variables

in which the EVOP/RSM experiments can be performed.

iv



Acknowledgements

[ would like to express my greatest gratitude to my supervisor, Professor John F.
MacGregor, for his continuous guidance, interest and kindly encouragement throughout
the course of this study. It has been a great pleasure to work with him for the last few
years.

I would also like to thank the members of my supervisory committee, Professor
Paul Taylor and Professor M. Elbestawi for their many helpful suggestions and insights
that enhanced the quality of this work. The financial support from the Natural Science
and Engineering Research Council and the Department of Chemical Engineering is greatly
appreciated.

During my stay at McMaster University, I had an opportunity to make friends from
all corners of the world. Special thanks go to Thanassis Kassidas, Sridhar Sampath, Panos
Seferlis, Phil Nelson, Andre Almeida, Frangois Boudreau, Christiane Jaeckle, Ivan Miletic,
Tracy Clarke-Pringle and Barbara Owen. I will definitely miss the lively, intelligent and
mind provoking discussions on almost any topic.

I am indebted forever to my uncles, Gurdial Dayal and Charan Dayal, and their
families who gave me everything but never expected anything in return.

Finally, I would like to express my deepest gratitude to my wife, Ravinder, for her

love, support and patience over the last two and half years.



Table of Contents

Introduction

Identification of FIR Models: Methods and Robustness Issues

2.1
22

23

24
2.5

2.6

Introduction
Model Structures for Identification
2.2.1 FIR Models
2.2.2 ARX Models
Regression Methods
2.3.1 Ordinary Least Squares
2.3.2 Regularisation or Constrained Least Squares
2.3.2.1 Ridge Regression: a Constraint on Magnitude of the
~ Regression Coefficients
2.3.2":2 Regularisation with a Constraint on the Change in the
Regression Coefficients
23.3 Partial Least Squares
Parsimonious Transfer Function Modelling
Process Example
2.5.1 Process Identification
Results
2.6.1 Closeness of the Fit to the True Model
2.6.2 Effects of the Amount of Data
2.6.3 Steady State Robust Stability Analysis
2.6.4 Frequency Domain Analysis

W W oo 08 2 O I

10

10

11
14
17
17
20
20
21
27
28



L

2.6.4.1 Joint Confidence Regions on the Nyquist Plot
2.6.4.2 Stability Robustness Analysis

2.6.5 Performance of DMC Controllers using the 1dentified
Models

2.7 Conclusions

Multi-Output Process Identification

3.1  Introduction
3.2 Theory for Multi-Output Identification
3.2.1 Special Cases
3.2.2 Multi-Output Identification in Case of Unknown Variance-
Covariance Matrix
3.3 Multivariate Methods for Multi-Qutput Identification
3.3.1 Parsimonious Transfer Function Models
3.3.2 Non-Parsimonious Model Structures: ARX and FIR Models
3.3.3 Multivariate Regression Methods
3.3.3.1 Principal Component Analysis on Output Space (Y)
3.3.3.2 Canonical Correlation Regression
3.3.3.3 Reduced Rank Regression
3.3.3.4 Partial Least Squares
3.4  Process Example #1: Quality Control
3.4.1 Best Model in Terms of Predictions
3.42 Closeness of the Fit to the True Model
3.4.3 Frequency Domain Analysis
3.4.3.1 Joint Confidence Regions on the Nyquist Plot

vii

36

39

39
41

43

43
44
44
45

46
48
49
49
51
53
54
54



35

3.6

3.4.3.2 Stability Robustness Analysis

3.4.4 Multi-Output Estimation with Less Data

3.45 Multi-Output Estimation with Different Signal to Noise
Ratios for the Qutput Variables

346 Summary

Process Example #2: Methanol-Acetone-Water Extractive

Distillation Column

3.5.1 Process Identification

3.5.2 Results
3.5.2.1 Closeness of the Fit to the True Model
3.5.2.2 Joint Confidence Regions on the Nyquist Plot
3.5.2.3 Steady State Robust Stability Analysis
3.5.2.4 Frequency Domain Robust Stability Analysis
3.5.2.5 Performance of DMC Controllers Using the

Identified Models
3.5.3 Summary

Conclusions

Improved PLS Algorithms

4.1
4.2
43
44

Introduction

Proof that Only One of X or Y needs to be Deflated
NIPALS Algorithm

Kernel Algorithm 7

4.4.1 Modification to the Kernel Algorithm

442 A Further Modification to the Kemel Algorithm

viii

57
57
59

63
67

71
72
73
74
74
77
79

80
80

82

82
83
84
84
85
86



4.5
4.6

4.7
4.8
4.9

Comparison of Kernel Algorithms
Discussion

46.1 Missing Data

4.6.2 Cross-Validation
Conclusions

Nomenclature

Appendix

Recursive Exponentially Weighted PLS and Its Applications

5.1
52

5.3

54

Introduction
Recursive Algorithms
5.2.1 Recursive Least Squares
522 Recursive PLS
5.2.2.1 Literature Review
5.2.2.2 Mean-Centring and Scaling of the Variables
5.2.3 Variable Forgetting Factor
Applications of Exponentially Weighted Recursive PLS Algorithm
5.3.1 Adaptive Control of a Multivariable Nonlinear CSTR
5.3.1.1 Locally Linearised Mechanistic Model
5.3.1.2 Identification for the Recursive Algorithms
5.3.1.3 Dynamic Matrix Controller
5.3.1.4 Adaptive Control Simulation
5.3.2 Updating of a Prediction Model for an Industrial Mineral
Flotation Circuit

Conclusions

90
94
94
95
95
96
97
99

99
100
100
101
102
102
104
106
106
109
109
110
111
115

120



6.

Multivariate Design of Experiments in Latent Variables

6.1 Introduction
6.2  Literature Review
6.3  Selective PLS
6.3.1 Procedure for Selective PLS
6.3.1.1 Non-Exclusive PLS
6.3.1.2 Exclusive PLS
6.4  Design of Experiments in Latent Variables
6.5  Industrial Mineral Flotation Circuit Example
6.6  Conclusions and Future Work
6.7  Appendix
6.7.1 Non-Exclusive Selective PLS Algorithm
6.7.2 Exclusive Selective PLS Algorithm
Summary and Conclusions
References

124

124
126
127
127
128
129
131
132
143
144
144
145

147

151



Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 3.1

Figure 3.2

List of Figures

First order process impulse response weights and its confidence
intervals computed using the variance-covariance matrices for the
parsimonious transfer function models and the directly fitted FIR
model.

A schematic of the methanol-acetone-water extractive distillation
column

Typical impulse response coefficients estimated using various
regression methods

Typical step response coefficients estimated using various
regression methods

Mean squared error of deviation from the true impulse weights
versus the number of data points in the training data set
Approximate ellipses for 98% joint confidence regions on the
Nyquist plot for (a) y;-u; and (b) y;-ua.

Approximate ellipses for 98% joint confidence regions on the
Nyquist plot for (a) y2-u; and (b) y2-u,.

Approximate 90% bound on the maximum allowable controller
gain (Small Gain Theorem).

Performance of DMC controllers designed using the identified
models

Approximate ellipses for the 98% joint confidence regions on the
Nyquist plot for the models estimated for y;-u; with a training
data of 400 data points.

Approximate 90% bound on maximum allowable controller gain

(Small gain theorem) for the process models estimated with
x

xi

16

18

24

26

30

31

33

37

56

58



Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8
Figure 3.9

Figure 3.10

Figure 3.11

Figure 4.1

training data set with 400 data points

Approximate ellipses for the 98% joint confidence regions on the
Nyquist plc: for the models estimated for y;-u; with a training
data of 150 data points.

Approximate 90% bound on maximum allowable controller gain
(Small gain theorem) for the process models estimated with
training data set with 150 data points

Approximate ellipses for the 98% joint confidence regions on the
Nyquist plot for the models estimated for y;-u; with a training
data of 150 data points and the third output variable having a
better signal to noise ratio.

Approximate 90% bound on maximum allowable controller gain
(Small gain theorem) for the process models estimated with
training data set with 150 data points and the third output
variable having a better signal to noise ratio.

MAW process impulse response coefficients for the composition
and the temperature variables

Plots of the data for the process output variables.

Approximate ellipses for the 98% joint confidence regions on the
Nyquist plot for (a) y,-u; and (b) yy-u:

Approximate ellipses for the 98% joint confidence regions on the
Nyquist plot for (a) y>-u; and (b) y2-u2

Approximate 80% bound on the maximum allowable controller
gain. (a) small gain theorem and (b) mu-analysis.

Comparison of various kemnel algorithms: (a) total number of

flops and (b) relative total number of flops.

62

65

66

69

70
75

76

78

92



Figure 4.2

Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6

Figure 6.7

Comparison of various kernel algorithms: (a) flops required to
compute latent vectors and (b) relative flops required to compute
the latent vectors.

The closed loop response of the output variables under various
adaptive controllers (CSTR example).

The closed loop response of the manipulated variables under
various adaptive controllers (CSTR example).

The process output variables and their predictions from various
recursive algorithms (industrial mineral flotation circuit example).
A schematic of the flotation circuit.

Process recovery-grade relationship.

The results for the first dimension of the non-exclusive PLS.
Loading plots for dimensions two through five of non-exclusive
PLS.

Percentage sum of squares explained of Y-block after five
dimensions,

Loading plots for the first five dimensions of the exclusive
selective PLS.

Percentage sum of squares explained of Y-block after five

dimensions.

93

113

114

121

135

135

137

138

139

141

142



Table 2.1

Tabie 2.2

Table 2.3
Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

List of Tables

Average results for deviations from the true impulse models
given by the estimated models using various regression methods.
Average results for deviations from the true step response models
given by the estimated models using various regression methods.
Steady state robust stability criterion results

Comparison of matrices used to compute the latent variables for
various multivariate regression methods.

Average results for % sum of squares (SS) explained of the
primary output variables for the training and the testing data sets
by FIR models estimated using various MISO and MIMO
regression methods (number of data points in the training data set
= 400).

Average results for deviations from the true impulse and step
response models given by the FIR models estimated using various
MISO and MIMO regression methods (number of data points in
the training data set = 400).

Average results for % sum of squares (SS) explained of the
primary output variables for the training and the testing data sets
by FIR models estimated using various MISO and MIMO
regression methods (number of data points in the training data set
= 150).

Average results for deviations from the true impulse and step
response models given by the FIR models estimated using various

MISO and MIMO regression methods (number of data points in

xiv

22
22

28
49

52

54

60

60



Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table 3.10

Table 3.11

Table 4.1

Table 4.2

Table 5.1
Table 5.2

the training data set = 150).

Average results for % sum of squares (SS) explained of the
primary output variables for the training and the testing data sets
by FIR models estimated using various MISO and MIMO
regression methods with the third output being more precise
(number of data points in the training data set = 150).

Average results for deviations from the true impulse and step
response models given by the FIR models estimated using various
MISO and MIMO regression methods with the third output being
more precise (number of data points in the training data set =
150).

Percentage of approximate disturbance and measurement noise
contribution to the overall output variables’ variances.

Average results for deviations from the true impulse response
models given by the estimated models using MISO and MIMO
transfer function model identification.

Average results for deviations from the true step response models
given by the estimated models using MISO and MIMO transfer
function model identification.

Average closed loop results with DMC controllers designed
using estimated models from MISO and MIMO identification.
Design variables for speed comparison of various kernel
algorithms.

A 2* factorial design for comparison of vaﬁoug.!cemel algorithms.
Specific parameters used for the CSTR

CSTR adaptive control results

L

64

64

73

73

74

80

91

108
112



Table 5.3
Table 5.4
Table 5.5

Table 6.1
Table 6.2
Table 6.3

Rougher-Scavenger input variables

Rougher-Scavenger output variables

% sum of squares explained of the output variables by various
recursive algorithms.

Mining process input variables

Mining process output variables

Ordinary PLS results

116
116
119

133
134
136



1. Introduction

In this thesis, various multivariate statistical regression methods are investigated
for estimating process models from the process input-output data for designing model
based controllers and for experimental optimisation of multivariate processes. The
following issues are explored: (i) identification of finite impulse response models for model
based control; (ii) multi-output identification for multivariable processes; (iii) recursive
updating of process models for adaptive control and predictions; and (iv) experimental
design in latent variables for high dimensional systems.

In model predictive control one often needs a finite impulse response (FIR) or step
response model of the process. The non-parsimonious FIR models can be estimated
directly from the process input-output using methods such as ordinary least squares,
biased methods such as regularised least squares and partial least squares. Alternatively, a
low order parsimonious rational transfer function model can be fitted to the process input-
output data by prediction error methods and then the FIR model can be obtained from it.
Although, directly identifying non-parsimonious FIR models have certain advantages (i.e,
they can fit any complex linear dynamic system; there is no need for model structure
selection), the trade-offs involved in identifying the FIR models directly using various
regression methods versus first identifying low order parsimonious models by prediction
error methods have not been well documented. In chapter 2, the identification of non-
parsimonious FIR models using methods such as ordinary least squares, regularised least
squares and partial least squares are compared with each other and with a parametric
modelling of parsimonious transfer functions. The comparisons are made on the basis of
(i) the closeness of the fit to the true model; (ii) the leve! of robust stability provided by
the identified model; and (iii} the actual control performance obtained using the identified
models. Although many of the points raised in chapter 2 are appreciated in a general way

by the control community, it tries to quantify them on a reasonable basis.



In model based control of multivanate processes, it has been common practice to
identify Multi-Input Single-Output (MISO) model for each output separately and then
combine the individual models into a final Multi-Input Multi-Output (MIMO) model. If
the models for all outputs are independently parameterised then this approach is optimal.
However, if there are common or correlated parameters among models for different
output variables and/or correlated noise, then performing identification on all outputs
simultaneously can lead to better and more robust models.

In chapter 3, the potential of multi-output identification for multivariate processes
is investigated via simulations on two process examples: a quality control example and an
extractive distillation column. The identification of both the parsimonious transfer
function models using multivariate prediction error methods, and of non-parsimonious
finite impulse response models using multivariate statistical regression methods such as
two-block partial least squares (PLS2), canonical correlation regression (CCR) and
reduced rank regression (RRR) are considered. The multi-output identification results are
compared to traditional single-output identification from several points of view: (i) best
predictions; (ii} closeness of the model to the true process; (iii) the precision of the
identified models in the frequency domain; (iv) statility robustness of the resulting model
based control system; and (v) the multivariable control performance.

In chapter 4, an improvement to the PLS algorithms is considered. A proof is
given that only one of either the X or the Y matrix in PLS algorithms needs to be deflated
during the sequential process of computing latent vectors. With the aid of this proof, the
original kernel algorithm developed by Lindgren et al. (1993) is modified to provide two
faster and more economical algorithms. In the first algorithm, the covariance matrix XX
is not computed and X is used directly in computations for the loading vectors. In the
second algorithm, the covariance matrix X'X is computed once and then used
subsequently in the computations for the loading vectors. The performances of these new
algorithms are compared to that of De Jong and Ter Braak’s (1994) modified kernel



algorithm in terms of speed. Furthermore, the advantages of these new algorithms for
performing cross-validation or treating missing data are also discussed.

In chapter 5, a new and fast recursive, exponentially weighted PLS algorithm
which provides greatly improved parameter estimates in most process situations is
presented. This new recursive algorithm for updating of the PLS regression mode! is

developed by combining the improved kemel algorithm developed in chapter 4 with the

recursive updating of the covariance matrices (xTx)l and (XTY)l . The potential of the

recursive PLS algorithm is illustrated with two process examples: (i) adaptive control of a
2 by 2 simulated multivariable continuous stirred tank reactor; and (ii) updating of a
prediction model for an industrial flotation circuit. The performance of the recursive PLS
algorithm is also compared to that of the recursive least squares algorithm.

In chapter 6, a design methodology similar to the evolutionary operation (EVOP)
(Box, 1957) and the response surface methodology (RSM) (Box and Wilson, 1951) for
optimisation of high dimensional systems is proposed. A variation of the PLS algorithm,
called selective PLS, is developed. It can be used as a tool to select meaningfi:l groupings
of variables (latent variables) in which the EVOP/RSM experiments can be performed. It
is a new methodology which can be used to select orthogonal variables consisting of linear
combinations of alike manipulated variables by analysing the historical plant data. Since
most of the process variables are moved in very few directions, therefore, selective PLS
could be applied to find these underlying directions. Furthermore, a sequential design

methodology in these groupings of variables is also proposed.



2. Identification of FIR Models: Methods and Robustness Issues
2.1 Introduction

In designing model predictive control schemes (e.g, DMC), step or impulse
response models of the process relating manipulated variables to controlled variables are
required. The non-parsimonious finite impulse response (FIR) models can be estimated
directly from the process input-output data using methods such as ordinary least squares
(OLS), regularised least squares methods, (e.g., ridge regression (RR)) and partial least
squares (PLS). Alternatively, a low order parsimonious rational transfer function model
can be fitted to the process input-output data by prediction error methods and then the
finite impulse response model can be obtained from it. Identifying parsimonious transfer
function models using maximum likelihood estimation or general prediction error methods
is a well established field (Box & Jenkins, 1976; Ljung, 1987; and Soderstrom and Stoica,
1989). Although, the open-loop behaviour of most individual unit operations in chemical
processes can be modelled sufficiently well with low order transfer ﬁnctions, the dynamic
behaviour of these units coupled with low level controllers, or of a whole section of a
process, consisting of interconnected units with recycle, etc., often can not be modelled
casily with such low order models. Furthermore, to identify low order transfer function
models one must first identify the appropriate model structure (number of zeros and poles,
and dead-time) and then check the adequacy of this structure. Directly identifying non-
parsimonious FIR models overcomes these problems. With a sufficiently high order, FIR
models have sufficient flexibility to model linear systems of any complexity, and other than
the total number of terms to include (time to steady state), no structural decisions need to

be made. However, as will be shown in this chapter, along with these advantages come



some substantial disadvantages such as poor robustness and performance of the resulting
controllers designed using the identified FIR models.

Several articles have been published on the direct estimation of FIR models using
methods such as PLS, PCR and regularised least squares (Ricker (1988), MacGregor et al.
(1991), Wise and Ricker (1992) and Wise and Ricker (1993)). These methods are well
suited to handling the highly correlated structure of the lagged input models. Ricker
(1988) investigated the use of PLS and SVD (singular value decomposition) methods for
estimation of FIR model coefficients for a simulated process and an anaerobic wastewater
treatment process. The SVD method applied by Ricker (1988) is same as principal
component regression (PCR). PCR consists of performing a principal component analysis
(PCA) on the inputs and then regressing the outputs on the singular vectors or principal
components which are linear combinations of the inputs. His conclusions were that PLS
performed poorly in determining the dead time of the process. This has also been
confirmed by MacGregor et al. (1991). If the dead time of the process is known a priori,
then this information could be built into FIR models to improve the estimation of the
impulse response coefficients. MacGregor et al. (1991) investigated the use of PLS along
with various regularised least squares methods such as ridge regression (RR) and ordinary
least squares (OLS) to obtain FIR model coefficients estimates for a simulated MISO
process with 5 inputs and a single output under many different conditions (i.e., amount of
data, independent and correlated perturbations to the input variables, etc.). Both PLS and
RR provided comparable but better estimates than OLS. PLS also had problems
determining a good estimate for the process dead time unless extra latent vectors beyond
that suggested by cross-validation were computed.

Although, several algorithms have been proposed for the direct identification of
non-parsimonious FIR models, the trade-offs involved in using these methods versus first
identifying low order parsimonious models by prediction error methods and then obtaining
the FIR models from them have not been well documented. In this chapter, the

identification of non-parsimonious FIR and ARX models using methods such as OLS,



regularised least squares and PLS are compared with each other and with parametric
modelling of parsimonious transfer functions. The comparisons are made on the basis of
(1) closeness of fit to the true model,; (ii) stability robustness of the resulting controller to

identification errors; and (iii) performance of the resulting controller.
2.2 Model Structures for Identification

2.2.1 FIR Models
For a linear process model, the process output variable (y;) can be expressed as a
linear combination of inputs consisting of lagged process input variables (u,)

n, ny
y, =2.B,(z")u, +D, =3 By +Byau5 o B, + D, (2.1}
=

=1

T
where B,-(Z")=[ﬁj,1 Bi» ** Bjs| is a vector of process impulse response model

coefficients associated with j input variable. The number of coefficients being estimated
in an impulse response model for a given input variable should be such that the process is
within about one percent of its settling time when a step change is made to that specific
input variable. Due to the process dead-times existing between the input and output
vanables, the first few impulse coefficients will be actually zero. If the periods of dead-
times are known a priori then the data can be shifted to remove the dead times. D is the
process disturbance which could be either white noise (i.e., D=a,) or coloured noise (i.e.,
represented by an ARIMA model (Box and Jenkins, 1976)).

In the case of D, being white noise (D=a,), one can estimate the impulse response
coefficients using Equation (2. 1) with any regression method. However, if D, is
coloured noise, then the disturbance model also needs to be identified along with the
process model. The generalised least squares method (Clarke, 1967) is a convenient
approach. Now the model being identified becomes
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v, ;{3](2 )u“+¢(z_l)a, (2.2)

where 1/¢(z") is the disturbance model and a, is the white noise. Equation (2. 2) can be

reformulated to facilitate the estimation of the process impulse response model

coefficients.

4y, = 3B, +a, 2.3)

1=l
By letting y; = ¢(z")y, and u}, = ¢(z*)u,, and rewriting Equation (2. 3),
vi =3B, 0", +a, (2.4)
=l
To start the identification process, one can assume an adequate model structure for the
disturbance model. Using initial guesses for the parameters in the disturbance model, the

process output (y:) and input (u;) can be filtered with 1/¢(z") to obtain y¥ and u’. Now,
yi and uf can be used to obtain estimates of B(z"'). Once, the estimates of B(z’), b(z™h,

are available, then the estimate of disturbance, D,, can be obtained using the following

equation:
- y,
D, =yt—2bj(z")u” (2. 5)
rl

The disturbance model parameters ¢(z') can then be estimated using OLS or any of the
other linear methods on $(z*)D, =a,. The new disturbance model parameters are now

used to filter the process input and output data and the above procedure can be repeated
until the parameters in B(z"*) and ¢(z"*) have converged.

In Equation (2. 1), y: is expressed as function of lagged values of process input
variables (u,) for one observation. For n observations, the process data can be arranged
into matrix form

y=XB+e 2. 6)



where y is a vector containing the observations for the output, X is a matrix containing the
input data, B is an unknown vector of regression coefficients to be estimated from the

input-output data and € is a vector of model errors.
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2.2.2 ARX Models
Alternatively, one can also identify an ARX (autoregressive with exogenous

variable) model of the following form:
AR, =Y B ("), +a, 2.8)
3

where A(z")=(l+a,z"+a,z"+...+amz"“) and B(z")-‘-‘(blz"+bzz'2+...+bnbz""’).
This model form offers some flexibility by introducing some structure into the model and
requires fewer parameters to be estimated than the FIR model form. Autocorrelated
disturbances are effectively modelled as D, =A™ (z")a,. Furthermore, ordinary linear

regression methods can be used directly on the model form. The impulse response can
then be obtained from the identified ARX model.

2.3  Regression Methods
A brief overview of the regression methods to be investigated in this study for

estimation of FIR model coefficients is given here. More details can be found in the

references.



2.3.1 Ordinary Least Squares
For any linear model in the form of Equation (2. 6), the ordinary least squares

(OLS) minimises the following objective function:
. YR (v 2.9
min (y-Xb) (y-Xb) (2.9)

Assuming that the inverse of X*X exists (i.e., it is of full rank), the least squares estimates

are given by

b=(X"X)" X"y 2. 10)
If the inputs are independent of the errors, then OLS solution is the unbiased estimator.
The expected total mean squares error (MSE) for all the regression coefficient estimates is
given by (Myers, 1990),
T 2 v} v |
- -b)| = X = — (2.11)
E[(B. b)'(B-b)| = o*trace(X"X)" = o >

where A, is the i" eigenvalue of X"X. If, as usual for process data, the columns of X are

highly correlated, then X"X is highly ill-conditioned and some of the eigenvalues of X'X
will be nearly zero. Therefore, it is evident from Equation (2. 11) that the eigenvalues
close to zero will inflate the expected value of MSE for the regression coefficients and

also for any resulting predictions from the model.

2.3.2 Regularisation or Constrained Least Squares

The inflation of the MSE for the regression coefficient estimates due to ill-
conditioning of X'X can be reduced by imposing some type of constraint on the
regression coefficient estimator b (Hoerl and Kennard, 1970a). The objective function of

such regularised least squares methods is,
mbin (y- Xb)T (y- Xb)+k& b Hb 2.12)
where k is a scalar and H is the constraint or penalty matrix for the estimator b. Taking

the first derivative of the objective function in Equation (2. 12) and equating it to zero and
by solving for b, one obtains the following estimates,
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b=(X"X+kH) X"y (2.13)

2.3.2.1 Ridge Regression: a Constraint on Magnitude of the Regression Coefficients
Various versions of regularised least squares arise from different choices of H. If
one were to choose H equal to the identity matrix (H=I), the objective function in
Equation (2. 12) will minimise the sum of squares of the residuals (RSS) subject to a
constraint on the magnitude or length of the regression estimates b. These estimates are
referred to as ridge regression estimates bgrr (Hoerl and Kennard, 1970a} and are given by

the following expression,
by = (X"X+£1) X7y 2. 14)

It can be shown that bgg is a biased estimate of B. The mean square error for the

ridge regression estimates is given by (Hoerl and Kennard, 1970a),

v (a_ - M 2T (wT -2 (2.15)
E|(B-ba)"(B-bu)| =0 > g (XX +11)7p

The first term in the above equation is the sum of the variances of the ridge regression
estimates. The second term is the bias introduced by the ridge regression. The bias
increases with increasing &, however, the sum of the variances usually decreases much
more rapidly with k. Therefore, for some positive value of &, the mean square error of
ridge regression estimates will be smaller than that of OLS estimates. The ridge
parameter, &, can be selected in several ways - using a ridge trace (Hoerld and Kennard,
1970b) or using cross-validation (Myers, 1990).

2.3.2.2 Regularisation with a Constraint on the Change in the Regression
CoefTicients
For estimating impulse weights a very appealing way to regularise the least squares
solution is to penalise the size of the changes in the regression coefficients (MacGregor et
al., 1991). For most processes, we expect that the impulse weights will change in a
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smooth manner and so the change in two successive impulse response weights should be
small,

To achieve this, the penalty or constraint matrix (H) in Equation (2. 13) can be
taken to be H=ATA where A is the first difference matrix given below:
1 0 0. . 0

-1 1 0. . O
0 -1 1} 0

(2. 16)

[0 0 0. -1 1]
The resulting regularised estimates from this method (RRD) are denoted by bggo.
An additional enhancement to the above regularisation can be achieved if one also

expects the changes in the successive impulse weights (B;-B;,) to also become

progressively smaller with increasing lag j. This is expected of most overdampled systems.
Such prior knowledge can be incorporated into the regularisation solution by H=ATLA
where L is a weighting matrix with linearly increasing weights given by (Kozub, 1994),

1 0 0 .
02 0 .

2. 17)

0 00 . p]
This method is denoted by RRDlin in the following sections.

2.3.3 Partial Least Squares

Partial Least Squares (PLS) is a multivariable regression method ideally suited to
studying the variation in large numbers of highly correlated process variables (X) and
relating them to a set of output variables (Y). PLS handles this by projecting the

information in the data down into a low dimensiona! space defined by a'small number of



12

latent vectors (t;, tz, ..., ta). These new latent vectors summarise the information

contained in the oniginal data set. The scaled and mean-centred X and Y matrices are
represented in PLS as

A 2. 18

X=>tp, +E 2.18)

a=l
Yeeaer @19
a=l
where t, are the latent vectors calculated sequentially for each dimension a=1,2,..,A. E
and F are the residual matrices for X‘and Y, respectively. For models to be used for
predicting Y, cross-validation is usuéllly used to select the number of latent vectors (Wold,
1978).

The latent vectors in PLS can be computed by either the classical NIPALS (the
Nonlinear lterative Partial Least Squares) algorithm (Wold, 1982) or a kernel algorithm
(Lindgren et al,, 1993). The latent vectors are computed in a sequential manner. A
typical PLS algorithm is as follows:

(1). Mean-centre and scale X and Y.

(ii). Compute the following quantities: w,, t., Q,, v, and p, using either the NIPALS

algorithm or a kernel algorithm,
(iii). Deflate X and Y by subtracting the computed latent vectors from them.
X. =X -tpl (2. 20)
Y., =Y,-tq] @.21)

(iv). Go to step (ii) to compute the next latent vector.

The PLS regression can be viewed as maximising the covariance between the
linear combinations of X, defined by t,=X,w, and the output measurement matrix, Y,, at
each dimension. The vector w, is the weight vector for a® dimension whose elements
express the contribution of each variable in X, toward defining the new latent vector t,. In
univariate PLS (PLS1) , the squared variance of t, with y, is maximised whereas, in
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multivariate PLS (PLS2), the sum of squared covariances of t, with the columns of Y, is

maximised. The objective function to be maximised is

max cov’(t,,Y,) (2.22)
Since t,=X,w,, therefore,
max w XY, YTX, w, (2. 23)

stwiw, =1
For the above equation to be at its maximum, w, must be the eigenvector associated with
the largest eigenvalue of X[Y,Y,X,. Similarly, the g, t., and u, are the eigenvectors of
the matrices Y/X,X7Y,, X, XTY, YT and Y,Y]X X7, respectively. Once, w, has been

computed, the remaining latent vectors can be computed as follows:

t,=X,w, (2. 24)

Xt, (2. 25)
T,

YTt (2. 26)
T,

Y.q, (2.27)
u = -

9.4

The vectors p, and q, are the loading vectors for X and Y-variables, respectively. The
vectors t, and u, are the score vectors for the X and Y, respectively.

There are four major properties of the partial least squares regression methoa.
1. W are mutually orthogonal (i.e., (wi,w j) =ww j=0fori= j).

2. T are mutually orthogonal (i.e., (ti, tj) =tit;=0fori= j).

3. WTPis a lower triangular matrix (i.e., wip; =0 fori > j).

4 T"U is a lower triangular matrix (i.e., tfu; =0 fori > j).

The final PLS prediction model can be expressed in the terms of the original X
variables as
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Y=Xb+F (2. 28)
where b is given by
| b=WP"W)'Q" (2.29)
An overview of PLS is provided in Geladi and Kowalski (1986).

2.4  Parsimonious Transfer Function Modelling

Instead of directly identifying the impulse response weights by fitting an FIR
model, parsimonious transfer function models can be identified, and the impulse weights
then obtained from them. In this section, it is shown that the variance-covariance matrix
for a parsimonious transfer function model estimates is better conditioned which, in turn,
gives smaller confidence intervals than a directly fitted FIR model.

For example, consider the following process model structure,

Y. =0,y +t@u,, +a, @. 30)
where y, is the process ovtput at lag t; ., is the process input at lag t-1 and a, is white
noise with mean zero and variance 6,>. The model parameters to be estimated are 5, and

@o. The variance-covariance matrix of the estimates [5; @] is

var(ﬁ’) - i{ E(y;) E(Y:“JT @.31)

o,/ n |E(yu,) E(uf)
where

E(u}) =0} . 32)

1+2q o3
E(y;) =o] =o.0; 157 +E-_5,’— 2.33)
E(y,u) =03 3%q 2.34)

1

= i QU

q=35ip, p, = i) 2. 35)

i=l u
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Further details relating to variance-covariance matrix computation for the parametric
model given in Equation (2. 30) can be found in Box and Jenkins (1976).
For a FIR model where p impulse weights are being estimated, the variance-

covariance matrix is given below

-E(uf) E(uu,,) . E(utut_p) T (2.36)
var(b) = o? (XT)'{)'l = -Gn—f E(u"“u‘) E(ufl) E(ut-ltubp)
_E(u‘_Pu‘) E(uhpu‘_,) . E(uf_p) |

Suppose, a pseudo random binary sequence (PRBS) is used to excite the process input
during the open loop experiments to generate process input-output data. For a PRBS

signal with a base switching interval of T,; sampling periods,

(T, -i) 2 . = 2.3
E(uu,.)= T, g, i=0toT, (
0 i2T,

Therefore, the variance-covariance matrix for the impulse response model estimates b for

a PRBS with a switching interval of 5 sampling periods and 6,° =1 is

(1 08 06 04 02 0O 0 (2. 38)
08 1 08 06 04 02 0
06 08 1 08 06 04 - O
2|04 06 08 1 08 06 . 0

b) =2
varb) =02 04 06 08 1 08 - 0
0

02 04 06 08 1 -

0

REEREE
For estimation of p=30 coefficients in the FIR model, the condition number of -:;(XTX)
is approximately 448, The largest and the smallest e_igenvalues are 4.91 and 0.0109,

respectively. The ten largest eigenvalues account for over 90% of the sum of squares of

X. The magnitude of the remaining 20 eigenvalues is below 0.3. On the other hand, the
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condition number of the variance-covariance matrix for the parameteric model in Equation
(2. 30) with ©,=0.2 and 6,=0.8 is approximately 2.2. The confidence intervals (i.e., + one
standard deviation) for the impulse weights computed with the variance-covariance
matrices for the parsimonious transfer function model and the directly identified FIR
model are shown in Figure 2.1. The confidence intervals are computed with n=500 and
ol =04 . The solid line represents the true impulse weights. The dotted and dashed lines
represent the confidence intervals for the impulse weights obtained from the parsimonious
transfer function model and the directly fitted FIR model. As is evident, the confidence
intervals for the impulse weights obtained from the parsimonious transfer function model

are much smaller than those of the directly identified FIR model.
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0.25
0.2
0.15
0.1
0.05

Ise Weights

Impu

L
rd

-0.05

¥

0.1
«0.15 ; y '
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Figure 2.1: First order process impulse response weights and its confidence intervals
computed using variance-covariance matrices for the parsimonious transfer function model
(dotted line) and the directly fitted FIR model (dashed line).
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2.5  Process Example

The example used to generate the process input-output data is a methanol-
acetone-water (MAW) extractive distillation column simulation developed using a
fundamental tray-by-tray model at McMaster University (Chin, 1989). The column is used
to separate a mixture of acetone and methanol. Water is used as a solvent. A schematic
of the extractive distillation column is given in Figure 2.2, The output variables are
acetone composition in the top product and the methanol composition on a water free
basis (MWF) in the bottoms product. The input variables are the steam temperature to the
reboiler and the solvent flow rate. The disturbance is the feed flow rate. The process
steady state condition number is 72, The process is sampled every 11 minutes. The
impulse weights relating the output variables to input and disturbance variables were
generated by introducing pulse changes to both inputs and disturbance. These impulse
weights, shown as a solid smooth line in Figure 2.3, were treated as the true process and
were used to generate the process data. Both inputs were excited with pseudo random
binary sequence (PRBS) signals with switching intervals of 5 sampling periods. The
PRBS magnitudes were 2.5 °C and 11.125 ml/min for the steam temperature and the
solvent flow rate, respectively. The PRBS magnitudes for both inputs were such that they
contributed equally to the variances of the output variables. The effects of the random
variation in the feed flow rate disturbance and the measurement noise added to both
outputs accounted for roughly 12% and 18% of the total variances of the top and bottoms

product compositions, respectively.

2.5.1 Process Identification
The following parsimonious transfer function models in the Laplace domain for the

extractive distillation column were identified using nonlinear optimisation;
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Figure 2.2: A schematic of methanol-acetone-water extractive distillation column,
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Ki(ms+l) Ky(t,s+1)
y,(s) N (1,8 +1,5+1) (rs+1) (18 +1,5+1) u,(s)
y2(s) - K, K, KS(T|:S+1)e-68 ul(s)]+D(S)

(Tes+1)(Tes+1) (Tios+1)(Ts+1)  (1)55+1 N s+1)(1)5+1)

All parameters in the above models are parameterised independently. The disturbance
models were identified in discrete domain using AR(3) structure.

For the FIR and ARX models, the following number of coefficients were
estimated:

FIR Models: y; model: u; (30), uz (40) and AR(3) disturbance model.

y2 model: u; (30), uz (50) and AR(3) disturbance model.
ARX Models; y; model: y1 (10), u; (10) and u; (10).
y2 model: y1 (10), u; (10) and u; (20).

The FIR models were identified with generalised least squares using the following
regression methods: OLS, PLS and RRDlin. The ARX models were estimated using
OLS. PLS was also used to identify ARX models; however, the results obtained are
similar to those of OLS and thus are not presented here. The models for the process
example were estimated using a training data set with 500 data points. The number of
optimal latent vectors in PLS model and the ridge parameter in the regularisation method
were selected by minimising the prediction error of the models on a testing data set.

The FIR models were also estimated using ridge regression (RR) where the
magnitudes of the impulse coefficients were penalised with a constant parameter, It gave
poor results compared to RRDlin (penalising the linearly weighted changes in the impulse
weights) because of the excessive bias in the steady state gains that resulted from

penalising the magnitudes of the impulse coefficients.

(2. 39)
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2.6 Results

The following criteria were used to compare the non-parsimonious FIR and ARX
modelling using various regression methods and the parsimonious parametric transfer
function modelling:

0] providing the impulse and step weights closest to the true process;

(i)  giving a model which leads to control systems with best robust stability;

(i)  providing the best control performance

All the results in the following sections are based on 500 Monte Carlo simulations.

A different seed was used to generate process input-output data for each simulation.

2.6.1 Closeness of the Fit to the True Model

The first comparison criterion used is the closeness of the fit to the true model.
This is measured by amount of departure from the true impulse and step weights of the
process example. The sum of the squared deviations from the true impulse response
weights (MSE_impulse) and the sum of squared deviations from the true step weights
(MSE_step) are used to quantify the closeness of the fit to the true model. For a given

process model, these quantities are computed as given below:

Pj

MSE_impulse = 3" (8;; -b,.)’ (2. 40)
i=]
p -~
MSE_step=Y(5,. - §,.)’ (2. 41)
i=l

Note that the step weights can be computed as the cumulative sum of the impulse weights.
k
S, =D.B; (2. 42)
i=l
The MSE_impulse primarily measures the closeness of the estimated process dynamics to
the true process dynamics whereas MSE_step primarily measures the accuracy of the
steady state gain estimated by each method. The quantities MSE_impulse and MSE_step
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for each regression method for the extractive distillation process example are given in
Tables 2.1 and 2.2, respectively. Plots of identified impulse and step weight estimates for
one Monte Carlo simulation are shown in Figures 2.3 and 2.4, respectively. In these
figures, the solid line represents the true impulse and step weights. In Figures 2.3a-2.3d
and 2.4a-2.4d, the dots represent the FIR and step weights generated from the estimated
parsimonious transfer function models and the dashed line represents the FIR weights and
step generated from the estimated ARX models. In Figures 2.3e-2.3h and 2.4e-2.4h, the
dashed line, the dots and the dotted line represent the impulse and step weights estimated
by OLS, RRDlin and PLS, respectively.

It is evident from Tables 2.1 and 2.2 that the parsimonious transfer function
models provide the best results by these criteria. This is expected since selection of the
structured transfer model forces smoothness and a structure on the impulse weights as
seen in Figures 2.3a-2.3d. Among the non-parsimonious FIR methods, RRDlin provides
the best results and it even provides lower MSE_impulse than the ARX model. PLS
gives very poor estimates of the steady state gains thus leading to very large MSE_step.
By selecting the number of latent vectors in PLS models so that it provided the minimum
prediction error sﬁm of squares (PRESS) on the testing data set, PLS stopped at 4 latent
vectors for most of the simulations. This provided good predictions and reasonable
estimates of the impulse weights but eliminated too much information on the steady state
gains. However, the performance of PLS models with 10 latent vectors improved the

results very considerably,

2.6.2 Effects of the Amount of Data

In this section, we investigate the precision of the estimates as a function of the
amount of data. The models relating the top acetone composition (y;) to both input
variables (u, and u,) were identified. The plots for MSE_impulse for both process models
versus the number of data points are shown in Figure 2.5. The results shown are the

averages of 5 different simulations.
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MSE_impulse

(Deviations from the true impulse weights)

Modelling Technique

Regression yiruy yi-u2 y2-uy y2-uz
Method (1e-8) (1e-9) (1e-6) (le-7)

Parsimonious TF Nonlinear Opt. 0.46 0.11 0.30 0.14
ARX OLS 1.20 0.83 1.32 2.04

FIR OLS 7.06 6.00 7.76 9.89

with Disturbance RRDlin 0.99 0.26 0.69 0.44
Model PLS 2.04 1.30 1.53 1.13

Table 2.1: Average results for deviations from the true impulse models given by the
estimated models using various regression methods.

MSE_step

(Deviations from the true step weights)

Modelling Technique Regression Yi-Uy yi-uz y2-u, ya-Uz
Method (le-7) (le-8) (le-5) (le-6)

Parsimonious TF Nonlinear Opt. 4.53 3.57 297 2.04
ARX OLS 6.24 523 3.18 4.90

FIR OLS 6.87 4.98 3.78 2.40

with Disturbance RRDlin 6.35 4.55 331 1.90
Mode! PLS 1117 | 2858 | 924 | 460

Table 2.2: Average results for deviations from the true step response models given by the
estimated models using various regression methods.




20 30 40

0 10

Figure 2.3: Typical impulse response coefficients estimated using various regression
methods.

Legends: figures (a) - (d): solid line - true impulse response weights; dots - parsimonious
transfer model; dashed line - ARX model.

Figures (e) - (h): solid line - true impulse response weights; dots - RRDlin; dashed line -
OLS; dotted line: PLS.
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Figure 2.4: Typical step response coefficients estimated using various regression methods.
Legends: figures (a) - (d): solid line - true step response weights, dots - parsimonious
transfer model; dashed line - ARX model.

Figures (e) - (h): solid line - true step response weights; dots - RRDlin; dashed line -
OLS, dotted line: PLS.
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Two main points are evident from these plots. First, it is apparent that for small
data sets the parsimonious transfer function model fits yield much better results than any
of the methods for fitting the non-parsimonious models directly. Furthermore, the impulse
weights obtained from the transfer function models continue to provide better results by
the MSE_impulse criterion than the next best approach -RRDlin until quite large amounts
of data (2000 sampling intervals for y)-u; and 20000 sampling intervals for y,-u;). On the
other hand, the MSE of the FIR estimates obtained from the transfer function models is
eventually limited by any structural bias in the chosen model forms. The total MSE
between the true process response and any fitted model can be decomposed into two parts
(Goodwin et al., 1992) - a variance component which tends to zero as the amount of data
increases, and a squared bias component which is constant and exists whenever the model
structure is not structurally rich enough to capture all aspects of the true system response.
Providing the number of terms used is beyond the settling time of the true process, the
FIR models have no bias, but exhibit large variance components when fitted by various
methods. On the other hand, low order transfer function models will inevitably exhibit
some small amount of bias but have a much smaller variance component. From Figure 2.5
it can be seen that the MSE_impulse obtained by fitting the transfer function models in
Equation (2. 39) reach a lower bound for both the y;-u; and y;~u; models while the FIR
models exhibit no such lower bound.

In this section, it has been demonstrated that much larger data sets are required to
obtain a given precision when fitting non-parsimonious FIR models than when fitting
parsimonious transfer function models. However, the eventual accuracy of the transfer
function models is limited by any bias resulting from using an inadequate model structure

to represent the complex process dynamics.
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Figure 2.5: Mean squared error of deviations from true impulse weights versus the number

of data points in the training data set.
Legends: solid line - parsimonious TF model; dashdot line - ARX model; dotted line:

RRDlin; dashed line - OLS; and solid line with plus sign - PLS.



2.6.3 Steady State Robust Stability Analysis
A criterion that can be used to test the stability robustness of any control system
using an identified model, provided that the process is open-loop stable, is the steady state

robust stability criterion (Garcia and Morari, 1985):

Re(%(G, W6w™))>o, vi (2. 43)

where Gp(1) and G(l) refer to the steady state gains of the true process and estimated
process models, respectively, and the A, is the i eigenvalue of G, (G()™. This robust

stability condition is based solely on estimating the process steady state gains correctly. If
the real part of one or more of the eigenvalues is negative, then the closed loop system can
not be stabilised using any controller designed with the estimated process model. This is
equivalent to the well-known uncontrollable situation where the process and its estimated
model have opposite signs in their steady state gains in a single-input single-output case
and thus the resulting controller will become unstable due to positive feedback.

The estimated models from various identification techniques were analysed using
the above robust stability criterion. The results are shown in Table 2.3. Both transfer
function and ARX modelling techniques give stable steady state process gains for all 500
simulations. For FIR modelling using OLS and RRDIin, five eétimated models for each
regression method would yield unstable model predictive controllers. All five models
yielding unstable controllers were estimated from data sets for the same simulations for
both regression methods. Forty seven (47) models for validated PLS would yield unstable
controllers. This is due to the fact that PLS eliminated too much information on the
process steady state gains by stopping at fewer latent vectors. The number of latent
vectors in PLS models were selected by validation on a testing data set. The resuits for
PLS models with 10 latent vectors are similar to those of OLS and RRDlin.
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Modelling Technique | Regression Method | No. of Simulations Failing Steady State
Robust Stability Criterion

3i: Re(l,.(G(l)G(l)")) <0

Parsimonious TF Nonlinear Opt. -
ARX OLS -

FIR OLS 5

with Disturbance RRDlin 5
Model PLS 47

Table 2.3: Steady state robust stability criterion results

2.6.4 Frequency Domain Analysis

In this section, we examine the precision and accuracy of the estimated dynamic
responses in the frequency domain using all the identification methods; and we also
examine a measure of the stability robustness of the models identified by the various

methods when used in feedback controllers.

2.6.4.1 Joint Confidence Regions on the Nyquist Plot

In this section, the accuracy and precision of the various identification methods are
compared by computing approximate joint confidence regions for the frequency response
of the system at various frequencies. From the 500 simulations performed using each

method, 500 joint estimates of the real and imaginary components of the process
frequency response G(iw) are obtained. These joint estimates appear to be scattered
randomly in approximately elliptical regions in the complex plane. Therefore, we
approximate the sampling distribution of the frequency response estimates at each
frequency by a bivariate normal distribution. For a bivariate normal variable,
Z=[Real( G(iw)) Imag(G(iw))), the statistic (Z, -Z)"S™(Z, - Z) will follow a central
beta distribution with p/2 and (k-p-1)/2 degrees of freedom (Wierda, 1994):
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7Yz _7) . kD (P k-p-1 2. 44
(z,-Z)'s*(z,-Z) . B(Z, 5 ) (2. 44)

where Zis the sample mean of k observations Z; and $ is their sample covariance matrix.
Using this distribution the accuracy of each method in estimating the frequency response
at any given frequency can be summarised in terms of a 100(1-c)% confidence region
computed using the 500 replicated results at each frequency.

The ellipses for 98% approximate joint confidence regions on the Nyquist plots for
the extractive distillation column examplé-were computed at the following four normalised
frequencies: w=[0.006 0.06 0.18 0.6)/Ts rad/time unit (here, Ts is the sampling time).
The first three frequencies correspond to the process at steady state, the open loop
process time constant (based on the bode plot of the larger singular value) and a selected
closed loop process time constant, respectively. The fourth frequency is selected to
demonstrate the effects of regression methods on the estimated process model at a very
high frequency. The ellipses for 98% approximate joint confidence regions on the Nyquist
plots for the estimated process models for y; and y; are shown in Figures 2.6 and 2.7,
respectively. The parsimonious transfer function models provide the smallest confidence
regions compared to FIR and ARX models at all frequencies. The ARX mode! provides
the second smallest confidence regions. For the y;-u; and y;-u; frequency responses, the
ellipses for the ARX models are not centred about the true Nyquist points implying some
bias in the structures used. Among the FIR models, the models estimated using PLS with
a small number of latent vectors (obtained from prediction validation) have the largest
confidence regions as shown in Figure 2.7. For the first output (y1), the confidence
regions for the FIR models estimated using PLS are very large compared to the
confidence regions for other modelling techniques and thus are not shown in Figure 2.6.
The confidence regions for RRDIin are slightly better than those of OLS at lower
frequencies but much better at higher frequency.
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Figure 2.6: Approximate ellipses for 98% joint confidence regions on the Nyquist plot for

(a) yr-u; and (b) y1-u2.
Legends: solid line - parsimonious TF model; dashdot line - ARX model; dotted line:

RRDlin; dashed line - OLS.
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Legends: solid line - parsimonious TF model; dashdot line - ARX model; dotted line:
RRDlin; dashed line - OLS; and solid line with plus sign - PLS.
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2.6.4.2 Stability Robustness Analysis

The objective of this section is to compare a measure of robustness of a model-
based control system that would result from using the models identified by the various
approaches. The measure is very general and independent of the specific controller
design.

For the internal model control (IMC) structure, a sufficient condition for robust
stability given by the small gain theorem (Morari and Zafiriou, 1989) is

"(Gp(iw)—f}(hv))Gc(iw)lL <1 0<w<% (2. 45)

where Gp and G are the true and estimated process models, respectively, and G is the
internal model controller (i.e., G =FG'). ||, is the 2-norm of a matrix and is the

largest singular value. If the process/model uncertainty is defined by the output

multiplicative uncertainty as
- s -l
eu(w) = (Gp(w) - G(w){ Gaw)) (2. 46)
then Equation (2. 45) can be rewritten as

||(3c (iw)c"i(iw)"2 < m 0<w< % (2.47)

Equation (2. 47) implies that the gain of the nominal closed loop transfer function
(Gc(iw)é(hv)) is restricted by the possible process/mode! uncertainty at any given

frequency w. The small gain theorem is very conservative and it is only a sufficient
condition for robust stability. However, it provides a reasonable basis for comparing the
expected robustness of controllers that will result from using various identified models. A
structured singular value (j1) analysis gave almost identical results,

For all the regression methods investigated in this study, the 90% bounds on the

inverse of multiplicative uncertainty (i.e., 1/ ||eM (rw)" ,) for the normalised frequency range

between [1e-3 1] are shown in Figure 2.8. The 90% bound on the gain of 1/ ||eM(iw)||2 at



10

1/lell

10°

1 A i a1

10° 10? 10" 10
Normalised Frequency

Figure 2.8: Approximate 90% bound on maximum allowable controller gain (Small gain

theorem).
Legends: solid line - parsimonious TF model; dashdot line - ARX model; dotted line:

RRDlin; dashed line - OLS. and solid line with plus sign - PLS.



34

each frequency w is computed as follows. The gains of l/”eM(I'w)"2 at each frequency for

all 500 simulations are computed and sorted in the order of smallest to the largest. The
first fifty smallest gains at each frequency are discarded and the fifty first smallest gain at
each frequency is taken as the 90% lower bound on the multiplicative uncertainty.

With the exception of FIR models estimated with PLS, all other models provide a
similar bound on stability at lower frequencies (i.e. steady state). However, the
parsimonious transfer function model clearly has the largest gain margin beyond frequency
of 0.02. The FIR models provide better robust stability than the ARX model in the
frequency range between 0.02 and 0.1 but give poorer robust stability beyond the
frequency of 0.1. RRDlin provides similar robust stability as OLS at a lower frequency

range between 10 to 0.1 but much better robust stability at frequencies greater than 0.1.

2,6.5 Performance of DMC Controllers using the Identified Models

In the last section, we looked at a very general but conservative overall measure of
robustness to compare the quality of the identified models. In this section, we examine the
actual performance of the models in a specific controller design - dynamic matrix control
(DMC) (Cutler and Ramaker, 1979).

In DMC, for a 2-by-2 process, the manipulated variable moves (Vu,) are

computed by solving the following optimisation problem:

min | & o 3 N, . 2. 48
v {zz(yl.+k—yz+k) QGLY+YY Vui,‘ﬂ.,qzo.k)} (2.48)
LB T i=l k™
where
-9|.m- - [ Vu,, ] _dl.tﬂ- (2. 49)

.
.

Yiep - |:A” Au:l VU, e dy.p
A, A, Vu,, d,

Y

_Y2.|¢P_ _vuz.uM.l_ _d2,t+P_
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The variables §,,., and y7., are the future prediction and set-point of i* process output
variable at lag t+k, respectively, and d,,,, is the future disturbance to the i* output
variable at lag t+k. The variable Vu , is the control move for i process input variable at

lag t. The variables P and M are the output prediction and control horizons, respectively.
The Q; and Q. are the weighting matrices for the process output and input variables,
respectively and A is the dynamic matrix of the system containing the estimated process

step weights.

S, 0 = 0 (2. 50)
A-- - Sij.: TR 0
b} : .
SiJ.P Sij.P-l o SP-MH

The §ﬁ_k is the k™ coefficient of the step response model relating the j* input variable to i

output variable. Note that even though M future control moves are computed in the
above optimisation problem, only the current control move is implemented and the
optimisation problem is solved again with the new disturbance measurement.

A dynamic matrix controller (DMC) is designed using the step response models
obtained from various identification techniques. The step response weights can be
computed from the impulse response weights using Equation (2. 42). The same DMC
tuning parameters were used for the controller design for each method. The output
prediction and control horizons are selected to be w and 10, respectively. The weighting

matrices for the output and input variables are

Yin ¥ U, u, ' (2.51)

H _[oa
Q= ) @S 0.003]

Control simuiations are carried out for a step change of 5 units in the feed flow rate. The
performance of the controllers is compared in terms of integral of squared error (ISE) for

both output variables.
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The distributions of ISE for both output variables for all 500 simulations and for
each regression method are shown on the histogram plots in Figure 2.9. Furthermore, the
number of control simulations which provided unstable controllers for the weighting
matrices given in Equation (2. 51) are also shown as a bar at = on the plots. As is evident
from these plots, the parsimonious transfer function modelling provides the best control
performance results and yields no unstable controller simulation. The FIR modelling with
RRDlin gives the second best results with only 9 unstable simulations. One hundred thirty
seven (137) simulations were found to be unstable for ARX models however the stable
simulations provided reasonable control performance. The FIR modelling using OLS and
PLS provided the worst control performance results. Larger number of unstable
simulations for ARX and FIR models estimated using OLS are the direct result of high
frequency changes in the estimated step weights due to ill-conditioning of X"X. For FIR
modelling using RRDlin, we have used prior process knowledge during the model
estimation to smooth the impulse weights and this smoothing of the impulse/step weights
leads to improved control performance.

Most of the unstable control simulations (which meet the sieady state robust
stability criterion in Equation (2. 43)) can be stabilised by detuning the controller by
selecting a weighting matrix, Q2, with larger magnitudes. However, this will require
longer tiines for the process to return to steady state,

2.7 Conclusions

In this chapter we have compared various approaches to identifying non-
parsimonious FIR models. Comparisons have been made on the basis of closeness of fit to
the true process, robust stability provided by the resulting model, and the control
performance obtained.

The major conclusion by all assessments is that obtaining FIR models by first
identifying low order parameter transfer function models was much superior to any of the
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Figure 2.9: Performance of DMC controllers designed using the identified models
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variable.
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methods which directly identified the FIR coefficients. The main reason for this is that the
parsimonious nature of the mode! leads to less overfitting of the data and induces, through
its structure, a smooth behaviour of the estimated FIR coefficients. In particular, the latter
feature leads to controllers which are more robust in terms of periormance and stability.
Therefore, although it is recognised that more effort is generally involved in identifying the
structure of parsimonious transfer function models, it is recommended that this be done
whenever the expected structure of the process is expected to be reasonably simple.

If it is desired to fit the non-parsimonious models directly, then several estimation
methods were investigated: OLS, regularised least squares method (RRDIlin) and PLS.
Among these the performance of RRDlin was uniformly superior to all other regression
methods by all assessment methods. RRDIin offered improvements over other regression
methods mainly through introducing into its objective function the prior knowledge by
penalising changes in the impulse weights (i.e., first derivatives) with an increased
weighting over lags. This proved to be a meaningful way of regularising the LS solution.

PLS methods can provide good identification results, but the number of latent
vectors used must in general be substantially larger than that suggested by cross-validation
or validation agaiast a test set. The latter criteria are only based on obtaining geod
predictions of Y which depend largely on identifying the dominant singular values /
directions of the process. The small singular values become very important in the

controller where the model is inverted.



3. Multi-Output Process Identification

3.1 Introduction

Multi-Input Multi-Output (MIMO) models are needed for the model based control
of multivariate processes. To obtain such models, it has been common practice to identify
a Multi-Input Single-Output (MISO) model for each output separately and then combine
the individual models into a final MIMO model. If models for all outputs are
independently parameterised then this approach is optimal. However, if there are common
or correlated parameters among models for different output variables and/or correlated
noise, then one should perform identification on all the outputs simultaneously. By
identifying models for all outputs simultaneously, one should obtain better MEMO models
in the sense that the model parameter estimates will be closer to their true values. One
might also anticipate that by fitting all models simultaneously, the estimated models for ail
outputs will be more consistent with each other and hence lead to more robust MIMO
control.

Furthermore, if one has additional measured variables that are not of direct interest
but which are highly correlated with the primary measured output variables of interest,
then by including them in the multivariate output vector and performing identification on
all outputs simuitaneously, one may obtain better and more robust MIMO models for
primary outputs. Modelling all outputs simultaneously will utilise the correlation structure
among the variables to estimate the process model parameters more accurately.
Furthermore, the measurements for the primary variables may have low signal to noise
ratios and modelling variables with low signal to noise content separately against all inputs
may lead to poor process steady state gains and dynamics. However, the redundant or

secondary variables may have higher signal to noise ratios and modelling these output
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variables together may help to identify high noise content variables more accurately due to
their correlation with secondury process output variables with lower noise content. This
may be more helpful in the case of very ill-conditioned systems.

To illustrate the potential advantage of multi-output identification, consider the
simple example of a process where composition is being measured with two different
sensors, namely a chromatograph and an infrared sensor. By taking the weighted average
of these two measurements the signal to noise ratio will be improved and then identifying
the models between the weighted average composition and the process inputs should
provide a better model. This would be equivalent to identifying the models for these two
composition measurements simultaneously. In general duplicate measurements of the
same property are not made. However, measurements are usually available on several
different responses, many of them highly correlated with one another. Highly correlated
output measurement would have a similar synergistic effect to multiple measurements of
the same response. Models for all the responses could be improved by multi-output
identification. Several example where the multi-output identification may be beneficial
are:

(i) Quality control where many highly correlated quality variables are being measured.

For example, for a tire yarn process, some of the typical yarn properties measured

are the load at 3% extension, load at 9% extension, the percent extension for 10

pounds load and the percent extension at which the maximum load occurs, etc. As

is evident these properties are very highly correlated and each contains some of the
same information. This correlation structure among these properties would be
expected to hold throughout changes in the manipulated variables. Furthermore,
since all these properties are being measured on the same sample, the measurement
noises and the disturbances in the various properties will be cross-correlated.

(i)  Spatial contro! in a paper machine. The moisture content along the cross direction

(CD) of the paper has a certain profile and the profile dynamics are similar in the

machine direction (MD) with respect to the process input variable, i.e., steam drier

lw,_:~3

BRI

==
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pressure. Therefore, changes or upsets in the process will not affect each moisture
content measurement in an independent manner and it is reasonable to expect that
these changes or upsets may cause the entire moisture content profile to move up
or down in a certain way.

(i)  Multicomponent distillation column — A chromatograph provides measurements
on component compositions. However, there are some tray temperatures which
are very highly correlated to these compositions and can be used during the
multivariate identification to obtain better process models for the compositions.
Some of the time constants for both temperature and composition variables may be
similar (flow stream passing through same part of the process) thereby allowing a

common parameterisation for parts of the models.
3.2  Theory For Multi-Output Identification

The theory for multi-response estimation is briefly discussed here. Further details
are contained in Box and Draper (1965) and Box et al. (1973).
Suppose, the mathematical model for i* (i=1,...,n,) output variable can be written
as
¥ia =0, B+, 3.1
)=0; t =t
=0 t,#t,

| AR

Jobg

where there are t=1,...,n observations on each process variable. The variables u, and p

refer to vectors of manipulated variables (u,,--,u, ) and unknown model parameters. ¢;

are the normally distributed white noise sequences over time associated with i output

variable. The variance-covariance matrix of Y is given by
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Cn G - O, (3.2)
5= Cy 0:22 O 2n,
Ouw1 Onz2 ™ Opp,
where gij = Gji. Let
g o .. g™ (3.3)
O

Now, if the variance-covariance matrix, Z, is known, then the maximum likelihood

estimation of Equation (3. 1) yields,

o oh 3.4
mﬂin ZZG"Z(}MJ_Tli.a)(Y,-.;'le.:) ( )

i=l j=

3.2.1 Special Cases:

(i)

(it)

If there are no cross-correlation among the errors for the output variables, o;=0,

Vi,j, then the maximum likelihood estimation reduces to

. 1
mpm Z_Z (Yin— "'Ii.t)z

i=t i 1=1

(.5)

This is same as weighted least squares,

If B further contains no common parameters, then one can show that the above is

equivalent to minimising the sum of squares for each response separately,
n}é“ g(lﬁ.x = "'li,t)2 G.9)

where i=1,...,n,. This is single output estimation at a time. Therefore, a separate

analysis of each response is justified as long as the errors €, and ¢ are

uncorrelated for i # j and there are no common parameters among the output

variables.
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Therefore, to summarise, multi-output identification is called for cases where
(1) there are common parameters among the models for different output variables; and
(ity  there are cross-correlated noise models (D, and D;, are cross correlated).

In a case where all models are independently parameterised, there are obviously no
common parameters, and the only incentive for multi-output identification is if D,’s are
cross-correlated. However, this advantage may be minor unless the number of

observations is small.

3.2.2 Multi-Output Identification in Case of Unknown Variance-Covariance

Matrix
In most cases, the variance-covariance matrix, £, of Y is seldom known.
Therefore, the Bayesian a posteriori estimates, B, are obtained by minimising the

determinant of S(B) (Box and Draper, 1965),
min [S(B) 3.7

where S(B) is given by
S = (3.8)

Z(YIJ - ‘11,;)2 Z(YM - nl,t)(th - 'flz,.) L Z(yl-‘ - ﬂ|,x)(¥n,,| - T'In,,u)
232~ M2 )y, - M) 2 (2~ )’ DN ES W (A W

PNCAIET NN (AL WED W IAPET W (20 M IR PN AES Wy
3.3  Multivariate Methods for Multi-Output Identification
As discussed in the previous chapter, there are many choices for the model

structures for process identification from the input-output data. These range from a

parsimonious rational transfer function model to a semi-parsimonious ARX model to a
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non-parsimonious FIR model. In this chapter, the FIR and the parsimonious transfer

function models are used for multi-output identification.

3.3.1 Parsimonious Transfer Function Models

In this case, one needs some knowledge as to which process parameters (i.e., time
constants) are common to transfer function models for all process output variables. If one
has this knowledge a priori, then these process parameters can be constrained to be the
same in these transfer functions and one can use nonlinear optimisation to estimate the
parameters by minimising the determinant of the covariance matrix as shown in Equation
(3. 8).

3.3.2 Non-Parsimonious Model Structures: ARX and FIR models
A multivariate multiple linear regression model can be written as follows:
Y=XB+E (3.9)
For process identification, the Y matrix consists of process output variables at time t. X
contains lagged process inputs in case of FIR models and lagged inputs and lagged
outputs in the case of ARX models. B contains the estimated FIR or ARX model
coefficients. E is a matrix of disturbances or errors. For estimation of FIR models in
presence of autocorrelated disturbance, one may need to use generalised least squares
(Clarke, 1967) to identify the disturbance models as well.
The following multi-output regression methods can be used for identification when
employing ARX and FIR model structures:
i Two Block Partial Least Squares (PLS2).
ii. Canonical Correlation Regression (CCR)
ii. Reduced Rank Regression (RRR)
iv. Principal Component Analysis on the output variables and then regressing the few
dominant principal components on the lagged process input variables (FIR models
only).
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All of these multi-output regression methods fall into the class of statistical
projection methods in which the X and Y matrices are projected onto lower dimensional
spaces defined by latent variables. This dimension reduction is possible because of the
high correlation among variables in X and Y. Models having many fewer parameters than
are present in Equation (3. 9) are built between the latent variables in the Y-space and
those in the X-space. These lower dimension models can then be re-expressed in terms of
the much less parsimonious original model Equation (3. 9). However, since all the
parameters in B are related to the much smaller number of parameters relating the latent
variables spaces, it is obvious that there is effectively a large number of common
parameters when estimating B by these projection methods, As a result one should benefit
by performing muiti-output identification whenever the projection space has much smaller

dimension than that of Y,

3.3.3 Multivariate Regression Methods
A brief introduction to the multivariate regression methods used in this research is

given here. Further details can be found in Burnham et al. (1996).

3.3.3.1 Principal Component Analysis on Qutput Space (Y)

If the underlying dimension of the output space is less than the number of output
variables being measured, then one can perform principal component analysis (PCA) on
the output data to determine the reduced output space, PCA, first described by Pearson
(1901), is a method of explaining the variance of a data matrix, Y, in terms of few latent
vectors or principal components. The latent vectors are linear combinations of the original
variables, t=Yp, and are uncorrelated (or orthogonal to each other). The first latent
vector, t;, explains the greater amount of variability in Y and the second latent vector, t;,
explains the second greatest amount of variability subject to the condition that it be

uncorrelated to the first latent vector and so on. Therefore, the Y matrix is decomposed
as
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Yzitipj+K=T.P,T+K=YP_P_T+K (3. 10)
1=1

where p; and t; are the loading vector and column score vector of i principal component,

respectively and K is the residual matrix. One can compute as many principal components

as the rank of Y however, in the case of correlated measured variables, the first few latent

vectors explain most of the variability in Y. The number of principal components, a, to be

retained in the model can be determined by the cross-validation technique (Wold, 1978).

In PCA, the objective function to be maximised is

max p;Y'Yp, (3. 11)
subject to p{p, =1
pip;=0i%]

For the above objective function to be at its maximum, the loading vectors, p, are the
eigenvectors associated with the eigenvalues of Y'Y. Once, the statistically significant
number of principal component have been determined, the regression coefficients can be

estimated by regressing the dominant principal components on the inputs:

Bees = (X™X)"X"(YR,EY) (3.12)

3.3.3.2 Canonical Correlation Regression
In canonical correlation regression (CCR), the objective is to find linear
combinations of X, XFf;, and of Y, Yg;, that are most highly correlated. Furthermore, the
subsequent linear combinations or canonical variates must be chosen with an additional
constraint that they be orthogonal to the previous ones. Therefore, the objective function
is;
max £7X"Ye, (3.13)
subject to f,X"Xf, = 1, g Y'Yg =1
fIX'Xf; =0 g/Y'Yg =0
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The solutions for f; and g are the eigenvectors associated with the eigenvalues.of
(XTX)—]XTY(YTY)_lYTx and (YTY)-lYTX(XTX)—leY, respectively. The eigenvalues
range between 0 and 1 and are the squared correlation coefficients between Xf; and Yg;.

The number of statistically significant canonical variates signifies the underlying
dimensionality of the process output space and the canonical variates whose eigenvalues

include zero in confidence intervals are white noise. The CCR regression coefficients are

given by the following equation:
B, = (EF)XTY (3. 14)

The maximum number of canonical variates that can be computed is the minimum
of the number of variables in X or Y blocks. Furthermore, if one computes all canonical
variates, then regression coefficients estimates will be same as OLS estimates. The
number of statistically significant canonical variates, a, can be selected either by using the
Bartlett criterion (Bartlett, 1947) or by validation on a testing data set. One can also use
the generalised cross-validation based canonical correlation regression (GCV-CCR)
method of Breiman and Friedman (1996) where a shrinkage, which is computed based on
the ratio of the number of regression parameters to the sample size (i.e., signal to noise
ratio), is applied to each canonical variate. The canonical variates with smaller
eigenvalues represent lower signal to noise ratio and thus more shrinkage is applied to the
high noise contaminated components to lessen their effect on the regression coefficients.

If the rank of the regression coefficients matrix, B, in Equation (3. 9) is known
(i.e., the number of independent parameters to be estimated in B is known), then
performing canonical analysis on the data and selecting as many canonical variates as the
rank of B is equivalent to solving for the determinant of the matrix given in Equation (3.

8). The proof'is given in Tso, 1981.
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3.3.3.3 Reduced Rank Regression

Reduced rank regression {RRR) can be derived from two different techniques:
redundancy analysis and the best rank a approximation to a matrix (Burnham et al., 1996).
In this section, derivation for RRR is presented using the concept of best rank
approximation a to a matrix.

The multivariate linear regression mode! is given in Equation (3. 9). If the rank, a,
of the regression coefficients is known a priori, then the OLS regression coefficients
matrix solution can be constrained to be of at most rank a. The objective function then

becomes,

min ¥ -XB, || subject to rank(B, ) < a (3. 15)

The sum of squares of the residual in the above equation can be decomposed into the
following two parts:

[¥ =~ X8, =[¥ - Yo +[¥ers - XB,[ (3. 16)

The first term of the decomposition contains OLS solution residvals and is thus constant.
Minitnisation of the above equation therefore depends on the minimisation of second term
on the right hand side as B, is allowed to vary subject to having at most rank a. This
clearly shows that solution to B, depends on the best rank a approximation to the OLS

predictions, Y, 5. The RRR estimates are obtained by first performing PCA on 'S
Y, =TI +H=Y 3 J"+H (.17
and then regressing the statistically significant principal components of i’ow on X-block:
B = (X™X)"X"(v3,77) (3.18)
The differences among PCA, CCR and RRR are. iunnnaﬁsed in Table 3. 1. The

major difference among these regression methods is the choice of matrix used to find the

underlying dimensionality of the output space. In PCA, the reduced space is found using

actual measurements of Y whereas, in RRR, this is done using OLS estimates of Y, \70,_3 .
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In CCR, the canonical variates are computed using Y, s but are normalised with respect

to Y.

Method PCAonY RRR CCR
Matrix USEd to (YTY)-’I ‘.,r'l'x(x'l'x)_I xTY
compute latent Y'y YT v

oistois | = (Y"'Y)-l Y'XB,,
variables 1T YT
= (YTY) Y'Y, = (YTY) Yous Yous

Table 3. 1: Comparison of matrices used to compute the latent variables for various
multivariate regression methods.

3.3.3.4 Partial Least Squares
Two block partial least squares (PLS2), where all outputs are modelled
simultaneously, is also used for multi-output identification. An introduction 10 PLS is

given in chapter 2.
3.4  Process Example #1: Quality Control

The first process example is taken to resemble a quality control process. The

following model is used to generate the process data:

Yy [_ 02B° [10 07 [, L& (3. 19)
v,| 1-08B[07 -10{u,| |e,

The additional output variables were computed as linear combinations of the true values
(") of the above two process variables:
v,] [10 107 .4 [e, (3. 20)
v, |=[10 02 y:]+ €,
ys| (02 10P2d [g,



50

The rank of the true, noise-free output space is 2. Obviously the five output variables are

related by a model with common parameters. White noise with a signal to noise ratio of

2.25 to 1 based on the variance (ie.,, 6} /o2 =225) was added to all output variables.

Finite impulse response models relating the process inputs to process outputs were
estimated using various multi-output regression methods listed in section 3.3.3. The finite
impulse response model for the multi-output estimation can be expressed as follows :

Y, =XB+E, (3.21)

[yl * 5 i 8 ) 1 1 2 2 2
where Y, -—[yl, Yir - y,], X, —[ul_,, Uz, «oes Upags -oen Ups Ui, ...,ul_,o] and

E, =[e}, e, ..., e’]. B is a matrix of regression coefficients estimates with i column

corresponding to the impulse response weights for the i* output variable, y'. E, contains
the residuals for each output variable at time t, assumed to be white noise in this study.
Thirty impulse weights were computed for each input. One could use either generalised
least squares (Clarke, 1967) or an ARX model structure for process identification if the E,
are autocorrelated, Univariate regression methods such as OLS and PLS1, which model
one output at a time, were also used to estimate the FIR models. This is done in order to
compare the performance of multivariate regression methods to that of univariate
methods.

Four hundred and thirty data points were generated for both training and testing
data sets. However, thirty data points were used for data shifting for FIR models, thus,
leaving 400 data points for estimation. The data were generated by making PRBS
changes, with magnitudes between 1 and -1 and switching interval of 5 sampling periods,
to the process inputs. All output variables were scaled to unit variance prior to model
estimation.

The following criteria were used to compare MISO and MIMO modelling using
various regression methods:

0] providing the best predictions;

(i)  providing the impulse and step weights closest to the true process; and
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(i)  giving a model which leads to control systems with the best robust stability.
The following results are based on 500 Monte Carlo simulations. A different seed

was used to generate the process input-output data for each simulation.

3.4.1 Best Model in Terms of Predictions

The estimated models from various regression methods are compared in terms of
percent sum of squares (% S8) explained of the first two primary outputs for training and
testing data sets. All FIR models are estimated using training data sets with 400 data
poinfs. The number of canonical variates in CCR and RRR models and the number of
latent vectors in PLS and PCA models are selected by validating the models on a testing
data set. The number of canonical variates or latent vectors were selected such that they
provided the minimum predicted residuals sum of squares (PRESS) on the testing data set.
The shrunk CCR method of Breiman and Friedman (1996) based on generalised cross-
validation (GCV) was also investigated for multi-output estimation of FIR models. It
shrank the three canonical variates with smaller eigenvalues to zero and thus giving results
very similar to those of CCR. Therefore, the results for GCV-CCR are not presented
here.

The results for prediction ability of both MISO (OLS and PLS1) and MIMO
(PLS2, CCR, RRR and PCA) identification regressi&h methods are provided in Table 3. 2.
All estimated niodels are compared in terms of the percent sum of squares (% SS)
explained of the first two primary output variables for both the training and testing sets.
The % SS explained of the output is calculated as follows:

i()’u - Vis )2

% SS explained = | 1-22 -
2
ZY;,:

=1

(3.22)

where y,, is the observation of i* output variable at time t; §,, is the prediction of the i*

output variable and n is the number of data points in the testing or training data sets. The
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theoretical % SS explained of both outputs for both training and testing data sets is also
given in Table 3. 2. It is the % SS explained by the true process models and can be

computed by replacing § by the noise-free y in the above equation.

% Sum of Squares (SS) Explained of the Output Variables
Regression Training Data Set Testing Data Set

Method Y1 y2 Y1 ¥z
Theoretical 69.48 69.55 69.54 69.46
OLS 74.05 74.08 64.04 64.21
PCA 71.63 71.67 67.00 67.03
CCR 71.63 71.66 66.97 66.99
RRR 71.65 71.68 56.99 67.02
PLS2 70.20 70.30 68.24 68.20
PLS1 71.01 71.10 67.79 67.77

Table 3. 2: Average results for % sum of squares (SS) explained of the primary output
variables for the training and testing data sets by FIR models estimated using various
MISO and MIMO regression methods (Number of data points in the training data set =
400).

It is evident from Table 3. 2 that all MIMO and MISO methods provide higher %
SS explained than the theoretical % SS explainable for the training data set. This means
that all methods are overfitting to some degree. OLS seems to give the most overfitting,
MIMO methods such CCR, RRR and PCA provide less overfitting on the training data set
and better predictions on the test data set than OLS. This implies that multi-output
methods are taking advantage of the relevant information present in the redundant output
variables to identify better models for the primary output variables. The number of
canonical variates or principal components selected based on validation on a testing data
set by these methods were two. This is same as the true rank of the output space. Two
block PLS (PLS2), which models all five output variables simultaneously, provides the
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best results in terms of the prediction ability. However, PLS1, which models one output
variable at a time, also provides better results than multi-output methods such as CCR,
RRR and PCA. The improvement in PLS! resuits is due to better handling of the ill-
conditioning in the X'X matrix. For PLS2, an additional improvement in results comes
from the inclusion of the additional variables in the output vector. However, in this
example, PLS2 provides very little improvement over PLS1. These findings are consistent
with those of Brooks and Stone (1994) who, to their disappointment, found that PLS2 did

only slightly better than its single output counterpart PLS! in a steady state modelling
study,

3.4.2 Closeness of the Fit to the True Model

Another comparison criterion used is the closeness of the fit to the true model.
This is measured by amount of departure from the true impulse and step weights of the
process example. The sum of the squared deviations from the true impulse response
weights (MSE_Impulse) and the sum of the squared deviations from the true step weights
(MSE_Step) are used to quantify the closeness of the fit to the true model. These
quantities are defined in Equations (2.40) and (2.41). The MSE_Impulse prirnarily
measures the closeness of the estimated process dynamics to the true process dynamics
whereas the MSE_Step primarily measures the closeness of accuracy of the process steady
state gain. The quantities MSE_Impulse and MSE_Step for first output are provided in
Table 3. 3. The results for the second output are similar to the results for first output and
are thus not shown here.

Again, OLS, which models one output at a time, provides the worst results. The
multi-output methods such as CCR, RRR and PCA provide better results than OLS but
there seems to be very little difference among the results for these multi-output methods.
They all provide nearly identical results. PLS2 and PLS1 provide the best results and
there is very little difference between the results for PLS1 and PLS2. As discussed in the

previous section, the improvement in PLS results comes from the fact that it smoothes the
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FIR coefficients by overcoming ill-conditioning of the input data by selecting fewer latent

vectors.

Regression MSE_Impulse (Deviations from | MSE_Step (Deviations from the
Method the True Impulse Weights) True Step Weights)
yiruy yi-u2 Y-y yi-u2
OLS 0.2947 0.2784 0.2010 0.1954
PCA 0.1317 0.1288 0.1061 0.1111
CCR 0.1338 0.1298 0.1109 0.1126
RRR 0.1319 0.1287 0.1094 0.1111
PLS2 0.C153 0.0095 0.0826 0.0808
PLS1 0.0181 0.0120 0.0923 0.0943

Table 3. 3: Average results for deviations from the true impulse and step response models
given by FIR models estimated using various MISO and MIMO regression methods
(Number of data points in the training data set = 400).

3.43 Frequency Domain Analysis

The objective of this section is twofold: (i) to examine precision and accuracy of
estimated FIR models in the frequency domain using all the identification methods; and (ii)
to examine a measure of the stability robustness of the mbdels identified by the various
methods when used in feedback controllers. The ellipses for 98% approximate joint

confidence regions for the real and imaginary components of the estimated process model
G(iw) are plotted on the Nyquist diagram at selected frequencies. The 90% bound on the

multiplicative or relative process/model mismatch is also plotted as function of frequency.

3.4.3.1 Joint Confidence Regions on the Nyquist Plot
In this section, we examine the accuracy and precision of the various MISO and
MIMO identification methods by computing approximate joint confidence regions for the
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frequency response of the system at various frequencies. The results are shown only for
the FIR models between y, and u; and the results for other models are similar to the ones
shown here. Further details regarding the calculation of these confidence regions can be
found in chapter 2.

The ellipses for approximate joint confidence regions on the Nyquist plot were
computed at the following frequencies: 0.01, 0.2231 and 0.4 rad/time unit. These
frequencies correspond to the process steady state, open loop process time constant
(1,=4.184) and a selected closed loop process time constant (1.=2.5), respectively.

The ellipses for the approximate 98% joint confidence regions on the Nyquist plot
for each regression method are shown in Figure 3.1. As is evident from the plot, the
multivariate methods such as CCR, RRR and PCA provide the smallest joint confidence
regions at all three selected frequencies. Smaller confidence regions mean that there is less
uncertainty in the process models. The ellipses for joint confidence regions for these three
multivariate regression methods are identical and are almost superimposed on each other.
OLS provides the largest joint confidence regions. Comparing the multivariate regression
methods’ joint confidence regions to univariate regression method confidence regions, the
joint confidence regions for the multivariate regression methods are about half the area of
those for OLS. This definitely means that these multivariate methods are benefiting from
the information available in the redundant output variables and thus prbviding more
accurate FIR models. o

PLS2 does provide better results than OLS and PLS1 however the results are not
as good as for CCR, RRR and PCA. Even though smoothing of impulse weights by PLS
methods does lead to better prediction ability and smaller mean square error for impulse
and step weights, it does not translate into smaller confidence regions in the frequency
domain. The areas for ellipses for confidence regions for both PLS1 and OLS are

comparable.
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Figure 3.1: Approximate ellipses for the 98% joint confidence regions on the Nyquist plot

for the models estimated for y;-u; with a training data sets of 400 data points.
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3.4.3.2 Stability Robustness Analysis

The objective of this section is to compare a measure of robustness of a model-
based control system that would result from using the models identified by the various
approaches. The measure is very general and independent of the specific controller
design.

For all the regression methods investigated in this study, the 90% bounds on the

inverse of multiplicative uncertainty (i.e., 1/ ”eM(iw)]L) for the frequency range between

[0.01 2)/T; are shown in Figure 3.2. The small gain theorem is generally very conservative
and is only a sufficient condition for robust stability. It implies that the system is stable as
long as this condition is met. It does not imply that the system will become unstable even
if this condition is exceeded. However, these small gain stability bounds should provide a
useful measure of the relative robustness of the control system based on the models
identified by the various methods.

The multivariate regression methods, CCR, RRR and PCA, provide the highest
bounds and henc: the best implied robustness. PLS2 provides slightly better robust
stability than single output methods such as OLS and PLS1 but is still not as good as
CCR, RRR and PCA. PLS focuses on singular direcfions in which the covariance is large
and it drops weaker singular directions at certain frequencies because there is relatively
little covariance in these singular directions (Wise and Ricker, 1993). Therefore, it gives
the best predictions and the smallest MSE deviations from the true impulse Wéights but

gives poor robust stability compared to other multivariate regression methods.

3.4.4 Multi-Output Estimation with Less Data

In most cases, one might not be able to conduct experiments to collect such a large
amount of data or use such large input changes due to ‘product degradation or market
demands. In this section, the effect of fewer number of data points on the multi-output
estimation is investigated. One hundred fifty (150) data points instead of 400 were used in

the training data set for multi-output estimation.
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Figure 3.2: Approximate 90% bound on maximum allowable controller gain (Small gain
theorem) for the process models estimated with training data sets with 400 data points.
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The results for the prediction ability of the identified models and closeness of the
fit to the true mode! are given in Table 3. 4 and Table 3. 5, respectively. The ellipses for
the joint 98% approximate confidence regions on the Nyquist plot are shown in Figure 3.3

and the robust stability results, the 90% bound on the inverse of multiplicative uncertainty

(i.e., 1/||eM(iw)”2), are shown in Figure 3.4. With fewer data points, the differences

between OLS and the multivariate methods such CCR, RRR and PCA become greater
based on all comparison criteria. In terms of prediction ability of the identified models, the
multivariate methods provide much better predictions thau OLS. Both univariate and
multivariate PLS methods, PLS1 and PLS2, provide better results than CCR, RRR and
PCA in terms of prediction ability and closeness of the fit to the true models, however,
they provide poor results in terms of frequency domain criteria. Furthermore, PLS2
provides marginal improvement over PLS1. As discussed in section 3.4.1, the major
benefit of both univariate and multivariate PLS methods arises from their ability to
overcome ill-conditioning in the input data and there is only marginal improvement for
multi-output estimation by using PLS2.

Among CCR, RRR and PCA methods, the results for RRR and PCA are slightly
better than that of CCR. It is probably due to the fact that in case of RRR, one tries to
find linear combinations in X which try to explain the variance of outputs whereas, in the

case of CCR, one finds linear combinations in X and Y which are strongly correlated.

3.4.5 Multi-Output Estimation with Different Signal to Noise Ratios for Qutput
Variables
In the previous sections, all measured output variables had the same signal to noise
ratio. However, this is seldom the case. There are different measurement noise variances
associated with each sensor. Some sensors such as temperatures or an expensive
chromatograph can provide more precise measurements whereas some sensors such as an
inexpensive chromatograph provide only crude measurements, In this section, it is

investigated whether more precise measurements for one of the variables can lead to better
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Regression % Sum of Squares (SS) Explained of the Output Variables
Method Training Data Set Testing Data Set
i y2 i Y2
Theoretical 68.84 68.66 68.38 68.73
OLS 81.34 81.10 46.52 47.30
PCA 74.68 74.47 57.91 58.54
CCR 74.46 74.19 57.54 58.14
RRR 74,71 74.50 57.90 58.53
PLS2 71.38 71.34 64.68 65.05
PLS1 73.21 72.98 63.34 63.76

Table 3. 4: Average results for % sum of squares (SS) explained of the primary cutput
variables for the training and testing data sets by FIR models estimated using ‘various
MISO and MIMO regression methods (Number of data points in the training data set =

150 ).
Regression MSE_Impulse (Deviations from MSE_Step (Deviations from
Method the True Impulse Weights) the True Step Weights)
Yi-iy -uz Y-y yi-u2
OLS 1.1188 1.1105 0.8203 0.8465
PCA 0.5147 0.4998 0.4169 0.4341
CCR 0.5291 0.5149 0.4352 0.4532
RRR 0.5139 0.4996 0.4167 0.4337
PLS2 0.0235 0.0168 0.2823 0.2846
PLS1 0.0304 0.0229 0.3268 0.3929

Table 3:5: Average results for deviations from the true impulse and step response models
given by FIR models estimated using various MISO and MIMO regression methods
(Number of data points in the training data set =150).
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theorem) for the process models estimated with training data sets with 150 data points.
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and more robust models for other output variables.

In the previous simulations, white noise with the same signal to noise ratio

(Ui /ol = 2.25) was added to all output variables. In this section, the signal to noise

ratio for the third output variable, y, is increased to 100:1. One hundred fifty data points
were used in the estimation of finite impulse response models using various multivariate
regression methods. Since the first two primary variables still have the same signal to
noise ratio, therefore, the results for the univariate regression methods are same as the
previous results given in sections 3.4.1-3.4.2 .

The results for the prediction ability of the identified models and closeness of the
fit to the true mode! are given in Table 3. 6 and Table 3. 7, respectively. The ellipses for

the joint 98% approximate confidence regions on the Nyquist plot are shown in Figure 3.5

and the 90% bound on the inverse of multiplicative uncertainty (i.e., l/ ||eM(iw)]|2) are

shown in Figure 3.6, Of all the methods investigated, CCR provides the most
improvement over the results when all output variables have same signal to noise ratio.
This is due to the fact that the variance covariance matrix of Y is explicitly buiit into the
objective function for canonical correlation regression. Therefore, the observations for the
third output variables with the highest signal to noise ratio are weighted much more
heavily than the observations for the remaining outputs. '

There is hardly any improvement in the results for PLS2. The results are in fact

the same as those with output variables havinyg the same signal to noise ratio.

3.4.6 Summary

All multi-output identification methods are better than single-output OLS on the
basis of all comparison criteria. PLS2 gives the best predictions and smallest MSE
deviations from the true models. However, other multi-output identification methods such
as CCR, RRR and PCA on Y regression provide significantly better robust controller
stability than PLS2 which still gives better robust stability than the single output
identification methods.
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Regression % Sum of Squares (SS) Explained of the Output Variables
Method Training Data Set Testing Data Set

n ¥2 Yi y2
Theoretical 68.84 68.66 68.38 68.73
OLS 81.34 81.10 46.52 47.30
PCA 75.15 74.91 59.0C 59.59
CCR 72.93 72,73 60.76 61.14
RRR 75.15 74.92 59.23 59.80
PLS2 71.44 71.30 64.81 65.20
PLS1 73.21 72.98 63.34 63.76

Table 3. 6: Average resuits for % sum of squares (SS) explained of the primary output
variables for the training and testing data sets by FIR models estimated using various
MISO and MIMO regression methods with the third output being more precise (Number
of data points in the training data set = 150).

MSE_Step (Df;;:ations from

Regression MSE_Impulse (Deviations from

Method the True Impuise Weights) the True Step Weights)

yi-t Y-z yi-iy yi-2

OLS 1.1188 1.1105 0.8203 0.8465
PCA 0.4540 0.4468 0.4102 0.4140
CCR 0.3717 0.3697 0.3290 0.3597
RRR 0.4445 0.4378 0.3893 0.3935
PLS2 0.0226 0.0166 0.2756 0.2828
PLS1 0.0304 0.0229 0.3268 0.3929

Table 3. 7: Average results for deviations from the true impulse and step response models
given by FIR models estimated using various MISO and MIMO regression methods with
the third output being more precise (Number of data points in the Training data set =

150).
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The reason for the flip-flop behaviour among the multi-output methods of PLS2 versus
CCR, RRR and PCA regression, lies in the different fundamental basis behind these
methods. PLS2 focuses on maximising the covariance among the X and Y spaces and in
this study the number of latent variables retained was based on obtaining the best
predictions on a test data set. It, therefore, focuses on high variance directions in the X-
space and drops weaker singular directions in the data which have little impact on the
prediction variance. However, in process control, the identified models are used not only
to predict the process output, but are also inverted to calculate the control action. In this
inversion step the weaker singular values and singular directions wili dominate and if these
are poorly estimated stability robustness will suffer. Since the other multi-output
regression methods are based on maximising the correlation rather than the covariance
they will not disregard the weak singular directions to the sarie extent. They will
therefore provide better model inverse in the controller and hence better stability

robustness.

3.5  Process Example #2: Methanol-Acetone-Water Extractive Distillation

Column

The objective of this process example is to illustrate the potential of multi-output
identification for processes where parts of the process dynamics between various output
variables are similar thereby allowing a common parameterisation for parts of the transfer
function models. The model parameters common to different transfer function models are
constrained to be the same and the remaining model parameters are allowed to change
freely to model process dynamics which are not common among output variables.

The process example used is a methanol-acetone-water (MAW) extractive
distillation column simulation. A description of the distillation column is given in chapter
2 and a schematic of the extractive distillation column is shown in Figure 2.2. The output

variables for the column are the acetone composition in the top product and methano!
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composition on a water free basis (MWF) in the bottoms product. The manipulated
variables are the steam temperature to the reboiler and the solvent flow rate. The
disturbance is the feed flow rate. Finite impulse response models relating the process
output variables to process input and disturbance variables were obtained by making pulse
changes to both process inputs and the disturbance. Additional measured variables that
are used in the multi-output identification are the trays 1 and 11 temperature
measurements. The impulse response models for the tray temperatures are also available.

For multi-output identification analysis, these linear models will be used to generate the
process data for the extractive distillation column. The condition number of the steady
state gain matrix for composition variables is 73.

In this process example, the tray temperatures are used as the secondary process
variables only to illustrate the concept of using related variables during the identification.
They are considered to be representative of a set of more precise measurements which are
available only during the identification study to improve the model parameter estimates for
the composition variables.

The impulse response model for both composition and both temperature variables
are shown in Figure 3.7. As is evident from these plots, the impulse responses for both
the top composition and temperature and for the bottom composition and temperature are
very similar. This implies that some of the time constants must be common to the models
for both composition and temperature. The data for the output variables from one of the
500 sets generated for process identification are plotted in Figure 3.8. The data have been
autoscaled or normalised to unit variance so that the temperature and composition
variables, which are measured in different units, can be plotted on the same plot. The top
acetone composition and tray 11 temperature are plotted together in Figure 3.8a whereas
the bottom MWF composition and tray 1 temperature are shown in Figure 3.8b. As can be
seen from these plots, the composition and temperature data for both top and bottom parts

of the column look very similar. The composition data are more noisy due to high
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measurement noise added to them. The trends in the data for both temperature and
composition are identical. Therefore, careful examination of the data is one way of
determining the vaniables which have common parameters among them. Furthermore, one
can initially identify separate FIR or transfer function models for each output variable and
then look for any parameters or trends, which might be similar, in these independently
estim...ed models. Another way of knowing common parameters among process models

for different output variables is prior process knowledge.

3.5.1 Process Identification
The following transfer function models in the Laplace domain were identified using
nonlinear optimisation:

K,(t;5+1) K, (t,5+1) (3.23)

_ (s) + Noise Model
%16 (vs® +1,5+1) s+ (tes’ +rs+ )(tgs+1) u3(s) + Noise Mode
3.24
T,,(s) = Kf(tsw ) u,(s)+ K(ts+1) u, (s) + Noise Model (3.29)
(1,8 + 1,8+ (res? + 15+ 1)z 5+1)
ya(8) = Ks u,(s) + 3.25)
(‘cns2 +T,8+ l)
Ke(tss+1) + Ky(tips +1)e™ u,(s) + Noise Model
(ts+1)(tgs+1)  (ties+ 1) (s + 1) (tys+1) |~
T(5) = () + (.26)
(v:,,s2 + T8+ l)
-5
Ky(ts+1) + Kig{ras +1)e u,(s) + Noise Model
(Tiss+1)(tes+1)  (mies+ 175+ 115 +1)

For MISO identification of composition variables, the mode! for each composition variable
was identified separately. For MIMO identification, the models for the top acetone
composition and tray 11 temperature were identified together and the models for the
bottom MWF composition and tray 1 temperature were identified together. The time

constants, which are assumed to be common to the transfer function models for both
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composition and temperature variables, are labelled with same numbers. Since, there are
no common parameters for models between top and bottom composition variat:es or tray
I and tray 11 temperature variables, therefore, models for all four output variables need
not be identified together . A separate disturbance model was identified independently for
each output variable.

The sampling period for the composition measurements is 11 minutes. Even
though the temperatures can be measured more frequently (i.e., every second), the
temperature measurement at every 11" minute is used for estimation so that the
measurements for temperatures and compositions are synchronised.  Note that
temperature variables are used here only for illustration of the ideas. These vanables
could have been some other measurements which are very costly and collected only once
during the identification study. All composition and temperature variables were scaled to
unit variance prior to model estimation.

The process models were =stimated using a training data set consisting of 500 data
points. The data were generated by exciting the process inputs with pseudo random binary
sequence (PRBS) changes with a switching interval of 5 sampling periods. The
magnitudes for the PRBS changes were 1 and 4.5 for the steam temperature to the
reboiler and the solvent flow rate, respectively. The PRBS magnitudes for both inputs
were selected such that they contributed equally to output variables’ variances. The
appni)ximate percentages of disturbance and measurement noise contributions toward the
total variances of the output variables are given in Table 3. 8. The temperatures can be

measured more precisely and thus have the least amount of measurement noise.

3.5.2 Results
The results in the following sections are based on 500 Monte Carlo simulations
and are presented only for the primary output variables, the top acetone composition and

the bottom MWF composition,
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QOutput Variable Percentage of Approximate Disturbance and
Measurement Noise Contribution Toward Total
Output Variance
Top Acetone Composition (y) 48%
Bottom MWTF Composition (y2) 54%
Tray 11 Temperature (Ty)) 31%
Tray 1 Temperature (T,) 43%

Table 3. 8: Percentage of approximate disturbance and measurement noise contribution to
the overall output variables’ variances.

3.5.2.1 C oseness of the Fit to the True model

The results for MSE_Impulse and MSE_Step are shown in Table 3. 9 and Table 3.
10, respectively. MIMO identification provides lower MSE_Impulse for alt four transfer
function models. However, the results for MSE_Step are mixed. MISO identification
provides lower MSE_Step quantities for the transfer function models relating the bottom
MWF composition to the process inputs. This is probably due to the bias in the
composition models caused by the multi-output identification as will be discussed in the

next section.

Identification MSE_Impulse (Deviations From the True Impulse Weights)

Method yi-u; Y1~z y2-u; Y-z
(1x10®) (1x10™%) (1x107) (1x10%

MISO 8.70 7.08 8.90 6.23

MIMO 7.68 5.99 6.61 5.34

Table 3. 9: Average results for deviations from the true impulse response models given by
the estimated models using MISO and MIMO transfer function model identification.
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Identification MSE_Step (Deviations From the True Step Weights)
Method Y-t yi-uz Y2y y2-u:2
(1x107%) (1x107) (1x10™ (1x10%)
MISO 1.99 2.7% 1.72 7.59
MIMO 1.79 2,12 2.06 7.81

Table 3. 10: Average results for deviations from the true step response models given by
the estimated models using MISO and MIMO transfer function model identification.

3.5.2.2 Joint Confidence Regions on the Nyquist Plot

The ellipses for the 98% approximate joint confidence regions on the Nyquist plots
for the models relating y, and y; to process inputs are shown in Figures 3.9 and 3.10,
respectively. The solid line represents the ellipses for MISO identification technique and
the dashed line represents the ellipses for MIMO identification technique. ‘The
approximai nnt confidence regions are computed at the following four normalised
frequencies: w-=[0.006 0.06 0.18 0.6)/Ts rad/time unit. The first three frequencies
correspond to the process at steady state, open loop process time constant (based on the
bode plot of the larger singular value) and a selected closed loop process time constant,
respectively. The fourth frequency is selected to demonstrate the effects of regression
methods on the estimated process models at a higher frequency. As is evident from these
plots, MIMO identification provides the smallest confidence regions for all four Nyquist
plots. However, for the transfer function models relating the output variables to the first
input, the confidence regions for MIMO identification are not found to be centred about
the true Nyquist point. This is due to some bias present in the assumed transfer function

model structures. This bias becomes more evident at higher frequencies

3.5.2.3 Steady State Robust Stability Analysis
Another criterion used to test the robustness of the models is the steady state

robust stability (Garcia and Morari, 1985) criterion. The condition for this robust stability
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Imaginary
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Figure 3.9: Approximate ellipses for the 98% joint confidence regions on the Nyquist plot
for (a) yi-u; and (b) yr-u2. Legends: solid line - transfer function models estimated using
MISO identification technique; dashed line - transfer function models estimated using

MIMO identification technique.
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Figure 3.10: Approximate ellipses for the 98% joint confidence regions on the Nyquist
plot for (a) y>-u; and (b) yz-u2. Legends: solid line - transfer function models estimated
using MISO identification technique; dashed line - transfer function models estimated
using MIMO identification technique.
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is based on only estimating the process steady-state gains correctly. If the real part of one
or more of the eigenvalues of (3’,(1)(‘}(1)“l is negative (see section 2.6.3 of chapter 2 for

more details), then the closed loop system can not be stabilised using a multipredictive
controller designed with the estimated process models.

The models from both MISO and MIMO identification were analysed using the
above robust stability criterion. Fifty six (56) estimated models for MISO identification
and twenty nine (29) models for MIMO identification would yield unstable model
predictive controllers. Twenty four (24) of the models yielding unstable controllers were

estimated from same data sets for both MISO and MIMO identtfication.

3.5.2.4 Frequency Domain Rohust Stability Analysis

The estimated process models for MISO and MIMO identification were also
analysed for frequency domain robust stability using the small gain theorem and structured
singular value (u) analysis. These criteria are very conservative but provide a reasonable
basis for comparing the expected robustness of controllers that will result from using

estimated models from MISO and MIMO identification techmiques The 80% bounds on

the inverse of the multiplicative uncertainty (i.e., 1/ “e(iw)]lz)_ corﬁputed using both smali

gain theorem and the p analysis for the normalised frequency range between le-3 and |
are shown in Figure 3.11a and 3.11b, respectively. These results represent an upper
bound on the allowable controller gain at each frequency. The solid line represents the
results for MISO identification and the dashed line represents the results for MIMO
identification. As seen from these plots, the MIMO identification provides better robust
stability than MISO identification over the whole frequency range based on both the small

gain theorem and the p analysis.
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Figure 3.11: Approximate 80% bound on the maximum allowable controller gain. (a)
small gain theorem and (b) structured singular value (u) analysis. Legends: solid line --
transfer function models estimated using MISO identification technique; dashed line -
transfer function models estimated using MIMO identification technique.
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3.5.2.5 Performance of DMC Controllers Using the Identified Models

In this section, we examine the actual performance of the models in a specific
controller design - DMC (Cutler and Ramaker, 1979). A dynamic matrix controller
(DMC) is desigred using the step weights obtained from the identified transfer function
models from MISO and MIMO identification techniques. The same DMC tuning
parameters were used for coutroller design for each identification method. The output
prediction and control horizons are selected to be 10 and =, respectively. The output

penalty matrix, Q;, and the input penalty matrix, Q,, are
Y, ¥; U u, (3.27)

B _[oa
Q.= 10 Q.= 0.003

Control simulations are carried out for a step cnange of 5 units to the feed flow rate. The
performance of the controllers designed with the models estimated using MISO and
MIMQO identification techniques is compared in terms of integral of squared error (ISE)
for both output variables and integral of squared change in the manipulated variables
(ISAU) for both input variables. The average results for the control simulations are shown
in Table 3. 11. The controllers designed from the estimated models for seventy two (72)
simulations for MISO and thirty six (36) simulations for MIMO identification techniques
were found to be unstable and thus were not included in the computations for the average
results. The estimated models for 56 simulations for MiSO and 29 simulations for MIMO
identification techniques did not meet the steady state robust stability criterion (see section
5.1.3) and thus were unstable. The remaining unstable controllers can be stabilised by
imposing larger penalties on the control moves.

The DMC controllers designed using the estimated models from the MIMO
identification technique perform better than the controllers designed using the estimated
models from the MISO identification technique. Furthermore, the difference becomes

much greater when the penalty matrix on the control moves is relaxed.
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Idenufication No. of Unstable ISE 1SAU
Method Simulations
Y1 Y2 u; U
(1x10™) (1x10%)
MISO 72 1.27 4.44 0.60 10.35
MIMO 36 1.11 347 0.58 8.08

Table 3. 11: Average closed loop results with DMC controller designed using estimated
process models from MISO and MIMQ identification techniques. DMC parameters are
M=10, P=w, Q;=[1 10]; Q,=[0.1 0.003].

3.5.3 Summary

In this process example, the primary variables of interest (compositions) and the
secondary variables (temperatures) have common parameters among their transfer
function models. The transfer function models were identified for composition variables
using both MISO and MIMO identification techniques. In MISO identification, the
transfer function models for each composition variable was identified separately. In
MIMO identification, the transfer function models for composition and temperature
variables were identified together and some of the time constants in the transfer function
models for composition and temperature were constrained to be same.

The MIMO identification provided better results than MISO identification based
on all comparison criteria. However, slightly inadequate mode! structures resuiting from
the constraints of the common parameterisation among the output variables can lead to

some bias in the models identified by MIMO methods.
3.6 Conclusions
In this chapter, the potential of multi-output identification methods for multivariate

processes is investigated via simulations on two process examples: a quality control

example and an extractive distillation column. Comparisons were made to traditional
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single-output identification on the basis of prediction ability of the estimated model,
closeness of the fit to the true process model, robust stability provided by the resulting
model, and the control performance obtained.

The multi-output identification methods provided better results compared to those
of single-output identification methods based on essentially all comparison criteria.
However, the benefits for using multi-output identification are most obvious when there
are limited amounts of data and when the secondary variables have better signal to noise
ratios. The differences between multi-output identification and single-output identification
method disappear with larger data sets and better signal to noise ratios for all process

variables.



4. Improved PLS Algorithms
4.1 Introduction

A PLS model can be computed using either a classical NIPALS algorithm (Woid,
1982) or a kernel algorithm (Lindgren et al, 1993). These are sequential algorithms
where one latent vector is computed at a time and then the X and Y matrices are deflated
to compute the next latent vector.
A typical PLS algorithm is as follows:
)] Mean-center and scale X and Y matrices
(ii)  Compute the following quantities: w,, t,, q,, u, and p, using either the NIPALS
algorithm or a kernel algorithm. The subscript a refers to the a*latent vector.

(iii)  Deflate X and Y matrices by subtracting the computed latent vectors from them:

xhl = xl - tlp.{ (4 1)

Ynl = Yl - tnq;r (4 2)

(iv)  Go to step (ii) to compute the next latent vector.

In PLS, generally both the X and Y matrices are deflated in step (iii) after each
latent vector computation. However, Hoskuldsson (1988) has shown that deflating of Y
matrix is optional. Lindgren et al. (1993) took advantage of this fact to make the kernel
algorithm faster by deflating the X matrix only. In this chapter, it is shown that only one
of either the X or the Y matrix needs to be deflated. This result then leads to two new and
very fast PLS kernel algorithms.
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4.2  Proof that Only One of X or Y Needs to be Deflated

To prove this result one must show that

XY, =X]Y,, =X Y, (4.3)

a+l Ta a Tael a+]l Ta

InPLS, X and Y are deflated as shown in Equations (4. 1) and (4. 2). Using Equations
(4. 1) and (4. 2), XTI, Y]

a+] Tasl

can be expanded as shown below:

xIHYnd = (xa = tlpI)T(Y. - th;r) (4 4)
=X]Y,-X[t,q] -p,t]Y, +p,t;t,qp
=X{Y, -X(t,q, -p, 1Y, +p,q;t;t

Note that tt, is a scalar and, therefore, p,(t]t )q; =p q; (tt,).

The quantities q, and p, in PLS are computed as follows:

_Y (4. 5)
q, = t'lrtl
and
_X, (4. 6)
T,
Rearranging Equations (4. 5) and (4. 6),
LY, =q/(t]t,) 4.7
and
XIt, =(tt,)p, (4. 8)

L Proof that deflation of Y is optional or that X!, Y., =X Y

a+1 Ta+l a+l “u

Substituting Equation (4. 8) into Equation (4. 4),
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X0 Yo = XJY, -p,al(t[t)-p, )Y, +p,q](t]1,) 4 9)
=XY, -p.Y, = (X[ -p, )Y, = (X, - ,p])Y,
= x-:'lYl

II.  Proof that deflation of X is optional or that X[, Y,,, = XY

Bl Tas “Ra Faelc

Substituting Equation (4. 7) into Equation (4. 4),
xi:Ym = xIYl - xrth}- —P‘qf(tft.)*‘ plq.lr(trtl) (4 10)
=X]Y,-X[tq,
=XJY,

A Tasl

43  NIPALS Algorithm

In the NIPALS algorithm, the computational effort for deflating X and Y is
minimal compared to the iterative process of computing the latent vectors; the exception
being when there is only & single response variable (y). In this latter case, only two
iterations are needed for the NIPALS algorithm to converge for each latent vector, and
therefore a significant proportion of the computational effort is spent on deflating X and y.
Since only the (N x 1) y vector needs to be deflated after each latent vector computation,
the speed of the NIPALS algorithm is substantially improved. The MATLAB® code for
the modified NIPALS algorithm is given in the appendix.

44 Kemnel Algorithm
The kernel algorithm was proposed by Lindgren et al. (1993) and is given below.

In the remainder of the chapter, it is assumed that columns of X and Y matrices are mean-

centered and scaled appropriately prior to PLS model estimation using a kernel algorithm.
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Compute the covariance matrices X'X and X'Y . The kernel matrix X"YY'X
can be computed by multiplication of X”Y with (XTY)T .

The PLS weight vector w, is computed as the eigenvector corresponding to the
largest eigenvalue of (XTYYT )‘ using either the power method or other
approaches (SVD, etc.).

w, « (XYY'X) w, 4. 11)

The PLS loading vectors p, and q, are computed as given below

_ WX, .12)

__wxy), (a.13)

After each latent vector computation, the covariance matrices, X'X and X'Y,

can be updated as
(X™X),_ =(1-w,p!)"(X"X) {1- w,p]) (4.19)

(x7¥),,, =(1-w.p]) (X"Y), (4.15)

a+]

s+l

Note that only the X matrix is being deflated in the above equations.

4.4.1 Modification to Kernel Algorithm

De Jong and Ter Braak (1994) proposed a modification to step four of the kemnel
algorithm of Lindgren et al. (1993) whereby the deflation of X'X and X'Y, by

expansion of Equations (4. 14) and (4. 15), is simplified to

X'X) =(XX) -p.pl(17t,) (4.16)
a+l a

(X™Y)  =(X"Y) -p,q7(tt,) @.17)
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This reduces the computational effort during the deflation step by avoiding the
multiplication of X'X and X'Y by (l—w.pf). This modified kemel algorithm was

proven to be much faster than the original kernel algorithm.

4.4.2 A Further Modification to Kernel Algorithm
As shown earlier, only one of either the X or the Y matrix needs to be deflated.
Therefore, in the kernel algorithm, one does not need to deflate X. The only deflation

necessary is the deflation of Y in X'Y.
(XY),, =(X"Y), - XTt.q] (4. 18)

Substituting Equation (4. 8) into the above equation:
("‘T")"1 = (XTY). -p.a. (tit,) 4. 19)

Note that the above equation is same as Equation (4. 17). If X is not being deflated, then
Equations (4. 12) and (4. 13) in the third step in the kernel algorithm need to be modified
so that loading vectors p, and q. can be computed using the non-deflated or original X
matrix. The score vectors, T, can be directly computed from the original X by the

following equation:

T=XR (4. 20)
bt .. t])=X[nr..n]
where R is given by
R=W(F'W)" (4.21)

The columns of R can be easily computed sequentially. A szquential relationship to

compute R is derived below:
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t, = X,w, = Xw, (4.22)
t,=X,w, = X(I—wlp,T)W2

b = X{1- wpTJT-w,p)(1-wa 0L )W,

Therefore,
r=w, (4. 23)
r, = (I-W.P;r)w:

Th = (I - wtpf)(l - wng) " '(I - wA-lPI—l)wa

The above relationship can be represented as

r,=B,w, (4.24)
where B is computed recursively using the following equation (Hoskuldsson, 1992).
B,.,=B,(I1-w.pl)=B,~Bw,p] =B, ~r,p, (4.25)
and
B, =1 (4. 26)

Computing r, using the above equations involves maintaining a K by K matrix, B,, and
multiplication of this matrix with w, in Equation (4. 24} which could be very
computationally intense with larger number of X-variables. This can be avoided by
computing r, using the following recursive relationship:
=W, 4.27)
=W, —PIW, N —pIW, =Pl W, a>]
The major rate determining step in the kernel algorithm in terms of computational effort is
the construction of matrices X*X and X'Y. In this modified kernel algorithm,
construction of X"X is not necessary. if the number of data points in X are much gfeater
than the number of variables in X (N >> K), then it might be convenient to compute X'X

since storing X*X would require less memory space than storing X. However, if one is
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not restricted by the computer memory, then not computing X*X and directly using X in

the kernel algonthm to compute p and q would require less computational effort.

In this chapter, two new modified kemel algorithms are developed. In the first

algorithm, algorithm #1, the covariance matrix X'X is not computed and X is used

directly in computations for p, and q, as shown in step 4a (Equations (4. 31)-(4. 33)). In

the second modified algorithm, algorithm #2, the covariance matrix X'X is computed

once and then used subsequently in the computations for p, and q, as shown in step 4b

(Equations (4. 34)~(4. 35)). The new kemnel algorithms are presented below. Algorithms
1 and 2 differ only in steps 1 and 4.

1.
2,

(a).

Compute the covariance matrix X'Y. Computation of XX is optional.

If there are fewer Y-variables, then compute q, as the eigenvector corresponding
to the largest eigenvalue of (YTXXTY). and w, can be computed from the

following relationship

w, =(X"Y) q, (4. 28)
=¥ (4. 29)
[w.|

If there are fewer X-variables, then compute w, as the eigenvector corresponding

to the largest eigenvalue of (XTYYTX). as shown in Equation (4. 11).

Compute r,. ]
=W, (4. 30)
n=w, —pfw_r, _p:{wer '—"‘—p:-_lw||'._1 for a > 1

Compute the loading vectors p, and q, according to either of the following
modified algorithms,

Modified Algorithm #1: The covariance matrix X"X is not constructed, but rather

X is used directly in the computations as shown below;
t, = Xr, (4.31)
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t'X

_LX (4. 32)
P. tft.
. n(X"Y), 4. 33)
%=

(b).  Modified Algorithm #2: The covariance matrix X'X is computed only once with

the original X data. Then in all dimensions:

r_ M(X'X) (4. 34)

a-n X:Y). (4.35)
T (X"X)r,
5. Update the covariance matrix, XY .
(x7Y).  =(X"Y) -p.al(t]t,) (4.36)
6. Store w,, p,, g and r,in W, P, Q and R.
W=[w, w, - w,] (4.37)
P=[P| P: "'p.]
Q=[q,q,"q,]
R=[nr-r]
7. Goto step 2 for the next latent vector computation.
8. When done computing latent vectors, the regression coefficients for the PLS
model are given by e
B, =RQ’ (4. 38)

The MATLAB® code for both modified algorithms is given in the appendix at the end of
this chapter.
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4.5  Comparison of Kernel Algorithms

Here, the new kernel algorithms are compared to De Jong & Ter Braak’s kernel
algorithm in terms of speed. All kernel algorithms provided the same PLS models as the
NIPALS algorithm. Since the De Jong & Ter Braak's kemnel algorithm is proven to be
faster than the original kernel algorithm of Lindgren et al. (1993), the original algorithm is
not included in this comparison study. The comparison criterion used is the floating points
operations (flops) used in MATLAB® to compute the PLS model. This criterion is the
same as that of De Jong and Ter Braak (1994) when they compared their kernel algorithm
to the original kernel algorithm,

The algorithms were tested for speed to variations in the following four design
variables: (i) the number of data points (N); (ii) number of X-variables {K); (iii} number of
Y-variables (M); and (iv) number of latent vectors (A) used in the PLS model. The low
and high levels of these designed variables are given in Table 4.1, The 2* factorial design
augmented with a center point and shown in Table 4.2 was performed.

The performance resuits of the three kemel algorithms are plotted in Figure 4.1.
In Figure 4.1a, the total number of flops consumed are plotted against the run number of
the factorial design whereas in Figure 4.1b, the relative flops (i.e., total number of flops
for given method / total number of flops for the De Jong & Ter Braak method) are shown.
The total flops consumed are the combined flops used for constructing the covariance
matrices and computing the latent vectors. As is evident from Figure 4.1a, algorithm #1,
where X™X is not computed, is much faster than algorithm #2 and the De Jong & Ter
Braak algorithm. In Figure 4.1b, it is seen to consume as little as one fifth of the flops as
that for the De Jong & Ter Braak algorithm as the number of X-variables increases. There
is no apparent difference between algorithm #2 and the De Jong & Ter Braak algorithm
since majority of the flops consumed in these algorithms are for construction of X'X and
X'y.
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Design Variables Low Center High
Number of Data Points (N) 500 750 1000
Number of X-Variables (K) 10 20 30
Number of Y-Variables (M) 1 3 5
Number of Latent Vectors (A) 3 4 5
Table 4.1: Design variables for speed comparison of various kernel algorithms
Run Number of data Number of Number of Number of
Number points X-Variables Y-Variables Latent Vectors
N X) M) (A)
1 500 10 5 3
2 500 10 5 5
3 500 10 1 3
4 500 10 1 5
5 500 30 5 3
6 500 30 5 5
7 500 30 1 3
8 500 30 1 5
9 750 20 3 4
10 1000 10 5 3
11 1000 10 5 5
12 1000 10 1 3
13 1000 10 1 5
14 1000 30 5 3
15 1000 30 5 5
16 1000 30 1 3
17 1000 30 1 S

Table 4.2: 2° factorial design for comparison of various kernel algorithms
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Figure 4.1: Comparison of various kernel algorithms: (a) total number of flops and:(b)

relative total number of flops. (Note: The lines for algorithm #2 and De Jong & Ter Braak
algorithm are superimposed on each other).
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vectors and (b) relative flops required to compute latent vectors.
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In Figure 4.2, the flops consumed for computing only the latent vectors of PLS
model (after the covariance matrices have been calculated) are plotted against the run
number of the factorial design for each of three kernel algorithms. In this case, algorithm
#2 provides the best results. Algorithm #1 requires the highest number of flops because it
uses X (which is larger in dimension than X™X) directly in the computations for p, and
q..  The relative flops for algorithm #2 and the De Jong & Ter Braak algorithm are
shown in Figure 4.2b. As is evident, algorithm #2 is much faster than De Jong & Ter

Braak algorithm as the number of X-variables increase.

4.6 Discussion

In this section, we discuss the modified algorithins that would be advantageous to

use under different circumstances.

4.6.1 Missing Data

Rannar et al, (1995) discussed how to handle missing data with the original kernel
algorithm of Lindgren et al. (1993). They proposed a method along the lines of the EM
algorithm where the missing data is replaced with some initial values (i.e., column or row
mean, etc.). A PLS model is then galculated and the missing data is replaced by their PLS
estimates. This procedure is repeated until some convergence criterion is satisfied. The
problem they found with this procedure was that after replacing the missing data with PLS
estimates, the new covariance matrices need to be recomputed. To overcome this
problem, Rannar et al. (1995) proposed a so-called reduced EM algorithm where the
replacement of the missing data is accomplished by updating but not recomputing the
covariance matrices. This gives a faster but less precise algorithm. As discussed earlier,
the construction of X*X is the most computationally intense task in the kernel algorithm.

Since ti:e modified algorithm #1 does not require the computation of X"X, it can be used
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with the full EM algorithm for handling missing data without sacrificing the precision and

speed, and is therefore recommended when one has missing data.

4.6.2 Cross-Validation
If one is not sure as to how many latent vectors would be sufficient for a PLS
model, then one can use the cross-validation (CV) technique to select the optimal number

of latent vectors. In this situation, it might be beneficial to invest in a one time
construction of X"X rather than using X matrix directly in the computations for p, and q,
since these latter vectors would have to be recomputed many times in any CV method.
Therefore, modified algorithm #2, which is faster for computing latent vectors once X'X

is available, is recommended for cross-validation.

4.7 Conclusions

In PLS, generally both the X and Y matrices are deflated after each latent vector
computation. In this chapter, a proof is given that only one of either the X or the Y
matrix in PLS algorithms needs to be deflated. Using this proof, the original kernel
algorithm of Lindgren et al. (1993) is modified to develop two new faster and more

economical algorithms. In the first algorithm, the covariance matrix XX is not
computed and X is used directly in computations for p and q. In the second algorithm,

X'X is computed once and then used in all subsequent computations for p and q. The
performances of these new algorithms are compared to that of De Jong and Ter Braak’s
algorithm in terms of speed and the new algorithms are shown to be much faster. Each of
these new algorithms is shown to have certain advantages when performing cross-
validation, or treating missing data. One of the algorithms also provides a fast kernel
algorithm for updating PLS models in a recursive manner and for exponentially
discounting past data. This is further discussed in the next chapter.
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4.8 Nomenclature

The following notation was used in this chapter. Upper case bold variables are
matrices and lower case bold variables are column vectors.
X Predictor variables matrix { N x K )
Y Response variables matrix (N x M)
Bps  PLS regression coefficients matrix (K x M)
W PLS weights matrix for X (K x A)
P PLS loadings matrix for X (K x A )
Q PLS loadings matrix for Y (M x A )
R
T

PLS weights matrix to compute scores T directly from original X (KxA)

PLS scores matrix of X (NxA)
W, a column vector of W
P: a column vector of P
q. a column vector of Q
r, a column vector of R
t, a column vector T

Number of X-variables

K

M Number of Y-variables
N Number of objects

A

Number of components in PLS mode!

a Integer counter for the latent variable dimension
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4.9  Appendix

Modified NIPALS Algorithm

function [W,P,Q,R beta]=nipals_y(X,Y A) % A = number of PLS latent vectors to be computed
% beta=PLS regression coefficients,
converit=le-10; % convergence criteria for the NIPALS algorithm.
fori=L:A,
u=Y{:,find(std(Y)y=max(std(Y)))); % assigning the y-variables with the largest variance
% to u_initial,
diff=1,
while (diff > convcrit),
u0=y;
w=X"*u/(u'*u); % compute w
w=w/(sqri(sumiw.2))); % normalizing w to unity.
=w, % compute r so that the score vector, t, can be
ifi>1, % computed directly from the non-deflated X (or the
for j=1:i-1, % original X).
=r-(P(:,j) *W)*R(.,j);
end
end
=X"r; % compute t
Q=Y (), % compute q
u=Y*q/(q'*q); % compute u
:ljiﬂ"=(sqn(sum«u0)."2)))f(sqn(sum{u."2)));
cn
p=Xrrey; % compute X-loadings
W=[W w]; % storing loadings and weights
R=[R1];
P=[Pp];
Q=[Qql;
T=[Tt];
U=[U u};
=Y-1*q", % only Y block is deflated.
end
beta=R*Q"; % compute the regression coefficients,
end

Modified Algorithm #1

XY=X'*Y; % Compute X'Y
for i=1:A, % A - number of PLS components to computed
[C.D)=eig(XY"*XY); % Compute eigenvectors of Y'XXTY

q=C(; find(diag(D)==max(diag(D))}); % find the eigenvector corresponding to the largest eigenvalue
w=(XY*q); % compute X-weights



w=w/sqri{w'*w);
=w;

for i=1:i-1,

=r-(P(:j)"*w)*R(. ).
end
t=X"*r;
t=(t"t),
p=(X"*n)/a;
q=(r'*XY)/u,
XY=XY-(p*q'y*tt;
W=[W w];
P=[P p};
Q=[Qq);
R=[R1];
end

beta=R*Q’;

Modified Algorithm #2

XY=Xmy;

XX=X"*X;

for i=1:A,
[C.D}=eigXY"*XY),
q=C(:,find(diag(D)==max(diag(D)))),

w=(XY*q),
w=w/sqri{w'*w),
=W,
for j=1:i-1,
r=1-(P(:,j)"*w)*R(: ),
end
t=(r'*XX*n;
p=(r'*XX)it,
g=(r"*XY)'/;
XY=XY-(p*q)*;
W=[W w;
P=[P p},
Q=[Qq};
R=[R1];
end
beta=R*Q";

08

% normalize w 10 unity
% loop 1o compute 1,

% compule score veclor

% compute 1"t

% X-loadings

% Y-loadings

% XY deflation

% store loadings and weights

% compute the regression cocfficients

% Compute the covariance

% matrices

% A - number of PLS components to be computed

% Compute cigenvectors of YTXX'X

% find the cigenvector corresponding to the largest
eigenvalue

% compute X-weights

% normalize w to unity

% loop to compute T;

% compute t"t

% X-loadings

% Y-loadings

% X"Y deflation

% storing loadings and weights

% compute the regression coefficicnts



5. Recursive Exponentially Weighted PLS
and Its Applications

5.1 Introduction

Very often new data are being collected on a regular basis and it is desirable to
recursively update the regression model using each new multivariate object as it becomes
available. Furthermore, the process may be slowly changing with time and one would like
to weight the recent data more heavily and discount past data in an exponentially weighted
manner. Such situations arise frequently in the area of adaptive process control and
calibration updating.

Recursive least squares (RLS) is the most commonly used method for recursive
on-line estimation of model parameters. In most cases, the process variables are highly
correlated and the correlation structure among process variables can lead to estimation
difficulties with the recursive least squares algorithm. For instance, during adaptive
control, the process variables are not only autocorrelated due to feedback but they are aiso
cross-correlated. Lately the partial least squares (PLS) regression method has been used
to overcome difficulties encountered with the existing correlation structure in process
data. A recursive PLS algorithm along the lines of recursive least squares algorithm can
also be employed to estimate on-line models for time-varying processes.

In this chapter, a faster kernel algorithm for exponentially weighted updating of a
PLS regression model is developed by combining the improved kernel algorithm #2 from

chapter 4 with the recursive updating of the covariance matrices (XTX)l and (XTY)'.

This newly developed recursive PLS algorithm is then applied to \édaptive control of a
simulated multivariable continuous stirred tank reactor and updating of a multi-output
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prediction model for an industrial mineral flotation circuit. Furthermore, the performance

of the recursive PLS algorithm is compared to that of the recursive least squares
algorithm.

5.2 Recursive Algorithms

As the new data become available, the old data can be exponentially discounted by

updating the covariance matrices as shown below:

(XTX)t = l.(xTX) 1 +l;rlt (5. 1)

1=

(xTY)l = A"(xTY)t—l +I‘Ty‘ (5.2)
Here, x, and y; are the new (p x 1) and (m x 1) predictor and response vectors observed at
time t, and (XTX)l and (XTY)‘ are the updated covariance matrices at time t. At each

new sampling period, the previous data in the covariance matrices are being exponentially
discounted with a forgetting factor A, (0 < A, < 1) and the new data are being added. For

A, =1 no discounting of the past data is done.

§.2.1 Recursive Least Squares
Ongce the covariance matrices in Equations (5. 1) and (5. 2) have been updated, the

new model parameters can be computed using the OLS solution:
b, = {X"X) ' (X"Y), (5.3)
The above equation can be rearranged to update the model parameter estimates

recursively as each data vector becomes available (Astrom and Wittenmark, 1989).
b, =b,, +(X™X)'x[y, ~x.b,.,] (5. 4)
To avoid inverting (XTX)l , which can be very computationally intense, at each step, it is

convenient to update, L,, the inverse of (XTX)‘ .
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L= ()] = (x7X), x| >
By applying the matrix inversion lemma, the above equation can be updated at each
sampling interval as

l::x'r_ﬂuT G.6)
L‘ = Aw;’xll"t-lxl

t-1

where L., is the inverse of (XTX)

-1

The complete recursive least squares algorithm is summarised below:

Estimates: b, =b_,+Ke, 5.7
Error: & =Y, _yt =Y. -xb, (5. 8)
Gain: T 5.9
Kt = Lll;r =-—_A L"“x‘ T ( )
t +lel-‘xl
Updating: (I-K.x,)L,, (5. 10)
L="—

v
The main problem with updating L. is that it can become non-symmetric and indefinite due
to round-off errors and this can lead to numerical instability. Therefore, it may be useful
to represent L, in a factorized form to keep it better conditioned,

L, =MM’ (.1
where M, is a lower triangular matrix. In this work, the algorithm of Morf and Kailath
(1975) based on the Householder transformation is used to update M, rather than L, and
then L, and K, are computed from M.. Further details pertaining to the algorithm can be
found in Ljung (1987).

5.2.2 Recursive PLS

A fast kemnel algorithm for recursive exponentially weighted updating of a PLS
regression model can be obtained by combining the improved kemel algorithm #2 from
chapter 4 with the covariance updating Equations (5. 1) and (5. 2). Since the covariance
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matrices in Equations (5. 1) and (5. 2} can be updatea with very little computational
effort, the modified kemel algorithm #2 will be extremely fast in these applications.

5.2.2.1 Literature Review

Wold (1994) recently published exponentially weighted algorithms for PCA and
PLS. His algorithms are not recursive in that the entire expanded data set (X, Y) is used
to build the model every time a new object becomes available, rather than just recursively
updating the previous covariance matrices with new objects as in Equations (5. 1) and (5.
2). Wold's use of the NIPALS algorithm at each stage also makes his approach slower
than the fast kemnel algorithms proposed here. If one wishes to obtain exponentially
weighted updated estimates of individual scores and loading vectors, then some form of
stabilisation method similar to those proposed by Wold (1994) would have to be
incorporated into our algorithm as well in order to prevent unwarranted rotations in the
latent vector space. However, such rotations are of no concern if one is only interested in
an updated regression model.

Helland et al. (1991) presented a recursive but not exponentially weighted
algorithm for PLS. In their algorithm, the old data in X and Y is captured by their loading
matrices (i.e.,, PT and QT; the score vectors t and u are scaled to unit variance) and new
data are added to these loading matrices. Although, this algorithm keeps the size of the
matrices which are used for PLS model calculations constant, it is still very slow compared
to the new recursive exponentially weighted PLS kemel algorithm proposed here.
Furthermore, during the data updating step, not all latent vectors are retained in P'. This
can lead to loss of information and deterioration of the parameter estimates.

5.2.2.2 Mean-Centring and Scaling of the Variables

In ordinary PLS, the X and Y-variables are mean-centred and scaled prior to
regression model building. Each variable is mean-centred using the mean computed ﬁ\o:m
the entire column. In a time-varying process, the mean levels of the variables may be
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changing with time. Thus, instead of mean-centring the data, one can augment x, with a
unity element to account for the constant term or the intercept. For scaling of the
variables, one can either use prior process knowledge to select scaling factors for all
variables and then scale the variables with these constant scaling factors. For a time-
varying process, the standard deviation of each process variable can also be updated at
each sampling interval. No extra effort or memory is required to store the standard

deviations as the standard deviations can be computed using the already available
information from the updated (XTX)l at each sampling interval. Suppose, the x, vector

consists of the following variables:
X, = [xm Xy v X, 1] (5.12)
Therefore, the elements of the covariance matrix, (X"'X)t , will be as follows:
(X™X) =2,(X"X) , +xx, (5.13)
k,(}‘..x,’)t_l +x5, A(Zxx)  FxX, o A(Ex) X,
M(ZX X)), +X0X), ll(Xxi) FXL, M(Ex,)_, +xq,

1 L3

A(2x,),, Xy A(Zx) +%, o A(ZD),, +1 |

where the (i) element of (X"X) can be expanded as
(Exix j)""= A, (Exix j)H Xy Xy = Z.,[?Ll_,(!‘.xix j)‘_2 +X;, X j.t-l]"' XX (.14

= A-1-1[7“:-1 (Exixj)“, RRTR L II ] AKX XXy

=0 FAX X F AR X AR A X X e

[ k.1
=X Xt Z Xis-xXja-k H A
k=l I=0

For a constant forgetting factor, A, = A, the effective memory length of the data

can be computed as (Astrom and Wittenmark, 1989),

Nel (5. 15)
1-A
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For a variable forgetting factor, this would not give a good estimate of the effective

memory length of the data. However, the information regarding the effective memory

length can be obtained from (XTX)l. The last diagonal element of (XT. )t represenis the

effective memory length of the data.
N, =4,(Z1)_ +1=AN_, +1 (5. 16)
The mean of each variable can be computed using the last column or the row,

(2x,), = A(Zx,),, +x,,, and the current effective memory length of the data.

(2x,), .17

b N

The updated variance for each variable can then be computed using the following formula

T -xY), (2x),-N&L (5. 18)
N, -1 B N‘ -1

),

The sum of squares of each variable, (fo)l, is available from the covariance matrix and

the mean can be computed using Equation (5. 17).

The standard deviations for the output variables can also be updated in a same

manner. However, the quantities such as (Zyi’)‘ and (}.‘,3,;i)l need to be stored and updated

at each sampling interval.

5.2.3 Variable Forgetting Factor

The discounting of the old data is necessary to account for thle time-varying nature
of a process. As the new data become available, the old data are continuously discounted.
The discounting of the old data with a constant forgetting factor works well if there is
persistent excitation in the process. However, a problem arises with & constant forgetting
factor if there is no information in the new data and the old data are still being discounted.
Under these circumstances, the covariance matrix will lose the essential process
information and become extremely ill-conditioned, and the precision of the resulting
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parameter estimates will be poor. To avoid this problem, one needs a variable forgetting
factor which discounts the old data only when there is information in the new data and
retains the old data when there is no information in the new data.

In this work, a variable forgetting factor is computed at each sampling interval
using the algorithm of Fortescue et al. (1981). In their algorithm, the amount of
discounting at each instance depends on the new information in the latest data vector and
is computed such that the estimation is always based on same amount of information. The
variable forgetting factor is calculated as

-l 5.19
[1_“(XTX); xjef [1-xK ]el . 19)
A, =1-1 =1-
zZ, zZ,
A=A, ifA, < A,
where
z, =aN, (5. 20)

The variable o is the expected measurement noise variance of the output variable. This

can be based on the process knowledge. N, is the asymptotic memory length and will
control the speed of the adaptation.

The variable forgetting factor equation can be modified for use in the recursive
PLS algorithm. The error term, &, can be computed using the PLS regression estimates.

For a larger number of X-variables, inverting (x"x)l at each sampling interval can be
very computationally intense. However, the (x"x)l can be replaced by its estimate from
the PLS model.

(xX)»(X"X) (5.21)
where X = TPT. Now, the inverse of X™X can be easily computed using the information
available from the PLS model.

(i'ri)" - (nr"r)" - (?'r)" (T‘I‘T)" P (5. 22)
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The T'T is a diagonal matrix and its inverse can be easily computed by inverting the
diagonal elements. Since P is usually not a square matrix, its inverse can be computed

using the generalized inverse or the pseudoinverse.
P =(P"P)"P" (5.23)
Therefore,
(X"%)" =p(e"p)"(17T) ' (pP) P (.24
The P'P is a tridiagonal matrix and usually of much smaller dimension than X™X. Thus,
inverting PP would require less computational effort.
In certain cases, the number of latent vectors computed in a PLS model might not
be sufficient to model most of the variance in X and X™X might not be a good

approximation to X"X. In such situations, one can always compute few additional latent
vectors than that required for the PLS regression model.

5.3  Applications of Exponentially Weighted Recursive PLS Algorithm

The exponentially weighted recursive PLS algorithm is applied to two process
examples. The first application is adaptive control of a simulated multivariable nonlinear
continuous stirred tank reactor. The second application is the updating of a prediction
model for 10 response variables for an industrial mineral flotation circuit. In both cases,
the performance of the recursive PLS algorithm is compared to that of the recursive least
squares algorithm.

53.1 Adaptive Control of a Multivariable Nonlinear CSTR
The physical system studied here is 2 continuous stirred tank reactor (CSTR) with
an irreversible exothermic first order reaction
| A->B
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A pure stream of species A enters the constant volume reactor and a wel! mixed stream of
species A and B exits the reactor. A dynamic simulation fcr the system is obtained by
writing ordinary differential equations for the material and energy balances.

Reactant Mass Balance
dC -E (5. 25)
V—d—t“- =FC,, -F,C, - Vk, exp( RT?)CA
Product Mass Balance
dC -E (5. 26)
Reactor Energy Balance
- 5.27
vp,Cy, a. P.Cp BT —p,Cp Fo T+ V(-AH, Jk, exp( EA)CA G20
' dt ' ' RT
Cooling Jacket Energy Balance
dT, . 5.28
VarPuCy, T =ty (T, -Ty )+ UAL(T- T, (5.28)

Model parameters are defined in the nomenclature section and the specific parameters
used for the CSTR are given in Table 5.1. The process is sampled every 20 seconds. The
objective of the controller is to keep the reactor conversion ‘(y.) and the reactor
temperature (y2) at their desired settings amid coming disturbances by manipulating the
inlet feed flow rate of species A (u)=F)) and the cooling water flow rate (u;=th). Both
output variables have dead-times of 2 sampling periods with respect to the process inputs
due to transportation lag. The conversion variable has an additional dead-time of 3
sampling periods due to analytical analysis time. The random measurement noise with
variances of 4x10° and 0.002 was added to both conversion and temperature,
respectively.

The process is controlled using a dynamic matrix controller (DMC) (Cutler and
Ramaker, 1979). At each sampling interval, the DMC controllers are designed using the
step weights obtained from three different identified models: (i) a state space process
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model by linearising the true nonlinear CSTR mechanistic model; (ii) ARX models
identified using the recursive PLS aigorithm; and (iii) ARX models identified using a
recursive least squares algorithm. The performances of these various controllers are
compared on the basis of integral of squared errors (ISE) for both output variables and
integral of squared change in the manipulated variables (1SVu).

Parameter Value

Ay 50m’

Car 866.0 kg/m’
Cas 1.791 Jkg - K
Cow 4,181 Jkg- K
Ea 60000 J/mol - K
F 0.02 m’/s

F, 0.02 m*/s

AHg ~-140.0 J/kg

ke ax10s!

R 8.314 J/mol - K
Ti 290.0K

T 293.0K

U 30.0 Wm* - K
A 1.0m’

Vo 020 m°

Ps 866.0 kg/m’

Pw 998.0 kg/m’

Table 5.1: Specific parameters used for the CSTR
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5.3.1.1 Locally Linearised Mechanistic Model
A local state space model of the CSTR is obtained by linearising the nonlinear
Equations (5. 25) to (5. 28) at each sampling interval.
i=Ax+Bu (5. 29)
y=Cx
All the parameters in the nonlinear mechanistic models are assumed to be known. The
step weights needed to design DMC are then obtained from this state space model. This
controller is used as a benchmark to compare the performances of the controllers designed
using the models identified from the recursive algorithms,

5.3.1.2 Identification for the Recursive Algorithms }
The following ARX model was identified at each sampling interval using the
recursive algorithms (Clarke et al., 1987):

A =B e, +Bo (5 i+

The variable y, is the output variable at time t and u, and uy, are the first and second
process input varisbles at time t, respectively. The variable 2" is the backward shift

2 (5. 30)

operator (i.e., 2'y,= 1) and V is the difference operator (V =1~z"'). The variable ty,
is the existing dead-time between the i* input, u;,, and the output, y.. A(z") and Bi(z"!) are
polynomials in z!.

A(z") = (l +a,z" +a,z7 + +auz“") (5.31)
B,(z")=(b,z" +b, .z + - +b, 2 ™) (5.32)
"The disturbance affecting the process is non-stationary and thus the data are differenced
once to remove the non-stationary effect. The identified model now becomes
A(z")vy, = B,(r.")Vuu_,‘l +B, z"')Vuu_!“ +a, (5.33)
The ARX models for the conversion and temperature variables are identified separately.
Six lags of the output variable (na=6) and six lags of each input variable (nb;=6) are
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sufficient to model the process adequately over the entire range of the disturbance,

Therefore, for regression, the x; vector consists of the following variables:
X, = [vyH! Tt th-&i Vul.t-l.t—l’ T vul.t-t.‘-é’vull-x,:—l- "-'vul.l.-t.:-ﬁ (5' 34)

There are total of 18 parameters to be estimated in Equation (5. 33). During the on-line
identification, the dead-times existing between the process inputs and output are assumed
to be known and the data are shified to remove the dead-times. Differencing the data

once removes the mean and thus augmenting x, with a unity element as in Equation (5. 12)
is not necessary. For the recursive PLS algorithm, the elements of (XTX)t and (KTY)l
were scaled using the updated standard deviations from Equation (5. 18) at each sampling

interval. The PLS regression model was computed with four latent vectors. The old data

were discounted using a variable forgetting factor computed using the algorithm of
Fortescue et al. (1981). The measurement variances, o2, selected for conversion and
temperature were 8 x 10~ and 0.001, respectively. They are different from the variances

of the measurement noise added to the output variables because the data have been

differenced. The asymptotic memory length, N,, for the data was taken to be 200. The

forgetting factor for the recursive PLS algorithm was computed by inverting (XTX)| in

Equation (5. 19). A lower bound of 0.95 was placed on the forgetting factor.

5.3.1.3 Dynamic Matrix Controller
In DMC, the control moves are computed using the following equation.

Vu=(ATQ[Q,A +Q}Q,) ATQIQE (3.39)

where A is the dynamic matrix containing the estimated process step weights. The
matrices Q, and Q; are the weighting matrices for the process output and input variables,
respectively. E is a vector of predicted deviations from the set-point assuming no new
control actions. The control moves, Vu, are penalised by selecting an appropriate penalty
matrix, Q.. A fixed input penalty matrix poses a problem during adaptive control. The
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elements of the dynamic matrix are changing and thus the penalty matrix also needs to be
updated to get same amount of constraining of the input variables at each sampling
interval. The need for time-varying penalty matrix was solved by applying principal
component analysis to compute the control moves (Maurath et al., 1988). In this work,
the control moves are computed by inverting the three largest singular values of QA at
each sampling interval. These singular values account for roughly about 806% of the sum
of squares of Q;A.

The same DMC tuning parameters are used for the controller design for each
method. The output prediction and control horizons are selected to be 25 and 5,

respectively. The weighting matrix for the output variables is
Vi Y2 (5. 36)

o

§.3.1.4 Adaptive Control Simulation

The control simulation was carried out for a random walk variation in k., the
Arrhenius rate constant. The range of variation of k, used in the simulation run changes
both the process gains and dynamics (i.e., the residence time of the reactor) by a factor of
S. Therefore, a fixed controller was not able to reject the disturbance very effectively.

For the recursive algorithms, the process is initially controlled by a fixed DMC
during the first two hundred sampling periods and small pseudo random binary sequence
(PRBS) signals are added to both manipulated variables. This generates data to identify
initial models for both recursive least squares and PLS algorithms and thereafter the
models are updated at each sampling interval,

The performance of various adaptive controllers is evaluated by computing the
integral of squared errors (ISE) for both output variables and the integral of squared
change in the manipulated variables (ISVu). The results are given in Table 5.2. The plots
of the closed loop response for the three adaptive controllers are shown in Figure 5.1 and
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5.2. Figure 5.1 shows the response of the output variables whereas Figure 5.2 shows the

response of the manipulated variables.

Identification ISE ISE ISVy, ISVu,
Method Conversion | Temperature | Feed Flow Rate Cooling Water
(y1) (y2) (x107) Flow rate
(x107")
Locally Linearised 0.3662 68.85 0.2367 0.2103
Mechanistic
Model
Recursive Least 1.1950 116.37 0.3284 0.5586
Squares
Recursive PLS 0.3461 68.56 0.2956 0.5408

Table 5.2: CSTR adaptive control results

As expected the locally linearised model obtained from the true mechanistic
process model provides the best control performance. The recursive least squares
algorithm gives the worst performance. This is due to two reasons: (i) the input and the
output variables are autocorrelated and; (ii) both input variables are also cross-correlated

because they move together under feedback. The autocorrelation and cross-correlation

among various variables makes the (X"X) matrix very ill-conditioned and the recursive
1

least squares algorithm ‘blew’ up quite a few times during the simulation. Therefore, the
DMC designed with the step weights from the recursive least squares algorithm provided
poorer performance during these instances (seen as large spikes in the output variables).
During these ‘blow’ ups, the manipulated variables move stochastically. This breaks up
the correlation structure due to feedback in the data and the recursive least square
algorithm uses this data to retrain itself The recursive PLS algorithm provides good
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Figure 5.1: The closed loop response of the output variables under various adaptive
controllers.
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Figure 5.2 The closed loop response of the manipulated variables (Feed flow rate (m*/s)
and cooling water flow rate (kg/s)) under various adaptive controllers.
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control; however, it also experienced a few ‘blow’ ups. This is probably due to the fact
that there might be insufficient process information in the covariance matrices. In such
cases, the process needs to be excited by adding external dither signals to the manipulated
variables. The ISE quantities computed for the output variables are slightly better than
those of the locally linearised mechanistic model. However, this comes at the cost of
larger control moves as is evident by larger ISVu quantities compared to those of the
linearised mechanistic model. The reason for the larger control action is that PLS
sometimes underestimates the process gains. This leads to more aggressive controller.
The process gain underestimation is probably due to the fixed number of latent vectors
used to compute the PLS regression model during the entire simulation. The number of
latent vectors used for the regression model could be updated as well. This can be done

off-line by analysing the available process data.

5.3.2 Updating of a Prediction Model for an Industrial Mineral Flotation Circuit

The second process example selected to illustrate the potential of a multi-output
recursive PLS algorithm is a mining process located in New Brunswick, Canada. The
mine processes a very fine grained complex sulphide ore containing mainly marmatite,
galena and chalcopyrite and produces lead, copper, zinc and lead-zinc concentrates. Here
only the rougher-scavenger part of the flotation circuit for the copper and lead recovery is
considered, A schematic of the flotation circuit is given in Figure 6.1. Further details
pertaining to the process and multivariate analysis of the process data can be found in
Hodouin et al. (1993).

The process input and output variables are listed in Tables 5.3 and 5.4,
respectively. There are 13 process input variables and 10 output variables. The objective
is develop a recursive multivariate regression model to predict the future process output
variables. All ten output variables are modelled together using the two block PLS (PLS2).
Historical data for a period of 348 hours were used for recursive model building. Data
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VARIABLE NO.

X-VARIABLE

Fresh ore feed rate

Slurry percentage of solids in the GC product or the FC feed

% of particle finer than 37 um in the GC product

Pb content in FC feed

Cu content in FC feed

Pb flow rate in FC feed

Cu flow rate in FC feed

Soda ash flow rate to GC

O 00| I} Oh| | B W[ B3] =

pH in FC feed

—
o

air flow rate to RS

pa—)
—

Xanthate flow rate to RS

—
~

Xanthate per ton of Pb and Cu to FC

13

Promoter Flow rate/Xanthate Flow rate

Table 5.3: Rougher-Scavenger Input Variables.

Variable No. Y-Variable

1 RS tail flow rate

2 RS tail Pb content

3 RS tail Pb flow rate

4 Rougher concentrate Pb content
5 Rougher concentrate Cu content
6 RS concentrate flow rate

7 RS concentrate Pb content

8 RS concentrate Cu content

9 RS Pb recovery

10 RS Pb Floatability

Table 5.4: Rougher-Scavenger Output Variables.
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represents hourly averages. The data for four of the output variables are shown as solid
lines in Figure 5.3,

Initially, an ordinary PLS model was developed using the entire data set. Five
latent vectors, as determined by the cross-validation method, were found to explain about
56% of the overall sum of square of the output variables. Therefore, for the recursive
PLS algorithm, the regression model was computed at each sampling interval with five
latent vectors. The number of latent vectors to be computed during the recursive updating
can be determined by the cross validation technique by analysing the available data off-
line. Furthermore, this can be repeated regularly off-line to determine if the number of
PLS latent vectors computed to model the time-varying data also need to be updated.

In this example, the process data were scaled using the standard deviations
computed using the entire data set. The scaling factors can be updated by computing the
standard deviation of each variable from the available data occasionally off-line or they can
be updated at each sampling interval as discussed in section 5.2.2.2. The data were not
mean-centred as x, was augmented with a unity element to account for the constant term.

The regression models were computed using the recursive PLS algorithms with a
fixed forgetting factor of 1 (A, =I) and a variable forgetting factor and the recursive least
squares algorithm with a variable forgetting factor. For A, =1, no discounting of the old
data is done and the entire data up to time t are used to develop the regression model.
The variable forgetting factors were computed using the algorithm of Fortescue et al.
(1981). This algorithm is only applicable to univariate output. It was extended to
multivariate outputs by taking the weighted average of the prediction errors for all output
variables and then using this weighted average error in the algorithm. The measurement
noise variances, o2, of all the output variables were taken to be same for both recursive
PLS and least squares algorithms. The asymptotic memory lengths were 20 and 48 for the
recursive PLS and least squares algorithms, respectively. They are optimal values for each
method to provide the best one step ahead predictions. The forgetting factor for the
recursive PLS algorithm was computed using Equation (5. 24) with 5 latent vectors. A
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lower bound of 0.85 was placed on the forgetting factor for both recursive PLS and
recursive least squares algorithms.

The initial models were computed with 15 data points, Then, a new data vector,
X., was taken and the covariance matrices were updated as in Equations (5. 1) and (5. 2)
and a new PLS regression model was recomputed. The recursive least squares estimates
were computed by updating M, rather than L. as discussed in section 5.2.1. The
performance of the various recursive algorithms was evaluated based on one step ahead
predictions. The percent sum of squares (% SS) explained of each variable was computed

using the following equation:

e .\
Z(Yi,: ‘Yi.s) (5.37)
% SS Explained =|1-*6—n0u———{x100

p 2 ]
>yl

t=16

The variable y;, is the measured i® output variable at time t and ¥..is the prediction of i*

output at time t (i.e,, ¥, =x,b,_ ). The results for the prediction ability of each recursive

algorithm are given in Table 5.5. The recursive PLS with a variable forgetting factor
provides the highest % SS explained for all output variables. The recursive PLS with a
fixed A, =1 gives the worst results. This means that the process is truly time-varying. The
results for the recursive least squares algorithm are computed with and without the
residuals for 170® observation. The process variables are seen to change abruptly at the
170® observation (see Figure 5.3) and recursive least squares provides very poor
predictions at this instance. This leads to either very low or negative % SS explained
quantities for the recursive least squares. The adjusted % SS explained (with the errors
for the 170® observation set to zero) by the recursive least squares algorithm is better than
the recursive PLS with a constant forgetting factor of 1 but as not as good as the recursive
PLS with a variable forgetting factor. This is due to the fact that the process input
variables are highly correlated and, furthermore, a shorter data window is used to

construct (X"X), . This makes the (X"X)_quite ill-conditioned.
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% Sum of Squared Explained
Variable | Recursive PLS Recursive PLS Recursive OLS | Recursive OLS
No. with Adaptive A, | with a Fixed with Adaptive | with Adaptive
A,=1 A, A, (Adjusted)'
Y1 73.3 51.6 57.8 74.2
Y2 78.8 49.8 74.7 76.3
Y3 80.7 48.0 782 78.3
Y4 348 240 -72.0 14.8
YS 38.1 233 -901.7 259
Y6 57.3 16.7 11.2 45.6
Y7 21.7 49 -47.1 9.1
Y8 90.3 773 89.9 90.0
Y9 84.1 57.7 81.5 81.8
Y10 722 346 48.3 61.9
average 63.1 38.8 - 55.8

Table 5.5: % sum of squares explained of the output variables by various recursive
algorithms.

The predictions of the recursive algorithms are shown in Figure 53. The
predictions are shown only for four of the output variables. The data have been scaled.
The solid line represents the true process data. The dashed, dashdot and the dotted lines
represent the predictions for recursive PLS with a variable forgetting factor, recursive PLS
with a fixed A, =1 and the recursive least squares algorithm with a varisble forgetting
factor, respectively. "

As is evident from the plots, the recursive PLS algorithm with a variable forgetting
factor provides the best predictions. The recursive PLS algorithm with a fixed A, =1 is

! Sum of squares explained for the adjusted recursive OLS algorithm is computed with the residuals for
the 170® object set to 0.
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very slow to adapt. For some shorter period lengths, it does not adapt at all and provides
the worst results. This is due to the fact that old data is not being discounted and all the
data (new and old) are weighted equally. The recursive least squares algorithm provides

good predictions most of the times however it is seen to ‘blow up’, as evident by the large

spikes on the plots, at certain instances. This is due to fact that the (XTX)‘ becomes

extremely ill-conditioned and susceptible to numerical and computational difficulties.
54  Conclusions

In this chapter, an algorithm for updating PLS models in a recursive manner with
exponential discounting of past data is presented. This algorithm is developed by
combining the improved and faster kernel algorithm #2 from chapter 4 with the recursive

updating of the covariance matrices (XTX) and (XTY) . A technique for determining
t L

the updated variances of process variables for autoscaling purposes is also presented. The
potential of the this newly developed recursive PLS algorithm is illustrated with two
examples: (i) an adaptive control application to a simulated multivariable continuous
stirred tank reactor; and (ii) updating of a multi-output prediction model for an industrial
mineral flotation circuit. The performance of the recursive PLS algorithm was much
better than that of the recursive least squares algorithm.

One advantage of the recursive PLS algorithm is that it does not suffer from the
problems associated with correlated process variables and a shorter data window as
illustrated in the industrial mineral flotation circuit example.. Furthermore, during adaptive
control, it provided satisfactory control when the recursive least squares algorithm

experienced difficulties (i.e., blew up) due to ill-conditioned (XTX)‘ .
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Nomenclature

heat Transfer area, m*

concentration of species A, kg/m’

initial concentration of species A in inlet stream, kg/m’
concentration of species B, kg/m’
specific heat capacity of species A and B, J/kg.K
specific heat capacity of water, J/kg.K
activation energy, ¥/mol '

inlet feed flow rate, m’/s

outlet flow rate, m’/s

heat of reaction, J/kg

Arrhenius rate constant, s

cooling water flow rate, kg/s

gas law constant, J/mol.K

time, s

reactor temperature, K

exit cooling jacket temperature, K
temperature of the inlet stream, K
entering cooling water temperature, K
overall heat transfer coefficient, W/m>K
volume of CSTR, m®

volume of the cooling jacket, m’

density of species, kg/m’

density of water, kg/m’



6. Multivariate Design of Experiments in Latent Variables
6.1 Introduction

It has always been desirable for both economical and environmental reasons to
operate any process at its optimal conditions to produce the best product quality or to
maximise productioh (e.g., maximum yield in a chemical reaction, etc.). The best
approach to arrive at optimal conditions would be to develop a mechanistic model for the
process from fundamental laws of mass and energy conservation, etc. However, these
models are very tedious and time-consuming to develop (i.e., involving sometimes
thousands of equations) and, for certain processes, it is practically impossible to develop
such models due to lack of theoretical understanding. This has led to experimental
techniques such as evolutionary operation (EVOP) (Box, 1957 and Box and Draper,
1969) and response surface methodology (RSM) (Box and Wilson, 1951) where the
process is optimised experimentally by varying the manipulative process variables in a
sequence of designed experiments.

In industry, there have been many successful applications of EVOP (Hunter and
Kittrell, 1966) and RSM (Hill and Hunter, 1964) for the optimisation of processes. The
disadvantage of these techniques is that they can handle only a small number of variables
(usually 2 to 7) at a time. Two or three variables are usually varied using a factorial
design and the process is moved in the steepest ascent/descent direction for optimisation.
One runs into problems with these techniques when faced with processes with hundreds of
potential manipulative variables. The design of experiments also becomes difficult due to
interaction or dependencies among process variables due to physical relationships or
operating constraints. A typical example of this would be a temperature profile in a
chemical reactor. The temperatures can not be controlled independently but will move in
the same direction due to a physical relationship. Furthermore, since most plants are
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operated by human operators who can only think in two or three dimensions, then, during
control, the process manipulated variables are only moved in very few dimensions (i.e.,
some of the variables are moved proportionally to others). Problems arising from
dependencies or correlations among process variables can be treated well with partial least
squares (PLS) regression. In this chapter, the objective is to develop a design
methodology similar to RSM/EVOP for use in high dimensional systems. A variation of
the PLS algorithm will be used as a tool to select meaningfutl groupings of variables (latent
variables) so that the process designed experiments can be performed in these few
groupings of variables rather than in a large number of individual manipulative variables.
Therefore, the approach is to use the PLS regression method to analyse the historical plant
data in order to find the important variables or groupings of variables (in the latent
variables). Then the designed experiments can be performed in these few latent variables
rather than in the original individual manipulative variables.

PLS will model the covariance structure which exists among the process
manipulative variables and the output variables in the plant during the data collection
process. Since the initial data are collected under the normal operating conditions, this
method will find the linear combinations of the manipulated variables which have been
moved together during normal operations either due to interaction/dependencies among
process variables from physical relationships, operating constraints or operation policies;
and which are correlated with the process output variables. Therefore, the first stage of
experimental design in latent variables would be to start with reduced dimensions obtained
from the historical data analysis. The experiments designed in this reduced space will be
consistent with the past operation of the plant and will select variable groupings already
seen to be correlated with the outputs. It may be easier to convince the operators to carry
out the experimental design in these latent variables which are consistent with the past
operation of the plant. In some cases, a process variable might not have been moved at all
and thus would not show up in the analysis of the historical plant data. Therefore, process
knowledge from a process engineer or a plant operator, where available, can be utilised to
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incorporate other variables into experimental design or to break up certain combinations
of process variables appearing in the original latent variables.

In ordinary PLS, the latent variables are a linear combination of all process
variables which have been included in the X space (i.e., manipulative variables and non-
manipulative variables such as disturbance and intermediate variables) and do not have any
physical interpretation or meaning. Therefore, the design experiments can not be
performed in this reduced space. However, if the latent vectors are selected in such a way
that they are linear combinations of only certain similar process variables, then the latent
variables can be given some kind of physical interpretation or meaning. This is referred to
as the selective PLS. One example of selective PLS would be a latent variable being a
linear combination of alike manipulated variables (i.e., solution flows). Now the EVOP or
RSM designed experiments can be performed in this reduced space.

The ideas outlined in this chapter are in their preliminary development stage. A
project was undertaken at the Eastman Kodak Company to investigate the ideas discussed
in the succeeding sections. The data from a photographic paper coating machine was
analysed and a set of factorial experimental designs, with input from the process engineer,
was proposed. Due to certain circumstances, the experiments could not be carried out.

Several of these preliminary ideas on selective PLS and design of experiments have
been outlined in Kettaneh-Wold et al., 1993,

6.2  Literature Review

There has been very little work relating to experimental design in latent variables
reported in the literature. Wold et al. (1986) described the use of experimental design in
latent variables. Their work relates to changing the position of an amino acid in  peptide
compound. However, changing the position of the amino acid influences many physical
and chemical properties of the peptide. These properties have been adequately explained
by three latent variables and these latent variables are used as design variables.
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6.3 Selective PLS

Two types of selective PLS algorithms are investigated as means of providing
reduced subsets of variables for experimental designs.

1. Non-exclusive selective PLS - Process variables may appear in more than one
latent variable. In this case, the columns of the loading matrix W may or may not
be orthogonal.

2. Exclusive selective PLS - Process variables appear only in one of the latent
variables. In this case, the columns of the loading matrix W wilt be orthogonal.
This is due to the fact that process variables are included only in one of the latent
vectors and their loadings will be zero in other latent vectors.

Both exclusive and non-exclusive algorithms retain the remaining PLS properties (2, 3

and 4) outlined in section 2.3.3 of chapter 2. This is because of the way residual matrices

for X and Y are computed.

Frank (1987) has also presented an intermediate least squares (ILS) regression
method by combining PLS and stepwise regression. The procedure for ILS consists of
computing an ordinary PLS latent vector and then retaining the input with the largest
absolute loading in the latent vector.

The algorithms for both exclusive and non-exclusive selective PLS are given in the

appendix at the end of this chapter.

6.3.1 Procedure for Selective PLS

The procedure for selective PLS is as follows. Information regarding which
variables to include in selective PLS can come either from the process experts (i.e.,
process engineers or operators) or from the careful analysis of the historical data collected
from the process. It is always advantageous and desirable to analyse historical plant data
to gain better understanding of the underlying process. Analysis of the historical data
provides us with information regarding plant operations. Therefore, first of all, ordinary
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PLS analysis is performed on the historical plant data using cross-validation techniques.
This will provide vs with the number of statistically significant latent vectors in the
regression model and the percentage of sum of squares ( % SS) explained of the output
space, Y-block. The % SS explained by ordinary PLS will be used as a bench-mark for
the comparison of the data analysis using selective PLS techniques. This will indicate if
the important variables chosen in selective PLS are able to explain almost the same
amount of SS as the ordinary PLS. This will verify the importance of those variables and

ensure that no major groupings of variables have been rejected.

6.3.1.1 Non-Exclusive PLS

Once the ordinary PLS analysis has been carried out, then the selective PLS
algorithms are started. First, the non-exclusive algorithm is used. The purpose of the
non-exclusive selective PLS is to find a smalter number of variables which help to explain
approximately the same amount of SS as the ordinary PLS with all variables. In other
words, non-exclusive PLS is being used to prune the inputs. No distinction is made
among the types of the variables to be included in the latent variables, that is the
disturbance, intermediate and the manipulated variables can be incorporated in the same
latent variable. The selection of the variables to be included in the non-exclusive selective
PLS latent variable is based on the magnitude of their X-weights or w from the ordinary
PLS analysis. The magnitude of the X-weights indicates the contribution of each variable
in X-block toward defining a latent variable. Ordinary PLS analysis is performed on X
and Y blocks to compute one latent vector. Inputs having weights above a certain cut-off’
or threshold in the first latent vector of ordinary PLS are included in the selective PLS
latent vector. The value for cut-off can be selected using various approaches: (i) the
process knowledge of the user; (ii) trial and error (try many arbitrary levels for cut-off

until satisfied); (iii) the Pareto principle (cut-off =1/YK , where K is the number of X-

variables); and (iv) cross-validation (Lindgren et al. ,1994). Once the value for cut-off has
been decided, then the weights for the variables with ordinary PLS weights less then the
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cut-off are set to zero and the weights for the variables with the ordinary PLS loadings
greater than the cut-off are maintained. Then w is normalised to unity and the remaining
vectors such as t, p, q ,u and the residual matrices for X and Y are computed in a same
manner as in ordinary PLS. The X-loadings, p, versus X-weights, w, plot can be analysed
to determine the correlations among X-block variables. The p vector contains the
coefficients resulting from the regression of t on X. Therefore, the variables with large p-
loadings will have high correlations to variables selected in the selective PLS latent vector.
The same information can also be obtained by looking at the plot of % SS explained of X-
block by each latent vector. High % SS explained of X-block variables which had not
been selected indicates that these variables are highly correlated to some of the selected
variables. However, when the residual matrices are computed for selective PLS, the
correlated information content will also be subtracted from the nonselected variables.

Once the residual matrices for X and Y have been computed, the procedure
described above is repeated to compute up to the desired number of selective latent
vectors. One can either select the same number of latent vectors as in ordinary PLS
analysis of the data or continue seiecting latent vectors until the % SS explained by this
selective PLS is same as that by the ordinary PLS. The non-exclusive selective PLS
procedure can always be repeated many times with different values of cut-off until one has
a minimal number of inputs which can explain nearly the same % SS as the ordinary PLS
with all inputs,

6.3.1.2 Exclusive PLS

Once the importance of the variables from the non-e#clusive PLS has been
determined, the exclusive selective PLS procedure is started. In :exclusive selective PLS,
variables appear in only one of the latent vectors. If the intermediate or disturbance
variables are found to have large X-weights, they can be selected in the exclusive selective
PLS but are grouped separately from the man_ipulative variables. This is due to fact that
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these variables can not be manipulated directly. The designed experiments are then
performed on the latent variables from the exclusive PLS.

In the exclusive selective PLS, two ordinary PLS latent vectors of X and Y blocks
are computed. The X-weights for both latent vectors are plotted against each other to
find clusters or groups of variables. If some inputs are clustered together in a region, then
these variables are highly correlated and it would be better to include them in the same
latent variable. The variables or group of variables with large weights are selected in a
latent vector. The exclusive selective PLS X-weights can then be computed using only
these selected variables in X-block. The weights for the remaining variables are set to
zero. Then the remaining vectors such as t, p, q and u are computed in a same manner as
the ordinary PLS. The p-loadings versus the w-loadings plot can also be analysed to see if
other variables have correlations to selected variables. If some variables are shown to
have strong correlation (large p-loadings), then the exclusive selective PLS analysis can be
repeated with these variables included in selective PLS X-block. Other plots such as %
SS explained of Y-block can be examined to see the effect of these selected variables on
the output space. |

For the computation of w for the next selective PLS latent vector, inputs selected
in previous latent vectors are set to zero. Since these inputs are not to reappear in any of
the subsequent latent vector X-weights, their influence on the computation of the -
subsequent ordinary PLS latent vectors is neutralised by zeroing these inputs. This is due
to the fact that weights from the ofdina.ry PLS will be analysed to determine the next
group of important variables to be included in the next selective latent vector. However,
when p-loadings, residual matrices and % SS explained of X-block are calculated, the

values for these inputs are brought back in.
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6.4  Design of Experiments in Latent Variables

Once the selective PLS analysis is complete, then the design experiments can be
performed in the latent variables consisting only of manipulative variables. Depending on
the number of exclusive selective PLS latent variables, a full or fractional factorial design
can be selected. Designing experiments in latent variables can give us a lot of degrees of
freedom. For instance, to have a latent variable at its upper and lower levels of
experimental design, the inputs, which form that latent variable, can be moved in many
directions to attain the upper and lower levels. However, this will require the break-up of
the existing correlation structure among manipulative variables. On the other hand, the
existing correlation structure can be retained during the experimental design to arrive at
the best conditions possible with this correlation structure. The amount of variation in the
manipulative variables can be computed using the relationship,

X=TP" 6.1)
When no further improvement in the process is possible by designing experiments in these
latent variables, the correlation structure among variables may then be broken to achieve
extra improvement. If the correlation structure is broken in the early stages of
experimental design, there will be more independent manipulated process variables.
Therefore, the number of latent variables computed from the experimental design data will
increase, __

Process knowledge will be required to determine the maximum allowable variation
in each manipulated variable without affecting the plant operation. Inputs having little
variations in the data set but which are considered important can also be included in the
design experiments. However, this should all be based on the process knowledge of the
experts.

Once the first set of designed experiment has been conducted, the new data is
analysed and the process is moved in the steepest ascent/descent for optimisation. This
procedure is carried out as long as there is continuous improvement in the process.
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For this methodology, only steady state processes are considered where the
product quality sampling interval is larger than the time constant of the process. Even if
there is feedback control, it is hoped that the process would have retumed to steady state
before the next product quality measurements are taken.

Selective PLS algorithms have been applied to analyse the historical data sets from
two industrial processes: the Noranda mineral flotation circuit and the Eastman Kodak
photographic paper coating process. The results for the mineral flotation circuit are

provided here.
6.5  Industrial Mineral Flotation Circuit Example

The process selected to illustrate the potential of selective PLS is a mining process
located in New Brunswick, Canada. The mine processes a very fine grained complex
sulphide ore containing mainly marmatite, galena and chalcopyrite and produces lead,
copper, zinc and lead-zinc concentrates. Here only the flotation circuit for the copper and
lead recovery is considered. The flotation circuit consists of ar aerator for particle
conditioning, rougher and scavenger, two cleaning stages and a regrinding circuit. The
schematic of the flotation circuit is shown in Figure 6.1. Further details can be found in
Hodouin et al. (1993).

The process input and output variables are listed in Tables 6.1 and 6.2,
respectively. The manipulated and disturbance variables in Table 6.1 are marked
accordingly. Most of the variables are measured whereas some of the variables such as
metal flow rates are computed from mass balances. Of the seven output variables, only
the concentrate flow rate and the Pb and Cu grades are measured and the remaining
variables are computed from mass balances. Historical data for a period of 308 hours
were analysed. Data represents hourly averages.

The objective of the flotation circuit is to maximise the metal grades and

recoveries. However, the grade and the recovery has an inverse relationship as shown in
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NUMBER VARIABLE Type of Variable
1 Fresh ore feed rate Manipulated
2 Pb content in feed Disturbance
3 Pb flowrate in feed Disturbance
4 Cu content in feed Disturbance
5 Cu flowrate in feed Disturbance
6 Zn contenta feed Disturbance
7 Zn flowrate in feed Disturbance
8 % fines particles Manipulated
9 Soda ash flowrate in grinding Manipulated
10 pH of feed Intermediate
11 pH to RS circuit Manipulated
12 pH to cleaner 1 Manipulated
13 Xanthaie flow to RS Manipulated
14 Xanthate to cleaner Manipulated
15 Xanthate per ton of Pb & Cu to FC1 Manipulated
16 Xanthate per ton of Pb & Cu to FC2 Manipulated
17 Promoter flow per xanthate flow Manipulated
18 Air flow to aerator Manipulated
19 Air flow to cleaner ! Manipulated
20 Air flow to cleaner 2 Manipulated
21 % solids in feed Manipulated
22 Xanthate residual Manipulated
23 Xanthate residual per feed rate Manipulated

Table 6.1: Mining process input variables
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NUMBER VARIABLE

1. Concentrate flowrate
2. Concentrate Pb grade
3. Concentrate Pb flow
4, Pb recovery

5. Concentrate Cu grade
6. Concentrate Cu flow
7. Cu recovery

Table 6.2: Mining process output variables

Figure 6.2. Therefore, one is interested in operating the mine as close to the theoretical
upper bound of the grade-recovery relationship as possible. There are several variables
that can be manipulated to the optimise the process. Most of the manipulated process
variables such as the ore feed rate (variable #1) and the xanthate flow variables (variaﬁles
12-17) can be manipulated directly whereas some variables can be controlled indirectly by
manipulating other variables in the grinding circuit.

First of all, an ordinary PLS analysis was carried out on the data set. This reveals
if there is any information in the X-variables relating to the process output variables. The
results are provided in Table 6.3. Five PLS components, as determined by cross-
validation, were required to explain most of the variation in Y-block. Metal grades and
flow rates are well explained whereas the metal recovery variables are explained around
approximately 65%.

Now, a non-exclusive selective PLS variation is applied to the data set. The
objective of the non-exclusive selective PLS is to find smaller number of variables which
can explain the same amount of sum of squares of the output variables as the ordinary PLS
with all variables. The cut-off value, selected based on heuristics, for the PLS weights for
all selective latent vectors was 0.25. The results of the first non-exclusive selective PLS
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% Sum of Squares (SS) Explained
Component Y, Y, Y; Y. Y, Y Y,
Number
1 47.6 92 433 142 72.6 43.6 19.0
2 72.9 12.2 86.0 38.9 72.8 64.3 547
3 88.6 89.8 86.3 546 72.8 72.0 58.9
4 88.6 91.2 86.4 60.8 84.9 90.4 60.1
5 91.2 95.8 873 60.6 87.7 90.8 65.7

Table 6.3; Ordinary PLS results

latent vector are shown in Figure 6.3. The X-weights for all variables from the first
ordinary PLS latent vector along with the cut-off value shown as the dashed line are
displayed in Figure 6.32. Most of the disturbance variables (i.e., metal contents and flow
rates, variables #2 to #7 with the exception of variable #6) and the Xanthate flow
(variable #13) to rougher and scavenger section of the flotation circuit are seen to have
large loadings. The reason for the Xanthate ffow variable having large loading along with
the metal content and flow rate variables is that the Xanthate flow to rougher and
scavenger is probably manipulated relative to the metal contents to achieve higher
recovery. By examining the X-weights (w;) versus p-loadings (p;) plot, variable #6 (Zn
content in the feed) is seen to have a large correlation (i.e., large p-loading) to other metal
content variables. However, due to larger cut-off value, this variable was not chosen in the
selective PLS latent vector but this analysis can always be repeated with slightly lower cut-
off value to include variable #6 in the selective PLS latent vector. The % SS explained of
Y-block by this selective PLS latent vector is shown in Figure 6.3d. This selective latent
vector basically concentrates on explaining the metal flow rates in the Y-block. The
variables selected in subsequent selective Iatent vectors are shown in Figure 6.4. Some of
the variables (i.e., metal contents and flow rates) are seen to appear in more than one
latent vector. Note that variables can appear in more than one latent vector in this non-
exclusive version of the selective PLS algorithm. The first few selected PLS latent vectors
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are dominated by the metal content and flow rate variables, however, as their influence is

removed by computing the residual matrices, other variables are seen to have larger

loadings in the last three latent vectors. Some of manipulated variables which are seen to

have stronger influence on the output variables are the air flow rates to cleaner 1 (#19)
and cleaner 2 (#20) and Xanthate variables (#22-23).
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Figure 6.4: Loading plots for dimensions two through five of non-exclusive selective PLS.

Altogether, the non-exclusive PLS algorithm selected 18 of the 23 process
variables. The % SS explained of the Y-block by ordinary and non-exclusive selective
PLS algorithms is shown in Figure 6.5. The solid line represents the % SS explained by
the non-exclusive PLS and the dashed line represents the % SS explained by ordinary
PLS. Asis evident, the non-exclusive PLS version provides slightly improved fit for four
of the output variables and slightly worse for three of them.
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Figure 6.5: Percentage sum of squares explained of Y-block after five dimensions.
Legends: solid line; non-exclusive PLS; dashed line: ordinary PLS.

After performing the non-exclusive PLS analysis, the next step is to use the
available process knowledge to interpret the non-exclusive PLS results. At this stage, one
needs to consult with a process engineer or an operator and ask the following questions:
@) Why are the variables selected by non-exclusive PLS important?

(ii)  Why are the variables grouped together?

(iti)  Is it due to real process dependencies or due only to the mode of operation?

(iv)  Which variables should be grouped together?

The understanding gained from the careful analysis of the non-exclusive PLS results is
essential for selection of exclusive PLS latent vectors. In exclusive PLS, the objective is
to separate the dominant process variables into logical groupings that can be used for
subsequent designed experiments for process optimisation. This stage should be
performed along with the input from a process engineer or an operator. Several exclusive
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PLS models can built, refining the decisions on the groupings, until a consensus has been
established among the process experts.

Figure 6.6 shows the X-weights for all variables for the exclusive selective PLS
analysis. Since the metal contents and flow rates in the feed were seen to have large effect
on the output variables but can not be manipulated physically, therefore, these variables
(#2-#7) were grouped together in the first latent vector of the exclusive version of the
selective PLS algorithm. Variables #22 and #23 were found to have large loadings in the
ordinary PLS analysis of the residual matrices after the first latent vector effect has been
removed from X and Y-blocks. Variables # 22 and #23 are the Xanthate residual and
Xanthate residual per feed rate. Xanthate residual is the excess Xanthate added to the
flotation circuit over that required based on the metal flow rates. This helps to explain the
metal grades in the outlet flow. In the third latent vector, the air flow rates to cleaner 1
and cleaner 2 (variables #19 and #20) are chosen. Due to the mode of operation, these
two variables have always been moved together. This is evident from the fact that these
two variables always appear in 2 group when analysing the ordinary PLS X-loadings plot
of two different latent vectors against each other. The Xanthate flows to cleaner and
flotation circuit 2 (variables #14 and #16) are selected in fourth latent vector whereas, in
the fifth latent vector, fresh ore feed rate is picked.

The % SS explained of Y-block by ordinary and exclusive selective version of the
PLS algorithms is shown in Figure 6.7. The exclusive selective PLS results are
comparable to the ordinary PLS for almost all outputs with the exceptions of copper flow
rate and recovery. However, the objective here is not to get a good fit for the model but
to be able to find possible groupings of variables which were manipulated together due to
operating procedures or physical dependencies.
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Now that the groupings of alike variables have been selected, the design
experiments can be conducted in these latent vectors. Based on the historical data
analysis, there are four groupings in which the experiments can be performed:

1, Variables #22 and #23. Only one variable needs to be changed and the second
variable is just the result of that change.

2, Variables #19 and #20. These variables have been increased or decreased
together. It would be of interest to know their effect when these variables are
decoupled.

3. Variables #14 and #16.

4, Variable #1(fresh ore feed rate).

Some of the variables such as promoter flow per Xanthate flow is found to have negligible

effect on the outputs. However, as discussed earlier, the reason might be that this variable

has not been varied enough during the process operations. If considered important, this
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variable can also be included as a grouping of its own in the designed experiments. Either
a complete factorial or fractional factorial experimental design can be carried out to

investigate the effects of these groupings of variables on the output variables.
6.6 Conclusions and Future Work

As discussed earlier, evolutionary operation (EVOP) and response surface
methodology (RSM) methods have been successfully applied in many instances. In this
chapter, an extension of the concepts of EVOP and RSM to large multivariable systems is
being proposed. A variation of the PLS algorithm, called selective PLS, can be used as a
tool to obtain meaningful groupings of variables in which the EVOP/RSM experiments
can be performed. It is a new methodology which could be used to select orthogonal
variables consisting of linear combinations of alike manipulated variables by analysing the
historical plant data. Since most of the process variables are moved in very few
directions, therefore, selective PLS could be applied to find these underlying directions.
Furthermore, a sequential design methodology in these groupings of variables is proposed.

The mineral flotation circuit data were only analysed to illustrate the potential and
usefulness of the selective PLS to find latent variables in which the design experiments
could be performed. Further work needs to be carried out to explore and investigate the
potential of performing EVOP/RSM in these few latent variables for optimisation of
chemical processes. ‘

The basié ideas outlined in this chapter were to be tested on a real plant at the
Eastman Kodak Company. The plant historical data were collected and analysed with the
help of the process'engineer to find groupings of variables for the process experimental
design. Furthermore, a set of factorial designs was proposed. Unfortunately, the
proposed experiments could not be carried out due to circumstances beyond everyone’s
control.
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The usefulness of this new methodology can not be easily investigated on a process
simulation. The difficulty with process simulation is one's inability to realistically simulate

the plant under normal operating conditions.
6.7 Appendix

6.7.1 Non-Exclusive Selective PLS Algorithm

For each component, a=1,...,A

(a) 1. Compute an ordinary PLS latent vector using either the NIPALS algorithm
or the kernel algorithm.

w, < (XIY,Y'X,)w,
2. plot Wa.
b L Select X-variables with

w',‘[ > cut-off. [ k is the index for the X-variables].

if lw',‘l < cut-off, [w¥|=0.
2, Normalise w, and compute t, and p, and q,.
wl
W, =t
JWIw,)
t=X.w,
_X.t,
T,
_xt
ql . t:‘t.

3. Deflate X and Y.
X=X, ~tp]
Y, =Y. -t q

(c)  Goto step (a) to compute the next latent vector.
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6.7.2 Exclusive Selective PLS Algorithm

For each component, a=1,.. A

(a) 1, Compute two ordinary PLS latent vectors of X, and Y, using either the
NIPALS algorithm or the kernel algorithm,

()  Xew=X, and Yyo;=Y,.
W™ & (XD, Vi Yoo X g JWE™
(i)  Compute the remaining loading vectors and then deflate Xicowp and
Yicmp. |
G W™ o (X Vi Yo X JW5™
2, plot w;™ and w;™. Look for clusters or groupings of variables.
® 1 Select X-variables. The X-variables can be selected by examining the
W™ versus w;™ plot or from process knowledge.
2, Compute w, based on the selected variables and compute t, and p, and q,.
w, x (xzmqu.Y.T xa.lelaclad)wa
t=X.w,
Xt
4

Y.t
4, Deflate X and Y.
X=X, -tp,
Yo=Y, -tq
5. Zero out the columns for the variables which are selected in step (1).
(c)  Goto step (a) to compute the next latent vector.



7. Summary and Conclusions

In this thesis, various multivariate statistical regression methods were investigated
for estimating process models from the process input-output data. These identified
models were to be used for designing model based controllers and experimental
optimisation of multivariate processes. The major conclusions and the main contributions
of this thesis are outlined in this chapter.

In chapter 2 of this thesis, various approaches to identifying non-parsimonious
finite impulse response (FIR) models were compared on the basis of closeness of fit to the
true process, robust stability provided by the resulting model, and the control performance
obtained. The non-parsimonious FIR models can be estimated directly from the process
input-output data using various regression methods such as ordinary least squares,
regularised least squares and partial least squares. Alternatively, a low order parsimonious
rational transfer function model can be fitted to the process input-output data by
prediction error methods and then the FIR weights can be obtained from it.

Directly identifying FIR models have certain advantages such as that no structural
decisions need to be made and that they can mode! any complex linear system. However,
as was shown in chapter 2, along with these advantages come substantial disadvantages
such as poor robustness and performance of the resulting controllers designed using the
directly identified FIR. models. The major conclusion by all assessments is that obtaining
FIR models by first identifying low order transfer function models by prediction error
methods was much superior to any of the methods which directly identified the FIR
models. This is due to the fact that the parsimonious nature of the model leads to less
overfitting of the data and induces, through its structure, a smooth behaviour on the FIR
weights obtained from the estimated models. In particular, the latter feature leads to
controllers which are more robust in terms of performance stability. Although, it is
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recognised that more effort is generally involved in identifying the structure of
parsimonious transfer function models, is generally involved in identifying the structure of
parsimonious transfer function models, it is recommended that this be done whenever the
structure of the process is mxpected to be reasonably simple.

If it is desired to fit the non-parsimonious FIR models directly, then one should try
to incorporate the available prior process knowledge into a regression method’s objective
function, if possible, to improve its estimates. The regularised least squares method where
the changes in the impulse weights were penalised by an increased weighting over lags
provided uniformly superior performance compared to other regression methods such as
ordinary least squares and partial least squares by all ussessment methods. The PLS
regression method provided excellent predictions but poor robust stability and control
performance. The number of latent vectors in the PLS mode! were selected by validation
against a data set. This criterion is only based on obtaining good predictions of the output
space which depends largely on identifying the dominant directions in the data. Therefore,
a substantially larger number of latent vectors than that suggested by the cross-validation
or validation against a test data set are required to provide satisfactory results.

In chapter 3, the potential of multi-output identification for multivariate processes
was investigated via simulations on two process examples: a quality control example and
an extractive distillation column. If there are common or correlated parameters among
models for different output variables and/or correlated noise, then modelling of all the
outputs together could lead to better and more robust models. The identification of both
the parsimonious transfer function models using multivariate prediction error methods,
and of non-parsimonious FIR models using multivariate statistical regression methods
such as two-block partial least squares (PLS2), canonical correlation regression (CCR)
and reduced rank regression (RRR) were considered. The multi-output identification
results were compared to traditional single-output identification from several points of
view: (i) best predictions; (it) closeness of the model to the true process; (iii) the precision
of the identified models in frequency domain; (iv) stability robustness of the resulting
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model based control system; and (v) the multivariable control performance. The multi-
output identification methods provided better results compared to those of the single-
output identification methods based on essentially all comparison criteria. The benefits for
using multi-output identification are most obvious when there are limited amounts of data
and when the secondary variables have better signal to noise ratios. The differences
between multi-output identification and single-output identification methods disappear
with larger data sets and better signal to noise ratios for all process variables.
Furthermore, slightly inadequate model structures resulting from the constraints of the
common parameterisation among the output transfer function models led to some bias in
the models identified by multi-output prediction error methods.

In chapter 4, an improvement to the PLS algorithm was made. In PLS, generally
both the X and Y matrices are deflated after each latent vector computation. It was
shown that only one of either the X or the ¥ matrix needs to be deflated during the
sequential process of computing latent vectors, This result then led to two very fast PLS
kernel algorithms. In the first algorithm, the covariance matrix, X" X, is not computed
and X is used directly in the computations for the loading vectors. This kernel algorithm
is advantageous in a situation where the construction of X'X is the major rate
determining step in terms of the computational effort. In the second algorithm, _the
covariance matrix X*X is computed once and then used subsequently in the loading
vectors computations. This new algorithm can be used in situations where there are more
observations than the number of X-variables. In such a situation, it is convenient to
compute X"X once. The performance of these new algorithms were compared to that of
De Jong and Ter Braak's modified kernel algorithm in terms of the speed and the new
algorithms were shown to be much faster. These algorithms required as little as one-fifth
of the flops (floating points operations) of the De Jong and Ter Braak algorithm.
Furthermore, each of these algorithms was shown to have certain advantages when
performing cross-validation and treating missing data.
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In chapter 5, a new and fast recursive, exponentially weighted PLS algorithm
wiich provided greatly improved parameter estimates in most process situations was
presented. This new recursive algorithm for updating of the PLS regression model was

developed by combining the improved PLS kernel algorithm developed in chapter 4 with

the recursive updating of the covariance matrices (X"X) and (X"Y) . A technique for
p , . q

updating the standard deviation of each process variable at each sampling period for
autoscaling of the data was also presented. The recursive PLS algorithm was then applied
to adaptive control of a simulated 2 by 2 multivariable continuous stirred tank reactor
(CSTR) and updating of a multi-output prediction model for an industrial mineral flotation
circvit. The recursive PLS algorithm provided much better performance than the
recursive least squares algorithm. The main advantage of the recursive PLS algorithm is
that it did not suffer from the problems associated with correlated variables and short data
windows. During the adaptive control simulations of the multivariable CSTR, it provided

satisfactory control when the recursive least squares algorithm ‘blew’ up a few times due

to the ill-conditioned covariance matrix (XTX)‘. For the industrial soft sensor

application, the new algorithm provided much improved estimates of all ten response
variables whereas the recursive least squares algorithm provided very poor estimates at
certain instances,

In chapter 6, a design methodology similar to the evolutionary operation (EVOP)
and the response surface methodology (RSM) for optimisation of high dimensional system
was proposed. Two variations of the PLS algorithm, called non-exclusive and exclusive

.selective PLS, were developed. They can be used as a tool to obtain meaningful
groupings of the process variables in which the EVOP/RSM experiments can be
performed. It is a new methodology which can be used to select orthogonal variables
consisting of linear combinations of alike manipulated variables by analysing the historical
pi.!rit data. During normal plant operations, most of the process variables are moved in
very few directions and the selective PLS could be applied to find these underlying
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directions. The experiments designed in this reduced space will be consistent with the past
operation of the plant and the selective PL.S will select variable groupings already seen to
be correlated with the process outputs. The minerat flotation circuit #ata were analysed to
illustrate the potential and usefulness of the selective PLS to find latent variables in which
the experiments could be performed.

The basic ideas of multivariate design of experiments in latent variables outlined in
chapter 6 were to be illustrated using historical data from an industrial photographic paper
coating machine. With the help from the process engineers, groupings of variables for the
process experimental design were found and a set of factorial designs was proposed.
Although these designs were not actually applied to the industrial process they appear to
hold promise. Further progress in the area will depend upon working closely with industry
in an actual applica..on.
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