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Abstract

Ceramics have material properties that make them useful for many
industrial applications. They are strong, hard, and chemically inert. Their
refractoriness gives them an advantage over metals and polymers for use at high
temperature. Unfortunately, the inherent brittleness of ceramics limits their use in
structural applications.

One way to improve the toughness of ceramics is to combine them with
other materials to make composites. The correct combination of materials can
lead to synergism, and a significant improvement in properties. In this work,
brittie laminates that contain weak interlayers are considered. The weak
interlayers lead to crack deflection, and can result in non-catastrophic failure of
the material. The requirements for consistent crack defiection and non-
catastrophic failure are not fully understood.

This work is an attempt to explain the observed fracture behaviour in
brittle laminar composites that contain weak interlayers. A combination of
experimental work, fracture mechanics modeling and finite element modeling has
been used to predict the requirements necessary for non-catastrophic failure.

The work shows the size of flaws in the surface of the composite, in the

weak interlayer, and in subsequent strong layers in the material, all play an



important role in the fracture behaviour. Control and understanding of the effect
of the various flaw sizes can be used to achieve non-catastrophic failure and

increased work of fracture in these composites.
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Chapter 1. Introduction

“An unbaked vase, when broken, may be repaired,
but a baked one may not.”
Leonardo da Vinci,

Folio 38 Recto, Codex Trivuizianus.

Ceramics have been used as structural materials throughout history.
They are strong, hard, chemically inert, and can be made using several
processing techniques into a variety of shapes. Their high melting points make
them particularly suited to high temperature applications. Metals and polymers
either soften or melt at higher temperature, or undergo chemical reactions that
severely degrade their structural properties. The one disadvantage of ceramics is
that they are brittle. This limits their use in many industrial applications.

Both ceramics and metals have theoretical strengths that are much
higher than seen in practice. In metals the strength is limited by plasticity. Shear
stresses cause dislocations in the crystal structure to move, and the material

yields macroscopically. In many situations, the bonding in ceramics does not



allow such stress redistribution. The stress concentrates at defects within the
material, breaks inter-atomic bonds, and leads to catastrophic failure.

Stress concentrations that build up in brittle materials are very sensitive
to the size of defects. Failure originates from regions in the material that are
highly stressed and/or contain large defects. The natural distribution of flaws from
sample to sample resuits in a significant reliability problem. Not only do ceramics
fail catastrophically, but they also do so under loading conditions that can be
difficult to predict. The increase in flaw size due to impact or thermal shock in
service exacerbates this problem.

The ultimate test of a structural material is its ability to bear load under
service conditions. The strength of ceramics can be improved by refining the
grain structure, which results in smaller defects and a higher load bearing
capacity. Toughness, or the ability to absorb damage during failure, is more
difficult to achieve.

One strategy to improve the toughness of materials is to look to nature.
Natural materials such as bone, wood, seashell, mica and jade have layered
structures. These layers allow crack deflection along weak interfaces, which can
prevent complete catastrophic failure. Engineering ceramics can be developed
with similar crack deflecting structures. While catastrophic failure cannot be
avoided, a safety mechanism is put in place that allows the bulk of the material to

continue to bear load. The energy required for complete material failure can be



increased several-fold.

The aim of this work is to determine the criteria required for consistent
and successful crack deflection along weak interfaces in laminate composites
subjected to flexure. Previous researchers have developed models, but they fail
to account for the observed mechanical behaviour in some composites systems.
A model is required that can predict the conditions necessary to achieve non-
catastrophic failure in composites. The materials chosen, their properties, and
the loading conditions, are expected to be very important to performance.

In this work, interlayers are considered. An interlayer is a thin layer of
one material, which is sandwiched between thicker layers of a different material.
It differs from an interface, which is the two dimensional plane between two
layers of different material. An interlayer can be approximated as an interface for
mechanical analysis, if sufficiently thin. The terms will be used interchangeably.

This work is a combination of fracture mechanics modeling, finite
element analysis and experimental work. The approaches used are based on the
same assumptions, and bear self-consistent results. Each leads to a better
understanding of crack deflection phenomena, and a more educated design of

composite materials.



Chapter 2. Background and Literature Review

2.1 Brittle Fracture

Fracture occurs when a solid material is subjected to enough tensile
stress to physically rupture the chemical bonds that hold it together. In the case
of ductile materials, the motion of dislocations within the crystal relieves strain
energy and precedes the fracture. This plasticity reduces stress concentrations
and delays the bond rupture. The material yields macroscopically and so the
fracture is forewarned. The material absorbs energy through the accumulation of
damage, and is said to be fough. In the case of brittle fracture no plastic
deformation occurs. The material cannot absorb energy, except by creating new
surface area. The failure is sudden and catastrophic. The difference in stress-
strain behaviour during mechanical testing of the two types of materials is shown
schematically as Figure 2.1-1.

Failure in a given sample originates where the stress is the highest. In
brittle materials this is at the tips of microscopic (or macroscopic) flaws. Tensile

forces cannot be transferred across the free surfaces of these cracks, and so the
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Figure 2.1-1. A schematic of the stress-strain behaviour of ductile and brittle

materials.



“excess” load is concentrated at the tips. The larger the stress or the larger the
flaw, the larger the resulting stress concentration and the weaker the material.
Inglis (1913) first estimated the magnitude of stress concentration at a
crack tip. Consider an infinite flat plate containing a through-thickness elliptical
flaw (see Figure 2.1-2), stressed perpendicular to the major axis. The stress

concentration at the end of the major axis is given by;

a
Omax = °applied(l + ZJ-—';] (2 11 )

where omax is the maximum stress at the crack tip, cappied the applied stress, a
the semi-major axis, and p the radius of curvature at the ends of the major axis. If
the crack is sharp, then p—0 and omax—*. The effective stress at the tips of

cracks can be many times the applied stress. This ultimately leads to rupture of

the inter-atomic bonds.

2.1.1 Chemical Bonding in Solids

Three primary types of chemical bonding exist in solids; metallic, ionic
and covalent. Bonds are not necessarily purely of one type. There may be mixed
metallic-covalent or ionic-covalent combinations. In metallic bonding, valence
electrons from each atom in the solid contribute to the bond. The result is positive

ion cores held together by a region of delocalized electrons. This form of bond
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Figure 2.1-2. A schematic of the Inglis elliptical crack geometry.



has relatively low energy and is non-directional. In ionic bonds, the metal atoms
give up their valence electrons to non-metal atoms. The resuiting metal cations
and non-metal anions are attracted by Coulombic forces. The bonds are strong
and non-directional. In covalent bonding valence electrons are shared between
two specific atoms in the solid. The bonds are strong and directional.

Metallic bonding can be used to explain the plastic behaviour exhibited
by metals. The non-directional bonds do not resist shear, and so planes within
the crystal lattice are free to move relative to one another. This allows
dislocations (planar defects) in the crystal structure to move and dissipate stress.
The macroscopic result is that many metals deform before fracture.

lonic and covalent bonding can be used to explain the brittle behaviour
exhibited by ceramics and glasses. lonic solids consist of altemating cations and
anions in the crystal structure. High shear stresses are necessary to overcome
the Coulombic repulsion between like ions as they move relative to one another,
so dislocations are difficult to move. The requirement for electrical neutrality in
the dislocation makes the defect geometrically complex. Bond rupture becomes
energetically more favourable than plastic yielding, so fracture is more likely.
Covalent solids contain highly directional bonds that are highly resistant to shear.
The directionality of bonds leads to geometrically complex dislocations. Like ionic
bonds, bond rupture is energetically more favourable than plastic yielding.

The ionic and covalent bonding in ceramics is the source of their

brittleness, but is also the source of their hardness, chemical nobility and high



melting points. The bonding in brittle materials cannot be changed, so

toughening strategies must rely on other avenues.

2.1.2 The Thermodynamics of Crack Propagation

Fracture is a thermodynamic process. Work by Griffith (1920) is the
basis of modern mechanical thermodynamics. Griffith considered an infinite plate
containing a perfectly sharp crack, subjected to an applied stress (see Figure
2.1.2-1), similar to the work by Inglis. The total energy of the system can be
calculated;

Utotal = Uo + Uelastic + Usurface — Wexternal (2.1.2-1)
where U is the total energy of the system, Up the stored strain energy in the
(uncracked) plate, Uaastic the change in elastic strain energy on introducing the
crack, Usurace the surface energy of the crack, and Wexemar the work done by
external forces. Assuming a cylindrical region around the crack is stress free, the
total energy attributable to the presence of the crack can be calculated as;

-0’21ta2
Utotal = E +4ay (2.1.2-2)

where o is the applied stress, a the half crack size, E the Young's modulus of the
material, and y the surface energy of the crack.
The strain energy release rate is defined as the derivative of the strain

energy with respect to the crack size, that is;
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Figure 2.1.2-1. A schematic of the Griffith sharp crack geometry.

10



11
6 = Welasic _ =0’ma (2.1.2-3)
da E
Griffith argued that the crack would only propagate if it were thermodynamically
favourable. As the crack extends, its surface energy increases and the total
system strain energy is reduced. When the derivative of the total energy equation
equals zero, the rate of change of these two components is equal. This defines
the critical strain energy release rate for the material and the fracture stress;

2
Ge =2y=°—fE“ﬂ’- (2.1.2-4)

where Gc is the critical strain energy release rate, or the fracture stress, and a,
the initial half crack size. The critical strain energy release rate is an intrinsic
material parameter for purely linear elastic materials, whereas the strength is a
function of crack size.

If a material is stressed such that its strain energy release rate is above
the critical value, the crack will propagate. As the strain energy release rate is
proportional to the crack size, a, the crack propagates unstably and the material
fractures catastrophically. The strength of the material is inversely proportional to
the square root of the initial crack size. If the strain energy release rate is below
the critical value, then theoretically the crack will heal. This does not usually
occur in practice.

Griffith validated the theory experimentally. Cracks of known size were

introduced into glass samples. The strength of each sample, plotted versus the
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inverse of the square root of the crack size, yields a linear relationship (Figure
2.1.2-2).

Crack propagation is dependent on loading geometry. Obreimoff (1 930)
showed brittle fracture can be non-catastrophic. Consider the cleavage of a mica

flake by wedging (see Figure 2.1.2-3). For this geometry,

Uelastic = [—J

o2 (2.1.2-5)

where §is the deflection caused by the wedge and h the height of the flake.

Therefore;

) 3.2
G = Welastic _ ‘3554“ (2.1.2:6)
da Sa

In this case the strain energy release rate decreases as the crack propagates. At
some point the value falls below the critical value for the material and the crack
arrests. If the wedge is driven further into the sample the crack propagates
stably. The crack maintains a constant length. The work done in driving the
wedge is exactly compensated by surface energy in the cleaved mica. This
experiment allowed the surface energy of the mica to be calculated.

An alternate approach to calculating the strain energy release rate is to

consider the change in work done during crack propagation;

G= -d-(l ps) (2.1.2-7)
da\2
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Figure 2.1.2-2. The Griffith data, used to show the relationship between

strength and crack size (Green,1998).
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Figure 2.1.2-3. A schematic of the Obriemoff cleavage experiment.
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where P is the applied load, and & the displacement. Mechanical testing is often
done under load or displacement controlled conditions. The strain energy release
rate can be calculated in terms of the change in compliance, or stiffness, of the

test sample;

C= =% 2.1.2-8)

-

where C is the compliance and S the stiffness. For constant loading conditions;

lpz dac

G = 2.1 .2‘9
2 da ( )
For constant displacement conditions,
G=L15293 (2.1.2-10)
2 da

The stability or instability of the crack depends on the geometry of the test
specimen, and whether the compliance (or stiffness) is increasing or decreasing.

Other loading geometries have been designed that allow cracks to
stabilize. These will be discussed in later sections. The ability to stabilize a brittle
crack provides a strategy for toughening brittle materials. If a crack can be
arrested, then complete fracture can be prevented. The criterion for stabilization
of a propagating crack is (as long as G<Gc),

46 _dGc

2.1.2-11
da da ( )

Both terms in the equation can be manipulated. Either the geometry of

the material can be designed to reduce the strain energy release rate as the
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crack propagates, or the crack can be forced to propagate into regions in the
material of higher toughness.
Irwin (1958) rearranged the Griffith equation to develop a fracture
criterion based on stress intensity rather than energy;
K=YoJra (2.1.2-12)
where K is the stress intensity factor, and Y a compliance function, which is

dependent on the loading geometry. Similarly;
KC = YO’f 1’1!80 (2.1 241 3)
where K¢ is the critical stress intensity factor, or the toughness of the material.

Similar to Ge, the critical stress intensity factor is an intrinsic material parameter
for perfectly linear elastic materials. The two approaches are related by;
K?=EG (2.1.2-14)
Three basic loading modes can be identified (see Figure 2.1.2-4),
termed modes /, /I, and //l. When all three are considered the K and G
relationship becomes more complex. For plane strain conditions, which are

appropriate for the mechanical testing of ceramics;

Go K%(I-Vf)+ Kﬁ(l-Vf)+ Kin(i+v) (2.1.2-15)
E E E

where v is the Poisson’s ratio of the material, and the subscripts represent the

three loading modes.
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Figure 2.1.2-4. The three loading modes considered in crack propagation

(Green, 1998).
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Mott (1948) modified the Griffith energy approach to estimate the
velocity of a propagating crack. A kinetic energy term was added to Equation
2.1.2-1, of the form;

2

da)" 2
kpaZ| &2

pa(dt)c

po=) (2.1.2-16)

Uckinetic =

where Uknetic is the kinetic energy term, k a constant, p the density of the
material, and t time. The kinetic energy can be related to the difference between
the critical strain energy release rate and the instantaneous strain energy release

rate of a propagating crack. This leads to an expression for the velocity of the

("_“)= ,2‘. ‘/2/1-10-@.38‘/2/ ] (2.1.2-17)
dt k\p a P a

Experimentally calculated velocities (Roberts and Wells, 1954) tend to

crack;

be below this theoretical prediction, though this has been attributed to a difficulty
in achieving the exact conditions specified in derivation of the equation. Other
researchers (Berry 1960, Dulaney and Brace 1960) have developed similar
analyses, resulting in similar equations. Experimental errors have made each
approach difficult to validate.

The above approach is quasi-static. The equation is developed based on
theory that specifies equilibrium conditions. At the onset of crack propagation,

when a=a,, the velocity and acceleration are zero, which can not be true. This
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undermines the approach. It can also be argued that, at high crack velocities, the
inertia of matter surrounding the crack tip influences the strain energy release
rate. The maximum velocity of an unstable crack is the Rayleigh speed, which
describes the velocity of surface waves in the material. This leads to the
development of dynamic stress intensity factors, and the consideration that the
critical strain energy release rate of the material is velocity dependent. Solutions
to the problem exist, but are sensitive to the assumptions made in each
calculation and the geometry of interest (Kanninen and Popelar, 1985, Chapter
4).

Consideration of the kinetics of propagating cracks has implications for
the strategies used to toughen brittle materials. A material containing a small flaw
that initiates fracture will initially have a high elastic strain energy. This energy is
converted to surface and kinetic energy during fracture. To slow, or even arrest
the crack, the strain energy release must be reduced to a rate below the critical
value defined by the material. The excess kinetic energy must aiso be absorbed
if a dynamic approach is considered, so the release rate must be well below the
critical value. A material containing a large flaw will store less elastic energy, and
so will produce less kinetic energy during propagation. To arrest the crack, the
strain energy release rate must be below the critical strain energy release rate for
the material, but there is less kinetic energy for which to compensate. The overall

result is that initially large flaws propagating are more easily arrested than initially
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small flaws propagating. This aspect of crack propagation has not been fully

exploited in the design of tough brittle materials.

2.1.3 Weibull Statistics

Equations 2.1.2-4 and 2.1.2-5 show the strength of brittie materials is
sensitive to the initial flaw size. Samples containing large flaws are weaker, and
samples containing small flaws stronger. Fracture will always initiate at the crack
tip in the sample that suffers the highest stress intensity. The strength is sensitive
to both the loading mode and the orientation of cracks. The natural variation of
flaw size and orientation in samples results in a variation in strength.

Weibull (1951) developed a probability function that can be used to
describe the reliability of brittle materials. The method was originally developed

as an empirical equation, but it can be related to gamma-type continuous

probability functions. The simplest form of the equation is;

m
P =exp{-vlo(%J } (2.1.3-1)

where Ps is the probability of the sample surviving a given applied stress, V the
volume of the sample, o the applied stress, m the Weibull modulus, Vo a
reference volume and oy a constant determined by regression. A number of
specimens are tested to failure, and their strengths calculated. The Weibull

modulus is determined by linear regression of the data to the equation;
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lnln(PL}mln of +constant (2.1.3-2)
S

A high Weibull modulus (~100) indicates a reliable material, whereas a low value
(~5) indicates an unreliable material. Engineering ceramics tend to have low
moduli, in the range ~10-20.

The strength of a given ceramic sample is dependent on its volume. A
large sample has a high probability of containing large flaws, so is more likely to
be weak. The opposite is true for small samples, which have a low probability of
containing large flaws and so are more likely to be strong. This relationship was
demonstrated by Griffith (1920), who showed the strength of glass fibres under
tension increases with decreasing diameter. It was also shown by Leonardo da
Vinci (referenced by Timoshenko, 1953), who reported the strength of steel
increases with decreasing wire length.

Strength also depends on the loading geometry. Equation 2.1.3-1 holds
for specimens subjected to tensile stress. If a sample is biaxially stressed there is
a higher probability that a natural, randomly oriented, flaw will suffer a critical
stress. A number of samples will be weaker, on average. Conversely, only a
small region of a sample subjected to a bend test endures its calculated
maximum stress, so a number of samples will be stronger on average. A loading
factor can be included in Equation 2.1.3-1 to account for the effect of loading

geometry on the Weibull modulus.
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The reliability of an engineering ceramic is ultimately based on its load
bearing capacity. Design of brittie components for service must account for flaw

size distributions, sample size and loading geometry.

2.1.4 Strength and Toughness Testing

The strength of a material is the maximum nominal stress endured
before fracture. The strength of a brittle material is sensitive to flaw size, so an
average strength is usually quoted with either a calculated error, or the Weibull
modulus.

The usual strength test for a ceramic is a four-point bend test (see
Figure 2.1.4-1). The test sample is supported by four loading pins; two on either
side. The assembly is pushed together, with the centre of the span subjected to
pure bending stresses (no shear is involved). The strength is calculated from the
load required to fracture the sample.

Tensile tests are not favoured as the loading grips may scratch the
surface of the material and lead to error, and the alignment is too critical. Three-
point bend tests are often used industrially, but these tend to over-estimate the
strength, as only the centre of the beam is subjected to the maximum calculated
stress. Fracture may initiate elsewhere in the sample depending on its unknown

and random distribution of flaws. A four-point test subjects the portion between
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Figure 2.1.4-1. The four-point bend test geometry.
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the inner pins to the maximum calculated stress, and avoids the problem of
significant damage by the loading assembly.

For the test geometry shown in Figure 2.1.4-1, the maximum stress can
be calculated using classical beam theory;

_3PL

g=——
4bh?

(2.1.4-1)

where P is the total load applied at the loading pins, L the outer span, b the
breadth of the beam, and h the height. The strength is calculated at fracture;

_3RL

e (2.1.4-2)

of

where oy and Prare the fracture strength and load respectively. Note that these
equations assume the inner span of the loading pins is half that of the outer
span, and that the beam is slender enough to ignore any possible shear effects.

Fracture usually initiates at the surface of the sample during bend
testing. Derivation of the Griffith equation (Equation 2.1.2-4) considered the initial
half crack size. For a surface crack the whole crack size is considered, and the
compliance factor is >1 (Equation 2.1.2-12), so the stress intensity factor is larger
for a surface crack than an internal crack. Thermal residual stresses caused by
processing can result in fracture initiating at an internal crack.

The fracture toughness of a material is the maximum stress intensity
factor a material can endure before fracture. Unlike strength, it is an intrinsic

material parameter. Various tests can be performed to calculate the value. These
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tend to give slightly different results, so the test method must be quoted with the
calculated toughness.

A common technique for ceramics is the single-edge-notched-beam
(SENB) test. A three- or four-point bend sample is prepared, a notch of known
depth is cut into the tensile surface, and the sample bend tested to failure. The
critical stress intensity factor is then calculated using Equation 2.1.2-13. For a

three-point test;

2 3 4
Y=1.93—3.o7(3)+14.53(3) —25.11(3) +2s.a(1) (2.1.4-3)
h h h h

For a four-point bend test;

2 3 4
Y=1.99-z.47(3)+1z.97(3) -23.17(3) +z4.s(i) (2.1.4-4)
h h h h

These compliance factors were calculated by regression of polynomials to the
experimental data (Brown 1966, Tada et al 1973). One problem with the test is
that a notch cut from a saw does not produce a perfectly sharp crack. This leads

to an over-estimation of the toughness of a given material.

2.1.5 indentation

Indentation allows the toughness and hardness of a sample to be
measured. Hardness is the resistance of a material to indentation, and is related
to the yield strength of the material. Brittle materials resist yielding, so have

higher hardness.
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Indentation invoives applying a known load to the surface of a sample
with a rigid indenter. The size of the region deformed by the indenter is used to
calculate the hardness of the material. The smaller the deformed region (for a
given load) the harder the material. In the case of brittle materials the test also
results in stable cracks running from the edges of the indent. These can be used
to calculate the toughness of the material. The cracks also affect the strength of
a given sample. Various tests are possible, but the only one considered here is
the Vicker's hardness test. In this case the load is applied via a pyramid-shaped
diamond indenter.

The hardness of a material is calculated using;

H= 1.85452'“-"- (2.1.5-1)
aind

where H is the hardness, Paq the indentation load, and ainq the length of the
diagonal of the impression left by the indenter (see Figure 2.1.5-1). The
indentation is measured using an optical microscope. Resolution may lead to
errors in the measured lengths.

If the material is brittle, the indentation also leads to radial cracks that
form during unloading. The toughness of the material can be calculated (Cook

and Lawn, 1983) by measuring the size of these radial cracks;

Ke=Xd g [F Pind (2.1.52)
3rad H arad
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Figure 2.1.5-1. A schematic of a hardness indent in a brittle material.
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where y and g are constants, and anq the size of the radial cracks (indentation
centre to tip). The parameter B has been determined from calibration tests, and is
taken as ~0.016.

An alternative to measuring the radial crack size is to bend test the
indented sample. During bend testing, the radial crack grows stably under the
influence of both the applied load and the residual stress left by the indentation.
The sample eventually fails catastrophically, because the stress intensity rises as

the crack grows. At the point of fracture it can be shown that;

047K ¢
Of = I3
Y(xPina)

The compliance factor used is that for a semi-circular crack; Y=2/x. This can be

(2.1.5-3)

combined with Equation 2.1.5-2 and rearranged to give;

1/8
E /3
Ke=4(E] (orkld (2.1.54)
where;
/
C= (2.27YB" 3)3 * (2.1.5-5)

This parameter has been calculated by calibration tests, and is taken as ¢=0.59.
Following Equation 2.1.5-3, a plot of log strength versus log indent load yields a
straight line with a slope of —1/3. This is true only for a perfectly brittle material,
and has been demonstrated by Lawn (1993) — see Figure 2.1.5-2. If plotted data

does not have a slope of —1/3 it is a non-ideal brittle material. If a material has a
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Figure 2.1.5-2. A plot of log strength versus log indent load for an ideally brittle

material (Lawn, 1998).
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slope of greater than -1/3, then the strength is greater than predicted for a given
indent load or crack size. Such a material is said to exhibit ‘R-curve’ behaviour.
One advantage of indentation testing is that both hardness and
toughness can be calculated. The other is that cracks of a known size can be
introduced into a sample under controlled conditions. This reduces the strength
of the material as the cracks are larger than natural flaws, but in some
experiments the consistency of the crack size is paramount. The effective
Weibull modulus is increased significantly. The desire to have a “deterministic’

strength will be discussed later.

2.1.6 Elastic Crack Tip Stress Fields

Fracture always initiates at a highly stressed crack tip. The stress
intensity experienced near a stressed crack tip can be calculated by finding a
complex solution of the Airy stress function, which must be satisfied for all elastic
stress fields.

The solution to any elastic stress field problem must satisfy mechanical
equilibrium and strain compatibility. The requirement for mechanical equilibrium
ensures that forces within the material are mutually balanced. For the simple 2-

dimensional case;

Q’Q‘_.p%yx
ox o

+f, =0 (2.1.6-1)

and;
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o6, 0O
b ) . & +fy =0 (2.1.6-2)
y |

where the o's are stresses, the f's body forces, and the x's and y’s are the
horizontal and vertical directions. The requirement for strain compatibility ensures
the strains are mutually consistent, and give continuous displacement functions.
These two restrictions are satisfied by;

o oy 2070
x® oy

(2.1.6-3)

where the £'s are strains. Hooke's Law, a constitutive relation gives the
relationship between the stress and strain in an elastic material, which, in its

simplest form is;

=2
€

(2.1.6-4)
Equations 2.1.6-1 to 2.1.6-4 can be combined to form the Airy stress function;
v23)%$=0 (2.1.6-5)

where ¢ is the Airy stress function (a function in both x and y). The stresses and

shears are given by;

9%
Oxx = Ey_z (216~6)
2
o (2.1.6-7)

g =
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and;

2
Gxy =-% (2.1.68)

Any mathematical equation that satisfies the Airy stress function and the
boundary conditions of a given problem, is a legitimate mathematical solution to
the problem. This has the advantage that many solutions may be found. The
disadvantage is that the "true" solution may be a combination of several super-
imposed functions.

The Airy stress function approach to solving elasticity problems can be
used to determine the stress and strain fields around sharp cracks. Several
researchers have contributed solutions to this of the same general form problem
(Westergaard 1939, Williams 1954, Irwin 1958, Cook and Gordon 1964). The

accepted form of the mode | stress distribution near a crack tip is given by;

( )
1-sin —sin —
Ox| gk, 8 5 )
Oyy =—J2—meos?l+sin—2-sin7> (2.1.6-9)
Oxy .0 30
sin —cos—
. 2 2

where the ¢'s are stresses, and r and @ polar coordinates of the point of interest,
as shown in Figure 2.1.6-1. K; is the stress intensity factor given by Equation
2.1.2-12. ltis possible to modify Equation 2.1.6-9 to account for mode Il or n

loading.
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Figure 2.1.6-1. A schematic of the crack tip geometry.
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Equation 2.1.6-9 is the leading term in an equation comprised of several
super-imposed functions. The remaining terms are usually ignored as the most
important stresses to the fracture process are those at the crack tip, that is, oy, at
r=0. If toughening is to be achieved using weak interfaces, the stresses away
from the crack tip and paraliel to the plane of the crack are important, that is, o
at 0. Unfortunately, these terms have not been accurately determined. One
term in the solution, referred to as the “T-stress”, is a stress parallel to the plane
of the crack that is independent of the distance from the tip. The magnitude of
this stress has been calculated for various geometries. The T-stress is estimated
as ~3% the applied stress, for a three-point bend test (Larsson and Carisson,
1973). This is not expected to have a significant effect on the fracture behaviour.

Equation 2.1.6-9 was derived assuming the crack is subjected to a
uniform stress. It is possible to determine the stress concentration at the tip of a
crack subjected to a non-uniform stress distribution. Consider a crack, of
length 2a, subjected to a stress field described by the function oy, =f(x) (see
Figure 2.1.6-2). The stress intensity factor at the tip of the crack is calculated

using a Green integral function (Tada, Paris and Irwin 1973),
a
K =71__ { __oi(_x_)_dx
ma _
a /l_(%)?

Similar equations can be developed to account for mode I or mode lil loading of

(2.1.6-10)

the crack.
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Figure 2.1.6-2. A schematic of a stress concentration solved using a Green
integral function. The stress field does not act on the crack face, but

represents the stress field that would exist if the crack were not there.
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An important feature of the equations is the singularity at the crack tip —
theoretically the stress is infinite. This is true only for perfectly sharp cracks,
which have infinitesimal crack tip radii. A more realistic minimum crack tip radius
is a value comparable to the lattice parameter of the material.

Cook and Gordon (1964) considered the stresses near an elliptical hole
in an infinite plate, to calculate more realistic maximum stresses in the region of
the crack tip. Their work was similar to that of Inglis (1913), but used the complex
mathematical forms developed by others. They found a more realistic stress
concentration at the crack tip is ~200x the applied stress perpendicular to the
crack plane (oyy). The stress parallel to the crack plane (cx) was found to be
~40x the applied stress, with a maximum just ahead of the crack tip. This
suggested a hypothetical interface, perpendicular to the crack plane, would itself
also crack provided the interfacial toughness was less than ~20% that of the bulk
material. If a brittle material could be designed consisting of weak interfaces,
there may be crack deflecting capabilities and nominal toughening. This was not
experimentally verified. The effect of the size of flaws in the interface was not

considered.

2.1.7 Crack Deflection

The work of Cook and Gordon (1964) suggested crack deflection and

nominal toughening could be achieved by designing a material to crack in “non-
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catastrophic” directions. The ability to prevent cracks from propagating directly
through brittle materials has long been sought as a toughening strategy.
Increased crack deflection leads to a larger fracture area, which means an
increased work-of-fracture.

A crack always propagates such as to maximize the strain energy
release rate from the material (Nuismer, 1973). Of the three modes of loading,
mode | fracture releases the most strain energy for a given crack growth
increment. Cracks will deflect so they propagate primarily in mode |. Mode i
loading provides a driving force to turn the crack during mixed-mode propagation.
The phase angle (He and Hutchinson, 1989) of a given crack, y, indicates the

tendency for it to deflect, where;

= tan“(ﬁI-J (2.1.7-1)
Kp

Cracks subjected to high shear stress (mode |l) are likely to deflect to
maximize their strain energy release rate. The source of the shear can be
heterogenities in the microstructure, second phase particles, or thermal or elastic
mismatch stresses. The shear experienced during four-point bend testing is
negligible, so no crack deflection is expected. Cracking of a weak interface as
suggested by Cook and Gordon (1964) is not simply deflection of the main crack,
but bifurcation, splitting of the crack along the interface. The terms are often used

interchangeably.
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Following the work of Cook and Gordon, Kendall (1975) considered the
criteria for crack deflection based on energy considerations. The calculations

predicted crack deflection along an interface provided that;

Gime 1 - (2.1.7-2)
Gulk,c 41[{1—V)

where the G's are the critical strain energy release rates for the interface and
bulk materials. This requirement is more restrictive than other predictions. The
theoretical work was verified by testing crack deflection in brittle rubber
laminates. In addition, it was experimentally shown the crack propagation speed
influences the toughness of both the interface and bulk material, and the
deflection behaviour. Slower cracks were more easily deflected.

He and Hutchinson (1989a) predicted the criteria for the deflection of a
crack at an interface between two solids with dissimilar elastic properties. They
considered several cases; cracks perpendicular or at an angle to the interface,
cracks propagating along or across the interface, and the effect of the difference
in elastic properties of the two materials. Complex solutions to the Airy stress
function were used to calculate the change in strain energy with either crack
deflection or penetration of the material across the interface.

The general result is that cracks are more likely to deflect along an
interface if they approach it at an angle, the interface is considerably less tough
than the bulk material, and/or the material across the interface is stiffer than the

material containing the original crack. Kendall also noted the latter point.
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He and Hutchinson (1989, 1) used their calculations to "map" the
expected crack path, as a function of elastic modulus difference and interface
toughness/material toughness ratio. The difference in elastic moduli is usually

quoted using the Dundurs' parameter (Dundurs, 1969), which is a normalized

value;

El'_Ez'
ap = ——= 2.1.7-3
D El'+Ez' ( )

where ap (or simply a) is the parameter, 1 denotes the material across the
interface, and 2 the material containing the crack. A positive Dundurs' parameter
indicates a crack crossing an interface into a stiffer material (Figure 2.1.7-1). A
negative parameter indicates a crack approaching a more compliant material.
The interface toughness (G,/G,) is the ratio of the critical strain energy release
rate of the interface (crack deflection) divided by the critical strain energy release
rate of material 1 (crack penetration).

Figure 2.1.7-2 was developed to predict the deflection behaviour of a
crack in material 2, perpendicular to the interface. It is a plot of the interfacial
toughness ratio as a function of the Dundurs' parameter. The curves in the figure
represent critical interface toughness ratios for crack deflection as a function of
the modulus difference. If the interface toughness is high (represented by the
region above the curves), penetration of the crack across the interface is

predicted. If the interface toughness is low (represented by the region below the
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Figure 2.1.7-1. A schematic of the crack geometries used for the crack path
predictions (He and Hutchinson, 1989a). A1: straight crack penetrating
interface, A2: straight crack singly deflected, A3: straight crack doubly
deflected (bifurcated), B1: angled crack penetrating, B2: angled crack

deflecting.
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Figure 2.1.7-2. Critical energy release rate ratios as a function of Dundurs’
parameter (He and Hutchinson, 1989a). Critical curves for both singly and

doubly deflected cracks, and the crack geometries of interest are given.
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curves), deflection is predicted. The difference in elastic properties has an effect
on the deflection criterion.

If one considers the situation of a crack perpendicular to a weak
interface between two equivalent elastic solids, the deflection criteria is similar to
that determined by Cook and Gordon (1964). They predicted a critical interfacial
toughness of ~20% that of the bulk material toughness was required for
deflection.

He et al (1994) further modiﬁed the work to consider the effect of thermal
residual stresses on the deflection criteria. They used the same approach as He
and Hutchinson (1989a), but a thermal residual stress was super-imposed on the
solution. Figure 2.1.7-3 is equivalent to Figure 2.1.7-2, but accounts for a thermal
residual stress perpendicular to the crack. Again, the upper and lower regions in
the figure represent predictions of penetration and deflection respectively. 7 is a
non-dimensional parameter used to describe the magnitude of this thermal
stress. It is defined as the crack tip stress intensity associated with the thermal
stress divided by that associated with the applied stress; a positive value
indicates tension, negative compression.

If m¢ is negative, the critical curve for deflection is raised. This physically
means that a higher interface toughness will still lead to deflection. Cracks are
more likely to deflect along interfaces if the material across the interface is

subject to a residual thermal compression. The converse is also true. A positive
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Figure 2.1.7-3. Critical energy release rate ratios as a function of Dundurs’
parameter and thermal residual stress (He, Hutchinson and Evans, 1989a).
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m lowers the critical curve, so a lower interfacial toughness is necessary for crack
deflection.

it is important to note that these criteria assume the crack tip is at the
interface. A propagating crack has a strain energy release rate above its critical
value, and this will affect the predictions. Flaws within the interface, and their
effect on main crack deflection, were not considered.

He and Hutchinson (1989b) also considered the requirements for a
crack in an interface to deflect back out, and penetrate the second material.
Figure 2.1.7-4 is a plot of the minimum material/interface toughness ratio
(G,/Goc) required to prevent a crack from kinking out of an interface (note that in
this case the material after the interface is subscripted as "2", and the interface
toughness is subscripted as "0"). Deflection out of an interface is more likely if
the crack would deflect into a more compliant material, though this is dependent
on the phase angle of loading. If the two materials sandwiching the interface are
equally stiff, the crack will remain in the interface provided the interface
toughness is equal to or less than ~1/2 that of the bulk material. Given that this is
higher than the interfacial toughness required to deflect a crack into an interface,
it is likely the crack will not kink out.

Mammoli et al (1995) considered a crack approaching an interface
containing a flaw (Figure 2.1.7-5). They used a similar mathematical approach to
He and Hutchinson (1989, a and b) and He et al (1994). The presence of flaws

enhances the likelihood of crack deflection toward the interface, provided the
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Figure 2.1.7-4. A plot of the minimum material/interface toughness ratio
required to prevent a crack from kinking out of an interface, as a function of
Dundurs' parameter. The toughness ratio refers to the material which the
crack kinks into (material 2) and the interface. The upper region predicts
interface fracture, the lower region predicts kinking out of the interface (He and

Hutchinson, 1989b).
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Figure 2.1.7-5. A schematic of the crack geometry used to caiculate the effect
of an interface flaw on a crack path (Mammoli et al, 1995). No modulus

difference is included.



47

main and interface cracks are close. This is due to the interaction of crack tip
stress fields, which result in shear. If the main crack is drawn into the interface,
the loading mode changes from mode | to mixed modes | and Il. This may lead to

deflection back out of the interface if its toughness is moderate.

2.1.8 Delamination Testing

The ratio of the interface toughness to bulk material toughness is
important in determining the propensity of the interface to crack. Bend or
indentation testing can be used to calculate the toughness of the bulk material,
as described in Sections 2.1.4 and 2.1.5. Calculation of the interface toughness
requires other techniques.

Charalambides et al (1989) developed a technique for determining the
interfacial toughness of a bilayer composite. The method involves bending a
specimen that has had the layer on the tensile bend side cut through to the
interface (see Figure 2.1.8-1). The sample is loaded in four-point bending. At
some point during the loading the interface opens and the tensile layer
delaminates, provided the interface is weak enough. The interface cracks under
steady-state conditions due to the loading geometry (similar to the Obriemoff
experiment discussed earlier). The load at which the delamination occurs can be
determined from the load-displacement curve (see Figure 2.1.8-2). This load, the

geometry of the sample, and the material properties of the two layers, can be
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Figure 2.1.8-1. A schematic of the bilayer specimen geometry used in the
Charalambides delamination test. The cut layer is material 1, the intact layer

material 2.
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Figure 2.1.8-2. A schematic of a load-displacement curve from a

Charalambides delamination test.
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used to calculate the interfacial toughness;
204 _ 2
G =M—(‘—"Q(Il-li) (2.1.8-1)
2

where Gss is the steady-state strain energy release rate, M the applied moment,
E, and w, the elastic properties of the second layer (intact layer), and /> and /c the
second moment of area of the second layer and total bilayer respectively. The 4
is a term that represents the difference in elastic properties of the two materials

in the bilayer;

.
a=E202v) (2.1.82)
Ei(1-v3)

In the case of two layers of the same material sandwiching a weak interface, 1=1.
The work was supported by finite element analysis. Eight-noded
isoparametric elements were used, with sufficient crack tip mesh refinement to
estimate stress intensity factors and displacement changes during crack
propagation (Figure 2.1.8-3). The results were consistent with experimental
measurements taken during delamination testing of aluminum/PMMA bilayers
(Figure 2.1.8-4). A value of K.~0.26(+0.01 )MPavm was determined for the
composite interface, which is similar to the value of Kc~0.4MPavm determined by
Hardwick et al (1986). The difference can be attributed to the bonding
procedures used by the two groups. There may also be an influence due to the

phase angles of the techniques. The Charalambides delamination test involves a
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Figure 2.1.8-3. A schematic of the mesh used by Charalambides et al for their
finite element analysis (Charalambides et al, 1989). The lower mesh is a

maghnification of the crack tip region in the upper mesh.
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phase angle of 40-50° acting on the interfacial crack, that is, there is a shear

component.

2.1.9 Thermal Shock

Up to this point, it has been assumed that ceramics fracture only as a
result of an applied load. Stresses can also be generated by thermal gradients in
the material caused by quenching. If the gradient in the material is high enough,
crack propagation and fracture can result. This “thermal shock" is a serious
problem for ceramics in many applications, so is an important parameter in
material selection.

Thermal shock is the resuit of both a rapid drop in temperature and a low
thermal conductivity. The surface of the material attempts to contract during the
quench due to its thermal expansion coefficient. The low thermal conductivity
leads to a high strain gradient in the material, and therefore also a high stress
gradient. A high tensile stress may cause propagation of surface cracks into the
material. Unlike the fractures discussed earlier, the crack propagation may not
be catastrophic. The stress on the crack tip reduces as the crack propagates,
and the stress intensity may drop below the critical stress intensity for the
material.

Although the thermal shock may not fracture the material, the increased

crack size weakens material. Materials show no change in strength for small



changes in temperature, as the stresses that develop during cooling are
insufficient to cause crack propagation. As the temperature changes are
increased, the stresses also increase. It is possible to define a critical
temperature drop that resuits in crack propagation and a significant weakening of
the material. This provides a parameter that can be used to compare the relative

thermal shock resistance of materials (Hasselman, 1969);
R = AT, = 2=V (2.1.91)
oE
where % is the thermal shock resistance, 47T the temperature change, and « the

thermal expansion coefficient. Thermal shock provides a technique to introduce

large cracks into ceramic specimens.
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2.2 Laminated Composites

Various toughening strategies involve the use of composites, which are
materials made up of two or more materials with different properties. The choice
of materials and their configuration affect performance. Differences in strengths,
moduli and thermal expansion coefficients can be exploited to maximize the
overall mechanical properties. Many researchers have shown crack deflection,
and therefore toughening, is possible. Architectures available in composite
design include spherical, whisker, or platelet particle reinforcement, uniaxial fibre
or weave reinforcement, and laminates. Each structure can provide improvement
of different mechanical properties.

Laminates are the focus of this work. They consist of alternating layers
of two or more materials. The properties of the materials chosen and the
thickness of the layers will affect the composite performance. The laminate
structure has specifically been shown to improve flexural properties.

Many researchers have shown that improvements in toughness are
possible. In some cases the interfaces between the layers are strong, and
improvements are made via crack deflection due to differences in elastic or
thermal properties. In some cases the interfaces are weak, and improvements
are made by sacrificing one layer in the laminate for the good of the remaining

layers. Both cases can lead to an increased work-of-fracture.



56

The work-of-fracture is a measure of the total energy required to fracture
a material, normalized to the nominal cross-sectional area of the sample. It is
determined by calculating the total area under a load-displacement curve, and
dividing by the measured cross-sectional area of the sample. When crack
deflection is used to toughen a material, the increased area of fracture surface
may improve the work-of-fracture, but the nominal cross-sectional area remains
the same. If a crack is deflected sequentially along several weak interfaces, the
work-of-fracture can improve a hundred-fold (Clegg et al, 1990). The critical
stress intensity factor or critical strain energy release rate will not necessarily be
affected, and this must also be considered.

An important feature of laminates is the residual thermal stresses that
form in the layers during processing. Their magnitudes can be estimated using
the elastic and thermal properties of the materials selected. Consider a laminate
consisting of alternating layers of material 1 and material 2, as shown in Figure
2.2-1. The composite is processed at high temperature, and then cooled to room
temperature. If the interfaces in the composite are strong, the two materials must
contract an equal amount during cooling. A difference in their thermal expansion
coefficients will lead to residual stresses parallel to the layers. These stresses
must satisfy mechanical equilibrium,;

o)t} +G3ty =0 (2.2-1)
where the o’s are the average stresses in the two materials and the f's the

thickness of each material. Unit width of samples is assumed. If the layers
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Figure 2.2-1. A schematic of a laminate used for thermal residual stress

calculations.
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remain strongly bonded at their interfaces, the stresses in the layers must have
equivalent strains;

I 40y AT =22+, AT (2.2-2)
E/' E;

where the a’s are the thermal expansion coefficients of the two materials, and AT
the temperature change (final minus initial). The primes on the moduli denote
that a modified modulus must be used to account for the biaxiality of the stresses
in the layers, that is; E'=E/(1-v). Combining Equations 2.2-1 and 2.2-2 leads to;

o1 = (0 =0y )AT

1 t 1
—-+ ——— [ ——
El' ty Ez'

G2 = {:—;}’1 (2.24)

Note that one of the materials is in tension, the other in compression. This can

(2.2-3)

and;

have a significant effect on the strength of the composite.

2.2.1 Laminates with Strong Interfaces

Whitehead (1994) reported improvements in toughness for room
temperature tested alumina/zirconia (TZ3Y) non-planar laminates. The
composites consisted of alternating thick (~10um) alumina layers and thin

(~3um) zirconia layers. No significant change in strength was reported. The
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toughness was Kc¢= 4.57(+0.73) MPavVm, a 57% increase over monolithic
alumina. In this case a chevron notch bend test was used, which makes
comparisons to other work difficuit.

Prakash et al (1995) tested composites consisting of both 95% zirconia
(TZ3Y)+5% alumina, and 95% alumina +5% zirconia. The strength of zirconia
increased from 950MPa to 995MPa on addition of thin alumina layers. The
strength of the alumina decreased from 556MPa to 488MPa. Errors were not
reported. The thermal expansion coefficients of alumina and zirconia are ~8u/°C
and ~11p/°C respectively. The result (using 2.2-3 and 2.2-4) is thermal residual
tension in the zirconia and compression in the alumina. The changes in strength
are contrary to expectations, though this result was not discussed. Significant
crack deflection at the interfaces was shown by fractography, but changes of the
calculated work-of-fracture were not reported.

A similar series of experiments was performed by Huang et al (1997) on
silicon nitride/titanium nitride laminates. The flexural strength of monolithic silicon
nitride was increased from ~730MPa to ~960MPa by adding alternating layers of
silicon nitride and a silicon nitride/titanium nitride mixture, though this was
dependent on the number of layers in the laminate (Figure 2.2.1-1). The thermal
expansion coefficients of silicon nitride and titanium nitride were quoted as 3w°C
and 8p/°C respectively. Compressive thermal residual stress in the surface
silicon nitride layers lead to an increase in strength, though an increased number

of layers in the composite lead to high tension in the mixed layers, which initiated
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Figure 2.2.1-1. The flexural strength of silicon nitride/titanium nitride

composites as a function of number of layers (Huang et al, 1997).
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fracture at internal flaws. Similarly, fracture toughness increased (Figure 2.2.1-2),
though this was also dependent on the number of layers in the laminate.

Significant crack deflection was observed as cracks propagated across
interfaces. Thermal residual shear stresses at the interface would cause crack
deflection, though this was not discussed. The relationship between the indent
depth and layer thickness, and its effect on the crack propagation, was not
considered. If the depth of the indent crack was comparable to the layer
thickness, there may have been deflection or blunting of the crack prior to bend
testing. This would influence the fracture behaviour and/or the strength.

Although these examples showed improvements in the calculated critical
stress intensity factors, all samples suffered catastrophic failure. The nominal
increase in toughness can be attributed to an increase in strength caused by
thermal residual compression in the surface layers. The fracture toughness of the
material was not changed, only the stress state surrounding critical flaws. The
increases in calculated toughness do not prevent the possibility the material will

fail catastrophically in service.
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2.2.2 Laminates with Weak Interfaces

The mechanical properties of composites containing weak interfaces are
significantly different to those with strong ones. The strategy is not to increase
the critical stress intensity factor for the material, but to prevent fatal failure in
service. Significant increases in the work-of-fracture are also possible.

Consider a ceramic laminate consisting of altemating strong layers and
weak interfaces subjected to a bend test (see Figure 2.2.2-1). At some point
during the loading the stress in the tensile surface exceeds the fracture strength
of the strong material, and the /ayer fails catastrophically. If the interface is weak
enough, the propagating crack deflects along it. The deflection absorbs energy,
lowers the load experienced by the sample, and allows the remaining portion of
the beam to continue to support load. In effect, the surface layer is sacrificed to
save the rest of the beam. Continued loading causes the next strong layer to
fracture and the cycle repeats. This strategy provides a “safety net” for the
material in service.

The improvement in the work-of-fracture of these composites is apparent
in their load-displacement curves. The fracture of sequential layers leads to an
instantaneous increase in compliance of the beam and a corresponding load
drop. The resuit is a “zig-zag” reduction in the load rather than a catastrophic
drop (see Figure 2.2.2-2). This type of failure is often referred to as “graceful’

failure. In this work it will be referred to as “multi-stage” failure.



Figure 2.2.2-1. A schematic of a laminate containing weak interlayers (shown

by dotted lines) subjected to a bend test. Loading (shown by the arrows) is

perpendicular to the layers.
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Figure 2.2.2-2. A schematic of a load —displacement curve for a brittle
laminate containing weak interfaces showing multi-stage failure. The shaded
region represents the work-of-fracture for a monolithic brittie material. The
residual work-of-fracture is available only through crack deflection along

several weak interfaces.



The technique of weak interface toughening does not work under all
conditions. The stress on the beam must drop as the surface layer fractures. If
the test is done under displacement controlled conditions, the compliance of the
beam increases and the load decreases. The load drop reduces the stress on the
remaining portion of the beam to below the strength of the material. If the test is
done under load controlled conditions, the displacement of the loading pins is
increased to offset the increasing compliance and maintain load. The remaining
portion of the beam can not withstand the same load as the full beam, so it
continues to fail catastrophically. Fracture initiated by either impact or thermal
shock is similar to displacement controlled conditions. This would aliow the
strategy to take effect.

Composites can be designed consisting of altemating strong and weak
layers. The interfaces between the two types of layers are strong, but crack
deflection within the weak layers is possible due their low toughness and/or large
inherent flaws. In this case, the composite consists of weak interlayers rather
than weak interfaces. The analysis is the same, so the terms can be used
interchangeably. The reasons for this will be discussed later.

Weak interlayer toughening was first reported by Clegg et al (1990).
Silicon carbide sheets, ~200um thick, were coated in graphite and stacked to
form green bodies ~2mm thick. The samples were sintered under argon to 98%

theoretical density. Non-graphite coated sheets were also used, to produce
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monolithic silicon carbide samples for comparison. The samples were cut into
bend bars and three-point bend tested to complete failure.

The strength of the composites was 633MPa, an increase over the
500MPa strength of the monoliths. Errors were not included. The strength
increase was not explained.

Notched specimens were used to compare the toughness of the monolith
and composite. The toughness of the monolith was 3.6 MPaVm, and that of the
composite 15 MPaVvm. The monolithic sample failed catastrophically, whereas
the composite exhibited multi-stage fracture behaviour (Figure 2.2.2-3).

The apparent improvement in toughness was due to geometry rather than
an improvement in the material properties. in the composite sample, a notch cut
to the depth of one of the interfaces allowed the graphite layer to crack
preferentially. The deflection of the (notch) crack along the interlayer effectively
eliminated the notch. Fracture of the remaining portion of the beam then initiated
at a natural flaw in the “next” silicon carbide layer. The toughness was calculated
using Equation 2.1.2-13. The crack size used in the calculation was that of the
notch, but the strength used was due to a natural flaw. The calculated toughness
value is therefore notch size dependent.

The major improvemeﬁt in the properties reported was the work-of-
fracture. The energy absorbed during fracture of the monolithic samples was

62Jim2, while that of the composites was 4625J/m?. The load-deflection curves
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Figure 2.2.2-3. Multi-stage fracture behaviour in silicon carbide/graphite
composites (Clegg et al, 1990). The compliance change at A is due to
delamination of the notched, tensile surface layer. Catastrophic failure of the
first (intact) strong layer occurs at B, followed by alternating crack deflection

along weak interlayers and catastrophic failure of strong layers.
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showed multiple non-catastrophic load drops. This result lead to further work by
other researchers.

The phenomenon of weak interface toughening was first modeled by
Phillipps et al (1993a). They developed a numerical model to predict the
mechanical properties of these composites, based on the properties of their
constituents. The parameters of interest were the critical strain energy release
rates of the strong material and weak interface, the total work of fracture for the
composite, the work of fracture associated with interfacial surface energy, the
strength and modulus of the strong material, and the geometry of the bend tests.

The model (Figure 2.2.2-4) was designed to evaluate the compliance of a
hypothetical composite beam for a given applied displacement. It was assumed
the tensile surface layer failed catastrophically. The possibility of subsequent bulk
or interfacial fracture was then predicted based on competing strain energy
release rates. A Monte Carlo method was used to account for the varying
strengths of layers. Iteration of the computer program allowed the work-of-
fracture to be calculated for a given set of material properties and sample
geometry. The mode! program was run for a variety of material property
combinations. Comparisons were done to optimize the work-of-fracture.

The work provided several insights into the mechanical behaviour of this
type of composite. Iteration of the model suggested increasing the layer strength,

and decreasing the layer thickness and interfacial toughness could
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maximize the work of fracture. The work was also found to be inversely
proportional the modulus of the strong material.

The model was experimentally verified by Phillipps et al (1993b) using
silicon carbide/graphite laminates. The flexural fracture behaviour of the
composite showed good agreement with that predicted by the model (Figure
2.2.2-5). The experimental work of fracture of 146kJ/m’ for a given laminate was
in close agreement with the numerically-predicted value of 150kJ/m3.

The model did not account for cracking of the interfaces before complete
fracture of the tensile surface layers. The stress concentrations associated with
crack propagation in the strong layers will later be shown to influence
propagation of the interfacial cracks.

Folsom et al (1996a) reported similar modeling work. They predicted
composite stress-strain responses for both tensile and flexural tests. For the
flexural test calculations, it was assumed strong layers that failed supported zero
load. This tacitly assumes that the interface toughness is zero, which is
unrealistic, but provides the simplifications necessary to make initial predictions.

Classical beam equations were used to plot two loci; one of the expected
stress-strain relationship prior to fracture of sequential layers of the laminate, and
one after fracture of each layer. They assumed an instantaneous increase in
compliance during fracture at constant displacement, then continued bending
until all layers had failed. The resuit is a “zig-zag" curve that oscillates between

the two loci.
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This curve was compared to the expected stress-strain behaviour of brittle
material subjected to pure tension (Figure 2.2.2-6). The modeling was initially
done assuming a deterministic (known) strength of the layers.

The Weibull modulus was later incorporated to estimate the reliability of
the materials. The work showed the flexural strength of the laminates is
significantly higher than the tensile strength. This is consistent with Weibull
statistics, so the result should not be considered typical of only this class of
composites. More significantly, it was shown that the average work-of-fracture of
the composites (area under the fracture curve) is less dependent on the Weibull
modulus if tests are flexural rather than tensile (Figure 2.2.2-7). This suggests
the reliability of the composites is improved.

The modeling results were validated by work on glass/thermoplastic
adhesive laminates (Folsom et al, 1996b). Glass plates (microscope slides) were
coated in a thin layer of thermoplastic adhesive and stacked to form multi-layered
beams. The samples were uniaxially hot-pressed (175°C, 350kPa) before four-
point bend testing. In some cases the plates were indented with up to 10kg using
a Vicker's indenter prior to bonding, so the layers would exhibit a deterministic
strength. Results of the bend tests were broadly consistent with the predictions of
the modeling work. Figure 2.2.2-8 is a typical stress-strain curve of one of the

four-layer glass/thermoplastic specimens.
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Figure 2.2.2-6. Comparison of the tensile and flexural stress-strain curves of a
system comprising eight brittie layers (Folsom et al, 1994a). The vertical
dashed line and arrow represent catastrophic failure of a monolithic sample
under tension. The curved dotted lines are the loci calculated to envelop the
"zig-zag" behaviour of a brittie laminate containing weak interfaces (or

interlayers).
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Figure 2.2.2-7. Influence of the Weibull modulus on the (a) tensile and (b)
flexural stress-strain response of laminates (Folsom et al, 1994a). The work-
of-fracture (area under the curve) is increased for flexure. The m-values refer
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The work by Folsom et al (1996) confirmed the stress-strain behaviour of
laminates could be predicted by classical beam theory. Their model did not
attempt to predict the criteria necessary for crack deflection, nor the effect of
interfacial properties on the fracture behaviour.

Before 1995, the only engineering ceramic composites to exhibit muiti-
stage failure were silicon carbide/graphite. The combustion of graphite prevents
the use of these materials at high temperature. If structural ceramics are to be
used at temperature, where their refractoriness gives them an advantage over
metals and alloys, the chemical stability problem must be addressed. This lead to
several researchers attempting to design an all-oxide laminate with multi-stage
fracture capabilities.

Bissinger (1995) made zirconia/lanthanum-aluminate laminates by
electrophoretic deposition. Zirconia was selected as relatively tough ceramic
(Ke~5-12MPavm) due to its transformation toughening capabilities. In some
cases alumina platelets were co-deposited to encourage crack deflection.
Lanthanum-aluminate was selected for the interlayers as it's toughness is <20%
that of zirconia, so should show the crack deflecting behaviour predicted by Cook
and Gordon (1964) and He and Hutchinson (1989a). Lanthanum-aluminate forms
in situ during the sintering of alumina and lanthanum oxide mixtures. The
anisotropy of the material results in a platey, porous structure, ideal for crack

deflection.
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The experimentation involved indentation, electron microscopy, strength
testing and (Kc) toughness testing. Indentation parallel to the layers and
microscopy showed the lanthanum-aluminate layers must be 28um to deflect
cracks. Below this thickness the platey grains are constrained, and do not form a
sufficiently porous microstructure for crack deflection. Flexural tests showed an
improvement in strength of alumina platelet reinforced zirconia from 702(+35) to
784(+42)MPa by lamination with lanthanum-aluminate. Similarly, toughness was
increased from 7.08(+0.62) to 8.28(+0.51)MPavm. Despite the apparent increase
in critical stress intensity factor and obvious crack deflection during the tests,
none of the samples failed in a multi-stage fashion. This result suggests factors
other than interlayer toughness must be considered in the design of laminates.

Electrophoretic deposition was also used by Vanderperre et al (1998), to
synthesize silicon-carbide/graphite laminates. Muiti-stage fracture behaviour was
observed during three-point bend testing, and a nominal toughness of
17.7MPavm was reported. This is an improvement over the expected value for
silicon carbide of ~3-4MPavm. Fracture of the surface layer was preceded by
failure of the interlayer by shear. This makes comparisons to other work and the
development of mechanical models difficult.

Mechanical properties of the laminates were studied by performing three-
point bend tests on laminates, and compression tests on laminate rings. Figure
2.2.2-9 is a load-displacement curve for a ring compression test, showing

extensive multi-stage fracture behaviour. The work-of-fracture was not reported.
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Figure 2.2.2-9. Load-displacement curve for a laminated ring compression test
(Vanderperre et al, 1998). Load is applied to the ring across its diameter.
Stress distribution within the sample is complex, and can not be easily

compared with a simple three-point bend test.



80

Oeschner et al (1996) attributed crack deflection to thermal residual
stresses developed when cooling from sintering to room temperature during
processing. Earlier work by Ho et al (1995) showed residual stresses can cause
cracking at the surface edges of interlayers, parallel to the layers (see Figure
2.2.2-10). This occurs only if the compression in the interlayer is high and the
interlayer thickness is over a critical value determined by the properties of the
material, that is;

GcE
te = (2.2.2-1)
€ o3di-vi B2

where {¢ is the critical interlayer thickness, or the residual thermal stress in the
interlayer, and the other terms refer to the bulk material. They predicted crack
bifurcation would occur only if the interlayer thickness were above this critical
value.

Oeschner et al (1996) achieved multi-stage failure in zirconia/alumina
laminates. Bend tests were performed on laminates consisting of alternating thick
zZirconia layers and thin, mixed alumina/zirconia layers. In this case the
interlayers were subjected to an estimated ~ 2GPa of compression. They
reported a correlation between successful crack bifurcation and interlayer
thickness. The experimental results supported their predictions. The testing of
samples that had notched surface layers was stopped mid-test to examine crack
deflection. The role of the notch in the fracture behaviour was not investigated.

The Oeschner predictions were supported by the work of Hatton (1998).



free surface

Figure 2.2.2-10. A schematic of the tensile stress at the free surface of an
interlayer under thermal residual compression (Oeschner et al, 1996). The
white layers are under tension, the dark layer under compression. The oy

stress causes edge cracking along the free surface of the interlayer.
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Various composites consisting of thick zirconia layers and thin alumina layers
were bend tested at both room and elevated (~1300°C) temperature. Several
samples showed multi-stage fracture behaviour at room temperature, depending
on the layer thickness combinations selected. None of the samples exhibited
multi-stage fracture at high temperature. These results supported the Oeschner
work, which predicts catastrophic failure due to lack of thermal stresses to deflect
the crack along the interiayer.

At room temperature zirconia has a strength of ~900MPa, whereas
alumina has a strength of ~500MPa. The Hatton composites consisted of
stronger, thick layers of zirconia and weaker, thin layers of alumina. At
temperatures ~1300°C the relationship is reversed, zirconia has a strength of
~150MPa and alumina has a strength of ~300MPa. This means that the
composite consisted of weak thick layers and strong thin layers. This change was
not discussed, and questions the validity of the comparison.

The Oeschner prediction was also supported by Sénchez-Herencia et al
(1999), who performed bend tests on laminates consisting of thick layers of
tetragonal zirconia and thin layers of mixed tetragonal/monoclinic zirconia. This
combination was selected as it allows both the layer thickness and the residual
thermal stresses to be varied. The stresses were varied by changing the
tetragonal-to-monoclinic zirconia ratio in the interlayer. The tests were performed

at room temperature.
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The zirconia composite resullts also supported the Oeschner work. Both
layer thickness and thermal residual stress affected the fracture behaviour. The
results of bend tests performed on a variety of composites were plotted to
demonstrate the cracking behaviour as a function of thermal residual stress
(which relates to interlayer composition) and interlayer thickness (see Figure
2.2.2-11).

Three regions of cracking behaviour were identified. The delamination
region represents conditions that cause catastrophic failure during processing.
The high monoclinic zirconia content in the interlayers leads to high residual
compression on cooling from the higher processing temperature. The high
residual stress and relatively thick interlayer cause cracks that propagate through
the entire composite. These samples could not be bend tested. The other two
regions represent the difference in cracking behaviour predicted by Equation
2.2.2-1. If the monoclinic zirconia content in the interlayers is low (the left side of
the figure), the thermal residual stresses developed in the interlayer are
insufficient to cause surface cracking and bifurcation. A higher monoclinic
zirconia content (the right side of the figure) causes edge cracking and
bifurcation, for a given interlayer thickness. It was reported there was no
significant affect on composite strength.

The tetragonal-to-monoclinic ratio will not only affect the thermal stresses,
but will also affect the strength of the interlayer. This was not considered.

Monoclinic zirconia is very weak due to a phase transformation that occurs
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Figure 2.2.2-11. A summary of the cracking behaviour of zirconia composites
(Sanchez-Herencia et al, 1999). The three region predict (fatal) delamination
during processing, edge cracking and bifurcation, or neither edge cracking nor

bifurcation.
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during processing. This will be discussed later. The affect of the changing
interlayer strength on the fracture behaviour was not considered.

Lee et al (1996) showed the assumption that the main crack reaches the
weak interface before bifurcation occurs is incorrect. The stress intensity in the
vicinity of a main crack tip is high enough to cause propagation in weak interface
cracks before the main crack arrives at the interface. This was first noticed by
ignat and Clegg (1995), and Lee (1996).

Lee et al (1996) studied the pre-cracking phenomenon by wedge loading
PMMA laminates. The wedge loading allowed cracks to propagate stably, and
allowed observation of interface cracking behaviour (Figure 2.2.2-12). The results
showed the interface fracture energy could be as high as ~60% that of the strong
layers and bifurcation would occur. Wedge loading provides a stress
concentration at a crack tip that is different to that of uniaxial tensile loading or
bending. In the former case, a wedge is physically driven into the crack, so the
crack surfaces are subjected to compression. In the latter case, the loading is
remote and the crack surfaces remain traction free.

Lee et al (1996) supported their experimental work with finite element
analysis. Meshes were developed to simulate wedge loading, tension, and three-
and four-point bending. Eight-noded bi-quadratic elements were used for the bulk
of the mesh, with quarter-point node elements used to simulate the crack tip
stress singularity. The finite element calculations under-estimated the interface

crack driving forces. Phase angle calculations were broadly consistent with



Figure 2.2.2-12. A photograph showing pre-cracking of an interface ahead of a
main crack (Lee et al, 1996). The PMMA sample has a notch on the top
surface. The darker, central region, is a (pre-) crack plane between two strong

layers in the laminate.
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comparable predictions made by Suo and Hutchinson (1990).

Kuo and Kriven (1997) achieved successful multi-stage fracture in a
composite consisting of zirconia, mixed zirconia/alumina, and weak yttrium
phosphate layers. The alumina was added to modify the thermal expansion of
the zirconia layers and prevent cracking during processing. One of the laminates
tested had a strength of 358MPa, and an apparent work-of-fracture of 8.2kJ/m?
due to multi-stage fracture behaviour (Figure 2.2.2-13). This strength is lower
than monolithic zirconia (~900MPa) due to thermal residual tension. The
advantage of this material is the work-of-fracture was ~2x that of monolithic
zirconia. Data was quoted for one four-point bend test, so the reliability of the
work must be questioned.

Kovar et al (1998) studied crack propagation and deflection in silicon
nitride/boron nitride laminates. The strong layers were silicon nitride, and the
weak interlayers consisted of varying ratios of silicon nitride and born nitride. A
strength of 500MPa and work of fracture of 5000J/m? were achieved. It was
shown that the composition of the interlayer had a significant effect on the
mechanical behaviour (Figure 2.2.2-14). Samples with tougher interlayers
exhibited less multi-stage fracture.

Kovar et al (1998) also incorporated the predictions of He et al (1991) into
their work to differentiate between crack kinking and delamination. Kinking
occurs when a crack deflects along an interface briefly, but does not prevent

catastrophic failure. Delamination involves extensive crack deflection and multi-
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Figure 2.2.2-13. The load-displacement curve for a yttrium phosphate-zirconia-
alumina laminate (Kuo and Kriven, 1997). Crack deflection along the weak
yttrium phosphate interlayers lead to multi-stage fracture behaviour, and a

significant improvement in the work-of-fracture.
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Figure 2.2.2-14. Load-displacement curves for silicon nitride/boron nitride
laminates (Kovar et al, 1998). The compositions of the interlayers were 80%,
50%, 25% and 10% silicon nitride, with the balance boron nitride. A higher

(weak) boron nitride content lead to crack deflection, and multi-stage fracture

behaviour. The strength of samples was consistent.
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stage fracture. The behaviour was shown to be dependent on the toughness of
the interlayer, and the critical flaw size in the (strong) material (Figure 2.2.2-15).
Samples with stronger interiayers and/or large critical flaws exhibited crack
kinking (right side of figure), whereas samples with weaker interlayers and/or
small critical flaws exhibited delamination (left side of figure). This work is
consistent with the idea that stronger interlayers resist cracking and limit
toughening ability.

Mawdsley et al (2000) studied crack deflection behaviour in
alumina/monazite (LaPO,) composites. Laminates were tested in four-point
flexure. Un-notched laminates exhibited catastrophic failure despite apparent
crack deflection. Notched laminates exhibited sporadic crack deflection, and
failed non-catastrophically (Figure 2.2.2-16). Mawdsley et al (2000) predicted the
fracture behaviour of their system; similar to the technique used by Kovar et al
(1998) (Figure 2.2.2-15). They predicted no crack deflection if the interlayer

toughness was more than half that of the strong layers (Figure 2.2.2-17).
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Figure 2.2.2-15. Predicted fracture behaviour as a function of critical flaw size
and interlayer toughness (Kovar et al, 1998). The I'"'s are toughness values

for the weak interlayer and strong silicon nitride layers.
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Figure 2.2.2-16. A load-displacement curve for a notched alumina/monazite
laminate (Mawdsley et al, 2000). The weak monazite interlayers lead to crack

deflection, and multi-stage fracture behaviour.
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Figure 2.2.2-17. Predicted fracture behaviour as a function of flaw size and

interlayer toughness (Mawdsley et al, 2000). The I"’s are toughness values.
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2.3 Composite Materials

2.3.1 Powder Processing of Ceramics

The powder processing of ceramics is important to their final properties.
Several common techniques exist; slip casting, pressure casting, tape casting
and centrifugal casting. The process used for this work was electrophoretic
deposition, which is a recently developed technique for ceramic laminates. Each
method involves mixing of a slip (or suspension), shaping of a part, and finally
sintering of the green ceramic to form a dense material.

The goal of all powder processing techniques is material homogeneity, in
the shape necessary for a given application. For structural ceramics, the most
important feature is the distribution of unavoidable flaws. While these flaws can
never be eliminated completely, every effort is made to ensure that the flaws are
as small as possible, to provide the maximum possible strength. A small powder
size results in a fine structure of pores and grains. This leads to small flaws and
high strength. The starting powder size is therefore important to the final
properties. A fine powder also allows the material to be sintered at a lower
temperature or for shorter times, which is industrially favourable. Finer powders
are expensive, so are only used for critical components.

The powder is mixed with water or organic materials, then milled to break
up agglomerates and ensure a finer grain size. The resulting suspension may be
stabilized by adding salts or polymers. Particles are mutually repelled by

coulombic forces or steric hindrance respectively.
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Electrophoretic-deposition (EPD) is a processing technique developed in
the nineteenth century (Ruess, 1837), that has only recently been exploited in the
fabrication and design of engineering ceramics. The technique has some
advantages over other processing routes. EPD is quick, relatively inexpensive,
and can be used to form various shapes. Its principal advantage is that it can be
used to make variety of ceramic composites; particle-, platelet- or fibre-reinforced
materials, laminates, and functionally graded materials.

A slip is mixed using the powder and a suspension medium. Most
powders that have previously been used have been oxides, though there has
been recent work on silicon carbide (Vanderperre et al, 1998) and silicon nitride
(Fukada, 2001). The suspension medium must have a high dielectric constant for
the electrophoresis, so water or alcohol is used. The slip is stabilized using either
acid or base. lons dissociate in the liquid, and adsorb onto the particles
according to;

MOH +H* - MOHj; (acid) (2.3.1-1)
or
MOH +(OH)” > MO~ +H,0 (base) (2.3.1-2)
where MOH is a metal oxide particle containing a naturally adsorbed hydroxide
ion, and H* and (OH)" are dissociated ions from the acid or base. The resuit of

the adsorption is that the particle is charged, either positively or negatively. The

like charges in the suspension repel and prevent particle agglomeration.
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The electrophoretic-deposition occurs when two electrodes are immersed
in the suspension, and a DC current passed between them (see Figure 2.3.1-1,
Sarkar and Nicholson 1996). Electrophoresis is the movement of particles within
a suspension under the influence of an applied electric field. The particles move
to the either the cathode or the anode, depending on their charge. A dense cake
forms on the deposition electrode. When the desired thickness of deposit is
achieved, it is removed from the suspension, then dried and sintered.

One advantage of the EPD process is that the thickness of layers
can be tailored. The mass of ceramic deposited is proportional to the charge
passed, so timing the process can control thickness. If a laminate is required, two
or more different suspensions are prepared, and the electrodes alternately
immersed in each. Different particles types deposit at different rates (Whitehead
1994, Bissinger 1995), and so rate calibration is necessary if specific thickness of

layers in the laminate is required.

2.3.2 Zirconia/Lanthanum-Aluminate Composites

Zirconiaflanthanum-aluminate composites were designed by Bissinger
(1995) in an attempt to achieve multi-stage fracture behaviour. Zirconia
(zirconium oxide, ZrQ2) became popular as a structural ceramic after the
discovery of transformation toughening (Garvie et al, 1975). Effective control of

the microstructure can be used to produce ceramics with a room temperature
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Figure 2.3.1-1. A schematic of an EPD cell (Sarkar and Nicholison, 1996).
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strength over 2GPa, and toughness of up to 35MPavm (Green, 1998). The
toughening technique relies on a phase transformation in the material during
fracture.

Zirconia has three stable phases. It is monoclinic at room temperature,
tetragonal at ~1000-1500°C and cubic over ~1500°C. The structure is that of
face-centred “cubic” zirconium atoms, with oxygen at the eight tetrahedral
interstitial sites (see Figure 2.3.2-1). Transformation of the phases leads to
significant strains. The most important of the transformations is tetragonal to
monoclinic, which involves a ~4% volumetric strain. This strain is sufficient to
cause fatal cracking of zirconia during processing, unless the material is
stabilized appropriately.

Zirconia ceramics are doped using yttrium, calcium, magnesium or cerium.
The amount and type of dopant influences the temperatures at which the
transformations occur. The tetragonal phase can be stabilized at room
temperature. The result is either partially stabilized zirconia (PSZ) or tetragonal
zirconia polycrystals (TZP). Alternatively, the material is heavily doped to
produce a stable cubic phase at room temperature.

The presence of the tetragonal phase at low temperature is critical to the
toughening mechanism. If the material is stressed, the stress concentration at the
tips of microscopic cracks in the material is enough to induce the transformation

to the monoclinic phase. The transformation requires a volume increase that is
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Figure 2.3.2-1. The crystal structures of the three phases of zirconia; (a)

monoclinic, (b) tetragonal, and (c) cubic (Green et al, 1989). The black circles

are zirconium atoms, the white ones oxygen.
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constrained by surrounding grains. During the transformation, the new monoclinic
phase is subjected to large compressive forces that act to close the crack. This
reduces the effective stress acting on the crack, and nominally toughens the
material. The grain size in the material must be below a critical radius to prevent
the transformation from occurring spontaneously.

The transformation toughening technique also strengthens the ceramic.
The grains on the surface of the material are not constrained on all sides by
neighbouring grains, which can allow transformation. The resulting compressive
stress closes surface cracks. Fracture of the material then requires an “extra”
stress to negate this residual stress.

The zirconia used in this work was 3 mole% yttrium doped (TZ-3Y).
Bissinger (1995) previously characterized this material, made by EPD. A (room
temperature) strength of 935+54Mpa, a toughness of 5.5 MPavm, a Young's
modulus of 221.8+2.5GPa, a Poisson ratio of 0.31, and a thermal expansion
coefficient of 11.3u/°C were reported.

Lanthanum-aluminate (La203 11Al203) is a B"-alumina type structure that
forms in situ during the sintering of lanthanum oxide and alumina powder
mixtures. The ceramic forms long, platey grains as a result of the crystallographic
anisotropy. The random orientation of these grains leads to a porous structure,
which is advantageous if the material is to be used as a weak interlayer.

Lanthanum aluminate densities of only ~77% theoretical were achieved by
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Bissinger (1995), even after sintering at 1550°C for six hours. A flexural strength
of 100+30MPa and an elastic modulus of 112GPa were reported.

Composites were made by immersion of the deposition electrodes
alternately in appropriate suspensions of zirconia and lanthanum aluminate. This
technique was used by Bissinger (1995) to fabricate muitilayer laminates with a
zirconia layer thickness of ~200-300um and a lanthanum aluminate interlayer
thickness of ~10um. Bissinger added alumina platelets to the zirconia
suspensions. The difference in elastic and thermal properties leads to crack
deflection. The crack deflection does not prevent catastrophic failure.

In the present work, the EPD technique is used for composite fabrication,
but only single interlayers are used in the laminates. The strong layers are
zirconia (TZ-3Y). The weak layers are lanthanum-aluminate/alumina, with the
same composition as the materials produced by Bissinger. Alumina platelets
were added to seed the growth of the lanthanum-aluminate grains and elongate

pores for added weakness.

2.3.3 Glass/Epoxy Composites

Folsom et al (1996, Il) showed that multi-stage fracture is possible in
glassithermoplastic adhesive composites. This is a practically convenient way to
fabricate samples in a quick and consistent manner. Indentation of the glass

slides prior to bonding allows better control of the strength of individual layers.
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Glass behaves in a purely brittle manner, and the adhesive interlayers are
sufficiently thin to allow brittle behaviour. Fracture has been shown to follow the
trends predicted by elastic calculations (as discussed Section 2.2.2).

Fleck et al (1991) considered the propagation of cracks in brittle adhesive
layers, in a manner similar to the theoretical work of He and Hutchinson (1989b).
The calculations showed that interlayer cracks tend to remain trapped if the
residual stresses are minimal. The crack may oscillate between interfaces or
propagate within the interlayer, but will not deflect out unless there are extreme
residual stresses or loading conditions. The theoretical predictions were
consistent with the experimental results of Cao and Evans (1989), Chai (1987),
and Wang and Suo (1990).

Glass/epoxy composites have also been used in the present work. This
allows the study of a system in which there are no (or negligible) thermal residual
stresses. It is assumed that the temperature change in the epoxy due to
polymerization is minimal. Residual thermal stresses were used as the basis of
the crack deflection model proposed by Oeschner et al (1996). The multi-stage
fracture behaviour exhibited by glass/epoxy composites suggests other factors
are important. The thermal residual stresses are only important in that they
induce large cracks, which weaken the interlayer. The interlayer weakness is
acknowledged as being an important feature of this class of materials.

The two componenets of the glass/epoxy system have a large difference

in elastic moduli; glass is ~25x stiffer than epoxy (~65-75GPa versus ~2-5GPa).
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In this work, the effect of the modulus on the fracture behaviour is assumed
negligible, so the difference is not included in the calculations. This will be

discussed in detail in Chapter 3.

2.3.4 Plaster-of-Paris Composites

Plaster-of-Paris was used by Szymanski* (2000) to study crack deflection
along porous interlayers. Plaster forms when calcium sulfate hemi-hydrate is
mixed with water;

CaS0..%H20 + 1%H20 —» CaS04.2H.0 (2.3.4-1)
The properties of plaster vary with water content, but one can expect a flexural
strength in the range 3-8MPa, a toughness of 0.14-0.16MPavm, and a modulus
of 4.5-8GPa (CMS Software, 1994). The advantage of using this material is that
composites can be made with neither modulus difference or thermal residual
stresses. Samples are easy to fabricate, and properties such as interlayer
strength and sample geometry can be readily adjusted.

Szymanski (2000) made both monolithic and composite plaster samples.

Composites were made by inserting a row of straight wires into the mold before

* The work by Szymanski (2000) was a collaborative project with the author. The
experiments were designed to parallel the author's work with zirconia/lanthanum-

aluminate and glass/epoxy composites.
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pouring in the pre-mixed plaster slurry. The wires were removed after curing, to

leave a uniform row of holes. The mold was designed to allow the #h ratio of the

sample to be adjusted (where Zis the distance between the tensile surface and
interlayer, and h the total height of the sample — see Figure 3.1-2). A hacksaw
was used to cut notches of various depths into the tensile surface of the samples.

The strength of the monolithic plaster was 5.4(+0.7)MPa. Notches of 4 and
6mm reduced the strength to 2.0(+0.1) and 1.8(+0.2)MPa respectively. A
toughness of K¢ =0.25(+0.02)MPavm was calculated, based on the notched
sample bend tests. The weak layers had no significant effect on strength. For
samples with a 4mm notch and a weak layer 6mm from the tensile surface, a
strength of 1.7(+0.4)MPa was reported.

The catastrophic and multi-stage behaviour of the composite samples

showed a distinct trend. Samples with small notches and/or large #h ratio failed

catastrophically. Sample with large notches and/or small #h ratios showed multi-
stage fracture behaviour (Figure 2.3.4-1).

A delamination test (a la Charalambides et al, 1989) was attempted to
determine the critical strain energy release rate of the weak layers. All samples
failed catastrophically, so no value was calculated. A toughness of Gc=8.9J/m?
can be calculated, based on the Kic and measured modulus (7GPa) of the

plaster.
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Figure 2.3.4-1. The fracture behaviour of plaster-of-Paris composites (data
from Szymanski 2000). Two behaviour zones are evident; a catastrophic zone
(upper left), and a multi-stage fracture zone (lower right). The central region is

a mixture of behaviour.



106

Samples were also subjected to thermal shock tests. After heating for
three hours at 100°C and quenching, the strength reduced to 2.7(+0.7)MPa.
Results revealed the interlayers crack stably during quenching. This suggests
multi-stage fracture behaviour can be encouraged by service conditions. The

strength degradation remains a problem.
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2.4 Finite Element Analysis

Fracture mechanics modeling requires several simplifications and
approximations to make predictions possible. An alternate approach is finite
element analysis, which produces accurate predictions for complex geometries.
The technique is purely mathematical. It allows one to define a complex
geometric shape, simulate applied loads or displacements, and calculate the
resulting displacements or loads (respectively) based on the elastic properties of
the chosen material. The displacements are in turn used to calculate stresses
and strains in various parts of the shape.

The finite element method involves mathematically defining a shape that is
sub-divided into many smaller elements to produce a "mesh". The elements can
vary in shape, but in the present work square elements (constant strain
quadrilaterals) are used for all the calculations. The square elements have nodes
at the corners that are subjected to simulated loads or displacements, in both the
horizontal and vertical directions. The relationship between the loads and
resulting displacements (or vice versa) is determined by the elastic properties of
the material, and is expressed as an 8x8 stiffness matrix, [K]. The deformation of
each element is described using eight load components and eight displacement
components (for two directions and four nodes). To satisfy Hooke's law, the
matrix and two vectors are related by;

=Kk (2.4-1)
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where fand a are the load and displacement vectors, and [K] the elemental
stiffness matrix (Stolle, 1999).

Neighbouring elements share nodes, so must have equivalent loads and
displacements. This allows construction of a global stiffness matrix, which
represents the behaviour of the entire shape. Simulated loads or displacements
can then be applied, and the matrix soived for the unknowns. Considering
elements not having shared nodes can simulate cracks.

Estimated errors are important to finite element calculations. There are
two main techniques that are used to improve the accuracy. The first is to use
high order elements; that is, elements with a greater number of nodes. This
allows the displacements of the nodes to vary parabolically or cubically within
each element, which gives them greater versatility in situations with complex
stress and strain gradients. Higher order elements require more complex
meshing and involve larger matrices, which leads to longer computing times. An
alternate route is to use more elements. This also leads to larger matrices and
longer computing times, but mesh generation remains simple.

The present work involves the calculation of fracture criterion for brittle
laminates that contain weak interlayers. The are two ways finite element analysis
can be used to assist in these calculations; direct methods, and indirect methods
(Broek, 1982).

Direct methods involve calculation of stress intensity factors at crack tips.

Stresses in the neighbourhood of the crack tip are calculated using finite element
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methods, and the stress intensity at the crack tip determined using Equation
2.1.6-9. Theoretically, the stresses at the tips of sharp cracks are infinite. The
finite element method can not yield an infinite solution, so stresses are limited to
a finite value. Stress values in the neighbourhood of the crack tip are under -
estimated. The technique requires extrapolation to determine the stress intensity
at the crack tip, so there is an error associated with the calculated value.

Refining the mesh near the crack tip can mitigate the error associated with
direct methods. The increased number of elements allows the sharp stress
gradient at the crack tip to be better modeled. Chan et al (1970) calculated the
stress intensity factor at a crack tip in a compact tension specimen using direct
methods, and studied the effect of mesh refinement on the accuracy of the
solution. Increased mesh refinement led to a more accurate result, but the
theoretical solution (determined by collocation) was not achieved. A discrepancy
of ~5% was reported (Figure 2.4-1).

Hybrid elements have been developed, which calculate stress intensity
factors directly (Walsh, 1971). The elements are designed to relate nodal
displacements to a stress intensity factor, rather than a series of loads. These
elements require complicated meshing in the neighbourhood of the crack tip. The
technique produces more accurate results than mesh refinement.

Indirect methods involve calculation of strain energy using finite element
analysis. The strain energy release rate can be determined by calculating the

strain energy for two crack sizes, and dividing the difference by the crack size
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Figure 2.4-1. The effect of element size on accuracy of K for a compact
tension specimen (Chan et al, 1970). Each curve represents a calculated
stress intensity as a function of distance from the tip. The crack tip stress
intensity is the (extrapolated) intercept on the ieft axis of the figure. Cases 1 to
5 use an increasing number of elements in the calculation. None reach the

expected value given by collocation.
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increment. The stress intensity is related to the strain energy release rate using
Equation 2.1.2-14.

This technique was first developed by Mowbray (1970) to calculate the
stress intensity of cracks in a single edge notch in tension. Errors as low as 0.2%
were achieved using a moderately coarse mesh. No refinement was necessary
at the crack tip. There are two reasons for the accuracy. The first is that stress
under-estimation (as in the direct methods) is avoided by not calculating the
stresses. Calculations based on the strain energy are accurate, as small errors
are balanced out over the entire mesh. The second reason for the accuracy is
that strain energy calculations converge to the correct solution much more
quickly than stress calculations. Energy calculations are inherently more accurate
than stress or strain calculations, for a given mesh size.

Indirect methods do have limitations. There is error associated with the
differentiation procedure. The magnitude of this will vary with complexity of the
shape of interest and the regression equation used to fit the calculated energies.
Another problem is, if a crack is subjected to shear, the fracture modes (I and |l)
can not always be separated from the single strain energy release rate

calculated.



112

2.5 Thesis Objectives

Several researchers have shown it is poésible to incorporate weak
interlayers into ceramics to give them non-catastrophic fracture behaviour. This is
a major improvement in their mechanical properties. Various researchers have
predicted the criteria required to achieve muiti-stage fracture behaviour, but each
model is incomplete. The interfacial toughness guideline proposed by Cook and
Gordon, and later supported by He and Hutchinson, failed the
zirconiaflanthanum-aluminate laminates designed by Bissinger. The thermal
residual stress model proposed by Oeschner et al does not account for multi-
stage fracture in glass/epoxy laminates. Itis true the thermal residual stresses
will increase the flaw size in the interlayers, but this will not necessarily
guarantee crack deflection. The supporting work by Hatton, and Sanchez-
Herencia et al, fails to adequately account for the effect of interlayer strength on
fracture behaviour.

The aim of the present work is to develop a model that will predict
catastrophic or multi-stage fracture in laminates containing weak interlayers,
which is effective for all composites. The important parameters considered in the
model are the testing geometry, the two materials’ mechanical properties, and
the flaw sizes in the materials. It is proposed that three separate flaw sizes have
an influence on the fracture behaviour; the surface layer crack size, the interlayer
crack size, and the crack size in the “next” layer in the composite. As three

cracks influence the behaviour, reliability is expected to be an important issue.
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Several assumptions must be made to make the problem manageable, and
these are acknowledged.

The model does not consider the effect of thermal or elastic mismatch,
and it is assumed the interlayers are thin enough to be treated as interfaces. This
will be discussed in Chapter 3. The composite is treated as a material containing
a two-dimensional plane that has a lower toughness. The stress distribution in
the composite during loading will be equal to that in a monolith, except for the
presence of interlayer cracks.

The model presumes that during catastrophic failure of the surface layer of
a composite during flexural testing, the stress concentration in the vicinity of the
propagating crack is sufficient to cause pre-cracking of the interlayer. This pre-
cracking was experimentally shown by Lee et al, and will be shown to be
theoretically justifiable. The model then considers the extent of pre-cracking
necessary to reduce stress concentration in the next layer in the composite, to
prevent total catastrophic failure.

A "quasi-static", or "kinetic", approach has been used. The calculations
account for changing strain energy release rates of cracks during their
propagation, and the complimentary changes in kinetic energy. The technique
does not consider the effects of the inertial effects of material at the crack tip, or
the effect of shock waves in the system.

The model has been developed using standard fracture mechanics

equations, with complimentary work done using finite element analysis. These
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approaches are self-consistent, and provide similar predictions. Experimental
work has been done using three different composite systems to demonstrate the
versatility of the model. The three systems are;
i) zirconiaflanthanum-aluminate (elastic mismatch and thermal residual
stresses),
ii) glass/epoxy (elastic mismatch, but no thermal residual stresses), and

iii) plaster-of-paris (no elastic mismatch, and no thermal residual stresses).

The work has important implications on the future design of composites
consisting of weak interiayers. The objective is to understand the brittle fracture

behaviour of this class of materials to allow for design of strength and reliability.



Chapter 3. Modeling

3.1 Mathematical Modeling Using Fracture Mechanics

This modeling work is an attempt to explain the observed fracture
behaviour of ceramic laminates that contain weak interiayers. The attempts of
other researchers have failed to give consistent predictions of whether a given
sample will fracture in catastrophic or multi-stage manner. The work of Cook and
Gordon (1964), Kendall (1975) and He and Hutchinson (1989a) used theoretical
calculations to determine a critical interface toughness ratio required for crack
deflection. This criterion was not sufficient to promote multi-stage fracture in the
zirconia/lanthanum aluminate laminates fabricated and tested by Bissinger
(1995). The predictions based on thermal residual stress measurements
proposed by Oeschner et al (1996) fail to explain the fracture behaviour of
glass/epoxy composites.

The focus of this work is a consideration of the cracks involved in the
fracture process. It is important to realize that crack deflection within a weak
interlayer is only half of the solution to the problem of catastrophic failure. Multi-
stage fracture behaviour is only possible if all other cracks in the material are

prevented from propagating unstably. This modeling work deals with three
115
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different cracks; (i) the main (“primary") crack responsible for failure of the
surface layer of the composite, (ii) the weak interlayer crack ("secondary"), which
reduces load significantly during deflection, and (iii) the (“tertiary") crack in the
next strong layer, which must be prevented from propagating. These cracks are
shown schematically in Figure 3.1-1.

If a weak layer is sufficiently thin (~1% of beam thickness) it can be
treated as a weak interface. The difference in moduli of the two materials will
have a negligible affect on the overall stiffness of the beam, so it can be ignored
in the load/deflection calculations. The composite is treated as a monolithic
material that contains a two-dimensional plane of weakness. Crack tip stress
concentrations surrounding the main crack, the effect of modulus mismatch, and
thermal residual stresses must all be considered before the simplification can be
made. The approach is legitimate only for thin interlayers and/or relatively large
interlayer crack sizes.

The stress perpendicular to the layers is important to fracture behaviour
as it is responsible for opening cracks in the weak interlayer. Stresses must be
equal on either side of the (two-dimensional) interfaces between materials, to
ensure mechanical equilibrium. If the interlayer is thin there is a negligible
change in this perpendicular stress across the interlayer. Thermal residual
stresses are zero in this direction.

The stress parallel to the layers affects propagation of the main crack,

but does not affect the weak interlayer cracks. The thermal residual stresses



“Next” Layer Crack

!

'

117

\4

Weak Interlayer Crack

Figure 3.1-1. A schematic of the three cracks under consideration in the

modeling work.
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in the strong layers are negligible, due to the thickness ratio of the composites.
This will have no significant effect on the overall strength of the composite.
Thermal residual shear on the interlayers can also be neglected. Shear forces
act in the same direction on either side of the interlayers. Therefore, the shear
stress changes sign across the interlayer. In the centre the shear stress is zero.
in this modeling, it is assumed the three cracks are all in the centre of
the beam. This is not always correct, but is necessary to simplify the problem.
The entire inner span is subjected to the maximum calculated stress during four-
point bend testing. If the surface layer fails at the centre of the beam, either by
chance or due to indentation, the calculations are relatively accurate. If the
surface layer fails near to one of the loading pins, the calculations are less
accurate due to the asymmetry of the geometry. The positions of the weak
interlayer and "next" strong layer cracks have a comparable influence.

All three cracks will affect the fracture behaviour of the composite. The
primary crack governs the overall load/stress on the material before fracture. it
will be shown this crack also influences the initiation of the weak interlayer crack
propagation. The secondary crack determines the weakness of the interlayer,
and therefore influences the extent of deflection. The tertiary crack determines
the strength of the "next" layer in the laminate. This final crack is perhaps the
most critical, in that it must not propagate if multi-stage fracture is to be achieved.

Flaw sizes are difficult to control, so fracture mechanics modeling can only
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predict trends in behaviour. The statistical nature of flaw size distributions can
have a significant effect.

Consider a composite "sandwich”, consisting of two strong layers with
an infinitely thin weak interlayer, as shown in Figure 3.1-2. The interlayer is
treated as a two-dimensional plane (or interface) of low toughness material. It is
assumed the interlayer is sufficiently thin to ignore its modulus in both beam
calculations and crack tip stress fields, as discussed earlier. Before fracture of
the first layer, the composite can be analyzed as a monolithic beam subjected to
a four-point bend test. The deflection of the beam for a given load can be
calculated using classical beam mechanics (Timoshenko and Gere, 1973);
_pp

)
8Ebh3

(3.1-1)

where & is the deflection of the loading points, Py the load at the onset of fracture,
L the outer span, b the breadth and h the height. In this case the inner span is
half the outer span.

The load experienced by the material drops during fracture of the
surface layer and its subsequent delamination. The change is effectively
instantaneous, so calculations assume a constant deflection. The new load on
the cracked beam can be approximated using classical beam mechanics. The
calculation ignores stress concentrations associated with the initial deflection of
the crack, and assumes zero stress in the delaminated portions of the cracked

layer.
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Figure 3.1-2. A schematic of an uncracked composite "sandwich”. The beam
is long and slender enough (L/h28) to use classical beam equations in the

analysis; shear in the centre span is zero.
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The beam is now treated as three sections, as shown in Figure 3.1-3.
The three sections are defined by x, the distance along the beam from its centre
point. Consider; (i) the central cracked region, where 0<x<c, (ii) the central
uncracked region, where c<x<L/4, and (iii) the outer span, where L/4<x<L/2. Note
that for this derivation c<L/4.

For Region 1 (using classical beam mechanics),
M =—= (3.1-2)

where M; is the moment acting at the point x, and P, the load on the beam after
cracking. This leads to;

M, __ 3Plx

- +C (3.1-3)
El,  2Ebh-0)°

6 =]

and

2
31 =HM1dx2 = 3PpLx +Cix+C, (3.1-4)

El 4Eb(h - £)°

where 6; is the slope of the beam and J; the deflection of the beam at point x, /1
the second moment of area, # the thickness of the surface layer, and the C's are
integration constants. Note, the subscript denotes the region under

consideration.

Similarly, for Region 2;

M, = -2~ (3.1-5)
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Figure 3.1-3. A schematic of a cracked composite "sandwich”. Although
similar in geometry, this is not the same as the work of Charalambides (1989).
This case considers the load drop during catatstrophic failure and subsequent
delamination of an un-notched surface layer, at constant deflection.
Charalambides considered the steady state strain energy release rate of a cut-

through surface layer, at constant load.
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Mz - 3P2Lx +

0, = [—=dx C 3.1-6
2= L% = 25 T O 3.1
M 2
82 =H——£dx2 =3—P&’—‘5—+C3X+C4 (3.1-7)
EI, 4Ebh
and Region 3;
_Bh(L_
M; = 2(2 x) (3.1-8)
M 3P,x2  3P)Lx
e = -—3dx=——-l—+—2-—+C 3'1'9
3=l El Ebh®  Ebh’ @19
M3, 2 Ppx® 3P)Lx?
83 =[f—dx* =-——+ 3 +Csx+Cs (3.1-10)
El3 Ebh®>  2Ebh

The integration constants can be calculated by equating the deflections and
slopes of Regions 1 and 2 at x=c, and Regions 2 and 3 at x=L/4. The slope is
zero at x=0 (symmetrical beam) and the deflection zero at x=L/2. The change in
load during instantaneous fracture can be calculated;

5. ! (3.1-11)

51 3c( h3 J
1+— -1
L{(h-¢’

Note that the equation is not valid for c=0. The maximum relative stress on the

centre span of the beam becomes;

92 (3.1-12)
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It is this stress which is critical to the fracture behaviour of the composite. if the
stress o2 is greater than the fracture stress of the centre span, the next layer in
the laminate will fracture, regardless of the crack deflection. The strength of this
region varies, depending on the flaw size distribution in the material.

The extent of interlayer cracking clearly has a major effect on the
behaviour of the material. Significant cracking reduces the load (and stress) on
the material, which encourages multi-stage fracture. However, if the interlayer
cracking is minimal, the region of material subjected to high stress is small. Small
stressed regions are, on average, stronger than large stressed regions
(according to Weibull statistics). This indirectly encourages multi-stage fracture.
The complex stress field in the region of the crack tip in the initial stages of
deflection complicates the calculation of the balance point of these offsetting
effects.

It is possible to calculate the extent of weak interlayer cracking
necessary for multi-stage fracture based on the relative strengths of the two

layers. Manipulation of Equation 3.1-12 yields;

hz
o)
(°J _Llog \®-8 (3.1-13)
cnt

where (¢c/L). is the critical extent of weak interlayer cracking necessary for multi-
stage fracture, and on and or the strengths of the surface and "next" layer

respectively. Figure 3.1-4 is a plot of the critical (c/L) ratio as a function of the
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Figure 3.1-4. The critical (c/L) ratio for multi-stage fracture as a function of
layer strength ratio. The stronger the next layer in the composite (right side of
figure), the less interlayer cracking is necessary for multi-stage fracture

behaviour.
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layer strength ratio. The next step in the modeling is to determine appropriate
values for the two strengths.

Indents were used on sample surfaces during the experimental work
(Chapter 4) to provide a variety of crack sizes (and therefore strengths).
Following Equation 2.1.5-3, experimental data points and non-linear regression
analysis (FitAll Non-Linear Regression Analysis, MTR Software) were used to

calculate the strength of samples as a function of indent load;
of1 = A- Pmdn (3.1 °14)
where Paq is the indent load, and A and n regression constants. The initial flaw

size is then calculated by manipulation of Equation 2.1.2-13;

2
ag = l(Es_C_) (3.1-15)
n\ Yor

where a, is the initial flaw size, and Ksc the critical stress intensity (toughness) of
the strong surface layer material. The compliance factor, Y, is that of a semi-
circular flaw.

The "a” crack size increases and the load on the beam decreases during
fracture of the surface layer. The load change experienced by the beam can be

approximated as;

2
Lo 2N 1-(1) (3.1-16)
Py, \h

where P, is the load on the beam during fracture, Py the initial fracture load, a

the propagating crack size, and h the height of the beam. This equation is a
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simplification of a theoretically justifiable equation that will be derived in Section
3.2

The stress intensity at the tip of the propagating crack can then be
approximated using Equations 2.1.2-12, 2.1.4-1 and 3.1-16;

Ol

|_Jra (3.1-17)

Kc 4bh?
where K is the stress intensity at the crack tip, K¢ the critical stress intensity
(toughness) of the strong surface material, and a the size of the propagating
crack.
The stress intensity at the tips of the weak interlayer crack is estimated

using Green integral functions (Equation 2.1.6-2). For the mode | component;

o
o
co
For the mode || component;
co d
_ 2 txy(y) y (3.1-19)

TCC 0
CO

where K and Kiw are the stress intensities on the interlayer crack tips due to
the presence of the main crack tip, and co the initial interlayer half crack size. The
normal stress oy and shear 1y, are the near-crack tip stresses, given earlier as

Equation 2.1.6-9. In this case there must be a conversion from polar to Cartesian
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coordinates. The weak interlayer is perpendicular to the main crack tip, at a
distance "¢-a" away (see Figure 3.1-5). Along the plane of the interlayer;
x=£{-a (3.1-20)
y =(¢-a)tan® (3.1-21)
The two stress intensities are used to calculate the effective stress intensity at
the tips of the weak crack;
Kearw? = Kw? +Know’ (3.1-22)
When this value equals the critical stress intensity of the weak material, the weak
interlayer crack also propagates.

It must be noted that this is an approximation. The actual stress field
equations are comprised of several terms, all of which are ignored except the
leading term, which is expected to dominate. No attempt has been made to
adjust the equations to account for bending of the beam. It is assumed that the
main crack tip is close to the interlayer before secondary cracking, and that the
leading term overwhelms other minor terms. This approximation is also
addressed in Section 3.2.

As the main crack tip propagates the stress intensity increases. If the
interlayer is sufficiently weak, then it too cracks. This interlayer cracking reduces
the overall stress experienced by the beam and prevents stress concentrating on
cracks in the next strong layer. The size of the main crack, at the point at which

the interlayer crack begins to propagate is termed “acnx".
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Figure 3.1-5. A schematic of the crack tip and weak interlayer crack geometry.
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The two cracks propagate simultaneously. Based on the work of Mott
(1948), and others, it is possible to estimate the velocity of the propagating
cracks as a function of crack size (see Section 2.1.2). The presence of a weak
interlayer will affect crack velocity calculations, but it is assumed the change will
be minimal. In this work the equations of Dulaney and Brace (1960) are used,

which simplify the mathematics;

d—azo.38JE( -a—°) (3.1-23)
dt P a

By integration it is possible to estimate the time for the main crack to completely

fracture the surface layer, after initiation of the weak interlayer crack propagation;

o.3s\/§}dt = f da (3.1-24)

0  acrit (1 - a—°)

a
ﬂ"—l (3.1-25)
acrit — a0

where 4t is the crack propagation time. Note, this time depends on several

and

At (e —ac,it)+ac,it In

factors; the surface layer thickness, the initial flaw size (and therefore strength of
the beam), and indirectly on the weak interlayer crack size and toughness.

An equivalent calculation can be done for the weak interlayer crack. The
crack stability conditions are considerably different to those of the main crack, but
the necessary equations are not available to determine an accurate time of

propagation. An equation in the form of 3.1-25 is deemed an acceptable
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approximation. It will be shown in Section 3.2 that the weak interlayer crack
propagates unstably.

The modulus and density used in both calculations are those of the
strong material. The bulk of the strain energy shed during crack propagation is
associated with the strong layers. This assumption also relies on thin interlayers.

The two cracks propagate for the same amount of time. Equating the
two time equations allows the extent of weak interlayer cracking to be estimated.
This influences the fracture behaviour of the composite. The estimated value is
compared to that calculated using Equation 3.1-13. If the extent of interlayer
cracking is sufficient, then multi-stage fracture is achieved. If insufficient, the
stress on the next layer in the composite is high enough to cause a fatal stress
concentration on one of its inherent flaws, and the composite fails
catastrophically despite crack deflection along the weak interlayer.

The fracture is dependent on the strength of the next strong layer in the
laminate. As discussed in Section 2.1.3, the Weibull modulus is an important
parameter for gauging mechanical reliability. As the weak interlayer crack
deflects, there is both a changing load suffered by the beam and a changing
volume of material suffering that load. Following Equation 2.1.3-1, the fracture

strength of the next layer in the composite is estimated as;

Meff
B =exp[-f/‘—'(9f—z) } (3.1-26)
| L\oo
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where oo and mex are determined by linear regression of experimental data. This
equation is a simplification. It does not account for bending, and assumes test
samples are the same geometry. The effective Weibull modulus, men, is a useful
approximate value calculated by regression analysis from experimental data.

The above equations are combined to determine a critical (¢/h) ratio for

multi-stage or catastrophic failure, as a function of indent load applied to the
surface layer. The geometry of the beam and mechanical properties of the two
materials in the composite must also be considered in the calculation. The resuit
is a "map" of fracture behaviour (see Figure 3.1-6).

The fracture map determined by the model consists of two zones; the
catastrophic zone and the muilti-stage zone. The critical boundary adjusts with
composite material choice, but the shape is consistent. The catastrophic zone is
the upper left area on the map, representing small surface flaw sizes and/or thick
surface layers. Under these conditions the fracture strength of the composite is
very high, and insufficient load is shed to prevent fracture of the relatively thin
(and therefore weak) next strong layer. The main crack accelerates quickly, not
allowing the interlayer to propagate appreciably. The multi-stage zone is the
lower right area on the map, representing large surface layer flaw sizes and/or
thin surface layers. The fracture strength of the composite is low, but the
relatively thick (and therefore strong) next layer can withstand the load transfer.
The main crack accelerates relatively slowly, giving the interlayer crack sufficient

time to propagate and further reduce load.
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Figure 3.1-6. A schematic of the fracture map determined using the model.
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The critical boundary shown in Figure 3.1-6 is based on the average
strength of the strong material. The natural distribution of flaw sizes will affect the
position of this boundary. If the next layer in the composite is stronger or weaker
than average, the curve must be adjusted accordingly. Dashed line curves can
be added to the fracture map to show the affect of strength variability.

A typical method of demonstrating reliability is to show error bars on
data points. Error bars typically represent a spread of one standard deviation.
One standard deviation theoretically encompasses 68% of the data values used
to calculate the average. When using Weibull statistics, and Equation 3.1-26 in
particular, this represents survival probabilities of Ps=16% and Ps=84%.
Recalculation of the critical boundary in the model using these values adjusts the
relative position of the curve. A similar calculation can be done for two and three
standard deviations (95% and 99.8%). The "error" curves show the mechanism
of multi-stage fracture is very sensitive to the Weibull modulus of the strong
material. This must be considered in analysis of experimental data.

Determination of the critical #h ratio results in a transcendental function

which cannot be solved by standard mathematical techniques. A computer

program was written in Pascal 7.0 to solve the problem. A flow chart for the

program is given as Figure 3.1-7, and the code is included as Appendix .
The program determines the critical boundary using an iterative

approach. The material properties and geometry of the composite are defined at
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the start at the program. An initial surface layer flaw size is estimated as a
function of indent load, and the fracture stress and load calculated. The critical
extent of weak interlayer cracking required for multi-stage fracture is determined,
based on the layer thickness (#h) ratio. The stress intensity at the main crack tip
is calculated, and then used to estimate the stress intensity at the interlayer crack
tips. The program iterates, recalculating the stress intensities as the main crack
propagates. When the weak interlayer cracks begin to extend, the velocity
equations are invoked to estimate the extent of weak interlayer cracking. This is
compared to the calculated critical value. The comparison determines whether
the composite fails in a catastrophic or multi-stage fashion. The program is
iterated for various combinations of initial indent load and layer thickness ratio.

The program is repeated to produce the “error bar” curves.
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3.2 Finite Element Analysis

Finite element analysis is particularly well suited to the present work.
The complex geometry of beams containing both surface and interlayer cracks
requires that assumptions be made if a fracture mechanics approach is used.
The complex geometry of the present work can be easily defined mathematically,
and a compliance (or stiffness) equation developed as a function of both crack
sizes. This equation can be used to predict the onset of both surface and
interlayer cracking, and the strength and reliability of the composite.

In this work the fracture of laminates is considered. Bend tests are
conducted under displacement controlled conditions so multi-stage fracture
behaviour is possible. The fracture is effectively instantaneous, it is assumed that
constant displacement conditions are valid. The beam is defined using an
appropriate mesh, and subjected to a simulated loading-pin displacement. The
global stiffness matrix is constructed and solved. The most important value
calculated is the load associated with the simulated pin displacement. The
process can be iterated for beams with various crack configurations but the same
simulated pin displacement. The calculated pin loads are then used to construct
stiffness functions for the various geometries, or compared to theoretical
expectations. All values are normalized to simplify comparisons.

The finite element calculations were done using custom software, written

using Matiab 5.0. A flowchart for the code is given as Figure 3.2-1, and the code
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Figure 3.2-1. A flowchart for the custom finite element code.
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given as Appendix II. Only half of the beam is considered in each case, due to
the symmetry of the beams and the desire for calculation efficiency.

The accuracy of finite element calculations depends on the number of
elements used. More elements yield a more accurate solution, but cost more in
computing time. Simple beam deflection calculations were done using various
mesh sizes to determine an appropriate number of elements to use in the
simulations. It was decided to use 720 elements in each calculation. This
represents a <1% error on load calculations, compared to theoretical.
Normalization of all values further reduces this problem.

Three different scenarios were considered; (i) catastrophic failure of a
beam, (ii) delamination after fracture of a surface layer, and (jii) pre-cracking of
the weak interlayer during surface layer crack propagation. Sample meshes for
the three scenerios are given as Figure 3.2-2. The details of the modeling are

explained in the following sections.

3.2.1 Catastrophic Failure
The finite element code was used to calculate the load required to
deform a given beam a given displacement. This can be used to calculate the

work done on the beam;

(SN

P (3.2.1-1)
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Figure 3.2-2. Sample meshes for the three scenerios simulated using finite

element methods.
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where Wi is the work done by the loading pins, P the load and ¢ the applied
displacement. This is equivalent to the strain energy in the beam. Therefore, the
strain energy release rate can be determined as the derivative of the work done

with respect to crack size. For constant displacement conditions, this leads to;

G, «-L (3.2.1-2)
da

where G, and a are the strain energy release rate and size of the main crack.

This can also be related directly to the strain energy. Following Equation 2.1.2-3;

2.2
G. =_YOom 22, (3.2.1-3)
a 2E

where Y is the compliance function, o the stress and E the modulus. Combining

Equations 3.2.1-2 and 3.2.1-3 yields;

L «-Yada (3.2.1-4)
P

This can be integrated to calculate the change in load as a crack propagates.
Initially, itis assumed the compliance function is not a function of the crack
length. Consider the following;

L]
f&

a
5« -Y2fada (3.2.1-5)
P 0

This serves as a first order approximation. This leads to;

P:
-2 11-v232 (3.2.1-6)
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Given the boundary condition that P.—0 as a/h—»1, an appropriate
compliance function is Y=1/h. Therefore, the finite element calculated load values
were compared to the simple parabolic equation;

l;?_ .l (%)2 (3.2.1-7)
This can be related to Equation 3.2.1-2 to calculate the strain energy release rate

during catastrophic failure of the beam.

G, x——n 2 (3.2.1-8)
a da h2

Fracture occurs when the strain energy release rate exceeds the critical value for
the strong material, G,c. The strain energy release rate increases as the crack
size increases, so the crack propagates unstably.

The strain energy release rate can also be used to derive a term for the
crack velocity. The difference between the instantaneous and critical strain
energy release rates is proportional to the kinetic energy of the propagating
crack,

Ulinetic © Va> ®© Ga —Gac (3.2.1-9)

where v, is the main crack velocity. Therefore;

v zxz_a__zﬂ=i(a_ao)=i( _;‘QJ (3.2.1-10)

and
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vy« ‘/ _2 (3.2.1-11)
a

The velocity equation derived is the same form as Equation 2.1.2-17.

The assumption that the compliance function is not a function of crack
size is an acknowledged approximation, so the load values calculated by finite
element analysis were fitted to regression equations in the form;

L7 S 51(3)2 + 32(3)4 rot Bn(i)zn remor  (3.2.1-12)

Py h h h
where the s are regression coefficients. Only even numbered exponents were
used. The load equation is differentiated to determine the strain energy release
rate, and then square rooted to determine the stress intensity factor. A linear
term cannot be included, as it would violate the requirement that G,=0 at a/h=0.
The above equation corresponds to an equivalent “nth” order simple polynomial
compliance function for a stress intensity factor. The higher order terms allow a
steeper gradient to be fitted to the data, and leads to a more refined solution. The
effect of increasing order of polynomial was considered in selecting the order of
the regression equations used in Section 3.2.3.

The convergence of regression equations with respect to the number of
elements was also considered for the simple four-point bend test geometry. The
finite element calculation of load values for increasing crack size was repeated
using an increasing number of elements. The resuiting sets of data were

regressed to a fourth order polynomial equation. Convergence of the regression
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equations was used to determine the number of elements necessary for an

acceptable solution.

3.2.2 Delamination Fracture

The second scenario considered was that of delamination after complete
fracture of the surface layer. The change in load was determined earlier in
Section 3.1, and given as a function of interlayer crack size and beam geometry
as Equation 3.1-11. The finite element code was used to define appropriate
meshes and calculate loading-pin loads. Again, constant displacement of the
pins was assumed. Calculated values were normalized and compared to
Equation 3.1-11.

The load equation can also be used to calculate a strain energy release

rate of the interlayer crack (after initial fracture of the surface layer). Similar to

(W
@ Liw-9

G, x
de [ 30( b3 )]’
1+ — 3—1
Ll\(h-9

where G. is the strain energy release rate of the interlayer crack. Fracture occurs

Equation 3.2.1-8,

(3.2.2-1)

while this exceeds the critical strain energy release rate for the weak interlayer
material, Gcc. In this case the strain energy release rate decreases as the crack

extends and so the crack may be stabilized.
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Equation 3.2.2-1 can be used to estimate the point at which the
delamination crack stops propagating. There are two approaches to this
calculation. The first is to assume static conditions; the crack stops when its

strain energy release rate falls below the critical value for the interlayer material;

Gez-B = —Q‘ (322:2)
deleg,,  dcley

where Csu¢ is the crack arrest point based on static conditions. This provides a
lower estimate of the crack extension. The second approach to the calculation
assumes dynamic conditions; the crack momentum propagates the crack further
until the kinetic energy is absorbed by fracture. This requires the solution of an

integral equation;

A iapelaiiar -

where cqn is the crack arrest point based on dynamic conditions. The first term
represents the kinetic energy that gives the crack momentum. The second term
represents this "excess" energy that must be absorbed by fracture beyond
equilibrium.

The crack velocity of a delamination crack can also be derived using the

strain energy release rates. Following the derivation in Section 3.2.1;
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3
SN ! - ! (3.2.2-4)

vex |2 - 2 : 2
L(("J)s l)_[w%((hlfe)’ -IH [lé%((hll‘)]-l)] -

where v, is the velocity of the delamination crack. The velocity reduces as the

crack extends. This calculation assumes static conditions, so beyond Cstst the

velocity becomes imaginary.

3.2.3 Pre-Cracking of the Weak Interlayer

The final scenario considered was that of a beam containing both a
surface crack and an interlayer crack. This is the most complex geometry, and
therefore the most difficult to model using fracture mechanics. As in the other
cases, load values were calculated for a constant displacement. Various
combinations of both crack sizes were attempted.

No equation was available for comparison, so linear regression analysis
was used to find an empirical equation. The form of the regression equation was
based on two functions. The first was Equation 3.2.1-12, to account for the

change in load associated with cracking of the surface layer;

2 4
f; =f(a)=1+B; (%) +B j(%) + error (3.2.3-1)

The second was in the same form, and represents the interlayer crack;



147

2 4
fy =f(c)=1+ Bk(%) +By (%) + error (3.2.3-2)

The two functions were combined to form the regression equation (3.2.3-3);

2 4 2 2,.2
P=P(a,c)=l31+l32(%) +B3(%) +B4(E) +ﬁ5(8 (%) +...

\2(a}? o\ Va2 Vral?

0§ () (D) w3 () +mlf) () romr 0200
where the §'s are regression coefficients. The final equation is the result of trial
and error. In each case the calculated and regression values were compared,
and the form of the equation manipulated to find an appropriate fit. Equation
3.2.3-3 does not fit the calculated load values perfectly, but errors are s1.2%.
The equation is valid for ah=0—¢/h and c/L.=0-1/8.

The final load equation determined can be used in several ways to
predict the properties of this class of composite laminates. The strength,
reliability, nominal toughness, onset of main crack propagation, onset of weak
interlayer crack propagation, extent of interlayer crack propagation, and crack
velocities can all be inferred from the load equation. The calculations assume
quasi-static conditions are approximately valid. Comparisons of relative values
are considered more important than perfectly accurate solutions. This allows
predictions to be made on the behaviour of composites, which allows for

improved design of materials.
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The strength of laminates can be predicted using Equations 2.1.2-12

and 2.1.2-13. Comparing the two yields;
P
Cf} < Pﬂ = Kac(—l(—) (3.23—4)

where oy is the strength of the laminate, Py the fracture load, and K¢ the critical
stress intensity factor (toughness) of the strong material. The load, P, and the

stress intensity factor, K, can be determined from the regression curve. Based on

K« ,_QPL (3.2.3-5)
%

Therefore, the relative strength of a given laminate, as a function of both crack

Equations 2.1.2-14 and 3.2.1-2;

sizes, is given by;

(3.2.3-6)

Cfy <
oP

Oa

The equation can be easily evaluated for various values of "a" and "c". This
allows the effect of crack sizes and surface layer thickness on strength to be
determined.

The reliability of the material cannot be predicted in the usual way. The
Weibull modulus gives a measure of the range of strengths of a series of
samples, which is due to a range of critical flaw sizes. In these composites, two
different flaw sizes must be considered. A qualitative approach to predicting the

reliability involves considering the two terms;
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d P 0 P

| —— d —|—+——= 3.2.3-7

a Tz ™ == o
0a oa

The first term indicates the sensitivity of the strength to the main crack size. A
small value suggests the strength is not greatly affected by a change in flaw size,
whereas a large value suggests the strength is highly sensitive. Similarly, the
reliability of the laminates can be inferred from the second term, and the effect of
weak interlayer flaw size. A simple way to gauge the reliability is to examine the
gradient of strength versus crack size curves.

The regression curve can also be used to predict the onset of crack
propagation. Assume that a laminate initially contains a main crack of size ap and
an interlayer crack of size ¢,. The main crack propagates when the strain energy

release rate exceeds the critical strain energy release rate for the strong material;
G, 2G,cx -Ql (3.2.3-8)
0a apco

The main crack propagates with an increasing strain energy release rate. At
some point, the strain energy release rate of the interlayer crack exceeds its

critical value, and it also propagates;

G.2Gcx —ggi (3.2.3-9)
oc Acritco

In this case, the main crack size is a cx, the same critical crack size which was

determined using an alternate method in Section 3.1. The two strain energy
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release rates can be related using the ratio of the critical strain energy release

i’L‘ - (Gcc}a.q (3.2.3-10)
dc acritco Gac oa agco

The point at which the interlayer crack propagates will be a function of both crack

rates of the two materials;

sizes, and the relative toughness of the interlayer and strong materials.

Another possibility is that the interlayer cracks before the main crack. A

comparable calculation can be done;

Q{ - (_Gac cp (3.2.3-11)
alagcerit Gec ) Olagey
This will occur if;
o
Olageo (GcC] (3.2.3-12)
21'; GaC
Ca 20C0

The stress on the beam decreases as the two cracks propagate. it was
shown that the extent of interlayer cracking has a significant effect on the fracture
behaviour of the composites in Section 3.1 and Equation 3.1-13. The extent of
interlayer crack propagation can be estimated from the stiffness equation. In
Section 3.1 the crack velocities were used. A similar approach can be developed,
based on the relative crack propagation rates of the main and interlayer cracks.

The regression equation can be used to predict the velocities of the

simultaneously propagating cracks. Assuming the two cracks propagate such
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that the reduction of total strain energy of the system is maximized, the relative

velocities of the cracks can be calculated using;

~VP(a,c) =-<%,%cl> =(G,.Ge) (3.2.3-13)

The load can be represented mathematically by a surface, which is a function of
a and c (see Section 5.2.3). The path of steepest descent will trace the size of
the two cracks. Note that this approach is constrained by the critical strain energy
release rates of the two materials. Individual crack velocities can be determined,

provided the strain energy release rates are above their critical values;
vV, (-Q{ J— —Ql (3.2.3-14)
Ga ac Oa agco

(3.2.3-15)

and

acrit€o ]

S CAIE

If the strain energy release rates fall below their critical values, the solutions to
these equations become complex (that is, imaginary). The crack velocities can

be used to estimate cex, the extent of interlayer cracking.

3.2.4 Crack Tip Mesh Refinement

It could be argued that accurate crack tip stress intensities can only be

accurately determined using extensive mesh refinement. Comparable load and
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stress calculations were done for a variety of cracked beam geometries, using
IDEAS commercial software*. The load values calculated were compared to
equivalent values produced by the author's custom software. The crack tip stress
values calculated were used to calculate stress intensity factors. Extrapolation of
data and Equation 2.1.6-9 were necessary. The stress intensity factors were

compared to equivalent calculations using the load-regression technique.

* The IDEAS commercial software calculations were done by Marwan Hassan, of

the Department of Mechanical Engineering, McMaster University.



Chapter 4. Experimental

4.1 Monolithic Zirconia

Monolithic zirconia bend bars were made by electrophoretic deposition.
The zirconia was 3 mole% yttria stabilized (Tosoh Corporation, TZ-3Y), which is
tetragonal at room temperature. The same starting material and processing
conditions were used for all of the monolithic zirconia and zirconia/lanthanum
aluminate composite samples. The powder was size analyzed using a Horiba
CAPA-700 Particle Analyzer.

The powder was mixed with distilled water and dispersed using a sonic
dismembrator (Fisher Model 300). The suspension was centrifuged (Beckman
GS-15) and the supernatant decanted. This process was repeated until the
conductivity of the supernatant was comparable to that of distilled water.
Conductivity was measured using an impedance analyzer (Hewlett-Packard
4192A LF). The zirconia powder required ~10-12 washings.

The powder was dried overnight at ~110°C (Fisher 800W Oven) to
remove the water, then mixed with absolute ethyl alcohol to a thick slurry.

Grinding media (zirconia balls, ~3mm diameter) were added, and the slurry vibro-

183
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milled overnight to break up agglomerates. The grinding media were filtered out,
and the slurry diluted to 5 vol% solids with ethanol.

The zirconia/ethanol slurry was used for deposition suspensions. The
suspension was stabilized with diluted (1:4) acetic acid (glacial, Caledon), to
reduce the pH to ~4.5. Diluted (1:9) hydrochloric acid (Fisher Scientific) was
added drop-wise to reduce the pH to ~3.2-3.6. Four or five drops of nitrocellulose
were added to each 300ml suspension to act as a binder and assist in post-
deposition drying.

Deposition electrodes were made by made cutting ~3x4cm strips from
1mm thick teflon sheets. Equally sized graphite sheets, ~250um thick, were cut
and bonded to the teflon with Krazy™ glue. The graphite sides of the electrodes
were cleaned with acetone, then dilute graphite powder/ethanol slurry sprayed
onto each. The alcohol was allowed to evaporate, to leave a fine graphite powder
that allowed easy green body removal after deposition.

The graphitefteflon electrode and a strip of stainless steel were
immersed in the pH-balanced suspension. The power source (Keithley 237 High
Voltage Source Measure Unit) was connected so that the stainless steel
electrode was the anode and the graphite/tefion the deposition cathode. The
circuit was similar to that given earlier as Figure 2.3.1-1.

Electrophoretic deposition of the zirconia was done under constant
current conditions. Most deposition was done at 2mA, with a starting voltage of

~50V. The resistance of the circuit increased during deposition, with final
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voltages as high as ~80-100V. Deposition continued until the green bodies were
1.5-2mm thick.

After deposition was complete, the power was turned off and the
cathode removed from the suspension. Excess material was cut away from the
edges of the deposit to prevent constraint during drying. The material was
saturated with ethanol and wrapped in Saran Wrap™. The ethanol siowly bled
off, and the deposit dried over ~7-10 days.

Dry deposits were placed on a flat bed of coarse alumina and sintered in
air at 1550°C for six hours in a furnace (CM Model 1700S). Heating and cooling
rates were 300°C per hour. A flat, previously fired sample was placed on top of
each green body to reduce sintering curvature.

The samples were cut using a diamond-coated high speed saw to
produce bend bars, nominally ~1.5x2x25mm. The bars were ground on each side
to ensure flat and even samples. One side of each bar (the ~2mm width side)
was polished to 1um diamond. The samples were then annealed in air at 1250°C
for ten hours to remove residual machining stresses.

Several samples were tested without indentation. Others were indented
with loads up to 10kg, using a Vicker's hardness tester (Zwick Model 3212). The
load was applied to the polished surface with a diamond-tipped indenter for a 10-
second count.

The samples were four-point bend tested to failure (the polished

surfaces subjected to tension) usinga Wykeham Farrance 5000kg Stepless
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Compression Test Machine. The load cell used had a 500Ib range (Kulite
Semiconductor Type TC2000). A loading rate of 100um/minute was used for all
tests. Load-deflection time plots were constructed using a chart recorder.
Deflections were calculated from the loading times.

The stiffness of the test rig was calculated as 0.05um /N. This was later
used to correct the deflection calculations. The time scale on the chart recorder
was calibrated using a linear variable displacement transducer (LVDT), and
found accurate to +1%. Errors in the load calculations were estimated as +1%,
and the stress and deflection calculations as +1.5%.

A series of non-indented and indented samples were tested to fracture.
In each case the strength was calculated using Equation 2.1.4-2, and the critical
stress intensity factor (Kic toughness) using Equation 2.1.5-4. The work of
fracture was calculated by measuring the area under the load-deflection time
curves, converting to an energy term, and dividing by the cross-sectional area of
the sample.

The strength of each sample was plotted versus indent load (applied
prior to bend testing). Following Equations 2.1.5-3 and 3.1-14, non-linear
regression analysis (FitAll, MTR Software v5.7) was used to determine the
strength as a function of indent load, that is, the A and n parameters. The non-

indented sample strengths were not included in the regression.
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The strengths of a series of non-indented samples were plotted versus
fracture probability. Linear regression analysis was used to determine a Weibull
modulus for the zirconia using Equation 2.1.3-2.

The dimensions of the hardness indents and their radial cracks were
measured optically, for several indent loads. The hardness of each sample was
calculated using Equation 2.1.5-1, and critical stress intensity factor (Kic
toughness) using Equation 2.1.5-2.

Zirconia samples were thermally shocked from 400, 600, 800 and
1000°C. Samples were heated to the appropriate temperature and given a fifteen
minute soak time. The samples were removed from the furnace and sprayed with
water at room temperature until completely cooled. The bars were bend tested to
complete failure under the same test conditions as the indented samples.

The fracture surfaces of some of the samples were studied using a

Electroscan 2020 Environmental Scanning Electron Microscope.

4.2 Zirconia/Lanthanum Aluminate Composites

The zirconia/lanthanum aluminate composites were made in a similar
fashion to the monolithic zirconia. The sample preparation procedures were
repeated, the only difference being the zirconia deposition was interrupted mid-

way to deposit a ~10um layer of lanthanum aluminate.
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The lanthanum aluminate suspension consisted of 20wt% alumina
platelets (Elf Atochem, a-Al,Os, 7-10um), 66wt% alumina (AKP-50, Sumitomo
Chemical Co Ltd) and 14wt% lanthanum oxide (Cerac Inc, Pure Advanced
Specialty Inorganics, 200 mesh). This mixture was selected following from the
work of Bissinger (1995), as it had a high porosity after sintering. The alumina
platelets were added to seed the in situ growth of lanthanum aluminate, parallel
to the composite layers. This was done to elongate the pores and promote high
stress concentrations in the weak layers. The powder mixture was vibro-milled
prior to the addition of the platelets to avoid platelet fracture. The suspension was
placed in an ultrasonic bath for ~30 minutes before pH balancing to disperse the
platelets.

The composites were made following the same procedure as for the
monolithic zirconia. Part way through the zirconia deposition, the suspension was
exchanged for the lanthanum aluminate suspension. A ~10um layer of the weak
interlayer material was deposited, and the suspensions exchanged again to finish
the deposition. The result was zirconia samples containing a single weak
interlayer.

The steady-state strain energy release rate of the weak interlayer was
calculated using the Charalambides method outlined in Section 2.1.8. Composite
samples were prepared as usual. A notch was cut to the depth of the interlayer
(on the polished/tensile side) using a Beuhler Isomet slow speed saw, with a

diamond-coated 300um thick blade. The samples were bend tested using the
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same conditions as for the monolithic zirconia. The "plateau” loads from the load-
deflection curves and Equation 2.1.8-1 were used to calculate the strain energy
release rate. The critical stress intensity factor (toughness) of the interlayer was
estimated using Equation 2.1.2-14.

The remaining composite "sandwich" bars were bend tested to complete
failure. In some cases the samples failed catastrophically and the load and
deflections were calculated as per the monolithic samples. in some cases the
samples failed in a multi-stage fashion. The failure mode was noted. Three loads
and two deflections were calculated (see Figure 4.2-1). The first of the loads, P,
was used to calculate the initial fracture strength of the composite. The second
load, P,, was used to estimate the extent of weak interlayer fracture, using
Equation 3.1-11. The third load, P;, was used to calculate the residual strength,
after multi-stage fracture of the first layer. The initial strength depends on the
indent load applied to the surface layer before bend testing, and the residual
strength depends on both the natural flaw size in the second strong layer and the

layer thickness ratio (#h). The three loads and two deflections were used to

estimate the work of fracture of the samples.

4.3 Glass

The glass used was microscope slides (Fisher Scientific Co, Plain #12-

550A) and cover glasses (Corning Labware and Equipment). The slides were
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Figure 4.2-1. A schematic of a load-deflection curve for a sandwich sample

suffering multi-stage failure.
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originally 1)25x75mm in size. The slides were scored using a silicon nitride
machining tool, and carefully cracked to produce 1x25x25mm glass plates. The
cover glasses were 0.16x22x22mm.

The same tests were performed on the glass samples as the monolithic
zirconia samples. Indents of up to 7kg were applied to the slide glass, but only
0.5kg to the thinner cover glass. Hardness was calculated using the indentation
crack length method — Equation 2.1.5-1. The samples were coated with a thin
layer of gold (SPI-MODULE sputter coater) prior to indentation to allow
measurement of the indent and radial cracks.

The samples were bend tested to failure under the same conditions as
the monolithic zirconia. The load cell had a 100Ib range cell (Kulite
Semiconductor Type TC2000-100). The strength, modulus, (indentation)
toughness and work of fracture of each sample were calculated from the load
and deflection time data recorded. A series of non-indented samples was tested
to calculate a Weibull modulus. Non-linear regression analysis was performed to

determine the strength of the glass as a function of the applied indent load.

4.4 Glass/Epoxy Composites
Glass/epoxy sandwich composites were made by bonding together
either two slides, or a slide and a cover glass. The adhesive was Mastercraft

epoxy (67-1420-6). Even amounts of resin and hardener were mixed for one
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minute and spread evenly on one glass plate. The second plate was pressed on
top. The plates were rubbed firmly against one another to ensure spreading of
the adhesive, before being allowed to set. Sets of samples were made in random
order to minimize accidental mixing inconsistencies. The composites were
allowed to cure overnight. The steady-state strain energy release rate was
determined using the Charalambides method.

Some composites were made using non-indented glass slides. Others
were made by indenting either one or both of the plates before bonding. In all
cases the composites were made and tested with the indents on the tensile side
of the bend bars. In this work the surface indent on the first glass slide will be
referred to as the "outer” indent. The indent on the second glass slide (initially in
compression) is termed the "inner” indent (see Figure 4.4-1).

Most laminates were constructed of two glass slides, giving an #h ratio
of %. Some were made using the cover glasses, giving an #h ratio of either ~1/7

or ~6/7. Unless otherwise specified, the #h ratio is %4.

4.5 Plaster-of-Paris

Plaster-of-Paris composites were fabricated and tested by Ewa
Szymanski, as a project to parallel the ceramic laminate and glass/epoxy work.

The highlights of this work were discussed in Section 2.3.4.
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Figure 4.4-1. A schematic of the "inner" and "outer" indents in the composite

test bars.



Chapter 5. Results and Discussion

5.1 Experiments

5.1.1 Monolithic Zirconia

The size distribution of the zirconia powder is given as Figure 5.1.1-1. The
median particie diameter was 0.17um, with a standard deviation of 0.38um. The
range of particle size adversely affects both sintering behaviour and strength.

The flexural strength of the zirconia was 895(+71)MPa. This is lower than
the value reported by Bissinger (1995) for electro-phoretically deposited zirconia,
but within experimental error. The Weibull modulus was m=9.9(x0.7), and the
hardness H=12.5(+0.3)GPa.

Regression of the strength/indent load data yielded parameters;
A=901(+68)MPa-kg™, and n=-0.46(+0.06) — see Figure 5.1 .1-2. The
measurement error on individual data points is +1.5%. The exponential factor for
an ideally brittle material is —1/3, which suggests significant error in the
calculation. Transformation toughening of the zirconia leaves the surface of the

material in residual compression. This will affect the exponential factor. The crack
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Figure 5.1.1-1. The size distribution of the zirconia powder.
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Figure 5.1.1-2. The strength-indent load relationship for the monolithic

zirconia.
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size resulting from a small indent load will be less than expected, due to the
compression. The opposite is true for a large indent load — the stress field
reaches the tensile sub-surface region, which leads to cracks that are larger than
expected.

Two techniques were used to determine the toughness of the zirconia.
The indentation-crack-length toughness was Kic=6.6(+0.3)MPaVm, and the
indentation-strength-in-bending toughness Kic=6.6(+0.6)MPavm. The average
values are equivalent, but the indentation-strength-in-bending calculations were
less consistent. The discrepancy suggests there may be sub-surface flaws
influencing the strength of the material.

The work-of-fracture of the monolithic zirconia is given as Figure 5.1.1-3.
The measurement error on individual data points is +2.4%. The work-of-fracture
is calculated from the area under the load-displacement curve. The value is
sensitive to flaw size, which affects both the fracture load value and compliance
of a given sample. The variation is comparable, or higher, than that associated
with the Weibull modulus. The average work of fracture of the non-indented
samples was 751 0(+2080)J/m2. The work-of-fracture of the indented samples

varies with their strength.
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5.1.2 Zirconia/Lanthanum Aluminate Composites

The delamination tests yielded a steady-state strain energy release rate
for lanthanum aluminate of Gss =17.2(+4.5)J/m2. This is equivalent to

Kc~2.1MPavm. This value, and the strength, toughness and Weibull modulus
values quoted above, were used as material parameters in the crack deflection
model.

The crack deflection model program was run repeatedly. Parameters were
adjusted to determine the sensitivity of each value to the fracture zone boundary.
The strength of the next layer in the laminate had the greatest effect. Reasonable
changes in strong or weak interlayer toughness values, or initial interlayer flaw
size, had less effect. This suggests the critical factor in determining the fracture
behaviour of the sandwich laminates is the strength ratio of the two strong layers.

The zirconiallanthanum aluminate composite suffered both catastrophic
and multi-stage failure. This is a progression from the work of Bissinger (1995), in
which all of the samples failed catastrophically.

Figures 5.1.2-1 and 5.1.2-2 are (environmental) scanning electron
microscope micrographs that clearly show crack deflection within the lanthanum
aluminate interlayers. The zirconiaflanthanum-aluminate interfaces are strong.
Note the assumptions of the model ignore which of the pathways crack, but rely

on a consistent and measurable critical strain energy release rate.
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Figure 5.1.2-1. A micrograph of the crack bifurcation region of a composite

that failed in a multi-stage manner (~100X).
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Figure 5.1.2-2. A micrograph of a crack within a lanthanum-aluminate

interlayer (~1000X).
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The test results are plotted with the fracture mechanics modeling resuits,
as Figure 5.1.2-3. The results show a trend consistent with the model prediction.
The region near the critical boundary, within the first dotted lines, the behaviour is
expected to be unpredictable. Minor deviations in the strength of the next strong
layer in the composite (due to natural variations of flaw size) affect the behaviour
of the composite. Further away from the critical boundary the behaviour is
increasingly more predictable.

The error lines included are based on the Weibull modulus of the strong
material, which influences the strength of the next layer in the beam, and
therefore the fracture mechanism. Errors associated with the indent strength or
toughness calculations have not been included. Considering these factors would
further spread the dotted lines. It is also assumed that initial weak interlayer
cracks are equal in all samples, and directly ahead of the main indent cracks.
This is not true, but necessary to simplify the modeling work.

Considering the assumptions of the model, the predictions are good. Most
samples that contained a small initial flaw size and/or a thick surface layer
failed catastrophically. Most samples that contained a large initial flaw size and/or
a thin surface layer failed in multi-stage fashion.

Regression of the strength/indent load data for all the composites yielded
A=692(+25)MPa-kg™ and n=-0.29(10.02) - see Figure 5.1.2-4. These values are
significantly different from those determined for the monolithic zirconia. The result

suggests the interlayer significantly weakens the material. Intuitively,
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addition of a weak layer should weaken a material. In this case the surface flaw
is in the strong material, and the applied stress parallel to the interlayer, so there
should be no effect. The interlayer may affect the formation of the indent crack.

Considering the variation in strength with indent size, it is appropriate to
redefine the fracture mechanics model in terms of layer thickness ratio and
strength. Figure 5.1.2-5 shows a comparison of the composite bend test resuits
to the model. The data and horizontal axis were adjusted accordingly, using
Equation 3.1-14. The trend is comparable to that shown by Figure 5.1.2-3.

The residual strength after multi-stage fracture is also of interest. In this
case the nominal residual strength has been calculated, which is based on the
load bearing capability after multi-stage fracture, but the initial sample thickness.
Following Equation 2.1.4-2, the nominal residual strength should be proportional
to the square of the remaining sample thickness. Figure 5.1.2-6 shows the
residual strength plotted versus *I1-(#h)F", and an appropriate line to represent
the expected theoretical relation. There is scatter in the data, but the trend is
consistent with theory.

A nominal residual strength increase may be predicted considering the
Weibull relation (Equation 2.1.3-1). When the weak interlayer cracks, it may not
propagate as far as the inner loading pins of the test rig. Therefore, the volume of
material subjected to the maximum stress will be less than for the (non-indented)
strength tests. The apparent strength is appropriately higher. This reasoning

leads to a paradox. Extensive crack deflection lowers the load (and therefore
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the stress) on the remaining layer in the composite. This encourages muiti-stage
fracture behaviour. However, the Weibull relation results in a lower strength in
the beam, which encourages catastrophic behaviour. The converse can also be
argued. Less crack deflection results in the remaining beam being subjected to a
higher stress, but the lower volume of material is stronger. It may be possible to
estimate an optimal extent of crack deflection to ensure multi-stage fracture
behaviour. The complex stress field in the region of the bifurcated crack and the
natural distribution of flaws in the next strong layer in the composite make this a
difficult problem. If this issue could be solved, it may be possible to tailor the
weakness of the interlayer to improve the reliability of the composites.

The important feature of the weak interlayer toughening mechanism is the
work-of-fracture can be improved. This leads to difficulties when the resuits of
Figures 5.1.2-3 and 5.1.2-5 are considered. A high strength in a monolith is
advantageous as the material stores more elastic energy before fracture, so has
a higher work-of-fracture. Similarly, a weak monolith has a low work-of-fracture.
In the case of the composites, the weakness of the surface layer influences
whether the material will fail in a muiti-stage or catastrophic manner. A composite
with a weak surface layer will have the low work-of-fracture associated with a
comparable monolith, but is more likely to have a large work-of-fracture
associated with its residual strength. Conversely, a strong surface layer leads to

a high initial work of fracture but no residual strength. There may be an optimum
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surface layer strength that will maximize the work-of-fracture. The work-of-
fracture is plotted as a function of (initial) strength in Figure 5.1.2-7.

There is considerable variation in the data. For the samples that failed in a
catastrophic manner, the work-of-fracture varies with the strength, as shown
earlier with the monolithic samples. The variation for the multi-stage composites
is more difficult to explain. There is a component of the work-of-fracture that
relates directly to its strength, but there is another component that relates to the
residual strength following multi-stage fracture.

The residual strength in the next layer in the beam depends on the surface
layer thickness ratio (£/h), and the extent of interlayer cracking, as discussed
earlier. This also explains the variability in the data. A high residual strength is
advantageous, but this implies a low initial strength is necessary to ensure muiti-
stage fracture behaviour. Similarly, a sample that fails catastrophically has zero
residual strength, but a high work-of-fracture due to its high initial strength. The
results indicate a concession is necessary if multi-stage fracture is to occur. A
high work-of-fracture and a "safety-net" against material failure are only possible
if the surface layer strength is reduced.

The thermally shocked zirconia samples exhibited severe strength
degradation after 600°C water quench. Samples shocked 400°C had strengths
comparable to monolithic zirconia. The strength/fracture behaviour relationship

predicted by the model suggests the shock may increase the work-of-fracture.
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The strength of the samples as a function of thermal shock is given as
Figure 5.1.2-8. The strengths of the quenched samples exhibit considerable
variation. The catastrophic/multi-stage behaviour relationship is not as apparent
as it was in Figures 5.1.2-3 and 5.1.2-5. Some samples quenched 600 or 800°C
failed in a multi-stage manner, but none quenched from 1000°C behaved in this
manner.

Muiti-stage fracture relies on part of the delaminated surface layer bearing
some of the load. In the case of severely shocked samples, the surface layer is
too damaged. In effect the sample is a monolith with many large flaws. Multi-
stage fracture behaviour is only possible in samples subjected to moderate
(~600-800°C) thermal shock.

There is a considerable variation in the works-of-fracture of the thermally
shocked samples (Figure 5.1.2-9). The same arguments can be made for these
samples as for the indented samples. The only expected difference is that the
extremely shocked samples have no residual strength.

The work of Lange et al (1998) suggested the thermal residual stress in
the composite is critical to its fracture behaviour. In the present work a series of
samples have shown both multi-stage and catastrophic behaviour, despite
having comparable interlayer thickness and thermal residual stress (estimated
+3.2MPa in zirconia, and -480MPa in lanthanum aluminate). The difference is

the surface layer thickness ratios (¢/h) and flaw sizes (ao) were varied. These two

features strongly influence fracture behaviour.
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Thermal stresses are important because they can cause cracking and
weaken an otherwise strong material. The interlayer weakness is critical to the
fracture mechanism. The work of Lange may have shown a different trend if the
initial flaw size and/or surface layer thickness ratio had been varied. The work of
Hatton (1998) also showed a variation of fracture behaviour with changing layer

thickness.

5.1.3 Glass

The strength of the microscope slide glass was 97.5MPa, with a Weibull
modulus of 7.0(0.3). The hardness was 4.9(1+0.3)GPa, and the indentation
crack length toughness Kic=0.66(+0.05)MPavm. The cover slides were
significantly stronger, but less reliable. The strength was 182(165)MPa.

The indented strength of the glass was more consistent than the
equivalent monolithic zirconia samples (Figure 5.1.3-1). Regression yielded
A=58.2(+0.54)MPa-kg™, and n=-0.27(+0.0005). The measurement error on
individual data points is +1.5%. The indentation-strength-in-bending toughness
was also consistent, with Kic=1.0(+0.02)MPavm (Figure 5.1.3-2).

The work of fracture is plotted versus strength as Figure 5.1.3-3. The
measurement error on individual data points is +2.4%. The relation between
strength and work of fracture is comparable to that of the zirconia monoliths and

catastrophic composite samples.



185

indented Strength of Monolithic Glass

120

& Monolithic
100

— Regression

80 -
60 -

- \f\

20 -

Strength (MPa)

Applied Indent Load (kg)

Figure 5.1.3-1. The strength-indent load relationship of the glass samples.



Monolithic
1.2
s ¢ o
1 I . ‘ .
$
E o081
[\ ]
Q.
3
@ 0.6 -
[]
c
L
3 04
2
0.2 [ eMonoithic |
o ] L1 ] L] T 1 i
0 1 2 3 4 5 6 7

Figure 5.1.3-2. The indentation-strength-in-bending toughness of the glass

samples.

Applied Indent Load (kg)

186



187

Work of Fracture of iIndented Glass

900

700

600 -

500 -

400 -

300 -

Work of Fracture (J/m2)

200 - ®

100 - &

0 20 40 60 80 100 12
Strength (MPa)

Figure 5.1.3-3. The work of fracture of the glass as a function of strength.
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5.1.4 Glass/Epoxy Composites

The delamination tests yielded a critical strain energy release rate of
G=305(x11 0)J/m?, equivalent to Kc=4.8(+1 .7)MPavm. The epoxy (or the
glass/epoxy interface) is tougher than the glass. This implies the "weak"
interlayer fracture mechanism will not work. The epoxy had a fine dispersion of
bubbles, with an estimated diameter ~0.5mm. Though epoxy is not as brittle as
glass, the effective flaw size makes it substantially weaker. This
concept is contrary to the toughness ratio predictions developed by Cook and
Gordon (1994), Kendall (1975), and He and Hutchinson (1988). Flaw size must
be considered.

The strength of the glass was not affected by lamination. Figure 5.1.4-1
shows the strength of the composites as a function of applied indent load.
The data includes composites in which an indent was applied to the "next" strong
layer. Strength is independent of the "inner” indent load, but a significant effect is
expected on the fracture behaviour, residual strength and work-of-fracture.

Figure 5.1.4-2 shows the resuits of bend tests compared with the present
crack deflection model. In this case cover slides were used as layers in the
composites, so the #h ratios are not all 2. Each symbol on the figure is the result
of eight tests. Any group of samples in which zero, one or two samples failed in a
multi-stage manner is shown as a black symbol. if six, seven or eight samples
failed in a multi-stage manner, a white symbol is used. A grey symbol represents

an even mixture of multi-stage and catastrophic behaviour.
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The glass/epoxy results are consistent with the predictions of the
present crack deflection model. The pattemn is very similar to that of the
zirconia/lanthanum aluminate composite tests. This confirms the trend of the
model is good.

The ability to pre-indent the second glass layer in the composite (the
"inner" indent) allows other trends in fracture behaviour to become apparent. The
premise of the model is the strength of the next layer in the composite is critical
to the fracture behaviour. Figure 5.1.4-3 shows the proportion of samples that
failed in a multi-stage manner as a function of outer indent load. Both the inner
and outer indent loads influenced the fracture behaviour of the composites. A
large outer flaw and small inner flaw were necessary for consistent multi-stage
fracture behaviour. The trend is consistent with the basis of the modeling.

A trend is also expected if the data is plotted with respect to both inner
and outer indent loads. Figure 5.1.4-4 shows that multi-stage fracture is likely if
the surface layer is weaker and the next layer is stronger. A zone boundary,
similar to that determined by the modeling work, was constructed to show
regions of predicted fracture behaviour. The boundary is based on Figure 5.1-4-
2. A horizontal line drawn through #h=1/2 intercepts the model zone boundary
and its error lines at several points. The intercepts relate to next layer strengths
and probabilities, which can be related to equivalent inner indent loads using

Equations 2.1.3-1 and 3.1-14. The data follows the trend predicted.
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The difference in strength of the two strong layers in the composite has a
strong influence on its fracture behaviour. The proportion of multi-stage fractures
was plotted against the layer-strength-difference (inner minus outer) - in Figure
5.1.4-5. The strength difference was calculated from the monolithic glass
strengths in Figure 5.1.3-1. Composites with stronger outer layers than inner
layers (negative values in the figure) failed catastrophically. Composites with
stronger inner layers than outer layers (positive values in the figure) showed
some multi-stage fracture behaviour. The greater the (positive) difference, the
more likely the fracture was non-catastrophic.

The nominal residual strength in the glass/epoxy composites was
expected dependent on the inner indent load. The consistency of sample
geometry and indent strength, make comparisons easier than for the
zirconiaflanthanum-aluminate composites. Figure 5.1.4-6 shows the residual
strength as a function of inner applied indent load. There is variation in the data,
but no indent load dependence is apparent. The nominal residual strength is
comparable in all of the samples. The monolith glass sample strengths showed a
difference for this range of indent loads, but it is smaller than the variation of
strength in Figure 5.1.4-6. This may be due to the extent of interlayer cracking.

The residual strength of the composites is higher than monolithic glass.
The nominal residual strength is based on the initial thickness of the samples, but
the "true"” residual strength is four times higher (for ¢/h =1/2, and from strength

to sample height relation). This is partially due to the Weibull effect in the
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samples with non-indented inner layers. A small volume of material is subjected
to the maximum stress in the beam, so it is correspondingly stronger. In all
samples the strength increase can be attributed to the cracked surface layer
bearing some load. The strength reported relies on the remaining layer of the
beam, but the surface layer still contributes. The true stress in the next layer is
lower than calculated, so the observed strength increase is artificial. This effect
also depends on the extent of interlayer fracture.

The extent of interlayer cracking can be estimated from the load drop
during fracture of the surface layer, and Equation 3.1-11. Figure 5.1.4-7 shows
the calculated value as a function of the nominal residual strength. It is assumed
interlayer cracking occurs instantaneously, during fracture of the surface layer.
There is no apparent relation between the nominal residual strength and the
extent of interlayer cracking, though there may be an effect due to the initial
strength.

The work-of-fracture of the glass/epoxy composites was more consistent
than the zirconiallanthanum-aluminate. Figure 5.1.4-8 shows the work-of-fracture
as a function of outer indent load. Samples with a smaller indent load have a high
work-of-fracture associated with their high strength. Samples subjected to a
higher indent load have a low work-of-fracture associated with their low strength,
but a high work-of-fracture associated with their high residual strength following

multi-stage fracture. Moderate outer indent loads lead to a compromise.
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Work of Fracture of Glass Composites
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Figure 5.1.4-9 shows the work-of-fracture as a function of the inner indent
load. There is a variation in the data due to the range of outer indent loads used
in the tests. High works-of-fracture are possible, regardless of the inner applied
indent load, but these samples fail catastrophically.

Figure 5.1.4-10 shows the work of fracture as a function of the nominal
residual strength. Samples that failed catastrophically have a variation in work of
fracture due to the variation of outer applied indent loads. The samples that failed
in a multi-stage manner exhibit a relation between work of fracture and nominal
residual strength. No multi-stage composites had a work of fracture comparable
to the best of the catastrophic samples. This is inconsistent with the
zirconiaflanthanum aluminate results, in which some muiti-stage fracture samples
had higher works-of-fracture than monoliths. The difference is in the surface layer
thickness ratios. Some zirconia composites were made with thin surface layers,
so had high residual works-of-fracture. The % surface layer thickness ratio used
in the glass/epoxy composites does not produce a high enough residual work-of-
fracture to compensate for the low initial work-of-fracture associated with the
large outer indent load. The large outer indent load is necessary to achieve muilti-
stage fracture. This observation implies multi-stage fracture is not necessarily the
optimum way to ensure good mechanical properties.

The results of the glass/epoxy tests are consistent with those of the
zirconia/lanthanum aluminate tests. High strength and high work-of-fracture are

difficult to achieve in the same material. High strength has no residual work
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of fracture, but multi-stage fracture requires low strength. Optimization requires a

compromise.

5.1.5 Plaster-of —Paris

The highlights of the plaster-of-Paris work were discussed in Section
2.3.4. The pattern of fracture behaviour, shown as Figure 2.3.4-1, is consistent
with the fracture mechanics model developed in Section 3.1 and the results of

the zirconia/lanthanum-aluminate and glass/epoxy experiments.



204

5.2 Finite Element Analysis

The accuracy of the analyses was determined by comparing the finite
element calculated load and stress values to equivalent theoretical values. Figure
5.2-1 shows the difference as a function of the number of elements used in the
calculation. In each case the length/height (slendemess) ratio of the beam was
the same.

The accuracy of the finite element calculation improves as more elements
are used. Values converge if >600 elements are used. Constant strain
quadrilateral elements cannot accurately simulate pure bending conditions, for
shear does not exist, so some error is inevitable. The figure shows the error is
~1% for loads, and ~2.5% for stress calculations.

The bulk of this work was based on load calculations. The use of 720
elements was considered as an appropriate balance of calculation accuracy and
computation time. Each calculation used the same number of elements, so is
expected to have a comparable error. Normalization of all calculated values

reduces the problem. There is error accrued during the regression analysis.

5.2.1 Catastrophic Failure

The calculated load (for a given, constant displacement) as a

function of main crack size is shown as Figure 5.2.1-1. The load required to bend
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the beam to the given displacement decreases as the crack size increases,
because the compliance increases.

Following Equation 3.2.1-12, the calculated load values were compared
with stress intensity factors derived from several regression equations; each with
an increasing number of terms. The regression equations are plotted in Figure
5.2.1-2, with a standard solution (Brown, 1966) for comparison. An increased
number of terms in the regression equation allows a steeper curve to be fit to the
data, which increases the calculated stress intensity factor. This figure
demonstrates the equations converge to a solution that is slightly lower than the
standard one. The standard solution is based on a compliance curve fit to
experimental data. The assumptions necessary for this calculation could result in
a higher calculated stress intensity.

The load calculations were repeated with different mesh refinements. A
fourth order polynomial was fit to each set of values. The data and three of the
equations are plotted in Figure 5.2.1-3. The regression equations converge
quickly. The use of 720 elements in each calculation was confirmed to be
acceptable.

The derivative of the load equation with respect to main crack size gives
the strain energy release rate, due to the proportionality of the load and strain
energy at constant displacement, and normalization of the values. As the crack
propagates the strain energy release rate increases, that is, the magnitude of the

slope of the load curve increases. The strain energy release can be considered
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Figure 5.2.1-2. The effect of number of terms in the regression equation on the

predicted stress intensity factor.
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as a sum of surface energy, which is constant for the material, and kinetic
energy, which increases.

The crack propagates unstably because the strain energy release rate is
higher than (twice) the surface energy of the material, after the onset of
propagation. If the surface energy of the material increases across the thickness
of the beam more quickly than the strain energy release rate increases, then the
crack can be slowed or even arrested. This suggests there are toughening
opportunities in fabricating functionally graded materials with a surface energy
that increases across a sample that is greater than parabolic. The problem is that
a change in surface energy is usually accompanied by a change in elastic
modulus, and the parabolic compliance curve becomes invalid. it may be
possible to functionally grade both the modulus and surface energy across a

sample to achieve stable cracking and increased toughness.

5.2.2 Delamination Fracture
The calculated load (for a given, constant displacement) as a function of
interlayer crack size is shown as Figure 5.2.2-1. Values are given for #h=1/4,

which is representative of the calculations. Similar to catastrophic failure, the load
required for a given displacement decreases with increasing crack size, as the
compliance of the beam increases. The calculated values are compared with

Equation 3.1-11. Derivation of the equation was done assuming zero stress



211

Normalized Load (or Strain Energy)

-3 o FE Calculation
091 o —Theoretical

e
®

Normalized Load OR Strain Energy
o o
[+ ~

o
(T

0-4 ¥ A L3 T L]
0 0.05 0.1 0.15 0.2 0.25 03

Normalized Interlayer Crack Length (c/L)

Figure 5.2.2-1. The load as a function of interlayer crack size (during

delamination).
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in the delaminated layers. This is not the case, so some difference is expected.
A derivative of the load equation with respect to the interlayer crack size

gives the strain energy release rate of the interlayer crack. The slope of the
calculated values and that of Equation 3.1-11 are comparable, despite the
difference in magnitude. Unlike catastrophic failure, the strain energy release rate
of the interlayer crack decreases as the crack propagates. This means the
secondary crack may stabilize, depending on the surface energy of the material.
if the geometry of the beam and the toughness of the interlayer can be
controlied, the extent of interlayer fracture can be controlled. This affects the
stress distribution in the beam, and therefore the residual strength and work-of-
fracture. Note that this scenario does not involve pre-cracking of the interlayer
during catastrophic failure of the surface layer. This will later be shown critical to

the fracture behaviour of the material.

5.2.3 Pre-Cracking of the Weak Interiayer

The calculated load (for a given, constant displacement) as a function of
main and interlayer crack size is shown as Figure 5.2.3-1. The layer thickness
ratio is #h=1/2. The load decreases as either one of the two cracks propagate.
The regression coefficients, 4's, are given in Table 5.2.3-1, and their calculated

errors in Table 5.2.3-2. The R-squared value for each regression was >0.98.
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Figure 5.2.3-1. The load as a function of main and interlayer crack size (during

pre-cracking of the interlayer).
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The regression equation is composed of a theoretically derived equation
and an empirical equation. If the form of the equation is correct, a plot of the
residuals as a function of crack size should have a random pattern. The residual
for each point is the difference between the finite element calculated value and
the regression equation calculated value. Figures 5.2.3-2 and 5.2.3-3 show the
residuals as a function of main crack size and interlayer crack size respectively.

The residual plots show that the form of the equation is not ideal.
Residuals increase with increasing main crack size, and there is subtle pattern
apparent with increasing interlayer crack size. The regression equation was
manipulated by trial and error, and this is the most appropriate relationship found.
All of the residuals are <1.2%, and this is acceptable. The problem is not likely to
have a simple mathematical solution.

The main and weak interlayer crack sizes are important parameters in
governing the fracture behaviour of this class of composite. A high, medium and
low value of each were selected to simplify comparisons. The values chosen
were a/h = 0.005, 0.0125, 0.05 and c/L = 0.0005, 0.00125, 0.005. These crack
size ratios correspond to cracks of 10, 25 and 100um in typical zirconia
specimens. Unless specified, both crack sizes are assumed their medium values.
One parameter is changed at a time to allow comparisons.

The errors in the regression values vary with crack sizes ah and c/L. For

the "medium" conditions, the load error is <1%. This is representative of the
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Figure 5.2.3-2. The residuals of the regression plotted as a function of main

crack size.
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Figure 5.2.3-3. The residuals of the regression plotted as a function of

interlayer crack size.
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critical calculations. The error on the derivative of the load equation, that is, the
strain energy release rate, is ~4%. The error on the derived strength parameter is
~3%. These errors must be considered when examining resulits.

Figure 5.2.3-4 shows how the strain energy release rate of the main crack
changes during its propagation. This figure is based on Equation 3.2.1-2, the
negative of the derivative of the load equation with respect to main crack size.
The strain energy release rate increases as the crack size increases, so the
fracture is catastrophic.

Figure 5.2.3-5 shows how the strength of the composite changes with
main crack size. The strength is based on Equation 3.2.3-4. The curve follows
theoretical expectations.

Figure 5.2.3-6 shows the strain energy release rate of the interlayer crack
as a function of interlayer crack size, plotted for different values of main crack
size. Positive values represent crack configurations that may lead to interlayer
cracking, provided the interlayer toughness is low. Cracking is possible only if
one of the two cracks is large. This is consistent with the premise of the fracture
mechanics model. Negative values represent configurations in which the cracks
will heal. These are only of theoretical interest.

The shape of the large main crack size curve has implications on the
propagation of the weak interlayer crack. The strain energy release rate initially
increases, which indicates catastrophic failure of the interlayer. The subsequent

decrease indicates the possibility of stabilization. This suggests continued
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Figure 5.2.3-4. The strain energy release rate as the main crack propagates.
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Figure 5.2.3-5. The strength of the composites as a function of main crack

size.
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cracking of the interlayer relies on continued propagation of the main crack.

The size of the interlayer crack has a minor effect on the strength of the
composite, as shown in Figure 5.2.3-7. This is insignificant compared to the
effect of the main crack size. No strength difference should be apparent unless
both cracks are large. The shallow gradient of the curves indicates there is also
no expected effect on the Weibull modulus of composites, when compared to
monoliths.

The regression equation was used to predict pre-cracking of the weak
interlayer. As the main crack propagates, its strain energy release rate increases.
The ratio of strain energy release rates for the main and interlayer cracks also
increases. At some point, the combination of crack sizes is sufficient to cause
pre-cracking of the weak interlayer. This depends on several factors; the initial
main crack size (at the onset of fracture), the initial interlayer crack size, and the
ratio of toughness of the two materials. This approach is quasi-static, so is not
expected to give exact predictions. Relative comparisons should be similar to the
dynamic case.

Figure 5.2.3-8 is a plot of the ratio of the main and interlayer crack strain
energy release rates as a function of main crack size, for various initial main
crack sizes. The ratio increases rapidly for an initially small main crack and

suggests pre-cracking of the interlayer is possible early in the fracture process.
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Figure 5.2.3-7. The strength of the composite as a function of interlayer crack

size.
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Figure 5.2.3-8. The ratio of main and interlayer crack strain energy release

rates as a function of main crack size ().
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Conversely, a larger initial crack leads to pre-cracking later in the process.
Values will depend on the ratio of material properties. Figure 5.2.3-9is a plot of
the ratio of main and interlayer crack strain energy release rates as a function of
main crack size, for various initial interlayer crack sizes. Large interlayer cracks
are predicted to start propagating eartier than small ones. This is consistent with
intuition. Both figures are consistent with the fracture mechanics modeling work.

Figure 5.2.3-10 is a plot of the relative velocities of the main and interlayer
cracks as a function of main crack size. In each case, the velocity increases as
the main crack propagates. At some point during the propagation, the weak
interlayer also begins to fracture. The interlayer crack also fails unstably.

The form of the two sets of curves is similar. This supports the use of crack
velocities as an estimate of crack propagation distance.

Figure 5.2.3-11 is a plot of the relative propagation distances of the main
and interlayer cracks as a function of main crack size. In each case the interlayer
crack propagation distance is a fraction of that of the main crack. The ratios are
consistent for each set of curves. Note the approach is quasi-static, so it is not
expected be exact, but comparisons should be valid.

Figures 5.2.3-8 to -11 suggest pre-cracking of the interlayer is possible.
This is consistent with the literature, and the premise of the fracture mechanics
model. The extent of interlayer crack propagation increases with decreasing
initial main crack size. This suggests a small initial main crack should lead to

more interlayer cracking, which leads to multi-stage fracture behaviour.
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Figure 5.2.3-9. The ratio of main and interlayer crack strain energy release

rates as a function of main crack size (|l).
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as a function of main crack size.
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This is contrary to the experimental evidence. The discrepancy can be explained
by considering Figure 3.1-4, the plot of critical interlayer crack length as a
function of (strong) layer strength ratio. The smaller the initial main crack, the
greater the extent of interlayer cracking necessary to achieve muiti-stage fracture
behaviour (for a given "next" layer strength). A large initial main crack leads to
less interlayer cracking, but less is required to avoid catastrophic behaviour.

The ratio of the two materials' toughness will also influence the crack
deflection behaviour of the composite. A tougher interlayer material delays its
pre-cracking, which leads to less interlayer crack propagation distance. The
result is a high stress on the next strong layer in the composite, and a greater
chance of catastrophic fracture behaviour. A more brittle interlayer encourages
its pre-cracking, and therefore multi-stage fracture. This argument relies on
consistent initial main and interlayer crack sizes. The toughness ratio required for
pre-cracking depends on the initial crack sizes (main and interlayer). This is an

important feature of crack deflection.

5.2.4 Crack Tip Mesh Refinement

A typical mesh used for the crack tip mesh refinement is given in Figure
5.2.4-1. The number of elements used in each calculation varied, to a maximum
of ~3000. Finer mesh in the vicinity of the crack tip allows more accurate stress

intensities to be calculated.
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Figure 5.2.4-1. A typical mesh used for the crack tip mesh refinement.
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Figure 5.2.4-2 is a comparison of the loads calculated using the
commercial software, and the load-regression technique used by the author. The
commercial software was used to generate two sets of load values; one using a
relatively coarse mesh, and one using the given refined crack tip mesh. The
points represent the loads required to apply a 100um deflection to a 20x2>2mm
zirconia sample. Main cracks of 200 and 400um, and interlayer cracks of 200,
600 and 1000um (500um from the tensile surface), were included. The data were
normalized to the load for an un-cracked specimen. The load values are similar
for each of the three calculation techniques. There is little change in the load
values achieved by mesh refinement. There is an error associated with
regression.

Figure 5.2.4-3 is a plot of the stresses in the vicinity of the main crack tip
calculated using the commercial software. The main crack size was 200um. The
calculated values are compared to equivalent stresses predicted using both the
load-regression technique, and a standard solution (Brown, 1966). The stresses
were manipulated using Equation 2.1.6-9 and plotted as Figure 5.2.4-4. A crack
tip stress intensity factor was calculated by extrapolation. The value at the crack
tip was not included in this calculation. The three techniques yield similar values.

Figures 5.2.4-5 and 5.2.4-6 are equivalent calculations for the stresses
and stress intensity factor for a 1000um interlayer crack. The values are similar.

This supports the load-regression technique for determining loads, stresses near
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Refined Tip Mesh Stress Intensity Calculation (Main)
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Refined Tip Mesh Stress Intensity Calculation (Interlayer)
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Figure 5.2.4-6. The stress intensity factor at the interlayer crack tip.
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crack tips, strain energy release rates, and crack tip stress intensity factors.

The load-regression technique offers several advantages. Mesh
generation is relatively simple, as crack tip mesh refinement is not necessary.
The method provides equations that can be used to analyze the fracture
behaviour of similar composites. It is particularity appropriate for test geometries
containing more than one crack. The problems associated with the under-
estimation of stresses at the crack tip are avoided. The disadvantage is that

judging a suitable regression equation is subjective.



Chapter 6. Conclusions

The aim of this work is to examine the criteria necessary for multi-stage
fracture in brittle composites that contain weak interlayers. Non-catastrophic
failure of laminates during bend testing increases work of fracture and provides a
"safety-net" for brittle materials. The work of others (see Chapter 2) has provided
insight into the design of ceramic laminates, but predictions have not been
consistent from system to system.

The core of this work is the development of a crack deflection model that
can predict flexural fracture behaviour; either catastrophic or multi-stage. The
model has required several simplifications and assumptions, which are
acknowledged. The main simplification is that composites are treated as two-
dimensional beams that contain a single, infinitesmally thin interlayer. The
interlayer material has a different toughness than the bulk and contains flaws of
known size. The model assumes modulus and/or thermal expansion differences
of the two composite materials do not play a significant role in crack deflection.
The model reveals the size of flaws in the strong (bulk) material and the ratio of
surface layer thickness to full sample thickness is more important to the fracture
behaviour.
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The validity of the model has been confirmed by producing and
mechanically testing three types of composites; zirconia/lanthanum-aluminate
composites that contain both modulus and thermal expansion differences,
glass/epoxy composites that contain a modulus difference, and plaster
composites that contain neither. The trends in fracture behaviour of the three
systems are consistent with the model's predictions. The flaw distributions in the
systems cannot be perfectly controlled, so there is some error. Fracture of brittle
composites is ultimately statistical in nature.

Finite element analysis was undertaken to confirm some of the equations
used in the fracture mechanics modeling. A load-regression technique was used,
which is similar to earlier work of another researcher. The technique was
extensively modified to analyze the propagation behaviour of two cracks, and to
infer the strength and reliability of composites. The relati\{e velocities of
propagating cracks were calculated using a quasi-static analysis. The results are
not expected to be the same as for a dynamic approach, which considers shock
waves in the material, so only comparisons are considered. The finite element
analysis results were consistent with, and reinforced, the results of the fracture
mechanics modeling.

The results of the modeling, experiments and finite element analysis have
given greater insight into crack deflection phenomena in laminates. The size of

flaws in the strong and interlayer materials, the ratio of toughness of the two
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materials, and the ratio of strong layer thickness all play a role in achieving muiti-
stage fracture behaviour.

‘The size of the flaw in the surface of the strong material of the composite
must be considered as it influences the strength, work of fracture and fracture
behaviour. A small flaw provides strength and work of fracture, but increases the
chance of catastrophic failure. A large flaw reduces the strength, but increases
the chance of multi-stage fracture and the associated improvement in work of
fracture. The ratio of strengths of the surface and inner strong layers directly
affects the likelihood of muilti-stage fracture. This is consistent with the
experimental results of Oeschner et al (1996), Hatton (1 998) and Mawdsley et al
(2000), who all noted multi-stage fracture behaviour in samples that contained
notches or indents. The role of flaw size in the next strong layer was incorporated
into the modeling efforts of Kovar et al (1998) and Mawdsley et al (2000).

The combined effect of the size of the flaw in the interlayer and the
interlayer toughness influence the crack deflection behaviour. Earlier work by
Cook and Gordon (1964) and He and Hutchinson (1989, ) concentrated on the
toughness ratio of the interface and bulk materials. Finite element analysis
indicates the size of the interlayer flaw also influences pre-cracking behaviour.
Interlayer strength becomes more important than interlayer toughness, that is,
flaw size is critical. This is consistent with the work of Oeschner et al (1996) and
Sanchez-Herencia et al (1999), who used thermal residual stresses to generate

large flaws in otherwise strong interlayer materials.
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The interlayer toughness influences the extent of its cracking, and
therefore the fracture behaviour of the material. A brittle interlayer allows
extensive delamination, which sheds load and encourages multi-stage fracture
behaviour. A tough interlayer reduces the extent of deflection, which sheds less
load, but the surface layer continues to support some stress in the composite.
Both Phillips et al (1993) and Kovar et al (1998) demonstrated the role of
interlayer toughness on energy absorbed.

it has been shown that several factors affect crack deflection and muiti-
stage fracture behaviour. Strength, work of fracture and non-catastrophic
behaviour are difficult to achieve consistently. Strength is governed by the flaw
size in the surface of the composite. Work of fracture is influence by both surface
flaw size and muilti-stage fracture. Multi-stage fracture is influenced by surface

flaw size. A concession is necessary in the design of this class of materials.

This work leads to several opportunities for future research. In this work
only one weak interlayer was considered. The fracture mechanics model could
be modified to incorporate several layers. This could increase the work of
fracture if consistent crack deflection was possible in sequential layers. As the
number of layers increases, the thermal stresses in the composite will become
more important. Thermal stresses will not influence the crack deflection, but they

may weaken the surface and next layers. It may be possible to encourage muiti-
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stage fracture material and improve work of fracture by using a thermally
compressed material as the next strong layer.

The work allows other composites to be designed more effectively.
Suitable interlayer materials can be selected to toughen other ceramics, at both
high and low temperature. The role of modulus differences and thermal residual
stresses is less important than other factors, and must be considered
accordingly.

The load-regression technique used with finite element analysis has been
modified, and used to consider a complex laminate geometry containing two
cracks. It can be developed to consider other shapes, loading geometries, layer
combinations, and flaw distributions. Different results are expected, but the

philosophy should remain consistent.

THE END
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Appendix |

The program "mapper" was the program used to perform the fracture
mechanics calculations. Only the zirconia/lanthanum-aluminate version is
included here. The glass/epoxy version differs only in the material constants
used.

The program was written in Pascal v7.0. Notes have been added for
clarification. The program iterates through the calculation for a range of values of
surface layer thickness and applied outer indent load. Either catastrophic or
multi-stage fracture is predicted for each set of conditions, and a "C" or "M"
printed as output. An "S" is plotted for the special case that the interlayer crack
propagates before the main crack. This region was treated as a multi-stage
failure for all subsequent analysis.

A sample of the program output is included. The critical surface layer
thickness ratio was determined for each applied indent load by averaging the
layer thickness ratios just above and below the boundary between the two zones.
The boundary was artificially smoothed by non-linear regression (FitAll v5.7 Non-

Linear Regression Analysis, MTR Software) for presentation purposes.
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program mapper;

{$E+ N+}

uses printer,

const {These values are changed for different materials}
KIC=6.6ES6;
sigmaf=895ES6;
gam=938ES6;
m=10;
czero=4E-6;
KICW=2.05ES6;
b=0.002;
h=0.0015;
L=0.02;

var
Y, prob: real;
azero, acrit, ccrit, a, stress, strength, ratio, factor: double;

P1, P2, check, veloa, veloc, Pind, lay, Keff: double;
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Pindct, Ict: integer;

result: char;
begin
writeln('Welcome to my fracture zone mappert!!’), {Output to screen}
writeln(Ist,'Welcome to my fracture zone mappert!’); {Output to printer}

writeln(*Zirconia - Weibull calculation - mid');
writeln(Ist,'Zirconia - Weibull calculation - mid');
prob:=50; {Failure probability, changed for standard deviation error
curves}
lct:=1400;
Y:=1.12*2/pi; {Assume semi-circular crack}
while Ict>0 do
begin
write(lct,' '); write(lst,lct,’ '),
if Ict<1000 then write(" *); if Ict<1000 then write(Ist,' *);
if lct<100 then write(' '); if Ict<1000 then write(Ist,’ ');
Pindct:=1;
while Pindct<=20 do {iterate for a range of indent loads}
begin
Pind:=0.5"Pindct,
lay:=Ict*1E-6;
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azero:=(1/pi)*sqr(KIC/(Y*gam))*exp(1.1782"In(Pind)); {Values from
regression of monolithic strength data}
P1:=(KIC*4*b*sqr(h))/((3"L)*Y*sqrt(pi*azero));
a:=azero;
ratio:=czerol/(lay-a),
factor:=ratio;
if ratio>0.4 then factor:=0.15"ratio+0.35; {This is an approximation
of the Green integral used, done for simplification of calculation}
Keff-=factor*KIC *sqrt(a/azero)*(1-sqr(a/h))/(1-sqr(azero/h));
if Keff>KICW then result.='S’ {Check to see if interlayer cracks
before main}
else begin
repeat
a:=a+1E-6;
ratio:=czero/(lay-a);
factor:=ratio;
if ratio>0.4 then factor:=0.15"ratio+0.35;
Keff:=factor*KIC*sqrt(a/azero)*(1-sqr(a/h))/(1-sqr(azero/h));
until Keff>=KICW,
acrit:=a;

if azero>acrit then acrit:=azero
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else veloa:=(lay-acrit)+azero*In(abs((lay-azero)/(acrit-azero)));
repeat
cerit:=ccrit+1E-6;
veloc:=(ccrit-czero)+czero*In(abs((ccrit-czero)/(0.01*czero)));
{Require approximation to avoid singularity in equation}
until veloc>=veloa;
strength:=928E6*exp((1/m)*In(L*(In(100/prob))/(4*ccrit)));
P2:=P1*L/(L+3*ccrit*((exp(3*In(h))-exp(3*In(h-lay)))/exp(3*in(h-lay))));
stress:=(3*P2*L)/(4*b*sqr(h-lay)),
if stress>strength then resuit:='C'
else result:='M’,
if azero>lay then result:='S',;
end;
write(resuilt,'");
write(Ist,result,' ');
inc(Pindct)
end,
writeln(' ');
writeln(ist,’ *);
dec(lct,50)

end;



writeln('Indent load from 0.5 to 10kg.');

writein(ist,'Indent load from 0.5 to 10kg.");

readin;

end.

Sample Output

Welcome to my fracture zone mappert!!

Zirconia — Weibull Calculation — mid

1400
1350
1300
1250
1200
1150
1100
1050
1000
950
900
850
800
750

ccccecceccececececececceccceccceccc
cccceccecececececcecceccecccccccec
cccecececcecececececccecccceccccec
cccececececececececcececcecccccecc
cccccecceccecececececceccecceccccecccce
cccecececcececececececcecceccecceccccec
cccccececcececececccecceccccceccce
ccccecceccececececcceccecccceccecccce
ccccceccececececececceccecceccceccecccec
ccccecccececececcccccCcMMmm
cccecceccecccccCCMMMMMM
cccccccccCcCCCMMMMMMMM
cccccccccCMMMMMMMMMM
ccccccccCMMMMMMMMMMM
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700
650
600
550
500
450
400
350
300
250
200
180
100
50
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ccccccc MMMMMMMMMMMMM
cccccc MMMMMMMMMMMMMM
cCCCCMMMMMMMMMMMMMMM
ccccceuMMMMMMMMMMMMMM
cccCcCMMMMMMMMMMMMMMMM
CCCMMMMMMMMMMMMMMMS S
CCCMMMMMMMMMMMMMMSSS
CCCMMMMMMMMMMMMSSSSS
CCMMMMMMMMMMMSSSSSSS
CCMMMMMMMMMSSSSSSSSS
CCMMMMMMMSSSSSSSSSSS
CCMMMMMSSSSSSSSSSSSS
CMMMSSSSSSSSSSSSSSSS
CMSSSSSSSSSSSSSSSSSS

Indent load from 0.5 to 10kg.
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Appendix Il

% bender.m
% This is a program for calculating the forces, displacements,
% and key stresses in a double cracked beam.

% It uses simple, 4-noded quadrilateral elements

clear all;

format short g;

%Set material properties, in this case zirconia
E=220000000000;
nu=0.31;

% Initialize counter for iterations
ctriii=0;
ctrijjj=0;

counter=0;

for jjj=0:15
for iii=0:3
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acrack=3, %note that this is the distance from the surface to the
intertayer

anews=iii; %the actual crack size

ccrack=ijjj;

% this part of the program sets the initial mesh for the beam
rows=12;

columns=60,

elmtot=rows*columns;

h=1;

Ix=1; ly=1; m=ix/ly;

% Set x,y location for each node.

locx={];

locy=(;

for i=1:rows+1

for j=1:columns+1

nextx=j-1,;
locx=[locx nextx];
nexty=rows+1-i;

locy=[locy nexty];



end

end

% Set global node numbers for each element.
gln=zeros(elmtot,4);
for i=1:rows
for j=1:columns
elm=j+(i-1)*columns;
nodea=eim+columns-+i;
nodeb=elm+columns+i+1;
nodec=elm+1+(i-1);
noded=elm+(i-1);
next=[nodea nodeb nodec noded];
gin(elm,:)=gin(elm,:)+next,
end
end

aaa=max(gin); gintot=max(aaa);

% Set non-zero loads to 1, and known displacements.
loadv=zeros(2*gintot,1);

dispv=ones(2*gintot,1);
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centres={};

for i=1:gintot
if locx(i)== % Centre of beam
loadv(2*i-1)=1;

dispv(2*i-1)=0;

centres=[centres iJ; % Stores addresses of middle nodes
end
if locy(i)== % Outer span pin

if locx(i)==columns
loadv(2%i)=1;
dispv(2*)=0;
end

end

if locy(i)==rows % Inner span pin
if locx(i)==0.5"columns % Must use even number here
loadv(2*i)=1;
dispv(2*i)=-0.05; % Arbitrary displacement

end
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end

end

extralv=loadyv;

extradv=dispv;

specials % Separate program to adjust nodes to simulate cracks

% For inner cycle must "re-attach" layer AND the first extra node
if acrack~=0 % Note this is actually layer thickness to interlayer
for i=1:acrack
loadv(2*centres(rows+2-i)-1)=1;
dispv(2*centres(rows+2-i)-1)=0;
end
end
fexnode=(rows+1)*(columns+1)+1; %first extra node re-attachment
loadv(2*(fexnode)-1)=1;

dispv(2*(fexnode)-1)=0;

% Re-crack a new acrack ie "anew"

if anew~=0



for i=1:anew
loadv(2*centres(rows+2-i)-1)=0;
dispv(2*centres(rows+2-i)-1)=1,
end

end

aaa=max(gin); gintot=max(aaa),
glmatrix=sparse(2*gintot,2*gintot);
glmatrix=zeros(2*gintot,2*gintot);
% Set global stiffness matrix using element stiffness matrix
% defined in quadmatrix.m. Note that the elemental stiffness matrix
% is 8x8 and each value must be put in its correct place
=220000000000;
nu=0.31; %zirconia
quadmatrix
for i=1:elmtot
forj=1:4
index(24-1)=2*gin(i,j)-1;
index(2%)=2*gIn(i,j);
end

glmatrix(index,index)=gimatrix(index, index)+kmatrix(:,:);
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end

extragimat=glmatrix;

addresses=(];
constraints={];
for i=1:2*gintot
if loadv(i)~=0
addresses=[addresses i;
constraints=[constraints dispv(i)];
extragimat(i,:)=zeros(1,2*glntot);
extragimat(i,i)=1,
end
end

extralv(addresses)=constraints;

% Now solve for displacements

dispv=extragimat\extralv,

% Now solve for loads

loads=gImatrix*dispv,
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%Save some memory
gimatrix={];

extragimat={];

% Loop to extract u and v displacements, and fx and fy loads.
for i=1:gintot

us(i)=dispv(2°i-1);

vs(i)=dispv(2*i),

fxs(i)=loads(2*i-1);

fys(i)=loads(2*i);

end

% Loop to find the applied force at outer pin
for i=1.gintot
if locy(i)==0 %outer span pin
if locx(i)==columns
force=loads(2");
end

end



end

% Print the pin load, set for zero initial crack sizes
maincracksize=anew;

weakcracksize=ccrack;

layerthickness=acrack;,

afmat(anew+1,ccrack+1)=force

counter=counter+1
end

end

% Now draw the deformed block - transposed and mirrored

factor = 100; %input('Factor for magnifying displacements ');
figure(1)

hold on

shift=max(locx)/75;

for i=1:elmtot
nodes=[gIn(i,1) gIn(i,2) gin(i,3) gin(i,4)];

x=locx(nodes(:))+factor*us(nodes(:));
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x(5)=x(1);
nodes={gin(i, 1) gIn(i,2) gIn(i,3) gin(i,4)};
y=locy(nodes(:))+factor*vs(nodes(:));
y(S)=y(1);
plot(y.x,'-');% Note reversal for transpose
x=-1"x; % Mirror down with x-y reversed
plot(y,x,'-r’);
end
hold off;
axis equal
%end
%save('newdelam’,'rows','columns’, jj,'counter",'initialforce’, forcelist''initialbeam’,’
maxbeamlist’,'acrack’)
% specials.m
% This program specifies the cracked portions of the beam. Base

% values already dealt with in mesh section of code.

if acrack~=0
for i=1:acrack
loadv(2*centres(rows+2-i)-1)=0;

dispv(2*centres(rows+2-i)-1)=1;
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end

end

if ccrack~=0
% Specify new nodes, load is zero, disp freedom, loc as other nodes
for i=1:ccrack
loadv(2*(gIntot+i)-1)=0;
loadv(2*(gintot+i))=0;
dispv(2*(gintot+i)-1)=1;
dispv(2*(gintot+i))=1;
locx(gintot+i)=locx(centres(rows+1-acrack)-1+i);
locy(glntot+i)=locy(centres(rows+1-acrack)-1+i);
gln(((rows-acrack)*columns+i),4)=gintot+i;
gln(((rows-acrack)*columns+i),3)=gintot+i+1;

end
gln(((rows-acrack)*columns+i),3)=...
gin(((rows-1-acrack)*columns+i),2);

end

aaa=max(gin); gintot=max(aaa);

extralv=loadyv;

extradv=dispv;



% Here is the m-file for determining the kmatrix.
% Use plain strain, therefore;

E=E/(1-nur2);

nu=nu/(1-nu);

% These are accepted values, derived for FEA

k1=4"m+(2/m)*(1-nu); k2=(3/2)*(1+nu);
k3=(4/3)+2*m*(1-nu); k4=2*m-(2/m)*(1-nu);
k5=(-3/2)*(1-3*nu); k6=(-4/m)+m*(1-nu);
k7=-2*m-(1/m)*(1-nu); k8=-4*m+(1/m)*(1-nu);
k9=(-2/m)-m*(1-nu); k10=(2/m)-2*"m*(1-nu),

matterm=E*h/(12*(1-nu*2));
kmatrix=matterm*[k1 k2 k8 k5 k7 -k2 k4 -k5;...

k2 k1 -k5 k10 -k2 k9 kS k6;...

k8 -k5 k1 -k2 k4 k5 k7 k2;...

kS k10 -k2 k1 -k5 k6 k2 k9;...

K7 -k2 k4 -k5 k1 k2 k8B k5;...

-k2 k9 k5 k6 k2 k1 -k5 k10;...

k4 k5 k7 k2 k8 k5 k1 -k2;...

-k5 k6 k2 k9 k5 k10 -k2 k1];
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