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Abstract

We investigate the uniseriality of uniform modules. Let R be any ring and
fix a decomposition 1 = e; + €2 + -- - + e, into orthogonal idempotents. Let
Vr be uniform and injective; we prove that there exists e = ¢; such that
Vr = homy (Re,Ve) where A = eRe. Moreover, Ve is a uniform injective
A-module. If R is Goldie prime serial, we prove that V is uniserial if and only
if Ve is uniserial as an A-module.

If R is Geldie prime serial, we know that such an A is a valuation on
a division ring D. We prove that any uniform injective, E,, is of the form
E = E(D/I) for some I < A. If D/I is injective, then E is uniserial. We
give several necessary and sufficient conditions for D/I to be injective.

In this study of uniform injectives over Goldie prime serial rings we define
a notion of generalized associated primes. This leads to a semiprime Goldie
ideal, S, which can be associated to any uniform injective. We prove that for
certain uniform injectives, C (S) (the set of elements regular modulo 5) is the
largest Ore set operating regularly on the module.
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Chapter 1

Introduction

1.1 Preliminaries

In this section we give some of the definitions and results which will be used
in the subsequent chapters. We will normally recall definitions when needed.

All rings will be associative but not necessarily commutative. All rings will
have an identity element which will usually be denoted by 1. Unless otherwise
stated, modules are assumed to be unitary.

The notations X CY means that X is a subset (or submodule) of Y and
X C Y means that X is a proper subset (or submodule) of Y. We will also
use < and < in the same way to stress that a submodule or right (or left) ideal-
is meant. The symbols <1 and < will be used to stress the fact that we mean

a two sided ideal. We shall use E (M) to denote the injective hull of a module
M.

Definition 1 A module is said to be uniserial if its submodules are linearly
ordered by inclusion. We say that a module is serial if it is equal to the direct

sum of uniserial submodules.



Proposition 2 A module, Mg, is uniserial if and only if for all z,y € M

either y = zr or z = yr for semer € R.

Definition 3 A ring, R, is right (left) serial if Rg (gR) is serial as a
module. It is said to be serial if it is both left and right serial.

A module, A, is said to be uniform if, forall 0 £ X, Y < M, X nY #0.

Let R be a right serial ring. Then the identity of R can be decomposed
as 1 = e; + €2+ --- + e, where &), €2,..., €, is a collection of indecomposable
orthogonal idempotents. For each i, the module e;R is uniserial. Given such
a decomposition, R = (X;;)7;.; where X;; = e;Re; [cf. M2].

Idempotents e and f are said to be isomorphic if eR = fR as right R-
modules. Let R be serial and let 1 = e; + e; +--- + e, where e;,€3,...,€,
is a collection of indecomposable orthogonal idempotents. Then R is said to
be basic if the idempotents are pairwise nonisomorphic. A serial ring always
has a basic subring and it is obtained from the basic subring by “blocking”
fcf. M2]. We will always assume that our serial rings are basic.

Let R be a Goldie prime serial ring. It follows that B 2 (Xj;) is a tiled
order in My, (D) for some division ring D. This means that the X;; are subsets
of D and that the operations are the natural ones obtained from the matrix
operations. It follows that, for each i, A; = Xj; is.a valuation on the division

ring D {M1, Theorem 2].

Definition 4 Let D be a division ring. A proper subring A C D is-said to
be a valuation (or a valuation on D} if, for all 0 # d € D, citherd € A or
d! € A.

We now give some examples.



Example. Every semisimple module is serial.

Example. Let n be a non-negative integer and consider M = Z /P"Z as a 2-
module. The only submodules of M are Z/p*Z for k = 0,1,2,...,n. Hence,

M is a uniserial Z-module.

Example. Let A C D be a valuation on a division ring. Let 0 # z,y € D.
Then either z7'y € A or y™'z € A. Thus, y € zA or z € yA. By our
proposition 2, D4 is uniserial. Similarly, 4D is uniserial.

We give some examples of valuations.

(i) Zg), the integers localized at a prime ideal is a valuation on the rationals.

(ii) Let k be a field and let
A=k(Q") = {f = Zaaz" |0<a€Q, aa €k, supp(f)is wellordered}.

Then A is a valuation on its quotient ring, D, the Laurent series ring. We call
A the ring of power series having well ordered support.

Example. Let A be a valuation on a division ring and let m denote the
maximal ideal of A. Then
A A
R=
m A

is a Goldie prime serial ring {M1).

Definition 5 Let R be a ring. A proper ideal P 4 R is said to be a prime
ideal if a,b € R and aRb C P imply thata € P orb € P. We say that P is
completely prime if e,b € R and ab € P imply thata € P orb € P.



The collection of all prime ideals in a ring, R, is called the spectrum of
R and will be denoted by spec(R).

We shall use the following results. It is assumed that R is a serial ring
and that 1 = ¢) + €2 + -+ + e, is a fixed decomposition of the identity into
indecomposable orthogonal idempotents:

(1) [MSI1, lemma 3.1] If P and @ are incomparable prime ideals, then
P+Q@=R

(2) [MS1, lemma 3.3] Let P,Q € spec(R). If e; € Q implies that ¢; € P,
then P and Q are comparable. If, in addition, there is some e; € @ — P, then
PcCQ.

For P € spec(R) we let E(P) = {e; | e; ¢ P}. Since P # R, E(P) #0.

Proposition 6 Let P,Q € spec(R). If E(P)NE(Q) #0, then P and Q are

comparable.

Proof. If e € E(P)NE(Q), then eP and eQ are in the uniserial module eR.
Hence, e¢P and eQ are comparable. If eP C eQ, then eP C Q. Since Q is
prime and e ¢ Q, we conclude that P C Q.

For any subset T C {e) €3,...,€,}, we define

P(T)={P € spec(R) | PN{eye2,...,ea} = T}.

In other words, E(P) = T*°. Using [MS1, lemma 3.3}, we get that each P (T')
is a chain. It could be that some P (T')=9. I P(T) # 0, then we call P(T)

a tower of spec(R).

Let P(Ty) and P (T3) be two towers. Then 7) C Tz ifand only if P, C P,
for some (and then for all) P, € P(T}) and P; € P(T2). We can now construct
spec(R) as follows. Construct a graph with vertices V = {T | P(T) # 0}.
Two distinct vertices, T} and T3, are adjacent if they are comparable, say



Ty C Tz, and there does not exist another T € V such that Ty C T C T;. The
spectrum of R is obtained by replacing each vertex, T, with the chain P{T).
The interested reader is referred to [MS1] for a more detailed description. See
also [M2] for diagrams of spec(R).



1.1.1 The Morita Context

The following material is taken from [McR, 3.6).
Let R and S be rings and grVs and sWgr be bimodules such that VW C R
and WV C 5. We can then form a new ring

R V
W S
by using the natural matrix operations. We call this a Morita context.

R V
Theorem 7 Let _ ) be a Morita context. There is an order preserv-

ing 1 — 1 correspondence between

{P € spec(R) | VW € P} and {Q € spec(S) | WV £ Q}.
The correspondence is given by P — {s € S| VsW C P}.

If P and @ are prime ideals which correspond under the above correspon-
dence, we will write P & Q. We shall refer to this as the Morita context
correspondence and we shall abbreviate this by MCC.

Let R be a ring and e, f € R be two idempofents in R. Let A= eRe and
B = fRf. Then we can form the following Morita contexts

(R Re) (A eRf)
and .
eR A fRe B

Consider these contexts under the further assumption that R is serial and
that e and f are indecomposable orthogonal idempoteiits. Then A and B are
uniserial rings and eRf and fRe are uniserial as A and B modules [M2].



R e
For the Morita context ), the theorem implies that there is an
eR A

order preserving 1 — 1 correspondence between
{P € spec(R) | ReRZ P} and {p € spec(A)|eRe & p}.

But ReR € Pifand only if e ¢ P and eRe € p is true for all p € spec(A).
Therefore, in this case there is an order preserving 1 — 1 correspondence be-

tween

{P € spec(R) | e ¢ P} and spec(A).

In this case, if P € spec(R) and e ¢ P, then P=2 ePe. K pe spec(A), then
o= {r € R|eRrRe C p}.

A R
For the Morita context ( ekf

fRe B )the correspondence is between
e

{p € spec(A) | eRfRe € p} and {( € spec(B) | fReRf € (}.

If A is uniserial, then eRfRe € p if and only if p C eRfRe. Similarly for B.
Thus, the Morita context correspondence (MCC) reduces to

{p € spec(A) | p C eRfRe} and {( € spec(B)|¢ C fReRf}.

If p € spec(A) and p C eRfRe, then p = {b€ B | eRbRe C p}. *
Let R be a serial ring and let e be an indecomposable idempotent and

R R
consider the Morita context ¢ where A = eRe. The following is a

eR A
consequence of the results in [McR, 3.6]. If P € spec(R) and p € spec(A)

and P = p under the Morita context correspondence, th:i P is Goldie if and
only if p is Goldie. '

Definition 8 An ideal P 9 R is said to be Goldie if R/P is Goldie.



1.2 A Brief Survey

The study of serial rings, in the Artinian case, was initiated by Nakayama in
the early 1940’s under the name generalized uniserial rings [NK1, NK2, NK3].
He proved that an Artinian ring is serial if and only if every finitely generated
module is serial. It was later shown that over an Artinian serial ring every
module is serial [SK, EG1, EG2].

The structure of Artinian serial rings was studied by Kupish and he was
able to show that these rings are completely determined (up to isomorphism)
by a set of invariants [K1, K2, K3]. Murase continued the investigation into
the structure of Artinian serial rings and described such rings in terms of
matrix representations [MR1, MR2, MR3].

In 1975 Warfield began the study of general (that is, not necessarily Ar-
tinian) serial rings [W]. He proved that a ring is serial if and only if every
finitely presented module is serial. In the same paper he also studied Noethe-
rian serial rings and gave a fairly complete structure theory for such rings. He
also showed that over a Noetherian serial ring every uniform module is unise-
rial. In the same year Ivanov characterized the rings having the property that
all finitely generated modules are serial. He proved that every finitely gener-
ated R-module is serial if and only if R is left serial and every indecomposable
injective R-module is uniserial [I]. In such a case, R is serial. N

In 1984 Singh studied and gave the structure of a right Noetherian serial
ring [S]. In a series of papers Wright (Upham) investigated the structure of
serial rings with Krull dimension one and, in the prime case, rings having
arbitrary Krull dimension [U, WR1, WR2, WR3]. Since Noetherian serial
rings have Krull dimension one, her results, on one hand, can be viewed as

generalizations of Warfield’s and Singh’s work. She first considered the case



that the ring is nonsingular with Krull dimension one. In the next paper
she removed the condition of nonsingularity. A result which proved to be
important in this development is that certain uniform modules are uniserial.
This is, in some sense, what motivates the question of when a uniform module
over a particular serial ring is uniserial.

Chatters was able to extend some of the above results to rings having finite
Krull dimension [C]. He described the structure of a prime serial ring in terms
of blocked matrix rings. In the same paper he shows that if K is a Goldie
semiprime ideal which doesn’t contain any idempotents, then C(K) is an Ore
set.

In 1990 Miiller and Singh also studied uniform modules over serial rings
[MS1, MS2]. They showed that certain uniform modules are uniserial, and
studied the spectrum of serial rings. Much information about the prime ideals
of serial rings is compiled in their work.

In 1992 Miller determined the structure of Goldie prime serial rings [M1].
He also began the study of the structure of general serial rings [M2]. The

structure theory for the latter is far from complete.
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1.3 Thesis Overview

It is clear that a uniserial module is uniform but that the converse need not be
true. Warfield has shown that over left Noetherian serial rings any uniform is
uniserial [W). Wright has also investigated conditions under which a uniform
module is uniserial [U, WR2]. In [MS1] and [MS2] Miiller and Singh have
investigated the prime ideals of serial rings and introduced cliques. They have
also shown certain uniform modules to be uniserial.

Our work begins with an examination of uniform modules. Since the in-
jective hull of a uniform module is again uniform, we concentrate on uniform
injective modules.

We begin with an arbitrary ring R and a fixed decomposition of the identity
into orthogonal idempotents, say 1 = 2, +eg++--+e,. Let V be an R-module.
We prove that V is uniform and injective if and only if there exists e = ¢; and,
with A = eRe, a uniform injective A-module E such that Vg 2 homy (Re, E)g.

We use this description to study uniform injective modules over Goldie
prime serial rings where the e; are indecomposable idempotents. The main
result of chapter 2 is that VR is uniserial if and only if E4 is uniserial. It is
still open whether this is true for an arbitrary serial ring.

In the case we have just described, the ring A is a valuation on a division
ring [M1]. Since the uniseriality of V' is equivalent to that of E, it makes sense
to study uniform injective modules over valuation rings. In the third chapter
it is shown that a uniform injective module over a valuation A on D is of the
form E{D/I) for some right ideal I < A. Furthermore, if D is a field, then E
is uniserial if and only if E = D/I. Thus, when D is a field, the uniseriality of
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E and the injectivity of D/I are equivalent. It remains unknown whether this
true in general. In any case, if D/I is injective, then E = D/I is uniserial and
the module V is uniserial. This gives a sufficient condition for the uniseriality
of V. The remainder of the chapter is devoted to determining when D/I is
injective. The main result provides a list of conditions which are equivalent
to the injectivity of D/I. Among others we prove that D/I is injective if and
only if D is complete in certain linear topologies.

In the final chapter our goal is to attach a (semi) prime ideal to a uniform
injective module over a Goldie prime serial ring. We consider a notion of gen-
eralized associated primes and show that for uniform injective modules over
valuation rings these always exist. For a uniform injective module, V, over
a Goldie prime serial ring R, we get a collection of idempotents e, e, ..., e
such that, with A; = e;Re;, V 2 homy; (Re, E;). We have named such idem-
potents faithful. For each faithful idempotent, E; is a uniform injective
module over the valuation ring A;. Hence, for each such idempotent we get a
generalized associated prime ideal p; € spec(A;). Using the Morita context
correspondence, we get (Goidie) prime ideals P, P,..., P; € spec(R) which
correspond to the p;. Among other things we prove that either all the P; are
equal, or the distinct F; are incomparable Goldie prime ideals and any prime
ideal which is properly contained in one of them is contained in all of them.
In the case that all idempotents are faithful (to which we may reduce) this
result implies that either all the P; are equal and this Goldie prime is in the
bottom tower of the spectrum of R, or the distinct P; are the minimal primes
above the “lowest fork”.

Another characterization of the P, is that they are the ideals which are
maximal with respect to having empty intersection with the largest Ore set
operating regularly on V. Furthermore, we prove that the largest Ore set



operating regularly on V is C{N ;).

12



Chapter 2

Uniseriality Of Uniform
Modules

2.1 Uniform Injective Modules Over Arbitrary
Rings

Let us recall a familiar fact: for rings R and A, and modules M, and Na,
hom,(M, V) can be made into a right R-module. The action of R is given by

(pr): M =N by (er)(m)=e(rm)

for all ¢ € homy(M, N), r € R, m € M [H, theorem 4.8 p203 ).

In what follows we will be interested in rings having a decomposition of
the identity 1 = €; + ez + -+~ + ¢, into orthogonal idempotents. For any
idempotent ¢ € R, A = eRe is a subring of R and Re is an R-A bimodule.
For any A-module, Ej, the above asserts that V' = homu(Re, E) is a right R-
module. We begin with some elementary results connecting certain properties

13
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of E4 and Vg. In the next several results we use A to denote eRe for a nonzero
idempotent e of R and, unless otherwise stated, hom, (Re, F} is taken to be
a right R-module.

Proposition 9 If E4 is injective, then homy (Re, E)p, is injective.

Proof. Let H = hom, (Re,E}, I a right ideal of R, and f : I — H any
R-module homomorphism. Note that I is a (perhaps not unitary) right A-
module.

Define o : I = E by
e(z) = f(z)(e) forallz € I.

An easy argument shows that ¢ € hom4(I, E); the injectivity of E allows us
to extend ¢ to R. That is, there exists ® € hom4(R, F), such that, for all
zel

¢(z) = &(z) = f(=z)(e)-

Then & = & |g, is in H and the map ¥ : R — H defined by ¥(r) = &r for
allr € Risin homg(R,H). Forallz €I, z € Re

(¥(2))(2) = (B2)(2) = §(w2) = B(z2) = f(z2)(e) = (f(=)2)(e) = (f(=))(2)-
Baer’s lemma now gives the result [H, theorem 3.8, p194].

Definition 10 An R-module, M, is said to be uniform, if for all nonzero
submodules X, Y < M, XnY #0.

This is equivalent to the statement: for all 0 # 2,y € M, there exist
r,s € R, such that zr =ys # 0.

Proposition 11 If B, is uniform, then hom,(Re, E)g is uniform.
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Proof. Let H = hom 4(Re, E), and ¢, % € H be nonzero. Choose u,v € Re
such that ¢(u), ¥(v) # 0; the uniformity of E implies that

0 # w(u)e = ¥(v)b = p(ua) = P(uvb), for some a,b € A. Let = ua
and y = vb. Then £ = ze and y = ye. Hence, for allr € R

(%) (re) = p (wre) = p(ua)ere = % (ub) ere = ¥ (yere) = (by) (re).
Furthermore, (¢z) (e) = ¢ (ze) = ¢ (z) = ¢ (ua) # 0.

Definition 12 Let R be a ring, V an R-module, and X a subset of R. The
annihilator of X in V is anny (X) = {v € V | vX = 0}.

Lemma 13 Let V be a uniform injective R-module and e € R, an idempotent,

such that anny(Re) = 0. Then Ve is a uniform injective A-module.

Proof. Choose ve,we # 0 in Ve. Because Vjy is uniform, there exist r,s € R
such that 0 # ver = wes. Since verRe # 0, we can choose 0 # z € R such
that

0 # ver(ze) = wes(ze) = ve(erze) = we(esze).

Thus, Ve is uniform.

Let I be any right ideal of A and f € homy (I,Ve). Consider the right
ideal IR< R. Define F: IR -V by

F(imm) = zk:f(:c.-)r.- =if(a:.-)er.- forz;€ Iandr; € R

i=1 =1 i=1

Xk, (zirs) = 0, then, foralls € R, 0 = (Efm :c.-r.-) se = L, (zierise).

Because er;se € A for all 3,

0=f (i (:c,-er.-se)) = g f(zs)erise = (i: f(z:) er.-) se.

=1 1=1
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Since 5 € R was arbitrary, ( L (:z:.-)r.-) Re = 0. Our assumption on e

implies that ™% | f(zi)ri = F (Ef—;l :n.-r.-) = 0. This proves that F is well-
defined. We may now conclude that F € homg(/R,V). Since Vy is injec-
tive,we may extend F to all of R. Consequently, there exists v € V such that
F(z)=vzforall z€ IR.

Define ¢ : A = Ve by ¢(a) = vea. Then ¢ € homy (A, Ve) and, for
z € I C IR, p(z) = vex = vz = F(z) = f(z). This proves that Ve is also

injective.

Let R be any ring and fix a decomposition 1 = ¢; + e2 + --- + e, into
orthogonal idempotents. This decomposition will remain fixed but is otherwise

completely arbitrary.

Theorem 14 Let V be an R-module, the following siatements are equivalént.
(1) V is uniform and injective.
(2) There ezists e = e;, such that, with A = eRe, Ve is a uniform injective

A-module and Vg & homy (Re,Ve)y.

Proof. (1)=(2) Let V be a uniform injective R-module and, for each i, let
K (&;) = anny (Re;). Surely each K (e;) is an R-submodule of V. If
v € iy K(e;), then v =v(er+ e+ +ex) =vey+-:- +vey =0. That
is, MiL, K (e;) = 0. The uniformity of V, implies K (e;) = 0 for some j. For
this e; we write e and set A = eRe. Lemma 13 implies that Ve is a uniform
injective A-module.

For each v € V, defire

@y : Re = Ve by, (re) = vre.

Clearly, ¢, € homy (Re, Ve). It follows that the map & : V — hom, (Re, Ve)
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defined by @ (v) = ¢, is an R-module homomorphism. Furthermore,
kerd ={v eV |p,(Re)=vRe=0} = K(e)=0.

That 1s, ¢ is an injection. Since V is injective, homy (Re,Ve)g = X @Y, for
some submodule Y and X = V.

Because Ve is uniform, hom, (Re, Ve)y is uniform (proposition 11). We
may now conclude that ¥ = 0 and Vg = Xg = hom4 (Re, Ve)j.

That (2)=-(1) is a direct application of proposition 9 and proposition 11.

Definition 15 An idempotent, e, such that anny (Re) = 0 is said to be faith-
ful (or faithful to V).

Remark. In the next section we shall give an example to show that faith-
ful idempotents need not be unique. Next we will show that any nonzero

idempotent is faithful to some module.

Proposition 16 Let e be a nonzero idempotent in R and let A = eRe. There
exists ¢ uniform injective R-module, V, such that e is faithful to V and
V 2 homy (Re, Ve).

Proof. Let E be any uniform injective A-module. Qur previous results show
that V = hom, (Re, E) is a uniform injective R-module. Let ¢ € V and
suppose that ¢Re = 0. Then, for all r € R, 0 = (pre)(e) = ¢(re). This
implies that ¢ = 0, e is faithful, and V = hom, (Re, Ve).

Note: Given A and m a maximal right ideal of A, A/m is simple. The
injective hull of A/m is a uniform injective A-module. Therefore, the module
E that we needed in the above proof, always exists.
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Definition 17 A module is said to be uniserial if it submodules ave linearly

ordered by set inclusion.

This is equivalent to the statement: an R-module, M, is uniserial if, for all

0 # z,y € M, either z = yr or y = zr for somer € R.

Proposition 18 Let R be a ring, e an idempotent, A = eRe, and E an
A-module. Ifhomy (Re, E) is a uniserial R-module, then E, is uniserial.

Proof. Let 0 # u,v € E. Define ¢, : Re =+ E by @, (re) = u(ere) for all
r € R and similarly for v define ¢,. Then 0 # 4,9, € hom, (Re, E). By
uniseriality, there exists ¢ € R, such that

ﬁ"uz SPv OF T = ‘Pu-

Suppose the latter, then @, (€) = ue = u = (p,z)(€) = @, (z€) = v(eze).
This shows that E is uniserial.

We have not yet proven the converse in general, even for serial rings. We
have obtained positive results for Goldie prime serial rings. This is the topic

of the next section.
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2.2 The Goldie Prime Serial Case

We now turn our attention to Goldie prime serial rings. If R is Goldie prime
serial, then R = (Xj;) € M, (D) for some division ring D. Furthermore, R is
a tiled order and the Xj; = A; are valuation rings. We shall always assume
that R is a proper tiled order and we will make use of results in [M1]. Recall,

Definition 19 Let D be ¢ division ring. A subring A C D is a valuation on
D (a valuation ring) if for all0# d € D, eitherd € A ord-1 € A.

It is immediate that if A C D is a valuation , then D4 and 4D are both

uniserial.

Lemma 20 Let R = (X;;) C M, (D) be a Goidie prime serial ring. Then
there ezxists a ring R, such that '
(1) B= By =(Yy) C Ma (D);
(2) Y = X1 = A, C D;
(3) forallj=1,--+,n, Y) = X;, as A;-modules and Y}; C A,.

Proof. Let j be arbitrary but fixed. Since X, C D, we may choose
0 # d; € D — Xj1. By the uniseriality of Dy4,, X;; C d;A;. Because 4, is a
valuation, either d; € 4, or dj 1 € A;. Therefore,

XpnCA or Xp=d'Xp=Y CA

For each j, choose such a dj, (if X;; € A, choose &; = 1).



(1 o0
0 d;
LetX=|0 0
\0 0

and
Ri=XRX'=

(A
d7' X
d3' Xa

\ d;lxnl

has the required properties.

0 )
0
: . Then X~1 =
0
d;1 ]
X12dz Xiads
d3 Ay dy' Xiad,

d3' Xaads  d3* Asds

d;lx,,zdg d;‘X,,sd;, ..
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(1 0 o0 0 )
0dy 0 - O
0 0 ds
: 0

\0 0 0 dn

Xindn )
- d7' Xondy

e qlx?mdn

ot Andn

Remark. If we consider the ring R; obtained in the lemma above, the Y;; are
of the form d~!Ad, where d # 0 and A is a valuation on D. These diagonal
entries are again orders since A is an order. This is because D = d~1Dd =
{d"'rc?d| rce A} = {d"'rd(d"ted)™ | r,c€ A}. Thus, R, is a proper
tiled order in M, (D) which is isomorphic to B. Therefore, whenever we
consider a Goldie prime serial ring R = (X;;) € M, (D), we may suppose
without loss that X; C X, = A, forall j =1,2,---,n.

Lemma 21 Let Ag be an R-module and B an abelian group such that

A = B as groups.
that Ag & Bp.

Then B can be made into an R-module in such a way
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Proof. Let ® : A —+ B be a group isomorphism. For all b € B, and r € R,
define br = ®(®~!(b)r). A simple verification shows that B is then an R-
module. That @ is also an R isomorphism is just ® (ar) = ® (2! (¥ (a))r) =
d(e)r.

In such a situation, the action of R on B shall be called the action on B
induced by &

Let R = (X;;) C M, (D) be a Goldie prime serial ring. Let

10 -.-0 A 0 - 0
c 0 --- 0 e 0 ¢ --- 0] .
e=e=\| . |ondidentifyeRe=| = with 4; =

00 -0 0
A D ---

0
0 an 0 0\
Xn 0 --- 0 0 - 0
A. Then Re = .21 . . . |isan A-moduleby :r,.n I
0
0

Xy 0 -+ 0
apa 0 -+ 0 ay 0 -
0 --- 0 0 ---
nd foralle € A and 3.21 . € Re.

Zpma 0 --- 0 Zm 0 - 0
As A-modules Re = A® X5, @ -+ - @ Xa1. For an (injective) A-module, E,

we have the following isomorphism of abelian groups
hom, (Re, E) = homy (A, E) @ hom, (Xn, E) @--- @ homy, (an, E) (1)

via the isomorphism @ : @ > (¢ |4, % |x21s > 9 |xny) - (We have abused
notation; instead of ¢ |x;, it should be @ o ¢y;,, where ¢tx,, : X < Re is the

inclusion).
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The right side of (1) becomes an R-module via the action induced by &.
We shall now describe this explicitly.

For each j, let hom, (Xj1, E)be denoted by X%. Let z € X;;; define
az : Xj = Xpbya: (y) = sy forally € Xj;. Surely a; € homy (Xj,X;). If
a; € .Xff, then a; 0 a; € Xﬁ. Denote the map a; 0o o by o; 0 z. Let
(Q1yaz, - an) € éxﬁ and Z = (z;;) € R. Define
(a1, a2, ,a) oEJ_= (Br,B2,+++, B,) where, for each j =1,2,---,n,

B;= ia; 0 Z;j;.
By our earlier discussion, 3; € X_ﬁ for each j. Whence, we get a map
0: (éxﬁ) xR — éxﬁ.
i=1 j=1

Lemma 22 With all the previous notation,o is the same map as the action
tnduced by .

Proof. Let (3,03, ++,ay) € J§:B1 X}ﬁ and Z = (z;;) € R. Then there exists a
unique a € homy (Re, E) such that o; = a |x,,for each  =1,2,---,n. (This
is simply how & is defined).

The action induced by & is

(01,0, S 0n) T = @(aﬁ) = (a% [4,0F Ixau"' y O |Xu:)

We will show that §; = oF |x;, for each j. Let y € Xj;, then
({00 ... 0)) [ (o ¢ ... 0)\)

0 --- 0 10 .- 0
(aEIle) (¥) = (o7) y0.-0 =a|(z5)| y 0 --- 0 =
P 0 -v 0 P00 -+ 0

\\0 0 -+ 0/ \ \0 0 0/
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Ty 0 -+ 0 Ty 0 --- 0 0 0 0
Ty 0 -+ 0 0 0 0 0 o 0

& . - =a . +‘ ) +a =
Tnjy 0 -+ 0 0 0 -.-0 Zajy 0 -+ 0

@ la (Z19) + -+ @ |x,; (Tajy) = (21j9) + - + @ (znjy) =

a0z (y)+ o+ a0z, (y) = (iai‘-‘“’ij) (¥) = B;(v)-

i=1

Thus, the two multiplications are the same.

The action of Ron A* @ Xt ... 0 X?* is simply given by this formal

matrix multiplication.

Lemma 23 Let j be given and let p € Xfl. Then, there ezists u; € E, such
that ¢ (2) = u;z for all z € Xj;.

Proof. Consider the diagram

Xit = A
vl
E
Because E is injective, there exists ® € homy (4, E) such that, for all z € X,
©(2) = 9(2). Let @(e) = u;. Then o (2) = ¥ (2) = B (ez) = ®(e) z = u;z.

In the following theorem we assume that R is a Goldie prime serial ring
with decomposition 1 = €; + €2 + -+ + ¢, into indecomposable orthogonal
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idempotents. We let e = e;, A = eRe, and E an arbitrary injective right A-
module. For ¢; € X¥, the above lemma shows that ¢; is multiplication by an
element of £. We shall denote this by ¢; = a.; where @; (2) = ay, (2) = u;=.

Theorem 24 Let R be a Goldie prime serial ring. Then hom, (Re, F) is

uniserial if and only if E, is uniserial.

Proof. (=) This is proposition 18.

(<) This requires more work.

Let ¢ and j be given, and suppose ¢ = (0,--+,%;,0,---,0) and
¥ =(0,---,%;,0,---,0) are in élX,ﬁ. Then ¢; = ay; and ¥; = ¥, for some
u;,v; € E. Uniseriality implies that u; = v;b or v; = u;b for some b € A.
Suppose the latter:

Case(1): Suppose b € X;;. Let

bifl=tandk =3

B= (bu,) € R whereb; = .
0 otherwise

Then w0 B =(0,---,0n; 0b,0,---0). If z € Xj;, then
(aw; 00) (2) = ey (b2) = u; (b2) = (uid) z = vz = ¥; (2).

Therefore, oo B = 9.
Case(2): Suppose b ¢ X;;. Then b1 € Xj;; [M1,Theorem 2 and preliminar-
jes]. Let

blifl=jandk =i

B=(bp) € R whereby =
0 otherwise

Thm¢oB= (0,--.,&,506-1,0’-..’0).
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We claim that a,; 0b™! = a,;. To show this, let z € X;; C A. Thenz =
(b7')z = b(b7'z). Furthermore, b~z € X;;X;; € X;; C A. Hence, for all
zE Xi‘h

o, (z)=wz=1u; (b (b“z)) = (u;b) (b“z) = v; (b“z) = (a.,,. ) b“) ().

Consequently, 1) 0 B = .

These two cases allow us to conclude that R and 1R are comparable.

Consider now an arbitrary ¢ = (¢1,%2,-*,n) € QXﬁ; let

’=
@ = (0,---,©i,0,++,0) for each i = 1,2,---,n. By the above, there exists
i such that $;R C @:R for all 5. Thus,
¢RC Y BiRC iR = (pe)RC oR.
i=1
This implies R = @;R; similarly, for ¢ = (¥1,¥2,++-,¥a) € él Xﬁ,
J=

YR = ;R for some j. Therefore,

$R=%;RSGiR=pR

and the result obtains.

Example. This example shows that faithful idempotents need not be

unique.

Let E4 be a uniform injective module over a valuation A C D. Denote the

maximal ideal of A by m and suppose that anng (m) = 0.
A A

m A

Let R=
00

10
) (which is a Goldie prime serial ring), ¢ = ( ) ’

00
and f = 0 ) . By previous results, V; = hom 4 (Re, E) and
1
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V2 = hom 4 (Rf, E) are both uniform injective R-modules. Furthermore, e is
faithful for V; and f is faithful for V;. Consider the map ¥ : £ — hom 4 (m, E)
by ¥(u) = au, where a, is multiplication by u. It is easy to show that ¥
is a group homomorphism; the injectivity of E implies that ¥ is surjective.
Because ker ¥ = anng(m) = 0, hom 4 (m, E) & E as abelian groups. Note
that Re = A® m and Bf = A® A as A-modules. This implies

Wi =hom4 (Re,E) ¥ hom 4 (A, E}@hom 4 (m,E)= EQ E

and

Va2 =hom 4 (Rf,E) 2 hom4 (A, E)@hom, (A, E)=2EQF

as abelian groups. Arguments in the previous section (see lemma 22) show
that in both of the above cases the action of R on E @ E is the formal matrix
multiplication. This implies that V; 2 V3 as R-modules; hence, e and f are
both faithful for V = ;.

To complete this example we need only show that there is such a valuation
and uniform injective module. Let & be a field and let
A=k@Q") ={f=ZTa.z" | Q3 a>0,a, € k,supp(f) is well ordered} ; that
is , the ring of power series having well ordered support. Then A is a valuation
in its quotient field, D, the Laurent series ring. The maximal ideal of A is
m={f€A|a=0}.

Let I = A and use A to denote A/I. it follows that E = E (&) is a
uniform injective A-module. Let p(z) be nonzero in A. This implies that the
lowest power appearing in p(z) is € < 1; choose 0 # + such that e+ v < 1.
Consequently, 27 € m but p(z)z? ¢ I. That is, p(z) ¢ anng (m).

Suppose there exists 0 # ¢ € anng(m). Because A C' E, there is some
a € A such that 0 # ga € A. Since anng(m) is a submodule of E, we infer
that 0 # ga € ANanng(m). This contradiction implies anng (m) = 0. This



gives us the required example.
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Chapter 3

Uniform Modules Over

Valuation Rings

3.1 Uniform Injectives

Consider a uniform injective module, V, over a Goldie prime serial ring R.
Qur results from the previous chapter show that V 2 homy (Re, Ve) for some
faithful idempotent e and A = eRe. Moreover, Ve is a uniform injective

A-module and V is uniserial if and only if Ve is uniserial. When R is Goldie
prime serial, A is a valuation on a division ring. Therefore, it makes sense to

examine uniform injective modules over valuation rings.

Theorem 25 Let A C D be a valuation and E @ uniform injective A-module.
Then:

(1) E = E(D/I) for some right ideal I < A;

(2) if D is a field, then E is uniserial if and only if E = D/I.

Proof. (1) Let 0 # z € E and define ¢ : A — E by ¢.(a) = za for
all a € A. Then kerp; = anny(z) = 2° =1 and zA = A/I ='A. Define

28
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©:A— E by ¢(8) = za. Surely ¢ € hom, (ﬁ, E) . The injectivity of
E allows us to extend ¢ to D/I by ®. Note that & (T) = z and, for any
0#deD,deAord?c A
(i) Ifde A, then ®(d) =2 (Td) = zd.
(if) IfdeA, then (1) =2=0(ddT) =& (dd) =0 (@) a1,
Suppose that @ (d) = 0. Then (i) implies 0 = zd; hence, d € z° =  and
d = 0. Option (ii) leads to the contradiction z = 0. Therefore, ® is a
monomorpkism and E (D/I) C E. The uniformity of E gives the result.
(2) Since D = D/ is uniserial (whether D is a field or not), one implication
is clear.
Now assume that D is a field and that E = E (I—)) is uniserial. Let
z € E — D; by essentiality, there exists 0 # a € A such that 0 #£ za € D.
Write ta =d for somed € D —I. Let r =da~! € D. Then

ra=daTa=4d=2za#0.

Hence, (r — z)a = 0. Because F is uniserial, there is some b € A such that
(r—z)b=ror rb = r — z. The later implies that z € D while the former
“implies that 0 # ra = (r — x) ba = (r — 2) ab = 0. Neither case being possible

gives the result.

Remark. Given such a module, E = E(D/I), if D/I is injective, then
E = D/I is uniserial. The above result showed that these are equivalent |
when D is a field. In the general case we have not yet been able to determine
whether or not the uniseriality of E and the injectivity of D/I are equivalent.
We therefore turn our attention to the question of when D/I is injective. This
will then give sufficient conditions for the uniseriality of E. Before we do this,
we need some background material about topological modules. :
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3.2 Topological Considerations

Definition 26 A module, Mg, is said to be a topological module if M is
also a topological space such that:

(a) addition is a continuous map from M x M — M;

(b) forallr € R, the mapT: M — M byF(m)=mr forallm e M is

continuous.

For an element m € M, a base of neighborhoods about m is a set B, of
neighborhoods of m, such that every neighborhood of m contains an element
of B. By a neighborhood of m we mean a set which contains an open set

containing m.

Definition 27 A topology on M is said to be linear if it has a base of neigh-
borhoods about 0 consisting of submodules of M.

When we consider linear topologies on modules, we will simply write “a
base of neighborhoods about 0”. It will be understood that this base consists
of submodules. We shall usually use B to denote this base. When we write
“let M have a linear topology”, it should also be understood that M is a )
topological module. -4

In the definition of a linear topology, the elements of B are only assumed
to be neighborhoods, not necessarily open. They are however open as the next

proposition shows.

Proposition 28 Let M have a lineer topology and let B be a base of neigh-
borhoods about 0. A submodule W C M is open if and only if there is some
UeBsuchthat UCW.
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Proof. That an open submodule contains such a U € B is just the definition
of a linear topology.

Conversely, suppose W 2 U for some U € B. Then W = |ew (w + U);
hence, if U € B is open, then W is open. Since U is a neighborhood of 0,
there is some open set O, such that 0 € O C U. Thus, U = U,y (u + O0) is

open.

Lemma 29 Let M have a linear topology and let B be a base of neighborhoods
about 0. The topology ts Hausdorff if and only if Nyes U = {0} .

Proof. (=) Suppose there is some 0 # = € NyegU. Let V and W be open
sets containing x and 0 respectively. By definition, there exists U € B, such
that U € W. But then z € U C W. This impliesz € VNW # @; this
contradicts the hypothesis. Therefore, NyegU = 0.

(S)letz#y. Ifz+UNy+U#0, then z~y € U. If this is the case
for all U € B, then 0 # (z — y) € Nyes U = {0}. Therefore, for some U € B,
(z+U)N(y+U)=0

We will be interested in topologies on uniserial modules; in particular, we
will be interested in topologies on the division ring D and D/ from the pre-
vious section. We shall now restrict our attention to uniserial modules with
linear topologies. Unless otherwise stated, B will denote a base of neighbor-
hoods about 0 consisting of submodules. Note: without loss we may assume
that B is equal to the set of all open submodules.

We will use A to denote an (upward) directed set (for all o, 8 € A, there
exists ¢ € A, such that o 2 a,8).



Definition 30 Let M be a uniserial module with a linear topology. A net
(ZTa)aea s said to be a Cauchy net if for every U € B, there ezists o =
o(U), such that z, — 25 € U whenever a,8 > 0. A net (Za)aea s said to
converge to z if for all U € B, there ezistso = o (U), such that z,—z € U

whenever a > 0.

‘act us consider nets which are indexed by elements of B. The order on B
isU <V V CU. For uniserial modules, with this ordering, B is a totally
ordered set; hence B is a directed set. To keep notation more simple we shall
often omit the dizected set A.

Definition 31 Let M be a uniserial module with a linear topology. A net
(yo)yes is said to be a special Cauchy net (SC) if for allU € B,

yw—yw €U whenever VW € B and V, W C U. A net (yv)yen is special
convergent to y if for alU € B, yv —y € U whenever V€ B and V C U.

Proposition 32 Let M, be a uniserial module over a valuation A.
(1) If a net is SC, then it is also Cauchy.
(2) If a net is special convergent, then it is convergent with the same limit.
(3) A convergent net is Cauchy.
(4) A special convergent net is SC.
(5) If a net is SC and convergent, then it is also special convergent.

Proof. We only prove (5). Let (yv)yes be SC and convergent to y. Let
UeB. Thenyy—yweU whenever V, W C U and, there exists o (U) € B,
such that yw —y € U whenever W S o (U). Let W =0 (U)NU € B. Then,
foral V C U,

w-y={w-yw)+@w—y)eU+U=U.
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Definition 33 A module is complete if every Cauchy net converges and is
special complete if every special Cauchy net is special convergent.

It is now immediate that a complete module is special complete. To see
this, let (yv)yep be SC. Then it is Canchy by (1) of proposition 32. Complete-
ness implies that it is also convergent; by proposition 32 part (5), it is special
convergent. In fact, as we shall now show, these are actually equivalent.

Lemma 34 Let M be a uniserial module with a linear topology and B a base
of neighborhoods about 0. Then M is complete if and only if M is special

complete.

Proof. The comment above establishes one direction.
Suppose that M is special complete and that (za),¢, is Cauchy. For all
U € B, there exists ¢ = & (U), such that z, — z5 € U whenever a,8 > o.

Define a new net (yv)yeg, Where yu = z,@) for all U € B. We claim that
this net is SC.

Let U begiven and let V, W € Bwith V,W C U. Choose o’ > o (W), (V).
Then

Y —Yw = Tp(v) — To(w) = (zc(V] —:c,-) + (z,- -_ z:,m) ceV+WCU

This proves our claim.

By hypothesis, (yv) is special convergent to some y. That is, forall U € B,
yv—y € U whenever V € B and V C U; in particular yy —y € U. We'll show
that (z.),e, is convergent to y. If U € B, then, for all 8 > o (U),

2~y = (25 = 2o@)) + (3001 - ¥) = (26 = 2e()) + (40 ~ ¥) €U+U =U.

Definition 35 A collection of nonempty sets is said to have the finite inter-
section property (fip) if any finite subset of them has nonemply intersection.



The collection is seid to have the intersection property (ip) if any subset

of them has nonempty intersection.

We now establish a relationship between intersection properties and com-

pleteness of modules.

Theorem 36 Let M be a uniserial module having a linear topology and lei B
be a base of neighborhoods about 0. The following are equivalent

(1) M is complete;
(2) eny collection C = {zy + U | U € B,zy € M} having the fip also has
the ip. ' '

Proof. (2) = (1). By lemma 34, it is enough to show that M is special
complete. Let (yu)yeg be SC and let C = {yy + U | U € B}. We claim that C
has the fip. Let F C B be finite and set U = (lyex V. By uniseriality U € B
(in fact U =V for one of the V € F). Foreach V € F, yuy —yv € V (because
(yv)is special Cauchy and V,U C V). This shows that yy € yv + V for each
V € F. This establishes our claim that C has the fip.

By hypothesis, there exists y € Nyeg(yuy +U). Let U € Bandlet V € B
with V C U. Now y € yv + V implies that yy —y € V C U. This means that
M is special complete.

(1)=(2). Let C={zy + U | U € B,zy € M} have the fip. We will show
that (zy)yeg is SC and then that C has theip. Let U € B be given and let
V,W € B with V,W C U. By hypothesis, there is some
z € (zv + V)N (zw + W). Therefore,

zv—zsw=(sy —z)+(z—2zw)eV+WCU.

That is, (zy) is SC. Completeness implies special completeness; thus, (zy) is
special convergent to z say. Hence, for all U € B, zy—z € U. In other words,
z € zy + U and C has the ip.
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3.2.1 The K-topology

We now consider the construction of linear topologies on modules. Let M be
2 uniserial module and K’ < M a submodule. Let B={U < M | K c U},
and let @ = {m+U | m € M,U € B}. Using the uniseriality of M, it is not
hard to show that Q is a basis for a topology on M [cf. MK, p78]. The open
sets of the topology generated by  are precisely the sets which are unions
of elements of { [MK, Lemma 2.1, p80}. We will call this topology, which is
induced by the submodule K, the K-topology (on M).

At times we may consider modules over more than one ring. In cases
where the ring may be in question, we will write K r—topology to stress which
Ting we are considering.

Notation. Let M be an R-module and let § C M be a subset. For any

r € R, we use the following notation:
Srl={meM|mreS}.

Proposition 37 Let M be e uniserial R-module and K < M. With the
K-topology, M is a topological module and the topology is linear. A base of
neighborhoods of 0 consisting of submodules is B = {U < M | U D K}.

Proof. To show that M is a topological module, we must show:
(1) p: M xM — M by p(z,y) =z +y for all z,y € M is continuous;
(2) F: M — M by #(m) = mr for all m € M is continuous for each
r€ R "

Foreachz,ye M and UeB={U S M |U D K}, let .
Uy =+ Uy x((z—-y)+ U). Thus,eachU,,,,isop_gninMxM. Let z+U
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be an arbitrary elementin Q={m+ U |m € M, U € B}; a.neasy argument
shows that

r(z+U)={ Usy.
veM

This shows that p is continuous.
Let r € R and let z + U be an arbitrary element in . We claim that
Fl(z+U) = U (z+ U).
2E(x4U)r—1
This would then show that 7 is continuous.
Imefl(z+U),thenf(im)=mre€(z+U). Thus, me (z+U)r .
It now follows that
mem+UC |J (z+0)
2€(=+U)—?

Conversely, let 2 € (z + U)r™!; then zr = z 4 up for some up € U. Hence,
Flz+U)Car+Ur=z4+u+UrCz+U.

Therefore, z+U C 7! (z + U) and we have proven the claim. This concludes
the proof that M is a topological module.

To show that the topology is linear, let W be any open set which contains
0. By definition, there is some (m +U) € Q, such that 0 € (m + U) C W.
Since U is a submodule, we conciude that U =m + U C W This shows that
the topology is linear. | | \

Let M be a uniseri-l module with a linear topology and B a base of neigh-
borhoods of 0. Let K = NyegU. Then K C U forallU € Band Kisa
submodule of M. We examine some cases.

(1) If K = M, then B = {M} and the topology is trivial. In this case the

topology is complete.
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(2) If K < M, then there are two cases:

(i) KeB
(i) K¢B

Consider first K € B. Let (z,) be a Cauchy net. Since K € B, there
exists ¢ = ¢(K) such that 2, — z5 € K whenever a,8 > ¢. Choase z = To
and, for any U € B, choose (U) = 0. Then whenever 8 > e(U),

Tp— T =zp—Z, € K CU. This shows that the topology is complete.

Consider now the case K ¢ B. Then K < U for each I/ € B and K =
NuesU. We claim that the given topology is simply the K-topology on M.

Denote the original topology on M by T, the K-topology by Tk and the
base of neighborhoods of 0 by By. Since K c Uforall U € B, BC Bk. It
is then easy to show that 7 C 7Txk.

Note next that if V < M and K C V, then there exists U € B such that
U C V. Otherwise, uniseriality implies that V C U for all U € B. This now
implies that V C NyegU = K C V. A contradiction,

Let V € Bg; by the above, there is some U € B such that U C V. A
previous proposition implies that V € T. Let O € Tk; then, by definition, O
is a union of sets of the form m 4V where m € M and V € Bx. This implies
that O € 7. We may now conclude that 7 = 7k.

Reduction. The above discussion gives us the following:

When considering the completeness of a linear topology with, B, a base of
neighborhoods about 0 on a uniserial module we may assume that it is the
K-topology. Further we may assume that K ¢ B and that K = NyesU;
hence K < U for all U € B. In the construction of the K-topology a base of
neighborhoods about 0 was given by Bx = {V < M | K < V}. Consequently,



38

B C By. Therefore,

Kc N veU=K.
VeBy Ues

Definition 38 Let M be a module and K < M a submodule. We say that K
is friendly (or a friendly submodule) if
K= n U.

K<U<M
To rephrase the above, we may assume that the topology is the K-topology

for a friendly submodule K.

To make a further reduction we observe the following. The K-topology
has a base of neighborhoods about 0, B={U < M | K < U}. Suppose that
B' C B such that X =[Nyes V. Then B’ is also a base of neighborhoods about
0 which consists of submodules. To see this, let U € B remain fixed. For all
V € B, Vand U are comparable (by uniseriality). IfU ¢ V for all V € B/,
then

UCNV=K<U.
ves'

This contradiction implies that for all U € B there exists V € B’ such that
Vcu.

Therefore, to show that a linear topology on a uniserial module, M, is
complete we may proceed as follows:

(1) Assume that it is the K-topology for a friendly submodule K < M. A
base of neighborhoods about 0 consisting of submodules is
B={USM|K<U}and K=yl

(2) ¥ B'C B and K =yes V, then we can (if we want) choose B’ to be
a base of neighborhoods about 0.

(3) Let B’ be a base of neighborhoods of 0 that we have chosen in step
(2). We then consider an arbitrary collectionC = {sy + U | 2y € M, U € B}
which has the fip. If C has the ip, then M is complete.
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3.3 Main Theorem

Let A C D be a valuation and [ a right ideal of A. We return to the question
of when D/I is injective. Since D is injective, we assume that I # 0. First
we set up some notation. Let ] £ A and m be the maximal ideal of A.
Then I"={d € D | d™! ¢ I} = homy (I, m) as left A-modules. Furthermore,
¢ = I"l is a completely prime ideal of A [cf. M1]. This implies that A — pis
an Ore set, and we localizeat ptoget B=A, ={c'a|c€ A—p, a € A} =
{ac' |ce A—p, a € A} = ,A. This is because A — p is a two sided Ore
set and consists of regular elements.

Notation. Throughout this section we will keep the above notation.

Proposition 39 Let K < D be an A-submodule. Then
(1) K is a B-submodule & K = Kc forallc€ A— p;
(2) I is a B-submodule of D.

Proof. (1) Let K be a B-submodule of D; we need to show that K € K¢ for
alce A-—p lfc€e A—p, thenctisin B. Thus Kc! C K; multiplying
by ¢ gives K C Ke.

Conversely, let ¢™'a € B be arbitrary. By hypothesis
Kcta=(Kcjcla=Ka C K. ‘

(2) Let c€ A—p, and z € I. Then z = (zc)c (in D). zc? ¢ I, then
cz™! € I" and ¢ = cz™'z € I"I = p. Since this is not the case, zc~! € I and
IC IcC I. Applying (1) proves (2).

If B = D, then D = I C A. Since this is not the case, we get that
AC BC D. Thus, B is also a valuation on D. Consider the set
C ={de D|dI CI}. Using the uniseriality of D,, it is easy to see that C
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is a valuation on D. Furthermore, I and D are left modules over C. We now

have the following bimodule structures:
¢Dp, c¢lp, and ¢ (D/I)g.

Since B and C are valuations on D, the above (bi)modules are all uniserial

whenever the module structure makes sense. We will use D to denote D/I.
In this section we will prove that the injectivity of D/I (as an A-module)

is equivalent to ¢ (D/I ) being complete in all linear topologies. As one would

expect, this is rather complicated. The proof will be broken up into a sequence

of results which are easier to follow.
Lemma 40 D, is injective if and only if Dg is injective.

Proof. Suppose that D, is injective. Let L < B be a right ideal and

consider the following diagram

L = B
2
Dp
where ¢ € homp (LB,EB) . Since L, B, and Dp are also A-modules we
get that ¢ € homy, (LA,ﬁA) . Using the injectivity of D4, there exists
® € homy (B4, D4) which extends . We show that & is also a B-module
homomorphism.
Recall that B= A, ={c"a|a € A, ¢ € A— p} and that B = Be for all
c€EA—p. Let z,b€ Band writeb=c"aforsomea € A, c€ A—p. Now

write z = zc for some z € B. Then
® (zb) = @ (2a) = D (2)a = B (z)cc™ra = B (2c)c™2a = ().

Therefore, & € homp (BB,EB) and extends . That is, Dp is injective.
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Assume that Dp is injective. Let K < A be a right ideal and consider the

following diagram

where ¢ € homy (KA,_D-A) .

Consider the B-modules KB and AB. Using the (left) uniseriality of B
as an A-module, it is easily proven that KB = {kb] k€ K, b€ B}. Define
@: KB — Dp by @ (kb) = ¢ (k)b. We show that  is well defined. Suppose
that k;b; = kzb,. By uniseriality we can assume that bs = ab; for some
a € A. Then k;b, = kpab, and so k; = kza. Therefore,

@ (kaby) = @ (k1) by = @ (ka2a) by = o (kp) aby = i (k3) by = B (kaby) .

This proves that @ is well defined; that @ € homp (K BB,EB) is now easy to

prove. We now have the following diagram

KB — AB

el

Dg
Since Djp is injective, there exists ® € homp (ABB,'D'B) which extends .
Because A C B, we can set & = & |a and get that ® € homy, (A,-EA) . For
anyke KC KB

k)= (k) =@ (k)= (k).

We may now conclude that D, is injective.
Definition 41 A module is said to be linearly compact (lc) if it is complete

in every linear topology. It is said to be almost linearly compact (alc) if it

is complete in every non-Hausdorff linear topology.
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Lemma 42 ¢D is almost linearly compact if and only if cD is linearly com-

puct.

Proof. (=>)Suppose that ¢cD isalc. Let D have a linear topology with a base
of neighborhoods about 0 denoted by B. As we argued in a previous section
we may assume that this topology is the cK-topology where K = MNpe5U.-
We can therefore assume that B = {U <D|EKcC 'IT} . Here we assume that,
for 2l U € B, I C U; hence, I C K where K = g5 U.

Consider ¢D with the ¢K-topology. Then this topology has a base (of
neighborhoods about 0) B = {{W<D|KCW}and I C K C NwesW.
This shows that the topology is non-Hausdorff. The hypothesis implies that
this topology is complete.

Let (73) be a Cauchy net in D and consider the net (z,) in D. If W € B,
then W € B. Hence there exists o such that T; — Z5 € W whenever a, 8 > o.
This implies that 2z, ~25 = w+aforsomew € Wanda € I. Since I C W, we
get that z, — zg € W. Therefore, (z,) is Cauchy in D; completeness implies
that it converges to some z € D.

If U € B, then U € B and there exists some o such that a > o implies
that 2, — z € U. Therefore,

To~T=%5—2 €U whenever a > 0.

That is, (Z5) converges and ¢ D is complete.

(<=) Suppose that ¢D is linearly compact and let ¢D have a non-Hausdorff
linear topology. As before, we may assume that this is the ¢ K-topology for
some K, and that the base of neighborhoods about 0is B = {¢W < D | K c W}.
Furthermore, K = MNys W # {0} (since the topology is non-Haﬁsdorff).

Case (1): Assume that J € K. Then K = K/I is & C-submodule of D
and, by hypothesis, D is complete in the cK-topology. Also note that the
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base of neighborhoods is B = {W | W e B} .

Let (x.) be a Cauchy net in D. It is a simple matter to show that (%7) is
Cauchy in ¢D. Completeness implies that (Z3) converges to some Z. Because
I € W for each W € B, it is equally easy to show that (z,) is convergent to
z.

Case (2): Assume that K C I. Then ] € Band K ¢ I € A. Pick
0#a€ Dsuchthat I C C C Ka (a =k for any 0 # k € K will do). By
case (1) D is complete in the Ka-topology. Note that

Ka = (Nwes W)a = Niyes Wa. Hence, a base of neighborhoods about 0 for
the Ka-topology is Bk, = {Wa | W € B}.

Let (z.) be Cauchy in D with the K-topology. We claim that (z,a) is
Cauchy in D with the Ka-topology. Let Wa € Bk, be given. Choose o such
that z, — z5 € W whenever &, 8 > 6. Then z,a — x50 € Wa; that is, (z4a)
is Cauchy in D with the Ka-topology. .

Since D is complete in the Ka-topology, (z4a) converges to some 2. We
will show that (z,) converges to za™ in the K-topology. Let W € B and
choose ¢ = ¢ (Wa) such that « > o implies z,a —z € Wa. Then a > o
implies that z, — za™! € W. Therefore, the claim is true and the proof is

complete.

Lemma 43 ¢D is almost linearly compact if and only if cC is almost linearly

compact.

Proof. (=) Suppose that ¢D is alc and let ¢C have a non-HausdorfT linear
topology with a base {of neighborhoods about 0) Bo. We may therefore assume
that the given topology on C is the ¢ K-topology for K = Nyes, W # {0}.
We may also assume that Be = {cW < C | K c W}.

Consider ¢ K as a C-submodule of D and endow D with the ¢ K-topology.



With this topeology on D a base of neighborhoods about 0 will be
Bp = {cU £ D| K C U}. Moreover, the ¢ K-topology is a linear non-Hausdorff
topology. By hypothesis, it is complete. Note also that B C Bp.

If U € Bp, then there is some W € B¢ such that W C U. Otherwise, by
uniseriality, U C W for all W € Be. This implies that
K c U CNwes. W = K; a contradiction.

Let (z,) be a Cauchy net in C. By the fact above, it is easily seen that
(za) is Cauchy in D. By completeness, (z,) converges, in D, to some z say.
We will prove that = € C.

Let W € B¢ C Bp, then there exists ¢ such that z, — z € W whenever
a2 o But W C C and z, € C;therefore, z ¢ C.

{<=) Suppose that ¢C is alc. Let ¢.D have a non-Hausdorff linear topology
which we assume to be the cK-topology. We can assume that a base of
neighborhoods of 0 is Bp = {¢U < D | K C U} and that
0¢K=nUeBpU#D-

Choose Uy € Bp such that Uy # D. Pickde€ D—Up. Forall V € Bp
with V C Uy, d ¢ V; thus, by uniseriality, Vd=! C C. Let

K'= [] V.
vclU,

Then 0 # ¢K’' < C (0 # Kd™ C K') and so the K'-topology on C is a
non-Hausdorff linear topology. By assumption, it is complete. Since

K’ =ycy, Vd™, the set Bo = {Vd™! | V C Up} is a base (of neighborhoods
about 0) for the K'-topology.

Let (¥a),ea be a Cauchy net in D. There exists 0 = o (Up) € A such that
zo — g € Up whenever a,8 2> ¢. For all a > o define y, = 2, — z, € Up.
Thus, yad™! € Upd™! C C whenever a > 0. Theﬁefore, (yad-l)aac is a net in
C. We will show that it is a Cauchy net.



45

Let Vid~! € B¢ be given; then there is some 0y = (V) € A such that
Ta—2zp € V whenever a,8 2 01. Thus (2, —z5)d™ € Vd~! forall 0,8 > 0.
Pick o' € A such that ¢’ > 0,0y (recall A is upward directed). Therefore,
a, 3 2 ¢’ implies that

Yad ' — ypd ™" = (Ta — T — 25+ Z,) 4™} = (24 — z5)d™ € Vd L.

This shows that (yad‘i)az, is a Cauchy net in C. Since C is complete, it must
converge to some y € C.

We claim that (z,),¢, is convergent (in D) to z, +yd. Let W ¢ Bp.
By uniseriality, V = W N U is equal either W or Uy. Thus, V € Bp and
V € Us. Therefore, there exists o (Vd~?) such that yod=!~y € Vd-! whenever
a > o(Vd™!). This now implies that

(vod? —y)d=ca—2z, —yd =20~ (5, +yd) e VC W
whenever a > o (Vd™1). This proves the claim and the lemma.
Recall that for any z € D we use Iz~ ={d € D | dz € I}. For

=0, Iz~! = D. Since D is a division ring, for any 0 # z € D,
Iz™ ={az~' |a € I}. Let ¢cK < D, we let

X(K)={zeD| K c1z}.

Notation. To keep notation simple we will use X to denote X (k) throughout
the remainder of this section. If there is any confusion about the submodule
K, we will write X(KX).

Proposition 44 Let K < D be a C-submodule of D. Then X is a right
B-submodule of D.



Proof. Since K < D, 0 € X. Letr,s € X. Then Ir! and Is™?! are
left C-submodules of D; by uniseriality, they are comparable. Suppose that
Ir~' € Is7). If z € Ir™1, then zr,zs € I; hence, z (r + s) € I. Consequently,

K<Ir*CI(r+s)™.

and r +sis in X.
Because JaC Iforallage A, I CIa foralla€ A Let 0# z € X and
0#be B. Writeb=ac'! € B= A, ={ac’'!|a€ A, c€ A-p}. Then,

by a previous result, / = Ic and
Izb) =1z = Jea 2 = Ia 2 D Iz D K.
Therzefore, zb € X aud X is a right B-submodule of D.

Lemma 45 Let K < D be a left C-submodule. Ifa € (Nyex Iz')— K, then
I=aX.

Proof. Let z € X. By hypothesis « € Iz™?; thus, az € I. This implies that
aX CI. _

Conversely, suppose that there exists z € I — aX. Then a™'z ¢ X.
By the uniseriality of ¢ D, we must have I (a“.:'.)'1 C K. This implies that
z €I C K(a~'z). We conclude that z = ka~'z for some k€ K. But then

a =k € K; since this is not the case, no such z can exist.

Lemma 46 Let oK < D. Then K is friendly if and only if K = (ex Iz~

Proof. (<) This is clear.
(=») Suppose that there is some a,b € (M¢x Iz~!) — K. Then, by the
previous 1emma., eX = I =bX. From this it follows that ab-2I = I = ba~t] ;

S~ .
- By
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hence ab™, ba~? € C. Let n denote the maximal ideal of C. Since ab-! is a
unit in C, n = nab™1. Consequently, nae = nb.

Because a ¢ K and na is maximal in Ca, we can conclude that
K Cna C Ca. If K = na, then, because K is friendly,

na=K= (] U=Ca.
K<cU<D
This contradiction implies that K C na C Ca.

Choose z € n such that za ¢ K. Since ((.ex ™) is a left C-submodule,
za € (Nzex Iz™') — K. By the above, na = nza. In particular, za = cza for
some ¢ € n. But this impliesc =1 € n. Because this is not the case, our
original assumption is wrong and the proof is complete.

We are now reawy to state the main theorem of this chapter.

Theorem 47 Let A C D e a valuation on a division ring and I < A a right
ideal of A. Let p = I"I (which is a completely prime ideal of A), and let
B=A,. LetC={deD|dICI}and D= D/I. Then the following are
equivalent.

(1) D4 is injective.

(2) D3 is injective.

(3) ¢D is linearly compact.

(4) ¢D is almost linearly compact.

(5) ¢C is almost linearly compact.

Proof. It remains only to prove that (2) and (3} are equivalent.

(2) =(3) Let ¢D have a linear topology with a base of neighborhoods
about 0, B say. By our reduction we may assume that this is the K-topology
for some friendly K < D and K = (pslU. We may also suppose that
K < U for each T € B. We are also assuming that I C U for each U € B.
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Let K =NgeglU C D. Then I € K and ¢K is a friendly C-submodule of D.
By lemma 46,

ICK= )1z where X=X(K)E{z€D]KCIa:'1}.
reX ‘

It now follows that K = (,ex Jz~'. By our reduction we need to show that
any collection C = {I +Iz T |z2e X }, where d; € D, which has the fip also
has the ip.

Suppose that C = {d_;+'I_:):Tf |z € X}, where d: € D, has the fip. Recall
that X is a B-submodule of Dg. Define ¢ : X — Dp by ¢ {z) = dzz. We
will show that ¢» is a B-module homomorphism.

Let z,y € X; by the fip, there exists
i=dh+R=4+ 5=y +%

where z, € Iz7), z, € Iy, 24y € I{z+y)™. Thus, @B =dz+ 5T =
d.z. We have used the facts that z. € Iz~ implies that z.z € I, and that
I C K C Iz~'. Similar statements hold for y and z + y. Therefore,

¢(=+y)Ed=+y(z+y)=a(z+y)=ﬁ+@=3:—z\+f3y_y=<ﬁ(z)+¢(y)-

Let z € X and b € B; using the same argument as ;bove with z and zb
- there is some a € D such that @ = d;z and dy; (zb) = azb. Therefore,

@ (zb) = dzy (D) = azb = @Tb = d.zb = p (z) b.

Therefore, ¢ is 2 B-module homomorphism.

Because D5 is injective, there exists & € homp (Dg,ﬁa) which extends
@. Let ®(1) =1. Then, for 0 # = € X, we have the following (recall B is a
valuation):

(i) = € B implies that ¢(z) = dzz = ¥ () =
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(if) 2! € B implies that T = ®(zz?) = $(z)z? = p(z)z™! =
Tzt =T,
Case (i) implies that uz = d.x + a for some a € I. Thus,
u =d; +az! € d: + Iz~!. It then follows that ¥ € &7 + Tz-1. Case (ii)
immediately implies that & € dz + Iz 1.
If z =0, then Jz-T = D. Hence, ¥ = d;+(u — dz) € d;+ Iz 2. Therefore,
T € (bex (&= +727). That is, C has the ip.
(8)=(2) Let 0 # Lp be a right ideal of B and consider the diagram
| Lg = B
vl
Dp
where ¢ € homp (Lg,ﬁa) . We will show that we can extend  to B by
® € homg (B,Tﬁ) .
Let
K=Irl

rel
Then K is a left C-submodule of D. Because L C B, we get that IL C I.

This implies that I C K.

¥ 0 # r € L, then Ir~! # D (otherwise, ] = Dr = D). Thus K < D.
Suppose that K = Ir~! for some 0 # r € L; we will show how to extend ¢.
Let ¢ (r) = T; for some z, € D and let v = g,r~), Define & : B — D by
@ (8) =ub. Surely @ € homz (B, D).

Let 0 # s € L, then, by uniseriality, s = ra or r = sa for some a € B.

(i) If s = ra, then 2 =r~'s € B. Thus,

e(s)=p(ra)=¢(r)a =:1:_‘,.(r'13) = z, (r-1s) = %s = ®(s).

(ii) If r = sa, then Is™ C Ir~! = K C Is~Y. Thus, Is~! = Ir~1, Write
v (8) = F;; then ¢ (r) = ¢ (se) = % = T;4. This implies that 2, + b = z,a for



50

some b € I. Using the identity a~! = r~1s, we obtain z, = z,r1s + br—1s.

Since br~! € It~ = Is™!, br~'s € I. Therefore,

pE)=F =z rls+brls=zr ls=us = P (s).
This shows that we can extend ¢. Thus we may now assume that K c Ir—*
for all r € L.

We now have ¢K < ¢D and we consider ¢D with the ¢ K-topology. This
topology is complete by hypothesis. By our above arguments and our re-
duction, we may take B = {F [re L} as a base of neighborhoods about
0.

For each 0 # r € L, let ¢ (r) = Z; and let

C= {:c,.r'1 + Ir-1|r and z, as a.bove} .

(For r =0, Ir~T = D and so we simply add Tg+ D = D to C). Suppose that
we can show that C has the fip. Then C has the ip (because ¢K-topology is
complete). Choose
ue ﬂ (:z:,.r‘1 + I r‘l)
reL
and define & : B —+ D by & (5) = b,

Now for each 0 # r € L write ¥ = z,.r-1 + Z; for some 2, € Ir~). Then
b(r)=9r= (z,r‘l -l-z_,.)r =L +ZT =T =p(r).
This shows that ® extends . Thus we need only show that C has the fip.
Consider z,r~! + Ir~1 and z,s~! + Is~1 for some r,s € L. Without loss
we may assumne that r = sb for some b € B. Then Is~1 € Ir-T and
@(r) =% = ¢(s)b=z,b. This implies that 2, 4+ a = z,b for some a € I.

Since r~! = b~15™, we get 2,r~! + ar~? = z,5™1. It follows that

Z 9t 4 Is~ 1 Czs~l 4 Ir-1 = (a:.-r"‘ + ar'l) + Ir~t = g r=1 + Ir-L,

This shows that C has the fip.



Chapter 4

Associated Primes

4.1 Generalized Associated Primes

Definition 48 Let V be an R-module. An ideal P Q R is said to be an
associated prime if there ezists some 0 # W < V such that P = ann(X)
forall0# X < W.

Note that such a P is always a prime ideal. If the module is uniform
and there exists an associated prime ideal, then it must be unique. Such an
ideal is sometimes called a classical associated prime and will be denoted by
P = class(E). The submodule W is called a P-prime submodule. Obviously
this submodule need not be unique. _

Let A C D be a valuation on a division ring and E, a uniform injective
A-module. By a previous result E = E(D/I) for some ] £ A C D. As left
A-modules, I* = {d € D | d™! ¢ I} = hom, (I, m), where m is the maximal
ideal of A. \ Furthermore, (I*)I is a completely prime (equivalently Goldie
prime) ideal of A {cf. M1).

For any module Vr and v € V, anng(v) = {r € R | vr = 0} will be denoted

51
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by v°. This is always a right ideal of R.

Theorem 49 Let A C D be a valuation and E, a uniform injective A-module.
Then

(1) E=E (‘D/;) for some I < A;

(2) (I I= U uw= U .

0%u€D/; 0#veE
Proof. The first statement has already appeared.
Denote D/I by D. Note first that Up,,c5u° is a right ideal since it is a
union of a chain of right ideals. Let b€ I*and e € I. Then 5! ¢ I and 57

is nonzero in D. Consequently,

5-1(ba) = 5 (ba) = 7 = 0.

Therefore, ba € Uy, 5 u® It follows that I°I C Up,ep u°

Conversely, suppose z € u° for some 0 # u € D. Write u =@ wherea ¢ I.
This implies that a~! € I* and 0 = uz = @z = . Therefore, az € I and
z = a~(az) € I*I. The first equality in (2) is proved.

Surely Upuue5 #° € Uoguce ¥ = (. Let ¢ € ( and 0 # v € E with va = 0.
Since D C' E, there is an element b € A such that 0 # vb € D. Uniseriality
implies b = as or a = bs for some s € A. The former leads to the contradiction
0 # vb = vas =0. Hence, 0 = va = (vb)s and 0 # vb € D. Thus s € I'I (by
the above ); since I*] is a two sided ideal in A, a = bs € I"I.

In the theorem, the choice of I is not unique. However we always get a

unique completely prime ideal p = I*I.

Definition 50 The completely prime ideal in the above theorem will be called

the generalized associated prime ideal of E. We shall denote this by
gass(E).
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Suppose A is a valuation and E is a uniform injective A-module. We then
get the completely prime ideal p = I*I = gass(E). It is clear that if E also
has an associated prime, P, ther P C p. There are some obvious questions
that arise at this point.

(1) Let V be a uniform injective module over a Goldie prime serial ring
R. Suppose that there are two distinct faithful idempotents ¢ and f. Then
Ve and Vf are uniform injectives over A = eRe and B = f Rf respectively.
Hence, each will have a generalized associated prime. Let p = gass(Ve) and
¢ = gass(Vf). Then p = P € spec(R) via the Morita context correspondence
(MCC) between A and R, and { = @ € spec(R) via the Morita context
correspondence between B and R.

(i) How are p and ( related? Is there a MCC between p and (?

(i) Could P and @ be comparable?

(ifi) Is it the case that P = Q?

(2) For an arbitrary valuation A C D. Let E4 be a uniform injective
A-module in which class(E) exists. Does class(E) = gass(E)?

A partial answer to (2) is given in the next result.

Proposition 51 Let A be a valuation on a field D and E a uniform injective

A-module. If class(E) exists, then class(E) = gass(E).

Proof. Let P = class(E) and 0 # W £ E be a P-prime submodule. Let
a € p = gass(E) and 0 # u € E such that e € 4°. Because A is commutative,
(uA)a = u(ad) = 0. Therefore, a € anny (ud) C anny (UAAW) = P.

Since P C p is always true, we are done.

To handle the general case we will need some definitions and a preliminary
result.
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Definition 52 Let R be a ring. A right ideal I < R (I # R) is said to be a
prime right ideal if aRb C I implies that a € I orb € 1. For a right ideal
I < R, the bound of 1, denoted by bd(I), is the largest ideal of R which is

contained in L.

Note that bd(I) always exists; it is the sum of all two-sided ideals in I.

Thus, it also contains all the two-sided ideals which are contained in I.

Lemma 53 Let A C D be a valuation and E, a uniform injective A-module.
Then class(E) = P ezists if and only if there is some prime right ideal I such
that E = E(D/I). In this case P = bd(I).

Proof. (<) Suppose that E = E(D) where D = D/I and I is a prime
right ideal of A. Let P = bd(I) C I so that P 4 A. We will first show that
P = ann,(A).

Let A = A/I. Surely anns(A) C anna(T) € I and anny(3A) is a two-
sided ideal in A. Thus, anns(A) C P. Conversely, for any p€ P, and @ € 4,
ap € P C I. Therefore, P = anny(A).

Let 0 # N <A, where I C N and N = N/I. Then
P =ann, (Z) C anny(N) 9 A. Fixz € N — 1. Let p € anns(WV) and let
r € A be arbitrary. Then 0 = ZFp = ZFp. Thus, 2Ap C I. Because [ is
prime and z ¢ I, we conclude that p € I. Therefore, anny(WV) C I. Because
P = bd(I), we may conclude that P = ann,(N); therefore, P = class(E).

(=) Let P = class(E) and let W be a P-prime submodule. Suppose that
we can find some I < A such that £ = E(D/I) and P C I. We claim that I is
a prime right ideal. If aAbC I and a ¢ I, then 0 #3A C E. Since adbC I,
it follows that b € anns (JANW) = P C I. This shows that I is a prime
right ideal. To complete the proof we need only find such a right ideal.
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Pick any 0 # z € W, then, by the proof of Theorem 25, E = E(D/I)
where I = z° < A. The map

P:A=E by p(r)=2r forall recA

induces an isomorphism from A = A/I to zA C W. Therefore,

P = anny (zA) = anny (X) cl

Remark. In the commutative case the above lemma implies that
P =class(E) =bd(I)=1 for some prime ideal I < A and
E =E(D/I). In this case, p=gass(E) = I"I=P=1.

Using the lemma, we are in a position to answer question (2). Suppose
there exists a valuation, A, possessing a prime right ideal, I, that is not a
two-sided ideal. Then, with E = E(D/I), P = bd(I) = class(E) # I.
Furthermore, 1 ¢ I implies that 1 € I*; hence,
class(E) = P C I C I"I = gass(E). This would give a negative answer to
question (2).

In a private communication, Dr. H.H. Brungs has furnished us with such
an example. We would like to thank him for this contribution.

We will now begin the task of answering the questions in (1). We begin
with part(iii).

Example. This example shows that P and Q need not be equal.
A A

Recall our example from a previous section 2.2. We have R = 4]
m

10 00
a uniform injective Vg, such that e = ( 0 0 ) and f= ( . ) are both
L 1

Mo

-
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faithful. We showed that Vg = E @ E, where E is a uniform injective A-
module and that anng(m) = 0. In this case Ve & E & Vf. Suppose that
we can show p = gass (Ve) = gass(F) = m = gass(Vf) = (. By the MCC
p=P={rcR|eRrReCpland ( = Q@ = {r€ R| fRrRf C(}. An

elementary calculation shows that

r-(ni)elaz)-e

Therefore, P # @ nor are P and @ comparable. We show gass(E) = m.
Recall that

A=k(Q") = {f =) a,z% | Q D a> 0,8, € k,supp(f) is wellordered}

and that E = E(D/I), where I = zA. By uniseriality and the maximality of
m, gass(E) € m.

Conversely, let 0 # f € m. Then f = @,z +g for some g € A and
a = min{supp(f)}. Note that a # 0 (f € m implies the constant term of
fis zero). If @ 2> 1, then f € I. Hence, f € gass(E). ¥ 0 < & < 1, then
0 <1—a<1. Choose p(z) =z’ Then 0# 7 € D/I and 5f = 0 in D/I.
Thus, m = gass(E).

The rest of this section is devoted to obtaining a relationship between the
generalized associated primes (of different faithful idempotents) and how the
primes in R (which arise under the MCC) are related.

Notation. Again we fix a decomposition ey €2+ < ++e, = 1 € Rinto orthog-
onal idempotents and V will denote a uniform injective R-module. We are
interested in the case that there are at least two distinct faithful idempotents.

When we arc dealing with only two such idempotents, we use e and f to denote
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them. Also, we use the following notation: A = eRe, B = fR f, X123 = eRf,
and Xz, = fRe. We will, unless otherwise stated, use p = gass (Ve) and
¢ =gass(Vf).

Lemma 54 Let R be a ring and V a uniform injective R-module. Let e

and f be feithful to V and let E = Ve. Then Vf = hom(Xa, E) as right

B-modules.

Proof. Let H =homg (X2, E). Then H is a B-module by
(pod)(z)=w(bz) for all p€ H, be B, z € X3,.

Because V f C V' = homy (Re, E), we will simply consider V f as a subset of
homy (Re, FY). Define

®: Vi H by ¥p)=¢|re=¢ |xy -

Using the decomposition Re = fRe @ (1 — f) Re, one can show that ® is a

B-medule isomorphism.

We need the following technical lemma.

Lemma 55 Let R be a ring and V a uniform injective R-module. Let e and
[ be faithful to V and b € B. The following are equivalent: L e

(1) There exists 0 # & € homy (Xa1, Ve) such tEEt@ob;O

(2) There exists 0 # & € homa (X3, Ve) such that & (bRe) = 0.

(3) There exists 0% ¥ € homy (Xg_h Ve) where X3, = Xa /bRe.

(4) There ezists z € Xp1—bRe and0 # y € Ve, such that, with® = 2+bRe,

P Cy°in A

P



Proof. Since b€ B = fRf, b= fo=bf and bXy = bRe C X,;.

(1) & (2) Clear by definition.

(2) = (3) Define ¥ : X3; = Veby ¥ (T) = ®(z). This map is well-defined
since ¢ (bRe) = 0. Because ® is nonzero, ¥ is not zero.

(3) = (2) Define & : X3, — Ve by & (fre) = ¥ (fre).

(3) = (4) Let z € X2 — bRe such that 0 # ¥ (%) = y. Then it is clear
that ° C ¢°.

{(4) = (3) Since ° C y° the map ¢ : TA — yA by ¢ (Ta) = ya is
well-defined. Consider the diagram |

TA < Xn
el
yA
el
Ve

where X2; = Xy /bRe and ¢ is the inclusion map. Since Ve is injective, we

can extend to X3; with a map ¥. Surely ¥ is nonzero.
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4.1.1 The Goldie Prime Serial Case

We now consider R, a Goldie prime serial {(GPS) ring. All of our previous
notation remains in place. In the statements of results we may, at times omit
stating the obvious assumptions. In this case A and B are valuations on the

same division ring and are left and right uniseriai. This implies
X12Xa1 € p & p C X12Xy and X X2 € ¢ & ¢ C X Xiia.
Recall the Morita context correspondence between A and B. For the Morita

A Xy
Xa B

there is a 1 — 1 order preserving correspondence between

context

{p € spec(A) | X12X2 Z p} and {c € spec(B) | X0 X12 € t;} .

By our comment above, this simply becomes a 1 — 1 order preserving corre-

spondence between

{p € spec(A) | p C X12Xn1} and {s € spec(B) | ¢ C X X1s}-

Recall that p € spec(A) corresponds to {b € B | X136Xa C p} . We will simply
say that p € spec(A) corresponds to ¢ € spec(B) under the MCC (Morita

context correspondence). We will usually write p ¥ ¢ or p & p’ to denote
this.

Lemma 56 Let R be a Goldie prime serial ring, V a uniform injective R-

module and e # f faithful idempotents. Then p = gass(Ve) C X13Xs and
C = gass (Vf) g anlg.
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Proof. Suppose that X;2 X2 C p and choose a € p—X;3X2;. By uniseriality,
X12X21 CaA C p. Pick 0 # u € Ve such that ue = 0. Then

uX12X2 =u(eRfRe) =uRfRe Cu(aA)=0.

This contradicts the assumption that e and f are faithful. Obviously, the

statement about ( is proven the same way.

Lemma 57 Let R be a GPS ring and e # f faithful idempotents for a uniform
injective module V. If p, = class(Ve) ezists, then p, C X33X2;.

Proof. Let 0 # Y C Ve be a gp,-prime submodule. Lemma 56 implies that
9o C p C X12Xa1. If p, = X12X2, then, for some 0 # u €Y,

0= U, = uXan = uRfRe.

This contradicts the faithfulness of e and f.

The next result is crucial.

Theorem 58 Let R be a GPS ring, V a uniform injective R-module,
and e # f faithful idempotents. Then p C {a € A | X31aXy2 € ¢} and
( C{b€ B| X12bXy C p}-

Proof. By lemma 54, V' f = homy (X2, Ve) as B-modules. I

b € ( = gass(Vf), then there is some 0 # ¢ € hom, (X3, Ve) such that
®o0b=0. Applying lemma 55, we choose z € X;3 —bRe and 0 # y € Ve,
such that Z° C y° (where T = z + bRe in *13/;5,). Since 0 # z € X C D,
z~1 exists in D. It follows that Z° = z-1bRe N A. Thus,

P =z"%ReNA=z"Xy NACY C A
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Because D, is uniserial, z716X3; C A. Thus, T = 27'bRe C y°. Therefore,
z7'bX3; C p (recall 0 #£ y € Ve). Hence, bXy C 2p € Xnp (recall z € Xp).
Therefore, X120X5 © X12X219 C p. The argument for p is symmetrical.

Under the MCC, when p € spec(A) and p C X13Xq, we will use p' to
denote the corresponding ideal in B. Thus p’ C X3 X12. In this way

p = o 2 () =p

in A in B inA
Definition 59 By the extended Morita context corresponden'ce (EMCC)
we mean the usual Morita context correspondence between A and B together

with the additional correspondence X13Xa & X Xia.

Corrollary 60 Let R be @ GPS ring, V a uniform injective module and e # f
faithful idempotents. Then p = { under the EMCC.

Proof. By lemma 56, p € X33X5,.

Case(i): If p C X12Xn, then the theorem implies ¢ C p' C XaXua.
Consequently, ¢’ C (p') = p C {’ (again by the theorem). Therefore, p={(
and { = p'. That is, p and { correspond via the usual MCC.

Case(ii): Suppose that p = X12Xz. If ( C X21X12, then, by the theorem,
p € (' C X32X7). This contradiction implies that p = X;2Xy, if and only if
¢ = XnXi.

At this point we have essentially answered our questions. We now continue
the exploration of the EMCC we have just obtained and see what this means

in a Goldie prime serial ring R.
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Lemma 61 Let R be a GPS ring, V a uniform injective module, and ¢ a
Jaithful idempotent. Let P = class(V) and Y be P-prime. Suppose that
P = p, where p € spec(A). Then Ye is p-prime and p = class (Ve).

Proof. We first show that p = ann,(Ye). Because p = ePe, we get
that Ye(p) = Y (ePe) C YPe = 0. Conversely, if ere € ann, (Ye), then
Ye(ere) =Y (ere) = 0. Thus ere € P. This implies that

e(ere)e = ere € ePe = p. Therefore, p = anny (Ye).

Let0#v €Ye<Y. Then0 # vR <Y and anng (vR) = P. Furthermore,
vA = v(eRe) = vRe < Ye. If a € anny(vA) = ann, (vRe), ther 0 =
(vRe)a = (vR)a. This implies that @ € P; hence, ¢ = eae € ePe = p.
Therefore, anny (vA) C anny (Ye) C anny (vA) (because vA < Ye). This
proves that Ye is p-prime and that p = class (Ve). |

Lemma 62 Let R be a GPS ring, V a uniform injective module, and e Jaithful
to V. Let p = gass(Ve) and let p = P via the MCC between A and R. Then:
(?) P =class (V) if and only if p = class(Ve)
Furthermore, in this case
() if X £ Ve is p-prime, then XR is P-prime;
(#51) if Y <V is P-prime, then Ye is p-prime.

Proof. We first prove (i). (=>) This is the previous lemma.

(¢=) Suppose that p = class(Ve) and that 0 # X < Ve is p-prime. We
first show that anng (XR) = P.

If r € P, then eRrRe C p. Thus, (XRr) Re = X (eRrRe) C Xp = 0.
Since e is faithful, X Rr = 0; whence, P C annp (XR). Conversely,
if r € anng (XR), then X (eRrRe) C (XRr) Re = 0. Therefore,
eRrRe C anny (X) = p. We conclude that P = anng(XR).
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Let 0 #u € XR and let r € anng(uR). Since e is faithful, we can choose
s € R such that use # 0. Then

use(eRrRe) C uR(eRrRe) C uRrRe = 0.

This implies eRrRe C gass(Ve) = p. Thus, r € P = anng(X R). It follows
that anngp (uR) C annp (XR) C anngr (uR) (because uR < XR). Therefore,
P = anng (uR) and XR is P-prime.

The proofs of (ii) and (jii) are contained in the proof (i).

Suppose that e and f are two faithful idempotents for a uniform injective
module V. Suppose further that gass (Ve) = class(Ve). An obvious question
is whether or not class (V f) exists. If class (V f) exists, then is
gass(V f) = class(Vf)? The next theorem answers this question,

Theorem 63 Let R be a GPS ring, V a uniform injective module and e faith-
Jul. Suppose that p = gass(Ve) = class(Ve). Then, for any other faithful
idempotent f, { = gass(Vf) = class (Vf).

Proof. Let 0 # X < Ve be p-prime and let p & P via the MCC between
A=eReand R. Application of lemma 62 implies that P = class (V)and XR
is P-prime. Because f faithful, XRf # 0; thus, f ¢ P. Consequently, there
isaMCC P = (, between R and B = fRf. By our lemma 61, ¢, = class VHH)
and XRf is (,-prime. Hence, gass(Vf)=( 2 (.

By lemma 57, p = gass(Ve) C X12Xy. Thus, p = ¢ via the MCC
between A and B. Hence, { = {b€ B | X12bXs C p}. Let b € ¢, then

(XRfb) Re = (XeRfb) Re = X (eRbRe) = X (X12bX21) € Xp = 0.

Because e s faithful, XRfb = 0. This implies that ¢ C annp (XRS) = (..



Lemma 64 Let R be GPS, V a uniform injective module, and e faithful. Let
f be an idempotent that is not faithful. Then there ezists 0 # u € Ve such that
uRf = 0. Furthermore, if p = gass(Ve) C eRfRe, then p = class (Ve).

Proof. Choose 0 # v € V such that vRf = 0 and choose r € R such that
vre ¥ 0. This is possible because e is faithful and f is not faithful. Let
u =vre. Then uRf =vreRf CovRf=0.

Assume that p € eRfRe. Consider the submodule uRe = ueRe < Ve,
and note that uRe # 0. Then

(uRe) p C uRe(eRfRe) C uRfRe = 0.

Thus, p € anns(uRe) C gass (Ve) = p. That is, p = ann, (uRe).
Let 0 # use € uRe and = € anns(useRe). Then z € gass(Ve) = p.
Therefore,

o = anny (uRe) C anny (useRe) C p.

This proves that p = class (Ve) and that uRe is p-prime.
The following result allows us to determine exactly which of the idem-

potents are faithful provided we know one of the faithful idempotents.

Theorem 65 Let R be GPS, V a uniform injective module, and let e be a
faithful idempotent. Let f be another idempotent.
(1) If p= gass(Ve) = class (Ve), then the following are equivalent:
(1) [is faithful;
(i) p C eRfRe;
(843) f ¢ P, where p = P and P € spec(R).
(2) If p = gass(Ve) # class(Ve), then:
(v) [ is faithful if and only if p C eRf Re;
(v) p = eRfRe if and only if f is faithful and { = gass(V f) = fReRf.
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Proof. (1) (i)=>(ii) This is lemma 57.

(ii)=(iii) If f € P, then eRfRe C p C eRfRe.

(iii)=>(i) With the given assumptions, it follows that P = class (V) (this
is lemma 62). Let Y <V be a P-prime submodule. If f is not faithful, then
there exists 0 # v € V such that vRf = 0. Then 0 # N=vRNY <Y and
Nf =0. Hence, f € annp(N) = P. This contradiction completes the proof
of (1).

(2) (iv) (=) This is lernma 56.

(¢=) If £ is not faithful, then lemma 64 forces us to conclude that
p = class(Ve). This contradiction allows to conclude that f is faithful.

(v) This just uses (iv), and really just restates the fact that p and { corre-
spond via the EMCC.

Theorem 66 Let R be a GPS ring, V a uniform injective module, and ¢ and
I feithful. Suppose that p = P and { & Q where P,Q € spec(R). If
p C X12X5y, then P = Q.

Proof. If p C Xy3X3, then ¢ C X3 Xy, and g & ¢ under the MCC.
Recall that ( = {b€ B | X12bXn Cp}, P={re R| eRrRe C P}, and that
¢ = fQf € Q. This immediately shows that { C P. Let p € P. Then
fpf € B and eR(fpf) Re C eRpRe C p. Therefore, fPf C { € Q. Because
f ¢ @ and Q is prime, it follows that P C Q. By symmétry, QCP

Recall again our notation:

Notation. R is a Goldie prime serial ring and V is a uniform injective R-
module. Idempotents, e and f are faithful to V, A= eRe, and B = fRf. We
use p = gass(Ve), ( = gass(Vf), X12 = eRf, and Xz = fRe. Finally, we
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let p = P and ( = @, where P,@ € spec(R)}. We will keep this fixed in the

next several results,

Lemma 67 Let R, V, ¢, [, p, (, P, and Q be as described above.
(1) P and Q contain all nonfaithful idempotents.
(#) If p = X12X2), then f € P and e € Q; hence, P and Q are not

comparable.

Proof. (i) Recall that P = {r € R| eRrRe C p}. Let g be any nonfaithful
idempotent. Choose 0 # v € V such that »Rg = 0 and pick r € R such
that vre # 0. This is possible since e is faithful and g is not faithful. Thus,
vre(eRgRe) C vRgRe = 0. This implies that eRgRe C p. Therefore, g € P.
The proof for @ is the same.

(ii) Since p = eRf Re, we see that f € P. Similarly, e € Q.

Lemma 68 Let R, V, ¢, f, p, (, P, and @ be as described above. Then
P=Qif and only if p C X12 X5 (if and only if ¢ C X X1a).

Proof. (<) This is theorem 66.
(=) If P=Q, then f ¢ P. Thus, X13X3 = eRfRe € p. Uniseriality
implies that p C X;2Xa.

Consider the set of faithful idempotents for a given uniform injective. For
each faithful idempotent, e, we get a corresponding ideal
gass(Ve) = p € spec(eRe). Using the MCC we get P € spec(R), where
p = P. Using this setup, we make the following definition.

Definition 69 For faithful idempotents, define the relation e ~ f if and only
if P=Q (if and only if p C X12X21)
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It is clear that ~ is an equivalence relation on the set of faithful idempo-
tents. We shall denote the equivalence class of e by |[e].

Lemma 70 Let R, V, ¢, p, and P be as we have described. Then PN [e]=0

and P contains all other idempotents.

Proof. That P contains the nonfaithful idempotents is lemma 67. Let J be
any faithful idempotent, { = gass (V f), and ¢ + Q, where Q € spec(R).
e~ f,then f ¢ Q= P. This shows that Pn[e]=0.

If f ¢ [e], then P 3 Q. Therefore, p = eRfRe. By definition of the MCC,
feP

If there is only one class of faithful idempotents, then there is a unique
prime ideal P associated with V. We now assume that there are at least two
classes. If e and f are faithful and f ¢ [e], then p = eRfRe = X13Xn =
gass(Ve) and ( = fReRf = X3 X1z = gass(Vf). We also have the follow-
ingt P pra,nd Q = (, where P,Q € spec(R), then

/ISP and []CQ.

Lemma 71 Let R be a GPS ring, V a uniform injective module, and ¢ a
Jaithful idempotent. Let p, € spec(A) with p, C p. Let p, = S under the
MCC between A and R. Then, for any other faithful idempotent f,

(@) sn[f]=0;

(%) ifgass(Vf)=Cand(=Q, then SCQ.

Proof. Since p, Cp,weget SCP.
If f ~ e, then P = Q. Hence (ii) is clear. Statement (i) is true by lemma 70.
Suppose that f is faithful and f ¢ [e]. By definition, p = eRfRe. I
f €8, then eRfRe C p, C p = eRf Re. Therefore, (i) obtains.
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The above lemma asserts that @ contains all idempotents except those in
(f]- Therefore, every idempotent in S is in Q. This implies that S and Q are
comparable [MS1]. Because e € Q — S, we are left to conclude that § C Q.

We now reach the main result of this section. We have named this the
“Fork theorem”. The expression the “F; sit on top of a fork” means that in
the spectrum of R, any prime ideal which is properly contained in one P; must

be contained in all of the P,.

Theorem 72 [Fork Theorem] Let R be a Goldie prime serial ring and let
V be a uniform injective R-module such there exist k > 2 classes of faithful
idempotents. Let ey,---, e be faithful idempotents such that each comes from
e distinct class. For eachi=1,...,k let p; = gass(Ve;) and P; = p; where
P; € spec(R). Then

(¥) each P; is minimal in its tower;

(1) the P; “sit on top of & fork” in spec(R).

Proof. (i) If P, is not minimal in its tower, then we can choose § C P; in
this tower. Since § is in the same tower, § contains the same idempotents as
Py, In particular, all the other faithful idempotents are in S, Let § = Pos
where p, € spec(eiRe;). Then p, C p;. By lemma 71, § C P: for each
t=1,2,...,k. This contradicts the fact that P; N [e;] = @. Therefore, each
P; is minimal.

(ii) The argument in (i) shows that if S € spec(R) and S C P, then
S C P for eachi=1,2,...,k. This is precisely what (ii) asserts.
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The following is an illustration of the Fork Theorem.

faithful idempotents nonfaithful
idempotents
[e1] fe2] P fex] €ryerrern

\/\/ ......... \/

--------------------

@
v
Q
e
Q

Py

Q
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4.2 The Structure Of Goldie Prime Ideals

Let R be a serial ring and fix a2 decomposition ey +ez+4- - -+e, = 1 into indecom-
posable orthogonal idempotents. Let P be a prime ideal in R and let E (P} =
{e: | e ¢ P}. Suppose that {e1,ez,...,6.} = E(P) and €,41,€r42,...,6n € P.
For each k = 1,2,...,r let A = exAex. Then, for each k = 1,2,...r, there
exists i € spec(Ayx) such that P = g; under the MCC. Because R is serial,
each of the A; are uniserial rings [cf. M2].

Remark. The idempotents in P should not be confused with the faithful
idempotents of the previous sections, nor should the g be confused with the

generalized associated primes that we studied earlier.

In many of the following arguments it will only be necessary to consider
two idempotents in £ (P) at a time. To simplify notation, we again use e and
f to denote these idempotents. We use X = eRf, Y = fRe, A=eRe, B =
JRf, to denote these rings and bimodules. Finally, we will use the following
notation to denote the MCC P & p € spec(A4), and P & ( € spec(B).
When we need to consider the more general case, we will use X;; to denote
the bimodule ¢;Re; (for any 1 <{,j5 < r) and P + g € spec(A;) when such

a correspondence exists.

Proposition 73 Let R be a serial ring, P a prime ideal in R, and let
e,f € E(P). Then p+ ( via the MCC.

Proof. Because f ¢ P, and P & p, we conclude that eRfRe € p. The
uniseriality of A implies that p C XY. The same is obviously true of ¢.
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Under the MCC between A and B, p = p' = {b€ B | eRbRe C p}. Note
that ( = fPf C P = {r € R|eRrRe C p} (because P = (). Thus, { C ¢'.
By symmetry p C ('. Therefore, { C ' C (') =¢(.

Lemma 74 Let R be a serial ring, P a prime ideal in R and let
E(P) = {e1,e2,...,¢,}. Then P = (P;) where, for each1<1i,j <n,
P ={z € Xij | XuazXjx C g for allk=1,2,...,r}.
Furthermore,
(1) ifi>r, then Py = X; for all
(2) i j>r, then Py = X;; for all 1
(3) ifi<r, then Py =py;
(4) 4,5 <r, then p: X5, Xisp; C Py.

Proof. Let (z) € P and let 4, be fixed but otherwise arbitrary. We will
0 .-+ 0

show that z;; € P;;. Now, ei(zu)ej=| i z; | | =3 € P and e;F;5¢; =
0 < 0

Zy. Forallk =1,2,...,r, Xiizi; Xjx = exRe;Zi;e;Re, = exRZ;;Re; C px.

This shows that P C (Py).

Cu -+ 0
Conversely, let X = (zi;) € (P;). Then eyRXRe, = ,
0 - 0
where
Cn = (Z Xn‘-‘cu) Xu+ (Z Xu-'ciz) X+ + (2 Xu-"—'m) Xn1.
i=1 i=1 =1

By the definition of each P;, we get that Cy; C p1. This shows that X € P.
(1) If ¢ > r, then ¢; € P. Thus, for all j, e;Rej = X;; C P = (P;). Thus,
Xi; €EP; C X5,
(2) This is similar to part (1).
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(3} If < r, then p; = e;Pe; = e; (P;;) &; = Py

(4) Let 1,7 £ r be given and let 1 £ k £ r be arbitrary. By our proposi-
tion 73, g = px under the MCC between A; and A;. Hence,
Xii (9iXi;) Xjp € Xuapi (XijXik) € XuagiXix © pr. The first part of this
lemma implies that p; X;; C F;;. The other part is the same.

To illustrate the lemma, we write P in the following way
( P1 Py )

. PX
P=1 P; Pr

\ Xi; X }

Suppose P is a Goldie prime ideal and E(P) = {e,es,...,e.}. The Morita

R R
context is o and P = py € spec(Ax) foreach1 < k <r. Known
et A

results, [McR, section 3.6.7), imply that g is Goldie prime for each k. Because

A, is uniserial, each g, is a completely prime ideal in A;.

Lemma 75 Let A be a uniserial ring and p a completely prime ideal of A.

Thenap=pa=gp forallaec A-p.

Proof. Let a € A — p and z € p. By uniseriality, z = as or a = zs for some
s € A. The latter is not possible because a ¢ p. We conclude that z = as € p.
It follows that s € p (p is completely prime and a ¢ p). Therefore, z € ap.

Theorem 76 Let R be a Goldie prime serial ring, P = (P;) a Goidie prime
ideal of R, and let E(P) = {ey,¢3,...,¢r}. Then P;; = p; X;; = Xiipj Jor all
LIST
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Proof. Fixi,j < r. Write e = ¢; and f = e; and use the notation we set up
earlier. Our lemma 74 implies that pX C P;;. Thus, it remains to show that
FB;; € pX. We first show that pX = X(.

Because p is completely prime and p C XY, the above lemma implies that
XYp=p. Since p & (, we know that YpX C (. Therefore, XYpX = pX
€ X(¢. By symmetry, pX = X¢(.

Recall that P; = {z € X;; = X | XiszXjx Cpr forallk = 1,2,...,r}.
In particular, for k = i (< r) we get that P; = {z € X {zY Cp}. Let
z € F;j and choose b€ YX — (. Then (b=( and 2YX = (zY)X C pX =
X¢ = X(b. In particular, zb = zb for some z € X(. Since R is Goldie prime
serial, z, z, and b are in a division ring. Therefore, z = z € X¢ = pX.

Again we illustrate the result: if P is a Goldie prime ideal in 2 Goldie
prime serial ring and E(P) = {ey,ey,...,¢,}, then

(o piXi; )
P2 . ¢
P=
Xiipi r
\ X;; . Ty
In general, if E(P) = {e,,...¢,}, then '
[ X : X;; X )
Pr 0i Xi;
P= Xij Xi;
Xiip; s
\X._, Xi; Xi; ]
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4.2.1 Other Ideals Containing Idempotents

We now exarnine arbitrary ideals containing idempotents. Let R be a Goldie
prime serial ring and, as usual, fix e;+e2+---+e, = 1. Recall that R = (Xj;)
where X;; = ¢;Re;. Lete=e +e24---+ e, forsomel <m < n. Then
RcR = (Ci;) where

™
Ci; = ZX"*XH Joralll1<i,7<n. (2)
k=t
The following facts are easy to prove.

Proposition 77 With the notation above
(1) ifi < m, then Cy = A; where A; = X;;;
(2) ifi>m, then C;; is a completely prime ideal of A;;
(3) ifi<m, then C;j = X;; forall j; -
(4) if 7 < m, then C;j = X;; for all i.

Proof. (1) If i < m, then the index k = i appears in the right hand side of
equation(2). Thus, A; C C; C A;.

(2) Let ¢ > m. Then, for each k < m, X Xi; is a completely prime ideal of
A; [M1]. By uniseriality, there exists k(i) < m such that X X;; Xy Xuge)i
for all ¥ < m. Using equation (2), Cy = ¥°1,, XixXi; = Xy Xuii. As we
noted, Xiu(i)Xx(): is completely prime.

(3) If i < m, then the index k = i occurs in the right hand side of equation
(2). Hence, X Xi; = AiX;; = X;; C Cy; € X;5.

(4) Same as (3).
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Notation. In part (2) of the proposition, we will use p; to denote the com-
pletely prime ideal C;,‘ = X,-,,(.-)X-,(;).-. Ifi> m, then C.‘.‘ = 2:'.__1 Xika.‘ = p;.
Therefore, a partial description of ReR is

ReR = ! Pmt Cii

Lemma 78 Ifi,j > m, then p; X;;, Xijp; C Ci;.
Proof. Fixi,j > m. Using equation (2),

Ci = 2 XaeXij 2 3 X XuiXi5) = Y (X Xii) X5 = > X.'ka.') Xii = piXij.
k=1 k=1 =1

=]

Similatly for the other containment.
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4.2.2 Ideals Arising From Nonfaithful Idempotents

Let us consider a Goldie prime serial ring R and a uniform injective R-module
V. Then some of the idempotents are faithful. Suppose that e, ..., en,_; are
not faithful and that en,..., e, are faithful. Ife= e, +--- 4 em_1, then the

results of the previous section (section 4.2.1) imply that

( X;; X;; \

ReR= ! Pm Cij
X.'j :

| 16 e
Remark. The p; that appear here need not be the gass(Ve;) that we examined

in the previous chapter. Hopefully, the notation does not cause too much
confusion. Throughout the remainder of this section, we will assume that the

idempotents e,,. .. ey~ are not faithful and that e,,..., e, are faithful.
Lemma 79 For all$,j 2 m, p; C X;; X

Proof. Fixi,j > m. There exists k(i) < m — 1 such that p; = Xir()) Xa(a)i-
Since k (3) < m — 1, the idempotent ey is not faithful. Denote ex() by f and
choose 0 # v € V such that vRf = 0. Because e; is faithful, there is some
r € R such that vre; # 0. Thus, vre; # 0 while vrXu) C vRf = 0.

If Xi;X;i € pi, then

vre;Re; Re; = vr X X Corp; = vrXin(i) Xagiyi = 0.

But this is a contradiction since vre; 7 0 and e; and e; are both faithful. We
are left to conclude that p; C X;; X,
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Lemma 80 For each i,7 > m, there is a MCC p; = p;.

Proof. Let i,j > m be fixed but arbitrary. Recall that p; = Xir(i) Xa(iyi and
p; = X;r(5) Xr(5); for some k(7), k(i) < m—1 and that X.-k(.-)Xk(.); 2 X Xy; for

allt <m —1. Using the above lemma, there is a prime ideal p! € spec(4;),
such that p; = p{. Furthermore, p} = {a € 4; | X;;aX;; C p;}. Hence,

Xiipi Xsi = Xij (X Xagni) X © Xart Xatini € Xny Xy S g3

Therefore, p; C p;. Symmetry implies that p; C p). Consequently,
!
p; S C () = ps-

Proposition 81 Let R be a Goldie prime serial ring and V a uniform injective
R-module. Suppose that e,,...,em—1 are not faithful and that en, ..., e, are
faithful to V. Then, with the notation from above:

(1) piXi; = Xi;p; for alli,j > m.

(2) piXi; X;: = p; for alli,j 2> m.

(3) XuXui Cp; foralll <k<m—1andi>m.

(4) XuXs; CpiXi; foralll<k<m-—1andi,j > m.

Proof. Parts (1) and (2) were (essentially) proven earlier in section 4.2 which
dealt with Goldie prime ideals (see proof of theorem 76). Part (3) is simply
the definition of g;.

To prove (4) suppose that p;X;; C XuXy; for somel <k <m-—1and
$,j 2 m. Choose b € XuXi;j — piX;; and choose a; € X;Xy; — p;. If
bX;: C pi, then

bX;iXij € piXi; = Xispi = Xijpja;.
Thus, ba; = za; for some z € Xj;p;. This impliesthat b= z € X;ip; = pi Xi;.
This contradiction implies that p; C bX;;. Therefore,

piXij Xii € pi C X C XuXii Xii € XuXu
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where 1 € k¥ £ m - 1. This is contrary to definition of p;. Therefore,
XuXy; C piXi; whenever 1 €k <m-—1andi,j>m.

Theorem 82 Let R be a Goldie prime serial ring and V @ uniform injective

R-module such that e,,...,em-; are not faithful and e,,...,e, are faithful to
V. Lete=e,+---+en-y1. Then

( X;j E Xi;i \

ReR = ! Pm piXi;

\ i Xup; Pn )
Proof. Use P = (F;) to denote the right-hand side of the above. We
will show that P is an ideal of B. To show this we need only to show that
(RP);; € piXi; and (PR);; C piXi; for all 4,5 > m. We will show the first

inclusion and note that the other is proven in the same way. Fori,j > m

m~1 m=1

(RP);; 2 XiPi; = Y XuPy+ 2 XaPij = 2 X Xi; + Z XikpeXj-

k=1
Application of proposition 81 now proves that P is an ideal of R.
By lemma 78, P C ReR. Since P is an ideal and £ € P, we also get that
ReRC P.

Proposition 83 Let R be a Goldie prime serial ring and e, f two idempotents g .’
in R (taken from a fized decomposition of the identity). Let A =ecRe, |
B = fRf, and let p € spec(A), { € spec(B) such that p = ( vie the MCC.
Let p = P and { & Q where P,Q € spec(R). Then P =Q.

Proof. Because p = (, we get that { C fReRf.
Thus,e ¢ @ = {r € R| fRrRf C(}. Similarly, f ¢ P. We now have that
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JR(ePe) Rf = fRpRf C ( (recall ePe = p). This implies that ePe c Q.
Since @ is prime and e ¢ @, we conclude that P C Q. By symmetry QCP.

Theorem 84 Let R be a Goldie prime serial ring and V a uniform injective

R-module such that ey,...,en_) are not faithful and ey, ..., e, are Jaithful to
V. Lete =ey++--+ em_s. Then ReR is a Goldie prime ideal.

Proof. Let P = RcR. By theorem 82,

\

[ X;

P Xips

Pm

X;’J‘

PiXi;

Pr )

For each i, § > m, the ideal @i is a Goldie prime ideal in A;. Let P; € spec(R)

such that p; = F;. By previous resulis (iemma 80), for each i,j > m, there

is also a correspondence gp; = p;. Proposition 83 implies P; = P; for all 1 and

j. Let this iceal be denoted by Q. It follows from the results in [McR, 3.6}

that Q@ isa Goldie prime ideal.

Now enPem = pm = enQen € Q. Because Q is prime and e, ¢ Q,
we get that P C Q. Consequently, {e;,€3,...,6m2a} € P C Q. I fol-
lows that E(Q) = {em,...,ea}. Our previous results on Goldie prime ideals
(theorem 76) can now be invoked to give that P = Q.
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4.3 Ore Sets In Serial Rings

We begin with a general discussion about Ore sets.

Definition 85 Let R be e ring. A subset, £ C R, is said to be multiplica-
tively closed if a,b € £ implies that ab € L. A multiplicatively closed set,
L, is said to be a right Ore set if 0 ¢ X and if foranyr € Randoc € L,
there exists v' € R and o' € X such that r¢’ = or'. A left Ore set is defined
analogously. A set is said to be an Ore set if it is both right and left Ore.

When we speak of Ore sets we will always assume that 1 € £. For an Ore
set 5, set K (X) = {r € R| there exists 01,0, € T, such that oyro; =0}. In
the next proposition we list some elementary, but important, facts. For com-

pleteness, we include (some of) the proof.

Proposition 86 Let R be a serial ring and let £ be an Ore set. Then:

(1) K(Z) is e two sided ideal of R.

(2 IfPSRand PNE =0, then (K(Z)+P)NE = 0.

B K(E)Ynz =0

(4) There ezist ideals P, Q R (i € A) such that
(@) each P; is mazimal with respect to having emply intersection with X;
(b) each P; is prime;
(¢) if i # j, then P: and P; are incomparable (hence, comazimal);
(d) |A] < o0
(€) for all i, K (T) C P.

Proof. (1) This is known to be the case for any ring.
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(2) Denote K(Z) by K. Suppose there is p € P and some k € K such
that p+k € (P+ K)NE. Pick 03,07 € I, such that oikoa = 0. Then
o1(p+ k) o2 = o1po; € PNE = . Therefore, no such elements exist.

(3) Let P = {0} in part (2).

(4) (2) An easy Zorn’s lemma argument proves that such ideals exist.

(b) Let P be one of these ideals and suppose that P is not prime. Then we
can find ideals A and B of R such that ABC P C A, B. By the maximality
of P, thereexistsa € ANZ and be BNE. Then abec AB C PNZXE. This
contradiction implies that P is a prime ideal.

(<) I two (distinct) P; were comparable, thg.n, by maximality, they would
be equal. Hence, the (distinct) P; are pairwise incomparable. In serial rings
any two prime ideals are either comparable or comaximal [M1].

(d) In any serial ring, any collection of incomparable prime ideals must be
finite [ cf. M1). We will use P, B,..., P to denote these ideals.

(e) By part (2), (P + K (X)) N = @ for each i =1,2,..., k. Maximality
of P; implies that P, = P; 4 K (X).

For an Ore set & C R, we consider the ring Ry (the localization of R at
). Recall the construction of Rg. First we construct the ring B = R/K,
where K = K (Z). Then T = {¢ + K | 0 € K} is Ore and consists of regular
elementsin E. Hence, we get the quotient ring Ry. In thisway B C By =Ry
and elements of & become invertible in Ry (that is, # € T is invertible
in Rg). Since T is two sided Ore, B & xR = {Fe~!|r€ R, 0€ X} =
{77'F|r € R, o € £}. For a discussion on Ore localizations see [GW, chap-
ter 9). \
Y

For any ring R, we will use J (R) to denote the Jacobson radical of R.
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Proposition 87 Let R be a serial ring and % an Ore set. Then
(1) Rg is a serial ring and J (Rg) = (| mazimal ideals of Ry;
(2} the mazimal ideals of Ry are in 1-1 correspondence with the ideals of

R which are mazimal with respect to having empty intersection with 3.

Proof. (1) Let Q = Ry = {f&~! | r € R, o € T} and note that & = R/K,
where K = K(Z), is serial. Thus, E = @5 ;R where g, + g3+ ---+ & =1
is a decomposition into orthogonal indecomposable idempotents. The right
ideals, €; R, are uniserial. We claim that Q= @Lﬁio and that each £;Q is
uniserial as a right Q-module.
Surely @ = T, e:Q. If ¢ € &iQN Th.6;Q, then ¢ = &g = 0.
Therefore, Q = &5 ,60Q.
Let 1 be given and denote ¢; by ¢. Let a,8 € £Q and write a = e7¢! and
B = €37, This implies that a¢ = 7 and 87 = 3. Using the uniseriality

of R, e7Z = €3 or ¢ = 3% for some T € R. If we assume the latter, then
I G 1
a=¢EF¢  =¢&3z¢ - = Foxe .

This shows that Qg is uniserial.

The second part of part (1) is true of any serial ring,

(2) This is a known result and the proof will not be presented. We recall
the correspondence. If P is maximal with respect to having empty intersection
with I, then P corresponds to the ideal PRy = RpP = {#-%¥|reP,oeX}.
Moreover, P = PRz E.

Let P, Py,..., P denote the ideals which are maximal with respect to

having empty intersection with £. Then

J(Rs) = (\FiRs = (ﬁr.-) Rp =Ry
=1

i=1
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where § = NE; P;. Here the bar refers to modulo K = K ().

Lemma 88 Let R be a serial ring, £ C R an Ore set, and let P,PR,..., B
denote the ideals which are mazimal with respect to having emply intersection
with £. Then P; is Goldie for each i.

Proof. Since Rg is serial, it is semiperfect. Thus,

"= e = P lsny = (fs)_

is semisimple Artinian. Goldie’s theorem implies that § is Goldie semiprime.
Because S = £, P; and the P; are comaximal, we get that each P, is Goldie

prime.

We really should mention something about the isomorphism which occurs
in the above proof. On the left hand side § means modulo K = K (&) while
on the right hand side & means modulo S. We will state a result which gives

us the isomorphism above.

Notation. Let R be aring and S an ideal of R. We will use ﬁ(S) to denote
the set of elements which are regular modulo S. That is,

C(S)={r € R|rs € Simplies s € S and sr € & impliess € S}.

Lemma 89 Let R be a serial ring, £ C R an Ore set, and K = K(3). Let
J(Rg) =3Rg. Then T C C(S) and

Rg/J(Re) 2 (R/S)y where ¥={c+5|o€X}.

Pfoof. Note first that § 2 K (because § = n};l P; and P; 2 K for each

i). Let a € T and suppose that es € S for some s € R. We will prove that
s€S.
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We know that SRy = RgS = {¢'Z|0€ 2, z€S8}and §=SR:NE
(here we mean modulo K). Consequently,3=2"!(as) € SRzN R =7. This
implies that s = s; + k for some s5; € S and k € K. Since K C S, we get that
s € S . Similarly, sa € S implies that s € S. Therefore, % C C(S).

The above allows us to conclude that ¥ = {o+ S| o € I} is Ore and

consists of regular elements in B = R/S. Localization gives
RoRy={re'|reR ceZ}=qQ.

On the other hand, the ring Rx = {F7~!|r € R, ¢ € T} (here we mean
modulo K). Thus,

Re/J(Rg)={FeT|re R, 0e%}=Q

where the lower bar is modulo K and the upper bar is modulo J (Rg).
Define

a:Q—+Q by afre?)=F1. (3)

It is a straightforward, but rather tedious, task to show that & is an iso-
morphism. It really only uses the Ore conditions. The rest of the proof is

omitted.
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4.3.1 Ore Sets In Which K Does Not Contain Any Idem-

potents

Again we consider a serial ring R with a fixed decomposition of the identity,
1 =e; +e2+ -+ e, into indecomposable orthogonal idempotents. Let T be
an Ore set such that K'(X) does not contain any idempotents. Throughout

this section we will keep this notation.

Definition 90 Let R be a serial ring and Py, P3,..., P be a collection of
incomparable prime ideals of R. We say that P, P,,..., Py form a complete
cross-section of spec(R) if {e1,e2,...,ea} = UL, E(P).

Since the ideals are incomparable, the union in the above must be disjoint.

Proposition 91 Let R and T be as described above and let P, B, ..., P be
all the ideals which are mazimal with respect to having empty intersection with

E. Then P\, P,,..., P form a complete cross-section of spec(R).

Proof. If P, F,..., P; don't form a complete cross-section of spec{R), then
8 =Nk, P: contains an idempotent, e say. Since e ¢ K = K (), we conclude
that 0 #€€ S = /K C R/K. Thus, 0 € € SRy = J(Rz). This simply

cannot occur.

Remark. At this point we note that C(S), the set of elements regular modulo
S, is Ore and Sc = ¢S = § for all ¢ € C(S). This is simply a result of
Chatters[C].
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For any Ore set I, the set {r € R |7 € R/K is invertible in Rz} is called
the saturation of £. This set will be denoted by sat(S). It is always the
case that ¥ C saf(Z} and that set(Z) is also an Ore set. It follows that
Ry = R,ayx).

In the setting above, we start with an Ore set I such that K(Z) doesn’t
contain any idempotents. We then get Ore sets, C(S), via the Chatters result,
and sat(X). Our aim is to prove that sat(E)= C(S). This then shows that
for this type of Ore set L, the localized ring Rg can be thought of as having
come from a “Chatters type” localization. That is Ry & Ryat(x) = Reys)-

Lemma 92 Let R and T be as described above and let Py, P,,..., Py be all
the ideals which are mazimal with respect to having empty intersection with 3.
Let S=Nf, P ondletT={oc+ 5|0 €X}. Then the set

Uy ={F7"" |r € C(S), o € T} is the set of units in (R/S)s.

Proof. Let R = R/S and let Q, = (—R)E Since Q) = Ry/J(Rg) is
semisimple Artinian, the set of units is precisely the set of regular elements,
If ¢ = 75! is regular in @, then ¥ = 7 is regular in R/S. Thus,
r € C(S).
Conversely, if r € C(S) and o € X, then 7 and 7! are both regular in Q.
This implies that 76! is also regular.

Lemma 938 Let R and X be as described above and let Py, P, ..., P be all
the ideals which are mazimal with respect to having emply intersection with .
Let S =N, P. ThesetU = {-FF_‘l [rec(s), ce E}, where the lower
bars are modulo K and the upper bar is modulo J(Rsg), is the set of units in
Rz/J (Rg).
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Proof. Let Q = Rg/J(Rc). Since Q@ = @, (Q, from above) the set of units
in () is the set U = a (U}y), where a is the isomorphism in (3). The definition

of a gives the result.

Lemma 94 An element ¢ € Ry is invertible if and only if € Rg/J (Rg) is

tnvertible.

Proof. It is well known that invertibility in a ring is equivalent to invertibility
modulo the Jacobson radical.

We will make use of the following fact: If a € C(S) and s € S, then
(a +5) € C(5).

Lemma 95 The set of units in Ry is U(Rg) = {F& ' | r € C(8), o € 5}

where the bar is mod K.

Proof. Let r € C(S), 0 € Z and let ¢ = Fo~! € Rg. By lemma 93, § is
invertible in Rz/J(Rg). Lemma 94 implies that ¢ is unit in Rg.

Conversely, let ¢ € Ry be a unit. Then, modulo J = J(Rg), § is a unit.
By lemma 93, § =75 -! for some r € (S), o € ¥ Thismeans ¢=7o "1 +k
where k€ J=S8Rc={sc!|se S, ce}. C;;;:ﬁi;gntly,

*-sl

g=FF"'+357"! where reC(S),sE.\“f;‘-:anda,ﬁEE.

Using the Ore condition, we can write 77~} = 7757 ~! and 307! = 5795 !
where 02 € 5. Then r) € C(S) and s; € S. It follows that (ry +s;) € C(S).
Therefore,

¢=T7 +37 T =TEm i +ne T = (M Fa) @ ! € U(Ry).

 Lemma 96 Let R, I, 5, and K be as above. Leta € C(S), o € 5. If
@51 € R/K, then @5 € C(S) where the bar is modulo K. '
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Proof. Let R = R/K and suppose that ¥ = @5-! € . We will show that
rec(s).

If zr € 5, then Z7 = @& ! € 5. Rewriting, this becomes Zd@ = 37 for
some s € S. This implies that za = so + k for some k € K C §. Thus,
za € 5. Because a € C(S), we get that z € S.

Ifrz€ S, thenT= =387 '2€ 5. Write 7'z =357 ~). Then
@7157 ' € S. As above, we get that z; € S. Using the above equality,

267 =721 € 5. This implies 20y = s+k for somes € S and k € K. Therefore,
z € 5 (since K C S and £ C C(5)).

Lemma 97 Let R, £, S, and K be as above and let r € R. Then 7 is invertible
in Ry if and only if r € C(S). That is, sat(T) = C(S).

Proof. Letr € C(5) and ¢ € E. Then ro € C(S) and ¥ = (75) 7 € U (Ry).

Conversely, suppose that r € R and ¥ is a unit. Then F=37~! € R/K
for some a € C(S), ¢ € L. Lemma 96 implies ¥ € C(S). Therefore, r = z + k
where z € C(S) and k € K C S. We conclude that r € C(S).

We collect all of the above information in the following theorem.
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Theorem 98 Let R be a serial ring and £ C R an Ore set such that K(X) does
no!l contain any rienzero idempotents. Then there exist ideals Py, P3,... P; of
R, for some 1< k < n, such that

(1} P, is Goldie prime for each i.

(2) Each P. is mazrimal with respect to having empty intersection with T.

(3) The P: are pairwise incomparable.

(4) P, P;,..., P form a complete cross-section of spec(R).

(5) With S =N, P, C(S) is Ore and c§ = Sc= § for all c € C(S).

(6) C(S) = sat(Z).



4.3.2 The Facchini And Puninski Ore Set

We now consider a particular type of Ore set. The following is based on results
of Facchini and Puninski [FP]. They have considered localizable systems which
1s a more general case than what we require. The theorem and proof that we
give is based on their work.

Let Rbe aserialringandlet 1l =e; +e3+4---4e, bea decomposition of
the identity into indecomposable orthogonal idempotents. Then R = (Xi;)
where X;; = e;Re; for all 1 £ 4,7 € n. In each of the (uniserial) subrings,
Ai = eiRe;, let P; be a completely prime ideal. Suppose further that this
collection of ideals has the following property:

ifz€Xi; and y € Xji, and zy ¢ P, then yz ¢ P;.

This property may seem somewhat artificial, but, in the next section when we
return to faithful idempotents and consider the EMCC which exists, this prop-
erty will be satisfied. We will refer to this property as the FPMC (Facchini
Puninski Morita Context) property.

Consider the set

A —-P o )
A;—P,

0 A - By

Since each P is a completely prime ideal, £ is mulliplicatively closed. It is
also clearthat 0 ¢ T and 1 € Z.,

We will show that I is actually an Ore set. Only the right Ore condition

is discussed. The proof of the left Ore cohdition is the same. We need to
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show the following:

forall o € £ and r € R, there ezist ¢’ € £ and v’ € R such that or' = ro’'.

(1 0 )

We call an element of the form o; € X whereg; € A;—P;

a basic element of L. Given s&u?h a basic eltg we will use &; to denote
it.

We will prove that £ is Ore in two steps. The next result will show that
we need only verify the right Ore condition for the basic elements. Then we
will show that the basic elements do satisfy the right Ore condition.

Proposition 99 Let T be as shown above. If the basic elements of L satisfy
the right Ore condition, then X is right Ore.

Proof. Suppose that all basic elements do satisfy the right Ore condition. Let
o € £ and r € R be arbitrary. Let

(5] 0
o2
o= . where eacho; € A;— P.

0 On
Then ¢ = [, [(eice;) + (1 — &)} = [[%;8:. By assumption, there exist
elements ¢; € ¥ and r;, € R such that &,y = rey. If ¢;_; and r;_; have been
chosen in this way, then choose ¢; € X and r; € R such that &;r; = ri_¢ (this
can be dore by the hypothesis). Let o' =cj62:+-¢, and ¥ =r,. Then

-~

re' =(rier)e2-v co = Ti(ricz)ey - en =+ = 5102+ Garn = 07"
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This shows that ¥ is right Ore.

Theorem 100 The basic elements of T satisfy the right Ore condition. Hence,
X is right Ore.

Proof Let i be arbitrary but fixed and, in keeping with our notation let &;
be a basic element of . Let r € R be arbitrary and let 1 < j < n. Note that

e:5:¢; = 0; and e;Te; = ry; are in the uniserial R-module ¢;R. Hence, either
ri; € oiR or o; € ry;R.

(1) Suppose that r; € oiR. Then ri; = 0it; = o; (eit;e;) for some t; € R
For such a j, let y; = ¢;. Then

Tij = TiiYi = it

(2) Suppose that o; € ry;R. Then o; = ry;h; = (eire;) (e;h;e;) for some
h; € R. Since o; ¢ F,, it follows that y; = (e;h;je;) ri; ¢ P; (this is the FPMC
property). fn this case set t; = ry;.

Using the two lines above, we get that, for all j, there exist elements
t; € e;Re; C R and y; € A; — P; such that

Ty = oit;.
Sety=37. y;and t= (T}, %) +(1—e)ry. Theny€ Tand
FGt=(oit{l-e)t=) oit;+(1—e)ry=3 rijyi + (1 —e)ry.
i=1 =1

But 3%, rijy; = Tl eirejy; = eir (2;‘51 e;y,-c,-) = ¢;ry. Therefore,

-
Ft=) ryyi+(l-e)ry=ery+ry—ery=ry.
=
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4.4 Ore Sets Which Operate Regularly

Let R be a ring and V an R-module. An Ore set, L, is said to operate
regularly on V if v € V, & € £ and vo = 0 implies that v = 0.

Lemma 101 Let R be a ring and V an R-module. There exists an Ore set
which operates reqularly on V and contains every other Ore set which operates
regularly on V.

Proof. Since {1} is an Ore set which operates regularly on V, such sets do
exist. Surely the multiplicative closure of two such Ore sets is again an Ore
set which operates regularly on V. The product of all such Ore sets (defined

to be the collection of all finite products) is then the unique maximal one.

Let us return again to the case of a Goldie prime serial ring, R, and a
uniform injective R-module, V. Fix a decomposition of the identity 1 =
€1 + ez + «+ - + e, into indecomposable orthogonal idempotents. Then there
are some faithful idempotents among these, and possibly some which are not
faithful. Let € be the sum of all the nonfaithful idempotents. In a previous
section we showed that ReR = P is a Goldie prime ideal. Therefore, either
all idempotents are faithful and ReR = 0, or there is at least one nonfaithful
idempotent and ReR = P 3 0. In the latter case, we consider W = anny (P).
Then W is an (R/P)-module and R/P is a Goldie prime serial ring.

Lemma 102 With the notation above, W is a nonzero uniform injective (R/P)-
module and all idempotents of R/P are faithful to W,
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Proof. Suppose {e;,e2,...,e} is the set of nonfaithful idempotents and let
£=eé€1+ex+---+ e Foreach i, choose 0 # v; € V such that v;Re; = 0. By
the uniformity of 1/, there is some 0 # v € N, %R Itis easy to show that
v(ReR) = vP =0. Thus IV £ 0.

Let R/P = R and recall that W is an E-module via w¥ = wr forall r € R
and w € W. An easy argument shows that the set of B-submodules (of W)
is the same as the set of R-submodules of W. Therefore, W is uniform as an

‘R-module.

To show that W is injective, consider the diagram

I 9 R
el
W

where ¢ is an B-module homomorphism aud I is a right ideal of R containing

P. Consider the diagram
I - R

fi
W
el
|4
where f: I — W by f(z) = ¢ (Z) and ¢ is the inclusion. We can easily show
that f is an R-module homomorphism. Since V is injective, we can extend I
to R by F (actually we extend ¢of). Letting F (1) = v implies that F (r) = vr
for all r € R. Thus,

e(E)=f(z)=F(z)=vz forallzel.

We claimthat v € W. Letp € PCI. Then vp= f(p) = ¢(p) =0. This
shows that vP = 0; therefore, v € W. Define & : B — W by & (F) = vF = vr.

‘F
v
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Then ¢ is an R-module homomorphism. Furthermore, for all z € I,

®(z) = vz = f(z) = ¢ (Z). This shows that W is injective.

In R, wehave that T=&; F €; ¥+~ F &, = €1 + - - + & If &, for some
k 4+ 1 < i < n, is not faithful, then wRe; = wRe; = 0 for some 0 # w € W.
This cannot occur since e; is faithful.

Because of the above result, when we consider a uniform injective module,
V, over a Geldie prime serial ring, R, we may assume (by passing to W if
necessary) that all idempotents are faithful.

Lemma 103 Le! R be a Goldie prime serial ring and V @ uniform injective
module such that all idempotents are faithful. For each i, let p; = gass(Ve;).
Then
Ar— ¢ 0

Az —p2

0 An — Fn
is an Ore set which operates regularly on V,

Proof. Write R = (Xj;). Recall that there is an EMCC between the

i = gass(Ve;). We will show that g, p3,.. ., pn satisfy the FPMC property
we described in the Facchini and Puninski Ore set section. This then shows
that ¥ is Ore.

If pi = XijXji, then p; = X;X;;. Hence, that z € X;;, y € Xj and
zy ¢ pi implies that yz ¢ p; is true vacuously.

If pi C Xi;Xi, then p; C X;X;; and p; ¥ p; under the usual MCC.
Let z € Xj;and y € Xji. Ifyz € p; = {a €4 | Xi;aX;i C pi}, then
(zy)* € XijyzX;: C pi. Since p; is completely prime and #y € A;, we conclude
that zy € pi. This allows us to conclude that zy ¢ p; implies yz ¢ p;.
Therefore, I is an Ore set.



We have observed in section 2.2 that

V= hom,;, (.-’.1, 1-"81) &8 hom,h (.\’21, Vel) B @homAl (an, VC;) .

Since all idempotents are faithful, homy, (Xj1,Ve;) = Ve, as A;-modules for
each j (see lemma 54). Hence,V 2 Ve, @ Ve: @ --- @ Ve, and the action
of R is given by the formal matrix multiplication. Because pi = gass(Ve;),
it is clear that ; — p; acts regularly on Ve;. It is now obvious that ¥ acts
regularly on V.

Since all the idempotents are faithful, we get a partition of the idempotents.
This comes from the equivalence relation we defined in definition 69. Let
[ea] = {ere2,... e}, then there exists P € spec(R) such that p; = P for
Al : = 1,2,...,r. Moreover, P contains all other idempotents. That is,
E(P) = [e1] = {ese2,...,¢.}. Because each p; is Goldie, so is P (this follows
from results in [McR, 3.6]. Our results on Goldie prime ideals imply that

(o piXi; | )
Xi;
P=1 Xip; P
\ X 3 o ‘

Clearly, PNY = 9.

Lemma 104 Let R be a Goldie prime serial ring and V a uniform injective R-
module such that all idempotents are faithful. Let P be one of the ideals which
is obtained as described above. Then P is mezimal with respect to having emply

inlerseclion with T.

Proof. Consider the P above as a typical case. Suppose that P C Q and
QNX =0 Letg=(q;)€ Q. Suppose that for somei <r, g € A; — p;.



Then

&igqe; =

(0

\0

Qi

0 )

0)
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€ Q whereg; € A — p;.

Let 1 € 7 € r be arbitrary. Then, XiigaXi; € p; (s = p;). Choose z; € Xj

and y; € X;; such that b; = z;q;y; € p;. As a typical case consider j = 1.

Let
[E}}
: (o0 ... ... 0 )
0 Iy 0 .
N 0 45—
I = , and y1=|yn 0 01 o
0 0 0 )
\ 0 oo oo 0}
Hence,
b, 0)
. - 0
Tieiqeth = €Q.
0 0

A similar statement is true for all j <r.

Because P C Q, e, € Q for all & > r. Therefore,

(&

\ 0

0)

€EQNI.

1)
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This contradiction shows that ¢; € g foralli<r.

Nowleti# jand | €4,7 <r. Recall that piXij ={z € Xi; | 2X;; € pi}.
If g;; ¢ piXi;, then we can choose y € X; such that b; = ¢;;y € p;. Define
¥ = (ys) € R where

y s=j,t=1
Yst = i .
0 otherwise

Then,

)

(eiqe;) i

Il
=

€ Q where b= qi;y ¢ .

\ 0 0
By the first part of the proof, this is not possible. Therefore, gi; € piX;; for
all1 <1, < randi##j This proves that Q C P. Therefore P is maximal

with respect to having empty intersection with .

Lemma 105 Let R be a Goldie prime serial ring, V a uniform injective R-
module such that all idempotents are faithful and that there are k classes of
idempotents. Let P, P,,..., P, be the Goldie prime ideals in spec(R) which
correspond to the generalized essociated primes via the MCC. Then

P\, P,,..., P, is a complete list of the ideals which are mazimal with respect

to having empty inlersection with I.

Proof. By the fork theorem we get that each P; is minimal in its tower and
the P; sit on top of a fork. Since all idempotents are faithful, P, P;,..., P
form a complete cross-section of spec(R). Thus, any prime ideal of R must be

comparable to some P;.
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Let @ be an ideal which is maximal with respect to having empty intersec-
tion with £. Then @ is prime, and so would have to be comparable to some

P;. Since both are maximal, equality holds.

Lemma 106 Let R be @ GPS ring and X C R any Ore set. Then K(X)=0.

In particular, K(X) does not contain any idempotents.

Proof. Let (' = {r € R| there exists ¢ € X such that or = 0}. Because X
is Ore, K’ is an ideal in R. Since R is a Goldie prime ring, if K’ # 0, then it
must contain a regular element. This contradicts the definition of K*. Thus,
K’ =0. Similarly,’K = {r € R| there exists ¢ € X such that re = 0} = {0}.
From these two facts it follows easily that K (X) = 0.

Definition 107 A multiplicatively closed set X is said to be right reversible
ifr € R and o € X, such that or = 0, then there is o' € X such that ro’ = 0.
Left reversible is defined similarly. A right (left) Ore set which is also right
(left) reversidle is said to be a right (left) denominator set. A set which is

both a left and right denominetor set is simply called a denominator set.

Using the above lemma, our results on Ore sets, and a little more work we

get the following result.

Theorem 108 Let R be a Goldie prime serial ring, V a uniform injective
R-module such that all idempotents are faithful and suppose that there are k
classes of idempotents. Let Py, Py,..., P; be the Goldie prime ideals in spec(R)
which correspond under the MCC with p; = gass (Ve;) for each i. Let

Ai—p 0 )
Az—'pz

g

0 An—pn
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Then:
(1) T is a denominator set.
(2) With S =N, P, C(5) = sat ().
(3) C(S) operates regularly on V.

Proof. In the lemma above we actually showed that, in a Goldie prime serial
ring, Ore sets consist of regular elements. Thus, (1) is clear.

Since K(X) = 0, our results about Ore sets for which K(X) doesn’t contain
idempotents apply (see section 4.3.1). Using the fact that P, P,,..., P; are
all the ideals which are maximal with respect to having empty intersection
with ¥, we apply theorem 98 to get (2).

To prove (3) we first note that R < Ry (since K(Z) = 0) and so elements
of ¥ are invertible in Re. There exists a right module of fractions for V
with respect to T, V& say. Furthermore, V — Vg [cf. GW, chapter 9. I
o € C(S) = sat(T), then 07! € Rg. If vo = 0 for some v € V, then
0 = (vo)o~! = v. This completes the proof.

An earlier result asserted the existence of a largest Ore set which operates
regularly on V. We will denote this set by £,. Recall that 3, contains every
Ore set which operates regularly on V. The above implies that

L C sat(Z) =C(S) C 5.

Proposition 109 Let R be a Goldie prime serial ring and V @ uniform injec-
tive R-module. Let %, denote the largest Ore set which operates regularly on V.
There ezist Goldie prime ideals Qy,Qa,...,Qm such that, with S, = Nizy @i,
I, =C(5).

Proof. Since R is Goldie prime, K(Z,) = 0; in particular, K(E,) does not

contain any idempotents. Our results show that there exist Goldie prime
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ideals Q; Qa,...,Qm such that B; C sat(S,) = C(5,) where 51 = N2, Q-
The proof of (3) in theorem 108, can be used to show that C (S;) also operates
regularly on V. The maximality of £, gives equality.

Lemma 110 Let Q be a Goldie prime ideal in a Goldie prime serial ring R
and let E(Q) = {e:,ez,...,¢,}. For eachi =1,2,...,s let Q == (; via the
MCC between R and A; = e;Re;. Then

( A -G 0 )
A, -
¢ cc(@).
Al+l
\ 0 An
Proof. Recall that
e GXi; )
G 2 Xy
Q =
XiiGi G
\ X., X.-,- }
Let
[ A= 0 )
ay 0
a= € 4= .
0 an Au
\ o A
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Assume that az € Q for some z = (z;;) € R. We will prove that = € Q.

Let 1 <i<s. Then a;zi; € (;. Since a; ¢ (; and (; is completely prime,
zi € 6.

Let i # jand 1 € ¢, £ s. Then ar € Q implies that a;z;; € (X;;.
Because a; € (;, it follows from lemma 75 that a;(; = {;. This implies
a;z;; € a;(;X;;. This shows that z;; € (;X;;. Therefore, z € Q.

In general, if E(Q)= {e-,...,¢}, then
([ 4, 0 )

Ar_Cr
cC(Q)-

\ 0 A )
Going back to the previous proposition, we have that S, = % @i, and
that the Q; are Goldie prime ideals which form a complete cross-section of
spec(R). Using the above lemma and the fact that
C(51) = C{Ni=; @:) = Ni=1 C(Q:), we conclude that
A—-G 0
Ao —
2 ces)=%
0 An = Cn
where each (; comes from 2 MCC with some Q.
We now have the following situation:
R is a Goldie prime serial ring and V is a uniform injective R-module such
that all idempotents are faithful. For each i, A; = e;Re; is a valuation ring
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and there is a completely prime ideal p; = gass (V'e;) € spec(A;). Then

Ar—p1 0
Ay —

0 Ay —pn

is an Ore set and operates regularly on V. We also get a list of Goldie
prime ideals P, P,,..., F; in spec(R) via the MCC. We have shown that
P, B,..., P is a complete list of the ideals which are maximal with respect
to having empty intersection with £. Furthermore, Pl,Pz,...., P, form a
complete cross-section of spec(R) and sat (E) = C(S) where § =L, P.

On the other hand, we also have a set I;, which is the largest Ore set
operating regularly on V. Then X, contains ¥ and C(5), and Z; = C(8))
where 5; = (2, @i. The Q; are Goldie prime, form a complete cross-section

of spec(R) and are maximal with respect to having empty intersection with
.

Lemma 111 With respect to the discussion above let Q € {Q1,Qz,...,@m}
and P € {P,, P;,...,Pc}. If P and Q are comparable, then P = Q.

Proof. Let E(P) = {ej,e,...,6.}. Suppose that P and @Q are comparable
and that @ C P . Foreach i = 1,2,...,r, &; ¢ Q. Thus, there exists
i € spec(A;) such that Q = (; under the MCC. Because the MCC isl-1
and order preserving, ¢; C g; for each i. Pick a; € g — (;. Then

a; 0

1
o= . € C(Sl) = 2. b
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Since p; = gass (Ve;), there exists 0 # ve; € Ve, such that veya; = vay = 0.
Now ¢ # (ve,0,...,0) = w € V and wo = 0. This contradicts the fact
that ¥, operates regularly on V. Therefore, if P and Q ave comparable, then
PCQ.

Since £ C &) and @N I, = 0, it is also the case that QNI =0 The

maximality of P allows us to conclude that P = Q.

Lemma 112 With the notation above, § = S;.

Proof. Let Q; be given. Since P, P;,..., P, form a cross-section of spec(R),
there is some j = j(i) such that Q; and P; are comparable. The above
lemma implies that P; = Q;. Since Q;,Q>,..., Q. also form a cross-section
of spec(R), we are left to conclude that {P,, P,,..., P} = {@1,Q3,...,Qmn).
Therefore S =L, P, = N, Q=8

i=1

We have proven the following theorem.

Theorem 113 Let R be a Goldie prime serial ring and V a uniform injective
R-module such that all idempotents are faithful to V. For each i, let pi =
gass(Ve;), and let P, P,,..., Py be the Goldie prime ideals in R which arise
from the MCC with the ;. The ideal S = NE., P; is a Goldie semiprime ideal
in R, and C (5) is the largest Ore set which operates regularly on V.

We call the ideal S from the above theorem the generalized associated

semiprime of V.
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