ALGORITHMS FOR MULTIPLE SEQUENCE ALIGNMENT,

COMPARISON OF TREES, AND STEINER TREES

By

LUSHENG WANG, M. Sc. (University of Regina)

M. Eng. (Shandong University)

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
DOCTOR OF PHILOSOPHY

McMaster University

March 1995

ALGORITHMS FOR MULTIPLE SEQUENCE ALIGNMENT,
COMPARISON OF TREES, AND STEINER TREES

DOCTOR OF PHILOSOPHY (1995) MCMASTER UNIVERSITY

(Electrical and Computer Engineering) Hamilton, Ontario

TITLE: Algorithms for Multiple Sequence Alignment,

Comparison of Trees, and Steiner Trees

AUTHOR: Lusheng Wang
M. Sc. (University of Regina)

M. Eng. (Shandong University)

SUPERVISOR: Dr. Tao Jiang
Associate Professor
Department of Computer Science and Systems
B.Sc. (Univ. of Sci. and Tech. of China, Hefei)
Ph.D. (Minnesota)

NUMBER OF PAGES: xi, 112

ii

Abstract

Comparison of sequences and trees is an essential problem in computational biology. In
this thesis, we investigate some algorithmic problems in sequence and tree comparison.
Theoretical issues such as computational complexity, the efficiency of algorithms, aid the

performance of approximation algorithms are stressed.

The most popular approach for comparing a set of sequences is multiple sequence
alignment. We show that two popular variants of multiple sequence alignment, multiple
alignment with SP-score and tree alignment, are NP-complete. We also design a polynomial
time approximation scheme (PTAS) for tree alignment, which is believed to be the first

PTAS in computational biology.

Tree comparison has applications in the study of RNA secondary structures and evolu-
tionary trees. We propose the notion of alignment of trees as a new method for comparing
RNA secondary structure trees and give an efficient algorithm for computing the optimal
alignment of such trees. Several other methods for comparing evolutionary trees are also

considered.

Steiner trees have been studied extensively in the literature, an< arc closely related to

tree alignment. We also design a PTAS for some planar Steiner tree problems.

iii

A cknowledgements

I would like to express my sincere gratitude to my supervisor Dr. T. Jiang for his expert
guidance, continued assistant, and supervision throughout the course of this work. Thanks
also go to Dr. G.B. Golding, Dr. Z-Q.T. Luo and Dr. D.L. Parnas, the members of the

Supervisory Committee, for their useful suggestions.

I would also like to acknowledge the financial support provided by the National Science
and Engineering Research Council of Canada and the Canadian Genome Analysis and
Technology Program. Much appreciation goes to Dr. X. Chen for his valuable discussicns,

cooperation, and especially supplying the sequence analysis tool (SAT) which allows me to

test Algorithm 4.1 with real data.

Thanks to my wife and parents, who have given me their constant support and encour-

agement.

iv

Contents

Abstract
Acknowledgements
List of Figures

1 Introduction

2 Some Fundamental Concepts and Notations

2.1 Comparison of Sequences
22 Comparisonof Trees,
23 Steiner Trees v it i e e e e e e
2.4 Approximation Algorithms and MAX SNP-hardnes.s

3 The Complexity of Multiple Sequence Alignment

3.1 Imtroduction o v v v i v i s e

iii

iv

ix

11

14

15

18

3.2 The NP-completeness of Multiple Sequence Alignment with SP-score . .

3.3 The Complexity of Tree Alignment
3.4 The MAX SNP-hardness of Generalized Tree Alignment
3.5 Concluding RemMarks . . oo oo ot e e e

Approximation Algorithms for Tree Alignment

4.1 Introduction

....................................

4,1.1 Previous Results

4.1.2 OurResults...........................;....

4.1.3 Applications in the Study of Molecular Evolution

4.1.4 Applications in Steiner Trees

......................

4.2 An Approximation Algorithm with Ratio 2

..................

4.3 A Polynomial-Time Approximation Scheme

..................

4.4 Preliminary Experiment

.............................

45 Remarks

A New Measure for Comparing Labeled Trees
5.1 Imtroduction.

5.2 An Efficient Algorithm for Aligning Ordered Trees

..............

5.2.1 Properties of the Alignment Distance

.................

vi

22

29

36

37

..............................

.......................

5.3.1 Unordered Trees with Bounded Degrees
5.3.2 The Hardness of Aligning Unordered Trees
5.4 Multiple Alignment of Ordered Trees

......................

8.5 Conclusion

The Complexity of Comparing Evolutionary Trees

6.1 Introduction.
6.2 Non-approximability of MAST on 3 Unbounded-Degree Trees
6.3 Agreement Subtrees with Edge Contractions.
6.4 Maximum Refinement Subtrees
6.5 The Subtrce-Transfer Distance e e e

6.5.1 The NP-hardness,

6.5.2 An Approximation Algorithm of Ratio 3

An Approximation Scheme for Some Planar Steiner Tree Problems
7.1 Introduction., U ‘.

7.2 The Basic Idea and Partition Strategy

vii

7.3 The Approximation Scheme and Analysis 93

7.3.1 Constructing the Local Steiner Forests 94

7.3.2 Connecting the Local Forests and Boundary Points 98

74 SomeRemarks 101

8 Summary 102
Bibliography 104

viii

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

34

An alignment with two mismatches.
A multiple alignment.

(a) The given evolutionary tree 7. (b) The pairwise alignments. (c) The

optimal tree alignment.
An RNA secondary structure and its tree representation..
(a) The original tree. (b) The tree after insertion.
(a) Tree T;. (b) Tree T. (c) The optimal alignment of T}, and T5.

The evolutionary tree for the sulfolobales group of archaea obtained by the

parsimony method. L L

(a) The tree T. (b) Thesubtree 3.
() myisin V9. (b) wdsin Vo . v . o o i oo
(a) Bad sequence of type (a). (b) Bad sequence of type (b).

Whens; =0;;. .« . . 0 oo i

29

33

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

When s; = 0; ;¢ and 53 = 0;;

When s; = 0;j and s2 = 0; 54,

........................

Rearranging the component.

An evolutionary tree with 9 species, which is divided into seven 3-components.
(a) The path P,; in the walk. (b) The path B

(a) The subtree T,,. (b) The lifted subtree, where s; € S(v1), s; € §(v2),

and s3 € S(va)- - . . oL

..................................

(a) The subtree T(v,2). (b) The subtree TTn,

Algorithm 4.2

..................................
...............................

....................

The multiple sequence alignment obtained by our algorithm. The num-
bers 0-8 stand for E.coli, P.fluorescens, S.carlbergensis, Human, Xenopus,

Chlorella, Chichen, B.stearothermophilus, and T.utilis, respectively.

Procedure 5.1: Computing { D(Fi[is, ip), Falfs, jo])ls S p < miyt < ¢ < n;}

for fixed s and {.

.................................

Algorithm 5.1: Computing D(Ty, T3).

....................

..............

Algorithm 5.2: Aligning unordered binary trees.

X

43

45

46

48

33

33

56

5.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.1

7.2

7.3

74

7.5

Thereduction. i it e e e e, 69

Theoperations. 75

The tree T constructed from C = {C},Cj,...,Cr}, Where each subtree T:;

corresponds toa ¢;; €C;, =1,2,3. 80

The tree T. Each subtree T} corresponds to an element s; € § and each of

the n chains of length 5f corresponds toa subset C; €C. 80
The subtree T; ; corresponding to ¢; ; € C; (f = 8in this case). 81

Suppose that ¢;;, ¢k and ¢4 are the three occurrences of s;. (a) The subtree

T; corresponding to s;. (b) The subtree Z,. (Again, f=8) 81
(a) The tree T}, (b) Thesubtree A;. 85
(a) The subtree B;. (b) The subtree D;, (c) Thetree Th.. 85
The first four casesof gand bin T%. o v v v i i e e 88
The approximation algorithm of ratio 3. 88
The rectangle with partition P;jofsize k. 93
The interior and boundary areas. 93

(a) The two points are in the same interior area. (b) They are not in the

SAME IMEEIIOT BIRA. & v v v v v v v et e e e e e e e e e e e e e e 06
Procedure T.1. o v i it e e e e e e e e 97
Algorithm 7.1. e e 99

Chapter 1

Introduction

The modern era of molecular biology began with the discovery of the double helical structure
of DNA. Today, sequencing nucleic acids, the determination of genetic information at the
most fundamental level, is a major tool of biological research [85]. This revolution in bioclogy
has created a huge amount of data at great speed by directly reading DNA sequen.ces. The
growth rate of data volume is exponential. For instance, the volume of DNA and protein
sequence data is currently doubling every 22 months [59]. The large amount of data poses

a serious challenge in storing, retrieving and analyzing biological information.

A new field, computational biology, is emerging to meet the rapidly increasing computa-
tional need. It consists of many important areas such as information storage and retrieval,
biological sequence analysis, and protein structure prediction, and so on [25, 53]. Infor-
mation storage and retrieval require efficient methods to accurately process experimentally
gathered data, including the design of genomic databases and the detection of the homol-
ogy (or similarity) between biological sequences. In sequence analysis, efficient and effective

sequence comparison algorithms are crucial in dealing elegantly with the insertion, deletion

1. INTRODUCTION . 2

and replacement events that occur in biological sequences. Structural prediction is also of
great interest to us. Today, one can predict where a helix will occur with about 60 or 70

percent accuracy by various methods. Almost all the prediction work is done on computers

[25].

In many areas of computational biology, one often models the biological reality with
some numeric criteria and expects a solution which minimizes or maximizes those criteria
[50]. Thus, many new combinatorial optimization problems have been proposed, most of
which are difficult computational problems. On the other hand, solutions to these optimiza-
tion problems are needed desperately in biological research. In some cases, e.g. in sequence
analysis, even approximate solutions can be very helpful. It can thus be expected that
computer scientists will be facing more and more challenges to provide efficient algorithms

and heuristics for these optimization problem,

This thesis investigates some optimization problems arising in several important areas
of computational biology, including sequence analysis, phylogenetic reconstruction, and
structure prediction. Theoretical issues such as computational complexity, the efficiency
of algorithms, and the performance of approximation algorithms are stressed. The central
theme of the thesis is the comp@rison of sequences and trees. An overview of the results is

given below:
s Sequence Comparison

Multiple sequence alignment is one of the most popular approaches to sequence comparison
and plays an essential role in finding conserved subregions among a set of sequences, and
inferring the evolutionary history of some species [30]. Many methods have been proposed
to measure the quality of an alignment and they result in several variants of multiple

sequence alignment [10, 31, 44, 53, 66, 85]. The two most important variants are multiple

1. INTRODUCTION 3

alignment with SP-score and tree alignment. A lot of efforts have been made in the design
of algorithms for these two problems. However, the computational complexity status of
them was left open. We show that both of the problems are NP-complete. This implies

that there does not exist polynomial time algorithms to compute optimal solutions of these

two problems.

In sequence analysis, approximate solutions are very useful since they may still convey
important hints and clues to the function or structure of the sequences being compared
[53]. We devise a polynomial time approximation scheme (PTAS) for tree alignment. The-
oretically, the PTAS allows us to obtain an approximate solution arbitrarily close to the
optimal solution in polynomial time. This is the first PTAS in computational biology to our
knowledge. Moreover, we consider a generalized version of tree alignment, called generalized
tree alignment and show that it is MAX SNP-hard. This implies that it is unlikely to have
a PTAS for generalized tree alignment and [3] forms a sharp contrast with the PTAS for

tree alignment.

¢ Comparison of Labeled Trees

RNA secondary structures can be expressed in terms of ordered labeled trees [72, 86]. The
comparison of RNA secondary structures can help identify conserved structural motifs in
an RNA folding process [54] and construct taxonomy trees [72). Extending the notion
of sequence alignment, we propose the alignment of trees as a new measure for comparing
labeled trees. We design an efficient algorithm for computing the alignment distance of
trees, which is faster than the best known algorithm for coraputing the edit distance of

trees,

1. INTROQDUCTION 4

¢ Comparison of Evolutionary Trees

The evolutionary history of a set of species is described by an unordered partially labeled
tree, which is called an evolutionary tree or a phylogeny. Reconstructing the evolutionary
history for a set of species is a fundamental yet difficult task in evolutionary genetics. Dif-
ferent methods may lead to different evolutionary trees. Thus, it is interesting to design
methods to compare different evolutionary trees for the same set of species We consider
several methods such as the maximum agreement subtree, the maximum refinement sub-
tree, and the subtree-transfer distance, The computational cémplexity of these problems

are settled, and an approximation algorithm with performance ratio 3 for subtree-transfer

distance is designed.
¢ The Approximation of Steiner Trees

The tree alignment problem can be viewed as a special case of the well-known Steiner tree
problem under a given topology. The PTAS designed for tree alignment in fact works for
the Steiner tree problem under a given topology in any metric space. We will also consider
some planar Steiner tree problems in this thesis. A PTAS is given for the planar Steiner
tree problem when the given set of regular points is c-local. The algorithm works for both

Euclidean and rectilinear metrics.

The thesis is organized as follows: Chapter 2 includes some fundamental concepts
such as sequence alignment, alignment of trees, Steiner trees, approximation algorithms
and MAX SNP-hardness. Chapter 3 studies the computational complexity of multiple
sequence alignment. The PTAS for tree alignment is given in Chapter 4. Chapter 5 discusses
the alignment of labeled trees and Chapter 6 focuses on the comparison of evolutionary
trees. In Chapter 7, some planar Steiner tree problems are considered. Finally, the main

contributions of this thesis are summarized in Chapter 8.

Chapter 2

Some Fundamental Concepts and

Notations

This chapter introduces some general concepts and notations needed in the thesis. First, we
discuss two basic methods for the comparison of sequences, namely, string edit and sequence
alignment. We then extend these methods to trees. A brief review of Steiner trees is also

given. Finally, we include a brief exposition of approximation algorithms and the recently

developed MAX SNP-hardness theory.

2.1 Comparison of Sequences

A sequence is a string over some alphabet ©. The primary structures of deoyribonucleic
acid (DNA), riborucleic acid (RNA), and protein molecules are sequences of nucleotides or
amino acid residues. For DNA sequences, the alphabet, T, contains four letters 4,C,G,

and T, representing four distinct nuclectides adenine, cytosine, guanine and thymine. For

5

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 6

RNA sequences, the nucleotide uracil (U) replaces thymine (T), i.e., & contains four letters
A,C,G, and U. For protein sequences, 3 contains 20 letters, each representing a unique

amino acid [39].

To compare two sequences, one of the most popular methods is string edit, which uses
three edit operations to transform one string into the other [66]. The three edit operations
are insertion, deletion and replacement defined below. Let s = 8182...5, be a sequence.
Inserting a letter e into s at the i-th position, we obtain a sequence s;83...5;,_1as;...s,.
Deleting the letter at the i-th position, we obtain a sequence ;83 ...5;~15i+1 - - . Sn. Replac-
ing the letter at the i-th position with a letter a, we obtain a sequence $182...8i—1asi41 . .. Sn.
For example, we can obtain string s; = ACGT from s, = ACCGA, by deleting a C and
replacing the letter A with T'. Each operation is assigned a score. The value of an edit-
ing sequence transforming one string into the other is the sum of the scores of all its edit
operations. An optimal editing sequence is one with the smallest value. The edit distance
between two strings is the value of an optimal editing sequence transforming one string into

the other.

Another way of comparing two sequences is to align them [66]. In order to obtain an
alignment of two sequences s; and s,, we insert spaces into or at either end of s; and 8z such
that the two resulting sequences s] and s} are of the same length and then overlay them.
Once we have the alignment, we can compare :hese two sequences column by column. Each
column contains two letters, which are called opposing letters. A space is viewed as a new
letter and is denoted as A throughout this thesis. Two opposing identical letters form a
match and two opposing nonidentical letters form a mismatch, or a replacement. A space
in one sequence opposite to a letter z in the other can be viewed as a deletion of z from the

second sequence, or an insertion of = into the first sequence.

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 7

sl: AC GT
82: ACCGA

Figure 2.1: An alignment with two mismatches.

Example 2.1. Let $; = ACGT and s, = ACCGA. An alignment of s; and s; is shown

in Figure 2.1.

Suppose that [is the length of the sequences s} and sj. The value of the alignment
is defined as ¥°!_, 1(s1(2), 85(7)), where s{(i) an< sj(i) denote the two letters at the i-th
column of the alignment, and p(s}(i),s5(7)) denotes the score of the two opposing letters
under some given score scheme . There are several popular score schemes for amino acids

and for nucleotides [47, 70]. A standard assumption about a score scheme p is that it is a

distance metric, namely,

1. w(a,b)=0 ifa=0
2. p(a,b) = p(b,a) for all @ and b.

3. ula,c¢) < pla,b)+ p(b,c) for all a,b,c.

An optimal alignment of two sequences is one that minimizes the value over all possible
alignments. The alignment distance between two sequences is defined as the minimum
alignment value of the two sequences. The alignment distance can also be used as a measure
of the similarity of two sequences. The smaller the alignment distance is, the more similar

the two sequences are. It is well-known that the alignment distance between two sequences

is equai to their edit distance [66, 85).

The concept of an alignment can be easily extended to more than two sequences. A
multiple alignment A of k > 2 sequences is obtained as follows: spaces are inserted into

each sequence so that the resulting sequences s! (i = 1,2,.. .k) have the same length /, and

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 8

si: CGUCGUUACC
82: C UCGUUACA
83: CGU GUU c¢
84: CG CGUU CG

Figure 2.2: A multiple alignment.

the sequences are arranged in k rows of { columns each.

Example 2.2. Let sy = CGUCGUUACC, s, = CUCGUUACA, §3 = CGUGUUCC
and sy = CGCGUUCG. A multiple alignment is given in Figure 2.2.

The value of the multiple alignment A is defined as
!
2#(8'1(5),85(%'),---SL(%')),
i=
where s;(i) denotes the i-th letter in the resulting sequence s}, and p(s)(4), s4(i), .. .8(7))
denotes the score of the i-th column. The multiple sequence alignment problem is to
construct a multiple alignment minimizing its value. There are many ways to define

u(84(2), $5(2), .. .84 (4)). Two popular ones are listed below.
1 2 k

1. §P-score (Sum-of-the-Pairs): The score of each column is defined as:
ws1(i), 83(3),. k()= D plsild), si(4)),
1<5<I<k
where pu(s}(4), si(7)) is the score of the two opposing letters s;(i) and s}(). The SP-

score has previously been studied extensively. See, e.g., [1, 4, 9, 31, 62].

2. Tree score: In order to define the score u(s)(7), s5(7),...9;(7)) of the i-th column, an
evolutionary (or phylogenetic) tree T = (V,) with k leaves is assumed, each leaf j
corresponding to a sequence s;. (Here V and E denote the sets of nodes and edges in

T, respectively.) Let k41, k+2,..., k+m be the internal nodes of 7". For each internal

2. SOME FUNDAMENTAL CONCEFTS AND NOTATIONS 9

node j, reconstruct a letter (possibly a space) s%(1) such that L p.a)eE B(5p(1)s 55(4))

is minimized. The score pu(s{(i), s4(3),...s,(i)) of the i-th column is thus defined as
ps1(), 503}, . sk(D)) = 3 p(sp(d), s5(3))
(p9)EE
This measure has been discussed in [1, 5, 63, 65, 66). Multiple sequence alignment

with tree score is often referred to as tree alignment in the literature.

Note that, a tree alignment induces a set of reconstructed sequences, each corresponding
to an internal node. Thus, it is convenient to reformulate tree alignment as follows: Given a
set X of k sequences and an evolutionary tree T with k leaves, where each leaf is associated
with a given sequence, reconstruct a sequence for each internal node to minimize the cost of
T. Here, the cost of T is the sum of the edit distance of each pair of (given or reconstructed)
sequences associated with an edge. Observe that, once a sequence for each internal node
has been reconstructed, a multiple alignment can be obtained by optimally aligning the
pair of sequences associated with each edge of the tree. Moreover, the tree score of this
induced multiple alignment equals the cost of T. In this sense, the two formulations of tree

alignment are equivalent. From now on, we will always use the second formulation.

Example 2.3. Consider the alignment given in Example 2.2. Suppose that the score of a
pair of letters is 0 for a match and 1 for a mismatch. The SP-scores of the ten columns are
0,3,3,3,0,0,0,4, 0, and 5, respectively. Thus, the SP-score of the multiple alignment is

18. This is actually an optimal alignment with respect to SP-score.

Example 2.4. Let us consider tree alignment. Again, we assume that the score of a pair
of letters is 0 for a match and 1 for a mismatch. Suppose that an evolutionary tree T with
four leaves is given as in Figure 2.3 (a). The set of given sequences and the score scheme

are the same as in Example 2.2. The reconstructed sequences are s = CUCGUUACC and

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 10

sl = CGUCGUUACC s3=CGUGUUCC

N\ o
/ N

s2=CUCGUUACA s4 = CGCQUUCG

(a)

51:CGUCGUUACC s2:CUCGUUACA s5:CUCGUUACC s3:CGUGUUCC s4:CGCGUUCG
85:C UCGUUACC s85:CUCGUUACC s6:CGCGUU CC s6:CGCGUUCC 86:CGCGUUCC

(o)

si: CGUCGUUACC
82: C UCGUUACA
83: ¢ GUGUU CC
84: C GCGUU CG
reconstructed s5: C UCGUUACC

sequences s6: C GCGUU CC

(¢c)

Figure 2.3: (a) The given evolutionary tree T. (b) The pairwise alignments. (c) The optimal
tree alignment.

sg = CGCGUUCC, which minimize the cost of T'. The pairwise alignments corresponding
to each edge of T are illustrated in Figure 2.3 (b). Note that, in order to construct a multiple
alignment consistent with all pairwise alignments, we have to introduce some columns of
spaces in some pairwise alignments. The multiple alignment induced from the pairwise
alignments is illustrated in Figure 2.3 (¢). The tree score of this alignment is 6, which is
the same as the cost of T. The optimal tree alignment obtained here is different from the

optimal SP-score alignment in Example 2.3.

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 11

In practice, we often face a more difficult problem called generalized tree alignment.
Suppose we are given a set of sequences. The problem is to construct an evolutionary tree
as well as a set of sequences (called reconstructed sequences) such that each leaf of the
evolutionary tree is assigned a given sequence, each internal node of the tree is assigned a
reconstructed sequence, and the cost of the tree is minimized over all possible evolutionary

trees and reconstructed sequences.

2.2 Comparison of Trees

A single-strand RNA molecule folds to form base pairs (A and U form a pair, and G and
C form a pair). Those bases of RNA which cannot be paired form loops. The secondary
structure of an RNA describes ips folding conformation. (The primary structure of an RNA
is its nucleotide sequence.) Figure 2.4 illustrates such a structure. In general, we can
decompose an RNA secondary structure into components of five types: stem (S), hairpin
loop (H), bulge loop (B), interior loop (I), and multi-branch loop (M). The secondary
structure can be conveniently expressed as a tree in which each node is labeled by a letter
S, H, B, 1, or M, and the left to right order among siblings is significant [55, 71, 72, 86). For
exa.rgple, the RN A secondary structure in Figure 2.4(a) can be representéd as an ordered
labeled tree as shown in Figure 2.4(b). The comparison of RNA secondary structure trees
can help identify conserved structural motifs in an RNA folding process [54] and construct
taxonomy trees [72]. On the other hand, the comparison of unordered trees has applications

to the morphological problems arising in genetics and other fields [73, 74, 77).

Similar to sequences, we can edit one tree into another. Again, the operations used are
insertion, deletion and replacement [76, 86]. Let T be an ordered (or unordered) labeled

tree. Inserting a node » into T' means that for some node v in T, we make u the parent

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 12

90 (D))

(a)

Figure 2.4: An RNA secondary structure and its tree representation.

v v
/I\ //lu\\
(a) (b)
Figure 2.5: (a) The original tree. (b) The tree after insertion.

of a consecutive subsequence (or a subset, respectively) of the children of v and then v the
parent of u. Figure 2.5 gives an example. A deletjon is just the opposite of an insertion.
The replacement operation replaces the label of a node with another label. Again, the edit
distance between two trees is the value of an optimal editing sequence transforming one

into the other.

Similar to sequence alignment, we can define the alignment of two labeled trees. Let
Ti and T; be two labeled trees. An alignment A of 7} and T is obtained by first inserting
nodes Jabeled with spaces into Ty and T such that the two resulting trees T} and T} have

the same structure, i.e., they are identical if the labels are ignored, and then overlaying T}

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 13

b € ¢ d (bb) (e,A)(M\e) (d,d)

(a) (0) (c)
Figure 2.6: (a) Tree Ty. (b) Tree T2. (c) The optimal alignment of T} and Ts.

on T;. An example alignment is shown in Figure 2.6. The alignment distance between T;
and T3 is the value of an optimal alignment of T3 and T. Unlike the case of sequences,

we will see that alignment distance and edit distance for trees are actually very different in

Chapter 5.

Trees can also be used to describe the relationships among objects. In the analysis of
molecul.: evolution, the evolutionary history of a set of species is described by an evolution-
ary tree. Let S be a set of species. An evolutionary tree T on § is a (rooted) ! unordered tree
such that the leaves of T' are uniquely labeled with the elements in 5. The internal nodes
are unlabeled and the order among siblings is insignificant. Usually we require that each
internal node has at least two children. The root can be viewed as the common ancestor
of the set of species. Figure 2.7 gives an evolutionary tree containing four species. There
are many ways to construct evolutionary trees. Different methods may obtain different
evolutionary trees for the same set of species, and there is thus the need to compare differ-
ent evolutionary trees defined on the same set of species. Many approaches for comparing

evolutionary trees have been proposed We will discuss some of them in Chapter 6.

!Note that, evolutionary trees are also often viewed as unrooted trees in the literature, especially when
the position of the common ancestor is unknown.

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 14

A. infernus A, brierleyi M. sedula S. solfataricus

Figure 2.7: The evolutionary tree for the sulfolobales group of archaea obtained by the
parsimony method.

2.3 Steiner Trees

The tree alignment and the generalized tree alignment problems discussed in Section 2.1
can be viewed as variants of the well-known Steiner tree problem. i';et V be a set of points
in some space, S a subset of V and d a real function VxV — R specifying the dist=:.ce
between every pair of points. A Steiner tree for § is any free tree T, i.e., an acyclic graph,
whose vertex set contajns $ as a subset. The cost on an edge is the distance between the
two end points of the edge. The cost of T' is the sum of the costs on all edges in T. The
points in § are called regular points and the vertices of T which are not in S are called the
Steiner points. The Steiner tree problem is defined as the problem of computing a Steiner

minimal tree for §, i.e., a Steiner tree for S with the minimum cost.

There are many variants of the Steiner tree problem [42]. It was first studied for the

Euclidean plane, where the distance between two points ¢ and b in the Euclidean plane

is defined as \/(2s — 5)? + (¥ — ¥b)?, Where (z;,¥,) and (s, ys) are the coordinates of a
and b in the plane, respectively. Another well-known variant is the rectilinear Steiner tree
problem, where the distance between points @ and b is |z, — 73] + |92 — v|. The Euclidean

Steiner tree problem and the rectilinear Steiner tree problem have been studied extensively

2. SOME FUNDAMENTAL CONCEPTS AND NOTATIONS 15

due to their applications in practice such as network design, location of facilities, component
placement on circuit board, etc [42]. The generalized tree alignment problem defined in
Section 2.1 is in fact a Steiner tree problem in the space of sequences, where each point is

a sequence, and the distance between two sequences is simply their edit distance.

There is a related problem called the Steiner tree problem under a given topology, where
the Steiner tree topology is given, and the problem is to locate all the Steiner points of the
given topology such that the cost of the tree is minimized [42]). The tree alignment problem

can be viewed as the Steiner tree problem under a given topology in the space of sequences.

2.4 Approximation Algorithms and MAX SNP-hardness

Since this thesis contains several approximation algorithms and some non-approximability
results, we give a brief review of the concepts concerning approximation algorithms and the
recently developed MAX SNP-hardness theory. The MAX SNP-hardness theory is closely

related to the non-approximability results.

If an optimization problem is NP-hard, then it is unlikely to have a polynomial time
algorithm that yields the optimal solutions of this problem. Thus, approximation algorithms
are of interest for NP-hard problems. Usually, we use the performance ratio to measure the
“goodness” of an approximation algorithm. Suppose that A is an approximation algorithm
for some minimization problem. For any instance, I, of the problem, let opt(I) be the
size of an optimal solution and A(J) the size of the solution obtained by A on I. The
performance ratio of algorithm A is defined as max; D%%‘I'I)H' 2 An approzimation scheme

for a minimization problem is an algorithm A, which takes as part of its input an error

2t is defined as min; %{})ﬂ for maximization problems.

2. SOME PUNDAMENTAL CONCEPTS AND NOTATIONS 16

bound € and has the performance ratio 1 4+ ¢. Such an algorithm can also be viewed as a
family of algorithms {A.| € > 0}, where each algorithm A, is an approximation algorithm
with ratio 1 + €. A polynomial-time approzimation scheme (PTAS) is an approximation

scheme {A| € > 0} where algorithm A, runs in time polynomial in the size of the instance

I for each fixed ¢. For more details, see [28].

In the development of approximation algorithms for NP-hard optimization problems,
it has beer found that some simple algorithms can achieve constant approximation ratio for
many problems such as Vertex Cover, Traveling Salesman, Maximum Cut, etc. [60]. How-
ever, it seems extremely hard to improve these ratios, or, even more anbitiously, to devise a
PTAS for these problems. To further study these problems, Papadimitriou and Yannakakis
defined a special reduction, called linear reduction, that preserves certain approximability
properties [60]. Based on Fagin’s syntactic definition [18] of the class NP, they introduced a
class of natural optimization problems, MAX SNP, which includes Independent Set, Vertex
Cover, Dominating Set, Maximum Cut, etc. It is known that every problem in this class
can be approximated within some constant ratio, and moreover, they showed that a PTAS
for any problem that is MAX SNP-hard under linear reduction would imply one for every

other problem in the class.

Now, we give the definition of linear reduction introduced by Papadimitriou and Yan-
nakakis [60], used to show the MAX SNP-hardness of a problem. Suppose that Il and II'
are two minimization problems (the definition for maximization problem is analogous). We
say that II linearly reduces (or L-reduces) to II' if there are polynomial-time algorithms f

and g and constants a, 8 > 0 such that, for any instance I of II,

1. OPT(f(I))) £ e-OPT(I).

2. Given any solution of f(I) with cost ¢/, algorithm g produces in polynomial time a

2. SOME FUNDAMENTAL CONCEPTS AKD NOTATIONS 17

solution of I with cost ¢ satisfying |c ~ OPT(I)| < ﬁlé’ - OPT(f(1)}.

It follows from the above definition that (i) the composition of two L-reductions is an
L-reduction and. (ii) if problem IT L-reduces to problem I’ and II' can be approximated in
polynomial time within a factor of 1+ ¢, then II can be approximated within factor 1 afe.
In particular, if II' has a PTAS, so does II. A problem II is MAX SNP-hard if for any
problem II' in MAX SNP there is an L-reduction from II' to II. In other words, if a MAX
SNP-hard problem has a PTAS, so does every problem in MAX SNP. Several problems have
been proved to be MAX SNP-hard in {60].

The definition of MAX SNP-hardness allows us to study the non-approximability of
many optimization problems in a unified way. It has been shown that it is impossible for

an MAX SNP-hard problem to have a PTAS unless NP=P [3].

Theorem 2.1 A MAX SNP-hard problem does not have a PTAS unless NP=P.

Chapter 3

The Complexity of Multiple

Sequence Alignment

3.1 Introduction

Multiple sequence alignment is one of the most important and challenging problems in
computational biology [50, 53]. Many papers have been written on effective and efficient
methods for constructing multiple sequence alignment. For a comprehensive survey, see 110,

85)].

Many methods have been suggested to measure the quality of a multiple alignment.
Among them, SP-score seems to be very sensible and has received a lot of attention [4, 9, 69].
The best algorithm to compute an optimal alignment under SP-score measure is based on
dynamic programming and requires a running time which is in the order of the product of
the lengths of input strings [1]. Gusfield first proposed a polynomial-time approximation

algorithm for this problem that achieves ratio 2 — # on k input sequences [31]. Pevzner

18

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 19

improved Gusfield’s algorithm to obtain a ratio of 2 — % (62). Recently Bafna, Lawler and
Pevzner pushed the ratio to 2 — % [5] for any fixed I. However, it was not known if multiple

alignment with SP-score is NP-complete [62]. Here we show that this problem (actually,

the decision version of it) is NP-complete.

Tree score is another important measure [1, 33, 62, 63, 65, 67]. Many algorithms
have been proposed for tree alignment [1, 33, 67}, which all run in exponential time in the
worst case. Again it was not known if this problem is NP-hard. Among the many possible
structures, binary tree and star are the most common ones [1, 67}. We will prove that tree
alignment is NP-complete even when the tree is binary. Furthermore, we show that the
problem is MAX SNP-hard if the evolutionary tree is a star. That is, a PTAS does not
exist in this case unless P=NP. In contrast, when the given evolutionary tree is of bounded

degree, tree alignment is not MAX SNP-hard, for a PTAS exists in this case. The PTAS

will be given in Chapter 4.

A more challenging problem is the generalized tree alignment problem [31]. Foulds
and Graham proved that a variation, where the distance between two sequences is defined
as Hamming distance, is NP-complete [24]. Recently, Sweedyk and Warnow proved that
generalized tree alignment is NP-complete [75). Several approximate methods have been
proposed in the literature (32, 33, 65, 67]. Gusfield showed that a minimum-cost spanning
tree of the input sequences has a cost that is at most twice the optimum An interesting
question is whether one can find efficient algorithms with performance ratio better than 2.
It is easy to see that the recent results of Zelikovsky [89], and Berman and Ramaiyer [6)
on the approximation of Steiner minimal trees imply that generalized tree alignment can
be approximated within a factor of 1.747 in polynomial time [45]. But can we make the

approximation ratio arbitrarily close to 1?7 In Section 3.4, we will answer this negatively

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 20

by showing that generalized tree alignment is MAX SNP-hard. Thus, our result implies
that the problem does not have a PTAS. In other words, the approximation ratio cannot

be made arbitrarily close to 1,

3.2 The NP-completeness of Multiple Sequence Alignment

with SP-score

In this section, we prove that the following decision version of multiple sequence alignment

with SP-score is NP-complete.,

INSTANCE: Set of sequences § = {sy,5,,..., sk}, and positive integer c.

QUESTION: Is there a multiple alignment of § with SP-score ¢ or less?

The reduction is from the shortest common supersequence problem

INSTANCE: Finite set § of sequences over alphabet ¥ and positive integer m.
QUESTION: Is there a sequence s with |s| < m such that each t = hitg-l, € Sisa

subsequence of s, i.e., s = spty 51108, - -1.8,, for some sequences sg, s1,...,5.7

The problem is NP-complete even if |T| = 2 [58).
Theorem 3.1 Multiple sequence alignment with SP-score is NP-complete.

Proof. Obviously, multiple sequence alignment is in NP, We reduce the shortest common
supersequence problem to multiple alignment with SP-score. Given a set § of sequences over
alphabet {0,1}, and a positive integer m, we construct a collection of sets X = {Xili,7 >

0,i +j = m}, where X;; = SU {a’, ¥} and @ and b are two new letters. Here we can

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 21

Table 3.1: Score scheme I.

SN10|1]alb|A
0 212111211
1 212121111
a 1210211
b 211(2|10¢f1
All1l11111]0

assume that each sequence in § has length at most m. The score scheme is shown in Table
1. Clearly the score scheme satisfies triangle inequality. The positive integer ¢ is defined as

¢ = (k= 1)}|S[}+ (2k + 1)m, where ||S|j is the total length of all sequences in S.

To show that multiple alignment with SP-score is NP-hard, it is sufficient to show that:

5 has a supersequence s of length m if and only if some X;; has an alignment with value

at most c.

(if) Suppose that we have an aljgnment A of the k + 2 sequences in X; ; with value at
most ¢, for some i, j. Consider the induced alignment of the & sequences in 5. No matter
what the alignment is, its score is always (k — 1)|[§]|. Thus, in A, the total contribution of
the pairwise alignments involving sequences a' and/or b/, is at most (2k + 1}m. Therefore,
every 0 must be aligned with an a and every 1 must aligned with a b in .4. We can obtain

a supersequence s for § by assigning 0 to the columns containing a’s and 1 to the other

columns. The length of sis i+ j = m.

(only if) Let s be a supersequence for § with length m. Let i be the number of 0’s in
8 and j the number of 1’s in s. Consider set Xi ;. For each sequence t € §, there exists
an alignment of ¢ and s such that each 0 (or 1) in X; matches a 0 {or 1, respectively) in s.
Some 0’s and 1’s in s may correspond to spaces. To obtain the desired multiple alignment,

we align each ¢ in § with s as above and then align the a’s in the sequence @' with the 0’s

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 22

Uy

T ilp

U

T

(a) (b)
Figure 3.1: (a) The tree 7. (b) The subtree 7;.

in s and the b's in ¥ with the I’sin s. Obviously, in this alignment, the letters in a column

are either 0,a,A, or 1,5, A. The value of the alignment (with sequence s removed) is c.

Therefore, by checking the value of an optimal alignment of X;;, i + j = m, we can

answer if there is a supersequence s for X with length m in polynomial time. W

3.3 The Complexity of Tree Alignment

In this section, we study the complexity of tree alignment. Recall that the tree alignment
problem is that given a set X of k sequences and an evolutionary tree T with k leaves, where
each leaf is associated with a given sequence, reconstruct a sequence for each internal node
to minimize the cost of T. Two important evolutionary structures are considered: binary

trees and stars.

Theorem 3.2 Tree alignment is NP-complete even when the given evolutionary tree is

binary.

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 23

Table 3.2: Score scheme II1.

Ol1l(al|b|A
0O ffol1j1]1]1
1L ftloj1l1]1
a 11110722
b l1f11210(2
Alll1l1j2712]0

Proof. The reduction is again from the shortest common supersequence problem.
Let § = {s1,82,...5¢} be a set of sequences on {0,1}. Now, we construct a binary tree
T as in Figure 3.1(a), where each T; is a subtree shown in Figure 3.1(b). Every leaf in T
is associated with a sequence over ¥ = {0,1,a,b}. We define y; = s; for i = 1,2,...,k,

z; = a"~1o™ ! for i=1,2,...,k—1, and z = a™.
The score scheme is defined in Table 3, which again satisfies the triangle inequality.

Let M = Zf-;, 2m — |s;|. We will show that there is a common supersequence s with

{s| = m if and only if there is a tree alignment with cost M.

(only ify Assume that there is a supersequence s with |s| = m. To obtain the desired

tree alignment, we assign sequence s to every z; and u;, i =1,...,k.

(if) Suppose that there exists an assignment of sequences to the internal nodes of T
such that the cost of the resulting tree alignment is M. For each i, let #; be the sequence
assigned to x;. For any node v in T, let T(v) denote the subtree rooted at v. First observe
that, because of the triangle inequality, for each i the optimal cost of T'(z;) is at least the
edit distance between the sequences at the nodes 3; and z;, which is 2m — |s;|. Hence,
the cost of T'(z;) in this tree is exactly 2m — |s;|. Since all the edges between (z;, u;) and
(i, 2iy1) must cost 0, ¢ = ... = t;. The sequences b™ and @™ assigned to z; and z; force ¢;

not to contain any e or b. Hence, in order for T'(z;) to achieve score 2m — |s;|, the sequence

3. TEEL COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 24

t; must be a supersequence of s; and |¢;| = m. Therefore, we have a common supersequence

for § with length m. W

Note that, most definitions of evolutionary trees require that the nodes in the tree be
labeled with distinct sequences. In this case, Theorem 3.2 still holds. We can modify the
above proof by identifying nodes z; and u in the tree, and adding a suffix w; to each y;
and z;, where wy = (1)¥(01)* and w; = (1)%(11)*~i-110(01)" for any 1 < i < k. Therefore,
in the optimal alignment, each z; = sw;, and each »; = s(1)*(11)¥~(01) for 1 < i < k and

Tr = SWg.

To prove the MAX SNP-hardness of tree alignment when the given evolutionary tree

is a star, we begin with the Max Cut-B problem.

Max Cut-B: Given a graph G = (V, E') with degree bounded by B, find a partition of
V which divides V into disjoint sets Vp and V; such that the number of edges that go from

Vo to V; is the largest.

Max Cut-B is shown to be MAX SNP-complete in [60]. Now, we can prove our next

result.

Theorem 3.3 It is MAX SNP-hard to construct an optimal tree alignment when the given

evolutionary tree is a star.

Proof. The reduction is from Max Cut-B. Let G = (V, E) be a graph with degrez
bounded by constant k, where E = {v,v,,...,v,}. Define T = {0,1,a,b,#,%,8}. The
letters #, $ will serve as delimiters and # will be a kind of “wild card”. For each v; € V, we

construct a sequence § = 2i12iz - 2in3, where

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 25

Di0** D;14% if j 4, v and v; are adjacent
Zij = Di#* Djaktl if £ 4 v and v; are not adjacent
DiIMID R+ if 5 = g,

where D] = 8, Dy = #, and D! = D; = # fori=2,...,n.
Observe that, in general s; has the form

($$k+1#yk+1)(#-’Bk+1 #yk-{-l) . (#$k+1 #yk+1)(#zk+l#yk+1 $)

It contains n blocks of z*+! and n blocks y*+! in the sequence, where the i-th zF+! is ok+1
i-th y*+1 is 1¥+1, and the rest of z¥+1's and y*+1s are either #5+1 04k or 145, 1 Similarly,

let t; = u;u; 2+ % %, where

Dl k+1 Doahtl if j 24
Di1k1pok+t if j =1,

Finally, define

S
<
!

{sili = 1,2,...,n},
Xy = {a(#FT @iz 0,10 50k + 1)),

X2

{a'(#6F)mi = 1,2,...,3k),

The following construction forces the internal sequence to be of the form

*k-l-l(#xk-}-l#*kd-l)(#zk-l-l#*k-{-l) . (#zk-}l#*k-i-])'

where there are n blocks of z**! in the sequence, each of them is either 0** or 1%*!. Since the degree of
q

cach node in G is bounded by k, the segment z;; in each s; dominates the alignment of s; and the internal
sequence. The optimal score for the alignment of s; and the internal sequence is the number of edges (with
vi as an end}) not being cut.

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 26

Table 3.3: score scheme

(8 |0 (1 [+« [Ala [b
10 2k | 4k | Ak | 4k | 4k | 4k | 4k
$ |[2k |0 |4k |4k | 4k | 4k | 4k | 4k
0 4k 14k |0 |1 |0 |1 1 1
1 dk 14k 1 1 0 0 1 1 1
* || 4k | 4k [O 0 0 0 0 2
A4k |4k |1 1 (0 [0 |JO |2
a || 4k |4k |1 1 0 |10 (0 |2
b 1k | 4k |1 i 2 2 2 2

and

X3 ={a%li=1,2,...,k, §=1,2,...,0}.

The set of given sequences X is as follows:

X‘:XoUX1UX2UX3.

The score scheme is given in Table 4. Note that the scores do not satisfy the triangle
inequality. The evolutionary tree is a star (i.e., a tree with only one internal node) with

| X| leaves, each is associated with a sequence in X.

First, we show that the internal sequence in an optimal tree alignment for X should

be in the form
*k+1(#mk+1#*k+1)(#mk+l#*k+1) s (#$k+1 #*k-l*l)’

where there are n blocks of z*+1, each is either 0¥*! or 1¥+!. This is due to the following

reasons.

1. The sequences in X; = {a'(# +**1 #)*|i = 0,1,...,5n(k + 1)} force the internal
sequence to contain exactly n #’s and no $. Otherwise, the 5n(k + 1) sequences in X,

contribute a cost of 5n(k +1)-2k = 10k(k + 1)n or more. However, if the internal sequence

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 27

is in the form (#1514 *+1)" the total cost of the tree is less than 5k%n+6kn < 10&(k+1)n.

(See the analysis below.)

2. The sequences in Xp = {a*(#bF+13)"]i = 1,2,...,3k} force the internal sequence
to contain none of 0,1, b at positions between the 2i-th # and (2¢ + 1)-th #. Otherwise,
the existence of such a letter would make the 3k sequences in X, contribute an extra cost
of 3k, while the contribution from the sequences in X, decreases by at most £+ 1 and the

contribution from the sequences in X3 decreases by at most . Thus, we can always delete

such letters without increasing the total cost.

3. The score scheme allows us to delete an a from the internal sequence without

increasing the cost.

4. Since p(b,b) = p(b,A) = 2 and pu(b,1) = pu(b,0) = 1, it is advantageous for the

internal sequence to be of form

*k+](#{0’ 1}k+]#*k+1)(#{07 1}k+l#*k+l) v (#{Os 1}k+1#*k+l)!

where {0,1}**! denotes any binary string of length k + 1. The leading and trailing «’s are

used to absorb the 0’s and 1’s in the beginning or end of an s; or an ¢;. (See Figure 3.2.)

5. The kn sequences in X3 = {a"tj|i =1,2,...,k j=1,2,...,n} allow us to modify

the internal sequence into the form
R A A D RC T M)
where there are n blocks of z**! in the sequence, each of them is either 0F+1 op 15+1,

Now, we prove condition (1) of L-reduction. Suppose that there is a partition (Vo, V1)

of V, which cuts ¢ edges. The internal sequence can be constructed as

*k+1(#mk+1 #*k+1)(#mk+l#*k+l) .. .(#J:k-!-l#*k-}-l)’

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 28

where there are n blocks of 21, the i-th block is 1*+! if ; is in V3, and 0¥*! otherwise. In
this case, the sequences in X contributes no cost. Each sequence in X, coniributes a cost
of (k + 1)n and thus X; totally contributes 3k(k + 1)n. Each sequence in X3 contributes a

cost of 2k and totally X3 contributes 2k2n.

Let c(v) denote the number of edges incident upon v that are cut by the partition.
For each v; € V, s; contributes 2k + d(v;) — ¢(v;). This can be observed as follows. Since
there are 27 #’s in the internal sequence and 2n -1 #’s and 2 $’s in each s;, the delimiters
in s; always contribute a cost of 6k. For each ¢, if the i-th block of z**+! of the internal
sequence is 1¥+! (e, v; € V1), we align s; with the internal sequence as in Figure 3.2(a),
i.., the right end delimiter of the s; is matched with a space, and if the i-th block of z5+!
of the internal sequence is 0F+! (i.e., v; € Vp), we align s; with the internal sequence as in
Figure 3.2(b). If v; € W}, then for each v; adjacent to v;, the segment z;; of s;, which is
of the form D{0 ** D;1+*, will contribute 1 towards the cost if and only if v; € V3. (See
Figure 3.2(a).) Similarly, if v; € Vp, then for each v; adjacent to v;, the segment z;;of s;
will contribute 1 towards the cost if and only if v; € Vo. (See Figure 3.2(b).) That is, all

the edges that are not cut by the partition are counted here.

Therefore, the total cost of the tree is

n
3k{k+)n + 2k*n + Z 2k + d(v;) ~ c(v;) = 5kn + 5kn + 2| E| — 2e.

i=1

Recall that the optimal ¢ is at least | E|/2. Since the degree of G is bounded, condition (1)

of L-reduction holds.

By the same argument, it is not hard to show that, given a tree alignment for X with
cost ¢’ = 5k®n+5kn+2|E| - 2¢, we can easily construct a partition of G which cuts ¢ edges,
by looking at the 0/1 assignment to the z-blocks in the internal sequence. Thus, condition

(2) of L-reduction also holds (with 8 =1/2). N

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 29

$Owwap 1hxs 11117000080 %%kl 1 %xk$ $Oxkuf 111112000000 % k421 +x%E s_i
Aokt 111 1wkt 11 1ok FO00 0 4ok ok kFO000R++hxF0000H*+4x# 11 11#* %%+ int, seq.
(a) (v)

Figure 3.2: (a) v; is in V1. (b) v; is in Vp.
3.4 The MAX SNP-hardness of Generalized Tree Align-

ment

In this section, we show that constructing an optimal generalized tree alignment is MAX
SNP-hard. This implies that there is no PTAS for the problem, unless P=NP, by the result
of [3). First, let us give a formal definition of generalized tree alignment. Suppose we are
given a set X of k sequences. Let ¥ be a set of hypothetical sequences, where Y N.X = @. A

loaded tree Tx y for X is a weighted tree of

X UY| nodes, where each leaf is uniquely labeled
with a sequence in X and each internal node is labeled with a sequence in X U'Y [30, 31].
The cost of an edge is the edit distance between the two sequences associated with the ends
of the edge. The cost ¢(Tx,y) of the tree Ty y is the total cost of all edges in Tx y. Given
sequences X, the problem is to find a set of sequences ¥ as well as a loaded tree Ty y for X
which minimizes ¢(Tx '} over possible sets ¥ and trees T y. In most cases, one requires

that the given sequences be assigned to the leaves in the tree [19].

In order to prove the MAX SNP-hardness of tree alignment, we first prove a sequence
of auxiliary MAX SNP-hardness results., We begin with the Vertex Cover-B problem, which
is proved to be MAX SNP-complete in [60].

Vertex Cover-B: Given a graph G = (V, E) with degree bounded by B, find the smallest
vertex cover, i.e., a smallest subset V/ C V such that, for each edge (u,v) € E, at least one

of u and v belongs to V',

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 30

We then L-reduce Vertex Cover-B to the following more restricted version of itself:

Triangle-free Vertex Cover-B: Given a triangle-free graph G = (V, E) with degree

bounded by B, find the smallest vertex cover.

Now we L-reduce Triangle-free Vertex Cover-B to a restricted version of generalized

tree alignment:

Restricted Generalized Tree Alignment: Given two sets of sequences X and Y, find

a subset Y/ C Y and a loaded tree T y+ with the smallest cost.

Finally this problem is L-reduced to the generalized tree alignment problem, stated

again below:

Generalized Tree Alignment: Given a set of sequences X, find a set of sequences Y and

a loaded tree Ty y with the smallest cost.

Now, we describe the required reductions.

Lemma 3.4 Triangle-free vertez cover-B is MAX SNP-hurd.

Proof. For each edge (v;,v;) in the given graph G, we insert two vertices u;; and u;;
into the edge. This should remove all the triangles. Call this new graph G'. Clearly, G
has a vertex cover of size ¢ if and only if G’ has a vertex cover of size ¢ + |E|. This is an

L-reduction because |[Ej< B-c. W

Lemma 3.5 Restricted generalized tree alignment is MAX SNP-hard.

Proof. Let G = (V,E) be a triangle-free graph with degree bounded by B, where

V ={1,2,...,n}. Without loss of generality, we also assume that G is connected. Let 0;

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 31

Table 3.4: Score scheme II.

0|1]A
0 0jy1j2
1{1f0]2
Afl2]210

denote the binary sequence of length n with a 0 at the i-th position and 1's at the rest, and
0;,; denote the binary sequence of length n with 0's at the i-th and j-th positions and 1’s
at the rest. We construct sets X = {0;;](,5) € E} and Y = {I1"} U {0;|i = 1,2,...,n}.

The score scheme is defined in Table 2, which also satisfies the triangle inequality.

Seven types of edges may appear in a restricted loaded tree. Their costs are:

L oe(1™,0;} =1,

2. ¢(1%,0;5) = 2.

3. ¢(0:,0;) = 2u(1,0) = 2.

4. c(0;,0k) = p(1,0)=1,ifi=kori=1.

5. ¢(0iy00) = 3u(1,0) =3, if i £ k and i # .

6. c(0;,;,0k0) = 21(1,0) = 2, if {s,7} N {k,I} # 0.

7. ¢(0;5, 0k} = 4u(1,0) = 4, if {7, 5} n {k,1} = 0.

Now, we want to show that the reduction is indeed an L-reduction. Suppose that G

has a vertex cover U of size c. We can connect each sequence 0; ; € X to some 0k, where
k=1iorj, and k€ U, and then connect the sequences {0;|7 € U} to 1". Each connection

costs 1. This gives us a restricted loaded tree with cost |E| + c. Since the degree of G is

bounded by B, |E| < B - c. So condition (1) of L-reduction holds.

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 32

To see that condition (2) of L-reduction also holds, we need the following claim.

Claim 3.6 Given a restricted loaded tree with cost ¢/, we can find o loaded tree with cost

not greater than ¢’ in polynomial time such that all the edges are of type (1) or (4).

Proof. Each edge (1",0; ;) can be replaced by two edges (1",0;) and (0;,0;;). An edge
(0:,05) can be replaced by two edges (0;,17) and (1%,0;). An edge (0;,0x:) of type (5),
where ¢ # k and ¢ # I, can be replaced by the edges (0x,0;;) and (0k,0;) with the same
cost 3. An edge (0;;,0¢;) of type (6), where {i,5} n {k,!} = {m}, can be replaced by the
edges (0;,,0m)} and (D1, 0,x) with the same cost 2. An edge (0;,5,0x,1) of type (7), where
{i,5}n {k,1} = 0, can be replaced by the edges (0; ;,0;), (0., 0%) (17,0;) and (17,0;) with

the same cost 4. W

Given a loaded tree with cost ¢/, we can construct a new loaded tree with the same
cost ¢’ using edges of types (1) and (4) only. The number of sequences of form 0; in the
new tree is at most ¢ — |E|. This implies a vertex cover of G of size at most ¢’ — |E| + 1.

Therefore, setting # = 1 makes condition {2) hold. This completes the proof. W

Theorem 3.7 Generalized tree alignment is MAX SNP-hard.

Proof. By Lemma 3.5, it suffices to show that given a loaded tree T for X with cost c,
where X is the same as in the proof of Lemma 3.5, there is a polynomial-time algorithm
to construct a restricted loaded tree for X and ¥ = {i*} u {0;|1 < i £ n}, with cost ¢ or
less. Observe that here X has the “triangle-free” property, i.e., X does not simultaneously
contain the sequences 0; ;, 0; x, and 0;x for any ¢, j, k. We will give a method to modify the

tree T so that every sequence not in X is of form 1™ or 0;.

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 33

a b
Figure 3.3: (a) Bad se(qu)mnce of type (a). (b) Bgd)sequence of type (b).

A sequence that is not in X or of form 17 or 0; is a bad sequence and a node that is
associated with a bad sequence is a bad node. Two sequences (; ; and Ok; are adjacent if
{i,5}n {k,1} # 0. Note that, as we have scen before, two adjacent sequences 0; ; and 0;

can be connected through the sequence 0; using two edges, each costing 1.

For convenience, we make (without loss of generality) a few assumptions about T'. Here
we view T as a rooted tree. We can assume that each edge in the tree T has cost 1. This
is because we can delete any edge of cost 2 or more, find two adjacent sequences 0; ; and
0; x, one from each disconnected component, and reconnect them through 0;. Since X is
constructed from a connected graph G, such adjacent sequences always exist. Note that,
this implies that all the sequences in the tree are of length n, because the score between
A and other letters is 2. Moreover, we can assume that every bad node in 7 has two or
more children. Otherwise, we can delete the bad node and reconnect the two disconnected

components as above without increasing the cost. Lastly, we assume that each node in T

is labeled by a urique sequence.

We will delete the bad nodes in T iteratively from the bottom to the top. Below we
describe the steps involved in one iteration, which removes at least one bad node. Consider
a bad node at the lowest level of the tree. The sequence, denoted s;, associated with the
node must be of form either 0; ; (type (a)) or 0% (type (b)), as shown in Figure 3.3. Note

that, in case (b), s; must have exactly two children due to the triangle-free property of X.

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 34

0; 1

_-'.!0,- | !01- | !ok!
'...'. (b)

Figure 3.4: When s; = 0 ;.

In the figure, an ellipse denotes a bad node, a rectangle denotes a good node, and a

triangle denotes a subtree containing no bad nodes.

Suppose that s; is of type (a), say, 0;;. Since s; has two children 0; and 0;, the parent
of s; must have three 0’s, say, 0; ;. Because each of 0; and 0; can appear at most once
in T, a sibling, say, 0;, of s; can not be a bad node. See Figure 3.4(a). In fact, 0;, € X
because it has at most one child. Thus, we can delete s;, move the subtree under 0; to 0; %
and relink the subtree under 0; to the tree through some appropriate adjacent sequences
(one from the subtree and one from the rest of the tree), as shown in Figure 3.4(b). This

will not increase the cost.

Now suppose that s; is of type (b), say, 0; ;. Its parent, denoted s,, contains either
two 0’s or four 0’s. Suppose that s, contains two 0's, say, s = 0; ;. The assumptions made
above force s; to have exactly two children 0; 4 and 0;k. s1 has a sibling of form 0; or 0;,
then we can link O; (or 0;) to 0; (or to 0;, respectively) with cost 1, and thereby get rid
of ;. Thus, we assume that s; has a sibling s; with three 0's, say 0; ;1. which is also a
Lad sequence of type (b). Similarly, s3 must have two children 0;; and 0;:. We can modify
the two subtrees rooted at s; and s3 to get rid of the bad nodes s, and ss, as shown in

Figure 3.5

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 35

Figure 3.6: When s; = 0; ;4 and s = 0; k-

Now suppose that s; contains four 0's, say, s; = 0;4,. Without loss of generality, we

assume that s; has a sibling s3 = 0;;;. We temporarily modify the subtrees under s1 and

s2 as in Figure 3.6.

Let 54 be a sibling of s;. Since the parent of s; has either three 0’s or five 0's, 54 has

either four 0, say, 0; j k,m, or two 0’s, say, Ox,i. We consider two cases.

Case 1: s4 = 0;jkm. Similar to $3 = 0;;«, 54 has four descendants of form 0p,9, Where
p.q € {4,5,k,1}. One of the descendants has to involve ¢, e.g., it is of form 0; k. Thus, we

can link 0; to 0;x with cost 1. This reconnects the component in Figure 3.6(b) to the tree.

3. THE COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 36

Figure 3.7: Rearranging the component.

Then we delete node s; and reduce the cost by 1.

Case 2: 54 = O4,. The component in Figure 3.6 can be reorganized as in Figure 3.7 without
extra cost. Then we can link 0x to s4 with cost 1, and delete s; which reduces the cost by

1.

Therefore, we can gradually remove all the bad nodes from T. This completes the

proof. W

3.5 Concluding Remarks

It remains an interesting open question if the score scheme in the proof of Theorem 3.3
can be made to satisfy the triangle inequality. If so, then the result in Chapter 4 that tree
alignment with a tree of bounded degree has a PTAS implies that the degree of the tree

makes a difference in the approximability of tree alignment.

Chapter 4

Approximation Algorithms for

Tree Alignment

4.1 Introduction

In Chapter 3, we have shown that tree alignment is NP-complete even when the given
evolutionary tree is binary. In this chapter, we design a PTAS for tree alignment when the
given evolutionary tree is of bounded degree. In fact, the evolutionary tree is often binary

in practice This forms a sharp contrast with the MAX SNP-hardness of the generalized tree

alignment problem.

4.1.1 Previous Results

Sankoff proposed an algorithm to compute an optimal tree alignment using dynamic pro-

gramming [63, 67). The time complexity of this algorithm is O(m(2n)*), where n is the

37

1. APPHOXIMATION ALGORITHMS FOR TREE ALIGNMENT 38

length of an input sequence, m is the number of internal nodes, and & is the number of
leaves. The algorithm also assumes that the score between two letters is either 1 or 0. An
algorithm that can handle more general score schemes is reported in [33). Some heuristic
algorithms have also been considered in the past. Altschul and Lipman tried to cut down
the computation volume required by dynamic programming [1). Sankoff, Cedergren and
Lapalme gave an iterative improvement method to speed up the computation [65, 67). It
is claimed that the algorithm usually produces a reasonable alignment in 5 iterations. Wa-
terman and Perlwitz devised a heuristic method when the sequence are related by a binary
tree [84]. Their method computes an “average” sequence for each pair of related input
sequences, from bottom to top, and then constructs an overall alignment by aligning each
input sequence against the “average” sequence constructed at the root. The running time
of this algorithm is O(kn?). Hein proposed an efficient algorithm based on the concept of a
sequence graph [33]. Nevertheless, none of these algorithms have a guaranteed performance
bound. In Section 3.3, it has been shown that tree alignment is NP-hard even if the given

evolutionary tree is a binary tree,

4.1.2 Our Results

In this chapter, efficient approximation algorithms with guaranteed performance ratio for
tree alignment are presented for the first time. We first give a simple algorithm which
produces a loaded (i.e., fully labeled) tree by elaborately lifting the input sequences from
the leaves to their ancestors. It is shown that the loaded tree has a cost at most twice
the optimum. The time complexity of this algorithm is O(k3 + k?n2). Augmenting the
construction with a local optimization technique, we then extend this algorithm to a PTAS.
More precisely, we devise an algorithm which, for each ¢ > 1, has a performance ratio

1+ 2 and runs in time Ok¥ ' +2M(d,t - 1,n)), where M(d,t — 1,n) is the time needed

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 39

T.utilis _-~-~<_ 8. carlbergensis

L4

Xenopus
- e -——
T ~~. Human
’ N
\ ’ A N
v, v \
v/ “ \
3
' \
¥ I
i ! '
LY [)
Y ! ’
/ \ ’ P
’ N ’

o _.-" Chicken

B. stearothermophilus Chlorela

Figure 4.1: An evolutionary tree with 9 species, which is divided into seven 3-components.

to optimally align a tree of depth ¢ — 1 and is upper-bounded by O(n?'~"+1). The result is
interesting since (i) to our knowledge, this is the first PTAS in the field of computational

biology and (ii) it shows a great contrast with the MAX SNP-hardness of generalized tree

alignment.

4.1.3 Applications in the Study of Molecular Evolution

Our algorithms may also be practical for the analysis of molecular evolution in the following
sense: they can help set up a good initial alignment for the iterative method of Sankoff,
Cedergren and Lapalme [65]. The combined algorithm will always produce an alignment

that has a cost not greater than 1+ ¢ times the optimum and is (we hope) satisfactory to

geneticists.

To illustrate the iterative method in [65], consider the evolutionary tree in Figure 4.1,
which contains 9 given species on its 9 leaves. To construct a loaded tree, we first assign the

given sequences to each internal node (arbitrarily). Then we divide the evolutionary tree

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 40

into 7 3-components as shown in Figure 4.1, where a 3-component is a star with a center
and at most 3 terminals. Local optimization is done for every 3-component as follows.
From the labels of the three terminals, we can compute a label of the center using dynarmic
programming to minimize the cost of the component [32, 63]. The new center label can
then be used to update the center label of an overlapping 3-component. The algorithm
converges since each local optimization reduces the cost of the tree by at least one. Thus, if
the process is repeated long enough, every 3-component will become optimal. However, this
does not necessarily result in an optimal loaded tree. Nonetheless, it seems the algorithm

can produce a reasonably good loaded tree after 5 iterations [65).

4.1.4 Applications in Steiner Trees

Tree alignment can be viewed as a special case of the problem of Steiner trees under a given
topology [42, 64). It is known that a Steiner minimal tree can be computed in polynomial
time for 2 given topology in the rectilinear (i.e., Manhattan) space [22, 64]. This implies
that the variant of tree alignment where the space is " and the distance is the Hamming
distance is solvable in polynomial time. The same result trivially holds if the space is a
graph. (Here the graph is part of the input and the running time is polynomial in the size
of the graph.) For the Euclidean plane, the Steiner minimal tree can be found in O(n?)
time if the given topology is a Steiner topology [42, 43]. For arbitrary topology, no exact

algorithm is known; an iterative dynamic programming algorithm is given in [64].

The construction of our approximation algorithms in fact works for Steiner trees under a
given topology in any metric space. As a corollary, we obtain a PTAS for the problem in the
Euclidean plane for arbitrary topology. It is worth mentioning that, when the topology is not

given, the best we know is that planar Steiner minimal trees can be approximated with ratio

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 41

\—% ~ ¢, for some € > 0 [16]. At the moment, it is open whether the planar Steiner problem
has a PTAS. It has been observed that Karp's probabilistic e-approzimation scheme for the
traveling salesman problem can be modified to work for the planar Steiner problem [42, 49].

We note in passing that the Steiner problem on graphs is MAX SNP-hard [8].

The ratio 2 approximation algorithm and the PTAS are presented in Sections 4.2

and 4.3, respectively.

4.2 An Approximation Algorithm with Ratio 2

As mentioned earlier, our basic idea is to construct a loaded tree by elaborately lifting the
given sequences from the leaves to their ancestors. Call a loaded tree a lifted tree if the
label of each internal node equals the label of some child of the node. Below, we first show

that there is a lifted tree of smal' cost and then compute the minimum-cost Lifted tree in

O(k® + k*n?) time.

Let X = {s1,..., 8k} be a set of sequences and T an evolutionary tree for X (i.e., the
leaves of T are uniquely labeled with the sequences s;,...,s;). The degree of a node is
its number of children. The degree of a tree is the maximum degree of its nodes. As in
all earlier work in this area, we only consider trees with degrees bounded by some small
constant d. To simplify the presentation, we will further assume that each internal node in
T has exactly d children in our discussion. The extension of our results to the general case

is fairly straightforward.

For a tree T, let 7(T') be the root of T', L(T) the set of the leaves of T, and I(T') the
set of the internal nodes in 7. The parent of a node v is represented as p(v). For each

node v in tree T, T, denotes the subtree of T rooted at v. A leaf that is a descendant of

1. AFPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 42

node v is called a descendant leaf of v. Define S(v) to be the set of sequence labels of all
descendant leaves of v. Note that the label of a leaf never changes during an alignment
process. Define the cost of an.edge (u,v) as the edit distance between the sequence labels
of nodes u and v. The cost ¢(T') of the tree T is the sum of the cost of every edge in T Let
T™in denote an optimal loaded tree for T. For each node v in T™", the closest descendant
leaf of v, denoted I(v), is a descendant leaf of v such that the path from v to {(v) is the
shortest (Z.e., with the minimum-cost) among all descendant leaves of v. For convenience,
let sl(v) denote sequence label of I(v). Define a loaded tree T as fo]lc;ws: for each internal
node v in T, assign the sequence sl(v) to v. Clearly, the tree T can be made a lifted tree if
we break ties carefully while assigning I(v). Throughout the analysis, we assume that the

score scheme is a distance metric. (See Section 2.1.)
Lemma 4.1 ¢(T") < 2(1 — })e(T™"), where k is the number of leaves in T.

Proof. Consider a counter-clockwise walk along the outside of the optimal tree T™in
that travels twice, once in each direction, through all the edges except those in the two
boundary (leftmost and rightmost) paths. Since the order of the children does not matter,
we can choose the two boundary paths such that their cost is the greatest. Therefore, the
total cost i this walk is ¢(T¥) < 2(1 — })¢(T™"), where k is the number of leaves in 7.
The walk can be thought of as a path that links all the leaves into a chain, from left to
right. Take an arbitrary node v and consider the subtree T/ rooted at v. Let v, .. U
be the children of ». These children induce d subtrees T,’,T"", ceey T,j;"'". For a node v, denote
the rightmost and leftmost descendent leaves of v by f(v) and g(v), respectively. For each

i=1,...,d -1, to connect the two leaves f(v;) and g(v;1,), the walk uses a path

Pyit f(vi) = vi = v — vigy — g(vip1),

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 43

(b)
Figure 4.2: (a) The path P,; in the walk. (b) The path P!

(See Figure 4.2(a).) It is easy to see that

d-1

Z ZC(PU ;)= C(Tf) <21 - k) (Tmm)

veT i=1

Define d — 1 new paths F; : I(v) — v — v; — I(v;), where 1 < i < d and I(v;) # I(v).
(See Figure 4.2(b).) Let P;(,” and P;E?) denote the subpaths of P;: I(v) — v and
v — v; — I{v;), respectively. P,E'l‘-) and Pﬁ-) denote the subpaths of P, ;: f(v;) — v; — 0

and v — ;41 — g(viq1), Tespectively. By the definition of I(v), we have:
o(Poi) < e(P), o(PP) < (PR,
and
() ey, (B < o(PELy).

U%—

Thus,

e(Py;) € e(Pys), and (P} ;) < o(Pyizy).

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 44

Therefore,
d-1
o P <Y oP). (4.1)
1gi<d i=1
Hve)#l(v)

Now consider the tree T¥. The total cost of the edges between v and its d children is
d .
> dist(sl(v), sl(v)).
=1
By the triangle inequality, we have dist(sl(v),sl(2;)) < e(P, ;). It follows from the above

that

d
37 3 dist(sl(v), sl(v)))

veT i=1

XX dry

veT 1<i<d
H(u)#(v)
d—1

< D0 S e(P)

veT =1

Therefore, ¢(T") < 2(1 + Be(™™=). n

(T

1A

Since T* is actually a lifted tree, we can immediately conclude:

Corollary 4.2 There ezists a lifted tree with cost at most 2¢(1 — BYT™n, where k is the

number of leaves in T.

Computing T" is not easy since it is derived from the optimal tree T™", However, in
the following we describe a simple algorithm that constructs an optimal lifted tree T, i.e.,

one that has the smallest cost among all the lifted trees. From the above corollary,
oT") < oTY) < 2¢(1 - %)Tm*".

The idea behind the algorithm is to use dynamic programming.

1. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 45

Dlv,s] s

v
(73] Uy Vs 51 8§ 83

D['Ul,Sl] D[Ug, S,‘] D[U3,53]
(a) (b)

Figure 4.3: (a) The subtree T,. (b) The lifted subtree, where s; € S(v1), i € §(v2), and
83 € S('Ua).

For each v € T, i = 1,...,k such that & € 5(v), let Dfv,s;] denote the cost of an
optimal lifted tree for T, with v being assigned the sequence s;. It is possible to compute
Dlv, s;] recursively. For each leaf v, we define Div,s;] = 0 if the label of v is ;. Let v be
an internal node, and vy,..., vy its children. Suppose that s; € 5(vp), where 1 < p < d.
Clearly p is unique. Then D[v,s;] can be computed as follows: For each ¢ = 1,...,d and
¢ # p, find a j, such that s;, € S(v,) and Dlvy, 85,] + dist(si, s;,) is minimized. Then

Div, 8i] = Dlvp, s;] + Z (Dlvg, s5,) + dist(s, s5,))

1sq<d
q¥p

(See Figure 4.3.) The full algorithm, is described in Figure 4.4.

Let n be the maximum length of any sequence in X. Line 3 of Algorithm 4.1 takes
O(k?n®) time. Each execution of line 7 takes O(k) time. Since line 7 is executed O(k?)
times, Algorithm 4.1 requires O(k® 4 k?n?) time in the worst case. Hence, we have the

following theorem.

Theorem 4.3 Algorithm 4.1 outpuis a loaded tree with cost at most 2(1 - He(T™") in

time O(k® + kznij.

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 46

. begin
. for each pair (i,7),1 <i< j <k, do
compute dist(s;, s;).
. for each level of T, with the bottom level first, do
for each node v at the level do

fori=1tok

if s; € 5(v) then compute Dfv, 8)-

- Select ar s € X such that D[r(T), s] is minimized.
. Compute the lifted tree with cost D[r(T), s] by back-tracing.
0. end.

_Cﬂ»h?u’!t\:)l—l

Figure 4.4: Algorithm 4.1

4.3 A Polynomial-Time Approximation Scheme

We extend Algorithm 4.1 to a PTAS by considering constant-size components of the tree
and augmenting the “lifting” technique with local optimization which is also used in the

iterative improvement method in Section 4.1.3. An overview of the approach is given below.

Recall that, if we label each node v in the tree T with the sequence si(v), \;ve obtain
a loaded tree T' with cost at most twice the cost of the optimal loaded tree T™", Let
t > 0 be an integer. For each v € T, define the depth-t component T, as the subtree of
T, conta.ining' only the top ¢ + 1 levels. Clearly, T,: has at most d* leaves and at most
(d*-1)/(d-1) internal nodes. For a subtree T,,,, v # r(T), we can obtain a loaded subtree
T, : by assigning to each node u € L(T,,) U {v} the sequence assigned to u in the tree T,
which is s/(u), and constructing the sequences for the other nodes in 7T, such that the
cost of the subtree is minimized by dynamic programming. Obviously, c(Tys) < (T),
where T} , is the depth-t subtree of T' rooted at v. This suggests that we should partition
the tree T into depth-f components, and construct an optimal loaded subtree T, . for each

component T, ;.

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 47

We partition T as follows. Let set V; contain all nodes at level i of 7. (The root is
at level 0.) We can partition the internal nodes (excluding the root) of T into ¢ groups

Go, ..., G4 .1, where

G = U V.

=i(mod t)
Foreachi=0,...,t—1, let T:(T).i denote the loaded subtree obtained by assigning to each
node v € L{T,(1y;) the sequence sl(v) and each other node in To(7),: 2 sequence so that
the cost of T:(T)',. is minimized. Clearly, for each ¢, 0 < i < ¢t — 1, the union of subtrees
Uveg; Ty U T:(T),i forms a loaded tree, denoted as T7. We will first show that the total cost
of all these loaded subtrees is bounded by ¢ + 3 times the cost of the optimal loaded tree,

ie.,

{-1 t—1
2T = 3 Tl + Y, Thpy) < (14 3)e(T™), (4.2)
i=0 vEr(T) i=0

Therefore, there exists a loaded tree T/ with cost e(T]) < (14 3)e(T™im),

Again, computing T} is not easy since it relies on the optimal tree 7™, Call a loaded
tree a depth-t component tree with respect to some fixed G if every node v € G; is assigned
a sequence which labels some node in L(T,,). In other words, the labels of the nodes in G;
are all lifted from the leaves. Since in the tree T every node v € G; is assigned the sequence
sl(v), T} is a depth-t component tree with respect to G;. Hence, we can design a dynamic
programming algorithm to identify the optimal depth-t component tree with respect to G,

for each i, and select the best tree as our output which costs at most (14 3)e(Tmim).

Now, let us first prove the inequality (4.2). For each node v, let p(v) be the length of
the path from v to {(v), h(v) the total length of the edges from v to its children, and s(v)
be the sequence label assigned to v, in the optimal tree T™". In particular, if v is a leaf,

then p(v) = 0 and A(v) = 0. The following lemma holds.

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 48

sl(v)

S(Ul) S('L‘g)

sl(ul) .sl(u;») Sl('h'.3) sl(u4)

n

Wy,

Fan Y

3

]

o

[S
& =——
& -———
[.
“

Py

——

=4

-y

p—

: sl(up) sl(ua)
(a) (b)
Figure 4.5: (2) The subtree T"(v,2). (b) The subtree TMin,

Lemma 4.4 Let v # r(T) be a node in T and have children v,,...,vq, then

d
(L)< D h(w) + X p(w) + hv) + 3 p(w). (4.3)

w€(Tu,e) v€L(Tu) i=1

Proof. Let T, be the loaded subtree obtained by labeling each node u € L(T,) U
{v} with the sequence sl(u) and each other node u in T, with the sequence s(u). (See

Figure 4.5.) By the triangle inequality, we have for each node u € L(T,+),

dist(s(p(w)), sl(u)) < dist(s(p(w)), o(x)) + p(x).

Thus,

d
Ty S D _dist(sl(v),s(w)) + D, h(w) + Y plu). (4.4)

i=1 UEI(To,t)—{'U} UEL{Tv,t)
An explanation of this inequality is given in Figure 4.5(b). Again, by the triangle inequality,

dist(sl(v), s(v;)) < dist(s(w), s(v)} + p(v).

Moreover,

d
Zdist(s(u;),s(v)) = h(v).

i=1

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 49

Hence, we can conclude

ATi)S Y h(w) + Y plu) + de(v).

uEl(Ty,e) u€L(Ty)

Since p(v) < dist(s(v;), s(v)) + p(v;) for each i = 1,...,d,

d
(T S 2 k(@ + Y pu) + 3 dist(s(n), s(v)) + plw)

v€i{Tv 1) uelL(T,) i=1
d
< X Bu)+ X p(u) +hv) + 3 p(w).
uel(Tu.t) wEL(Ty) =1

Since the cost of T}, is minimized, we have o(Ty) <e(Ty,). W

Note that, if the node v is near the bottom level of T, the real depth ¢’ of T, ; could be

less than ¢. In this case, the above inequality (4.3) becomes

d

(The) < 3 hu)+ 3 p(u) +hv) +3p(w). (4.5)

u€lT,) u€L(T, 1) i=1

Similarly, let T(7. denote the loaded subtree obtained by assigning to each node
v € L(Tyr);:) the sequence s!(v) and each other node v the sequence s{v). Note that,

now the root r(T') is labeled with s(r(T)) instead of s/(r(T)) in the subtree +(7).i+ Then

inequality (4.4) becomes

(Tyr)) < e(Tjir)) < I(TZ)h(“)+ L(;)P(u)- (4.6)
v€l{Tyry v€L{Tv(T),i

Sum up inequalities (4.3) or (4.5) for all v € T, and inequality (4.6)fori=0,...,1~1

¥

we have

t-1
> T + 2 e(Tin) S+)Y h(v) +2 3 p(0). (4.7)
v#Er(T) i=0 veT vET

The coefficients in the above inequality are established from the following observations:

1. AFPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 50

1. The term h(v) in inequality (4.3) is counted once for every v.

2. The term 3,¢(7,,) A(%) in inequalities (4.3), (4.5}, and (4.6) totally contributes at

most ¢ h(v)’s for each v,

3. For each v in the top ¢ levels of T, there is a p(v) contribution from (4.6) but at most
a contribution of 1 from inequality (4.3) or (4.5). For each v below level ¢, there is no
p(v) contribution from inequality (4.6) but at most two p(v)’s from inequality (4.3)

or (4.5). Therefore, each v contributes at most two p(v)’s.

Now, we want to upper-bound the right-hand side of inequality (4.7) in terms of
¢(T™"), Obviously,
3" h(v) = o(T™"), (4.8)
veT
To establish the relation between 3,7 p(v) and ¢(T™"), we need the following lemma,

which is a variation of Lemma 3.2 in [18].

Lemma 4.5 Let U be a tree such that every internal node has at least two children. There
ezisls a one-to-one mapping e from the internal nodes of U to the leaves such that for each
internal node v (i) e(v) is a descendant of v and (ii) the paths from internal nodes v to e(v)

are edge-disjoint.

Proof. We prove it by induction on the depth of the tree. First, we strengthen the lemma
by adding (iii) there is another leaf ¢'(r(I/)) such that the path from (U} to e'(r(U)) is
edge-disjoint from the paths in (ii). The lemma is trivial for trees with depth 1. Suppose
that (i)-(iii) hold for any tree with depth i > 0. Consider a tree U with depth i 4+ 1. Let

the root of U have d > 2 children: v,,...,v;. To construct the mapping e for the internal

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 51

nodes in U/, we preserve the mappings for the subtrees Uyyyeory Uyy, and assign €'{vy) as

e(r(U)) and €'(vy) as e'(r(U)). B

Let e be such a mapping for tree T'. For each node v, let 7(v) denote the length of the

path from v to e(v) in T™™. (r(v)=0ifvisa leaf.) It follows from the above lemma that

3 r(v) € o(T™"),
veT
By the definition of p(v),
> p(v) £ Y T(v) < (T, (4.9)
veT veT

The above inequality is crucial for our result. The inequalities (4.7), (4.8), and (4.9) imme-

diately imply the following lemma:

Lemma 4.6

1=

—

t—1
Ti=) dTy)+ 3 oTipy) < (t+3)e(T™").
o v#Er(T) i=0

t

By Lemma 4.6, there exists an 7, 0 < ¢ < ¢ — 1, such that
teo(T)) < (t+ 3)e(T™n),

Thus, the following lemma holds.

Lemma 4.7 There ezists a depth-t component tree with cost at most (1 + 3)e(T™").

Although T! approximates T™" with the desired bound, the trouble is again that it
is not easy to compute T;. Below, we describe an algorithm to construct a minimum-cost

depth-t component tree T, i.e., the cost of T is the smallest among all the depth-? component

1. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 52

trees (with respect to some G;). The basic idea is to combine dynamic programming with

local optimization.

Consider a T, ;. Let u be a child of v and L(Tyt-1) = {w1,...,wm} be the set of
leaves in T, ;1. (Note that the component T, may not be full.) For each i = 1,...,m,
let 5; € S(w;) be a sequence. Then for each sequence s, ‘f’(v,t,u,s,sl, +++y8m) denotes the
loaded subtree obtained from T}, ;_; U {(v,u)} by labeling v with sequence s and each node
w; with sequence s;, and constructing a sequence for each other node in Ty,t-1 so that the

cost of T'(v,t,,38,81,...,8n) is minimized.

The top subtree Tp(y;, 0 < ¢ < ¢t — 1, is treated similarly and the resulting loaded

subtree is denoted T(r(T), 1,%,8,81,. .y 8).

Let v be a node atlevel i of T, and s € §(v). Define T(v, 5) as the minimum-cost loaded
subtree obtained from T}, such that the node v is labeled with the sequence s and the loaded
subtree itself forms a depth-¢ component tree with respect to G, where j = i(mod t). We
use D[v,s] to denote the cost of T'(v,s). Similar to the previous section, Dlv, s] can be

computed recursively from bottom to top.

If v is a leaf, D[v,s(v)] = 0. Let v be an internal node and v, ..., ug the children of
v. Foreach i =1,...,d, let L{Ty, s—1} = {w;i1,..., Wi m}. Suppose that s € S(wp,q), where
1< p<dand 1< g<mare unique. Then D[v,s] can be computed as follows: For each
i=1,...,dand each j = 1,...,m, find an s; ; such that s;; € S(w;;)if i £ por j # ¢, and

3i,; = s otherwise, and moreover

eo(T(v,t, %, 8, 500, 1 8im)) + Y Dlwy 5, 8:,5]
i=1
is minimized. Then

d
D[U!S] = ZC(T(U,t,ui,S,S{|1,...,Si.m)) +

i=1

¢ APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 53

. begin
. for each level, with the bottom level first, do
for each node v at the level do

for each s € §(v) do

compute D[v, s].

.fori=0tot-1do
compute D[z].
. Select an 4 to minimize D[i].

. Compute the loaded tree 7' from D[i] by back-tracing,
0. end.

9o 0

Figure 4.6: Algorithm 4.2

d m

ZZ D[w,-_j,s,-,j].

=1 j=1

For each ¢ = 0,...,¢ ~ 1, let D[] be the cost of the optimal depth-t component tree
with all the roots of all their depth-t components in G;. Dfi] can be computed from the top

subtree Ty(); and the values Dfv, s] of the nodes at level i of T in a way similar to above.

Clearly, min{D[{]|0 < i < t = 1} = ¢(T).

The actual algorithm for computing 7" is given in Figure 4.6. Suppose that computing
each c(’f"(v,t,u,s,s;, vony8m)) OT c(T(r(T),i,u,s,sl, +v.»8m)) (€., local optimization) re-
quires at most M(d,t~1,n) time. Clearly M(d,1—1, n)is upper-bounded by O(n#' ™' +1) (63].
Thus an exccution of line 5 takes &%~ M(d,t 1,n) time. Line 5 is repeated a total of
O(k?) times. Line 7 is executed ¢ times, each taking at most KT (d 2,n) time,
Therefore, the time complexity of Algorithm 4.2 is O(k% ' +2M(d, t — 1, n)). (In fact, it is

easy to show that the algorithm runs in time O((k/d")* ™ *2M(d,1 - 1,n)).)

Theorem 4.8 For any t, Algorithm 4.2 has a performance ratio Ry < 1+ % and runs in

time O(k%'~ *2M(d,t — 1,n)).

1. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 54

Corollary 4.9 Tree alignment has @ PTAS when the given evolutionary tree is of bounded

degree.

4.4 Preliminary Experiment

Some preliminary experimenting has been done to test Algorithm 4.1 with real data, using
an interactive sequence alignment tool (SAT) developed by X. Chen {11]. Algorithm 4.1
is implemented in the C programming language as a function of SAT. A set of real data is
taken from [65]. The given evolutionary tree is shown in Figure 4.1, where there are nine
leaves. Each leaf is assigned a sequence. The nine RNA sequences for the leaves are given

in Figure 4.4.

For a comparison, we use the same score scheme as in [65], i.e., u(4,C) = 1.75,
#(A,G) = 1.0, u(A, U) = 1.75, p(C,G) = 1.75, u(C,U) = 1.0, u(G, U) = 1.75, and 2.25 for
insertion/deletion. In the computation, we select a root between the two dotted internal
nodes as shown .in Figure 4.8. Algorithm 4.1 lifts the leaves to the internal nodes and ends
up with 2 lifted tree as shown in Figure 4.8. The total cost of the lifted tree is 382.25. Then
the lifted tree is used as an initial assignment for the iterative method developed by Sankoff
et al. [65). Using the subroutine for optimally aligning a 3-sequence component provided
by SAT, we do a local optimization for every internal node as described in Section 4.1. The
value of the tree is reduced to 305.25 after one iteration. The value is further reduced to
304.25 after the second iteration and it remains the same after the third iteration. This
comes fairly close to 295.50, which is the best value obtained in [65]. The corresponding

multiple sequence alignment is shown in Figure 4.9.

At present, we are not able to test Algorithm 4.2 for ¢ > 3, since computing an optimal

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT

E.coli
UGCCUGGCGE CCGUAGCGCG
GCCGUAGCGC CGAUGGUAGU

P.fluorescens
UGUUCUUUGA CGAGUAGUAG
CGAUGCAUCG CCGAUGGUAG

5.carlbergensis
GGUUGCGGCC AUACCAUCUA
GUAAGAGCCU GACCGAGUAG

Human
GUCUACGGCC AUACCACCCU
GUCGGGCCUG GUUAGUACUT

Xenopus
GCCUACGGCC ACACCACCCU
GUCGGGCCUG GUUAGUACUU

Chlorella
AUGCUACGUU CAUACACCAC
GUUGGGCUCG ACUAGUACUC

Chichen
GCCUACGGCC AUCCCACCCC
GUCGGGCCUG GUUAGUACUU

B.stearothermophilus
CCUAGUGACA AUAGCGAGGA
CUCCCAGCGC CGAUGGUAGU

T.utilis
GGUUGCGGCC AUAUCUAGCA
CUAAGAGCCU GAUCGAGUAG

GUGGUCCCAC
GUGGGGUCUC

CAUUGGAACA
UGUGGGGUUU

GAAAGCACCG
UGUAGUGGGU

GAACGCGCCC
GGAUGGGAGA

GAAAGUGCCC
GGAUGGGAGA

GAAAGCACCC
GGUUGGGAGG

UGUAACGCCC
GGAUGGGAGA

GAGAAACACC
UGGGGCCAGC

GAAAGCACCG

UGUAGUGGGY GACCAUACGC GAAACUCAGG UGCUGCAAUCU

CUGACCCCAU
CCCAUGCGAG

CCUGAUCCCA
CCCCAUGUCA

Uycucceuce
GACCAUACGC

GAUCUCGUCU
CCGCCUGGGA

GAUCUCGUCU
CCGCCUGEGA

GAUCCCAUCA
AUUACCUGAG

GAUCUCGUCU
CCUCCUGGGA

CGUCUCCAUC
GCCCCUGCAA

uycuccauce

GCCGAACUCA
AGUAGGGAAC

UCCCGAACUC
AGAUCUCGAC

GAUAACCUGU

GAAACCUAGG UGCUGCAAUCU

GAUCUCGGAA
AUACCGGGUG

GAUCUCGGAA
AUACCAGGUG

GAACUCGGAA
UGGGAACCCC

GAUCUCGGAA
AUACCGGGUG

CCGAACACGA
GAGUAGGUUG

GAAGUGAAAC
UGCCAGGCAU

AGAGGUGAAA
CAUAGAGCAU

AGUUAAGCUG

GCUAAGCAGG
CUGUAGGCUU

GCCAAGCAGG
UCGUAGGCUU

GUUAAACGUG
GACGUAGUGU

GCUAAGCAGG
CUGUAGGCUU

AGGUUAAGCU
UCGCUAGGC

GAUCAACUGU AGUUAAGCUG

Figure 4.7: The nine sequences.

55

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT

T.utilis S.carlbergenais

Xenopus

P.fluorescents T.utilis

P-%\ents T.utilis Hiuman /
Human
B.stearothermophilus

E.coli

Human

Human

Chicken

B.stearothermophilus Chlorela

Figure 4.8: The lifted tree obtained by Algorithm 4.1,

0: UGCC*UGGCGGC*CGUA*GC#**GC*xG*GUGGUCCCACCUGACCCCAUGCCGA*ACUCAGAAGUGAAAC*GC*
1: UGUU*CUUUGACGAGUA*GUA*GC*A*UUGG*AACACCUGAUCCCAUCCCGA*ACUCAGAGGUGAAAC*GA*
2: *G*G*UUGCGGCH*CAUA*CCxA+UCUA*GA*A*AGCACCGUUCUCCGU*CCGAUAACCUGUAGUUAAGC*UG*
3: *G*U*CUACGGC*CAUA*CC*A*CC*CUGA*A*CGCGCCCGAUCUCGU*CUGA*UCUCGGAAGCUAAGCAGGH
4: *G*C*CUACGGC*CACA*CC*A*CC*CUGA*.\ *AGUGCCCGAUCUCGU*CUGA*UCUCGGAAGCCAAGCAGG*
B: *A*UGCUACGUU*CAUA**C*xA*CCHACGA*A*AGCACCCGAUCCCAU*CAGA*ACUCGGAAGUUAAACGUG*
6 *GxC*CUACGGC*CAUC*CC*ACCC*CUGU*A*A*CGCCCGAUCUCGU*CUGA*UCUCGGAAGCUAAGCAGG*
T: *C*C+UAGUGAC*AAUA*GCGA*GG*A*GAGA*AACACCCIUCUCCAUCCCGA*ACACGAAGGUUAAGCHUCU
8: *G*G*UUGCGGC*CAUAUCU*A*GC*A*GA*A*AGCACCGUUCUCCGU*CCGAUCAACUGUAGUUAAGCHUGH

0: CGUAGCGCC*GAU*G*GUAGUGU*G*GGGU*CU*C*xCCCAUGHC*GAGAGUAGGGAACUGCCAG*GCAU
1: UGCAUCGCCHGAU*G*GUAGUGU*G*GGGUUUC*CCCAUGUC*AAGA*UCUCG*ACCA*UAGAGCAU
2: GUAAGAGCCUGACCGAGUAGUGUAGUGGGU*GA*C*CAUACG*C*GAAACCUAGGUGCUGHCAA*UCHU
3: GUCGG*GCCUGGU*UAGUACUUGGAUGGGA*GA*C+CGCCUG*G*GAAUACCGGGUGCUG*UAG*GCUU
4: GUCGG*GCCUGGU*UAGUACUUGGAUGGGA*GA*C*CGCCUGHG*GAAUACCAGGUGUCG*UAG*GCUU
5: GUUGG*GCUCGAC*UAGUACUGGGUUGGGAGGA*U*UACCUGAGUGGGAACC**CCGACG*UAG*UG*U
6: GUCGG*GCCUGGU+UAGUACUUGGAUGGGA*GA*C*CUCCUGHG*GAAUACCGGGUGCUG*UAGHGCUT
7T: CCCAGCGCC*GAU*G*GUAGU*U*G*GGGC*CAGCGCCCCUG*C+AAGAGUAGGUUGUCGCUAGHGC**
8: CUAAGAGCCUGAUCGAGUAGUGUAGUGGGU*GA*C*CAUACG*C*GAAACUCAGGUGCUG*CAA*UCKU

56

Figure 4.9: The multiple sequence alignment obtained by our algorithm. The numbers
0-8 stand for F.coli, P.fluorescens, S.carlbergensis, Human, Xenopus, Chlorella, Chichen,

B.stearothermophilnus, and T.utilis, respectively.

4. APPROXIMATION ALGORITHMS FOR TREE ALIGNMENT 57

tree alignment of five 110-letter sequences requires too much space and time.

4.5 Remarks

It is unknown whether Corollary 4.9 holds for evolutionary trees with unbounded degrees.
Interestingly, we have shown that for a score scheme that does not satisfy the triangle
inequality, constructing an optimal loaded tree is MAX SNP-hard even when the given

evolutionary tree is a star.

Also, the high complexity of Algorithm 4.2 excludes even moderate ¢ from consideration

in practice. It would be of great interest to improve the efficiency of the algorithm.

Chapter 5

A New Measure for Comparing

Labeled Trees

5.1 Introduction

In many fields such as RNA secondary structures comparison, syntactic pattern recognition,
image clustering, genetics, and chemical structure analysis, one often faces the problem of
finding the similarity of two labeled trees [54, 55, 57, 66, 71, 73, 74, 77]. As we have mentioned
in Chapter 2, the comparison of ordered labeled trees is very useful in the study of RNA
secondary structures as an RNA secondary structure can be conveniently expressed as an
ordered labeled tree [55, 71, 72, 86]. On the other hand, the comparison of unordered labeled
trees has applications to the morphological problems arising in genetics (e.g., determining

genetic diseases based on ancestry tree patterns) and other fields [73, 74, 77).

As in the case of sequence comparison, there are many ways to measure the similarity

between two trees. For instance, one could use the largest common sub-tree, the smallest

58

5. A NEW MEASURE FOR COMPARING LABELED TREES 59

common super-iree, tree edit distance, and the transferable ratio between two trees to de-
scribe the degree of similarity [51, 55, 66, 72, 76, 88]. Although edit distance and transferable
ratio are both sensible measures of the distance between RNA secondary structures [55, 66],
each of them only represents a certain approximation of the true functional similarity. Thus,

more realistic and feasible measures would always be of interest.

The notion of alignment of trees was introduced in Section 2.2 as a new measure of
similarity of labeled trees. Here we present an algorithm for computing the alignment
distance between ordered trees. The time complexity of this algorithm is O(|Ty] - |T2| -
(deg(T1) + deg(T2))?), where |T;| and deg(T;) are the size and degree of T, respectively.
(Again, the degree of a tree is the maximum number of children of any node in the tree.)
We also show that the alignment distance between two unordered trees can be computed
in polynomial time if the trees have bounded degrees and becomes NP-hard if one of the
trees is allowed to have an arbitrary degree. The following summarizes the main differences

between alignment of trees and tree edit.

¢ Alignment of trees vs tree edit.

It is well known that edit and alignment are two equivalent notions for sequences. In
particular, for any two sequences s; and sq, the edit distance between s, and s; equals their
alignment distance. However, edit and alignment turn out to be very different for trees.

The following are some interesting comparisons between alignment of trees and tree edit.

1. The edit distance and alignment distance between two trees can be different. For
example, assume that each edit operation (i.e., insertion, deletion, or replacement)
costs 1 and consequently each pair of distinct letters has a score 1, Consider the two

ordered trees shown in Figure 2.6. To optimally edit T} into T3, we simply delete

5. A NEW MEASURE FOR COMPARING LABELED TREES 60

e from T, and insert f into the new tree. Thus, the edit distance between T and
T; is 2. The optimal alignment of the two trees is unique and is shown in 2.6(c),
with a value 4. The difference between edit distance and alignment distance can be
made arbitrarily large by adding subtrees below nodes b, ¢, d in both trees. It is easy
to see that in gereral the edit distance is smaller than the alignment distance for
trees. This is because each alignment of trees actually corresponds to a restricted tree
edit in which all the insertion precede all the deletions. Note that, the order of edit
operations is not important for sequences. Also, it seems that alignment charges more
for the structural dissimilarity at the top levels of the trees than at the lower levels,

whereas edit treats all the levels the same.

2. The best algorithm for computing the edit distance between ordered trees runs in
time O(|Ty| - [T3] - min{depth(T}),leaves(T})} - min{depth(T3),leaves(73)}), where
depth(T;) and leaves(T}) are the depth and number of leaves of tree T}, i = 1,2 [86].
Clearly, deg(7;) < leaves(T;). In practice (e.g., RNA secondary structures), deg(T}) <«
leaves(T;) and deg(T;) < depth(T;). Hence, the result above shows that it iz easier
(faster) to align ordered trees than to edit. In particular, we can align trees with

bounded degrees in time O(|ZY] - |T3)).

3. The difference in time complexity is even bigger for unordered trees. As mentioned
earlier, unordered trees with bounded degrees can be aligned in polynomial time (in
fact, in time G(|T1] - |T2[)). On the other hand, editing unordered trees with bounded

degrees is NP-hard [87]. (In fact, it is MAX SNP-hard [88).)

4, The alignment of trees can be easily generalized to more than two trees as in the case of
sequences. This provides a way to compare several trees simultaneously. Although it

is also possible to compare several trees based on tree edit distance, as reported in [72],

5. A NEW MEASURE FOR COMPARING LABELED TREES 61

the method seems to be only applicable to situations where clustering is required (e.g.,

in the construction of a taxonomy tree).

In section 5.2, we present the algorithm for aligning ordered trees. Section 5.3 contains
some results on unordered trees. We briefly discuss multiple alignment of trees with SP-

score in section 5.4,

5.2 An Efficient Algorithm for Aligning Ordered Trees

We need some definitions. The notion of alignment can be easily extended to ordered
forests. (Each ordered forest is a sequence of ordered trees.) The only change is that it is
now possible to insert a node (as the root) to join a consecutive subsequence of trees in a
forest. Denote the alignment distance between forests F} and F; as D(Fy, F;). Let 8 denote
the empty tree, A denote space, and u(a,b) denote the score of the opposing letters a and b.
The nodes in an ordered tree of size n are numbered 1 through n according to the postorder,
Let T; and T3 be two fixed ordered labeled trees throughout this section. Denote the label

of node j in tree T; as [;[j] and the subtree of T; rooted at node j as T}[j).

In the following, let ¢ be a node of T} and j a node of T;. Suppose that the degrees of
and j are m; and n;, respectively. Denote the children of i as 7;,...,,,, and the children of
J as j1,...;Jn,. Forany s,t,1<s<t<my, let Fifiy,) represent the forest consisting of
the subtrees Ti{is],..., Tu[i:]}. For convenience, Fi[iy,im,] is also denoted Fy[i]. Note that

R[{]) # Rli, 1. F3ds, j:) and F{j] are defined similarly.

5. A NEW MEASURE FOR COMPARING LABELED TREES 62

5.2.1 Properties of the Alignment Distance
The following lemmas below form the basis of our algorithm. The first lemma is trivial.

Lemma 5.1 D(8,8) = 0;

D(Fi[i],9) = E D(Tili],0); D(Tufi], 0) = D(F[i], 8) + p(hle], A);
k=1

D6, Fifi]) = ; DOTil); D8, Toli]) = DB, Fal)) + (> ols).
=]

Lemma 5.2
D(8, To[5]) + miny ¢r<n, { D(T1[i], Ta-]) — D(8, Taljr])}
D(Th[i), Tolil) = min y D(Ty[i], 8) + miny<rem, { D(Ti[i+], Tols]) — D(Ti[i-],0)}

D(R[E], B[5]) + p(h[], L[5])

Proof: Consider an optimal alignment (tree) A of Ti[i] and T3[j]. There are four cases:
(1) (4[d], L2[4]) is a label in A, (2) ({1[3], A) and (11[k], L2[4]) are labels in A for some &, (3)
(L[2], L2[K]) and (A, lo[5]) are labels in A for some &, (4) ({3[4], A) and (A, ,{5[7]) are labels in
A. We actually need not consider Case 4 since in that case we can delete the two nodes

and then add (!4[i],2[7]) as the new root, resulting in a better alignment.

Case 1. The root of A must be labeled as {I4[i], l5[]). Clearly, D(T[i], T2[4]) =

D(R[i], Fo[7]) + u(hld], Ll4])-

Case 2. The root of A must be labeled as (/;[],A). In this case & must be a node in

Ti[i;] for some 1 < r £ m;. Therefore,

D(Ti[i), Bls)) = DT3[il,0) + gnin {D(Tilie), Told]) — D(Tilin], 6}

5. A NEW MEASURE FOR COMPARING LABELED TREES 63

Case §. Similar to Case 2. O

Note, the above implies that D(F;[i], F3[7]) is required for computing D(Ti[i], T2[5]).

Lemma 5.3 Foranys,t such that 1 <s<m; and 1<t < nj,

4

D(F\fiv,is-1], Falir, 3i)) + D(Tais), 6)

D(F[i1, i), Falji, je-1]) + D0, T2 [54))

D(R{i,], Pl) = min O D(F\[iy, 4, 1), Folit, e-1]) + DT[], Talie))

#(A, L2 [5e]) 4+ mim ge <o { D(Fu[iy, i), Falr, de-1]) -+ D(Fu{ix, i), Fa[i:D)}

sl [i;]. A) + mimgi <o { D(F1[i1, is—1), Faljy, Je=1]) + D(F1{is), Falir, 3]}

Proof: Consider an optimal alignment (forest) A of Fifiy,i,] and F3[j;,7]). The root of

the rightmost tree in A is labeled by either ({1[i]. 55[7:]), (1[Es], M), or (A, &2[5:]).

Case I: the label is ({1[is], £5[7,]). In this case, the rightmost tree must be an optimal

alignment of Ti(#,] and T3[j;]. Therefore

D(Fili1, 1], Falfv, Ji]) = D(Filiv, is-1], Falir, jim1)) + D(Tu[ds], Talde])

Case 2: the label is ({1i5], A). In this case, thereisa k, 0 < k < t, such that Ty(i,) is
aligned with the subforest F3[j;_x+1,7:]. A key observation is here that we can assume the

subtree Tp[j;—k+1) is not split by the alignment with T1[%s). There are three subcases.

2.1 (k=0) Le., F3[jt—k+1, i) = 8. Therefore,

D(A[i1,1s), Falj1, 32]) = D(Fi[ir, is-1), Bald1, 5d)) + D(T1]is), 0)

22 (k=1) Le., Faljt-k+1,J¢) = T2[je). This is the same as in Case 1.

5. A NEW MEASURE FOR COMPARING LABELED TREES 64

1. begin

2. Input Fi[i,,1m,] and Foljt, gn,]

3. D(A[isyis-1], Falds, Je-1]) := 0.

4, for p:=stom;

5. D(Rlisyiphy Faljerjec)) i= D(Bi[issip-l, Falirjems]) + D(Tili], 6).
6. for ¢ :=1 to n;

7. D(Flisyism1)s Folje 5]} := D(Filisy is-1), Falje, Jo-1]) + D(8, Talic).
8. for p:=s to m;

9. forg:=1to n;

10. Compute D(F[is, ip), F2lj,4g)) as in Lemma 5.3.

11. Output {D(Filis, ip], Falis, Jo))s < p < miyt < ¢ < m5}.

12. end

Figure 5.1: Procedure 5.1: Computing {D(Fiis,tp), Falies Jo)ls < p < myyt € g < n;}
for fixed s and ¢.

2.3 (k > 2) This is the most general case. It is easy to see that

D(Fi[ir, 1), Falj1, 1)) = p(lh[is), /\)+]Iélliclét{D(F1[i1, is-1]s Foldv, jr-1])+ D(i), Faljk, ji])}-

Case & the label is (X, l5[5;]). Similar to Case 2. O

5.2.2 The Algorithm

It follows from the above discussion that, for each pair of subtrees 7i[i] and Ty[j], we
have to compute D(Fi[1], Fa[js, 7)) for all 1 < s < t < ny, and D(Fi[i,, 4], F[j]) for all
1< s <t < my Thatis, we need to align Fy[z] with each subforest of F3[j], and conversely

to align F3[j] with each subforest of F[i].

For each fixed s and ¢, where 1 < s < myand 1 <t < n;, the procedure in Fig-
ure 5.1 computes {D(Fifis,), Faljt,dol)ls < p € myt € ¢ < n;}, assuming that all
D(Fi[i], Faljp, J4]) have already been computed, where 1 < k <m;yand 1 < p< g < N4,

and all D(Fi[ip,ig], F2[x]) are known, where 1 < p< g<m;and 1 < k < n;.

5, A NEW MEASURE FOR COMPARING LABELED TREES 65

begin
Input T} and T%.
D(8,6):=0.
for i:= 1 to |1}
Initialize D(T1[4],8) and D(F;[i],#) as in Lemma 5.1.
for j:=1 to |Ty|
Initialize D(8, T(j]) and D(8, F3[j]) as in Lemma 5.1.
for i :=1 to |T|
for j :=1 to |T3
10. begin
11. for s:= 1 to m;
12. Call Procedure 5.1 on F[is,m,] and Fy[j].
13. for t:=1 to n;
14. Call Procedure 5.1 on Fi[i} and Fg[jg,injl.
15. Compute D(Ti[i], T2[]) as in Lemma 5.2.
16. end
17. Output: D(T1[|T1|],T2[[T2|]).
18. end

e o

©

Figure 5.2: Algorithm 5.1: Computing D(T3, 7).

We can obtain D(Fi[i], F2[fs,ji]) for all 1 < s € t £ n; by calling Procedure 5.1 n;
times, and D(Fi[is, i), Fo[j]) for all 1 € s < t € m; by calling Procedure 5.1 m; times. Our

algorithm to compute D(T3, T?) is given in Figure 5.2,

5.2.3 The Time Complexity

For an input Fi[is,im,] and F3[je, jn,], the running time of Procedure 5.1 is bounded by
O((mi—s)-(nj—t) (mi—s+ n; — t)) = O(m; - nj - (m; + n;)).

So, for each pair and j, Algorithm 5.1 spends O(m; - n; - (m; + n;)?) time. Therefore, the
time complexity of Algorithm 5.1 is
|Ty] | T2 |T1| {T2|

D2 00mini-(mitn;)?) < 305 O(m;nj - (deg(Th) + deg(T2))?)

i=1j=1 i=1j=1

5 A NEW MEASURE FOR COMPARING LABELED TREES 66

172 73|

< O((deg(Ti) + deg(T2))* - > mi- Y n;)
i=] j=1

< O(Th| - To| - (deg(T) + deg(T2))?).

If both T3 and T; have degrees bounded by some constant, the time complexity becomes
O(|T1| - |T2]). Note that the algorithm actually computes D(Thli), T2[4]), D(F[i], F2[5)),
D(Fi[isy ie), F3[5]) and D(Fi[d], Fa[js, 2]). With these data, an actual optimal alignment
can be easily found using a simple back-tracking technique. The complexity will remain the

samne.

Whether the above complexity can be improved is a rather hard question. A direct
approach would be to prove that the alignment distance between two forests satisfies ei-
ther quadrangle or inverse quadrangle inequality. If this is true, then one can reduce the
complexity for computing D(Fi[d], Fo[js, ji]) and D(Fi[is, i3], F3[4]), using a matrix search

technique. Unfortunately, we can show that neither of these inequalities hold.

5.3 The Alignment of Unordered Trees

Here we consider unordered labeled trees, i.e., the order among the siblings is insignificant.
It is known that computing the edit distance for unordered trees is MAX SNP-hard even
if both trees have bounded degrees [88]. We will show that aligning unordered trees with
bounded degrees can be done in polynomial time, and give a simple algorithm to align
unordered binary trees. Finally, we prove that aligning unordered trees becomes NP-hard

if one of the input trecs can have an arbitrary degree.

5 A NEW MEASURE FOR COMPARING LABELED TREES 67

1. begin

2. Input T, and T}

3. fori:= 110 |T}]

4. for j:=1to |Ty

5. D(R[d], Rl5]) == min{ p(h[iz], N) + D(Fi[ia), F2[4]) + D(Tili1], 8),
#(lilin}, A) + D(Fi[ia], Fo[5]) + D(Tu[i2), 6),
#(A, l2[72]) + D(F[i], Falsz]) + D(8, Tofj1)),
k(A Ll71]) + DA, Fa[#1]) + D(8, Ty[52)),
D(Ti[ir), T2[51]) + D(Th[iz], Tals2]),
D(Th[i1], Talde]) + D(Thiia], T2[41]) }-

6. D(T[e], T2lj)) »= min{ p(hild), L,[5)) + DFA[i), B3],
£(h(i], A) + D(T1[i1], To[4]) + D(T1[i2], 8),
p(h(i], A) + D(Th[ia], T2l5]) + D(Tu[i1], 8),
#(A, 2[5]) + D(Th[4), Tol71]) + D(8, T=[j2)),
#(A, o[5]) + D(T1[d], Tul72]) + D(6, To[51]) }.

7. Output D(Tl[ITIH,Tz[ITQH).

8. end

Figure 5.3: Algorithm 5.2: Aligning unordered binary trees.

5.3.1 Unordered Trees with Bounded Degrees

When the degrees are bounded, we can compute the alignment distance using a modified
version of Algorithm 5.1. Lemmas 5.1 and 5.2 still work. The only difference is in the compu-
tation of D(F1#], F[j]). We have to revise the recurrence relation in Lemma 5.3 as follows:

for each (forest) A C {Th[i1],..., Tifim,]} and each (forest) B C {Teli)s . Toda, 1},

minTl lin)€eATa[jqleB D(A - {Tl[ip]}? B - {T2[3q]}) + D(Th [iP]! TZ[jl?]),
D(A., B) = min minTl[,'pleA'BrgB D(A - {Tl[fp]}, B - B’) + D(Fl[?,p], B') + [J.(I*_[[lp],)\),

min4rc 4 Tyfigjes D(A — A, B — {Tu[5,]}) + D(A', Fa[4,]) + (M, Lol]).

Since m; and n; are bounded, D(4, B) can be computed in polynomial time. If T
and T3 are both in fact binary trees, the algorithm can be much simplified, as shown in

Figure 5.3. It is easy to see that the time complexity of this algorithm is O(|Th| - |T3|).

5. A NEW MEASURE FOR COMPARING LAPELED TREES 68

5.3.2 The Hardness of Aligning Unordered Trees

Theorem 5.4 Computing the alignment distance between ordered trees is NP-hard if one

of the trees can have an arbitrary degree.

Proof: The reduction is from exact cover by 3-sets (X3C), which is NP-hard [28].

INSTANCE: A set 4 = {a1,...a,} with m = 3¢ and a collection C of 3-element subsets
of A.

QUESTION: Does C contain an exact cover of A, i.e., a subcollection €’ C C such that

every element of A occurs in exactly one member of C'?

Let A = {a1,...,am}, and C = {c1,...ca}, where ¢; = {ciy,¢i2,¢:3} and ¢;; € 4,
be an instance of X3C. We construct two trees as in Figure 5.4. The alphabet of labels is
AU {r,s,p}, assuming letters r,s, p are not contained in A. Let p(a,b) = 0ifa = § or 2
if a,b # X and a # b, p(a,A) = 1, and p(A,b) = 1. The degree of T; is bounded by 3.
Each T ; is a subtree, which corresponds to the subset ¢; in C. The sequence of nodes with
label s in each T3 is called the upper segment and the three branches are called the lower

segment. The root of T; has n + m children.

Now, we want to show that C contains an exact cover of A if and only if the alignment
distance between 77 and T3 is (n—2)+5¢+6(n—¢). Observe that for each subtree T3 ;, either
its entire upper segment or its entire lower segment is “matched” with the corresponding
parts of T3 in an optimal alignment. Matching the upper segment saves a cost of 5, whereas
matching the lower segment saves a cost of 6. Thus, an optimal alignment matches as many

lower segments as possibie.

If C contains an exact cover of 4, say, C', then we can align the two trees such that

5.

A NEW MEASURE FOR COMPARING LABELED TREES

Figure 5.4: The reduction.

69

5. A NEW MEASURE FOR COMPARING LABELED TREES 70

the ¢ lower segments given by C' are all matched. This yields an alignment with cost
(n —2)+5¢+6(n — q), since the 4 T ,;’s, where ¢; € C’, contributz 2 cost of 5 each, the rest
n—q T1,i’s contribute a cost of 6 each, and n—2 p’s contribute a cost of 1 each. Conversely,
if the alignment distance between T} and T3 is (n — 2) + 5¢ + 6(n — q), there raust exist ¢

I ;’s each contributing a cost of 5. These T} ;’s induce an exact cover of A. O

5.4 Multiple Alignment of Ordered Trees

For the purpose of finding highly conserved structural motifs, the comparison of multiple
labeled ordered trees is required [54, 72]. The alignment of two trees can be easily extended
to multiple trees. Many existing formulations of multiple sequence alignment are also appli-
cable to multiple alignment of trees. For example, one can define the SP-score of a multiple
alignment, A of trees as the sum of the values of pairwise alignments induced by A. (Here,

SP stands for sum of all pairs.)

Since multiple sequence alignment with SP-score is NP-hard (See Section 3.2.), clearly
multiple alignment of ordered trees with SP-score is also NP-hard. So it would be of interest
to investigate approximation algorithms for multiple alignment of orderad trees. It is known
that the center star method approximates a multiple sequence alignment with ratio 2[31).
The method first finds a sequence (the center) X, among the k given nequences, such that

3" D(X., X;) <Y D(Xi, Xj),

f#e R
for any 1 € i < k. Every sequence is then optimally aligned with the center X,. Finally,
a multiple alignment A, of all the given sequences consistent with the pairwise alignments
between X, and the other sequences is derived. The value of A, is at most twice the

optimum [31]. Unfortunately, the construction does not work for trees since such a multiple

5. A NEW MEASURE FOR COMPARING LABELED TREES 71

alignment A, consistent with all pairwise alignments cannot be found in general for trees.

5.5 Conclusion

It is interesting to observe that the tree inclusion problem defined in [51] is actually a
special case of alignment of trees. Again, let u(e,b) = 0if a = b or 2if ¢, # X and
a # b, p(a,A) = 1, and p(A,b) = 1. Then Ti is included in T3 if and only if D(Ty,T3) =
|T2] ~ |T;|. The complexity of Algorithm 5.1 is just slightly higher than that for ordered
tree inclusion [51}. Also, under the above cost/score scheme, an optimal edit from T} to T,
yields a largest common sub-tree of 77 and 7%, and an optimal alignment yields a smallest

common super-tree [88]. So, edit and alignment form a “dual” in this sense.

Chapter 6

The Complexity of Comparing

Evolutionary Trees

6.1 Introduction

In the analysis of molecular evolution, the evolutionary history of a set of species is de-
scribed by an evolutionary tree. (See Section 2.3 for the definition.) Recomstructing the
correct evolutionary tree for a set of species is one of the fundamental yet difficult prob-
lems in evolutionary genetics. Many methods have been proposed based on various criteria.
However, these methods do not always produce the same answer. Therefore, it is interest-
ing to design measures and automatic methods for the comparison of different evolutionary
trees on the same set of species. A fruitful approach is to compute a tree that can somehow

express the “intersection” of these evolutionary trees.

The notion of a mazimum agreement subtree (MAST) was first proposed by Finden

and Gordon [23]. Given an evolutionary tree T on set S and a subset A C , the restriction

72

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 73

of T on A, denoted T|A, is an evolutionary tree on set A obtained from T' by eliminating
the species outside A and the internal nodes with only single child. The latter operation,
called forced contraction, is illustrated in Figure 6.1(a). For any two evolutionary trees T}
and 7 on set S, an agreement subtree {AST) of Ty and T; is a tree T' such that for some
AC S, T=T|A=TyA. Wecall AC 5 the set of the agreed species and § — A the set of
the disagreed species. A maximum agreement subtree (MAST) of T} and T5 is an AST with
the largest number of leaves (i.e. the largest number of species have been agreed upon).
The notion of AST and MAST can be easily extended to more than two evolutionary trees

on the same set of species [2].

The first polynomial-time algorithm for MAST on two trees was given by Steel and
Warnow [75]. Their algorithm runs in O(n?) time for bounded-degree trees and O(n*5 log n)
for unbounded-degree trees, where n is number of species. Farach and Thorup recently
improved the running time to O(n'®log n) for unbounded-degree trees and to O(nc\/"’?)
for bounded-degree trees {20, 21). Amir and Keselman [2] considered MAST for several
trees. They showed that MAST is polynomial-time solvable for multiple bounded-degree
trees and is NP-hard for three trees with unbounded degrees. An algorithm to approximate
the complement of MAST on multiple unbounded-degree trees with ratio 4 was given. (The
complement is to minimize the number of disagreed species instead of the agreed species).
They also raised two questions: the approximability of MAST on multiple unbounded-degree
trees and, given two trees Ty and T on set S, how to compute a tree with the largest number
of edges which is obtainable through a sequence of edge contractions from both restrictions
T1|A and. T3|A for some subset A C 5. An edge contraction is shown in Figure 6.1(b) and
is also referred to as deletion of an internal node in tree edit [86]. Let's call the second
problem maximum agreement subtree with edge contractions (MAST-EC). Here we settle

these two problems by showing that (i) MAST for three unbounded-degree trees cannot

8. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 74

be approximated within a constant ratio unless P = N P and that this problem cannot be
approximated within ratio n¢, for some 0 < ¢ < 1, unless NP C DTIM E(2pelvten)_ (ij)

MAST-EC is INP-hard.

The refinement of trees is another approach towards the “intersection” of trees, and
was originally introduced ir the study of the compatibility of evolutionary trees [17, 30, 82}.
Tree T is said to be a refinement of trees 7t and T if both 7} and 7% can be derived from T
chrough a sequenlce of edge contractions. Two trees are compatible if they have a refinement.
Polynomial-time algorithms for the tree compatibility problem have been known for a long
time (e.g. [30, 82]). It is natural to consider the optimization version of this problem for
trees which are not compatible with each other, namely, given trees Tj and T on set 5,
find the largest subset A C § such that T1|A and T;|A are compatible [83). Let’s call a
refinement of T1|A and T3|4 a mazimum refinement subtree (MRST) of T and T, and this
problem the MRST problem. One can view MRST as a natural counterpart of MAST. We
show that MRST can be solved in polynomial time if 7; and T> have degrees bounded by
some constant and it becomes NP-hard if one of the trees is allowed to have an arbitrary

degree.

When recombination of DNA sequences occurs in an evolution, the history of the
evolution cannot be adequately described by a single tree. A recent proposal in attempt to
solve this problem is to use a list of evolutionary trees [34, 35]. Each tree corresponds to a
region of the DNA sequences, and each tree can be obtained from the preceding tree on the
list by transferring some subtrees from one place to another. Figure 6.1(c) shows a subtree-
transfer operation, which moves T5. Each such operation corresponds to a recombination
event. A model for reconstructing the list of trees based on parsimony has been proposed

in [34, 35]. The model requires the calculation of the subtree-transfer distance between

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 75

Ty T T T.
2 3 4(C) Tz T4

Figure 6.1: The operations.

two trees (i.e. the minimum number of subtrees we need to transfer). It was left open
how to compute this distance. Unfortunately, we can show that computing the distance is
NP-hard. We will also give a simple approximation algorithm achieving ratio 3. It turns

out that this distance is also connected to the notion of agreement between trees.

The non-approximability of MAST on multiple unbounded-degree trees is given in

Section 6.2. Sections 6.3 and 6.4 discuss the complexity of MAST-EC and MRST. Finally,

the subtree-transfer distance is considered in Section 6.5.

6.2 Non-approximability of MAST on 3 Unbounded-Degree

Trees

In this section, we show that MAST for three trees of unbounded-degrees cannot be approx-

imated within any constant ratio in polynomial time unless P = NP, and that there is a

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 76

constant 0 < € < 1 such that MAST for three trees of unbounded-degrees cannot be approx-

imated within ratio n° in polyromial time, unless N P is contained in DTIM E(27o!¥'o9n),
INSTANCE: Three trees T}, T; and T3 of arbitrary degrees on set S = {s1,2,...5,}.
QUESTION: Find a largest subset A C § such that Ty|A = T3|A = T3|A.

The idea of the proof is the self-improvement technique as used in [45]. We first prove
that the problem is MAX SNP-hard. Thus it cannot be approximated within ratio 1+ ¢
for some € > 0 unless P = NP [3]. Then we define a product of trees and show that any
approximation ratio r for the problem can be improved to r!/¥, Taking an appropriate k

should give the desired bound.
Lemma 6.1 The above problem is MAX SNP-hard.

Proof. It can be easily verified that Amir and Keselman’s construction for the NP-
hardness [2] is in fact an L-reduction [60]. For the completeness, we include the construction
here. The reduction is from the following variant of 3-Dimensional Matching which is MAX

SNP-hard [48].

INSTANCE: Aset M CW x X xY of ordered triples where W, X and Y are disjoint.

Each element of W U X UY appears in at most B triples of M.

QUESTION: Find the largest subset M’ C M such that no two elements of M’ agree in

any coordinate.

Given an instance of 3DM-B, M C W x X x Y, we construct three evolutionary trees
Ty, Ty and T3. Let |[W| = |X| = |Y| = gq. Each T} has 2¢ + 1 children. The first g + 1
children are leav~s labeled with new symbols @y, as,...,a,41. Each of the last ¢ children of

T; corresponds to an element w € W, and has as its children leaves labeled with the triples

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 77

of the form (w,z,y), wherez € X and y € Y. T5 and T3 are constructed in a similar way.
It is easy to see that there is a 3-dimensional matching of size & if and only if there is an

agreement subtree of size & + ¢ + 1, and that this reduction is actually an L-reduction. W

Now, we need to define the product of two evolutionary trees. Let T} and T be two
evolutionary trees on sets S; and S, respectively, where S; and 55 are the sets of labels
for these two trees. For each label s & S1, let T, denote the tree obtained from T by
replacing each label &' € §; with a new label (s,8). The product of Ty and T, denoted
T x T, is obtained from Ty by replacing each leaf labeled s with the tree T3, For any tree
T, we define T? = T x T and T*+! = T x T*. The following lemma allows us to improve

an approximation ratio for MAST by taking the product.

Lemma 6.2 Let T4, T, and T5 be the three evolutionary trees and c(T, T2, T3) denote the
size of an MAST for Ty, To, Ts. Then o(T{H, T4, TH*Y) = o(Ty, To, Ts) - o(TF, T, TH).
Moreover, given an AST of size ¢ for le“, 2““, _,f‘*‘l, we can find in polynomial time an

AST of size ey for T1,T3,Ts and an AST of size ¢y for le, Tzk, Tg‘ such that ¢y -c; > c.

Proof. We give a proof for k = 2. The general case follows from the same argument.

Let § be the set of labels in Ty, T2, T3. Obviously, (T2, T§,T§) 2 (11, T, T3} (T, T2, T5).

Suppose that we are given an AST T of size ¢ for 72,72, T2. For each label s € § such
that (', s) appears in T for some s’ € §, we can identify an agreement subtree of Ty 4, T3,
and T3, in T. Let ¢; be the number of such subtrees. Without loss of generality, assume
that all such subtrees have the same size ¢, (otherwise we can improve ¢). Then, we have
¢1-¢p = ¢. Moreover, every such subtrees gives an AST of Ty, T, T3 of size ¢y, and replacing

each subtree in T with a single leaf labeled with an appropriate element of 5 also results in

an AST of T1, T3, T5 of size ¢;. This completes the proof. H

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 78

Note that, if the size of the tree T} (¢ = 1,2,3) constructed in Lemma 6.1 is n, then

the size of T is O(n*). Now, we give the main result in this section.

Theorem 6.3 (i) MAST for three trees of unbounded-degrees can not be approzimated
within any constant ratio unless P = NP. (ii) There is a constant 0 < ¢ < 1 such
that MAST for three trees of unbounded-degrees cannot be approrimated within ratio n® in

polynomial time, unless NP is contgined in DT M E(2petvloany,

Proof. The argument is the same as in [45]. We only prove (i}. (i) The idea is to show
that if a constant ratio approximation algorithm exists, then PTAS exists. Suppose that
MAST for three unbounded-degree trees has a polynomial time approximation algorithm
with performance ratio ¢. For any given ¢ > 0, let k£ = logy4.c. Then by Lemma 6.2, we
have an approximation algorithm for MAST for three unbounded-degree tree with ratio
cF < 1+ ¢ The algorithm runs in time n*, thus polynomial in n. This implies a PTAS for

MAST for three unbounded-degree tree. W

6.3 Agreement Subtrees with Edge Contractions

A natural extension of the agreement subtree approach is to allow the application of edge
contractions in the formation of an “agreement” of the given trees. Intuitively, an edge
contraction “loosens” the structure of a tree and thus increases the chance of having an
agreement. For example, in the extreme case, we can contract all the edges in all trees
to end up with a star. However, the obtained star contains little information about the
evolutionary history. Therefore, it is desirable to contract a small number of edges yet to
have a large number of the agreed species. This is the intuition behind the MAST-EC

problem first proposed in {2]. Here, we show that MAST-EC on bounded-degree trees is

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 79

NP-hard by a reduction from a restricted version of Exact Cover by 3-Sets given below [28].

INSTANCE: A collection C of subsets of a finite set § where every ¢ € C contains three

elements and every element s € S is contained in at most 3 subsets in C.

QUESTION: Find an exact covering C' € C of §, i.e. a collection of mutually disjoint

sets whose union equals 5.

Theorem 6.4 MAST-EC is NP-hard even if the given tree have bounded degree.

Proof. Given an instance of Exact Cover by 3-Sets, let the set § = {s1,82,...,8m},
where m = 3¢ and C = {C1,Cy,...,C,}, where each C; = {tig, iz, tia}, ti; € §. Without

loss of generality, we assume that n > q.

Two trees T and T' are constructed as in Figure 6.2 and Figure 6.3. The top part is
a binary tree whose actual structure is insignificant. (We need this part to get around the
degree bound.) In order to make this part insignificant in the following calculation, introduce
a large enough factor f = 2(n + m). Each element ¢j, J = 1,2,3, of C; corresponds to
a subtree T;; as shown in Figure 6.4. In tree 7, each element 8; € 5 corresponds to a
subtree T; as shown in Figure 6.5. Every triple of subtrees T:; (7 =1,2,3.) is connected
to the top part by a path of length 5f, which has 5f internal nodes (not including the
root of the subtree) and 10f edges (including the edges connecting z;;’s.). Call such a
path a long chain, denoted by P;. In tree T, there are n corresponding long chains each
of which contains 5f - 1 internal nodes, and 10f — 2 edges. (See Figure 6.3.) We
will show that C' has an exact cover of § if and only if there is a tree 7' with at least
3(2f — 2)g+ (10f — 2)(n — q) + 5fq edges such that, for some subset A of labels, T’ can be

obtained using edge contractions from both restrictions 7|4 and T}A.

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 80

- Ty
T11 \ Tn,1
: I1,2 . \)
T1,5¢1 \ Tn5f
Q
TI.1T1,2 T1.3 Tn,lTn,2 Tn,S

Figure 6.2: The tree T constructed from ¢ = {C1,C3,...,Cpn}, where each subtree T;;
corresponds to a ¢;; € C;, j = 1,2,3.

— T —y

Z1,1 Tn,i

Z1,2 . Tn,2

Tl T2 T3 Tm - Jm -1 Tm : . » .

l\ T15f-1 I\ Tns5f-1

T15f Ln,5f

Figure 6.3: The tree T. Bach subtree T; corresponds to an element 8; € S and each of the
n chains of length 5f corresponds to a subset C; € C.

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES

/
7
?.ﬂ-- a$

2 .3 4 .5
a; G 8

1
407010074

Figure 6.4: The subtree T;; corresponding to ¢; ; € C; (f = 8 in this case).

Zy Zy Z3 Zy4

(a)

81

Figure 6.5: Suppose that ¢;;, ks and ¢, ; are the three occurrences of s;. (a) The subtree

T; corresponding to s;. (b) The subtree Z,. (Again, f = 8.)

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 82

(if) Given an exact cover {C;l,...(_:','?} C C of 5, there is a corresponding set of
subtrees {T},; [1<1<gq, 1<j< 3} in T. We can obtain an agreement subtree with
edge contraction (AST-EC) T” which contains the subtrees {7}, ; | 1< i< ¢q, 1< j < 3}
and the long chains F; (i € {1,2,...,n} — {i1, i3, ...iz}). Note that, each T;,; contributes
2f — 2 edges, and each P; (i € {1,2,...,n} — {i}, iz, ...15}) contributes 10f — 2 edges.

Moreover, we eliminate the internal nodes of the ¢ long chains By, ... P, each of which

q?

contains 5f labels and each label contributes one edge in the AST-EC T". Thus, T’ has at

least 3(2f — 2)q + (10f — 2)(n - ¢) + 5fq edges.

(only if) Suppose we have an AST-EC T of size at least 3(2f —2)g+ (10— 2 (n~q)+
5fg. Note that, the constructions of T ;’s in T and T}’s in 7" imply that without decreasing
the number of edges, we can modify 7* such that if a label in a T;; appears in 7”, then
the whole subtree T} ; appears in T’. Furthermore, in order to keep T;; in 7', we have to
eliminate 5f internal nodes in the long chain P;. Thus, we can assume that once T;; is
in T", then the other two subtrees T} (k = {1,2,3} — {5}) are also in T'. Finally, the
5f -mlabels z;; (1 = 1,...,n,5 = 1,...,5f) contribute 5f - n edges. Preserving a chain
contributes another 5 f edges, and preserving a triple of subtrees T} ; (j = 1,2, 3) contributes
3(2f — 2) edges. Moreover, we cannot keep both P; and the triple T;; {1=12,3)in T
simultaneously. Thus, in order to obtaining 3(2f — 2)g + 5f¢q + 10f(n — g) edges, we have

to preserve ¢ triples in 7", which should give an exact cover of 5. #

A variant of MAST-EC is to construct a tree maximizing the the number of internal
nodes instead of edges. Unfortunately, a simple modification of the above proves that this

variant is also NP-hard.

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 83

6.4 Maximum Refinement Subtrees

The MRST problem can be reformulated as alignment of unordered trees described in Chap-
ter 5. Every internal node is labeled null and each inserted node is also labeled null here.
To formulate MRST as an alignment of trees problem, we need define the scores as follows:
1 for an identical pair of (non-null) labels and 0 otherwise. It is easy to see that in any
alignment A of T} and T3, the set of nodes with an identical pair of opposing labels induces
a refinement subtree T of T} and T,. The value of A is exactly the subset of labels appearing

in T. Therefore, an optimal alignment of 7} and T; gives an MRST of T and T,.

In Section 5.3, 2 polynomial-time algorithm to align unordered trees with bounded

degree has been given. We hence have the following theorem.

Theorem 6.5 MRST can be computed in polynomial time if both trees are of bounded

degree.

On the other hand, it is shown in Section 5.3 that alignment of unordered trees is
NP-hard when one of the trees is allowed to have an arbitrary degree. A slight modification

of the proof of this result gives the next theorem.

Theorem 6.6 MRST is NP-hard if one of the given trees can have an arbitrary degree.,

6.5 The Subtree-Transfer Distance

Before we prove the results, it is again convenient to reformulate the problem. Let Ty and
T3 be two evolutionary trees on set §. An agreement forest of Ty and T is any forest which

can be obtaired from both Ty and T, by cutting & edges (in each tree) for some k& and

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 34

applying forced contractions in each resulting component trees. Define the size of a forest
as the number of components it contains. Then the mazimum agreement forest (MAF)
problem is to find an agreement forest with the smallest size. The following lemma shows

that MAF is really equivalent to computing the subtree-transfer distance.

Lemma 6.7 The size of an MAF of Ty and T, is one more than their subtree-transfer

distance.

The lemma can be proved by a simple induction on the number of leaves. Intuitively,
the lemma says that the transfer operations can be broken down into two stages: first we
cut off the subtrees to be transferred from the rest in 77 (not worrying where to put them),

then we assemble them appropriately to obtain T5. This separation will simplify the proofs.

6.5.1 The NP-hardness

Theorem 6.8 It is NP-hard to compute the subtree-fransfer distance between two binary

{rees.

Proof. The reduction is again from Exact Cover by 3-Sets. Let § = {s1,52,...5} be

a set and C,...,C; be an instance of this problem. Assume m = 3q.

The tree T is formed by inserting n subtrees 4,, ..., A, into a chain containing 2n+2m
leaves Z1,...,%2n, Y1+ - - -, Y2m uniformly. (See Figure 6.6(a).) Each A; corresponds to C; =
{ei1,€i2, €3}, and has 9 leaves as shown in Figure 6.6(b). Suppose that ¢ its Crr and epp
are the three occurrences of an s; € § in C. Then in Ty, we have a subtree B; as shown in
Figure 6.7(a). For each C;, we also have a subtree D; in T as shown in Figure 6.7(b). The

subtrees are arranged as a linear chain as shown in Figure 6.7(c).

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES

I
A T2
I3 -'-
Aq Z4
Lon—
An Ton
51
Y2me1 Yom

(a) (b)
Figure 6.6: (a) The tree Ty. (b) The subtree A;.

Uk, bt (7N 1

VA
Dl Dn—l -Dn
(a) (b) (c)

Figure 6.7: (a) The subtree B;. (b) The subtree D;. (c) The tree Ts.

Yom-

85

6. THE COMPLEXITY OF COMPBARING EVOLUTIONARY TREES 86

Note that, each adjacent pair of subtrees A; and A;y; in T} is separated by a chain of
length 2 which also appears in T2. Thus, to form an MAF of Ty and T», our best strategy is
clearly to cut off Ay, A2,...,An in T} and similarly cut off By, Bg, ..., Bm in T. This then
forces us to cut off Dy, Dy,..., Dy, in T;. Now in each A;, we can either cut off the leaves
Ui,y U1, Bi,2, Vi2, U3, Vi3 to form a subtree containing three leaves i1, G2, i3 {yielding
6 +1 = 7 components totally), or we can cut off a;,1, ¢;2, and @;3. In the second case,
we will be forced to also cut links between the three subtrees containing leaves {u;1,v;1},
{ui2,vi,2} and {u;3,vi3} respectively, as the B;’s are already separated. Hence in this case
the best we can hope for is 3+ 3 = 6 components (if we can keep all three 2-leaf subtrees

in the agreement forest).

We now formally show that C has an exact cover of § if and only if T} and T have an

agreement forest of size 1+ 6¢+ 7(n—¢q)=Tn—qg+ 1.

(if) Suppose we are given an exact cover {Ci,, C,s - - .,C,-q} C C of §. For each 4;,
(1 =1,2,...q) in Ty, we cut off a; 1, a;,,2, @i,,3, and the three subtrees containing leaves
{ug 1 vin}s {ui,2,vi2} and {u; 3,03} Correspondingly, we can obtain the 6 compo-
nents from 7. Note that, each B; in T; can contribute at most one subtree containing
{45, vi,5} (7 = 1,2,3). In this way, each A; creates 6 components in the agreement forest,
For the rest of n — g subtrees A; (i € {1,2,...n} — {1,,...4;}), we can cut off the leaves
Ui 15 Vi1, Wi2, Vi,2, Ui,3, ¥i,3 and the subtree containing three leaves a; 1,4; 2, ¢; 3. Correspond-
ingly, we can obtain the 7 components from T,. Therefore, the total number of components

in the agreement forestis 1 +6¢+7(n—¢)=Tn-q+ 1.

(only if) Suppose we have an agreement forest of size 1 + 6 -+ 7(n — ¢) = Tn — ¢ + L.

From the previous discussion, we know that

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 87

1. Each A; in T} contributes at least 6 components.

2. Among the n subtrees A;’s, at most ¢ A;’s can contribute 6 components. Moreover,

these A;’s correspond to disjoint C;’s in C.

Thus, if there is zn agreement forest of size 7n — g + 1, then there is an exact cover of

5. R

6.5.2 An Approximation Algorithm of Ratio 3

Our basic idea is to deal with a pair of sibling leaves a,b in the first tree 7} at a time. If
the pair @ and b are siblings in the second tree T2, we replace this pair with a new leaf
labeled by (a,b) in both trees. Otherwise, we will cut T until a and b become siblings
or separated. Eventually both trees will be cut into the same forest. Five cases need be
considered. Figure 6.8 illustrate the first four cases. The last case (Case (v)) is that ¢ and

b are also siblings in 75,

The approximation algorithm is given in Figure 6.9. The variable N records the number

of components {(or the number of cuts plus 1).

Theorem 6.9 The approzimation ratio of the above algorithm is 3, i.e., it always produces

an agreement forest of size at most three times the size of an MAF for Ty and T,.

Proof. = We consider the number of edges cut in an agreement forest and show that the
above algorithm cuts at most three times as many the edges cut by an MAF. To establish
the approximation bound, the basic idea is to consider an MAF and charge the edges cut by
the algorithm to the edges cut by the MAF, and make sure that each MAF edge is charged

at most three edges. For convenience, we will refer to an edge according to its lower end.

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 88

b
(iii) (iv)

Figure 6.8: The first four cases of ¢ and b in T5.

1. bezin

2, Input Ty and T3,

3. N:=1,

4. For a pair of sibling leaves a,b in T} do.

Consider how they appear in 7% and cut the trees:

Case (i): Cut off the middle subtree A in Tp; N := N + 1,

Case (1i): Cut off ¢ and b in both Ty and Th; N := N + 2.

Case (iii): Cut off ¢ and b in both 7} and Tp; N := N +2.

Case (iv): Cut off b in T7.

Case (v): Replace this pair with a new leaf labeled (g, b) in both 7} and Tb.
5. If there exists any component in the forest for 7} of size larger than 1, repeat Step 1.
6. Output the forest and N.

7. end

Figure 6.9: The approximation algorithm of ratio 3.

6. THE COMPLEXITY OF COMPARING EVOLUTIONARY TREES 89

We need a lemma which establishes that the algorithm is always optimal in Case (i).

Lemma 6.10 There ezists an MAF F which cuts all the edges cut by the algorithm in Case

(i).

We only have to consider Cases (i)-(iii) because Case (iv) repeats an old cut. Let’s fix
the MAF F. We charge the edges as follows. In Case (i), each edge cut is simply charged
to itself. Case (ii) is the most interesting. If at least one of the edges above a and b are cut
by F, then we simply charge these two edges cut by the algorithms to the “correct” edge(s)
cut by F. So each edge is charged with a cost of at most 2. Otherwise all the edges above
the subtrees A,,..., Ax (k > 2) must be cut by F and we charge the two edges above ¢ and
b to these edges (each charged a cost of —,2; < 1). Note that, only edges cut in Case (i) create
components of size bigger than 1. Thus, if Case (iii) occvrs, then @ and b must belong to
different components in F' and hence F' must cut at least one of the edges above a and b
in T} to disconnect them. So we can charge the two edges above a and b to the “correct”

one(s) cut by F (each charged a cost of at most 2).

It is easy to see that each edge cut by F is charged at most twice. Moreover, if an edge
is charged twice, the first time it is charged must be in the second subcase of Case (ii). The
second time can be in either Case (i), Case (iii), or the first subcase of Case (ii). Hence,
each such edge is charged a cost of at rmost 1 4+ 2 = 3 edges cut by the algorithm. That is,

the algorithm cuts at most three times as many edges cut by F'. W

It would be interesting to improve the approximation ratio. On the other hand, the
NP-hardness proof can be easily strengthened to work for MAX SNP-hardness. Thus, there

is no hope for a PTAS for this problem.

Chapter 7

An Approximation Scheme for
Some Planar Steiner Tree

Problems

7.1 Introduction

The PTAS developed in Chapter 4 works for the problem of Steiner trees under a given
topology. In this chapter, we consider the planar Steiner tree problem when the topology
is not given. We devise a PTAS for a special case of the planar Steiner tree problem.
Qur algorithm works for both Euclidean and rectilinea,r"lf;letrics. Steiner minimal trees in
Euclidean and rectilinear metrics are called Euclidean Steiner minimal trees (ESMT) and

rectilinear Steiner minimal trees (RSMT), respectively.

The planar Steiner tree problem arises in many applications such as network design,

90

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER TREE PROBLEMS 91

optimal location of facilities, component placement on circuit hoards, etc [26). Unfortu-
nately, it is NP-hard for both Euclidean and rectilinear metrics [26, 27]. Considerable effort
has been made to develop approximation algorithms [42]. A well-known strategy is to uses
a minimum-cost spanning tree as an approximate solution. This method has a performance
ratio of 2 for any metric. In particular, it achieves a ratio of 725 [15] for the Euclidean plane
and a ratio of 3 [40] for the rectilinear plane. Du, Zhang and Feng proved that an ESMT
can be approximated in polynomial time with ratio % — ¢, for some € > 0 [16}. Berman

and Ramaiyer showed that for an RSMT, the ratio can be further improved to 1.33 [6].

There are also some probabilistic approximation methods for the ESMT and RSMT
problems {49, 42]. Komlos and Shing extended Karp's partitioning algorithm to RSMT [52].
Assume that the set of regular points is uniformly distributed in the unit square, They
obtained an algorithm with ratio 1 + 0(71?), with probability 1 — o(1), where k is the
number of regular points considered in the algorithm to construct a local RSMT. Other

probabilistic results can be found in [7, 41, 42).

In this chapter, we de<’z~ a PTAS for the planar Steiner tree problem when the given
set of regular points is c-locai “or some constant ¢. Here, a set of points X is c-local ! if in
the minimum-cost spanning tree for X, the length of the longest edge is at most ¢ times the
length of the shortest edge. For simplicity, we will assume that the length of the shortest
edge is always 1. Hence, the restricted Steiner problem is approximable within ratio 1 + ¢
for any € > 0 in polynomial time. Qur algorithm works for both Euclidean and rectilinear
metrics. It is worth pointing out that the ESMT and RSMT problems remain NP-hard
when the set of regular points is c-local, since the original constructions in [26, 27] still

work for this special case.

"The term c-local is borrowed from (78], where c-local graphs are considered. Local graphs are also called
civilized graphs in [14}.

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER TREE PROBLEMS 92

An outline of our approach is given in next section. Section 7.3 contains the PTAS and

its analysis. Some concluding remarks are given in section 7.4.

7.2 The Basic Idea and Partition Strategy

The basic idea of our algorithm is to combine the shifting technique in [37] with the local
optimization method in [80]. First, we design a set of partitions, each of them partitions
the whole area enclosing the regular points into many rectangular cells (mostly squares) of
some constant size. (See Figure 7.1.) Each cell is further divided into interior and boundary
areas as in Figure 7.2. Then, with respect to each partition, we organize the regular points
contained in the interior area of each cell into several groups such that the “distance”
between any two groups is greater than ¢, and construct a Steiner minimal tree (SMT) for
each group. The collection of all the local Steiner treesin a cell form a local Steiner forest for
the cell. After that, we connect all the local Steiner forests and the regular points contained
in the boundary areas using the spanning tree method. Finally, we select a partition which

yields the optimal Steiner tree among all the partitions.

We note in passing that a similar overall idea has recently (and independently) been
applied to a number of graph problems including vertex cover, independent set, and dor:-

nating set [38].

In the rest of this section, we elaborate on the partitions. Without loss of generality,
assume that the set of regular points X is contained in a rectangle R with corners (0,0)
(a,0), (0,b), and (a,b), as shown in Figure 7.1. For any positive integer k, a partition of size
k is a grid in which adjacent horizontal/vertical lines are separated by a distance k. Clearly,

there are k? different partitions of size k, depending on the positions of the top horizontal

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER THEE PROBLEMS 93

Figure 7.1: The rectangle with partition P, ; of size .

boundary
area

c}

ta

I4

o

interior

(S5 area

Figure 7.2: The interior and boundary areas.

line and the leftmost vertical line. Throughout this chapter, we use P, ;, where 0 < 4,7 < k,

to denote the partition in which the top horizontal line and the leftmost vertical line are

z =1 and y = j, respectively. The grid partitions the rectangle R into many cells, most of

them are squares of size k& X k. Each cell is divided into an intericr area aad a boundary

area, with a boundary of width ¢, as shown in Figure 7.2.

7.3 The Approximation Scheme and Analysis

In this section, we construct the approximation algorithm and analyze its performance for

both Euclidean and rectilinear metrics.

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER TREE PROBLEMS 94

Let X be the given set of regular points in the plane, P a fixed partition, Xp C X
the set of all regular points in the interior areas with respect to P. Call an edge (i.e.,
line segment) crossing if it is not completely contained in the interior area of some cell.

Throughout the chapter, we use 7™ to denote an SMT for X, and TP an SMT for X P.

For any tree T', C(T) denotes the cost of the tree. Since Xp is a subset of X,

C(T?) < c(T™).

7.3.1 Constructing the Local Steiner Forests

We first develop some useful results. It should be emphasized that in our algorithm, we
will deal with one cell at a time. Recall that the regular points in the interior area of a
cell are divided into several groups and an SMT is constructed for each group. In order to
show how to correctly group the regular points in an interior area, let’s consider the SMT
TP. We need to modify TP into a forest FP such that each (local Steiner) tree in F¥ is
completely included in the interior area of some cell. Note that, the interior area of a ce]l
may coutain more than one tree of FF. Define the distance between two (local Steiner)
trees as the minimum distance between any two regular points in the two trees. We further

require that the distance between any pair of trees in F¥ is greater than c.

Lemma 7.1 The SMT TF can be modified into a forest F¥ such that each tree in FP is
completely included in the interior area of a cell and the distance between any pair of trees

in F¥ is greater than ¢. Moreover, the total cost C(FF), which is the sum of the costs of

all the trees in FF, is at most C(TP). That is,

C(FP) < c(TP) < c(T™m).

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER TREE PROBLEMS 95

Proof. First, let us consider the case when no Steiner point of TF is in the boundary
areas of partition P. In this case, we can prune the tree TF by simply deleting all the
crossing edges. (Each end of a crossing edge could be either Steiner point or regular point.)
Note that, in this case, the cost of any crossing edge is at least 2¢. Since T¥ is optimal, the
distance between any pair of trees in the resulting forest is greater than ¢. Otherwise, let
T and T; be two trees obtained above such that the distance between them is at most c.
Since the width of a boundary is ¢, T; and T, must be in the interior area of a same cell.
We can decrease the cost of TF by adding an edge to connect 7} and T (which increases

the cost by at most c) and deleting an appropriate crossing edge (which decreases the cost

by at least 2¢).

Suppose that some Steiner points of TF are in the boundary areas. There must be
such a Steiner point f which directly connects two regular points in interior areas, say, d

and e. Two subcases arise,

1. The points d and € are in the same interior area, as shown in Figure 7.3(a). We delete
the edges (d, f) and (e, f), and connect the points d and e directly. This decreases

the cost.

2. The points d and e belong in different interior areas, as shown in Figure 7.3(b). Now,
we delete the crossing edges (d, f) and (e, f), saving a cost of at least 2¢c. The deletion
decomposes T¥ into three trees. If the distance between two of the trees is at most
¢, we directly connect them with a cost of at most ¢. This will not increase the cost

since we have to connect at most two pairs of trees.

Note that, in an ESMT, the degree of a Steiner point is 3 [16] and in an RSMT, the

degree of a Steiner point ic zither 3 or 4 [6, 40]. Hence, after deleting the edges (e, f) and

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER TREE PROBLEMS 96

¢

d. || f)
e \f

\ %o

(a) ()

Figure 7.3: (a) The two points are in the same interior area. (b) They are not in the same
interior area.

(d, f) in the above, the degree of f is at most 2 and we can eliminate f without any extra
cost. In this way, we can remove all the Steiner points in the boundary areas and obtain a

set of trees such that tne distance between any pair trees is greater than ¢. Then the first

case applies. W

It is difficult to compute the forest FF_ since the SMT T® is unknown. Nevertheless,
we can construct a forest that is similar to F¥ in many ways. Consider the regular points
in the interior area of some cell. By Lemma 7.1, if the distance of two regular points is at
most ¢, then they must belong to a same tree of F¥. Thus, we can group the regular points
by forming a minimum-cost spanning tree of these points and then deleting the edges longer
than ¢. Therefore, we get a set of (spanning) trees Si,...S5m, consisting of edges of length
at most c. We call these trees the ¢-spanning trees. Let ¥;, i = l,...m, be the set of regular
points contained in the c-spanning tree S;. Clearly, the regular points in the same group
Y; belong to a same tree of the forest F¥. The converse is not necessarily true. Namely,
points in different groups Y;’s may also belong to a same tree of #7. In uiher words, to find
the best way of grouping the regular points, we have to consider all possible ways merging
the groups Y1,...,¥,. After each such possible merge, we obtain a local Steiner forest by

constructing an SMT for every new group. We are interested in a local Steiner forest with

the minimum cost among all possible merges.

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER TREE PROBLEMS 97

. begin

. Let Y be the set of regular points in the interior area of the cell.
Construct a minimum spanning tree for Y.

. Delete the edges longer than e.

- Let ¥1,...,Y be the sets of regular points in the c-spanning trees.
» for each possible way of merging the ¥;’s

Merge the ¥;’s and construct an SMT for each resulting group.

. Select a local Steiner forest with the minimum cost.

end

© 01D AWM

Figure 7.4: Procedure 7.1

Let forest F'F denote the collection of the minimum-cost local Steiner forests, one for

each cell. F'P has the following properties.

Lemma 7.2 (i) Each tree in F'P is completely contained in the interior area of a cell; (ii)
The distance between any pair of trees T; and T; in F'P is greater than ¢; and (iii) The total

cost of the forest FP is at most C(FF). Thus,

C(FF) < C(FP) < c(@m™m).

The detailed procedure to construct an optimal local Steiner forest for a cell is given

in Procedure 7.1. The number of possible ways of merging the groups is

>
k=1 k
m
where is the Stirling number of second kind, which stands for the number of ways
k

to partition a set of m items into & nonempty subsets [29]. Clearly,

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STEINER TREE PROBLEMS 08

Thus, the time complexity of Procedure 7.1 is O(m!M(|Y])), where M(]Y]) is the time to
construct an SMT for the set ¥ of regular points in the interior area of the cell. For both

Euclidean and rectilinear metrics, M(]Y]) is exponential in |Y| [42, 52].

Clearly m! dominates the time complexity of Procedure 7.1 in general. It is possible
to lower it to 2™ using a straightforward dynamic programming method. For each I C
{1,...,m}, let D[I] denote the cost of an SMT for the set Uj;Y; and E[[] denote the

minimum cost of any local Steiner forest for {¥;|i € I}. We have the following recurrence

relation:
Elll = 59(1:1} DI+ E[I-TI. (7.1)
Thus E[{1,...,m}] gives the cost of a minimnm-cost local Steiner forest for Yi,...,Y,,.

The forest can be recovered by a simple backtracking. Let Procedure 7.2 be the modified
version of Procedure 7.1 which uses Equation 7.1 to compute a minimum-cost local Steiner

forest. Then the running time of Procedure 7.2 is O(2™ M (|Y]) +2™-2™) = O(2" M (|Y])).

7.3.2 Connecting the Local Forests and Boundary Points

We can construct a Steiner tree for the set X from the forest F¥ as follows. Fix 2 minimum-
cost spanning tree Ts for X. Note that each edge in T has length at most ¢ since X is

c-local. Let Ep denote the set of crossing edges in Ts. Construct a graph Gp by adding all

the crossing edges in Ep to PP,

Lemma 7.3 Gp is connected.

7. AN APPROXIMATION SCHEME FOR SOM& PLANAR STEINER TREE PROBLEMS 99

1. begin
2. Construct a minimum-cost spanning tree Ts for X.
3. for each possible partition P

4, begin

5. Find the set of crossing edges Ep.

6. for each cell

7. Use Procedure 7.2 to compute a minimum-cost local Steiner forest.
8. Let 7 be the set of all local Steiner forests.

9. Construct the graph Gp = Ep U FP,

10. end.

11. Select a Gp with the smallest cost among all partitions.
12. Prune Gp into a tree.
13. end

Figure 7.5: Algorithm 7.1

Proof. Since Ts is connected, the graph Ts U F'F is connected. For each tree T: in FP ,
let’s call an edge in Ts connecting two regular points in T; an redundant edge. Becasue
T; is connected, deleting any redundant edge will not affect the connectivity of the graph.
Moreover, since each edge in Ts has length at most ¢ and the distance between any pair
of trees in F¥ is greater than ¢, we can conclude that every non-redundant edge in Ts is a

crossing edge. Therefore, Gp is connected. MW

Now, we are ready to introduce our algorithm, which in fact computes Gp for every
possible partition P, selects the Gp with the smallest cost, and prunes the selected Gp into

a tree. See Figure 7.5.

Theorem 7.4 Algorithm 7.1 achieves an approzimation ratio 1 + % and 1 + %f for Eu-

clidean and rectilinear metrics, respectively. Its runing time is O((| X |c)22F M(k®)/k?).

Proof. By Lemma 7.2,

C(Gp) = C(FF) + C(Ep) < C(T™™) + C(Ep). (7.2)

7. AN APPROXIMATION SCHEME FOR 50ME PLANAR STEINER TREE PROBLEMS 100

Sum up Inequality 7.2 for all the partitions P, ;, we have

k k k&
22 C(GM) < o™+ Y.y C(Ep)
i=1 j=1 i=1j=1

< KXC(T™™) + pekC(Ts),

where p = 6 in rectilinear metric and z = 7 in Euclidean metric. The last inequality is
based on the observation that each edge in the minimum-cost spanning tree Ts is “cut” at
most pck times by the boundary. The reason is as follows. Note that, the boundary of each
cell consists of at most 4ck — 4c? points, Each point could serve as one of the two ends of a
crossing edge. Thus, a crossing edge can be cut at most 8ck — 8¢? times. In this counting,
an edge that is completely contained in a boundary is considered being cut twice. Again
note that the length of each edge in Ts is bounded by ¢. In rectilinear metric, this “double
counting” happens at least 4 . —%ck = 2ck times for each edge. In Euclidean metric, double
counting happens at least 4(1 — %)ck > ck times. Thus, each edge in Tg is cut at most

6ck in rectilinear metric and 7¢k times in Euclidean metrics.

Since Algorithm 7.1 selects Gp with the smallest cost, we have

. L .
C(Gp) < C(T™") + E2C(Ts) = C(T™n) + Eo(Ts).

Therefore, the cost of the Steiner tree output by Algorithm 7.1 is at most C(T™") +
£C(Ts). In conjunction with the results given in {15, 40], we conclude that the performance

ratio of Algorithm 7.1is 1 + \—1/%% for Euclidean metric and 1 + 3¢ for rectilinear metric.

. . ., . », . 2

There are totally &% distinct partitions. For each partition, there are at most O(~”—‘ﬂ1)
cells and each cell contains at most k% regular points. It requires at most O(Z"zM (k%))
time to construct a minimum-cost local Steiner forest for each cell. Therefore, the time

complexity of Algorithm 7.1 is O((|X|c)2¥ M(k?)/k2). W

7. AN APPROXIMATION SCHEME FOR SOME PLANAR STERINER TREE PROELEMS 101

Corollary 7.5 There is a PTAS for the ESMT and RSMT problems when the given set of

regular points is c-local.

7.4 Some Remarks

It remains an interesting open problem to prove or disprove the existence of a PTAS for

the general ESMT or RSMT problems.

The performance ratio of our algorithm holds as long as the length of the longest edge
in the minimum-cost spanning tree is at most c. We do not have to assume that the length
of the shortest edge is 1. The only trouble is that there could be too many regular points
in one cell of the partition, making the running time possibly exponential. However, if
we assume that the regular points are “uniformly distributed”, i.e., the number of regular
points in each cell of size k X k is at most ak? for some constant «, then our algorithm will
still run in polynomial time. Note that our notion of “uniform distribution” is different (and
stronger) than that in a conventional probabilistic algorithm [49]. In a Possion process, only

the ezpected number of regular points is the same for all regions of equal area.

Chapter 8

Summary

In the thesis, several important problems arising in computational biology have been inves-
tigated. Thr :roblems concern multiple sequence alignment, comparison of various types

of trees, and Steiner trees. The major contributions of this thesis are summarized below.

1. Multiple sequence alignment. Three problems, multiple sequence alignment with SP-
score, tree alignment and generalized tree alignment are investigated. It is shown that
multiple sequence alignment with SP-score and tree alignment are NP-complete, and
that generalized tree alignment is MAX SNP-hard. These results appear in [79].
An efficient approximation algorithm with performance ratio 2 is designed for tree
alignment when the given evolutionary tree is of bounded degree. The algorithm is
then extended to a polynomial-time approximation scheme, which is believed to be the

first polynomial-time approximation scheme in computational biology. These results

appear in [80)].

2. Comparison of labeled trees. The alignment of trees is proposed as an alternative to

tree edit. Both ordered and unordered trees are considered. An efficient algorithm

102

8. SUMMARY 103

is designed for ordered trees. The time complexity of this algorithm is (|11 - | T3] -
(deg(T1) + deg(T3))?), where |Tj| is the number of nodes in 7; and deg(T;) is the
degree of T}, ¢ = 1,2. Our algorithm is faster than the best known algorithm for tree
edit, For unordered trees, it is shown that the alignment of trees can be solved in
polynomial time if both trees are of bounded degree. And it becomes NP-hard if one

of the trees is allowed to have an arbitrary degree. These results are included in [46).

3. Comparison of evolutionary trees. Several problems arising in the comparison of evo-
lutionary trees are investigated. It is shown that the maximum agreement subtree
(MAST) problem for three trees with unbounded degree cannot be approximated
within any constant ratio unless P = NP and that this problem cannot be ap-
proximated within ratio n¢, for some 0 < ¢ < 1, unless NP € DTIM E(gpolylogny,
Moreover, MAST with edge contractions for two binary trees is shown to be NP-hard.
This answers two open questions posed in [2]. For the maximum refinement subtree
(MRST) problem involving two trees, it is shown that it is polynomial-time solvable
when both trees have bounded degree and that it is NP-hard when one of the trees
can have an arbitrary degree. Finally, the problem of optimally transforming a tree
into another by transferring subtrees around is considered. The NP-hardness of the
subtree-transfer problem is proved and an approximation algorithm with performance

ratio 3 is given. These results appear in [36].

4. Steiner trees. The polynomial-time approximation scheme designed for tree alignment
works for the Steiner tree problem under a given topology in any metric space. A
polynomial time approximation scheme is also designed for the planar Steiner tree
problem when the given set of regular points is c-local. The algorithm works for both

Euclidean and rectilinear metrics. The results appear in [81].

Bibliography

{1] S. Altschul and D. Lipman, “Trees, stars, and multiple sequence alignment”, SIAM

Journal on Applied Math. 49, pp. 197-209, 1989.

[2] A. Amir and D. Keselman, “Maximum agreement subtree in a set of evolutionary trees

- metrics and efficient algorithms”, Proc. IEEE FOCS’94, 1994.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, “Proof verification and
hardness of approximation problems”, Proc. 33rd IEEE Symp. Found. of Comp. Sci.,
pp. 14-23, 1992,

[4] D. Baconn and W. Anderson, “Multiple sequence alignment”, Journal of Moleccular

Biology 191, pp. 153-161, 1986,

(5] V. Bafna, E. Lawler, and P. Pevzner, “Approximate methods for multiple sequence

alignment”, Proc. CPM’94, pp. 43-53, 1994.

[6] P. Berman and V. Ramaiyer, “Improved approximation for the Steiner tree problem”,

Manuscript, 1993.

[7] M.W. Bern, “Two probabilistic results on rectilinear Steiner trees”, Algorithmica 3,

pp. 191-204, 1988.

104

BIBLIOGRAFHY 105

[8] M. Bern and P. Plassmann, “The Steiner problem with edge lengths 1 and 27, Infor-

mution Processing Letters 32, pp. 171-176, 1989,

(9] H. Carrillo and D. Lipman, “The multiple sequence alignment problem in biology”,

SIAM Journal on Applied Math. 48, pp. 1073-1082, 1988.

(10] S.C. Chan, A.K.C. Wong and D.K.T. Chiu, “A survey of multiple sequence comparison

methods”, Bulletin of Mathematical Biology 54(4), pp. 563-598, 1992.

[11] X. Chen, “An interactive system for sequence analysis”, Master of Science Thesis,

Dept. of Computer Science and Systems, McMaster University, 1994.

[12] M. O. Dayhoff, R. V. Eck and C. M. Park, “A model of evolutionary change in pro-

teins”, Atlas of Protein Sequence and structure, Vol. 5, pp. 89-99, 1972,

[13] C. DelLisi, “Computers in molecular biology: Current applications and and emerging

trends”, Science, 24 (Apr. 1,), pp. 47-52, 1988.

[14] P. Doyle and J.L. Suell, Random Graphs and Electric Networks, The Carus Mathemat-

ical Monographs, The Mathematical Association of America, 1984.

[15] D.Z. Du and F.K. Hwang, “An approach for proving lower bounds: solution of Gilbert-

Pollak’s conjecture on Steiner ratio,” Proc. 31st IEEE FOCS, pp. 76-85, 1990.

[16] D.Z. Du, Y. Zhang and Q. Feng, “On better heuristic for Euclidean Steiner minimum

trees”, Proc. 32nd IEEE Symp. Found. of Comp. Sci., pp. 431-439, 1091.

[17] G. Estabrook, C. Johnson and F. McMorris, “A mathematical foundation for the anal-

ysis of cladistic character compatibility”, Math. Biosci. 29, pp. 181-187, 1976.

[18] R. Fagin, “Generalized first-order spectra and polynomial-time recognizable sets”,

Complezity of Computations (R. Karp ed.), Amer. Math. Soc., 1974.

BIBLIOGRAPHY 106

(19] M. Farach, S. Kannan and T. Warnow, “A robust model for finding optimal evolution-

ary trees”, Proc. STOC’93, pp. 137-145.

[20] M. Farach and M. Thorup, “Fast comparison of evolutionary trees”, in Proc. 5ith

Annual ACM-STAM Symposium on Discrete Algorithms, 1994.

[21] M. Farach and M. Thorup, “Optimal evolutionary tree comparison by sparse dynamic

programming”, IEEE FOCS’94, 1994.

[22] J.S. Farris, Methods for computing Wagner trees, Systematic Zoology 19, pp. 83-92,
1970.

[23] C. Finden and A. Gordon, “Obtaining common pruned trees”, Journal of Classification

2, pp. 255-276, 1985,

[24] L.R. Foulds and R.L. Graham, “The Steiner problem in phylogeny is NP-complete”,

Advances in Applied Mathematics 3, pp. 43-49, 1982.

[25] K. A. Frenkel, “The human genome project and informatics”, Communications of the

ACM 34(11), pp. 41-51, 1991.

(26] M.R. Garey, R.L. Graham and D.S. Johnson, “The complexity of computing Steiner
minimal trees,” SIAM J. APPL. MATH 32, 1977.

[27] M.R. Garey and D.S. Johnson, “The rectilinear Steiner tree problem is NP-complete,”

SIAM J. APPL. MATH 32, pp. 826-834, 1977.

[28] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman, 1979.

[29] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics - A Foundation

for Computer Science, Addison-wesley publishing company, 1989.

BIBLIOGRAPHY 107

[30] D. Gusfield, “Efficient algorithms for inferring evolutionary trees”, Networks 21, pp.

19-28, 1991.

[31] D. Gusfield, “Efficient methods for multiple sequence alignment with guaranteed error

bounds”, Bulletin of Mathematical Biology 55, pp. 141-154, 1993.

[32] J. Hein, “A tree reconstruction method that is economical in the number of pairwise

comparisons used”, Mol. Biol. Evol. 6(6), pp. 669-684, 1989.

[33] J. Hein, “A new method that simultaneously aligns and reconstructs ancestral se-

quences for any number of homologous sequences when the phylogeny is given”, Mol.

Biol. Evol. 6(8), pp. 649-668, 1989.

(34] J. Hein, “Reconstructing evolution of sequences subject to recombination using parsi-

mony”, Math. Biosci. 98, pp. 185-200, 1990

[35] J. Hein, “A heuristic method to reconstruct the history of sequences subject to recom-

bination”, Journal Molecular Evolution 36, pp. 396-405, 1993.

[36] J. Hein, T. Jiang, L. Wang and K. Zhang, “On the complexity of comparing evolution-
ary trees”, to be presented at the Sizth Symposium on Combinatorial Pattern Matching

(CPM?95), 1995.

[37] D.S. Hochbaum and W. Maass, “Approximation schemes for covering and packing

problems in image processing and VLSI”, J. ACM 32, pp. 130-136, 1985.

[38] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, and
R.E. Stearns, “Efficient approximations and approximation schemes for geometric

graphs”, Manuscript, 1993.

[39] L. Hunter, “Molecular Biology for Computer Scientists”, in Artificial Intelligence and

Molecular Biology, ed. L. Hunter, AAI Press / MIT Press, 1993.

BIBLIOGRAPHY 108

[40] F.K. Hwang, “On Steiner minimal trees with rectilinear distance”, SIAM. J.

APPL.MATH, 30 pp. 104-114, 1976.

[41] F.K. Hwang and Y.C. Yao, “Comments on Bern’s probabilistic resuits on rectilinear

Steiner trees”, Algorithmica 5, pp. 591-598, 1990.
[42] F.K. Hwang and D.S. Richards, “Steiner tree problems”, Networks 22, pp. 55-89, 1992.

[43] F.K. Hwang and J.F. Weng, “The shortest network under a given topologyv”, Journal

of Algorithms 13, pp. 468-488, 1992.

[44] T. Jiang and M. Li, “Optimization problems in molecular biology”, in Advances in

Optimization and Approzimation, D.Z. Du and J. Sun (eds.), pp. 195-216, 1994.

[45] T. Jiang and M. Li, “On the approximation of shortest common supersequences and

longest common subsequences”, to appear in SIAM J. Comput.; also presented at

ICALP’9.

[46] T. Jiang, L. Wang and K. Zhang, “Alignment of trees - an alternative to tree edit”,

Theoretical Computer Science, to appear; also presented at CPM’94, pp.75-86.

[47] T.H. Jukes and C.R. Cantor, “Evolution of protein molecules”, in H.N. Munro, ed.,

Mammalian Protein Metabolism, Academic Press, pp. 21-132, 1969.

[48] V. Kann, “Maximum bounded 3-dimensional matching is MAX SNP-complete”, In-

formation Processing Letters 37, pp. 27-35, 1991.

[49] R.M. Karp, “Probabilistic analysis of partitioning algorithms for the traveling salesman

problem in the plane”, Math. Operations Research 2, pp. 209-224, 1977.

[50] R.M. Karp, “Mapping the genome: some combinatorial problems arising in molecular

biology”, Proc. ACM Symp. Theory of Computing, pp. 278-285, 1993.

BIBLIOGRAFHY 109

[51] P. Kilpelainen and H. Mannila, “Ordered and unordered tree inclusion”, Report A-

1991-4, Dept. of Comp. Science, University of Helsinki, August 1991; to appear in
SIAM J. on Computing.

[52] J. Komlos and M.T. Shing, “Probabilistic partitioning algorithms for the rectilinear

Steiner problem,” Networks 15, pp. 413-423, 1985,

(53] E.S. Lander, R. Langridge and D.M. Saccocio, “Mapping and interpreting biological

information”, Communications of the AC}” 34(11), pp. 33-39, 1991.

[54] S.-Y. Le, J. Owens, R. Nussinov, J.-H. Chen B. Shapiro and J. V. Maizel, “RNA sec-
ondary structures: comparison and determination of frequently recurring substructures

by consensus”, Comp. Appl. Biosci. 5, pp. 205-210, 1989,

[55] S.-Y. Le, R. Nussinov, and J.V. Maizel, “Tree graphs of RNA secondary structures and

their comparisons”, Computers and Biomedical Research, 22, pp. 461-473, 1989.

[56] R. J. Lipton, T. G. Marr, and J. D. Welsh, “Computational approaches to discovering
semantics in molecular biclogy”™, Proceedings of the IEEE, vol. 77, 7, pp. 1056-1060

1989.

[57] S.Y. Lu, “A tree-tree distance and its application to cluster analysis”, IEEE Trans.

Pattern Anal. Mach. Intelligence 1, pp. 219-224, 1979,

[58] M. Middendorf, “More on the complexity of common superstring and supersequence

problems”, to appear in Theoret. Comp. Sci.

(59] W.Miller, S. Scbwartz, and R. C. Hardison, “A point of contact between computer
science and riolecular biology”, IEEE Computational Science and Engineering, Spring

1994, pp. 69-78.

BIBLIOGRAPHY 110

[60] C.H. Papadimitriou and M. Yannakakis, “Optimization, Approximation, and complex-

ity classes”, Journal of Computer and System Sciences 43, pp. 425-440, 1991,

[61] D. Penny, “Criteria for optimising phylogenetic trees and the problem of determining

the root of a tree”, J. Mol. Evol. 8, pp. 95-116, 1976.

[62] P. Pevzner, “Multiple alignment, communication cost, and graph matching”, SIAM J.

Applied Math. 56(6), pp. 1763-1779, 1992.

[63] D. Sankoff, “Minimal mutation trees of sequences”, SIAM J. APPL. Matkh. 28(1), pp-
35-42, 1975,

[64] D. Sankoff and P. Rousseau, “Locating the vertices of a Steiner tree in an arbitrary

metric space”, Mathematical Programming 9, pp. 240-246, 1975.

[65] D. Sankoff, R. Cedergren and G. Lapalme, “Frequency of insertion-deletion, transver-

sion, and transition in the evolution of 5S ribosomal RNA™, J. Mol. Evol. 7, pp. 133-149,

1976.

[66] D. Sankoff and J. Kruskal (Eds), Time Warps, String Edits, and Macromolecules: the

Theory and Practice of Sequence Comparison, Addison Wesley, Reading Mass., 1983.

[67] D. Sankoff and R. Cedergren, “Simultaneous comparisons of three or more sequences
related by a tree”, in D. Sankoff and J. Kruskal (eds), Time Warps, String Edits,
and Macromolecules: the Theory and Practice of Sequence Comparison, pp. 253-264,

Addison Wesley, Reading Mass., 1983.

[68] N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing

phylogenetic trees”, Mol. Biol. Evol. 4-4, pp. 406-425, 1987.

[69] G.D. Schuler, S.F. Altschul, and D.J. Lipman. “A workbench for multiple alignmext

construction and analysis”, in Proteins: Structure, function and Genetics, in press.

BIBLIOGRAPHY 111

[70] R.Schwarz and M. Dayh »ff, “Matrices for detecting distant relationships”, in M. Day-
hoff, ed., Atlas of protein sequences, Natioral Biomedical Research Foundation, 1979,

pp. 353-358.

[71] B. Shapiro, “An algorithm for comparing multiple RNA secondary structures”, Com-

put. Appl. Biosci. pp. 387-393, 1988.

[72] B. Shapiro and K. Zhang, “Comparing multiple RNA secondary structures using tree

comparisons”, Comput. Appl. Biosci. vol. 6, no. 4, pp. 309-318, 1990.

[73] F.Y. Shih and O.R. Mitchell, “Threshold decomposition of grayscale morphology into
binary morphology”, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-11, pp. 31-
42, 1989.

[74] F.Y. Shih, “Object representation and recognition using mathematical morphology

model”, J. System Integration, vol. 1, Pp. 235-256, 1991,

75] M. Steel and T. Warnow, “Kaikoura tree theorems: computing the aaximum agreement
g g

subtree”, Information Processing Letters 48, pp. 77-82, 1993,
(76] K.C. Tai, “The tree-to-tree correction problem”, J. ACM, 26, pp. 422-433, 1679.

[77] Y. Takahashi, Y. Satoh, H. Suzuki and §. Sasaki, “Recogniticn of largest common
structural fragment among a variety of chemical structures”, Analytical Science, vol.

3, pp. 23-28, 1987.

(78] S.A. Vavasis, “Automatic domain partitioning in three dimensions”, SIAM J. Sci. Stat.

Comput. 12-4, pp. 950-970, 1991.

79] L. Wang and T. Jiang, “On the complexity of multiple sequence ali nrment”, Journal
g

of Computational Biology, vol. 1, pp. 337-348, 1994.

BIBLIOGRAPHY 112

[80} L. Wang, T. Jiang, and E.L. Lawler, “Aligning sequences via an evolutionary tree:
complexity and approximation”, Algorithmice, to appear; also presented at the 26th

ACM Symp. on Theory of Computing, 1994.

[81) L. Wang and T. Jiang, “An approximation scheme for some Steiner tree problems in
the plane,” submitted to Networks; also presented at the 5th Annual International

Symposium on Algorithms and Computation, pp. 414-422, Beijing, 1994.

{82] T. Warnow, “Tree compatibility and inferring evolutionary history”, J. of Algorithms

16, pp. 388-407, 1994.

[83] T. Warnow, Private communication, 1994.

[84] M.S. Waterman and M.D. Perlwitz, Line geometries for sequence comparisons”, Bull.

Math. Biol. 46, pp. 567-5377, 1984.

(85] M.S. Waterman, “Sequence alignments”, in Mathematical Methods for DNA Sequences,

M.S. Waterman (ed.), CRC, Boca Raton, FL, pp. 53-92, 1989.

[86] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance between trees

and related problems”, STAM J. Comput. 18, pp. 1245-1262, 1989.

[87] K. Zhang, R. Statman, and D. Shasha, “On the editing distance between unordered

labeled trees”, Information Processing Letters, 42, pp. 133-139, 1992,

[88] K. Zhang and T. Jiang, “Some MAX SNP-hard results concerning unordered labeled

trees”, Information Processing Letters 49, pp. 249-254, 1994,

(89] A.Z. Zelikovsky, “The 11/6 approximation algorithm for the Steiner problem on net-

works”, Algorithmica 9, pp. 463-470, 1993.

