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§
ABSTRACT

The boundary layer equations governing the conservation of mass and momentun and the
corresponding boundary conditions are derived, using spherical coordinates for flow past a
rotating sphere. A finite-volume-based numerical scheme using structured orthogonal body-
fitted grids was used to examine potential and vortex flow around a stationary sphere and
flow fields around rotating spheres whose axes are parallel and perpendicular to the free
stream direction. Some parametric studies were conducted. The results are presented in
graphical form for flow visualization. Experiments for the case of the rotational axis being
parpendicular to the free stream were designed and data generated using a triple-sensor probe.
It has found that the numerical results agreed reasonably well with experimental results within
experimental 1::;ertainty. The comparisons were not completed over whole flow field due to

the limitations in the experimental conditions.
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CHAPTER 1

INTRODUCTION

1.1 General Approach

The flow field around a rotating body has been the subject of many investigations, These have
included ballistics of spinning projectiles, theoretical studies in meteorology where it is
regarded as a simple model of large scale atmospheric dynamics, different aspects of jet
engines, and flow on the hub of an axial turbomachine. Thus, an understanding of the flow

field around a rotating body is pivotal to understand many phenomena.

There are two limiting cases for this kind of problem to a sphere. One case is a
stationary sphere in a uniform stream Numericai solutions for this problem have been given
by Dennis and Walker (1971) at Reynolds numbers Re = /1, 5, 10, 20, 40, Rimon and Cheng
(1969) at Re = 10, 40, 100, 300, 1000, Fornberg (1988) at Re = 100, 200, 500, 1000, 2000,
5000, Hamielec and Houghton et al. (1967), Mihai and Vasile et al. (1985). In these
investigations, series truncation and central differences have used to obtain solutions. Face
(1936) also performed experimental work for this case.

1
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The second case is steady viscous fluid flow due to a sphere that rotates about an axis
with a constant angular velocity in a fluid at rest. This flow is of such a type that in the friction
layer the fluid is translated by the centrifugal forces from the poles to the equator, and on the
equatorial plane the fluid flows off toward the outside. Theoretical, numerical and
experimental solutions have been obtained by many researchers for this case, for example,
Dennis, Singh and Ingham (197G, 1981) at Re = 10, 20, 500 and Re = 20, 100, 1000, 5000,
respectively, Singh (1970), Howarth (1951), Banks (1976), Nigam (1974), Kohama and
Kobayashi {1983) and Kobashi (1956). Series truncation and central difference are used for
the numerical studies, and the momentum integral technique is used to solve the laminar
boundary layer equations. In contrast to the first limiting case (nonrotating sphere in a
uniform flow), this limiting case does not have boundary-layer character, it means the friction
effect is not limited to a thin layer near the wall but takes effect for the entire environment

around the rotating body.

On the other hand, limited research results are available for the case of a rotating body
in an axial stream. Schlichting (1953) investigated the laminar flow about a rotating body of
revolution in an axial free stream by using the momentum integral technique. For the special
case of a rotating sphere in a free stream, he obtained the separation point, the drag, and the

resisting moment for different values of the spin parameter U, /U,

Circumferential velociy U, R0

Free - stream velocity U U (L.1)
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where R,, denotes the radius of the maximum cross section of the body of revolution. U,is
the circumferential velocity, U, free-stream velocity and  angular velocity. The calculations
were aimed at deciding the entire boundary-layer variation as a function of U, /U, . He found
that the separation point of the laminar boundary layer advanced to the rear hemisphere

because of the rotational motion.

El-Shaarawi, El-Refaie, and El-Bedeawi (1985) numerically studied the steady laminar
boundary layer produced by a flow of an incompressible fluid around a rotating sphere whose
axis is parallel to the free stream. The effect of spin parameter, 7a/Re’, Ta represents Taylor
number, over the range of 0 < Ta/Re’ < 10,000 at a fixed value of Reynolds number, Re =
10,000 is studied. El-Shaarawi, Kemry and El-Bedeawi (1987) used the same scheme to
investigate the effect of Reynolds number of free stream. Results are presented over the range

of 5000 < Re < 300,000 for values of Ta/Re’ = ¢ and 2.

1.2  Contributions of the Thesis

The work of all the researchers cited has focussed on theoretical, numerical and experimental
studies on the limiting cases and one special case - the rotating axis is parallel to the free
stream. However, there is no published literature on the case of a rotating sphere whose axis
is perpendicular to the free stream. Then, this study is proposed to deal with this case. Here

the dominant dimensionless quantities are Reynolds number and the spin parameter. The spin



parameter, Ja/Re’, is defined as the ratio between the centrifugal and inertia forces

2 1.2)

where 7a is Taylor number, Tz - (4w2a?)/v?. Both parameters influence the behavior of a

flow field.

The study affords the first step in the calculation of the flow field around an arbitrarily
rotating sphere in a free stream. This is a complicated three-dimensional boundary-layer flow
problem. The subsequent extension to a multi-body system will be even more complex. To
obtain information on the flow field for this situation, three things were concerned with the
present study:

i. derivation of the boundary layer equations and corresponding boundary conditions

ii. numerical predictions of the flow fields around rotating sphere for different cases
and parameter variation

ili.  experimental investigations on the flow field around a rotating sphere whose

axis is perpendicular to the free stream.

1.3  Outline of the Thesis

The chapters in this thesis are organized as follows:
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Chapter 2 presents a literature survey of the studies relevant from the standpoint of
the present work. The contents of that Chapter has been subdivided according to the

organization of the thesis.

Chapter 3 introduces the deduction of the boundary layer equations based on the
principle of similarity and corresponding boundary conditions by coordinate transformation.

The details of the transformation are provided in Appendix L.

The basic transport equations in rectangular and general curvilinear coordinates are
described in Chapter 4. These are accordance with the forms obtained from a 'control-volume'
based approach. Numerical techniques used in the calculation are discussed in this chapter.

The PHOENICS Input Language(PIL) and the FORTRAN codes are put in Appendix II.

Chapter 5 contains the numerical predictions of flow fields around a sphere for

different cases and variations of parameters. Results and discussion are given in this Chapter.

Experimental work is the subject of Chapter 6. It includes the design of the

measurement system, the choice of the measurement method and comparison of results

between calculation and experiment. The experimental techniques presente in Appendix III.

Chapter 7 summarizes the conclusions and gives the recommendations to future work.



CHAPTER 2

LITERATURE SURVEY

There are three types of flow problems for flow field around a sphere. The first one is a very
common problem: uniform flow past a stationary sphere. The second one is the steady flow
due to a rotating sphere. The third one is boundary layer flow around a rotating sphere in a

free stream. The third case is the one on which attention has been focused.

2.1  Uniform Flow past a Stationary Sphere

This is a classical problem and has been the subject of much investigation: for example,
Dennis and Walker (1971), Rimon and Cheng (1969), Hamielec et al (1967) and Mihai and
Vasile (1985) made computations for this kind of flow at low and moderate Reynolds
numbers /0" - 1(P . A series truncation method (Dennis and Walker, 1971), and finite
difference method (Rimon and Cheng, 1969, Hamielec et al, 1967, and Mihai and Vasile,
1985), are used to solve the stream function - vorticity equations. The reason for solving this
set of equations is the axial symmetry of the problem. Wegener (1961) carried out
experiments on this problem to find the drag coefficient.

6
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The series method consists in expanding the flow variables as a series in the polar
angle & (Dennis and Walker, 1971) or argument 4 = Cos 6 (Dennis et al, 1980), with
functional coefficients in the radial variable. The series is substituted into the MNavier-Stokes
equations and truncated by putting all functional coefficients after a certain stage in the series
equal to zero. This gives a finite set of simultaneous ordinary differential equations to be
solved for the functional coefficients. These equations are solved numerically and the number
of equations to be solved depends on the number of terms retained in the truncated series.
The series used are Legendre (Dennis and Walker, 1971) and orthogonal Gegenbauer (Dennis
et al, 1980) series. This method gave accurate results at low and moderate Reynolds numbers
but is not very suited at higher Reynolds numbers because of the large number of terms in the

order of the truncation required. If Re > 700, this method is invalid (Dennis et al, 1981).

Finite difference methods are used to approximate the Navier-Stokes equations
because of the shortcoming of the series method. They vary considerably in accuracy and
efficiency. If central difference is used everywhere then at large values of the Reynolds
numbers, difficulties are encountered in obtaining a convergent solution of the finite-
difference equations and severe under-relaxation is required. An alternative central finite-
difference formulation employing the #°- extrapolation is described by Dennis et al (1981,
1979) for a large range of Reynolds numbers. It is based on the use of specialized techniques
to obtain an approximating set of finite-difference equations to the full partial differential

equations that govern the flow. The finite-difference equations obtained involve exponential
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coefficients and the matrices associated with them are not necessarily diagonally dominant.
It is possible to expand the exponential functions such that both difficulties may be avoided
and still maintain second-order accuracy. The numerical solutions included, streamlines,
vorticity lines, pressure distribution, drag coefficient, wake bubble growth and separate

points.

At high Reynolds numbers /¢ - 70°, Fornberg (1988) solved the stream function -
vorticity equations by a central second-order finite difference method and obtained results for
streamlines, vorticity lines, pressure distributions and drag coefficients. Face (1936)
performed an experiment for this case to obtain information about critical Reynolds number.
Inchul et al (1990) investigated the stability to this kind of flow by researching the numerical

solutions of the equations in stream function form.

2.2  Steady Flow due to a Rotating Sphere

Sclutions of the boundary layer equations for incompressible, axial-symmetric flow due to a
rotating sphere with a constant angular velocity have been investigated theoretically by
Dennis, Ingham and Singh (1980, 1981), Singh (1970), Howarth (1951), Banks (1976),
Nigam (1974), Tomotika (1935), Yoden and Yamada (1993), El-Shaarawi et al (1993) and
Iliyn (1994). Experimentally by Kohama and Kokayashi (1983), Kobash (1956), Sawatzki

(1971) and Oesterle et al (1951). Dennis et al (1980, 1981) studied the problem for a range
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of Reynolds numbers /0-1¢°. Dennis et al (1980, 1981) and Yoden and Yamada (1993),
solved the stream function-vorticity equations using the method of series truncation for lower
Reynolds numbers and a central finite-difference formulation for higher Reynolds numbers.
On the other hand, the momentum integral technique is used by Singh (1970), Howarth
(1951) and Tomotike (1935) to deal with the equations for the conservation of mass and
momentum. Also Banks (1976) and El-Shaarawi et al (1993), Nigam (1974) used finite-

difference and power series, respectively, to handle the same set of equations.

At different Reynolds numbers, results obtained included velocity components in
radial, azimuthal and transverse directions (Dennis, Singh and Ingham, 1980 and 1981),
(Tomotika, 1935), (Banks, 1976) and (El-Shaarawi et al, 1993), the nondimensional torque
and skin friction on the surface of the sphere (Dennis, Singh and Ingham, 1980 and 1981),
(Singh, 1970) and (Tomotika, 1935), and the streamlines (Dennis, Singh and Ingham, 1930
and 1981}, (Singh, 1970) and (Banks, 1976). Vorticity fields and stream function fields are
investigated by Yoden and Yamada (1993). Moreover, an important phenomenon is found
(Howarth, 1951 and Dennis et al, 1980) regarding streamlines. In steady motion, results show
an inflow into the outer edge of the boundary Jayer confined near the sphere taking place in
streamlines parallel to the rotating axis, and outflow from the outer edge of the boundary
layer for streamlines perpendicular to the rotating axis or making an obtuse angle with the
axis. A region of inflow to the sphere near the pole is balanced by a region of outflow near

the equator and as the Reynolds number increases the inflow region increases and the outflow
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region becomes narrower. The radial velocity also increases with the Reynolds number at the
equator, showing the formation of a radial jet over the narrow region of outflow. In the range

considered there is no separation of the flow near the equator.

Experimental results obtained on critical and transition Reynolds numbers (Kohama
and Kobayashi, 1983), distributions of velocity component and distribution of boundary layer
thickness (Kobashi, 1956) have been compared with theoretical solutions, and the agreement
is shown to be satisfactory. Laminar-to-turbulent transition in the boundary layer has been
studied by Sawatzki (1971) experimentally. Lift and torque coefficients on a rotating sphere
at intermediate Reynolds numbers are measured by Oesterle et al (1991). In a high Reynolds
number range (Re > 10%), the lift on a rotating sphere is measured by Maccol (1928), Davies

(1949) and Tani (1950). In this case, it is found to be independent of the Reynolds number.

2.3 Boundary Layer Flow around a Rotating Sphere in an Axial Stream

Schlichting (1953), provided the simplified equations of motion according to the calculation
method of Prandtl's boundary-layer theory to treat the general case of the rotating body of

revolution in a flow that is parallel to the rotating axis

Ou  udr ow 2.1
ox rak o0z @1

du  vidr ou u, o%u
UH— -« ——— s W—— = 1 J— + PD— (2.2)
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U— + — = + W— =

ox r dx oz gz

ov  uv dr av %
Lv— (2.3)

And the boundary conditions are presented as
2=0: u=0 v=vV=ro, w=0
I=w; u=ufx), v=0
where u, v and w are the meridional, azimuthal and radial velocity components in the x, y and
z-directions, respectively. ., potential velocity component in the x-direction. °

2

circumferential velocity on the sphere surface. And w, angular velocity of the sphere.

El-Shaarawi et al (1985, 1987, 1990, 1992, 1987) investigated the problem
numerically by solving the above boundary-layer equations and experimentally by measuring
corresponding variables. They concentrated their study on the effect of the spin parameter,
Ta/Re, over the range 0 s Ta/Re’ < 10,000 at a fixed value of Reynolds number Re = 10,000
and the effect of Reynolds number over the range 5060 < Re < 30,000 for values of Ta/Re’
= 0, 1. The parameter Ta/Re’ has a physically significant meaning. It represents the ratio

between centrifugal and inertia forces. It has effects on the wall shear stress as well.

The basic equations of mass and momentum conservation, are solved with a finite-
difference scheme employing a rectangular curvilinear fixed coordinate system. Results of the
three velocity components corresponding to different spin parameters are shown as a function

of meridional distance. The variations of meridional and azimuthal dimensionless wall shear
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stresses are given over a wide range of spin parameters (El-Shaarawi, El-Refaie and El-
Bedeawi, 1985). The effect of the Reynolds number is illustrated by El-Shaarawi, Kemry and
El-Bedeawi (1987). Detailed experimental work (El-Shaarawi, Kemry and El-Bedeawi, 1987)
provided a comparison between calculations and experimental results. Agreements between

them are excellent.

The research of Luthander and Rydberg (1935), Tomotika (1938), Schlichting (1953)
and Parr (1964), for the flow on a body of revolution spinning about its axis, has a more
general treatment of the former case. Numerical and experimental conclusions for critical

Reynolds numbers, drag and torque coefficients and velocity distribution agreed well for the

case of a sphere.

For the case of a rotating sphere whose axis is paralle! to the free stream, mass
transfer and convection have also been investigated by El-Shaarawi et al (1950, 1992), Furuta
et al (1975, 1977), Chen and Mucoglu (1977), Palec and Daguenct (1984, 1987) and
Rajasekaran and Palekar (1985). Other than motion equations, the energy equation is included
to solve the problem. The basic computational and experimental methods used here are the

same as these used above, but more complicated.

In the above three situations, there is one thing in common: the problem is axially

symmetric, and it can be treated as a two-dimensional flow problem. Either stream function -
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vorticity equations or momentum equations can be used to solve the problems. Streamlines,

the most straightforward physical figures, are presented in their results.

In this study, the problem is symmetric about the equatorial plane. It is a three-
dimensional problem. The distribution of velocities and pressures, instead of the streamlines,

will be shown with a three-dimensional coordinate system to predict the flow fields.



CHAPTER 3

THEORETICAL ANALYSIS

3.1 Governing Equations

Schlichting (1953) gave the fundamental equations and boundary conditions for boundary-
layer flow around a rotating body in an axial stream (Eqs. 2.1 to 2.3). These equations are
available only for two-dimensional problems. In the present study, a sphere, rotating with
constant angular velocity about a diameter that is perpendicular to the free-stream direction,
is considered. This problem is a three-dimensional problem with the flow field being

symmetric about the equatorial plane.

Following Schlichting's basic theory (Schlichting, 1979) and assuming the physical
properties of the fluid are constant, from the basic spherical boundary-layer equations, the
fundamental three-dimensional boundary-layer equations for current problem are deduced.
These equations in turn can be simplified to two dimensional equations (Schlichting, 1953),

according to the properties of the variables. The details of the procedure are as follows.

14
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Let x, y, z is an orthogenal curvilinear fixed coordinate system as shown in Fig.3.1.
The x-axis is measured along the meridional direction, the y-axis is along the circumferential
direction of a horizontal cross section, the z-axis is along the radial direction of the sphere,
and 7 is along the radial direction of the horizontal cross section. Meanwhile, let free-stream
velocity, U, and sphere radius, a, be denoted as characteristic reference magnitudes. The
variables are non-dimensionalized in the following manner:

lengths X=x/a, Y=y/a, Z=z/a, R=r/a

velocities U=usU., V=v/U, W=w/U.

pressure P=p/(pU2?)

time T=tU,/a
where u, v, and w are the meridional, azimuthal and radial velocity components, respectively,

1, the time; and p, the static pressure.

All quantities with a capital letter, except U., are dimensionless. The Reynolds
number based on sphere diameter is Re = 2U_ a/v. It will be remembered that in the
derivation of the boundary-layer equations dimensionless quantities are used. The reason for
this is that for a given body the dimensionless velocity components are fitnctions of the
dimensionless coordinates; the functions, moreover, do not depend on the Reynolds number
any longer. The practical importance of this principle of similarity with respect to Reynolds
number consists in the fact that for a given body shape it suffices to find the solution to the

boundary-layer problem only in terms of dimensionless variables.
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In the z-diréction we know that gp/c is very small and may be neglected. Thus, the
pressure is depending on x and y alone. From the boundary-layer situation, we have
XUY,V,R~0(1)
T~0(1)
ZW~6.=6/a«l
With these assumptions and without the body forces, the boundary layer equations that

govern the problem are as follows:

=0 (3.1

2 3.2)
u oau." ) oau ° ] . & . U_qz_u
" 9x "By r dx oz 2
v ov  uv dr ov
H— + V—m + —_—
ox oy r dx oz
LA S A LY (3-3)

Here, in x and y momentum equations, pressure terms are substituted by known potential flow
expressions according to Schlichting's (1979) analysis; w.° and v.° are potential velocity
components in x and y-directions on the surface of the sphere, respectively. The pressure
increase across the boundary layer is of the order &°, i.e., very small. At the outer edge basic
equations are applied to obtain expressions for the pressure gradients by outer edge

parameters; then they are connected to momentum equations.
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3.2 Boundary Conditions

There are two kinds of boundary conditions as follows
i At the surface of the sphere, 0°< 6< 90°, 0° < ¢ < 360°,z = 0
u=w-0 (3.4)
v=w asnb (3.5)
where fis the center angle measured from the axis of rotation; ¢, the angle on a horizontal

circular cross section; and w, the angular velocity of the sphere.

ii, Far away from the surface of the rotating sphere, the flow is a two-dimensional
potential flow. It has the following two velocity components (Milne-Thomson, 1968) in the

coordinate system shown in Fig.3.2.

u'=-U [1+a®/2(a~z2)]sina (3.6)

w'=Uw[1-a3/(a+z)3]cosa 3.7)

where " and w" are potential velocity components in the x and z-directions, respectively for
the rotating sphere whose axis is parallel to the free stream direction; and «, the center angle
measured from the horizontal axis. The expressions must be translated (sees Appendix I) to

conform with coordinate system used in this thesis (Fig.3.1), then these become:
u =U[1:+ a®/ (a+ z)* ] cos¢ cosB (3.8)

v--U[1+a*/2(@+z)0]sing (3.9)

w=U[1-a*!/(@a+z2)?*]cosg sind (3.10)
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3.3 Nondimensional Governing Equations and Boundary Conditions

Introducing the dimensionless parameters given in the section 3.1, the nondimensional

governing equations and boundary conditions may be written as follows

U VyTa UdR RedW @3.11)
80X 9Y Re Rdx 2 az -

y@U , yTa ,8U  Ta V?dR  Re oU
X Re 3Y Re*RaAX 2 aZ

) . (3.12)
CplUl VT, U T OaR
" aX Re " 3Y Re? R dX 22
yd  WTa,av W dR Re oV
X Re 3Y R dX 2 azZ
(3.13)

,/EV,,BV." UV’ dr 3%

Re * @Y R d¥ 372

The corresponding nondimensional boundary conditions may be expressed as

i At Z = 0 (surface of the sphere)

U
V:

W -0 (3.14)

ve )
- sin® (3.15)

wa
where V* is a circumferential velocity at a point on the sphere surface.

ii. At Z > &, (outer edge of the boundary layer)

U=U.=[1+1/(I+Z)3]c05(p cos@ (3.16)



V-V =-[1+1/2(1+«2)0°]sing

W-W-[1-1/(Q1+2)®]cos¢ sinB

where 4. is the dimensionless boundary layer thickness.
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Figure 3.1

Spherical coordinate system
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Figure 3.2 Coordinate system for original flow
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CHAPTER 4

NUMERICAL METHOD

4.1 Basic Equations

The basic equations of fluid mechanics, assuming the fluid is incompressible with constant

properties can be written in general form (Patankar, 1980) as:

2(04) + 7 - (pad)
ot

Iransient + convection

(4.1)
diffusion + source

The transport of some property ¢ is a result of the combined influence of transience,
convection, diffusion and source-related effects. The Navier-Stokes' equations may be
regarded as the equation for the derivatives of three velocity components incorporating
viscous and pressure gradient effects, while the continuity equation is obtained by taking ¢

to be unity, with only convective activity.

In this thesis, steady, laminar and turbulent, incompressible, constant-property flows

are considered. Thus transient terms have been omitted from these equations, and the

22
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diffusion terms have been simplified. Other than this, the general form has been retained so

that the more universal forms can easily be recovered.

4.2 Numerical Scheme

4.2.1 Finite - volume Equations

The basic solution procedure used in the remainder of the study is the finite-volume method
that uses a modified version of the SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) algorithm (Patankar and Spalding, 1972 and Patankar, 1980).

The methodology involves constructing a grid made up of many cells connected in a
structured manner. Figure 4.1 shows a typical cell. The location of the node Pis a weighted
average of the eight cell corners. Assuming the nodal value of ¢ at P, @» is related to its six

neighbors by a set of linear algebraic equations having the form

Aplbybp) + abpdy) + adbgdy) » aby-by) +

aL(‘bL'd)p) + aH(¢H_¢P) *+ GT(¢T-¢P) + 8 =0 (4'2)

where the subscripts #, E, S, N, L, H refer respectively to the west, east, south, north, low,
and high neighbors of P and ¢, refers to the value of ¢ at the previous time step. S is the

source term. The above equation is termed a finite-volume equation, as it approximates the
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differential equations of motion, integrated over the cell volume. The linking coefficients are
evaluated by considering the combined influence of transience, convection, diffusion and

source-related effects.

The above equations may be solved by various iterative schemes; point-by-point, line-
by-line, slab-by-slab, or whole-field solution procedures (Spalding, 1980). The general

equation integrated over a control volume is presented in discretized form as

apbp = ayby, + ads + a by, -+ agdy,

4.3
+ aHd)H + aL¢L - aTd)T + b ( )

where & and a, are employed to express not only sources but boundary conditions,

corrections to left-hand-side terms, under-relaxation practices, etc.

4.2.2 Body-fitted Coordinates

During the simulation process, due to the particular curved shape, a special coordinate
system, body-fitted coordinates (BFC), is used to generate the grids in the spherical domain.
The theoretical fundamental of BFC is actually a coordinate transformation from curvilinear
to Cartesian coordinates. The use of body-fitted coordinates is a natural extension of the

finite-volume method (Malin et. al., 1985).
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In BFCs, as with regular grids, the scalar variables are stored at the cell center, i.e. the
arithmetic mean of the cell corners. Meanwhile, velocities are stored at the centers of cell
faces. The direction of the stored velocity is along the line joining adjacent cell centers (local
grid direction). The magnitude of the stored velocity is obtained by resolving the total velocity
vector (by projection) in the direction of the line joining the cell centers. The stored velocity

is therefore known as a resolute.

As Figure 4.2 shows, these resolutes are OA4, OB and OC, respectively. The velocity
components in local grid directions, / and 2, are OQ and OP, respectively. Components and
resolutes are equivalent only when the grid is orthogonal. If p, g, r are the velocity
components in the local grid directions, and &, &,, &, are the unit vectors defined in these

directions, i.e., 1,2 and 3, then the velocity vector can be expressed as

-

V - pé.l + qu + fé'3 (4.4)

And the velocity resolutes are formed by u - e‘l-f’, V- 52-17, w - 53-17, respectively. The

velocity components are written in terms of the resolutes as

D= Apu + BPV + CPW (4.5)
q - Aqu + qu + qu (4.6)
r-=Au+ By Cw 4.7)

where the A's, B's and C's are functions of angles between the coordinate directions.
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In fact, in the calculation program the stored velocity values are the tangential
resolutes. For convenience, in the following discussion the compact notation u,, v,, w, will be
used instead of u,,, v, W, Similarly P-E, P-N, P-H refer to the tangential-displacement
components, &, &, dz*, will be expressed as dx, dy, dz. Finally the areas 4,, 4, , A, refer

to normal comiponents 4, A,.;, Ay, These are the cell-face vector areas.

Without transient and source-terms, the resolute form of the transport equation may

be written as (Beale, 1993)

d, 1 o, 1
J (’"')) . ___(_J (] + —-(—-‘—J (”)) =0
ax(a ay e’ d ) 3z g ° (4.8)

where Jis the total flux that combined the convection and diffusion terms, and defined as

- pid - TV (49)

And a7 denotes the cosine of the angle between the x-tangent and x-normal directions,
and @, the y- and z- direction cosines. Because the volume of the parallelepiped bounded by

the tangential components dx, dy, dz is

im dV - add dc - cy"dAya)’ - ad4 dz

m (4.10)

Eq. (4.8) can be integrated to obtain

4 c'fc(”)-A wa(ﬂ’)+A an(”r)-A JJ.:(”LA th(’“')_A l‘] i('"') =0 (4' 1 1)
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Thus, the transport equations may be discretized as described above, subjected to only two

modifications.

The first modification to the finite-volume method is that the normal resolutes of
Jmust be computed from the stored tangential values. For the convection flux, the procedure
is as follows. The stored values are the tangential velocity resolutes, u,, v,, w,. Considering
the east face convection flux, m,. Values of u,, v,, w, are used to construct the components
of a vector, &, based on the inverse of the direction cosines between the grid lines P-E, P-N,
P-H. The magnitude of the convection flux normal to 4, is then obtained as the projection of

these components normal to the east face

£ = {nr) - (nr)
m,=pA; @, = pA""ue(u) = pA, . u" (4.12)

All three tangential resolutes contribute to the construction of the normal resolute

u,™, so that

m, - pAFu +Gy +Hw) (4.13)

F, G, and H, are geometric factors related to angles between the coordinate and the cell-face

directions. Convection coefficients at the other interfaces are computed in a similar fashion.

A similar treatment is used for the diffusion flux. Since grad ¢ is a vector resolute, it

is also necessary to construct the tangential components of the diffusion flux vector and
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project these in the normal direction (using the same geometrical factors, F, G, and H, above).

Considering the norma! diffusion flux resolute across the east face

Vd) - F (d)E'd)p) . G (¢N-¢P) « H (¢H-¢P)

P PE— P— (4.14)
|PE | |PN | |PH |

With similar terms for the other resolutes.

A second set of modifications is applied to the momentum-equation terms. When
integrating over a finite-volume, it is necessary to refer values to locally-fixed directions.
Consider the east neighbor of u,, u,; say, in the u-momentum equation. To construct the
finite-volume equation associated with a locally oblique curvilinear coordinate system, the
components of a vector are constructed in a fashion similar to Eq. (4.13), from velocity
resolutes u,, V,z, Wyz. These are then projected in direction P-E, i.e. parallel to u, This
treatment of », and u,, accounts for grid curvature. Divergence effects may be similar treated
in regard of u,;, u,y in the u-momentum equations. Curvature and divergence terms are

referred to as Coriolis and centrifugal effects, respectively.

An element of bias has been introduced by using the triplet u,, v,, w, in constructing

the components of a vector at e, the use of higher order schemes e.g. involving u, u,, v,, v

n o n

w,, w, while reducing the error.
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The BFC equations are solved by the regular-grid solution methods in the software
used which is based on the SIMPLEST algorithm. Equations are solved by sweeps in the z
direction, which are repeated until convergence is achieved. The pressure-correction equation
can be solved whole field. The only modification in the solution procedure for BFC's is in the

pressure-correction sequence, when the grid is non-orthogonal.
4.2.3 Relaxation

Fluid flow and heat transfer problems are governed by partial differential equations that are
nonlinear and very often are strongly coupled. These facts make it difficult to obtain a
convergent solution and sometimes solution controlling parameters must be enforced to get
and enhance convergence. There are two relaxation methods provided for control divergence

behavior.

i. False - time -step relaxation

pV
apgh, - ) ahp + ayby + b+ IP (dp - &poy) (4.15)

F- WESNHL At

where pV; is the in-cell mass, the denominator 41, is the so-called false time-step and ¢,
is the previous variable value. Based on the general finite volume equation, Eq. (4.3), an

additional source term was added to the equation. It showed that the value of the false time-
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step controls the rate at which the dependent variable is going to change from sweep to
sweep. The two extremes are:

(a) At = very large value (1.0E10 say) = pVy/Aatl, -0

(b) At = very small value (1.0E-10 say) — Do = Do o
In the first case, the added term vanished entirely meaning that there is no relaxation at all.
In the second case, there is so much relaxation that the dependent variable gets 'frozen', i.e,,

it is not allowed to change from one sweep to the next one.

i, Linear relaxation

Gppew = Ppog * € ( b coteutarea = oo ) (4.16)

The dependent variables are updated from one sweep to the next one are constrained by
adding a linear fraction of the previous value of ¢ to the current value. ¢ is a relaxation factor.

Thus, setting 0 < ¢ < 1.0 slows the changes in @, from sweep to sweep.
In the calculation procedure of this study, the false-transient relaxation method was
chosen for all velocity components, while the linear relaxation method was chosen for

pressure p. In the latter, there is no false transient.

4.2.4 Rotating Coordinate System
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Because of the rotation of the sphere, a rotating coordinate system was also considered with
BFC. For a coordinate system rotating with constant angular velocity, w, the resolutions of

the apparent body-force per uni* volume are

F =& [-2p8x0-pd x (& xR)] 4.17)

where vectors of €, @, 0 and R are the total unit vector, the rotation vector, total velocity
vector and the radius vector, respectively. The first term, -2p @ x (, is the Coriolis force
that is perpendicular to vectors of () and @ . The second term, -pB x ( & x R),isthe
centrifugal force. These forces are incorporated into the mathematical model as additional
volumetric momentum sources. Obviously, this is the case for rotating sphere situations, so

the author has considered it in the corresponding programs.

4.2.5 Cyclic Boundary Conditions

Cyclic boundary conditions are required whenever the two ends of the calculation domain in
the x-direction join up with one another. The general rule is that whenever identical
conditions are to be expected at x = ¢ and x = last x, and finite flow is to be expected through

that surface, then the boundaries are cyclic.

For both rotating sphere cases, rotating axes are parallel and perpendicular to the free

stream, the cyclic boundary condition occur in the circumferential direction of BFC.
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Therefore, at the positions ¢ = (° and @ = 360", a cyclic boundary condition is employed

to handle the repeat conditions of the two planes.

4.3 Computer Code and Application

The computer codes used for the numerical study were the PHOENICS (Parabolic,
Hyperbolic or Elliptic Numerical Integration Code Series) versions 1.5 to 2.0. All

computations are made on a Sunspark station operating in a UNIX environment.
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Figure4.1  Control volume for calculation



Figure 4.2 Resolutes and components of vector
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CHAPTER §

NUMERICAL PREDICTION OF

FLOW FIELDS AROUND SPHERES

5.1 Grid Geaeration

Two kinds of grids, cylindrical and spherical, are considered for the geometric symmetry of

the flow field domain. The general strategy involves the use of body-fitted-coordinate (BFC)

grids, connected in a structured fashion that has desirable features as listed below:

i equivalent to a distorted Cartesian grid

ii, grid lines must continue right across the grid

iii.  parallel grid lines must remain parallel

iv. one set of grid lines should be aligned with the main flow direction to reduce
numerical false-diffusion errors

V. concentrating grid lines in regions of interest (boundary layers, wakes etc.)

5.1.1 Cylindrical Grid

35
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For problems of flow around a staticnary sphere or a rotating sphere whose axis is parallel
to the free stream direction, it is convenient to use a cylindrical grid system illustrated in
Figure 5.1 because of axial symmetry. Using a curvilinear coordinate system, let x be the
radial direction, y the circumferential direction and z the axial direction. The free stream
direction is the same as the z-direction. To match the spherical surface, the Laplace solver
with 10 iterations is used. There are 70 radial cells, 20 circumferential cells and 30 axial cells.
The size of the cells is not distributed uniformly in the axial direction, with high concentration
near the polar area. Due to the procedure of the grids generation, the first and the last planes
on the circumferential direction are overlapped. A cyclic boundary condition is introduced to

handle this situation.

5.1.2 Spherical Grid

For problems of the flow field due to a rotating sphere and the flow field around a rotating
sphere whose axis is perpendicular to the free stream direction, it is more convenient to use
a spherical grid system as shown in Figure 5.2. In the latter case, the flow field is
hemispherically symmetric about the equatorial plane. Here x is along the circumferential
direction of horizontal plane, y the radial direction and z the circumferential direction of
vertical plane, respectively. Only one half of the sphere above the equatorial plane is
considered because of hemispherical symmetry. The free stream direction is along with the

x-direction. There are 3/ cells in the circumferential direction of horizontal plane, 15 cells in
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the radial direction and /7 cells in the circumferential direction of vertical plane. The size of
the cells is exponentially (exponential coefficient equal to 1.2) distributed in the radial

direction, with high concentration near the surface of the sphere.

It worth mentioning that the first radial plane and the last radial plane in the x-
direction are the same plane, again the cyclic boundary condition is used to treat it.
Furthermore, the last circumferential plane in the z-direction, in fact, became a line on the

rotational axis. Therefore, one-dimensional boundary condition is all that is necessary.

5.2 Flow Fields past a Stationary Sphere

Two cases are included in this section. One is potential flow field past a sphere at low
Reynolds number. The other is the vortex flow field past a sphere at moderate Reynolds
number. An important difference between them is that whether or not a separated wake
appears behind the sphere. Calculated results for velocity and pressure distributions, are given

with detailed discussions. Results are compared with other researchers' results.

5.2.1 Potential Flow Field

Results
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Some work has been carried out on the flow field around a stationary sphere. Figures 5.3 and
5.4 show the results of velocity and pressure distributions on two symmetrical planes,
respectively with Reynolds number equal to 2.2, the free stream velocity is / m/s and inlet
reference pressure J N/nr’ (the unit of all pressure graphics). Where the flow is potential flow,
the Darcy law i.e. a Laplace-equation form, is applied. This usage eliminates the convection

and diffusion terms and is the recommended way of solving potential flows in BFC.

Discussion

As shown in Figures 5.3, the problem is axially symmetric. The result shows that the smallest
velocity occurs at the front polar point area. Around the equatorial plane, velocity has the
largest value. This result is in excellent agreement with classical calculation results, such as
Rimon and Cheng (1969), and Dennis and Walker (1971), shown in Figures 5.7 and 5.8. As

the Reynolds number is very small, no separation present.

Figure 5.4 indicates that the pressure has the largest value at the entrance of the whole
calculation domain and the smallest value at the exit. The pressure changes along the free
stream direction smoothly, but there is no change on each of the cross sections. This resuit
is somewhat different from the results of Rimen and Cheng (1969) and Dennis and Walker
(1971). Their results have the smallest pressure value at the point on where the largest

velocity gradient occurs. The reason for this is the use of the Darcy law in the calculation.
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5.2.2 Vortex Flow Field around a Sphere

Results

Another case of this kind of problem is vortex flow around a stationary sphere. When the free
stream velocity is increased to a certain value, the flow is disturbed and a vortex occurs
behind the sphere. Using a standard k-¢ turbulence model, the evolution of near wake
structure, at Reynolds number equal to 22, free strenm velocity 60 m/s and outlet reference

pressure /0 N/nr’, is shown in Figure 5.5. Figure 5.6 is the pressure distribution.

Discussion

Figures 5.5 and 5.6 show that at the stagnant point, the velocity has the smallest value, while
the pressure has the largest value. Around the equatorial plane, velocity has largest value due
to the curved surface, the pressure has smallest value correspondingly. Near the rear polar
point, velocity is reversed and the dead water phenomena occurs. Here the pressure is smaller

than the rest positions of this area because the dead water phenomenon.

One of the important points is to decide the Reynolds number at which a separated
wake first appears behind the sphere and to examine the subsequent development of the wake

with Reynolds number. Re = 20.5, has given by Dennis and Walker (1971) and 24 by Rimon
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and Cheng (1969) for the onset of separation.

Comparing the pressure distributions on the whole flow field with the case of potential
flow, Figure 5.4, we conclude that pressure has no change corresponding to the velocity
variation on a cross section if a velocity potential exists. The inlet side has the largest pressure
and outlet the smallest. Here, the pressure distribution is in good agreement with the results

of Rimon and Cheng (1969) when Reynolds numbers are in the same range.

Results given by Rimon and Cheng (1969} and Dennis and Walker (1971) are shown
in Figures 5.7 and 5.8. In the rear polar point area, there is a dead water area due to the
separation. This is because when the free stream velocity is increased, Reynolds number also
increases. In this situation, a separation point occurs in the rear half sphere. The size of the
dead water area depends on the position of the separation point which is a function of the free

stream velocity.

5.3 Flow Fields around a Rotating Sphere

Three different flow fields in this kind of problem will be discussed. They are:
i. flow field around a rotating sphere whose axis is parallel to the free stream
ii. flow field due to a rotating sphere

ifi.  flow fields around a rotating sphere whose axis is perpendicular to the free stream
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The first two cases are axisymmetrical problems, so they can be treated as two-dimensional
problems. The last case is a three-dimensional problem. Due to the desired features of
structured grids in section 5.1, cylindrical grids ﬁre used for the first case, and spherical grids

for the last two cases.

§.3.1 Flow Field around a Rotating Sphere - Axis is Parallel to the Free Stream

Results

The results given are based on a constant angular velocity of 7 rad’s, free stream velocity of
10 m/s with inlet reference pressure of 70 N/m’, Reynolds number of 6.25% 70°, and spin
parameter 7a/Re’ < 1. Due to the rotation of the sphere, a rotating coordinate system is used
for the reason mentioned in section 4.2.4. Also, the procedure for the generation of the grids
required a treatment of cyclic boundary conditions as explained in section 4.2.5 for the first
and last radial planes. Figures 5.9 and 5.10 are velocity distributions on two special cross
section planes and two symmetrical pranes, respectively. One cross plane is at upstream and

another one downstream. Figure 5.11 is pressure distribution on two symmetrical planes.

Discussion

Figure 5.9 illuswrates the velocity distributions on two cross section planes at the positions of
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two polar points. On the upstream cross section, only the velocity of the free stream affects
the velocity distribution because there is no other flow interference. Meanwhile, on the
downstream cross section, besides the effect of the velocity of the free stream, the behavior
of the rotation also has an effect. This also shows in Figure 5.10, at the back of the half
sphere, the tangential velocities along circumferential direction of cross sections are large
enough to interfere with the flow field. Beyond this area, the effect keeps until the outlet
plane. Here, the problem is still symmetry about the rotating axis, so the stagnant point on the

front polar having the smallest velocity value.

Comparing the result of pressure distribution, Figure 5.11, with the result of vortex
flow, Figure 5.6, at the position around the stagnant point the pressure distributions are the
same because there is no difference in flow condition here. On the contrary, due to the effect
of rotation the dead water area disappears and the pressure is smaller than the vortex case at

the rear area of the sphere and downstream.

Here an important spin parameter, 7a/Re”, the ratio between the centrifugal and inertia
force, is introduced. It plays a significant role with Reynolds number in the boundary layer
equations. It has an effect on a separation angle, dimensionless torque, resisting momentum

and frictional drag (El-Shaarawi et al, 1985).

Far away from the surface of the sphere, the flow is of a two-dimensional potential



43

type. The two velocity components for such a potential flow are adopted from Milne-

Thomson (1968). On the surface, only circumferential velocity, v, = rw , is relevant.

§.3.2 Steady Flow due to a Rotating Sphere

Results

The steady flow due to a rotating sphere is a limiting case and has attracted much attention
so far. As the problem is symmetric about the rotating axis, we consider only one radial plane
of half spherical grids with a sphere radius of ¢.065 m and an extent radius distance of 0.300
m, a constant angular velocity of 700 rad/s and Reynolds number of 5.3x 10", A rotating
coordinate system and cyclic boundary condition are used for the same reason as mentioned
in section 5.3.1. The results are shown in Figures 5.12 for velocity distribution and Figure

5.13 for pressure distribution, respectively.

Discussion

Figure 5.12 illustrates that there is a region of inflow to the sphere near the pole, which is
balanced by a region of outflow near the equatorial plane. This is as indicated by Singh
(1970), Banks (1976) and Dennis et al (1980). As Reynolds number increases, the inflow

region increases and the outflow region is narrower. The angle at where the transition
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between of them takes place is dependent on the variation of Reynolds number, shown in

Figure 5.14,

As shown in Figure 5.12, in the whole flow field, the velocity decreases rapidly from
the surface of the sphere to the outer edge of the spherical area. On the other hand, the
pressure increased rapidly along this direction, illustrated in Figure 5.13. At the equatorial
plane, the radial velocity increases with Reynolds number indicating the formation of a radial

jet over the narrowing region of outflow. There is no evidence of any separation.

S.3.3 Flow Fields around a Rotating Sphere - Axis is Normal to the Free Stream

The contributions of the present work are the numerical predictions of the flow fields around
a rotating sphere whose axis is perpendicular to the free stream. This has never been
investigated before. This problem is three-dimensional and it is symmetric only about the
equatorial plane. The effects of two parameters as following are studied:

i. Reynolds number, Re

ii. spin parameter, Re/Ta’

The discussions are detailed for three cases those are:

i. low Reynolds number and high spin parameter

il moderate Reynolds number and low spin parameter

iii. high Reynolds number and low spin parameter
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For each case, the turbulence k-£ model is used, the reference pressure always taken as /
N/nt’ at the surface of the sphere, Figure 5.15 show the positions of equatorial plane and three

radial planes on where the velocity and pressure distributions are illustrated.

Low Reynolds Number and High Spin Parameter

Considering a sphere has a radius of 0.065 m and an extent radius distance of 0.3 m, with
Reynolds number equal to 5x /0, rotating at a constant angular velocity of 88 rad/s, spin
parameter of Ta/Re’ = 2, and free stream velocity of 5.7 m/s, Figures 5.16, 5.17 and 5.18

illustrate the results of velocity and pressure distributions on equatorial and radial planes.

The results illustrate the velocity of the free stream is too small to have an effect on
rotational action. The pressure distributions on the two sides of the symmetrical plane of the
free stream almost the same. Near the surface of the sphere, the pressures have negative
values and velocity vectors are very large. The pressures decrease rapidly along the free
stream direction. Velocity gradient along radial direction is very large near the sphere surface,

and is very small at the rest area.

Moderate Reynolds Number and Low Spin Parameter

Using the same radius of the sphere and the extent radius distance as the first case, with
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Reynolds number equal to 7xJ¢, rotating at a constant angular velocity of 88 rad’s, spin
parameter of Ta/Re’ < I, and the free stream velocity of U, = 11.4 m/s, Figures 5.19, 5.20

and 5.21 show the results.

The results illustrate that when the value of the free stream increased, i.e. increased
Reynolds number, the rotation behavior is correspondingly reduced. Comparing this set of the
results with the lower Reynolds number case, the situation is almost the same. This is because
the Reynolds numbers are at the same range - lower than the critical Reynolds number of a
sphere, about 3xJ(P-3x /0%, The evidence indicates that the increase of the free stream has
a larger influence on the flow field than increasing the angular velocity, for a Reynolds number
lower than the critical value. Near the surface of the sphere, on the left side of the symmetrical
plane of the free stream, two velocities acted together along same direction, meanwhile on

the right side they resisted each other duo to the different velocity directions.

High Reynolds Number and Low Spin Parameter

For high Reynolds numbers, larger than or equal to the critical Reynolds number of a sphere,
using the same radius of the sphere and the extent radius distance as above. At first,
considering the case of Reynolds number equal to 2 x /", rotating at a constant angular
velocity of 177 rad’s, spin parameter of Ta/Re’ < 1, and the free stream velocity of U_ = 23

n/s, Figures 5.22, 5.23 and 5.24 illustrate the results. Then, considering a Reynolds number
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equal to 5% ", rotating at a constant angular velocity of 250 rad/s, spin parameter of Ta/Re’
< J, and the free stream velocity of 60 m/s, Figures 5.25, 5.26 and 5.27 show the results of

velocity and pressure distributions on equatorial and radial planes, respectively.

Because the velocity of the free stream and the angular velocity are at the same scale,
the influence of the velocity of the free stream is very strong, it can almost eliminate the action
of rotation. These phenomena are illustrated in Figures 5.22, 5.23, 5.25 and 5.26. The figures
also show that at the left side of the symmetric plane of the. free stream, the effect of the
rotation is much stronger because of the overlap of the two velocities. At the right side of the
symmetrical plane, near the surface of the sphere, the rotational effect is larger. Along the
radial direction from the surface to the outer edge, the effect decreases gradually due to the
resistance of the velocity of the free stream. At a certain point, the total velocity equals zero,
from this point to the outer edge of the flow field, the value of free stream velocity increases
gradually, finally reaching the largest value of the free stream. The position where velocity

equals zero depends on the relation between the free stream and angular velocities.

Figures 5.24 and 5.27 present the corresponding changes of pressure distribution on
the flow field. On the two sides of the symmetrical plane of the free stream, the pressure
varies according to the changes of the velocity, but there is no large difference between the

two sides.
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Re =10, 50, 100
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CHAPTER 6

EXPERIMENTAL INVESTIGATION

OF VERTICALLY ROTATING SPHERE

6.1 Introduction

The problem of a rotating sphere in a free stream has received very little experimental
attention in the literature. To the author's knowledge, the velocity distribution around a
rotating sphere whose axis is perpendicular to the free stream direction has never been
investigated experimentally. Thus, based on imposed potential velocities at the edge of the
boundary, the numerical results of the flow about a rotating sphere in a perpendicular free
stream have been obtained. The actual velocities at the boundary layer edge may be different
from the potential ones. Therefore, the actual velocity at the boundary layer edge and the
velocity compenents within the boundary layer were measured experimentally. Furthermore,
a comparison between numerical and experimenta] results should lead to a good

understanding of the actual flow behavior and any limitations of the theoretical work.

The objectives of the experimental work were:

75
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i design and construction of the experimental apparatus, including the sphere support
mechanism and a three-dimensional hot-wire probe positioning device.

ii. the experimental measurements of the flow field using a triple-sensor probe.

The apparatus was designed such that a sphere could be rotated at different speeds about

an axis perpendicular to the flow in a large wind tunnel. A traversing mechanism for the

triple-sensor probe was also incorporated into the equipment so that measurements could

be made at different positions from the surface of the sphere.

6.2 Wind Tunnel

The experiments were performed in an open circuit boundary layer type wind tunnel with a
615 mm x 615 mm octagonal test section, 7800 mm length. The wind tunnel had a free
stream velocity range of 0.2 m/s < U, < 30 m/s and a turbulence intensity about 0.3 % for /
n/s s U, s 12 m/s, rising to 0.9 % at U, = 20 m/s. The thickness of the boundary layer was
about 25mm. The maximum velocity variation outside boundary was about 3.7%. A pitot

static tube was placed on the bottom of the upstream part to measure the flow velocity.

6.3 Test Model

In designing the test model, several design aspects were considered for finding the best

parameters to be used in the experiments. Selection of the size of the sphere was dependent
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on the size of the test section of the wind tunnel and the range of the desired Reynolds
numbers to be used in the experiments, Generally, the sphere should be 3 to 5 diameters away
from the walls of the wind tunnel, and the projected area of the sphere should account for no
more than 5% of the tunnel cross-sectional area. The critical Reynolds number ranges from
3x10° to 3x10° (Janna, 1987) for a sphere in the laminar flow case. An initial steady-state air
speed of the wind tunnel was approximately 4-5 m/s. Referring to the results of the numerical
prediction, meanwhile considering the limitation of the wind tunnel, it was decided that a Re
about /xI(’ and sphere diameter of 9 cm was most suitable for the experiments. The
Reynolds number is lower than the critical Re number range of the sphere. It was confirmed
by examining the plot of drag coefficient versus Re for a sphere (Janna, 1987) that shows that
the drag coefficient is fairly constant over the range of Re /(" to 1¢°. The accuracy and
precision of the measurements were important in the design of the support apparatus and
probe positioning device. An accuracy of 0./ mm was needed in the experiments. With the

above considerations in mind, the following parameters were used:

diameter of sphere d = 9cm

Reynolds number Re = Ix1¢*

spin parameter Ta/Ré =0-2

wind tunnel speed U= §-25mss
angular velocity @ = 800- 2000 rpm

blockage <4.4%
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6.4 Apparatus and Procedure

6.4.1 Design of Support Apparatus

The support mechanism was designed such that it allowed the sphere to rotate in a smooth
and stable manner with the rotating axis of the sphere perpendicular to the free stream
direction. Meanwhile, the vibrations of the drive must be reduced to insure constant sphere
position and precision in the test measurements. It also had to be designed to minimize its

contribution to flow field interference.

The sphere support apparatus is shown in Figure 6.1. The sphere was connected to
a shaft supported by pillow block bearings and connected to a d.c. motor though a flexible
coupling. The assembly was supported by a steel frame at the external of the wind tunnel to
position the sphere in the center of the cross-section of the tunnel. The sphere was chosen to
be 9 cm in diameter from the above considerations. Its material chosen was an ultra high
molecular weight plastic with a density of 9.417x 10~ kg/cm’. The sphere was attached to the
shaft by drilling a slightly smaller hole in the sphere and inserting the shaft with interference
fits into an appropriate adhesive, The shaft was 20 »m diameter to make the shaft stiff
enough to avoid vibration of the sphere and keep cantilever bending of the shaft to under
0.Jmm. A long cantilevered shaft was specified to facilitate placement of the apparatus

external to the tunnel.
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Two FAFNIR SAS 7.25" ball bearing pillow blocks were chosen to support the shaft.

The pillow blocks were fixed to a steel plate that was fixed to the frame of the wind tunnel.
The experiment required that measurements be taken over a range of rotational speeds; thus

a variable speed drive train was necessary. The motor was attached to the shaft via a standard

flexible coupling, AL-090 (LOVEJOQY).

6.4.2 Design of Probe Positioning Device

The simplest approach would be manually sliding the probe to the desired location. This was
achieved accurately with the help of vernier scales. The design incorporated two components:

the x - y - z positioning table and a rotatable sealing disk.

An x - y - z positioning table was selected from a UniSlide Catalog of VELMEX
(1991) which had a triple x - y - z stage with 72.5" travel in x-direction (4257 301-§2.5), 7.5"
in y and z-directions (4/5090Q1-51.5). Overall dimensions of 375mm x 225mm * 225 mm,
and an accuracy of 0.00/". The x-y-z table could move independently in three perpendicular
directions. In the measurement x is free stream direction, y is cross flow direction and z is

vertical direction.

The sensing wire of the hot-wire anemometer was located in the measurement region

of the working section of the wind tunnel and was connected to the electric circuiting
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externally. The probe axis was horizontal and was suppoited by a probe holder. The holder
was mounted in the y-direction of the x-y-z table whose frame was fixed to the main frame
of the wind tunnsl. The probe holder was inserted into the wind tunnel through a rotatable
sealing disk in a perspex side window. The advantage of this design is that it was simple, with
minimal sealing problems, and was well suited for spherical objects. The front view of the

measurement system and the rotational sealing disk are shown in Figure 6.2.
6.4.3 Probe and Data-logging System

A DANTEC triple-hot-wire probe 55P91 was used, Figure 6.3, with a simultaneous data-
logging system, Figure 6.4. The system consisted of 2 multi-channel anemometer set, which
included a DANTEC 56C01/56CJ6 CTA(constant temperature anemometer) bridges
mounted inside a DANTEC main frame 56872 and a DANTEC 55M01/55M10 CTA bridge
along with a DANTEC power unit 5503, a multi-channel data acquisition and analysis
system which included a DAS 20 A/D board and a software package ACOWIRE, and a DELL
3165X computer. The triple-sensor probe had three identical wire sensors mounted mutually

perpendicularly to each other. Appendix III shows how the triple-wire probe works.

The relationship between anemometer voltage and sensed velocity for each wire is

adequately expressed by Lomas (1986) as:

Vol - 4, « BU, G-1,2 3) (4.1)
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where Vol, are anemometer output voltages, A, B; and n, are constant for a given probe which
are decided using Collis and Williams law in calibration, and U 4 are the effective cooling
velocities normal to the hot-wire, the relations between these velocities and the wire
coordinate velocities are expressed in Appendix III. The triple-sensor probe was calibrated
by a DISA calibration rig 55041/42. The cone pressure measured with a pitot-tube which was
read by a Beiz micromanometer-used as a reference for calibration. Figures A3.2a, b and ¢
are the calibration curves and the corresponding percentage errors in the fit for three hot

wires, respectively. The maximum error was less than 5%.

The output voltages from the aneirometers were fed to the three input channels of a
data acquisition system, a /2-bit A/D converter that could sample at up to /00 kHz. In the
experiments, according to a Strouhal number of a stationary sphere at the range of Reynolds
number investigated, the sample frequency was set at 7 kHz and the sample number 8 k for
each wire. The sample data for three channels were read simultaneously and then transferred

to the computer where data-processing was performed by ACOWIRE.

6.5 Experimental Results and Discussions

The triple-sensor probe was intended to be used for measuring the mean and some turbulent
flow quantities in the three-dimensional complex flows. One major problem of using an

orthogonal triple-sensor probe is its slight non-orthogonality due to imperfections in
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manufacture. Andreopoulos (1983) investigated this influence by measurements. He found
that if the effects of corresponding yaw and pitch sensitivity variations with the flow angle or
non-orthogonality are ignored, errors in the Reynolds stress measurements are generated, but
the effect on the mean flow is very small. In the present tests, the mean velocity components

were considered, so the effects of the above were very small.

All measurements were performed on the equatorial plane. In order to compare with

the calculated results, three cases were measured:

i. ve]ociﬁ distribution around a rotating sphere whose axis was perpendicular to the free
stream direction, @ = 835 rpm and U, = 11.3 m/s.

iL velocity distribution around a rotating sphere whose axis was perpendicular to the free
stream direction, w = 1689 rpm and U, = 23 m/s.

iil.  turbulent properties at one point for different rotational speeds, w = 500, 1000, 1500,

2000 rpm.

For the first case, Figure 6.5 illustrates the vector distribution at different radial
directions of equatorial plane, and Figure 6.6 the mean velocities at four radial directions.
Figure 6.6a and 6.6b are two horizontal and two vertical radial directions respectively. In
Figure 6.5, there are eight radial directions which had equal angles, 45°, between two of the
radial directions and each with 7 points. The nearest point to the surface was 7.5 mm away-

limited by the diameter of the triple-sensor probe. The 3 mm increase point by point along the
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radial direction which was limited by the size of the test section of the wind tunnel.

Figure 6.5 provides a qualitative velocity distribution plot. Directions of free stream
and rotational speed are shown in the Figure. It can be seen, that in the horizontal and vertical
radial directions, velocities are paralle! to the free stream. At the top of the vertical direction,
tangential velocities of the rotation and free stream are same direction. Meanwhile, at the
bottom vertical direction, both velocities are at adverse directions and the total velocities are
smaller than the top's. Between each horizontal and vertical direction, directions of velocity

were changed according to the two velocity directions.

As Figure 6.6a shows, in two horizontal directions the mean velocity components W
are very small and almost no change. Mean velocity components U vary along radial
direction, the upstream side values are decreased within negative values and the downstream
side values are increased within positive values. Meanwhile, Figure 6.6b illustrates that in the
vertical directions mean velocity components U have small variations and all the values are
negative. Mean velocity components ¥ also have small variations with the values almost

equal to zero.

For the second case, Figure 6.7 has vector distributions at the same positions as the
first case. The directions of free stream and rotation speed are shown in the Figure. In the

horizontal direction, at the upstream side, the velocities somewhat decline with the rotational
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direction and at the downstream side the velocity directions are exactly the tangential
directions of the sphere and near the surface of the sphere the magnitudes of the velocity are
smaller because of the influence of the vortex. For the rest of the radial directions, the general

cases of the velocity distribution are the same as the first case.

Figure 6.8 presents the mean velocity components, U and W, in horizontal directions,
Figure 6.8a, and vertical directions, Figure 6.8b. Figure 6.8a indicates that on the upstream
side the mean velocity components U decrease and reach negative values, and on the
downstream side the variation shows a peak. The lower plot indicates that in the upstream
horizontal direction the mean velocity components # maintain a constant value. Meanwhile,
at the downstream horizontal direction it decreases quickly along the radial direction.
Variations of mean velocity components in vertical directions are shown in the Figure 6.8b.
At the top vertical direction both mean velocity components have small variation. At the
bottom, the mean velocity components U/ show smooth variations; however, the profile for
W is not smooth; fluctuations are present. The later is due to the action of the adverse velocity

directions. All components U/ have negative values according to the free stream direction.

Considering the influence of turbulence, the third case gives the turbulent properties
at one point (-5, 0, 0), the point nearest to the surface of the downstream horizontal radial
direction. Figure 6.9 presents the spectra for different rotational speed and figures 6.10 a, b

and ¢ show the auto-correlations of wire 1, 2 and 3 to same set rotational speeds respectively.
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In figeres 6.9 and 6.10, plots a, b, ¢ and d correspond to rotational speeds w = 500,
1000, 7500 and 2000 respectively. When the rotational speed increases the variations of
spectrum and auto-correlation are smaller. With frequency increase the spectra go to zero and
with time delay the auto-correlations go to zero. This means that the larger the rotational
speed the smaller of the influence of turbulence. The influences occurred at the lower

frequency and initial time period.

6.6 Comparisons with Calculated Results

Figure 6.11a, b, and c are the comparison of calculated and measurement results. The
comparisons are based on the conditions of the second case and using the Cartesian
coordinate system shown at the bottom right of Figure 5.2. Because of the limitation of the
experiment, the experimental data could not be obtained at positions that were very close to
the surface of the sphere. In general, the numerical and experimental results are reasonable
and agree well, though the experimental values seem smaller than the calculated values. The
discrepancy between them may have resulted from the imposed turbulence model used in the

calculations are not the exact turbulence situations in the experiment.

The variations of the velocity components in free stream direction (Figure 6.1 la) are
changed due to the different radial positions, while in vertical direction (Figure 6.11b), the

variations are the same. The two components maintain a constant value after a certain
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distance from the sphere surface. For the components in the cross flow direction (Figure
6.11c), the variations are also different due to the different radial positions. Position ¢ = 0°
is the downstream center line, near the sphere surface the area is a vortex area, the directions

of the radial velocity components are totally different from the outer edge area.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This thesis is concerned with the flow fields around a rotating sphere in both aspects

numerical prediction and experimental measurement.

The boundary - layer equations and corresponding boundary conditions derived are
suitable for a rotating sphere whose axis is perpendicular to free stream direction. The
important parameters are the Reynolds number and the spin parameter. Both decide the

rotation behavior of a rotating sphere.

For the flow fields around a stationary sphere, the numerical prediction results are in
good agreement with other researcher's results. At lower Reynolds number, the flow
corresponds to potential flow and became vortex flow when the Reynolds number increased

to a certain value that is dependent on the diameter of the sphere and the free stream velocity.
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For a steady flow due to a rotating sphere, the numerical prediction results indicate
there is an inflow near the polar area, and an outflow near the equatorial plane. No separation

occurs in this kind of flow.

The numerical prediction results obtained for the flow field around a rotating sphere
whose axis is parallel to the free stream direction are reasonable. On the back half sphere, the

flow field is severely disturbed, separation and vortex flow appeared.

The numerical prediction results obtained for the flow fields around a rotating sphere
whose axis is perpendicular to the free stream direction are in good agreement with the
available experimental data. If the Reynolds number is smaller than the critical Reynolds
number and the spin parameter is equal to or larger than 1, the rotation altitude is large
enough to overcome the free stream. Otherwise, if the rotation and free stream behavior are
in the same range, the free stream has the same influence as rotation velocity and a zero
velocity point occurs somewhere. The position of this point depends on the relation between

the velocities of free stream and rotation.

All numerical predictions were made by using PHOENICS code with a FORTRAN
code developed by the author. This code is very powerful and can handle the complex three-

dimensional flow problems.
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The experimental results show that a three-dimensional flow field can be measured by
using a triple-sensor probe with the designed experimental device. The experimental
measurements were not as complete as the numerical predictions due to the limitation of the
test section size of the wind tunnel. Results of mean velocities agree with the calculated
results and the vector distributions from both results are matched. With the rotation velocity

increase the turbulence influence became smaller.

7.2 Recommendations for Future Work

The results obtained from the present calculations and experimental studies on the flow fields
around a rotating sphere whose axis is perpendicular to the free stream are fairly
comprehensive. But, this situation is a special case and is the first step in the solution of this
type of problem. More general situations, such as arbitrary rotation angles and nonspherical
particles, should be considered for engineering applications. Accordingly, suggestions for

further research on the process are as follows:

Numerical predictions

A good point to start is from the present program. Using the same package, PHOENICS,

which has a facility of choosing the rotation axis of a rotating body, calculate the flow field

with variable angles between the rotating axis and free stream direction and change the
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boundary conditions for different angles correspondingly.

Consideration of other kinds of rotation bodies, such as cubes and ellipses with body-
fitted-coordinate. For these kinds of body, the difficulties are to decide the boundary

conditions.

Experimental measurement

Consideration should be given to vary the angle between the rotation axis and free stream
direction, adding an additional device that includes a one-dimensional movement and a 90°
degree rotation movement at the bottom of the sphere support mechanism. In these

circumstances, the rotating axis can be easily modified to change the angle.

For arbitrary rotating angle case, the problem is not symmetric. The measurement
domain is the whole surface of a sphere. The probe positioning device needs to have the

possibility of being fixed at the top and bottom of the wind tunnel to satisfy this requirement.
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APPENDIX I

TRANSFORMATION OF

BOUNDARY CONDITIONS

Using the coordinate system show in Figure Al.1, the velocity components of the potential

flow for the rotating sphere whose axis is parallel to the free-stream are given as equations

(Al.1) and (A1.2) (Milne-Thomson, 1968)

Figure Al.1 Original coordinates

u'=_U_[l+a3/2(a+z)3]sina (AlL.l)
w'=U[1-a%’/(a+z2)P]cose (Al.2)
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These velocity components may be transformed to the vertically rotating spherical
coordinate system step by step as follows:
i. First, #” is projected to the radial direction of the sphere, w.’, and the horizontal

plane, u,", Figure A1.2.

Figure A1.2 Vertical projected plane

Here, the projected velocity components are written as

u, = u’/ sine (Al1.3)
w' - u' cota (Al.4)
ii. Then u,"is divided into tangential and radial components, v. and u,", on the horizontal
plane, Figure Al.3.

M2

Figure AL3 Horizontal projected plane
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The tangential and radial components on the horizontal plane can express as

vV = - u; sing (ALS)
u, = u; COS¢Q . (AL.6)
iii.  Furthermore, u,’is divided into radial and tangential components on the sphere, w,”"

and u., Figure Al.4.

Figure A1.4 Components on sphere

The two components are given as:

u = u, cos® (AL7)
w' < u, sinB (AL1.8)
iv. The total components of u., w.in the tangential and radial directions of the sphere,

and v, in the tangential direction of the horizontal plane are shown in Figure A1.5.
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Figure A1.S Velocity components

Finally, the velocities in the radial direction and tangential directions of the horizontal and

vertical planes are expressed

u - u, cos® = ((u, cos¢ ) cosB

=(u"/sina ) cosgcosB {~1.9)
=Un[1+a3/2(a+z)3]costpcose
V= -u sing = - {(u"/sina ) sin
' 1 SR , ( . ), ? (AL.10)
=U [1+a’/2(a+z)]sing
. ’ 1
W.=W + W+ W
=w'+u"cote + { u*/ sine ) cosgsin®
(Al.11)

-3 U_a*cose /2 (a+2)
+U_[1+a3/2(a+z)3]cos¢psin0
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v. Transferring triangle relations according to the geometrical relation, Figure A1.6.
[}
!
L]
]
pamemm To=sees -
- ] .
Pl B \
ﬁ\\‘ o' /:
P ------------
a
- f' 0 ——— ~“
“.\ A o f‘l
__________ I

Figure A1.6 Triangle relation -

OA=0B, 04d=aCos aand OB =-0Q'P Cos ¢ = -u Sin 8Cos ¢. So

cose = - sinBcos¢q (AL.12)

Substituting equation A1.12 into equation Al.11, then we may write the velocity components
of potential flow for a rotating sphere whose axis is perpendicular to the free-stream in the

following way:

u U [1+a’/2(a+z)] cosgpcosd (A1.13)
v = U [1 ca*l2(@+z2)*]sing (Al.14)
w=-UT]1:- a’/ (a+2)°] cospsinB (Al1.15)



APPENDIX I

COMPUTER PROGRAMS

A2.1 Potential Flow

Q1 File
TALK=F; RUN(1,1)

GROUP 1. Run title and other preliminaries

TEXT(POTENTIAL FLOW)

GROUP 6. Body-fitted coordinates or grid distortion

BFC=T; NONORT=T
GSET(D,10,20,30,1.0,2.0,3.0)
GSET(P,P1,0,0,0)
GSET(,P2,10,0,0)
GSET(P,P3,10,0,10)
GSET(P,P4,10,0,20)

GSET(P P5,10,0,30)
GSET(P,P6,0,0,30)
GSET(L.L1,P1,P2,10,1.0)
GSET(L,L2.P2,P3,10,1.0)
GSET(L,L3,P3,P4,10,1.0,ARC,5,0,15)
GSET(L,L4.P4.F5,10,1.0)
GSET(L.L5,P5.P6,10,1.0)
GSET(,P7,0,0,20)
GSET(P,P8.0,0,10)
GSET(L,L8,P3,P1,10,1.0)
GSET(L,L6,P6.P7.10,1.0)
GSET(L,L7,P7,P8,10,1.0)
GSET(FF1,P1,-P2,P3.P4PS.. PG P7.P8)

121



GSET(M/F1,+I4K,1,1,1 LAP10.TFFFFF)
GSET(C,J21FJ1 RZ,-6.2832,10,0.0,INC,1.0)

GROUP 7. Variables stored, solve & named

SOLUTN(LY,Y,Y,N,N.N)
ISOLZ=1

GROUP 9. Properties of the medium (or media)

RHOI1=1.17736, ENUL=1.6E-5

GROUP 11. Initialization of variable or porosity fields

FIINIT(W1)»=1.0

GROUP 13. Boundary conditions and special sources

INLET(INLET,HIGH,1,NX,1 NY NZNZ 1,1}
VALUE(INLET,P1,1.0)
VALUE(INLET,W1,1.0)

PATCH(OUTLET,LOW,1,NX,1,NY,1,1,1,1)
COVAL(OUTLET,P1,FIXP,0.0)
COVAL(OUTLET,V1,0NLYMS,0.0)
COVAL(OUTLET,W1,0NLYMS,0.0)

DARCY=T

GROUP 15. Termination of sweeps

LSWEEP=20

GROUP 22. Spot-vajue print-out

ECHO=T; IYMON=3; IZMON=10

TSTSWP=-1
STOP
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A2.2 Vortex Flow

Q1 File

TALK=F;RUN( 1, 1)

GROUP 1. RUN titie and other preliminaries

TEXT(VORTEX FLOW)

GROUP 6. Body-fitted coordinates or grid distortion

BFC=T; NONORT=T
GSET(D,10,20,30,1,1,1)
GSET(P.P1,0,0,0)

GSET(P,P2,10,0,0)

GSET(P,P3,10,0,10)
GSET(P,P4,10,0,20)
GSET(P,P5,10,0,30)

GSET(P,P6,0,0,30)
GSET(L,L1,P1,P2,10,1.0)
GSET(L,L2,P2,P3,10,1.0)
GSET(L,L3,P3,P4,10,1.0,ARC,5,0,15)
GSET(L.L4,P4,P5,10,1.0)
GSET(L,L5,P5.P6,10,1.0)
GSET(P,P7,0,0,20)

GSET(P,P8,0,0,10)
GSET(L,L8,P8,P1,10,1.0)
GSET(L,L6,P6,P7,10,1.0)
GSET({L,L7,P7,P8,10,1.0)

GSET(F F1,P1,-P2,P3.P4,PS,- P6,P7.P8)
GSETM,F1,+I+K,1,1,1 LAP10.TFFFFF)
GSET(C,J21,F J1,RZ,-6.2832,10,0.0,INC,1.0)

GROUP 7. Variables stored, solve & named

SOLVE(U1,V1,W1.PD)
SOLUTN(PL,Y,Y,Y,N,N.N)
ISOLZ=1

GROUP 9. Properties of the medium (or media)
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RHO1=1.17736; ENUL=1.6E-5

GROUP 11. Initialization of variable or porosity fields

FIINIT(W1)=0.0

GROUP 13. Boundary conditions and special sources

OUTLET@NLET,LOW,1 NX,1 NY,1,1,1,1)
VALUE(INLET P1,0.0)
VALUE(INLET,U1,0.0)

VALUE(INLET, V1,0.0)
VALUE(INLET,W1,60.0)

PATCH(OUTLETHIGH,1,NX,1,NY,NZNZ,1,1)
COVAL(OUTLET,PI FIXP,10.0)
COVAL(OUTLET,U1,ONLYMS,0.0)

COVAL(OUTLET,V]1,0NLYMS,0.0)
COVAL(OUTLET,W1,0ONLYMS,0.0)

GROUP 15. Termination of sweeps

LSWEEP=20

GROUP 22. Spot-value print-out

ECHO=T, IYMON=3; IZMON=10

TSTSWP=-1
STOP

A2.3 Steady Flow due to a Rotating Sphere

Q1 File

TALK=F, RUN(1,1)
TSTSWP=-1
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kbR ko kg n kR khk kR kR
.

* GROUP 1. Run title and other preliminaries.

*

bl A LSS B I LTSI ST PP ey L] EEE S L £ 2 kkkkhhkhRkEy

TEXT(ROTATING SPHERE)
REAL(OMEGA,PLRSPH,UPOT RENO,FI,THI, DELTA,SNFI,SNTHI,CS,COTHI)
RSPH=6.5; DELTA=30.0;, UPOT=0.0; OMEGA=10.0; P1=3.14159

-

gk ook sk ok kg &kk L2 ISP L L]
*

* GROUP 3. X-direction grid specification.

*

PRS2 PR SR PR I RS R 22222 R S 2 RS 3 i s SRR 3208 8 ¢ 8
* Body Fitted Coordinates Grid Selected
* Number of Celis in the X-Direction
NX=31
*

sk dkakaknk bk ook Sk ook ok sk ek sk o ko sk ks ks sk ok ke ok o e R e kR
*
* GROUP 4. Y-direction grid specification.
»
IEA LB EEEL 22 T I e R R E R R 2SR S 3T
* Number of Cells in the Y-Direction
NY=15
* Equal Grid Spacing in the Y-Direction
*

LA AL IS T P R RS RS R e R R L Pt S 2 et Ittty
[ ]

* GROUP 5. Z-direction grid specification.

*

LR RS I TS LRSI ER L EL SRR RS2 2203 RT3 2T 222 2] ]

* Number of Cells in the Z-Direction
NZ=11

* Equal Grid Spacing in the Z-Direction

*

A LIS TR S L E R LR LSRR 222022 2 R R LIS PR 21020y

*

* GROUP 6. Body-fitted coordinates or grid distortion.

L

LRSSl 2L E 2 2T P2 T T 2 i It 122 et Esdqlssqssssstsy)
BFC=T; NONORT=T
DOMAIN(I NX+1,1 NY+1,1,NZ+1)
SETLIN(XC,(RSPH+DELTA*LNI)*COS(PI*LNK/2)*CSI)
SETLIN(YC,(RSPH+DELTA*LNI)*SIN(PI*LNK/2))
SETLIN(ZC (RSPH+DELTA*LNIP*COS(PI*LNK/2)*SNI)

*

LA LI E S LR IS RS I PRt 222 R 212 i PR ettt il lss ]
*

* GROUF 7. Variables stored, solved & named.
*
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LA At 2 LR A I L e It e P T T T * * * Rk RRkE
* Solve for the Pressure & X,Y,Z-Direction Velocity Components
SOLVE(F1,U,V,W)

SOLUTN(P1L,Y,Y,Y.N.NN)

*

LA 2ty P st *EkRk W o e e e e e o ok ke a i a  k

*®

* GROUP 9. Properties of the medium (or media).

»
*‘“0‘**#&*#*#**‘!##t#ttt###ii.‘*i‘*‘t.lt“!t"*#ttttti‘t‘#‘#*#

* Material is : AIR (300K AND 1 ATMOSPHERE)

* Density Value: 1.177360E+00 (kg/cu.m)
RHO1=1.177360E+00

* Laminar Kinematic Viscosity: 1.568200E-05 (sq.m/s)
ENUL= 1.568200E-05

* K-E Turbulence Model

* ENUT = CMU * (Mixing-Length) * K**0.5

* EL1 =(CD *K**1.5)/E

TURMODXKEMODL)
* Automatically internally Solves for: Turbulent Kinetic Energy
* Kinetic-Energy Dissipation Rate
™
**il.*tt*‘**t**tt.##i#‘*"****#***tttt*#tt**‘*tl*#*.i***##t#ttt
*
* GROUP 11. Initialization of variable or porosity fields.
»

##*#‘tt#*‘#*****‘#ttl#t‘#t##***ttt**#t#it#**#tt###tt‘t***itt##*

FI=2*PINX; THI=P1/(2*NZ)
*

b e At S L P R T ey T P T T L i T I T
L]

* GROUP 13. Boundary conditions and special sources.

L]
#ﬂ***tt“‘*#‘.‘.ﬂ‘*#*#tt‘*#t****ﬁ“*i#***#*“i“‘ﬁ*#tt‘ttt‘***‘*

* Inlet Boundary Condition(outside surface)
PATCH(BFCINLET,NORTH,1,NX,NY NY,1,NZ-1,1,1)
COVAL(BFCINLET,P1,1.0,GRNDI)
COVAL(BFCINLET,UCRT,0.0,0.0)

RS5G13=1.177360E+00

WALL(SURF1,SOUTH,31,31,1,1,1,1,1,1)
VALUE(SURF1,P1,1.0)

DO II=1,NZ

COTHI=THI*II

PATCH(SURF,SWALL,1,NX,1,1,ILIL1,1)
COVAL(SURF, U1 FIXVAL OMEGA*RSPH*COS(COTHI))
ENDDO
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* Rotational Boundary Condition
RS8G25=0.0; RSG26=0.0; RSG27=0.0
RS5G28=0.0; RSG29=-1.0; RSG30=0.0
RSG21=OMEGA; ISG18=0
PATCH(ROTA PHASEM,1,NX,1,1,1 NZ 1,1)
COVALROTA, V1 FIXFLU,GEND1)
COVALROTA, UL FIXFLU,GRND1)
COVAL(ROTA, W1 FIXFLU,GRND1)

* Cyclic Boundary Condition
XCYIZ(1,NZ,T)
-

.‘**tttl"#ttt*‘**tttttt*‘#t*#tt‘*tttitt####*i*ttttt#t‘#“i*t‘t
L ]
* GROUP 15. Termination of sweeps.
.
###*“**t*#tit#i"“*‘##‘#*#*##‘*#i*“ﬁ**tttttlt“#*tttttt#tt#*
* Number of Iterative Sweeps (Quter Iterations)
LSWEEP=200
* Automatic Reference Residual for the Pressure
RESREF(P1)=-GRNDI
* Automatic Reference Residual for the X-Direction Velocity Component
RESREF(U1)=-GRNDI
* Automatic Reference Residual for the Y-Direction Velocity Component
RESREF(V1)=-GRNDI
* Automatic Reference Residual for the Z-Direction Velocity Component
RESREF(W1)=-GRNDI
* Reference Residual for the Turbulent Kinetic Energy
RESREF(KE)= 1.000000E-10
* Reference Residual for the Kinetic-Energy Dissipation Rate
RESREF(EP)= 1.000000E-10
*

‘t“"tttttt‘#*#**t#t““.‘.“‘*t##tt#ttti‘t#t‘t**ittt#*ttt‘**t
*

* GROUP 16. Termination of iterations.

]
4...““'.*ﬁ###t*ttt*#ttt‘tttttttttt"tt**##*tt*t““‘**t‘tt“*

* Linear-Iterations and Termination Criterion for P1
LITER(P1)=20;, ENDIT(PI )= 1 .000C00E-08

* Linear-Iterations and Termination Criterion for U1
LITER(U =20, ENDIT(U1)= 1.000000E-08

* Linear-Iterations and Termination Criterion for V1
LITER(V1)=20;, ENDIT(V1)= 1.000000E-08

* Linear-Iterations and Termination Criterion for W1
LITER(W1)=20; ENDIT(W1)= 1.000000E-08

* Linear-Iterations and Termination Criterion for KE
LITER(KE)=20; ENDIT(KE)= 1.000000E-08

* Linear-Iterations and Termination Criterion for EP
LITER(EP)=20, ENDIT(EP)= 1.000000E-08

»



L2232 P i) xRk kg REEREBEEP R R RER R Btk Rk
*®

* GROUP 17. Under-relaxation devices.

L 3

Shkbkrb kbR Rk L 2 ] hkkRy Sk ko sk ok

* Linear Relaxation Applied to P1
RELAX(P1,LINRLX, 1.000000E+00)

* Smallest Cell Size { SCALEL }: 1.250000E-01 (m)

* Maximum Velocity { SCALEU }: 4.000000E+00 (m/s)
REAL(SCALEL,SCALEU), SCALEL= 1.250000E-01; SCALEU= 4.000000E+00

* Automatic False-Time-Step Relaxation Applied to Ul
RELAX(U1,FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automatic False-Time-Step Relaxation Applied to Vi
RELAX(V1 FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automatic False-Time-Step Relaxation Applied to W1
RELAX(W1,FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automatic False-Time-Step Relaxation Applied to KE
RELAX(KE,FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automatic False-Time-Step Relaxation Applied to EP
RELAX(EP,FALSDT, 1.000000E+00*SCALEL/SCALEU)

*

“‘*“**.“#*****tii.'ti‘#‘#'*!t‘*‘*******t**t**##**t*#tt**#***
L 3

* GROUP 19. Data communicated by SATELLITE to GROUND.

]
".*‘***‘t*“*ttt“““*ttl****t*i***‘i“tti‘t‘t"‘*t*ttt*i#*i*

* Graphical Convergence Monitoring Active
LSG6=T
[ ]
S0 o e o ool o a0 o o oo ol e oo oo o R 0 O R 0 e o o oo o o ool o oo e o o o o o o
L]
* GROUP 20. Preliminary print-out.
®
P TP T P T T T T 1T PN

* Activate Printout of SATELLITE Data.

ECHO=T
»

ke o s e o o a0 o ool e o ool e ol ol e ool ool ol o oo o e o ool o ool o o oo ol oo oo o o
L]

* GROUP 21. Print-out of variables.

»

[ 1 1] sy % LLI T2 P R T RS e 21 PRl e et TTeyy

* Printout for the Pressure
OUTPUT®PLYNN,Y,Y,Y)

* Printout for the X-Direction Velocity Component
OUTPUT(ULY,NN,Y,Y,Y)

* Printout for the Y-Direction Velocity Component
OUTPUT(V1,Y,NN,Y,Y.Y)

* Printout for the Z-Direction Velocity Component
OUTPUT(W1,Y,NN,Y,Y,Y)

* Printout for the Turbulent Kinetic Energy
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OUTPUT(KE.Y,N,N,Y,Y,Y)

* Printout for the Kinetic-Energy Dissipation Rate
OUTPUT(EP, Y NN,Y,Y.,)

*

"‘**i.."#***#t#****##it#‘*“.‘t**t*‘tltt**lt****tt*#tttt#“#*
L]

* GROUP 22. Spot-value print-out,

*
*t*“.‘***t‘*‘##“‘..“ttt****““‘4.“###.“"#*#tt..**itl*“*

* X.Y,Z-Direction Index of Spot-Value
IXMON=17; IYMON=3; IZMON=6
*

EERRRREERR R AR AR AR R R R R R RN R kSR
]

* GROUP 23. Field print-out and plot control.

*
ttii“#‘*t**#*ttttit!!****ttttt#t‘##“****#ttt#t‘ﬁ***##tttttttt

* Frequency of tabulation/plots of Spot/Residuals Values

* (DO NOT Reset)
NPLT=1

* Print TABLES AND PLOTS of Spot-Values and Residuals
ITABL=3

»

‘.‘*t*##t*#‘*t‘"####tttt‘tt"t*‘*ttltttttt**#tt*ttttttt‘*t**#*
L ]

* GROUP 24. Preparations for continuation runs.

*
*tti‘*#"#‘*ttttt*#*#t**##t*#tt‘#“***t#***i“****tttt*****#*t*
*
“‘*##1'.*ttl‘t##*t‘tt#t‘t&t‘###tt!*t‘t*‘*t#t##it*“#t*tttt*tt*

STOP

‘l**‘*tttti#‘!‘##t1ttttt*t#‘**ttitttt‘ttt“*ttttt#t*#**‘*ttt’t*

A2.4 Rotating Sphere whose Axis is Parallel to Free Stream

Q1 File
- TALK=F; RUN(1,1)

GROUP 1.Run title and other preliminaries

TEXT(ROTATING SPHERE WHOSE AXIS IS PARALLEL TO FREE STREAM }

REAL(TT1,TT2,TV1,TV2,0MEGA RSPH)

GROUP 6. Body-fitted coordinates or grid distortion
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BFC=T; NONORT=T
GSET(D,20,10,30,1,1,1)
GSET(P,P1,0,0,0)

GSET(P,P2,0,10,0)

GSET(P,P3,0,10,10)

GSET(P,P4,0,10,20)

GSET(P.P5,0,10,30)

GSET(P,P6,0,0,30)
GSET(L.L1,P1,P2,10,1.0)
GSET(L.L2,P2,P3,10,1.0)
GSET(L,L3,P3,P4,10,1.0,ARC,0.0,5.0,15)
GSET(L,L4,P4.P5,10,1.0)
GSET(L,L5.PS.P6,10,1.0)
GSET(P.P7,0,0,20)

GSET(P,P8,0,0,10)
GSET(LL8.P8,P1,10,1.0)
GSET(L,L6,P6,P7,10,1.0)
GSET(L.L7,P7.P8,10,1.0)
GSET(FF1,P1,-P2,P3.P4.P5,- P6,P7.P8)
GSET(M.F1,+J+K,1,1,1, LAP10.TFFFFF)
GSET(C,121,F,11,RZ,-6.2832,0.0,10.0,INC, 1.0)

GROUP 7. Variabies stored, solve & named

SOLVE(U1,V1,W1.P])
SOLUTN(1,Y,Y,Y,N,N.N)
1SOLZ=1

GROUP 9. Properties of the medium (or media)

RHO1=1.17736; ENUL=1.6E-5
TURMOD(KEMODL)

GROUP 11. Initialization of variable or porosity fields

FIINIT(W1)=0.0, OMEGA=1.0; RSPH=5.0

GROUP 13, Boundary conditions and special sources

OUTLET(NLET,LOW,1 NX,1,NY,1,1,1,1)
VALUE(INLET,P1,0.0)
VALUE(INLET,U1,0.0)
VALUE(INLET, V1,0.0)
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VALUE(INLET,W1,-10.0)

PATCH(OUTLET,HIGH,1,NX,1,NY,NZNZ 1,1)
COVAL(OUTLET,P1,FIXP,10.0)
COVAL(OUTLET,U1,ONLYMS,0.0)
COVAL(OUTLET,V1,0ONLYMS,0.0)
COVAL(OUTLET,W1,0NLYMS,0.0)

DO II=1,5

TT1=RSPH*RSPH-(RSPH*(5-I1)/5)*(RSPH*(5-11)/5))
TT2=RSPH*RSPH-((RSPH*IV/5)*(RSPH*IL/5))
TVI=SQRT(TTI)

TV2=SQRT(TT2)
PATCH(INWALL] NWALL,1,NX ,NY NY,II+10,I1+10,1,1)
COVAL(INWALLI,U1 FIXVAL,OMEGA*TVI)
PATCH(INWALL2 NWALL,1 NX,NYNY,II[+15,11+15,1,1)
COVAL(INWALL2,U1 FIXVAL,OMEGA*TV2)

ENDDO

ROTAXA=0.0, ROTAYA=1.0, ROTAZA=0.0
ROTAXB=0.0; ROTAYB=1.0, ROTAZB=3.0
ANGVEL=OMEGA; IROTAA=1.0; BFCA=1.17736
PATCH(ROTA PHASEM, 1, NX,NY NY,I,NZ1,1)
COVALMROTA,ULFIXFLU,GRND1)
COVALROTA,V1,FIXFLU,GRNDI)
COVAL{ROTA, W1 FIXFLU,GRND1)

XCYIZ(NZ T

GROUP 15. Termination of sweeps

LSWEEP=100

GROUP 22. Spot-value print-out

ECHO=T, NPLT=1; IYMON=3; IZMON=10

TSTSWP=-1
STOP
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A2.5 Rotating Sphere Whose Axis is Perpendicular to Free Stream

Q1 File

TALK=F; RUN(,1)

TSTSWP=-1

Rt EEE LT Y E 4t L2 2 W o o ok ook ko kR e kakk
»

* GROUP 1. Run title and other preliminaries.

»

e o ok ok ¥knkpkgEky S ool o o oo oo o o e e o R e o ok ook

TEXT(ROTATING SPHERE WHOSE AXIS IS NORMAL TO FREE STREAM)
REAL(OMEGA,PLREPH,UPOT RENO,FI,THI, DELTA,SNFLSNTHI,CS,COTHI)
RSPH=6.5; DELTA=35; UPOT=5.7, OMEGA=0.88; PI=3.14159

-
ko kR kR ok Rk ek ok ok
L]

* GROUP 3. X-direction grid specification.

L ]
T T T L

* Body Fitted Coordinates Grid Selected
* Number of Cells in the X-Direction
NX=31; NXPRIN==2
INTEGER(NXFO01,NXL01), NXF01=1; NXL01=8
INTEGER(NXF02,NXL02), NXF02=9; NXL02=1¢
INTEGER(NXF03,NX1L03);, NXF03=17, NXL03=24
INTEGER(NXF04, NXL04), NXF04=25, NXL.04=31
*

Mo ol ok o o ok o ok o ol ol ok o ol e ok ookl ok o ok ok a2k ol ok e e ol o ok o ol ol oo ol ol e o o ol ol ok ke o bk ok ok ok ok ok
*

* GROUP 4. Y-direction grid specification,

*

S o oo oo oo oo o o ok ok o ok o o o o ok ok ok ook ok ok ko ol Kol o

* Number of Celis in the Y-Direction
NY=15, NYPRIN=2
* Equal Grid Spacing in the Y-Direction
INTEGER(NYFCQI,NYLOL); NYFOI=1; NYLO1=NY
*

T L P P e
|

% GROUP 5. Z-direction grid specification.

»

S0 20 0 0 0 0200 0 o a0 oo o o o o o oo e o o e oo ool o ol ol ook e o ol oo e o o o ol e oo ook o oh

* Number of Celis in the Z-Direction
NZ=11; NZPRIN=2
* Equal Grid Spacing in the Z-Direction
INTEGER(NZF01,NZL01);, NZF01=1;, NZL01=NZ
3
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]

* GROUP 6. Body-fitted coordinates or grid distortion.

| ]

ERRURAEERRRERER AR S SRR LS LI T TT YT
BFC=T, NONORT=T
DOMAIN(INX+1,1 NY+1,1 NZ+1)
SETLIN(XC,(RSPH+DELTA*LNI)*COS(PI*LNK/2)*CSI)
SETLIN(YC,(RSPH+DELTA*LNI)}*SIN(PI*LNK/2))
SETLIN(ZC,(RSPH+DELTA*LN))*COS(PI*LNK/2)*SNI)

-‘l*tiii‘tti‘**t‘*****iiitii##‘t‘#H#***#**t‘ttiit*#t*it#t*#ti#t
*

* GROUP 7. Variables stored, solved & named.

»
**#***#‘*#lt**###t‘t***t***‘*ttt*i***‘*###ttt#**ltiitt****t****

* Solve for the Pressure and X, Y and Z-Direction Velocity Components
SOLVE(P1,UL,VI,W])
SOLUTN(PLY,Y,YNN.N)

*

30 s ol ol oo o oo oo o ool a0 o o o o ol o ke o o o o o Rk o ke
]

* GROUP S. Properties of the medium (or media).

*
l-*#‘l#*“#*##!*##t*#t.******t#**ttttt#t#**‘tt#**ttttt‘******##

* Material is : AIR (300K AND 1 ATMOSPHERE)

* Density Value: 1.177360E+00 (kg/cu.m)
RHOI1=1.177360E+00

* Laminar Kinemati.. Viscosity: 1.568200E-05 (sq.m/s)
ENUL= 1.568200E-05

* K-E Turbulence Model

* ENUT = CMU * (Mixing-Length) * K**0.5

* EL1=(CD*K**1.5)/E

TURMOD(KEMODL)
* Automatically internally Solves for: Tusbulent Kinetic Energy
* Kinetic-Energy Dissipation Rate
*

R R LA L L LR L e L T Y T L L Tl T ey
*

* GROUP 11. Initialization of variable or porosity fields.

*
LI LI I LTI IR PP Y L] Rk R kkkkk L LR LSS EEE L 2

FI=2*PINX; THI=PL/(2*NZ)
L 3

AL L Rl L S AT T Ly T T T T L L L LT Danpppgy
*

* GROUP 13. Boundary conditions and special sources.
®
L LA IR DRSS IR I P I TR P LT R LT E P ey Ny ranpnpnsnprprapapgy
* Inlet Boundary Condition(outside surface)
PATCH(BFCINLET,NORTH,} NXNY,NY,1,NZ,1.1)
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COVAL(BFCINLET,P1,1.0,GRND1)
COVALBFCINLET,UCRT,0.0,5.7)

R8G13=].177360E+H0

WALL(SURF1,SOUTH,31,31,1,1,1,1,1,1)
VALUE(SURF1,P1,1.0)

DOII=1,NZ

COTHI=THI*II
PATCH(SURF,SWALL,1,NX,1,1ILIL,1,1)
COVAL(SURF, U] FIXVAL,OMEGA*RSPH*COS(COTHI))

ENDDO

* Rotational Boundary Condition
RS8G25=0.0; RSG26=0.0, RSG27=0.0
RSG28=0.0; RS§G29=-1.0; RSG30=0.0
RSG21=CMEGA,; ISG18=0
PATCHROTA,PHASEM, 1, NX,1,1,1, NZ 1,1)
COVAL(ROTA,V1,FIXFLU,GRNDI1)
COVALROTA, U1 FIXFLU,GRND1)
COVALROTA,WI FIXFLU,GRND1)

* Cyclic Boundary Condition
XCYIZ(1,NZ,T)
L

S 0 000 o ok K
*

* GROUP 15. Termination of sweeps.

*

e 30 2 e o ool o ol ol ok a2 o ol ol o o ale e ok ke e s o o o oo e e ol e e e 3 ol ook o o e ol o ok o o o ool ol ok ok ok

* Number of Iterative Sweeps (Outer Iterations)
LSWEEP=190

* Autornatic Reference Residual for the Pressure
RESREF(P1)=-GRND!1

* Automatic Reference Residual for the X-Direction Velocity Component
RESREF(U1)=-GRNDI

* Automatic Reference Residual for the Y-Direction Velocity Component
RESREF(V1)=-GRND]

* Automatic Reference Residual for the Z-Direction Velocity Component
RESREF(W1}=-GRND1

* Reference Residual for the Turbulent Kinetic Energy
RESREF(KE)= 1.000000E-10

* Reference Residual for the Kinet'c-Energy Dissipation Rate
RESREF(EP)= 1.000000E-10

*
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* GROUP 16. Termination of iterations.
*
LIS PR el I L1t g T T T T T T T IrIIIY S

* Linear-Iterations and Termination Critericn for Pl
LITER(P1)=20; ENDIT(P1)= 1.000000E-08

* Lingar-Tterations and Termination Criterion for U1l
LITER(U1)=20; ENDIT(U1)= 1.000000E-08

* Linear-Iterations and Termination Criterion for V1
LITER(V1)=20, ENDIT(V1)= 1.000000E-08

* Linear-Iterations and Termination Criterion for W1
LITER(W1)=20; ENDIT(W1)= 1.000000E-08

* Linear-Iterations and Termination Criterion for KE
LITER(KE)=20; ENDIT(KE)= 1.000000E-08

* Linear-Iterations and Termination Criterion for EP
LITER(EP)=20; ENDIT(EP)= 1.000000E-08

*

ol sfe ol o ok o e ot o e e ol e o o sl o ool ol o o ol ol ok ol e o o ol o o o ool o o oo ol ool e ol o o o ok
L |

* GROUP 17. Under-relaxation devices.

]
##*ttttt‘####‘**i***t#‘*i*#*.**t#*#t*****#***tt#*******tt*t****

* Linear Relaxation Applied to P1
ZELAX(P1,LINRLX, 1.000000E+00)

* Smallest Cell Size { SCALEL }: 1.250000E-01 (m)

* Maximum Velocity { SCALEU }: 4.000000E+00 (m/s)
REAL(SCALEL,SCALEU), SCALEL= 1,250000E-01; SCALEU= 4.000000E+00

* Automatic False-Time-Step Relaxation Applied to U}
RELAX(U1,FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automalic False-Time-Step Relaxation Applied to V1
RELAX(V1,FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automalic False-Time-Step Relaxation Applied to W1
RELAX(W1,FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automatic False-Time-Step Relaxation Applied to KE
RELAX(KE,FALSDT, 1.000000E+00*SCALEL/SCALEU)

* Automatic False-Time-Step Relaxation Applied to EP
RELAX(EP FALSDT, 1.000000E+00*SCALEL/SCALEU)

-

.“‘#*‘t"#‘-..“#####*tti##‘i‘t“*#tt!t*##‘ttt‘**t#*******#*ﬁ*
®

* GROUP 19. Data communicated by SATELLITE to GROUND.

*

LI L2 PRI b b b L L 2 Y 2 Iy e g s epeprerreppn

* Graphical Convergence Monitoring Active
LSG6=T
»
e o e o o e o o o o e o oo s R ok o oo o e e ol o oo ok o oo o ol ol o e o o o
*
* GROUP 20. Preliminary print-out,

®
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* Activate Printout of SATELLITE Data.
ECHO=T

.

S oo o o s ol o ol o oo ol ool el o ol ol ool o ol o ol ol o o ook o o o ok LE2 2] *k
»®

* GROUP 21. Prnt-out of variables.

"

L A

* Printout for the Pressure
OUTPUT®LYNN,Y,Y,Y)

* Printout for the X-Direction Velocity Component
OUTPUT(U1,Y,NN,Y,Y,Y)

* Printout for the Y-Direction Velocity Component
OUTPUT(VL,YNN,Y,Y,")

* Printout for the Z-Direction Velocity Component
OUTPUT(WI1,YN,N,Y,Y,Y)

* Printout for the Turbulent Kinetic Energy
OUTPUT(E, Y. NN,Y.Y,Y)

* Printout for the Kinetic-Energy Dissipation Rate
OUTPUT(EP,Y,NN,Y,Y,Y)

*

S0 ool ook ol o ol ol o e o ol ol o oo e e ol o oo o o o ool o o ol a0 o o e oo o o o o o o R R
*

* GROUP 22. Spot-value print-out.

S0 0 o o 0 e ol o oo o o o e o o o ol o ok o e ol ko o o ook o o o o ol o o O o oo e

* X-Direction Index of Spot-Value
DIMON=17

* Y-Direction Index of Spot-Value
IYMON=3

* Z-Direction Index of Spot-Value
IZMON=6

*

Sttt o sk sk sk ok e ol oo e ok e e ol o ke o ol ok o e o o e ol o e o o oo o ol o sl o o o o o ok o o o o ok ol ok R o
»

* GROUP 23. Field print-out and plot control,

*
EhRRky SEE L LS LAE LI LIt I A R R a2t s 22t it e
* Frequency of tabulation/plots of Spot/Residuals Values
* (DO NOT Reset)

NPLT=1

* Print TABLES AND PLOTS of Spot-Values and Residuals
ITABL=3
L ]

ok ok ok ok o ko o Ao o o
*

* GROUP 24. Preparations for continuation runs.
*
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x

STOP
*

bt S L L A LA LI I Ll T e T T L L LT py

Ground File
C FILE NAME GROUND.FTN. 011093
SUBROUTINE GROUND
INCLUDE "Ip2/d_includ/satear’
INCLUDE "Ip2/d_includ/grdloc’
INCLUDE ‘ip2/d_includ/grdear’
INCLUDE 'Ip2/d_includ/grdbfc’
CXOOIE OO OO DX KOOI X USER SECTION STARTS:
C

C1 Setdimensions of data-for-GROUND arrays here, WARNING: the
C corresponding arrays in the MAIN program of the satellite
C and EARTH must have the same dimensions.

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100)

C
COMMON/LGRND/LG(NLG)IGRND/AG(NIG)RGRND/RG(NRG)/CGRND/CG(NCG)
LOGICAL LG
CHARACTER®*4 CG

c

C 2 User dimensions own arrays here, for example:

C DIMENSION GUH(10,10),GUC(10,10),GUX(10,10),GUZ(10)
DIMENSION GX2(35,20),GY2(35,20),GZ2(35,20)
DIMENSION GENFL(1 1), UIN(1 1), VIN(1 1),"VIN(1 1),A(3),B(3).C(3).D(3)
REAL UPOT
INTEGER 11 K1

C

C 3 User places his data statements here, for example:

C DATA NXDIMNYDIM/10,10/

DATA NXD,NYD,NZD/35,20,15/
PARAMETER (NFDIM=%00000)

C

C4 Insert own coding below as desired, guided by GREX examples.

Note that the satellite-to-GREX special data in the Iabelled

COMMONSs /RSG/, /ISG/, /LSG/ and /CSG/ can be included and

used below but the user must check GREX for any conflicting

uses. The same comment applies to the EARTH-spare working
arrays EASP1, EASP2,.. . EASP20. In addition to the EASPs,
there are 10 GRound-carth SPare arrays, GRSP1,.. .GRSP10,
supplied solely for the user, which are not used by GREX. If

the call to GREX has been deactivated then all of the arrays

may be used without reservation.

sNeleReNeNoReNoRoRY]
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CH#tdrtsinin * EBEERBRRR Rk R AR Rk Rk kR RNk R

C
IXL=IABS(IXL)
C UPOT=150
IFAGR.EQ.13) GOTO 13
IFIGREQ.19 GO TO 19
GO TO (1,2,3,4,5,6,25,8,9,10,11,12,13,14,25,25,25,25,19,20,25,
125,23,24)IGR
25 CONTINUE
RETURN
C¢*¢$$‘** EEEEEUN Rk kR Rk ok ok koo Rk
c .
C--- GROUP 1. Run title and other preliminaries
C
1 GO TO (1001,1002),ISC
1001 CONTINUE
C
C  User may here change message transmitted to the VDU screen
IFIGR.EQ.1.AND.ISC.EQ.1.AND..NOT.NULLPR)
1 CALL WRYT40('GROUND file is GROUND.F of: 011093 "

C
RETURN
1002 CONTINUE
RETURN
C*“‘**t**“****t***#*#****l‘i*l*i1*“‘ﬂ‘**ii*"*******‘*i*tt*t#*‘
C
C--- GROUP 2. Transience, time-step specification
C
2 CONTINUE
RETURN
C‘***‘***.i**‘i“******ttt#***l**********tt#**##********#****t*t**
Cc
C--- GROUP 3, X-direction grid specification
C
3 CONTINUE
RETURN
C“**““"#*******“*#*#“**t***tttttttt#““*“*ttt#t****‘#t.ﬁ#*
C
C--- GROUP 4. Y-direction grid specification
c
4 CONTINUE
RETURN
C**.#**U't‘*#*tttttt"t‘tt‘##‘##.“'““*t#**####*#.#..‘*#‘t‘*.***
C
C--- GROUP 5. Z-direction grid specification
c
5 CONTINUE
RETURN
C‘i‘*t**tttt#t‘##‘###““i""t*#ttttt#***#*#*ttttttttt*#*t‘*tt*“
C
C--- GROUP 6. Body-fitted coordinates or grid distortion
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C
6 CONTINUE
RETURN
C*ttt‘ttt‘t"#.“‘****tttt*t.i.‘ttt"t*‘*‘!##*t*tt*tttttt‘ti‘#t‘*#
C * Make changes for this group only in group 19.
C--- GROUP 7. Variables stored, solved & named

c#*******tt#ttit#*.#.tt#**t*##*##t*t**tttt*‘ttttt**tt#tttt#tttt‘tt
C
C--- GROUP 8. Terms (in differential equations) & devices

C
8 GO TO (81,82,83,84,85,86,87,88,89,810,811,812,813,814,815)
LISC
81 CONTINUE
C ¥ e SECTION 1
C ForU1AD.LE.GRND--- phase 1 additional velocity. Index VELAD
RETURN
82 CONTINUE
C ¥ e SECTION 2
C For U2AD.LE.GRND--- phase 2 additional velocity. Index VELAD
RETURN
83 CONTINUE
C ®eees SECTION 3 --
C For VIAD.LE.GRND--- phase 1 additional velocity. Index VELAD
RETURN
84 CONTINUE
C * e SECTION 4
C For V2AD.LE.GRND--- phase 2 additional velocity. Index VELAD
RETURN
85 CONTINUE
C * s SECTION 3 -eee
C For WIAD LE.GRND--- phase 1 additional velocity. Index VELAD
RETURN
86 CONTINUE
C * e SECTION 6 --c-emrmemammmmm e
C For W2AD.LE.GRND--- phase 2 additional velocity. Index VELAD
RETURN
87 CONTINUE
C ¥ SECTION 7 ---- Volumetric source for gala
RETURN
88 CONTINUE
C *reeees SECTION 8 ---- Convextion fluxes
RETURN
89 CONTINUE
C ¥ e SECTION 9 ---- Diffusion coefficients

C--- Entered when UDIFF = TRUE.; block-location indices are LAE

for east, LAW for west, LAN for north, LAS for

south, LD11 for high, and LD11 for low.

User should provide INDVAR and NDIREC IF's as above.

EARTH will apply the DIFCUT and GP12 modifications after the user
has made his settings.
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RETURN
810 CONTINUE
C #*-—eeeceeeeeeaeeu SECTION 10 --- Convection neighbours
RETURN
811 CONTINUE
C *—eeeeeereeeeee SECTION 11 --- Diffusion neighbours
RETURN
812 CONTINUE
C *eeeeeccoeeceeeee- SECTION 12 --- Linearised sources
RETURN
813 CONTINUE
C * e SECTION 13 -.- Correction coeflicients
RETURN
814 CONTINUE
C *ceeeeeeaceeee- SECTION 14 --- User's own solver
RETURN
815 CONTINUE
C ® SECTION 15 --- Change solution

C * See the equivalent section in GREX for the indices to be

C usedinsections 7 - 15

C

C * Make all other group-8 changes in GROUP 19,
Ctt‘#‘ﬁ“‘********“*#***‘####*‘**‘*‘#1**i#*i““*#*‘*t‘#***t*tt##
c

C--- GROUP 9. Properties of the medium (or media)

The sections in this group are arranged sequentially in their

order of calting from EARTH. Thus, as can be seen from below,

the temperature sections (10 and 11) precede the density

sections (1 and 3); so, density formulae can refer to

temperature stores already set.
9 GO TO (91,92,93,94,95,96,97,98,99,900,901,902,903,904,905),1SC
C****i***#**‘*t##*t##**‘*#**t#*V*tttt#ttt*titt***********ttttt****

900 CONTINUE
C *ereeer——- SECTION 10
C For TMP1.LE.GRND--------- phase-1 temperature Index TEMP1
RETURN

OO0 0O0

901 CONTINUE
C *emreeecereeeeee. SECTION 11
C For TMP2 LE.GRND--------- phase-2 temperature Index TEMP2
RETURN
902 CONTINUE
C *-—--r-SECTION 12
C For EL1.LE.GRND--------- phase-1 length scale Index LEN1
RETURN
903 CONTINUE
C ¥ e SECTION 13
C For EL2.LE.GRND--------- phase-2 length scale Index LEN2

RETURN
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904 CONTINUE

C *—eeeeeeee - SECTION 14
€ For SOLVE(TEMP1) phase-1 specic heat

RETURN

905 CONTINUE

C * et SECTION 15
C For SOLVE(TEMP2) phase-2 specic heat

RETURN

91 CONTINUE

C *rceeee - SECTION 1
C For RHO1.LE.GRND--- density for phase ]  Index DENI

RETURN

92 CONTINUE

C ¥rees SECTION 2
C For DRHIDP.LE.GRND--- D(LN(DEN))/DP for phase 1
C Index DIDP

RETURN

93 CONTINUE

L SECTION 3
C For RHO2.LE.GRND--- density for phase 2 Index DEN2

RETURN

%4 CONTINUE

O — SECTION 4
C For DRH2DP.LE.GRND--- D{LN(DEN))/DP for phase 2
C Index D2DP

RETURN

95 CONTINUE

O e — SECTION 3
C For ENUT.LE.GRND--- reference turbulent kinematic viscosity
C Index VIST

RETURN

96 CONTINUE

C * e SECTION 6
C For ENUL.LE.GRND--- reference laminar kinematic viscosity
c Index VISL

RETURN

97 CONTINUE

C * e SECTION 7
C  For PRNDTL( ).LE.GRND--- laminar PRANDTL nos., or diffusivity
C Index LAMPR

RETURN

98 CONTINUE

C ¥ e SECTION 8
C For PHINT( ).LE.GRND--- interface value of first phase
C Index FiI1

RETURN

99 CONTINUE

C ¥ SECTION 9
C  For PHINT( ).LE.GRND--- iaterface value of second phase
C Index FIi2

RETURN
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c
C--- GROUP 10. Inter-phase-transfer processes and properties

C
10 GO TO (101,102,103,104),ISC
101 CONTINUE
C *---emeoeeeeeeee- SECTION 1
C For CFIPS.LE.GRND--- inter-phase friction coeff,
C Index INTFRC
RETURN
102 CONTINUE

C *--mrereeeeeemeee SECTION 2
C For CMDOT EQ.GRND- inter-phase mass transfer Index INTMDT

RETURN
103 CONTINUE
C *—reeeeo- SECTION 3
C For CINT( ).EQ.GRND--- phasel-to-interface transfer coefficients
C Index COIl
RETURN
104 CONTINUE
C *—-—-rceeeeeee- SECTION 4
€ For CINT( ). EQ.GRND--- phase2-to-interface transfer coefficients
C Index COI2
RETURN

Cresr bk m kR ke E Rk kR Rk kR kg kR kKRR

C
C--- GROUP 11. Initialization of variable or porosity fields
c Index VAL
11 CONTINUE
RETURN
Ctttt*#**‘**#**t**#tt*t**####t###t**********t*ttt**#*****tt*******
C
C--- GROUP 12. Convection and diffusion adjustments
C
12 CONTINUE
RETURN
L L P PR,
C
C--- GROUP 13. Boundary conditions and special sources
C Index for Coeficient - CO
C Index for Value - VAL
13 CONTINUE
GO TO(130,131,132,133,134,135,136,137,138,139,1310,
11311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321),ISC
130 CONTINUE
C-rmrremrereecrenane SECTION 1 ------------- coefficient = GRND
RETURN
131 CONTINUE
C-mesmvmsnacoereeee SECTION 2 —e-eemmeneeee coefficient = GRND]
RETURN
132 CONTINUE
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Co—ooeoemeeeee SECTION 3 =-oo-ee-eeme- coefficient = GRND2
RETURN
133 CONTINUE
L 12108 L)\ I IS — coefficient = GRND3
RETURN
134 CONTINUE
Cmrrmee SECTION 5 ----—-+rme- coefficient = GRND4
RETURN
135 CONTINUE
C--eeeeenemcoaenaaae SECTION 6 ---=-vceeme-- coefficient = GRNDS
RETURN
136 CONTINUE
C-reevensecmanee- SECTION 7 womeemeeneme- coefficient = GRND6
RETURN
137 CONTINUE
L SECTION 8 -c-m-mmmeee- coefficient = GRND7
RETURN
138 CONTINUE
L SECTION 9 -e--meeemeee- coefficient = GRNDS
RETURN
139 CONTINUE
Camrmremei e SECTION 10 -veemveemees coefficient = GRNDS
RETURN
1310 CONTINUE
Cormmemmeee SECTION 11 -meeecenceaes coefficient = GRNDIi0
RETURN
1311 CONTINUE
O SECTION 12 wemmmvmeeaeeee value = GRND
RETURN
1312 CONTINUE
L SECTION 13 cocavemeeermeeee value = GRND!
RETURN
1313 CONTINUE
G e SECTION 14 cecmmmeeee value = GRND2

CI83P38 8385835538585 58885858855885553555555855555585555555555555585S

C DOB8800KI=1,10
DO 800011 =1,30

C---Mass flux inlet boundary condition at IY=NY North face.

CALL ONLYIF(P1,P1,INLET")

IFISWEEP.EQ.]) THEN
C---Get corner coordinates of the 4 comers st the North boundary of
the domain, at the current salb. These corners are labelled A, B,
C and D, and the Cartesian coordinates XC, YC, ZC for each corner
are stored in the arrays A(3), B(3), C(3) and D(3). The labels are
attached in the sense of a right-hand screw out the domain, so as
to give the outward normal
CALL SUB3(L,I1,NINY+1 K IZSTED)
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CALL GETPT(1NIX,A(1),A(2),A(3))
CALL GETPT{1 NJK+1,B(1),B(2),B(3))
CALL GETPT(1+1,NJK+1,C(1),C(2),C(3))
CALL GETPTII+INIK.D(1),D(2),D(3))

C---Construction outward normal
CALL NORML(A,B,C.D.EV)

C---Re-set external flow direction unit vectar
CALL VECTOR(QV,1.,0.,0.)

C---Calculate mass inflow, reversing sign to get inward normal.

C---UPOT = external flow total velocity
GINFL(IZSTEP)=-UPOT*RHO1*DOTEV.QV)

C.-—Calculate U,V and W resolutes convected into domain at the north

C boundary

C---Get arrays for vectors in the U-resolute direction.
CALL GTIZYX(80,1ZSTEP,GX2 NYD,NXD)
CALL GTIZYX(81,1ZSTEP,GY2 NYD,NXD)
CALL GTIZYX(82,IZSTEP,GZ2 NYD,NXD)
=1
IY=NY

C---Set east face unit vector for U-resolute direction.
CALL VECTOR(EV,GX2(1Y,IX),GY2(1Y,IX),GZ2(Y.IX))

C---Calculate U-resolute.
UIN(IZSTEP)=UPOT*DOTEV.QV)

C---Get arrays for vections in V-resolute direction,
CALL GTIZYX(83,IZSTEP,GX2,NYD,NXD)
CALL GTIZYX(84,IZSTEP,GY2 NYD,NXDYy
CALL GTIZYX(85,IZSTEP,GZ2, NYD ,NXD)
X=1
IYM=NY-I1

C---Set north face unit vector in V-resolute direction.
CALL VECTOR(EV,GX2(YM,IX),GY2(IYM,IX),GZ20YM.IX))

C---Calculate V-resolute.
VIN(ZSTEP)=UPOT*DOT(EV.QV)

C---Get arrays for vectors in W-resolute direction.
CALL GTIZYX(86,IZSTEP,GX2,NYD,NXD)
CALL GTIZYX(87 IZSTEP,GY2,NYD,NXD)
CALL GTIZYX(88,IZSTEP,GZ2,NYD,NXD)
IX=1
IY=NY

C---Set high face unit vector for W-resolute direction
CALL VECTOR(EV,GX2(1Y,IX),GY2(IY,IX),GZ2(1Y,IX))

C---Calculate W-resolute.
WIN{IZSTEP)=UPOT*DOT(EV,QV)

ENDIF

C---Set mass inflow boundary condition.
CALL FN1(VAL,GINFL(IZSTEP))

C---Set U-resolute at inlet boundary.
CALL ONLYIF(U1,Ul1,'INLET")
CALL FNI(VALUIN(IZSTEP))

C---Set V-resolute at inlet boundary.
CALL ONLYIF(V1,V1,'INLET")
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CALL FN1(VAL,VIN(IZSTEP))
C---Set W-resolute at injet boundary.

CALL ONLYIF(W1,W1{,INLET")

CALL FN1(VAL,WIN(IZSTEP))

8000 CONTINUE

C8800 CONTINUE

CC NPAT=NPATCH(I:4)

CC IF(NPAT.EQ.KESO") THEN

CC  CALL GXKESO(VIST,LEN1,VISLFIXVAL)
CC ELSEIF(NPAT.EQ.KEBU') THEN

CC  CALL GXKEGB

CC IF(NPAT(1:3)EQ.BFC") THEN

CC  CALL GXBFCNXNY,NZ)

CC ENDIF
CHE555555555555555555555555555 555555555 5555555555535555555555555%

RETURN
1314 CONTINUE
Crmmmmmeremmemeeees SECTION 15 ---eeeereacaaceans- value = GRND3
RETURN
1315 CONTINUE
O e —— SECTION 16 =seemmmmmacaennanas value = GRND4
RETURN
1316 CONTINUE
S SECTION 17 cvvrmmmmvemeemaeeee value = GRNDS5
RETURN
1317 CONTINUE
L SECTION 18 wecommmemnrccacenean value = GRND6
RETURN
1318 CONTINUE
L SECTION 19 cemevecmemnecacnann value = GRND7
RETURN
1319 CONTINUE
O SECTION 20 «eeemmmmmeerenann-e value = GRND8
RETURN
1320 CONTINUE
O SECTION 21 mcemeememeeeceeea value = GRND9
RETURN
1321 CONTINUE
Comememmmmemee e SECTION 22 =orememmmememeeeee value = GRND10
RETURN
C‘*.#t*t't#!tt#ttttttttttttttttttt#*tttlit*tt*t‘tttt‘tt#t*‘*#*t**
C
C--- GROUP 14. Downstream pressure for PARAB=TRUE.
C
14 CONTINUE
RETURN

oLl it L LI LLLLL LI LI LI LLLLLELLLLLLESELIEEE LI EE LI L

C* Make changes to data for GROUPS 15, 16, 17, 18 GROUP 19,
L LT T T PP T T T
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C
C--- GROUP 19. Special calls to GROUND from EARTH
C
19 GO TO (191,192,193,194,195,196,197,198,199,1910),ISC
191 CONTINUE
C *-eeeeeeeee—- SECTION | -—- Start of time step.
RETURN
192 CONTINUE
C *eeememeeccneeee- SECTION 2 ---- Start of sweep.
UPOT=RG(1)
RETURN
193 CONTINUE
C * —mmmimeccaceees SECTION 3 ---- Stact of iz slab.
RETURN
194 CONTINUE
C *—eeiceceeee- SECTION 4 ---- Start of iterations over slab.
RETURN
199 CONTINUE
o SR SECTION 9 ---- Start of solution sequence for
C a variable
RETURN
1910 CONTINUE
C *ceeeomeeemae- SECTION 10---- Finish of solution sequence for
C a variable
RETURN
195 CONTINUE
[ O, R —— SECTION 5 ---- Finish of iterations over slab.
RETURN
196 CONTINUE
C *--eeemeeeeeeeeee-- BECTION 6 ---- Finish of iz slab.
RETURN
197 CONTINUE
C *errmemeeeees SECTION 7 ---- Finish of sweep.
RETURN

C ® s SECTION 8 ---- Finish of time step.

RETURN
C**l““‘******.#‘#*i##**#*“#“*‘#.****#‘*t*****#**t**********#
c
C--- GROUP 20. Preliminary print-out
C

20 CONTINUE

RETURN

Ctt####*‘i*###*itt*t*tt*##*###**t*ttttt**#t**t#ttt*!*********#i*

C* Make changes to data for GROUPS 21 and 22 only in GROUF 19.
C*#&**‘t###tiit##t**t*#llt‘.t*t##*ttttt#lit#*i##t##*#*itt**#t##*
C
C--- GROUP 23. Field print-out and plot control
23 CONTINUE
RETURN



147

Cttitiit!‘tl#ttttt*tttt*tttt#ttt#t*t*iiﬂtt*##i*“#*tt**#t#*tt*t#

c
C--- GROUP 24. Dumps for restarts
c

24 CONTINUE

END



APPENDIX III

MEASURING TECHNIQUE

Because of the fact that the thickness of the boundary layer of a sphere is very thin, and that
the flow in the thin layer is three-dimensional, a fine wire triple sensor probe, which has the
advantages of high sensitivity, compactness and capability of detecting the direction of flow,
was used. The principle of the method can be described as follows: when a fine wire is heated
by an electric current and mounted in a three-dimensional flow field, the voltage across the

wire is a function of flow velocity and its direction.

It is helpful to define two distinct coordinate systems: the wire coordinate system and

the laboratory coordinate system. The wire coordinate system is defined relative to the axes

of the sensors by the orthogonal unit vectors (i pip 3) , éach hot wire defines one axis of

the coordinate system. A fluid velocity vector, U , in wire coordinates is described by:

P,

U= yd, « Wi, w,i, (A3.1)

-
I3

where ¥, ¢, ¥, are components of U in the directionsi p Ig I, TESPECtively.
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The axes of the laboratory coordinate system are defined relative to the experimental
facility by the orthogonal unit vectors (7’ o i » i .- A fluid velocity vector, U, in laboratory

coordinates is described by:

U-Ui +Vi Wi (A3.2)

where U, ¥ and W are components of U in the directions x, Y, 2, respectively.

The thermal sensor is cooled by velocity components in all directions. Neither a single
component nor the magnitude of the velocity vector alone cools the heated sensor, but rather
an effective cooiing velocity, U, which is related to the magnitude of the velocity vector,
and includes different effects from different velocity components in the wire coordinate
system. Using an improved model of the Cosine Law, Joergensen's equations, for wires along
axis 1,2 and 3, with the planes of ihe supports defined by (7, i,), (i, ,) and (i, 1),

respectively are:

Uzqﬂ AL ¥y kA (A3.3)
U? s B Byt ey (A3.4)
Uy = W2 ko, e B2y (A3.5)

where £, is the yaw factor, &, = 0.2, and £, is the pitch factor, k, = 1.02.
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Equations (A3.3) - (A3.5) may be written as

[ .2 2 2 2

Uqﬂ k1 k W)
2 2 .2 2

UL |- |82 & 1 || ¢ (A3.6)
2 2 .2

U | |1 B K|

[ 2- [ 2-°1 [ 2

v | &1 K Uy

oo I S U, (A3.7)
2 2 2 2

v [ R K UL

Transposing the velocities from wire coordinate system to the laboratory coordinate system
by multiplying the components of the vector in one coordinate system by the direction cosines

of the solid angle subtending the unit vector of the two coordinate system results in;

U ¥,
V|- cosy, | ¥, (A3.8)
w _ ¥,

-

where y; is the solid angle subtended by the ur..: vectors ( 7, , 1-} Y, i=1,23j=xy,z

In Figure A3.1, all solid angles labeled are in the plane (x, z), wire 1, 2 and line EF are

in plane 4BCD which has 35 degrees with respect to horizontal plane (x, 37, the probe stem
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is horizontal and defines the x-direction, the veriical direction defines the z-direction, wire 3

is in the vertical plane. Then the Dantec triple sensor probe is gives:

r

i c0s45°c0835° c0s45%0s35° cos55° }
cosy,. = - cos45° cos45° 0 } (A3.9)

- cos45%in35° - cos45%in35° cos35°
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Figure A3.1 Orientation of the triple sensor probe
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Calibration Fit fAnalysis
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Figure A3.2a  Calibration curve and percentage error
for triple sensor probe (wire 1)
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Calibration Fit Analuysis
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Figure A3.2b  Calibration curve and percentage error
for triple sensor probe (wire 2)
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Calibration Fit Rnalysis
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