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A FINITE ELEMENT CONTACT ALGORITHM . . .



ABSTRACT

The study presented in this thesis aims at fulfilling an industrial need for solution
methods suitable for the analysis of complex nonlinear engineering problems. A finite
element contact algorithm is developed, implemented and verified. Furthermore, the

algorithm is used for the numerical simulation of the hydraulic expansion of tube joints.

A variational formulation of the general contact problem is presented where the virtual
work principle is adopted to arrive at the discretized equilibrium equations for two
generic bodies coming into contact under the effect of the applied loads. The
discretized contact constraint equations are derived geometrically from the kinematics
of the potential contact surface nodes. A direct engineering approach is used to
develop a solution algorithm which is applicable for the analysis of contact problems
in general. No assumptions are made regarding the geometry of the contacting bodies,
the location and extent of contact and the nature of the external loading. A non-
classical bi-linear friction model is introduced where micro tangential relative
displacements are allowed even under very light normal traction. The bi-linear law may
be reduced to the classical Coulomb’s friction law as a special case. The algorithm is
made capable of handling nonlinear continuum finite elements, i.e. elements with
curved sides. The equilibrium equations are solved iteratively to calculate the contact
nodal forces which remove any overlap without augmenting the contact constraint
equations into the original system of egquilibrium equations. Instead, the contact

constraint equations are solved as an inner loop in the global nonlinear iteration loop

iii



which follows the full/rﬁodified Newton-Raphson iterative technigue. The developed
algorithm is implemented in the in-house general purpose non-linear finite element
program INDAP' and verified through the solution of illustrative examples covering a
wide range of contact problems of static, elastic, elasto-plastic, conformal and non-

conformal contact interactions.

The developed contact algorithm is used along with two finite element models to
sirnullate the hydraulic expansion of tube joints. A 2-D plane stress model is used to
investigate the effects of the different material mechanical properties on the joint
strength. A 2-D axisymmetric model is adopted to overcome the limited scope of the
plane stress model. The feasibility of ignoring the geometric nonlinearity and the
friction interaction are investigated. A 2% complete factorial numerical experiment is
adopted to study the main and interaction effects of the expansion pressure, the initial
rédial clearance and the coefficient of friction on the residual contact pressure,
representing the joint integrity, and the maximum residual tensile stress along the tube
inner and outer surfaces, representing the joint quality. A new explanation to the
break-off the joint strength when the joint is further expanded beyond a well-defined
optimum is suggested. The adequacy of some strength measures is explored. The
effects of the initial stresses and the cold-work surface layer along the tube outer

surface are investigated.

Incremental Nonlinear Dynamic Analysis Program
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CHAPTER 1

INTRODUCTION

1.1 Preamble

Contact interaction is the type of phenomenon which is unavoidable in all aspects of
everyday life. Simply, it is a way of communication between individual objects. In
engineering applications, contact interaction is the common way of communication
between different components of structural or mechanical systems. The transfer of
loads is achieved through contact surfaces. Gears, cams, and clutches are common
examples of a driving body which exerts forces on a driven body to transmit motion.
On the other hand, in a typical rolling element bearing application, a rotating shaft is
supported in a machine housing without transmitting any motion. In structural
applications, bolted connections, for instance, are an obvious example of the contact
problem in which loads are transmitted between static bodies. In all these examples
and others, the contacting bodies are designed to perform entirely in the material
elastic range of deformations. In other applications, metal forming for instance, the
materials involved are deformed beyond the elastic limit to achieve permanent
deformations. In engineering applications, contact interactions are usually intentional.
Howrever, there are situations where contact interactions are accidental as in vehicle

crash for instance.
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Contact interactions may have an outstanding effect on the behaviour of mechanical
and structural systems which brings ahout the question of efficiency and performance.
Contact interactions can beintentional or accidental; pleasant or harmful. Nevertheless,
how the contact interaction would affect the efficiency and performance of a
mechanical or structural system relies largely on the understanding of the contact
phenomena. This understanding is crucial to enhance the beneficiary side of contact
and to minimize its unpleasant consequences. Ultimately, the understanding of the
contact phenomenon leads to an improved efficiency for intentional contacts and an

assisted safety against accidental occasions.

Contact and friction are the two sides of the same coin. When two metallic bodies in
contact are subjected to applied forces which tend to produce relative sliding motion,
friction stresses develop on the interface that tend to oppose that motion. In reality,
friction phenomena exist whenever contact is present. The underlying fact which
brings about the friction phenomena is that all physical boundaries are rough from a
microscopic point of view. The roughness of the physical boundary contributes
significantly to frictional resistance. Asperities may wear down resulting in smoothing
of the boundaries. At the same time, asperities may indent into the boundary resulting
in new asperities. However, frictional effects may be neglected, for simplicity, in
situations where frictional forces are sufficiently small. Therefore, contact problems

may be classified as frictional or frictionless.

Contact problems may also be categorized into static or dynamic. The contact between

two bodies is a static phenomenon if the two bodies are in static equilibrium.
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Otherwise the contact is a dynamic phenomenon. in many cases, dynamic effects can

be neglected and the problem can be considered quasi-static for simplicity.

If the contacting bodies are touching first at a point or along a line and under load the
dimensions of the contact area are generally small compared to the dimensions of the
bodies themselves, the contact is called non-conformal and the bodies are called non-
conforming. In these circumstances, the contact stresses comprise a local stress
concentration which can be considered independently of the stresses in the bulk of the
two bodies. On the other hand, bodies whose surfaces conform to each other are likely
to make contact over an area whose size is comparable with the significant dimensions
of the two bodies. The contact stresses then become part of the general stress
distribution throughout the bodies and cannot be separated from it. In such cases, the

contacting bodies are called conforming and the contact interaction is called conformal

contact.

Mathematically, the elasto-plastic material behaviour renders the problem materially
nonlinear. If large displacements and/or strains are present, the problem becomes
geometrically nonlinear. Contact interaction is by itself a third type of nonlinearity
which is independent of either the material or the geometric nonlinearities. The contact
nonlinearity arises as a result of the f.act that neither the contact area nor the contact
traction is known a priori. In a general contact problem, the surface area of the contact
region develops as a result of the load variations and the contact traction is

redistributed accordingly.
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As a practical engineering application whichinvolves contactinteractions, the hydraulic
expansion of tube joints is simulated using the finite element method. The expansion
process is one of the complex deformation problems where the contact interaction acts
along with both the geometric and material nonlinearities. The expanded joint
resembles the shrink fit or rather the expansion fit, where the slightly oversize tube
would be chilled, inserted in the hole and allowed to expand against the sleeve by
warming up. Whereas the shrink fit or expansion fit is normally practised such that
only elastic stresses are produced and the oversize of the tube is under immediate
control, the expanded joint, on the other hand, necessitates plastic stresses, at least
in the tube material, and the effective oversize produced is not under immediate

control.

Reliable expanded tube joints are essential in a variety of industrial applications. The
fastening of tubes in boiler plates, condenser tube sheets, feedwater heaters and air
or oil coolers is a typical practice in which the expanded joint proved to be permanently
satisfactory in operation with regard to the very important factor of manufacturing
economy. One of the most critical applications of the expanded joint is the fastening

of the pressure tubes of the CANDU(PHW)' reactors into the end fittings.

The expanded joint must not only be tight enough but also have structural integrity,
to contribute to the support of the dead load and to resist the stresses and strains of

temperature changes. The tightness against leakage depends upon the surface

' CANadian Deuterium-Uranium {Pressurised Heavy Water)
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conditions of the tube end and the plate hole/end-fitting, the uniformity of the
expanding process and the residual contact pressure left between the tube and the
plate/end fitting. The structural resistance to tension, torsion and bending depends
upon the friction in the joint. This in turn depends upon the surfaces and the residual
contact pressure. Beside the leak tightness and structural strength, the residual tensile
stresses in the tube wall should be low enough to exciude the possibility of crack
initiation and propagation. In other words, the residual tensile stresses along the tube
inner and outer surfaces should be lower than the threshold of the stress corrosion

cracking, SCC, stress.

tn this chapter, a brief account of the role of the finite element method in the analysis
of the general contact problem is introduced. Emphasis is set on the formulation, the
different methods of applying the contact constraints, the searching algorithms and the
friction laws. This is followed by a literature survey on the expanded tube joint where
experimental, analytical and numerical studies are cited. Finally, this introductory

chapter concludes with the cbjectives and general layout of the thesis.



1.2 Contact Problem and the Finite Element Method

In this section, the application of the finite element method in the solution of the static
contact problemn is dealt with. Focus is placed upon formulations which use a
variational equality and the contact constraint equations are imposed on the solution.
A comprehensive and more detailed review on static contact problems can be found
in Zhong [1992] where more than five hundred references are grouped under the

following headings:

Mathematical aspects, fundamentals
Contact problems with friction
. Thermal contact problems
Material non-linear contact problems
. Geometric non-linear contact problems
Finite element library for contact problems
. Contact problems in fracture mechanics
. Elastic foundations
. Joints: bonding, lapped, butt, dovetail, bolts, etc.

. Contact problems and geomechanics

Because of the complexity of the contact problem, both mathematicians and engineers
devoted a great deal of attention to formulate and solve various types of contact

problems. The progress in the contact research is divided into three stages as reported



by Zhong [1992].

In the first stage, contact bodies are restricted to rigid bodies and only global
phenomena such as the total contact forces are observed and resulted in the Newton’s
third law and Coulomb’s friction law. Coulomb’s friction law divides the contact
conditions into two distinctive regions; a sticking zone and a sliding zone. According
to this law, the contacting bodies are in a sticking condition as long as the friction
force is less than the frictional capacity defined by the coefficient of friction multiplied
by the normal force. Once the friction force reaches the frictional capacity, sliding
occurs. In spite of the physical and mathematical deficiencies associated with
Coulomb’s friction law, it is the most commonly used friction model, Oden and Piers

[198324].

The second stage of the history of the contact problem witnessed the development of
the mechanical science and increasing engineering activities where local phenomena
began to be observed. The second stage is marked by the monumental work of Hertz
who considered the normal contact of two non-conforming bodies where under load
they deform in the vicinity of their point of first contact, Johnson [1985]. Hertz
developed a theory to predict the shape and size of the area of contact as it grows
under increasing loads assuming that contact bodies can be regarded as elastic half-
spaces with small deformation and that contact areas are small and elliptical. He also
assumed that the contact boundaries are frictionless. Following Hertz, many studies
have been conducted to release some of the constraints on the Hertzian contact

problem, Johnson [1985]. During this stage, geometry and deformation of the
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contacting bodies are assumed in such a way that available mathematical tools can be
used to obtain closed-form solutions to the contact probiem. Obviously, the
approaches used in this stage are very restrictive and can only be applied to very

special problems.

The third stage is characterized by numerical studies as a result of the advent of digital
computers which opened the door for extensive numerical studies for the solution of
a wide range of contact problems with arbitrary geometries, boundary conditions, and
loadings. The finite element method has been the most widely used numerical
technique for solving contact problems. Fortunately, the finite element method offers
a systematic procedure for solving such problems with great success. The main
advantage of the finite element method compared to other analysis techniques is its
versatility and generality. By dividing the mathen atical model into many elements, it
is possible to model any continuum with any loading and boundary conditions giving
results accurate to the specified engineering tolerances. Theoretically, the finite
element solution would appreach the exact solution in the limit as the element size
becomes infinitesimally small. This statement is true if two convergence criteria are
satisfied within each individua! element. However, practical limitations, including both
sGftware and hardware, usually limit the size of problems which can be handled. As
the number of elements increases, the time required for input data preparation, solution
and post processing increases dramatically. The cost of the overall analysis is indeed

the main factor in the finite element solutions.

The finite element solutions to the contact problem may be classified into two main
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formulations as described in Zhong [1993]. The contact problem may be formulated
using the virtual work principal to yield a variational inequality which may be solved
by mirimization techniques. This formulation is referred to as the V-1 formulation. An
advantage of the V-1 formulation is that all the boundary conditions are contained in
the variational statement. Furthermore, with the V-1 formulation the existence and/or
unigueness of solution can be proved and error estimates can be obtained for some
contact problems as discussed in detail in Kikuchi [1988]. The V-1 formulation is
mathematically rigorous and is widely used in practice. However, a comprehensive
mathematical background is essential to work with such a formulation. For engineering
researchers, it is perhaps more convenient to deal with a straightforward formulation
leading to a variational equality. The solution to the resulting variational equality has
to satisty all boundary conditions including the contact conditions. This formulation is
referred to as the V-2 formulation. The main problem with the V-2 formulation is that
the actual contacting boundary is, in general, unknown a priori. An incremental trial-
and-error procedure may be used as shown in chapter three of this thesis. Moreover,
in the V-2 formulation, the question of existence and/or uniqueness of the solution is
rarely examined. However, in engineering applications, one may assume that the

existence of the solution is guaranteed by the nature of the physical problems

concerned.

The main ingredients of the finite element solution for contact problems may be

summarized as follows:

1. Variational statement which provides a basis for the systematic finite element

formulation.
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2. Element formulation which represents the basis for the finite element
discretization of the continuum producing a governing system of algebraic
equations.

3. Material modelling which determines the stress-strain relation and plays an
important role in the element formulation.

4. Contact constraint rethod which provides means of calculating the unknown
contact forces under contact constraints.

5. Friction law which governs the frictional traction and sliding motion.

6. Searching algorithm which can detect the contacting nodes and sense any

changes in the contact conditions.

In this thesis, the literature survey is restricted to the finite element solutions to the
contact problem which adopt a variational equality as the basis for the discretization
procedure. In other words, only the studies which use the V-2 formulation are
addressed. Different methods within this category have been published and in the

following discussion a brief account of some of the major articles is cited.

1.2.1 Imposing the Constraints

The variational formulation offers the basis for a systematic finite element
discretization which leads to a system of linear algebraic equations. This system is
referred to as the equilibrium equations and it contains as many equations as the

degrees of freedom in the discretized continuum. In addition to these equilibrium
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equations, a system of contact constraints has to be satisfied.

A simple way of analyzing contact problems is to model the region of anticipated
contact using special interface elements. Prior to the occurrence of contact, these
elements have zero stiffness. After contact, the elements have very large stiffness
normal to the contact surface preventing any overlap between the contacting bodies.
This approach is effective when locations of possible contact are known a priori and
the extent of relative sliding between the bodies is small. Bond elements are proposed
in Schafer [1975], Katona [1983] and Desai [1984] where an element stiffness matrix
is derived assuming different constitutive models. In these treatments, the contact area
is assumed known a priori which represents a severe constraint on the use of such

elements in general engineering applications.

Another way of analyzing the contact problem is to use constraint equations to enforce
the impenetrability, tension release, sticking and sliding contact conditions. This can
be done either by the use of the penalty method or the Lagrange multipliers method.
An interesting review is offered by Underhill {1992] where the numerical approaches
for imposing the contact constraints are lumped into three main branches. These are
those based on the use of Lagrange multipliers, those based on the penalty methods

and the direct methods.

By using the standard finite element procedure, the discretized form of the potential

energy is given by
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Miu) = JuTKu-uTf (1.1)
2
where,
n is the total potential energy for the contacting bodies,
u is the nodal displacement vector,
K is the stiffness matrix and
f is the external nodal force vector.

The kinematic contact conditions may be put in the following discretized form:

p=Qu+% =0 (1.2)

where,
Q is a square matrix which contains a unit entry corresponding to each
contactor node and the appropriate shape function corresponding to
each target node as derived in the next chapter.

p is the vector of all penetrations made by contactor nodes.

Now, the contact problem may be stated as follows:

Minimize M{u) in equation (1.1) subject to the constraints in equation {1.2).

The Penalty Method:
Inthe penalty method, the constraint equations zre included in the governing equations

through a penalty function m, given by:
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m, = lpTap (1.3)
2
where a is a diagonal matrix with elements a,. i=1,L, which are the penalty

parameters. And L is the total number of the degrees of freedom of the active

contactor nodes. The function to be minimized is replaced by:

n

P

I

l'l+nrp

1

—_— IK - | + .
u u U p Gp

Therefore, the potential M, is made minimum by invoking the following condition:

N, _o (1.5)
Jdu

Substituting egn. (1.4) and {1.2) into eqgn. {1.5), one may obtain:

K,u=f, (1.6)
where
K, =K+QTaQ
f.=f-Q7a"%

The solution of eqn. (1.6} gives the displacement vector u. The contact forces are then

calculated as:



14

f_=ap

c

where the penetration vector p is a function of the displacement vector u.

Inegn. (1.6), as the penalty parameter approaches infinity, the displacement constraint
is exactly satisfied. As such, the solution is dependent upon a user modified parameter
which might lead to an ill-conditioned matrix. However, the main advantage of the
penalty method is that it does not increase the size of the governing system of

equations.

As examples of finite element solutions to the contact problem using the penalty
method see Chandrasekaran et al. [1987*"], Pascoe and Mottersheed [1989] and Kim

[1993].

Lagrange Miultipliers Method:

The Lagrange multipliers method introduces the contact constraint equations by the
use of extra unknowns calied the Lagrange multipliers. These multipliers, upon solving
the augmented system of equations, represent the reaction forces at the constrained
degrees of freedom. In other words, in the Lagrange multiplier method, the contact
forces are taken as primary unknowns and the impenetrability condition is enforced

exactly. The function to be minimized is replaced by the following:

M,(u,Ad) = %UTKU - u'f + AT(Qu + %) {1.7)

where A is an unknown vector which contains as many elements as the number of
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contact nodes and is known as Lagrange multipliers.

The potential in eqn. {1.7) may be minimized by invoking the following conditions:

ou (1.8)
an,
-t =0
oA
Substituting eqnr. (1.7) into eqns. (1.8) yields:
Ku-f+QTA =
QU -+ Op =
Combining the resulting equations yields:
KL UL = fL (1 ‘9,

where,

By solving the system of equations given by eqn.(1.9}, the displacement vector and

the Lagrange multipliers are obtained. The Lagrange multipliers are in fact the contact

forces at the corresponding nodes.
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It is obvious that in the Lagrange multipliers method the system of equations gets
bigger by one row and one column for each contact node. Despite the added
computational effort, the Lagrange multiplier approach is attractive considering both

the generality offered and the numerical effectiveness.

As examples for the application of the lLagrange multiplier method in solving the
contact problem see Okamoto and Nakazawa [1979], Bathe and Chaudhary [1984,

1985], Chudhary and Bathe [1986] and Pascoe and Mottersheed [1988, 1989].

Perturbed Lagrange Multipliers Methods:

In contact problems, the contact forces must be negative. To enforce these constraints
in the Lagrange multipliers method, another set of multipliers may be used or one can
use a penalty method on the set of multipliers. The perturbed Lagrange method is a
modification to the Lagrange muitiplier method where an extra term, a penalty term,

is added to the potential function as follows:

ol

n =nL+%ATeA (1.10)

where € is a diagonal matrix with elements ¢, i=1,L, which are referred to as the
perturbing parameters.

Now the potential in eqn. {1.10} is made stationary by invoking the conditions:

aan =
du 0
aan

oA

{1.11)



17
Substituting eqn. (1.10) into eqns. (1.11), vields:

Ko u, = f, (1.12)

where the augmented stiffness matrix is given by:

K aT
K. =
< fa ]

Examples of the application of the perturbed Lagrange multiplier method are found in
Herrmann [1978], Simo [1985], Shyu et al. [1985], Gallego and Anza [1989], Simo

and Laursen [1992], Laursen and Simo [1283] and Oldenburg [1994].

Direct Methods:

In categorizing the different methods for solving contact problems, direct methods are
mentioned with completely different meanings. On one hand, direct methods are meant
to be related to the way of imposing the contact constraints using either the penalty
or the Lagrange multiplier methods to arrive at the governing system of equations,
Zhong [1993). This classification does not add much to the solution methods since it
only addresses the derivation of the system of equations which may be obtained
differently. On the other hand, Underhill [1992] described the direct methods as a
whole class of methods which solve for the increments in the contact forces which will
give correction to the displacement and reach the minimum potential energy. Among
these are the work presented by Francavilla and Zienkiewiez [1975] where they

considered the elastic frictionless contact problems. They used the flexibility matrix
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obtained by inverting the condensed stiffness matrix formed by eliminating all the
nodes except those where contact is likely to take place and those with external
forces. Node-to-node contact was assumed and the algorithm is applicable for
problems where only kinematic boundary conditions are present. Sachdeva etal.[1981]
extended the algorithm developed by Francavilla and Zienkiewiez [1975] to handle
problems with force boundary conditions as well. Sachdeva and Ramakrishnan [1981]
extended the algorithm further to include frictional effects. Node-to-node contact is
assumed and the compatibility of displacements for both the normal and tangential
directions is applied to those nodes which do not slip. However, for sliding nodes,
compatibility of displacements is applied for normal direction only and the slip condition
is applied in the tangential direction. Rather than the flexibility matrix approach, Wanxie
and Suming [1988] derived a stiffness matrix approach by means of a penalty function
expression for the contact normal pressure and the frictional force. This treatment
would allow a small penetration and a small tangential slip at very low normal

pressures. Again the algorithm developed relies on node-to-node contacts.

Mahmoud et al. [1982] developed a fairly simple algorithm for frictionless contact
problems. The algorithm consolidates the newly joined degrees of freedom associated
with each contact node-pair, consequently; it only applies to problems which exhibit
no relative tangential motion. Another severe restriction to this algorithm is that it only
applies to contact problems which are purely advancing or receding and the occurrence

of both events is not allowed.

Berkan [1988]introduced an incremental approach for solving general frictional contact
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problems where node to segment contacts are allowed. The augmented system of the
equilibrium equations and the contact constraint equations, resulting from a Lagrange
multiplier method, are solved on a matrix level for the normal and tangential frictional
forces. These forces are added to the global force vector and the resulting
displacements are estimated and checked against any compatibility violation. In the
algorithm developed by Berkan [1988], linear elements are considered and the classical
laws of friction are adopted. Moreover, the solution algorithm solves for the nodal
contact traction which is introduced to the finite element discretized analysis using a
transformation matrix made of interpolation functions. As such, the choice of these

interpolation functions would affect the resulting contact traction field.

In Sandeep [1991], the contact stresses and deformations are determined using a
combination of the finite element method and a surface integral. In Underhill [1992],
the equilibrium and compatibility errors are corrected separately. The correction forces
from both estimates are added to the giobal force vector. Other examples of the finite
element solutions of the contact problem which can be related to the direct methods

can be found in Sun [1993] and Lee [1994].

1.2.2 Searching Algorithms

The contact constraint equations are defined at the contact nodes. One constraint
equation per contactor node is needed in case of frictionless contact while two

equations are needed for frictional contacts. As the load is successively applied on the
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contacting bodies, nodes may lose contact and others may come into contact. In
addition, sticking nodes may slide or sliding nodes may stick. In all these situations,

a reliable algorithm is essential to detect any changes in the contact condition.

Node-to-node Contact:

In early studies, contacting bodies were often assumed to undergo only small
displacements and rotations. Contact boundaries were discretized such that only node-
to-node contacts will occur when the two boundaries come into contact, Francavilla
and Zienkiewicz [1975], Sachdeva and Rarnakrishanan [198 1], Mahmoud et al. [1982],
Wanxie and Suming {1988] and Okamoto [1979]. Such a node-to-node contact model
can only be applied to problems in which relative sliding displacements of the two
contacting boundaries are sufficiently small, In addition, the node-to-node contact
model restricts the mesh shape at the contact boundaries to be of the same size which
would lead to unnecessary mesh refinement of one of the contacting boundaries. For

the node-to-node contact no search need to be done.

Node-to-segment Contact:

For more general applications, node-to-segment contacts should be used. Contacts
between general contact boundaries can then be represented by contacts between
contact nodes and contact segments. Most of the contact searching algorithms for the
node-to-segment contacts rely on the definition of master and slave contact surfaces.
A master or slave surface consists of master or slave segments, respectively. In
addition, the nodes on the master or slave segments are called master or slave nodes,

respectively. Node to straight segment contact can be found in Chaudhary and Bathe
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[1286] and Berkan [1988] while node to curved segment contact can be found in

Pascoe and Mottershead {1988].

Master-Slave Algorithm:

In contact searching, slave nodes are tested against master segments for any overlap
to determine all overlapping slave nodes and declare them active. The active slave
nodes define the contact area in the current iteration. The searching procedure consists
of three main steps. First, a master node which is nearest to a given slave node is
determined. Then, a master segment which has that master node is found. Finally, in
the third step, the location of the touching point on the master surface is calculated.
No slave node is allowed to overlap any master segment and this is called a one-path
treatment. In a two-path treatment, the search is performed once more for the overlap
of master nodes in slave segments.

The master-slave algorithm is conceptually simple. One has to define, a priori, the
potential master and slave surface combinations. Therefore, it can be inefficient and

unreliable for large contact systems with arbitrary potential contact nodes.

Single Surface Algorithm:

In the single surface searching algorithm, there is no need to specify contact pairs, a
priori. Thus, arbitrary contacts can be handled. It also consists of three main steps as
in the master-slave algorithm. However, in the single surface algcrithm every contact
node is both a slave node and a master node. The so calied "bucket sort” is used to

find a master node which is nearest to a given slave node.
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Hierarchy-territory Algorithm:

In the hierarchy-territory algorithm, Zhong [1990], a contact system is decomposed
into contact hierarchies, namely, the contact body, the contact surface, the contact
segment, the contact edge and the contact node. Two distinctive contact searching
schemes are used. A pre-contact searching is based on the definition of a territory for
the contact hierarchy. The post-contact searching is based on the contact history. In
the pre-contact searching, hierarchy territories are compared. If the territories of two
hierarchies do not intersect with each other, no contact between the two hierarchies
is possible and contact searching is then not to be performed between them.
Otherwise contact searching is performed between the lower level hierarchies of those
two hierarchies. On the other hand, in the post-contact searching a contact node is
tested with its target segment and, if necessary, also the neighbouring segments of
its target segment. For a detailed description of the hierarchy-territory contact-

searching algorithm and others see chapter 10, Zhong [1893].

1.2.3 Friction Laws and the Finite Element Method

Friction laws have received a ‘great deal of attention in the finite element
implementations of different contact algorithms. Whenever frictional contact is
mentioned, Coulomb’s law of friction is invited. Sometimes Coulomb’s law is praised
and in other occasions it is criticized. Simplicity is the source of the wide application
of the Coulomb’s law of friction in the finite element analysis of general contact

problems. However, it has physical and mathematical deficiencies which bring about
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the critic.

In the following discussion, two mathematical models for the quasi-static dry friction
are considered; a classical model which adopts the Couloinb’s friction law and a non-
classical model which is suggested to cure some of the physical and mathematical
deficiencies in the Coulomb friction law. By quasi-static friction it is meant that the
frictional mechanisms present when two metallic surfaces are pressed slowly together
and are in static equilibrium or are slowly displaced relative to one another. it should
be mentioned that the simplest friction model is the model of no friction. This means
no restriction is imposed on the tangential displacements or forces and only the
impenetrability condition is to be sztisfied. See for instance Parisch [1989) who used
both the penaity and Lagrange multipliers methods, Huh and Kwak [1991] who used

Lagrange multipliers and Avari and Saouma [1991] who used a direct method.

Classical Laws of Friction:

The classical laws for quasi-static dry friction as given by Oden and Martins [1985]

may be summarized as follows:

1. 1 the two bodies are at rest or moving together without refative motion, the
tangential force f, must reach a critical value f. before any relative motion of the

two bodies can occur, That critical value is proportional to the normal contact force

f.. i.e.
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o =u.f,
The coefficient of proportionality, u., is known as the static coefficient of friction.
2. The static coefficient of friction is independent of the apparent area of contact.
3. During relative sliding of the two bodies, the frictional force is proportional to the
normal contact force and acts in the opposite direction to the relative sliding

velocity v,, i.e.

where 4, is known as the dynamic coefficient of friction.
4. The dynamic coefficient of friction is smaller than the static one, but both are

independent of the apparent area of contact and the relative sliding velocity.

These classical friction laws have been implemented in several finite element
procedures for solving the frictional contact problem as in Chandrasekaran et al.
[1987°%], Bathe and Mijailovich [1988), Chaudhary and Bathe [1986], Bathe and
Chaudhary [1985], Pascoe and Mottershead [1988, 1989], Mottershead and Pascoe
(1992] and Lee [1994]. Kwak [1991] implemented an qrthotropic extension of the
Coulomb’s friction law where two distinctive coefficients of friction are used in the

two orthogonal directions.

Non-classical Laws of Friction:
While the ciassical laws can be used to describe the global behaviour of the two points

in contact, they do have physical and mathematical deficiencies. For instance, it has
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been proved experimentally that a small relative motion of the two contacting bodies
is possible even if the tangential force, f.. is smaller than the frictional capacity, f.. On
mathematical grounds, if the Coulomb’s law of friction is applied point wise in contact
problems involving linearly elastic bodies, the fundamental gquestion of existence is
open. in order to account for the micro-tangential displacements and the non-local
character of the frictional contact, non-linear non-local friction laws are suggested by
Oden and Pires [1983°]. In the nonlinear laws a frictional stiffness is used to account
for the micro tangential displacements and the Coulomb friction law can be obtained
as a special case by setting this frictional stiffness to a very large value. In the non-
local friction law, the impending motion at a point of contact between two deformable
bodies will occur when the shear stress at that point reaches a value proportional to
a weighted measure of the normal stresses in a neighbourhcod of the point. The non-
linear non-local friction laws are examined in Oden and Pires [1983°"). In another way
of departure from the classical laws, Klarbring et al. [1988] used Coulomb’s friction
law and a power law normal compliance while lbrahimbegovic and Wilson [1992]
presented a computational mode! for friction based on a regularized form of the
Coulomb friction law. A power law is also used in the normal direction to relate the
approach and the normal contact force. The regularized Coulomb friction law is also
implemented in Saran and Wagoner [1981]. In Anand and Tong [1983], an adhering-

slipping constitutive model for the frictional contact is presented.
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1.3 Expanded Tube-to-tubeshret Joints

Reliable tube-to-tubesheet joints are essential in a variety of industrial applications.
Fitting tubes into steam generator plates and condenser end shields are among the
maost common practices where the expanded joints were proven to be satisfactory. The
expanded joint is the most repeatable process in the manufacturing of tube and shell
heat exchangers. As such the expanding process has to be reliable in producing joints
with specific requirements. The basic requirements of an expanded joint are structural
integrity and quality. The structural integrity is required to contribute to the support of
the dead load and to resist stresses and strains of temperature changes during
operation. The structural strength can be broken down into three types, namely, axial
puli-out, torsion and bending strength. On the other hand, quality means that the joint
has to be leak tight and the residual stresses in the tube transition zone has to be low

in order to avoid stress corrosion cracking,

Three main techniques are used to manufacture the joint, namely, roller, hydraulic and
expiosive. The roller expander is the most common method of expansion because of
its easiness and effectiveness. A typical roller expander consists of three or five
tapered rollers travelling along a tapered steel mandrel. The rollers are held in place
around the mandrel by a cylindrical cage. The tube is inserted into the hole and the
mandrel inside the tube is rotated either manually or using a hydraulic motor. As the
rollers rotate and travel along the mandrel, the tube is forced to expand. The axial

travel of the expander is limited by a thrust collar which can be adjusted by a locking
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nut. Hydraulic expansion is gaining a great deal of attention mainly because of its
refiability. A typical hydraulic expander consists of a cylindrical probe through which
the pressurized fluid is discharged between two seals. As such, hydraulic expansion
uses direct pressurization of the tube. Explosive forming can be definzd as a solid state
welding operation where an explosive charge is placed in a polymeric slegve inside the
tube. The explosion of this charge creates a collision front travelling alcng the tube axis

forming the joint.

The expanded joints have been in use for almost 150 years. Being deceivingly simple,
the joint did not receive enough analyzing effort from the academic point of view. As
the industrial applications advance, the need for high operating pressures and
temperatures requires re-evaluation of the manufacturing techniques and procedures.
Several experimental, analytical and numerical analyses have been published displaying
the experience gained over the years. A detailed account of a variety of these studies
is presented in a review paper by Abdelsalam and Dokainish (192937°]. In what follows,
a literature survey is presented in three subsections dealing with the experimental,
analytical and numerical techniques employed to study the expanded tube-to-tubesheet

joints.

1.3.1 Experimental Studies

The first English literature dealing with the analysis of the rolled joint is published by
Oppenheimer [1927] despite being in practical use for a long time before. In this

original presentation, Oppenheimer realized the fact that the holding strength of the
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expanded joint is made of two contributing forces, namely, the pure holding force and
the projecting resistance. The pure holding force depends upon the friction between
the tube outer surface and_the hole, the contact surface area and the contact pressure.
The resisting force of the projecting tube against being drawn into the smaller diameter
tubesheet hole depends upon the cone angle of the tube end for plain joints or the
groove geometry for grooved ones. Several experimental studies have been devoted
to the determination of the joint strength. The methods employed fall into two main
categories; direct pull and push-out tests and contact pressure measurements.
Obviously, the direct pull or push-out tests, on a tension or compression machine,
gives the total joint strength whereas the contact stresses can only be related to the
pure holding force. It has been reported, Fender [1985], that the pull-out strength is
6 to 8 % higher than the push-out strength and this is attributed to the lack of what

is called the ideal parallel expansion.

It has been experimentally observed that the expanded joint strength has 2 well-defined
peak-value corresponding to a certain degree of expansion beyond which the strength
breaks-off suddenly upon further expansion, Fisher and Cope [1935] and Grimison and
Lee [1943]. The break-off the joint strength is attributed to the smoothing of the

contacting surfaces upon relative axial sliding, Fisher and Cope [1943].

A reliable indicator of the degree of expansion has been a question without a definite
answer. Several studies have been published suggesting different indicators. The
partial extrusion, Fisher and Cope [1935] and Fisher and Brown [1954], the input

power, Fisher and Cope [1943], total extrusion, Grimison and Lee [1943], the increase
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in the tube inner diameter, Grimison and Lee [1843], mandrel travel, Maxwell [1943],
torque, Alexander and Ford {1956}, reduction in tube-wall-thickness, Gaffoglio and
Thiele [1881], and the expansion pressure, Krips and Podhorsky [1976], are among the
most commonly proposed indicators. There is still a bit of confusion over whether any
of these indicators is satisfactory from the consistency and practicality points of view.
The size effect has been exposed once where the results showed that it is not
significant, Alexander and Ford {1956]. Comparisons between the plain and grooved

joint strengths led to the conclusion that the grooved joints are about 30% stronger,

Haslinger and Fisher [1985].

More recently, the question of residual tensile stress determination is addressed asa
result of leaks resulting from the stress corrosion cracking mechanism, SCC. Studies
have been initiated in order to detect and measure these residual stresses using strain
gauge measurements, Toba [1966], Bazergui and Lemarquis [ 19761, Hamerski [19781,
Urgami et al. [1982], stress corrosion cracking tests Toba {1966} and chemical
etching, Druez [19883) and Druez et al. [1985]. It is found that large tensile stresses
remain on the inner tube surface in the vicinity of the expanded region. Heat treatment
reduces the residual stresses significantly, however, it also reduces the interference
pressure, Bazergui and Lemarquis [1976]. The initial clearance has been reported as

the most significant factor affecting the residual stress level, Toba [1966].

1.3.2 Analytical Studies

Analytically, two models are introduced to calculate the residual contact pressure or
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the residual stresses in the tube transition zone. The 2-D plane stress model was first
proposed by Goodier and Schoessow [1943). This model applies the thick-cylinder
theory and satisfies the classical elasticity equilibrium and compatibility equations along
with von-Mises yield criterion assuming perfect plasticity. This model assumes an
infinite uniform piate and no clearance. A uniform pressure is applied inside the hole
which leads the problem to be simplified further and becomes one-dimensional. The
residual contact pressure is shown to be proportional to the extent of the plastic zone
in the plate. As the pressure increases the plastic zone spreads outwards until it
reaches a maximum value of 1.75 r,, where r, is the hole radius and the corresponding
expansion pressure is 1,155 S, where S, is the material yield strength. Any further
increase in the expansion pressure is defeated, in the idealized model, by axial
extrusion. Unlike the graphical method for obtaining the residual contact pressure
presented by Goodier & Schoessow, Nadai [1943,1950] developed a general method
to calculate the residual contact pressure analytically. Sachs {19471 and Krips and
Podhorsky [1976] presented two different versions of the 2-D plane stress model, with

finite dimensions, leading to different results.

The 2-D plane stress model has received a further development by introducing the 2-D
annulus model by Soler and Hong [1984]. The annulus model consists of concentric
thin elements with the inner most element being the tube. Equilibrium and compatibility
are satisfied along the boundaries. The 2-D annulus model has been refined further in
order to introduce strain hardening and initial clearance, Wienstock and Soler [1985]1.
A detailed account of the 2-D annulus model along with the developed FORTRAN code

is presented in Singh and Soler [1984].
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A two-dimensional axisymmetric model was introduced by Updike et al. [1988,1989]
to calculate the residual stresses in the tube transition zone. This model divides the
tube into three sections, expanded, transition and the rest of the tube. Compatibility
and equilibrium are invoked at the adjacent boundaries of these sections. Full contact
is assumed and the contact pressure is assumed uniform. This model was refined in
Updike et al. {1990] to account for grooves by adding a continuous distribution of

annular disks surrounding the tube. Radial clearance is represented by a step function

of the axial coordinate.

1.3.3 Finite Element Studies

The first finite element analysis for the expansion process was presented by Wilson
[1978]. The main objectivé was to determine the magnitude and location of the
maximum residual tensile stresses in the tube. A mesh of axisymmetric quadrilateral
finite elements is presented to model the tube and the tubesheet with special gap
elements to fill the clearance between them. The load is simulated by a uniform
pressure distribution which bears more resemblance to the hydraulic expansion

technique.

In a trial to model the rollers action, Ramu et al. [1987], the internal pressure is applied
over the rolling length in 100 cycles of loading and unloading to simulate 20
revolutions of a five roller expander. Another way of representing the rollers action is
suggested, Aufaur [1987], where a radial displacement with exactly the same profile

as the roller is prescribed on the tube inner surface.
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Since the single tube model does not take into consideration the effect of the adjacent
tubes, the seven-tube plane stress model was proposed, Podhorsky and Krips [1979]
and Scott et al. [1981]. It has been reported that the single tube medel seems to
adequately predict the residual contact pressure corresponding to the case of
simultaneous expansion while giving an overestimation when the sequential expansion
is used, Chaaban et al. [1989]. Due to the many parameters involved, a fractional
factorial design was proposed by Ma et al. [1990]. A primary statistical analysis using
a single-tube model showed that the yield strength of the tube seems to be the most
significant parameter followed by the expansion pressure level. A new explanation to
the break-off the joint strength, if it is expanded beyond a certain optimum pressure,
is introduced by Abdelsalam and Dokainish [1993%). Gracie et al. [1993} introduced six
finite element models used to simulate the results obtained for the roller expanding of
a pressure tube into an end-fitting. These six models are useful only for cases where
the maximum and residual experimental profiles of the tube are known. In Hwang et
al. [1993], the effect of the hole pitch on the residual contact pressure was
investigated using a 2-D plane stress model. In addition, a 2-D axisymmetric model
was used to study the effects of the expansion pressure, the radial gap and the extent
of the pressurized zone on the residual contact pressure. Chaaban et al. [1993]
suggested an empirical equation using the orthogonal design method combined with
the finite element method. The proposed equation gives the residual contact pressure

as a function of some material and geometric design parameters.
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1.4 Objectives & Layout of the Thesis

1.4.1 Objectives

The main objectives of the study presented in this thesis are:
1. Todevelopareliable and quantitatively accurate contact algorithm whichis capable
of solving general frictional contact problems with the following main features:
Versatility: meaning that the algorithm is suitable for conformal/non-conformal,
static/quasi-static and linear/nonlinear frictional contact problems in general
engineering applications.
Modularity: which means the algorithm is programmed in a separate module and
ts then connected to the main program.
Genef'ality: being general, the contact algorithm is able to handle contact
between more than one pair of contacting surfaces without any extra effort.
2. To investigate the hydraulic expansion of tube-to-tubesheet joints using the
developed algorithm.
It should be mentioned that the contact algorithm developed in Berkan [1988] is used
as a starting point for the new proposed contact algorithm. The formulation of the
general contact problem is re-examined to be able to arrive at the governing equations
systematically in a straight forward fashion. The contact algorithm is extended to
handle nonlinear continuum elements and to adopt a more general friction law. The
way the contact traction is calculated is modified in order to minimize the effect of the
interpolation functions on the results. Finally the algorithm is verified gualitatively and
quantitatively through the solution of some contact examples which have known

closed form solutions.
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1.4.2 Layout of the Thesis

The thesis consists of five chapters beginning with an introductory chapter which
includes four major sections. The first section illustrates the definition and importance
of the finite element solution to the general contact problem in general terms. In
addition, the definition of the expanded tube joint and its application is provided. In the
second section, the different finite element solutions to the contact problem are
reviewed. In the Third section, the expansion of tube-to-tubesheet joints is reviewed.
Finally, the first chapter concludes with a brief summary of the objectives and layout

of the thesis.

In chapter two, the formulation of the general contact problem is demonstrated. The
basic theory of contact is'discussed. The formal statement of the general contact
problem is stated. The V-2 formuiation is adopted to arrive at the equilibrium equations
governing the general contact problem. The finite element discretization of the contact
problem is developed. The discretized contact constraint equations are derived from
the physical kinematic considerations. These constraints are imposed upon the
equilibrium equations to arrive at the augmented system of equations governing the
general contact problem. Finally, the bi-linear friction law is stated. Although other non-
classical friction laws are available, the bi-linear friction law seems to be most suitable
for engineering applications. This is mainly because its physical background is well

understood.

The development, implementation and verification of the contact algorithm are
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introduced in chapter three. First, the system of equations is solved on a sub-matrix
level, This is followed by a normal and tangential iteration loops. The computer
implementation of the developed solution strategy is discussed with a brief account of
the main subroutines. Chapter three concludes with three illustrative examples to

demonstrate the applicability of the developed algorithm.

Chapter four introduces two finite element models for the hydraulic expansion of the
expanded tube joints where the contact problem plays an important role in its integrity
and gquality. A 2-D plane stress model is adopted to study the effects of the material
mechanical properties on the joint strength. A 2-D axisymmetric model is presented to
explore the distribution of the residual contact traction and the residual axial and hoop
stresses along the tube inner and outer surfaces. The 2-D axisymmetric model is also
used to study the effect of ignoring the geometric nonlinearity and the frictional
interaction. A 22 factorial design matrix is adopted to study the effect of the expansion
pressure, the initial radial clearance and the coefficient of friction on the residual
contact traction and the maximum tensile stress along the tube. The effects of the
expansion pressure and the initial radial clearance are further investigated with relation
to the residual contact pressure, the residual tensile stress peak, the axial extrusion,
the increase in the inner and outer tube radii and the wall-thickness- reduction ratio.
Chapter four concludes with the study of the effect of the initial stresses and the cold-
work layer along the as-fabricated tube outer surface on the residual tensile stresses
in the expanded tube.

Finally, chapter five summarizes the main conclusions of the thesis along with

suggested recommendations for future research work.



CHAPTER 2

CONTACT PROBLEM FORMULATION

2.1 Introduction

In this chapter, the mathematical formulation of the general contact problem is
developed. By the general contact problem it is meant that no restriction is to be
imposed on the type of analysis, material models or geometries of the contacting
bodies. In other words, the formulation is suitable for linear and nonlinear kinematic
motions, linear and nonlinear material behaviours for bodies having arbitrary shapes

and configurations.

The contact problem may be formulated in a strong or a weak form. The strong form
is made of differential equations associated with boundary conditions expressed in a
continuous fashion. The strong form leads to exact solutions but those solutions are
not possible except for problems with simple geometries, loadings and boundary
conditions. On the other hand, the weak forms adopted by the finite element method
lead to approximate solutions which are suitable for engineering practices. In addition,
the use of the weak forms in the finite element formulation leads to solutions being
obtained in a systematic manner irrespective of the geometries, materials, foads or

boundary conditions.

36
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To start with, a basic description of the general contact problem between two generic
bodies coming into contact under the action of external loads is presented. However,
it should be noted that the developed equations are equally applicable to problems with
more than one pair of contacting surfaces without any conceptual difficulty. The basic
description includes the notation, the governing equations and the physical contact
constraints all expressed in a continuous fashion. This detailed description is followed
by the formal statement or the strong form of the general contact problem. Then the
principle of virtual work is utilized to obtain an appropriate variational statement,
suitable for the finite element discretization. Using the developed variational statement,
the weak form, the discretized finite element equations are derived systematically
following the standard finite element procedure as given by Bathe [19886]. Furthermore,
the discretized contact constraint equations are derived from the Kinematics of

deformation and enforced on the standard system of equations using a direct

engineering approach.
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2.2 Basic Theory of Contact

A general contact system is defined as Lcing a mechanical or structural system which
involves two or more components interacting with each other. It is also possible that
two surfaces which belong to one component interact producing a contact pair. As the
configuration of the system changes, sticking, sliding, and tension release contact
conditions may occur between any combination of pre-defined pairs of potential
contacting surfaces. However, as a study model, a two body contact system can be
used without losing any generality. Moreover, the location of the petential contact
interactions is explicitly defined, a priori. This restriction limits the application of the
algorithm to intentional contact problems where the potential contacting surfaces are

known, a priori.

Consider the two bodies, A and B, occupying domains °Q* and °Q®, respectively, at
some reference configuration defined by the time instance t=0 in a fixed global
coordinate system [x, y, z] as shown in Figure 2.1. The two bodies are brought into
contact by a combination of prescribed traction and displacements applied on the
surfaces, °T; and °T, respectively. Consequently, contact forces develop in the region
of contact where neither the contact traction nor the contact boundary, T, is known
a priori which results in two sets of additional unknowns but with no additional

equations yet.

At the time instant t, the two bodies, A and B, occupy the domains 'Q* and QP

r
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respectively. The two bodies are assumed simply connected so that there is no interior
boundary in any of the bodies and the boundaries are denoted by T™ and 'r?,
respectively. The interior volumes are denoted by '"V* and V&, respectively. Thus, one

can write

IQA
tQB

IVA U trA
tVB U trB

]

where U is the union operator.

At any time instant t, the boundary of each contact body can be defined as

e TRy Ty TS

R HVEHUR

Ir

where,
S denotes the parts of the boundary where dispiacements are prescribed,
T denotes the parts of the boundary where loads are prescribed,

To denotes the potential contact boundary.

In the study of contact problems, it is required to predict the behaviour of the contact
system from time t=0totime t = 7 > 0, i.e. within the time domain [0,7]. The
behaviour of the contact system is governed by four main groups of equations,
namely, the equilibrium equations, the strain-displacement relations, the constitutive

equations, and the equations representing the boundary conditions.
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Equilibrium Equations:
For a body occupying the domain 'Q and having ' as its surface boundary, applying
Newton’s second law of motion on an infinitesimal material volume, the following

equilibrium equations may be obtained:

6’05.,

+ %, =0
a‘xj

where i and j runs as x, y and z and summation over repeated indices is implied.

These are three equations in the three cartesian coordinates x, y and z. The left
subscript denotes the configuration at which the quantity is measured. As such, the
following definitions apply:

‘o; is the symmetric stress tensor.

; is the spatial coordinates, x, y and z.

th.

i

is the i component of the body forces.

Strain-Displacement Relations:

According to the infinitesimal strain theory the strain tensor is given by:

‘€; = %(z”fd‘ + )

where ‘u;; is the partial derivative of ‘u; with respect to 'x;..

Constitutive Equations:

Constitutive equations relate the stresses to the strains in a deformable body. These
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relations are mainly material dependent. However, extra care should be directed to
these situations where geometric and/or material non-linearities are present. This
concern is discussed in deep details in Bathe [1986], chapter 6. It suffice, for this
presentation, to consider only linear-elastic materials along with the infinitesimal theory
of deformation. For such materials, the relation between the stresses and strains is

given by the generalized Hooke’s law, i.e.

‘'o; = Ci €
where
Civ  is the constant elasticity tensor
= AGidy + 1 (08 + 6,6, )

A, x4  are the Lame constants

A = Ev/(1+vi{1-2v)
b = E/2(1+V)
6 = 0 fori#j
=1 fori=j
E is the modulus of elasticity
v Poisson’s ratio

Boundary Conditions:

Two types of boundary conditions are present in a general contact problem. These are
the prescribed loads, traction and displacement, and the unknown contact conditions.
Assuming that the boundary " is smooth everywhere, a set of unit vectors te;, e, e;]

may be defined at each peint x, on the boundary, where e, denotes the normal
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outward unit vector, and e, & e, are two orthogonal tangential unit vectors at the

same point x, such that

‘g, = B, X Ty

where the x in the above expression denotes a vector product.

Therefore, the force boundary conditions can be expressed as:

‘o; ‘e; = L, CAfE=XY,.2

where t;is the i™ component of the prescribed boundary traction.

The displacement boundary conditions can be expressed as:

wix,t) = W;

I

L =X, Y,2

where u; is the i™ component of the prescribed displacement.

Contact Conditions:
Let the two boundary points x* and x® be in contact with each other at time t and that

the unit boundary vectors at the two points are such that

TeiA = —feiB (221)

The two boundary points and their associated normal and tangential vectors are shown
in figure(2-2). If the contact traction at x* and x® are denoted by “* and &,

respectively, then by Newton’s third law one may write,
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A = —yB (2.2.2)
where 't can be expressed in the following tensorial form:

= e, (2.2.3)

In this form, ¢; is the component of t in the direction of e, , i.e.

= . e (2.2.4)

From equations (2.2.1}-(2.2.4), the following result may be deduced:

th o=

B
As such, the right superscripts A and B will be suppressed in what follows, i.e. we will
have only 't, , 't, and *t; corresponding to the three local coordinates ‘e, . 'e; and ‘e,,

respectively.

Assuming that the two contacting boundaries are not to be welded together, i.e.
tensile normal traction is not allowed on the contacting boundaries, we can write the

foliowing constraint in the normal direction:

t, =0

it is to be noted that the above constraint contributes to the complexities of the

contact problem since it is in an inequality form rather than the regular equality form
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experienced in regular boundary value problems. This condition is referred to as the

mechanical contact condition.

From a purely physical reasoning, the following mathematical constraint can be

established:

th n tVB = ¢
where ¢ denotes a null space. And this is called the impenetrability condition which
means that no penetration should ever occur during the course of all admissible

deformations.

The above form of the impenetrability condition cannot be used directly in the solution

procedure and a usable form is developed as follows.

If a penetration function, p, is defined as:

tD(X) = txA - pr

therefore, the impenetrability condition may be stated as follows:

'pix). e, =0

When oblique contact occurs, the penetration of the contactor body into the target
body can be broken down into normal and tangential penetrations. As the
impenetrability condition in the normal direction indicates no normal penetration is

allowed, the friction law controls the tangential penetration. As such, the following
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constraint may be imposed on the tangential penetrations:

px}. e, = 'ug,

Plx). ‘&5 = uyy
where Uy, and uy; are the prescribed relative tangential displacements according to the

friction law adopted.

Moreover, the frictional traction always act in an opposite direction to the relative

tangential displacement. This condition may be expressed in the following form:

t,.p, =0 \ x € T,

t3.p, = 0 \ x € T,
A friction law relates the normal traction, the tangential traction and the tangential
displacement. Since the form of friction laws does not interfere with the formulation

presented in this thesis, it is presented at the end of this chapter.
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2.3 Formal Statement of the General Contact Problem

Summarizing the description outlined in the previous section, the contact problem may

be formally stated as follows:

Given 't on T and 'b on 'Q, ¢t€[0,T], find u(x,t) for all t€[0,T] such that all the

following conditions are satisfied:

1. Equations of Equilibrium:
0+ ;= 0
2. Strain-Displacement Relations:
ty — 1(: +
€5 = H\ Ui u;,)
3. Constitutive Relations:
gy = Cyy ‘€
4, Prescribed Displacements:
uix,t) = W,
5. Prescribed Traction:

rC"f,; teJ- = 'r,-



6. Contact Conditions:

pix).%e, =0
t <0

7 Friction Laws:

oix} . teZ

plx) . ‘e,
.0, = 0

. Py = 0

v

x € Th
x e 24 TS

x €T,

x e Ta
x € T4
x € T,

T
x € T,

47
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2.4 Variational Formulation

The formal statement of the contact problem presented in the previous section is called
the strong form. Based on this strong form, only a few special case contact problems
have been analytically solved resulting in closed-form solutions as provided in Johnson
[1985]. Numerical techniques are necessary for solving contact problems with complex

geometry, material behaviour and loading.

The finite element method has proven to be one of the most powerful tools in solving
such problems. In order to provide a basis for the finite element discretization, energy
methods are used to obtain an appropriate variational principle. In this presentation, the
principle of virtual work is .adopted. In words, the principle of virtual displacements
states that:
The total virtual work of the external forces on any kinematically admissible
virtual displacement field equals the total virtual work of the internal stress field

on the virtual strain field corresponding to that virtual displacement field.

Accordingly, one can write

6W, = 6W, + 6W, + SW, + 6W, (2.4.1)

where, the left hand side of this equation is the internal virtual work which is given by:

oW, = [66,-cr,-dv

and the right hand side is the external work made of the following components:
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SW, = jau,. 2 dv

W, = l&xﬁ 7 ds

SW, =¥ suf fF
.

SW

c = r[ 6U;c t,'c ds

where °, t5, f and t© are the body force, the surface traction, the concentrated force
acting on point p and the contact traction, respectively. The quantities du, du®, duP, Su*c
are the virtual displacement of the body, the virtual displacement of the surface s, the

virtual displacement of the material point p and the virtual relative displacement of the

contact surface, respectively.

Equation {2.4.1) is the mathematical representation of the virtual work principal which

is to be adopted to develop the discretized finite element equations in the next section.
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2.5 Finite Element Discretization

In this section, the finite element method is adopted to develop the discretized version
of the governing system of equations for a general contact problem. In the standard
finite element procedure, the continuum Q of the problem is divided into sub-domains
Q" called the finite elements. According to the geometry of the mathematical model,
the finite elements take different types including solid, shell, beam, ... etc. Different
element types are introduced to represent different mathematical models adopting
different geometric and/or load assumptions. In general, a 3-D solid element suffice to
cover all engineering applications. However, there exist such cases where using the
3-D solid element would lead to extremely large number of degrees of freedom which
expands the size of the system of equations leading to an expanded solution time. For
example, a dam structure has a very large longitudinal dimension relative to its width
and height. Such a very long structure can be mathematically represented by a plane
strain model. In contrast, a very short flat ring subjected to in-plane forces can be
simulated by a plane ='ress model. Also, slender structures are modeled by beam

elements and shell structures by shell elements.

In what follows, we consider three-dimensional bodies which may be approximated by
collections of finite solid elements inter-connected at a specified number of points
called nodes. The continuous distribution of a field variable, which is the displacement
ulx,y,z} in our case, is approximated by rather piece-wise continuous functions called

the shape or interpolation functions, h®(£,7,0), as follows:
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u® = HE E {(2.5.1)
where,
u® is the elemental distributed displacement vector,
H®  is a matrix of shape functions,
u'® is the elemental nodal displacement vector and

§, 1. { are the local coordinates within an element.

Substituting egn. (2.5.1) into the strain-displacement relations given in section 2.4, the

elemental strains, ¢, corresponding to the elemental displacement field, u™, can be

expressed as

€& = BB {2.5.2)

where, B® is the strain displacement matrix where the rows of this matrix are obtained

by appropriately differentiating and combining rows of the matrix H.

Substituting equations {2.5.1 and 2.5.2) into the statement of the virtual work
principle, egn. (2.4.1), the discretized finite element equations may be stated as

follows:

where,

K is the stiffness matrix which is given by,
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K = Z JB(E}TclE)B[E} dvie

E

u is the global nodal displacement vector,
r is the global nodal force vector which can be written in the following
form:

[ =Ty ¥, +T, + 1,

where, r,, 1., r, and r_ are the equivalent nodal force vectors corresponding to the body
force, the surface traction, the concentrated force and the contact traction,

respectively, and are given by:

E

=Y J’HStSdeE*
E [

r, = f°

re =Y J’Hsrcds'ﬂ
E

€1
c

o= Y JHfb dve®

Up to this point, the effect of the contact interactions has been included in the
equilibrium equations through the equivalent contact nodal force vector, r.. The
inclusion of these contact forces requires a prior knowledge of the contact area which
is not generally guaranteed. Therefore, an iterative procedure is essential and the

equilibrium equations takes the following incremental form:
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K AQ® = Al 4 f (2.5.3}

and the force vector is modified as follows:

[} I— {i}
W ! 18T e,

f, is the force vector equivalent to the internal stresses.

The iterations are terminated upon convergence which is characterized by Auf+"
approaches zero or a very small preset tolerance for practical calculations. It can be
concluded that at convergence the contact forces are equal to the out of balance force

vector.

In the following section, the discretized form of the contact constraint equations is
derived and later onit is imposed on the system of equilibrium equations as illustrated

in section 2.7.
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2.6 Discretized Constraint Equations

In section 2.2, the contact constraint equations are stated in a general continuous
fashion which is not suitable for the finite element analysis. As such, a discretized form
is derived. Figure 2.3 shows the contactor and target discretized contact surfaces. The
contact constraint equations are derived for a single contactor node, k, penetrating a
target surface segment, J, and then the equation(s) is(are} extended to include all
penetrating contactor nodes. Two conditions are dealt with in this section; the

impenetrability condition and the Newton’s third law of action and reaction.

Impenetrability Condition:

The impenetrability condition states that no overlap should ever be aliowed between
any of the contacting bodies. In other words, the vector of penetration at all contacting
nodes has to equal zero. Figure 2.4, shows a schematic diagram for the contactor node
k as it penetrates the target surface segment, J, at the end of the i™ iteration within
the time step from t to t+ At. First we define a virtual node s on the target surface

segment J. The position vector for the target node can be expressed as follows:

X = 0 - pf (2.6.1)

where p, is the vector of penetration (overlap) after the i* iteration.

At the end of the (i + 1}™ iteration, the contactor node assumes a new surface position
marked by k""" and the virtual target node moves to the position marked by s**" as

shown in figure 2.4.
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From the kinematics of motion, as shown in Figure 2.4, one may write:

xEM 4 ARl 2 g (2.6.2)

rk

Subtracting eqn. (2.6.1) from eqn. {2.6.2) yields

AUS{H” + AUr[Li:” = Auéiﬂ) + pii) (263)

7

In other words, the corrective displacement increments, Au"*" and Au"*" bring the
contactor node, k, back on the target surface away from the virtual surface node, s,

in general.

The displacement of the virtual node, s, can be obtained from the nodal values of the

target nodal displacements using the shape functions,

i+ elr Al iy oli i+
AUl = BE 2 ) Ayl 264

where the index j runs over the surface nodes of the target segment.

Substituting eqn. {2.6.4) into egn. {2.6.3) the constraint equation takes the following

form:

i {i*1 {el i) (i) i) (e}li+1) - li+1}
pe + A - g g0 8y AN < Ay

Furthermore, this equation can be written in the following form:
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ol 4 ol At = Ayl (2.6.5)
where,
Au™?  ig the global displacement vector, and
Q" is a vector of the same length as the global nodal displacement vector
with all entries being zero except the location corresponding to the

contactor node, k, and the corresponding target surface nodes.

At this stage it would be useful to show in £ ame detail the structure of the constraint
equation. In a two dimensional problem, for a single contactor node k penetrating the
target surface segment defined by nodes a, b and ¢, eqn. (2.6.5) can be written in the

following form:

B T fi+n
Auy,

Ay,
Au,,

10-h O -h, O -h, 0] |4u, ol [au ]
01 0 -h, 0 -h, 0 -h| |Au, B, Dug,
Auy,
Au

Au

.4

cy

Resolving the contact constraint in the normal, (n, , n,), and tangential, (t, , t,), local
directions, results in the following set of constraint equations for a single penetrating

contactor node in the normal and tangential local directions:
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N AUt bl

[i+1)
AL'[rkN

R Au®™ + pl

{i+1)
AurkT

where,

il _ (i)
¢ =[n, n, -n.h, -n h, -nh, -n,h, -n.h, -n h]

lin = [tx ty —tx ha —t ha _tx hb _t‘l hb -tx hc _tV hc]m

In general with more than one contactor node coming into contact at the same time,
the contact constraint equations may be written in the following form:
NEAYET 4 plt = gy o1

(2.6.6)
R Ayl 4 l:hl_i} = Aur[_‘.rn)

In the above equations, p" and p;"” are two vectors containing all the values of the
normal and tangential overlaps, respectively, for all contactor nodes in action, N and
R™ are rectangular matrices with one row corresponding to each individual contactor

node.

In general frictional contact problems, two constraint equations per contactor node are
needed. One equation constraints the motion in the normal direction and the other in

the tangential direction.

In case of sticking contact condition the relative sliding vector is put to zero and one
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may obtain:

I
o

N® ALEY 4 gl =
Pu (2.6.7)

RO AQED & p_:_il =

I
o

where py and p; are the normal and tangential overlaps which have to be removed.

On the other hand, in case of sliding contact condition, only the normal displacement
is constrained and the tangential sliding displacement can take any value. Therefore,

only the first equation in the set of equations (2.6.7) is to be considered.

Newton’s Third Law:
First, the contact nodal force vector may be written as the vector sum of the normal

and tangential nodal force vectors as follows:

(0o gl glen) (2.6.8)

Now, the Newton’s 3% law applied on the contact forces amounts to the contact force
at the contactor node k being equal to the contact force at the carresponding virtual
target node s and in the opposite direction. Consequently, for the contactor node k,

one may write

pi o - plien (2.6.9)

where r., and r,, are the contact forces at the virtual node s and the contactor node k,

respectively.
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Applying the principle of virtual work, the equivalent nodal forces acting on the target

surface segment are given by:

= (it plien (2.6.10)

{i+1)
cJ

where r,), J=a,b and ¢, is the equivalent target nodal contact force vector.

Combining eqns. (2.6.8), (2.6.9), and (2.6.10) vyields,
AL NTAIM & RTAED {2.6.11)

where, the italic fy and f; are the scalar normal and tangential forces, respectively.

As such, the expression of the contact force vector given by eqn.{2.6.11) implicitly

satisfies the Newton'’s third law of action and reaction.
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2.7 Imposing Contact Constraints

It has already been established that the contact problem is a non-linear problem which
requires an iterative solution procedure in order to solve for the unknown contact area

and contact traction satisfying the contact conditions.
Using eqgns (2.5.3) #nd (2.6.11), the incremental form of the equilibrium equations of
the discretized contact system is given by:

K# AU = Ar® 4 NOTESD o paT g (2.7.1)
Rearranging the equilibrium equations with respect to the three sets of unknowns, the
following matrix form is obtained:

T _RT it Ayl 01 Ar i)

K -N
0 0 0 £y -|o (2.7.2)
0 0 O £, 0

For the sticking contact condition, the contact constraint equations can be expressed

in the following matrix form:

o o ol rauyem ol®
-N OO Tn = |py (2.7.3)
-R 00O fr Pr

Combining eqns. (2.7.2)&(2.7.3), the augmented system of equations may be written
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in the following matrix form:

K _NT ""RT ti) Au {i+1} Ar {i}
-N 0 0 fy = |py {2.7.4)
-R 0 0 £, b

The augmented system of equations, given by eqn. (2.7.4), contains zeros along the
main diagonal which is not desirable in solution techniques utilizing Gauss elimination
method or any of its variants. This difficulty will be dealt with in the next chapter

where we present the computer implementation of the contact algorithm.

it should be noted that in this thesis, the contact constraint equations are never
augmented with the equilibrium equations as given by egn. (2.7.4). Instead, the
solution is performed on 2 matrix level to obtain corrective normal and tangential

contact force vectors that remove all the overlaps and satisfy the friction law.
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2.9 Friction Law

in this section the non-classical nonlinear friction law, proposed by Oden and Pires
[1983], is considered. This law allows for the micro relative tangential displacements
of the contacting bodies before the bulk sliding motion commences. It is worth noting
that Coulomb friction law can be deduced as a special case of the non-linear law.

The bi-linear friction law may take the form:

tT = ”tN . rr = —EfUT
u
tr > ut, t; = ~pty—L
|url
where,
E; is referred to as the friction modulus,
M is the coefficient of friction, and
Uy is the tangential relative sliding displacement.

if the friction modulus, E;, approaches infinity, we may write the friction law in the
following form:

tr = uty ur =0

TT > ”tN ' tT = —[lIN--——
|ur]

which is the classical Coulomb’s law of friction.

Figures 2.5 and 2.6 show schematic representation of the nonlinear law and

Coulomb’s law, respectively.



Figure 2.1: Two Generic Bodies Coming into Contact
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Figure 2.2: Local Coordinate System

Contactor

Target

Figure 2.3: Discretized Contact Surfaces



Figure 2.4:
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Kinematics of a Penetrating Contactor Node k.
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Figure 2.5: Non-~Linear Friction Law
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Figure 2.6: Coulomb’s Friction Law
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CHAPTER 3

CONTACT ALGORITHM

3.1 Introduction

In this chapter, the solution strategy of the general contact problem, formulated in
chapter two, is presented. The sothion strategy includes the development and the
computer implementation of the contact algerithm. The developed contact algorithm
presented in this chapter belongs to the direct methods in solving general contact
problems where the contact constraint equations are satisfied iteratively by the use of

corrective contact nodal forces.

Three main features make the presented algorithm novel. Firstly, a bi-linear non-
classical friction law is adopted in the analysis of frictional contact using a direct
method and the classical Couiomb’s law is deduced as a special case. The bi-linear
friction law allows for micro relative tangential displacements under very small normal
traction. Secondly, the algerithm is made capable of handiing nonlincar finite elements,
i.e., elements with curved sides. These elements are essential for a close geometric
representation of practical engineering problems with curved boundaries. Thirdly, the
contact equations are solved for the nodal values of the contact forces that satisfy the
contact constraint equations. Consequently, the contact traction is calculated using the

67
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principle of virtual displacements after convergence is achieved. This treatment makes
the solution insensitive to the choice of the shape functions interpolating the contact
traction. This sensitivity is a result of including these interpolation functions in the
tterative procedure. Moreover, solving for the contact nodal forces is consistent with
the overall finite element solution strategy where all distributed quantities are

discretized.

The presentation of the contact algorithm begins ‘with the solution of the system of
equations on matrix level. This solution step results in three sets of equations that give
the global nodal displacement vector and the normal and tangential contact nodal force
vectors. Then the solution strategy is broken down into a normal iteration ioop and a
tangential iteration loop. In the normal iteration loop, we solve for the unknown
contact area. The contact area is defined by surface nodes having negative contact
normal forces. This is followed by the satisfaction of the friction law on the estimated
contact area. Upon convergence of both the normal and tangential iteration loops, the
resulting contact nodal forces are distributed over the contact surface to get the
equivalent contact traction. This is done using linear shape functions and the
transformation matrix is lumped using the row sum method. The computer
implementation of the solution strategy is demonstrated with schematic flow charts.
Since the developed algorithm is added to the Incremental Nonlinear Dynamic Analysis
Program, INDAP, as a separate module, a short note on INDAP is resented. This is
followed by a presentation of the contact routines where special attention is directed
towards the searching algorithm, the scaling procedure and the ostimation of the

mairix that t~nsforms the contact forces to contact traction. Finally, Hlustrative
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examples are solved to demonstrate the applicability of the algorithm in a variety of
contact problems which ranges form elastic non-conformal contacts to elasto-plastic
conformal contact situations. The problem of an elastic sphere pressed between two
rigid blocks is invoked to demonstrate the ability of the developed algorithm to solve
non-conformal elasto-static unilateral contact problems without friction. The finite
_element solution obtained using the 'eveloped algorithm is compared with the closed-
form solution known as the Hertzian solution and is summarized in Appendix A. Than
friction is included in the anélysis and the role of both the coefficient of friction and the
friction modulus is interpreted. To address the problem of conformal elasto-static
contact, the problem of a cylinder pressed between two rigid blocks is solved for
fictional and frictionless contacts. Finally, the thick cylinder theory is invoked to check
the developed algorithm against conformal elasto-plastic contact problems. The finite

element solution is compared with the closed-form solution presented in Appendix A.
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3.2 Solution of the System of Equations

In the previous chapter, the system of equations governing the contact problem is
derived. Two sets of extra unknowns are present because of contact; these are the
normal and tangential contact nodal force vectors. The system of equations as given
by eqn. (2.7.4) has zeroes in its diagonal which is not desirable in the standard solution
techniques based on Gauss elimination method where a zero pivot would lead to
immature termination of the solution .procedure. In order to get around this difficulty
without disturbing the equation solver, the equations are solved first on a matrix level
by successive elimination of the different sets of unknowns. Consequently, an iterative
procedure is suggested to solve for the normal and the tangential contact nodal force

vectors which are required to satisfy the contact conditions.

Applying simple algebraic manipulations on matrix level on the set of equilibrium
equations given by egn. (2.7.1), the incremental displacement vector may be written

in the following form:

Aubett = g [Ar"’ + NTAM 4 R“rfil;‘*ﬂ] (3.2.1}

Substituting the dispiacement vector given by egn. {3.2.1) into the first set of contact
constraint equations given by eqn. {2.6.7), one may write the normal contact nodal

force vector in the following form:

[NNJ# f’(\;’” - ‘(p?v + D(f\]r - [NR]? fﬁ’” {(3.2.2)
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The square matrices [NN]" and [NRI" are given by:

[NN]li!- N - g T
[NR]“' = Nm K-HHRT(H

The penetration vector p,° is given by:

p% = NK-TAr?

From now on, the iteration index will be dropped from all quantities except when
confusion is inevitable and it is understood that all quantities without the superscript

denoting the iteration number belongs to the i* iteration.

The two matrices [NN] and [NR] may be interpreted as being direct and cross flexibility
matrices, respectively. Direct flexibility is defined as the displacement in the
normal/tangential direction due to a unit force in the same direction. On the other hand,
a cross flexibility is the displacement in the normal/tangential direction due to a unit
force in the other direction. As such, the (i,j)™ element in [NN] is the normal
displacement at the contactor node i due to a unit normal contact force at the
contactor node j. Similarly, the (i,j)" element in [NR] is the normal displacement of the

contactor node i due to a unit tangential contact force at node |.

For a contact system with N, total number of nodes and N_ active contactor nodes,
both N and R are N, x (N, *N,) rectangular matrices and K is (N, *N,} x (N, *N,) square

matrix where N, is the total number of degrees of freedom per node. As such, the two
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matrices [NN] and [NR] become N_xN_ square matrices. The inverse of [NN] and [NR]

would be the direct and cross contact stiffness matrices, respectively.

Now, we have equation (3.2.2) stating that a normal force vector f, is needed to
compensate for the normal overlap from the previous iteration plus the overlap
introduced by the increment in the out of balance force vector and any normal overlap
caused by the tangential forces. A geometric interpretation of eqn. {3.2.2) is given in
Figure 3.1 for a simple case depicting normal contact where no tangential components

are present.

Substituting the displacement vector, Au, from eqgn. (3.2.1) into the second contact
constraint equation given by eqn. (2.6.7), the tangential nodal force vector may be

expressed as foliows:

[RRI? /7™ = - (p% + p}) - (RN} £ (3.2.3)
where [RR] is a direct flexibility matrix similar to [NN] but in the tangential direction

and is given by:

[RR] = RK'RT

and the tangential penetration vector p,°is given by:

py = RK-1Arf

Obviously, eqn. (3.2.3) representing the tangentia! direction, is similar to eqn. (3.2.2)

in the normal direction. it may be interpreted similarly as shown in Figure 3.2 for a
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case of pure tangential motion.

Now, if both normal and tangential penetrations are present, it might occur that the
normal contact forces introduce tangential overlap and vice versa as depicted in Figure

3.3 where a general case of overlap is depicted.

Substituting the normal nodal contact force veciar, f, from egn. {3.2.2) into eqn.

{3.2.%; yields:

{i+1]

[aAd & = - (p? + pY - [RN] INNIZ(p% + p! (3.2.4)

where [a;] is given by:

la;] = [RR] - [RN] [NN]"T [NR] (3.2.5}

Ineqgn. (3.2.4) a tangential forc2 vector £, acts upon the flexibility matrix [a;] producing
corrective displacements to compensate for ti.e tangential overlaps p;", p,® and the

tangeittial overlap due to the normal overlaps.

The question now is how to compensate for the vector of normal overlap in order to
satisfy the impenetrability constraint and the vector of tangential overlap to satisfy the
friction law. This is achieved through the application of normal and tangential nodal

contact forces on both the contactor and the target surfaces.

From the first sight, the solution procedure might seems obvious. One might think of

solving eqn. (3.2.4} for the tangential forces then substitute these forces into egn.
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(3.2.2) to get the normal forces. Having obtained the normal and tangential forces it
would be trivial to calculate the displacement vector in egn. (3.2.1}. The problem with
this line of thought is that the contact area is not known and it has to be determined
before solving for the tangential forces. The solution for these nodal contact forces is
obtained in two nested iteration loops for the normal and tangential overlaps. In the
normal iteration loop, the nodal contact normal forces that remove the normal overlap
are estimated. Having obtained an estimation for the nodal contact normal forces, the
contact area can be defined. Over the defined contact area, the nodal contact

tangential forces are estimated according to the friction laws.



75

3.3 Solution Strategy

The procedure begins by assuming sticking contact conditions and we proceed
incrementally towards the normal contact forces that remove all the compatibility
violations. This starting assumption will give an estimate for the contact area decided
upon using the normal nodal forces. Then the tangential forces are estimated and
checked against the friction law. In other words, we solve for the contact area first
then we fulfil the friction iaw on the estimated area. Having updated the frictional
forces according to the friction law adopted, a new estimate for the normal forces is
obtained and checked for any tensile forces which would suggest the release of the
corresponding nodes from the active contact set. The contact iterations are continued

as illustrated in what follows until convergence is achieved.

3.3.17 Normal Iteration Loop

Since the contact area is not known a priori, a normal ite: ation loop is introduced to
define that contact area or more precisely to define the active contactor nodes. By the
active contactor nodes it is meant the contactor nodes experiencing compressive
normal contact forces. All nodes experiencing tensile normal force are relezsed from

the active set and the contact force is set to zero.

Let us suppose that (n} normal iterations have been completed. At the end of the (n)™

normal iteration the normal contact nodal force vector may be expressed, using eqgn.
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{3.2.2}, in the foliowing form:

INNI? 77 = - (p} + pi) - [NR]Y 7" 3.3.1)

The system in eqgn. (3.3.1) is made of N, algebraic equations containing 2 *N_ unknown
normal and tangential contact nodal forces. An assumption has to be made to reduce
the number of unknowns to the number of equation so that tha system would be
solvable. This can be done by introducing the tangential to normal force ratio at each

contactor node defined as:

(8 = Fr/fy
where it is assumed that the above mentioned ratio is known and kept constant during

the normal iterations. As such, eqn. (3.3.1) may be expressed in the form:

lay 7= — (pg + o) (3.3.2)

where [ay] is an N_*N_ normal flexibility matrix given by:

la,] = [NV + [NVRIL6), (3.3.3)

Moreover, the condition of compressive surface traction is expressed as follows:

i = for £ =0
. M N (3.3.4)

- =0 for fif > 0

where the second line in eqn. (3.3.4) indicates tension release of contactor nodes with

tensile normal force.
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In incremental form, the normal overlap vector and the norma! contact force vectors

may be written as follows:

el plel o A
P+ CPu (3.3.5)
= B+ AF,
which upon using eagn. {3.3.2) yields,
Apy = -lay,] Af, (3.3.6)

This is a system of N, linear algebraic equations which is constrained by two
conditions corresponding to weather the previous iteration led to a gap or an overlap

as indicated in egn. {3.3.4).

Now, in the {n+ 1) iteration, the following conditions are enforced:

{n+1} {m
=0 for =0
Pw Pa (3.3.7)

oy =0 for o <O

The condition in the first line in eqn. (3.3.7) is satisfied by nodes penetrating the target
surface in the (n)™ normal iteration and in the next iteration the overlap should be
eliminated. Furthermore, the condition in the second line is satisfied if the contactor
node is outside the target body at the end of the {n)*™ iteration and in the next iteration
either it comes to contact and the overlap should be zero or remains off contact and

the normal force is zero.
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Substituting eqns. (3.3.5) and {3.3.6} into eqn. (3.3.7) and neglecting the secend order

terms we obtain the following set of algebraic equations:

laylAfy = pi for pi' = 0

{n} ()
v Px

{m

forpy’ < O

{La, 177" - pi)Af,

Finally, the above two sets of equations for penetrating and non penetrating contact

nodes can be expressed in the following uniform set:

(laplF] - [PY)&fy = [F] pi (3.3.8)

where the normal penetratiori vector, p,, at the (n)" iteration is estimated from:

p’(\;ﬂ - - pf(\?! - [NN]f}\::ﬂ _ [NR]f_}{TJ (3.3.9}

and the elements of the diagonal matrices, [F1 and [P], are given by:

~
[}
-

; , p; =0 for po'=0

[m = 0
=T . Pi = P

~
1}

for pN' <0

Now, the system in egn. (3.3.8) consists of N, linear equations in the incremental

contact nodal force vector, Afy,.

Having obtained an estimate for Afy, the increment in the normal penetration vector
Apy, can be estimated form eqn. (3.3.5). Consequently, eqn.(3.3.5) can be used to
update the normal contact force and penetration vectors. The normal iterations

continues until convergence is reached which is indicated by a vanishing overlap.
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3.3.2 Tangential Iteration Loop
In the normal iteration loop, the ratio between the tangential to normal forces is kept
constant in order to arrive at an estimate for the contact area and a first estimate for
the tangential forces. Having obtained that estimate, for the contact area, friction
iteration loop is started to check the tangential forces against the friction law. Similar
to the basic idea of removing all normai overlaps, the tangential overlaps have o be
removed in case of sticking contact using coulomb’s friction law if the frictional forces
are below the frictional capacity. If using a non-classical friction law as suggested in
this study, the tangential displacements are not removed but controlled according to

the nonlinear friction law.

Let it be assumed that (r} friction iterations have been completed. At the end of the
(ry™ friction iteration, the tangential displacements can be obtained, using eqn. {3.2.3),

as foliows:

pi' = - pf - [RNIF! - [RRIFY (3.4.3)

In the (r+1)"™ friction iteration, either we have a micro or macro sliding. This
uncertainty in deciding upon the friction state can be dealt with by combining both

constraints in one unified mathematical form as follows:

(F57 + £ (A7 + ol 7i™) = 0 8:4.3)

where the diagonal matrix ¢ is gi.-en by
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ol
A L (3.4.4)

| o7
The constraint equation given in eqn. (3.4.3) states that either there exist a micro slip
and the tangential force is equal to the friction modulus times the tangential
displacement. Otherwise, the tangential force is equal to the frictional capacity

determined by the normal force multiplied by the coefficient of friction which

corresponds to a condition of macro slip.

Egn. (3.4.3) contains the three sets of unknowns; these are the normal forces,
tangential forces and the relative tangential displacements. The whole idea now is to
express the increment in the normal traction and the tangential overlap in terms of the

increment of the tangential traction keeping only one independent variable in eqn.

{3.4.3).

In incremental form, we have,

i = i+ Afy
f.f'\.r';m = Jtv? + Afy, (2.4.5)
pi" = p + Apy

Using eqns. (3.2.4) and (3.4.5}, we may write,

Ap; = [a]AF, (3.4.6)
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Furthermore, using eqns. {3.2.2) and (3.4.5),

Af, = [TNAS, (3.4.7)

where,

[TN] = - [NN]7 [NR]

Substituting egns. {3.4.6) and (3.4.7) into the frictional constraint in egn. (3.4.3)

yields:

(fi + 8Fy + Epf + Dp ][ + Afy; + @l (Fid + AF)] = O

Expanding, rearranging and neglecting the second order terms, the following set of N_

linear equations in the incremental tangential forces is obtained,

{lyn] + tw,) + E/ladly,] + [@1ITMIg,)) Af, = - Diag.(lg,)lw,l) (3.4.8)

where, [ ¥, 1 and [ W, ] are diagonal matrices with components given by

= £l i
Wy = fa + Epy

ol (3.4.9)
War = 11+ —fotti Tl
| p7

Solving for the incremental tangential force vector, the normal force vector for the

(r+ 1)™ friction iteration can be obtained from:
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f[l\.f’” = 1[\? + [TN-IAfT (3.410)

and the magnitudes of the frictional forces are checked so that they do not exceed the

frictional capacity where,

A = A2+ Afy| = wfE™

If this is not the case, the friction iterations are continued with the tangential traction
taken as equal to the frictional capacity. Knowing both the normal and tangential
forces, the tangential displacement can be calculated from eqn. (3.4.3) and the

tangential iterations continue until convergence is achieved.

At the end of the friction iteration, new values for the contact forces are obtained.
Using these forces as initial values, the normal iteration loop is repeated and followed
by another friction iteration. The iteration procedure is continued until the changes in

the forces are small when compared to a specified norm.

3.3.3 Contact Traction

in the finite element solution to the contact problem, we solve for the nodal contact
force vectors in the normal and tangential directions. These contact nodal forces are
equivalent to the distributed contact traction in a virtual work sense. In other words,

the work done by the nodal contact forces in going through an admissible displacement
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field is equal to the work done by the equivalent’jdistributed contact traction in going
through the same virtual displacement field. The equivalent force vector to a
distributed traction obtained using the virtual work principle is called the consistent
load vector if the same shape functions are used for interpolating both the

displacements and stresses.

Applying the principle of virtual work on a three dimensional 9-node surface segment

where a distributed traction t{x,y.z} is prescribed, the following equation holds:

J;t(x,y,z) Sulx,y,z) dA = f.6u, ,i=1.2,....9 (3.5.1)

where summation over the repeated index i is implied.

The distributed virtual displacement can be expressed in terms of the nodal values as:

dulx,y.z) = du;hif.n.0 ., i=1,2,....9 (3.5.2)

Similarly, the distributed traction can be expressed in terms of its nodal values as

follows,

tix,y.2) = Q&0 L j=1.2,....9 (3.5.3)
where ¢ represents the shape functions for the stress interpolation which in general

could be different from the displacement shape functions.

Substituting eqns. (3.5.2 and 3.5.3) into the virtual work expression given by egn.
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(3.5.1), one may write

J’ 4,9, Suh dA = féu;
A

Therefore, one may rearrange in the homogeneous form:

[t,.(J’ ohida) - f,~:| Su, = 0
A

For an arbitrary virtual displacement du;, # 0,i=1,2,...,9 we arrive at:

i

where the elements of the transformation matrix [G] are given by:

G; = J'h,-tp,-dA (3.5.5)
A

if the shape functions for interpolating the traction are chosen to be the same
displacement shape functions, the transformation matrix G is a 9x9 square matrix
similar to the consistent mass matrix used in dynamic analyses as described in Bathe

[19886].

In general, the integral in eqn. (3.5.5) to evaluate the elements of the transformation
matrix [G] is not straightforward. As such, numerical integration is invoked as will be
illustrated in the next section where the computer implementation of the contact

algorithm is discussed in details.
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Now, the normal and tangential distributed traction are obtained from the normai and

tangential nodal contact force vectors as follows:

ty = [GI7 fy
t; = [G] f;

{3.5.6)

Since the inverse of the transformation matrix [G] is reguired to calculate the normal
and tangential nodal values of the distributed contact traction, a lumped equivalent

would be of great significance.
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3.4 Computer Implementation

The contact aigorithm in its first version is implemented in INDAP as a separate module
interacting with the other modules organized by the master routine. INDAP is a general
purpose displacement-based nonlinear finite element program which is capable of
solving a wide variety of structural linear and non-linear problems. In order to achieve
maximum versatility and to make it open for further development, INDAP has been
organized in a modular form. Furthermore, each module is divided into a number of
sub-modules. This modular form makes it possible to an experienced user to modify
the program according to the needs demanded by the specific problem at hand. Owing
to its open architecture, it is also possible to upgrade the program by simply inserting
new modules. Special purpose programs can be created by putting together a number

of modules and/or sub-modules of INDAP and some additional modules if necessary.

In its most recent structure, INDAP consists of the following seven main modules:

1. Pre-processor: processes the user’s input data.

2. Master Organizer: controis the global communication between the main
modules.

3. Element Librarian: calculates the stiffness, mass and damping matrices for

different elements.
4. Material module: determines the state of stress and the current stress-
strain relationship.

5. Equation solver: puts together the discretized structure and carry out the



87

numerical solution of the assembled structure.
6. Contact Algorithm: detects and removes any compatibility violation between
contacting bodies.

7. Post-processor: displays the input and output data for visual inspection.

A schematic diagram for INDAP main modules is shown in Figure 3.4. A detailed
account of the different finite elements, material models, and kinematic formulations
implemented in INDAP can be found in the user’s, theoretical, and verification manuals

Dokainish [1988*%°].

3.4.1 INDAP Master Routine

The master routine, MASTER, in INDAP is the main processor which controls the flow
of data throughout the whole program. The master routine organizes the flow of data
between the three main modules; the librarian, the material and the solver. Figure 3.5
shows a brief flow chart for MASTER where two main loops can be recognized. The
outer most loop is the loop over the load time steps. The inner Ibop is the nonlinear
iteration loop where the full or the modified Newton-Raphson iterative schemes are

adopted.

In the nonlinear iteration loop using Newton-Raphson technique, the out of balance
load vector is applied on the original or updated stiffness matrix and the corresponding
incremental displacement vector is calculated. Iteration continues until equilibrium is

achieved. A new load step is applied and so on. If during the global nonlinear iteration



88

loop contact is detected, the contact main routine CONTCT is invoked to asses the
compatibility violation and calculate the contact forces that remove any overlap and
satisfy the friction law. Since the contact area is not known a priori, an iteration
procedure is developed. Upcn convergence of the contact iterations, the contact forces
are added to the out of balance force vector and the nonlinear iterations continue.
Within the master routine the contact module is treated as a solid box as shown in

Figure 3.5 which will be exploited in the following subsections.

3.4.2 Contact Routines

In this section the box representing the contact module in the master routine is
exploited in Figure 3.6 where a simplified flow chart representing the contact algorithm
is shown. The contact iterations begin by initializing the contact arrays in subroutine
CNTINT. This is followed by the overlap detection by the searching algorithm in
subroutine SEARCH. If overlap is detected, the contact constraint equations are formed
for all penetrating nodes in subroutine CNCSTR. The normal and tangential contact
forces are estimated in subroutine CNTSLV and the displacement vector corresponding
to these contact forces is obtained and the configurations of the contacting bodies are
updated. The new configurations have to be checked for overlap and the loop
continues until all overlaps are removed. The contact force vector in the global
coordinate system is estimated in subroutine CNEQLB and we are back to the master

routine.



89

3.4.2.1 |Initialization Routine, CNTINT
CNTINT is a subroutine which is responsible for initializing the contact arrays at the
beginning of each contact iteration step.. This routine has two branches. One branch
for the first contact iteration while the second branch is for all subsequent iterations.
tn the first iteration:

The contact information are read from the contact tape,

The increment in the tangential displacement is calculated and

The position vector is updated
On the other hand, for all subsequent iterations:

The local coordinates of the virtual target node s are updated and

The contactor nodes sliding over a new target mate are identified

3.4.2.2 Searching Algorithm, SEARCH

The contact constraint equations are derived in the previous chapter for one contactor
node penetrating a target segment and then generalized to account for more contactor
nodes penetrating different target surface segments. However, nothing has been
mentioned about how can we decide upon which node penetrates which segment. In
other words, we need a mechanism by which it would be possible to identify all active
contact pairs accurately and efficiently. By a contact pair it is meant the contactor or
hitting node and the target surface segment. This identification process can be done
by using what is called searching algorithms. A searching algorithm should be capable
of detecting all penetrating nodes and their corresponding target segments and sense

any change in the contact conditions of sticking, sliding and tension release. It should
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also be capable of determining and updating the local coordinates of the contactor

nodes with respect to the local coordinate system of the corresponding target

segment.

The searching algorithm adopted in this study is one of the commonly used algorithms
in the literature, Zhong [1993]. It is a one-path treatment often called master-slave
algorithm. For two generic bodies coming into contact, one body is called the
contactor, slave or hitting body while tihe other is calied the target or master.
Moreover, the nodes and surface segments on a master/slave body are called
master/slave nodes and segments, respectively. In a one-path treatment of contact
interface, only the contactor nodes are checked against penetration into the target
body. In other words, the target nodes can penetrate the contactor body. Therefore,

it is recommended to choose the contactor body to be the one having the finer mesh.

The only user input information for the master-siave algorithm is two separate node

lists for the potential contactor and target nodes.

The algorithm runs as follows:

1. For each potential contactor node, find the closest target node.

2. Find the surface segment/segments which shares this target node.

3. check if the contactor node is cliose enough to the target body. If not, go to
step 8.

4, If the closest target node is a mid-side node in a 2D problem or a centre face

node in a 3D problem, then the element which contains that node is definitely
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the one to be paired with the contacter node. Go to 7.

5. Find the local coordinates of the contactor node in the candidate target
segments.
6. From the local coordinates it can be decided which target segment is the one

to be paired with the current contactor node.

7. Store the contactor node and the corresponding target segment as a contact
pair. Also, store the local coordinates of the contactor node in the
corresponding target segment.

8. Loop over all potential contactor nodes.

Before going into the tedious work of calculating the local coordinates of every single
contactor node in its corresponding target surface segment, it would be wiser if we
check first if the node is inside the target body or even close. This is because the
calculation of the local coordinates of the contactor node in the target element, in a
general contact problem, requires the solution of a system of non-linear equations

which is a costly procedure as iliustrated later.

This check can be done in 3D contacts by evaluating the volume of the prism made
up by joining the contactor node with three corner nodes of its companion target
surface segment as shown in Figure 3.7.a. Using a convenient sign convention it
becomes possible to decide on a node that penetrating the target body by just
watching the sign of the measured volume. From the figure, it can be stated that the

contactor node, k, has penetrated the target segment, J, iff
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V = X5 X Xqg . X9, <0
where,

Xig = X=Xy, X2 = Xz - X and X, = X4 - X

Similarly, in 2D problems, we estimate the area of a triangle made up by joining the
contactor node with the corner nodes of its corresponding target edge as shown in

Figure 3.7.b. And penetration occurs iff

A=vyxv, <0

Now, let us discuss how can we determine the coordinates of the contactor or hitting
node k in the local coordinate system of the corresponding target segment J. In the
isoparametric finite element formulation, both the displacement field and the position
vector are expressed in terms of the same shape functions and the corresponding
nodal values of displacement and position, respectively. Therefore, in a general 3D

solid element in a cartesian coordinate system, we have the following equations:

1
h2

X, X; Xy Xy

Yel= |¥1 Y2 o Yy

z, z, z, 2y
by,

where,
N is the total number of nodes per element, and

h; is the shape function corresponding to node i.
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The shape functions are expressed in terms of the local coordinates & n, and ¢

evaluated at the contactor node k, i.e.

by = hi(& . G, i=1,N
As such we have three equations which are to be solved for the three unknown local

coordinates. In the case of 2D linear elements, the above system of equations can be

written in the form,

+1 +1 +1 +1 1
Xl o1 [X X X3 Xgf [+T -1 +1 -1 | §
Ve| % [Vi Y2 Ya Ve| [*1 -1 -1 +1| | p

+1 +1 -1 -1 &9
These two equations can be easily reduced to a single quadratic equation in only one
variable. However if nonlinear elements are to be considered, the problem becomes

nonlinear and we need an iterative solution technique.

On the other hand, with the 3D linear elements, i.e. elements with straight edges, we
do not have the luxury of simple equations as demonstrated for the linear 2D elements.

Instead we have the following set:

+1 #7141 +1 +1 +1 +1 +1 1
+1 -1 +1 41 -1 +1 -1 -1 £
+1 -1 -1 +1 +1 -1 -1 +1 n

¢

X X X Xg

vl= v,y v +1 +1 =1 +1 -1 -1 +1 -1

N RS I IFCIE G e e e S = 1 A
Zy Zy 23 Zg

+1 -1 +1 -1 -1 -1 +1 +1 || n¢
+1 -1 -1 -1 +1 +1 +1 -1 €3
+1 +1 -1 -1 =1 +1 -1 1] |[§n{
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It is obvious that these equations require an iterative solution procedure. Moreover, in
case of 3D nonlinear elements the problem becomes even worse. Having established

the fact that we need an iterative procedure in order to be able to tackle general

contact problems, we proceed as follows.

In a general nonlinear problem represented by the equation y =f(x), linearizing in the

neighbourhood of a prior estimate, x,, a new estimate can be found and is given by

yﬁ'” = yﬁ? + Ay

where, the increment in the dependent variable v is given by

Ay = 3160 Ay
ax

In a similar fashion, the increment in the global coordinates of the contactor node k can

be determined from the system of equations given by

Af X, =X i}

W11 .
A | =[oo]" [y -y®
A z -z"

where, [J] is the Jacobian matrix and is given by

o, o o
3™ an "
= [Py, Oy BNy
3" an " AT’
My o, Ny,
L9 " an " e
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The new estimates are determined from

(5,7, QU0 = (£ AZ pli £ Aptien | gl 4 AZI)

[terations continue until the incremental values of the local coordinates become smaller

than a pre set tolerance.

3.4.2.3 Constraint Routine, CNCSTR

Subroutine CNCSTR is responsible for calculating the normal and tangential contact
matrices [N} and [R] for all active contactor nodes as determined by SEARCH.
Moreover, CNCSTR estimates the normal and tangential penetration vectors py’ and
pr°. Subroutine CNCSTR invokes the utility routine SHP2D which gives the shape
functions for the 2-D isoparametric finite elements. It also gives the normal and
tangential vectors to the target surface. In case of frictionless contacts, only [N] and

py’° are evaluated.

3.4.2.4 Contact Solver, CNTSLV

In subroutine CNTSLV, the normal forces that remove the overlap in the normal
iteration loop and the tangential forces that satisfy the friction law in the friction loop
are estimated. Having obtained the converged contact force vectors, the corresponding

contact displacement vector is obtained.

Normal Iteration Loop:

The normal iteration loop is performed in subroutine SIGITR which is schematically
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represented by the flow chart in Figure 3.8. The normal stress iterations are

summarized in the folluwing steps:

1. Calculate the normal overlap vector p," from eqgn. (3.3.9}

2. Calculate the increment in the normal forces which removes the overlap by
solving eqn. (3.3.8).

3. Check convergence and update the normal forces using eqn. (3.3.5).

During the normal contact iterations, a scaling procedure is devised to sgeed up the
convergence. Inthe (n+ 1)™ normal contact iteration, either the contact traction or the

normal penetration vector is zero, this trans!ates to the following contact constraint:

{n+1) v} _
fi ' -pw =0

Let us assume that the normal traction and the normal penetration vectors are equal
to their respective values at the (n}" iteration plus the incremental change multiplied
by a scale factor which brings the contactor node on the target surface, i.e.

{n+1] _ rlnl
fM' =Ty SAfM

{n+1)

e = pit v shpy

Therefore, the scale factor can be determined form the following quadratic form:

As? +Bs+C =0

where the three constants of the quadratic form are given by:
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A = E AfoAuNi
=

N‘
B =Y Af,ull + fif Auy

¥

~ finl . in}
far Uni

o
W,

C =

i=1

The solution to this quadratic equation gives the value of the scale factor s. !f it is

negative it should be ignored.

Tangential Iteration Loop:

In case of frictional contacts, the tangential traction is obtained iteratively in order to
satisfy the friction law along with the normal contact constraints. In the friction
iterations, the normal iterations are performed as an inner loop isst it s'no.uld oceur that
the normal constraints are violated during the friction iterations. Figure 3.9 shows a

simplified flow chart for the friction iteration loop. The friction iterations go as follows:

1. Calculate [NN], [RR] and [NR]

2. Calculate 8, for each contactor node.

3. Calculate [ay,] from eqn. (3.3.3)

4, Call SIGITR to obtain the norma! forces and the contact area. If converged

ICHEK is setto O

5. If both the normal and tangential forces are converged, exit the friction iteration

loop. If not, continue.
6. Calculate [a;] from eqgn. (3.2.5).

7. Calculate friction forces corresponding to the new normal forces using the
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estimated ratio 6, .
8. Calculate the tangential displacement from eqgn. {3.4.3).
9. Calculate W, and ¥, from eqn. (3.4.9).
10.  Solve the system in eqn. (3.4.8) for the incremental tangential forces.
11.  Update the normal forces using eqn. (3.4.10).
12.  Check the convergence in the tangential contact forces. If converged, set

IFCHK flag to 1. Go to 2.

3.4.2.6 Contact Force Vector, CNEQLB

Atthe end of each contact iteration, the contact forces are obtained in the local normal
and tangential coordinates at each individual contactor node. In order to add the
contact forces to the global force vector, a transformation of the contact normal and
tangential forces to the global coordinate system has to be carried out. This is done

in subroutine CNTFRC and the transformation is given by eqn. (2.6.11).

3.4.2.5 Contact Traction, CNTRAC

As discussed in section 3.3.3, the normal and tangential contact nodal force vectors
are distributed over the contact surface using the inverse of the transformation matrix
[Gl. it is also noted that for the evaluation of the transformation matrix [G], numerical

integration is necessary. For a 3-D surface, the ij'™ element in [G) is given by:

*1

G, = J’ J’ hi oln) |NE.m [dEdn
=1 =

where |J(f.rl)| is the determinant of the 2x2 Jacobian matrix.
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Using Gauss quadrature for evaluating the above integral gives:

(4

G; = ”‘ﬁ il ) @A) Wi

k

M2

L

where ng, n, are the numbers of the sampling points in the local coordinate system

represented by £ and 7 and the surface is given by {=1.

if both shape functions used for interpolating the contact traction are the same as
those used for interpolating the displacement field, the above Gauss formula would
suffice, However, for nonlinear finite elements having parabolic shape functions
interpolating the displacement field, the shape functions interpolating contact traction
are chosen to be linear. This is consistent with the stresses everywhere in the
continuum. The linear interpolation of the contact stress field over three node 2-D
surface, for instance, leads to a discontinuity at the mid-side node and the integration

over the whole segment can not be performed using the above formula.

Let us consider the case of a 2-D element side with three surface nodes where the
contact surface is represented by the n=1 parametric curve. The displacement field
is interpolated using the standard quadratic shape functions h({é), i=1,2,3 shown in
Figure 3.10.a and the surface traction is interpolated by the linear shape functions
@,(£), j=1,2,3 shown in Figure 3.10.b. Obviously, the @;'s are discontinuous over the
full element surface. As such, the integral for estimating the transformation matrix [G]

has to be broken into two integrals as follows:
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=

In order to use the standard Gauss quadrature formula where the integral runs from -1
to +1, a change of parameters is necessary. Let

E=(s, - 1)/2 for  &=[-1,0] = s,=[-1,+1]
and §=(s, +1)/2 for £=[0,+1] = s, =[-1,+1]

Therefore, in both regions, df = ds, /2 = ds, /2

The algorithm for estimating the contact nodal traction from the contact nodal forces
become more efficient if the matrix [G] can be diagonalized or lumped. The
diagonalization of the matrix rnakes the inversion operation trivial. In this study the row
sum method is used. In the row sum method, the diagonal matrix is computed from;
- G, i=j

= {%

G.

¥

0 9

where k=1.,2,3.

Using the above mentioned parameter transformation and the matrix diagonalization,

the first diagonal element in the lumped transformation matrix [G] is given by:

+1
[Brtsd [ @ads + @satsyl] xisa) s | s,
=1
+1

[Artsi ] @itsi) + @sys] xtsy) | s,) | ds,
=
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Similar expressions can be obtained for the other two diagonals and the Gauss

gquadrature may be used to evaluate the integral numericalily.

Different combinations of the shape functions are investigated. It is found that using
linear shape functions for both the contact traction and the displacement field results
in oscillations in the contact traction distribution where the average profile under-
estimates the contact traction field. On the other hand, if parabolic shape functions are
used for both, stress oscillations remain with an over-estimated average if three
integration points are used in the numerical integration. The oscillations could be

suppressed and the average is corrected by using the reduced integration technique.

In conclusion, two options are available for the estimation of the transformation matrix
G. Either use parabholic interpolation for the displacements and linear interpolation for
the contact traction or use parabolic interpolation for both with reduced integration

scheme.
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3.5 lllustrative Examples

in this section, the developed contact algorithm is examined qualitatively and
quantitatively, when possible, against a wide range of contact problems. These include
frictionless, frictional, elastic, elasto-plastic, linear, non-linear, conformal and non-
conformal contact problems. A Hertzian contact example is solved using the developed
algorithm where a sphere is pressed against a rigid foundation without friction. Hertz
contact is an elastic non-conformal contact problem which has a closed form solution
given in Appendix A. This probiem is also solved with the presence of friction.
Unfortunately, no closed form solution is available for the frictional case. As an
example of elastic conformal contact problems, an elastic cylinder is pressed axially
between two rigid blocks. Again, no closed form solution is avéilable for such a
problem. Finally, the algerithm is checked against an e/asto-plastic conformal contact
problem; that is the internal pressurization of a composite cylinder. The results
obtained numerically using the developed algorithm are compared with the closed form

solution summarized in Appendix A.

For convenience, the presentation of the various examples follows a strict sequence;
a mathematical model, material data, finite element mesh, boundary conditions, and
finally results and discussion. When available, the analytical solutions for the problems
depicted in this section are summarized in Appendix A as will be pointed out in each

example.
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3.5.1 Example #1: An Elastic Sphere between two Rigid Blocks
This is an example of elasto-static non-conformal contact between an elastic body with
a rigid foundation. A 50 mm radius elastic sphere is pressed between two rigid blocks
as shown in Figure 3.11a and it is required to calculate the resulting contact traction.
If friction is ignored, this becomes the classic Hertzian contact problem where a closed

form solution is available in Johnson [1985] and is given in Appendix A.

Mathematical Model:
Owing to the double symmetry, only one quarter of the sphere is considered. The rigid
block is fixed in space while the horizontal surface of the sphere is given a uniform

prescribed down-ward displacement as shown in Figure 3.11b.

Mechanical Properties:
The material mechanical properties for the elastic sphere are as follows:
Young’'s Modulus, E = 200 GPa

Poisson’s Ratio, v = 0.3

Finite Element Mesh:

The mathematical model in Figure 3.11b is discretized using the finite element mesh
shown in Figure 3.12 where it can be noticed that the mesh is refined close to the
potential contact area for more accurate results. A total of 207 axisymmetric 9-node
isoparametric quadrilateral finite elements are used for the sphere and only one 4-node

element is used for the rigid block.
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Boundary Conditions:

To load the model, the prescribed uniform displacements are applied on the nodes
along the horizontal edge of the sphere mesh. On the other hand, the nodes along the
vertical edge are constrained in the x-direction only. Al nodes on the element

representing the rigid block are completely fixed in both x and y-directions.

Results & Discussion:
All the modelling details are fed into INDAP through a user’s input file with the proper

format as explained in INDAP User’s Manual, Dokainish {1988]. The input file for this

primary case is reported in Appendix A as a sample input file.

The deformed configuration of the model is shown in Figure 3.13 where an
exaggerated view of the vicinity of the contact area is depicted. It can be observed
that the contact area terminates at a mid-side node with an extended radius of 8.0143
mm as compared to the 8.0 mm radius obtained from the closed form solution
corresponding to 1.28 mm down-ward prescribed displacement. The normalized
contact pressure distributions obtained from the finite element analysis for different
prescribed downward displacements of 0.256, 0.768 and 1.28 mm are shown in

Figure 3.14 along with the analytical solution represented by the solid lines.

It shouid be pointed out that the agreement of the finite element solution with the
Hertzian solution is different at different load levels. They agree well when the load
level is such that the contacting area terminates at a finite element node. In addition,

a deviation from the Hertzian solution would not be a surprise as the contact area gets
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bigger. Thisis t ~ause the Hertzian theory assumes that the contact area is negligible

with respect to the dimension of the contacting bodies.

Frictional Contact:

The problem of a sphere compressed between two rigid blocks is solved with the
introduction of friction between the contacting surfaces. The prescribed displacement
is 1.28 mm. Friction coefficients of 0.0, 0.3, 0.6 and 0.9 are used with a friction
modulus of 102 This value for the friction modulus reduces the friction model to the

Coulomb’s friction law.

The finite element solutions are shown in Figure 3.15 represented by symbols while
the analytical solution for frictionless contact is represented by the_ solid line. The
involvement of friction into the analysis offers a tangential resistance against relative
sliding. This resistance is responsible for the increase in the normal contact pressure
as shown in Figure 3.15. As can be seen from the distribution of the tangential contact
traction, the contact area is divided into two distinctive zones. An inner sticking zone
where the friction forces are less than the frictional capacity and an outer sliding zone
where the frictional forces are equal to the frictional capacity. As the coefficient of
friction increases, the sticking zone expands radially on the expense of the sliding
zone. The effect of the friction modulus on both the normal and tangential traction is
shown in Figure 3.16. As the friction modulus decreases, the contacting surfaces are
allowed a higher relative tangential displacement which leads to lower normal and

tangential traction.
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3.5.2 Example #2: Rigid Block & Elastic Cylinder
As an example of elasto-static conformal contact problems an elastic cylinder is

pressed axially between two rigid blocks as shown in Figure 3.17a.

Mathematical Model:

Due to the double symmetry, only one quarter of the continuum is modelled as shown
in Figure 3.17b. The rigid block is given a downward vertical prescribed displacement
of 1 mm. The left side of the cylinder is fixed in the radial direction while the bottom

surface is fixed in the vertical direction.

Mechanical Properties:
The material mechanical properties of both the cylinder and the blocks are as follows:
Young’s Modulus, E = 200 GPa

Poisson’s Ratio, v = 0.3

Finite Element Mesh:
The mathematical model is discretized using a total of 400 axisymmetric 9-node
isoparametric quadrilateral finite elements for the cylinder and only one 4-node element

for the rigid block as shown in Figure 3.18.

Boundary Conditions:
All nodes along the bottom surface of the cylinder are fixed in the y-direction while all

nodes along the left side are fixed in the x-direction. The four nodes of the block
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element are given a prescribed displacement of -1 in the y-direction.

Results & Discussion:

Figure 3.19 shows the distribution of the normal and tangential traction, respectively,
for different friction coefficients assuming Coulomb’s law of friction. Including friction
into the analysis deviates the uniform pattern of the normal contact traction showing
a very large value at the boundary of the contact area. However, the value of the
coefficient of friction does not have much of an effect on the normal contact traction.
On the other hand, as the coefficient of friction increases the extent of the sticking
zone enlarges. This is logical since as the friction coefficient increases, the frictional

capacity increases which results in more nodes being unable to slide.

3.5.3 Example #3: Internally Pressurized Composite Cylinder

As an example of elastic-plastic conformal contact problems with both contacting
bodies being deformable, the thick-cylinder theory is invoked to demonstrate the
applicability of the developed finite element contact algorithm. A composite cylinder
with two rigid end supports internally pressurized to @ maximum pressure value-_and
then the pressure is removed completely. This problem also demonstrates the ability

of the algorithm to handle loading and unloading scenarios.

Mathematical Model:
The composite cylinder considered has an inner cylinder with 1.0 and 1.1 in inner and

outer radii, respectively, while the outer radius of the outer cylinder is 2.0 in. The



108

geometry, loading and boundary conditions are all axisymmetric. As such, an

axisymmetric model is adopted as shown in Figure 3.20a.

Mechanical Properties:

An elastic perfectly plastic material model, given in Figure 3.20b, is adopted with the

material mechanical properties for both cylinders given by:

Young’s Modulus, E = 30*10° psi
Poisson’s Ratio, v = 0.3
Yield Strength, S, = 30*10° psi

Finite Element Meash:
The mathematical model is discretized using 4 and 18 isoparametric 9-node
quadrilateral 2-D axisymmetric finite elements for the inner and outer tubes,

respectively. The finite element mesh is shown in Figure 3.21.

Boundary Conditions:

The two end supports prevent any axial deformation and this is translated in the finite
element model by fixing all the nodes in the mesh in the axial direction. A uniform
pressure is applied on the inner surface of the inner cylinder to a maximum of 18.0 ksi
and then itis reduced to zero. Contact interaction is expected between the outer and

inner surfaces of the inner and outer cylinders, respectively.

Results & Discussion:

The radial and hoop stress distributions, at maximum loading, along the radial distance
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are compared with the analytical solution as shown in Figure 3.22. The finite eiement
solution is represented by symbols while the closed-form solution is represented by the
solid line. Obviously, an excellent agreement between the two solutions is evident.
This indicates that the contact algorithm works for materially non-linear contact

problems.

Assuming elastic unloading, the residual stresses may be obtained by subtracting from
the elastic-plastic stress distribution a stress distributicn which would have occurred
at the same pressure if the material had remain elastic. Figure 3.22 shows the residual
radial and tangential stress distributions obtained using the finite element method after
the pressure load is removed completely compared with the closed-form solution. The
excellent agreement suggests the adequacy of the developed algorithm for handling

unloading situations as well.

Plane Strain Mocdel:

The internal pressurization of the composite cylinder with two end supports may also
be mathematically represented by a plane strain model. Only one quarter of the
composite cylinder is used due to the double symmetry with regard to any two

perpendicular axes in the cross-section plane.

The finite element discretization of the plane strain model is shown in Figure 3.23. A
total of 465 nodes and 105 isoparametric 9-node quadrilateral 2-D plane strain
elements are used. In Figure 3.23, the first inner layer of elements represents the inner

tube.
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All nodes along the x-axis are fixed in the y-direction while all nodes along the y-axis

are fixed in the x-direction. Different values of the internal pressure are applied along

the inner surface of the inner tube.

The normalized contact pressure is plotted against the angular position as shown in
Figure 3.24 for the different pressure values of 12.0, 15.0 and 18.0 ksi. The solid lines
represent the analytical solution as estimated form the closed form solution provided
by the thick-cylinder theory. Figure 3.25 shows the equivalent stress fringe plot
corresponding to the pressure value of 18.0 ksi. It is obvious from the iigure that the
plastic zone has extended beyond the contact boundary. As such, it can be concluded
that the developed contact algorithm works for materially non-linear conformal contact

problems involving deformable bodies.



111

s
'y 777777
0
s -
ol
N
(i), (i+1)
INNTt
P n .
L
PO
1 po
: N
1 é . Y
: K

FIGURE 3.1: Geometric Representation of Egn. {3.2.2)

p° p®
T T
1 I
[« |l 1
Al
0 i) tsm
[ btk L L L] Peoenrrmncscnnaan -*_.S

rrrrrs/

FIGURE 3.2: Geometric Representation of Eqn. (3.2.3)



112
0

1T+ p p
RK'N fN T T
e
5
_‘ S
77
T (i+1)
fr
(i+1)
fN
2 (i)
v

FIGURE 3.3: Combined Normal and Tangential Penetration



ENTER

'

PREPROCESSOR

|

ELEMENT LIBRARIAN |

MATERIAL MODULE

ORGANIZER

EQUATION SOLVER '

| CONTACT ALGORITM

|

|

POSTROCESSOR

EXIT

i

FIGURE 3.4: General Layout for INDAP

113



Read Data From Preprocessor 14

y

Generate The Stiffness Matrix

Obtain the Load Vector ja———

Y

Add the Contact Force Vector

Y
Stiffness Update

L]

Solve For Displacement Vector

L]
CALL CONTCT

y

Update the Displ::cement Vector

@ NO Ioi+d

YES v
Obtain Stresses

Y
CALL CNTRAC

L]

Print Results

NO

Last Step ?

YES
Print Solution Statistics

Y

F{eiurn

Figure 3.5: Flow Chart for the Master Routine



115

Y
kek+1 (=
Y
CALL CNTINT CALL CNTSLV
A
Y
CALL SEARCH CALL CNCSTR
A
No

CALL CNEQLB

RETURN

Figure 3.6: Smplified Flow Chart for the Contact
Algorithm CONTCT



14 12

Figure 3.7a: 3-D Volume made by a Contactor node k.

Figure 3.7b: 2-D Area made by a Contactor node k.

116



117

Calculate Overlaps,ApN

RETURN Overlap ?

Solve for AfN

y
Update fN

NO

?
n>nmax !

YES

ICHEK = 2

Figure 3.8: Flow Chart for the Normal lteration Loop



118

r=0

Y
IFCHK =1

Y

r=r+1 =

¥

Update eii & [O(N]

CALLSIGITR[*——

ICHEK=2

RETURN |

Update [O(T]

Y

Solve for Af_r

v

Update fN

'

Update f T according to Friction Law

Figure 3.9: Flow Chart for the Friction lteration Loop



Jo

';'
o+ w
~

a. Quadratic Interpolation

s, =+1
82=—1

= ==1
s1 1 s ]

b. Linear Interpolation

Figure 3.10: Displacement and Contact Stress Shape Functions

119



E

!
Rigid|Block

I

Rigid{Block
|
!
|

Figure 3.11a: A Ball Compressed between
Two Rigid Blocks, Example 1

P

TITI77

Figure 3.11b: Mathemetical Model for Example 1

120



W

Wl

|

8888888






Normalized Contoct Pressure

123

1.2

0.8

e
»

e
Y

0.2

0.256 mm
0.768

N
o
1

.
c}
1

Figure 3.14

6
Radial Coordinate, mm.

: Normal Contact Pressure Distribution for
Hertz Example at Different Load Values

(Solid Lines indicate closed~form Hertz solution)

10



Normalized Normal Traction

Normalized Tangentiol Traction

124

I ————— pm——-—
o2l Normal Traction ]
L o A
a
I H K
o M L ! N . " 1 L L L 1 A A s .]
0 2 4 e 8 10
Radial Coordinate {mm)
0.4 — ——— — o B
Tangential Traction . ]
03} o u= 0.0 S .
: s 0.3 S -
Y e =
. 08 SN ]
R 0.9 N Vol ]
. Lter v
0.2 ',‘ '-‘j‘- . [ -
I B «.'{' .I:, e 4
i — W ]
i St |
0.1 Tt af e ]
‘_‘.ﬁ' o e .
".;.p.‘,i.‘s" .'.l. :
¥ i
o 1 M | MV WP P
o 2 4 ] 8 10

Figure 3.15: Normal & Tangential Contact Traction

Rodial Coordinate {mm})

for Different Friction Coefficients, u

E, = 10"



Normalized Normal Troction

Normalized Tangential Traction

125

1.2 T T T T T T T T T T T T T
100 ]
108 1
108 ]
10 1
0z Normal Traction A .
D N L i I L 1 1 [ 3 N " ] 1 i 1
0 2 4 8 8 10
Radial Coordinate (rmm)
0.25 [ T T T 1 T T T T — T T T T T T ] L ]
[ Tangential Traction o E = 10° ]
oz - s 108 b
“I o. . 10 ]
L Y Ny - 104 ]
[ o e i
T “ ]
0.15 ' * ‘\“ =1
[ - P, ]
. e, ]
I 2 o i .
01k .::. . - B ._‘?: -
'g:. [ - .—-----..‘ ¥ ..‘:=\ N
. AT kY ]
0O5f /- S “ -
N * ;:. “:\\ -
I E ]
S Tt e L TVE L L VT P ]
o o - ".. L 2 N N ! N . . 1 : . A ld N ]
0 2 2 ® 8 10

Redial Coordinate {mm)

Figure 3.16: Normal & Tangential Contact Traction

for Different Friction Modulii, E,
u =02



| 126

t
Rigid;Block
1 i _
i |3
Cylinder |
|
|
H -t 2R i —
!
|
| A
[ u
. i
Rigid;Block

Figure 3.17a: A Cylinder Pressed Between
Two Rigid Blocks, Example 2

Rigid

o
—g—
cl

A

Figure 3.17b: Mathematical Model for Example 2.



127

Rigid Block

Cylindrical Bar

Figure 3.18: Finite Element Mesh for the Cylinder and Rigid Block



3 ——————— . e ——r—r—
T
u= . 00 f
L « 0.2
L o 0.4 :
c '
£ 2t S
3] o
o v
[ )
= e
© g
E -
5 ;
= ‘E"‘ 1
W Ol et Al A A DAl bt b B bhd hed Db LD h b A e HEL o a0y
N POV 00CED0V00CeDEDOBERERE sagese
=
E -
i
o J
=z
ol - L, e
0 10 20 30 40 S0
Radial Coordinate (mm}
0.6 T
L n= e 0.2 .
s L o 0.4 :-.
0 .
=
O 04 oo
g i
= L A
° 2o
= r e‘d 7
- 3
5] 4 .
g I o® i
g e
- L .p o9 .
- 0.2 oo Q_no‘_oa_n&.g—ﬂ-n-n-u ]
@ 4 -
N S dr.r 0o ® A
= o a0
g i qp-u.B 0'9 )
&
=} ,D-a'g..e'o
=z 5830
0 o#!..-..x.........,.JA.... NPT WP IS CRY WP P

0 10 20 a0 40 50
Radial Coordinate {mm)

Figure 3.19: Normal & Tangential Contact Traction

for the Block and Cylinder Example

E, = 102

128



129

X
D\

i\\ N

To

E -
Ofe—n} €
ELASTIC ELASTO-PLASTIC

Figure 3.20b: Elasto-Perfectly Plastic Bi-Linear Material Model

—| Tube | Sleeve

X

Figure 3.21: Finite Element Mesh for Example 3



Stress {psi)

3x104

ex10*

104

—1x10¢

~2x10+

—3xige
1

Maximum

Residual Hoop

Residual Radial

Maoximum Radial

| i L " L " L " ]

1.2

14 18 1.8
Radiol Coordinate (in)

Figure 3.22: Redial and Hoop Stress Distributions

for the Axisymmetric Thick Cylinder

(Solid Lines represent the Closed—Form Solution)

130



131

Sleeve

Tube

Y

L——. H__O/R__i =2.0

+

Figure 3.23: Finite Element Mesh for Plain Strain Thick Cylinder



Normalized Contact Pressure ({/S,)

0.6 T T T T T T T T
» Elasto—plastic
0'5.'_.'_ s '.ptil-.' [} ® ey
«r . * e ® * Ta® .
04 - Elastic
Elastic

I L L T T S e S e e ML B S war g wm e e ma

e
t

=%
ha
L]

] Pressure (psi)
L « 18.0"103

L a 15.0*10°

0.1 2 1200100
0 . . R L . N A ' . . . 1 . N . I
1] 20 40 80 a9

Angular Position (deq)

Figure 3.24: Distribution of the Normal Contact Traction
for the Composite Cylinder Example
(Solid Lines represent Closed Form Solution)

132



133

8S06£00°
‘60Le
Blev
‘92e9
‘GEVB
G0l
‘6921
1oLt
‘04891
‘6.681
‘8801¢c
'961£¢
‘GOESS
vivie
©CS62

"2EYIE
15d ‘SsaAg

e Plane Strain

Stress for th
mple

Effective

Figure 3.25

inder Exa

Thick Cyl



CHAPTER 4

HYDRAULIC EXPANSION OF TUBE JOINTS

4.1 Introduction

The hydraulic expansion of tubes into tubesheets or end-fittings is a highly nonlinear
problem. Three sources of the non-linear behaviour are present, namely, the material,
the geometric and the contact non-linearities. in this chapter, two single-tube finite
element models for the numerical simulation of the hydraulic expansion of tube joints

are presented where the three types of nonlinearities are considered.

it should be noted that the single-tube mode! does not include the effects of the
adjacent tube holes in the tubesheet. However, in experimental analyses, a tube is
hydraulically expanded in a cylindrical sleeve with an estimated equivalent outer
diameter. As such, the finite element analysis with the single tube model presented in
this study is meant to correspond to the mock-ups used in the experimental analyses.
Moreover, the expansion of the pressure tubes into the end-fittings in the CANDU
reactor may be modelled by the single tube model when the expansion process is

performed using a hydraulic expander.

A two-dimensional plane stress model is adopted to explore the effects of the material

134
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mechanical properties on the joint strength represented by the residual contact
pressure. The mechanical properties considered include the viela strength, the elastic
modulus, the tangent modulus and the Poisson’s ratio for both the tube and sleeve
materials. In the plane stress model it is assumed that the axiai stresses are negligible
and the transition zone is not present at all. These assumptions limit the use of the

plane stress model since the distributions along the tube surfaces cannot be obtained.

Because of the limited scope of the plane stress model, a two dimensional
axisymmetric model is adopted. The single-tube hydraulic expansion is represented by
a 2-D axisymmetric model since the geometry, loading and boundary conditions are ail
symmetric with respect to the tube axis ir an idealized sense. The axisymmetric model
is used to explore the distribution of the residual contact pressure along the tube outer
surface and the distribution of the residual stresses along the tube inner and outer
surfaces. In the finite zlement modelling, the significance of using a nonlinear kinematic
formulation is checked out and the significance of ignoring the frictional contact

interaction on the analysis is investigated.

A 23 full factorial experiment is performed to study the main and interaction effects of
the expansion pressure, initial radial clearance and the coefficient of friction on the
residual contact pressure and the maximum residual tensile stress along the tube walls.
The effect of the frictional contact is investigated with the expansion pressure level.
The effects of the expansion pressure and the initial radial clearance are further
investigated with regard to the residual contact pressure, the maximum tensile stress,

the axial extrusion, the increase in the inner and outer tube radii and the percentage
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wall-thickness reduction.

Finally, this chapter concludes with an investigation of the effect of including the initial
residual stresses and the cold-work layer along the as-received tube outer surface on

the maximum residual tensile stresses.

In all the finite element analyses to follow, the materials are modelled by a bi-linear
elasto-plastic stress-strain relation. Von Mises yield criterion is used to mark the onset
of plastic deformation. An associated flow rule with isotropic work hardening is used
to estimate the increments of the plastic strains. The geometric nonlinearity is dealt
with by the use of the Updated Lagrangian formulation. The pressure load is applied
incrementally and the modified Newton-Raphson iteration technique is used with a
selective iterative procedure. The contact interaction is dealt with using the algorithm

developed and verified in chapter 3.
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4.2 2-D Plane Stress FE Model

The 2-D plane stress model only addresses the expanded tube zone and assumes that
no axial stresses are present. Consequently, it has a limited scope since it does not
address the question of the residual contact pressure distribution nor the residual
stresses along the tube surface in the transition zone. However, this model can be
used for studying the effect of the material mechanical properties on the residual
contact pressure in a qualitative sense. The mechanical properties considered include
the yield strength, S,, Young’s modulus, E, the tangent modulus, E;, and Poisson’s

ratio, v, for both the tube and the sleeve materials.

Geometry & Finite Element Mesh:

Due to the symmetry of the two dimensional disk representing the tube and the sieeve,
the mathematical model may be taken as axisymmtric with the appropriate boundary
conditions. The model consists of a tube with 0.45 and 0.05 in inside radius and
thickness, respectively. The sleeve fits exactly without a clearance surrounding the
tube and having 1.0 in outside diameter. A total of four and thirty six 2-D
isoparametric quadrilateral axisymmetric finite elements are used to discretize the
mathematical model for the tube and sieeve, respectively. The entire model contains

210 node with two degrees of freedom per node.

Mechanical Properties:

A bi-linear elasto-plastic material model is adopted for modelling the material behaviour
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during the expansion process. In order to study the effect of changing the mechanical
properties on the residual contact pressure, the one-factor-at-a-time approach is
adopted. This approach may lead to a loss of the interaction effects between the
different parameters. However, it serves our purpose at this stage to shed some light

on the behaviour of the joint in a restrictive qualitative sense.

Boundary Conditions:

A uniform expansion pressure is applied along the inner surface of the tube to a
maximum value of 21.0 ksi then complete unloading takes place. The contact
interaction between the tube outer surface and the sleeve inner surface is considered

frictionless since no relative tangential displacements are expected.

Results & Discussion:

In order to explain the effects of the different material parameters on the residual
contact pressure it would be instructive if the expansion process is understood
properly. The basic idea of the expansion joint is to obtain a permanent radial plastic
deformation in the tube while minimizing or even eliminating that of the sleeve. As
such, upon removing the expansion pressure the sleeve springs back elastically more
than the tube resulting in a residual contact pressure. This residual pressure may be
increased by increasing the elastic recovery of the sleeve, decreasing the elastic

recovery of the tube or by decreasing the axial flow of the tube.

Figure 4.1 demonstrates the effects of the elastic constants of the tube and sleeve on

the residual contact pressure. Furthermore, Figure 4.2 presents the effects of the tube
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and sleeve plastic constants.

Figure 4.1.a shows that the increase in the tube elastic modulus, E,,,, keeping the
sleeve elastic modulus, E_,,,.. constant, increases the residual contact pressure. This
increase is attributed to the decrease in the spring back of the tube and this continues
until the tube becomes very rigid and the elastic spring back stabilizes and the residual
contact pressure approaches a constant value. On the other hand, the increase inE,,,,,

decreases the residual contact pressure because of the same reason; that is the

decrease in the elastic recovery.

The increase in the tube Poisson’s ratio, v,,,, increases the axial deformation of the
tube on the expense of the radial deformation which results in a slight decrease in the
residual contact pressure as shown in Figure 4.1.b for different values of the sleeve
Poisson’s ratio. In contrast, the increase in the sleeve Poisson’s ratio, v,,,.., increases

the residual contact pressure since it decreases the radial growth of the sleeve.

As the yield strength of the tube, S, increases, the residual contact pressure
decreases. This behaviour, shown in Figure 4.2.a, is due to the decrease in the
permanent radial growth of the tube in addition to the increase in its elastic recovery.
Nevertheless, as the sleeve vield strength, S,,,,,,. increases, the residual contact
pressure increases until it reaches a constant value corresponding to an entirely elastic

sleeve.

In Figure 4.2.b, at the same sleeve tangent modulus, E,.... the increase in the tube
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tangent modulus, Eq..,. Slightly decreases the residual contact pressure. This is
because the increase in the tube tangent modulus means increasing potential for elastic
recovery in addition to the decrease in the radial growth. It may be observed also that

the sleeve tangent modulus does not have an appreciable effect on the residual contact

pressure.

As such, one may conclude that a stronger joint would be generally obtained by:

1. Increasing the tube elastic modulus.
2. Decreasing the sleeve elastic modulus.
3. Decreasing the tube yield strength.

4. Increasing the sleeve yield strength.
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4.3 2-D Axisymmetric FE Model

The 2-D axisymmetric mathematical model for the expansion of a single tube into an
equivalent sleeve consists of a tube placed freely inside a sleeve with a clearance as
shown in Figure 4.3. The expansion pressure is applied along the tube inner surface
within the sleeve. The tube and sleeve are both constrained axially at one end with no
restriction in the radial direction. A cartesian coordinate system is set up having its
origin in the middle of the tube and extends along the tube centre line. As such, the

tube and sleeve extend along the domains [-1,+ 1] and [-1, 0], respectively.

Geometry:

The same geometry used for the plane stress model is used here where a tube having
0.45in inner radius, r;, and 0.05in thickness, t, is expanded inside a sleeve having 2 0.5
and 1.0 in inner, R;, and outer, R, radii, respectively. The lengths of the tube and
sleeve are taken as 2.0 and 1.0 in, respectively. These lengths ensure that any

displacement or stress gradient would die out far away from the boundaries.

Finite Efement Mesh:

The mathematical model in Figure 4.3 is discretized using a total of 5§60 2-D
axisymmetric 9-node isoparametric quadrilateral finite elements with a total of 1988
node with two degrees of freedom per node. The original finite element mesh is shown
in Figure 4.4 where a fine mesh is utilized along the transition zone to account for the

high stress gradients expected.
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Boundary Conditions:
All nodes a'ong the surface, Y = -1 are fixed against motion in the axial direction. This
boundary condition applies on both the tube and the sleeve. The rest of the nodes in

the entire model are left free to move in the X-Y plane.

In addition to the geometric boundary condition already mentioned above, there is a
load boundary condition represented by a uniform pressure distribution along the tube
inner surface. The continuous pressure distribution is replaced by the consistent nodal
equivalent which is done automatically within INDAP. The expansion pressure is
applied through a bi-linear time function. First, the pressure is increased from zero to

a maximum value of 0.8S, then unloading to zero pressure takes place.

Moreover, the contact boundary condition is considered using the developed contact
algorithm. In this model, the problem is considered frictional and the coefficient of

friction and the friction modulus are taken to be 0.3 and 10°, respectively.

Material Modef:
A bi-linear elasto-plastic material model is adopted to simulate the material mechanical
behaviour of both the tube and the sleeve. The bi-linear elasto-plastic model is fully

characterized by four numerical values for the mechanica!l properties as follows:

Elastic Modulus, E = 30.0*10° ksi
Poison’s Ratio, v = 0.3
Yield Strength, S, = 30.0 ksi

Tangent Modulus, E; 2.0%E
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Kinematic Formulation:

The linear theory of deformation is an acceptable approximation for problems where
both the displacements and strains are small. However, the nonlinear theory using the
Updated Lagrange formulation extends the linear theory a step further to account for
both large displacements and strains. Throughout this study, the Updated Lagrange
formulation is adopted to account for the geometric nonlinearity which may exist
because of large clearance values and the feasibility of ignoring the geometric

nonlinearity is checked out with the largest clearance value.

Results & Discussion:

The results that can be obtained from the finite element analysis include the
displacement, strain or stress values everywhere in the model. However, in the
analysis of the expanded tube joints, the distributions along the inner and outer
surfaces of the tube are of prime importance. As such, in the following presentations

only those distributions are considered.

Figure 4.5 shows the maximum and residual radial displacement distributions along the
inner and outer surfaces of the tube. As can be seen, the tube is divided into three
distinctive zones where the expanded zone extends over the domain [-1.0,-0.05], the
transition zone [-0.05,0.5] and the un-expanded zone [0.5,1.0] in the Y-space. The
inner surface grows radially more than the outer which leads to a reduction in the tube
wall thickness after the complete expansion. The expanded zone is defined by the area
where contact with the sleeve is preserved. Along the outer surface of this zone the

residual contact traction is distributed.
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Figure 4.6 shows the distribution of the residual contact normal and tangential traction.
The residual normal traction is uniformly distributed with an average value of 8.6% of
the tube vield strength. On the other hand, the tangential traction increases from zero
up to the frictional capacity along the domain [-1.0,-0.3). The frictional traction is
equal to the frictional capacity along the domain [-0.3, -0.1). The distribution of the
tangential traction is positive which means that this residual traction would assist

pulling the tube out of the sleeve and resist in pushing it in.

Figure 4.7 shows the distributions of the axial and hoop stresses along the tube outer
and inner surfaces at maximum loading and after compiete unloading. The residual
axial stress along the outer surface of the tube transition zone is compressive while the
hoop stress shows a little peak tensile stress of about 8.7% of the tube yield strength.
Tensile axial and hoop stress peaks of 44.6 %S, and 45.9 %S, are observed along the
transition zone. These tensile peaks are dependent, among other factors, on the initial

radial clearance and the expansion pressure.

4.3.1 Linear vs. Nonlinear Analyses

With regard to the expanded tube joint, the most important results are the residual
contact pressure and the maximum residual tensile stress along the tube inner and
outer surfaces. As such, the feasibility of ignoring the nonlinear kinematic formulation
is investigated counting on these two results. Table 4.1 demonstrates a comparison
between a linear and a nonlinear solutions for an initial radial clearance of 0.005in

which represents the maximum clearance value adopted in this study. An expansion
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pressure of 0.9 S, is applied and the problem is considered frictionless.

The average contact normal pressure, P, in Table 4.1, is estimated from:

J'tN dA
%Py, = SY_*'E * 100
where
iy is the normal traction
A, is the contact area
A is the total potential contact area
Table 4.1: Comparison between Linear and Nonlinear Analyses
Response %Py Oax. (INner) a,,;_ {Quter) Run Time
{Units) (%S,} (S, (S,) (hr:min:sec)
Axial Hoop | Axial Hoop
Nonlinear 6.073 0.749 | 0.599 | 0.063 | 0.007 05:10:45
Linear M 0.590 | 0.076 | 0.007 04:33:37 |

It is evident from Table 4.1 that a considerable time saving (~12%) is obtained by
performing a geometrically linear analysis. This time saving is obtained with a minor
change in the residual contact pressure which in this case amounts to -0.5%.
Considering the residual tensile stresses, the maximum values are located along the
tube inner surface and do not change if a linear kinematic formulation is adopted.

As such, it can be concluded that a nonlinear analysis would be redundant in the finite
element modelling of the expanded tube joint if the contact pressure and the maximum

tensile stresses are the aim of the study.
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4.3.2 Frictionless vs. Frictional Contact
The expanded joint is a friction joint in the first piace. As such, the frictional contact
interaction is investigated. In this section, frictional results are compared with results
obtained from a frictionless analysis where both the coefficient of friction and the
friction modulus being taken as zeros and the comparison is shown in Table 4.2. The

expansion pressure is taken as 0.9 S, and the coefficient of friction as 0.3.

Table 4.2: Comparison between Frictional and Frictionless Analyses

Response Pave Trrax, {INNIET) Omax. (Outer) Run Time
(Units} (%S,) (S, {8,) (hr:min:sec)
Axial Hoop | Axial Hoop
Frictional 7.983 0.739 | 0.583 0.0 0.0 17:49:43
Frictionless 6.073 0.749 | 0.599 | 0.063 | 0.007 05:10:45

It may be observed that the friction interaction plays an important role regarding the
residual contact pressure and the maximum tensile axial stress along the tube outer
surface. Ignoring the frictional interaction, drastically reduces the run time from
17:49:43 t0 05:10:45 (hr:min:sec) which represents a 71% reduction. Unfortunately,
this time saving comes at a cost, the average contact pressure,P,,, is 13% lower and
the axial maximum residual tensile stress along the outer tube surface is overestimated

when the friction is ignored.
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4.4 A Parametric Study

The design parameters that influence the integrity and quality of the expanded tube
joints are divided into three groups, namely, the manufacturing, the geometrical and
the material parameters. However, in this study, it is assumed that the joint design is
completed with regard to the selection of the materials involved and the dimensional
details which in most cases are dependent on the thermal design of the heat
exchanger. The only parameters to be considered in this section are the expansion

pressure, the initial radial clearance and the coefficient of friction.

In order to investigate the main and interaction effects of the three parameters
considered, a 2° complete factorial experiment is adopted where three factors (at two
levels each) are considered. The full factorial experiment ensures that all main effects

and two factor interactions are clear from any aliases.

Table 4.3 shows the design matrix for the full Z' factorial experiment in the coded
variable values where a minus sign indicates the minimum value for a design factor and

the plus sign indicates the maximum.

Table 4.4 represents the run matrix where the residual contact force, the maximum
residual tensile stresses and the solution time are reported as the responses. Taole 4.4
also shows the un-coded values of the considered design parameters at the low and

high levels,



Table 4.3: 2° Full Factorial Design Matrix
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Design Design Parameters Interactions
Order A B C AB BC CA
1 -1 -1 -1 +1 +1 +1
2 +1 -1 -1 -1 +1 -1
3 -1 +1 -1 -1 -1 +1
4 +1 +1 -1 +1 -1 -1
5 -1 -1 +1 +1 -1 -1
6 +1 -1 +1 -1 -1 +1
7 -1 +1 +1 -1 +1 -1
8 +1 +1 +1 +1 +1 +1
Table 4.4: 23 Full Factorial Response Matrix
Design Peo c H Pavg Onux. INner | o, Outer | Run Time
Crder S, in - %S, S, S, hr:min:sec
0.052 (a) 0.020 (a)
1 0.6 0.000 0.0 1.97 0.042 (h) 0.030 {h) 01:22:09
0.80% (a) 0.092 (a)
2 1.1 0.000 0.0 7.88 0.652 (h} 0.008 (h) 08:22:09
0.734 (a) G.052 (a)
3 0.6 0.005 0.0 0.65 0.603 {h) 0.080 (h) 03:19:28
0.834 (a) 0.139 (a)
4 11 0.005 0.0 6.00 0.644 (h) 0.008 (h) 08:55:29
0.045 (a) 0.087 (a)
5 0.6 0.000 0.3 2.35 0.021 (h) 0.020 {h) 05:47:29
0.808 (&) 0.196 (a)
& 1.1 0.000 0.2 7.00 0.658 (h) 0.008 (h) 15:11:40
D.726 (a) 0.139 (a)
7 0.6 0.005 0.3 2.36 0.592 th) 0.068 {h) 09:51:34
0.822 (a) 0.186 {a)
8 1.1 0.005 0.3 4.48 0.645 (h) 0.008 (h) 30:29:44
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In Table 4.4, the (a) and (h} stands for axial and hoop components, respectively. From
the recorded responses, the effect plots shown in Figure 4.8 are obtained for the
average contact pressure and the maximum residual tensile stress. Each effect plot
represents the interaction effect of two of the design parameters. The response values
on the effect plots for any two design parameters are the average value of the
responses obtained at the minimum and maximum levels of the third design parameter.
The dotted lines, in the effect plots, represent linear interpolations. In each effect plot,
a horizontal line means no effect and the effect increases as the slope increases. On
the other hand, parallel lines indicate no interaction and the interaction appears as the
relative slope increased. However, It should be mentioned that the interpretation of the
data obtained by the factorial experiment is of limited value. In subsequent runs, it is
determined that the relationships between the factors and the observations are non-
linear. Appendix C gives the estimated main and interaction effects on both the

residual contact pressure and the maximum tensile stress along the tube inner surface.

In Figure 4.8.a, as the expansion pressure increases from its lower level to its upper
level, the average residual contact pressure increases and the increase seems to be
slightly affected by the low and high levels of the initial radial clearance. As such, it
may be concluded that there is a slight interaction effect between the expansion
pressure and the initial radial clearance on the residual contact pressure. On the other
hand, there is a strong interaction between the expansion pressure and the initial radial
ciearance with respect to the maximum residual tensile stress as shown in Figure 4.8.d

where the increase in the maximum tensile stress is higher at lower clearances.
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In Figure 4.8.b, the increase in the residual contact pressure with the increase in the
expansion pressure seems to be affected by the coefficient of friction. The increase at
no friction is more than that with the friction included i.e. there is an interaction
between the expansion pressure and the coefficient of friction. However, with regard
to the maximum residual tensile stress, Figure 4.8.e shows that there is no main or
interaction effect of the coefficient of friction. The increase in the expansion pressure

lead to an increase in the residual tensile stress along the tube inner surface.

In Figure 4.8.c it can be seen that there is a very slight interaction between the initial
radial clearance and the coefficient of friction and no main or interaction effect at all

with respect to the residual tensile stress as shown in Figure 4.8.f.

Since the 27 factorial experiment results in linear relationships as shown in the effect
plots in Figure 4.8, centre points were examined and it is found that the relations
between the design parameters and the performance measures are strongly nonlinear.
The factorial experiment shows that the friction coefficient only interacts with the
expansion pressure with regard to the residual contact pressure. Therefore, the friction
effect is considered briefly for the sake of time saving. In Figure 4.9.a, the residual
average contact pressure is plotted against the coefficient of friction. The increase in
the coefficient of friction increases the residua! contact pressure., This increase
continues until a condition of complete adhesion is reached and the contact pressure
approaches a constant value. The increase in the residual contact pressure is due to
the increase in the radial growth of the tube since friction resists the axial deformation.

in Figure 4.9.b, it can also be observed that the coefficient of friction shifts the
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residual contact pressure peak towards lower values of the expansion pressure.

Having the frictional effects being understood, it is decided to examine several case
studies within the ranges considered for both the expansion pressure and the initial
radial clearance considering frictionless contact interaction. A two dimensional array
of case studies, spanning over the expansion pressure and the initial radial clearance,
is executed. The expansion pressure runs from 0.6S, to 1.18S, in increments of
0.05S, while the initial radial clearance runs between 0.0 and 0.005 in increments of
0.00125 in. In each of these case studies, five responses are reccrded, namely, the
residual average contact pressure, p,,,, the maximum tensile residual stress in the
transition zone, 0, the axial extrusion, e, the increase in the tube outer radius, ér,
and the increase in the tube inner radius, ér,. Moreover, the percentage wall thickness

reduction ratio is calculated using the following formula:

ta-tf

Y%wtr = + 100

wtr  stands for wall thickness reduction
t, is the original tube thickness.

t is the deformed tube thickness.

In Figure 4.10.a, the residual contact pressure is plotted against the expansion
pressure for three values of the initial radial clearance. As can be seen in the figure, the
residual contact force increases as the expansion pressure increases until it reaches a

peak value beyond which it begins to decrease. This behaviour was reported
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experimentally as discussed in the introduction. It was attributed to the smoothing of
the contact surfaces which results from the relative axial sliding of the contacting
surfaces. Since no attempt has been made throughout this study to model the
smoothing action, it has been concluded that the phenomenon of peak-strength would

have another explanation relating to the parameters included in the finite element

modelling.

The analysis started with both the tube and sleeve materials having exactly the same
mechanical properties including the yield strength. As the expansion pressure
increases, both the tube and tubesheet materials starts to deform. The tube material
deforms plastically before the sleeve material does. This means that the tube outer
diameter grows in size while the sleeve stiil elastic and this is exactly what the
expansion process is all about; an over-sized tube in a sleeve hole. As the expansion
pressure increases further, the plastic zone within the sleeve spreads more ieading to
a permanent growth in the hole size which starts to defy the increase in the tube outer

diameter leading to a decrease in the residual contact pressure.

Considering the initial radial clearance, Figure 4.10.b shows the residual contact
pressure against the initial radial clearance at different values of the expansion
pressure. As would be expected, increasing the initial clearance decreases,
significantly, the residual contact pressure since large clearances would enhance the
hardening action of the tube material before even touching the sleeve. The strain

hardening of the tube material increases its potential spring-back upon unloading.
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The second response to be considered is the maximum residua!l tensile stress which
is found to occur along the tube inner surface in the axial direction in all the cases
considered. Figure 4.11 gives its value against the expansion pressure and the initial
radial clearance. In Figure 4.11.a, as the expansion pressure increases, the residual
stress increases with an interaction effect with the initial radial clearance. A similar
interaction phenomenocon is shown in Figure 4.11.b where the interaction effect is

evident at low initial radial clearance values roughly below 0,001 in.

The tube axial extrusion is plotted in Figure 4.12.a against the expansion pressure at
different levels of the initial radial clearance. As the expansion pressure increases, the
axial extrusion increases since at higher pressures the radial and axial strains increase.
On the other hand, Figure 4.12.b gives the axial extrusion plotted against the initial
radial clearance at different levels of the expansion pressure. A straight line relation is
shown and the decrease in the axial extrusion is due to the increase in the radial strain

on the expense of the axial strain.

The increase in the tube inner and outer tube radii is given in Figures 4.13.aand 4.14.a
as a function of the expansion pressure at different levels of the initial radial clearance
and in Figure 4.13.b and 4.14.b as a function of the initial radial clearance at different
levels of the expansion pressure. Similar relations are observed. As the expansion
pressure increases below the peak pressure, the inner and outer radii grow at a slower
rate than that at pressures beyond the peak value where the sleeve has gone

completely plastic.
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The percentage wall-thickness-reduction ratio is given in Figure 4.15.a as a function
of the expansion pressure at different levels of the initial radial clearance and in Figure
4.15.b as a function of the initial radial clearance at different levels of the expansion
pressure. The behaviour of the %wtr ratio is similar to that of the inner and outer radii

and that is expected since it is linearly related to both of them.

In Figure 4.16.a, the residual normal contact traction distributed along the tube outer
surface is compared for two clearance values. While in Figure 4.16.b the residual
contact traction is plotted for two different expansion pressure values. It can be seen
that the increase in the expansion pressure increases the residual contact traction. On
the other hand, the increase in the initial radial clearance decreases the contact traction
and divides its uniform pattern into two regions. A uniform region extends along the
expanded tube followed be a region with a pressure gradient at the end of contact

adjacent to the transition zone.

If the sleeve in Figure 4.4 is fixed axially and the tube free end is subjected to an axial
force which tends to pull the tube away from the sleeve, the force is called pull-out
force. On the other hand if the force is pushing the tube into the sleeve, it is called
push-in force. In Figures 4.17.aand 4.17.b, the displacement of the tube outer surface
after complete unloading is compared for different expansion pressure loadings and
different clearance vaiues, respectively. As can be seen, the increase in the expansion
pressure increases the slope of the tube outer surface in a direction which resuits in
an increase in the joint push-in strength. On the other hand, the increase in the initial

radial clearance does not seem to have such an effect.
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4.4 Initial Stresses & Cold Work along the Outer Surface Layer

Current nuclear steam generator designs for new facilities and replacement projects
enhance corrosion resistance through the use of advanced tubing materials and
improved joint design and fabrication techniques. Alloy 690TT tubing has
demonstrated outstanding laboratory performance in accelerated primary water
chemistries. However, the potential for susceptibility to secondary water stress
corrosion cracking has not been eliminated for this material. Initial measurements to
characterize the un-expanded tube reveal compressive stresses associated with a thin
work-hardened layer on the outer surface of the tube. The levels and character of the
residual stresses following hydraulic expansion are primarily dependent on the work-
hardened surface layer and initial stress state. Low levels of residual tensile stresses
in the transition zone would offer an excellent resistance to the stress corrosion
cracking initiation. Propagation of any possible cracking would be deterred by the
compressive stress field that surrounds the narrow circumferential band of tensile

stresses.

In this section the effect of the initial residual stresses and the work-hardened layer
along the as-fabricated tube outer surface, on the residual tensile peak stress, are
investigated. The joint geometry, mechanical properties and loading are typical values
used in the experimental qualification program at Babcock Wilcox International (B.W.1.).
Three matrices that cover the variab‘les of interest to the experimental program at

B.W.l. were considered. Essentially, three tube-to-tubesheet joint design geometries
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are represented {with equivalent sleeve diameters and expansion pressures varying
according to these geometric differences) with some variation in the hole diameter and
expansion pressure within each of the three design scenarios. Since no conceptual

differences have been observed, only one design scenario is considered in this section.

A special 2-D axisymmetric finite element model is constructed for the given geometry
and material mechanical properties. The tube outer diameter and thickness are 0.686
and 0.04 in, respectively. The sleeve inner and outer diameters are 0.6955 and 1.294
in, respectively, which results in an initial radial clearance of 0.00475 in. The

mechanical properties of both the tube and sleeve materials are given in Table 4.5.

Table 4.5: Mechanical Properties for the Tube and Sleeve Materials

MECHANICAL PROPERTIES TUBE SLEEVE UNITS
Young’s Modulus, E 30.6*10° 29.2*10° ksi
Poisson’s Ratio, v 0.289 03 | ...
Yield Strength, S, 43.0 €67.0 ksi
Tangent Modulus, E; 1.0% E 1.0% E ksi

The finite element mesh is refined about 1/8 of an inch to the sleeve secondary side
in order to resemble the length of crevice that usually exists in the fabricated joint. The
finite element mesh consists of 380 isoparametric 9-node quadrilateral elements having

a total of 1700 nodes as shown in Figure 4.18.
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The residual stresses in the as-fabricated tube were measured using X-ray diffraction
and are provided by B.W.I. including the surface values in the axial and hoop directions
of -12.0 ksi each. Knowing that the as-fabricated tube is in an equilibrium state, the
distribution of the radial component of the residual stress in the as-fabricated joint had
to be supplied. In order to get around this missing data problem, the residual stresses
in the as-fabricated tube is introduced to the analysis thermally. A temperature gradient

is imposed across the tube thickness which resul.ed in the required surface stresses.

Moreover, the effect of the cold-work layer along the tube outer surface is investigated
where the tube mesh is refined towards the outer surface to reveal an outer 0.001 in
surface layer of elements. These elements are given a higher vyield strength
corresponding to the cold-work represented by the %strain. Three values for the
%strain are considered; 2, 4 and 6 % strain which correspond to surface yield

strengths of 55, 70 and 78 ksi, respectively.

In Figure 4.19, the deformed configuration of the tube and the sleeve are shown and
Figure 4.20 shows a comparison between the finite element solution and an
experimental profile provided by B.W.I for a clearance value of 0.005 and expansion
pressure of 33.2 ksi. The close agreement is evident and the model is used for the

intended investigation.

Table 4.6 shows the numerical values for the maximum residual tensile stress along
the tube inner and outer surfaces for different values of the percentage cold work. It

is obvious that the %strain has a profound effect on the residual tensile peak stresses
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along the outer surface of the tube at the transition zone. Figure 4.21 shows the axial

and hoop stress distributions along the tube outer surface for different values of the

percentage surface strain.

Table 4.6: Effect of Cold Work Outer Surface Layer on the Residual

Tensile Peak Stresses

Max. Stress {Inner), ksi Max. Stress (Outer), ksi

% Strain Axial Hoop Axial Hoop
0.0 32.065 26.87 8.85 2.92
2.0 31.952 27.014 18.69 12.74
4.0 31.813 27.174 31.566 25.726
6.0 31.214 27.237 38.268 33.364

On the other hand, Table 4.7 shows the effect of the value of the initial stresses along
the outer surface of the as-fabricated tube. It can be observed that there is a slight

effect with regard to the axial stresses and a bigger effect for the hoop stresses.

Table 4.7: Effect of Initial Residual Stresses

Initial Max. Stress (Inner), ksi Max. Stress (Outer), ksi
Stress(ksi) Axial Hoop Axial Hoop
0.0 32.065 26.870 8.85 2.92
-12.0 32.093 26.847 7.137 0.968

-24.0 32.120 26.822 6.25 0.0
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CHAPTER 5

CONCLUSIONS & RECOMMENDATIONS

5.1 Conclusions Related to the Contact Algorithm

A finite element contact algorithm is developed and implemented in the general
purpose incremental nonlinear finite element program, |NDAP. The developed algorithm
is made capable of handling nonlinear continuum finite elements in problems with
geometric and/or material nonlinearities. No assumptions are made regarding the
geometry of the contacting bodies, the lecation and extent of contact and the nature

of the external loading.

A non-classical bi-linear friction model is implemented which may be reduced to the
classical Coulomb’s law of friction through an adjustable friction modulus. The bi-linear

friction model allows for micro and macro relative sliding motions.

The contact problem is solved for the nodal contact forces that remove the overlaps
and satisfy the friction law in normal and tangential iteration loops. These nodal
contact forces are distributed over the contact surface using linear shape functions for
interpolating the contact traction and parabolic shape functions for interpolating the

displacement field. As such, the choice of th= interpolating functions for the contact
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traction only affects the interpretation of the resulting force field. Moreover, this

treatment is consistent with the finite element method in dealing with nodal values.

The developed contact algorithm is verified quantitatively in elastic non-conformal
frictionless unilateral contact problems represented by the Hertz example of a sphere
pressed between two rigid blocks. A very good agreement with the Hertzian contact

closed-form solution is obtained. The inclusion of frictional effects is also considered.

Moreover, an excellent behaviour is demonstrated in dealing with elasto-plastic
conformal contact problems represented by the thick-cylinder theory applied to a
composite cylinder. The close agreement between the finite element method and the

closed-form solution is demonstrated for loading and unloading scenarios.
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5.2 Conclusions Related to the Expanded Joint

The developed contact algorithm is adopted to model the hydraulic expansion of tube
joints. Some modelling aspects are investigated to explore its importance in the overall
solution. On one hand, it is found that a nonlinear kinematic formulation would be
redundant even for initial clearance values up to 0.005 in as considered in this study.
On the other hand, the negligence of the friction interaction would lead to under-

estimated joint strength.

A 2-D plane stress model is adopted to explore the effects of the elastic and plastic
material parameters on the residual contact pressure. This model is limited in scope

since it does not address the stress distributions along the tube inner or outer surfaces.

A 2-D axisymmetric finite element model is adopted in order to investigate the
distribution of the residual contact pressure and the residual axial and hoop stresses
along the tube inner and outer surfaces. A 2 full factorial experiment is performed to
investigate the main and interaction effects of the expansion pressure, the initial radial
clearance and the friction coefficient on the integrity and quality of the joint. It is found
that the coefficient of friction only affects the residual contact pressure with an
interaction effect with the expansion pressure. The increase in the friction coefficient

moves the peak strength value towards lower expansion pressures.

The effects of the expansion pressure and the initial radial clearance are further
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investigated in more detail to reveal their main and interaction effects on the residual
contact pressure, the maximum residual tensile stress, the axial extrusion, the tube

inner radius, the tube outer radius and the percentage wall thickness reduction ratio.

The effects of the initial stresses and the cold-work layer along the as-received tube
outer surface on the maximum residual tensile stresses are investigated. It is found
that the cold work layer along the tube outer surface has a profound effect in
increasing the residual tensile stress peaks along the tube outer surface. On the other
hand, the initial stresses has a minimal effect in reducing the tensile surface stress

peaks.
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5.3 Recommendations for Future Work

With regard to the finite element solution to the general contact problem, it is felt
throughout the course of this study that friction modelling has to be investigated
further by introducing different friction models. More importantly, the results obtained

from using these models has to be tested against reliable experimental data.

The study of the hydraulic expansion of tube joints needs to be extended further to
account for the different design parameters involved to reveal their main and
interaction effects. A study of the differences between one-step expansion and multi-
step expansions would be of great help for industrial applications where multi-step

expansions are necessary.

The differences between the hydraulic expansion and the roller expansion has to be
explored. A possible start would be a two dimensional plane stress model. The ultimate
goal of such a study is to come up with a criterion to compare both methods of

manufacturing the tube joint.
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APPENDIX A

CLOSED FORM SOLUTIONS

A.1 Hertz Contact

For two elastic spheres in contact under the concentrated force P the radius of the

contact area is given by, Johnson [1984]:
3PRY
g = (203
[ 4E. ]

The pressure distribution is given by:

1
plr = p, (1 —;_22)’2

The maximum pressure is given by:

o = 3P _ [8PE2]3
°  2ma? mR2

The vertical approach is given by:

s=2 (9 P )3
R 16 RE-?
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A.2 Thick Cylinder Theory

The following closed-form solutions are obtained for an internally pressurized thick-
walled cylinder. An internal pressure p is applied on a cylinder with an inner radius a
and outer radius b. The extent of the plastic zone is denoted ¢. The radial and

tangential stress distributions along the radial coordinate are given by:

Elastic zone; c<r<b:

. pa3ri-b3
T ribp?-ad

- pa2(r2 +b2)
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° e -ad
Plastic zone; a<r<c:
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where the radius of the plastic zone, c, is given by:
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APPENDIX B

SAMPLE INPUT TO INDAP

2-D Finite Element Model For the Hertzian Contact Problem
u=1.281in
=02 E, = 102

! Specify output file name
**FILE OUT =Res.out

I Specify heading for the output file
**TITLE
FEA of Hertzian Contact Between an Elastic Sphere and a Rigid Block
2-D Model (Axisymmetric)

! Specify Solution Parameters

**SOLUTION

*BLOCK MAXFRON =500

*SAVE, DISP=1, PLOT, STRESS =1

*TIMING START=0.0, STOP=1.0 , DELTA=1.0
*PRINT RUN=1, DISPL=-1, STR=-1, STA=1

! Specify Time Function
**TIMEFUNCTION = 1
0.0 0.0
1.0 1.0

! Specify Coordinate System and Node Files
**NODES , SYSTEM=CARTESIAN
*COORDINATES , FILE =sphere.nod
*COORDINATES , FILE =block.nod

| Specify Material Properties for the Sphere
**MATERIAL = MSPHERE
*LINEAR , E=200.0E+3, NU=0.3

! Specify Elements for the Sphere

* *ELEMSET =SPHERE , MATERIAL = MSPHERE, TYPE=AXISYMMETRIC
*CONNECTIVITY , FILE =sphere.con

B.1



! Specify Elements for the Block
**ELEMSET =BLOCK , MATERIAL =MSPHERE, TYPE =AXISYMMETRIC
*CONNECTIVITY, FILE=block.con

| Specify Kinematic Boundary Conditions

**FIXED

1...SPHERE

*X 1TO=7,414T0=423

1...BLOCK

*X,Y 894 TO=897

* *PRESCRIBED

*Y=-1.28 423 T)=893 INC=10, 407 TO=413

! Specify Contact information

**CONTACT, ITER=20, TOCL=1.0E-5

*SURFACE=1, 1 TO=225INC=7

*SURFACE=2, 894,895

*PAIR , CONTACTOR=1, TARGET =2, FRICTION=0.3, FRCSTIF=1.0E+12

**END

B.2



APPENDIX C

ESTIMATED MAIN AND INTERACTION EFFECTS

Effect on contact pressure (%S,) on maximum stress (%S,)
Pexo 4.503 42.80
c -1.433 35.15
17 -0.082 -00.60
Pop = C -0.778 -33.00
Pow = & -1.128 00.15
C-u 0.187 -00.40
Poxp = C - 11 -0.498 -00.35

cA




