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THE NATURE OF CHAIN-PLANE COUPLING IN YBa.Cu30;



Abstract

The work in this thesis revolves around a simple model of the high temperature supercon-
ductor YBasCugOr_s. Of all of the high temperature materials. YBaxCuzO;..s is by far
the most widely studied. Despite this. relatively little is understood about it. Although
the structure of the unit cell has been known since the discovery of the material. its clec-
tronic structure is still a subject of intense controversy. Theories of the clectronic structure
range from the conventional theories of metallic systems with complicated band structures.
to exotic theories of strongly correlated electron systems. Exotic theories are. necessarily.
difficult to work with. and we adopt the attitude that it is more fruitful to understand
the strengths and weaknesses of the simplest modcls before pursuing more complicated ap-
proaches. For this reason. no attempt is made to provide a comprehensive theory of high
temperature superconductivity. Instead a model is chosen which captures the few features
of the structure of YBayCuzO;_; which we wish to study.

The main focus of the model is the link between two structural elements within
the unit cell—the so called copper-oxide “planes”™ and ~chains™. Both the chains and
planes are believed to play an active role in determining the highly unusual properties
of YBaaCuzOr_;s. At the moment. relatively litt'e is known about the chains. since the
planes are suspected to be the more interesting of the two clements and have been more
carefully studied. Recently. though. attention has begun to shift towards the chains.

In the chapters which follow. several physical properties of the model are ealen-
lated. The calculations allow us to interpret 2 number of experiments. such as penetration
depth. and YBa»Cu3O;/Pb Josephson junction experiments. As a result of comparing
the theory with experiment. we are able to> make a few fairly broad statements about the

electronic structure of YBasCu305 in both the normal and superconducting states.
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Chapter 1

Introduction

When it was first announced in 1986. high temperature superconductivity caught
the imagination of both the public and the scientific conununity, A Nobel! prize was
promptly awarded to Bednorz and Miiller for their discovery(1986) of the first supercon-
ductor (Lag...BarCuQy4) with a transition temperature higher than 30 K. Less than a year
later, YBasCu3zO; (Wu et al. 1987)(for which the onset of superconductivity occurs at a
temperature more than twice that of Las...Ba,CuQ;) was discovered. Suddenly, the small
(but nonetheless spectacular) demonstration of a piece of supeconductor hovering over «
magnet enshrouded in the mist of boiling liquid nitrogen became a part of the standard
science demonstration. Euphoria was high. The ease with which YBayCuzO- had been
discovered could only mean that even higher transition temperatures were just aronnd the
corner. It seemed only a matter of time before the Holy Grail of superconductivity—:t room

temperature superconductor—was discovered.

Theorists were busy. The high temperature materials posed a new problem con-
taining new physics. The theory of conventior:al superconductivity could not explain these
new materials. and there were few hints as to what mechanism could possibly prodice such
high temperatures. Not surprisingly. under these conditions an incredibly diverse assort-
men of theories sprang up. And every theory. with a few obvious exceptions, had to be
given serious concideration. For theorists. high temperature superconductivity presented
an opportunity to become contemplative and re-examine the basic principles of condensed

matter physics. and to exercise creative spirit.
Experimentalists were also busy. The initial drive to produce a room temperature
superconductor led to the development of hundreds of different materials. In the quest, for

the key experiment which would unlock the heart of the superconductors. experimentalists
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refined their teciiniques to new levels of precision and sensitivity. and developed new and
beautiful techniques. Important experimental results were being produczd regularly. and
these were carcfully digested by theorists. who then fitted them to their models.

At the time of writing this thesis, it has been nearly ten vears since the discovery of
the first superconductor. The euphoria has faded. The number of superconductivity articles
appearing monthly in Physical Review B is beginning to decline. The mood is taking on
a tone of grimness which is suggestive of a long and torturous path ahead. No clegant
model has been discovered. The highest transition temperatures found so far are still only
half of room temperature. And while it is fair to say that some real progress towards an
understanding has been made by experimentalists. many experiments have been limited in
their usefulness by the lack of a theory with which to interpret them. It is beginning to
appear as though the next Nobel prize to come out of thie high temperature superconductors
will not be coming soon.

The work contained in this thesis is one small step towards understanding the high
temperature superconductors. No attempt is made to produce a comprehensive theory.
Such a theory would likely be quite complicated and difficult to interpret. Instead. the
simplest possible model containing the few features of the high T, materials in which we
arc interested is studied. The model is relatively easy to work with. and its value is that
we are able to calculate a number of experimentally observable quantities with it. The
real importance of this model is that it provides a conceptual framework within which

experiments may be interpreted and conceived.

1.1 Materials

The work presented in this thesis is primarily concerned with descriptions of the
high teniperature superconductor YBaaCuzOs.s (Y-123) which is one member of the family
of Y-Ba-Cu-O (YBCO) superconductors. ¥Y-123 and its related compounds form the most
widely studied family of high T, superconductors. Discovered in 1987 by Wu et. al. the
first YBCO compound was found to superconduct at a critical temperature of T, = 93 K.
This remarkably high temperature represented an important advance over the only other
known class of high T, materials at the time the lanthanum family—known generically as
La-214—which contains the prominent members Las_ BaCuQy_s (T, ~ 34 K) (Bednorz
and Miller 1986) and Lay. SrzCuQ4_; (Te ~ 37 K) (van Dover et al. 1987)]. since it could



be made to superconduct at liquid nitrogen temperatures. The accessibility of YBCO to
labs without expensive refrigeration equipment has since led to an incredible proliferation
of articles.

Since 1987. a vast number of high T, materials has been discovered. many with
critical temperatures much higher than that of Y-123. For example. TlBasCasCuz04
has T, ~ 125 K and HgBarCazCuyOip+s has T, ~ 120 K. Relatively little work has been
done with these materials for a number of reasons. one of which is the difficulty of working
with them: both thallium and mercury are poisonous. Perhaps a bigger reason. however.
is that there seems to be an inertia within the research community. The technical aspects
of working with YBCO are better developed than with other materials. making it more
attractive for experimerts.

High T. materials are produced in a number of forms. Powders are casily pro-
duced but generally have poor superconducting propertics. Annealing the powders leads to
ceramics with large densities of grain boundaries and defects. High quality single crystals
of a small number of the high T materials have been succesfully grown. and have been the
subject of all of the most important experiments to be performed over the last few vears,
Thin films are also manufactured in large numbers. but tend to have very high densities of

twins. Much of the interest in thin films comes from industry.

1.2 Comparison of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O

Experiments involving single crystals have proved. in general. to be the only ex-
periments in which external factors do not consistently mar results. The two most widely
studied groups of materials arc the bismuth cuprates [known generically as BSCCO and con-
taining widely studied compound BisSroCaCuaQyx (Bi-2212)] and the YBCO family. Both
of these materials can be grown as single crystals. and the technolozy of working with these
materials is fairly well developed. The two families of compound have proven suitable for
different tvpes of experiments. BSCCO can be cleaved to form surfaces of atomic smootl:-
ness and is therefore suitable for tunneling and angle resolved photoemission {(ARPES)
experiments. A single YBCO sample, on the other hand. can be reproducibly Lole doped to
different levels by annealing in atmospheres of varying oxygen content. making it suitable
for studies of superconducting properties as a function of hole density. Furthermore. the

quality of the Y-123 thin films and single crystals which are made is substantially higher
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Figure 1.1: Unit cells of BSCCO and YBCO.
Unit cells of (a) BiaSr2CaCusOy..; (Bi-2212) (Hazen 1990) and (b) YBasCu30;_; (Y-123)
(Jorgensen et al. 1990) are shown.

than all of the other cuprate superconductors.

In Fig. 1.1. the unit cells of Bi-2212 and Y-123 are shown. Both of these crys-
tals are based on a layered structure: the Bi-2212 unit cell consists of the stack of lay-
ers BiO/5r0/Cu02/Ca/Cu02/SrO/BiO while the Y-123 unit cell consists of CuO /Ba0/-
Cu02/Y/Cu02/Ba0/Cu0. In both of these materials. the CuOa2 planes are conducting
and. at optimal doping. display metallic behaviour. The remaining layers are insulating.
with the important exception of the CuO “chains™ (made up of the Cu(l) and O(1) ions)
and possibly the BiO planes. Images taken with a scanning tunneling microscope {STM)
of the surface of a BSCCO crystal suggest that there is a semiconducting gap in the BiO
lavers (Hasegawa and Kitazawa 1990). making them insulating. while ARPES experiments
are contradictory as to whether the BiO layer has a Fermi surface (Aebi et al. 1994: Wells
et al. 1990). Evidence that the CuO chains are metallic can be found in electron-positron
annihilation experiments {Pankaluoto et al. 1994: Haghighi et al. 1991: Manuel et al. 1993)
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and photoemission experiments (Tobin et al. 1992: Liu et al. 1992). which map out a Fermi
surface which is in agreement with first principles band structure calculations {Pickett et al.
1990: Pickett et al. 1992: Yu et al. 1993). In untwinned crystals. it is common to separate
the chain conductivity from the plane conductivity by assuming that the difference between
the a (perpendicular to the chains) and b (parallel to the chains) axis conductivities comes
from the chains. In dc resistivity (Gagnon et al. 1994: Friedmann et al. 1990). penctration
depth measurements (Zhang et al. 1994) and optical conductivity measurements (Basov
et al. 1995) it has been found that the conductivity of the chains is approximately equal to
the conductivity of the planes.

If the effects of the chains are accounted for. then the behaviour of the CuOs planes
in Bi-2212 and Y-123 are fairly similar. The real difference lies in the ¢ axis transport proper-
ities. dc resistivity measurements in the normal state have found that while the resistivity
parallel to the CuO2 planes p,; is very similar in botn BSCCO and YBCO. the resistivity
pc along the ¢ axis is dramatically different. both in magnitude and in temperature depen-
dence. For Y-123. p./pgs ~ O(50) and both p. and pg increase linearly with temperature.
T. While this temperature dependence suggests an unconventional scattering mechanism.
it is nonetheless metallic. For BisSraCuOg (Bi-2201). on the other hand. p./pas ~ O(10%)
at 100 K and. although pg; still varies linearly with T'. p. x 1/T for T < 100 K (Iye 1992).
The behaviour of p. in BSCCO has been described as “semiconducting”.

Further evidence of the nonmetallic nature of BSCCO in the ¢ direction can be
found in measurements of an intrinsic Josephson effect. In 1962 Joscphson {1962) showed
that a current may flow through a superconductor-insulator-supcrconductor (SIS) junction
due to pair tunneling through the junction. There is no voltage drop across the junction
provided that the supercurrent through the junction is less than the critical current I,. If
the critical current is small enough that it does not generate a significant magnetic field. it
will vary in an applied magnetic field according to
sin{=H/Hy)

wH [ Hy

where H is the applied magnetic field and Hy is the magnetic field at which one fux quantaum

I(H) = I{0)

is enclosed by the junction. A simple test for Josephson coupling. then. is to look for this
Fraunhoffer pattern in the field dependence of I.. This has been done for Bi-2212 in 2
series of careful and fairly convincing experiments (Kleiner and Miller 1994). and it secins

clear that one of the layers within cach unit cell acts as an insulating layer through which



electrons must tunnel in order to travel along the ¢ axis. Until very recently. measurements
done on Y-123 have not revealed any Josephson coupling. Ling et al. {1995). now claim to
have measured an intrinsic Josephson effect, although their results should be viewed with
caution as there are a number of serious difficulties which they had to overcome in order to
perform the experiment.

Based on the structure of the Bi-2212 and Y-123 unit cells. it seems possible that
the source of the differences in the ¢ axis transport properties stems from the differences
between the BiO and CuQ layers. The differences are probably not due to the Sr and Ba
ions since substitution of Sr for Ba in Y-123 does not change its superconducting properities
significautly (Veal et al. 1987; Wada and Mihara 1987). A reasonable picture of the ¢ axis
charge transport in both YBCO and BSCCO is that it occurs through the O(4) (-apical”}
oxygens. These ions are nominally part of the SrO and BaOQ layers. although they are much
more closely bound to the adjacent Cu ions along the ¢ axis. One obvious possibility. then.
is that the BiO layer may form an insulating barrier through which electrons must tunnel in
order to move along the ¢ axis. Another possibility is that the Ca jon which lies sandwiched
between the CuO2 laye~s may act as some kind of barrier to ¢ axis transport. A summary
of the various speculations concerning interlayer coupling can be found in Ref. (Cooper and
Gray 1994).

It is important to stress that the above discussion applies only to optimally doped
YBa2CuzO;_s (for which § ~ 0.05). In the underdoped regime (6 > 0.15). Y-123 begins to

display semiconducting behaviour along the ¢ axis similar to that of BSCCO.

1.3 Comparison with Conventional Superconductors

1.3.1 Theory of Conventional Superconductors

In this section. we will review some of the most important aspects of the conven-
tional theory of superconductivity. There are a number of texts which give excellent reviews
of the theory (Rickayzen 1965: Parks 1969) for any reader who is interested in learning more.
The purpose of this sectiou is provide some background as an introduction to the high T,
superconductors,

In 1956. Cooper showed that the ground state of a normal! metal is unstable to

the formation of ~Cooper pairs™ at zero temperature. He showed that a small attractive



interaction between the electrons is sufficient to cause a transition to a new phase—the
superconducting phase. In 1957. Bardeen. Cooper and Schrieffer (BCS) (1957) were able

to find the ground state wavefunction of a superconducting system:
¥pes = [[[ux + kaLTCt_L-J {0)-
k

where |0) is the vacuum state and c}_, creates a spin-up electron with momentum &. The
coefficients u; and v, indicate respectively the probability amplitude that a state & is

unoccupied or occupied by a pair. They are

2 E:
o 1T &
Uk—E 'r'-.-E-;.

In the above equations £ is the normal state energy dispersion. written so that the zero of
energy is at the Fermi surface. For a free electron gas it is
e

2m

&k =

- M.

where ¢ is the chemical potential and m is the electron mass. The excitation spectrumn in

the superconducting state is

Ep = /e + A2, {1.1)

where A is the superconducting order parameter or ~gap™. The term "gap™ arises because
the minimum excitation energy in the superconducting state is |Al. The gap in the excita-
tion spectrum is one of the remarkable predictions of BCS theory. and it is responsible for.
among other things. the infinite conductivity in the superconducting state.

The BCS wavefunction is the ground state of the well known BCS Hamiltonian

Hpes =Y chyChobi — %z Vi Cop L ke 1 Cart- (1.2)
ko ey

in which ¢ is a spin index, 2 is the volume of the crystal and Vjy is the pairing interaction.

In conventional superconductors. the pairing interaction is due to the exchange of
phonons between electrons. The pairing interaction is modelled by

Vo &kl &} < Awp

Viw = {1.3)
0 otherwise,



where wp is the Debye frequency and V is the strength of the electron-phonon coupling. In
this form for Vi, the pairing is restricted to electrons within Awp of the Fermi surface. The
Debye energy is the characteristic energy of the phonons which are exchanged and therelore
represents the maximum change in energy of an electron which is scattered by a phonon.
In a conventional superconductor. fiwp ~ 10 meV, while the Fermi energy is er ~ 10 eV.
Scattering events are therefore effectively restricted to the Fermi surface.

In order to solve the BCS Hamiltonian. it is uscal to make a mean field approzi-
mation (Rickayzen 1965; Parks 1969). The order parameter is defined by

v
A= §Z(C—k.l,ck7)- (1.4)
k
where () represents a thermal average. and the mean field Hamiltonian is
1 -
HMF = Z C;wckafk - 6 Z: [C};TCE-kLA + C_k‘l‘CkTA ] . (1.5)
k.o Tk

Diagonalization of this Hamiltonian leads to the quasiparticle spectrum of Eq. (1.1). Once
the Hamiltonian is diagonalized. Eq. (1.4) can be solved self consistently for A. Equatin
{1.4) yields two types of solution: above a certain critical temperature T, the only zolutirn
is A = 0 while below the critical temperature A will be nonzero. A will be temiperature
dependent. having its maximum value at T = 0 and decreasing monotonically to zero at Te.

The critical temperature is given by
T = 1.13kwpe /N OV, (1.6)

where N(0) is the density of states at the Fermi surface in the normal state. There is a

universal relationship between A(T = 0) and T, in BCS theory:
= 3.53 (1.7)

Equations (1.6} and (1.7) rarely apply exactly to real materials and definitely do not apply
to high T, supcrconductors. They are useful. however. as they provide a standard against

which to compare later work.

1.3.2 Coherence Length

The most striking difference between the high T, materials and the conventional

superconductors is the difference in transition temperature. Most conventional materials



become superconducting at temperatures of the order 1-10 K. Transition temperatures in
the cuprate superconductors tvpically range from 30 K in the lanthanum compounds to as
high as 150 K for certain mercury based compounds.

One result of the large critical temperature is an extremely small coherence length
&o- The coherence length is the distance scale over which the superconducting order param-
eter A may vary spatially. In the BCS theory it is [see. eg. Rickayzen (1965)]

fiv
fo= T—_{

where vy is the electron Fermi velocity. and A is the magnitude of the BCS order parameter
(also known as the “gap™). For a BCS superconductor with T, = 100 K. A = 15 meV [cf.
Eq. (1.7)}. The Fermi velocity can be estimated from the bandwidtl: of the conduction band.
and since the high T, materials arc highly anisotropic. there will be substantial differences
between vy in the various directions. The coherence length will thercfore be anisotropic
as well. In the a and b directions (parallel to the CuO. planes) the CuOa bandwidth is

t ~ 1 eV. The Fermi velocity can be estimated as

aty
Yfa ~ Vo~ 7=

where a is the lattice constant in the a direction. For the BSCCO compounds. a ~ 54.

The coherence length in the planes is therefore

The bandwidth along the ¢ axis is considerably smaller than in the CuQOs planes. In the
BSCCO compounds. it is typically t; ~ 10 meV. Since the unit cell size along the ¢ axis is
¢ ~ 304. the coherence length in BSCCO is

e~ T oa

72A
These values are typical for most of the high 7, materials and distinguish them from ti
conventional materials in one important way: the fact that £ is substantially less than the
length of the unit cell along the ¢ axis allows the order parameter to vary spatially oner the
unit cell In the conventional materials, where the coherence lengths are 10% or 10%A. the
structure of the unit cell is invisible to A. In the high T, materials. the value of A may

depend on the layer type.
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In YBCO. the coherence lengths in the CuQ» planes are very similar to those of
BSCCO. The ¢ axis coherence length. however. is somewhat larger since the bandwidth

along the ¢ axis is 1 ~ 100 meV and ¢ ~ 11.64:

£, ~ 8A.
The coherence length is still smaller than the ¢ axis lattice constant. although this estimate
suggests that the spatial variation of the order parameter on the length sx_:ale of the unic
cell will be suppressed somewhat. It should be noted. however. that estimates of & based
on the upper critical magnetic field suggest that £, ~ 34. and therefore support the idea
the A might vary within the unit cell.

1.3.3 Isotope Effect

In conventional supcrconductors, T, has been found to shift when different isotopes
of the same ion are substituted for one another. The change in T, is related to the change

in the mass of the isotope and the relationship is given by
T.x M™°,

where M is the mass of the isotope. The reason that the mass of the ions in the crystal
has an effect on the superconducting properties is that the superconductivity is mediated
by phonons. In Eq. (1.6). we showed that. for a BCS superconductor. T, is proportional
to wp. the characteristic phonon frequency. If the ions are assumed to move in a harmonic

potential. then the phonon frequency is inversely proportional to the ion mass:
wp x M~03,

For BCS superconductors. therefore. a = 0.5. although it may be reduced from this sul>-
stantially by the Coulomb repulsion between electrons (Carbotte 1990). Generally. there is
a correlation between T, and a. since Coulomb repulsions also tend to reduce T,.. For exam-
ple. Cd (T, = 0.56 K). Zn (T, = 0.875 K) and Hg (Tc = 4.1 K) have a = 0.32. & = 0.45 and
a = 0.5 respectively (Kittel 1986). In some cases. (such as Ru and Zr. for which T. =0.5 K)
a can vanish.

The high T, materials are rather strange in comparison to the conventional mate-

rials (see. for example. the review by Franck (1994)). Most experiments have measured the
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Figure 1.2: Correlation between the isotope effect and T..
The oxygen isotope exponent o (filled symbols). and transition temperature T, (open
symbols) are shown as a function of mobile hole concentration per CuO plane.
relative to the optimal hole concentration. Squares (Y- Pr;)BasCuzO;: Circles
{Yo0.3-zPrp.2Caz)BaaCu30;: Diamonds YBaa(Cuy—zZn,)O5: Crosses YBas({Cuj_;Coz)O5.
The hole concentration is varied though impurity doping. Reprinted from Ref. (Franck
1994).

ozygen isotope effect (the change in 7, induced by substituting O for 10). In all cases.
the optimally doped materials have a small (@ < 0.05) or zero isotope effect. This cannot be
the result of Coulomb interactions. however. as the critical temperatures are far too high to
be accounted for in a manner which is consistent with such small a. This has been taken as
evidence that phon .ns are not the pairing nrechanism responsible for the superconductivity.
This is not a convincing argument. though. because the high T, materials have substantial
isotope effects away from optimal doping. In fact. doping experiments show a correlation
between the concentration of charge carriers (holes) and <. In Fig. 1.2. the isotope effect is

shown for a number of doped members of the YBCO family. The data shows quite clearly
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that in general. the YBCO compounds do have an isotope effect which is comparable to
that of the conventional materials, except for materials which are near optimal doping. The
important question, then. is whether the absence of an isotope effect in materials with the
highest T.’s indicates that phonons are not the interaction responsible for the superconduc-
tivity or whether it indicates that the phonons are unconventional. Certainly. the phonons
cannot be conventional. Calculations of T, based on the conventional (Eliashberg) the-
ory of superconductivity cannot account for the high critical temperatures found in Y-123
(de Wette et al. 1988).

The possibility that the pairing interaction is electronic in origin has been widely
cxamined. The most popular theories [spin fluctuations (Monthoux and Pines 1993). res-
onating valence bond theorics (Kotliar 1988: Lee and Nagaosa 1992) and many variations of
the Hubbard model (Dagotto 1994)] have all attempted to use strong Coulomb repulsions as
the source of their pairing interaction. The failure of these models to explain high T super-
conductivity convincingly. coupled with the growing evidence of large electron coupling to
certain phonon modes. has recently lead to a resurgence of unconventional phonon theories
{Song and Annett 1995: Kresin and Wolf 1994: Plakida 1995: Nazarenko and Dagotto ).

1.3.4 Symmetry of the Order Parameter

One of the features of the BCS theory of superconductivity is that the order
parameter A has no internal structure. The order parameter can. in a loose sense. be
thought of as the wavefunction of a Cooper pair. Since the two electrons in a Cooper pair
can be described in terms of a centre of mass coordinate R and a relative coordinate r.
A is generally a function of both coordinates. In BCS theory. however. the translational
invariance of the Hamiltonian eliminates the dependence of A on R. Problems in which
the translational invariance is interrupted (say. by a grain boundary) are usually handled
in the phenomenological theory of Ginzburg and Landau (Rickayzen 1965: deGennes 1966).
where the dependence of A on R is retained.

The internal structure of the ~.der parameter can be directly traced to the form
of the pairing interaction in the BCS Hamiltonian. In Eq. (1.2). for example. it can be seen
that momentum % in the pairing potential is the relative momentum of the pair ¢ ci+. The
momentum label & is conjugate to the relative coordinate r. so that the internal structure

(including the size) of the pair is determined by Vj.. Since. in BCS theory. the ansatz is
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made that the pairing interaction is isotropic. the resulting order parameter is independent
of k and has an -isotropic s wave symmetry”.

In the high T, materials. it is generally (although not universally) believed that
the pairing interaction Viy- is not isotropic. and that A is actually a function of the relative
momentum A. Although the actual symmetry of A; remains undetermined at this point. the
most popular point of view is that it has d wave symmetry, A function with d wave svmmetry
has the property that under a rotation of /2 about the ¢ axis (b = ky by = =k
k: = k.). the function changes sign. Two forms of the order parameter which exhibit d

wave symmetry are

Ay = Agleos(ky) — cos(ky)].

and

Ap = Agcos(2d).

where & is the angular variable in cylindrical coordinates (ie. kr = kcos(d). ky = ksin{e)).
and ~7 < kz. k; < 7. Both versions of A, have the same nodal structure as the function
k2 - kg (te. & =0 when k; = £k;). and are therefore known as dy2_,2 order parameters.

One of the first indications that the order parameter might not be isotropic came
from penetration depth measurements (Hardy et al. 1993) of single crystals of Y-123.
These experiments indicated that the quasiparticle spectrum of Y-123 has a finite number
of excitations at all energies. This result is incompatible with conventional BCS theory
since the minimum excitation energy in BCS theory is A. It has been shown. however.
that the low T behaviour of the penctration depth is compatible with any anisotropic order
parameter Ag which vanishes at one or more lines along the Fermi surface (Annett et al,
1991). As a simple example. both of the order parameters given above will vanish on 2
cylindrical Fermi surface of radius ky along the lines k; = £k, k7 = k2 + k2.

Probably the most compelling evidence in favour of unconventional pairing comes
from a series of recent experiments which measure interference patterns of Josephson jusnc-
tions (see chapter 5 for a description of Josephson tunneling). Josephson (1962) shower
that a finite supercurrent may flow through a thin insulating barrier which separates two
superconductors. The current is the result of pair tunneling through the barrier and it
differs from the tunneling current in the normal state by the fact that the current is not

driven by a voltage drop across the junction. Instead. the current is driven by the phase
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difference between the order parameters on either side of the junction:
I(¢) = I.sin(¢).

where ¢ is the phase difference between A on either side of the junction. and I is the
maximum {critical) current through the junction. Because the current is driven by a phase
difference. it is possible to construct “two-slit” experiments in which the phase differences
in Ay for different values of & w™l interfere.

The most straightforward kind of experiments look for interference in the tunneling
current through pairs of Josephson junctions on a single crystal. The junctions are designed
to allow pairs with either large k: or k, components of momentum to tunnel. If the current
of the two junction is combined. then the total current will not simply be the sum of the
two magnitudes. but will be the sum of the {complezr) emplitudes of the two currents. In
exactly the same way as in a two slit experiment. the currents may interfere constructively or
destructively. In a superconductor with an isotropic s wave order parameter A. there is no
phase difference between pairs of different momenta and the currents interfere constructively.
In a d wave superconductor there is a relative phase of = in Ay between & = (0.x) and
k = (x.0). and there will be total destructive interference of the current through the two
junctions. Of the experiments designed to look for the interference effects most { Wollman
et al. 1993: Wollman et al. 19935: Tsuei et al. 1994: Brawner and Ott 1994; Miller ct al.
1995: Mathai et al. 1995) are consistent with a d wave order parameter. There are some
exceptions to these findings (Chaudhari and Lin 1994: Sun et al. 1994). however. and
some criticism that the interference experiments are susceptible to stray magnetic fields
and trapped flux. Nevertheless. the experiments provide a relatively convincing argument

in favour of a d wave order parameter.

1.3.5 Spatial Variation of A

It is generally accepted that the source of the pairing interaction in the high T,
materials lies in the CuO2 planes. The short coherence length along the ¢ axis (£ ~ 34)
means that there can be a large variation of the superfluid wavefunction between adjacent
planes within the unit cell. In other words. the translational invariance which exists in the
conventional superconductors (where the microscopic structure of the lattice is invisible to
pairs whose coherence lengths are typically of the order of 10%4) does not exist in the high

T, materials so that A is generally a function of the centre of mass coordinate R. For this



reason. it is common practice to associate an order parameter with each layer separately in
the high T materials. Most theories. in fact. only consider a single CuO» plane and ignore
the coupling to adjacent layers. We stress here that this point of view is only possible
because the short coherence length allows one to define an order parameter withir each of
the CuOs layers separately.

Despite the popular view that the sccret to high temperature superconductivity
lies within a single CuO2 plane. there have been some simple theoretical models which
examine the spatial structure of A between the various planes. One of the most common
models is the /N model. in which there is an intrinsically superconducting layer (S) and an
intrinsically normal layer (N) in the unit cell. The word =intrinsic™ refers to the behaviour
of the the layer in isolation. In other words. the S layers contain a pairing interaction which
causes a superconducting transition while the N layers do not.

The layered S/N model is reminiscent of the original proximity effect models
(McMillan 1968: deGennes 1966) which were used to describe the effect of placing a nornat
metal in contact with a superconductor. There. it was found that the S/N system differs
from the isolated S and N systems in two ways: the critical temperature of the combined
system is lower than that of the isolated S system. and the N system is driven supercon-
ducting near the junction by its proximity to the § system. Although the S and N halves
of the S/N system have the same T,. the size of the gap is quite different in cach. with the
gap in the S layer being depressed slightly from its value in isolation. and the induced gap
in the N system being quite small.

The behaviour of the layered S/N model for the high T, materials is very simila:
there is an induced gap in the N layers. and the T, of the system is depressed by the
coupling. This is discussed in more detail in chapters 2 and 3. as well as in Atkinson and
Carbotte (1995a). One of the main differences between the layered S/N models and the
original proximity effect models is the treatment of the coupling. In the microscopic systein
it is possible to treat the coupling exactly (provided it is colierent). while in the macroscopic
system it is treated as a perturbation.

Most layered S/N models have been geared towards explaining the apparent odal
structure of the order parameter while retaining the s wave symmetry of the order param-
eter (Buluevskii and Zyskin 1990: Abrikosov 1991: Abrikosov and Klemm 1992: Simonov
1993: Tachiki et al. 1992: Takahashi and Tachiki 1990: Buzdin et al. 1992a: Buzdin et al.

1992b). In other words. the nodes in the gap seen by experiment arc conjectured to be
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the result of variations of the pair wavefunction as a function of the centre of mass coor-
dinate R. rather than of the relative coordinate r {¢f. Sec. 1.3.4). These models have had
some success in explaining some simple properties{Atkinson and Carbotte 1995b: Klemm
and Liu 1995). such as the penetration depth experiment of Hardy et al{1993). but have
failed to account for a number of important experiments. such as the Josephson tuuneling
experiments described in Sec. 1.3.4. Furthermore. tke lavered $/N models arc really only
applicable to YBCO., since there is no clear evidence that any of the other materials contains
a metallic layer which is not a CuQ» layer.

A related model is the layered S/S’ model. in which the unit cell has two distinct
superconducting layers. Early interest in the model (Liu and Klemm 1992: Schneider et al.
1989: Kettemann and Efetov 1992: Liu and Klemm 1993) was concerned witli the differences
between intralayer coupling (which favoured singlet pairing) and interlayer coupling (which
could favour either singlet or triplet pairing). More recently. studies of the S/S’' model
have been revived in an attempt to understand the internal structure of the CuQO. bilayers
{Kuboki and Lee 1995; Liu et al. 1995: Tikofsky 1995).

1.4 Overview

The electronic structure of the high T, materials is poorly understood. both in
the normal and superconducting states. The work in this thesis is an attempt to describe
the superconducting state. As we have shown in this chapter. there is strong evidence that
the superconducting state is unconventional. We discussed a number of experiments. for
cxample. which seem to indicate that the Cooper pairs have an internal structure. In this
work. we will adopt the ansatz that this internal structure has a d;2_ 2 symmetry. There
have been a number of calculations of the properties of a single CuO2 plane with a dz_,2
order parameter (Zhou and Schulz 1992: Fedro and Koelling 1993: Jiang and Carbotte 1993:
Bulut and Scalapino 1992). and these models have been fairly successful at explaining. at
least qualitatively. many of the properties of the high T, materials.

In the work presented here. a model is used in which there is both a CuOs plane
and a CuO chain in the unit cell. One of the goals of this work is to understand how the
chains will change the results of calculations involving a single plane. A second goal is to
calculate ¢ axis transport properties. which cannot be found from the single layer models.

The third goal of this work is to learn more about the nature of the chain-plane coupling
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by comparing our calculations with experiment. This last goal is the most interesting since
it is also the most fundamental.

In chapter 2. the chain-plane model will be introduced. In chapter 3. the density
of states (DOS) will be discussed and interpreted in terms of two experiments—the low
tamperature heat capacity and the Knight shift. In chapter 4. a published paper will be
included in which the penetration depth is caclulated for the chain-plane model. In chapter
5. the model will be used to provide a possible explanation of tunneling experiments which
are in apparent contradiction with the d wave model. Finally. in chapter 6. therc will be
a discussion of the conclusions which can be drawn from our work with the chain-plane
model.



Chapter 2

A Simple Model for YBayCu3zO7_;s

2.1 Motivation

In this chapter we will introduce a simple model Hamiltonian for YBa>Cu3Oz_s
which is designed to capture a few of the essential features of the electronic structure. To
begin with. we will assume that at optimal doping Y-123 can be reasonably described by a

Fermi liquid model.

Whether or not optimally doped high T, materials can be described by a Fermi
liquid is a point of controversy. It is generally agreed that the parent compound YBa2Cu;0s
is not a Fermi liquid. as band structure calculations predict that it is metallic. while it is. in
fact. an antiferromagnetic insulator. The discrepancy stems from the Coulomb repulsions.
which are treated at the mean field level in baw.d structure calculations. The Coulomb repul-
sions between electrons tend to localize the electrons at the copper sites in the CuO2 planes.
With the removal of electrons from the CuO. planes. however. the Coulomb repulsion be-
comes less important. The hole-doped compound YBa»Cuz0g.; becomes conducting at
z ~ 0.3. The conductivity is extremely anisotropic [py /oy ~ 103 {Cooper and Gray 1994)]
and is largest in the CuOa planes. The planes are not metallic. however. as we can show

from a simple estimate of the mean free path based on the dc resistivity.

In the semiclassical model. the resistivity p is related to the mean free path [ by

v fm'
nep

[ = (2.1)

where m™ and vy are the effective mass and Fermi velocity of the conduction electrons

respectively and n is the density of charge carriers. For the in-plane mean free path. we can

18
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estimate m" and vy from the bandwidth ¢:

where a = 3.8.4 is the lattice constant in the plane. The density of carriers can be estimated
by assuming that there are two carriers per unit cell. Then n ~ 1.4 x 10% cm™3. Near
the metal-insulator transition (z ~ 0.4. for example). the resistivity is py ~ 1 mQ-cm =
1.1 x 1019 5 (Cooper and Gray 1994). From this it follows that

I~ 34

The planes are not metallic. therefore. since the mean free path must be several unit cells
in length for coherent Bloch states to form.

Superconductivity also becomes possible for z ~ 0.3. and T, increases with in-
creasing z thereafter. The highest T, occurs at x ~ 0.95. at which point Y-123 is optimally
doped. For z < 0.95. Y-123 is underdoped. As optimal doping is approached. the dc conduc-
tivity improves. both within the CuO; planes and along the ¢ axis. At optimal doping. the
mean free paths can be estimated from Eq. (2.1) to be l)) ~ 304 and {; ~ 1A. The in-plane
mean free path is roughly 10 lattice spacings. and whether or not the planes are metallic
will depend on whether the estimate is too Ligh or too low. There is a qualitative difference
in dc and optical conductivities for £ = 0.95 and = < 0.8. however. which suggests that
the in-plane behaviour is metallic for z = 0.95 (Cooper and Gray 1994). Although it is not
generally possible to overdope Y-123. it is possible to overdope another high T, material
Las_Sr;Cu04 (LSCO). In the overdoped regime x > 0.15. LSCO is known to be a true
metal (Iye 1992). There is some direct evidence that the optimally doped high T, materials
are Fermi liquids from angle resolved photoemission (ARPES) aud positron annihilation
experiments (Shen et al. 1993a: Shen et al. 1993b: Hwu et al. 1991: Kelley et al. 1993)
which have found a Fermi surface in a number of high T, materials. In this work. we will
take the point of view that both the CuO. planes and the CuO chains are Fermi liguids,
Electrons in the chains and planes are therefore assumed to be in (coberent) Bloch states.

Since the above estimate of the ¢ axis mean free path suggests that colierent Bloci
states do not form along the c axis. it is somewhat surprising that the temperature depen-

dence of the de resistivity (at optimal doping) appears "metallic™. Optical conductivity
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measurements (Homes et al. 1995a) have also found that for z > 0.85. the ¢ axis conduc-
tivity appears weakly metallic, but with an enormously broad Drude peak. The source of
the scattering along the ¢ axis is unkown. Recently (Ling et al. 1995) there has been some
suggestion that the Yttrium ion. which is sandwiched between two CuQs lavers. may be
a source of incoherence. Another suggestion (Leggett 1992) is that the coupling between
adjacent unit cells along the ¢ axis is not sufficient to overcome thermal fluctuations within
the CuO2 layers, leading to a “dephasing™ of the unit cells. The term -dephasing™ refers
to the destruction of the phase coherence between adjacent unit cells which is necessary
for a Bloch state to form. A third possibility has been proposed by Anderson (1992). in
which the CuQ2 planes are in a non-Fermi liquid state. Transport of charge along the ¢ axis
involves the removal (or insertion) of single electrons from (or into) the strongly correlated
many-body wavefunctions describing each plane. leading to incoherence. A short review of

the various theories of ¢ axis transport is contained in Cooper and Gray (1994).

As of yet. there are no theories of ¢ axis transport which include a deseription
of the CuQ chains in Y-123. This is because they present an added level of coniplication
to the model. The important question which must be addressed—and which forms the
basis of much of the work presented in this thesis—is what is the nature of the coupling
between the chains and the planes? At first glance it may seem that ¢ axis transport
properties hold the key to understanding the chain-plane coupling. Certainly the nature of
the coupling between the chains and planes will be reflected in the ¢ axis dc and optical
conductivities. but to include both the incoherence and the chain-plane coupling in a single
theory would introduce an unnecessary level of complication. In this work we will ignore the
¢ axis incoherence. and will. instead discuss experiments in which in is possible to extract

information about the chain-plane coupling without looking at ¢ axis transport properties.

Since relatively little is known about the chain-plane coupling. we will take the
simplest possible case. in which the chains and planes are coupled coherently (ie. the
wavevector k is conserved when electrons hop between chains and planes). Furthermore.
the model is simplified by assuming that a unit cell contains a single CuO: plane and a
single CuO chain. Since there is no source of incoherence in this model. the electrons also

form Bloch states along the ¢ axis.



2.2 Microscbpic Model

2.2.1 Normal state

In second quantised notation. the Hamiltonian for a Bloch metal is
Hy= f Brut(r) ho¥(r) (2.2)

where ¥(r) are the field operators and %y is the first quantised Hamiltonian for an electron
moving in a periodic potential U(r):

<Dy}

hp = o + U(r).

The high T, superconductors are generally treated as tight binding materials in which there
is a weak overlap between copper d orbitals and adjacent oxygen p orbitals. In such a case.
it is advantageous to expand the field in terms of Wannicr states:

¥(r)= > cino®ilr — Rin). (2.3)

ine

The state ¢;(r — Rin} is the Wannier state associated with the ¢ th jon in the 2% unit cell.
The wavefunction is centred about R;n. the location of the ion. In the case of tight binding
materials. the Wannier state is localised about the site and closely resembles the atomic
wavefunction of the isolated ion. The operator ¢;,, annihilates an electron in the state
@i(r — R;n} with spin . The Hamiltoman can now be written

Ho= ¥ Y clotime [ &6 = Rnhody(r = Rym)

tn.o jim

=- tin: 'mcfnac'ma
> 2 tingmCingS;

ingrmo

(2.4)

Now. in the case of a tight binding model. the states ¢,(r — R,,) arve localised about.

the ion sites R;; so that the leading order contributions to Hy are

Hoy=~— Z tin:inczngcinc - Z Z tm:jmc:nacjmo- (2.5)
ing {ingm) ©
where the angle brackets indicate that the sum is over nearest neighbour pairs. This is the

nearest neighbour tight binding Hamiltonian. It can be written in momentuin space 11sing

1 "
Cing = 7= > CikoC™ " (2.6)
Yk
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where c¢;;, arc the annihilation operators for the tight binding Bloch states and N is the
total number of unit cells within the crvstal. The factor of 1/V/N ensures ihat the anti-
commutators {Cjme- Cine} a0d {Cjko- Ciko} are both rormalised to unity. Equation (2.5)
becomes

1 i(q—k)-Ryn yig-dyi -1
Ho= =3 tuchycme =55 2. 2 b @ Fune4ic] cjeo.
i.k.ﬂ . (3,]) ﬂikiq'e

A shorthand notation has been used here. For the most part. nearest neighbour ions will
be in the same unit cell. so that n = m. d;; = R, — Rin and t;; = tin.jn. If the ions are not
in the same unit cell, however. then d;; is understood to mean R;m ~ Ry and t;; to mean

tij:;jm- The sum over n can be performed using

1 i(k—q)-R: . -
¥ zet(k W Rin — Ok (2.7
n
so that
Hy=- Z tiiczko-cika - Z Z tijeik'dj'czkac_jk,. (2.8)
ik (i.5) ke

The unit cell for YBCO contains 13 different ions. The inclusion of all of these
ions in Eq. (2.8) would be overwhelming. Instead. an extremely simplified model is used in
which there are only two ions in the unit cell. One of the ions belongs to the ~plane™ layer.
while the other belongs to the “chain™ layer. Furthiermore. the simplifving assumption is
made that the chain and plane layers are evenly spaced. We take the unit cell to be of
length 1 along each edge. The chain-plane distance is therefore 1/2. The Hamiltoniaw is.

Ho—pN =Y &k cite + 3tk Crio + Clipare] (2.9)
iko k.o
where the sum over 7 is restricted to 7 = 1.2. The energies & are the dispersions of the

isolated planes and chains. The plane states are given by
& = —20y[cos(kz) + cos(ky )] — py. (2.10)
and the chain states by
& = =202 cos(hy) — pa. {2.11)

where =7 < &z ky € 7. The “chemical potentials”™ y; and u» are actually the overall
chemical potential u. renormalised by the first term in Eq. (2.8). In other words ¢y = u+1y
and g2 = p + tos. The dispersion perpendicular to the planes is

t(k) = ~2¢, cos(k./2). (2.12)
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-T L k. < 7.

It is possible to write Hy in matrix form

Hy=3_ ClQoCr (2.13)
k
where
Cr = [ C1k ] . (2.14)
2k
and
&t
Qo = [ AL ] . {2.15)
t &

The spin index has been suppressed for simplicity.
The effect of the chain plane coupling ¢ is to mix the planc and chain states. The
energies of the resultant bands are given by .. the eigenvalues of Qq:

ei=£1§£2i‘/(£’;£2)-+¢2 (2.16)

and the matrix which diagonalises Qyp is

t ¢
U(k) = 1 Ve =& V& —eo

[(&1 — &a)2 + 4t2]1/3

{2.17)

Ve =8 =& -

50 that

[ +lk) 0 ] = U (kIQuU k).
0 e_(k)

The band structure for a typical set of band parameters is shown in Fig. 2.1. As
can be seen in Eq. (2.16). the band energies are shifted from their decoupled (2] = 0)
values by an amount which depends on the relative sizes of t2 and (&1 — £2)2. The effect of
the plane-chain coupling is largest where £ = &, at which point there is an avoided band
crossing. Figure 2.2 shows clearly how the Fermi surfaces are pushed apart by the plane-
chain coupling. and that the distortion of the Fermi surfaces depends on their proximity.
The band parameters are chosen to qualitatively match some of the results of band structure

calculations(Pickett et al. 1992: Yu et al. 1993). Band structure caleulations find & Fermi
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Figure 2.1: Energy dispersions in the normal state.
Energy dispersions along the line ky = kz for k. = 0. There is an avoided crossing at £; = £».
The band parameters are typical for the work done in this thesis. They are g; = 100 meV.

o2 = 80 meV. u; = —-80 meV. u» = 40 meV and ¢t; = 25 meV.

surface which has four picces. of which two come from the CuQ» bilaver. one comes from
the chains and one is a mixture of chain and plane siates. This last piece of Fermi surface
is small and is ignored here. Furthermore. we treat the bilaver as a single layer which vields
a single piece of Fermi surface.

2.2.2 Superconducting State

The description of the superconducting state will be done in terms of a BCS-like
theory. We will begin with the assumption that the pairing interaction is localised to the
Cu planes. This seems like a reasonable guess given both the strongly two-dimensional

nature of the high T materials and the fact that the CuO» layer is the only element common
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Figure 2.2: The Fermi surface for the model Hamiltonian
The Fermi surface is shown for a range of k. between k; = 0 and k. = 7. When k. = . the
chain-plane coupling vanishes and the two pieces of Fermi surface are those of the isolated
~hains and planes. As the chain-plane coupling increases. the Fermi surfaces hybridize and
are pushed apart. The amount of hybridization at a given k depends on the relative sizes

of t2 and (&1 = &)*. There is an avoided crossing of the Fermi surfaces when £ = &, = ().
to all of the materials.
The pairing is known to be singlet so that the pairing interaction can be written
V= /d3rd~‘r' qﬁ Y)WV (r = "yl (¢ )y (r). (2.18)

As before. this can be written in terms of Wannier states

- t t
V= Z €1n11%1n21€1n3iClnst

n.n2.n3.0

x f d*r &' &3(r — Ryny )83(7’ = RingV(r = ' )61(r" = Ring)é1(r = Rin,). (2.19)
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Since the pairing interaction is between electrons in the same CuO2 plane. it is necessary
to make the restriction on the sum over lattice sites that Ryn3..... Rj n4 must all be in the
same plane. For a tight binding system. the leading order contribution comes from ny = ny
and no = ng so that

V~ Y V(B - Rlnz)c‘.‘tnl-?c{nzlclnglcln17' (2.:20)

n1,n2

where V{R) is defined by the integral in Eq. (2.19). Using Eq. (2.6). 1" can be written in
terms of Bloch states:

1 i{kamky)-Riny 4ilks=ka)-Ring
Vo= 3 chiprlicinicing 2 VIR — Ring el fim glismhalfins,

" kykz ke .2 (2.21)
If V is a short range potential then the leading order contributions are for na = n;
and Ryn, = Rin, + 6. where § is a vector connecting nearest neighbours within the plane.

The pairing interaction now simplifies to

1 . ) -
V ~ Iv" Z cikl+qfclk:—qLc1kzlclk1T |:1/0 +W zetq 6:| (2.22)
k! -k'-"q 5
For a square lattice this is
1 :
RS IR (OL WL N TNE TR (2.23)
k1k2.q
where
V{g) = Vb + 2V)[cos(gz) + cos(gy)]- (2.24)

There is a simple argument. due to Bardeen. Schrieffer and Cooper. which allows the sim-
plification of V. They demonstrated that the most important contribution to the sum in
Eq. (2.23) comes from terms for which ks = —kj. For the sake of continuity. the argument
and its applicability to this model will not be discussed here. and the interested reader is
referred to (Rickayzen 1965). Assuming that the BCS argumnent holds:

Vo~ ;—, Yo Vik = k)elel _er-wicirer (2.25)

k!

In this form. the pairing interaction is still intractable as it is a two body interaction. The

simplest approach is to make a mean field approrimation. In each of the identities

C1—ksCike = {C1-kiCtis) + [C1-riClit = (Cr-riC1t2))] (2.20)

t .t I S : t t Lt -
11—k = (ClaeC1-k) T [Cik-rﬁ..u — {cpaCip)]- (2.27)



the operator on the left side of the equation is written as the sum of its mean field value
and the fluctuations about that mean field. In mean field theory. the assumption is made
that the fluctuations are small. The effects of mean field Ructuations have been examined
by Coffey (1990). The mean field form of V' is found by inserting Egs. (2.26) and (2.27)

into Eq. (2.25) and dropping the second order term in the fuctuations. Then
Ve~ z[cichi-klA*‘ + €1k, C11+ L] + const.. {2.28)
k
where A, is defined as

AkEl

2|

Y Vik = k) eropyenn)- (2.29)
kl

The quantity Ay is the order parameter. Equation (2.29) is the BCS cquation. and must be
solved self consistently for Ag.

The total Hamiltonian in the superconducting state is H = Ho + V. Since the
mean field interaction is a one body interaction. the Hamiltonian may be diagonalised. As

before. it is easiest to write the Hamiltonian using the Nambu (matrix} notation:

H—-Nu=3 CUE)QR)C(k)+ const.. (2.30}
k
where
Cries
c’
Clk)y= | =% (2.31)
Capt
i
Cog:
and

(k) =&y tk) 0
—Ap —fa-k) 0 —t(=k)
(k) 0 Ealk) 0

[ o —t- 0 -g-n)

Diagonalization of the Hamiltonian leads to four energy bands E;, = Ei Ex=E_ E;=
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Figure 2.3: Band structure of the model Hamiltonian.

The quasiparticle excitation spectra E+ are plotted along the line k. = 0. For these curves.

i3 = 20meV. The excitation spectra in the decoupled (. = 0) limit are plotted for

comparison.

—E—-. Ey = —E+ with

>

2+ +AT L -+ A2 .
Ei Y + f; + Ag +12 4 \ [Ll{-)*i.] + 26 + &2)2 + Af] (2.33)
G+2+A g+e+ar 1, . .
== —kifs \ [ﬂ—E:-,—-—‘i + t*] = (t2 = &162)2 = (£20%)2.
(2.34)

Equation (2.33) is useful for discussing the limit of small ¢,. while Eq. (2.34) is useful

for finding the nodes of E_. The quasiparticle spectrum is plotted in Fig. {(2.3) along the

direction Ay = k; = 0 for a typical set of band parameters.

The annihilation operators for the bend states are related to the annihilation op-



erators for states in the chain and plane layers by

4 .
Citk) = 3 UL(K)C;(k). (2.35)
J=1

where U = [Uy U U3 U] with

U, = — (2.36)
’ vC tA
tbB
A=t (A + E; +&§)(E, + &)

B

£~ (AL + Ej = NEj ~ &)
C = A% + (E, - &) + B[t* + (E; + &)%),

As before. U diagonalizes Q:

E-(k) 0 0 0
0 E_(k 0
(k) = UHk)QUU (k) (2.37)
0 0 —E_{k)
0 0 0  —E.(k)

Now that the Hamiltonian has been diagonalized. it is possible to return to Eq.

(2.29} and solve for the order parameter self consistently. Writing

Ay = %kz Vik = k') (e1-puc1a00) (2.29)
= % kz Vik — ' ){(CL.Cri) [from Eq. 2.31]
=3 D Vlk = ¥ )kl G
ol
= -i-; Z ; V(k = KUy (K a1 fLE (K ). (2.38)

Techniques of solving this equation have been developed. based on the method of Fourier
transforms. Equation (2.38) has been studied for. among other things. a pairing potential
of the form (2.24} in a single layer material (ODonovan and Carbotte 1993). It has been

found that this potential leads to a number of different pairing symmetries depending on
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the electron density. In most of the interesting cases. it was found that the order parameter
had d-wave symmetry. In order to sumplify the task of finding the order parameter in this
work. we assume a phenomenological form for the pairing interaction which admits only the

symmetry we wish to study. The pairing interaction is taken to be separable:
V(k.K) = Ve (2.39)
with
=1
for an isotropic s-wave superconductor. and
M = cos(kz) — cos(k,)

for a d;2_,z-wave superconductor. With this form for V (k. k). it is clear that A will have

the same symmetry as 7. In particular. it is possible to define Ap such that
Aj = Agtye. (2.40)

and where Eq. (2.38) can be solved for A

4 Cr Ty e \
Ao =7 303 meUnlk)Unlk ) FIE(K)). (2.41)
P

Equation (2.41) is much simpler to solve than Eq. (2.38) because Ay is independent of .

In Fig. 2.4. Ay is plotted as a function of temperature based on the solution of Eq. (2.41).

2.2.3 The Effect of Proximity Coupling

In Fig. 2.5. the critical temperature is plotted against the strength of the plane-
chain coupling. As is obvious from the graph. the effect of this coupling is to reduce T..

A further effect of the plane-cliain coupling is to induce superconductivity on the
chains.  Although the only order parameter in the problem (Aj) is associated with the
pairs in the CuQO. planes. it is possible to introduce the concept of a gap in the clhain
spectrum. To begin with. it is necessary to distinguish between the terms ~gap”™ and -order
parameter”. The order parameter is defined by Eq. (2.29). while the gap is the minimum

cnergy of quasiparticle excivation in the superconducting state. In a BCS superconductor.



31

] T T ¢ L LI R B B R
10 - -
8 -
2 sl '
N ]
=] o -
< L N
4 r -
2r- -
0or -

T IPE S ST SR RS ST

0 20 40 60 a0 100

T (K)

Figure 2.4: Temperature dependence of A,,.
The temperature dependence is found by solving Eq. (2.41) sclf-consistently for a separable

d-wave potential,

the quasiparticle spectrum is £ = 2 = AZ. where ¢ arc the free electron energies and A is
the order parameter. The minimum in the excitation spectrum occurs at the Fermi surface
where ¢ = 0. and E = [A]. For 2 BCS superconductor. then. the gap is just the magnicude:
of the order parameter.

The quasiparticle spectra E~ are somewhat more complicated than in the simple
BCS model. In fact. the superconductivity is gapless since E_ vanishes whenever 12 = £yEs
and {2 =0 or A =0 [¢f. Eq. (2.34)].

Not all gapless superconductors are alike however. since the structure of the low
energy excitations plays a role in the low temperature dependenee of many properties, For
this reason. it is actually useful to redefine the word gap to be the excitation spectrum

along the Fermi surface in the superconducting state. The usefulness of this definition is
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Figure 2.5: T, as a function of plane-chain coupling.
The critical temperature in the intrinsically superconducting planes is lowered by the prox-

imity of the intrinsically normal chains.

that many physical properties depend only on the structure of the energy spectrum near the
Fermi surface. The gap. like the order parameter. is now a function of & although (unlike
the order parameter) it is only defined on the Fermi surface.

The gap and the order parameter will. in general have different symmetries. For
the scparable pairing potential discussed in the previous section. the order parameter will
abways have the symmetry of the potential. On the other hand. the symmetry of the gap
will be modified by the band structure. In Fig. 2.6. the gap is shown along the plane and
chain Fermi surfaces for both 2 d wave order parameter. When t. = 0. the gap is just the
magnitude of the order parameter. but as the chain-plane coupling is increased. the band

structure begins to affect the gap.

In order to guantify the notion of a gap. we will return to Eq. (2.34) for E_. The



Figure 2.6: Gap in a d wave superconductor.

The value of the lower energy band E_{%) {dashed line) is plotted along the Fermi surface
(solid line) of the chain-plane model for k. = 0. The chain-planc coupling strength is

t_L—QQ meV,

Fermi surfaces for the two normal state bands are given by e = 0. which (from Eq. {2.16))

occurs when
t(k)? = &1(k)&a(k). (2.42)

The two solutions for this equation arc the two Fermi surfaces shown in Fig. 2.2. The

quasiparticle excitation energies on these Fermi surfaces are given by

Io l\.'.IO

E? = 5*“ Sl \Hl 'Aiﬂz] ~ (&0 )7, (2.43)

Except near the avoided crossing (see Fig. 2.2). £; and & will not both be small at the same
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time. Further. since we have taken t; < 0).02. the solutions to Eq. (2.42) will have either
€1 € E» or £ <€ £ depending on which section of Fermi surface is being considered. Then

/6 S«
E_ ~ A x SELA LY (2.44)

1 g<8
The first case above is simply an approximate expression for the induced gap in the chains.
while the second case shows that, to lowest order. the gap in the planes is undisturbed by
the chain-plane coupling.
Near the avoided crossing. the eigenstates of the Hamiltonian (in the normal state)
are mixtures in roughly equal proportions of the chain and plane states so that it is not

possible to talk about a gap in the chains or planes based on our definition above.

2.3 Green’s Functions

Most of the calculations in this thesis require the nse of single particle Green's
functions. In this section. the retarded and i{hermal Green's functions will be introduced.
their properties will be discussed and they will be solved for.

The retarded Green's function is defined as
GR(k.b: K. t') = —{Cult) ChaltN)B(E — 1)
= —i(Cix(t = t)CL(0)) 6y ub(t — ') (2.43)
=GRkt —1t).
where the second line holds if the Hamiltonian is time independent and conserves crystal
momentum. & (one of the advantages of the mean field pairing Hamiltonian is that & is a
good quantum number). The retarded Green's function can be Fourier transfermed:
a s
GEtkiw) = [ deemNGR k. ).
-
where the addition of an infinitesimal imaginary part to w ensures the convergence of the
integral.

At finite temperatures. it is much easier to work with the thermal Green'’s functions
Gij(k:7) = ~(TwCu(—i7)C(0)). (2.46)

where Ty is the Wick time ordering operator. The thermal Green’s functions are periodic

in 71 Gy{7 — 3) = FGj;(7) where g is the inverse temperature and the sign depends on



whether C is a fermion (-) or boson (+) operator. Because of the periodicity. G;; can be
written as a Fourier series
1 e™%7Gy;(i¢)  (fermions)
Gi(r) =35>

{ e"”‘"G,-_,;(iw;) {bosons)

R+

where §; = 7(2l +1)/B8. vy =27l/8 and { = 0. 1. £2. ..

Now Gjj(w) is analytic in the upper half complex plane and it can be shown that
Gij(w +1i0%) = GR(w) (where w is real). This pruperty is extremely useful as it means that
we can solve for the thermal Green's functions and then analytically continue them to find
the retarded Green's functions.

The thermal Green’s function satisfies the equation of motion
a -
[g + Q:‘j(k)] Gij{k: 1) = —4;;. (2.47)

where @ is the Hamiltonian macrix given in Eq. (2.32). This equation can be solved by

writing G;; in terms of its Fourier series. so that

Gis(iq) = [iG — QR
= vt o - @uoyu T ]
= 3 Um(b) [U09(ic = QORI 000
- UMV

—_— —_—L )
Z iCI - E, (248)

n
where U is the 4 x 4 matrix given in Eq. (2.36). While this form for G,; is useful for
numerical work. it is not very transparent. An alternative method for evaluating Gy, is to
note that given a matrix A.

a1
~ det |A]

(adj ). (2.49)

where adj is the classical adjoint of the matrix (ze. the transpose of the matrix of cofactors),

As an example. let us consider the gap equation [Eq. (2.29)].
1
A= 5 S Vik =k )er-ricrir) (2.29)
N <

1 . , -
=—-—’{T-§V(k—k)G1-_:(‘r=0 ). (2.50)
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From Eq. (2.49). we know that

Gr2(iG) = [i¢ — Q)

1 0 .
= —AL(iG)? = €3] 251
oGP — EZey — B2y e - €] (231
Inserting this into the Fourier series for Gyao{7 = 0~) gives
_1 A[(G)2 - €3]
Ciel0) = 53 ey BRI R — ]
-A, [(B2 - (E2 - &3)
=55 _*Eg ] [ +E+ tanh(fE../2) = 52 tanh(E. /2)] )
(2.52)
so that
=1 A (B -8)
A= N%V{L k )2(E1_EE)[ o tanh(fE. /2)
_ __(EZEt §2) anh(BE._ /2)]. (233)

While this form for the gap equation is equivalent to Eq. (2.38). the reduction of {2.38) to

this simple analytic form is nontrivial.



Chapter 3

Density of States

The electronic density of states {DOS) is one of the fundamental properties of
any quantum system. The usefulness of the DOS comes from the fact that many physical
quantities do not depend on the specifics of the band structure. but on the number of
available states at any given energy. This is particularly true of thermal propertics. such
as the specific heat. but is also true of transport properties where the number of carriers is
directly related to the DOS.,

Density of states measurements hold a special place in the history of supercon-
ductivity. as they provided one of the first direct experimental confirmatious of the BCS
theory of superconductivity. One of the key predictions of BCS theory is that a gap in the
DOS opens at the critical temperature. In 1960. Giacver performed tunncling experiments

which demonstrated the existence of this gap.

The density of states is also an important quantity for the high T, superconductors.
It seems clear that the superconducting order parameter in these materials is much different
from that of the conventional materials. A number of cxperiments indicate. for example.
that the superconductivity is “gapless”. in the sense that there is a finite density of states
at all energies in the superconducting state. There is still. however. = depletion of states
near the Fermi surface which can be directly attributed to the superconductivity. Tl
understanding of the structure of the DOS near the Fermi surface will likely prove erucial
to the understanding of high T, superconductivity.

In this chapter. expressions for the DOS for a layered system will be derived. The
results of DOS calculations for the chain-plane model will be discussed. and & nunber of
experiments which depend on the DOS in an important way will be discussed. It is hoped

that. with the simple chain-plane model intreduced in Chapter 2. it will be possible to draw

37
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some general conclusions about the high 7T} materials.

3.1 Theory

3.1.1 General Theory
The DOS is defined as the imaginary part of the single particle Green’s function:
= -2 [ meR : 3.1
p(w)——N—ﬂ_fdr mGL(r.rw) (3.1)

where the factor 2 is because only spin up electrons are counted. and where N is the nunber

of unit cells in the crystal. GR, is the retarded Green's function:
£ L
GR.(r7'w) = —i f dt NG (r.1). UL, (. 0)})B(2) (3.2)
-0

where ¥ is the field operator. 8(t) is the step function and {} are anticommutating brackets.
This definition is quite formal in appearance and it is not obvious how it is related to the

more familiar definition (Ashcroft and Mermin 1976):
plw) =) 8(& —w).
k

where & is the band energy.
In fact. the familiar form for the DOS shown above applies to the case of a single
band system in the normal state. To show this. we expand the field operators in Eq. (3.2)

in terms of the Bloch states ¢y(r).

Ta(r.t) = > cxplt)on(r). (3.3)
k
s0 that
<
= R,
plw) = _W; Im G (k:w). (3.4)
where
R * : =0+ +
Gilkiw). = —i j dt T ra(2). Lo (0)1)6(2). (3.5)
-
For a single band material. Eq. (2.48) reduces. after analytic continuation to real frequencies.
to
GR(k:w) = ! (3.6)
e - w t0+ - Ek )
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so that
ImGE(k:w) = —m6(w - &). (3.7)
The expected result follows immediately:
2
plw) = 55 2 8w — &). (38)
- k

The factor of 2 in Eq. {3.8) accounts for the two possible clactron spins. while the normal-
isation factor 1/N makes p the density of states per unit ccll.
For the chain-plane system (or any other multiband model). there is an additional

sum over the layers in the expansion of the the field operators and

Ta(rt) =Y cikr(t)dul(r).
ik

where the subscript 7 refers to the different layer types. The DOS can therefore be written

as the sum of a plane DOS and a chain DOS:

plw) = p1(w) + palw) (3.9)
where
2 ,
priw) = =<=3 Gulkiw +i07)
- Ll k
2 3 .
= i?zzk:Uh-(k)'o(w—E,-(k)) (3.10)

2 .
prw) = =5= 3 Gulk:w + i0%)
« ¥ & k

| v

=2 2 Unilk)* étw — Eitk)). (3.11)

t ok

=z

The Green’s functions Gy; and G describe spin up clectrons in the plane and chain layers
respectively [recall Eq. (2.46)]. The spin down electrons (described by Guy and Gyq) ave
not needed in this calculation as they make an equal contribution to the DOS as the spin
up electrons. The densities of states py and p» are the DOS for the plane and chain layers
respectively. In Egs. (3.10) and (3.11) U3, and U, can be thought of as projection operators

which relate electron states in the various bands to electron states in the layers,



40

An alternative {but equivalent) form for p; and p» can be found from Eq. (2.49).
Noting that

(w =+ & )(w? = £3) — tP(w — &)

= 7 12
and
_(wt &)= -A%) —Pw—-§)
Ga{w) = o7 = ELi - ET] . (3.13)
we find that

(w+ &)W = 63) = 3w — &)
w) = Z E+E_(E: - E2)

x [E_8(w — E4) = E_6{w + E4) = E+6(w — E_) + E=d(w+ E_)] (3.14)

£2

(W &) (w” = & — AF) — 3w — &)
Z EE_(E+-E-)

p-)

X [E_é{w—E.)~ E_é(w+E.)— E_b(w— E_)+ E 8w+ E_)]. (3.13)

3.1.2 Isolated Planes and Chains, Normal State

The limit of isolated chains and planes can be found by taking t; — 0 in Egs.

(3.14) and (3.15). Furthermore. in the normal state Ag = 0 and
2 .
i = Tzotw_fz)
N £

It is worthwhile evaluating this explicitly since the integrals can be done analytically and
provide a basis for comparison with later (and more complicated) DOS. Taking &) and &
from Eqs. (2.10) and (2.11) we get

p2 = —-Zétw-‘-"mcm( ) + 12)

1 1 W
; 4 ] 92 #2 < 1
=T Jaod = (w )2 | 202 (3.16)

0 otherwise
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Figure 3.1: Density of states for the decoupled plane-chain system in the normal state.
Analytic expressions for these DOS are given in Eqs. (3.16) and (3.17). There is a logarith-
mic divergence in py at w = —y; and two square root divergences at the band edges of po.

The band parameters are o) = 100 meV. o2 = 80 meV. p; = =80 meV. pa = 40 meV.
and

1
= Z J(w + 207 [cos(kz) + cos(ky)] + I'-l)
N %

8 1 K [40’1—|w-.'-_u1|]2 W+ gy
= { ™40y + |w+ uy 40 + |w = gy 40 (3.17)
0 otherwise

where K is the complete elliptic integral of the first kind. The propertics of K(x) are
deseribed in Abramowitz and Stegun. (Abramowitz and Stegun 1972) The most important

things to know are:
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1. The domain of K(z)is 0 <z < 1.

2. K(z) increases monotonically with increasing .
3. K(0)==/2

4. K(z) diverges logarithmically as ¢ — 1.

Equations (3.16) and (3.17) are plotted in Fig. 3.1. The divergences in p; and p» are due
to van Hove singularities (VHS) in the energy dispersions £ and £. Van Hove singularvities

occur because
1

IV r&ilko)|
where £i(ko) = w. When Vi&;(%o) = 0. the integrand in the DOS equation diverges. How

Ow—-&) = (k= ko).

this divergence manifests itself in the DOS depends on (1) the nature of the divergence and
(2) the dimension of the system. A rule of the thumb is that as the dimension of the system
is increased. the effect of the vHS is lessened. The occurence of vHS in tight binding models
has been studied by Jelitto (1969) for a number of crystal structures.

Consider a band with dispersion &. At a band edge. £ is an extremum. Near a

minimum. £ can be expanded (in the simplest possible case) as
k3 1 dimension
S= QA2+ A3 2 dimensions (3.18)
K2+ 42+ k2 3 dimensions.

Near the band minimum. then.
2
W= r £
) = 5 36w~ &)

8(w)//w 1 dimension
~ ¢ f(w) 2 dimensions (3.19)
V@#(w) 3 dimensions.
where 8(w) is the step function. In Fig. 3.1. the divergence in p» at the band edge occurs

because the chains are a one dimensional system. Similarly. the discontinuity in p; at the

band edge is a direct result of the two dimensional nature of the planes.
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A second type of vHS is the saddle point singularity. which can occur in systems
of two dimensions or higher. A simple example of a vHS is for a band with the structure

k2 -k 2 dimensions
Ek = ) 5 - (320) -
k: = k7 +tocos(k.)® 3 dimensions.

In the two dimensional case. the vHS is at &, = ky = 0. where & = 0. and the DOS in the
neighbourhood of this point is :

plw) ~In{w) (2 dimensions). {3.21)

For & there are saddle point singularities at k& = (0.£7) and & = {£w.0). at which points
§1 = —u1. In Eq. (3.17). the logarithmic divergence is hidden in the elliptic integral. which
diverges when its argument is 1 (which in this case means w — i)

The three dimensional case in Eq. (3.20) has been chosen because. as tg = 0. it
reduces to the two dimensional case. In this way. this example is similar to the chain-plane
model. There are two vHS in the three dimensional case. The first is at hy=hy=k.=
at which & = tg. and the second is at &, = ky = 0: ky = 7 at which & = 0. In the

neighbourhood of these points. the dispersion can be written

BRI ko (3.22)
2= k2 + tylm = kR ko~

which leads to the densities of states

1-8{—w)/~w w0
plw) ~ = ( “ (3.23)

to 1=0lw—to)fw—-tg w~ to.

For smali ty. the vHS are close together and appear as a peak of width ¢y aud height 1/,
in the DOS. The slope of the DOS at w = 0~ and w = ty + 0" is infinite. while the slope at
w =07 and w = to — 0% is zero. In other words. each of the vHS appears as a sharp corner
in the DOS. As tg — 0, the two vHS combine to give the logarithmic divergence of the two
dimensional case.
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(b)

Figure 3.2: Superconductivity in the BCS model.
(a) As T is reduced below T,. the normal state dispersion (dashed line) develops a gap at
the Fermi surface of width 2A (soiid line). {b) In the superconducting state (solid curve).
a gap of width 2A opens in the normal state density of states (dotted curve). The size of

the gap has been exagerated here and typically. in a BCS superconductor A/¢p ~ 1073,

3.1.3 Isolated Plane, Superconducting State

The case of an isolated plane in the superconducting state may be studied by
letting t; = 0 in Eq. (3.14). Then

(f-)—lz(x--fi)ap —E)+(1-ﬁ)5(-+5) (3:24)
Fu™ __N- - TE W E W .o

where £ is the band energy in the normal state and E = /€2 + A? is the excitation spectrum

of the superconducting state.

For the simple BCS model with a k-independent order parameter A. and a free



electron dispersion £k. Eq. {3.24) can be reduced to a one dimensional integral
x 3! .
pw>0)= [ deN) (1 + f) §(w~ E). (3.25)
-

where N(£) is the density of states in the normal state. Clearly. the integral will vanish for
w < A so that there will be a “gap” in the DOS—that is. p(w} = 0 when |w] < |A|. The
superconducting gap introduces band edges into the dispersion at § = +A [see Fig. 3.2(a))
and. since the integral in Eq. (3.25) is one dimensional. there is a square root singularity in
the dispersion at w = %A [recall Eq. (3.19)]. The DOS for a BCS superconductor is shown
in Fig. 3.2(b).

If. on the other hand. A, is not constant over the Fermi surface. then it is not
possible to reduce Eq. (3.24) to a one dimensional integral and the effect of the vHS is
weakened. As an example. we will consider a simple two dinmensional model in which
£ = k72 =y and A, = Agcos(24). The coordinates k and ¢ are radial and angular
coordinates in k space so that k; = kcos(¢) and &y = ksin(¢). The quasiparticle spectrum

in the superconducting state is

E(k.6)= /G + 43

and there is a saddle point singularity at £ = 0 and A, = Ag (fe. at the mimimum value
of £ and the maximum value of A2). There is a corresponding logarithmic divergence in
the DOS at w = A [recall Eq. (3.21)].

This divergence. however. does not correspond to a gap edge since there is a
nonzero number of states at enermies E(k.¢) < Ag. Strictly speaking then. the cnergy
dispersion is ~gapless”. although it is common to speak of the “gap structure” anyway
and states for which E{(k.$) < Ay are described as -inside the gap”™. The usefulness of
such language is that the logarithmic divergence occurs at the energy w = Ay in the sume
way that the square root divergence in the BCS casc occurs at w = A, Furthermore, the
DOS within the gap is depleted in the superconducting state, although it does not vanish
completely as in the case of the BCS model.

The density of states within the gap can be described qualitatively near the Fermig
swrface. E(k.¢) vanishes at the points (ky.¢y) = (VZu.w/4). In the neighbourhood of

these points

E ~ \JI2(k = ko) + 1836 ~ g)?
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Figure 3.3: Density of states for a single Cu0O» plane in the superconducting state.

The order parameter is Ay, = Agfcos(ky) — cos(ky)].

50 that

0~ — [T [ 5_*) .
plw > 0) (0_)._,f0 Aodkfo dé (1+E 8w — E).

-

Writing Ao(k — ko) = E cos(8) and 2A¢(¢ — ¢) = E sin(8). the DOS becomes

1 % EJE (% L
P> 0~ o [T 20 fo d6 (1 + cos(6)) 6(w — E)
“‘
= 2
irhy’ (3.26)

This result is radically different from the BCS result. For the case of an order parameter
Ay which has nodes on the Fermi surface. the DOS varies linearly with w for w & Ay.

In Fig. 3.3. the DOS for a single CuQ- plane (with dispersion £ = —2t[costk,) +
cos{ky)] — p) in the superconducting state is shown. The order parameter has a daz_ye
symmetry so that there are point nodes on the Fermi surface. This case has been studied
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in detail by Zhou and Schultz(1992) who found logarithmic divergences in the DOS at

= Dot — )
V42 + A2

To order A% {2t. this is w ~ Ag(2—|u|/2¢). which is the maximum value of A on the Fermi
surface. Further. the DOS varies linearly with w when |u] < Ap.

(3.27)

It should be emphasized that the divergences in Fig. 3.3 do not appear at w = =A,.
Many experimental techniques. such as tunneling and Raman spectroscopy. define a gap Apk
as the energy of the first peak in the superconducting spectrum. This peak corresponds
to the peak at the gap edge in the DOS. For a single laver material. Apy is the maximum
value of Ay on the Fermi surface. One immmediate implication of this is that changes in
Apk with doping might not reflect a change in the superconducting state but may. instead.
reflect the changing shape of the Fermi surface. The value of w found in Eq. (3.27). for
example. is simply Ay for the single layer dez_y2 model. and it varies lincarly with the
chemical potential .

In summary. then. we can say that a two dimensional single band superconductor

with an order paramesier that has point nodes on the Fermi surface will have

1. alogarithmic divergence in the DOS which can be associated with the maximun: value

of the order parameter on the Fermi surface and.

2. a linear frequency dependence in the DOS at frequencies much lower than A,

3.1.4 Chain-Plane Model

We are now in a postion to discuss the effects of chain-planc conpling on the DOS.
There have been a number of investigations of the DOS in lavered $/N systems ( Abrikosov
and Klemm 1992: Bulaevskii and Zyskin 1990: Buzdin et al. 1992a; Buzdin ot xl. 1992h:
Tachiki et al. 1990: Atkinson and Carbotte 1995a). but this is the first detailed examination
of the DOS in which the one dimensional nature of the chains is properly accounted for.
and for which the order parameter is not s wave. All of the articles cited abowve [with the
exception of Tachike et al. {1990)] treat the N layer as a two dimensional plane. Although
this simplifies the calculations somewhat. it misses one important feature of the chain plae

model which we shall discuss shortly.
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Figure 3.4: Density of states for the coupled chain-plane system.

The density of states is shown in the normal (a) and superconducting (b) states. The

strength of the chain-plane coupling is ¢; = 25 meV. All other band parameters are as in

Fig. 3.1. In (b). the order parameter has d;z_,z symmetry. and Ag = 11 meV when T, =

100 K. The structure near the Fermi surface is quite complicated in the superconducting

state: g has a nested gap structure where 2A,; ~ 37 meV for the outer gap and 24, ~

9 meV for the inner gap. The inner gap is also seen in pa. Finally. p» has a very small

induced gap.

In Fig. 3.4. the DOS for the chain-plane system is shown in the normal and super-

conducting states. First of all. in the normal state. we can see the effect of the chain-plane

coupling by comparing Fig. 3.4{a) with Fig. 3.1. The cffects of the coupling are twofold:

1. The system becomes more three dimensional as ¢ increases. so that the divergences

of Fig. 3.1 become finite peaks of width x t. and height x 1/t, [Eq. 3.23].

2. The chain and plane states are mixed by t.. so that features originating in the chains

become reflected in the plane DOS p; and vice versa. One consequence of this is that
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p2 becomes finite over the entire width of the plane band.

To estimate the extent of the mixing. we can expand the normal state band energies to first
order in t(k)/|&1(k) — S2(k)| [¢f: Eq. (2.16)].

£y, 4+
€o ~ 31 3

where. for definiteness. we have chosen the case & — £ > 0. Evaluating Eq. (3.14} to first
order in t2/(£; — &)? we find that the contribution dp1 made to the plane DOS by the
volume §3% of the Brillouin zone is

t2 2

i)~ {[1+0 (51—_5-)'-’)]5‘“’ = 6+ il - &) 5%
) (3.28)

An analogous expression holds for dps. Equation (3.28) shows that in regions of the Brillouin
zone where t2 & (£] — £2)°. the mixing of py and p2 is O3 /(& = E2)2). 1T 82 > (£, = &a)°.

on the other hand. then

and
dpy ~ opo. (3.30)

In other words. features originating in regions of the Brillouin zone in which t2 3 ( ) = Eu)*
appear in p; and p» with the same weight.

The two different limits contained in Eqs. (3.28) and (3.30) are illustrated quite
neatly in Fig. 3.4 (b). where the DOS necar the Fermi surface is shown in the superconducting
state. To begin with. p) has a nested gap structure. in which the outer gap has 28 ~
37 meV and the inner gap has 2A,; ~ 9 meV. The outer gap is the intrinsic gap in the
CuOQz plar:es and. although its valuc is reduced slightly by the chain-plane coupling. we ca

still use Eq. (3.27; to estimate its value. We find that

A ~ 164y

~ 18 meV.
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Figure 3.53: Structure of the superconducting gap on the Fermi surface.
The Fermi surfaces of the coupled chain and plane layers is shown (solid line) in comparison
to those of the isolated layers (dotted line). The value of E_ is shown along the Fermi surface
in the superconducting state (dashed line). In chapter 2. we took this as the definition of
the “gap™. Local maxima in the gap correspond to van Hove singularities of the saddle
point type in E_. and therefore appear as peaks in the DOS. Three regions which are of
interest in the discussion of Fig. 3.4(b) are indicated: the saddle point at A is due to the
intrinsic gap in the CuO2 planes and it appears as the outer gap in Fig. 3.4: the saddle point
at B appcars as the inner gap in Fig. 3.4: the induced gap in the chains near C is so small
that it is nearly invisible in Fig. 3.4. In tunneling experiments done at finite temperature.

p2 would have an apparent zero bias anomaly.
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in agreement with Fig. 3.4. We can also se¢ that the peak associated with the edge of the
intrinsic gap is only weakly reflected in p». In Fig. 3.5 we show the regions of the Brillouin
zone which contribute to the outer peak. and the reader can easily see that t2 & (£ = &)=,

The source of the inner gap is also indicated in Fig. 3.5. The inner gap is due
to a vHS in the neighbourhood of the avoided Fernii surface crossing. and consequently it
appears with roughly equal magnitude in py and p». The width of the inner gap can be
estimated as the value of E_ near the avoided crossing. The equation for the Fermi surfaces
is £1€» = t2. and near the avoided crossing € ~ &» ~ xt. The two choices of sign reflect the
two pieces of Fermi surface. In order to choose the Fermi surface indicated in Fig. 3.5. we
take §) = £ = —t. Furthermore. at this point. £_ is a maximum when 2{k;) is a maximun.

ie. at k; = 0 where t = 2t . At this point A; ~ 7 meV and the inner gap is

apk b E_

Yy
9

~ 3.5 meV,

Again. this estimate is in reasonable agreement with Fig. 3.5.

The final feature of note is the very narrow induced gap in pa. In Fig. {3.5). we
show the section of Fermi surface responsible for the small gap. and we can estimate its size
by noting that. whenever ] + &3 > t°.

$2

-t
TN

E_~ A=

ey
—

= 0(0.1 meV).

Experiments which are performed at temperatures greater than ~ .1 meV (~ 1 K) will not
see the induced gap. but will instead see a finite density of normal electrons. In other words.
it will appear as if there is a finite DOS at the Fermi surface.

This last result is significant and we will summarise it concisely: because the chain
and plane Fermi surfaces have very different shapes. there are sectious of the chain Ferwi
surface on which t2/(¢; — £2)° « 1 and the induced gap is an order of magnitude (or
more) smaller than in the planes. This result is independent of the symmetry of the order
parameter. and is a feature of the proximity coupling of the chains and planes.

One of the weaknesses of other S/N models is their failure to treat the chains as

one dimensional. By taking the N layer to be a two dimensional plane with a1 similar band



structure to the S layer. it is possible—with an appropriate choice of parameters—to have
the S and N Fermi surfaces in sufficient proximity that ¢2/ (€1 + £3) is never small on the N
Fermi surface. These models. therefore. have tended to predict that the gap in the chains

can be of the same order as the gap in the planes.

3.2 Experiments

3.2.1 Tunneling experiments

Tunneling experiments provide a direct measurement of the electronic DOS in su-
perconductors. Historically. they are significant for providing ea:ly experimental confirma-
tion of BCS theory (Giaever 1960). The basic tunnel junction consists of an SIN multilayer
where the S and N layers are superconducting and normal metal electrodes respectively. and
the I layer is a thin insulating layer. In the original experiment of Giaever, for example. the
current-voltage (I-V) characteristics of a Pb/AlO/Al junction were studied. The insulating
AlO layer was 10-20 A thick. so that a small voltage (millivolts). was sufficient to drive a
measurable tunneling current through the junction.

The theory of SIN tunnel junctions can be extremely complicated (Wolf 1983).
and we will restrict ourselves to the simplest possible model. in which the junction can be
characterised by a single electron tunneling matrix element T},. A simple application of

Fermi’s Golden rule gives the current.

2 ” ‘ .
I= :BE z ITkQI-{f(EL)[l - f(fq}] -— f(Eq)[l - f(Ek)]}o(Ek + eV — Eq)-
- (3.31)

where it is supposed that the superconducting side of the junction is at a voltage eV’
relative to the normal side. The labels & and g refer to the superconducting and normal
metals respectively. and E; and §q are their respective energy dispersions. The function
f(z) is the Fermi function and the products FIEQY = F(&)] and f{&)[1 — f(E)] describe
the availability of initial and final states for the forward {from S into N) and backwards
(from N into S) tunneling processes respectively. It is comuon to make the simplifying
assumption that {Ti,|" is independent of & and ¢. in which case

Ix [Tl"’fdupg(w + eV )px(w) [tmﬂl(M) - tanh(‘%))] .

2

(3.32)



where pg is the DOS in the superconducting material and py is the DOS in the normal
metal. In the zero temperature limit.

.
I % [TPox(0) jo " dwpstw). (3.33)

where the approximation is made that py{w) is approximately constant over the range
0 < w < eV. The tunneling conductance. G(V) = 8I/9V. is therefore

G(V) x ps(el). {3.31)

At low temperatures. then. the tunneling conductance may be compared directly with the
electronic DOS.

Despite the long history of the experimental technique. tunneling experiments
involving the high T, materials have provided confusing and contradictory results. Early
experiments on SIN junctions were marred by the poor quality of the superconductors. The
need for an undamaged surface at the SI interface cannot be overstated for the high T,
cuprates: the coherence length along the ¢ axis in the cuprates is typically of the order 4A.
and since this is the characteristic length scale over which A may vary spatially. the order
parameter at the surface of the superconductor will be determined to a large extent by the
crystal structure at the surface. Tunneling experiments probe the DOS at the surface of
the crystal. so it is crucial that the surface be free of damage.

In Fig. 3.6. the tunneling conductivity is shown for a YBCO /Pb junction. From
the peak to peak distance in the tunneling spectrum. the gap can be estimated as 24, ~
40 meV. which is consistent with most of the literature on the subject. It is interesting to
note that the DOS agrees quite closely with the total DOS ( p1 + p2) of Fig. 3.4: The gap
appears to have a nested structure. with an inner and outer peak. and there is a significant
zero bias anomaly.

The most common criticism of the YBCO/Ph Jjunction experiments is that the
quality of the surface adjacent to the junction is unknown. In an cffort to preserve the
integrity of the surface. scanning tunneling microscope (STM) teclmigues were developped
to probe the DOS. The advantage of STM is that there is no contact between tlie probe zuid
the surface of the superconductor so that the surface is undamaged by the experiment. In
STM tunneling experiments. the N electrode is the tip of the STM probe. and the I layer is
the small gap between the tip of the probe and the sample surface. The STM probes only

a small region of the crystal surface (~ a few A?) and is therefore likely to be able to probe:
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Figure 3.6: Tunneling conductance through a YBCO /Pb junction.

The conductivity is measured through a macroscopic SIN junction (Dynes 1997,

a single layer type. while a macroscopic junction will see an average of all exposed layers.
In a recent article. Hasegawa et al. (1995) suggest that the structure of the gap seen in
Fig. 3.6 is a mix of chain and plane DOS. Using an STM technique. they measure DOS of a
single CuO2 plane and find an s wave gap with relatively little structure. When they grow
their thin films with a (110) orientation. so that both chain and plane layers are exposed
to the surface. they find a DOS which looks much like that of Fig. 3.6. It is interesting to

note that they also see a large zero bias anomaly in the chains.

Although Hasegawa et al. have consistently reported seeing an s wave gap in both
YBCO and BSCCO STM experiments for a number of Years, there is a reasonable fear that
these results are due to Coulombic effects. The capacitance of the STM probe is very small.
so that a small buildup of charge on the probe tip can lead to a ~Coulomb blockade™ —an
energy barrier which must be overcome for tunneling to take place. The Coulomb blockade
manifests itself as an apparent s wave gap in the DOS. In their defense. Hasegawa et al.
point out that the size of the Coulomb blockade should depend on the distance between the
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Figure 3.7: Tuaneling conductance for BSCCO SIN junction.
The conductance is measured using an STM with a gold tip (Renner and Fischer 1995).
The solid curve is the experimental data at 4.8 K. the dot-dashed curve is a BCS fit (s wave
gap) with a small pair-breaking contribution. The dashed curve is the asymptotic low-bias

behaviour predicted for a d wave symmetry.

tip of the probe and the sample. since that affects the capacitance of the junction. but that

they find no change in the gap width with probe/sample distance.

A recent paper by Renner and Fischer(1995). which reports on STM measurements
of BSCCO samples. contradicts Hasegawa. In a careful invesiigation of a single CuQ. layer.
they find a tunneling spectrum which is inconsistent with an s wave gap. Their results
are reproduced in Fig. 3.7. and are strongly supportive of a gap with nodes on the Fermi
surface.

3.2.2 Low Temperature Heat Capacity

One of the chief advantages of specific heat measurements as a probe of the low
energy DOS is that they measure the DOS of the bulk of the sample. and not just of the
surface. The relationship between the specific heat C, at low temperatures and the DOS is
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straightforward. The total energy of the crystal is

(H) =3 Eitf(Eix) + const.. (3.35)
ik
so that
% ==-20%% 5 Eif(Ex). (3.36)
k =

where the prime indicates the derivative of f with respect to SE.. Inserting Jdwblw—~Ez)
into Eq. {3.36) gives

O(H)
T

where p(w) = p1{w) + p2(w) and

— N5 '[_ ” dwplwh? (@), (3.37)

9
7 2 20w —Ez) = plw) +p(-w).  (w>0).
ok %

As it is written. Eq. (3.37) is dimensionless. We change the units to J/mol K by letting

N = 6.02 x 10?3 and multiplying by kg = 1.38 x 10~ J/K. The specific heat becomes

C, = 8.313° f_ = dwplw)wr® f'(w) {3.38)

J
mol X~
where we recall that p(w) is the DOS per unit cell

At low temperatures. f'(w) is strongly peaked about w = 0. and p(w) can be

expanded in w. If the DOS near the Fermi surface is of the form
plw) ~ p(0) + p'(0)w (3.39)
then
Ce = 1T (3.40)

where

2 sech=(z/2)

o
o = 8.31,0(0)[ drz
o 3

{3.41)

and the term proportional to p'(0) vanishes. If there is a gap with a nodal structure.

however. we liave scen that the DOS is actually

plw) ~ p{0} + blw| (3.42)



where b= p'(07) = |p’(07)|. In this case
Ce = 1T +aT>. (3.43)
where

e 5 sech?(z/2
= 8.31b f dz |op SERE/2)
—x 1

(3.44)

If the DOS at the Fermi surface is nonzero. then C,.{T) will have a linear component. If the
DOS at the Fermi surface is a local minimum. and rises as |w| away from the Fermi surface.

then C, will have a gquedratic component.

In Fig. 3.8. the heat capacity for the chain-plane model is shown in the normal
and superconducting states. In the normal state. C, is lincar. iudicating a finite DOS which
is constant over the energy interval considered (10 K). In the superconducting state. the
linear component in Cy, is reduced by an order of magnitude. and is due to the large nonzero
DOS in the chains. The quadratic term is due to the lines of nodes in the gap along tle
plane Fermi surface at k; = =k,. The coefficients of the lincar and quadratic terms are
Y0 = 6 mJ/mol K?and a = 0.4 mJ/mol K*. and arc comparable to those found in specifie
heat measurements. Moler et al. find. for example. 5, = 3.06 mJ/mol K* and « = 0.11
mJ/mol K3 (Moler et al. 1994). Agreement between their value of o :nd the one found
here is fair. Moler et al. also make a prediction for a based on a simple d wave mode) aud

estimate a ~ 0.2—0.3 mJ/mol K3. which is closer to the value we find Lere,

The agreement between the value of vy found by Moler et al. and the value foud
here is interesting. Phillips (1994} has commented that no experiment Lias found 2 value of
~o which is substantially less than 4 mJ/mol K2. suggesting that it is an intrinsic property
of Y-123. As we have indicated above. the lincar term is due to a finite density of states st
the Fermi surface. Our proximity model suggests that the finite density of states is due to
the smallness of the induced gap on certain regions of the chain Fermi surface (marked as
“C” in Fig. 3.5). For temperatures which are higher than the energy of the induced gap.

these regions of chain will appear to be normal. leading to & lincar term in C(T).
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Figure 3.8: Heat capacity of the chain plane model.
The heat capacity is shown for the normal {upper curve) and supcrconducting (lower curve)
states. The points are the results of numerical calculations. while the dotted lines are the
resitlts of a least squares fit of C, = %7T + oT>. The fited parameters in the normal state
are 30 = 17 mJ/mol K* a =5 x 10~ mJ/mol K3. For the superconducting state they
are 99 = 6 ml/mol K2 a = 0.4 mJ/mol K3,



3.2.3 Low Temperature Knight Shift

In the preserce of a static applied magnetic field B = Fo3 /3 is the unit vector in
the = direction). an isolated nucleus has an interaction enecgy U between che field and the
nuclear spin (Kittel 1986):

U=—gugBym..

where g is the Landé g factor. 3 is the Bohr magneton. and m. is the quantum number
for the = component of the nuclear spin. The nucleus will then absorb an applied r.f. feld
at a resopant frequency wp which is determued by the energy difierence between adjacent

quantum levels:
Fuwy = gugBy. (3.40)

For a nucleus in the presence of electrons. the resonant frequency is shifted by the
hyperfine interaction. This shift is known as the Anight shift and is denoted by A, The
nucleus can interact with both the electron orbital moments and electron spins. It is the shife
Ks due to the electron spins in which we are interested here. and in the experiments with
which we shall compare our results. the orbital contribution Ko to the shift is subtracted.
As we shall see. a measurement of the the Knight shift due to the electron spins gives a
direct measuremtent of the Pauli susceptibility. The Pauli susceptibility g of an electron
gas is defined as 9M/partial B. where M is the magnetization of the electron gas. and B s
the applied magnetic field.

The energy of the nucleus in the presence of conduction electrons is shifted by &7

due to the electron spins (Kittel 1986).
6U = a(S.)m.. (3.16)

where (5;) is the total spin of the clectrous and a is a prefactor which is determined by the
overlap of the electron wavefunctions with the nucleus. The shift in the resonant fregueney

is therefore
Ks =alS.)/h. {3.47)

Since (S:) is related to the magnetization of the sample. it is possible to determnine the
Pauli susceptibility from
_ hpg OK

. 5. 3.48)
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In general. a is not known, so that it is only possible to determine relative changes in xo
(with temperature, for example).

When there is no external field. {S.) = 0. For a finite field. however. the electron
energies are shifted by £gupBy. depending on whether the electron spins are aligned with
(=) or against (+) By. The total spin of the electrons becomes

(8:) = g(nf -n). (3.49)
where
ny = ZL F(Ei — npBo) (3.50(2))
ny= _‘zkf(Eik + pgBy). (3.50(b))
| (3.50)

The index i in the sum is the band index. and Ej are the band energies in either the
superconducting or normal states. The superconducting condensate is ignored in E. (3.50)

since. for singlet pairing. n. = n;. As before. we can insert J dw d{w — Ey) into Eq. 3.50 to

get
. _h > .
Ks=3 [ dwplw)lfw=usBo) = flw+ usBoll (3.51)
In the limit of weak magnetic fields (ugBy < kgT).
- BU e 3 2 !
K x —f dw p{w)secir~(w: /2T ). (3.92)
T J-=
so that
1 = 5 -
Xo X = / dw plw)sech?(w/2T). (3.53)
TJ-x

While Eq. (3.53) applies at all temperatures. it must be remembered that p{w)
is a temperature dependent quantity due to the temperature dependence of Ag. For low
temperatures. Qg is approximately constant. so that we can use our zero temperature
density of states to calculate the susceptibility (¢f. Fig. 2.4). The spin susceptibility.
calculated for three different cases is shown in Fig. 3.9. In one case. the susceptibility is
calculated for a conventional BCS superconductor with 7. = 100 K and 2A kBT, = 3.52.

Because thereis a true gap in the DOS at the Fermi surface. the thermal pair breaking—and
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Figure 3.9: Low temperature Pauli susceptibility.
The susceptibility is showx for an s wave model (short dash). a d wave niodel (long dash)

and the chain-plane model (solid}. 7'he curves are calculated from Eq. (3.53).

therefore the susceptibility—is exponentially small at low temperatures. In the second case,
Xo is found for & single d wave layer. Its linear temperature dependence is a direct resuit
of the lincar energy dependence of the DOS ncar the Fermi surface. Finally. xo is shown
for the chain-plane model. It rises sharply at low T and then exlhiibits a linear behaviour
similar to that of the d wave case. The rapid risc in x¢ at low T is due to the small size of
the induced gap in the chains. The finite value of xy at T = 0 implies that there is a finite
DOS at the Fermi surface. While we know that this is not strictly true. it is an indication
that there are n significant number of states with an energy less than the thermal cnergy

kpT at which the lowest point is calculated.

In Fig. 3.10. the Knight shift for a Y-123 powder is shown {Ishida et al. 1993).

The data for the clean Y-123 has been fitted phenomenologically to a d wave model in whicl
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Figure 3.10: Knight shift with orbital contribution subtracted.
The three different data sets show the effect of zinc doping. The optimally doped material
(triangles) has a linear low frequency temperature dependence and is fit by a d wave model
in which 2A,/kT, = 8 (Ishida et al. 1993).

289/kBT. is treated as a free parameter. The fit is best when 2A4/kpT. = 8. Although the
fit is quite reasonable, it is not the result of self consistent application of d wave theory and
should not simply be taken as evidence of d wave symmetry. It should, however, be taken
as evidence that the gap has nodes on the Fermi surface. The need to adjust 2A0/kpT,,

reflects the fact that in a simple d wave model | Vi A4l is too small near the nodes.

Ore of the most striking differences between Fig. 3.10 and Fig. 3.9 is that experi-
mentally, the spin Knight shift is found to vanish at T = 0. This is an artifact of the way
in which the data is presented. The Knight shift which is experimentally measured has
contributions from both the spin-orbit coupling and from the Pauli susceptibility. In the
measurements of the Knight shift. it is assumed (at least for the clean materials) that the
spin-orbit contribution is independent of *cmperature and that the spin contribution van-
ishes at T = 0 (Barrett et al. 1990; Takigawa et al. 1989; Ishida et al. 1993). It is standard
practice to take the spin Knight shift to be K5(T) = Kiotal(T) = Kiora1(0). In Fig. 3.10
Rioal(0) is of similar magnitude to Ks{T) in the normal state. Knight shift experiments



will not reveal. therefore, whether or not there is a finite spin susceptibility at T ~ 0.

There have been at least two attempts to explain the Knight shift data using spin
fuctuation models (Monier and Pines 1990: Bulut and Scalapino 1992). In both of these
works. the ratio Ag/T is again treated as an adjustable parameter. Although the fic is quite
good in both cases. it is reasonable to question whether this is guaranteed for any model
in which there are nodes in the Fermi surface and for which Ay/T is adjustable. Some of
the early uata (Takigawa et al. 1989: Barrett et al. 1990) has been successfully fitted to a
layered s wave proximity model (Tachiki et al. 1992).

3.3 Summary

In this chapter. we have compared the density of states of the chain-plane model
introduced in chapter 2 with tunneling. low T specific heat and Knight shift experiments.
We found that both tunneling and snecific heat measurements sce a finite density of nor-
mal carriers at the Fermi surface for the lowest temperatures at which measurements are
made (T ~ 2 K). We argued that this was consistent with our model. The temperatire
dependence of the Knight shift. however. does not agree with our model. It should be
remembered. though. that Knight shift measurements are problematic because they e
unable to clearly distinguish between contributions due to normal electrons at 7 = 0 andd
contributions due to spin-orbit coupling. Kuight shift measurements still disagree with the
chain-plane model because they do not see the dramatic change in the slope of Kg{T) below
T = 2 K which we see in our calculations. For the data presented, 2 K is slightly helow the
lowest temperature measured.

One should not naively expect to find a sudden change in the behaviour of the
Knight shift and specific heat measurcments below T ~ 1 K. liowever. A point which we
have made but not emphasised is that the values of the gap scen by these experiments
depends strongly on the band structure. By this. we do not men that Ay vawtes strongly
with the band structure. but instead that the value of Ay near the Fermi surface will chianug:
as the Fermi surface shape changes. More importantly. the value of the induced gap i the
chains depends dramiatically on the relative shapes and locations of the plane and chiain
Fermi surfaces. While the qualitative structure of the caleulations we have presented are
independent of the band parameters. the energy scales at which they vecur depends on the

band structure.



In summary. then, we can say that specific heat measurements suggest that there
is a finite fraction of normal electrons at low T (~ 1 K) in Y-123. The fraction is substantial
since. in our calculations. the ratio of the linear terms in the normal and superconducting
states is Yosup/Vooor ~ 2{0)sup/P(0)nor ~ 1/3. in rough agreement with experiment (Moler
et al. 1994). It is unlikely that Knight shift measurements have anything to say on this
matter. With our model. we have made a suggestion as to the source of the normal state
clectrons. These electrons would not be visible in dc measurements (such as the penetration
depth, which is calculated in chapter 4) but would be visible in the optical conductivity.
which this model would predict to have a Drude peak along the chain direction.



Chapter 4

Penetration Depth

4.1 Introduction

In the following article. we calculate the penetration depth A for the chain-plane
model. The penetration depth is the (microscopic) length scale that an applied magnetic
field can penectrate into a superconductor. It is analogous to a skin depth in an ordinary
metal. except that (unlike the skin depth) it does not vanish for static ficlds.

In order to expel an applied magnetic field from its bulk. a superconductor sets up
superconducing screening currents. The magnitude of the screcning currents (and therefore
the penetration depth) depends on two properties of the superconductor. The first is the
superfiuid density: the higher the density of Cooper pairs. the more an applied field is
screened. The second property is the band structure. or rather the Fermi velocitics of
electrons at the Fermi surface. In penetration depth cxperiments. both of these properties
are probed (Zhang et al. 1994). The temperature dependence of the penetration depth
reveals the change in superfluid density with temperature. while the anisotropy of the
penetration depth (ic. its dependence on the direction of the applied Seld) is the result of

the anisotropy of the Fermi velocity.

At the time that this article was written. interest in the superconducting properties
of the CuO chains was beginning to grow. Measurements of transport properties provide
an ideal technique for isolating the properties of the chains and planes. Penctration depth
experiments at low temperatures effectively measure a density of states which is weighter
in favour of electrons with a large Fermi velocity in the direction of the screcuing enrrent.,
The penetration depth A, (the subscript refers to the direction of the screening currents)

therefore contains contributions from both the chains and planes. while A, is determined
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purely by the planes.
The penetration depth is related to the superfiuid density n, of the single band
two fluid model by

where m, is the (diagonal) effective mass tensor. It is not a simple matter of taking
the difference between A72 and A;? to find the superfiuid density on the chains since the
anisotropy of the effective mass tensor is unknown. In fact. in a multiple band model the
effects of the band structure can not really be reduced to an effective mass tensor. In order
to interpret the penetration depth measurements. therefore. it is necessary to calculate the
penetration depth based on a multiple band model of YBCO.

There is a sliéht change of notation between this paper and the work which has
preceeded it, The symbol 2y is the coefficient of the chain-plane coupling strength. It is
defined such that tg = 2t,.



Effect of proximity coupling of chains and planes
on the penetration-depth anisotropy in YBa,Cuy,Oy

W. A. Atkinson and J. P. Carbotte
Depertment of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S M1
(Reccived 12 May 1995)

We calcuiate the penetration depth A in the o, 5, and ¢ directions for & simple model of
YBuCnOr.hthhmoddthuummhmMaCanphundlCuom—pc
unit cell. There is a BCS-like pairing (both s-wave and d-wave are considered) interaction kocal
insed in the CuO; planes. The CuO chains become superconducting at temperatures lower than
T becanse of their proximity to the planes and there is an induced gap in the chains. Since the
temperature dependence of the penetration depth in the b direction (along the chaina) is sensitive to
the size of the induced gap, the diffierence between the shapes of the penstration depth curves in the
o and b directions reveals » great deal abott the nature of the condensate in the chains. We Snd that
in cur praximity model there are always regions of the chain Fermi surface on which the indueod
g is much smaller than T, 3o that the temperature dependence of A, is always different than
Md&.hpubmﬂohambuof&eof&edwmmﬁaﬁanmm
depeadences. The main result of our papes, thexn, i that a simple proximity model in whick the
pairing interaction is localized to the planes, and toe planes are coberently coupied to the chaina
cannot account for the superfiuid on the chains,
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L INTRODUCTION

It is widely believed that the source of the pairing inter-
action which is responsible for the superconducting tran-
sition in the high-T. cuprates lies in the CuQ; planes,
whick are common to all of the cuprates. Many mod-
¢ls which attempt to explain high-T. superconductivity
are two dimensional, which is a reflection of the assump-
tion thzt the only active pieces of the crystal are the
CuO; planes and that the remaining ions act as place-
holder: «r as charge reservoirs. In some materials, how-
ever, there are additional layers whose bebavior is not
clear. In Bi3SraCaCu;0Q,, for example, it has been sug-
gested that the BiO layer plays the role of a normal metal
in close proximity to a superconducting material.}

The ocly materials in which there is clear evidence
that the Cu(, planes are not the only active portion of
the unit cell are YBa;CuyOr (Y-123), YBazCu Oy (Y-
124) and their close relatives, Ir these materials there
are quasi-ope-dimensional CuQ chain structures. Ex-
petiments measuring the de resistivity,® the infrared
and optical conductivity,® and the penetration depth
in untwinned crystals® and ceramics® have found large
anisotropies between the 2 direction (in-plane, perpendic-
ular to the chains) and the b direction (in-plane, parailel
to the chains) which suggest that substantial currents are
carried along the chains in both the normal and super-
conducting state.

In the superconducting state, the source of the conden-
sate on the chains in unclear. One possibility is that the
Pairing interaction is localized to the CuQj planes, but
that the chains become superconducting by a proximity
effect. In the proximity effect, an intrinsically normal
metal which i3 in close contact with a superconductor

becomes superconducting near the junction as a result of
pair tunneling through the junction. The size of the in-
duced gap in the normal metal depends on the strength
of the coupling acroes the junction. Y-123 and Y-124 are
goodcmdnduuforpmnmlyeﬂ'ectmodubmmethey
bave the least anisotropy between the in-plane and ¢ axis
transport properties of the cuprate superconductars, and
should therefore bave a relatively large coupling between
the chains and plages.

Proximity effect models have been studied in the con-
text of high-T. materials for a number of years. The
most common point of view is that the unusual prop-
uﬁuof:hecupntumbee:phimdhyaniaompic
BCS pairing interaction which is contained in ope of
the planes.!¥=12 The idea behind most of the work is
that although the pairing interaction may be inherently
isotropic, the strongly anisotropic band structure leads
to & gap structure which may account for the unusual
superconducting properties of the cuprates. The current
authors have taken a different point of view in recent
work oz proximity effect models. 1% We have assumed
that the pairing interaction in the planes is intrinsically
d-wave and then attempted to assess the influence of cou-
pling to the chains, Closely related to the proximity
models are the S/5° mujtilayer models in which there are
two (or more) different superconducting luyers in the unit
cell. There have been detailed examinations of <he roles
played by interplane and intraplane pairing'®™® and a
few quantitative caiculations of physical properties %:10:17
but these models have been less thoroughly explored than
the proximity mode! because of their relative complexity.

In this work we address the issue of whether a prodim-
ity mode] can account for the condensate on the chains
in the YBaCuO compounds. We do this by calculating

Reprinted from Phys. Rev. B 52, pp. 10601-10609 (199%). ©1995 The American Physical Society,
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the penetration depth A for a simaple # or d wave model in
the a, b, and ¢ directions. In particular, we are interested
inwmparinsthetmpmmdepmdemuof&mdo\;
with experiment.} In our model, the unit cell consists of
a CuO; plane jayer and a CuO chain layer. The CuO;
planes contain the pairing interaction and are coupled to
the CuO chains through coherent si tunnel-
ing so that there is an induced gap in the chains. Caleu-
Iations of the penetration depth in a similar model have
been made befure, 1314 although the ictrinsically normal
layers were planes and not chains, and the emphasis was
on the anisotropy between A, and A..

Iz Sec. II we introduce our model Hamiltonian and
find the single-particle Green's functions which we will
peed for the penetration depth. In Sec. I we derive
an expression for rhe penetration depth which is suitable
for a two-band, tight binding model. The calculation
differs alightly from one we made previously.!* In Sec.
IV we discuss the results of pumericai caleulations of the
penetration depth, and in Sec. V we broaden the scope
to a discussion of the pature of the condensate on the
chains.

II. HAMILTONIAN

The goal of this section is to introduce our model for
YBCO, and to find the single-particle Green's functions
aecessary for the calculation of the penetration depth in
Sec. III. We begin with a HEamiltonian which describes
a systers with two layers per unit cell. Adjacent layers
are separated by a distance df2. The first layer repre-
sents a CuO; plane and it contains 3 BCS-like pairing
interaction. The second layer represents a CuO chain. It
has a ope-dimensiopal dispersior and is intrinsically nor-
mal The chains are superconducting, bowever, because
of their coupling to the planes through singie-electron
tunneling. The Hamiltonian, expressed in the Nambu
formalism, is

H-Nu=)_ Clk)Q(k)C(k) + const, (1)
1 3

where
(515
1
Clk) = ‘2;‘;* (2)
S

Gl -5 k) O
AL —g(-k) 0 -k | g
el 0 &R 0|

0 -t(-k) 0 -8(-k)

This Hamiltonian has becn discussed at length
elsewhere?13-15 gnd we only describe it briefly here.
The cupersiops £; and £2 are for the plane and chain
layers, respectively. We assume tight binding disper-
sions so that £ = —27{cos(kec) + cos(ky@)] = 41 and

Q=

E
g
]
;
¥
3

that u; # pg.
the matrix element t(k,) = —tgcos(k.d/2), where d/2
is the distance between the chains and planes. The
chain-plane coupling affects the penetration depth in two
ways. First, t(k,) determines the c-axis transport proper-
ties. In a previous paper'* we have shown that the ratio
AT = 0)/Aas(T = 0) vories inversely with £. Second,
t(k,) determines the size ol the superconducting gap in-
duced on the chaips, which is reflected in the temperature
dependence of A, In this work we choose to = 50 meV
which yields A3(T = 0)/22(T = 0) ~ 100, which is in
rough agreement with experimental observations.?¥32

The final feature of our Hamiltonian is that there is a
pairing interaction in the plane which drives the super-
copducting transition. As we have mentioned above, the
chains also become superconducting at T, through their
coupling to the planes. The pairing interaction in the
planes has the form Vi = Ve with ;e = 1 for an
s-wave superconductor and 7y = cos(k,) — cos(ky) for a
dya_y3 superconductor. Since the pairing interaction is
separable, the order parameter

1
sx=g > Vaw{er-wiens) {4
P

(where £ is the volume of the crystal) can be written
Ax = Lot

Diagonalization of the Hamiitonian leads to four en-
egybands By = E,, B2 = E_, By = ~E-, E; = -E+
with

i\/[e‘:;iﬁ]z +2[(6 + &)+ AZ. (5)

In Fig. 1 we show the Fermi surface for a raoge of &,
values between 0 and w/d. The Fermi surface consists
of two surfaces on which E_ vanishes in the normal
state. The two surfaces are given by the two solutions
to &1 (k)&x(k) = t(k,)?. When k, = =/d, t(k,) =0 and
the two pieces of Fermi surface are those of the isolated
chain and plane subsystems, When t(k,) # 0. the chain
and plane states form hybrid bands whose energies are
given by

in the normal state, The shift in the band energy due the
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FIG. 1. The Fermi surface for the model Hamiltonian is
shown for & range of k, between &k, = 0 and &k, = =/d.
Wbea &, = x/d, the chain-planc coupling vanishes and the
two pieces of Fermi surface ape those of the isolated chains
and pianes. As tbe chain-plane coupling increases, the Fermi
surfaces bybridize and are pushed apart. The effect of the
chaip-plane coupling is largest where the two Fermi surfaces
are closest together. There is an induced gap on the chains
whose site is greatest where there is the most chain-plage

chain-plane coupling is clearly dependent on the relative
sizes of £% and (& — £2)%. The effect of the chain-plane
coupling ou the Fermi surfaces shown in Fig. 1 is largest
in the neighborbood of the Fermi surface crossing at §; =
E3=0.

The quasiparticle operators it the diagonalized repre-
sentation are

Cilk) = 3 UL (k)C5(k), (6)
Jul

where U(k) is the 4 x 4 matrix which diagonalizes Q:
U =[Uh U Uy U] with

—(E; +
U_f:-ﬁ ’:; ' M

A=t —(Ax + E; + H)(E; + &),
B=t - (A; + E; - &)(E, - &),

C = 438 + (E; - &)
+B3[t* + (E; + &)5].
Now that we have diagonalized the Bamiltonian, we
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can find the single-pacticle Green's functions which
we will require in the following section.  Defin-
ing the temperature Green's function Gty =

(1/B)(TC;(k; —ir)CI (ks 0)), where T is the formion
time-ordered product, we have

U '
Vinm(i}U,.,; (k) @

G 'iCl)'-. T ’
Oeilds = 2 i~ B

GlaiQ)i; = j:‘ dr TGk 7)y;,

& = (2 +1)x/AG are the fermion Matsubara frequencies
and § = 1/kpT, where kp is the Boltzmann constant and
T is temperature. In our calculation of the penetration
depth we will need

4
Glar =07)y = 1 T GulWfEMIL M), ()

iml

where f(z) = 1/[1 + exp(8z)].

We finish this section with a brief discussion of our
usage of the word “gap.” In the model presented above,
there is only one order parameter, Ay, and it describes
the condensate in the CuQ; planes. For a separable po-
tential, Ay bas the symmetry of the pairing interaction,
In a multiband material, however, A, is not simply re-
lated to the pair wave function, For example, the anoma-
lous (Zre=n's function (which is easentially the pair wave
function) in the CuQ; plane is

A 2 .2
Glliwha = - =8 ':b,‘f_';') (‘,,fi) =5

Notice that the symmetry of G;3 is not the same as the
symmetry of Ay. For this reason, the term “gap” is kept
distinct from the term “order parameter,” which refers to
Ay- Perhaps the most useful working definition of “gap”
is that it is the value of E_ on the Fermi surface. Clearly,
by this definition, the gap is k dependent. In regioos of
the Brillovin zone where a section of Fermi surface has
predomisantly chain (or plane} character, the gap can
be associated with the chains (or planes). It is wrong to
think of the pairs being localized to the chains or planes.
bowever; the pairing amplitude between an electron in
the chains and an electron in the planes {measured by
Gy and Gi3) is nonzero. In fact the picture of a gaAp
belonging to a plane or a chain breaks down in regions
of the Brillouin zone where the Fermi surface is a strong
bybridization of the chain and plane bands.

IIL. PENETRATION DEPTH

The pegetration depth is found using an approach
which is suitable for the tight binding Lmit. This sp-
proach is slightly different than that of our previous
work, 14 although it yields quantitative results which are
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Dearly identical. As we shall see, however, the current
method, which is based on one wed by Hirsch and Mar-
siglio for a one band tight binding model,® is more sat-
isfying from a physical point of view.
Wehﬁnby'ﬁﬁn;mthemmjointhe
sbeence of 3 magnetic fisid:24

bola=0)= _[ Pri(r)

= ‘f{ng.p], (10)

where

P~ Ricl(Ry)a(Ry) (11)
LRy

is the polariration vector and H® is the Hamiltoniar in
the normal state. The aperator ¢} (Ry) creates an elec-
tron in the Wannier state located at the sublattice point
Ry. The set of points {R; } refers to the plane sublattice
while {R3} refers to the chain sublattice. The Wannier
representation is connected to the k-space representation
by

1 &
(R = —= ;e ERiei(k), (12)

where NV is the number of lattice sites.
In the normal state the Bariltoniau, Eq. (1), can be
written in the Wannier represertation as

2
Hy =~ 3 cicl(Ri+r)es(Ry)

wml Ry

_-‘; z {c; (R;)cz(nﬂfﬁt,-ﬁuﬂ-ﬂ:
Ry,Ra

<+ Sg‘_un_x,] + H.c.} . (13)
Thevectorni:thcdi:phcmemtothemuﬁtneighbon
of Ry within the plane, i is the unit vector in the z direc-
tion, and H.c. indicates the Hermitian conjugate. This
Hamiltonian describes nearest neighbor bopping both
within and between the chains and jlynes. Substituting
Eqa. (11) and (13) into Eq. (10) we get

Jo= % Y aincl(Ry +r)ei(Ry)
LR

-2 i [l Rules(R, +id/2)
R

- e} (Ru)ea(R, - 2d/2) - m-,] . (14)

Inthepmenoeofaﬁnitemagnc:icvzcwrpotmﬁal

A(r), the tight binding Wannier states are modified by
a phase so that

CilR) = ex(Be) exp [—;—:n. : A(B-c)] .

whete ¢ is the apeed of Light, The assumption is made
thn:hcvmrpocenﬁuhdwlynrﬁngmthe!ength

(15)

snleofthecryualhtﬁce,mdveﬁnmbmeofthe
fact that A(q) is strongly peaked about q = 0
out this section. Tolinuro:derin.h,ﬂnn.Eq.(Ia)
becomes

B =H~ - Alg=0)

and Eq. (14) becomes

(18)

imio= 5 3 conlrn- AR+ e
LRy

_if_.;gf; Tale- AR [lRadea(R, +if2)
Ry

+ c}(Ra)ez(Ry — 2d/2) + H.c.] . a7

In the presence of a magpetic field, the observable current
is given by (j}, avd not (ja}. We can rewrite Eq. (17) in
a k space represeatation using Eq. (12):

jt@=0)= 2 3" [C'rRCk)
k

- 2qC'0F - Ar=0lcmw)]. (8

Theveczorﬁ'gisa4x4m:rixwi:h:heespnialoom-
ponents. It is essentially the Fermi velocity

s = (-1 52,

where Q;; is the Hamiltonian matrix of Eq. (3) and the
fctor (—1)'! comes from the fact that C; annibilates
electron states for i = 1,3 and hole states for 1 = 2.4.
The dyadic 7 is also a 4 x 4 matrix and it is essentially
the effective mass tensor
o= 29
T T
The first term in Eq. (18) is jo(q = 0) while the second
term contains the remaining two terms in Eq. (17).
The curreat {j} which is generated by the applied mag-
n:ﬁcﬁddisgiwn.tolinmord:rin&bythel(ubo
farmula®

Geen = Gono+ § [ ar < [—ésn(e') -A(t‘J..io(t)D :

[}

In the London limit, for the case of a static applied field,
this gives

G = Gleo ~ 5 3~ GLO.G0AL),  (19)
where
A3
Gl la,q i) = -F:I— /; dretr

x(Tjou(ql -i?)jﬂv (q’l 0))0.
G"isthecmmt-cmrea:oomhﬁonfuncﬁon.'r'uthc



bosan time-ordered prodict, wy = 2ix/AS are the boson
Matsubara frequencies, and i apd v refer to the spa-
tial components of jo. The expectation values ()o are
taken with respect to the zero-feld wave function, It
is strai to evaluate G in terms of the single-
particle Green's functions:

GLu(0,0rin) = limg F;% 3 T (G it = iar}uu
"]

% Glk + q; 36 ) Fies ] - (20)

The first term in Eq. (19) is the diamagnetic contribo-
tion to the screening current. Using Eqs. (9) and {18) we
may evaluate this explicitly:

G(eNaim = 5 T Glaia "
1
= o ST [Glkir = 0707 - Ale)
3

4
- o S S B AR, (210)
k

[T}

where Tr is a trace over the components of the ¢ x 4
matrix contained in the square brackets, and ¥ =
UT(k)FLU(k). In order to derive Eq. (21a), we bave
used the fact that (jo)o = 0 and that A(q) is peaked
about q = 0. The second term in Eq. (19) is the param-
aguetic contribution to the screening current. Evaluating
Eq. (20) explicitly we have

4
Ghoam =~z 3 3 - AT

ijml k

) = FLE;
- 5 (B L1E)

' (21b)

where 9 = Ut (k) U (k). This expression for the para-
magnetic current is the same as iz Ref, 14 where it was
discussed at length. We will oxly repeat the points which
are directly relevant to the current work, and the inter-
ested reader is referred to our earlier work The total
current produced by the magnetic field is

{) = (ldin + () para

==-K-A. < "{“( (22)
It is straightforward to show that K., = 0 f o # &
(recail that i and i refer to spatial directions) so that
the penetration depth 13 given by

-}-=K,.,..

o (23)

This is the main resuit for this section. Iz order to plot
AZ? a3 a function of temperature in Sec. IV, we must

Twmh%(m)w(m)m

We will finiah, this section with a few comments about
Equ. (21a) and (21b). In the usual treatment of the pene-
tration; depth the diamagnetic contribution to the screen-
ing current is jyi, = ~neA /me, which is independent of
temperature. The temperature dependence of the pene-
trl:iondepth.then,m&m:hepmmamcuc' con-
tribution to the screening cutrents whick, for a one-band
free electron metal with an isotropic gap, is

Spara = -% j: de [’ ]2 %El, (24)

where £ = [ + A%]1/2, »! ix the Fermi velocity, and u
is the chemica! potential. The paramagnetic term counts
the pumber of thermal excitations ({broken Cooper pairs)
which degrade the screening current. At T = 0 the para-
magpetic term vanishes, so that j = —nz?A/me. When
4 = 0 the paramagnetic term cancels the diamagnetic
term exactly so that j = 0. For systems which are more
complicated than the free electon gas, it is common to
make the approximation jaia = —jpasal awg- TBE APprox.
imation is exact at T = T, and, provided the temper-
ature dependence of the diamagnetic term is weak,
approximation is a good one. This is the appraxima-
tion we made in our previous discussion of the two-layer
model.}* In the current work, however, we have treated
Jdia in 3 fashion which is more consistent with the tight
binding model, so that while Eq. (21b) is the same as
we found previously, Eq. (21a) is different. There ia Jittle
quantitative difference between the two approaches, how-
ever, since both expressions for the diamagnetic current
are weakly temperature dependent and both cancel the
paramagnetic cuwrent above T,

The most significant difference between Eq. (21a)
and the usgal expression for the penctration depth is
the interband term. which is proportional to {f(E,) —
J(Es}))/[Ei=E;]. While the intraband term [which is pro-
portiogal to 8f(E;}/JE;] counts the number of thermally
broken pairs, the interband term describes the degrada-
tion of the screening currents by interband transitions.
The interband term does pot vanish at T = 0 so that,
unlike the single band case, there is & finite paramag.
netic contribution to the screening current.

IV. RESULTS

The question we are attempting to address in this work
is whether a proximiry effect mode] can account for the
cxperimentally observed anisotrpy in the temperature
dependence of the penetration depth io Y-123. Iy this
setion we will present the results of numerical calcula.
tions of the penetration depth for the model Hamiltonian
introduced in Sec, II. We will compare these results to
experiments and to related calculations made with a two-
plane praximity mode] {in which the intrinsically normal
layer is a two-dimensional plaze). Oze of the main goals
of this section is to emphasize the difference between two-
plane proximity models and chain-plane models of the
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type studied here.

To begin with, we will discuss calculations of the pen-
etration depth in the two-plane proximity models.31-34
Qze of the importagt featares of the proximity model
is that it introduces low energy excitations ipto the su-
perconducting spectrum. The reason for this is that
the induced gap in the intrinsically normal plane is pro-
portional to the strength of the chain-plane coupling
t(k,) (which vanishes at k, = w/d) so that the gap
will have a podal structure even if the pairing inter-
action bas isotropic s-wave symmetry. The need for a
gap structure with nodes has been suggested, for exam-
ple, by measuremenrs®® of A, (the in-plane penetration
depth) in twinped single crystals of Y-123. The linear
dependence of A,(T) on T at low temperatures is eas-
ily explained by any gap structure with nodes.?” While
these measurements are commonly taken as support for
d-wave models,®® it has also been shown?®:i4 that twe-
plane proximity models also result in Lnear low T be-
bavior. Since a central theme in much of the work on
praximity models’""10.12.18 g thar the pairing interac-
tion in the intrinsically superconducting plane is s-wave,
the low energy excitations in the induced gap are an es-
seatial feature of the proximity models.

In Fig. 2(a) we plot the penetration depth for our
plane-chain proximity model for the case of an s-wave
gap. We find that, unlike the case of the two-plane mode
the temperature dependences of A, and Ay are dramati-
cally different. The most importact difference is that the
temperature dependence of A, is nearly identical to that
of a single-layer s-wave material with no chains, while A,
has a livgear low T bebavior similar to that found in the
two-plane proximity models.!* The factor of 2 difference
between 1,(0)~2 and Ay(0)~2 comes from the screening
currents carried in the b dirertion by the chains, and the
linear T dependence in Ay at low temperatures comes
from the node in the induced gap at k, = x/d. The fact

that the low T behavior of 272 i3 exporential and not
linear indicates that pairs associated with ¢ axis acreen-
ing currents have a finite gap for all values of k,. We
can understand this in more concrete terms as follows:
In Sec. IIT we ahowed that the screening current has two
parts—a diamagnetic part which is ronghly independent
of T’ and a paramagnetic part which accounts for pro-
césses (such as thermal pair breaking) which degrade the
screening curreats. The temperature dependente of the
penetration depth comes from the ic screep.
ing current, given iz Eq. (21a). Despite its complicated
appearance, Eq. (21b) has a simple physical interpreta-
tion. The factors 9 are electron Fermi velocity vectors,
while the two terms involving Fermi functiops count the
oumber of thermally excited quasiparticles which partic.
ipate in intraband (i = j) or interband (i ¥ ) paramag-
netic processes. When we calculate the screening current
in the a direction, then, the integrand in Eq. (21b) is
weighted by the square of the Fermi velocity in the ¢ di-
rection. In Fig. 1, we can see that this is small botk on
segments of the Ferm: surface associated with the chains
and op segments of the plane Fermi surface which are
distorted by the chains. The most obvious consequence
of this is that the chains do not participate significantly
in carrying currents in the ¢ direction. A more subtle
resuit is that, even though there is a node in the induced
gapinthechains.itisnotseenbyelecmm:raveﬁngin
the a direction so that Cooper pairs whick are part of
the ¢ axis screening current have a finite gap. The onset
of thermal pair breaking, then, occurs at » much lower
temperature in the b axis supercurrent than in the g axis
supercurrent.

In Fig. 2(b) we plot the penetration depth for a d-wave
order parameter and find results which are simiiar to the
s-wave case: Aq(T) is essentially the same as found jn
single-layer d-wave models and A, (T) resembles Aes(T)
found in the two-plane proximity models. As for the
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FIG. 2. (a) In-plane penetration depth for an s-wave order parameter. The penetration depth in the g direction (perpen-

dicular to the chains) is nearly that of a pure s-wave superconductor in the absence of chains.
b direction has a very different temperature dependence from that in the o direction because

The penetration depth in the
the size of the induced gap in

the chaips is much different from the size of the gap ib the planes. The relative bandwidtbs of the chains and planes were
determined by secting A(0)/A3(0) ~ 2.5, in accordance with experiment. (b) In-plaze penetration depth for 3 d-wave order
parameter. Again, A,(T) is essentially the same as for & zingle-layer d-wave superconductor, while Lhe shape of Au(T) refects
the structure of the induced gap in the chains as well as the planes.



case of an s-wave gap, the remson is that there are a
lazger sumbet of low energy excitations in the chains than
in the planes. The d-wave gap it the planes bas nodes
alnngk,:-‘- » while the induced gap has nodes along

ky = £k, and k; = x/d.

The large temperature dependence of the ab anisotropy
seen in Figs, 2(a) and 2(b) is difficult to reconcile with
measzrements of Ay(T') and Ay(T") in untwinned crystals.
In these experiments® ), and Ay have a nearly identical
temperature dependence, although their absolute magni-
tode differs by a factor of 1.5 at T = 0, In our model, the
temperature dependence of the anisotropy is a resuit of
the fact that Cooper pairs in the chains are more easily
broken than Cooper pairs in the planes. Clearly, then,in
a realistic model, the density of low energy excitations in
the chains must be similar to that in the planes. This is
not a trivial requirexent. It implies that both the nodal
structure and the magnitude of the gaps in the chains and
planes be similar, It is possible to eliminate the nodes
in the induced gap at k, = =/d by, for example, making
the ansatz that t(k,) = to (this would describe a single
bilayer). However, this is not sufficient to eliminate the
temperature dependence of the anisotropy. For regions of
the chain Fermi surface where [£:} 3 |2(k, )|, the induced
g2Pp is of the order’® Ayt(k,)?/£3. In Fig. 1, the smailest
induced gap occurs at the intersection of the chain Fermi
surface with the Brillouin zone boundary (at k, = w/a)
at which t%/&(k}' ~ 0,023, The onset of thermal pair
breaking in the chains, therefore, will occur at a much
lower temperature than in the planes.

The penetration depth in the ¢ direction as a func-
tion of temaperature is shown in Fig. 3. The shapes of the
curves are similar 1o what we found iz previous work®* in
which we examined a model with two planes per unit cell.
Experimental observations of A; in ¥-123 (Refs. 20, 22,
and 29 and Y-124" are contradictory. All of the experi-
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FIG. 3. Penectration deptb in the ¢ direction for both an
s-wave (solid line) and a d-wave (dashed Line) order parame-
ter. Tle strength of the chain-plane coupling is chosen to be
to = 50 eV so that AZ(0)/A3(0) ~ 100, as observed experi-
mentally.
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ments find that az low temperatures AZ3(T") can be fitted
by a linear T dependence, A (02/A(T)? ~ 1 — aT/Te,
but the slope of the fit varies dramatically. Two of the in-
frared experiments?? find that a < 1, while the third®™®
finds that a ~ 1 and the microwave experiment® finds
that @ 3 1. Until some sort of consensus is achieved, it
will be difficult to say anything about our model.

V. CONCLUSIONS

It is clear that our proximity effect model canpot de-
scribe the temperature dependence of the ab anisotropy
of the penetration depthk which has been observed ex-
perimentally by Zhang ez al® Emeatially, the problem
with our proximity model is that, unlike the case of the
two-plane model, there are always regions of the chain
Fermi surface on which the gap is amall, so that the tem-
perature scale over which the penetration depth parallel
to the chains varies is much lower than the scale per-
pendicular to the chains, The question that needs to be
answered. then. is to what extent is our model represen-
tative of proximity models in general.

The common feature of proximity models is that the
chains are jntrizsically normal but driven superconduct-
ing by their coupling to the planes. Where proximity
models differ is in the nature of the chaizn-plane cou-
pling. In our model we have made the assumption that
the chain.plane coupling is coberent, so that chain states
are coupled to plane states with the same value of k. The
aunount of mixing between the two states depends on the
difference in energy between them so that, for example,
in Fig. 1 the chain and plane Fermi surfaces are most
strongly mixed in the neighborhood of their ¢roesing. In
a similar fashion. the induced gap on the chain is small
(of the order of a few percent of the intrinsic gap in the
plane) wherever the chain and plane Fermi aurfaces are
far apart. This is the reason for the large difference in
the temperature dependence of A, and Ay.

OQune solution to this is to couple the chains and planes
incoherently, so that every state k on the planes is cou-
pled equally to every state k' on the chains. There is
some evidence that there is incoherence along the ¢ axis:
Kleiner and Miilier® have found an intrinsic Josephacz
effect in Bi;Sr;CaCu;0, and. more recently, in vader-
doped Y-123. The dc resistivity of Y-123 in the nor.
mal state? shows semiconducting behavior in underdoped
samples, and the optical conductivity along the ¢ axis
(sec. c.g.. Ref. 22, and references contained therein) bas
a ponmetallic response, For an incoherent model of the
type described above, the induced gap on the chains is
proportional to the average over the Fermi surface of the
gap oo the plages, The difficulty with this model is that,
for a d-wave order parameter, the induced gap in the
chains will vanish. It is, in fact, a general feature of d-
wave order parameters that they do not contribute to
incoherent processes (sec. for example, Refs. 31 and 15).
Ifon the other hand, we assume that the order parameter
in the planes has agp isotropic s-wave symmetry, then the
induced gap oo the ckains will not vanish. The problem
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oow, bowever, is that incoberent coupling does not in-
troduce a nodal structure into the gap the way coberent
coupling does so that it is difficuit to reconcile such a
model with a linear low temperature penetration depth,
For a model with incoherent chain-plane coupling to suc-
cessfully describe the low temperature enetration depth,
it would have to have an order parameter with nodes on
the Fermi surface but whose Fermi surface average was
ponzerc, and the induced gap in the chains would have to
be of the order of T, so that the temperature dependence
of A, and A, would be similar.

Leaviug, for a2 moment, the discussion of the nature of
the chain-plrae coupling, we will now torn to a more con-
ceptual problem~that of the size of the chain-plane cou-
pling. The coupling strength ¢, is chosen to account both
for the fact that A (T = 0)}/A.(T = 0} ~ 10 (Refs. 19-22)
apd for the size of the induced gap in the chaips. As
in well known, the chain-plage coupling can degrade T,
substantially We find that for £, = 50 meV, T, is only
65% of its value at 25 = 0. It is also diffcult to recon-
cile the picture of weakly coupled two-dimensional planes
with such large values of the chain-plane coupling. I our
model the ratio of the electron hopping strengths along
the ¢ and in-plane directions is to/20, = 0.25, so that
it is dificult to imsgine that the ¢ axis coupling is a
weak perturbation in an otherwise two-dimensional sys-
tem. The challenge, therefore, for theories which begin
witk models of » single CuQy plane is to expiain the large
anisotropy between the a and b supercurrents in YBCO
without inveking a large chain-plane coupling.

Krenin and Wolf'? have suggested that proximity effect
models require ap inelastic channel for the chain-plane
coupling. In their two-plane model, electrons can hop be-
tween the planes through coberent tunneling or through
scattering from a phonon. Their model is more three-
dimensional than the ones discussed above since the in-
clastic interplane coupling acts as a pairing process which
leads to an increase in T.. It is posaible that in a chain-
plane model, some kind of inelastic transport mechanism
along the ¢ axis might lead to a sufficiently large gap in

the chains that A, and Ay would have similar T depen-
dences. The idea of a mixture of pairing interactions bas
recently been propesed by Scng and Annett™ although
they bave Limited their discusgion to mixing phonons and
Counlomb interactions within a single plane,

There is also the issue of whether a simple two-band
model can be representative of Y-123. More careful band
structure calculations™ find that the Fermi surface has
four pieces instead of two. The two additional pieces of
Fermi surface come from the internal structure of the
Cu0; bilayer (which we have treated as a single-layer)
and from the internal structure of the CuQ chaizs. The
inclusion of these two pieces of Fermi surface is not likely
to affect the important results contained within this pa-
per bowever: the additional piece of Fermi surface due to
the CuOQ; bilayer has a pearly tetragonal symmetry (and
will therefore not contribute to the anisotropy in the pen-
etration depth) and the piece due to the CuQ chains is
small and will only make a smail change to the screening
currents,

Our final conclusion, then, is as follows: A proxim-
ity model for ¥-123 in whick the superconducting pair-
ing interaction is localized to the planes and the chain-
piage coupling is coherent will pot account for the tetn-
perature dependence of the anisotropy of the pemetra-
tion depth seen in experiments. It is possible that other
models for the chain-plane coupling will be able to ad-
equately describe the b anisotropy. The single largost
problem faced by proximity models is that penetration
depth experiments® seem to indicate that the gap in the
chains is of the same order as the gap in the planes.
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4.3 Comment

In the time which has passed since the writing of this article. we have been able
to extend onr understanding of the implications of the penectration depth anisotropy. We
will now share this improved understanding with the reader.

As we have peinted out in the article. the different temperature dependences of
Aq and A are the result of the differences in the structure of the low energy excitations on
different sections of the Fermi surface. In chapter 3. three energy scales in the supercon-
ducting density of states were identified. The lowest energy scale was that of the induced
gap in the chains (¢f. Fig. 3.5) which was of the order of 1 K. At the temperatures at which
the penetration depth is measured. there is a large normal fluid component in the chains.
In Fig. 2 of this section. the condensation of this fluid can only be seen for the lowest fow
temperatures. Since normal clectrons do not contribute to the screening currents (their
centributions to (§)aie and {j)pere cancel). penectration depth expeiiments are not scusitive
to a normal fluid. The experiments of (Zhang et al. 1994) will not see a siall inditced gap
in the chains.

In chapter 3 we also identified an intermediate energy (~ 50 K) gap structure
which we associated with the intersection of the chain and plane Fermi surfaces, It is this
gap structure which results in the significant differences between A (T) and (7). As
we pointed out carlier. the penctration depth in a direction o is sensitive to low energy
excitations which have a large component of Fermi velocity in the direction . In the
neighbourhood of the avoided Fermi surface crossing. the Fermi velocity is predominantly
in the b direction (again recall Fig. 3.5). o that the intermediate eorgy wap only detertnines
the structure of A,.

In summary then. we can say that the penetration depth experiments are siot
sensitive to regions of the chain Fermi surface on which there is i smidl inditeed gap. The
essential problem with the chain-plane model is that the gap in the neighbourhood of the

chain-plane crossing is much lower than the intrinsic gap in the planes.



Chapter 5

Josephson Effect

5.1 Introduction

The most innovative and powerful experimental techniques to have been developed
recently have been Josephson junction techniques which are used to probe the symmetry
of the order parameter (cf. Sec. 1.3.4). They rely on the fact that the current through a
supercenducting-insulating-superconducting (SIS) junction is driven by the phase difference
accross the junction and—unlike most experiments—are sensitive to both the magnitude
and phase of the order parameter.

In this chapter. we include an article which is concerned with one such experi-
ment(Sun et al. 1994). The experiment was designed to measure the average of the gap in
a CuOy plane over the entire Brillouin zone. The predictions were simple: if the average
gap were not zero. then YBCO could not have a d wave gap. When Sun et ol. measured a
small. but finite. average gap. their experiments were criticized on technical grounds. It was
suggested that the junction quality was poor. or that the Y-123 was susceptible to forming
surface states.

We took the point of view. however. that the results are correct. The gist of
our article is that the chains provide a sufficient orthorhombic distortion of the svstem to
produce Josephson currents of the magnitude seen experimentatly.

There is a slight change of notation between this paper and the work contained in
Chapters 1. 2 and 3. The symbol tg is the coefficient of the chain-plane coupling strength.
It is defined such that ¢y = 2¢..



Critical Josephson current in & model Pb/YBa;CuyOr_; junction

W. A. Atkinson and J. P. Carbotte '
Department of Physics ond Astronomy, McMaster University, Homilton, Ontarso, cmawm
(Raceived 20 March 1993)

‘We consider a simple model for a c-axis Pb/YBasCuyOr—; Josephson junction.

The obesrvation

of & sonzero curret in such a junction by Sun et ok [Phys. Rev. Lett. 72, 2257 (1994)] has besn
taken as cvidence against d-wave superconductivity in YBasCusOr—y. We suggest, however, that
the pairing interacticn in the CuO; planes may well be d wave but that the CuQ chains destroy
the tetragonal symmetry of the system. We cxamine two ways in which this bappens. In a simrple
model of an incoberent junction, the chains distort the supercondocting condensate sway from d,a._ 2
symmetry. In a specular junction the chains dostroy the tetragonal symmetry of the tunpeling matrix
clement. In either case, the lom of tetzagonal symmetry resuits in a finite Josephson current. Our
calculated values of the critical current for specular junctions are in good agreement with the results

of Sun and co-workers.

L INTRODUCTION

-~

The debate over the symmetry of the order parameter
in the high-T, copper-oxide superconductors has intensi-
ﬁedwerthehstfcwyumbmmofanumbercfmg-
gestive experimental ﬁndmp ! The discovery of linear
low-temperature bebavior in the tion depths of
single crystals of YBa;Cu3Or_; (Refs. 2 and 3) (YBCO)
and T1;CaB: ;Cuz04—; (Ref. 4) has been taken as sup-
port for d-wave superconductivity,® although such exper-
iments bave been unable to exclude anisotropic s-wave
models.*™ NMR relaxation rates™® have been inter-
preted in terms of a d-wave order parameter.’31 More
recently, angle-resolved photoemission experimentsi¥™1?
bave been able to map out the Fermi surface in the nor-
mal and superconducting states for BizSraCaCuyOgas
and have found an anisotropic gap with nodes {or at
least minima smaller than the resolution of the exper-
iment) located apr=aximately along toe diagonals of the
Brillouin zone. ‘This is strongly suggestive of a d-wave
gap although the experiments bhave been criticized be-
cause they sampie only the surface states of the crystals.

A recent generation of experiments has attempted to
resolve the issue of order-parameter symmetry by mea-
suring its relative phase between different regions of the
Brillouin zone. These experiments are all based oo the
fact that the current through a Josephson junction de-
pends on the phase difference between the condensates
on either side. Some of the experiments which have been
performedi®** have attempted to measure the phase
difference between electrons tunneling through differen:
faces of a single crysta] of YBCO. In » d-wave material,
these electrons will have a phase of x relative to each
other. Two of the experiments!®!7 suggest that YBCOQ
bas a d-wave order parameter, while the third*® suggests
an s-wave order parameter. More recently, there bave
been experiments which attempt to detect phase shifts
of * across YBCO/YBCO junctions’®¥ in which the
crystals are misaligned. These phase skifts, which are a

signature of d-wave symmetry, have been found in both
of the cited experiments.

The experiment in which we are interested in this arti-
cle is that of Sun ez al® It s slightly different than the
others: it relies on the fact that in a c-axis Pb/YBCO
junction (in which the junction face is perpendicular to
the YBCO ¢ axis) the Josephson current will vanish if
YBCO has a d-wave gap. Since the experiment finds a
small, but finite Josephson current (Jo Ry = 03-09 mV,
where R, is the normal-state resistance of the junction
and J, is the critical Josephson current} the authors con-
clude that the order parameter cannot be purely d wave,
On the other hand, their resultz are also inccnsistent
with simple s-wavw- theory since the measured critical
voitages J R, are an order of magnitude lower than ex-
pected. Following Ambegoakar and Baratoff,3 and as-
suming that the gaps in YBCO and Pb are Ay ~ 14
meV and Ap ~ 1.4 meV, respectively, they find

2 bvdep lay — &pl
Jefn = cdy+ApK( Ay + 4Lp
~8mV,

where X is the complete elliptic integral of the first kind.
In fact, the experiment of Sun et al?? does not imme-
diately rule out YBCO having a d,3_,3 order parameter.,
Tanala®™ has shown, that while the usual treatment of
the barrier as a second-order perturbation does lead to
a.nm:.h:.ng.looephsoncnrrent higher-order terms in the
perturbation series will not vanish. Unfortunately, at-
texpts by one of the current authors®® to fit the experi-
mental resuits with a fourth-order calculation have been
unsuccessful. On the other hand, it may be ressonable
to expect that YBCO does not have a gap structure with
3 full dya_y lymmetryum(optlmﬂydoped) YBCO
is not tetragonal. Band-structure calculations®*** ghow
that tn.: CuQ chains both contribute a piece of Fermi sur-
face with orthorhombic symmetry and distart the band
structure in the CuQ; planes. O'Donovan et al?” bave a

Reprinted from Phys. Rev. B 52, 6894-6502 (1995). ©1995 The American Physical Society.
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simple model of this: they copsider a single CuO3 plane
in which the Fermi surface is distorted slightly away from
tetragonal symmetry. They find that the reduced sym-
metry is strongly reflected in the gap, which pidas up
a small extended s-wuve compopent while retaining its
nodal structure. Another point of view is that of Xu et
al,?® who treat YBCO a3 having tetragonal symmetry
but take the gap to be s 4-id. Czspite the very different
starting points, both of these articles reach the conclu-
sion that a gap which is roughly 10% ¢ wave will explain
the results of Sun et al

In this article, we suggest that the nonzero critical cur-
rent seen in Pb/YBCO c-axis Josephson junctions mxy
be due to the CuD chains. We consider a
logical model for YBCO in which the unit cell contains a
CuQ; plape and a CuO chain and calculate the tunnel-
ing current for & Pb/YBCO junction as a function of the
chain-plane conpling strengeh. In Sec. II, we introduce
our model for YBCO. In Sec. I we derive an expression
for the critical Josephson current. In Sec. IV we discuss
the resuits of oumerical calculations. We finish with a
brief conclusion in Sec. V.

. MODEL

We wish to cotsider a simple model for 3 Pb/YBCO
Josephson junction. For the sake of clarity, we will take
Pb (YBCO) to be on the lef (right) side of the junction.
We treat Pb as an ordinary free-electron metal with an
isotropic BCS pap. YBCO in treated with a simplified
model in which there are alternating Iayers of chains and
planes. The planecs and chains are weakly coupled by co-
herent electron bopping and the planes contain a BCS-
lilos pairing intersction with a dga_,» symmetry. The
chains are driven superconducting by a proximity effect.
This model is related to models studied elsewhere?™™**
in which both layers are treated as planes and (with the
exception of Ref. 35 where it is d wave ) the order pa-
rameter is s wave. it should be emphasized that this
model is only suitable for weak chain-plane coupling. As
the coupling is incremsed, the pairing potential begins to
affect electrons in the chaina directly. The problem be-
comes more complicated in this case and kas only been
examined in various special limirs, 30333032

The experiment we wizh to describe is one in which the
caxis of YBCO is normal to the junction.?! Furthermore,
we assume that the tunzeling junction is adjacent to a
CuO; planc.®® Then our Hamiltonian can be written

H=H'+H," +T, (1

where Hp' and Hy" describe the uncoupled Pb and
YBCO subsystems and T describes the coupling through
the junction. We defive &y, Rtke, a2d 83, to be the
electton annihilation operators with wavevector k and
spin o, in the Pb, YBCO planes and YBCO chains, re-
spectively. We can wnite

B -Nu=3 k)], cn
ko

- 2 [A‘c;,clu + A"c_uq-,] y (2a)
x

By -Nu= 3 fahy, oo (k) + oy a3 (8)]
2 .
+ 3 [ealy, ame + £ (Jal 0]
ks

-3 [A;'-Im"{-u + A& A lrr] '
x
(2b)

T= zrhc{,a;q. + Th'.llq,%- (2<)
Py

The normal-state dispersion in Pb is ¢ = A28 /2m* — ,
and the mean-field order parameter A’ is isotropic. The
dispersions £, and £; are the gormal.state dispersions of
the YBCO plancs and ¢hains in the limit of no chain-
plane coupling:

§1 = =203 [cos(k,) + con{ky)] — sa, (3a)

§2 = —20zco0(ky) — pia (3b)

with —r < kg,ky < = and where ) and y; include
information about both the chemiral potential and the
offset of the bands from one another. The strength of
the plane-chain coupling is given by ¢(k) which, in the
tight binding limit, depends® only on k,;. To ximplify
matters further, we take the chain-plane distances to be
the same on either side of a chain, so that

t{k,) = tgcon{k,/2), {4)

with =7 < &k, < %, The meap-ficld order parameter in
YBCO, AL, is & thermal average of electron pairs in the
CuO; planes only. This is because we make the ansatz
that the pairing is localized to the planes:

AL =) Viw{ai-wisnerh (s)
k

where Vi is the BCS-like pairing interaction in the
plapes. If, for sizmplicity, we assume that the pairing
interaction is separable, so that W = Vmme, with
M = cos(k,) —~cos(ky) for 2 d-wave internction, then we
way write A} = Agm,.

We will find it convenient to work within the Nambu
formalism, in which we define

ca=[ 37 (5a)




———

ltn:r
= S
A(k) 2o R (6b)
- T
80 that the uncoupled Hamiltonians may be written,

B = ; CHk)Ho(k)Ck) + fk_: Al ) HG (k) A (k)
(Ta)

with

OB e (7b)
and
a0 -85t 0
G e S g""}. (7e)
0 ~(-k) O -&(-K)

The ecigenvalues of the Hanwiltonian matrices are
EJ" (k) with E{ = (E',~E"),

= v e+ Aﬂ‘ (8&)
r =(EL,EL,~EL,=-E7),
= iﬂi-‘-ﬁi + ¢
w213
iJ [w:l +83(6 +£)7 + AP
(8b)

and tke unitary transformations which diagopalize the
Hamiltonian are

-

R

[ .al al
u‘(k)=%_% ?:“;i] (sa)
aud Uy = U7 (E;),
[ {E] -&)A
w(E = o | "ELEE | (sb)
| tB

= (AR + E] + &) (E] + &)
B =8 — (A7 + E] - &)(E] - &),

C = A%NE + (E] - &) + B[ + (E] + &)°].  (%¢)
The Hamiltonian may, therefore, be written

2
Ho-Np=3 3 ClKCik)EiK)

k wm}

+ ST AlmAMER, (1)

k =]
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w for
n mng-(k) %3‘? (k)ci(k)

eta—-&:&i‘/—-—-—(&:&):+t’.‘ ' (u)

and their Fermi surfaces are given by t? = §&6. In
Fig. 1{a) we plot the Fermi suxfaces in the k k&, plane
for a range of t. When ¢ = 0, the two pieces of Fermi
surface are just the Fermi surfaces of the isolated plades
and chains, given by §; = 0 and £ = 0, respectively.
There is a Fermi surface cossing at §; = §& = 0. As
¢ is increased, the Fermi surfaces are pushed apart, and
the crossing becomes an avoided <roming. Far away from
the avoided croesing, each piece of Fermi surface is pre-
dominantly ch. ' or plage in character. However, pear

the avoided croacing, the two bands are hybridizatioos
of the chain and plane states. In the supercondacting
state this bas the important effect of distorting the gap
away from the d,s_,» symmetry of the pairing interac-
tion. In Figs. 1(b) and 1(c), we show the quasiparticle
band structure {given by Eq. (8b)] in tbe superconduct-
ing state alopg the two paths k, = 0 and k, = £%,/3
(with &, = 0 in both cases). For comparison purooses,
we show the same spectra in the ¢ = 0 limit. Along
ky = 0, the two pieces of Fermi surface are far enough
apart that one piece is predominantly chainiike, while the
wnd;sprcdommuyphneﬁh If we take the term

“gap” to mean a local minimnm in E— along paths of the
type k, = ak, then we can see that there is a double gap
structure along the k, = 0 direction. The larger of the
twognpambe:dennﬁedmththeCuO;phnemdn
perturbed from |Ay| by a term of order {Awlt? /(€3 — £3).
Themndgaputhemdu.ccdgnpmthedmms and it is
of arder [Ay|?/(€7 — £3). The secoud path, k, = 8k,/3,
passes through the avoided crossing. In Fig. 1(c), the
band structure near the Fermi surface has little in com-
mog with the band structure in the ¢ = 0 limit, and the
two gaps are nearly equal to each other, but very differ-
ent from Ay. It is the effect of the chain-plane coupling
in this region of the Brillouin zone which produces the
finite c-axis Josephson current.

The abape of the Fermi surfaces in Fig. 1(a) was cho-
sen to qualitatively resemble the results of first-principles
band-structure calculations.?>2% Such calculations find &
Fermi surface that has four pieces, two of which are sim-
ilar to the ones shown in Fig. 1(a). The remaining two
pieces of Fermi surface bave a {nearly) tetragonal sym-
metry. Theaz have not been accounted for bere since the
goal is to describe the effects of orthorhombic distortion
with a simple model.

III. JOSEPHSON CURRENT

Thzcnrrentgenerat.edbyTueN‘ where N! =
Zuc,,cu.nthemmbcrofelecmumpbmdN'
—i/E[N",'T} so that

(N') s 2Im 3~ Tug(ch, Biee)- (12)
k-
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Taking T as a perturbation we find that, to lowest arder,  where 7 is positive and vanishingly small, and the ex-
the Josephson current is* pectation valne is pow taken with respect to the un-
contribution, which de‘pené.su) ht;eb::e;m values

2e w on
I=FRe 3 Tim [ 4 Camae TN, 1 04 oreslEIonr( 2  cunipr.
ticle contribution, which depends on (e}, ()exe(t")) and
(13) (aly (t)ane (). In our case, the voltage across the

= n/2

Dand Energy (me¥)
-3
(=]

o

o ————r -

Band Energy (meY)
8

n/2 L
ko= (kE+ kg)ln

FIG. 1. Band structure of YBCO. Iz (a) we show the normal-state Ferm: surface for the dispersion given in Eq. (11). The
Fermi surface has (wo different pieces since the unit cell consists of 3 chain and a plane. The Fermi surfaces are shown for a
range of chain-plane coupling values (0 < t < 50 meV). In the absence of chain-plane coupling (¢ = 0), the Fearmi surfaces cross.
As t is incressed, the Fermi sarfaces are pushed apart. The dashed lige is the lige along which Aw vazishes. In (b) and (¢} we
plot the quasiparticle excitation coergies E: [Eq. (8b)] along k, = 0 and k, = 8k, /3, respectively. We bave taken ¢ = 40 meV
for these curves and bave plotted ¢t = 0 limits of £+ {{£] + A1)'/? and |£,]] for comparison. At temperatures lower thas the Te
of Pb, thermal excitation of quasiparticles in the YBCO is limited to the nodes of E.. All reyalts presested in this paper are
for oy = 100 eV, o3 = 60 meV, uy = =80 meV, py = 40 meV.



jumnction is zero and the quasiparticle part vanishes. The
supercurrent can be evaluated by rewriting the electron
creation and annihilation operators in terms of the su-
perconducting quasiparticle operators and noting that,
{or example,

Em(k,£) = c—EmHAG (1 0). (14)
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F(Ei) - £(E7 ()
Eix)-Ej(@

Thisisthebllicequ;ﬁonfor:he.!uep'lnoncmin
the absence of an external voltage, For our particular

(15)

It follows directly that model, this expression becomes
]
_de ImjAl*AT) E-¢g 1 E'I(E‘) - E‘f(fﬁ )
S == > lThq[:qu:z _;;—:l { E; [E‘ TE T2 ]
Ed_g2 1 E_f(E" - E'.f(E' )
T TE [E‘ Y } el

Ia this equation k is the variable of imtegration for all
terms associated with Pb (i.e., all variables with super-
seript {) and q is the variable of integration for all terms
associated with YECOQ. We have also used Tiqg = T2, s
which follows from time-reversal symmetry. The phase
& is the complex phase of A'A7. Equation (16) can
be written J($)} = J.sin(é), which defines the critical
current J..

Although Eq. (16) is complicated in appearance, its
behavior can actually be understood fairly easily. Firat
of all. since E. > |&] everywhere {see, eg., Fig. 1)
the sign of the coefficient of the first term is the same as
the sign of Aq. Furthermore. the term inside the square
brackets can easily be seen to be positive and decreasing
with inereasing 7. A similar argument holds for the sec.
ond term in Eq. (16), except that E2 — £7 changes sign
between different regions of the Brillouin zone. In Fig.
1, bowever, we can see that £2 —£3 < 0 pear the Fermi
surface. so that at low enough temperatures (recall that
T is less than one tenth of the T, of YBCO here) the sign
of the temperature dependent part of the second term is
alsc determined by Aq. Whether J, is an increasing or
decreasing function of T, then. depends on the strength
with which the integrand contributes to the integral in
differ=nt regions of the Brillouin zone,

It is simple to show that, in the limit 2 = 0, Eq.
(16) becomes the weil-known equation of Ambegoakar
and Baratoff

2e Im[A"A"I
J= T%'T““F_Elsr 3

JEN = F(ET) _ f(EY) - F(-E")
x {W -}
with E™ = {€} + AF]"/2. Provided that |Tig] is invari-

ant under - /2 rotations in the ¢.q, plase, the Jerephson
current will vanish for a d-wave order parameter.

In order to proceed witk Eq. (16) it is necessary to
choose a form for the tunneling matrix element. The two

common choices are
1Tual® = ITT%, (18a)
(which describes an incoberent tunneling process) and

Tual® = Zrzz b R1v2 ) Sug e

{which describes a specular tunneling process*!). In Eq.
(18b), P is the probability of transmizsion through the
barrier for a single electron, L! and L” are the thicknesses
of Pb and YBCO perpendicular to the junction and v
and v" are the semiclassical electron velocities in the x
direction: vl = 8¢/8k, and

(18b)

Oy

8,

il =

ltlqs)l
V& — &) +4t{q,)?

The ¢ function in Eq. {18b) conserves the momentum
paralle] to the junction face.

In the case of specular tunneling, the choice of v plays
an important role in determining the magnitude of the
Josephson current. For a single-band material, in which
there are only CuO; planes. v, = tosin(g,) so that the
entire Fermi surface contributes to the tunoeling process.
and the Josephson current vanishes because of the anti-
symmetry of the d-wave order paramecter. In Eq. (19),
however, there is a weighting factor whick is only ap-
preciable in regions where |§; — £2] < 21t|. Physically,
this means that currents can only flow along the = axis
in regions of the Brillouin zone aear to where the Fermi
surfaces cross: electrons traveling in the z direction must
hop between the chains apd planes and, since the chain-
plane coupling i3 cc. rent (conserves q). bopping can
only take place in regions where the chain apd plane
Fermi surfaces are close together. In the g-space integral
in Eq. (16), v bas the eflect of restricting the integral

= |tosin(q,/2)| (19}
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to one amall region of the Brillouin zone over which the
order parameter is roughly constant. Because of this Eq.
(16) is not able to distinguish whether YBCO is # - uve
or d wave for small t,.

Another useful way of Iooking at v] is that it destzoys
the antisymmetry of the integrand under rotations of
= /2. For small to, the Josepbson current is approximately
given by Eq. {17). The integral is ponvanishing, however,
because of [Tiel's lack of symmetry.

‘We will finish this section with a brief derivation of the
nocrmal-state junction reistance R, which is necessary to
determine the critical voltage, J.Rn. The calculation is
similar to the one performed above for the supercurrent
and, as before, we begin with Eq. (13). In this case, how-
ever, we are finding the quasiparticle current, J,, driven
through the junction in the normal state by a voltage V',
and the supercurrent contribution to the integral van-
ishes. The voltage is taken into account by abifting the
operators cy, by a phase exp(ieVt/K). Performing the
integration over ¢’ in Eq. (13), we find that, for small
V and T = 0, we regain Ohm’s law: J, = R7'V. For
incoherent tunneling

211N
R:l Sxe ETI N (_0) z z 3 +£26(=2) ("ua)

Q +/=

while for spectdﬂr tunneling,
Rl = 21 @l Y - e,s(a)

wf=

The advantage of reporting J. R, instead of J. is that
J.R. is independent of the strength of the tunneling ma-
trix clement.

(20b)

IV. RESULTS AND DISCUSSION

In this section we present the results of numerical cal-
culations of the Josephson current through a c-axis junc-
tion. In Fig. 2 the dependence of the citical voltage at
T = 0 on the chain-plane coupling is shown for an inco-
berent junction [Eq. (18a)]. The voltage scale of J R, is
tens of uV, which is two orders of magnitude lower than
the value found from the Ambegoalar-Baratoff formula®™
(assuming both materials to be 2 wave), and a full order
of magnitude lower than found in the experiments of Sun
et aL?! For small 2, we have a quadratic increase in J R,
with ¢, which is due to the distortion of the gap away
Ffom d,a.,» symmetry by the chain-plane coupling. In-
creaaing the coupling further, however, does not increase
JoRa indefinitely. The maximum in the critical voltage
is due to the fact that chain-plane coupling, as well as
breaking the symmetry, reduces the gap in the CuO;
planes. This is a feature which is particular to proximity-
effect models. In the inset figure we plot the temperature
dependence of J R, for a relatively weak (¢o = 10 meV)
chain-plane coupling. The shape of the curve differs
slightly from single-band models by the fact that the
maximum value of J Ry (JcRn ~ 0.026 mV) does not
ocour at ' = 0, but at T ~ 0.4 meV. This happens at

IR, {uv)

L T (me¥)
0 . Lo | N ST |
4] 10 20 30 40 50
ty (meV)

FIG. 2. Critical voltage, J R, for an incoberent junction.
We show the dependence of J R.(T = 0) on the chain-plane
coupling parameter to. For small to we find the expected
quadratic increase in the critical voltage as the coupling dis-
torts the gap awsy from d,a_,5. At Iarger to, the conpling
to the chains weakens the condensate, an well a3 distorting
its structure, leading to a maximum in the corve. This curve
shows that, for the simple model of incoherent tunneling, dis-
tortion of the condensate by the chains cannot account for
the experimentally measured values of JoRa ~ O{0.5 mV).
The inset shows the tempersture dependence of the critical
voltage for £, = 10 meV. The curve increascs slightly at low
T. This stems from the multiband pature of the YBCO and
the antisymmetry of the order parameter.

temperatures which are low epough that f(E') ~ 0. As
we have mentioned in the discussion following Eq. (16),
whether J. is an increasing or decreasing function of T
depends on the sign of the order parameter in the regions
of the Brillouic zone which contribute most to the inte-
gral. Since the induced gap in the chain is smaller than
the gap in Pb in the region of the Brillouin zone where
the chain and plane Fermi surfaces are far apart, the tem-
perature dependence of J.R. at low T is determined by
the induced gap. In Fig. 1 we can see that Aq < 0 in the
region where the induced gap is small so that J R, isan
increasing function of T. At larger values of T, thermal
excitation of quasiparticies in Pb determines the temper-
ature dependence of the critical voltage. It is clear from
this discussion that J.R.(T") will not bave this kind of
noamonotonic bebavior for an s«wave gap.

In our discussion of the current through an incoherent
junction, we bave used the word “gap” in a loose sense to
describe the state of the condensate. The fact that the
structure of the gap can be distorted by the chains high-
lights the fundamenta! difference between the gap and
the order parameter. which is defined in Eq. (5). From
the definition, it is clear that the order parameter has the



dg1.,» symmetry of the pairing interaction negardless of
the strength of the chain-plane coupling. In fact, our in-
tuitive definition of the “gap” is more closely related to
the anomalous Green's function, F, which describes both
the density and pbase of the superconducting conden-
sate. We can rewrite Eq. (15} for the Josephson current
in terms of F:

7= 51T T Tualoa PR (@) (21)
kg !

.+~ P is the anomalons Green's function in Pb, FJ; =
—{Ta1—xt(—tT}a1x,{0)} is the anomaious Green's func-
tion in the CuQ; plane, 8 is the inverse temperature,
G = (2! + 1)z /P are the fermion Matsubara frequencies
and S is the inverse temperature. Equation (21) makes it
clear that Josephson junctions are sensitive to the strue-
ture of the condenuate and not the pairing interaction.
In a singie-band material

Flicw) = -—=% (22)

:_E’:’

where E is the quasiparticie energy. Io our multiband
model,

Ax(w® — £3)
(w?— E)(w? - E2)’

Filcw) =~ (23)

By comparing Eqgs. (23) and {22) we can see how the
chains affect the symmetry of the condensate, and that
Fy; does pot share the symmetry of Ay. The point we
would like to emphasize with this discussion, then, is
that a finite current through an incoberent c-axis junc-
tion does ses.a to suggest that the condensate is ot d
wave, but does not not rule out the poasibility that the
interoction is d wave,

Iz Figs. 3(a) and 3(b) we plot J.R, for 3 specular
junction, in which the tunneling matrix clement is given
by Eq. (18b). For an isotropic Fermi surface and gap,
the specular and incoberent cases yield idestical restlts.
As we can see in Fig. 3(a), bowever, the critical voltage
is a full order of maggpitude larger for s specular junction
than for an incoberent junction. Furthermore, J R, is
a monotornically deaezsing function of T. In Fig. 3(b),
the dependence of both J. and J R, on £y is shown.
As expected, J. vanishes as £, —+ 0, although here the
reasons is that the Fermi velocity of electrons in the =
direction. v}, vanishes. From Eg. (20b), it is clear that
A7 also vanishes as v} —+ O, 3o that the product J.R.,
is nopvanishing, This is very different from the case of
incoberent tunneling where R, is largely ind~pendent of
to. It seems, then, that our model for specular tunpeling
is in good agreement with the observations of Sun e oL
From Fig. 3(c) we can see that for tp = 40 meV, the
critical voltage is arousd ! mV, while Sun and his co-
workers find critical voltages of 0.3-0.9 mV. This value
of ¢ is also consistent with the observed ani.so:ropy of
the penetrauon depth, Acf/Aab, a3 we have shown using a
closcly related model.

The large difference between the results of the speculxr
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FIG. 3. Critical voltage, J.Ra, for specular tunneling,
Here the tunneling matrix element is chosen to couserve the
component of the wave vector parallel to the juaction. Fur-
thermore, the tunneling matrix clement is weighted in favor
of particles with a large perpendicular velocity |[Eq. (18b)l.
In (a), we show the temperature dependence of J R, for
our multiband d-wave model {solid line), and for the simple
s-wave mode} of Ambegoakar and Baratoff (Ref. 22) (dashed
line), In order to make the T = 0 values of J Ry agree, we
bave taken 2A/T, ~ 0.12 in the s-wave model. The most
important differcace between this Sgure and Fig. 2 is that
critical current is & full order of magnitude larger bhere, In
(b), both J Ra(T = 0) and Jo(T = 0} are plotted as func-
tioas of 2y, The magnitude of J¢(T = 0) iz arbitrary since the
tunneling probability, P, Las pot been rpecifind. The critical
voltage is noovanishing as to — 0 because K., diverges.
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and incoherent iunneling is & reflection of the important
difference between the rales of the chains in the two types
of tunneling. As we discussed ealier, an incoberent junc-
tion is sensitive to the symmetry of the condepsate over
the entire Brillouin zone. For a specular junction, on the
otber hand, the most importsst efect of the chains is
to change the component of the Fermi velocity perpen-
dicular to the junction. In Sec. OI we showed that the
tmﬁngismgiywdgb&edinhmnfehmwith
ahrgepcpendkuhrmnpcnmwthatonlymmnll
regionoftheBrmouhm.mrwhaethechﬁnand
phnchmisu&numwmibmwthetotal:un-
peling current. The symmetry of the order parameter
is largely irrclevant in this case. In the case of specu-
lar tupneling, then, the c-axis tunneling current is less a
;nobeof:hesymmeﬂ‘yofthecondmsuethani:'uofthe
normal-state band structure.
We would like to finish this section with a brief discus-
sion of an unresolved issue which is relevant to this work.
iments on c-axis Josephson junctions have been
with both twinped and untwinned crystals,
and find similar values for the critical currents. Dynes™
has suggested that the total critical current through a
jusction. in w hich one of the materials is heavily twinned
and has a gap which changes sign under rotations of x/2,
should vanish. This is because the phase locking of the
condensate at twin boundaries causes overall phase shifts
of 7 between adjacent regions. Adjacent regions should
therefore have Josephson currents in opposite directions,
and the total current should vanish. This argument is

problematic for the work presented in this articie. The
urmhmnin.m.mthebehmﬁ
the order parameter at twin boundaries is not well un-

V. CONCLUSION

In this article we have calculated the Josephson cxxrent
in & model c-uxis YBCO/Pb juncticn. We bave assumed
that YBCO is roade up of alternating layers of CuQ;
planes and CuO chains, stacked in the z direction, and
that the layer adjacent to the junction is a CuOjy plaze.
We take the pairing interaction in the YBCO to bave
dy_p» symzetry. For an incoberent junction the tun-
neling current is sensitive to the symmetry of the super-
conducting condensate (although not of the pairing io-
teraction), and we find that distortions of the condensate
due to the chains are sufficient to yield nonzero Josephson
currents. The currents are an order of magnitude amsller
than observed experitnentally. For a specular junction.
the Josephson current is insensitive to the saymmetry of
the condensate because the tunneling matrix element is
strongly infuenced by the normal-state band structure.
In our model, the Josephson curres. is due to one small
region of the Brillouin zone over which the gap is roughly
constant. The calculated currents for a apecular junction
are of the same order of magnitude as those found exper-
imentally by Sun et al®
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5.3 Comment

The abilibity of the chain-plane model to predict a crizical Josephson current of
the correct order of magnitude is very satisfving. One might question. however. the validity
of this calculation given the failure of the model to correctly determine the penctration
depth.

In answer to this. we simply point out that the penetration depth and the Joseph-
son current calculations rely on two different properties of the chain-plane model. As we
discussed at length in chapter 4. the penctration depth probes the low energy strncture of
the superconducting state. In marked contrast. the finite Josephson current for specular
Jjunction results from the normal state band structure. Since the Fermi surface of the chain-
plane model does not have tetragonal symmetry. the tunneling matrix element through the
junction also dees not have tetragonal symmetry (Eq. (18b) of this chapter). The struc-
ture of the gap. therefore. plays almost no role in determining the current through a ¢ axis
Josephson junction in the chain-plane model.

This discussion would also hold for a realistic model of an incoherent junction.
Although. in our treatment. the tunneling matrix clement is tetragonally symmetric (Eq.
{18a) of this chapter). a more realistic matrix element would not be. For a realistic niodel

of an incoherent tunneling junction. we should probably have
. P
Tql* = vai(k)L'E(Q)l-

[compare with Eq. (18a)]. For this mnodel of the junction. the results will be nearly the same

as for the specular junction.



Chapter 6

Conclusions

To a large extent. the work in this thesis has been concerned with the spectrum
of low energy excitations in YBasCuzO;. The chain-plane medel introduced in Chapter 2
provides a specific mechanism for calculating these excitations. We found that the low lying
excications fall into three energy scales: very low energy excitations (< 1 K) on the chains.
intermediate energy excitations (< 50 K) near the intersection of the chain and plane Fermi
surfaces and higher energy excitations (< 150 K) associated with the intrinsic gap in the

planes. The gap in the chain-plane model has a great deal of structure.

In our comparisons of the chain-riane model with experiment we have not found
much evidence for a complicated gap structure. In fact. it is tempting to conclude that,
beyond its d wave structure. the gap is relatively featureless. Most of the modifications Lo
the model which were suggested in Chapter 4 amount to attempting to reduce variations of
the gap. both in & space and in real space (ze. between the chains and planes). The spatial
vartation of the gap lies at the heart of many of the problems we are having reconciling the
model with experiment. It is interesting that it is the short coherence length along the ¢
axis which allows the gap to vary so much between the chains and the planes. Perhaps the
interpretation of the penetration depth measurements should be that the coherence length
along the ¢ axis is sufficiently large to suppress spatial variation of the order parameter.

We should stress that our calculations of the Josephson current through « Ph/Y-
BasCu307 junction do aot depend on the structure of the gap. The sticcess of our calcula-
tions in predicting the critical current are entirely the result of the band structure breaking
the tetragonal symmetry of the tunneling matrix element. The chain-plane model wonld
predict a finite current for nearly any gap structure provided that the normal state band

structure did not have tetragonal symmetry. It is tempting to suggest that the suceess of
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the model in predicting the Josephson current implies that the essential features of the band
structure have been captured. This would probably be optimistic though.

Nonetheless, it might be fruitful to retain the simple model of the band structure
but change the pairing interaction to increase the density of superfluid on the chains. In
Chapter 4. many possible approaches to this were discussed.

There are several interesting experiments which were not discussed in much detail
in the thesis which could provide insight into how to formulate tlie next generation of the
model. The relatively short ¢ axis scattering length found in Chapter 2 should probably
be incorporated. Studies of tne ¢ axis optical conductivity can be interpreted in terms of a
very broad Drude peuk which is consistent with this (Homes et al. 1995a). The inclusion
of incoherence along the ¢ axis provides an additional twist since incoherent scattering is
known to suppress d wave superconductivity (Radtke et al. 1993). We should point out that
incolicrence in the ¢ axis transport does not necessarily mean that the chains and planes
are coupled incoherently. One perfectly reasonable model] of YBCO would have the chains
and planes strongly (and coherently) coupled. with the weak link occurring at the Yttrium
ion.

There is also mounting evidence of strong electron-phonon coupling for certain
phonon modes (Homes et al. 1995b: Bussmann-Holder and Bishop 1993: Reedvk et al.
1994). One of the phonons which has been studied involves oscillations of the O(4) ion.
which lies between the chains and planes. It would be interesting to pursue the possibility of
phonon assisted hopping between the chains and planes [this possibility has been proposed
(Kresin et al. 1993). although it has not been explored in detail].

There have been a few attempts to connect the ¢ axis transport properties to the
in-plane transport properties (Graf et al. 1993: Zha et al. 1993). but for the most part the
scattering mechanisms in the two directions have been treated as separate entities. Any
theory which includes the relatively large scattering necessary to explain the broad ¢ axis
optical response must also predict the correct in-plane optical response.

In summary. we can point to two deficiencies of the chain-plane model used in
this thesis. The easicst of the failings to rectify is the lack of incoherence in the ¢ axis
transport. The more serious problem is the inability for this model to correctly account for

the superfluid in the CuO chains.
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