TOOLS TO SUPPORT A FORMAL VERIFICATION
METHOD FOR SYSTEMS WITH CONCURRENCY AND
NONDETERMINISM

By
RAMESH BHARADWAJ

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University
© Copyright by Ramesh Bharadwaj (Jan 1996)



Doctor of Philosophy (Jan 1996) McMaster University

(Electrical Engineering) Hamilton, Ontario

TITLE: Tools to Suppox:t a Formal Verification Method

for Systems with Concurrency and Nondeterminism
AUTHOR: Ramesh Bharadwaj
SUPERVISOR: Professor David L. Parnas

NUMBER OF PAGES: x, 140

ii



A METHOD AND SUPPORTING TOOLS FOR SYSTEMS VERIFICATION



Abstract

With the availability of inexpensive computer hardware, software intensive systems.
are Lecoming sopkisticated and pervasive, creating a need for software design meth-
ods that deliver robust and efficient systems. Unfortunately, most systems today are
designed by trial and error, with designers having little insight into their correctness
before they are implemented. The hallmark of an engineering method is the use of
system models (prototypes) to verify designs by provably establishing essential char-
acteristics of products before they are constructed. This thesis attempts to bring the
craft of software construction closer to an engineering discipline, by transforming the-
oretical ideas in program verification and concurrency theory into a concrete method
for the analysis of software requirements and system specifications. In our opinion,
such methods will find wider acceptance if they are adequately supported by a set
of tools. This thesis also describes tools that are being developed to support our
verification method.

In this thesis, our primary concern is the problem of establishing that systems,
when constructed in accordance with a design, will meet their required correctness
properties. We describe a verification method, TOP, in which the description of
a system (i.e., its design) is expressed as an abstract program in a programming
language-like notation called MELA. We represent essential characteristics of the
system (or its requirements) as predicates in a formal logic. The problem of estab-
lishing required correctness properties for the system is then reduced to the problem
of establishing that a set of logical formulae hold. This is known as the verification
problem. Our verification method, TOP, is mainly applicable to systems with com-

plex control structures and simple data structures, and is tailored to systems that are
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designed not to termmate, and which often exhibit nondeterministic behaviour i.e.,
different runs of the system may produce different results, for the same inputs. Ex-
amples of such systems are operating systems, computer hardware, communications

protocols, telecommunications systems, and control systems.

Our method offers a nnified framework in which correctness properties may be
verified using a combination of model checking (a fully automatic method), and theo-
rem proving (a partially automated approach). This is desirable, because automated
methods are applicable only to a limited class of systems. They are severely limited
by the size of the state space generated by the abstract program denoting the system
description — current limits are in the region of 10® states — roughly the number
of states that could be generated by a program with a single 32-bit integer variable.
‘Theorem proving approaches, while more general, are tedious and require specialised
knowledge (the ability to provide proofs) on the part of verifiers. When carried out
manually, proofs also tend to be error-prone. Theorem proving is particularly valu-
able in cases where the effort invested in carrying out a verification may be amortised
over several projects (good examples are communications protocol specifications and
distributed algorithms). Theorem proving can benefit tremendously from appropriate
mechanical support, which can automate the tedious parts, in addition to playing the
part of a relentless skeptic who demands the utmost precision and rigour in proofs.
By presenting verifiers with a unified framework, therefore, we hope to extend the

range of verification to systems that cannot be verified by either method alone.

One of the common complaints about theorem proving systems is that they are
bewildering to beginners and hard to use. In this thesis we present an improved user
interface for theorem provers. We also describe the details of system SNaP which has
been built with this interface. SNAP has been designed for the purpose of checking
proofs, in addition to providing partial automation of proofs. SNAP additionally
allows users to carry out proofs at the desired level of abstraction. To support this,
SNAP includes proof libraries and simplification algorithms based on conditional term
rewriting,

Our method, TOP, has been used to verify problems derived from practice. We

present two case studies that involved the use of TOP. In the first study, we provide
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2 formal semantics for a tabular notation for requirements documents in terms of
MELA. We then use model checking and theorem proving to establish certain “safety
assertions” for the requirements specification of a system that mediates access to
data shared by two processes. In the second study, we analyse liveness violations in a
communications protocol standard, and verify that suggested changes to the standard
have iudeed fixed the problem. Finally, we conclude by describing ongoing work and

suggestions for future research.
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Chapter 1

Introduction

1.1 Motivation

Computer networks, and distributed applications that run over them, are becoming
sophisticated and pervasive. In order to seamlessly interconnect computer systems
over multiple networks, perhaps using equipment from different vendors, and to be
able to run (distributed) applications over them reliably and efficiently, we need com-
puter and communication products that are robust and efficient. Unfortunately, cur-
rent techniques for distributed systems design are woefully inadequate to meet this
need. Most systems today are designed by trial and error, with designers having
little insight in their correctness before they are implemented. As Gerard Holzmann
[Hol93] argues, a good engineering discipline should allow designers to use engincer-
ing models (prototypes) to verify designs, by establishing essential characteristics of

products before they are built.

To address this problem, we advocate the use of Formal Engineering Methods for
the design and development of distributed systems. For example, consider communi-
cations protocols, the fundamental building blocks of distributed systems. Protocols
are notorious for hidden and subtle errors, which often stem from nondeterministic
behaviour caused by parallelism — parallelism allows several possible executions, re-

sulting in different outputs, for the same inputs. It is difficult to design a reliable and
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2 ) CHAPTER 1. INTRODUCTION

robust communications protocol. Protocol design has remained a black art. In ad-
dition, protocol implementors find it difficult to interpret protocol standards because
most standards documents are imprecise and incomplete. There is clearly a need for

introducing engineering methods and tools ir their design.

1.2 OQOur Approach

In this thesis, we investigate a method, supported by tools, to verify system designs.
We use the term system in a broad sense; it may be an algorithm, embedded system,
distributed application, communications protocol, or even computer hardware. We
shall, however, restrict ourselves to a system’s logical properties such as absence of
deadlocks, or error-free data transfer, and not address performance issues such as a
protocol’s desired throughput or its delay characteristics. We do this by abstracting
away from real time. This approach has the advantage of being able to establish
properties of systems that are independent of timing constraints. The disadvantage
is our inability to express (and verify) certain time dependent properties. We shall
also not concern ourselves with methods to derive an implementation from a design,
or prove that an implementation conforms to a design. In our opinion, the tools
and methods proposed in this thesis are only applicable to systems with complex
control structures and simple data structures, such as communications protocols or
embedded control systems, and not for data-intensive applications such as systems
for information retrieval or data base management.

We foresee practitioners applying our method and tools in one of two ways:

1. To validate a system’s requirements specification. This is done by establishing

that a given set of user-specified logical properties hold for the specification.

b

To model and analyse certain critical components of a design. We can do this
by showing that a design, expressed in torms of an abstract program, has the

required safety properties.

The problem of establishing logical properties of a system design is known as the
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“correctness problem”. To start with, the design has to be expressed in an unam-
biguous notation, with a well-defined formal semantics. We propose a programming
language-like notation, called MELA, for this purpose. Why not use a popular pro-
gramming language such as C for this? The answer is simple — the semantics of
languages such as C' are not formally defined. In addition, such languages lack con-
currency constructs, and include features that make static reasoning about them very
difficult. The question may still be asked as to why a language such as UNITY [CM88]
was not used for this purpose. Qur answer is that such languages only have academic
appeal, and are too “low level” to be used in practice. For example, the UNITY
notation abstracts away from control flow; therefore, to model a sequential process,
one has to explicitly deal with the program counter, a process that reduces readability
and is error prone. Such languages would require considerable enhancement before
they can be used by practitioners. As we shall see in chapter 3, the language MELA
we introduce in this thesis may be viewed as a specification for a preprocessor that

translates a higher-level language to a transition system notation such as UNITY.

We expect the result of a design process to be a formal system description ex-
pressed in MELA, Further, we need a notation for expressing logical properties. In
our method, logical properties, or requirements criteria, are written as formulae in
a formal logic. We therefore reduce the correctness problem to that of establishing
that all the requirements criteria hold for the system description. To analyse a for-
mal system description and show that it satisfies all its requirements, we propose a
verification method, TOP, which is supported by a set of tools that provide automatic

as well as semi-automatic (or user guided) verification procedures.

Systems such as computer protocols and distributed algorithms exhibit concurrent
behaviour, which stems from their inherent parallelism. Qur notation for system
descriptions, MEL4, therefore includes constructs for concurrent programming, such
as processes, communication over channels, and parallel composition, Concurrent
programming [BA82], and methods to reason about concurrent programs [CMS8S,
MP83, MP91a, MP91b}, have been an active area of research. The work reported
here draws extensively from the body of iiterature that has emerged from research

in concurrent program verification. Qur method and tools also usefully combine
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two approaches in program verification — model-checking [CES86, Hol91, Kurg9,
McM93, MS91] and theorem-proving [Dow93, Fel33, GM93, GMW79, McC90] —
by capitalising on the strengths of each approach, in order to compensate for the
weaknesses of the other (for related work, see for example [KL93, RSS95, MN95]).

1.3 A Motivating Example

Concurrent programming is the name given to programming notations that allow
parallelism, and techniques to solve the resulting synchronisation and communication
problems. We assume that a concurrent program consists of several sequential “pro-
cesses”, whose executions are interleaved. The processes are not independent — they
communicate with each other, to “synchronise” or to exchange data. The following
problem, drawn from early concurrent programming literature, is meant to introduce

the techniques and tools we develop in this thesis.

1.3.1 The Mutual Exclusion Problem

The mutual exclusion problem is an abstraction of a class of synchronisation problems
encountered in concurrent programming. Consider two processes P, and P, which
perform some set of actions A4; and A, respectively. A, and A; are said to ezclude
each other if and only if executions of A; do not overlap (interleave) executions of
A,. If processes P, and P, both attempt to execute their respective actions, we must
ensure that only one of them succeeds. The losing process must not proceed until the
winning process completes execution of its actions. Dijkstra [Dij68] cast this problem

as the critical section problem. Assume that each process executes the following code:

begin:
remainder;
pre-protocol;
critical section;
post-protocol;

goto begin
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Here, “remainder” is assumed to represént some processing. After the completion
of remainder, each process enters a short critical section. It executes certain in-
structions, called the pre and post protocol, before and after the critical section. The
problem is to devise a protocol which will ensure that each process will in fact execute
its critical section, and that two processes will not execute their critical sections at
the same time.

Several solutions to this problem are possible [Dij68]. The one without special
language features, known as Dekker’s Algorithm, is documented in the literature
[BA82]. Here’s a solution (in an Algol-60 like notation) that does ensure mutual

exclusion, but fails to satisfy other requirements criteria of the critical section problem
(for details, see {Di;68]).

Initially, x = 1

start:
ifx =1 then x:=0;
critsect:
x:=1;
goto start

The label critsect is a piaceholder for the code that is executed in the critical
section. For this program, we may state the critical-section requirement as follows:

for any reachable state of the program, both processes must not be at the label
critsect.

1.4 MELA

In this thesis, we develop a programming notation, MELA, using which we can express
designs such as the solution for the problem above, and formally reason about them.
MELA has constructs for declaring variables and processes, programming constructs
such as assignment, conditional and goto statements, and constructs for creating sev-
eral processes, each executing similar code. We also provide a formal semantics for
MELA using the idea of “single-step relations”, to serve as a specification for a lan-

guage processor to transform MELA programs into equivalent “transition systems”.

Ty
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A formal system description written in MELA may then be verified using techniques

we shall discuss in this thesis.

1.4.1 Why another language?

As we mentioned before, we need a precise and unambiguous notation for expressing
system descriptions, in order to formally reason about them. The notation should
include concurrent programming constructs, should have a well-defined and simple
semantics, and yet allow descriptions of diverse systems including distributed algo-
rithms, communications protocols, and asynchronous hardware, to be expressed in
it. We did not choose to use concurrent programming languages for the reasons we
mentioned before — they lack a formal semantics; proof systems to statically reason
about them tend to be very complex and cumbersome to use.

Of the alternatives we considered, the protocol description language PROMELA
[Hol91] seemed to meet our needs. However, PROMELA also has deficiencies: its
design does not facilitate static reasoning (it has been designed exclusively for model
checking); it lacks a formal semantic definition (its semantics is defined solely in terms
of an interpreter, SPIN). We list below the problem areas of PROMELA:

1. Aliasing of identifiers (channel names) are allowed, which makes (static) rea-

soning about programs (needlessly) difficult.

2. The language permits system descriptions that are not finite state — an un-
bounded (implementation dependent) number of process instantiations are ex-

pressible in the language.

3. Some of the constructs (notably the atomic construct and the run command)

have semantics which are extremely hard to formalise and reason about.

4. The language does not cleanly separate a system description from its correctness
properties. This poses a version control problem during practical verifications,
where several correctness properties have to be established for a system descrip-
tion.
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We therefore decided to work with a subset of the language, in an attempt to work
around these problems. However, we realised that certain fundamental modifications
had to be made to the underlying model, in order to make theorem-proving meth-
ods easier to work with {Bha94]. These changes affected the basic semantics of the
language. We therefore decided to give our language a new name, MELA. Once we
made this decision, MELA quickly diverged from PROMELA, due to hard-to-resist

changes to its concrete syntax, as well as several fundamental semantic ones:

o We did away with the atomic construct, and included a general way to group
sets of primitive actions into atomic actions, using the comma “” statement

separator.

e We introduced a parallel composition construct par instead of the run command

of PROMELA.

o We made synchronisation channels to be typeless, and introduced typing in the
form of event declarations. This smoothed out a common source of confusion in

PROMELA, when messages of different types are sent over the same channel.

We may characterise MELA as a language which was inspired by PROMELA, but
with a new syntax and new semantics. It should, however, be easy to implement a

language processor that translates MELA programs to PROMELA (but not the other
way around).

1.4.2 The MELA Notation

The following treatment is meant to be an informal introduction to the MELA lan-
guage. To some readers, this section may raise more questions than it answers! We
refer such readers to chapter 2 for a formal treatment of the language.

We list the following characteristics of MELA:

1. Variable declarations are mandatory.

2. Certain keywords such as init and par are reserved and may not be used as
identifiers.
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. The standard data types are those of whole numbers (int) and the logical values

(bool). These may be augmented by (user defined) abstract data types (adt).

The basic program unit is a process, which denotes a single thread of control.
The init process is similar to the function main of C' {KR88], in that it serves

as the entry point for the program.

Processes are non-recursive and are instances of process classes. A class of
processes is defined in a process class definition, which may optionally include

arguments with call-by-name (i.e., textual substitution) semantics.

Processes are created (and executed) by the parallel composition statement
(par). A process is created by specifying its process class identifier, followed by

the process identifier.

Process classes are built up from single-step statements, which are atomically
executed. Each single-step statement is built up from primitive stetements
separated by commas (“,”). The semantics of a single-step statement is char-
acterised by an executability criterion, a boolean expression, and a set of as-
signments. Operationallj;,\".ifns execution is a multiple assignment, conditional

upon the boolean expression being true.

. Primitive statements include the assignment statement, interprocess communi-

cation statements as in [Hoa78], and the unconditional branch (goto) statement.

Arrays of process instances may be created, and array variables of standard data
types may be declared. Arrays may be of arbitrary dimensions, with constant
bounds.

There are constructs for sequencing (“;”), conditional execution (choice), itera-
tion (1oop), and branching (goto). Labels are identifiers, and are not (explicitly)
declared.

User-defined functions may be declared either globally or within a process

class declaration, and called within a process.
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Let us cast the problem outlined in section 1.3.1 in MELA.

int x = 1;
process crit()

{
start: (x = 1), x := 0;
critsect: x := 1, goto start
¥
init
{ par
{ : erit es[2] }
¥

1.4.3 Semantics of MELA Programs

In order to be able to formally reason about a MELA program, it is imperative that
we give it a well defined meaning, or semantics. We denote the semantics of a MELA
program as a set of sequences of states. The first state of each sequence is called its
initial state. We view the program’s execution as a series of steps, each step leading
from a state to the next state, in a sequence. We denote terminating computations
by finite sequences, and non-terminating computations by infinite sequences. A set
of sequences may be defined in terms of a predicate, or initialisation condition, and
a relation, known as the single-step transition relation. The initialisation condition
characterises the set of initial states for the program. For a given state, the single-
step transition relation specifies the possible next states. We represent the transition
rciation as a predicate on unprimed (denoting previous state), and primed (denoting
the next state) versions of program variables.

The MELA program above has three variables: the integer variable z, and two
additional variables denoting the program counters of the two processes instantiated
by the par statement. We denote these program counter variables by identifiers ¢s [0]

and cs[1]. We may specify the semantics of the above MELA program as follows:

Initialisation condition

((z = 1) A (es0] = 0) A (es[1] = 0))
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Transition Relation

(2 = 1) A (es[0] = 0) A (a' = 0) A (es0]' = 1) A (es[Ll’ = esf1])
V (es[0]=1) A(z' = 1) A (cs[0] = 0) A (es[1} = es[1])

V (z=1)A(es[l]]=0) A(z' =0} A (es[1] = 1) A (es[0]) = es[0])

V. (es{l] =1) A (2" = 1) A (es[1]' = 0) A (es[0] = es[0]))

As we can see, the representation above for the transition relation is not very
readable. Notice that it is written as a disjunction of smaller predicates. Each disjunct
characterises a function, known as the iransition function. We choose an alternate
representation for the transition relation — we write it as a set of transitions, each
one denoting a transition function. We call this representation the transition system
semantics. Each transition consists of a boolean expression b, the symbol “—”,
followed by a finite sequence of assignments (separated by commas). If the boolean
expression b of a transition evaluates to “true” in a state s, the transition is said to be
enabled in that state. An enabled transition may be executed in a state by executing
its assignments as a single multiple assignment, producing the next state. For the

example program above, we may denote its transition relation as follows:

(es[0) =0)A(z=1) — z:=0,cs[0]:=1;
(es[0]=1) ~—— z:=1,cs[0]:=0;
(esl]=0)A{z=1) — =z:=0,cs(l]:=1;
(es[l}j=1) — z:=1,e3(l]:=0;

Given this semantics, we may now express the mutual exclusion requirement for

the MELA program as the logical formula:
O(=((es[0] = 1) A(es{1] = 1)))

The formula above asserts that in every reachable state of the program, the pro-
gram counters of processes cs[0] and cs[1] may never both have the value 1 (i.e., be
at the label critsect). Note that the (meta-logical) operator henceforth (denoted by
“0") implicitly quantifies the predicate —=((cs[0] = 1) A (es{1] = 1)) over all program
states.
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1.5 Formal Verification

Verification is the process of establishing that a program satisfies its requirements.
We may do this either by explicitly computing the set of sequences that denotes the
program’s semantics (also called its model), or by theorem proving i.e., using reasoning
based solely on the program’s tramsition system semantics. The former method,
known as mode! checking, has the advantage that it can be performed automatically,
by checking properties for their validity in a model. This method is only practical
for models of reasonable size {current limits are in the region of 10° states [Hol91)).
The main advantage of the model checking approach is its completeness — if a model
checking algorithm reports that a theorem is false, it is false!. The main disadvantage
of this approach is that it suffers from the state ezplosion problem — by their very
nature, the number of reachable states of concurrent programs could be very large in
relation to their textual representation. Many abstract programs also have infinite

models, making model checking inapplicable for these problems.

Theorem proving methods, on the other hand, establish p.operties by constructing
proofs. Proof construction, however, is a tedious and error-prone activity., Partial
automation of proofs therefore seems to be a reasonable goal to pursue. We shall
explore this further in later chapters. In addition, it would be beneficial to augment
proof techniques with model-checking algorithms, permitting the two methods to be
used together; e.g., proof rules may be used to decompose a large problem into smaller
sub-problems, each of which may be automatically verified by model checking. In this
thesis, we discuss several ways of doing this. To aid proof construction, systems should
include proof management functions: for instance, they should not allow the user to
declare a proof complete if there are goals or lemmata still to be proved. We shall

take a look at the design of theorem prover SNap [BS94], to see how these issues may
be addressed.

'If a theorem prover fails to prove that same theorem, then all one can conclude is that the
theorem prover failed to find a proof.



12 CHAPTER 1. INTRODUCTION

1.6 SNAP

In this thesis, we develop a new human-computer interface for theorem proving sys-
tems. We also present a system (SNAP) which has been implemented with this in-
terface. Our system was designed for efficiency and ease-of-use. Using SNAP, proofs
may be carried out at a desired level of abstraction. The system interface permits
machine assisted proofs to be carried out in a style that is close to “natural” proofs.
In addition, SNAP allows users to increase the level of abstraction of proofs (i.e.,
skip steps without compromising correctness), by letting them add new theorems,
inference rules, and certain meta rules to the system’s rule-base, even when another
proof is in progress. Users from specific application areas may develop and maintain
libraries of theorems, lemmata, and inference rules, which may be used by others,
including novices, without detailed knowledge of their exact form, or their associated

names — an intuitive understanding is sufficient to use them.

1.6.1 About the System

We have prototype implementations of system SNAP. Our initial implementation was
on UNIX; we have also ported the system to MS-DOS. Written in the C programming
language [KR88] in about three months, SNAP uses fewer than 3000 source statements.
Our software design method was based on object-based module construction [GHMS?7,
Par84]. We identified modules using the principle of information hiding [Par72).
This approach considerably reduced code duplication. Contrary to most reported
experience, it also cut down development time, We hypothesise that this may be due

to three reasons:
1. We had ready access to an expert in the field.

2. Our time estimate is for coding alone — it does not include effort expended for

producing documentation.

3. We had been well-trained in the use of information hiding; in most projects,

developers learn as they go.



Chapter 2

MeLa User Manual

2.1 Notation and Vocabulary

The basic vocabulary of MELA consists of letters, digits, special symbols, and reserved

words. The special symbols of the language are:

+ - * % 1=
== I= # { 3
( ) C 1 &
/\ I \/ - !
? < <= > >=
=> <=>

Reserved Words are interpreted as single symbols, word symbols, and may not be

used as identifiers. The following words are reserved:

adt bool chan choice class event
exit ff function  goto init int
loop par process tt

Identifiers are names denoting types, variables, process classes, and functions.

They must begin with a letter, which may be followed by any combination and number

13
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We shall specify syntax in the traditional Backus-Naur Form (bnf),
where syntactic constructs are denoted by identifiers which are sug-
gestive of the meaning of the construct. Enclosure of a sequence

of constructs by the following meta-brackets has the corresponding
meaning:

e { and } implies a selection from a set of choices;

e [ and ] with a “*" suffix implies their repetition zero or more
times;

e [ and ] with a “+” suffix implies their repetition one or more
times;

e [ and ] (without a suffix) implies their repetition zero times
or once.

Meta-symbol “|” stands for choice, symbol “~” denotes a range,

symbol “::=" introduces a production, and terminal symbols are
enclosed in quotes “"”.

Figure 1: The baf notation

of letters, digits, and the underscore (“_") character.

In the bnf notation (Figure 2.1), this may be stated as follows:

ident svm= {nAn_nzu’ uan_uzu}[uAn_uzn, uau_uzu, uon_ngu, n_n]*

Constants: Decimal notation is used for numbers, which may be either signed or
unsigned.

Separators: Blanks, tabs, newlines, and comments serve as separators. An arbi-
trary number of separators may occur between any two consecutive symbols. No
separators may occur within identifiers, numbers, special symbols or word symbols.

At least one separator must occur between any pair of consecutive identifiers, num-
bers, or word symbols.
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Comments are enclosed between character combinations /* and */; comments

have the same lexical significance as separators. Comments may not be nested.

2.2 Data

MELA has two built-in data types — the type bool for booleans, and the type int
for integers. In addition, users may define abstract data types, each comprising a type

identifier, and related function declarations involving the adt.

2.2.1 The type boolean

A value of type boolean, introduced by the symbol bool, may be one of the logical
truth values false and true, denoted respectively as £f and tt.

"The following logical operators yield a value of type bool when applied to operands
of type bool:

Operator | Symbal

and /\ork
or \/ or|
not “or!

implies | =>
iff <=>

Each of the following relational operators yields a value of type bool.

Relational Operator Symbol
equai = or ==
not equal # or!=
less than <

less than or equal <=
greater than >
greater than or equal | >=
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2.2.2 The type integer

A value of type integer, introduced by the symbol int, is an element of the whole
numbers. The following arithmetic operators yield an integer value when applied to

integer operands:

Arithmetic Operator | Symbol
sum +
difference -
negation -
product *
modulus A

2.2.3 Expressions

Expressions consist of constant or variable operands, operators, and function acti-
vations. An expression is a rule for calculating a value, with syntax and rules for
operator precedence defined as below,

Terms

Integer valued expressions such as x + 1 are called terms. In the following, symbol
o stands for an infix binary operator that generically represents functions symbois

+, —, *, %. We define a term as follows:
1. All constants and variables are terms.
2. If T is a term, then (- 7 ) is also a term.
3. I T and U are terms, then ( T o U ) is also a term.

4. An expression is a term if and only if it arises from the application of the three

rules above.

To avoid the use of too many parentheses, we impose the following ordering on

functions: negation, modulus, product, difference, sum, and allow elimination of
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parentheses according to the rule that negation applies to the smallest expression
following it, then modulus applies to the smallest expression surrounding it, and so
on. For example, we may write a + b * ¢ to mean a + (b *c).

Logical Expressions

Boolean valued expressions are called logical expressions. In the following, we use
the symbol r te generically represent relational operators. Based on the definition of
term above, we define logical expressions as follows:

L. If 7 and U are terms, then ( T r 2/ ) is a logical expression.

2. If A and B are logical expressions, then
CA/NB), (AN B), (" A), (A=>B), (A<=>B), are also logical

expressions.

3. A logical expression may arise only from the application of the two rules above.

We impose the following ordering on logical operators: not, and, or, implies, if

and only if, to allow parentheses elimination in the usual way.

2.3 Declarations and Definitions

A MELA program may have global declarations, or declarations local to a process
class definition or the init process.

2.3.1 Variable Declarations

Every variable occurring in a statement must be declared either globally or local to
a process class definition. A variable declaration associates an identifier, a data
type, and initial value(s) with a new variable. Initial values may be specified either
explicitly as an initialiser, or implicitly by specifying an initialising predicate which
is required to hold in all initial program states. The general form of a variable
declaration is:
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var_decl = type ident_defn ["," ident_defn]#* ";"
type = ident | "int" | "bool" | "event"
ident_defn ::= qual_ident ["=" expn | *|" expn] ";"

qual_ident ::= ident | ident *[" number "]" ";"

Example:

int x =0, y = 0;
beol done = ff;
int x, y | (x>0) & (y> 0);

The first two declarations specify initialisers; the third declaration specifies an
initialising predicate. The first declaration associates identifiers x and y with two
variables of type int, each with initial values 0. The second line declares done, a
variable of type beol with initial value false (££). The third declaration is similar to
the first, but for the initial values — here, the variables associated with identifiers x

and y can have any natural number as their initial values.

2.3.2 Channel Declarations

Channels are used to describe synchronous transfer of data from one process instance
to another. A channel declaration associates an identifier with the datatype chan.

The actual form of a channel declaration is:

channel _decl ::
ident_defn

"chan" ident_defn ["," ident_defn]* “;*
ident | ident "[" number “]" ;"

Example:

chan to_rcvr, from_sndr;
chan chan_array([5];

The first declaration associates identifiers to.revr and from_sndr with two vari-
ables of type chan. The second one declares chan.array as an array of channels (of

dimension 5, with indices 0...4).
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2.3.3 Event Declarations

Channels are used for the synchronous transfer of either unstructured data or struc-
tured data, known as events, across process instances. Event declarations are intro-

duced by the symbol event. The syntax of an event declaration is as follows:

event_decl ::= "event" [ ident_decl J+ ";*
ident_decl ::= ident "(" [ event_args ] ")"
event_args ::= arg_type ["," arg_typel*
arg_type ::= ident | "int" | "bool"
Example:

event command(boel, int), response(int);
event sabm(int, int);

The first declaration associates identifiers command and response as events, the
former with two data fields of type bool and int, and the latter with one data field of
type int. These events may be used for synchronous communication across channels,
or assigned to variables of type event.

2.3.4 Function Declarations

Functions compute a single value (of a given type) for use in the evaluation of expres-
sions. A function declaration consists of the result type, the function identifier, and
zero or more formal arguments specified as a list of {type) identifiers. The syntax of

function declarations is:

function.decl ::= "function" [type] ident "(" [formal_types] ")" ";"
formal_types = type ["," typel*

type = ident | "int" | "bool"

Example:

function int succ(int);
function bool odd(int);
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The activation of a function, known as a function designator, consists of the func-
tion identifier and a list of actual arguments. The number of arguments and their
types must agree with the formal arguments; the function result type must be con-

sistent with the type of the expression in which the function designator occurs.

Example: The above two functions may be activated as follows:

succ(S);
odd(2+4);

2.3.5 adt Declarations

A data type in MELA may be one of the predefined types — beol or int — or a
user-defined type, referenced by a type identifier. The symbol adt introduces the

program part containing an adt declaration.

adt_decl ::= "adt" ident *;"

Example:

adt stack;

The above declaration introduces identifier “stack” as an adt. Subsequent decla-
rations may use it as a (user-defined) data type. A user defined data type in MELA

is axiomatised by providing an equational theory for the data type.

2.3.6 Process Class Definition

A process class definition, introduced by symbols process class, defines a program
part and associates it with an identifier. Instances of the process class may then be
created using the parallel composition statement {par). A process class definition
consists of a heading, followed by the body. The heading gives the process class a
name, and lists its arguments. Arguments provide a substitution mechanism, allowing
a process class to be instantiated with variations of its arguments. The body of a
process class definition may contain additional local declarations, followed by one

or more statements. Identifiers of local declarations have significance only within the
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process class text. A process class has a fixed number of arguments, each of which may
be referenced within the body by identifiers called formal arguments. The following
is the syntax of process class definitions:

Proc_class_defn ::= "process class" ident "(" [formal_args] ")"
u{u body u}u
formal_args ::= formal_decl [";" formal_decl]

formal_decl

("chan" | type) id_defn ["," id_defn]*

body = [declaration]* stmt_list
stmt_list = stmt [ ";" stmt]*
Example: _
process class gecd(int x, y)
{

loop {

X >y, X i=x-y

1y’ x,y:=y-~-x

!X =y, exit

}
¥

2.4 Statements

Statements in MELA are either single-step or compound. A single-step statement is
executed atomically, and is made up of primitive statements, separated by commas.
There are six kinds of primitive statements — the condition statement, the assign-
ment statement, the listen command, the shout command, the unconditional branch
(goto), and exit. There are four kinds of compound statements — the sequencing
statement, the choice statement, the loop statement, and the parallel composition

statement par.

2.4.1 Single-step Statements

A single-step statement is made up of component primitive statements. A single-step
statement is executed only if all its component statements are executable. Executabil-

ity of a primitive statement is determined as follows:
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o for a condition statement, it must evaluate to tt;

e assignment statements and unconditional branch statements impose no addi-

tional executability conditions;

e for a shout (listen) command, the matching listen command(s) (shout com-

mand) must be executable, in another process instance.

Label Declarations Any single-step statement may be marked by prefixing it with
a label, an identifier, followed by a colon (making possible a reference by a goto
statement).

2.4.2 Primitive Statements

The Condition

A condition is an expression of type bool. It controls the execution of the single-step
statement in which it occurs — the single-step statement may be executed only if all

its component conditions evaluate to tt. Conditions are boolean expressions.

Example:

(x

¥y
x+1

y)
X

Y

n v v

The Assignment

An assignment specifies that a newly computed value be assigned to a variable. An
assignment imposes no additional condition on the executability of the single-step

statement inn which it occurs. The form of an assignment is:

assignment ::= var_ref ":=" expression
var_ref ident | ident "[" expression "]"
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W

Interprocess Communication

The listen and shout commands perform synchronous transfer of data (or events)
between sending and receiving processes. A shout command, matching listen com-
mand(s), and all other primitive statements in the single-step statements in which
they occur, are all executed in a single step (conditional upon the executability of all

other primitive statements in the corresponding single-step statements). The syntax
is as follows:

listen_command ::= var_ref "?" [var_ref | event_ref]
shout_command :== var_ref "!" [expression | event_ref]
event_ref ::= ident "“(" [var_ref]* ")"
var_ref ::= ident | ident "[" expression "]"
Example:
to_recvr!x to_rcvr?y
from_sndr!command(tt, y) from_sndr?command(done, x)

The statements in the first line have the effect of sending the current value of
the variable x over the channel to_rcvr, and assigning it to the variable y. It is
important to note that the two statements must necessarily occur in two different
process instances. The statements in the second line have the effect of sending an
event command, with additional values tt and the current value of the variable y, to

the receiving process where the values are respectively assigned to variables done and

X,

The Unconditional Branch

An unconditional branch consists of the symbol goto followed by an identifier, the
label. It transfers control, within a process, to the single-step statement that appears

immediately following the label.

2.4.3 Compound Statements

Compound statements are built up from single-step statements as below:
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statement ::= [label] (par | choice | loop | single_step)
label ::= ident ":"

par raz "par" ||{u [u:u ident id_defn u(" [var_ref]* n)u]+ u}u
choice ::= "choice" "{" [":" stmt_list]+ "}"

loop 1= "loop" "{" [":" stmt_list]+ "}

id_defn ::= ident | ident "[" number "]" ";"

var_ref ::= ident | ident "[" expression "]"

The Sequencing Statement

The sequencing statement specifies that its component statements be executed in
the same sequence as they are written. Individual statements are separated by the
semicolon (sequencing) operator. Note that executions of component statements in a
sequence may be interleaved by executions of statements from other process in.stances

when control is at each “;” (but never at “,”).

The Choice Statement

The choice statement consists of a (non-empty) set of compound statements. When
control flow reaches the choice statement, it is transfered to one of the compound
statements whose first single-step statement is executable. After all the components
of the compound statement are executed, control is transferred to the statement

immediately following the choice statement.

Example:

choice

{ x>y, x:i=x-y
Py>=EX,y =y -x
P x =y

¥

out!x

When control flow reaches the above choice statement, it is transferred to an
executable compound statement (i.e., to one of the three compound statements).
For example, if x > y, control is transferred to the first compound statement, after

the execution of which it is transferred to the shout statement that immediately
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follows the choice statement. If x = y, control is nondeterministically transferred to
one of the three compound statements (because all of them are executable), after the
execution of which it is transferred to the shout statement that immediately following
the choice statement. Note that statements from other processes may interleave the
execution of the choice statement and the shout statement.

The Loop Statement

The loop statement consists of a (non-empty) set of compound statements. When
control flow reaches the loop statement, it is transfered to one of the compound
statements whose first single-step statement is executable. After all the components
of the compound statement are executed, control is transferred back to the loop
statement. However, if one of the components of the compound statement has the

exit statement, control is transferred to the statement immediately following the

loop statement.

Example:
loo
{:x>y,x:=x~y
Py X,y Ty -Xx
X =y, exit, out!x

When control flow reaches the above loop statement, control is transferred to one
of the three compound statements, provided it is executable. For the cases where x
> yory > x, control is resumed at the loop statement after the corresponding com-
pound statement has been executed. For the case where x = y, control is transferred
to the third compound statement, and proceeds to the statement immediately follow-
ing the loop statement after its execution, because of the occurring exit statement.
Note that the third compound statement is executable only if x = y and if there is

an executable listen statement on channel out in another process instance.
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2.4.4 The Parallel Composition Statement

The parallel composition statement, par, activates specific instances of processes
defined in process class definitions. An activation of a process class must contain
a list of actual arguments, which are substituted (textually) for the corresponding

formal arguments defined in the process class definition.

Example: The statement

par {

: ged ged_instance(p, q)

: get_ged get_ged_instance()
¥

activates gcd_instance, an instance of process class ged, and get_ged_instance,
an instance of process class get_gecd. The arguments p and q textually replace corre-

sponding formal arguments of process class ged (i.e., x and y, c.f. section 2.3.6).

2.5 A MELA Example

We shall look at the alternating bit protocol [BSW69], and see how it can be described
in MELA. Figure 2.5 shows the system architecture of the protocol. There are two
communicating entities, Sender and Receiver, connected via Medium, a two-way
transmission channel which may occasionally lose messages. There is a one way
transfer of data from Sender to Receiver, and transfer of acknowledgements in the
other direction. Each message (data and acknowledgement) carries a bit, called the
alternation bit. Each message sent has to be acknowledged by the receiver — on
receipt of a message, Receiver sends a verification message to Sender, with the bit
set to the corresponding bit of the message received. At initialisation, both Sender
and Receiver agree on an initial setting of the alternating bit. Let us describe this
protocol in MELA.

To begin with, we may describe messages that are exchanged in the protocol as

events:

event data0(), datai(), ack0(), acki();
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Here, 0 and 1 denote the settings of the alternating bit; data stands for data
sent from Sender to Receiver, and ack for an acknowledgement from Receiver to

Sender.

We now describe the behaviour of the medium as a process class:

process class Medium(chan from, chan to)
{ event buf[N];
int in = 0, out = 0;

L]

loop {

: from?buf[inl, in := in+1

¢ from?buf[in] /* message loss */

: in > out, to!buflout], out := cut+l
}

¥

Process class Medium has two arguments, one for an incoming message channel
and one for an outgoing channel (we will have two instances of this process class in
our protocol, each of which describes the behaviour of the channel in one direction).
The process body contains a loop statement, with three choices: The first choice
may be taken only if another process has been enabled to send a message on channel
from; making this choice has the effect of receiving the message, storing it in the
variable buf [in], and incrementing the variable in. The second choice receives the
message but does not increment in — this has the effect of discarding the message
that was received — which models message loss. The last choice may be taken if in
> out, (i.e., there is at least one received message in buf that has not heen sent yet),
and if there is another process instance which has an enabled statement to receive a
message on channel to; making this choice has the effect of sending the message to
the receiving process, and incrementing the variable out.

Let us now describe process class Sender. To start with, we define a function

producemsg() to describe the act of acquiring the message to be sent.

function produce_msg();

Next, we declare a variable send_bit to denote the setting of the alternating bit,

with initial value 1. We may now describe process class Sender in terms of a loop
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statement, with siz constituent compound statements — the first three to handle the
case where the alternating bit is 1 and the remaining three for the case where the
alternating bit is 0. Let us examine the first three compound statements:

send_bit = 1, to_rcvr!msgi() /* Denotes sending, timeouts, bit=1 */

send_bit = 1, from_rcvrZacki(), send_bit := 0; produce_msg()
send_bit = 1, from_rcvr?facks()

The first statement sends the message msg1 () over the channel to_rcvr provided
the channel has been enabled to receive it; further, the executability of this single-step
statement is conditional upon the value of variable send.bit being 1. The second
compound statement receives the message ack1() over the channel from.rcvr and
sets variable send.bit to 0, followed by the activation of function producemsg().
Note that statements of other processes may interleave executions of the first single-
step statement and the function activation. Finally, in case message ack0() is received
over the channel fromrcvr when send bit is 1, executing the third statement has
the effect of discarding the received message.

The last three compound statements handle the case when send.bit is 0, and are
similar to the ones above:
send_bit = 0, to_rcvrimsg0() /* Denotes sending, timeouts, bit=0 */

send_bit = 0, from_rcvr?ack0(), send_bit := 1; produce_msg()
send_bit = 0, from_rcvr?acki()

!

Let us now describe process class Receiver. To start with, we define a function

consumemsg() to describe the act of delivering a received message.

function consume_msg();

Next, we declare a variable receive bit to denote the setting of the alternating
bit, with initial value 1. We may describe process class Receiver in terms of a loop
statement, with four constituent compound statements — the first two to handle the
case where the alternating bit is 1 and the remaining two for the case where the
alternating bit is 0. Let us examine the first two compound statements:

rcv_bit = 1, from_ sndr?msgi(), rev_bit := 0, to_sndr'!acki(); consume_msg()
rev_bit = 1, from_sndr?msg0(), to_sndr!acko()
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The first compound statement consists of two single-step statements: the first
statement receives message msg1() over the channel from_sndr, sets the variable
rcv.bit to 0, and acknowledges message receipt by sending message ack1() over
channel to_sndr (conditional on the channel being enabled to receive it); further, the
executability of this single-step statement is conditional upon the value of variable
rcv.bit being 1. This statement is followed by an activation of function consume msg().
The second statement receives message msg0() over channel from_sndr, conditional
upon the vabie of variable rev bit being 1; since the expected message is msg1 (),
the receiver assumes that an acknowledgement was lost, and merely (re)acknowledges
receipt of msg0() by sending message ack0() over channel to_sndr.

The last two compound statements handie the case when rcv.bit is 0, and are
similar to the ones above:

rcv_bit = 0, from_sndr?msg0(), rcv_bit := 1, to_sndriack0(); consume_msg()
rcv_bit = 0, from_sndr?msgi(), to_sndr'!ack1()

Finally, we describe process init as the parallel composition of instances of

Sender, Receiver, and two instances of Medium, with appropriate arguments:

init {
par {
: Sender S{)
: Receiver R()
: Medium Mi(to_rcvr, from_sndr)
: Medium M2(to_sndr, from_rcvr)

3
}

This completes the MELA description of the alternating bit protocol. We repro-
duce below the complete description of the protocol:

event msg0(), msgl(), ack0(), acki();
chan to_rcvr, from_sndr, to_sndr, from_rcvr;

process class Medium(chan from, chan to)
{ event buf[N]; int in = 0, out = 0;
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loop {
: from?buf[in], in := in+1
: from?buf [in] /* message loss */
: in > out, to!buflout], out := out+1l
}
}

process class Sender()
{ int send_bit = 1; function produce_msg();

~ produce_msg{();

loop {

: send_bit = 1, to_revrimsgl() /* Denotes sending, timeouts, bit=1 */
: send_bit = 1, from_rcvr?ackl(), send_bit := 0; produce_msg()

: send_bit = 1, from_rcvr?acko()

: send_bit = 0, to_rcvr!msg0() /* Denotes sending, timeouts, bit=0 */
: send_bit = 0, from_rcvr?ack0(), send_bit := 1; produce_msg()

: send_bit = Q, from_rcvr?acki()

}

process class Receiver()
{ int rcv_bit = 1; function consume_msg() ;

loop {
: rev.bit = 1, from_sndr?msgl(), rev_bit := 0, to_sndrlacki(); consume_msg ()
! rev_bit = 1, from_sndr?msg0(), to_sndr!ack0()
i rev_bit = 0, from_sndr?msg0(), rev_bit := 1, to_sndr!ack0(); consume_msg()
: rev_bit = 0, from_sndr?msgi(), to_sndr'!acki()
} .
}
init
{ par {
: Sender S()

: Receiver R()
: Medium Mi(to_rcvr, from_sndr)
: Medium M2(to_sndr, from_rcvr)

}
}
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Chapter 3
Formal Semantics for Mel.a

In this chapter, we define a formal semantics for MELA programs. We provide this
in terms of a transition system. Our semantic definition may be viewed as the speci-
fication for a language processor which takes a MELA program and translates it into
its corresponding transition system semantics.

To start with, we provide a precise definition of a transition system. We then
define a correspondence between constructs of MELA and the transition system, by
specifying how components of the transition system may be derived from the text of
a MELA program.

3.1 Semantic Model

Universe: We assume the existence of a non empty set D, interpreted as the set of

all states. We shall use symbol s (possibly subscripted) to denote a state i.e. s € D.

3.1.1 Transition System:

A transition system [MP91b, Plo81] is a triple
{I1,0,7}
where

32
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o II is a finite set of state’ variables Uy, U2,... Up. Each state s € D is an
interpretation of II, assigning to each variable u; € II a value over its domain.

We denote such an assignment by s{u;]. The state variables of II are categorised

as data variables and control variables.

® O is an initial condition, characterising the set of states in which execution of
the system can begin.

¢ T is a (finite) set of transitions. Each transition = € 7 represents a state-
transforming action of the system, and is defined as a binary relation R, on
D x D which relates a state s in D to a (possibly empty) set of states that may
be obtained by executing transition 7 in state s. Each state s’ such that sR,s'

is defined to be a T-successor of s.

Binary relation Ry denotes the transition relation of the entire transition sys-
tem, i.e., Rr = U R,
reT

3.1.2 The Transition Relation

Associated with each transition 7 is a relation R, which relates the value of the state
variables in a state s to their values in a successor state s’ obtained by executing
transition 7 in state s. We may express the semantics of transition 7, in terms of the
relation R;, as a predicate on the set of unprimed and primed versions of variables in
set [I. While more general notations are possible, we denote the transition relation
of each transition T by a boolean expression, or guard, the symbol “—", followed
by a finite set of assignments (separated by commas), called the body. To obtain

the predicate which characterises the relation R, of such a transition r, we take the
conjunction of the following:

1. the boolean expression (guard)

2. a set of predicates (y! = e;}, (where eacl. expression ¢; refers only to unprimed

state variables), for each assignment y; := e; in the body, and
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3. the set of predicates (y; = y;) for all variables y; € II that are not eiplicitly
assigned values in the body.

A predicate that characterises the transition relation Ry of the transition system
is obtained by the disjunction of the transition relation predicates of each transition
reT.

3.1.3 Definitions

For a transition 7 in 7 and a state s € D, we say that:

o transition 7 is enabled in s if there exists s’ such that sR.s, i.e., s has a -

SUCCESSor,

e transition 7 is disabled in s if there is no state s’ such that sR.s', i.e., s has no

T-5UCCESsor,

A state s is called a terminal state if there is no transition 7 € 7 which is enabled

in s.

3.1.4 Behaviours

A behaviour of a transition system is a linear sequence of states sg,sy,... such that
the first state so of the sequence is an initial state of the transition system (i.e., it
satisfies the initial condition ©), and for each consecutive pair of states (s;,si4+1) in
the sequence, there exists a transition 7 € 7 such that s;R,s;+1. A behaviour either
contains infinitely many states, or its last state is a terminal state. For our purpose,
we assume all behaviours to be infinite sequences, without loss of generality; for, we
may extend a finite sequence ending in state s, into an infinite one by repeating s,

at the end of the sequence (infinitely many times).

3.2 Semantics of MELA Programs

We shall now relate constructs of a MELA program p with corresponding elements of
the transition system t.
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3.2.1 State Variables

Each globally declared variable of a MELA program p corresponds to a (unique) data
variable of the transition system ¢. Each instance of a process class in p corresponds
to a control variable of ¢ which represents the “program counter” associated with
that process instance. For every instance of a process class in p, each locally declared
variable of that process class corresponds to a (unique) data variable of ¢.

In addition, each data variable has an associated type, which defines the variable’s
domain (i.e, it defines an invariant condition on values that may be assigned to the
variable in any state s € D). MELA has two basic data types, and a facility for
defining abstract data types. A variable declaration involving a basic data type maps
an identifier to exactly one data variable, whose domain is specified by the basic data
type. Collectively, the type specifiers of all data variables restrict the domain of each
variable u; € II, denoted by the set dom(y;), as follows:

if u; is of type bool dom(u;) = {0,1}
if u; is of type int dom(u;) = Int

A variable can also be declared as an array of one of the basic data types, of size
n. The resulting declaration associates the identifier with n data variables of the
corresponding transition system. This allows the use of subscripted identifiers of the

form id[e], where e is a term (c.f. chapter 2), wherever variable identifiers may appear.

if id corresponds to uk, k41, .. Ukgn-1

id[e] maps to u4. where 0 <e<n

3.2.2 Process Classes

Process classes define templates for instantiating processes. A process class definition
comprises a process heading and a body. A process class heading introduces an
identifier which denotes the process class, together with a list of arguments (formal
parameters). Arguments serve as placeholders, providing a substitution m~chanism

which allows a process class to be instantiated with variations in its actual parameters.
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Consider a process class definition, pe, with formal parameters fi, f2,... fn, and a
body b. If a process of class pe is instantiated with actual parameters a4, a3, ... a,, the
text of its body is equivalent to ¥ = b[a1/f1,a2/f2,-..an/ fr], i.€., the simultaneous
substitution of ¢; for f; in & (i = 1,--+,n), provided that body & constitutes a
(syntactically and semantically) correct MELA program.

The body of a process class definition consists of one or more MzLa statements.
Each process class definition has an associated type, which spec:ﬁes the domain of
_ control variables of process instances of that class. Process instances are created by
the par command, and have associated identifiers, or names. A process instance
consists of a control variable, also known as its program counter, and zero or more
data variables (which are instances of local variable declarations in the process class
body). The control variable, identified by the process instance name, ranges over
label values — elements of set L = {0,1,... m}. We assign unique label values to
each MELA statement in the body of a process. Label value 0, known as the initial
label value, is the value assigned to all control variables in the initial state.

We also associate label identifiers (or labels) with certain label values; the function

maplabel, with signature labels — L, denotes this association.

The init Process

The init process definition is a special case. It is equivalent to a process class
definition (with no arguments), combined with an implicit process instantiation with

name init.

3.2.3 Imnitial Condition

The initial condition, ©, of the transition system corresponds to the conjunction of
the following:

e initial values of all variables (if defined by initialisers),

¢ all initialising conditions (c.f. section 2.3.1), and
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¢ a predicate m; = 0, for each control variable =; of process instances in the MELA |
program.

3.2.4 The Transition Relation

We now define transition(s) associated with each kind of statement in a MELA pro-
gram p. For the purpose of this discussion, we assume that each statement is within

the context of a process instance associated with a control variable .

Expressions: Expressions in MELA are either boolean expressions or terms as de-
fined in chapter 2. A MELA expression defines a mapping from interpretations of II

to the set {tt,ff} (for boolean expressions), or the set of integers Int (for terms).

Primitive Staterhents

The Condition: The transition associated with a condition ¢ is 7 : e — skip,

where skip is a null set of assignments.

Assignment: The transition associated with an assignment of the form u; := e is

T:tt — y; 1= e,

Interprocess Communication: Consider a listen command of the form ch?z,
occurring in a process instance p;, and a shout command of the form chle, occurring
in a process instance p;. The two commands are said to match one another if the

following conditions are satisfied:

¢ the channel names ch are identical, one of the commands is a shout command

and the other a listen command;

e process instance p; is distinct from instance p;, i.e., the commands occur in

different process instances;

¢ if = denotes a variable identifier, and e an expression, the then z must be
assignment assignment compatible with e, i.e., the declared type of variable z

must be the same as the type of expression e;
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¢ if z and e are events, they must have the same event name; if the event has ar-
guments, then each (positionally) corresponding variable in the listen command
must be assignment compatible (as defined above) with the expression in the

shout command.

If two interprocess communication commands match, then they are deemed to
occur in both process instances p; and p;.
The transition associated with two matching interprocess communication com-

mands may be defined for the following two cases:
1. if z is a variable identifier and € an expression, then 7: %t — z:=¢;

2. if z and e are events, with arguments z,, =, ...z, and ey, €3, ... &, respectively,

then 7 :tt — z; :=e€1,29 1= €3,...Tpn = €.

Unconditional Branch: The transition associated with an unconditional branch
statement of the form goto label is 7 : tt — 7 := maplabel(label), i.e., it assigns the
label value associated with the identifier label to the control variable of the process

instance In which it occurs.

The exit Statement: We associate transition tt — exit with the exit primitive
statement. Embedding an exit statement within a loop entails substitution of exit
in the associated transition by an assignment to control variable = associated with the
process instance in which the statement is embedded. Additionally, there is a proviso
that the transitions associated with a process instance must have no exit statements
in them (all of them should have been substituted out; i.e., exit statements are not

allowed to occur outside the context of loop statements).

Single-step Statements

A single-step statement is made up of a set of primitive statements, and is of the
form py,ps,...p,, where p; are primitive statements. Let =, (1 < ¢ < s), be the
transition associated with each primitive statement p; in the single-step statement.

The transition T associated with a single-step statement is defined as follows: its
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guard is a predicate that is a conjunction of al] the guards of transitions ; associated
with each primitive statement p;; its body is the union of all assignments of transitions

7 associated with each primitive statement p;.

3.2.5 Compound Statements

We associate a set of transitions with each compound statement of MELA. Compound
statements are built from single-step statements using the sequencing, conditional,
iterative, and parallel composition constructs. Each compound statement has two
associated label values: a pre-label value I,.., and a post-label value lpost- In the
following, we assume that the compound statement is embedded within the body of

a process instance with control variable .

One Single-step Statement

For a compound statement that consists of one single-step statement, we associate a

single transition with the following components:

e [ts guard is a conjunction of the guard of the transition associated with the

single-step statement and predicate w = I,..

¢ Its body is the union of the body of the transition associated with the single-step

statement, and the singleton set with element 7 := {post

Sequencing

The sequencing operator semicolon “;” composes two compound statements within
a process instance. Given two compound statements c¢1 and ¢z, their sequential com-

position ¢; ;¢; is defined as follows:
1. Let lmiy be an additional (unique) label value.

2. Associate label value lpre with the pre-label of ¢; and value I,;4 with the post-
label of ¢;.
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3. Associate label value I,,;4 with the pre-label of ¢, and value /., with the post-

label of c;.

4. The set of transitions associated with the sequential composition statement is

the union of the transitions associated with statements ¢; and c,.

Conditional Control

The choice statement is of the form
choice{
|

1 C2

: Cn
}

where ¢, ¢z,... ¢, are compound statements.
We define the transitions associated with the above conditional control statement

as follows:

1. Associate label value {,,. with the pre-labels of statements ¢y, ¢z, . .. ¢n.
2. Associate label value [,,,; with the post-labels of statements ¢y, c3, . . . €n.
3. The set of transitions associated with the conditional control statement is the
union of the transitions associated with statements ¢y, ¢s,...c;.
Iteration

The loop statement is of the form
loop{
>

s Co
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iKY
N

where ¢;1,cy,... ¢, are compound statements.

We define the transitions associated with the above iteration statement as follows:

1. Associate label value I, with the pre-labels and post-labels of statements

€1,C2y...Cp,

2. Replace every exit primitive statement in the transitions assoctated with state-

ments ¢, ¢z, ...c, by the assignment 7 := lpost-

3. The set of transitions associated with the iteration statement is the union of all

transitions obtained in the previous step.

Parallel Composition

The parallel composition statement is of the form

par{
:tl pl
1ty p2

1tn pn

}

where 1;,15,... ¢, are process class identifiers and Pl,p2,...pn are corresponding
process instances. In section 3.2.% we defined the transitions associated with pro-
cess instances. Let pl,,,, P2post; - - - Ppog denote the post-labels of process instances
pl,p2,... pn respectively, and p,, P2,...Pn denote their control variables. The set of

transitions associated with the parallel composition statement is the union of the

following;

1. transitions associated with process instances pl,p2,...pn, with identical body

but with an additional conjunct = = Ipre in each guard;

2. transition (p, = Plpost) A (P2 = P2post) A ... (pn = Plipost) = T 1= lpgye, py 1=
0, p2:=0,... pp:=0.
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3.3 An Example

Cons_ider the MELA program of chapter 1, reproduced below:

int x = 1;
process crit()
{
begin: (x = 1), x := 0;
critsect: x := 1, goto begin
} )
init
" { par
{ : crit =s{2] }
}

Let us determine the transition system semantics for the above program.

3.3.1 State Variables

The program has one associated data variable (), and three associated control vari-
ables cs[0], cs[1], and init, which denote the program counters of process instances

csf0], es[1], and the init process respectively.

3.3.2 Imitial Condition

The initialiser x = 1 specifies the initial condition for data variable z. All control
variables implicitly have the initial value 0. The predicate characterising the initial

condition therefore is;

((z = 1) A (cs[0] = 0) A (cs[l] = 0) A (init = 0))

3.3.3 Transition Relation

Process class crit comprises two single-step statements, composed by the sequential
composition operator “;”. We associate label value 0 with the label begin, and label
value 1 with the label critsect. Finally, e associate label value 2 with the post-

label of the second singlé-step statement (which does not have an explicit label). The
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transition associated with the first single-step statement of process instance ca[i],
for i € {0,1} is:
(esli] =0)A(z=1) — z:=0, cst] := 1;
Similarly, we associate the following transition with the seccnd single-step state-
ment of process instance cs[i], for i € {0,1}:

(eslt] = 1) — z :=1, cs[i] := 0;

Here, the assignment to csfi] is a result of the goto statement in the definition of the
process class.

We now associate the following five transitions with the par statement (and

thereby the entire program):

(init =0)A(es[0]=0)A(z=1) — z:=0,cs[0]:=1
(init =0)A{ces[0)=1) — z:=1,es0}:=0
(init =0)A(es{l]=0)A(z=1) — z:=0,cs[l]:=1
(init =0)A(es{l]=1) — z:=1,es1]:=0

(esl0] =2)A(es[l) =2) — init :=1,cs[0] := 0,cs[1]:=0

Simplification: We may optimise the above set of transitions, based on the foliow-

‘ing observations: Variables ¢s[0], cs[1], are never assigned the value 2 in the initial
state, as well as in any transition. Therefore, the guard of the last transition above
can never evaluate to tt; the transition may thercfore be discarded without affecting
the semantics. For the resulting program, predicate init = 0 remains invariantly
true, and may be omitted in the guards of all transitions.

The siniplified set of cransitions, presented in chapter 1, is reproduced below:

(esf0]=0)A(z=1) — z:=0,cs[0)]:=1
(cs{0] =1) — z:=1,cs[0]:=0
(es[lj=0)A(z=1) — z:=0,c3(l]:=1
(es[l] = 1) — z:=1,es{l]:=0



Chapter 4

TOP — A Verification Method

4.1 Introduction

A common approach for establishing that a program meets its correctness require-
ments is by theorem proving. Recently, model checking [CES86, Hol91, Kur89, McM93]
has emerged as an alternative for the verification of finite-state programs. Model
checking is based on the idea of expressing a program’s requirements as a formula
in temporal logic, and viewing the program as a structure that may be interpreted
as the formula’s model [Wol89]. In this thesis, we shall focus our attention on cor-
rectness requirements expressed as formulae in Linear-time Temporal Logic (LTL) of
{MP83, MP91b]. Other popular approaches use branching-time logics such as CTL
(see for example [CES86, McM93] for details).

4.1.1 Why Model Checking?

Theorem proving methods for establishing correctness properties of programs tend to
be tedious. Manually carried out proofs also tend to be error prone. For example,
appendix A presents the proof of a safety property for Dekker’s algorithm. The proof
is about 700 lines long, and consists of 20 lemmata. In order to increase our degree of

confidence in the proof, it was mechanically checked using the system we discuss in

44
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later chapters. It is therefore not surprising that the proof took more than two person-
weeks to carry out. A barrier to the industrial use of theorem proving methods is
that few practitioners have the mathematical sophistication or theorem proving skills
required to use them.

Model checking, on the ither hand, is performed automatically, i.e., “by the push
of a button”. The main advantage of the model checking approach is its completeness
— if a model checker reports that a theorem is false, it is false. On the other hand,
if a theorem prover fails to prove that same theorem, then all one can conclude is
that the theorem prover failed to find a proof. However, model checking methods
inherently suffer from a major limitation, namiely, state explosion!. As we outline
in {BFS95] model checking is most effective when used in combination with theorem
proving methods.

In this chapter, we shall investigate a verification method, TOP, which combines
the two approaches. In the traditional (theorem proving) approach, proof rules are
used to decompose a more general problem into a set of sub-problems (under user
guidance). This process may be repeated for each sub-problem. The validity of
each sub-problem is then established individually be providing a proof in a formal
axiomatic theory. When there are no remaining sub-problems, the original problem
will have been verified. In our method, TOP, we present users with a second version
of each proof rule. Such rules, called model checking rules, have been derived from
their classical versions. For a particular sub-problem, therefdre, users have the option
of using either the classical proof rule or the corresponding model checking rule.
In the latter case, the validity of all the premises are collectively established by an
algorithm we present in this chapter. Termed direct model checking, this approach
has several advantages over traditional model checking: reasoning is still done in
terms of the original proof rules, users do not have to learn a new formalism, and
establishing validity under fairness assumptions (a difficult problem for traditional

model checkers) is handled just as in theorem proving approaches.

!Because they operate directly on the set of computations of a program, these algorithms must
concretely denote all the states in the computation, which may be very large when compared to a
program’s textual representation. Therefore, even if a given verification problem is decidable, it may
not be tractable in practice.
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During verification, a question that usually arises is, “which version of the proof
rule should I use?” In practice, we have found that the following thumb rule usually
works: whenever possible, use the model checking rule; otherwise, (i.e., if there is no
finite-state abstraction for a problem, or if the state space is too large), use tradi-
tional theorem proving. Note that the latter usually entails “discovering” stronger
invariants; model checking rules help us “debug” these invariants, by providing coun-
terexamples after a partial exploration of the state space (even if it is infinite).

The method TOP integrates model-checking with proof-theoretic approaches. Our
goal is to capitalise on the strengths of each approach, in order to overcome the
limitations of the other, thereby extending the range of problems that may be formally
verified. By presenting users with a unifying framework for reasoning about their
programs, our method seamlessly integrates the two verification approaches. This is
a major improvement over existing methods [KL93, RSS595, MNg5).

4.1.2 Background

The usual approach for model checking an LTL formula is to construct a finite-
automaton on infinite words (a Blichi automaton) for the negation of the formula, take
a synchronous product of the automaton representing the behaviour of the program
and the Biichi automaton representing the negation of the formula, and check that the
language accepted by the product automaton is empty [VW86, Wol89]. Emptiness
is checked by determining ‘whether the set of accepting states is reachable from the
initial set of states, and belongs to a cycl: [CVWY92, Hol91]. An advantage of this
approach is that using the negation of the formula may result in a smaller state space
to be explored. A popular way to implement this algorithm is to compute the program
automaton and the synchronous product in the same step, obviating the need to store
the whole state-space graph, an approach known as on-the-fly (O TF) model checking
[CVWYS$2, Hol91].

A major disadvantage of this appreach is that to model check a property expressed
in LTL requires the construction of an equivalent Biichi automaton that has, in gen-
eral, an exponential number of states in the length of the formula [Wol89]. Also, this

approach is difficult to use in practice because users, being unfamiliar with the Biichi
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a..utoma.ton construction procedure, do not have an intuitive understanding of the
generated Biichi automaton — interpreting counterexamples produced by the model
checker is therefore very difficult.

Another disadvantage of this method is that fairness assumptions [Fra86, MP91b]
cannot be handled very well. A plausible approach to handle fairness is to express
the fairness assumption as a formula F » and model check the formula F => q, where
q is the property to be checked. This approach is not feasible in practice because
even if the original formula q expressing the desired property is short, the formula
F expressing the fairness assumption will have a length proportional to the size of
the program — therefore, the formula to be checked will no longer be short. Other
approaches that build fairness directly into the state exploration algorithms [Pel93]
have the disadvantage that they generate inordinately long counterexamples, making
them hard to interpret.

In this chapter, we explore a new approach for the verification of temporal prop-
erties. The direct model checking method adapts well-known proof rules used in

theorem proving LTL formulae [MP91a), to model checking. Our method has several
advantages:

o There is no need to construct (or use) Biichi automata for model checking
properties expressed in LTL.

e It unifies model checking with theorem proving methods, vastly increasing the
set of tools available to users. In fact, it permits a verification problem to be

tackled using a combination of model checking and theorem proving tools.

¢ Fairness (both weak fairness as well as strong fairness) is handled in a straight-

forward way, just as in theorem proving approaches.

» The method is compatible with on-the-fly model checking and the bit-state
hashing algorithm of [Hol88).

Our approach requires some intuition on the part of users, to be able to come up
with auxiliary invariants (and other predicates) which inay be necessary for model

checking. In our opinion, this is actually an advantage because use of this approach
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is close to a genuine proof i.e., a chain of argument which will convince a human
reviewer; the pitfalls of relying on the mere grunt of assent from an oracle (in this

case, the model checking program) are well-known [RvH91].

4.2 Notation

In the following discussion, we associate a set V of variables with every program P.
Each variable may take on values over a (finite) domain D. A state is an interpretation

of V, aééigning to each variable a value from domain D.

4.2.1 Notation for Programs

Without loss of generality, we represent programs as transition systems, as in UNITY
[CM88]. In chapter 3 we have seen how we may mechanically transform programs
with constructs such as processes, channels, sequential and parallel composition, a1d
repetition, to this notation.

Recall that a program P may be denoted as a pair (0, T), where O is the initial
predicate which characterises the set of initial states, and 7T is a (finite) set of tran-
sitions. Each transition r € T consists of a quantifier-free predicate, or guard, the
symbol “—-", followed by a finite set of assignments (separated by commas), called
the body. Operationally, a transition is said to be enabled in a state s if its guard eval-
uates to “true” in that state. For a transition 7, we denote the set of enabled states
by predicate £n(r). If a transition is enabled in state s, its body may be ezecuted
in that state. Assignments in the body are executed as a single multiple assignment.
For example, the body “x:=y, y:=x" exchanges the values of variables z and y.

Also recall that we denote the behaviour of program P as a linear sequence of
states s, 81,. .. such that the first state sq of the sequence is an initial state of P (i.e.,
it satisfies the initial predicate ©), and for each consecutive pair of states {s;, s;4;) in
the sequence, thiere exists a transition T of P such that its guard is true in state s;, and
state s;4) results from executing 7's body in state s;. We assume all behaviours to be

infinite sequences, without loss of generality; for, we may extend a finite sequence
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ending in state s, into an infinite one by repeating s, infinitely often at the end of
the sequence.

. 4.2.2 Notation for Requirements

This section describes the language for expressing correctness properties or require-
ments criteria for system descriptions expressed in MELA. We use Linear-time Tem-
poral Logic (LTL} of [MP91b] as our requirements language.

We assume an underlying first-order assertion la,ngu;ge L, with interpreted sym-
bols for expressing the standard operations and relations over domain D. We shall
refer to formulae in language £ as state formulae or assertions. We shall denote the
proposition “true” by tt and proposition “false” by ff.

We construct temporal formulae out of state formulae by applying the logical oper-
ators ~ (negation) and V (disjunction), and the temporal operator ¢/ (until). Other
logical operators such as = (implication), ¢ (equivalence), and A (conjunction), and
temporal operators such as © (eventually) and O {henceforth) can be defined in terms
of these elementary operators.

A temporal formula pis interpreted over an infinite sequence of states o : s, 84,.. .,
known as a structure, where each state si is an interpretation for the variables in P
For a structure o, the general notion of a temporal formula p holding at position j > 0
in ¢ is written as (o, j) = p. In the following, we provide an inductive definition of a

temporal formula p holding for sequence o at position j = 0%

e If pis a state formula (i.c., has no temporal operators),

(c.0)Eposflrp
we evaluate p using the interpretation given by state sq.
* (0,0) = ~p & (0,0) F p.

¢ (@,0)lEpV g (5,0) = por (0,0) = q.

2This is known as a canonical interpretation of formula p,
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o (0,0) EpU q < for some k > 0, (0,k) = g and for all i such that 0 < i < %,
(i) = p.

In addition, we define two other temporal operators:
o Op =tt U p (eventually)

e Op = =O-p (henceforth).

Program Validity of LTL Formulae

The behaviour of a program P, an infinite sequence of states, can serve as a structure
over which a temporal formula p may be interpreted.

We define the validity of a temporal formula p for a program P by interpreting p
over all behaviours of program P. if p is valid for all behaviours of program P, we
say program P satisfies the temporal property p. We may check this by using proof
rules for establishing temporal properties of programs. In this chapter, we outline
how these proof rules may be adapted for model checking, and propose an algorithm
to accomplish this task.

We shall restrict ourselves to the following groups of properties®. These proof
rules suffice to establish most temporal properties and are the main working tools
during practical verifications (MP90].

One group of rules establishes the validity of the invariance formulae Og and
O(p = Oq); these formulae express the invariance of a state formula g, either through-
out a behaviour, or starting from the state in a behaviour in which formula p holds.

Another group of rules establishes the validity of the eventuality formulae ¢g and
O(p = Og); these formulae express the guarantee that g will eventually be true in a
behaviour, either once, or following each state in which formula p holds.

These proof rules reduce the problem of establishing an LTL property for a pro-
gram to the problem of establishing the validity of a (finite) set of state formulae.

Some of these are directly expressed as (first-order) predicates. Others, known as

IThe proof system may be extended to a richer system, which establish.: validity of any LTL
formula; for details see [MP91a, MP91b].
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annotated transitions, are written in terms of individual transitions of the program.
They are of the form {pre}7{post}, where pre and post are predicates and T is a
transition. The interpretation of {ore}r{post} is that whenever the guard of 7 is
true in a state in which pre holds, then post holds in the state resulting from the
execution of the body of 7.

We may translate each annotated transition into a first-order predicate. We do
this by using the notion of weakest precondition [Dij76]. Let B denote the body z; :=
€1,* ", Tn := €. The weakest precondition wp(B, post), where post is a predicate, is
defined as poste;/z1,: -+, e,/zy], where postlei/x1,+ -+, €n/T,] denotes the predicate
resulting from the simultaneous substitution of e; for z; in post (i = 1,---,n). An
annotated transition {pre}r{post}, wherer = g — B, is equivalent to the predicate
(pre A g) = wp(B, post).

4.2.3 Notation for Annotated Programs

An annotated program P4 is a pair (©4,T4). 1t consists of an annotated initial
predicate ©4 and a (finite) set of annotated transitions 74. @4 = {0, Init), where ©
and Init are predicates, is written as ©{J nit}. Each annotated transition 74 € T4
is a triple (pre,r, post) written as {pre}T{post}. Here, pre and post are predicates
and T is a transition of the form ¢ — B with guard ¢ and body B. We define
the enabledness of an annotated transition 74 in terms of the enabledness of its
component transition 7.

Operationally, we may define a behaviour of an annotated program just as we did
for a program: a behaviour o = $0,51,... starts from a state sy satisflying predicate
© of @4, and for each pair of consecutive states s; and s;y; in o, execution of the
transition part of an enabled annotated transition in state s; results in state s;4,.

Additionally, each behaviour must satisfy the following conditions:

® Predicate /nit must hold in state sp. If not, the behaviour is said to have an
assertion violetion in state sq. In this event, the singleton sequence 3y is called

a counterezample.

o If state s;1; results from state s; by executing the transition part of an enabled
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annotated transition 74, and the predicate part pre of 74 holds in state s;, then
predicate part post of 74 must hold in state s;y;. If not, such a behaviour is
said to have an assertion violation in state s;. In such a case, and additionally
if there are no assertion violations in states sg,...,$;-1, the sequence of states

3y, ...8; is called 2 counterezample.

4.3 The Model Checking Algorithm

The model checking problem we consider is as follows: given an annotated program
P4 check for assertion violations, if any, and provide a counterexample for the first en-
countered violation. We call this process assertion checking. The algorithm, adapted
from [HS82], performs a depth-first search (DFS) of the behaviours of program PA4.
In the following, the notation Pred(s) where Pred is a predicate and s is a state is
used to denote the evaluation of predicate Pred in state s (yielding a boolean result).
We denote the cardinality of set 74 by | 74 |. We use the notation 7/ to denote the
i*? annotated transition of 74. The components of T are respectively denoted by
T8 .pre, i, and 7/ .post. Predicate enabled(7#,s) denotes the enabledness condition
of transition 7/ in state s. Function suce(r,s) returns the state resulting from the
execution of transition 7 in state s.

The main data structures used are the following: Stack S contains the sequence of
states of a behaviour, starting from the initial state up to (and excluding) the current
state {cs). Elements of stack S are pairs (s,n) where s € D is a state and n € Nat is
a natural number denoting the first unexplored transition of state s. We denote the
empty stack by empty; stack operations push, pop, and top have the usual meaning.
Set H contains all states that have been visited during the DFS. Set H is usually
implemented as a hash-table. Set operations U and € have the usual meaning. We
denote the null set by @.
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H :=0; S := empty
for each sg such that ©(sg) and sp € H do
cs 1= so; assert(Init(so)); H := H U {so}; push(S, {so,1));
while S # empty do
(cs,) := top(S); pop(S)
whilei < |74 | do
if enabled(t#, cs) then
ns = suce(7, ¢s)
if 7/*.pre(cs) then assert(t.post(ns)) fi
if ns € H then
H = HU {ns}; push(S, (cs,i + 1));
cs:i=ng;t:=1
elsei:=:i+1fi
elsez:=i+11f
od
od
od

The algorithm uses an auxiliary procedure assert. In this procedure, assume that
routine PrintStates(S) prints out the state component of elements of stack S and

routine PrintState(s) prints out state s.

procedure assert(Predicate p)
if =p then
/* report assertion failure */
PrintStates(S); PrintState(cs); exit
fi

end
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4.4 Adapting LTL Rules to Model Checking

In this section, we outline how we may interpret LTL proof rules in the context of
model checking. We have adapted these proof rules from [MP83, MP90, MP91a,
MP91b]. As we mentioned in section 4.2.2, we shall restrict ourselves to proof rules
for invariance and eventuality formulae, as our intent is to convey to the reader the
central idea. It would be easy to extend our work to the general case of model checking
any LTL formula (on the lines of [MP91a, MP91b)).

Using a proof rule, one may infer an LTL property for a program from the validity
of a set of formulae known as the premises. In this section, we present two versions
of 2 number of proof rules. One version is meant for carrying out proofs using the
classical approach, in which these validities are established individually by providing
a proof in a formal axiomatic theory. The second version is meant for the direct
model checking approach: in this approach, the validity of the premises is established
either by translating them into model checking sub-problems (using auxiliary proof
rules}, or by collectively establishing validity of all premises by assertion checking an

annotated program using the algorithm outlined in section 4.3.

In the following, we denote by {pre}T{post}, where pre and post are predicates,
and T C 7 is a set of transitions, the condition of requiring {pre}r{post} to hold for
everyte T,

4.4.1 Rules for Invariance
Example Rule 1: Establishing Oq

(a) Proof Rule for Og: For a program P, a proof rule to establish the validity of

temporal formula Ogq, where g is a state formula, is as below.
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INV 1. 9=>¢

2. ¢=¢
B. {$}T{4}
Ug

This rule uses an auxiliary predicate ¢ to establish the invariance of g. We can
prove its soundness by showing that ¢ holds for all states s; of a behaviour, by
induction on j, using premises I1 and I3. From this and premise 12 the conclusion
follows.

In order to see why an auxiliary predicate ¢ is required to establish invariance, let
us examine the mutual exclusion problem we presented in chapter 1 (section 1.3.1).
There, we cast the mutual exclusion requirement as the problem of establishing the
LTL property: O(=({cs[0] = 1) A {csf1] = 1))) for a program P for which:

O = ((z =1) A (cs[0] = 0) A (cs[1] = 0))

and the transitions of set 7T are:

(esf0] =0)A(z=1) — z:=0,cs[0]:=1;
(esl0] =1) — z:=1,es[0]:=0;
(es[l]=0)A(z=1) — z:=0,cs[l):=1;
(es[lj=1) — z:=1,cs{l):=0;

Let us try to directly establish property Og, where ¢ = —((es[0] = 1)A(es[1] = 1)),
without using a stronger auxiliary predicate i.e., let predicate ¢ = ¢. We may conclude
Og (by rule INV) if we establish the validity of the following predicates:

IT: ((x=1)A{cs[0]=0)A(cs[l] =0)) = ¢

I12: g=¢
13a: {g}(es[0]=0)A(z=1) — z:=0,cs(0] := 1{q}
13b: {q}(es[0] = 1) — z := 1, ¢s[0] := 0{q}
13c: {g}es[l]=0)A (z=1) — z :=0,cs1] := 1{q}
13d: {g}(cs[l] =1) — z :=1,¢s{1] := 0{q}
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Predicates 11 and I2 are valid. It is easy to see that predicates I3 and I3d are
also valid. Predicates I3a and I3c, however, are ‘not.valid (to prove them, one is
required to prove the absurdity 1 # 1). Therefore, it is clear that predicate ¢ is not
strong enough to be “pushed through” all transitions in set 7. We leave it as an

exercise to the reader to verify that choosing the stronger predicate:

¢ = ((z=1)A(cs[0)]=0) A (es[l]=0)) V
((x=0)A(es[0) = 1) A(csfl] =0)) vV
((z =0) A (esf0] = 0) A (es[1] = 1))

establishes the premises of rule INV,

-Why is a stronger auxiliary predicate ¢ required for ruie INV to be applied suc-
cessfully? The reason is obvious — since we establish assertional validity individually
for each transition in premise I3 of rule INV, even if predicate g holde in all zeachable
states of the program, it may not necessarily be propagated by a transition 7 € T
from an enabled state of T to the next state. This is because a state in which transition

T is enabled is not necessarily a reachable state of program P.

(b} Model Checking Rule for Og: For a program P, the validity of temporal

formula D¢, where ¢ is a state formula, is established by the following model checking
rule INV*:

INV= 04  0{q)
T4 {q)T{q}
Pl 0Og

This rule asserts that in order to establish, for program P = (@, T), the invariance
of a state preperty ¢ (i.e., Og), it is sufficient to assertion check an annotated program
P4 with annotated initial predicate ©{q}, and annotated transitions {¢}T {q}.

We prove its soundness by establishing the premises of proof rule INV, by setting
¢ = g. From this follows the conclusion of INV, and hence the conclusion of INV™.
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Ncte that in this model checking approach, we collectively establish all the premises
of rule INV essentially by evaluating predicate ¢ in every reachable state of program
P. Because we evaluate predicate ¢ only in the reachable states of program P, an

auxiliary (stronger) predicate ¢ is not required in this approach.

Example: Using- the above model checking rule, we may establish the invariance

property Og for the mutual exclusion algorithm, by model checking the following
annotated program:

O%: (= =1)A(es0} = 0) A (es[1] = 0)){q}
TAL: {g}(cs[0] = 0) A (= = 1) —s z := 0, cs[0] := 1{q}
T42: {qHes[0]=1) — z:=1 yes(0] := 0{q}
T43: {qHes[l]=0)A(z=1) — z:=0, es[l] := 1{q}
T2 : {g}(es(l] = 1) — z:= 1, es{1] := 0{q)}

Example Rule 2: Establishing O(p = 0Oq)

(a) Proof Rule for O(p = Ogq): For a program P, a proof rule to establish the
validity of temporal formula O(p = Og), where p and q are state formulae, is given
below (CINV stands for “conditional invariance”).

CINV Cl. p=¢
C2. d=gq
C3. {4}T{¢}
B(p = Dq)

As in rule INV, rule CINV requires an auxiliary predicate ¢ to establish the

invariance of ¢, starting from a state s; in which predicate p holds. Its soundness can
be easily proved as before.

(b) Model Checking Rule for O(p = Og): To model check a formula of the

form O(p = Og), where p and q are state formulae, we first formulate the following
auxiliary proof rule:
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CINVa Cla. O(p = q)
C2a. O(q = Oq)
O(p = Oq)

Soundness of this rule follows from the rule of entailment transitivity: O(p =
q),0{q = r) - O(p = r) (see [MP91b] page 230).

In practice, premise Cla is established either by theorem proving (e.g., by es-
tablishing the validity of p = ¢), or by showing that it is an invariant property of
program P using the model checking rule INV™.

Premise C2a, i.e., a property of the form O(g = Og) is known as a stability
property. This formula asserts that if ¢ holds at any state in a behaviour, then it will
continue to hold for the rest of the behaviour. We may establish this either by using
proof rule CINV or by the following model checking rule CINV*:

CINV* 04 0{tt}
T4 {g}T{q}
P Og= Og)

This rule asserts that in order to establish that a state property g is stable for
program P = (@, T}, it is sufficient to assertion check an annotated program P4
with annotated initial predicate @{tt} (where tt stands for the predicate “true”),
and annotated transitions {q}7 {q}.

To prove soundness: Assume that predicate g holds at state s; of a behaviour

of program P. We can show that predicate ¢ will continue to hold for all states s;

(7 2 1) of the behaviour by induction on j.
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4.4.2 Rules for Eventuality
Example Rule 3: Basic Response under Weak Fairness

(a) Proof Rule for O(p = Og): This formula asserts that every state s; where
formula p holds is followed by a state s;j (7 = £) where formula ¢ holds. Response
properties are usually established under a fairness assumption (Fra86, MP91b]. A
common fairness assumption, known as weak fairness, formalises the concept of “finite
progress” [Dij68] — if a program P has an enabled operation, then it will be eventually
executed. The effect of a fairness assumption is to disallow behaviours that would
otherwise be legal behaviours of program P. The following rule relies on weak fairness

to ensure that a helpful transition 7, leading to g, will be taken.

RESP-W R-WI1. O(p=(qV¢))
R-W2. {8}T{qV 4}
R-W3.  {¢}n{q}
R-W4. 0O(¢ = En(r))
Q(p = Oq)

We prove soundness by contradiction. Assume that p holds at state s;, but ¢ does
not hold at states s; (j > 7). Then, ¢ must hold at all states s; {j 2 1) (by premises
R-W1, R-W2). Therefore, transition r; will never be taken (by premisc R-W3). This
means that transition 7, is continuously enabled in these states but never taken (by

premise R-W4), which viclates our fairness assumption.

(b) Model Checking Rule for O(p = Og):  In order to adapt rule RESP-W to
model checking, we first formulate the following auxiliary proof rule RESP-Wa:
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RESP-Wa R-Wla. O(p = ¢)
R-W2a. 0Olé = Oq)
O(p = Oq)

Soundness of this rule follows again from entailment transitivity.

To model check a basic response formula, we first apply proof rule RESP-Wa.
Premise R-W1la can be established by using model checking rule INV* or by using
a combination of model checking and theorem proving methods. Premise R-W2a is
established by the following model checking rule RESP—W=:

RESP-w= 04 oftt)
T {¢}T{¢ A En(n)}

T {¢}ndd}
Pk D= <Cq)

To prove soundness, assume that ¢ holds at state s;. Then, ¢ holds and 7 is
enabled at all states s; (j > 7} (by premise 7;). Therefore, by weak fairness, for

some j 2> ¢, 7y is taken at s; and hence g holds at state s;4, (by premise 7/1). This

gives the conclusion.

Note that program RESP—W* contains annotated iransitions {¢}7.{@A En(r:)}
and {¢}7c{q} (since 7, € 7). Our model checking algorithm has been designed in
such a way that assertions ..! both transitions will be checked. An important point
is that behaviours that violate the weak fairness assumption will be generated duriry
model checking. However, these behaviours will not trigger assertion violations, as we

only check for violations under the assumption of weak fairness.
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Example Rule 4: Basic Response under Strong Fairness

(a) Proof Rule for O(p = Og¢): Let us now examine how the basic response
property may be established under the assumption of strong fairness'. The following

rule relies on strong fairness to ensure that a helpful transition 7, leading to ¢, will
be taken.

RESP-S R-S1. O(p= (qV $))
R-S2. {4}T{qV ¢}
R-53. {é}m{q}
R-54. O(¢ = O(qV En(m)))
O(p = ©q)

The difference between this rule and the previous rule is the fourth premise.
Premise R-W4 requires that ¢ holding at a state s; implies that the helpful tran-
sition 7y is enabled in state s;. Premise R-S4, however, only requires formula ¢ to
hold or transition 7 to be enabled in a state s;, (7 > 7).

We prove soundness by contradiction. Assume that p holds at state s;, and ¢ does
not hold at states s;, (f > 7). Then ¢ holds continuously, with iransition 7, never
being taken (by premises R-S1 — R-53). Hence, transition 7, is cnabled infinitely

many times (by premise R-54), which violates our assumption of strong fairness.

(b) Model Checking Rule for O{p = Og): The above rule RESP-S may be
adapted to model checking on the lines of rule RESP-W. The fourth premise, an

eventuality formula, is established either by theorem proving or by using model check-
ing rule RESP—-W=,

4Intuitively, the requirement of strong fairness disallows computations in which a transition 7 is
enabled infinitely many times but taken only finitely many times.
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Example Rule 5: Basic Response using Well-Founded Induction

Let us now examine how we may establish eventuality properties without relying on
single helpful transitions. Known as extended response properties, they are established
based on the principle of well-founded induction, by an argument similar to proofs of

termination for sequential programs.

Let < be a partial order on a set A. The structure (A, <) is said to be well-founded
if there is no infinite sequence ag,a;,as,... (a; € A) such that for i = 0,1,2,...,
aiz1 < a;. The following rule uses well-founded induction to establish eventuality
properties. Here § is a term and z is a rigid variable’. Typically (A4, <) is the

naturals with the standard ordering.

RESP-WF R-WFl. O(p= (¢V¢))
R-WF2. O((¢A(6=1z)) = O(gV (A (8<2)))
O(p = <©q)

Soundness is proved as follows: If predicate p holds at state s;, then either q or ¢
hold at state s; (by premise R-WF1). If ¢ holds and § = z, then eventually we will
reach a state in which either ¢ holds, or ¢ is maintained but with é smaller than z (by
premise R-WF2). Since (A, <) is well-founded, the value of § cannot keep decreasing

indefinitely. Therefore, predicate ¢ must hold eventually.

This principle can also be used in model checking, as follows. Premise R-WF1, an
invariance property, can be established as outlined in section 4.4.1. Premise R-WF2,

an eventuality formula, is usually established by one of the two previous rules.

SRigid variables are those which are introduced in the course of a proof as logical variables, and
not as translations of program variables; a rigid variable must have the same value in all states of
the behaviour of a program [MP91b].
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4.5 Conclusion and Discussion

We have presented TOP, a verification method for temporal logic, which unities model
checking and theorem proving. It allows portions of a theorem proving problem to
be verified by model checking methods, thereby increasing the array of tools at the
disposal of users.

A well known problem of model checking is that it does not supply an argument
which will convince human reviewers — the fact that a model checking algorithm
has detected no counterexamples to a temporal claim is not sufficient evidence to
- onvince reviewers of its validity. The approach outlined in this chapter brings model
checking closer to theorem proving, in that one may extract a chain of arguments as
a result of 2 model checking effort, allowing a tighter integration of model checking
algorithms with deductive rules of inference within a theorem prover. Our method
also allows portions of a model checking problem to be verified by theorem proving
methods. This increases the array of tools at the disposal of users.

Our model checking algorithm may be used in conjunction with the theorem prov-
ing system SNAP which is discussed in chapter 6. By carrying out model checking
within the context of such a system, users will be able to employ the theorem prover’s
book-keeping capabilities to manage complex verifications. Users will also be able to
perform reductions and transformations of the verification problems by employing

the theorem proving system’s automatic rewrite capability (see section 6.5 and 7.2
for details).



Chapter 5

Computer Assistance for Proofs

5.1 Formal Theories

In general, there is no algorithmic way to determine logical validity of formulae in
predicate logic. To establish validity of such formulae, an approach based on the
notion of a formal theory has to be used. A formal theory, or theory for short,
consists of the following:

1. a set of formulae, designated as the azioms of the theory and

2. a finite set of relations R, Rz, ... Ry between formulae, called the rules of in-

ference.

For a given theory K, one can usually decide algorithmically whether any formula
is an axiom'. For any set of formulae ', and a formula A, one can algorithmically
check whether ' is in a relation R; to A. If this is the case, A is called a direct
consequence of I' by virtue of R;.

A formal proofis a sequence of formulae A;, A,, ... A, such that for each i, either
A; is an axiom or is a direct consequence of a subset of the preceding formulae by

virtue of one of the rules of inference?.

VIn such a case, we call X an aziomatic theory.

*In general, there may be several rules of inference that meet this criterion; it is sufficient if we
can identify one.

64
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A formula A is a theorem if there is a proof such that the last formula is A. Such
-a proof is called a proof of A.

5.1.1 Logical Consequence

A formula A is said to be a logical consequence of a set ' of formulae in a formal
theory K if and only if there is a sequence of formulae A;, A, ... A, such that A, = A
and, for each i, (1 < i < n), either A; is an axiom or 4; is in [, or A; is a direct
consequence of a subset of the preceding formulae in the sequence by virtue of a rule
of inference of K. This is written as T' Fx A. If the context is clear, we abbreviate
this as I' = A. The formulae in T are called the premises, and formula A is called the
conclusion. .

If T is the empty set @, then § F A if and only if A is a theorem. The notation
@+ A, or just - A, therefore asserts that A is a theorem.

5.1.2 Proofs and Validity

How does a formal theory help in establishing validity of logical formulae? To establish
validity, we provide proofs in a formal theory for which a formula is a theorem if and
only if it is logically valid. The most interesting example for our purpose is the
first-order predicate calculus.

For a first-order predicate calculus K, every theorem of K is logically valid. This
is known as the soundness theorem of first-order predicate calculus. Any logically
valid formula A is a theorem of a first-order predicate calculus . This is known as
Gddel’s completeness theorem for the first-order predicate calculus.

Even for axiomatic theories, the notion of “theorem” is not necessarily effective;
in general, there is no algorithm to determine if a given formula A is a theorem.
Theories for which such algorithms exist are called decidable; otherwise they are called
undecidable. First-order predicate calculus is undecidable, in other words there is no
decision procedure for predicate logic. However, we may computably (recursively)
enumerate the theorems of predicate logic.
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5.1.3 Hilbert-style Axiom Systems

The followin,: is an axiomatic theory L for the propositional calculus [Men87].

1. Axioms®: For formulae A, B and C:

(A1) A= (B = A).
(A2) (A= (B=20)=> (A= B)= (A=)
(A3) ("B = -A)= ((-B=> A) = B).

2. Rule of Inference (Modus-Ponens or MP):

B is a direct consequence of .4 and A = B. We write this as
if - A and F A= B then + B.

The theory L is an example of a Hilbert-style axiom system. Let us provide a
proof of the tautology A = A in the axiomatic theory L.

LAz (A=A =2 A))= (A= (A= A) = (A= A)

Instance of axiom schema (A2)

2 A= (A= A) = A) Axiom schema (A1)
3. (A= (A= A) = (A= A) From 1 and 2 by MP
4. A= (A= A) Axiom schema (A1)
5 A=A From 3 and 4 by MP

Notice that the proof consists of a finite number of steps, each one of which has an
attached justification for its inclusion in the proof -~ each step is either an instance
of an axiom schema or a direct consequence of some two previous steps by virtue of
the rule of inference, Modus-Ponens. As can be seen, the proof is quite tedious and
not very intuitive, i.e., it seems artificial and contrived, and is unlike proofs we see in
mathematics textbooks. To address this problem, the logician Gerhard Gentzen came
up with a formal theory that has been aptly termed “natural deduction”. Natural

deduction proofs are closer to intuitionistic proofs provided in mathematics.

37These are not axioms (they are infinitely many), but aziom schemas which specify the syntactic
form of formulae to be deemed axioms.
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5.2 Natural Deduction

Natural Deduction is an axiomatic theory for carrying out formal proofs which re-
semble conventional mathematical proofs. In mathematics, it is common to prove a
statement A on the assumption of a set of statements By, B,,.... This is formalised
by the notion of a judgement, which is of the form T' - A where I is a set of formulae
and A is a formula. A Natural Deduction proof is a sequence of judgements. There
is only one axiom schema, which asserts that a formula A is a logical consequence
of itself (A). There are rules of inference for the “introduction” and “elimination”
of each logical connective. A rule of inference is applicable if there are judgements
in the proof which satisfy all its premises. Some of the rules of inference “cancel
out” formulae in the set I', allowing one to provide proofs of theorems. A Natural

Deduction axiomatic theory for the propositional calculus is shown below:

1. A single axiom schema:
(DirectConsequence) A+ A.

2. Rules of inference: For a set of formulae I' and formulae A, Band C,
(A~I)ifF’FAand Tk BthenT - AAB.

(A-E1)if T+ AABthenT F A.

(A-E2)ifI'F AAB then T+ B.

(V-I1)if T+ Athen '+ AV B.

(v—-I2)if T+ B then T+ AV B.

(V-E)ifT'F AV B and TU{A)} F C and TU{B}+CthenTFC.
(=-D)ifTU{A}FBthenTF A= B.

(=-E)ifT+Aand T+ A= B then ' F B.

(-=I) if ' U {A} - £f then ' A,

(—E)ifI'+ Aand T+ —A then [ F £+,

(m=—I)if TU {~A} - £f then T - A.

Here’s the proof of section 5.1.3 in Natural Deduction:
1. AFA (DirectConsequence)
2Z2FA= A {(=-1)
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5.2.1 Computers Assistance for Proofs

In general, providing proofs requires ingenuity — there is no effective procedure (algo-
rithm) to find proofs. How, then, can computers help us with proofs? The situation is
very similar to programming — program construction is not effective, i.e., ingenuity
is required for program devmopment However, there is hardly a programier who
is unconvinced about computer assisted program construction! Computers are very
good at automnating the boring and tedious parts of programming — program editors
help construction, source code control systems manage versions, programmers build
libraries for code sharing and reuse, and so on. Analogously, there are many ways in

which computers could be used to assist proof creation:

¢ Proof Development: As in programming, proof construction should proceed by
stepwise refinement. To provide the proof of a theorem, we start off by providing
proofs for sub-theorems (or “lemmata” as they are called), to make the main
proof easier to develop. If lemmata are designed carefully, they may be (re)used
in several contexts within the proof. A system could be used to keep track of
all previously proved lemmata and also help in (partially) automating proofs

by supplying proofs of certain lemmata.

e Proof Management: Long proofs are usually split into several files, for efficient
access and checking. Ideas of modular programming, such as separation of the
interface and implementation (.h and .c files) may be directly used in proof
development. Generic language processors such as the C preprocessor are also

very useful for increasing readability and reducing proof development time.

o Proof Debugging: Proofs could be long and involved; it is not surprising, there-
fore, that most proofs start off having bugs. Even for undecidable theories the
process of proof checking is effective; computers may therefore be used to debug
proofs, This is particularly important for proofs in software engineering, which
are not subject to as much rigorous scrutiny as are proofs of important theorems
in mathematics.
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® Proof Libraries: These are valu..ble In increasing the level a‘ which proofs are
carried out. Using carefully constructed proof libraries, th\. time te develop
proofs encountered in a specific engineering domain can be shortened by several
orders of magnitude. Techniques and tools for code reuse and library manage-

ment are therefore invaluable for proof development.

5.2.2 A Survey of Computer Assisted Proof Systems

LCF — Logic for Computable Functions LCF [GMW?79] is an interactive the-
orem prover which uses subgoaling strategies known as tactics for carrying out proofs.
Theorem proving primitives such as inference rules, tactics, and simplifiers, as well
as all terms, formulae, and theorems of the logic are expressed in a meta-language
(ML), a functional programming language. Proofs are carried out in PPLAMBDA,
a natural deduction logic based on the domain theory of Dana Scott. This logic is
particularly suitable for proofs involving denotational semantics, lazy evaluation, or
higher-orcer functions. Users can extend LCF by programming in ML. The ideas
used to implement LCF have served as the basis for several other interactive theorem

proving systems, including HOL, COQ, Nuprl and Isabelle.

The HOL System by Mike Gordon, Konrad Slind et. al.

- The HOL system [GM93] supports interactive proof development in higher order
logic, a polymorphic version of Church’s Simple Theory of Types. As in LCF, the
formal logic is expressed in ML, in which terms and theorems of the logic are denoted,
proof strategies expressed and applied, and logical theories developed. The system

provides a lot of automated support including:
o A powerful rewriting package

® Pre-installed theories for booleans, products, sums, natural numbers, lists, and
trees

* Definition facilities for recursive types and recursive functions over those types

(including mutual recursion)
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 Extensive libraries for strings, sets, group theory, integers, reals, well ordered
sets, automatic solution of goals in linear arithmetic, tautology checking, Hoare
logic, Chandy and Misra’s UNITY theory etc.

Other features of HOL include:

e It uses ML (meta-language), a high-level (impure) functional programming lan-
guage featuring strong polymorphic typing: this allows the user to program

custom proof procedures.

e [t encapsulates theorems as ML abstract types, whose only constructors are the
primitive inference rules of the logic. This provides a high degree of security,
since the critical core is small, and all additional theorems, or inference rules

are secure extensions of the underlying logic.

e All theories are built up by conservative, definitional extension, which again

gives security (no extra axioms are asserted).

e Built-in functions provide backward (goal-directed) theorem proving which can

be freely mixed with forward proofs.

COQ System COQ [Dow93] implements the Calculus of Inductive Constructions,
a powerful logic accepting higher-order reasoning, and allowing the definition of a
wide class of functions. The system also allows the extraction of proven-correct ML
programs from proofs.

COQ provides a rich specification language, called Gallina, which blends together
higher-order predicate calculus, inductive types and inductive predicates in the style of
logic programming, and recursive function definitions with pattern matching, within
a uniform type theory. A proof assistant driven by tactics allows the incremental
construction of partial proof trees, with some limited automation. The specification
language allows the distinction between concrete constructions and abstract reason-
ing. From the concrete part of a proof an ML program may be extracted, guaranteed
to satisfy the specification which has been proved. It is also possible to derive semi-

automatically proofs of correctness from the program decorated with invariants and
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its specification.

Isabelle Isabelle [Paud0] is a generic theorem prover in which new logics may be
introduced by specifying their syntax and rules of inference. Proof procedures may
be expressed using tactics and tacticals as in LCF. Isabelle can support a wide range

of logics, and comes with several built-in ones:

¢ many-sorted first-order logic, constructive and classical versions

higher-order logic, similar to that of HOL

Zermelo-Fraenkel set theory

® an extensional version of Martin-Lof’s Type Theory

the classical first-order sequent calculus LK

the modal logics T, S4, and 543

the Logic for Computable Functions, LCF

the Lambda Cube

Nuprl Proof development system described in [Jac94b], the Nuprl system is im-
plemented in a combination of Common Lisp and (non-standard) ML. The system is
replete with features, witl. its own formula editor, library packages for building math-
ematical and logical databases of theories, several built-in theories of mathematics,
and powerful routines for equational reasoning, decision procedures for propositional
logic and a fragment of arithmetic, and conditional term rewriting. The Nuprl logic
[Con86] is built for constructive reasoning, and is mostly intended for carrying out
proofs in Mathematics. The system is extremely complex and intimidating for casual
use by non-experts.
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5.2.3 The User Interface

The architecture and user interface of all the systems we surveyed are along the lines

of LCF, characterised by the following features:

L.

10.

11.

Underlying metalanguage is ML (users are expected to be familiar with the

language).

Users interact with the system by invoking tactics/tacticals (lengthy lists of

tactics are included in user manuals).

Proofs are carried out in the “backward” direction.

“Tnvocation of a tactic results in the system responding with a list of subgoals.

Proofs have a tree structure; users may “navigate” proof trees, albeit very

ciumsily.

. Target logics are embedded in an underlying “meta-logic”.

Safety (i.e., the system ensuring that only sound theorems are deduced) is

achieved through ML’s type system.
Each use of a theorem or derived rule entails redoing every step of its proof.
Users interact with the system via ML’s “outer loop”.

Users cannot usually predict system response; each step of a proof therefore
can be provided only after examining the system response to previous step(s).
However, because systems are deterministic, a proof can be “replayed” non-

interactively.

Users must be intimately familiar with built-in tactics and tacticals (at least
the basic ones) and should be able to write ML code to implement others.
Unfortunately, tactics built into one system (including the basic ones) usually
bear no resemblance to the ones in other systems. Therefore, although the

systems are architecturally similar, switching between them is very difficult.
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9.2.4 Some Examples

In this section, we shall compare the user interface of two popular systems — HOL
and Nuprl — with the interface reported in this thesis, by looking at illustrative

examples derived from tutorial introductions to these systems ([GM93, Jac94b)).

A Proof using HOL (from [GM93], pp. 25-27).

The theorem to be proved is - 11 = ((t1 = £2) = £2). In [GMO3], a proof of this

theorem using standard notation (sic) is given.

I i1= 8211 = ¢2 (Assumption introduction)
2. t1 k¢l (Assumption introduction)
3. t1=12,t1 F 12 (Modus Ponens applied to lines 1 and 2)
4. i1 F (t1 = t2) = 2 (Discharging the first assumption of line 3)
5. Fil = (t] = 2) = 12 (Discharging the only assumption of line 4)

The following is a transcript of a HOL session to carry out this proof., The

commands given by the user are prefixed by the pound sign (the system prompt)

other lines are the system responses.

#let Th3 = ASSUME "ti==>t2";;

Th3 = . |- t1 ==> 2

#dest_thm Th3;;

["t1 ==> £2"], "1 ==> t9v . goal
#let Th4 = DISCH "ti==>t2" Th3;;
Thd = |- (t1 => £2) ==> t1 ==> ¢2
#let ThS = ASSUME "t1:bool";;

Ths = . [- t1

#let Th6 = MP Th3 Th5;;

Thé = .., |- £2

#let Th7 = DISCH "ti==>t2" Thé;;
Th7 = £1 |~ (t1 ==> t2) ==> t2
#let Th8 = DISCH "t1:bool" ThT7;:

Th8 = |- t1 ==> {t1 ==> t2) ==> t2
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Note that names of inference rules (“MP”, “DISCH”) are to be explicitly provided,
together with associated arguments in a predefined order. Having to provide exact
names of inference rules, including their arguments in the order in which they were
defined makes the user interface rather awkward. HOL proponents therefore advocate
backward proofs, where the theorem to be proved (goal) is successively split into
multiple sub-goals by the application of inference rules in the “backward” direction.
For example, consider the following Natural Deduction inference rule:

(A-I)ifTH Aand TH B then T'F AAB.

A “backward” proof rule that corresponds to the above rule would split a goal of
the form I' A A B into the two sub-goals '+ A and T + B.

The following sequence of commauds carry out the same proof in our system
SNAP:

prove |- t1 => ((t1 => £2) => t2);
assume t1=>t2;

assume t1;

t2;

t1 |- (t1 => t2) => t2;

- t1 => ((t1 => t2) => t2);

qed ThS;

Note that the above steps are a literal transcription, in the syntax of SNAP, of
the steps in the standard proof. Also note that the user does not even have to know
the actual name of an inference rule in the system, nor specify its use explicitly. The
example above is meant to illustrate that it is possible to handle standard proofs with
an elegant and simple user interface.

Also note that the above proof need not be carried out interactively. The proof
may very well be edited as a file using vi, and then provided as input to SNAP (as
was done in this case). SNAP provides the following annotated output for the proof,

with a run time of under a second:
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Th3: |- t1 => ((t1 => t2) => t2)

Proof:
1. (t1 => t2) Assumption
2. t1 Assumption
3. t2 impElim, 2, 1
4. t1 |- (t1 => £2) => t2 impIntro, 3
5. |- t1 => ((t1 => t2) => t2) impIntro, 4

QED.

A Proof in Nuprl (from [Jac94a]). In [Jac94a], a proof of a theorem of propo-
sitional calculus, - (=bV —¢) « (b Ac), is given as a tutorial introduction to the
Nuprl system. To begin with, the theorem to be proved has to be entered into the
system, using a system-specific formula editor. Following this, the tutorial proceeds
to explain how the proof is carried out, using Nuprl’s tactics. However, at the end of

the tutorial, the proof is left incomplete. Here’s a (partial) list of the tactics used for
this proof:

D 0 <C-z>
DD <Return> THENW Auto <C-z>
DOX

DO THEN‘n‘ Auto (for each subgoal)
GenUnivCD THENW Auto
ClassDecide A <C-z>

Sel 1 (D 0) THENW Auto
Hypothesis Sel 2 (D 0) or is it D 37

The point we are trying to make here is that, even after carnful perusal of a
tutorial introduction to this system, it is very difficult to (independently) carry out
a similar proof without additional training (we concede that we still do not have a
clear understanding of the above proof steps).

Another point to note is that knowledge of the user interface (set of tactics) of
one system does not help in learning the user interface of another.

Now, let us see how a proof of the above theorem can be carried out in SNAP. This
particular theorem can be proved automatically, using SNAP’s buill-in simplification

routines. However, we shall carry out a proof using elementary rules of deduction, to
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illustrate how proofs by éontradiction are easily carried out in SNAP. These proofs

use the following lemma:

contradiction: if "X |~ P and "X |- “P then |- X;

whose proof is left as an exercise for the reader.

Lemmal: |- “(b /\ ¢) => (b \/ ~¢)

Prcaf:
1. (b /\ ©) Assumption
2. (v \/ "e) Assumption
3. b I- "b \/ "¢ disjIntro
4. b contradiction, 2, 3
5. "¢ I- "b \/ "¢ disjIntre
6. ¢ contradiction, 2, 5
7. N\ ¢ conjlntro, 4, 6
8. "(d/\N¢c)l-"b\/ "¢ contradiction, i, 7
9. - "(®/\Nec)=> (" \/ "c) impIntro, 8

QED.

Lemma2_1: "b |~ ~(b /\ <)

Proof:
1.7 Assumption
2. N\ c Assumption
3. b conjElim, 2
4. ff negElim, 3, 1
5. b |- “(b /\ ©) neglntro, 4

QED.

Lemma2_2: “c |- “(b /\ ¢c)

Proof:
1. "¢ Assumption
2. b /\ ¢ ' Assumption
3. c conjElim, 2
4, ff negklim, 3, 1
5. "¢ |- “(b /\ ¢) negIntro, 4

QED.
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Lemma2: |- ("B \/ ~¢) => ~(b /\ ©)

Proof:
1. b \/ "¢ Assumption
2. b |- (b /\ ) Lemma2_1
3. "¢ |- (b /\ © Lemma?2_2
4. “(d /\ <) disjElim, 3, 2, 1
5. |- b\ "¢e) => (b /\ <) impIntro, 4

QED.

DeMorgan: |- ("b \/ “c) <=> "(b /\ ©)

Proof:
1. (b /A c) = (b \/ "¢) Lemmal
2. b \/ “c) => ~(b /\ <) : Lemma?2
3. ("b \/ ~¢c) <=> (b /\ ¢) biconIntro, 2, i

QED.

An important point to note here is that the motivation and reasoning behind each
step of the above proof may be gleaned from a logic textbook (this proof was adapted
from [Gri81] pp. 49-50).



Chapter 6

Snap — A Proof Validator

6.1 Why another system?

. There is a proliferation of systems for machine aided proofs. At one end of the
spectrum, “automatic theorem provers” [SB89] are intended to find proofs. Finding
a proof, however, cannot be guaranteed — using an automatic theorem prov': entails
manipulating several system parameters that will (hopefully) guide the search to'vards
a proof. Several semi-automatic systems, known as “interactive theorem provers”
also exist. These systems mainly provide proof management functions; for instance,
they make sure that there are no unproved lemmata or undischarged assumptions,
before declaring a proof complete. Most of these systems also have several built-in
“tacticals” — heuristics designed to work in interesting (but, by no means all) cases
automatically. Finally, at the other end of the spectrum, “proof checkers” verify that
each entered proof step is either in a set ' of formulae, or is a direct consequence of
a subset of previous steps by virtue of a rule of inference. Note that the set T, proof
steps, and inference rule are all explicitly specified by the user.

Can we not use an existing system for our needs? Surprisingly, the answer seems
to be no. To understand why, let us examine our requirements for a theorem proving

system:

1. Anyone who can prove theorems, in a way prescribed in logic texts, should be

able to use the system without much effort.

78
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2. The system should be accessible to engineering professionals who use other

tools such as yacc or BTeX as a part of their work — not just to logicians or
mathematicians.

3. The system may be used either interactively or it batch mode.

4. The system should be architected along the lines of UNIX utilities, so that proofs
may be edited, processed, managed, and archived using common programming

tools such as vi, cpp, make, or rcs.

5. First order logic should be built-in. There is no need for a higher-order logic

“metalanguage” in which other logics could be embedded.

6. Our purpose is often to prove “junk theorems” [Par93a] encountered in systems
engineering, and not just to do advanced mathematics.

7. Proofs such as showing 0 # 1 from a basic set of axioms are of no interest to
us; it is sufficient to inspect such assumptions and accept them as being true.

Ideally, they should be verified automatically.

8. The system should be able to “import” previously proved theorems without
having to enter or redo their proofs.

Of the three kinds of systems mentioned above, interactive theorem provers (sur-
veyed briefly in chapter 5) seem to be the closest to what we want. However, it is
widely recognised (for example, see [Pau90] pg. 384) that systems built along the lines
of LCF are hard to learn and use. To quote from [Pau90]:

Isabelle’s user interface is no advance over LCF’s, which is widely con-
demned as "user-unfriendly”: hard to use, bewildering to beginners. <«
... > But Edinburgh LCF was invented because real proofs require mil-
lions of inferences. Sophisticated tools — rules, tactics and tacticals, the
language ML, the logics themselves — are hard to learn, yet they are

essential. [Users] may demand a mouse, but [what they really] need (5]

better education and training.
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We remained unconvinced that these systems necessarily have to be user-unfriendly
and bewilder beginners. QOur desire for a better user interface made us build system
SNnaP, which provides an improved user interface for semi-automatic theorem proving.

One of the major limitations of existing systems is thgir'-_'liﬁébii'iff;_:rfu satisfy our
first requirement — in addition to users having to know nowto prove theorems as
in logic texts, they are expected to learn a system’s built-in commands (which some-
times number in hundreds) before being able to carry out a proof. More important,
these commands are different for each system. On the other hand, to use SNAP only
requires the ability to carry out textbook-style proofs. This has been confirmed in
demonstrations, in which both computer scientists as well as logicians! have consid-
ered it easy to use. After some instruction, a few of them (who were familiar with
pencil and paper proofs in natural deduction) were immediately able to use the system

and carry out simple proofs.

6.2 The Design Objectives of SNaP

o FEase of Use: There is a lot of obfuscation in the field of logic; theorem proving
systems are no exception. Most systems are implemented using programming
languages and environments that are unfamiliar to engineers. More importantly,
their system manuals and user interfaces are intimidating even to seasoned
mathematicians. This is because they do not use terminology and proof methods
as in logic textbooks — the syntax, techniques, and style of proofs are unique
to each system. These differences range from minor (e.g., most systems use the
“prefix” notation for formulae; the wif ((A /\ B) => A), for instance, would
be written as (imp (and (A) (B)) (A))) to more serious (e.g., proofs in most
systems are carried out in a “backward” direction; proofs in textbooks are

usually presented in the forward direction).

¢ Learning Curve: Most systems are “heavyweight” — users are expected to learn

a new programming language, usually “IL, the meta-language of the system.

VThe list includes Amy Felty, David Gries, Tim Griffin, Gerard Holzmann, Mehdi Jazayeri,
Jonathan Ostroff, David Parnas, Doron Peled, Dennis Ritchie and Jeffery Zucker.
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In addition, users must familiarise themselves with hundreds of “tactics” and
other built-in functions before they can use the system efficiently. Practitioners,

especially casual users, cannot be expected to invest this time and effort.

o Intended Use: Most systems are tailored for carrying out proofs in mathematics.
Our goal is somewhat more mundane — computer assistance for establishing
validity of “junk theorems” in first-order logic. Features such as higher-order

logics, and the ability to embed arbitrary iogics make systems needlessly com-
plex for our purpose.

SNAP has been designed for the express purpose of carrying out proofs in a first-
order theory. We have sacrificed generality for efficiency and ease of use. The design
objective is that users who are able to prove theorems in a way satisfactory to some
logic text, should be able to use the system with minimal difficulty. Proofs in SNAP
should therefore be as “natural” as possible — most steps that are considered “ob-
vious” should be allowed. The system should also allow users to carry out proofs in
a style they are used to, with minimal restrictions. Mechanisms, such as definitions
of new theorems and inference rules, should be provided to increase the level of ab-
straction of proofs (i.e., skip steps without compromising correctness). We expect
users from specific application areas to develop and maintain libraries of theorems,
lemmata, and inference rules tailored to their needs. Most importantly, users must
not be expected to remember the names assigned to lemmata and inference rules as
entered into the system — an intuitive understanding of the theorem or inference
rule should be sufficient to use it. In addition, if a specific step of a proof requires
the use of an unproved lemma, users should have the option of cither providing an
immediate proof of the lemma, or simply using the lemma and finishing the proof,

with the proof of the lemma provided at a later stage.

6.3 The User Interface

6.3.1 Conventional Wisdom

Conventionally, computer assisted proofs have been carried out in two ways:
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1. Proof Checking: The user provides the complete proof (proof steps and inference

rules or theorems as justifications) and the system checks them for correctness.

2. Interactive Theorem Proving: The user provides detailed instructions to the
system for deducing each proof step, by invoking commands (with suitable

arguments) that instantiate axiom schemas or use inference rules.

An important point to note is that in either case, the user must be intimately familiar
with the names, arguments (including the order in which they are to be given) and
the exact syntax of every axiom and inference rule in the system (for instance, to
apply the inference rule modus ponens, should one provide (A, A = B) or (A4 = B,
A} as arguments?),

The problem is exacerbated when more theorems and inference rules are added to
the system in order to raise the level of abstraction of proofs. Elaborate listings of
“tactics” and “tacticals” are therefore provided, and users are expected to memorise
them (or, at least learn where to look). If a user is unaware of the exact name assigned
to a specific theorem within the system, it becomes impossible to use, even if the user

knows that theorem.

6.3.2 The SNAP Interface

SNAP is based on the simple notion of annotating proofs. We have noticed that when
providing proofs, users generally have a good idea of what the next proof step should
be. However, they have to go through a lot of gyrations to instruct conventional
system to derive the step, leading to a great deal of frustration. SNAP explores a new
approach — why not let users write down what they want, and let the system figure out
if it is a valid proof step by searching for a justification. Termed proof annotation,
this simple idea also finesses the problem of users having to memorise exact names
of theorems and inference rules. SNAP can have a large rule-base of theorems and
inference rules, which novices can use at will, even if they have gleaned them from
textbooks. SNAP is feasible to implement because, given a set [' of formulae, a
formula A, and a set inference rules R, the problem of deciding whether I' 5, A,

where [I; € R, is computable in polynomial time. We have devised such an algorithm
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for SNAP, which is not only extremely frugal, but is also parallelisable for execution
on distributed systems.

6.4 The SNnaP System

We now illustrate system SNap by examples. This section has been adapted from
[BS94].

Proof Rules: For the purpose of demonstration, we shall assume that the set of
proof rules iisted in figure 3 are in SNAP’s rule-base. In figure 3, Py,---, P, |- Pis

to be interpreted as { P, -, B} F P, ie., Pis derivable from Py, P,

DirectConseq: P [- P;

conjIntro: A, B |- A /\ B;

conjElim: A /\ B |- 4;

conjElim: A /\ B |- B;

disjIntro: A |~ A \/ B;

disjIntro: B |- A \/ B;

disjElim: if |- AN/ B and A |- C and B |- C then |[- C;
impIntro: if A |- B then |~ & => B;

impElim: A, A=>B |- B;

neglntro: if P [- ff then |- “P;

negElim: A, ~A |- ff;

doubleNeg: if “P |- f£f then |- P;
biconIntro: (A => B), (B => A) |- (4 <=> B);
biconElim: (A <=> B) [- (A4 =>B);
biconElim: (A <=> B) - (B => a);

Figure 3: Basic Set of Proof Rules

The only proof rule that is hard-coded into SNAP s algorithms is the monotonicity
property “if I' € TY and ' F P hold, then I" P holds”. Users interact with SNAP

by means of commands, each command being terminated by a semicolon “;”. The
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system records the status of each proof as follows: set $ records formulae assumed

~‘during the proof, and sequence L records the proof steps.

Initiating a Proof: A proof is initiated by keyword prove, optionally followed
by premises, followed by the goal. Premises are enclosed within if ... then, and
separated by symbol and. Each premise and the goal are of the form P, -, P, - P.
In the following, we refer to a premise or the goal of a proof respectively as “a premise
of the proof” or “the goal of the proof”. Keyword goal is an alias for the goal of the
current proof. At initiation, a proof’s associated set of assumptions S and sequence

of proof steps L are both empty.

Introducing Assumptions: Command assume P, where P is a predicate (i.e.,
does not contain symbol “"), adds P to set S and appends the step P I P to

sequence L. The system generates the justification “Assumption” for the proof step.

Entering Proof Steps: A Proof step is provided by directly entering a formula
(without any keyword). If the formula is a premise of the proof, the system generates
the justification “Hypothesis” and appends it to sequence L. If a step is justifiable
on the basis of a theorem or meta rule in SNAP’s rule-base, the system generates an
appropriate justification and appends the step to sequence L. Entering P,,---, P, - P
as a proof step is interpreted as “P is derivable under assumptions {P,,---,P,} in
one step”. Additionally, SNAP uses the convention that to enter formula S F P, one
merely enters P.

A proof is deemed complete if the last step in L is identical to the goal of the

current proof (i.e., the formula associated with the keyword “goal”).

Saving Theorems: When proved, the user may save a theorem (without its proof)
in the rule-base, by entering command qed followed by the name to be assigned
to the corresponding theorem in the rule-base. A theorem saved in this manner is
immediately available for use (i.e., serve as justifications in subsequent proofs).

To demonstrate the use of SNAP, let us first examine how a proof of =—P F P is

given using pencil and paper: Assume that == P holds. Assume that =P also holds.
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Then, ££ holds, too (by proof rule NegElim). Thus, ~——P + P follows (by proof rule
doubleNeg). This concludes the proof.
To carry out this proof in SNAP, one eniers the commands below. Note the direct
correspondence between the proof on paper and the proof provided to SNAP.
prove “7P |- P;
assume ~"P;
assume “P;
ff;
“"P|-P;
qed Double_Neg_Elim;

The (un-edited) output produced by the system is give below.

Douwble_Neg_Elim: (~("P))|- P

Proof:
1: P
(Assumption)
2: (°P)
(Assumption)
3: ff
(negElim, 2, 1)
5: "CP)I-P
(doubleNeg, 3)
QED

As another example, we present a proof of the cut-rule:

prove if |-P and P|-Q then |-Q;
P;

Pl-Q;

|-P=>Q;

goal;

ged Cut_Rule;
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The (un-edited) output produced by the system is:

Cut_Rule: if [~ P and Pl-  then |- Q

Proof:
1: |- P
(Hypothesis)
2: P|-Q .
(Hypothesis)
3: (P =>0Q)
(impIntre, 2)
4: Q ’
(impElim, 1, 3)
QED

In addition to the commands discussed above, SNAP also offers commands to view
proof steps (with associated justifications), inference rules, assumptions, and the proof
goal.

In the remainder of this section we discuss how SNAP can be used to provide
correctness proofs of programs represented as in chapter 4. We have already seen
how proofs of first-order predicates are given using SNAP. Let us now consider how

proofs of annotated transitions (c.f, chapter 4) are provided in SNAP.

Consider the following example:

prove |-{x=X/\y=Y} x:=y, y:=x {x=Y/\y=X};
assume x=X/\y=Y;

x=X;

y=Y;

y=Y/\x=X;

= {x=X/\y=Y} x:=y, y:=x {x=Y/\y=X};

qed swap;
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The (un-edited) output produced by SNAP is:

swap: |- (((x=X) N (y=Y)) = (y=Y) /\ (x = X))

Proof:

i:

2:

3:

4.

5:

QED

(x=X N (y=7Y)
(Assumption)
(x=X)
(conjElim, 1)
(y=1Y)
(conjElim, 1)
(y = Y)Y /N (x = X)) ]
(conjIntre, 3, 2)
- ((x=X) N G=0)=>y=Y)/\ (x=1X)))
(impIntro, 4)

6.5 SNAP’s Simplify

SNAP provides an option for skipping proof steps that are considered “obvious” by
users. Using a process called associative-commutative rewriting, the algorithm Sim-
plify built into SNAP may be used to derive a justification for such a proof step. As

the justification may involve the application of several individual inference rules, the
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system merely states “by simplification” as the associated justification. Note, how-

ever, that Simplify is not a decision procedure for propositional logic. In general,
such decision procedures usually end up doing a lot of useless work, especially in

cases where the formula is not valid. Using Simplify, some trivial theorems may be

proved in one step. The following is an example of such a proof:

Lemmal.7: |- ((A/\AB/\NC)=>AN DN X
Proof:
1. (A/AABAC =>ANDVX

QED.

by simplification
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, 6.6 Application to Dekker’s Algorithm

‘In this section we show how SNAP may be used to validate correctness proofs of
programs. For this purpose, we consider Dekker’s .algorithm, a concurrent program
that ensures mutual exclusion for two processes. We shall concentrate on proving a
safety prOperty which asserts that the two processes cannot be in their critical section
at the same time. The proof is from [MP83, BS94]. - |

int ¢1 =1, ¢2 = 1, turn = 1;

process class p(int my_c, int his_c, int his_turn) {
~_ begin: my_ ¢ := 0;

try_again:
choice {
: his_c # 0, goto crit
: his_c¢ = 0 };
choice {
! turn=1, goto try_again
: turn # 1 };
my_cl := 1;
loop {
: turn = his_turn
: turn # his_turn, goto begin };
crit:
turn := his_turn, my_c := 1, goto begin }
init {
par {

: p pelel, c2, 2)
: p pe2(c2, 1, 1) }}

Figure 4: Dekker’s Algorithm in MELA

A MELA description of Dekker’s algorithm is presented in figure 4. It has been
taken from [BA82] and is an abstraction in the sense that the code in the bodies of

the critical sections has been removed. For this program, we wish to establish the
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LTL formula O-(pcl = crit A pc2 = crit), where pecl represénts the first process’s
program counter, pc2 represents the second process’s program counter, and crit is a
label in the program, which plays the role of critical sections. .

The program has three global variables: cl, ¢2, and turn. Initially, each of these
variables has value 1. If the first process wishes to enter its critical section, it indicates
this by assigning 0 to variabie cl. Variable ¢2 is used for the same purpose by the
second process. Variable turn is used to resolve the conflict that arises when both
processes have indicated their intention to enter their critical sections.

To begin with, we translate the program in figure 4 into its equivalent transition
system (shown in figure 5), using the definitions of chapter 3.

O = (pcl =0) A (pc2 = 0) A(cl = 1) A (€2 = 1) A (tuitn = 1)

Ti: pel=0 — ¢l :=0, pel :=1

ot pel=1 A e2 = 0 — pel :=2

T3: pel=1Ac2 # 0 — pcl :=5

747 pel=2 A turn = 1 — pel :=1

7s: pel=2 Aturn # 1 ~— pel :=3

Te: pcl=3 ~— ¢l :=1, pel :=4

T7: pel=4 Aturn = 2 — pel =4

78: pel=4 Aturn # 2 — pel :=0

To: pel=35 — turn :=2, ¢l :=0, pel =0

Ti0! pe2=0 —— ¢2 :=0, pc2 :=1

Ti2: pe2=1Acl =0 -— pc2 =2

713t pe2=1 Acl # 0 — pe2 :=5

T4t pe2=2 Aturn = 2 — pc2 =1

T1st pe2=2 A turn # 2 — pc2 =3

Tie! pe2=3 — 2 :=1, pe2 =4

Tir: pe2=4 Aturn = 1 — pc2 :=4

Tig! pe2=4 Aturn # 1 — pe2 :=0

Ti9: pe2=35 — turn :=1, c2 :=1, pc2 =0

Figure 5: Transitions of the MELA program describing Dekker’s Algorithm. Tran-

sitions T1,--+, Ty are of the first process; transitions Ty, +,7ig are of the second
process.

Next, we apply rule INV described in chapter 4; we choose ¢ (as in [BS94]) to be
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the conjunction of:
(a) turn =1V iurn =2, and
(b) c1=OVc1 =1, and
() 2=0ve2=1,and
(d) (pcl =1V pcl =2V pel =3V pel =5) = cl =0, and
(e) (pe2=1Vp2=2Vpc2=3Vpc2=25)=c2=0, and
(£) (pel =0V pcl =4) = cl =1, and
(g) (p2=0Vp2=4)=c2=1, and
(h) pel =5=>(pc2;1Vpc2=2Vc2=1Vturn=-1),a.nd

(i) p2=5=(pel =iVpcl =2V el =1V iturn =2).

Predicate ¢ expresses that variable turn can take only 1 or 2 as its value (clause
(a)); that the variables cl,¢2 take the values 1 or 2 (clauses (b) and (c)); that ¢1 =0
if the program counter of the first process is at location 1, 2, 3, or 5 (clause (d));
that ¢l = 1 if the program counter of the first process is at location 0 or 4 (clause
(f)); and that the following holds: if the program counter of the first process is at
location 5, then the program counter of the second process is at location 1 or 2, or the
value of variable ¢2 is 1, or the value of variable turn is 1 {clause (h)). An intuitive
explanation of the clauses (e), (g), and (i) may be provided aiong the same lines.

We have carried out the proof (presented in Appendix A), and validated it using
SNAP. The proof consists of 20 lemmata: 18 show that the invariant is preserved
under all transitions, one shows the invariant holding initially, and one shows that

the invariant implies the desired mutual exclusion property.
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Snap Internals

7.1 The Proof Annotation Algorithm

In this section we describe the algorithm responsible for the generation of justifications
of proof steps in SNAP.

Qur proof annotation algorithm relies on a function we call match (also known as
one-way unification), described in [Sie90]. Let a substitution be a sequence of pairs
{z,e), where z is a variable and e an expression. Variable z can stand either for an
arbitrary predicate or term. Expression e is either a predicate or a term. (The actual
types of = and e are inferred from their contexts and determined by the parser.) Given
two expressions ey, e; and a substitution o, match(e;, ez, ¢) returns true if there exists
a substitution ¢’ extending! o such that o’(e;) = e, (cf. [Sie90]). (Here o'(e;) denotes
the expression obtained from e; by simultaneous replacement of every variable x by e
when (z,e€) is in ¢’.) If this is the case, then, in addition, variable o is assigned such
a value ¢'. Otherwise, i.e., when no such substitution o' exists, match returns false
and leaves ¢ unchanged.

Let Ezpn denote the type of expressions. Expressions will be denoted by e,
possibly subscripted or primed. We also define a type Gamma, whose domain is
interpreted as a (finite) set of expressions. For convenience, in the discussion below

we represent sets as lists. From now on, I'y,---, T, denote variables of type Gamma.

1The extension of a substitution ~a sequence- has its usual meaning.

91
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A proof rule R is a non-empty (finite) setjlilence of elements of type Gamma x Ezpn,
represented as a list. Sequence (I'y,e;),- -+, (T, e,) has the following interpretation:
Iy F e is derivable under the assumptions Ty I e3,++, Iy F e,. In case n = 1, it
means that T'y | e; is derivable under no assumptions. The above sequence has an
associated identifier, its name. We call T'; | ¢, the conclusion of the proof rule, and
denote this by concl(R). We call I'z - e,-- -, T, I e, the premises of the proof rule.
For a pair P = (T, ¢}, eis denoted by ezpn(P) and I' by hyp(P).

Recall that every proof is represented as a (finite) sequence L, as described in
Section 6.4, that corresponds to the proof steps so far. For the description of the
annotation algorithm, we assume that the user has input a proof step of the form
'k e. This is converted by the system into a step (I, e). In the following, we only
consider checking for applicability of a single rule R. (It is a trivial extension to check

for a set of rules.)

For a rule R, identified by ',  e1,---,T, & e,, the annotation algorithm checks
whether e, can be matched with e under substitution o. Initially, & is the empty
substitution e. An attempt is then made to match each element of '; with the
expression part of a step in the proof. For every such match foung, at say position
¢ in sequence L, the algorithm proceeds to check that the hypothesis of that step
is 2 subset of I' (modulo substitution). If this is not the case, the algorithm checks
whether every element e’ of I'y can be directly matched with an element of T. (Recall
that we assume the monotonicity property: if I' C IV and ' + P hold, then ¥ - P
holds.) If rule R also has premises, the algorithm checks that all of them can be
matched in a similar way as above with steps in sequence L.

If the above procedure is successful, the algorithm returns the name of the matched
rule. In addition, if all the premises of rule R have been justified on the basis of steps
in sequence L, the algorithm also returns a (finite) sequence of natural numbers
indicating those ste; « in L.

If the above process is unsuccessful in finding a justification, the algorithm reports
failure.

The following is a description in pseudo-code of the algorithm outlined above.

As discussed above, a sequence of natural numbers may be provided as part of the
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juSiiﬁcation In order to concentrate on the essentials of the algorithm, we have not
shown how such sequences are generated in the code. Also, the function merely checks
- whether a given rule applies, and does not return the rule’s name if it applleb Below,
Subst denotes the type of substiiutions. For list ¢, | £ | denotes its length, and £[i]
denotes its i** element. Operatlous on sets are denoted as usual; the notation I' — e
denotes I'— {e}. The annotation function is called is_justification. We also define
four auxiliary functions. (Observe how these functions rely heavily on backtracking.)

'Function match.steps(I'y, Iy, L, N, o) checks, for each of the first N elements e
of Ty, whether there exists a step step in L such that the gamma part of step is a

subset of I'; and e matches the expression part of step under substitution o.

integer function match_st eps(I'1, I3, L, N, 0):
Subst o;
if N = 0 then return true fi;
fori:=1to|L|
do ¢’ := o
if hyp(L[i]) C T'; and match(Ty[N], expn(L[i]), o)
then if match_steps(I';, I, L, N —~ 1,0)

then return true

od;

return false

Function match_gamma(Ty, Ty, N, ) checks whether each of the first N elements of I

matches at least one element of I, under substitution o.

integer function matck gamma(l'y, [, N, o)
Subst o';
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if N = 0 then return true fi;
fori:=1to|TI;}|
do o' :=o;
if match(I';[N], [2fi], o)
then if match_gamma(l';, [y, N — 1,0)
then return true
fi

]

od;

return false

Function matchpremises(R, M,I', step, o) checks whether, for every element IV, ¢’
in sequence R[M],- -, R[| R |], ¢ matches the expression part of step and whether
extra_check(l”, hyp(step),T’, o) holds.

integer function match premises(R, M, step,o)

subst o':=¢;

if match(ezpn(R[M]), ezpn(step),o) and

extra_check(hyp(RIM]), hyp(step),T’, o)
then if M <| R |
then fori:=1to | L!
do o' := o
if match_premises(R, M + 1, T, step, o)

then return frue

od;
return false
else return irue

else return false
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Function extra check(I',I';, I, o) returns true iff the elements e of I'; for which

no element of I", matches e, under substitution o constitute a subset of .

integer function extra_check(I;,T,,T, a):
Gamma [y:=Ty;
fori:=1to | Ty |

do j:=1;
while j <| Ty | A-match(Ty[f], T,[i], o);
do j:=;+1 od;
if j <|T) | then T :=T% - Tt} i

od;

return (Tj C T)

Finally, we present the main function is_justification(R,T,¢), whose description
has already been given.

integer function is_justification(R,T,e):
subst o, o":=¢;
if match(ezpn(R[1]), e, o) and
(match_steps(hyp(R(1)),T, L, | hyp(R[1)) |, o) or
match-gamma(hyp(R[1]), T, | hyp(R[1]) |, 0))
thenif | B |> 1
then for i:=1to | L |
do o' :=¢;
if match premises(R,2,T, L[i], o)
then return true
fi;
o=
od;

return false

!
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else return true

else return false

7.2 How Simplify Works

Snap’s Simplify is based on equational rewriting [DJ89, HDS83}. An equational theory
is a set T of equations?, that defines a congruence relation on the set of variables
and operators, i.e., the smallest relation that contains the equations in ¥ and that
is closed under reflexivity, symmetry, transitivity, instantiation of free variables, and
substitution of equals for equals. An equation P = P’ is in the equational theory of

L, or is an equational consequence of L, if P is congruent to P’

7.2.1 Rewriting Systems

A rewrite rule is an operational view of an equation. To obtain a rewrite rule from
an equation, one orients it in one of the two possible directions; for example, the
equation P = P’ may be oriented into P — P'. A rewriting system is a set Q
of rewrite rules, that defines a rewrite relation — a binary relation on the set of
formulae (usually written as ~»q ). This may be defined operationally as follows: A
~+q A’ if there is a rule w € ) that rewrites® the formula A to A’. The relation ~g

is the reflexive transitive closure of ~+q.

Definitions:

1. A rewriting system is Noetherian (or terminating), if it allows no infinite
sequence A ~q A’ ~aq .. .. If such is the case, the last formula in the sequence

is called the terminal form of A.

*Informally, an equation P =P’ is another way of stating that P < P’ is a tautology.

3Formally, rewritingis defined as follows: Let P — P’ be a rewrite rule in . If B is a subformula
of A, that is matched by P, i.e., B = o(P) for some substitution ¢, we obtain .4’ by replacing zero
or more occurrences of B in A by a formula 8' = o(P').



7.2. HOW SIMPLIFY WORKS 97

2. A rewriting system is said to be canonical when every formula has a unique

terminal form.

3. If a rewriting system is Noetherian and canonical, it is called convergent, and

constitutes a decision procedure for the corresponding equational theory .

Theorem 1 The problem of deciding whether a set Q of rewrite rules is Noetherian,
s undecidable.

Theorem 2 If B is a subformula of A, and we obtain A' by replacing zero or more
occurrences of B in A by a wff B', then

ifF B« B'and | A then 4.

Theorem 3 (Soundness Theorem for Simplify) Given a set of rewrite rules Q, if

for every rewrite rule (A ~q A’) € §, the formule A & A’ is valid, then the relation

~q preserves validity.

Stmplify works with a set Q of rewrite rules, that may be provided by users, as
long as they make sure that it satisfies Theorem 3. Users must also ensure that £ is
Noetherian; if not, Simplify could get into an infinite loop. Although convergent sys-
tems for propositional logic exist, they make Simplify painfully slow and are therefore
best avoided.

When SNAP is invoked with the Simplify option, the system maintains terminal
forms (in §2) for each formula in the proof. When a proof step is entered, the proof
annotation algorithm as outlined in section 7.1 is first invoked. If it fails to find a jus-
tification for the proof step, the algorithm is invoked again, this time with rewritten
(terminal forms) of all formulae. If the algorithm returns a “yes”, the step is consid-
ered valid. However, the attached justification in this case is “by simplification”

and not the name of the associated inference rule.
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Case Studies

8.1 Event Tables

The A-7 requirements document [AFB--88] introduces tabular notations for specifying
system requirements [Hen80]. In this model, system requirements are specified in
terms of a set of mode machines [Fau89). Each mode machine partitions the set of
system states into equivalence classes called modes, and specifies transitions between
modes, which are conditional upon the occurrence of events. Events are state changes
in the system caused by the environment or by system actions. Events are denoted
by QT (Cond) and @F(Cond), where Cond is a predicate on system states and the
event QT'(Cond) (@F(Cond)) signifies an instance of time when predicate Cond
becomes true (false). We present the requirements specification for a monitor
which encapsulates data shared by two processes (from [AG93]).

The monitor is meant to mediate access to data shared by two processes. The
specification has a single mode class with three modes — EMPTY (data not being
accessed), INUSEL (data being accessed by processl), and INUSE2 (data being ac-
cessed by process2). The initial mode of the system is EMPTY. Condition Requestl
(Request?) indicates a request from processl (process2) to access shared data. In
the table, events are denoted by @7 and @F; symbol “tt” (“££") signifies the truth
(falsity) of a condition when an event occurs. The hyphen “-” indicates a “don'’t

care” condition.

98



8.1. EVENT TABLES 99

Current Mode | Requestl Reqﬁé$t2 [ New Mode

EMPTY @T - INUsel
- QT INUsg2

INUSE1 @F ff EMPTY
@F tt INUse2

INUsg2 i ar EmpTY
tt QF INUsel

Figure 6: Event table for meniter

The system is required to satisfy certain invariant properties. Called safety as-
sertions in [AG93], the system’s correctness criterion asserts the invariance of the

conjunction of the following three predicates:

EMPTY = (-Requestl A —Request2)
INUSE1l = Requestl
INUse2 = Request2

8.1.1 A MELA Description of the System

We begin with the following declarations:

#define Request! 1
#define Request? 2

#define Empty 0
#define Inlsel 1
#define InlUseg 2

event atT'(int), atF(iat);
chan Interface;

bool Ri_val = 0, R2.val = 0;

10
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We assign distinct integer values to inputs Request! and Request2 of the system.
In addition, (boolean) variables Rl_val and R2_val record current values of these
inputs. We expect events atT(x) and atF(x), where x denotes elther Request! or
Request2, to occur on channel Interface.

We posit that the event table specifying the monitor describes relation REQ
[PM91], described by the following MELA program:

process class Monitor(chan in)
{ int state = Empty;

loop
{
: state=Emply, in?atT(Requestl), state = InUsel,
: state=Empty, in?at T( Request?), state := InUse2;
: state=InUsel, in?atF(Request!), R2.val = 0, state := Empty;
: state=InUsel, in?atF(Requestl), R2_val = 1, state := InUse2;
: state=InUse2, Ri.val = 0, inTatF( Request?), state := Empty;
: state=InUse2, RI_val = 1, in?at F( Request2), state := InUsel;
}
}

Here, the system is modelled as a MELA process class with a loop construct

having siz single-step statements, each of which corresponds to one row in the tabular

description.

8.1.2 A MELA description of the Environment

The system we described is an example of an embedded system, i.e., the system is
meant to work in an environment with certain (implicitly assumed) properties. For
example, by examining the definition of events @T'(C'ond) and @ F(Cond), one realises
that it is impossible for an environment to cause two @T events in succession (without
an interleaving @F event). These assumptions are made explicit when we describe

the environment as a MELA program:

10
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process class Environment(chan out)

{
loop
{ )
: Rl.val = 0, outlatT(Requestl), RI_val := 1;
: BRI _val = 1, out!at F'( Request1), RI_val := 0;
: R2 val = 0, outlat T Request?), R2_val := 1;
: R2.val = 1, out!atF(Request2), R2_val := 0;
}

}

Finally, the system is a parallel composition of one instance each of process class

Monitor and process class Environment, which communicate via channel Interface:

init
{ par

{

: Monitor mon(Interface)
: Environment env(Interface)

}
}

Our semantic model corresponds to the one given in [AG93]. Recently, one of the
authors of this paper has been investigating the use of SMV [McM93] for analysing

event tables'. The semantic models, however, are derived manually; the author pro-

poses to investigate methods to automatically derive them. In our opinion, auto-
matic derivation of SMV-style descriptions would be very difficult, because of SMV’s
predicate-like notation for expressing transition relations. We contend that automatic
translation of tabular specifications to the MELA notation should be more straight-
forward. To substantiate our claim, let us write the semantics of the above MELA
description in the SMV notation:

1J. M. Atlee, personal communication.

10
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NODULE Monitor
VAR Moda : {Empty, IaUsei, InUse?};
Bequestl, Request2 : {0, 1};

INIT.({(Node = Empty) & (Requestl = 0) & (Request2 = 0))
-~ TRANS
((Mode=Empty)&(Requeati=0)k{next(Mode)=InUsel)k(next(Request1)=1)k(noxt (Request2)=Request2}
| (ModesEmpty)&(Request2=0)&(next(Mode)=InUse2)2(next (Request2)=1)k{next (Requestl)=Roquastl)
| (Mode=Empty)& !((Requesti=0)k(next(Mode)=InUse1)k(next(Requentl)=1)t(next{Requast2)»Request2))
& !((Requast2=0)&(next(Kode)=InUse2)k(next(Requast2)=1)k(next (Reguesti)=Requentl)}
& (next(moda)=Empty)
| (Mode=InUse1)x(Requesti=i)&(Request2=0)k(naxt(Mode}=Enpty)k{next{Requestl)=0)}(next (Request2)=Raquest2)
| (Mode=InUsel)x(Requesti=1)&{Request2=1}k(next(Mode)}=InUse2)k(next(Requestl)=0)&{naxt(Request2)=Requent2)
| (Mode=InUse1)x !({Requesti=1)k(Request2=0)k{next(Mode)=Empty)2(next(Requasti)=0)k(next{Request2)=Request2))
& !'{(Requestiml)2(Requast2=1)k(next (Moda)aInUse2)k{next (Requesatl)=0)k(next(Raquest2)=Raquest?2))
& (next(mode)=InUsel)
| (Mode=InUse2)k(Requasti=0)2(Request2=1)2(next (Mode}=Empty)t(next(Requesti)=Raquestl)k{next(Request2)=0) -
| (Mode=InUse2)k(Requesti=1)k(Request2=1)t(next(Mode}=InUsel)k(next (Raquoatl)=Raquesti)k(next{Raquast2)=0)
| (ModesInUse2)k !{({Requesti=0)&{Requast2a1)k(next{Mode)=Empty)&(next{Requasti)=Request1)k{next(Requast2)=0))
& {((Requesti=1}&(Request2=1)2(naxt (Mode}=InUsel)s(next(Requastl)=Raqueati)t(naxt(Raquast2)=0))
t (next(mode)=sInUse2)

SPEC
AG (Mode=Empty) => ((Regquesti=0) &t (Raquest2=0))

Adopting the notation proposed in this thesis results in a compact and less-
cluttered semantic description than the one above. Qur approach also has the ad-
vantage that “miracles”, (transition relations which are equivalent to £f, which vacu-
ously satisfy all requirements), may be spotted with relative ease e.g., by animation.
Another advantage 15 that semantics expressed in this notation have an efficient oper-
ational interpretation, thereby permitting animation (abstract execution) and (state
enumerative} model checking to be carried out on them. We present the semantics of

the MELA description above in terms of a transition system:
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#define Empty 0

#define InlUses 1

#define Inlse2 2

INIT

(state = Empty) /\ (Ri_val = 0) /\ (R2.val = 0);

TRANS

(state=Empty /\ Ri_val=0) > Ri_val := 1, state := InUsel;
(state=Empty /\ R2_val=0) —> R2_val := 1, state := InUse2;
(state=InUsel /\(R1-val=1)/\ R2_Val=0) > Ri_val := 0, state := Empty;
(state=InUses /\(RI.val=1)/\ R2_Val=1) -> Rl val := 0, state := InUse2:
(state=InUse2 [\ R1-val=0 /\(R2_Val=1))—> R2Z_val := 0, state := Empty;
(state=InUse2 [\ RI_val=1 /\(R2-Val=1))-> R2_val := 0, state := InUsel;
INV

(state=Empty => (R1_val=0 /\ R2_val=0)) /\

(state=InUsel => Ri.val=1) /\
(state=InUse?2 => R2_val=1);

We use the model checking rule INV* of chapter 4 to establish the above invari-

ant property. When performing model checking, we noticed that the following two

transitions were never executed in all behaviours of the system.

(state=InUse! [\(RI.val=1)/\ R2_Val=1) => Ri_val ;= 0, state :
(state=InUse2 /\ RI.val=1 /\(R2_Val=1))-> R2_val :

= InUse2;
0, state := Inl/sel;

il

When translated in terms of the original tabular description, this result implies

that the fourth and sizth rows of the table are redundant — with the given seman-

tics, it is impossible for those mode tramsitions to occur. An explanation for this
is as follows: when the current mode is INUsg1l (INUsg2), the value of Request2
(Request1) can never be true, as the semantic model “refuses” events, in the sense
of [Hoa85], that are not explicitly stated in the table. Conversaiions with users of

these tables, however, revealed that this was not the accepted (informal) meaning,

10
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We therefore came to the conclusion that the semantic model presented in [AG93]
is incorrect. To correct the problem, several solutions are possible. We propose the
following “ﬁx”:\'events that are not explicitly handled in the table may occur — their
occurrence will not change a system’s current mode. In the above example, the table
has four additional (implicit) transitions, yielding the following MELA description for

process class Monitor:

process class Monitor(chan in)
{ int state = Empty;

loop
{
: state=Empty, in7atT(Request!), state := InUsel;
: state=Empty, intat T Request2), state := InUse2;
: state=InUsel, in?atF(Request!), R2-val = 0, state := Empty;
: state=InUsel, in?atF(Request!), R2.val = 1, state := InUse2;
: state=InUsel, in?at T(Request2), state := InUsel;
: state=InUsel, in?at F( Request2), state := InUsel;
: state=InUse2, Rl _val = 0, intatF( Request2), state := Empty;
: state=Inlse2, Ri_val = 1, in?atF(Request2), state := InUsel;
: state=InUse2, in?at T{Request!), state := InUse2;
: state=InUse2, intatF(Request!), state 1= InUse2;
}

}

Theorem Proving: We also established the invariant directly by using rule INV
of [MP91b]. This may be done by proving the following theorems using SNAP:

#tdefine Emply ©

#define InUse! 1

tdefine nUse? 2

#define ¢ (state=Empty => (Rl.val=0 /\ RZ.val=0))
#define Init (state=FEmpty/\R1_val=0/\R2_val=0)

#define Phil (state=Empty => (R1_val=0 /\ R2_val=0))

10
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#define Phi2 (state=InUsel => R1_val=1) 1o
#define Phi3 (state=InUse? => R2_val=1)
#define Phi (Phil /\ Phi2 [\ Phi3)

prove |- Init => Phi;
prove {Phi} state=FEmpty/\R2_val=0 —> R2_val:=1,state:=InUse2{ Phi};

prove {Phi} state=InUsel /\R1.val=1/\R2_Val=0 —> R1_val:=0,state:=Empty {Phi};
prove {Phi} state=InUsel /\Ri_val=1/\R2_Val=1 ~> RI_val:=0,state:=InUse? {Phi};

prove {Phi} state=nUse2/\R1_val=0/\R2_Val=1 —> R2_val:=0,state:=Emply {Phi}; 20
prove {Phi} state=InUse2/\RI_val=1/\R2_Val=1 —-> R2_val:=0,state:=InUsel {Phi};
prove |~ Phi => g;

quit;

8.2 The DQDB Protocol

The distributed queue dual bus (DQDB) protocol [HCM92] has a dual-bus topology;
each bus supports unidirectional communications in opposite directions. We depict
this topology in figure 8.2.

________ "data bus" —————————
I | wdab _______ idb . ____ ddb | I
|Upstream|~~--- >| Nodel |~---- >| Node2 |----- >|Downstrean|
I |¢=m=m= D | ¢mmmmm | [ <==mmm | I
e | urd irb drb | __ ... I

"request bus"

DQDB resembles a slotted ring with free access, where stations transmit in every
empty slot if they have data. The protocol uses the channel in the opposite direction
from which data is sent to reserve slots for stations that are farther from the head-end
(upstream end) of the bus. In addition, DQDB has three associated priority levels,
which we shall not consider for the purpose of this discussion. In this thesis, we

only model the protocol for a single priority level. To simplify our task, we exploit
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symmetry in the protocol and only model transfer of data in one direction (with
reservations flowing in the other direction).

It has been observed [HCM92] that the DQDB reservation process is imperfect. If
the span of a DQDB link is long enough to allow many slots to be in transit between
any two nodes, the nodes may have an inconsistent view of the reservation process.
When this happens, the link bandwidth can be unevenly divided among nodes; in the
worst case, some nodes may be allocaied no bandwidth at all (this is sometimes called

starvation). The following is an (informal) description of (a single priority section of)
the DQDB protocol:

This section has a local FIFQO queue to store priority-p data segments
generated by local users while these segments wait for the data inserter
(DI) to find the appropriate empty slots for them on the data bus. The
data inserter operates on one local data segment at a time; once the local
FIFQ queue forwards a segment to the data inserter, the local FIFO queue
may not forward another segment until the data inserter has written the
current segment onto the data bus. When the data inserter takes a segment
from the local FIFO queue, first it orders the request inserter (RI) to send
a priority-p request on the request bus. Then the data inserter determines
the appropriate empty slot for the local segment by inserting the segment
into the data inserter’s transmit queue (TQ). All the other elements of this
queue are requests of priority p or greater from downstream nodes. (The
data inserter ignores all requests of priority less than p.) The transmit
quene orders its elements according to their priority level, with elements
of equal priority ordered by the times they arrive at the data inserter. The
data inserter serves ils transmit queue whenever an empty slot comes in
on the data bus. If the element at the head of the queue is a request, then
the data inserter lets the empty slot pass. If the head element is the local
data segment, then the busy bit is set and the segment is transmitted in
that slot. The transmit queue is implemented with two counters, called
the request counter and the countdown counter. When there is no local

date segment in the queue, the request counter keeps track of the number
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of unserved reservations from downstream nodes in the transmil queue.
When the data inserter accepts a local data segment, the request counter
value is moved to the countdown counter, which counts the number of
reservations that are ahead of the local data segment in the transmit queue,
and the request counter is then used to count reservations behind the local
data segment. The request inserler sends one reservation of priority p
for cach data segment taken by the date inserter from the local FIFO
queue. Since the incoming priority-p request bits may have been set already
by downsiream nodes, the request inserter sometimes needs to queue the
internally generated reservations uniil vacant request bits arrive. Thus, it

is possible for a data segment to be transmitied before ils reservation is

sent.

8.2.1 Preliminaries

To start with, we declare the following events and channels:

event nol_busy(), busy(), no_req(), reg();
chan udb, idb, ddb, urb, irb, drb:

We model slots as MELA events. Each slot in the direction of data transfer is either
busy() or not.busy(), indicating the presence or absence of data. Similarly, slots
moving in the reverse direction either have requests (reqQ)) or are free (no_req()).
We describe the protocol as having two StreamHeads, one at the upstream end and
another at the downstream end. There are siz channels, with names as in figure 8.2,

The StreamHeads are described as a MELA process class definition:

process class StreamHead(chan in, chan out, event gen)
{ event sink;

loop {

: inlsink

: outlgen

}
}
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8.2.2 The DQDB Protocol in MELA

We now present the MELA description of a DQDB node:

process class Node(chan db_in, chan db_out, chan rb_in, chan rb_out)
{ bool local.data = fT;

int send_reqg = 0;

/* Components of Transmit Queue (TQ) */
int request = 0, countdown = 0;

loop {
/* Transitions of Data Inserter (DI) */
Tt : “local_data, local_data := tt, send_req := send_req + 1,
countdown := request, request := 0
T2 : db.in?busy(), db_out!busy()
T3 : db.in?not_busy(), "local date, request = 0,
db_out!not_busy()
T4 : db.in?not_busy(), ~local_data, request # 0,
db_out!not_busy(),

request := request — 1 /* < only my guess! +/
T5 : db_in?not_busy(), locai_data, countdown # 0,
db_out!not. busy(), countdown := coundown — 1

T6 . db_in?not_busy(), local_data, countdown = 0,
db_cut!busy(), local_data := ff

/= Transitions of Request Inserter (RI) %/
T7 : rb.in?req(), rb_out!reg(), request := request + 1
T8 : rb.in?no_req(), send.req = 0, rb_out!no_req()
T9 : rb_in?no_req(), send.req # 0, rb_out!req(), send-req := send.reg — 1

The MELA description above closely matches the informal description of the pro-
tocol we presented earlier. Let us now examine the case where the spans of links are
short enough not to allow slots to be in transit between adjacent nodes. For this case,
the behaviour of each link can be expressed as a single MELA channel. The following

init process instantiates the necessary processes for this case:

10
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init {
par {
: StreamHead Upstream(urb, udb, not_busy())
: StreamHead Douwnstream(ddb, drb, no_req())
: Node Nodel(udb, idb, irb, urb)
: . Node Node2(idb, ddb, drb, irb)
b
}

It can be shown by model checking that the behaviour of the above protocol
description includes execution sequences in which the downstream node never en-

counters free slots, thereby leading to starvation. To see this, consider the claim:

O(Node2.1ocal data => O-Node2.local data)

which guarantees that the downstream node (Node 2) will have its local variable
local data reset to “false”, following each state in which it is set to “true”, i.e., if
the node has local data to send, then eventually it will get sent. In the following, we
describe a scenario in which the above property is violated. We present the scenario
as a sequence of two actions, which may be repeated an indefinite number of times.

Transition names refer to labels in the description of process class Node.

e Node ! executes transition T, which sets its local variable local.datato “true”.
This means that Node ! has data to send. The node’s local variables countdown

and request both remain 0.

* Node Upstream puts out a not_busy() slot on channnel udb. Node[ exccutes
transition T'6, which receives the not_busy() slot from channel udb and sends
locally generated data (i.e., a busy() slot) on channel idb. Additionally, Node !
sets its local variable local.data to “false”. Node 2 executes transition T2,
which receives the busy() slot on channel idb and sends it on channel ddb.

Node Downstream “consumes” the busy() slot by receiving it on channel idb.

Repeating the above two actions will result in Node2 receiving a series of busy()

slots, thereby only executing transition T2.
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~ Note that in this scenario nothing is sent on the request bus. The “practical
interpretation” of this scenario is as follows (this interpretation is strictly outside the

formal model):

If the span of the DQDB link irb is long enough to allow an arhitrary
number of slots to be in transit between Node! and Node2, then Node2
may receive an arbitrarily long series of busy () slots on link idb, imposing

an arbitrary delay in sending its local data.

We call this the starvation problem. In the next section, we shall examine a
proposal that is intended to rectify this situation, and verify that it corrects the
problem.

8.2.3 Bandwidth Balancing

I {HCMY2], the authors describe bandwidth balancing, a proposal to correct the
starvation problem. The authors present their solution by providing the following

description (in informal prose):

One way to implement this scheme is to add a bandwidth balancing counter
(BC) to the data inserter; the counter counts local data segments trans-
mitted on the bus. After M segments have been transmitted, the bandwidth
balancing counter resets stself to zero and generates a signal that the data
inserter treats exactly like a request from a downstream node. This (ar-
tificial) request causes the data inserter to let a slot go unallocated (the
request inserter is not aware of this signal; the node therefore does not
send a request upstream which corresponds to the extra idle slot it sends

downstream).

With this modification, the DQDB protocol does not violate the iiveness claim
we presented in the previous section. To see this, we model the modified protocol in

MELA, and establish the property for the modified program.
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The following is a modified MELA description of a node which in';:ludes a balancing
counter:

process class Node(chan db.in, chan db_out, chan rb.in, chan rb_out)
{ bool local_data = fF:

int send_req = 0;

/+* Components of Transmit Queue (TQ) »/
int request = 0, countdown = 0, BC =0

.
¥

loop {
/+ Transitions of Data Inserter (DI) «/
T1 : "local_data, local_data := tt, send_req := send_req + 1, 10
countdown := request, request := 0

T2 : db.in?busy(), db_outbusy()

T3 db_in?not_busy(), “local_data, request = 0,
db_out!not_busy()

T4 db_in?not..busy(), “local_data, request # 0,
db_out! not_busy(),
request := request — 1 /* <= only my guess! */

T5 : db.in?not.busy(), local.data, countdown # 0,
db-out!not busy(), countdown := coundown — 1

T6 db_in?not_busy(), local_data, countdown = 0, BC < M-1, 20
db_out!busy(), local data := ff, BC := BC + 1

T7 : db.in?not_busy(), local_data, countdown = 0, BC >= M-1,
db_out!busy(), local data := ff, BC := 0, request := request + 1

/* Transitions of Request Inserter (RI) «/
T8 : rb.in?req(), rb_out'req(), request := request + 1
T9 : rb.in?no_reg(), send.req = 0, rb_out!no_reg()
T10 : rb_in?no_reg(), send_req # 0, rb_out!req(), send_req := send_reqg — 1

} 30

For the modified system, it can be shown that its behaviour does not include
execution sequences which lead to starvation of the downstream node. We prove this
by establishing that the upstream node sends a not.busy() event to the downstream
node, infinitely often. To establish this, it is sufficient to show that transition T'5 will
be taken infinitely often.
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We first prove the following lemma:

L1: D((Nodel.local data A (Nodel.request = 0)) = < Nodel.request = 1)

We do this by establishing the following chain of argument:

1.1: 0O((Nodel.local data A (Nodel.BC = 0)) => © Node1.BC = 1)
1.2: O((Nodel.local.data A (Nodel.BC = 1)) => & Node1.BC = 2)

L.k: O((Nodel.local dataA (Nodel.BC= M ~ 2)) = O Nodel.BC= M ~ 1)
LM : O((Nodel.localdata A (Nodel.BC= M ~ 1) A (Nodel.request = 0))
= O Nodel.request = ])

We establish lemma L1 by showing that the bandwidth balancing counter (BC) of
Node 1 is incremented each time it has local data to send. Finally, when the value of
BC reaches the value M — 1, the local variable request gets incremented io 1.

Next, we prove the following lemmas:

L2: D((Nodel.request =1) = < Nodel.countdown = 1)

which states that the local variable countdown will have the value 1 in a state
following each state in which local variable request has value 1. This is because
transition T'! is enabled infinitely often, whose effect is to assign the current value
of variable request to countdown. We have therefore shown that transition T'5 will
eventually be enabled, thereby establishing that the upstream node (Node 1) will
send the event not_busy() to the downstream node (Node 1). Thus, we have proved

that there is no starvation of the downstream node.
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Conclusion and Future Work

In this thesis, we present a method, supported by tools, to verify system descriptions
expressed in a programming language-like notation. Our method may be applied to
a wide range of problems, including, but not restricted to the verification of parallel
algorithms, embedded systems, distributed applications, communications protocols,
and computer hardware. Qur method, however, is restricted to the verification of

logical properties, and does not address qualitative issues such as throughput or delay.

The problem of establishing logical properties of a design is known as the “cor-
rectness problen:”. To start with, the design has to be expressed in an unambiguous
notation, with a well-defined formal semantics. We have designed a programming
language-like notation called MELA for this purpose, for which we provide a formal
semantics based on the notion of transition systems. For a formal system description
expressed in MELA, the designer expresses desired logical properties, or requirements,
which the system description is supposed to satisfy. In our approach, these logical
properties are written as predicates in a formal logic. The correctness problem is
therefore reduced to the problem of establishing that the requirements criteria hold

for a MELA program.

We propose a verification method, TOP, to analyse a MELA system description
and show that it satisfies its requirements. Our method utilises theorem proving as
well as model checking verification approaches, and usefully combines the two tech-

niques. In our method, we augment theorem proving methods with model-checking

113
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algorithms, thereby permitting the two techniques to be used together — proof rules
are used to decompose a large problem into smaller sub-problems, each of which may
be automatically verified by model checking. We do this by (re-)interpreting well-
known proof rules for LTL in the context of model checking. An interesting question
to ask is “But what are the general rules for interpreting arbitrary proof rules as
model checking rules?” -An answer to this question wouid be a generalisation of our
work, and an interesting area of research.

In this thesis, we also propose a new human-computer interface for theorem prov-
ing systems. We have implemented a system (SNAP) which has this interface. Our
system has been designed for efficiency and ease-of-use. SNaAP allows proofs to be
carried out at a desired level of abstraction, and its interface permits machine as-
sisted proofs to be carried out in a style that is close to “natural” proofs. SNAP users
may increase the level of abstraction of proofs by adding new theorems, inference
rules, and certain meta rules to the system’s rule-base, even when another proof is
in progress. Users from specific application areas may develop and maintain libraries
of theorems, lemmata, and inference rules, which may be used by others, including
novices, without detailed knowledge of their exact form, or their associated names —

an intuitive understanding is sufficient to use them.

We also present two case studies which used our verification method. In the first
study, system requirements presented in a tabular notation were described in MELA,
and model checking and theorem proving methods proposed in this thesis were used
to verify certain “safety assertions” for a tabular specification. In the second study,
we analysed liveness violations in a (published) communications protocol standard,

and verified that suggested changes to the standard have fixed the problem.

In order to turn this thesis work into a system that could help real programmers
solve real problems, there a number of things that remain to be done. To start
with, we have to integrate our model checking algorithms into the theorem prover
SNAP. Additionally, we have to enhance the level of automation offered by SNAP.
We have established proof of concept by integrating term rewriting and traditional
proof rules within SNAP. To build upon this idea, we will have to implement decision

procedures for tautology checking, and decidable fragments of arithmetic. To be
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able to verify more complex protocols would entail adding theories for sequences and
queues. Additionally, we will have to include decision procedures for these theories.

To use our method for the verification of complex SCR specifications, SNAP’s
term rewriting subsystem has to be extended to simplify SCR event expressions, and
to perform constant arithmetic. To be able to reason about multiple SCR tables,
the language MELA has to be extended. At the moment, we have the restriction
that in a single-step statement, we cannot use the newly assigned value of a variable
in assignment expressions of other variables. This restriction has to be relaxed, as
SCR event expressions may refer to both the old and the new values of variables.
To avoid circularity, we will have to impose a partial order on the evaluation of
such expressions as in [HIL95]. In [Bha96], we report our preliminary work in this
direction. The notation proposed in [Bha96] is a natural extension of the notion of

multiple assignments.



Appendix A

Proof of Dekker’s Algorithm

#include "Assumptions.sn"

#define I1 ((pcl = L1 [[| pel = L2 || pcl = L3 || pcl =1L§) => c1 = 0)
#define J1 ((pcl = L0 || pcl = L4) => c1 = 1)
#define I2 ((pc2 = M1 || pe2 = M2 || pc2 = M3 || pc2 = M5) => c2 = 0)
#define J2 ((pc2 = MO [| pec2 = M4) => c2 = 1)

#define Invl ((pcil = L5) =>(pc2 = M1 || pc2 = M2 || c2 =1 || turn = 1))
#define Inv2 ({pc2 = M5) =>(pcl = L1 |{ pe1 = L2 || e¢1 =1 || turn = 2))
#define Locl (pc1=L0|lpci=L1l|{pci1=L2||pci=L3||pci=L4e||pci=LS5)

#define Loc2 (pc2=MO||pc2=M1|ipc2=M2||pc2=M3]||pc2=M4| |pc2=M5)

#define Turn (turn = 1 || turn =2)

#define Inv (I1&&J1&&I128&J2&&Inv1&&Inv2&&Loc1&&Loc2&&Turn)

1]
1

#define req ~(pcl=L5 && pc2=M5)

H
n

#define T1I1 ((L1 = L1 J] L1 = L2 || L1 = L3 || L1 = LB) => 0 = 0)
#define T1J1 ((Lt = LO || L1 = L4) => 0 = 1)

#define T1I2 ((pc2 = M1 || pc2 = M2 || pc2 = M3 || pc2 = M5) => c2 = 0)
#define TiJ2 ((pc2 = MO || pc2 = M4) => c2 = 1)

#define T1Invl ((L1 = L5) =>(pc2 = M1 || pc2 = M2 || c2 =
#define TiInv2 ((pc2 = M5) =>(L1 =L1 {| L1 =L2 || 0 =1
#define Tilocl (L1=LO]|L1=L1||L1=L2]|L1=L3|[L1=L4/|{L1=L5)
#define TiLoc2 (pc2=MO||pc2=M1||pc2=M2| |pc2=M3||pc2=M4||pc2=M5)
#define TiTurn (turn = 1 || turn =2)

#define TiInv \
(T1I1&4T1J12&T112£&T1J224T1Inv14&T1Inv22&T1Loc1&24T1Loc2&&T1Turn)

1 [| turn = 1))
[ turn = 2))
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#define T2I1 ((L2 = L1 Il L2
#define T2J1 ((L2 = LO || L2 = L&) => c1 = 1)

#define T2I2 ((pc2 = M1 || pc2 = M2 || pe2 = M3 || pc2 = M5) => c2 = 0)
#define T2J2 ((pc2 = MO || pc2 = M4) => ¢2 = 1)

#define T2Invi ((L2 = L5) =>(pc2 = M1 || pc2 = M2 || ¢2 = 1 || turn = 1))
#dafine T2Inv2 ((pc2 = M5) =>(L2 = L1 || L2 = L2 ] €1 = 1 || turn = 2))
#define T2Loci (L2=LO||L2=L1)|L2=L2||L2=L3|[L2=L4| |L2=L5)

#define T2Loc2 (pc2=MO| |pc2=M1| [pc2=M2| |pc2=M3] | pc2=M4 | | pc2=M5)

#define T2Turn (turn = 1 || turn =2)

#define T2Inv \
(T2Ii&&T2J1&&T2I2&&T2J2&&T2Invi&&T2Inv2&&T2Loc1&&T2Loc2&&T2Turn)

L2 || L2 =L3 || L2 = L5) => c1 = 0)

#define T3I1 ((L5 = L1 || L5 = L2 || L5 = L3 || L5 = L§) => c1 = 0)
#define T3J1 ((L5 = LO || L5 = L4) => ¢1 = 1)

#define T3I2 ((pc2 = M1 || pe2 = M2 || pc2 = M3 |] pc2 = M5) => c2 = 0)
#define T3J2 ((pc2 = MO || pc2 = M4) => ¢2 = 1)
#define T3Invl ((L5 = L5) =>(pc2 = M1 || pc2 = M2 || c2 =1 || turn = 1))
#define T3Inv2 ((pc2 = M5) =>(L5 = L1 || L5 = L2 |l c1 = 1 |} turn = 2))
#define T3Locl (LS5=LO||L5=L1||L5=L2| |L5=L3]|L5=L4||L5=L5)

#define T3Loc2 (pc2=MO| Ipc2=M1| |pc2=M2| |pc2=M3| |pc2=M4| | pc2=M5)

#define T3Turn (turn = 1 || turn =2)

#define T3Inv \

(TSI1&&T3J1&&T3I2&&T3J2&&T31nv1&&T3Inv2&&T3Loc1&&T3Loc2&&T3Turn)

#define T4I1 ((L1
#define T4J1 ((Li

fl
3

L1 |l L1 =L2 []L1=L3[]Ll=1L5)=>cls= 0)

LO |l L1l =1L4) =5 c1 = 1)

#define T4I2 ((pc2 = M1 || pc2 = M2 || pc2 = M3 || pc2 = M5) => c2 = 0)
#define T4J2 ((pc2 = MO || pc2 = M4) => c2 = 1)

*define T4Invi ((L1 = L5) =>(pc2 = M1 || pc2 = M2 {| ¢2 = 1 || turn = 1))
#define T4Inv2 ((pc2 = M5) =>(L1 = L1 [| L1 = L2 Il c¢1 = 1 |] turn = 2))
#define T4Loc1 (L1=L0||L1=L1|IL1=L2||L1=L3||L1=L4I|L1=L5)

#define T4Loc2 (pc2=MO||pc2=M1|Ipc2=M2| |pc2=M3| |pc2=M4| |pc2=MS5)

#define T4Turn (turn = 1 || turn =2)

#define T4Inv \
(T4I1&&T4J1&&T4I2&&T4J2&&T4Inv1&&T4Inv2&&T4Loc1&&T4L062&&T4Turn)

"
]

]
1]

#define TSIt ((L3 = L1 || L3
#define T5J1 ((L3 = L0 || L3
#define T5I2 ((pc2 = M1 || pc2
#define T5J2 ((pc2 = MO || pc2

L2 |1 L3 =13 || L3 =L5) => c1 = 0)

L4) => cl = 1)

M2 || pc2 = M3 || pc2 = M5) => ¢2 = 0)
M4) => ¢2 = 1)

]
[}
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#define TSInvl ((L3 = L5) =>(pc2 = M1 || pc2 = M2 || c2 =1 || turn = 1))
#define TSInv2 ((pc2 = MS) =>(L3 =L1 || L3 =12 || c1 =1 || turn = 2))

#define TSLocl (L3=L0}|L3=L1i|{L3=L2||L3=L3]|L3=L4||L3=L5) T
#define TSLoc2 (pc2=MO|{pc2=M1|!pc2=M2] |pc2=M3||pc2=M4| |pc2=M5)
#define TSTurn (turn = 1 {] turn =2)

#define TS5Inv \
(TSI1&&T5]1&&TSI2&&T5J2&&T5Inv1&&T51nv2&&T5Loc1&&T5Loc2&&T5Turn)

#define T6I1 ((L4 = L1 || L4 =12 || L4 = L3 |] L4 = L5) => 1 = 0)
#define T6J1 ((L4 = LO || L4 = L4) => 1 = 1)

#define T6I2 ((pc2 = M1 || pc2 = M2 || pc2 = M3 || pc2 = M5) => ¢c2 = 0)
#derine T6J2 ((pc2 = M0 || pc2 = M4) => ¢2 = 1)

#define T6Invl ((L4 = L5) =>(pc2 = M1 || pc2 = M2 || ¢2 =1 || turn = 1))
#define T6Inv2 ((pc2 = M5) =>(L4 =L1 || L4 =12 |] 1 =1 || turn = 2))
#define T6Locl (L4=L0||L4=L1|iL4=L2]}|L4=L3||L4=L4||L4=L5) . :
#define T6Loc2 (pc2=MO||pc2=M1{|pc2=M2||pc2=M3||pc2=M4| |pc2=M5)
#define T6Turn (turn = 1 || turn =2)

#define T6Inv \
(T6I1&&T6I1X&TEI2&LTE6 284 T6Inv1&&T6Inv2&&T6Loc1&4&T6Loc22&T6Turn)

#define T7I1 ((L4 = L1 |{ L4 = L2 || L4 = L3 || L4 = L5) => c1 = 0)
#define T7J1 ((L4 = LO || L4 = L4) => c1 = 1)
#define T7I2 ((pc2 = M1 || pc2 = M2 || pc2 = M3 || pc2 = M5) => c2 = 0)

#define T7J2 ((pc2 = MO || pc2 = M&) => c2 = 1)

#define T7Invl ((L4 = L5) =>(pc2 = M1 || pc2 = M2 || c¢2 =1 || turn = 1))
#define T7Inv2 ((pc2 = M5) =>(L4 = L1 || L4 = L2 || ¢1 =1 || turn = 2))
#define T7Locl (L4=LO||L4=L1||L4=L2||L4=L3||L4=L4]|L4=L5)

#define T7Loc2 (pc2=MO|Ipc2=M1]{|pc2=M2]|pc2=M3||pc2=M4||pc2=M5)

#define T7Turn (turn = 1 || turn =2)

#define T7Inv \
(T7I1&2&T7J1&&4T7I2%8T7 J28&T7 Inv1&&T7Inv24&T7Loc1£4T7Loc2&4T7Turn)

#define T8I1 ((LO = L1 || LO
#define T8J1 ((LO = LO || LO = L4) => ci = 1)

#define T8I2 ((pc2 = M1 || pc2 = M2 || pc2 = M3 || pc2 = M5) => c2 = 0)
#define T8J2 ((pc2 = MO || pec2 = M4) => c2 = 1)

#define T8Invl ((LO = L5) =>(pc2 =M1 || pc2 =M2 || c2 =1 || turn = 1))
#define T8Inv2 ({pc2 = M5) =>(L0 =L1 |[{ LO =L2 |} ¢1 =1 || turn = 2))
#define TBLocl (LO=LO]|LO=L1||L0=L2]|L0=L3||L0=L4||L0=LS)

#define T8BLoc2 (pc2=MO|{pc2=M1||pc2=M2|{pc2=M3| [pc2=M4| |pc2=M5)

L2 |1 LO = L3 || LO = L5) => c1 = 0)
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v
#define T8Turn (turn = 1 || turn =2)
#define T8Inv \
(T8I1&&T8J1&&T812&&T8J2&&T81nv1&&T81nv2&&T8Loc1&&T8Loc2&&T8Turn)

#define T9I1 ((LO
#define TOJ1 ((LO

L1 [ LO = L2 |1 LO = L3 || LO = L5) => 1 = 0)

LO {] LO =La) =>1 = 1)

#define T9I2 ((pc2 = M1 [| pc2 = M2 || pc2 = M3 || pc2 = M5) => ¢2 = @)
#define T9J2 ((pc2 = MO || pc2 = M4) => c2 = 1)

#define T9Invi ((LO = L5) =>(pc2 = M1 || pe2 = M2 || c2 = 1 || 2 = 1))
#define T9Inv2 ((pc2 = MS) =>(LO =L1 |} LO=L2 || 1 =1 || 2 = 2))
#define T9Locl (L0=L0]|L0=L1||L0=L2||L0=L3||L0=L4||L0=L5)

#define T9Loc2 (pc2=M0|Ipc2=M1IIpc2=M2I]pc2=M3IIpc2=M4I|pc2=M5)
#define T9Turn (2 = 1 || 2 =2)

#define T9Inv \
(TQI1&&T931&&T912&&T9J2&&T9Inv1&&T91nv2&&T9Loc1&&T9L0c2&&T9Turn)

[}
(LI

[}

f

#define T10I1 ((pcl = L1 || pel = L2 || pct = L3 [] pcl = L5) => c1 = 0)
#define T10J1 ({pcl = LO || pcl = L4) => c1 = 1)

#define T10I2 ((M1 = M1 || M1 = M2 || M1 = M3 [l M1 = MS) => 0 = 0)
#define T10J2 ((M1 = MO || M1 = M4) => 0 = 1)

#define T10Invl ((pel = L5) =>(ML =M1 || ML = M2 || 0 = 1 || turn = 1))
#define T10Inv2 ((M1 = MB) =>(pcl = L1 || pc1 = L2 || ¢1 = 1 || turn = 2))
#define T10Locl (pc1=LOIIpc1=L1|Ipc1=L2I[pc1=L31!pc1=L4||pc1=L5)

#define T10Loc2 (M1=H0||M1=M1||M1=M2||M1=M3!|H1=M4||M1=M5)

#define T10Turn (turn = 1 || turn =2)

#define T10Inv \
(T1011&&T1031&&T5OI2&&T10J2&&T101nv1&&T10Inv2&&T10Loc1&&T10Loc2&&T10Turn)

n
1]

#define T11I1 ((pcl = L1 || pct = L2 {] pei
#define T11J1 ((pcl = LO [| pel = L4) => c1 = 1)

#define T11I2 ((M2 = M1 || M2 = M2 || M2 = M3 il M2 = M5)
#define T11J2 ((M2 = MO || M2 = M4) => c2 = 1)

#define T11Invl ((pcl = L5) =>(M2 = M1 || M2 = M2 Il ¢2 =1 || turn = 1))
#define T11Inv2 ((M2 = MS) =>(pci = L1 || pel = L2 || c1 =1 ]| turn = 2))
#define Tiilocl (pc1=LO[|pci=L1|ipc1=L2||pc1=L3||pc1=L4||pc1=L5)

#define T11Loc2 (M2=M0||M2=M1||M2=M2||M2=M3||M2=M4||H2=H5)

#define T1iTurn (turn = 1 || turn =2)

#define TilInv \
(TilIi&&TliJ1&&T11I2&&T11J2&&T11Inv1&&TilInv2&&T11Loc1&&T11Loc2&&T11Turn)

li
n
1]

L3 |] pet = L8) => ¢c1 = 0)

]
n

> ¢c2 =0)
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#define T12I1 ((pci = L1 | pet = L2 || pet
#define T12J1 ((pcl = LO || pcl = L4) => c1
#define T12I2 ((M5 = M1 || M5 = M2 || M5 = M3 || M5 = M5)
#define T12J2 ((M5 = MO || M5 = M4) => c2 = 1)

#define Ti2Invl ((pcl = L5) =>(MS = M1 || M5 = M2 || c2 =1 || turn = 1))
#define T12Inv2 ((M5 = M5) =>(pct = L1 || pel1 = L2 |} c1 = 1 }| turn = 2))
#define T12Locl (pci=LOl{pci=L1il|pc1=L2||pc1=L3|ipci=L4]|pc1=LS)

#define T12Loc2 (MS-MOI|M5-M1||M5-M2||H5-M3||M5-M4||H5 =M5)

#define T12Turn (turn = 1 |} turn =2)"

#define Ti12Inv \
(T12I1&&T12J1&&T1212&&T12JQ&&T121nv1&&T12Inv2&&T12Loc1&&T12Loc2&&T12Turn)

L3 |] pecl = L5) => c1 = 0)
1)

1}
Il

> c2 = 0)

#define T13I1 ((pcil = L1 || pcl = L2 || pel = L3 || pet = LS) => c1 = 0)
#define T13J1 ((pcl = LO || pel = L4) => c1 = 1)

#define T13I2 ((Mi = [l 1 M2 || M1 = M3 || M1 = M5) => ¢2 = 0)
#define T13J2 ((M1 = MO || M1 = M&) => c2 = 1)

#define T13Invi ((pcl = L5) ->(M1 =Ml || M1 =M2 1] c2=1 1| turn = 1))
#define T13Inv2 ((M1 = M5) =>(pcl = L1 || pe1 =L2 || e1 =1 || turn = 2))
#define Ti3Loci (pc1=L0llpci=L1|lpci=L2]|pc1=L3||pci=L4||pci=L5)

#define T13Loc2 (M1=MO| |[M1=M1| |M1=M2] |M1=M3| |M1=M4 | | M1=M5)

#define T13Turan (turn = 1 || turn =2)

#define T13Inv \
(T13I1&&T13J1&&T1312&&T13J2&&T131nv1&&T131nv2&&T13Loc1&&T13Loc2&&T13Turn)

[}
]
H)

#define T14I1 ((pcl = L1 || pet = L2 || pel = L3 || pel = L5) => ¢l = 0)
#define T14J1 ((pcl = LO || pcl = L4) => c1 = 1)

#define T14I2 ((M3 = M1 || M3 = M2 || M3 = M3 || M3 = M5)
#define T14J2 ((M3 = MO || M3 = M4) => ¢2 = 1)

#define T14Invl ({pcl = L5) =>(M3 =M1 || M3 =M2 || c2 =1 || turn = 1))
#define T14Inv2 ((M3 = M5) =>(pcl = L1 {| pcl = L2 [| ¢1 =1 || turn = 2))
#define T14Locl (pc1=L0|lpci=L1||pci=L2||pc1=L3||pci=L4||pcl=L5)

#define T14Loc2 (M3=H0|fM3=H1||M3=M2||M3=M3||M3=M4||M3=M5)

#define T14Turn (turn = 1 || turn =2)

#define T14Inv \
(T14I1&&T14J1&&T14I2&&T14J2&&T14Inv1&&T14Inv2&&T14Loc1&&T14Loc2&&T14Turn)

>c2 =0)

#define T15I1 ((pci
#define T15J1 ((pci1
#define T15I2 ((M4
#define T15J2 ((M4

Li |{ pe1 = L2 || pel = L3 || pel = L5) => c1 = 0)
LO |l pel = L4) => cl = 1)

M1 [l M4 =M2 || M4 = M3 || M4 = M5) => 1 = 0)

MO || M& = M3) => 1 = 1)

i
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#define T15Invi ((pel = L5) =>(M4 =M1 || M = M2 [l 1 = 1 || turn = 1))
#define T15Inv2 ((M¢ = M5) =>(pcl = L1 [l pel = L2-Il ¢1 = 1 [| turn = 2))
#define T15Loct (pc1=L0l Ipci=L1]|pc1=L2||pc1=L3}|pci=L4| | pci=L5)

#define T15Loc2 (M4=MO||M4=M1)|Ma=M2|{M4a=M3| |Ma=M4| |M4=M5)

#define Ti5Turn (turn = 1 || turn =2)

#define Ti5Inv \

(TISI1&&T15J1&&T1SI2&&T15J2&&T151nv1&&T15Inv2&&T15Loc1&&T15Loc2&&T15Turn)

#define T16I1 ((pci = L1 || pcl = L2 |} pet = L3 || pel = LE) => c1 = 0)
#define T16J1 ((pct = LO [| pci = L&) => c1 = 1)

#define T16I2 ((M& = M1 || M4 = M2 || M4 = M3 || M4 = M5)
#define T16J2 ((Ma = MO || M4 = MQ) => ¢2 = 1)

#define T16Invl ((pcl = L5) =>(M4 = M1 || M4 = M2 || c2 = 1 || turn = 1))
#define T16Inv2 ((M4 = M5) =>(pci =11 |l pci = L2 || e = 1 || turn = 2))
#define T16Locl (pc1=LOIlpc1=L1IIpc1=L2IIpc1=L3I|pc1=L4I|pc1=L5)

#define T16Loc2 (M4=M0[|M4=M1||H4=H2||H4=M3||M4=M4||M4=M5)

#define T16Turn (turn = 1 || turn =2)

#define T16Inv \
(TlGI1&&T16J1&&T16I2&&T16J2&&T1SInvi&&T16Inv2&&T16Loc1&&T16L0c2&&T16Turn)

> c2 =0)

#define T17I1 ({pci = L1 || pet = L2 || pect = L3 |] pcl = L5) => ¢1 = 0)
#define T17J1 ({pcl = LO |} pcl = L4) => c1 = 1)
#define T17I2 ((MO = M1 || MO = M2 || MO = M3 || MO = M5) => ¢2 = 0)

M

#defire T17J2 ((MO = MO || MO = M4) => ¢2 = 1)

#define T17Invi ((pcl = L5) =>(M0 = M1 || MO = M2 || c2 = 1 || turn = 1))
#define T17Inv2 ((MO = ME) =>(pcl = L1 || pel = L2 || ct =1 || turn = 2))
#define T17Locl (pc1=L0|{pci=L1||pc1=L2]|pc1=L3]|pci=L4]||pc1=L5)

#define T1i7Loc2 (M0=M0||M0=M1!|M0=M2|IMO=M3||MO=H4|!M0=M5)

#define T17Turn (turn = 1 || turn =2)

#define T17Inv \
(TlTI1&&T17J1&&T1TI2&&T17J2&&T1TInv1&&T17Inv2&&T17Luc1&&T17Loc2&&T17Turn)

fl

#define T18I1 ((pcl = L1 {| pcl = L2 || pel
#define T18J1 ((pcl = LO |[ pcl = L4) => c1
#define T18I2 ((MO = M1 || MO
#define T18J2 ((MO = MO || Mo

L3 || pcl = LS) => ¢t = @)
1)

M2 || MO = M3 || MO = M5) => 1 = 0)

M&) => 1 =1)

]
fl

#define T18Invl ((pci = LS) =>(MO =M1 [| MO =M2 |} 1 =1 |] 1 = 1))
#define T18Inv2 ((MO = M5) =>(pcl = L1 || pe1 = L2 [l ct =1 || 1 = 2))
#define T18Locl (pci=LO|lpci=L1l|pci=L2|ipc1=L3]]|pci=L4||pci=L5)

#define T18Loc2 (MO=MO||MO=M1||MO=M2]|MO=M3| [MO=M4 [ |MO=M5)
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#define T18Turn (1 = 1 |] 1 =2)
#define T18Inv \
(TIBIi&&TlSJ1&&T18I2&&T18J2&&T181nv1&&T181nv2&&T18Loc1&&T18Loc2&&T18Turn)

#define Initl (pci=L0 && pc2=M2)._
#define Init2 (ci=1 && c2=1)
#define InitTurn (turn=1)

#define Init (Initl &% Init2 && InitTurn)

prove |- Init => Inv;
assume Init;
Initi;

pcl = LO;

“(pel = L1 || peci
I1;

Init2;

cl =1;

Ji;

pc2 = MO,
“(pc2 = M1 ||
I12;

c2 = 1;

J2;
“(pci
Invi;
“(pc2
Inv2;
Locl;
Loc?2;
turn = 1;

Turn;

Inv;

|- Init => Inv;
qed T1;

]

L2 []| pel

L3 || pcl = L5);

o
0
28]

il

M2 | pc2 = M3 || pe2 = MSs);

]

L5);

M5);

prove [- {Inv} pc1=L0 ~-> pci:=L1, c1:=0 {Inv};
assume Inv && pcl=L0O;

0 =0;

T1I1;

“(L1 = L0 |] L1 = L4);



T1J1;
Inv;
T1IZ;
T1J2;
“{L1=L5);
"TilInvi;

T1I1 && T1J1 && T1I2 %& T1J2 && TiInvi;

L1 =L1;

Li=L1 Il L1=L21{l0=1 || turn = 2;

Tilnv2;
TiLocl;
TiLoc2;
TiTurn;
TiInv;

[- {Inv} pei=L0 -> pci:=Li, c1:=0 {Inv};

qed T12;

prove Inv => req;
assume Inv;
assume (pcil=L5 &&
pc2=M5;

pc2 = M1 || pc2
I2;

c2=0,;

Invi;

pci=L5;

pc2 = M1 || pc2 =
“(pc2 = M1);
“(pe2 = M2);

“(c2 = 1);

turn = 1;

Inv2;

pcl = L1 || pel =
“({pci=L1);
“(pci1=L2);

pel = L1 || pecl
I1;

cl = 0;

“(cl = 1);

turn

1

[}
[y
.o

pc2=M5) ;

M2 || pc2 = M3 || pc2 = M5;

M2 |l c2 =1 || turn

]
[y

L2 |] el

1 1] turn = 2;

L2 || pel = L3 || pci = L5;

123
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turn = 1 &% turn = 2;

£f;

Inv |- “(pci=L5 && pc2=M5);
- Inv => req;

qed Requirement;

prove |~ {Inv} pci=L1 && c1=0 -> pc1l:=L2 {Inv};
assume Inv && (pci=L1 && c1=0);

cl=0;

T2I1;

pci=L1;

(L2 = L0 || L2 = L4);

T2J1;

T2I2;

T232;

~(L2=L5);

T2Invi;

L2=L2;

L2 =L1 [I L2=1L2 || ¢1 =1 |] turn = 2;
T2InvZ;

T2Loc1;

T2Loc2;

T2Turn;

T2Inv;

|~ {Inv} pci=L1 && c1=0 -> pc1:=L2 {Inv};
qed T2;

prove |- {Inv} pc1=L1&&~c2=0->pc1:=L5{Inv};
assume Inv &&(pcil=L1&&~c2=0);
I1;

pcl=L1;
pei1=L1}lpci=L2]|pci=L3] |pci=L5;
cl=0;

T3I1;

~(L5=LO| |L5=L4);

T3J1;

T312;,

T3J2;

"(c2=0);

I12;



125

“(pc2=M1| |pc2=M2| [pc2=M3] | pc2=M5) ;
~(pc2=M1) &t~ (pc2=M2)&&"~ (pc2=M3)&&"~ (pc2=M5) ;
Loc2;

pc2=MO| |pc2=M4;

c2=1;

(pc2 = M1 || pe2 = M2 || c2 = 1 [| turn = 1);
T3Invi; '

“(pc2=M5) ;

T3InvZ;

L5=L5;

T3Locl;

T3Loc2;

T3Turn;

T3Inv;

|- {Inv} peci=L1&&~c2=0->pci:=L5{Inv};

qed T3;

prove |~ {Inv} pc1=L2 && turn=1->pci:=L1 {Inv};
assume Inv && (pci=L2 && turn=1);

pci=L2; '
pei=L1|lpe1=L2||pci=L3]{ |pci=L5;

I1;

cl=0;

T4I1;

(L1 = L0 || L1 = L4);

T4J1;

T412;

T4J2;

“(L1=L5);

T4Invi;

Li=L1;

(L1 = L1 1§ L1 = L2 || e =1 || turn = 2);
T4Inv2;

Li=L1;

T4Loci;

T4Loc2;

T4Turn;

T4Inv;

|- {Inv} pc1=L2 && turn=1->pci:=L1 {Inv}:
qed T4;
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prove |- {Inv} pci=L2 && ~(turn=1)->pcl:=L3 {Inv};
assume Inv && (pci=L2 && ~(turn=1));
pcl=L2;

pc1=L1llpci=L2||{pc1=L3| |pci=L5;

I1;

cl=0;

TSI1;

“(L3 = L0 || L3 = L4);

T511;

T5I2;

T5J2;

“(L3 = L5);

T5Invi;

~(turn=1);

Turn;

turn=2;

(L3 =L1 11 L3=L21|)ci=11|| turn = 2);
T5Inv2;

L3=L3;

T5Locl;

TS5Loc2;

T5Inv;

|- {Inv} pci=L2 && ~(turn=1)->pcil:=L3 {Inv};
qed T5;

prove |- {Inv} pei=L3 ->cl:=1, pcl:=L4 {Inv};
assume Inv && pci=L3;

"(L4 =L1 |l L4=1L2 1] L4 =L3 || L4 = LS);
T6I1;

1=1;

T6J1;

T6I2;

T6J2;

~(L4=L5);

T6Invi;

(L4 =L1 || La4=L2 1l 1=11]| turn = 2);
T6Inv2;

L4=L4;

T6Loci;
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T6Loc2;

T6Turn;

T6Inv;

I- {Inv} pci=L3 ->ci:=1, pci:=L4 {Inv};
qed T6;

prove |- {Inv} pci=L4 && turn=2-> pcl:=L4 {Inv}; T
assume Inv && (pci=L4&&turn=2);

“(L4 =11 I L4 =12 || L4 = L3 || L4 = L§);
T711;

I1;

Ji;

pcl=L4;

(pcl = LO || pel = L4);

cl=1;

T731;

T7I2;

T7J2;

~(L4=L5);

T7Invi;

(L4 =L1 |1 L4 =12 |} et =1 ][ turn = 2);
T7Inv2;

L4=L4;

T7Llocl;

T7Loc2;

T7Turn;

T7Inv;

|- {Inv} pci=L4 && turn=2-> pcl:=L4 {Inv};
qed T7;

7

prove |- {Inv} pci=L4 && ~(turn=2)-> pcl:=L0 {Inv};
assume Inv && (pci=L4 && ~(turn=2));

"(LO =11 1] LO=1L2 [| LO = L3 || LO = L5);

T8I1,;

pcl=L4; »

(pcl = LO || pel = L4);

Ji;

cl=1;

T8J1;

T8I2;
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T8J2;

(L0 = L5);

T8Invl;

(LOo=L1 | LO=1L2 | ¢1 =1 Il turn = 2);
T8InvZ;

LO=L0;

T8Locl;

T8LocZ;

T8Turn;

T8Inv;

|- {Inv} pci=L4 && ~(turn=2)-> pel:=L0 {Inv};
qed T8;

prove |- {Inv} pci=L5-> turn:=2, ci:=1, pci:=L0 {Inv};
assume Inv &% pcil=L5;
"(LO=L1 1l LO="L2]| Lo
T9I1;

1=1;

T9J1;

T9I2;

T9J32;

~(LO=L5);

T9Invl;
(Lo=L1[l[LO=L21[]l1=11]}2
TS9Inv2;

LO=L0;

T9Locl;

T9Loc2;

2=2;

T9Turn;

T9Inv;

- {Inv} pe1=L5-> turn:=2, ci:=1, pcl:=L0 {Inv};
qed T9;

L3 || LO = LS);

2);

prove |- {Inv} pc2=M0 -> pc2:=M1, ¢2:=0 {Inv};
assume Inv && pc2=MO;

T10IY;

T10J1%;

0=0;

T10I2;
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“(M1=MO || M1=Ma);

T10J2;

Mi=M1;

(ML =M )| ML =M2 (]| 0= 1 1] turn = 1);
T10Invi;

~(M1=M5) ;

T10Inv2;

Ti0Loci;

T10Loc?2;

T10Turn;

T10Inv;

|- {Inv} pc2=M0 -> pc2:=M1, c2:=0 {Inv};
qed T10;

prove |-{Inv} pc2=M1i && c1=0 =>pc2:=M2{Inv};
assume Inv && (pc2=M1 && c1=0);

Inv;

Ti1I1;

Ti1J4;

pc2=M1;

(pc2 = M1 || pe2 = M2 || pc2 = M3 || pe2 = M5);
I2;

c2=0;

(M2 = M1 || M2 = M2 || M2
Ti1I2;

“(M2 = MO || M2 = M4);
Ti1J2;

M2=M2;

(M2 = M1 || M2 = M2 || c2
Tiillnvi;

(M2 = M5);

Ti1Inv2;

TiiLoci;

T11Lloc2;

TiiTurn;

TilInv;

|-{Inv} pc2=M1 && c1=0 =>pc2:=M2{Inv};
qed T11;

M3 |] M2 = M5) => c2 = Q;

1 || turn = 1);

prove |- {Inv}pc2=M1 && ~(c1=0) -> pc2:=M5{Inv};
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assume Inv &% (pc2=M1 && ~(c1=0));

T1211;

Ti12J1;

pc2=M1;

I2;

(pc2 = M1 || pc2 = M2 || pe2 = M3 || pc2 = M5);
c2 = 0;

T1212;

“(M5 = MO || M5 = M4);

T1212;

“(c1=0);

“(pci=L1 || pc1=L2 || pc1=L3 |lpc1=L5);
“(pc1=L5);

Ti2Invi;

Locl;

pcl = LO || pecl = L&;

Inv2;

ci=1;

(pc1 = L1 || pc1 = L2 || e¢1 =1 || turn = 2);
T12InvZ;

T12Loci;

M5=M5;

Ti2Loc2;

T12Turn;

T12Inv;

- {Inv}pc2=M1 && ~(c1=0) -> pc2:=M§ {Inv};
qed T12;

prove |-{Inv} pc2=M2 && turn=2 ->pc2:=M1 {Inv};
assume Inv &% (pc2=M2 && turn=2);

T13I1;

T13J1;

I12;

pc2=M2;

(pe2 = M1 || pc2 = M2 || pc2 = M3 || pc2 = M5);
c2=0;

T13I2;

(M1 = MO || M1 = M4);

T13J2;

Mi=M1i;
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(M1 =ML || M1 =M2 || c2 =1 |] turn = 1);
T13Invi;

“(M1 = M5);

Ti3Inv2;

Ti3Locl;

Ti3Loe2;

T13Turn;

Ti3Inv;

|-{Inv} pc2=M2 && turn=2 ->pc2:=M1 {Inv};
ged T13;

prove |-{Inv} pc2=M2 && ~(turn=2) ->pc2:=M3 {Inv};
assume Inv && (pc2=M2 && ~(turn=2));

T14711;

T1431;

pc2=M2;

12;

pc2=M2;

(pc2 = M1 || pc2 = M2 || pe2 = M3 || pc2 = M5);
c2 = 0;

T1412;

“(M3 = MO || M3 = M4);

T1432;

“(turn=2);

Turn;

turn = 1;

(M3 =M1 || M3=M2 |] ¢2 =1 || turn = 1);
T14Invl;

~“(M3 = M5);

T14Inv2;

T14Locl;

M3=M3;

Ti4Loc2;

T14Turn;

Ti4Inv;

[-{Inv} pc2=M2 && ~(turn=2) ->pc2:=M3 {Inv};
qed T14;

prove |- {Inv} pec2=M3 -> c2:=1, pc2:=Md {Inv};
assume Inv && pc2=M3;

.\‘\\U
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Ti511;
T15J1;
~(M4
T1512;

i=1;

T15J2; .

Me =ML || Ma=M2 || 1=1]] turn = 1);
Ti5Inv1;

“(M4 = M5);

Ti5Inv2;

T15Loci;

M4=M4 ;

T15Loc2;

TiSTurn;

Ti5Inv;

[~ {Inv} pc2=M3 -> c2:=1, pc2:=M4 {Inv};
qed T15;

ML || M4 = M2 |] M4 = M3 || M4 = M5);

prove |- {Inv} pc2=M4 && turn=1 -> pc2:=M4{Inv};
assume Inv && (pc2=M4 && turn=1);
T16I1;

T16J1;

(M4 = M1 || M4 = M2 || M4 = M3 || M4
T1612;

pc2=M4;

pc2=M0 || pc2=M4;

J2;

c2=1;

T16J2;

turn=1;

(M2 =M1 || M4 =M2 |l c2=1 || turn
Ti6Invi;

(M4 = M5);

T16Inv2;

Ti6Locl;

M4=M4,

Ti6Loc2;

T16Turn;

Ti6Inv;

|- {Inv} pc2=M4 && turn=1 -> pc2:=M4{Inv};

[}

M5);

1);
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qed T16;

prove |- {Inv} pc2=M4 && ~(turn=1) -> pc2:=M0{Inv};
assume Inv && (pc2=M4 £& ~(turn=1));
Ti7I1;

Ti7J1;

(MO =M1 || MO =M2 || MO = M3 || MO
T1712;

pc2=M4;

pc2=M0 || pc2=M4;

J2;

c2 = 1;

T1732;

(MO =M1 || MO =M2 || c2 =1 || turn = 1); :
T17Invi; o
“(MO = M5); "
T17Inv2;

T17Loc1;

MO=MO;

(MO=MO | [MO=M1| IMO=M2| |MO=M3| |MO=M4| |MO=M5) ;
Ti7Loc2;

T17Turn;

T17Inv;

[- {Inv} pc2=Ma && “(turn=1) -> pc2:=M0{Inv};
qed T1i7;

n

M5);

prove [- {Inv} pc2=M§ -> turn :=1, c2:=1, pc2:=M0 {Inv};
assume Inv && pc2=M5;

Ti8I1;

Ti8J1;

“(MO =M1 || MO = M2 || MO = M3 || MO = M5);
T1812;

1=1;

Ti8J2;

MO =ML Il MO=M2|)1=1]]1=1);
T18Invil;

“(MO = M5);

T18Inv2;

T18Locl;

MO=M0O;
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Ti18Loc2;
Ti8Turn;
T18Inv;
|~ {Inv} pc2=MS ~> turn :=1, c2:=1, pc2:=M0 {Inv};
qed T18;
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