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Abstract

Exploration of the processes invalved in fission reactor dynamics and the solution technigues required for
such a problem is the objective of this research, Reactor behavior is governed by neutron kinetics and ther-
mathydraulics, and the spatiat and temporal interaction of the two processes. The analytical solution of
such a problem in all but the simplest of cases, is impossible. Hence, numerical methods are required.
Simulation software is developed 10 model the space-time behavior of nuclear systems and this software is
then used to study the behavior of these systems. This investigation involves the mathematical modeling
and numerical simnlation of the phenomena encountered. The desired result is an accurate depiction of

reactor behavior,

The majority of contemporary simulations involve only a loose coupling between the neutronics and ther-
malhydraulics both spatially and temporally. It is more expedient to selve reactor kinetics and thermalhy-
draulic simulation problems separately. A point kinctics model is frequently added to a thermalhydraulic
simulation to model reactor power but this would ignore spatial effects. The simulation developed here is a
space-time reactor kineiics simutation with an integral thermalbydraulics medule. This integral thermalhy-
draulics module provides for good spatial and temporal coupling of the two processes and is the primary

distinguishing feature of the sofiware,

The rate form of the equation of state is used in the solution of the'pressure field in the thermalhydraulic
problem. A rate equation is betier suited to the solution procedure for the thermalhydraulics than the use of

an equation of state.

Efforts were made to take advantage of the structure of the problem to reduce computational effort. Parti-
tioned matrices are used in the time integration of both the neutron kinetics and thermalhydraulics. This
nelped reduce compultational effort by facilitating the use of routines that exploit the sparsity of the
Jacobian. A second order semi-implicit Runge-Kutta method is used for the time integration of the ncutron
kinetics problem. This method requires matrix inversion but is a robust and reliable method for solving a

stiff system of ordinary differential equations.
The two component modules of the software, the neutronics and the thermalhydraulics, were developed and

tested separately before they were integrated. The results of these 1ests and simulations using the com-
pleted software are given,
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The sciences do not try to explain, they hardly even try to
predict, they mainly make models. By a model is meant
a mathematical construct which, with the addition of ver-
bal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely

and precisely that it is expected to work.

John von Neumann
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Introduction

Fission reactor behavior is governed by the spatial and emporal interaction of the two main processes, neu-
tron kinetics and thermalhydraulics. The analytical solution of such a problem, in all but the simplest of
cases, is impossible. The numerical solution of such a problem is not trivial either. In order to properly
model the behavior of such a system, the governing equations of the two processes must somehow be
solved simultancously or nearly simultancously. If the processes interaction is sufficiently frequent, this
would require effectively simultaneous solution.

To model the passive behavior of a reactor was the objective. A reactor with passive cooling and no exter-
nal reactivity control is such a reactor. A pool type reactor with vertical flow tubes cooled by natural con-
vection is the simplest implementation of passive cooling and it is not an uncommon design. The
dynamical behavior of such a reactor, without reactivity control or with disabled reactivity control, is
muodeled here,

The majority of the energy released from nuclear fission is manifested as Kinctic cnergy of the fission prod-
ucts which results in thermal energy production in the fuel. This thermal energy is Lansired by conduc-
tion to the fuel-coolant boundary where it is transported away by convective flow. Densily variation within
the coolant due to thermal expansion is the forcing term in the conservation of momentum cquation.
Temperature dependence of the multigroup cross sections within the fuel is modeled using thermal feed-
back cocfficients. This is the most direct thermal reactivity feedback effect. The multigroup cross sections
within the coolant are directly dependent on the coolant density. This primarily affects the neutron
thermalization characteristics is therefore a less direct form of feedback.

Since their inception, reactor kinetics and thermathydraulic simulations have existed separately. When the
simulation of a reaclor transient is desired, it is more expedient to solve the neutron kinetics and the ther-
malhydraulics separately. Itis not uncommon for an iterative approach to be used where successive ther-
malhydraulic and neutron kinetic simulations are run for the same transient until the changes between the
successive simulations decrease to an acceptable level. Fuel temperature, coolant temperature and void
fraction are output from the thermalhydraulic simulation and become input into the neutron kinetics simu-
tation. A spatial power distribution, as a function of time, an output of the reactor kinetics simulation
would then be used as input into another thermalhydraulic simulation.

Increasing interest has been shown of late in software that simulates these two processes as interacting
nearly simultaneously. The majority of these simulations involve only a loose coupling between the neu-
tronics and thermalhydraulics both spatially and temporally. A point neutron Kinetics model is relatively
casy (o implement and is frequently added to a thermathydraulic simulation to model reactor power. Such



a simulation would ignore spatial effects but would give good temporal coupling of the two processes. The
addition of a simple thermalhydraulic model to a spatial kinetics simulation would also give good temporal
coupling but again spatial effects would not be modelled very well.

The simulation developed here is a reactor Kinetics simulation involving spatiat effects and is therefore
classified as a space-time reactor kinetics simulation, However, this simulation has an integral thermalhy-
draulic module which is its primary distinguishing feature. In the design of the simulation software, good
spatial and wemporal coupling of the neutron Kinetics and thermathydraulics was sought. A finiwe difference
approximation was chosen because it was the simplest and most dire~t method of solving the required
equations. This allowed for very tight temporal coupling with thermal . cedback being felt at cach spatial
point and good temporal coupling, depending on the time step size used in the simulaton, Unfurtunately,
finite difference methods are computationally expensive. Other less computationaily expensive methods
are available but the penalty would be complexity and preater problems of implementation. A large body
of literature is available on the finite difference method which makes it attractive and expedites develop-
ment.

Efforts were made to take advantage of the structure of the problem to reduce computational effort. The
rate of change of the delayed neutron precursors used in the neutron kinetics is much less than the rate of
change of the neutron flux. A partitioned matrix inversion is used in the time integration of the nevtron
kinetics where the neutron flux and the delayed neutron precursors are integrated separately. Although a
more expensive irnplicit method is required for the neutron flux, a less expensive explicit method may be
used for the delayed neutron precursors. This approach helps reduce the Jacobian matrix complexity as
well as the computational effort. A pastitioned matrix solution is also used in the thermalhydraulic prob-
lem. The Jacobian of the conservation of momentum equations has a block tridisgonal structure but the
solution of the pressure equation (the rate form of the equation of state) must be separated in order to allow
the usage of a tridiagonal matrix inversion routines. The use of routines that exploit the sparsity of the
Jacobian will significantly reduce computational effort.

The rate form of the equation of state is used in the solution of the pressure field in the thermalhydraulic
problem. A rate equation is better suited to the solution procedure for the thermalhydraulics than the use of
an equation of state, where the pressure is calculated given the density and enthalpy (or temperature in
single phase) of the fluid. The use of an equation of state would require that an iterative procedure be used
for the calculation of pressure in order to satisfy the conservation of mass equation.

The time integration of the neutronics and heat transfer equations is separate from the hydraulics equations.
The desired accuracy of the time integration will detcrmine maximum step size that can be used in the inte-
gration. The greater the rate of change, the smaller the maximum step size. The rate equalions for the
multigroup neutron flux, delayed neutron precursor concentration and temperature in the fuel and coolant
are integrated first, and the hydraulics equations, the fluid velocity and pressure, are integrated sccond.



While the time integration is in two sections, the wmporal interaction is sufficiently frequent that this is
effectively a simultancous solution. In a transient simulation, the rapidly changing neutron kinetics will
determing the upper limit of the time step used, and hence the Jaximum period between interaction of the
two processes. This ime step is generally well below the upper limi; sequired by the hydraulics and hence
the solution of the problems is effectively simultancous from that perspective. The fuel temperature can
change quite rapidly, depending on the fuel type used, and can have a large feedback effect on the neutron-
ics but it is integrated simultancously with the neutronics eliminating any problems. The solution of the
two problems is therefore considered 1o be effecavely simultancous. Should greater temporal detail be
required in order to confirm this, simply reducing the time step will provide that greater detail.

A second order semi-implicit Runge-Kutta method is one of the methods that can be used for time integra-
tion. This method was found to be particularly useful in the solution of the neutron kinctics problem. This
method requires matrix inversion and is therefore more computationally demanding than an explicit method
but it is a robust and reliable method for solving a stiff system (widely varying rates of change) of ordinary
differential equations, especially the neutron kinetics problem. A second order semi-implicit Runge-Kutta
method requires that matrix inversion be used twice during one time integration. Due to the nature of the
particular algorithm used, the matrix is decomposed once and only the solver is used twice. This results in
significant savings of computationat effort.

The general structure of this document is as follows. The theory outlining the governing cquations for the
problem described above is presented and developed following a literature review. The required numerical
methods and their use arc examined. A description of the overall simulation and problems encountered in
the computer coding is given. The results of various tests used in the design of the software including tests
of the two component simulations, the neutron kinetics and the thermalhydraulics, are presented and dis-
cussed. ‘The results of simulated transients using the completed software are given. Some derivations and
the software listings are given in the appendices.



2 Literature

The two major areas of classification of reactor simulation programs are reactor physics and thermalhy-
dravlics. There arc a few programs that combine the two processes but these are relatively recent. The
more important codes in these areas are presented with an emphasis placed on codes that are in general
usage. A large volume of information is available on general numerical methods therefore only the algo-
rithms of direct concem are presented.

2.1 Reactor Physics

Reactor physics codes solve the problem of neutron behavior in reactors. These codes have evolved over
time 10 a level where they reliably calculate the flux distribution in the reactor corc for a given configura-
tion. There are several classifications used 10 describe these codes and some fall into more that one cate-
gory. The reactor physics codes can be divided into three main areas: general physics, which includes
lattice and superlattice codes; reactor codes, which include static crilicality calculations, fuel management
and, xenon transients; and the kinetics codes, which include both direct and approximate methods. The list
presented here is not intended to be exhaustive but merely 1o give examples of some codes that are com-
monly used in Canada. Unfortunately, information for a number of commercial codes is restricted and
hence can not be referenced. However, brief descriptions will be given in these cases. More detailed
descriptions of some of the methods mentioned above are presented in Chapter 3.

The most general equation for describing neutron behavior is the time-dependent neutron ransport cqua-
tion. This equation has directional, spatial and time dependence. To atiempt (o solve this equation over the
entire reactor volume would be a computationally enormous task. Approximations are used 10 render this
equation more manageable. Static or time-independent approximations assume a steady state neutron
behavior. Diffusion approximations assume that both directional independence of the neutron flux and iso-
tropic scattering and point kinetics assume a constant spatial flux shape. Almost all codes that solve the
neutron transport equations are static calculations.

Kinetic or dynamic codes model the temporal variation of the neutron flux. Space-Time kinelics takes into
account the spatial effects that influence the dynamic behavior of a reactor. A distinction that is sometimes
made is that a kinetic code models only the neutron behavior without temperature feedback while a
dynamic code will include some form of temperature feedback. Using this distinction, the code that is
developed here is a space-time dynamic code.



Nuclear Reactor Analysis' and, Nuclear Reacior Analysis® are two popular general reactor physics text
books. Nuclear Reactor Theory® provides a thorough theoretical basis for solving the neutron transport
equation. Computational Methods of Neutron Transport* gives a good overview of numerical techniques
for neutron transport calculations and is quite readable,

2.1.1 General Physics

Transpornt codes give a more accurate picture of the flux behavior within a reactor but they are expensive (o
run. Therefore, it would be preferable to simulate only a portion of the reactor. Reactors are usually com-
prised of an array or lattice of fuel cells. In a large reactor, it would be reasonable to assume that the ney-
tron behavior in one of these lattice cels will give a good representation of neutron behavior in the reactor
as a whole. Lattice codes simulate one cell assuming that the reactor is comprised of an infinite array of
these cells. A super lattice code will simulate larger sections of the reactor than a lattice code, this is to
allow the inclusion of reactivity and control devices in the calculation. Reactor design calculations are per-
formed in a series of steps. The generation of multigroup coefficients, which are parameters in the equa-
tions that describe the neutron behavior at various energies in various regions of the reactor, is an important
first step in this process. To generale the multigroup cross sections, the flux energy profile must be known.
Lattce and super lattice codes are usually used for this purpose.

Certain transport codes may be used to gencrate cross sections however they are not necessarily limited to
this application. ANISN and DOT are examples of general purpose transport codes that fall into this class.
They both use the discrete ordinates method® of solution of the transport equation. AN/SN is a one dimen-
sional spherical code, and DOT (discrete ordinates transport) is a two dimensional code. DOT is of course
more compulationally demanding that ANISN but can handle greater geometric detail. These codes are
useful in the areas where diffusion codes are inadequate such as at an interface where there is a large
change in cross sections (i.e. close Lo control rods). The output of these codes can be used to generate
parameters for the boundary conditions of diffusion codes when, for example, control rod worth is being
determined.

Lattice Codes

‘The Winfrith Improved Multigroup Scheme (WIMS)* is a general code for lattice cell calculations. Its abil-
ity to accept as wide range of geometries and fuel arrangements for either fast or thermal reactors makes
this quitc a general code. The basic cross section library comes with 14 fast groups, 13 resonance groups

1 Duderstadt and Hamilton (1976)
2 Henry (1975)

3 Bell and Glasstone (1970)

4 Lewis & Miller (1984)

§ see Section 3.2.2

6 Askew et al. (1964)



and 42 thermal groups. Temperature dependent thermal scattedng matrices for a variety of scattering laws
are included in the library for the principal moderators. There is an altemative given between the integril
and differential solutions of the transport equation. The differential solution is discrete ordinates usually
using a S, approximation. The integral solution is achieved by the generition of collision probabilities with
the resulting equations being integrated by a method that is dependent on the geometry. A number of meth-
ods are availabie to modify the infinite lattice results obtained from the main wansport caleulation to
include leakage effects in a finite reactor, The focus of this code is detailed lattice ¢ell calculations for use
in designing reactors. The effects of different lattice geometries and fuel compositions can be studied and
by using WIMS in the supercell mode, the effects of the cell environment can be included, which makes
this code ideal for the generation of group parameters for use in a diffusion simulation.

WIMS has been modified at Chalk River’ to become what is known as W/MS-AECL®. This is an important
workhorse code for the generation of multigroup parameters.

POWDERPUFS (restricted) code is a lattice code based upon empirical data for natural uranium. This code
is in common usage for fuel studies in CANDU reactors. The integral transport equation is used to solve
for the neutron flux.

Superlattice Codes

SHETAN is a three dimensional neutron transport code. It is based on the block method of solving the
integral ransport equation. The code uses mixed reclangular and cylindrical coordinates, cylindrical fuel
channels and reactivity devices can be accurately medeled within a rectangular cell. The block method is a
combination of the collision probability (CP) method and the interface current (IC) method.™ The system
is divided into blocks, each block is subdivided into regions and surface subdivisions. All blocks are linked
by interblock boundary currents. The main advantage of this method is that the collision probabilitics are
calculated for only a few block types since blocks of identical geometry and composition have the same
collision probability matrix. The numerical precalcutations of the coupling matrices {the clements of which
are the collision probabilities) require expensive mullidimensional quadrature. For an increase in the num-
ber of regions, there is a rapid increase in storage requirements and computational effort. Fewer large
regions can be used but, there is an associated loss of accuracy.

MULTICELL" is a supercell code that combines transport and diffusion theory. Its purpose is the precalcu-
lation of cross-sectional properties of fuel and reactivity devices for use in reactor simulations. The output
consists of flux weighted cross sections for the supercell and changes in these cross sections due (o the
movement of the reactivity devices. In materials where the absorption rate is small with respect o the scat-

7 1.V. Donnelly (1985)

8 J.V. Donnelly (1986)

9 Chow (1980)

10 see section 2.2,2, Directional Dependence - Transport Methods
11 Dastur A.R. & D.B. Buss (1983)



tering rate (D;0, Zircaloy) diffusion theory is used. Inside regions where the absorption rate is high (fuel
channel, reactivity device) integral transport theory is used. The result of the integral transport calculation
is converted into boundary conditions for the diffusion calculation. The tinite difference approximation is
used in the diffusion calculation, with the difference equations being solved using a successive over relaxed

Gauss-Sceidel iteration.

2.1.2 Reactor Codes

CHERY (restricted) is a system of three dimensional diffusion theory programs for heavy water reactors. It
calculates the critical flux and power distribution by solving the two group diffusion equation in three
dimensional Cartesian geometry. The finite difference approximation is used to solve the neutron diffusion
equation. All fission neutrons are born into the fast group. Some effects that are treated explicitly are: the
presence of reactivity devices, changes in fuel composition due to fuel bumup and fission products and,
reactivity feedback due to changes in temperatyre and density of lattice components. Neutron leakage at
the reactor surface is accounted for by using precalculated current to flux ratios. A Gauss-Seidel iteration
using point-wise overrelaxation is used to solve the set of algebraic equations. An unuosual feature of the
code is that it is tailored to the neutronics of natural uranium, heavy water reactors (CANDU).

Some related and auxiliary programs are: XEMAX, CHEBYXEMAX, CHEBYDISCRETE, FMDP, MAT-
MAP, POWDERPUFS, MULTICELL and, CERBERUS.

CHEF XEMAX is used to simulate xenon transients. The solution over time of the spatially dependent
xeuon and iodine equations are expressed analytically, assuming a constant neutron {lux over the time
interval. Xenon effects in the diffusion equation arc represented by a spatially dependent increment in the
thermal neutron absorption cross section. FMDP is used to simulate fuel management. The diffusion equa-
tions are coupled with the equations that give the variation of cross sections and diffusion coefficients with
irradiation. CERBERUS®, a transicnt diffusion code, uses the steady state solution of the equations as an
initial condition. POWDERPUFS and LATREP" are used (o calculate the two group material cToss sec-
tions for the lattice and the reflector. Supercell codes such as MULTICELL", GETRANS® and, SHE-
TAN" are used to obtain cross sections for regions containing reactivity devices and reactor structures.
CHIEBY has a historical relationship with the various codes. It was the starting point for their development.

12 Kugler & Dastur (1976)
13 Phillips & Griffons (1971)
14 Dastur & Buss (1983)

15 Roshd & Chow (1978)

16 Chow & Roshd (1980)



Static Calculation - Reactor Criticality

3DDT' is a three dimensional (Cartesian and cylindrical coordinates) multigroup diffusion theory code
with no upscattering. The code features calculation of the effective neutron multiplication factor,
K-effective, and criticality searches on reactor composition, or time absorption (o) by means of cither the
normal or adjoint flux equations.

The criticality equation is™
V.D Vo - o.+X5 =0
LA B A T -
where @, is the group flux, D, is the group diffusion coefficient, I,, is the removal cross section, ¥, is the
fission neutron production term and k is the neutron multiplication factor. The source terms is
G
S, = ‘}E'[vz,,+z,,.1¢,.

I, is the fission cross section, v is the number of neutrons produced per fission and Z,,. is the scauering
cross section. The standard time dependent multigroup diffusion equation is:

100,01 - =
- 'a: =V.D,V0,-L, @, +1,5,0.1)

L B 3
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The assumption for the alpha search is that @, (7,1} = @ (P expar). The time dependent multigroup diffu-
ston equation now becomes:

= = o

V- stfb' —[2,' +'v";)®‘ +x88‘ =0
The spatial difference equations are obtained by inlegrating the group diffusion cquations over the volume
associated with each mesh point. The surface leakage terms are obtained by integrating the fiux gradients
at the boundaries. The flux gradients are approximated by the difference between the two adjacent flux
values. Reflective, vacuum and, periodic boundary conditions are available. Convergence of the differ-
ence equations is accelerated by group rebalancing and successive overrelaxation.

Citation" is a multigroup diffusion theory code that was developed at Oak Ridge Laboratories. The prob-
lem may be solved using a number of different geometries and dimensions. The difference equation is pen-
erated using the explicit finite differencing approximation in space and time. The neutron flux eigenvalue
problem is solved by direct iteration to detenmine the multiplication factor (K-effective) or the nuclide
densities required for a critical system. The code is designed for depletion (burn up) and reactivity worth
calculations. Iis flexible nature makes this code quite useful and hence its popularity. The limits of the
problem that may be run using this code are determined by machine memory capacity and exccution ime.

17 Vigil (1970}
18 See Appendix B for the definition of the multigroup parameters.
19 Fowler er al. (1971)



2.1.3 Reactor Kinetics

The object of reactor dynamics is the accurate prediction of the time dependence of the neutron density.
Stewart (1973) states that reactor dynamic analysis must be performed for three reasons: evaluation of reac-
tor stability during normal operation, evaluation of the adequacy of operable safety systems and, the analy-
sis of reactor accidents. Reactor transicnts induced by localized perturbations can produce both spectral
and spatial changes in the neutron distribution. Point Kinetics is not adequate for the analysis of such
perturbations and & coupled space-energy-time dependent model is required.

The numerical methods of solution of the time dependent neuwron diffusion equation can be placed in two
general categories, direct methods and approximate methods. Analytic solutions have been achieved but
these are restricted to simple models that are used primarily for comparison to numerical solutions. Lee
and Rotter (1986) present an analytic solution of the multigroup space-time kinetics equation for one
dimensional multiregion slab and spherical geometrics. Yasinsky and Henry (1965) compare solutions of
the two group space-time diffusion equation with point kinetics, the adiabatic approximation and, the
space-time synthesis method for two stab reactors. The numerical methods are briefly described in the fol-
lowing sections.

Mecthods of Solution of the Time-Dependent Neutron Diffusion Equation
A. Direct finite differencing in space and tme

1) GAKIN method of implicit integration

2) TWIGL - cyclic Chebychev polynomial method

3) Aliernating Direction Implicit (ADI)

4) Semi-Implicit Runge-Kutta: the method employed here

B. Approximation methods

1) Point kinetics
2) Space-Time synthesis
3) Modal Methods
4) Nodal methods
5) Factorization approximations
i} Adiabatic method
ii) Quasistatic method
iii) Improved Quasistatic method
Stacey (1969) gives an overview of the methods employed in space-time kinetics. The most popular meth-
ods in present day usage are the Improved Quasistatic (IQS) method, Modal methods and Nodal methods.

A review of the literatare reveals numerous recent papers in the area of Nodal methods, applied to both
multigroup diffusion and transport calculations.



2.1.3.1 Direct Methods

Dircct finite difference methods are the most straightforward approach to the solution of space-time prob-
lems and usually give the most accurate results, and are useful for providing a benchmak. They are also
the most computationally demanding of the methods of solution, although increasing computational power
is reducing this liability. Dircct finite difference methods all use very similar spatial differencing. The
time dependent multigroup diffusion equations are finite differenced in space, in whatever dimension or
coordinate system that is desired, to amrive at the time dependent problem,

de
= Fy =A%)

where W(1) is the data vector that contains all the time dependent grid points, and A is a matrix, sometimes
referred 10 as the Jacobian matrix, that is commonly written as a matrix of block matrices,

The method of solution of the time dependent problem is the main area where the simulations that usc
direct finite difference vary. The solution of this linear problem is a major arca of effort. One of the main
problems that is associated with the solution of this matrix equation is the stiffuess of the A matrix, 1¢ has
been shown by numerical studies® that the smallest eigenvalues can be of the order of -v,E,,, which are
approximately -1 for thermal neutrons and approximately -10° for fast neutrons. An explicit solution of
the time dependent problem would require very small time steps, Ar < 10 seconds, 1o remain numerically
stable. If it is assumed that the time derivative of the epithermal flux is the same as the thermal flux (equal
derivatives), larger time steps, of the order of 10°, may be used. This stability problem can be avoided by
the use of implicit techniques. These methods allow larger time steps, but require the inversion of a matrix
and hence are computationally expensive. It is not uncommon (o solve for only the asymplotic hehavior of
the flux and ignore the very short time behavior.

Considerable work has been done on direct methods: Nahavandi & Von Hollen (1964) and, Agresta &
Borst (1960). Saphier (1972) and Kelber ef al. (1961) have used coupled anatog computers to solve the
time dependent portion of the multigroup diffusion equation while using the finite difference approximation
for the spatial dependence. Alcoufe & Albrecht (1970) use a set of trial functions to reduce the number of
discrete mesh points required and hence the computational effort. Andrews & Hansen (1968) and Buckner
& Stewart (1976) use a transformation that assumes exponential time behavior of the flux and precursors
over each time step. This method is shown to reduce truncation error and enhance numerical stability.

20 L.R. Foulke (1966}
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GAKIN

Stacey (1969) discusses the GAKIN method for implicit integration of the time dependent problem. The
GAKIN code itself® is a one dimensional kinetics code. The matrix A is factored into the form

A =1 +U+T+D where L contains all the submatrices below the block diagonal, U contains all the subma-
trices ahove the block diagonal and both I" and D are block diagonal mawices. The block diagonal matrices
arc factored int- iwo matrices, A, = I', +v,D,, where D, represen's the coupling among the mesu points due
to the diffusion term. All the block matrices are diagonal except D,. The time dependent equation now has
the form

%‘P(r) -¥=(L+UW-D¥
This equation is then integrated over the interval (0, Ar)

N »
P+ 1) = cxp(I'Ar)‘l’(Ij)-i-J‘ e 4 U@+t
]

A‘ )
+J ™ IDY, + 1dr’
0

The assumption is made W(t, +1") = exp(w)¥(r}). With some manipulation, the difference equation in
time will appear as,F\¥(1; + 1) = Fy¥(;), where F; and F, are functions of L,D,U and T, It can be shown
that the algocithm is numerically swble for all read «, and Ar. If @, is the largest eigenvalue of A, then
exp{w,Ar) is an eigenvalue of F;'F,. For constant reactivity, the method yields the exact eigen-solution and
asymplotic behavior.

TWIGL

TWIGL® is a two dimension (reclangular or cylindrical geometry), two group space-time neutron diffusion
simulation with temperature feedback. The two group diffusion and delayed precursor equations are differ-
enced in both space and time. The precursor terms are centrally differenced in time, C; = (C/*'+ C)yand
the flux terms are variably differenced in time®, o = 60/ '¢/*' +(1 - B)0'¢Y, (0<6<1), over the time
interval (f;, 1), where G represents all the cross sections and diffusion terms, and j indicates time step. The
resuliant matrix difference equation is divided into two couple matrix equations, one for each group

A, =8+B%,

A, =5,+B0,
The cyclic Chebychev polynoniial method™ is then used to solve the above matrix equations.

21 K.F. Hansen & S.R. Johnson, (1967)
22 Yasinsky, Natelsot: & Hageman, (1968)
23 sec section 5.4, The Solution of ODEs.
24 Matrix lerative Analysis, Varga, p.150
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ADI - Alternating Direction Implicit

The solution of the vector equation given at the beginning of the section usually proceeds in a sequential
manner, always moving in the same direction (£.e. the solution sturts at the beginning of the first row, pro-
ceeding to the beginning of the second row, etc.). Convergence is often improved by following the first
sequence in the row direction with a second in the column direction. The complete itertion consists of a
first half in the row direction followed by a second in the columin direction. Such methods are designated
alternating direction implicit (ADI). The first of these was developed by Peaceman and Rachford (1955).

Hageman & Yasinsky (1969) develop an ADFP method and compare it to the implicit difterence
approached used in the TWIGL program in order to analyze the method for accuracy and stability. In
model (simple) problems, the ADI method was as accurate as the TWIGL method and much faster compu-
tationally. However, numerical comparisons showed that the ADI method is asymptotically unstable for
more realistic problems unless extremely small time steps are used. In the comparison, ADI methods were
found to be inferior to the TWIGL method for practical problems.

Wight er al. (1971) present an algorithm that is based on the AR method that uses an exponential (fre-
quency) transformation as a method of reducing truncation error so that the method becomes usable for
practical computations. They emphasis that this is a non-iterative method but requires some matrix
inversion. The matrices that are inverted are banded ough, and this structure is exploited. Several codes
that were in use or were under development were compared : MITKIN, SADL, LUMAC and TWIGL. A
related paper presents the development of the code LUMAC and includes a more detailed numerical analy-
sis.?*

Semi-Implicit Runge-Kutta

The method presented in this work is a direct finite difference method. The difficulty in solving the neu-
tronics and thermal conduction equations is the stiffness of the system. The difficulty in solving the ther-
malhydraulic equations is their nonlinearity. The time integration of the variables that have the shoriest
period,” the flux and the fuel tlemperature, is solved using a semi-implicit Runge-Kutta ODE solver. The
use of a semi-implicit solver is more computationally expensive than explicit solvers bu, it is useful in the
solution of stiff systems of variables. The dclayed neutron precursors have a much longer period and con-
sequently a less expensive explicit Runge-Kutta solver may be used. A Crank-Nicolson solver is used for
the time integration of the thermalhydraulic equations.

25 ibidem, p.209.
26 Reed and Hansen (1970)

27 The pericd of a variable is a measure of the exponential characteristics jn time of that variable. A short period implies a rapidly
changing variable and conversely for a long period.
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2.1.3.2 Approximation Methods

Computational effort can be greatly reduced if some assumptions are made about the spatial portion of the
space-time kinetics equation. The approximation methods differ in the manner in which the space and time
dependent portions of the problem are separated and what assumptions are made about the spatial solution
of the problem. Some methods assume a fixed spatial shape and other assume a spatial shape that varies
slowly in time.
Point Kinetics
The most popular method obtains only the total power in the reactor based on the implicit assumption of a
fixcd spatial distribution. The point kinetics equations are derived in any nuclear engineering ext. Their
standard form is

dt A

dcs(t) Bl'

dr A
where p(1) is the reactivity, A is the mean generation time, C,(t) is the i th neutron precursor density and A
is the associated decay constant, and B, is the fission yield fraction for the i th precursor (§=2 ;). The
maximum number of delayed (neutron precursor) groups used is six and some times only one effective
delayed group is used. If photoncutrons are included in the equation, they appear as more delayed neu-
trons. Delayed neutrons play an important role in the temporal behavior of the neutronics therefore their
inclusion is cssential.

a()+ZAC()

a(n)-AC()

Space-Time Synthesis

Space-Time synthesis expands the neutron flux as 3 sum of products of known spatial functions and
unknown time dependent coefficients. The group flux is approximated by

@,G.0= T WAL

where ‘(r) arc the known spatial trial functions which are found solving the static or dynamic group diffu-
sion cquations, The time-dependent coefficients can be found by weighted residual or variational tech-
niques. Yasinsky (1967) employs a variational principal that is modified o allow the specification of
different trial functions for time different intervals during a transient. Fuller and Meneley (1970) apply the
weighted residual method to provide several methods that differ in the manner in which the trial (spatial)
functions are generated. The methods used to generate the trial functions are: modal expansion, synthesis
method, nodal method and, quasistatic method. Their purpose was to show that these methods are all appli-
cations of the weighted residual method.

Modal Methods
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Modal methods expand the time-dependent neutron flux into a series of time-independent spatial moedes,
Y (r,E), with ime-dependent cocfhicients, o,(f)
Or.E.0= T Y (F B ()

It can be seen that these methods are closely related o space-time synthesis. ™The modat approach applicd
to purely space-dependent dynamics problems is often called the space-time synthesis method”.® Inan
early work, Kaplan (1961) presents a two group modal method. Hishino and Wakabayashi (1965) develop
amethod that uses the Laplace transform for time to express the solution in the form of a source transfer
function.

Foutke and Gyflopoulos (1967} express the muliigroup diffusion equation in the form
¥, 1)
ot
where W(r, )} is a data vector that contains the newtron and the precursor concentrations, [H(rf) ] is a K xX
matrix operator that consists of all the production and destruction operators and, K=G+1 where G is the
number of energy groups and 7 is the number of precursors. The eigenvalue equation that is vsed to deter-
mine the eigenvalues o, and the cigenvectors W, (r) is
[HNIY,u (1) = 0¥ (1)
where [H,(r)] is a refercnce steady state condition. The adjoint eigenvalue equation is:
(HA(PIY o (7) = @, Wy

The solution vector ¥(r, 1) is expanded in a finite series,

= [H({F. OMNGF, O+ S(r.1)

K M
"P(F-f) = lgl ...%1 A,ﬁ(‘)‘*’ﬂ(ﬂ

This series is substituted into the multigroup cquation and the equation is multiplied by the adjoint cigen-
vector. When this expression is integrated over the entire reactor, the orthogonality of the cigenvectors
gives rise to a set of coupled ODEs,
4
dt
where A is a vector that contains alt the time dependent coefficients. The source term is expanded in a
series of time-dependent functior -,

=diag[w]A +PA +5

<¥,,MN.5F.0>

<YLY >

and the elements of the perturbation matrix P are

<YM [HF, ) — HOI¥u(7) >
<YW, Y, >

Sal)=

P =

28 Ott & Neuhold p.292 (1985)

-14-



where g =(n - 1)K + j and y=(m — 1)K + k. The inner product symbol <«,»> denotes spatial integration
aver the entire reactor. The implied orthogonality relationship is
<¥, ()L ¥,,(r)>=0  fornj#mk

#0 for nj=mk
Foulke and Gyftopoulos go on to say that the natural modes come in clusters of X, that have components of
similar shape. The modes become more oscillatory in space as the index m increases. The results of some
numerical experiments are given where the method is compared against a direct finite difference method.

SMOKIN® {Spatal Modal Kinctics) is an example of a modal code that is in common usage in the Cana-
dian Nuclear Industry. SMOKIN is intended for use on CANDU pressurized heavy-water reactor neutron-
ics problems and being a predominantly thermal reactor, a one neutron energy group assumption is made,
Coupled neutron kinetics cquations incorporating the effects of delayed neutrons, feedback and xenon are
solved.

Nodal Methods

Nodal methods visualize the reactor as a relatively small number of coupled regions. The derivation of the
nodal equations begins with the neutron transport equation. This equation is integrated over all directions
and over discrete cnergy groups (multigroup approximation) to yield

G
vl‘ai(p Fn+V.J (“f)+‘“.-‘ (F-’)='§l[M‘t.G'-)+E“.('r')]¢‘.(F,r)

where g denotes the energy group, M, is the fission neutron production term, T, is the scattering term, Z,,
is the total cross section, v, is the group velocity, and J,{r,1} is the neutron current Subtract Z,,®, from
both sides and integrate over the nodal volume to yield the nodal balance equation,

14

i
a' = () + o

v b IJ (F.0) - ids + T () = 2 MIOHD+ 3 TR0

where
V.ot = f@,mdv
Y

and V,, is the nodal volume. All nodal methods use the above equation but particular methods differ as to
how the face integrated currents are related (o the volume averaged fluxes.

Henry {1986) presents the three dimensional, two group, Cartesian geometry nodal code QUANDRY. He
describes the structure of the matrices involved in a time-dependent nodal simulation and derives the point

29 Gold (1990)
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kinetics equations, as the governing equation for ime behavior, from the time dependent nodal equations.
The results of a simulation using this method are compared o the results of & simulation based on the
Improved Quasistatic method.

Lawrence (1986), in a review paper, examines the more recent nodal diffusion methods, which are charae-
terized by the systematic derivation of spatial coupling relationships that are entirely consistent with the
multigroup diffusion equation. These ideas are similarly applied to the neutron transport equation. These
more recent methods, referred 1o as consistently formulated, can be viewed as true coarse mesh approxima-
tons of the neutron diffusion equation and thus can be expected to converge to the exact solution in the
limit of zero mesh spacing.

The spatial detail increases with the number of nodes used but, there is an associated increase in computa-
tional effort. Nodal methods which include both diffusion and transport methodologies, are quite flexible
and can be applied to a variety of problems thus assuring their continued popularity.

Factorization Methods

Oti and Meneley (1969) review the factorization methods for approximating the time dependent multigroup
diffusion equation. This equation can be written using operator notation

[-M +F, (T, E.1") +8,¥(r. E, 1) =%§—r‘{-‘(7.1’5.!)

where M is the removal and scattering operator and F, as the prompt fission operator. The delayed neutron
source S,[@(7, E, 7] is a convolution integral over the flux history. The flux is factored inlo an amplitude
function, &(r) , and a shape function, y(r, E,1)

OF, E, 1) = o, E 1)
(t) contains the main time dependence and the time dependence of W(r, £, 1) has (o account for only the
relatively slow space-energy variations. According 1o Henry (1958)

J' J‘w‘(F. E.Ov)w(F. E.t) -

drdE = constant

fulfills the requirements for the constraint conditions and facilitates the transition to the point kinctics equa-
tion. The time-dependent multigroup diffusion equalion is split into two equations, one for the shape func-
tion and one for the amplitude function. The ¢{t) equation becomes the point kinclics equation

dotn) _p(t)—Bu)

The shape equation becomes

M+ F W, E )+

SA0U)-¥E.EO 17 do Yr.En 3
) L3 )
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The Improved Quasistatic Method sotves the complete shape equation after the time derivative vl the shape
function is replaced by a first order backward difference,

d w7 E0)=y(r, E,1 - A1)
EFW(F.EJ)H AT

where { — Ar is the time of the last calculation. Af can be quite large as the shape function is slowly vary-
ing.

The Quasistatic Method takes advantage of the fact that the time variation of the shape function is of lesser
importance than the time variation of the amplitude function. The time derivative of the shape function is
therefore neglecied.

The Adiabatic Approximation makes two additional simplifications. The shape of the delayed ncutron
source is not distinguished from the shape of the prompt source and it neglects both time derivative terms
in the shape cquation. This method has been shown to describe the major part of the spatial effects in
kinetics.

Some further work has been done on the quasistatic method by Devooght & Mund (1980) where they pres-
ent the Generalized Quasistatic Method and look at the mathematical basis of the quasistatic method.
‘There have been other factorization methods presented, such as Chao (1982), but with the success of the
1QS method there is litde need.

‘The Quasistatic methods have proven to be adequately accurate and relatively inexpensive for routine anal-
ysis of multidimensional problems. There has been an emphasis on the use of the improved quasistatic
(1QS) method for the analysis of CANDU reactors.® The code CERBERUS, and the closely related code
CERKIN, solve the nwo-group time dependent neutron diffusion equation in one, two, or three dimensions
using the IQS method.

2.2 Thermalhydraulics

The conservation equations for mass, momentum and energy, along with the equation of state are used to
calculate the variables of interest: density, velocity, enthalpy (or lemperature)®, and pressure. The manner
in which these equations are used depends upon the problem that is being solved. A problem in which
density variation due to thermal expansion is the forcing term in the momentum equation is a natural con-
vection problem. The pressure field may be implicitly assumed in such a problem and need not be explic-
itly calculated. Forced convection assumnes that an external force (pressure) is the forcing term in the

20 McDonnel eral. (1977)

31 Temperature and enthalpy are interchangeable in the case of a single phase fluid. One may easily be calculated if the other is
known. Their relationship is mote complex in the case of two phase flow.
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momentum equation. The pressure field is explicitly calculated. if it is not given, in such a problem,
Natural convection problems may be treated as forced convection problems (the pressure is explicitly cal-
culated) but the converse is not true. A standard benchmark problem, free convection in a unit cell, was
used to check the steady state accuracy of the thermalhydraulic simulation. The benchmark problem is a
free convection problem but the method used here explicitly calculates the pressure.

The calculation of the pressure field in the solution of incompressible flow problems is numerically diffi-
cult. A method of calculating the pressure that uses the rate form of the equation of state is presented here.
This form of the equation of state is well suited for use with the dynamic (unsteady or time-dependent)
form of the conservation equations (mass, momentum and energy).

Solutions to the incompressible Navier-Stokes equations can been placed in four general categories: the
vorticity/stream-function method, the projection method, methods which involve coupling between the
momentum and continuity equations and the artificial compressibility method, Of these methods, the
method of artificial ompressibility is most closely related (o the method presented here.

The vorticity stream/function method™ solves the vorticity transport cquation which is constructed by tak-
ing the curl of the momentum cquation. The terms containing pressure may be eliminated by using the
components of the equation of motion. The method requires the use of vorticity boundary conditions,
which are difficult to implement, and an additional calculation is required if the pressure is desired.

The projection method™ is a fractional step method in which an intermediate velocity and pressure are cal-
culated. The intermediate velocity and pressure are then corrected sequentially by the pressure gradient
and the divergence of the intermediate velocity (continuity equation) respectively. New valucs for the
pressure and velocity are obtained until the divergence of the velocity vanishes. The SIMPLE method®
and related methods are of this variety. The pressure correction equation is the basis of these methods, the
derivation of which requires the use of approximate forms of the momentum equations and the continuity
equation.

In one method that couples the continuity and momentum equations, the divergence operator is applied Lo
the momentum equation resulting in a Poisson equation for pressure®. The pressure field is calculated
using this equation so as o assure that the rai¢ of change of the velocity divergence vanishes everywhere.
This is an explicit method in which the momentum and Poison equation for pressure arc solved separately.

32 The vonticity/stream-function method is the exception, where the pressure has been eliminated from the governing equations,
33 Gosman A.D., W.M. Pun, A.X. Runchal, D.B. Spalding & M. Wolfstein (1969)

34 Chorin A.H. (1968)

35 Pawnkar 8.V, & D.B. Sterling (1972)

36 Harlow F.H. & 1.E. Welch (1965)
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A semi-implicit scheme in which the viscous terms of the Navier-Stokes equation and the pressure are
solved implicitly is presented by Moin and Kim (1980). The continuity equation is used to solve for pres-
sure. A pseudo-spectral formulation for a particular problem is given for this scheme.

An artificial equation of state P = 8p, is the basis of the method of anificial compressibility”. This method
differs from the above method in that the continuity equation is not satisfied until a steady state solutioa 1s
reached. The artificial compressibility, 8, defines an antificial speed of sound, c=1/8"%. The value of &
used is that which will cause the method to reach steady state in the least amount of time. The equation for
the rate of change of pressure,

aP

e
is arrived at by differencing the artificial cquation of stale with respect to lime and substituting the continu-
ity equation for the rate of change of density. Chorin uses central differences in both space and time in an
implementation designed for steady solutions. Soh (1987) presents a method using an ADI
finite-difference scheme for steady state flows. A method for unsteady solutions is presented by Soh and
Goodrich (1988). Their choice of the compressibility parameter, 8, is based on an eigenvalue calculation
for a one dimensional problem. The compressibility parameter is chosen such that the eigenvalues are
closest to the wave propagation velocity. They employ the Crank-Nicolson method for time integration.

=-§V.V

A verification of the steady state convergence of the rate form of the equation of state is presented here. A
well known comparison problem™ is used for this verification. The choice of the compressibility parameter
for oplimal stcady state convergence is explored.

The time dependent conservation of mass, momentum and energy equations are (respectively)

0. . V=
=+ pV=0

a(pV)+v pVV=pg-VP+V.1T

%(ph) +V - (pnV)=V - F+SEN+TVV + %P —+V-VP
where {p, V, &, P} is the density, velocity, enthalpy, and pressure, respectively and {Z,7, T} is gravity, the
heat flux, and the shear stress tensor, respectively, and S(7, 1) is the inlernal heat source term (see Chapter 4
and Appendix A for a more detailed explanation). The equation of state can simply be written in a form
where pressure is a function of density and enthalpy, P = n(p, k).

37 Chorin AH. (1967)
38 De Vahl Davis G, & L.P. Joaes {1983), and De Vah Davis (1983)
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If the above conservation equations are integrated over an arbitrary volume, the result is a system of equa-
tions that can be represenied by a system of nodes and links. This is the nodal form of the conservation
equations. The time dependent conservation of mass, momentum and energy equations, written in nodal
form are, respectively,
iM =I W~ W
dt vt owipn!
iw =flP,W.1)
e N

Ao 3 hWw-3 hW+Q

dt vpw cugut
where {W, H, P, (3} is the mass flow rale, fotal enthalpy, pressure, and total heat flux respectively. The
conservation of momentum equation is a complicated nonlinear equation and is given in a simplified form
bere. The equation of state is now a function of the total energy and the total mass, P = x(U, M). A total
mass, total internal energy, and press re is defined at each node, while a mass flow rate is defined for cach

link connecting the nodes.

A popular method of solving the nodal equations is that developed by Porsching.” This is the basis for the
thermathydraulic code FIREBIRD.® The equation of state is solved using an iterative method, such as
Newton-Raphson. All the variables for all the nodes and links, with the exception of the pressure, are
placed into a data vector. A Jacobian for this system of equation is derived and used in the implicit integra-
tion of the equations. This implicit solution gives the method much better numerical stability than any
explicit method, hence large time steps are possible. Implicit metheds are more computationally expensive
though and any real savings in computer time will be made only if large time steps arc used. FIREBIRD is
a code that was designed to model a complete thermalhydraulic system, such as the primary coolant loop in
a reactor and, as such it has modules for such components as pumps.

A pood introduction into the basic conservation laws that are involved in thermalhydraulics is given in
Basic Equations for Thermalhydraulic Analysis.* This covers the basic conservation equation and its
application to the conservation of mass, momentum and energy. The primary focus of this paper is the
macroscopic form of the conservation equations such as is normally used in the simuluion of reactor ther-
mathydraulics. Transport Phenomena® gives a very extensive account of the equations involved in heat
and mass transport. This book gives a good account of all the different forms of the conservation
equations. Computational Fluid Mechanics and Heat Transfer® is focused on the problems of numerical

39 T.A. Porsching, J.H. Murphy & J.A. Redficld (1971)
40 M.R. Lin eral. (1979)

41 Gatland (Engineering Physics internal doctment)
42 Bird et al. (1960) :

43 Anderson, Tanoehill and Pletcher (1984)
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solution of the thermalhydraulic problem. This is quite a general reference that covers PDEs, their classifi-
cation, the application of finite difference methods to their solution and, some of the problems that are more
specific to heat transfer and fluid flow.

2.2.1 The Rate Form of the Eguation of State

The equation of stale is a function of density and enthalpy, P =I1(p,h). If the equation of state was differ-
entiated with respect 10 time the result would be

(). (L)

dt \opjar \oh ot
This is the rate form of the equation of state. The lerms in brackets in the above equation are replaced by
constants which are periodically calculated
Gencrally, and especially for incompressible Qluids, the parameter G, is larger than the parameter &,. This
expression is integrated over an arbitrary volume (see section 6.2) for use with the nodal form of the con-

servation equations. A method of pressure adjustment is required with the nodal form to alleviate pressure
drift.

Such a method of pressure adjustment to prevent drifting away from the true values is given in The Rate
Form of the Equation of State for Thermalhydraulic Systems: Numerical Considerations® This method
reduces error in the steady state pressure. This paper also contains a more involved derivation of the rate
form of the equation of state. Generalized Rate Form of the Equation of State for Thermalhydraulic Sys-
tems® as well as the previous paper discuss and compare the two methods of calculation of the pressure, the
other method being the more common iterative method mentioned in the previous section. In a system of
nodes and links, the data vector will now contain the pressure as well as the other variables mentioned, the
total mass, total enthalpy (or internal energy), and the mass flow rate. A pood systems perspective is given
where the Jacobian matrices that arise when using the nodal form are presented and examined. The system
of equalions is integrated implicilly in time giving the method good numerical stability. Some numerical
results are given demonstrating the robust behaviar of the algorithm. The use of this algorithm coupled
with the approximation functions as given in Approximate Functions for the Fast Calculation of Light-
Water Properties at Saturation® and Simple Functions for the Fast Approximation of Light Water Thermo-

44 Garland and Sollychin (1987)
45 Garland and Sollychin
46 Garland and Hoskins (1987)
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dynamic*’ makes for a viable thermalhydraulic simulation code. These approximation functions will
approximate various thermodynamic coefficients including G, and G that are vsed in the rate form of the
equation of state.

Missing from these papers is a simulation that uses the rate form of the equation of state and is not based on
the nodal form of the thermalhydraulic equations. Such a simulation is developed and presented here. The
method of adjustment of the pressure, such as that employed in the nodal form to prevent pressure drift, is
not required. Pressure is a boundary condition in the simulation and all pressures will be calculated relative
to that boundary pressure.

As mentioned above, the G, parameter is much larger than the G; parameter for incompressible fluids, The
thermalhydraulic benchmark simulation ignored the G, parameter in the rate form of the equation of state.
Substituting for the rate of change of density, the pressure rale equation now appears as:

oP

§=—G,V-pV

The rate form of the equation of state now appears very similar to the artificial equation of state used in the
method of artificial compressibility. However, the manner in which the equations are derived and the
choice of the compressibility parameter is quite different for the two methods,

The derivation of the rate forin of the equation of state invalves only the equation of state. The continuity
equation and the conservation of energy equation are naturally part of this expression, which is more intu-
itive and involves physical parameters, such as compressibility. The rate fonn of the equation of state is
designed for use in transient simulations where the true compressibility would be used, although other
values of compressibility could be used if rapid convergence to a steady state solution is required. If the
enthalpy term is ignored, the rate form of the equation of state is very similar to the artificial equation of
state. The inclusion of the enthalpy term in the rate form of the equation of state may be of greater use for
compressible or two-phase problems, but this is subject to verification.

2.3 Combined Neutronics and Thermalhydraulics

The dynamic bebavior of reactors is effected by coolant dynamics, especially in accident situations where
the coolant voiding takes place. Combined neutronic - thermalhydraulic simulations to study such scenar-
ios is an emerging area of interest. The point kinctics approximation is frequently used to model the neu-
tron behavior and a macroscopic (lumped parameter) simulation, such as FIREBIRD, for the
thermalhydraulic model. MXSIM (MAPLE-X simulation) is an example of such an approach. Coolant

47 Garland and Hand (1988)



dynamics will effect the energy and spatial distribution of the neutron flux. A rigorous solution of this
problem would require the solution of the time dependent multigroup equations while solving the thermal-
hydraulic problem.

The recent trend in industry (Canadian Nuclear Industry - CANDU reactors) is to use just such an approach
for accident analysis. While the exact details of these simulations is proprietary, the gencral details can be
described. Typically the reactor core is divided intw several representative regions, regions that have simi-
lar fuel burn-up and are part of the same coolant flow loop (i.e. the channels in these regions are connected
to the same inlet and outlet headers), The thermalhydravlic simulation, a nodal approximation, calculates
the behavior of the cootant and passes coolant & fuel temperature, and coolant density information to the
reactor kinetics simulation. The reactor kinetics simulation, a space-time simulation, uses this information
1o calculate material properties and passes the regional powers back to the thermathydraulics. The fre-
quency of this interaction is implementation dependent,

March-Leuba ef al. (1984) create & dynamic simulation that is based on a point kinetic model of the neu-
tronics and a two equation lumped parameter model of the coolant dynamics of a boiling water reactor
(BWR). The primary topic is the nonlincar dynamics of the reactor model they have devised as the heat
trnsfer coefficient in the equations is varied. As the heat transfer coefficient is increased, the phase plot of
the excess neutron density versus the excess fuel temperature undergoes bifurcations; initially one limit
cycle is seen, then two, then four, etc. Adebiyi (1988), in a critical review of March-Leuba’s work, points
out errors in the assumptions made while deriving the kinetic equat. ns. March-Leuba ef al. (1986) pro-
vide a more detailed derivation of the model uscd by March-Leuba but the model effectively remains
uncharged.

Younis ef al. presented a paper at the 1988 CNS Simulation Symposium that discussed a simulation that
was the combination of the neutron dynamic code, CERBERUS, and the thermalhydraulic code,
FIREBIRD-III MOD1-77. This was a true space-time kinetic simulation with reactivity feedback effects
due to the thermalhydraulic behavior.

SPORTS - Special Predictions of Reactor Transients and Stability

SPORTS*® is primarily considered a thermalhydraulic code but, it contains special features, such as neutron
kinetics, that are specific o nuclear reactors and hence is included in this section. SPORTS was developed
for two phase stability studies. Incorporated into the simulation are some speciaf effects such as subcooled
boiling, a fuel model and, nevtron kinetics. A simple finite difference scheme that does not use a staggered
mesh is used. One dimensional equations for homogeneous two phase flow are used.

48 (hatoorgoon (1985)
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The difference equations are arrived at by integrating the PDEs (the conservation equations) over the spa-
tial intervals of interest. For example, the conservation of mass equation is

a_p.*.M:O

dr  ox
where p is the fluid density and u is the flow velocity. This equation is integrated from spatial points i to
i+1,
A.T d nel L N
2 dr [Pi+pl¢l}+(p“)ifl -(p“)l =0
where the superscript 2 denotes time step. Forward differences are used to approximate the time derivative.
Once this substitution is made the resultant difference equation in space and time is

A
A g2 0+ 61, )+ o~ ouy ' =0

The effect of integrating across a spatial interval is analogous to averaging properties in that interval. "This
scheme was adopled because of its simplicity and because it was found to be useful".*

The solution algorithm for the nodal convergence requires iteration. The three conservation equations and
the equation of state for closure arc used to solve for the four unknowns, density, velocity, pressure and
enthalpy.

SPORTS is equipped with a dynamic fuel model that calculates the center, surface and average iempera-
tures. A radially parabolic temperature distribution is assumed. The parabolic profile is considered valid
only in the fuel and not in the sheath where the response time is considered instantancous. The neutron
kinetic model is a point kinetic model with six delayed groups that allows for changes in reactivity due o
coolant void, coolant temperature and fuel temperature. The neutron kinetic equations along with the fuel
temperature equations are solved in an implicit form to determine the amount of heat transferred o fluid.
This value is used to determine mean values of void, coolant temperature and fuel temperature and, their
resultant effect on reactivity. The neutron kinetic and fuel temperature equations are solved using this
value of reactivity 1o find a new value of heat production. If the difference between this value of heat pro-
duction and the previous estimate are not within tolerance, another ilcration is underiaken.

SPORTS has been used to simulate small reactors such as the SLOWPOKE and MAPLE reactor. The
inclusion of reactor kinetics, a fuel model and, subcooled boiling makes it useful for such tasks.

49 ibidem, p.55



TANK - Transient Analysis Neutron Kinetics

TANK™ is a two dimensional, two group space-time reactor kinetics code that was developed at Whiteshell
Nuclear Research Establishment. It was designed as a ool to simulate transients in the MAPLE class of
research reactors. TANK can be used 1o analy<e a variety of reactivity insertion transients in both U0, and
metallic fuelled MAPLE reactors. The designated neutron energy groups are fast, E, > 0,625, and thermal
neutrons, £, < 0.625. The lattice code WIMS is used to generate the muhigroup coefficients. The diffu-
ston code 3DDT is used to calculated the axial power distribution. The kinetics parameters for the control
rads and shutdown rods as a function of axial position are determined based on the 3DDT axial power
distributions. The improved quasistatic (1QS) method is used to solve the two group space-ime diffusion
cquation. TANK has the capability to handle up to 15 delayed neutron precursors or photoneutron groups
but, in general six delayed neutron groups are used.

The effects of coolant temperature and density and fuel temperature on reactivity are simulated. The
MAPLE class of light water reactors are undermoderated and as such have a negative coolant density reac-
tivity effect. The fuel temperature reactivity effect is dominated by Doppler broadening of the U7 reso-
nance cross sections. This is a regative fucl temperature reactivity effect as is most evident in low enriched
fucls. A nodal model is used to determine the average fuel, sheath and coolint temperatures. The
cladding-coolant heat transfer coefficicnt used for steady state is the Dittus-Boelter correlation for single
phase turbulent flow. After the start of a transient, the heat transfer package of the SPORT-M?® thermalhy-
draulic code is used (o determine the cladding-coolant heat transfer coefficients for subcooled and saturated
boiling. The production of void near the cladding surface is modelled using the heat wransfer package of
SPORTS-M. The coolant flow through the core is assumed a constant during transients at a velocity deter-
mined from the SPORTS-M simulation.® TANK keeps track of the coolant circuit time in order to deter-
mine changes in coolant inlet temperature due to changes in coolant outlet temperature. The removal of
heat by the heat exchanger is used to determine the coolant inlet temperature at the next circuit. A
decaying exponential flow velocity is used to model a pump run-down situation. Fluid velocity dynamics
are not modelled but, fluid temperature dynamics are modelled by TANK.

TANK is a true space-time neutron dynamic simulation with fuel temperature and thermathydraulic reactiv-
ity feedback effects. Due to the use of the quasistatic approximation for the neutron kinetics and nodal
models {or the fuel and cootant temperatures, TANK will not provide as much detail as the model under
consideration here. However, TANK has the capacity to simulate whole reactors of the research variety.

50 Ellis R.J. (1988)

S1 Mills & Shim (1989). Better references for SPORTS-M do exist but, they are restricted. SPORTS-M is oaly loosely related to
SPORTS and is not a derivative of it (Mills).

52 R.). Ellis personal communication, Apeil 1990.
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2.4 Numerical Methods

There is a great deal of literature available on numerical methods. The numernical methods that are specifi-
cally applied 10 either neutronic or thermalhydraulic simulations have been discussed above. Some of the
general references that were used are: Numerical Methods™ is a good general reference, Applied Numerical
Methods™ has an engineering lean to it and contains some FORTRAN code for some simple sample prob-
lems and, Numerical Recipes in C** which is a recipe book as the name implies.

2.4.1 Solution of Partial Differential Equations

Partial Differential Equations (PDEs) may be solved by a variety of methods. The two basic numerical
techniques used are finite difference and finite elements. The finite element technigue approximates the
solution of an operator equation by a set of local basis functions containing adjustable constants, The
region of interest is divided into finite elements, vsually thangular, interconnected at nodal points on their
boundaries. The basis functions are linearly independent and are known apriori. A lingar system problem
is setup to solve for the adjustable constants. The last chapter of Numerical Methods for Partial Differen-
tial Equations™ is useful as an introduction to the subject. The finite clement method is primary designed
for use on boundary value problems and is cumbersome for initial value (time dependent) problems and
hence, will be discussed no further.

The use of the finite difference method for the solution of PDEs is well documented in the literature.
Numerical Methods for Partial Differential Equations 1ooks at the solution of the three categories of PDEs
(parabolic, elliptic & hyperbeolic), methods of evaluating the siability of PDEs and methods of accelerting
the convergence of a solution. Computational Fluid Mechanics and Heat Transfer, as mentioned above,
can be used a5 a reference for the solution of PDEs in general but has an emphasis on thermathydraulics,

There are two methods that may be used to transform a PDE into a difference equation, Representing the
partial derivatives directly as finite differences is one method. These finite differences are derived using
Taylor expansions of the partial derivatives. This form of the thermalhydraulic equations is referred 10 as
the microscopic model and, as the direct finite difference method for the neutronic equations. If the PDE is
integrated over a number of finite volumes, the spatial derivatives become differences between the quanti-
ties averaged over the volume. This is referred (o as the macroscopic model for the thermalbydraulic equa-
tions and as a nodal method for the neutronic equations.

53 Dahlquist and Bjseck (1974)
54 Carnahan (1969}

55 Press er al. (1988)

56 Ames (1977)
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The finite differencing of PDEs will give rise (o a sparse linear system problem. Either natural or
red/black ordering of the poin: variables is used” . Natural ordering, where the spatial indices are varied in
sequence,

F(o) =[P 0. L 0., L

is used in the simulation here. The linear system solver that is used must make use of the resultant sparsity
of the system in order to be reasonably efficient. Iterative techniques are more commonly used, due to the

properties of the matrices, in the solution of the resultant linear system problem as will be discussed in the

next section.

The Method of Lines

The Method of Lines is a numerical method where all but one of the independent variables of a partial dif-
ferential equation (PDE) are discretized. This is a method of effectively transforming a PDE into a system
of coupled ODEs. The independent variable that is not discretized is usually time. This approach is
advantageous for two reasons. The solution of the problem in time may be handled in whatever manner is
desired: implicit, explicit or semi-implicit. It also permits the derivation of the characieristic time constants
of the system, sometimes called the Lyapunov coefficients. Thesc coefficients are dependent on the point
of evaluation in the system phase space due to the nonlinear nature of the system. Many variables including
nuclide concentrations and temperature determine phase space position. Spatial discretization, which may
be done in different coordinate systems and dimensions, is used (o elucidate the spatial dependence of the
dynamics. Carver™ has Lone an extensive exploration of the use of the Method of Lines, and as he points
out, it is not a method but a collection of methods.

2.4.2 Solution of Ordinary Differential Equations

Algorithms for the solution of ODEs can be found in any general numerical methods book. Methods of
solution of ODEs can be categorized as: single step methods, multistep methods, and predictor-corrector
methods. Runge-Kutta methods are a popular class of single step methods for the solution of ODEs and
within this class the classical forms are most commonly used™. The simulation here uses R-K methods
because of their good truncation error properties and numerical efficiency. This is covered more exten-
sively in the chapler on numerical methods.

2.4.3 Numerical Linear Algebra

The solution of a linear system is probably the most common numerical problem and the available litera-
ture on the subject is vast. Both finite difference and finite element methods of numerical simulation

57 L.A. Hageman & D.M. Young, (1981) p.13
58 M.B. Carver & H.W. Hinds (1978), Carver (1979), Carver (1981}.
59 Lapiudus & Seinfeld p.46
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require the use of linear system solvers. There are three types of methods of solution of lincar system:
direct, iterative, and semi-iterative. The method that you choose w use will depend on the properties of the
matrix involved. Iterative methods are preferred for the soluiion of large sparse linear systems, such as
those that arise from the finite differencing of PDEs, because they can take advantage of the sparsity of the
matrix and tend to be self comecting. If the properties of the matrix involved are unknown or, are 1ot suit-
able to iterative methods, direct methods may be preferable. Semi-iterative methods may be used for
sparse matrices that are not well suited o iterative methods (i.e. matrices that are symmetric positive
definite but not diagonally dominant).

Some references on the subject of numerical linear algebra are: A Handbook of Numerical Marrix Inversion
and Solusion of Linear Systems*™ contains a discussion and comparison of the different methods and which
method is best suited to which problem, Matrix Computations*' discusses quite a number of special systems
and gives pseudocode for the algorithms and Handbook for Autematic Computation: Linear Algebra® is
considered the "bible™ on this subject. The last book is in two parts the first being the solution of lincar
syslems, least squares and, linear programming and the second part on the algebraic eigenvalue problem.
The last two books discuss the algebraic eigenvalue problem but, The Algebraic Eigenvalue Problem® is a
more complete reference on the subject.

Direct Methods

Direct methods, such as LU (lower-upper) decomposition, solve the system using a fixed number of operi-
tions. These algorithms usually use Gauss transformations to triangularize the system but other transforma-
tions, suc: as the Houscholder transformation, may be used. Pivoling is used to reduce round-off error and
prevent any unnecessary terminations of the decomposition duc to zeros along the diagonal, Partial
pivoting, where only the rows ar:; interchanged, is usvally used to reduce the number of interchanges and
hence the computational effo:i.

The bandwidth of the matrix is preserved under decomposition™. Versions of these algorithms for banded
matrices are available that exploit this fact. If the bandwidth of the matrix is quite small, significant sav-
ings in computational time may be made. If the matrix to be inverted is in a block tridiagonal form, algo-
rithms exist that can take advantage of this matrix structure. ‘The Block Tridiagonal method*® can perform
an LU decomposition and solve in a block fashion. Significant savings in storage space and computation
effort can be realized with this method.

60 Westlake (1968)

61 Golub and Van Loan (1983)

62 Wilkinson and Reinsch (1971)

63 Wilkinson (1965)

64 G. Dahlquist & A. Bjdrek, (1974) p.165
65 Goulub & Van Loan (1983), p.110
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Iterative Methods

Iterative methods, such as the Jacobi method or the Gauss-Seidel method, use a variable number of opera-
tions depending upon the rate of convergence. They are particularly good for diagonally dominant systems
where convergence is rapid. The disadvantage of these methods is the possibility of slow or irregular
convergence. This may be remedied by acceleration techniques such as successive overrelaxation (SOR).

The Gauss-Seidel (GS) method splits the matrix A in'o a lower triangular, a diagonal, and a upper triangular

matnx, A = D{L + I + U}. D = diag{a,J. The successive approximation for the solution is described by
M l=-Lxt - Uxt+ D'

where k indicates the approximation number. Unlike the Jacobi method, the Gauss-Seidel method uses

information from recently calculated elements, hence the X term on the right hand side. The GS method

convergences at twice the rate of the Jacobi method which doesn’t use recent information.

Successive overrelaxation (SOR} can be used to accelerate the convergence of the GS method. This accel-
eraled method is often referred to as the SOR method and bas been used quite successfully in many appli-
cations. Hageman & Young (1981) give the pscudocode for this method. The current GS method can be
writlen as

X l=xtert

where
i=1
-Xax*'- Ea
rt= izt
a.

The SOR method that is used to accelerate convergence can be written as
x = (1- ok +ort
where (1 < ¢v< 2} is the relaxation parameter that is chosen to maximize convergence. Methods of calculat-

ing the relaxation parameter for maximum rate of convergence can be found in Wacbspress (1966), and
Hegeman & Young (1981).
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Semi-Iterative Methods

The Conjugate Gradient Method is a semi-iterative method that could fall into either category but, is usu-
ally used as an iterative method because it is ilerated until the desired accuracy is oblained. This method
may also be used as a method of solution of large sparse matrices. The CG method and the GCG method
may be accelerated using Chebychev acceleration®.

" The conjugate-gradient method combines the features of the conjugate direction method and gradient
methods. ... A conjugate-direction method in which the residual vectors are mutually orthogonal is ¢ssen-
tally a conjugate-gradient method.™” Hestenes and Stiefel (1952) produced what is considered the semi-
nal work on conjugate gradient methods. There has been considerable interest in the use of this method,
Bunch (1976), Eisenstat (1981), Saad & Schultz (1986), and Vatsya (1989) to name a few.

The original method was designed for use on positive definite, symmetric lincar systems. This method can
be generalized to an arbitrary nonsingular matrix with a simple transformation. If the matrix A is nonsingu-
lar, then the matrix A’A is symmetric positive definite. The lincar system that will be solved now is: ATA x
= A™p. The lincar system solver that is based on this method is call the Generalized Conjugate Gradient
(GCG) method®®. The use of this transformation degrades the performance of the algorithm but it has a
wider area of applicability.

66 Hageman & Young (1981), p.138 and p.339.
67 L.R. Westlake, (1968} p.46
68 ibidem, p.51
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3 Neutronics

The term neutronics refers to the equation(s) that govern neutron density (or more commonly neutron flux),
delayed ncutrons and delayed neutron precursors. The general form of the neutronics equation is a function
of energy, position, direction and time. This is referred to as the neutron transport equation.

3.1 Neutron Transport

The neutron transport equation is a function of direction, energy, space and time. This equation assumes
that the number of neutrons is large and therefore describes their average behavior. The solution of this
equation yiclds the angular neutron density, N(?.fi.E,r). It is more common to use the neutron flux
instead of the neutron density as the dependent variable. The velocity of the neutrons can be writien as a
product of the speed and the direction, V = v§l. The directional flux is defined as the product of the nestron
speed and the neatron density

W7, 0, E.1)=vN(7, 8, E, 1) = directional flux
The neutron transport equation can be writter using the directional flux

—I-Q&ﬁ-W(F.ﬁ,E.mz,(F. E)W:f dE'f dSVE T8V, E - QENGE.QLE D
v(E) dt = o !

XE) Q.E
e T T )

The terms in the above equation are as follows: the time rate of change, the streaming term, the total cross
section, the scattering production term, and the fission production term.
Infinite Plane Geometry

If infinitc plane geometry is assumed, then radial symmetry can be assumed. The above equation can be
integrated over {0 <0 < 2r). The direction differential becomes dQ = 2ndp where j1 =7 - Q is the cosine of
the scatiering angle

L]
1g¥ o¥ ’ ' g r g
-y +E,‘!'-Ld£ J;,du'r.,(z.u.E = W EW(z, 0\ E' 1)

E
+-x%—)LdE'E_,(z.E’)‘i’(z.n’.E',t)

This the common form of the time-dependent nentron transport equation in plane geometry that will be of
use later.
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If the product of the direction vector and the flux are integrated over direction, the result will be the neutron
current vector which represents the magnitude and direction of the average neutron flow

JF.E.0)= j JOTYF.R.E.1)
"

If the directional flux is integrated over all dircetions the result will be what is called the scalar flux. The
scalar flux is used in the neutron diffusion equation

¢(F.E.r)=f dOV(F.Q.E. 1)
n

3.2 Solution of the Neutron Transport Equation (NTE)

These methods of solution of the neutron transport equation can be classified into the two broad areas of
delerministic solutions and stochastic solutions. The two most popular methods of solution of the neutron
transport equation, the Spherical Harmonic Expansion method, also known as the Pn approximation, and
the Discrete Ordinates method, also known as the Sn method, are deterministic methods. The Monte Carlo
metbod is the best known stochastic method. In general, deterministic methods, usually discrete ordinates
or diffusion, are used in reactor simulations. These methods are not oo computationally demanding and
provide sufficiently accurate results for most purposes.

The spatial dependence of the NTE, when solved in a deterministic manncr, is usually handled through
finite differencing. This is a common method of handling the spatial dependence of PDEs and is not used
just for the soluticn of the NTE. This subject will be covered in the chapter for numerical methods.

The first problem to be addressed in the deterministic solution of the neutron transport equation is the direc-
tional dependence of the neutron flux.

3.2.1 Monte Carlo

The Monte Carlo Method (MCM) of solution of the neutron transport equation is a statistical method of
solution. The MCM is based on a serics of particle historics. The flight of a particle is tracked and statis-
tics are gather during its flight. The greater the number of histories that arc acquired, the greater the accu-
racy of the results (the lower the vaniance).

The Monte Carlo method has the ability to handle complexity whether it be due to geometry or composi-
tion. Ttis useful for problems thal can not be casily represented in less that three dimensions or have a fine
structure. It can be used 1o determine the flux in the resonance region and hence the group constants. Its
weakness lies in its stochastic nature. Its not well suited 10 the predicting of accurate values of flux over

.32



extended ranges of space, direction or energy. A very large number of histories are required for accurate
results over any range of variables, hence computational expense. The method can be used to determine
crilicality but is very poorly suited to kinetic problems due 1o computational expense. This method is not
used here and will not be discussed further.

3.2.2 Directional Dependence - Transport Methods

The discrete ordinates method (Sn) is the most popular method when directional dependence of the flux
must be considered. The equations from the spherical harmonic expansion method (Pn) are extensively
coupled which makes them impractical except for relatively simple geometry. The Sn method circumvents
this difficulty by finding the flux in only a discrete number of directions. The accuracy of the simulation
can be increased by increasing the number of directions.

The multigroup equations arising from both the Pn and Sn methods are differential cquations that are con-
verted into a system of algebraic equations by spatial discretization. These equations are most useful for
determining the overall transport for problems of fairly simple geometry. This yields results of high
precision, precision that is limited mainly by the unceriainties of the cross sections.

The main concerns are the values of the group constants, the degree of detail required in the neutron angu-
lar expansion, energy spacing (number of groups) and the space mesh. The group constants are flux
weighted averages. The choice of the appropriaic weighting functions is a central problem.

Simulations using these methods are done in one or two dimensions. If the geometry or composition of the
object to be simulated is sufficiently complex (two dimensions is not enovgh or it's difficult to calculate the
group constants), the Monte Carlo method may need to be employed.

Anisotropic scattering is usually assumed when doing a transport calculation, and a convenient method of
representation of the differential cross sections is required. It is customary to assume that the scattering
cross seclions are symmetric in the azimuthal direction ¢ using spherical coordinates (r,9,9), hence they
arc a function of the polar angle 8 only. It is also customary tolet (0sp<1) be the cosine of the polar
angle, b = cos(B). Itis now possible to expand the differential scattering cross sections in Legendre polyno-
mials, P,()1g), where po=Qx Q" is the cosine of the scattering angle in the laboratory system. The scatter-
ing cross sections will appear as

L7, E' = Eig = L(2 + DE,F.E > E)P(iy)
=0

For isotropic scattering only the first Legendre moment of the scattering cross section, I,4(r, £’ — E), will
be nonzero.
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Spherical Harmonics Method

In the spherical harmonics method the directional dependence on the NTE is expanded in Legendre Polyno-
mials. Legendre Polynomials are orthogonal polynomials which can be used to derive a set of orthogonal
basis functions for describing the directional dependence of the flux

\P(FJ_[@E) = léo(ﬂ + I)W,(F. EYP(py)

i —-
(FE)=3 [ PAWYE.REMy

where P,(u) is the [ th order Legendre Polynomial.

The Spherical Harmonic expansion fo: an infinite plane can be derived by multiplying the infinite planc
NTE by the appropriate Legendre polynomial, integrating over direction, and using the identity,

(2n + PP, ) = (n + VP, () +nP, (1)
The fission source term is vsually considered to be isotropic, therefore it only appears in the zero moment
(¥,) equation

A+l n

@2n+ 1)%%\?,,(:,:”%[(;: + ¥, +a¥,_ )+ @2+ DIV,

=(2n+ I)LdE'E,,,(z:E' = EY,(2.E'0)+8,,(2n + l)x—g@deE'E,(z.E')‘P.(z,E"!)

Discrete Ordinates Method

In the discrete ordinates method, the directional intepral is evaluated using numerical quadrature. Gaussian
quadrature is most commonly used. The net effect of this numerical integration is that the flux is evaluated
in a number of discrete directions (hence the name)

: 1 &
L W, EYdp’ =3 _E‘ o0, E)
where {11} is the set of discrete directions and {t;} are the quadraturc weights. A more thorough treatment
of this subject can be found in Nuclear Reactor Theory.”
The Integral Transport Equation and the Collision Probability Method

Integral transport methods are very different from the discrete ordinates method. Integral transport meth-
ods are based on integrating out the angular dependence from the transport equations leaving only the sca-
1ar flux and partial currents across cell boundaries. The angular variable can be treated with whatever
accuracy is required, which depends on the numerical integration of the expression for the angular

69 Bell and Glasstone (1980), p.214



integration. High accuracy multidimensional quadrature used for the angular integration can be quite
cxpensive but needs only to be done once. "Since the neutron transport cquation is a Iinear first order par-
tial differential-integral cquation, it can be converted 10 an integral equation by a standard procedure known
as the method of characteristics™.™ “Integral transport methods are most frequently applied w situations
whiere the effects of isotropic scattering are smatl, ..M Integral ransport methods are used for lattice
codes, where highly absorbing regions but small spatial domains are characteristic, and in shielding calcu-
lations.

The collision probability method is the most commonly used technique for the solution of the integral
transport cquation. The collision probability equation solves for the scalar flux ¢,

zyop= § P £ @ encvEen St

where the subscripts j and { denote region, the superscript g denotes energy group, Iy is the total cross
section for that energy group and region, I, is the scattering cross section, x* is the fraction of neutrons
appearing in group g, A is the eigenvalue, vE, is the number of fission neutrons produced, §; is the source
term and, P; can be interpreted as the first flight collision probability that neutrons produced in region i will
make their first collision in region j. The interface cusrent method relates the flux in a given region to
sources within that region and the currents at the boundary surfaces. The lowest order of approximation of
this method is™

G . . . 5
£t ot = p;[ T (o AVERY )+ s;} + 3 PEJE
=1 mul '

G . . . 6
-’5.m=‘°:-[ z (&, "'¢f+lx'v25¢:)+8;]+ 3 PLJt,

=l
where J#,, is the total inward current of group g at surface m and, J; , is the total outward current of group 2
at surface m. The interface current method climinates cross coupling terms between regions and hence
reduces storage requiremenis.

The collision probability method is given as background information for some of the lattice codes.

70 Bell & Glasstone, (1970) p.22
71 Lewis & Miller (1984) p.211
72 Mucller A. & M.R. Warner (1972) p.280
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3.2.3 Energy Dependence

The multigroup formulation is the mosi common method of handling the problem of energy dependence of
the neutron diffusion equations. The energy spectrum is discretized inte several levels referred (o as groups.
The group flux for the g'th group is defined as

E‘_l -
tb.(?.r) = J o(r,E,NdE
E.l
The neutronics equations are integrated with respect (0 encrgy over the cnergy intervals

13 = = &
v_§¢‘(?") =V - D‘(F)V(I"(r,:)—ﬁ“(ﬂw‘(?.r) +x;“,1 3, N2, 1)

L
G
+ % (1-B) ’}; 1 v, L, (N 0+ X ACE

aCi(F- ‘)
or

The multigroup coefficients that are used in the above cquations are defined in Appendix B.

=B, ilv,.ih.('r')(b‘.(?.r) -ACF.D
e

The neutron energy spectrum can be roughly divided into three groups: thermal interval (E, < I eV), reso-
nance interval {1 eV < E, < 100 keV), and the fission interval (100 keV < E,). The thermal interval is
characterized by the thermal motion of the neutrons and the neutron energy spectrum will be a Maxwellian
distribution” for thermal reactors (the spectrum is more complicated for fast reactors). The ncutron encrgy
spectrum in the resonance interval is strongly influcnced by the moderator that is used in the reactor. 1f a
thermal reactor is moderated by hydrogen only (water), the spectrum in this interval will have an overall
1/E characteristic™, but there will localized dips in the energy spectrum due to resonance absorption in the
fuel. The spectrum in the fission interval will be dominated by fission ncutrons, as the name sugpests.

The multigroup formulation is used to handle the energy dependence of the time dependent diffusion
approximation used here.

3.2.4 Time Dependence

The method of lines is used 10 transform the PDEs into « system of coupled ODEs, The lincar system
approximation dx/dt =AY +D is eventually discretized in time, giving sisc loa matrix difference cquation,
d¥/dt = (**' —*VAr, where k denotes time step, and A is the step size. The range in sizes of the time step

73 Heory (1975) p.96
74 ibidem, p.85
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that are allowed, in terms of stability, will depend on how the difference equation is arrived at. The two
general methods that are used are: explicit methods, where the vector on the right hand side is evaluated at
time step &, and implicit methods where the vector on the right hand side is evaluated at tme step k+1. In
general implicit methods have a greater range of stability but are more computationally demanding than
explicit methods,

The time independent solution of the NTE usually involves the calculation of an eigenvalue, or k value,
which is an indication of the exponential time behavior of the neutron density. This is referred (o as a criti-
cality calculation.

3.3 Neutron Diffusion: the P, Approximation

‘The P, approximation is considered to be the theoretical basis for the diffusion approximation.” The flux
is expanded in the two Legendre moments, Py= 1 and P, = pt with the result becoming the scalar flux and
the neutron current,

VF )= 2x | W, BN = O )
-1

¥ E)=2n | WY1 N =T, E)

The equations for the neutron current and the scalar flux can be found by substituting a=1 and O respec-
tively into the P, approximation equation,
30

d . ’
;a—'l(z,E.r)+$¢(z.E.r)+3£,J = 3LdE’E,.-(z.E = EM(z,Et)

18 d , ’
;a—‘¢(z.E.l)+$J(z.E,l)+El¢-LdE'E,o(z.E - EYd(z,E',t)

1
+ix(E)LdE'E,(z.E')¢(Z-E'-‘)

A fundamental postulate of diffusion theory is the validity of Fick's Law. This states that the neutron cus-
rent is equal to the flux gradient multiplied by a diffusion constant, which must be defined,

J(z.E.t) = D(z, EWN®(z,E, 1)
The equation for the first moment is used to define the diffusion coefficient,

-1
1 li;-fdﬁ'z 7
D(Z.E):E(z'_’_v& o 't}

75 Heary (1975), p.386.
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The scattering integrat is usually approximated by
fdm,,{z. E' = EV(z, E'\ 1) =Lz, EYafz, EM (2. E.1)
where fig(z, E) = £,,/Z,, represents that average scattering angle and the £, is defined as:
5,02 Ey= [ dET, (0. )
The transport cross section is defined as,

I,(z,E) =Lz, E}+ BT, (2. E)

The definition of the diffusion coefficient that is most commonly used, and is used here,

1
D(Z'E)=__3):,,(z.5)

is that for the time independent problem.

The zero moment equation becomes the ncutron diffusion equation. Delayed neutrons could have been
added to the neutron trs sport, but they are added to the diffusion equation now for simplicity. Dilfusion
simulations can be done in three spatial dimensions but two or less is more common. The two energy
group approximation, fast and thermal, is the main stay of the industry for thermal reactor simulation.
Sometimes the assumptions associated with diffusion, isotropic scattering and no angular dependence of

the flux, are not adequate, especially in the region of a strong absorber. When angular dependence of the
flux must be taken into account, a neutron transport simulation must be done.

‘The time rate of change of the neutron density can be written in terms of the neutron flux. ‘I'his equation is
referred to as the time dependent neutron diffusion equation

d d
SNEEN=7 ( (E)d!(r E, :)]
d [ (F)¢(T-' E :)] =V . D, EVOG, E,0) -5 (F.EYO[ . E, 1)

+ J' "5, E' - EYOF, EVDAE’ + S (E)(1 - ) J’"v’(E')):;'(F.E')@(F. E'()dE’
0 J 0

+2x,(E)7L, {7 1)

The terms on the right hand side are itemized as follows: leakage (diffusion), total removal cross section,
inscattering from other energies, fission neutron production (prompt neutrons), delayed neutron production.
The super script j denotes the fissile isotope, and this may be dropped if there is only one.

The associated precursor equation is

aC(‘ LGLI wa‘ VIEEG, EYOF, ' E - N CF.1)
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where Y = L |3,

The number of delayed neutron precursors is usually a maximum of six. When only one delayed group is
used, this is referred to as one effective delayed group. The average decay constant '

S

is used in this case,

3.3.1 Boundary Conditions

There are some conservation relationships that must be satisfied at the interfaces and boundaries. The two
quantities that are conserved at an interface in neutron diffusion are the neutron flux and the neutron cur-
rent.

The conservation of flux simply means that the flux must be continuous at an interface. If there are two
regions labeled *a’ and 'b’ then this relation is
[ E N e = (DFED

The other conservation condition that must be satisfied is the conservation of current. In neutron diffusion
the neutron current is equal to the gradient of the neutron flux multiplied by the diffusion constant. This
current must be continuous at an interface,

Dcﬁl. . VQ’,(‘F. E, r)]l"ﬂ'ﬁ“ = Dbﬁ ' vq)b(?' E, ‘)]Fiﬂ'fﬂﬂ

where the surface pormal is 7.

3.4 Thermal Feedback: Doppler Broadening of Cross Sections

Of primary importance in this analysis are the feedback mechanisms at play. Doppler broadening of the
absorption cross sections is the predominant temperature feedback mechanism in the fuel. Voiding and
thermal expansion are the thermal feedback mechanisms in the coolant and moderator.

‘The multigroup coefficients (the cross sections) used in the multigroup equations are flux weighted (see
appendix B). They ate the product of the energy dependent cross sections and neutron flux integrated over
the appropriate energy interval, and divided by the total flux within that energy interval, the group flux.
The group flux is
£
o,Gn=[ " oG EME
(]

and the flux weighted microscopic cioss section is:

-39.



(e
o,(M= Q’_L o (r, EYb(r, E)JE
| I 4

Doppler broadening of the flux weighted cross sections occurs in the resonance interval (1 eV < E, < 10
keV). The heavy nuclides, and especially U™, have resonance absorption peaks in this interval. An
absorption peak is when the absorption cross section of the isotope, when plotted as a function of the inci-
dent ncutron encrgy, has a high narrow peak. Some isotopes have many such resonance peaks, and some of
the resonance peaks are so closcly spaced as (o be indistinguishable from one another. Increased thermal
vibration of the atoms causes a perceived broadening of the absorption peaks due to the increased uncer-
tainty of the neutron incident energy. If the microscopic cross section is integrated over an energy interval
that contained a resonance peak, the value of this integral would not change significantly as a function of
temperature, that is (o say the area under the peak will remain constant. Therefore there is an associated
reduction in the height of the resonance peak. The product of the flux and the microscopic cross section
does increase though with increasing temperature. How (he flux weighted absorption cross sections vary as
a function of temperature depends on the encrgy spectrum of the neutron flux. Different energy profiles
will produce different temperature behaviors of the flux weighted cross sections. The energy profile of the
flux is strongly influenced by the material composition of the reactor.



4 Heat Transport

Heat transport and its effcets play a significant role in the dynamics of a reactor. Healt transport take two
primary forms: conductive heat transfer within the fuel and convective heat transfer within the coolant.

The flow of thermal encrgy begins with the production of heat through nuclear fission in the fuel pins. This
heat is conducted (o the outer surface of the fuel pins where it is transferred 1o the primary coolant. The
primary coolant carries the heat (o the primary heat exchanger usually known as a steam gencralor,

4.1 Thermalhydraulics

The thermal hydraulic equations update the variables (p, h, V, P) density, enthalpy, velocity and pressure
respectively. It is assumed here that these four variables are functions of both space and time. The conser-
vation equations for momentem, mass and energy are used to calcutate velocity, density and enthalpy
respectively. A fourth equation, the cquation of state, is required for closure. It is usually used to calculate
the pressure.

The general form of the conservation equation for some variable of interest, \W{r, r), written in the macro-
scopic form is

j CL +f WV Fids = f TG.dv
vol a‘ £l vol

where 'vol’ is some volume of interest and I'(r, 1) is the source term concentration. The second term on the
left hand side represents the flow of this variable through the surface of the volume of interest. Gauss's
theorem can be used to convert the surface integral to a volume integral,

J’J:a—\p+v-‘}‘7—l":|dv=0
ol Q1

If it is assumed that the volume of integration is arbitrary, then the expression within the brackets must be
zero

¥ F.9W-r=o0
or

This is the general conservation equation. This equation will be used to derive the various conservation
equations.
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4.1.1 Conservation Equations

The conservation equations for momentum, mass, and energy can be derived by replacing the variable of
interest in the general cquation by the appropriate quantity.

Mass Equation

The variable that is conserved is mass which is represented by the density which is the mass per volume.
The result when this variable is substituted into the general conservation equation is

There are no source terms for the conservation of mass equation, This equation may writlen in a more
expanded form

%?-+ pV-V+V.Vp=0
If the fluid is incompressible™, then it is assumed that density variations are very slight. This gives rise (o
the continuity equation for incompressible fluids”,
V.v=0
Momentum Equation

The momentum of the fluid per unit volume is the product of the density of the fluid and the velocity of the
fluid. Therefore the variable of interest in the conservation of momentum equation is

(T, 1) = p(r, )V (F, 1)

Substituting into the general conservation equation and adding source terms

.aig:’_’+v.pw=p§+v.'a

The terms on the right hand side are (respectively), body forces (gravity) and surface effects. Surface
effects include pressure and viscous drag. These effects are represented in the stress tensor tn the far right

7'6dsN)o fluid is tnaly incompressible. It is common to refer to nearly incompressible fluids as incompressible fluid (such as most lig-
uids).

77 Bird, Stewart & Lightfoot, p.75
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hand term. This tensor can be subdivided into its normal and tangential components, which are pressure
and shear stress respectively, 6 =—P7 + 7. The conservation of momentum equation can be simplified to a
form that is more convenient for the calculation of the velocity of the fluid (see appendix A)

p=—+p(V-V\VW=pg-VP+V.1

This equation can be simplified further if the sources of shear stress are examined. The form that shear
stress will take is dependent on the flow regime that the fluid is in.

Viscosity and Flow Regime

The two flow regimes of fluid mechanics are laminar flow and turbulent flow, with possibly a transitional
region in between. The flow regime will have an effect primarily in the areas of viscosity and heat flux. It
is assumed that the fluids are Newtonian and hence the shear stress tensor is a linear function of the veloc-
ity gradient

T=MV- V[ +2F

There are two coefficients for viscosity in the above equation {12}, The rate of strain tensor, 5, is defined
as

-;-(W+ V)
If the above equations are substituted into the conservation of momentum equation, the result would be (see
Appendix A)

5=

paa_:’+ DV - TNV = pF = TP + VTV + (At V(T - V) + (V- VW4 25~ Ut

If the fluid is assumed incompressible (V - V = 0) and the viscosity constant (Vjt = 0), the conservation of
momentum equation becomes the famous Navier-Stokes equation™

p%‘!; p(V-Vi\V =pg VP + uV¥

In the laminar flow regime the fluid has Newtonian behavior and the viscosity is defined accordingly. In
the turbulent flow regime the eddy viscosity is used.

Energy Equation

18 Bird, Stewan & Lightfoot, P.80
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Energy is the variable that is conserved here. The total encrgy per volume is the sum of the intemal energy
per volume, energy that results form being in a pariicular state, and the kinctic energy per volume that
arises from motion.

Y= p(e + % V’]
Substituting this variable into the general conservation equation and adding source terms
1 . = 1 . = — - — o e e =
%[p(c +5V'H+V . p(e +5V‘)7=—V-q +3(r.t)+pg-V+V- (o V)
The terms on the right band side are (respectively): surface heat flux, intemnal sources, work due to body

forces (gravity) and work due to surface effects. This equation will eventually be used to calculaie the
enthalpy of the fluid. The enthalpy (per volume) of the fluid is defined as k = e + Pip.

The conservation of energy equation can be simplified to a form that is more convenicnt for the calculation

of the rate of change of the enthalpy (sec Appendix A)
p%—’:+ pV-Vh =v-E+SG'.r)+¥:W+%+V-VP
This equation can be modified to represent temperature if the fluid is single phase and the identity

h= CFT +consiant

is used™.

It is common to assume that all the terms on the RHS of the equation are negligible with respect to the heat
flux term {most often the source term is zero). Let us also assume that heat flux is govemned by Fick's law,
g0 =-k(AVTE 1)
where k is the coefficient of thermal conductivity. Making these substitulions we arrive at

oT

=5+ V- VIG.0=UpC, )V -kVIG,0)

4.1.2 Free and Forced Convection

In summary, the time dependent conservation equations are mass, momentum and energy (respectively),
o 5 =

—=+V.pV=

ot pv=0

——

p?’a_f+pv.vv=uw+p§_6p

79 The relationship between enthalpy and temperatare is more complicated in the case of two phase flow,



2—T+V-'v"’r=av=r

where { p,V. T, F} are the density, velocity, lemperature, and pressure respectively and {g, o, i1} are gravity,
thermal diffusivity™, and viscosity respectively. These are the equations that would normally be used for
solving a forced convection problem. The wsual form of the equation of state can simply be writlen in a
form where pressure is a function of deasity and enthalpy, P = x(p, #).

The density of the Ruid is temperature dependent, and is calculated using the expression,*
p=p-pR(T-N

where p is the density at some reference temperature, T, and B is the coefficient of volumetric expansion at

that temperature.

The assumption made in free convection is that the pressure gradient is approximately the hydrostatic pres-

sure gradient VP = pg. This allows the pressure and gravity terms to be combined into one expression
pg - VP =-gPp(T-T)

The momentum equation for free convection becomes

The density and pressure need not be explicitly calculated in free convection.

4.1.3 The Benchmark Equations

The simulation was benchmarked for the steady state case using a convective cavity, as suggested by De
Vahl Davis & Jones (1983). It is assumed that the cavity has unit dimensions. The top and bottom bound-
aries are thermally insulated. The left wall is at a temperature of one degree, while the right wall is ata
temperature of zero, therefore the temperature differential is unity.

The variables used in the conservation equations are nomalized: V = Vi, ¢ = o, p=p/p, P=Pip, and
g =g/oc. The reference temperature, T, is zero. The normatized momentum equation {for forced and free
convection respectively) is

a_‘!’ﬁ.vv:prv%g-%w
= PrV—RaPrT 2~
gl

80 Bird, Stewant & Lightfoot, (1960) pp 246
81 Bird, Stewart & Lightfoot, (1960) p 299
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and the normalized energy equation is

a—T+T"-VT=V’T
or

where Ra & Pr are the Rayleigh and Prandt numbers (Ra = 81 ¢ /o, Pr = viod, and ( v = w/p) is the kine-
matic viscosity. De Vahl Davis & Jones use Ra & Pr as the input parameters, therefore the actual valoes of
B and g are not explicitly known. The model used here is a forced convection model, therefore B and g
must be known (or calculated).

The model used by De Vahl Davis & Jones assumes that the thermal diffusivity, o, is constant and the
Prandtl number is fixed (Pr = w/(pa)). This necessarily implies that density variations and hence B are
quite small. Dznsity is explicitly calculated vsing,

p=1-PBr
the normalized thermal expansion equation. The density must be greater than zero for a physically realiz-
able system. This requirement places constraints on the choice of the volumetric expansion coefficicnt. if
the temperature differential is one, then the temperature of the fluid will be less than one. Therefore for this
set of normalized equations, [} must be less than or equal to one for physically realizable results. The Ray-
leigh and Prandt numbers are input parameters, and they are used to determine gravity and B. Either grav-
ity or B will be fixed and the other calculated. The above argument shows that B has 2 maximum value
which will place constraiats on the value gravity must have if it is to remain fixed. The thermal cxpansion
coefficient, B, is calculated using

P=RaPriig|

given Ra, Pr and some chosen value of gravity. For the largest value of the Rayleigh number, B must
remain less than one, which requires that gravity be sufficiently large to assure this.

The rate form of the equation of state has litde dependence on temperature for incompressible fluids, there-
fore for simplicity, G; is set to zero, ignoring the enthalpy term. The conservation of mass equation is sub-
stituted into the rate equation for pressure,

oP = =
i -G\V-pV
These equations make up the benchmark simulation. The input parameters arc: gravily, the Rayleigh num-

ber, the Prandt! number and G,.

4.1.4 Conservation Equations - Nodal Form

‘The nodal form of all the conservation equations can be derived by inlegrating the conservation equation
over a volume of interest, in which the quantities are assumed constant. Thermalhydraulic simulations
based on this form of the equations take the form of a sysiem of nodes and links. Total enthalpy, mass and,
pressure are defined at each node and a mass flow rate is defined at each link.



Momentum Equation

The conservation of momentum equation is integrated over a volume of interest to derive the nodal form of
the momentum equation,

;%Jw(pV)dv + J: pVV .Hds = L: pRdv + LE -Ads

The total momentum, p, and the total mass, M, are defined as

ﬁ‘: f pT"dv = tolal momentum

M= J. pdy = total mass

Defining the average of a power of velocity (such as the average squared velocity) as the velocity to the
appropriate power of velocity integrated over some surface of interest. It is assumed that the surface normal
is paratlel to the direction of the velocity pointing either in the same direction or in opposite directions

<T’">=%j?ds

where S is the (otal surface areqn.

The total momentum is not a function of spatial position therefore a total time derivative is used. It is
assumed that there is an inlet surface and outlet surface. The stress tensor is divided into its normal and
shear components. The macroscopic momentum equation can now be writlen as

d — 52 e — -
Ep+psw,<v >a=PSa<V >, =Mg +PhS,-,,—-PwSM—J:‘r-nds

The last term on the right hand side is usually replaced with an empirical correlation function,
The term mass flow rate is introduced W = p< V> §

Using this term we can write

w
pS<T’1>= W<K.>
<V>

If the velocity profiles are known the above ratio can be calculated. If the flow is turbulent the velocity

profile is assumed to be fiat and the approximation can be made,
—2 —
=<V>

<V>

The momentum equation in nodal form can now be written as
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d_ . <V'>, ’<T":>m - . -
Epww - -'.I‘a.:?.) -Mg+PmSm~PM.\M—'[t-nds

2 our w

Mass Equation

The conservation of mass equation is integrated over the volume of interest,
d
EM =W, -W,,

where some quantities have been defined in the previous section.
Energy Equation

The conservation of energy equation can be written as (s¢e Appendix A)
— _ om0 o = QP — —
%(ph)+V -(phV)=V.g +S(r.1)+‘t:VV+%—'+ V-Vp
This equation is integrated over the volume and some of the volume integrals are converted into surface

integrals,

_[%(ph)dv +£ phV . Tds = J:?;'- nds + J;S('r'.r}dv + '["E:de + f[ %—74‘7-?}’](1;'
It is assumed that the enthalpy is constant over the inlet and outlet surfaces
- J‘ OhV -Tds = Wb~ W.h,
The total heat flux is defined as
Q= LE -ntds = total heat flux
The total enthalpy for the volume is

H{)= J phdv = otal enthalpy

The macroscopic form of the conscrvation of energy is now
%H(r) =W, h,— Wb+ j TVVdv + ﬂ %—’:ﬂ/‘. T?'P]dv +Q
The turbulent heating term is usvally very small and therefore neglected,

j;:de =0

The integral term involving pressure is also often neglected as it is small

J:[ a—P+V-VP]dv =0
ot
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Eliminating these two gives rise to te form of the macroscopic energy equation that is most commonly

used

%H(:) =W h,-W_ h +0

oul’ " onal

4.1.5 Equation of State

A fourth equation is required for closure, and is usually used to calculate the pressure. This fourth equation
is called the equation of state as it is used to determine the state of the system and whether all things are in
balance. The equation of state has the form, P =T1(p, #). This equation can be used in a rate form. The
use of the rate form has several advantages, the most relevant here being the ability to incorporate the equa-
tion of state into the overall matrix rate equation for the sysiem thereby generating 2 more intuitive feel for
overall system behavior™. The partial derivative with respect to ime of the equation of state is

()%, ()%
or \adp)or \ah }or
The two partial derivatives of pressure on the right hand side are replaced by constant coefficients. The
result,
d d d
37!’(?.:) = GIEP(FJHG:a—,h(?J)
is the time rate of change of the pressure described as a linear combination of the rate of change the mass
and enthalpy. This is the form of the equation of state that will be used here.
If a two phase system is assumed in a more detailed discussion, the enthalpy and specific volume are,
h=xh +(1-x)h,
v=xv +(l1=x),

respectively, where x is the quality, and v = 1/p is the specific volume,

If it is assumed that the volume and total mass within a node are relatively constant, the rate of change of
the specific volume (and hence the density) with respect to the pressure will be zero (i.e. there is no explicit
dependence of specific volume on pressure). Using that assumption the partial derivative of the enthalpy
with respect (o the pressure can be used to calculate the rate of change of the pressure:

ah _ 3?1_, ah‘ ax
Sp=(=Rgh x5, ~h)

The rate of change of the quality with respect to the pressure is required 10 complete this equation. The
quality and the rate of change of the quality with respect to the pressure can be written as:

82 Garland, Basic Equations for Thermalhydraulic System Analysis
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_a.l_ -1 ﬂ+ [ ov, 8\',]
oP " (v,-v)| 9P 3 ar
4.2 Thermal Conduction

The equation that governs the transfer of heat in solid material, such as the fuel pencils, is the thermal con-
duction equation. The variable of interest here is temperature, T(r. 7). The thermal conduction equation is
dependent on time and spatial position,

pCp—aTg;“) +V

where (7, 1) is the internal heat source term, g is the heat flux term, and C,, is the specific heat. ‘The
assumption is that Fick's Law

g =8(r.1)

q=-k(AVIF.1)
accurately describes the heat flux.

The intemnal heat source term from nuclear fission is
SE.0= [ QBN EYOF, N dE”
0
The thermal conduction equation can now be writien as
aT(r.1) 1 o
T SEN+V-k(NVT(EF, 1)

This is the equation that will be used to describe the heat flow in the fuel. There is a convective interface
between the fuel and the coolant. This is described in the section on inlerface conditions.
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4.3 Boundary Conditions

Thermal Boundary Conditions

The conservation conditions that must be satisfied at a thermat interface are the conservation of temperature
and therma! flux. I the interface is a convective interface, such as between the fuel and the coolant, a con-
vective boundary condition might be used. The conservation of thermal flux boundary condition is written
as

7 Tl e e = Rl Vo e = T EO =T
where T is the bulk temperature of the coolant, and 4 is the heat transfer coefficient. This is referred to as
Newton’s law of cooling®,

If the interface is a conductive interface, such as between two conductive materials, the conservation of
thermal Mux boundary condition is given by Fick's law

KA VLED, e, =6l VLG,

The conservation of lemperature boundary condition is all cases would be
[7;(?, ')]-_ surface = ITb(Ft l)]?-urfm

r

Fluid Boundary Conditions

The boundary conditions for fluid flow are the tangential and normal flow at the boundary. Inall cases
where the boundary is a wall, the tangential and normal flows will be assumed to be zero. If the boundary
is not a wall, either the pressure or the flow normal to the boundary must be specified. It is common to
specify the inlet flow and the outlel pressure,

&3 Bird, Stewart & Lightfoot, p.267
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S Dynamics

The system in question, a nuclear fission reactor, has both a ime and space dependent nature. The term
dynamics is used o describe the time behavior of the system. There are two primary methods that are used
to analyze the time behavior of systems, lincar and nonlinear system theory.

5.1 Continuous Functions: Flows

Functions that are continuous {in time usually) will be referred o as flows. For somie n dimensional vector
a flow is defined as

fin = R where w g H°

where  is a smooth vector valued function that defined on some subset of n space, #. The vector field f
generates a flow ¥{x,r). The flow may be considered the solution of an ODE delined by f

you = R
xeuand yis)e R

where

d
2 W | =AW )
The initial conditions that must be satisfied are
Y M =x(0)=x,
This flow defines a family of solution curve trajectories,
Wiz, ) = R

where I = {a,b) (interval). For each initial condition x,, the flow generates a trajectory “Wix,. 1)

A special form of the function fis the lincar function. The far more general case is the nonlinear function,
An examination of linear functions, or lin¢ar systems, is required before nonlinear functions can be
approached.

5.2 Linear Systems

The topic here is linear flows. These are encountered in the study of state space theory. The vector valued
function being examined is a linear function

x=flx)=Ax
xe®R

where x is some vector in n space. A is therefore a 'n’ square matrix.
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In state space theory the definitions
A =state feedback matrix
X = slate vector

are usually used.

This is an initial value problem. The time dependent behavior of the state vector can be calculated given its
initial value. The time dependent matrix that governs the time behavior of the state vector is called the state
transition matrix. The solution the rate equation given an initial condition x,can be written as

x{x 1) =explAnx,

exp{A ) = state ransition matrix

A flow from n space to i space is defined by the matrix
explAN)R - R

5.2.1 Algebraic Eigenproblem

The Algebraic Eigenproblem is how to decompose a matrix into its eigenvalues and eigenvectors, some-
times referred to as an eigensystem decomposition. An eigensystem decomposition can be performed on
the state fecdback matrix. The state feedback matrix has n eigenvalues and n eigenvectors. A matrix is said
to be dingonalizable if it can be put in a diagonal form by using a similarity transformation. Some matrices
can not be put in a diagonal form. In this case some of the eigenvectors will be generalized eigenvectors,
All matrices that bave distinct eigenvalues and some that don't can be diagonalized. For simplicity the fol-
lowing examples have distinct eigenvalues. The eigenvalues and eigenvectors can be determined (analyti-
cally) using the equations
det(A ], -A)=0
(A4, -Aw;=0
where
A; = th eigenvalue
v; =] th eigenvector
Let T be the eigenvector matrix.
T=[uvp.av,]

The eigenvector matrix can be used to do an eigensystem decomposition of the state feedback matrix,
A=TIT"
The matrix J is the Jordan matrix. The state transition matrix can also be decomposed,
exp(An) =T exp(J)T™"
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If all the eigenvalues of the state feedback matrix are distinct, then the Jordan matrix has the eigenvalues
along its dingonal,

A 0 0
0
I=sl . )\.J .
. 0
L 0 0 A,
exp(A,f) O ] . 0
0 . .
= explJ) = . . expAn
. . . . 0
0 . . 0 exp(d,n
If a matrix is not diagonalizable, then the Jordan matrix has ones along its superdiagonal,
A 1o o0
[
I=l . . )LJ | .
|
0 . . 0 A,

This problem is most often solved by a method that is referred to as "The QR Algorithm™, This algorithm is
used in the well known subroutine package, EISPACK.™ A further discussion of this algorithm and its
implementation can be found in Linear Algebra," The Algebraic Eigenvalue Prablem™

5.2.2 Invariant Subspaces

The state transition matrix contains global information on the set of solutions of the matrix equation
2=f{x}=Ax

The solutions of this equation lie in the linear subspaces spanned by the eigenvectors of the state feedback

matrix. These subspaces are invariant under the state transition matrix.

84 J. Dongarra et al (1978)
85 J.H. Wilkinson & C. Reinsch (1971)
86 Wilkinson (1965)
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For example, say hat the initial state vector happens to be equal to an eigenvector, multiplied by 2 constani,
of the state feedback mauix. The solution of this problem remains in the subspace spanned by this eigen-
vector for all time,

x,=cv,
Aﬂ:%g
where ¢’ is a constant.
x(ev, 1)=cxpldtcy,
=exp{A)ev,

x(cv,t) e Span{v,}
5.2.3 Stable, Unstable and Center Subspaces

The eigenvectors of the state feedback matrix span # space. These eigenvectors can be subdivided into sub-
spaces according to the stability of the eigenvalues associated with them. In a continuous time systems sta-
bility is determined by whether the real part of an eigenvalue is negative, positive or zero. This corresponds
to stable, unstable and center eigenvalues, respectively, of the state feedback matrix. The stable scbspace is
the subspace spanned by the cigenvectors associated with the stable eigenvalues, similarly for the unstable
and center subspaces:

E* =spun| ¥ ---n"..,l = stable subspace
E'= span[ oo “.._] = unstable subspace

ES=span{ Wy, W..‘} = center subspace
5.3 Nonlinear systems

The vector valued function of interest here ts a nonlinear function. The function is a smooth function with a
solution to the initial value problem defined in some interval,

£ =fx)
Fixed points are defined as the points in phase space where the function is zero,
f@®)=0
The linear behavior of the function near the fixed point can be characterized by the Jacobian evaluated at
the fixed point,
I=Af
I=x-%
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dx
The Jacobian can be used to characterize the behavior of the function in some neighborhood of the fixed
point. The Jacobian can be analyzed like the state feedback matrix in the linear system to determine the
stability of the function near the fixed point. If the Jacobian has no zero or purely imaginary cigenvalues
(the center subspace is empty}, at the fixed point, then the stability of the fixed point can be determined.

A

5.3.1 Local Stable and Unstable Manifolds

This is analogous to the stable and unstable subspaces of the linear system. “The definitions of the stable and
unstable manifolds in a neighborhood of a fixed point are:

Wi ={xe Uly(x)>fast— e and ywix)e U, VI 20}

Weld)={ve Uly(x) >3 as t = e and y(x) e U, VI <0}
If the stable and unstable subspaces of the fixed point are defined as the subspaces of the Jacobian at the
fixed point then the stable and unstable manifolds are tangential to the stable and unstable subspaces,

respectively, at the fixed point. This can easily be deduced as the Jacobian is a lincar approximation of the
function at the fixed point.

5.4 Discrete Functions: Maps

Functions that are discrete in time are referred to as maps. Difference equations in discrete time are analo-
gous to differcntial equations in continuous tisne systems. As in continuous ime systems, there can be lin-
ear and nonlinear maps. An example for some vector x is

X =Bx, or x| Bx lincar map

X, ,,=0(x) or x|— Gix) nonlincar map

where G is a vector valued function.

All computer simulations are maps. In order (o simulate a set of equations on a computer, the cquations
must first be discretized. The stability of discrele (ime systems has 0 be handled a litde differently from
continuous time systems. The stability of a linear map can be determined from the eigenvalues of the state
feedback matrix, B in the above equation, in a fashion similar to a lincar flow. The primary difference is
that stable eigenvalues are now the eigenvalues who's absolute values are less than one. Unstable eigenva-
lues have absolute value greater than one. Stable, unstable and center subspaces can be defined in a man-
ner analogous to linear vector fields.

The linear map defined by th: difference equation
Xa=Ax
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has solution
k
n=Ax

This state feedback matrix can be decomposed just as in the continuous time case,

A=TIT"
=A'=T)'T"
oo 0
0 .

k )
Ji= A .
0
0 o A
For stability, the state vector must remain bounded,
lim x, <oo
k=be

This implies that the eigenvalues of the state feedback must have absolute value less than or equal to one
1A, |S1 = subility Vj
in order for the solution to be stable.

e —

L
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6 Numerical Methods

The theory that governs the processes involved is of a physical nature and the theory that governs the soln-
tion of the equations and analysis is of a mathematical nature. The mathematical methods employed when
solving these equations on digital computers are calied numerical methods. The method used to soive an
equation can have dramatic effects on the solution and the amount of computational effort required.
Approximations must always be made when solving equations numerically. Which methods are best suited
to which problems is the subject of this chapter.

6.1 Finite Differencing

A conlinuous function is represented by a series of discrete points that represent the value of the functions
at those points in space and time. Panial and ordinary differential equations are approximated by differ-
ence equations. Derivatives are approximated by differences. The finite differences that are used w
approximate the derivatives can be derived using combinations of Taylor series expansions. For example,
let us assume that we wish to find the finite difference approximation to dy(x)/dx at the mesh points
{x = iAx). There are infinitely many approximations that may be used. We need (o decide as to what spa-
tial grid points we wish 0 use and the desired accuracy of the approximation, Assume that we wish o use
the two spatial grid points y; and ;. The Taylor series expansion of y, , ; about the spitial grid point
(x =iAx)is
o, 1%, .
Y., =Y +§(m)+5$(mr+0[(m) ]
The backward difference approximation of the derivative can now easily be derived using the above equa-
tion,
a¥, (¥, ,-¥)
i§-=———x;——~+0KAWH
The O[{Ax)"] symbol is used to signify the accuracy of the expansion, it indicates the order of the truncation
error. It means that the remaining terms are al most a constant multiple of the expression in brackels as
(Ax = 0). The error of the backward difference approximaiion is proportional o Ax. The central differ-
ence approximation, with an error that is proportional to (A ), can be derived using the above expansion
and an expansion of ¥, _, about \¥,,,

a‘*’i_(“’l+1_q‘t-l) 2
WET-FO[(AI)]

Higher order differencing may be used if greater accuracy is required. In theory any order of differencing
is possible but in practice usually quite low order of differencing is used due to the increased computational
burden associated with high order differencing. Higher order derivatives can be approximated in the same
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manner. The finite difference approximation of the second order derivative 8*¥ /gy * that is most commonly
used is the central difference approximation,
FY, (¥,.,-2¥+¥_)
. (axy

This approximation will be used extensively in this simulation,

+0[(Ax)]

6.2 The Solution of Partial Differential Equations

In all but a few very simple cases, Partiat Differential Equations (PDEs) are impossible to solve analyti-
cally. Some numerical techniques will be required for the solution of the equation, Deterministic methods
of solution of PDEs are comumon but sometimes stochastic methods, such as Monte-Carlo, are used. The
Meihod of Lines used here is a deterministic method.

PDE Classification
The equations govering the physical processes have quite distinctive features thus the numerical methods

used to solve the different PDEs will have some fundamental differences. PDEs are classified according o
certain charucteristics. To elucidate these characteristics, an example is used.

Consider the second order equation

ai, +bu”+cu” =f
where a.h,c and fare functions of x.y,u.x, and u, (the subscript denotes partial differentiation). This equa-
tion can be reduced to a system of first order equations®:

d(u)=n dx+u dy

d(u,)=u dx +u dy
Together with the original equation, these equations can be written in a matrix form

a b [ My f
de dy 0 n,|= d(u,)
0 dv dy||u,| |d)

If the determinant of the matrix is nonzero, then a unique solution exists, a(dy)*+ bdydx +c(dx)*=0
The characteristic equation for this system is then b° - dac. The original cquation is hyperbolic, parabolic
and elliptic if the characteristic equation is greater than, equal to and less than zero respectively. An exam.

ple of each of these types of PDE is: parabolic, the diffusion equation, u, = cus,; elliptic, Laplace’s equa-
0N, U + i, = 0; and hyperbolic, the wave equation, u, = c’u,,.

87 Ames (1971 p.7
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The Method of Lines

The Method of Lines is a numerical technique in which all but one of the independent variables of a partial
differential equation (PDE) are discretized. The variable that is not discretized here initially is time. Spa-
tial discretization using a finite difference approximation is used. This method, which can be used with a
variety of coordinate systems and dimensions, gives rise to a system of coupled ordinary ditferential
equations (ODEs). This system of equations can be wrilten as a single time dependent vector equation in
which all the dependent variables are placed in a state vector. After the spatial discretization, the time
dependent equation is solved using whatever ODE solver is best suited to the problem. The Method of
Lines allows flexibility in the choice of the method used to solve the time dependent portion of the prob-
lem.

The derivative of the rate of change of the state vector with respect to the state vector itself gives rise to
what is called the Jacobian matrix. The Jacobian matrix of the vector equation has a number of nonzero
bands parallel to the diagonal. This type of Jacobian matrix is said to be banded. The structure of the
Jacobian matrix is of great importance in the solution of the problem since this structure can be exploited in
order to achieve a more nuinerically efficient solution. The properties of this vector form of the equation is
the subject of investigation here.

6.3 Jacobian Matrix Properties

The properties of the Jacobian maurix arising in the solution of PDEs is dependent on several factors. The
number and location of the bands is a function of the spatial differencing and the spatial dimension. The
higher the order of differencing and the higher the spatial dimension, the more bands will appear in the
Jacobian. Other properties of the matrix, such as whether it is symmetric or not, depends on the PDE itself
as well as the differencing.

If the PDE is linear and Dirichlet boundary conditions are used, the mattix will be symmetric and negative
semi definite. If Neumann or Cauchy boundary conditions are used, the matrix may be asymmetric even if
the PDE is linear. All but very few nonlincar PDEs will produce asymmetric matrices.

Example Equations: Conduclive heat transfer and convective heat transfer.

The conductive heat transfer equation,

G _ &k
o pC,

is a linear PDE. The conveclive heat tansfer equation,

VT, 1)

arr,)  — = _k
—al_—w(F,:)-vrrr‘.:)-pcpv‘T(F.:)



is a nonlinear PDE due to the conveclive term, which a product of velocity and temperature. It is assumed
that the spatial grid is constant and that the coefficient of heat conduction is not dependent on temperature.
The convective heal transfer equation is for a single phase fiuid of constant density. For the sake of illus-
tration, these equations are simplified versions of those used in the simulation,

Spatial Geometry: Two dimensional X Y geometry.

The spatial gcometry used in these examples is two-dimensional X-Y. Second order central differencing is
used for the second order derivatives in the Laplacian term and first order backward differencing for the
convective term in the convective heat transfer equation. The temperature is approximated by the tempera-
ture at the spatial grid points,

T(x,y,r)=T(r),; forlSisn andl<js<n,

The temperature variables for all the spatial grid points are placed into one vector. This is the data vector
mentioned above. The second subscript is advanced first in the ordering of the grid points used here,

T = [Tl T Ty O T2s O s Ty O T, (0]

The order in which the subscripts are advanced effects the locations of the bands in the Jacobian matrix. A
consistent ordering scheme is required for recognizable patterns in the Jacobian.

The General Matrix Form

The veclor equation o be solved now is an n dimensional (n = n,n,) linear system,
4 Ty =AiT)
dt™ v’

‘The Jacobian matrix as defined above now appears as

A= —-—a(::m))

o(T(n)
The Jacobian for a linear PDE will be a constant and hence has no time dependence. For a nonlinear PDE,
the Jacobian is not a constant and will need to be updated periodically hence, the time dependence above.
The frequency of updating the Jacobian depends on its rate of change.
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The Conductive Heat Transfer Equation

The conductive heat transfer equation is now spatially discretized. This differencing scheme is the com-
mon central differencing scheme,

T = o =2 04T ) 2T =2 (04T )

The constant &= k/pC, is called the hermal diffusivity. This is calied "five point differencing”, as five
spatial points are involved. The resulting Jacobian has five bands. “The first band, the one furthest below
the diagonal, is at a distance n, below the diagonal. The second band is directly below the diagonal (a sub-
diagonal) while the third band is on the diagonal. Bands four and five are the same distance above the
diagonal as two and one are below the diagonal respectively. The eiements of bands one and five are equal
10 k’(Ay)’. The elements of bands two and four are cqual to k/(Ax)”. The central band is the inverse sum
of the four other bands —2k7(1/(Ax ¥ + 1/(Ay)"). It can be shown that the matrix is symmetric, diagonally
dominant and negative semidefinite. Diagonal dominance is defined by

a2z X la)

Jalgai
2 X g
Falje
The properties of the Jacobian as described here can be exploited for efficient numerical solutions of the
equations.

The Convective Heat Transfer Equation

With the exception of the convection term, the convective heat transfer equation is identical to the conduc-
tive equation. This exception is significant. Due 1o Lhe nonlinearity of the PDE the Jacobian will not be
symmelric, diagonally dominant or in any definitive state due to the fact that the stale of the matrix depends
on the magnitude and direction of the velocity term. Obviously, the equation reduces to the conductive
heat transfer equation for zero velocity.

The Jacobian has five bands in the same locations as before, assuming the same differencing scheme and
first order differencing is applied to the convective term. Backward differencing is assumed for the first
order derivatives,

ox Ax

g_ - Ti.j - T.'.,'-l

dy by
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‘Ihe elements in band one will be 77 (Ay)* + Vy, JAy the elements in band two will be £y (Ax)* + Vi, JAx
and the elements in bands four and five will be unchanged. The diagonal band will again be the inverse
sum of the four other bands —2k"(1/(Ax)y + 1/(Ay)) ~ Vi, JAx — Vy, JAy.

6.4 The Solution of Ordinary Differential Equations

The numerical solution of ordinary differential equations (ODEs) is a broad topic about which much has
been written, The methods of integration of ODEs can be place into three main categories: single-step
methods, multi-step methods and predictor-corrector methods™. Al the methods used here fall into the
single-step category, therefore the discussion will limited to single-siep methods.

The system of ODEs to be solved has the form
d:{: = _7 s
ity () =f{x.¥)

where y is a vector, and x is the independent variable. Let the solution of this equation at x=x, be given by
yix, )=y, and let the step size be hi=x,, ,-x, The Taylor serics expansion of y(x,,,} is
dy(x,) Rdvix)  Bdy(x)
}('tnOI)—)('rn)+’l d.\' +2! d.t"' 3! dx3

This expansion will be used to determine the coefficients of some of the methods used.

Single Step Methods
The simplest method of ODE integration is Euler’s method,
Yaur= Yo thy', + O

This is derived by truncating the Taylor expansion at two terms.
This is an explicit method which uses only information that is available at step x, on the RHS.

Iterpolation may be used to represent the derivative on the RHS. A popular method of this type is the
modified Euler formula or the Crank-Nicol: n method,

Vo1 = Yo+ HI2 (Y +3 )+ O)

This is a semi-implicit method which uses information that is not available at step x,, and hence matrix
inversion will be required.

This may be generalized even further (o some general semi-implicit method with a variable coefficient,
Yna1 = Yo F (A2 - )y, + 00y, )
The truncation error for this method bas is a minimum when o= 1/2, which is the Crank-Nicolson method,

88 Lapidus & Seinfeld (1971)
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Implicit and semi-implicit methods have a larper radius of convergence, that is they penmit a larger step
size to be used. The price to be paid is that they are more computationally demanding. The gade-off is
between using larger step sizes and the amount of computational effort required per step. Which method is
best depends on the problem and how efficiently matrix inversion may be implemented.

Runge-Kutta Methods

The most popular of the single step methods are the Runge-Kutta methods. Higher order derivatives need
not be evatuated when using R-K methods and there is a large varicty of methods of this type available.
The particular method used can be customized to the problem being solved.

The general form of Runge-Kutta methods is
.\‘n +1 = _\'" + Z “'lki
il
where w;are the weighting coeflficients to be determined, v is the order of the method, and £, satisfy the
sequence,
k=h j‘[.r,, +ch, v, + X aukl)
=1
where m is the upper limil of the summation. Some identities that characterize Runge-Kutta methods are
i w =1

1al
c‘.=2au i#z1i=2,...,v
=1

A more condensed notation may achieved by placing all the {g,} into a matrix, call it Az, all the {¢;]} into a
vector, Cyy, and all the {w;} into a vector, Wy,

In the design of a R-K method, the (¢;] are taken to be free parameters and the remaining parameters are
evaluated using the method of undetermined coefficienis™ or other methods such as Gaussian quadrature™.
Truncation error analysis of R-K methods is quite involved and beyond the scope this introduction™.

These methods may subdivided into three arangements according to the vatue of m™.

89 ibidem p.17
90 ibedem p.43
91 ibidem p.56
92 ibidem p. 60 and Butcher (1964)



Explicit Total of v{v+1)/2 parameters 1o choose. Upper limit on summation is
i-1,in any k, use only k, 0 ;.

Semi-Implicit Total of v(v+3)/2 parameiers to choose. Upper limit on summation is J,
inany k, usc only k; 10 &,.

Implicit Total of v(v+/) parameters 1o choose. Upper limit on summation is v, in
any k usc k, (0 k,.

The coelficients of the matrix A,y are nonzero only below the diagonal for explicit methods, are nonzero
only on and below the diagonal for semi-implicit methods, and are unrestricted for implicit methods. Fully
implicit methods will require iteration o solve for the various &, and semi-implicit methods will require
matrix inversion.

The most popular Runge-Kutta methods are the explicit methods. lieration or matrix inversion is not
required due (o their explicit nature. The accuracy of the method can be traded off against computational
effort, increasing the order of the method increases both accuracy and computational effort. Like any
explicit method, the stability of the method will limit the maximum step that can be used. Accuracy of the

solution will also depend on the step size and adaptive step size control is usually used to control the accu-

racy™.

The explicit fourth order R-K solver that is used here o solve some of the ODEs is a fairly typical fourth
order methed:

k =hflx.y,)
k=hflx, +hi2,y,+k/2)
ky=hflx, +hi2,y, +k/2)

ky=hf(x, +h,y,+k)

Yaur = glhy 4 2yt 2yt )

The motivation for semi-implicit methods lies in obtaining stable Runge-Kutta processed as well as main-
taining computational efficiency. A second order semi-implicit method has the form
Yoor =Wk Wk,
k=l -a G 1(3,)
k= Ul =G Ay, + k)] (3, + bik)
where A is the Jacobian matrix.

93 Press, Flannery, Teukolsky & Vettering {1988) p.574
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The semi-implicit R-K method used here is that suggested by Calahan (1963),
a, = a,=0.788675 =0
by =-1.15470054 w, =075 w,=1{.25

Both the Gauss-Seidel and LU Decomposition methods of matrix inversion are used in the implementation
of this R-K method. If the system (0 be solved is linear, then the matrices (o be inverted are invariant. This
implies that the matrix need only be decomposed once if LU Decomposition is used for matrix inversion.
This represents a significant savings of computation effort and is one of the advantages of the method.

6.4.1 System of Linear Equations

The ODE problem that will be most commonly solved is a system of first order lincar ODEs that arises
from the spatial differencing of the PDEs.

The system 1o be solved has the form
d
EX(:) =ANX)+ BN

where X{(1) is a ime dependent vector, A{f} is the Jacobian matrix and, B(1) is a vector. The time depen-
dence of the matrix A will depend on the problem being solved. For linear cquations, such as the thermal
conduction equation and the neutron multigroup diffusion equation, the matrix A will be a constant. The
matrix A is not a constant for nonlinear equations, such as any of the hermalhydraulic equations, where it
is assumed constant only for a certain interval.

This system of equations can be solved by a variety of methods such as supgested by the previous section.
Euler's method and the general semi-implicit method for example would respectively be:

X,., = (I +hAXX,
X, 1= [ =hoA ] [ +h(1-0)A)X, +hB]

When the parameler o is set equal to one half, the result is the Crank-Nicolson method, which has the low-
est truncation error.

The matrix A will be banded. How these bands arise is discussed in the section on Jacobian matrix proper-
ties. Efficient methods of inverting the matrix must take the sparsity of this matrix into account.

Assume that we are dealing with the conductive heat transfer equation in two dimensional X-Y peometry,
as outlined in the previous section, and we solve the resulling lincar system of equations in an explicit man-



ner. The propenties of A will be changed. Previously A was symmetric, diagonally dominant and negative
semidefinite. The matrix that we will need to invert, call it A°, will be symmetric, diagonally dominant and
positive definite. These properties are ideal for iterative solution techniques such as Gauss-Seidel.

6.5 Matrix Inversion

‘The techniques of numerical linear alpebra for matrix inversion can be classified in three catggories: direct
methods, such as the LU decomposition method; iterative methods, such as Gauss-Seidel method; and
Semi-iterative methods, such as the conjugate gradient method (see section 1.4.2). Both the Gavss-Seidel
method and the Conjugate Gradient method can be implemented on matrices that are stored using the
banded storage method introduced here. I the matrix to be inverted is in a block tridiagonal form, algo-
rithms that exploit this structure may be employed.

Matrix partitioning will help reduce that storage requirements for the solution of the linear problem, but
will not reduce the computational requirements. It is a useful method where storage space is limited.
This method is used in conjunction with matrix partitioning in the thermalhydraulic simulation to reduce
both storage and computational requirements,

Direct Methods

When using the LU decomposition method, a matrix is factored into lower and upper tridiagonal matrices,
A = LU, hence the name. The Gauss transformation is the most common method of accomplishing this.
The banded matrix structure is partially preserved under an LU decomposition™, The bandwidth is pre-
served but any bands of zeros between nonzero bands, such as in the two dimensional case, will be filled.
If the bands of a matrix arc widely spaced, (the matrix has a wide bandwidth) little increase in performance
will be possible by taking into account the banded structure of the matrix. The matrix will have a tendency
to fill up when using the LU decomposition method. If the matrix has a narrow bandwidth, a significant
increase in performance can be realized by using algorithms for LU decomposition of banded systems.

After the matrix A is decomposed into an upper triangular matrix and a lower triangular matrix, A = LU, the
solution of the lincar problem, Ax = LUx = b, is handled in two steps, The first step is the solution of Ly =
b, the lower triangular matrix L is inverted to arrive at the intermediate solution ¥. The second step is the
solution of Ux = y, the matrix U is inverted 10 arrive at the desired solution x.

When the Laplacian term in a PDE is finite differenced, cenain structvres arise in the Jacobian matrix (de-
pending on the variable ordering - natural ordering is assumed). In one dimension, the Jacobian matrix will
be a tridiagonal matrix, and a tridiagonal matrix inversion algorithm can be used™. In two or more

94 Wesitake (1968), p.26
95 Dahlquist & Anderson, (1974) p.165
96 Dahlquist & Andetson (1974} p.165
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dimensions, the Jacobian will be a block tidiagonal matrix, and an algorithm thar taikes advantage of this
matrix structure is block tridiagonal LU decomposition™. These matrices are frequently diagonally domi-
nant and iterative methods are sometimes more efficient.

Iterative Methods

The Gauss-Seide! method of solution of a linear system is an iterative method in which A is unaltered and
thereby preserving the banded matrix structure. By taking into account this spassity, a substantial increase
in performance is possible even if the bands are widely spaced. This is the main advantage of the Gauss-
Seidel method, This method requires that A be diagonally dominant. While this is not a problem for linear
PDEs, such as the thermal conduction equation, this is a problem for nonlinear PDEs, such as the
thermalhydraulic equations. The time step size may need to be reduced (o assure that

b

For the conductive heat transfer equation, the diagonal clements are equal to

is diagonally dominant.

1 1 I
a,=—+ 2| =t
oA ’((Ar)' (Ay)‘]
and it follows that

"
la'.'.'| > z _|d'ui
Fnl e

hence A’ is diaponally dominant. It can be shown that A’ is positive definite as well.

For the convective heat transfer equation, the diagonal elements are

a’; =-l-+2k‘[-l—+——!-—] +V—"r+l,l
A (Ax} (ay)) Ax Ay
"This does not allow you to draw any conclusions about the state of A, It can be seen, however, (hat if the
time step is sufficiently small, the matrix can be made diagonally dominant. If you wish to sec all the tran-
sient effects when running a simulation, this is not a problem. However, if you wish to advance the simu-
lation rapidly in time with large time steps another method of matrix inversion may be required.

97 Golub & Van Loan (1983), p.110

-68 -



‘The Gauss-Seidel (GS) method splits the matrix A into a lower triangular, 3 diagonal, and a vpper triangular
matnix, A = D(L + I + U), D = diag{a,]. The successive approximation for the solution can be described
by
et U+ DD
where k indicates the approximation number. The successive overrelaxation (SOR) method may be used 10
accelerate convergence of the GS method, The current GS method can be written as
ka1l

Stsxter!

where

i-1 n
-Tax =Y ax +b,
Jul LT

a;
The SOR method that is used 1o accelerate convergence ¢an be written as
Xt (-t + o)

where w is the relaxation parameter that is chosen to maximize convergence. A version of this method in
which only the bands of A are stored is used. This is simply called the Banded Gauss-Seidel (BGS) routine.

Semi-Iterative Methods

The semi-iterative method that is used here is the Conjugate Gradient (CG) method. The Conjugate Gradi-
ent method is not a single method but a whole family of methods. The original conjugate gradient method
was designed for use with symmetric positive definite (SPD) matrices. This method can be generalized to
an arbitrary nonsingular matrix with a simple transformation 1o give rise to the Generalize Conjugate Gra-
dient (GCG) method. If the matrix A is nonsingular, then the matrix A™A is symmetric posilive definite.
‘The lincar system that will be solved now is: A’A x = A’b. This method has poor convergence properties as
a consequence of the matrix ATA having a spectral condition number™ that is in general much greater than
that of A. This method can use the same banded storage methed as is used in the BGS routine, and as a
consequence savings can be made on slorage requirements.

The GCG method uses three vectors: ¥ is the i th approximation to the solution, #* is the i th residue where
the residue is defined as r = b - Ax, and p' is the i th gradient direction. The vectors {p‘) are linearly inde-
pendent and Gram-Schmidt orthogonalization may be used to ensure that the new direction vectors are
indeed crthogonal to the previous direction vectors (this may not be the case due to cumulative truncation
emror). The alporithm can be written as follows.

98 Hageman & Young (1981), p.9 & 331
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Calculate the initial values 7 and p® given the initial valve x",

r’=b-Ax’ pr=ATe
Begin the iteration. The first step in the iteration is to nonalize p,
P
1Ap']

The cocificient o, is calculated and used to update the values of vand r, o ={rAp")
=yt

r"l=r'—qu'

where the expression (-,-) is used to indicate inner (scalar) product.

The coefficient
B,=—(Ap',AATF"")
is calculated and used to update the gradient direction p,
plol =ATri01+Bl_pi
The ileration is continued for a maximum of # iterations where 2 is the dimension of
the system.
Matrix Partitioning

Matrix partitioning subdivides the linear system problem into two lower order problems. The standard lin-
ear system problem is: Ax = b and dim(A) = r by n.
This can be written as two lower order problems,

Ay Ag[a] &
Ay Ap)lx] b
where A,, and Ay, are square matrices. The first step is substitute for one of the data vectors,

X =A1-1I(bl = A0

This expression is substituted into the second equation and that equation is then solved. Any method may
be used to invert the matrix A, preferably some method that takes advantage of any structure it might
have.

The resultant matrix,

(Ap—AyAjA LI, = b,—ANALD,
is usually quite full and some direct method will probably be required 10 invert it. The result X, is back
substituted to solve for the first data vector, X,. This method of two stage matrix inversion will reduce

memory requirements, but may not reduce computational effort although in some circumstances it might,
depending on structure of the component matrices.
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6.6 Computational Effort and Storage Requirements

The usual method of measuring how much computational effort that an algorithm requires is to measure the
number of floating-point operations (flops) that are required. Obviously an alporithm that requires fewer
flops than another that accomplishes the equivalent task is the beuter algorithm. It is always desirable 10
minimize the amount of storage that a simulation requires. The more efficient a simulaton is with data
storage, the less page swapping (of memory) that will be required ard hence the faster Lhe simutation will
run. Above all an algorithm must be robust, for if the simulation fails (crashes) liutle is gained. These are
the criteria that will be used to evaluate a few algorithms for the solution of an 7 dimensional linear system.

The full storage method is where the entire matrix is stored and any sparsity of the matrix is ignored. This

requires n? storage locations. Using Gaussian elimination with pivoting and ignoring the banded structure

will require 2%3 flops for the solution of such a system. This is the least cfiicient method, both in terms of
computational cflort and storage.

If the matrix to be inverted is asymmetric and banded, a certain amount of computation time may be saved
by taking into account the banded structure. The subrouune package LINPACK stores a banded matrix in
such way that the bands arc on the bottom rows of the matrix. The same number of storage locations as the
full storage method are required but some may not be used. The band widths, upper and lower, are pre-
served under LU decomposition. If the upper bandwidth, say p, is equal to the lower bandwidih, then
nap?—(2/3)p* +np flops will be required for LU decomposition. An additional np — p*/2 flops will be
required for back substitution.

The Gavss-Seidel method of solution of a linear system is an iterative solution that may be carricd on to
any desired accuracy. In order (o use this method that matrix that is to be inverted must be diagonally dom-
inant, otherwisc it will not converge. Usually successive overrelaxation (SOR) methods are used with the
Gauss-Seidel iteration to speed convergence. The numoer of flops that are required will depend on the
number of iterations. Therefore quick convergence of the iteration is desirable. If the banded structure of
the matrix is ignored n® flops per iteration are required. The number of flops that are required per iteration
is equal to the number of nonzero elements in the matrix. If we have a five band matrix, of any bandwidth,
less that Sn flops per iteration will be required. 1f only the bands are stored, Jn storage locations are
required.

4. Conjugate Gradient method for symmetric positive definite matrices requires 5n flops and a vector
matrix multiplication per iteration. Theoretically, a maximum of a iterations are required for convergence.
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The matrix restrictions can be relaxed if the matrix is preconditioned. This will require some operations
but will significantly accelerate convergence. Other methods of aceeleration convergence are also avail-
able.”

There are other less common methods that are available. The Householder wransformation, requiring 2n*
flops. can be used (o convert a banded symmetric matrix o a symmetric tridiagonal matrix and a banded
asymmetric matrix to an upper Heisenberg matrix. The sofution of a tridiagonal symmetric system requires
5n flops. The LU decomposition of an upper Heisenberg matrix, of bandwidth p, requires approximately
np/2 flops and a few more flops will be required for back substitution.

6.7 Boundary Conditions

There are three general types of boundary conditions: Dirichlet, Neumann and Cauchy. Dirichlet boundary
conditions specify the value of the function at the boundary. Neumann boundary conditions specify the gra-
dient of the function at the boundary and Cauchy boundary conditions specify a lincar combination of the
function and its gradicnt at the boundary,

6.7.1 Dirichlet Boundary Conditions

The value of the function is fixed at the boundary using these boundary conditions,

VT, 1) b« serpece= CORS?aNL

Say that the temperature is fixed at the left boundary,T,, (1) = constant =T,

A constant will arise in the rate equation and will determinc some clements in the boundary condition vec-
tor B,

dn 0 _ & [ (T@=2N,0+ 7o) Tyl =200+ T, -(0))
dt  pC,

- (Ax) (ay)?

99 G.H. Golub & C.F. Van Loan (1983), p.375.
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kT,
pC,(Ax)’

Dirichlet boundary conditions can be used a: the outside boundary in the neutronics equations but, with
what is referred to as extrapolated boundary conditions. This means that the flux goes to zero some small
distance beyond the outside boundary @F = 0. This may be used to determine the boundary condition vec-
tor in a way that is very similar to that in the temperature equation. The boundary condition vector will be
zero using these boundary conditions Bo=10,....01". The other boundary condition that may be used at the
outside boundary of the flux rate equations is the Marshak boundary condition which is a Cauchy type
boundary condition.

6.7.2 Neumann Boundary Conditions

'The pradient of the function is a constant at the boundary when Neumann boundary conditions are used.
When the gradient of the function is set to zero at the boundary this is referred to as reflective or insulated
boundary conditions. Reflective boundary conditions assume that there is no net thermal flux or neutron
current cross the boundary,

- KVTFut) b erace=0 7DV F.0) b iec= 0
In the one dimensional problem this would specify the derivative dd/dx =0 at the boundary. Assume that
the left (starting) boundary is a reflective boundary. The Taylor expansion of ‘¥, about ¥y is
My (Arf ¥ (AxPdWo
ax 2 o 3 a7
To implement the reflective boundary condition, sct the first order derivative in the above expansion (o
zero. The resultant expression for the second derivative (usually the Laplacian) will be

o2y _wy+0(an)
3.\‘2_(6.!)2 1 P

This expression is used 1o approximated the second derivative at a reflective boundary.

W, =, +({Ax)
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6.7.3 Cauchy Boundary Conditions

Cauchy boundary conditions are when a lincar combination of the function and its gradient is specified at
the boundary. This type of boundary condition occurs at the interface between two media where neutron
flux and the neutron current are continuous at an interface in the neutron diffusion equation and tempera-
ture and heat flux in the thermal conduction equations'®. If grid points lie on the boundary, the continuity
of temperature or flux is automatic and hence not a problem. The continuity of heat flox and neutron
current is not quite so simple.

The conservation of heat flux at the boundary is expressed in the equation

- VIEDL =Rl VT E ),

The above expression can be written in a simplified fashion for the one dimensional heat conduction equa-

tion,
ar ar
‘a(a]:’*s(a].s

1t is assumed that grid point 7; lies on the boundary and the point T;,, is in region A and the point T, is in
region B. T, and T;,, are expanded in a Taylor series about the point 7,. These Taylor series are rear-
ranged so the first order derivative is on the left hand side. Using the above equality, the two expansions
are multiplied by the appropriate cocfficient and equated,

k(gz) =k ——-—n_T'"w%[ﬁ} +0[(Ax)})
] A
R AR CON
=ky @ k

3 k?l, + Of{Ax)z]

The conduction equation for this problem has the form

ar,_ (@,
¥\

100 The approach used here is a generalization of the approach used by Carnahan, Luther & Wilkes (1969), p.462.
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The above equation is used o substitute the second order derivative, in the expansion, with the rate of
change of the emperature. With some rearrangement, the difference equation describing the conservation
of heat flux at the boundary will be

T, [ ku(Ax),  ka(Ax)y Il ok, k, kg ky )
?‘[ TR H[(Am]z-‘ [(Ar),.+(rxr)s T\ @& f"‘]

where o, = &,/(pC,) in the thermal conduction equation, &= v, D, and k = D, in the neutron multigroup dif-
fusion equation, The mesh is not assumed constant across the boundary (i.e. (Ax), # (Ax),).

Marshak Boundary Conditions

The Marshak boundary condition'! is a Cauchy boundary condition for flux at a free surface boundary.
The general boundary condition for diffusion theory is

G +b7-Td=0
where b is some constant.
The Marshak {ree surface condition, zero incoming current, is obtained when the constant b = 2D,. For the
one dimensional case this may be written as

0P,
D,+2D—=0
ox
If central differencing is used to approximate the derivative, then this equation becomes
02D o yeon
?‘T;( i = B3+ 0)
=,

where & = Ax. We use this equation to find an expression for @, , ,,
h
d_ =0, +_D"¢e‘
This is substituted into the a central difference approximation for the second derivalive,

&, D
P =il

®,, -20,+D,_}
2D 1
='h_z'(¢.'+| _¢i)+i¢i

This expression is used to approximate the second desivative (Laplacian) at the free surface boundaries in
preference to the use of an extrapolated boandary.

101 Bell and Gladstone, p.134.
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7 Numerical Thermalhydraulics

Special numerical methods are required when selving the thermalhydraulic equations due o the noalinear-
ity of the equations. The spatial differencing and the calculation of pressure must be handled in a special
manner.

7.1 Spatial Differencing

If some straight forward differencing scheme is used, the resulting difference equations would be somewhat
messy and the numerical simulation will probably be unstable. Special techniques are required when simu-
lating fluid flow,

The conservation equations that are encountered in thermalhydraulics all hava the gencral form

aa—rpwﬁ-pw?:pv’wr

where [ is a constant, T is a source term and W(r, ) is equal to {V. fi, 1} for the conservation of momentom,
enthalpy (or internal energy) and mass respectively. These conservation equations, other than mass, can be
simplified if the conservation of mass component of the LHS is removed. This may accomplished by
expanding the LHS,

op oV

w§+p§+pv-wv+w-pv=pv-+r

If the conservation of mass equation is used to eliminate terms and the result is divided by the density, the
conservation will appear as

N_ g wv+bvwslr
of p P

This may simplified further using the¢ assumption that the fluid is incompressible {V-V =0). The form of
the conservation equations that is used in the simulation 1s
a¥

A VR
or p p

Therefore, the two dimensional (X-Y) conservation equation for some variable Wix, y, ) written in long
form is

¥ Y u [a’\v a’w] i
—=V —+—| =+ |+-T

ox dy plx.,y) ax® dy') p

The velocity, V, will be assumed constant over one time step and updated at the beginning of each time
step. This causes the Jacobian to not kave coupling terms with the velocity. Five point differencing is used
and hence the Jacobian will have five bands. If the velocity is not assumed constant over the time step,
then two more bands coupling ¥ with the velocity components, V,, V,, will appear in the Jacobian.

2
a‘l‘(x,y.l)-—vl
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Central differencing is used for the second order derivatives and presents litle problem. The first order
derivative in the convective termn is a problem if not handled correctly. Upwinding, backward differencing
against the direction of flow, is the most stable differencing method for the first order derivative in the con-
vective lerm. This means that the differencing, with respect to the coordinate system, is dependant on the
dircction of flow; backward differencing is used if the flow is in the positive direction and forward
differencing is used if the flow is in the negative direction.

The discretized variable is \¥, (¢) and the five pint difference equation will have the form (using symbols
from Patankar)

d
x‘I’,J(:)=a,‘l’u+a5‘¥“u+aw‘l‘ +a¥,

i1y +a,\¥

[ RS

The coefficients, ap, gy, g;. ag. ay. will be functions of the fluid velocity. The scheme

1}
= -V .
aE (A.T):pu ¥ [[ : U'OI]

K
W= (Ax)p,, 0l
-_H V.
IQN_(A)’):F’.'.;+ 0

N |
ag = @ +[{V, ;00

Ap=—~lc—Qy—ay—as
calculates the cocfficients so as lo implement upwinding, where [{-,-]] is a function that selects the largest

value like DMAX! in FORTRAN. Upwinding is used in the conservation of energy and momentum equa-
tions in the thermalhydraulic simulation.

A staggered mesh is used during the calculation of the various quantities. V, and V, are evaluated at the
center of the vertical (left and right) and the horizontal (top and bottom) surfaces respectively of the pres-
sure control cell. The remaining quantilies, density, pressure and temperature (enthalpy) are evaluated at
the center of the pressure control cell.

7.2 The Calculation of Pressure

‘The rate form of the equation of state,
d d d
EI-PG:'I) = G|§p6-1)+azé‘;hﬁu‘)
is used to update the pressure in a cell. The conservation of mass equation
9p

—t=—v. pV
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was introduced in Section 4.1.2. Using the above diagram, the difference equation that is used to calculate
the rate of change of the densiiy

d 1 ey ; ] s .
a—?:—-(—-&-;-)-{\’:(l,])p(: +12, )=V (i-17pl - 12,0

1 [ . o o
=Ty PGS + U2 =V, (i. = Dpli. = U]
can be derived.

The difference equation for the rate of change of the enthalpy is basically that of convective heat transfer.
These two difference equations, the rate of change of mass and enthalpy, are then substituted into the raie
form of the equation of state to arrive at a difference cquation for pressure. The fluids that are being dealt
with are incompressible (or are very close to it), therefore the coefficient G, is much larger than the coeffi-
cient G, (i.¢. the pressure is a weak function of the enthalpy in the region of interest). The rate of change of
density is much more important than the rate of change of the enthalpy in the calculation of the pressure.
The effects that the coefficient G; has on the solution of the thermalhydranlic problem are covered funher
in S=ction 10.2, the results section for thermalhydraulic simulations, and in the discussion,

Vx(i-1,j) = > Vx(i.j)

Vy(i,j-1)

Figure 7.2-1: Pressure Control Cell
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7.3 Boundary Conditions

The boundary conditions for fluid flow are the tangential and normal flow at the boundary. In all cases
where the boundary is a wall, the tangential and normal flows will be assumed to be zero. If the boundary
is not a wall, either the pressure or the flow normal to the boundary must be specified. [tis common 1o
specify the inlet flow and the outlet pressure.

The no sltip boundary condilion is used at all the wall boundaries. Either the temperature or its gradient is
specified at each of the walls. The use of the staggered mesh creates some problems of its own at the
boundary walls. The temperature is evaluated at the cell center, and ali the surrounding temperatures are
one grid spacing away, except when that cell borders the cavity. Tn that case, special differencing tech-
niques are required for the evaluation of some of the derivatives because of the half grid spacing to the
wall, The evaluation of derivatives for fluid velocities that are parallel and adjacent to a zero velocity
boundary, such as V, at the top and bottom of tiie cavity, also require that special differencing techniques be
vsed.

For example, the second order derivative *¥,/dx* can be approximated using the finite difference equation
F¥, 4
¥= 3—(AT)2(2‘P,._,,_.— IY + ¥, )+ Of(A)]
where one point is Ax/2 away (half grid spacing), and another point is Ax away. Difference equations of
this variety were required at the boundary walls.
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8 The Complete Simulation

‘The complete simulation requires the solving of neutronic, thermal and themalhydraulic equations. These
equations will be coupled by fission heat production, temperature and density feedback. This temperature
feedback in the fuel will be in the form of cross-section changes and int the form of changes in density (and
hence scattering cross sections) in the coolant and moderator.

8.1 The Problem QOutline

The problem is set up in three regions. The first region (from the left) is fuel, he second region is coolant
and the third region is moderator. The simulation in its present form is in two dimensional Cantesian geom-
ety (X-Y).

Figure 8.1-1: Problem Geometry

The time dependent multigroup diffusion approximation is used to model the flux behavior in all three
regions. Thermal conduction is used to calculate the temperature of the fuel. The parabolic form of the
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conservation of momentum, mass, and energy equations is used to calculate the fluid velocity, pressure and
temperature {enthalpy) respectively. Density of the coolant is updated explicily using the thermal expan-
ston coefficient and the temperature.

The boundary conditions on the left and right for the neutronics is reflective while Marshak (free surface)
boundary conditions or a water reflector {partial reflection) are used at the top and bottom boundaries. The
continuity of neutron flux and current are the boundary conditions used at the two interfaces between the

regions.

The left boundary condition, for thermal conduction in the fuel, is reflective as are the top and bottom
boundary conditions. The thermal boundary between the coolant and moderator is insulated (reflective
boundary) and the boundary between the fuel and the coolant has continuity of temperature and heat flux
boundary conditions. The inlet (bottom} temperature for the coolant region is fixed and the outlet tempefa-
ture is allowed to drift. Fission heat generated in the fuel is transferred by conduction to the coolant, which
transports this heat away by natural convection.

The left and right boundary conditions for the fluid in the coolant region are fixed walls while the top and
bottom boundaries are open, across which a fixed hydrostatic pressure gradient is maintained, A vertical
extension upward may be made to the walls of the coolant region (not shown in figure 8.8-1). This feature
was added to allow the flow to "settle” before encountering the constant pressure boundary at the top,
These wall extensions are thermatly insulated.

8.2 Spatial Differencing and Matrix Structure

The program has two main data vectors and associated matrices. The first data vector contains the informa-
tion for calculation of the flux: group flux, temperature it the three regions, and delayed neutron precursor
density. The sccond data vector contains the information for the thermalbydraulic simulation: the fluid
velocity, pressure and temperature, The coolant density and temperature is the primary area of coupling
between the two sections of the code. This information is shared between the two data vectors,

?1 = [$||$2| . 'EGI T,E‘.] ?2 = [V-" V,'F' .?-:‘]
where T(f) = [Tﬁ,pfm' de,mm]

is the temperature is the three regions. If ¥, (1) is a variable and T(r) is the data vector that contains all the
data points of that variable, then the ordering of the data vector will be

'\T-"(:):[‘Pm(r). \Pm(z)...w,__’(:)...'i',‘__']
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8.2.1 The Jacobian Matrices

The Jacobian matrices that arise have a very definite structure. The problem is set up to make maximum
usage of this structure. The Jacobian matrix is defined as

E E3490))
ax(1)
The continuous time solution of the problem is approximated by that of a linear system,

A=

d— e— =
X =AX()+B

The nevtron multigroup diffusion equation is a linear partial differential equations (PDE), hence the Jaco-
bian matrix for this problem would be constant for constant propertics. Some adjustments (o this matrix are
required for eigenvalue (k effective) adjustments and changes in material properties. The Jacobian matrix
for the thermalhydraulic simulation is constantly changing (assuming that the simulation is not at a steady
state} due to the nonlinear PDEs being solved.

The Laplacian term (V2¥) in the various equations will give rise to a block tridiagonal Jacobiun matrix (as-

suming central second order differencing is used). Let us assume that the equation of interest has the form
2 g 2
5‘%’&,:) =oV'Y

This equation is then spatially discretized using five point differencing,

d¥; (1) _ u{ (W ()29, N+ Y ;. |(f))l (Wi (-2, () Y, |,,(’)):|
dt @yy ' (Ax)?
The data vector is ordered as previously outlined and a vector equation representing the above difference
equation is
d

-é;-‘i‘(t) =AM +B

The self feedback matrix Ay, will have a block tridiagonal structure due to the Laplacian term in the cqua-
tion. It can be expressed as, A, = 0y where /pis the general form of the block tridiagonal matrix of dimen-
sion (n,n, x a.n).

IT1 ] 0 .. 0]
Ly M w .. 9
A
0 .. D] (M ]
[0 .. 0 [D] [n]

The matrices T and D are tridiagonal and diagonal (n, x n,) matrices that are defined as,
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T = =2[1(Ac) + 1KAY ¥, + (LAY I,
D =AY,

where /' is a square matrix defined as,

01 0 .0
1 0 1 0
=l ..
0 .. 1 0 1
0 .. 01 0

and / is the identity matrix (the subscript n denotes the dimension of the matrix which in this case is equal
to n,). 1t can be seen that the Ay, matrix hus a five banded structure with the outer two bands quite widely
separated from the central three bands depending on the dimension a,. The matrix 7r will be useful in
describing the structure of any Jacobian matrix of a spatially differenced PDE that contains a Laplacian.

8.2.2 Neutron Diffusion and Thermal Conduction

‘The neutron multigroup equation in discretized form is

ldq,, (0)=D, (D L) =207 () + D, n(!)) (5, (0 =208, (1) + D5, (1))
v, dt (Ay) (Ax)?

, K
E@L,0+ Z Z, @0 + % (1 =) ): (R AOLDN WA

_c'm B*Zv DO =2CHD)

where the superseript g denotes the energy group for the cross sections and flux, and the superscript &
denotes the neutron precursor, C,(7, 1) = C‘,fj(z). The neutronics equations can be arranged into a matrix
equation

d— S — X — -
E(I),(:) = ,E] A«x.x '!(br'(') + ‘% A@.Cu.t)ck(l) + Be
d —d (] — —
Icz(‘ )= E lAcm.,-;q’,-(f }-AC0)

by ordering the data into a vector as previously outlined. In practice, up to fourteen delayed groups (photo
neutrons included) have been used, but {the more common value of) six delayed groups are used here (K =

0).
‘The matrices used in the neutronics matrix equations can now be defined as

A= E e+ X (L= BV E M, +v [E ], +D LS . (n=n,,)
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S =1 for g=g
=0 for g=g’
Aocenn= \',qu.f,. Aggpan = BV, Z e,
These group flux vectors may be brought into one Large vector that contains all the group flux vectors, This
will be called flux vector. Similarly the delayed neutron precursors can be brought into one large vector,

&0 =[F ... 3]

= =T, .\ = - T
cw=[cT. T, ... Tun)
The matrices Agq and Ao can be written as block matsices,

A-m.n Aw.cl A@Cu.l) A-zvcu..'.‘)
Aeo=| . . . Age=

LA"(G.N A@(G.G! AQ‘C(G.I) A'«NHG.A"

The thermal conductive equation for a homogeneous medivm with a fission beat source term

aTFE,)_ I[ & gy
L5 T kYT

is used in this problem. The difference equation is the conductive equation in Section 6.3, with addition of
the fission source term,

dT (1) L[ ('-rgJ‘u(t)—27],,(f)+7'.44('))+(T.-.14(1)-27}.,(!)+7}-n.,(1))'|

dr pC, ByY (Ax)? J

W g .
* p_c}'glzfx'q)} ()

As with the neutronics equations, the temperature equation can be placed into a matrix form by ordering the
data points into a vector,

%T{r) = AT (1) + A @(f)

where
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For the neutronic and thermal conduction simulaton, the matrix equation has the fonm

I"}.l(”=_.'| Ty =l A A 0 |+ B,

L.(_,.U) l“"‘r-:: 0 Age EU) 0
where B is a vector that contiins boundary condition information (if required). The block diagonal
matrices for the flux, Ag,, ,,, and the self feedback matnix for the temperature., Ay 7, are block tridiagonal
matrices due to the two dimensional Laplacian term in their rte equations. The oft-diagonal block
matrices for the flux, A, ,, (i # ). will be diagonal matrices that contin the growp o group scatiering
information. Block matrices comprise the cross term matrices, such as Apg., and are all diagonal matrices.
The self feedback matrix for the delayed neutron precursors, A -, will also be a diagonal matrix that con-
tains the decay constant information.

8.2.3 Thermalhydraulic Equations

The data points for the thermalhydralic simulation are arranged using the ordering scheme given in Sec-
tion 8.2 but, the width in the X direction is that of the coolant region (e, n, = [n,] ). The five point
differencing scheme

+ay'¥ e rayY

i ly [N} N Pigel

d
;-‘P,_J(I) =ap¥,  +aV¥

used for the thermalhydraulic variables of velocity (X and Y directions) and the temperature (or enthalpy) is
given in Section 7.1,

‘The data vectors {V,, V,, P, T} comprisc the main time dependent data vector, Xy(f), and contain all the spa-
tial points for {V,(i,j), V,(i.j) P(i, /), T(i,j)} respectively. The density is not included in this ime depen-
dent data vector as the density is not explicitly a function of time. Density as a function of wemperature is
calculated using the equation for thermal expansion'*’,

Pii= E"BB(Tu -7)
where P is the density at some reference temperature, T, and  is the coefficient of volumetric expansion at
that temperature.,

102 Bird, Stewant & Lightfot, (1960) p 299
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For the thermadhydraulic simutation, the matrix equation has the form

[V A, 0 A, 07V

k=4

ix:(:)=i v | 0 A Ae ORIV
dt dt P(1) Ap, A,;’ 0 Ay P() R

10 0 0 0 Ag]| T

n

W x| o )

T

The B vectors contain some boundary condition information. The block matrices along the diagonal for
velocity and temperature A, A,, A, will have a block tridiagonal structure due to the five point differenc-
ing that is uscd, bul their elements can not be as casily defined as in Section 8.2.1 because of ihe nonlinear-
ity of their original PDEs. The elements of these matrices are velocity dependent as discussed in Section
7.1

The four coupling matrices between the pressure and the velocities all have two bands of varying band
width. The matrix A,, has a band on the diagonal and one on the superdiagonal, A, has a band on the
diagonal and one on the subdiagonal, Ay, has a band on the diagonal and one a1, above the diagonal, and A,
has a band on the diagonal and one a, below the diagonal.

The coupling matrix between the temperature and the pressure is equal to A multiplied by G.,

Apr = G A, and hence, will have five bands, The matrix A, will be zero if G, is zero, which is the case
here. That effectively decouples the velocity/pressure calculation from the temperature calcolation, This
allows the pressure/velocity calculation to be solved using a partitioning scheme, for greater numerical effi-
ciency. Either a block tridiagonal solver or a Gauss-Seidel Solver (using successive over relaxation) is
used. It was found that an implicit solution in time had greater numerical stability.
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9 Programming and Coding

The simulation is written using the C programming language for the UNIX operuing system. The program
in its present form will run on any machine running tnix/Xenix but can be casily ported o any machine
with a C compiler. Some of the mathematical subroutines are available in assembly language for the Intel
386/387 and it is advantageous 1o use the assembly languag.: routines (if you are using a 386/387 or 486
processor) for increased speed of execution. C is programming language of choice duee to its flexibility and
its suitability for use in a Unix environment.

An understanding of C is necessary in order to follow in detail the listings of the various routines, The
main routine is the most complicated and a generl explanation will be given for its sections. Explanations
will not be given for the other routines due to their relative simplicity.

9.1 The Main Routine

The main routine sets up the problem, handles the data input and output, memory allocation and generally
controls the solution of the problem. The filling of the arrays, with the exception of the pointer armys, and
the solution of the problem arc all handled by subroutines. The main iteration loop calls several subrou-
tines that handle filling the matrices for the lincar system problem (Jacobian matrix), niking any necessary
adjustments before using the solver routine, solving the lincar system problem and making updates 1o the
accounting variables. The main routine controls the simulation but the actual work is carried out in the
subroutines.

The following is a general description of the main routine. It explains, section by section, the operation of
the code.

1 Include the necessary files, The include file react.i ntains declarations for some of
the custom routines in react.c. The include file ma %) contains the declarations for
the custom mathematical routines.

2 Declare all the exiemal (global) variables. This includes the array pointers, the arrays
containing the delayed neutron data, and some format character strings.
3 Begin the main routine.
1 Declare all the local variables. The routine for handling some interrupts is

defined as sig_handle.
2 Read the problem data file.
3 Check the problem control input and set the condition of various parameters.

4 Calculate the various constants for the finite difference mesh and calculations.
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10

11

12

13
14

Request memory allocation for the arays (data vectors, matrices and pointer
arrays), and check that memory was allocated.

Fill the pointer arrays and subdivide the data vectors into their components.
Initialize the band arrays, the integer arrays that indicate matrix band position.
Allocate memory for the banded matrices and the block tridiagonal matrices.
Open and read the cross sectional data file (binary).

Initialize the data arrays using either a "cold start” condition or the restart
binary fie.

Open the plot file and the status file and write initial conditions to the plot
file.

The routine Flux initializes the Jacobian matrix for the neutron diffusion
problem. The routine Thermal initializes the Jacobian matrix for the thermal
conduction problem.

The therma! feedback coefficicnts are calculated.
The main loop begins.

The routine Fiuid calculates the coefficients of the Jacobian matrix
for the thermalhydraulic problem.

Step size control for the neutronics problem, both static and tran-
sient, is imptemented. The routines RKSI_GS and RKSI_LUb are
used to solve the static neutronics problem and RKSI_GS_N and
RKSI_LU_N are use to solve the transient problem. All these
routines use the semi-implicit Runge-Kutta method of time integra-
tion.

Adjustments are made to the thermal feedback coefficients.
K-effective is calculated for static simulations using Chebyshev

acceleration. The routine AdjustX adjusts the coefficients of the
neutronics Jacobian due (o the change in K-effective.

Step size control for the thermalhydraulic problem is implemented
and an implicit Euler method is used to solve the time integration.
‘The linear system problem is solved using matrix partitioning and
block tridiagonal matrix inversion.
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6 The routine Density 1s used 1o caloulate the covlant density. The
mean coolant density is calculated and is used in the routine
XSCoolant 10 calculated new cross sections in the coolant and
update the neutronics Jacobian.

7 Time is advanced and the plot file is updated as required. The
results of this iteration are writien cither o the monitor or o the
status file. The time step size is adjusted if required.

8 This is the end of the main loop. The decision is made whether o
end the simulation or iterate again. If an emor condition has
occurred, the simulation may terminate before this point.

15 The conservation of mass error for the themmalhydraulic simulation is calcu-
lated using the routine Mass. The mean and the variance of the mass error is
calculated.

16 The problem statistics: CPU time, total simulation time, mean flux and
K-effective are displayed.

17 The state of the simulation is saved in a binary file if requested (restart file).

18 The problem results for both the neutronic simulation and the thermalhy-
draulic simulation is printed out in ASCI] files. Flux maps, wmperature maps
and flow maps are printed if requested.

19 This is the ¢nd of main routine.
4 Several ancillary routines are defined.

5 End of file.

9.2 Jacobian Matrix Routines

There are several special routines mentioned above that calculate and store the coefl ficients of the two main
Jacobian matrices. The two main routines are Fitr and Fluid which calculate and store the coeflicients for
the neutron diffusion problem and the thermalhydraulics problem respectively. The routine Thermal calcu-
lates and stores the coefficients for the heat transfer probicm. The neutron diffusion and heat transfer prob-
lems store coefficients in the first Jacobian, called the neutronics Jacobian, and the hydraulics problem
{fluid velocity and pressure) store cocfficients, in the second Jacobian, called the hydraulics Jacobian,

The routines AdjustK and XSCoolant make adjustments to the neutronics Jacobian duc 10 changes in the
K-effective and the cross sections in the coolant respectively. The routine Fluid calculates the coefficients
for convective heal transfer in the cootant which are stored in the neutronics Jacobian for use in solving the
heat transfer problem. Fluid is the only routine which calculates coefficients for the hydraulics problem.
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All these routines both calculate and store the coefficients for the two Jacobians. Some further manipula-
tion of the Jacobians is usually required before the time integration can be solved.

9.3 Mathematical Routines

The most important mathematical routines are the time integration routines. Semi-implicit Runge-Kutta
integration is used for the neatronics problem. This algorithm requires matrix inversion and two methods
of matrix inversion, Gauss-Scidel iterative method and LU decomposition are used. Separate versions of
the algorithm were required for the static and transicnt simulations, therefore four different versions of the

algorithm are available.

‘There are many vector and matrix routinegs used, most are quite simple. Some special matrix handling rou-
tines are available for dealing with the banded matrices.

Matrix Inversion Routines

‘There are three types of near system solver routines that are used: the Gauss-Seidel iteratve, the LU
Decomposition method (Gaussian elimination), and the Generalized Conjugate Gradient method. All of
these types of routines can be used for the solution of banded and full storage problems. Each of these
methods has its attributes and liabilites. A more detiled discussion of these methods may be found in
chapter 5 - Numerical Methods.

The matrix to be inverted is not modified when the Gauss-Scidel method is used. The zero bands of a
banded matrix can be ignored allowing the storage of only the nonzero bands. The banded Gauss-Seidel
solver routine that is used here requires only the nonzero bands of the matrix. An integer arvay is used to
tell the subroutine where these bands lie with respect to the ceatral band,

Standard 1.U decomposition routines are very common and hence there is little need to discuss them here.
Block tridiagonal matrix inversion is an LU decomposition type algorithm which is useful for the matrices

that typically arise with the finite differencing of PDEs.

Al these algorithms are discussed in more detail in the Numerical Methods chapter.
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10 Simulation Results

The overall simulation has two distinct components, the neutronic simulation and the thermaihydraulic sim-
vlation. The thermathydraulic simulation is a new method therefore it is extensively tested. The neotronic
simulation by itself would not be new but the combination of the neutronics and thermathydraulics with
such direct coupling is new. Much effort has been placed on writing efficient code, and pivotal to efficient
code are solution methods for the linear algebruic problem as this is where the majority of CPU time is
spent. A comparison of the solver methods entertained is given in the next section.

CPU Time Reporting

CPU time is allocated to a process in time-slice increments when using the UNIX operating system. The
reporting of the CPU time used by a process is given as the number of time-stices used, the size of which is
dependent on the processor. The machines used are: an IBM Model 80-111 running Xenix/386 which has a
time slice of 0.02 seconds and an IBM RS&0() running ATX which has a time shice ol 0.01 seconds. All of
the comparison runs for the matrix inversion problems were run on the IBM Model 80 therefore, the CPU
times quoted should be accurate to within 0.01 seconds. However, occasionally the operating system must
use the CPU to perform house keeping dutics and the associated swapping of processes will add to the CPU
time used by a process. The simulations for the thermalhydraulic benchmarking and all of the combined
neutronics - thermalhydraulics simulations were run on the IBM RS60(K). Not all machines are created
equal and the CPU time for a given simulation will depend heavily on the machine being used.

10.1 Linear Algebraic Problem - Matrix Inversion

Different methods of matrix inversion'™ are compared on the basis of execution time for different matrices.
The intention is to show which methods are best suited to which type of matrix. The problem to be solved
has the form

AX=B
where A and B arc known. There are three classes of methods of solving the linear system problem: direct
methods, iterative methods, and semi-iterative methods. LU decomposition (LU), banded LU decomposi-
tion (LUb), tridiagonal LU decomposition (triLU), and block tridiagonal LU decomposition (bliril.l]} are
{he direct methods that are tested. The Gauss-Seidel (GS) iteration, and the successive over relaxation
method (SORY) are the iterative methods tested. The conjugate gradient (CG) method, the boosted conju-
gate gradient method (BCG), and the gencralized conjugate gradient method {GCG) are the semi-iterative
methods iested. All the iterative and semi-iterative methods can be implemented using the banded storage
method presented here,

103 See section 5.5 for a description of cach method.
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Direct versus Ierative methods

A common matrix type found in the simulation is a block tridiagonal matrix {or five banded) where the
block diangonal matrix is Uidiagonal and the block superdiagonai and subdiagonal matrices are diagonal
matrices {see section 7.2.1). Five coefficients can be used to represent the test matrix, one for ¢ach band in
sequence. Cocfficient g, is element in the first band (the diagonal in the block subdiagonat matrix}, &, is
for the second band. et cetera. In order for the matrix to dizgonally dominant, the element in the central
band, a;, must be larger in magnitude than the sum of the magnitedes of all the other clements (sec appen-

dix E).

The methods compared are Gauss-Seidel (GS) for banded and full storage, Gauss-Seidel with Successive
Over Relaxation (GSSOR) for banded and full storage, 1.U decomposition, banded LU decomposition™,
and block tridiagonal LU decomposition. The first dimension indicates block size (square), and the second
dimension indicates the number of blocks along the block diagonal. The block size will determine the
bandwidth of the matrix, and the overall dimension of the system is the product of the block size and the
number of blocks. Both C and assembly language versions of the solvers were used.

‘The results given in Table 10.1-3b are shown in Figure 10.1-1.

Problem #1: Coefficiemts: 1.0, 1.0, 4.5, 1.0, 1.0

Dimensions: 10, 10 10, 20 20, 10

Method C Asm C Asm C Asm
GS 15.52 7.20 69.89 31.82 69.99 31.96
GSSOR 6.27 443 28.62 12.86 28.89 1293
GS - banded 1.10 0.65 252 1.45 2.50 1.45
GSSOR - banded 043 042 na'® 062 na 0.62
LU 1.07 0.68 440 2.80 7.03 4.73
LU - banded 0.19 0.13 040 0.28 1.24 0.93
Block Tridiag 0.27 0.17 0.58 0.39 1.66 1.15

Table 10.1-1: Matrix Inversion, Problem 1

104 The method is a banded method but full storage is actually used (see section 5.5).
105 The method did not converge,
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Problem #2: Coctiicients; L1 1O, -5.0, LOLOS

Dimensions: 10, 20 20, 10 15, 20 0,18

Method C Asm C Asm ¢ Asm C Asm
GS 3596 1 1675 ] 3690 | 1700 84.39 | 3896 | 8528 | MsS0
G3SOR 2088 9.64 2189 | 10.07 S0.52 1 23.07 | 5279 ] 2365
GS band 1.34 0.78 1.36 0.80 211 124 212 1.25
GSSOR band 0.76 043 0.82 0.50 1.33 078 1.34 078
LU 441 2.82 6.96 471 1320 1 8.0 16.12 | 191
LU band 0.39 0.28 122 091 1.17 0.87 195 1.46
Block Tri 0.58 0.38 1.66 1.16 1.67 1.15 264 1.84

Table 10.1-2: Matrix Inversion, Problem 2
Problem #3: Coetficients: 1.0, 1.0, -6.0, 1.0, 1.0
Dimensions: 10, 20 20, 10
Method C Assembly C Assembly
GS 25.68 11.50 25.81 12.01
GSSOR 18.48 8.51 18.56 8.58
GS - banded 0.93 0.54 0.93 0.54
GSSOR - banded 0.76 042 0.75 0.41
LU 437 2.80 6.98 4.76
LU - banded 0.38 0.28 1.22 092
Block Tridiagonal 0.58 0.38 1.67 1.16
Table 10.1-3a: Matrix Inversion, Problem 3a
Dimensions: 10, 10 12,12 15,15 18, 18 20, 20 22,22
Method Assembly | Assembly | Assembly | Asscmbly | Assembly Assembly

GS 2.82 6.07 1545 32.49 49.44 75.33
GSSOR 1.90 442 10.79 23.51 35.76 53.93
GS - banded 0.25 0.38 0.63 0.91 1.14 1.41
GSSOR - banded 0.18 0.28 046 0.71 048 1.05
LU 0.67 1.63 4.84 11.74 19.68 31.79
LU - banded 0.13 0.26 0.63 1.29 192 2.84
Block Tridiag 0.18 0.36 0.84 1.67 2.54 3.67

Table 10.1-3b: Matrix Inversion, Problem 3b
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Figure 10.1-1: Matrix Inversion Methods
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Coding: C Language versus Assembly Language

A comparison was made between the C language and the assembly language versions of he solver rou-
tines. From the above tables, it can be seen that the routines benefit by different amounts in the conversion
to assembly language. A mean ratio of the CPU time for the C language version over CPU time for the
assembly language version was calculated for the solver routines.

Method (1]
GS 217
GSSOR 2.19
GS - banded 1.72
GSSOR - banded 1.72
LU 1.50
LU - banded 1.35
Block Tridiagonal 144

Table 10.1-4: Matrix inversion, C versus Assembly

Conjugate Gradient Methods

There are several variations of the conjugate gradient method. The original conjugate gradicat method (CG
method) is designed for use on symmetric positive definite matrices. The generalized conjugate gradient
method (GCG method) can be used for any nonsingular mairix, but the convergence propertics of the
method are not as good as the CG method. The boosted conjugate gradient™ method (BCG method) is a
modified version of the CG method that is suppose to be useful for a targer class of matrices. These three
methods are compared for a number of test problems.

The test matrix was a five banded matrix

(g, a, 0 g . . . . 0]
a d, 43 0 a . . . 0
0 @ ay ¢, 0 a0 . . 0
a, 0 a a, a 0 aq 0
A=|0 a, 0 g a a 0 a 0
0 g, 0 a a ay 0 g
0 a 0 a a, gy 0
0 a 0 a4 a a
| 0 . a4 0 a af

106 S.R. Vatsya (1989)
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with a diagonal band, a band one above and below Lhe diagonal, and a band three above and below the
diagonal. The system dimension was vanable and the coefficients, fa J (i=0,4), were varied so that the
matrix could be symmetric or asymmetric, positive definite or not positive definite. The coefficientm
denotes the number of memory veetors that are used. The more memory vectors that are used, the less is
the problem of loss of orthogonulity. The residue is defined as r = b - Ax. The magnitude of ibe residue
vector of a solution is given as a measure of the convergence properties of the method., the smaller the Tesi-
due vector, the beter the solution. The magnitude of the residue vector for LU decomposition is given for
comparison. The nuinber n denotes the system dimension and the number of iierations of the algorithm.

Case 1; Symmetric matrix, n=8, &, = -4, 3, = L0 (i=0,1,3.4);

m=1.2.3
LU CG BCG GCG
1.06x 10" 1.19x10™ 8.49x107 7.65x10"°
" 5.18x10% 1.48x10™" 9.2ix10"°
" 2.23x10% 7.37x10* 1.33x107°

Table 10.1-5: Conjugate Gradient Methods 1

Case 2: Asymmelric matrix, n=8, a,=-3.2, 3, = 1.2, 3, = 1.0 (i=0,1,4},

m=2,34.5,6,7
. /

LU CG BCG GCG -
7.03e-15 0.0135 0.287 1.58e-14
" 0.0049 0.0352 1.46¢-13

" 0.00122 0.0007 3.34e-14
o 0.00039 0.0238 1.46e-14
" 2.67e-6 0.0157 1.62e-14
" 7.02e-15 3.89¢-15 1.44e-14

Table 10.1-6: Conjugate Gradient Methods 2

Case 3: Asymmeltric matrix, n=20, a, = -3.2, 3, = 1.2, 3,= 1.0 (i=0,1,4);

m=1,3,5,7
LU CG BCG GCG
1.99¢-15 0.0364 0.351 2.38e-5
" 0.0162 0.0971 1.51e-5
" 0.00605 0.0597 4.18e-6
" 0.00037 0.0112 5.04e-6

Table 10.1-7; Conjugate Gradient Methods 3
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Case 4: Asymmetric matrix, n=20, 2, = -3.2,a,= 2.0, 0, = LO (i=0,14%

m=3.5.7
Ly cG BCG GG
7.76¢-15 141 1.316 8.2
" 1.395 1.31t hELA
" 1.287 1.284 1.54e-5

Table 10.1-8: Conjugate Gradicnt Mcthods 4

Comparison of The Banded Solvers

The three primary types of methods. direct, iterative and semi-ilerative, can be written a form that exploits
the sparsity of a matrix. The semi-iterative methods, conjugate gradient and generalized conjugate pradi-
ent, can be written in a form that uses the same banded storage scheme as the Gauss-Seidel sodvers. The
two banded direct methods, banded LU decomposition and block tridingonal LU decomposition, use a
storage scheme that is unique to them. These methods were compired for increasing matrix sizes using the
first matrix (problem #1) that was used o compare e direct and iterative methods. The iterative and semi-
iterative methods were run until the error in cach element was within JO™', This error is the same onder of
magnitude as the direct methods. These results are shown in Figure 10.1-2,
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10.2 Benchmarking the Thermalhydraulic Simulation

The equations used for benchmarking had three adjustable parameters, eravity, G, and Ra (Section 4.1.3
gives a detail explanation of the benchmark equations). ‘The range of Rayleigh numbers used 18 Y wo 1r,
and the Prandil number was taken to be fixed at Pr = 0.71, as suggested by De Vahl Davis and Jones. The
thermal expansion coefficient B was calculated using the given Rayleigh number and gravity. The true
value of G, for water at standard temperature and pressure is approximately 2¢/¢ (m /8%, The value of
G, usced in the beachmark simulation will depend on the units used for pressure and density. The pressure
unit used here is kPa. density is in g/cnr’ and hence the wrue value of G, for the normalized pressure is 2xItP
(see Section for the definition of the normalized pressure). The effect of varying G, from well below to
well above its true value is reflected in the range of G, used in the numerical simulations, 107w 10",

Progressively finer mesh sizes were chosen for each Rayleigh number untit the computation became 0o
expensive or memory limits were reached. Spatial truncation error will be reduced as mesh spacing is
reduced. De Vahl Davis explored the question of solution accuracy as a function of miesh size in the bench-
mark solution. He extrapolated the results of progressively finer mesh sizes to the theoretically correct
result that would be obtained using an infinitely fine mesh. He concluded that the results (or the course
mesh sizes (Ax > 0.05) were unreliable for high Rayleigh numbers (Ra > 10%).

The mass error is the sum of all the mass entering less all the mass leaving a control cell. Ideally, ina
steady state situation, the mass entering and leaving a control cell will be equal. The variance of the mass
error is the criterion that is used to determine the goodness of the solution. The variance will give an indi-
cation of the imbalance that exists between the individual conuo! celis. The mass ervor can be calculated
from the conservation of mass equation,

1 [ 7 i : f N . .
€ =E[V,(h})p(l + 12, /)= V.4 - 1,j)pti - 112, /)]
I i, i s ..
Ty HOPET 112)=V,(i,j = Dpti,j - 12)]

where ¢, ; = mass error. The mass error variance is the computed variance.

="'1_§ Hi(e.'_,_a:

N, inljul

where 7 is the mean of the mass error. The value of G, will have a great effect on the mass error varance.



10.2.1 Transient Heat Flow

Conductive and convective heat transfer are the two mechanisms by which thermal energy moves from the
hot wall to the cold wall. It can be shown (see Appendix D) that the total amount of thermal energy mov-
ing through a plane that is parallel to the hot and cold walls is given by

L of
Q)= J; (TV‘ - aa—x)dy

This expression is cvaluated at several x locations 10 chart the flow of thermal energy through the fluid.
Thermal energy will be stored within the fluid, which causes a time delay as the fluid temperature changes.
Initially, all the heat transfer is from the hot wall to the fluid. Eventually the fluid begins to transfer this
heat to the cold wall. Steady state is reached when the heat transfer at the (wo walls balances (and all inter-
vening planes that are parallel to the walls).

The Nusselt number

as uscd by De Vahl Davis & Joacs in their comparison exercisc, gives the heat transfer through a plane
parallel to the hot and cold walls by thermal conduction only. This expression is true at the hot and cold
walls where the velocity in the x direction is zero. The more complete expression is (¥(xJ), which De Vahl
Davis refers to as Nu, in the benchmark solution.

The total heat flux in the x dircction is charted as a function of position at times equal to 0.05s, 0.15, 0.15s,
0.25, 0.5, & 1.0s for a 20x20 cell amray with G, equal to 10° (approximately the compressibility of water).
This is shown in Figure 10.2-1. The planes are located at the center of the pressure cells with the cell num-
ber indicating position.
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Figure 10.2-1: Transient Heat Flux

- 101 -



10.2.2 The Effect of G,

In another set of experiments, the effect of the parameter G, is examined for Rayleigh numbers of 10° 10
10° using a 16xi6 cell array. The simulation was run for 100 iterations using & fixed time step of

{Ar =0.01(s)). The mass error variance is plotted in Figure 10.2-2 as a function of the parameter G,, which
is varied from 107 to 10", A smaller value of variance indicates a more converged solution. The results
demenstrate that simulations using larger values of G, converge at a greater rate.

Variance versus Compressibility

1.0E+03 pr

GOIL ——
-
= :
m
o
@

2 3 4 5 6 7 8 9 10 11 12
Log G1

Figure 10.2-2; Variance versus Compressibility
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10.2.3 Steady State Solutions

Converged solutions for simulations were sought using the various Rayleigh numbers. The ¢, parameter
used was whatever value had good convergence properties, as only the steady state solution was desired.

In Table 10.2-1, Vx(max) is the maximum horizontal veiocity at the vertical mid-plane, and ¥ is the location
on that plane. Vi(max) is the maximum vertical velocity at the horizontal mid-plane and x is the location
on that plane. ‘The mean value of the heat flux in the x direction (Q(x) as described in section 6.1} is liswed.
The value given for the published results is the mean Nusselt number and not the total heat flux.

Figures 10.2.3-1 to 10.2.3-4 are the velocity vector plots for the 20x20 mesh using the variows Rayleigh
numbers. The velocities are normalized therefore the vector lengths indicate relative velocities. The velo-
cities listed in Table 10.2-1 give a better indication of absolute velocities.

Array Rayleigh Vx(max} ¥ Vy(max) X Q,(mean)
16x16 10° 3.502 0.844 3.557 0.156 1.107
20x20 10° 3.569 0.825 3.608 0.175 1.108
30x30 10° 3.602 0.817 3.638 0.183 1111
36x36 10° 3.610 0819 3.652 0.181 1.112
Published 10 3.649 0.813 3.697 0.178 1.118
16x16 10 16.576 0.844 18.340 0.094 2.255
20x20 104 16.597 0.825 18.932 0.125 2.251
30x30 10* 16.577 0.817 19.507 0.117 2.250
Published 10t 16.178 0.823 19.617 0.119 2.243
16x16 10° 40.170 0.156 66.308 0.906 5.282
20x20 10° 38.888 0.875 70.518 0.075 4,859
30x30 10° 38422 0.150 69.376 0917 4.845
Published 10° 34.73 0.855 68.59 0.066 4519
10x10 10° 107.519 0.906 261.635 0.969 13.720
20x20 107 110.262 0.875 231.937 0.025 13.522
30x30 10¢ 73433 0917 207.170 0.050 8.751
Published 10° 64.63 0.850 219.36 0.0379 8.800

Table 10.2-1: Steady Stace Benchmark Simulation Results
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10.3 Convective Flow Through a Vertical Channel

The thermalhydraulic problem that is solved in the reactor simulation is convective flow through a vertical
channel (see Figure 8.1-1). The properties of the fluid were that of 50 *C water, which was used in all
subscquent flow simulations. The boundary conditions at the top and bottom are a constant hydrostatic
pressure pradient. Cold fluid enters the bottom of the channel, is warmed by the left wall and exits through
the top. The left wall is at a constant temperature for the flow simulation but varies in the combined simu-
lation. The right wall is thermally insulated. It was found that a modification to the channel was required
for less erratic behavior. A vertical extension was made to the top of the channel where both right and left
walls were thermally insulated. This allowed a separation between the top of the hot wall on the left and
the constant pressure boundary at the top.

The behavior displayed by the flow is chaotic in nature. The simulation showed litle indication of con-
verging 10 a steady state solution however its behavior was bounded. The geometry of the problem had a
great effect on the behavior of the fluid as was shown in two series of simulations. Both simulations vsed 8
points in the X direction with a mesh spacing of 0.125 (cm). Both simulations used the same number of
points in the Y direction, 8 point for heated wall section and 16 points for the riser section, but differed in
the mesh spacing. When a course mesh (10.0 cm.) was used the flow showed general trends but did not
develop into any regulas patterns as shown in Figure 10.3-3. When a finer mesh was used (1.0 cm.) the
flow would develop into a regular pattern as shown in Figure 10.3-1. A phase plot of the average vertical
velocity versus the coolant temperature is given in Figure 10.3-2, which clearly shows limit cycle behavior.
The geometry of the longer ube is closer to that used by the combined simulation therefore unruly behavior
may be expected from the thermalhydraulics in the combined simulation,
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10.4 Neutronic Simulations

The neutronics simulation was checked both statically and dynamically. The check of the static portion
neutronics simulation was a standard criticality calculation (K-gffective). The results of the munuerical criti-
cality calculation are compared against analytical calculations of criticality (See appemdix C). The transient
calculation was checked by comparison against it point Kinetics calculation. The results of these
verification calculations are given below.

Nominal Data Values

The physical parameters used as the input data carae from a variety of sources. The propertics of the fluid
are that of water at 20°C. The thermal properties of the fuel are that of U,8i but, UO, propertics are avail-
able. The cross-sectional information, while being realistic, is not particularly accurate. The main purpose
here is to demonstrate a method and more accurate data would be a priority if real-world simulations were
1o be atiempted.

Fluid Property: Value Units
Conductivity 6.44x10° W/em /°C
Prandtl number 3.55 (none)
Thermal expansion cocfficient 6.1x10” (none)
Density (0 *C) 1.0 gfoem’
Viscosity 547x10° poise
oPidp=G, 2.0x10° kPa /(g fem?)
(see section 4.1.5)

Fuel Property:

Conduclivity 1.5 W fem I°'C
Density 543 g/cm’
Specilic Heat 0.20 Ircipe
Thermal Diffusivity 1.38 cmt/fs

Table 10.4-1; Nominal Daw Values

10.4.1 Static Calculations

Analytical calculations of K-effective were made for some one neulron encrgy group problems. These cal-
culations could then be compared to numerical calculations using a varying number of mesh points. The
results for one and two dimensional are given below.
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The default top and bottom boundary conditions for the neutronics in the two dimensional calculations is 4
water reflector. This is implemented using a Cauchy boundary condition (see Section 6.7.3) specifying a
neutron current over flux parameter (J/d).

Numerical results are given for two neutron energy group simulations. Again, results are given for one and
two dimensions. The two dimensional simulations explore the coolant temperature dependence of
K-effective by holding the coolant temperature at several values (fixed and umiform).

Some results are given with fuel emperature feedback, some without. The fuel temperature {for fixed fuel
properties) will depend on the coolant temperaturc and the neutron flux that is used. If the coolant tempera-
ture is not given, it is assumed to be zero. The flux level for the static calculations is / (** (nfem’ /5). The
fuel-coolant temperature differences is quite small in the static calculations at this flux fevel. The
difference between the fuel temperature and the coolant emperature is proportional to the mean flux for the
relatively low fluxes that are used.

In the following tables, X, is the value for K-effective from a numerical calculation, K, is the value from
analytical calculation, x, is the distance from the left boundary to the fuel/coolant interface, x, is the dis-
tance to the right boundary, and Tf is the mean fuel temperature. Both the left and the right boundaries are
reflective.

Static calculations were done for various geometrics, cither one or two neutron energy groups and either
one or two spatial dimensions vsing a low mean flux level.
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One Dimensional - One Group Static Calculations

A one dimensional, one neutron energy group, two region reactor in Cartesian coordinates is the model for
the criticality calculation. Results are given with and without fuel temperature feedback.

X, (cm) X, (cm) K, K, 77¢C) # points
1.0 2.0 1.01495 1.01260 0.0 50
10 2.0 1.01495 1.01258 0.0880 50
1.0 2.0 1.01495 1.01349 0.0 80
1.0 20 1.01495 1.01348 0.0871 80
1.0 2.0 1.01495 1.01378 0.0 100
1.0 2.0 1.01495 1.01374 0.0868 100
10 20 1.01495 1.01440 0.0 200
10 20 1.01495 1.01438 0.0861 200
15 2.0 1.05975 1.05854 0.0 50
1.5 20 1.05975 1.05915 0.0 100
15 2.0 1.05975 1.05945 0.0 200

Table 1¢.4.1-1: One Dimensional - One Group Siatic Calculations

The values of K-effective versus mesh spacing for the cases with no fuel temperature feedback are plotied
in Figure 10.4.1-1.
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Two Dimensional - One Group Static Calculations

‘Two dimensional, one neulron energy group, two region reactor in Canesian coordinates is the model for
the criticality calculation. In Table 10.4.1-2, x,=1.0 is the distance from the left boundary to the fuel/cool-
ant interface, X,=2.0 is the distance to the right boundary, and height is the height of the rezctor. Resulls
are given with fucl temperature feedback.

height (cm) K, K, 7 (0 # X points # Y points
20.0 1.01250 1.01042 0.08678 100 8
80.0 1.01250 1.01103 0.08678 100 16
80.0 1.01250 1.01089 0.08679 100 32
500 1.01085 1.00853 0.08679 100 20

Table 10.4.1-2: Two Dimensional - One Group Static Calculations

One Dimensional - Two Group Static Calculations

One dimensional two group stalic calculations are included for comparison. All subsequent calculations
use two neutron energy groups. No analytical calculations were done using (wo neutron energy groups
therefore, that resul is not given. These results can be compared 1o the two dimensional calculations using
the same geometry in (he X direction.

X {cm)  Xy{cm) K, 77 (°C) # points
1.0 20 1.08909 00 20
1.0 20 1.07341 0.0 50
1.0 20 1.07220 0.0 100

Table 10.4.1-3; One Dimensional - Two Group Static Calculations

Two Dimension - Two Group Calculations: K-effective versus Coolant Temperature

The dependency of K-effective on the coolant temperature is explored using a two dimensional, two group
static calculation. The coolant temperature is fixed and uniform for these calculations while the fuel tem-
perature is allowed (o vary until coming (o a steady state value. The right boundary condition for the fuel
temperature is the fixed coolant temperature. These results, as shown in Figure 10.4.1-2, can be used to
calculate a bulk coolant temperature feedback coefficient.

The mesh used in the X direction of the two dimensional calculations is slightly different from the 20 point
case above. The fuel is 8x0.125 (1 cm) wide, the coolant is 8x0.125 (1 cm) and the moderator region is
4x0.01 (0.04 cm) wide. Eight mesh points are used in the ¥ direction with the total height being 8x10.0 (80
cm).
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Coolant Temperature Fuel Temperature
('C) ("C)
0.0 0.0939
200 20,0935
50.0 50.0930
100.0 100.092
200.0 200.090

D= 3O == -~

Table 10.4.1-4: K effective versus Coolant Temperature

K-effective versus Coolant Temperature
2 Dimension 2 Group

K effective

1.07414
1.07044
106469
1.05584
1.03508

1.08

1.07

1.06

1.05

1.04

L H

1.03 .
0 50 100 150

Coolant Temparature {C)

Figure 10.4.1-2: K-effective versus Coolant Temperature
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10.4.2 Space-Time Kinetics versus Point Kinetics

The temporal behavior of the space-time kinetics simulation was verifyed by comparison with a point
kinetics simulation. The problem chosen for the verification had to have sufficiently simple dynamics so
that point kinetics would be adequate. The point kinetic model has only one neutron energy group there-
fore effects such as changes in moderation, which require at least a two neutron energy group model, were
not considered. The problem chosen was a one-dimensional (slab) reactor with and without fuel
temperature feedback. The coolant temperature is set at a uniform fixed value therefore no feedback effects
are seen from the thermathydraulics. A step reactivity insertion is used to perturb both the point kinetics
and the space-time kinetics model,

A step reactivity insertion of 2.0 atk is used to perturb one dimensional transient simulations using one and
two neutron energy groups and this output is compared to a point kinetics simulation. The geometry in the
X direction is a three region model where x, = 1.0 (cm), x; = 2.0 and x; = 2.5 and a uniform mesh spacing of
0.1 (cm) was used. The coolant temperature is set ai 20 (Celsius) which in these calculations fixes the tem-
perature at the right fuel boundary at 20 degrees C. The converged resulis of static calculations is used as
the starting point for the transient simulations. The one group static calculation had a K-effective of
0.97089 and a mean fuel temperature of 20.887(C). The two group static results were K-effective =
1.103229 and Tf (mean) = 21.024. The mean neutron flux used in the static calculations was 10" (n/em’s).

The results of the transient simulations for t=20(ms) are given in Figures 10.4.2-1 to 10.4.2-3. Figures
10.4.2-4 and 10.4.2-5 give the results of the point kinetics transient and the two group transient for a longer
time period, t=1.0(s) respectively. This is included as an indication of the longer time behavior of the simu-
lation.
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10.5 The Complete Neutronic-Thermalhydraulic Simulation

The thermal behavior of the completed simulation is dominated by the coolant iemperature. The fuel tem-
perature will foliow the coolant emperature even though the fuel was the source of heat for both the static
and transicnt calculations. [f a reactivity insertion is made at the beginning of a transient calculation, the
reactor power would follow the sume peneral wrend as that for point kinetics initially but eventually the
feedback effects of the fuel and coolant would predominate.

The unruly nature of the thermalhydraulic portion of the combined simulation created problems in the static
calculation. The coolant densily and emperature changed contiruously during the static calculation. It
was necessary o used a time-averaged value of the coolant density in order 1o achieve some sort of ¢on-
verged value for K-effective. Convergence was much less of a problem using the average density.

Combined neutronics-thermalhydranlics simulation results are given below, The power is held constant for
the static simulations which are run until the fuel temperature achieves a relatively constant value. The
final state of the system at the end of the static simulation is the starting point for the transient calculation.
For the transient runs, 0, 2, 4 & § mk reactivity insertions are used to perturb the system. To investigate the
possible effect that flow velocity might bave on K-¢ffective, some static calculations with coustant flow
velocity for the fow flux case were run and the results are given below. The flux level of 10" was initially
used so a low value of fuel temperature would be obtained. The thermalhydraulic behavior was less violent
with lower fue] temperatures,

One experiment used a fixed and uniform value for the vertical flow velociy in a static calculation. The
fuel and coolant temperatures would rise, as expected, for lower values of Vy, but the value of K-gffective
would remain within the previously suggested bounds for low flux levels.

Tcold is the inlet coolant iemperature, 7f is the mean fuel temperature and Te is the mean coolant tempera-
ture in Table 10.5-1.

Vy (cnvs) Teold Q) Te ("C) Kogpeerive
50 0.0 23.154 0.854 1.07331
10.0 0.0 17.668 0438 1.07305
200 0.0 14.124 0.224 1.07331

Table 10.5-1: K effective versus Vertical Flow Velocity
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Static Calculation

A static calculation was made where the thermalhydraulic simulation was unrestricted. The thermalhy-
draulics continued its unsettded behavior but the value of K-effective thiat was obtained, kn = LO7022, was
within the range that would be suggested by the K-effective versus Coolant Temperature calculitions. A
plot of the thermalhydraulic behavior including fuel temperature during the Jast run (the 13th) of the static
calculation is given in Figure 10.5-1.

Static Calculation
with Thermalhydraulics
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Figure 10.5-1: Static Calculation with Thermalhydraulics
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Transient Calculation

‘Ihe delayed neutron fraction for these simulations is 0.008 so that one dollar (1%) of reactivity, making the
reactor prompt critical, would be 8mk. Transient simulations were run for reactivity insertions of 0S, 143,
1725 & 1$. The shorter time scale (20 ms) is used to elucidate the prompt behavior of the simulations and
the longer time scale (0.58), relatively speaking, displays the longer time behavior. The results of atl the
transient simulation are given in Figures 10.5-2 to 10.5-11.

Transient Calculation
with Thermalhydraulics
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Figure 10.5-2: 2 mk Transient - Power versus Time
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Figure 10.5-5: 8 mk Transient - Power & Tc versus Time
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Figure 10.5-6: 8 mk Transient - Power & Tc versus Time (0.05s)
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Figure 10.5-9: 4 mk Transient - Power(log) & Tc versus Time (0.55)
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11 Discussion

‘The objective was 10 model as accurately as reasonably possible the behavior of a reactor with passive
cooling. A pool type reactor with vertical flow tubes cooled by natural convection is the simplest imple-
mentation of passive cooling and it is not an uncommon design (SLOWPQKE for example). The dynamics
of such a reactor are modeled here.

The simulation is modelling a reactor involving both termporal and spaual effects thercfore it is classified as
a space-lime reactor kinetics simulation. However, this simulation has an intepral thermathydraulic module
which is its primary distinguishing feature. The two interacling processes in the model are the space-time
neutron behavior, modeled using the time dependent neutron multigroup diffusion equations, and the fuel-
coolant temperature behavior, modeled using the conservation equations (mass, momentum & energy) and
the rate form of the equation of state. The two physical processes communicate via thermal energy transfer
and changes in cross-sections of the materials. The effect that these changes in cross-sections has upon the
neutron kinetics is usually referred to in terms of reactivity feedback effects.

The only method that would properly model neutron kinetics - thermalhydraulics interaction in a reactor
would be a full core simulation but such a simulation would be impractical and prohibitively expensive.
The simpler approach of using a lattice cell calculation can be used to model the dynamics of the two pro-
cesses and their interaction. Although the thermalhydraulic module could not model coolant voiding,
which is responsible for the largest change in the density and hence the nuclear properties in the coolant,
the geometry and material properties of the test simulation could be chosen so as to maximize the reactivity
effects of the coolant. This inciuded a large coolant to moderator volume ratio and a rather "hard’ neutron
spectrum. A 'hard’ neutron spectrum is when a relatively lerge percentage of the neutrons are epithermal
(out of the therma! range - 0 to 1 eV). A change in coolant density affects the moderation and the produc-
tion of thermal neutrons in turn. The thermal fission cross-section is much larger than the fast fission cross-
section therefore changes in the thermal neutron population have a direct effect on the reactor power. This
effect could be further increased by using lasger thermal expansion coefficients for the coolant but only one
thermal expansion coefficient was used.

The reactor power is nicasured by thermal energy production in the fuel. This thermal energy is transferred
by conduction to the coolant at the fuel/coolant boundary which the coolant carries away by convective
flow. Temperature dependent Doppler broadening of the multigroup cross-sections in the fuel is modeled
using thermal feedback coefficients and the cross-sections of the coolant are directly dependent on the cool-
ant density. Doppler broadening in the fuel is a rapid feedback effect and is therefore included as pan of
the neutronics portion of the simulation. Thermal expansion of the coolant and its effect on Cross-sections
proceeds comparatively slowly and therefore can be calculated separately. The two components of the sim-
ulation proceed with widely differing rates of change. An analysis of this is presented below,
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11.1 System Dynamics

The dynamics of the overall system will be an interiaction of the two components. An examination of the
two systems will show how each behaves and responds w external stimuli. This and & look at the interac-
tion of the two processes will help in the understanding of the behavior of the overall system.

The dynamics of the coolant are only mildly dependent on te dynamics of the neutronics within a normal
range of reactor power. The coolant proceeds in its behavior patterns dictued prmarily by the coolant
propertics and flow channel geomewy only sluggishly responding, to changes in reactor power. The high
thermal conductivity of the metallic fuel used causes the fuel temperature o be greatly dependent on the
coolant temperature. The net eftect of this is that the reactor behavior is dominated by the dynamics of the
coolant. The extent to which this is true will of course depend on the reactor geometry and composition
including the coolant propertics.

11.1.1 Neutron Kinetics

The time dependent neutron multigroup diffusion equations with delayed neutrons are

10, - - - g -
v_,gr'(b‘(r") =D,V tb‘('r'.r)—E,‘d)‘(r.t)+"E.:‘2".ld>‘.(r.r)

G L]
+%,,(1-B) El VeI B () + El X MG

J g -
3? Ci(?‘t) = Bl' ‘,E.: 1 vg'zf"q)"(FI ') - l. C.‘(ri ‘)

where @, denotes the group flux and Cjis the ith delayed neutron precursor.

The R.H.S. of the rate equation for the group flux will be multiplied by the group velocity, as shown by the
first equation above. Assuming that more than one ncutron energy group is used and that the resuit of the
R.H.S. of the rate equations does not vary greatly (within an order of magnitude), then the rate of change of
the group flux will be highly dependent on the magnitude of the group velocity. This creates a very suff
problem; the rate of change of the fast fux is large with respect 10 the rate of change of the thermal flux.
The solution of the coupled ODEs that arise from this problem require special time integration techniques
as a consequence,

The point kinelics equations describe reactor time bebavior using a point reactor model (fixed spatial flux

distribution). If the flux spatial distribution is changing slowly with respect to the reactor power, these
equations can be used to describe the short time behavior of the reactor and will give an indication of what
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might he expected in longer time intervals. The point Kinetics equations are derived in any nuclear engi-
neering text. Their standard form s

dn(t) _pl1)-B
TR a1+ );, AC()
dC(n B,
dt A
where p(t) is the reactivity, A is the mean gencration time, C(1} is the £ th neutron precursor density and A,
is the associated decay constant, and 3, is the fission yield fraction for the § th precursor (B=2p)- The

A -ACH)  i=1,.6

number of delayed (neutron precursor) groups used here is six,

To examine the exponentia) behavior of this set of coupled equations, let us assume that the nevtron density
and the precursor density have an exponential characteristic, a(t) = exp{wt) and C{1) = exp(wy). With sub-
stitution and manipulation the Inkour equation is derived'”’. This equation may be written as
B.
=wA+B-X
P P-2 v hy

For very short time periods (a few neutron generations) after a reactivity insertion, the prompt behavior of

the neutrons will dominate. 1t can be shown that the rate of change of power for such a time period is given
by: dP/dt = p/A. This may be used to estimate the neutron generation time if it is not known. The time
constant for the longer time behavior, assuming the reactivity insertion is less than the delayed neutron
fraction (not prompt critical}, will be a function of the decay constants of the delayed neutron precursors.
This can be easily seen in the point kinetics simulation but the influence of thermal and thermalhydraulic
fecdback effects will be felt by this time in the space-lime simulation and therefore will not be as clearly
seen,

The neutron generation time is calculated from the cross sections (and is therefore explicitly known) a pri-
ori for the point kinetics simulation but it is not explicitly known for the general space-time transient simu-
lations. The very short initial time period of several transient simulations was used to calculate estimates of
the ncutron generation time which can then be compared to the value used in the simulation, if known. For
the space-lime simulations, w/o TH means without thermalhydraulics (the thermalhydraulic variables are
constant) and w TH means with thermalhydraulics.

107 Duderstadt 1), & L.J. Hamilion, Nuclear Reacior Analysis, p.243.
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Simulation p (mk} dP/dt AL ) (cale) A{ps) (known)

point kinetics 2 1958.7 10.22 11,206

space-time 1 88.65 11,28 unknown

{w/o TH)

space-time 2 ~165 12.12 unknown
(wTH)

space-time 4 ~-320 12.5 unknown
(w TH)

space-time 8 ~640 12.5 unknown
{w TH)

Table 11.1.1-1: Neutron Generation Time

The nevtron generation time for the point Kinetics is calculated from the material properties and should not
vary greatly from the value obtained from the space-time simulations, which it does not. The accuracy of
the results for the space-time simulations is somewhat reduced due to the estimates of the rate of change
but they are quite consistent, which is desirable,

The values for the neutron generation time as suggested by Henry'* are from 10 for a very thermal reactor
to 107 for a very fast reactor. The neutron generation time is a function of the moderation, the less th.
moderation the shorter the neutron generation time. The value of the neutron generation time that is calcu-
lated here is consistent with that for an undenmoderated thermal reactor.

The response of the space-time simulation without fecdback to a reactivity insertion will be similar o
response of the point kinetics simulation. A point kinetics simulation for a 2 mk reactivity insertion is
shown in Figure 10.4.2-1.

11.1.2 Fuel Temperature Time Constant

Thermal enerpy generated in the fuel by fission is transferred by conduction 1o the surface of the fucl where
is it is carried away by the coolant. The temperature of the fuel will be determined by the rate at which heat
produced in the fuel can be carried away by the coolant. Thermal conductivity is a measure of heat flow
per uuit area for a given temperature gradient. The specific beat of the fuel is a measure of the thermal
energy (heat) capacity of the fuel. The time constant for the temperaturc of the fuel will decrease with
increasing thermal conduclivity and increase with increasing specific heat. Metallic fucl (U;51-Al) has a

108 Heary, A.F., Nuclear Reactar Analysis, p.306.
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very high thermal conductivity when compared to ceramic fuel (/0s). The time constant for the tempera-
ture of metallic fuel is much less than that for ceramic fuel. For a given reaclor power, the wemperature of
metallic fuel will respond faster 1o a change in coolant iemperature than ceramic fuel.

The thermal conduction equation governs fuel wmperature behavior,

oT ) 1
E—-av T+pC,,S(F‘”

where (&, p, C,,a= k/pC,) arc the thermal conductivity, density, specific heat and the thermal diffusivity
respectively and S(r,¢) is the source term. The Iength of the fuel is much greater than the width, therefore it
is assumed to be a conductive slab of infinite length. There is an insulated {reflective) boundary on the left
and the coolant boundary on the right. For the purpose of calculating the time constant, it can be assumed
that the source term is zero and the wall wmperature at the coolant boundary is also zero. The conduction
equation NOw appears s

o axt
with boundary conditions
a_rg_.r_) =0 and T(x0l.,=0
' =

where a is the widih of the slab. Using separation of variables T(x.t)=G(t)F(x}, the separated equations are

dGr) _

I =—c (1)
d’F(x)_ ¢
i ——aF(x)

where ¢ is the constant of separation. The general solution of the spatial equation is (m*=clo),
F(x)=A cos(mx)+ B sin{mx)
where the parameters A, B & m are solved for using the boundary conditions,
Flx =
u;-_r-ﬂw Flx=a)=0

The solution is a modal expansion,

(2n+ 1)nx)
2a

and the constant of separaticn is now ¢, = [(2n + 1}w2a)’e The complete solution is a series of decaying
exponential functions,

F{x)= iob,, cos(

(2n+ 1)
2 “]

The initial conditions can be used to determine the expansion coefficients (b,) if required.

T(x,t)= iob, exp(-c,,:)cos(
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Of primary interest is the rate of decay of the fundamental mode as this will determine the Gme constant of
the fuel. The decay constant of the fundamental mode 15 ¢ = (w2a Yo and the 1ime constant is the recipro-
cal of the decay constant. The thermal diffusivity of the fuel is 7.388 & 0.01 {cm?/s) for metallic and
ceramic fuel respectively. For fuel of widta J ¢, the decay constants are 3405 & 0.025 {s7). The time
constant for the two types of fuel are therefore 0.2937 (s) for the metallic fuel and 40.53 (s) for the ceramic
fuel.

The use of metallic fuel is common in small light water reactors, such as SLOWPOKE and MAPLE, and
ceramic fuel is used in CANDU reactors which are large heavy water reactors, The reactor simulated here
bears greater resemblance (o the small light water reactors hence metallic fuel is used. It can be seen that
the metallic fuel will respond much faster o changes in coolant emperature than the ceramic fucl. Metallic
fuel properties used in the simulation gives the fuel temperature a fast response characteristic with respect
to the thermalhydraulics. The fuel temperature has a geeat effect on the neutronics due to Doppler broaden-
ing of the cross sections. The fast response of the fuel temperature to changes in coolant lemperature
would mean that the dynamics of temperature feedback would be almost totally dominated by the dynamics
of the thermalhydraulics and its sluggish ime behavior.

11.1.3 Point Kinetics with Fuel Temperature Feedback

The point kinetics model of the reactor can be extended to include several feedback effects. The dynamics
of the fuel temperatore have been catculated above and are now added to the standard point kinctics model.
The resulting model should reflect the behavior of the space-time kinetics simulation with one ncuiron
energy group and no thermalhydraulics. This is similar to the verification done in section 104.2.

The point kinetics model is now
dn() _p(1)-B
dt A

dct) B, _
——=2n0-ACH  i=1.6

n{t}+ ZAC )+ T

dT,
== ()= AT()

where 7y is the normalized fuel temperature, (w, A, c,) are the fission heat production coefficient, the fuel
temperature decay constant and the fuel temperature fecdback coefficient respectively. The fuel tempera-
ture was normalized to the neutron velocity, T = Ttv, in order ¢liminate the neutron velocity from the
above equations. The fuel lemperature feedback coeflicient is derived from the one group multigroup
diffusion equations. The temperature dependence of the fission and absorption cross-scctions in the fuel
are reflected in the fuel temperature feedback coefficients,

_ 3 {a@)_ (0% olvI)
oo\ a )N
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‘The fission heat production coefficient will be a function of the mean flux levels used in the simulation.
"The nominal parameters used in the simulation are:
B = 0.008, A = 12(1s), 0, = 0.354(® = 10), A, = 3.405,¢, = ~14.98.

The cigenvalues of the Jacobian for the system were calculated for increasing levels of initial flux, with
flux levels of 1072, 10", and 10" (n/caf’ 5) corresponding to cases 1, 2 & 3 respectively. These are given in
Table 11.1.3-1. The increasing flux Ievel has the effect of increasing the heat production coefficient and
consequently the lemperature and temperature reactivity by a factor of ten and one hundred for cases 2 & 3
respectively. The initial fuel temperature in case 1 is 0.1039 ( °C) with the reactivity effect calculated to be
-0.0187 mk. In all cases a reactivity insertion of 4 mk was applicd. As the temperature increases, the tem-
perature resctivity increases causing a lefiward shift of all the eigenvalucs except the eigenvalue for the
prompt behavior {the most negative). The inclusion of fuel iemperature feedback increases system stability
as would be expected.

Case I: ©=10" Case 2: @ = 107 Case 3: = 10"
-392.802 -392.679 -391.452

-3.701 -3.609+0.089 —4.121£i0.136
-3.422 -1.134 -1.208
-1.124 -0.163 -0.176
-0.162 -0.048 -0.055
-0.047 -0.013 -0.014
<0013 0.165 0.059
0.182

Table 11.1.3-1: Eigenvalues for Point Kinetics (s

There is one positive eigenvalue which is a result of the positive reactivity insertion. For the lowest tem-
perature case, case 1, there is one eigenvalue that is close to the decay constant of the fuel iemperature.
Interaction between the fuel temperature and the delayed neutron precursors has produced a pair of
complex cigenvalues in cases 2 & 3. This would imply that the reactor power would initially increase due
to the reactivity insertion and then decrease slightly due to the increase in fuel temperature feedback. The
response of the reaclor power Lo a reactivity insertion will be slightly oscillatory as a result, but this effects
will be short lived due to its rapid decay.

This is a point reactor model that is useful in elucidating the general effects that fuel temperature reactivity
feedback has upon the reactor dynamics. Its accuracy is limited to cases where spatial effects are not that
significant. The inclusion of thermalhydrautics in such a model would require that (wo neutron energy
groups be used so that changes in moderation could be modeled. Spatial effects become more significant
when thermalhydravlics are involved which would adversely effect the accuracy of the model.
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11.1.4 Thermalhydraulics

The fluid used for the coolant is assumed 1o be single phise and incompressible. The time dependent con-
servation equations for the thermalhydraulics are mass, momentum and encrgy {respectively),

op

-E;+V-p7=0
p%—:/-k pV - FV =pVV+pg-VpP
%F+V-VT=&V’T

where {p,V, T, P} are the density, velocity, temperature, and pressote respectively and {g. ot} are gravity,
thermal diffusivity'®, and viscosity respectively.

The usual form of the equation of state can simply be written in a form where pressure is a function of
density and enthalpy, P ==(p,&). The rate form of the equation of state

NEAENEI
dr \adp jyor \oh J o

can be derived by taking the partial derivative with respect to time of the equation of state. The two partial
derivatives of pressure on the right hand side are replaced by constant coefficients. The result,

d d - g, ~

EP(FJ) = GlEp(r.rH ngh(r.:)

is the time rate of change of the pressure described as a lincar combination of the rate of change the mass
and enthalpy. For incompressible fluids, the coefficient G, is much larger than G, (G, >> G}, hence the
approximation (G, = 0) is made. The conservation of mass equation is used to substitute the rate of change
of density so that the equation of state now appears as
%P(?.r) =GV pV
The density of the fluid is temperature dependent, and is calculated using the equation'
p=p-pBT-1)

where p is the density at some reference temperature, 7, and B is the cocfficient of volumetric expansion.

11.1.4.1 Vertical Flow Channel

The problem at band is a vertical flow channel of length "b" and width “a”, where the coclant enters the
bottom and is heated by the walls as it flows upward driven by nawral convection. Several assumptions

109 Bird, Stewart & Lighifoot, (1960) pp 246
110 Bird, Stewant & Lightfoot, (1960) p 299

-143-



were made when anatyzing the dynamics of such a system. The fluid is assumed incompressible (7. V=)
and the flow velocity in the horizontal (X) direction is negligible with respect to the vertical (Y) direction.
This implics that the flow velocity is a function of time and X only (V, =0, .. @V/dy=0). Nawral con-
vection driven by thermal expansion of the fluid is assumed to be the only forcing term in the momentum
equation (see section 4.1.2) therefore,
pg - VP =—gpBp(r - T)
The reference temperature can be assumed zero without loss of gencrality (T = 0) and the reference density
is assumed equal to one (p = 1). The Navier-Stokes (momenturn) equation now becomes

o 2

4
¥

'§=SﬁT+l1'éF",(x-f)

{Gravity is in the opposite direction to the direction of flow, hence the apparent sign change.)

Flow Profile in the X direction

Further assumptions are that the velocity profile in the X direction is a constant and temperature is a func-
tion of ¥ only. In reality the velocity profile must develop at the intake and the fluid is warmer near the

wall but for a long thin tube these assumptions are reasonable. The steady state velocity profile is found by
solving the equation

dv(x) _gBr
dx* 1}

integrating over the width of the channel (0 < x € a) and using zero flow boundary conditions at the walls,
the flow velocity in the Y direction is

88T
v(x)= m (a-x)x
If this profile is valid throughout the length of the channel, the mean velocity (with respect Lo X) may be
used in the time dependent equation

— 1=
v,:EJ; v, (x)dx

_[8BT ),
12p
This effectively assumes a separated solution (r and X) where the solution in the X direction is a parabola.
The time dependent velocity equation is now integrated over the width of the channel. ‘The viscous drag

term (uav,/ox?) is integrated and replaced by a term that is a linear function of the mean flow velocity
(-1,7,) where 1, = 12w/a* is the effective viscosity coefficient for a given flow profile.

Heat Transfer

Convective heat transfer is assumed (o be the dominant method of thermal energy transfer so that thermal
conduction can be ignored (kV2T = 0). An additional heat source is convective heat transfer from the
heated walls (g = k(T - T)), where T,, is the wall temperature.
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Solution of the Time Dependent Equations

The conservation of momentum and energy cquations nNOw appear as
av

“aj,‘=-ll.V+£15T

ar AT _h. .
.é'f_+1 'a—;—cr(Tw—'I)

where V is the mean velocity ¥,. The momentum equation may be easily integrated in the vertical direction
and divided by the length of the channel. The temperature in the first equation above is replaced by the
mean fluid iemperature (7) over the length of the channel resulting in the equations

dv

'd7=-ﬂ.V+SBT

b
T = -:;J; Tiv,. Ddy

A change of variables (7"=T,-) is used so that the wall temperature is now zero, making the fluid wmper-
ature equation homogeneous. The separation of variables (in y and 7) is used for this equation
(T(y.t)=F(y)G(1)). The separated equation is
1 dG(1)+ h _ 1 dF(_v)= '
VNG dt  C V(@) Fly) dy

where k is the constant of separation.

The equation for the spatial (Y) component is

dF(y)
dy

The solution of the spatial component is relatively simple,
F(y)=¢™F,

where F, is the inlet temperature. The mean temperature over the length of the channel can be calculated,
T =GOF

=—kF(y)

_.1 b __FD b
F‘F.L FyMy=p2(1-¢™)

The rate equations for the time dependent component of temperature and velocily are now
dG(1) h
e kYD) —-=
di [ O- ]G(‘)

‘z—‘:=-u,v+gmc;mﬁ+r,]

The Jacobian for this system is

-145-



av oV =
7=k 3g=sBF

a6 oG h
S =kG(O) E_w-a
or
-u,  gBF
J

= h
LG(!) LV—F

P

Stability at the Fixed Point

A fixed point is the point in phase space (V',T7) where the two rate equations arc equal to zero. The stabil-
ity of the fixed point is determined by the eigenvalues of the Jacobian matrix at the fixed point. (The stabil-
ity of fixed points is discussed in more detail in chanter £}, The time defendent component of temperature
is assumed equal 1o one (G(t)=1) therefore T'(y)=F(y) is the temperature at the fixed point and V" and
velocity at the fixed point. The equation for the time rate of change of temperature is equal (o zero.

dG(n [, ._l_: 3
= _(AV C]G(r)-o

4

_ h
cv
The constant of separation at the fixed point is therefore & = k{(C, V).

=k

The Jacobian at the fixed point is now

_[-#. BT
"[k 0]

The eigenvalues of the this matrix {the roots of the characteristic equation)

a(s)=det(sl -J)=s>+n,s —kgBT" =0
determine the stability of the fixed points. The roots of the characteristic equation must less than zero for
stability,

1, £ T+ dkg BT

Ha= 3 <0

The imponant root is the most positive rool,

_-he+\pi+4kgBT”

5= 7
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Due to the change of variable, the temperature is always negative but may approach zero, It can be seen
that this root is always negative and possibly complex which suggests that the system is stable. The roots
become purely imaginary as the viscosity approaches zero and become more negative (and possitly real) as
the viscosity increases.

Calculation of Flow Stability at the Fixed Points

From the ftow simulation results, the flow velocity and fluid temperature at the fixed points are estimated
10 be 2.0 (cm/s) and 3°C with a wall temperature of 10°C. The other data that are used in the simulation;
thermal expansion coefficient f = 6.1x107 (1/°C), viscosity p = 5. 47x107° (poise or g/em.s), specilic heat
C,=4.2 (J/g"C), channel width a=1.0 (cm), and the total channel length is 24 (cm). The channel is in two
sections, the lower section (b,=8 c/m.) has a heated wall and the upper section (b,=16 cn) has insulated
walls. The heat transfer coefficient, b, is unknown but can be calculated using the mean lemperature at the
fixed point. The mean temperature at the fixed point for a channel in two sections is described by

s TD l TS -“’l
! _b,+b3[k(l_e Y be ]

where the temperatures after the change of variables are: 7 ==7°C and T, =—-10°C. The mean temperature
is known but the constant of separation is not, therefore this equation is used w solve for the constant of
separation, k=0.0548 (1/cm.) which gives a heat transfer coefficient of h=0.46 (W/°C cmt’), The effective
viscosity is p, = 12a* = 0.0656(g/cm’s).

The Jacobian is now

0.0548 0

The roots of the characteristic equation are (—0,0328 +i0.4777) which implics & stable fixed point. This
sort of fixed point is a referred to as a spiral sink where the system will spiral into the fixed point in phase
space. The behavior of such a sysiem would be convergent oscillations in time.

_[—0.06564 -4.1846]

This analysis would indicate that the flow is stable at the fixed point and as such the flow would be
expected to settle to some fixed point in phase space. The simulation exhibits generally stable behavior
with a small limit cycle about a fixed point. This analysis, while being adequate for the overail system
behavior, is probably not adequate for detailed system behavior due Lo the number of assumptions that were
made. Only one wall is heated and it is very unlikely that the flow profilc is a parabolic shape. The small
real component of the roots would indicate slow convergence and the large imaginary component of the
roots would indicate oscillatory behavior. A reasonable conclusion is that the system is stable in the large
but has osciliatory tendencies.
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11.1.5 Coupling of the Two Components

The two components of the simulation, neutron kinetics and thermalhydraulics, proceed at widely differing
rates of change in time, the nzutron kinetics proceeding al a much greater rate than the theamalhydraulics,
They do influence cach other by different methods. The production of thermal energy into the system is the
method by which the neutronics drives the thermalhydraulics. Temperature variation of the cross sections
in the fuel and coolant is the method by which the thermathydraulics influences the neetron kinetics,
Changes in lemperature as a result of variations in power are rather sluggish duce to the heat capacity of the
system. Changes in the power due to variations in the cross sections will be almost immediate in the tme
frame of the thermalbydravlics. The dynamics of the combined system will have properties of both sys-
tems, but the relative insensitivity of the thermalhydraulics and the large influence it has on the neutron
kinetics will cause it to dominate, assuming the reactor is not prompt critical.

Neutron moderation is the process by which fast neutrons lose energy through scattering and become ther-
malized. The rate at which this occurs is determined by the scattering cross-section of the moderator.
Thermal fission (fission by thermal neutrons) is the dominant type of fission (as opposed to fast fission) in
thermal reactors, as their name implies. The fuel has typically a much larger thermal fission cross section
than fast fission cross section. Therefore changes in the thermal neutron population and hence the reactor
power will be greatly influenced by changes in the moderator Cross sections.

When the coolant is also (at least partially) a moderator, changes in coolant density will effect the scatter-
ing cross section of the coolant and hence neutron thermalizaton. The effect that this will have on the
reactor power is dependent on the degree to which the coolant is responsible for neutron moderation.
Reactors that have a large moderator to coolant volume ratio, such as a CANDU reactor, are referred to as
over-moderated. This will reduce the effect that changes in coolant density will have on the thermal neu-
tron population. In under-moderated reactors, the converse is true. The geometry chosen for the test reac-
tor simulation used here is that of an under-moderated reactor so as to maximize the effect that changes in
the coolant density have upon the thermal neutron population and hence the reactor power. This serves to
accentuate the influence of the thermalhydraulics upen the neutronics.

11.2 Software Design

The philosophy used in designing the software was (o structure the program in such a way that the coupling
of the two components, neutron kinetics and thermalhydraulics, could be done with the minimum of effort
and trouble. An integrated approach was required from the outset if this was to be achieved. The two com-
peting praciical constraints in the software design is the minimization of storage and compulational require-
ments. Much attention had to be paid to the solution algorithms used 1o solve the resultant system of ODEs
and their efficient implementation in software as this portion of the simulation would be the most
demanding on computer resources.
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11.2.1 General Program Structure

The problems encountered in the solution of the newtron kinetics problem are significantly difterent from
those encountered in the solution of the Biermathydravlics problem. The stiffuess of the Jacobian matrix
{the wide range of eigenvalues) is the nain difficulty encountered in the solution of the newtron Kinetics
problem. The group velocities were set equal to one in order to reduce the stiffness of e Jacobian for
static calculations but such methods could not be used for the ransient calculations as it would effect the
dynamics of the neutronics. The nonlinearity of the goveming equations was the main consideration in the
solution of the thermalhydraulics problem. These differences can be stated mathematically by saying, that
the structure of the two Jacobians is significantly different hence requiring different methods (o sotve the
resultant ODEs.

The parts of the simulations are solved sequentially, first the neutronic simulation and then the themmalhy-
draulic simulation, but this is arbitrary. The two simulations could be solved simultncously, but this
would add excessive complexity and reduce the efficiency of the simuliation. The band structure of the
resultant (combined) Jacobian matrix would increasc significantly in complexity thereby reducing the pus-
sibility of finding efficient methods for the time integration. The coupling between the two simulations, as
they are solved sequentially now, essentially occurs at every time step. There will be a small loss of
accuracy associated with this approach, but its significance will depend on the time steps that are used. For
practical purposes, the loss of accuracy is considered to be negligible.

The unsteady behavior of the thermathydraulic simulation created convergence problems in the suitic calcu-
Jations for the combined simulation. The Chebychey acceleration routine had difficuity due to the con-
stantly changing cross sectional properties which would interfere with its calculation of eigenvalucs for the
purpose of acceleration and cause it to not accelerate properly. The K-effective calculation would be still
useful as an indication of criticality but the accuracy would not be very good if the simulation did not accel-
erate properly. Manual methods would then be required for a more accurale determination of the
K-effective which was mostly just an inconvenience. The manual method of criticality determination would
mean manually adjusting K-effective until the power would remain relatively constint overa time interval
in a transient calculation,

The coupling between the neutronics and the thermathydraulics was an importnt aspect of the sinulation.
Both the thermalhydraulic and neutronic equations are represented using finite differcnces in space, as
opposed 1o a nodal representation. The thermal feedforward between the neutron-thermal conduction simu-
lation and the thermalhydraulic simulation comes in the form of boundary conditions, continuity of lemper-
ature and thermal flux, instead of lumped parameter feedback. This has the effect that heat ransfer
between the fuel and the coolant occurs at every spatial point along the mutual boundary. This is much
more direct and will more closely reflect reality but at the price of complexity and compulational time.
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11.2.2 Storage Requirements

Assume, for example, that the simulation we had in mind had 10 spatial points in Y direction, 10 spatial
points in the X direction in all three regions (see Scction 7.1) and three neutron energy groups. This would
mean thal one energy group of the neutron flux data vector would contain 300 data points. The entire first
data vector would contain 1500 data points, The associated Jacobian matrix would have 13 bands (this is
dependent on the number of neutron energy groups). The thermalhydraulic data vector would contain 400
data points and the assoctated Jacobian would have 16 (a constant) bands.

In order to minimize storage requirements, only the nonzero bands of the matrices are stored. Both conju-
gate pradient methods and the Gauss-Seidel iterative method of solution of the linear problem can be per-
formed while maintaining the matrix to be inverted in a banded storage format. LU decomposition
methods require that the matrix be stored using full siorage. Due 1o the wide bandwidth of the matrices
involved, the storage requirements of the banded LU decomposition method are not much less that of the
full storage.

If fuil storage was uscd for the matrices in the above example instead of banded storage, at least 2.5 million
storage locations would be required (if double precision variables were used at 8§ byles per variable, this
would mean 20 megabytes of storage). If banded storage, as outlined here, is used less than § thousand
storage localions (64 kilobytes) would be required. If LINPACK style banded storage was used instead of
full storage, only 0.1 million storage locations would be saved due to the wide band structure of the
matrices involved, Gauss-Seidel iterative matsix inversion does not cause any of the zero bands between
nonzero bands to fill up as do LU decomposition methods. That is to say, if the matrix to be inverted has
five bands with the outer two bands quite widely separated from the central three bands, as would arise
with a Laplacian in two dimensions, the zero bands between the outer bands and the central bands would
fill up during decomposition. if only the nonzero bands of the Jacobian matrices are stored, many fewer
storage locations are required if the appropriate solver routine, modified to handle matrices stored in this
fashion, is used to solve the final lincar system problem.

11.2.3 Linear Algebraic Problem

The solution of the linear system problem is a very important pant of this and most simulation programs.
This point can not be over emphasized. The time required to solve the Jinear problem is the majority of the
program execution time, therefore a great deal of effort must be applied to solving this problem efficiently.
Several methods of solution of the linear algebraic problem were presented; LU decomposition, block tri-
diagonal LU decomposition, the generalized conjugate gradient method, the Gauss-Seidel iterative method,
and the successive over-relaxation method. All methods have their merits and their liabilities.
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LU decomposition will always give good results, assuming the matrix is nonsingulir, bui it requires a preat
deal of storage space and computational effort. I7 little is known about the matrix to be inverted and/or it
does not have a regular structure such as a banded structure that can be exploited, LU decompuosition is a
good choice. If the sparsity of the matrix is such that all the nonzero clements are clustered close to the
diagonal, the matrix is said to have a small bandwidth. A banded LU decompuosition routine would be o
good choice for such a matrix. The spatial finite difterencing of PDESs gencrates some matrix structures for
which special LU decomposition algorithms do exist. There are algorithms for tridiagonal nuitrices, com-
mon in one dimensional problems, and block tridingonal matrices, which arise from Laplacian terms in two
or more dimensions. If the matrix is diagonally dominant though, an iterative method might be a better
choice, but otherwise these special algorithms are useful for such problems.

The Gauss-Seidel iterative method can use the method of banded storage discussed in the previous secuon.
The limitations of the method are of course that the matrix must be diagonally dominant. In nonlingar
problems, such as the thermalhydraulic problem, this is not always the case. The diagonal dominance of
the matrix to be inverted is affected by the time step size that is vsed in the simulation, this places an upper
bound on the step size. If relatively small time steps are used, the GS method will produce the fastest
execution times by a significant margin. However, if large time steps are desired, a block tridiagonal solver
will be a better choice. In a linear problem, such as thermal conduction, the matrix will almost always be
diagonally dominant and hence the GS method is the best method.

The SOR method is a variation of the GS method and performed appreciably better that the GS method
under test situations. It converged up to 3 ime faster than the GS method for some problems. However,
the GS method was found to perform better under a wider variely of conditions. When few iterations by
either method were required, litte advantage is gained using the SOR method. At the other end of the
spectrum, when a very large number of iterations were required (the iteratior was just able converge), the
SOR method displayed erratic behavior. The SOR method can be said to have a narrow tuning curve when
compared to the GS method. The SOR method was compared against the GS method in solving the ther-
malhydraulic simulation problem. The GS method was found to perform better under this more realistic
situation, it had fewer problems converging and would have the lower execution times duc Lo its simplicity.
The inversion of matrices that were more consistently diagonally dominant, the SOR method was faster,

The generalized conjugate gradient method can use the banded storage method as well. It does not have the
limitations on matrix properties that the GS method has, but it has a limit on system size. The convergence
properties of the method degrades as the system size increases. It would be very useful for large suff
sparse systems if the convergence properties could be improved.

Some numerical (ests were run to compare three methods that based on the conjugate gradient method

(Tables 10.1-5 to 10.1-8), the {classical) conjugate gradient (CG) method, the boosted conjugate gradient
method (BCG), and the generalized conjugate gradient (GCG) method, These tests (as well as others) indi-
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cate that the CG and the BCG methods perform well on symmetric positive definite (SPD) matrices. Any
loss of symmelry, however, will seriously degrade the performance of these algorithms, The loss of
symmetry did have a significantly negative effect on the GCG method. As the system dimension increased,
the performance of all the algorithms diminished. This is the major drawback to the use of these methods;
even thouph the number of iterations was equal 1o the system dimension, the performance would decrease
with increasing system dimension. The best candidaie of these three metheds for asymmetric matrices was
tue GCG method, but it will reguire some acceleration 1o become a viable method.

Comparison of Solution Methods

Figure 10.1-1 compares the direct and iterative matrix inversion methods for increasing matrix sizes. The
matrix (problem #3} used for the comparison is characteristic of the matrices that would be solved during a
simulation. Error control in the time integration and not the matrix inversion method is the limiting factor
for the time step size in a simulation. The smaller the time step size, the more diagonally dominant is the
matrix and, hence the more favorable are the iterative methods. The product of the block size and the num-
ber of blocks gives the ot dimension of the system. Asexpected, the banded methods performed much
better than the methods that ignored matrix structure. It can be seen that the banded iterative methods
perform betier, with respect to the banded direct methods, as the problem becomes larger with the Gauss-
Scidel method with successive over refaxation {GSSOR) emerging as the clear favorite.

Figure 10.1-2 compares all the banded methods. The matrix that is inveried (problem #1) is not very favor-
able to the iterative methods. The intention was to bandicap the iterative methods in the comparison. In
spite of the handicap, the banded GSSOR miethod posted the best time as the problem became sufficiently
large but, not by a significant margin. The iterative and semi-iterative methods require less storage space
than the direct methods. If the matrix to be inverted is not diagonally dominant, is symmetric positive defi-
nite (SPD), the conjugate gradient method becomes a viable alternative o the direct methods, especially if
storage requirements are at a premivm. The generalized conjugate gradient method is not very compelilive
in Figure 10.1-2 but the conjugate gradienl was reasonable.

Machine and Compiler Considerations

Table 10.1-4 compares the CPU times for the C language versus assembly language versions of several
solver methods. The execution time of a high level routine will depend on the compiler that is used. The
execution time of the assembly language routines could be considered the theoretical minimum execution
time of that routine. These results would imply that the iterative methods would benefit to a greater extent
than the direct methods if a better compiler was used,

The best routine to use may also be machine dependent, especially if the computer is an array processor.
Routines that are more vectorizable™ are better suited for use in array processors, such as the Intel 80860
and all super computers. Gauss-Seidel iterative methods use immediately previous results (i.e. X.;) when

111 Vectorizable routines can be expressed as a series of matrix and vector operations.
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computing a result (i.e. X)). This would cause significant pipeline penaliies it this method were 1o be used
in an array processor. Other iterative methods, Gauss-Jordan for example, fair somewhat betier. The direct
methods would benefit significanty if properly vectorized but, the semi-iterative methods wouold benefit
the most. The more recent microprocessors (Intel 486, Motoroly 68040} are highly pipelined processors
and these considerations become more significant.

11.2.4 Coding of the Simulation

The simulation was written in C for the UNIX operating system. The machines vsed for code developiment
and exccution are: an IBM Model 80-111 running Xenix/386 (1386 - 20 MHz), a Multiffow Trace running
(Multiflow) UNIX, an IBM RS6000 running AIX and an Intergraph workstation running UNIX to a smail
extent. The ease with which the code was transferred o the various machines attests 1o the portability of
the code and is one of the major strengths of the UNIX operating syster. The simulation was written in C
because of the flexibility of this programming language and its suitability for use in a UNIX environment,

Assembly language versions of some of the important mathematical subroutines are availuble for 386/387
machines. A notable assembly language subroutine is the Gauss-Seide! banded Lincar system solver, The
assembly langnage version of this subroutine was found to run 1.8 times faster that the equivalent subrou-
tine in C. The modular nature of the code allows for any routine, in particular the mathematical software,
to be replaced a faster version should such a thing be available.

One of the advantages of the C language is dynamic memory allocation. The simulation program reads the
input data file and then calculatcs the amount of memory required. This memory is then requested vsing
dynamic memory allocation. If the memory requested is too large, (the problem is too large for the
machinc) the simulation will simply terminate with an ervor message. This allows the size of the execut-
able file to be independent of the size of the simulation. ANSI FORTRAN (77) has no provisions for
dynamic memory allocation but it has been implemented on certain custom machines.

Another of the advantages of the C language is the ability to manipulate pointers with relative ease. Point-
ers, as the name implies, point to locations in memory. When a subroutine is called, a pointer that points to
the beginning of an array is passed as a parameter to the subroutine (the same thing occurs in every
programming language). A subroutine written using the FORTRAN language needs to know all but the
last dimension of a multidimensional array. If for example the array is two dimensional, the FORTRAN
subroutine must know the first dimension. When that address of an array element is calculated, the first
subscript {minus one) is multiplied by the first dimension and then added to the second dimension (o find
the location in memory. This requires the use of integer multiplication. The C language allows the use of
arrays of pointers. Assume again that the array is two dimensional. We would have an array of pointers
that point to the beginning of each row of the array. To find the memory location of an array clement, we
use the first subscript to locate the appropriate pointer, in the amray of pointers, for that row. The sccond
subscript, along with that pointer, are used to find the location in memory. Integer multiplication is not
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required, but some extra storage is required for the array of pointers, which is quite small. It was found that
this method of addressing two dimensional arrays is about 10% faster that a method that requires integer

multiplication.

Another advantage of pointer manipulation is the subdivision of arrays. After the memory allocation sec-
tion of the main routing, many of the arrays are subdivided into the component parts with relative easc.

11.3 Thermalhydraulics

The thermalhydraulic simulation software had to be benchmarked before it could be used with reasonable
confidence. A review paper by De Vaht Davis & Jones (1983) provided a good steady state benchmark,
The problem is a unit convective cell with a hot wall on the left, a cold wall on the right and insulatea top
and bottom walls. Comparison of the simulation with the published results demonstrated good agreement
for a sufficiently finc mesh. Vertical flow twbes, such as those used in the reactor simulation, are an appre-
ciably different problem and this necded to be examined separately before it could be used in the combined
simulation. These two problems are discussed below,

11.3.1 Benchmarking the Thermalhydraulic Simulation

In general, the algorithm had afl the desired propertics: stability, convergence and consistency for a wide
range of parameters. The range of the parameter G, for which the simulation would converge to the desired
solution proved to be unbounded, although it was sensitive to the time step depending on the Rayleigh
number. The higher the Rayleigh number, the more violent the flow will be and more violent flows require
smaller time steps. The set of equations used here was more general than that used by De Vahl Davis &
Jones. The paramelers of the model were adjusted to coincide with the free convection problem of interest.
The results concurred with De Vah! Davis® conclusion that the use of a cousse mesh with high Rayleigh
numbers gives unreliable results. Beiter answers are possible with the use of finer mesh sizes, but at
increasing computational expense.

In the section on the benchmark equations, it was stated that an upper limit of onc exists on the coefficient
of thermal expansion, B < /, but it was found that 0.0 was a better upper limit. Gravity was chosen to be
sufficiently large so that the calculated value of B, which is proportional to the Rayleigh number (Section
4.1.3), was in the desired range. The numerical results given in Table 10.2-1 show good agreement with
the published results for a sufficiently fine mesh.

The simulation was intended for use as a transient simulation, but obviously it can be used to determine a

steady state solution if allowed (o run until convergence, as it was used here. One assumption made by De
Vahl Davis & Jones is that one correct steady state solution exists. 1t is well known that the Navier Stokes
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cquations are highly nonlinear. Linear systems have one commect steady state solution but, nonlinzar sys-
tems may have several or they may have none. The system may establish itsell in a limit cycle where the
simulation never converges but remains bounded. "It is well known that nonlineir systems possess Hinit
sets other than fixed points; for example closed or periodic orbits frequently oceur™". While convergenc:
was achieved for the various values of the Rayleigh number and it did appear that only one solution did
exist for this probiem, all results must be treated as suspect, especially for the high Rayleigh numbers.

The pressure field is adjusted. using the rate form of the equation of state, to reduce the mass error. 16 the
pressure ficld is properly adjusted, the steady state solution will have a very small mass error. ‘The vanance
of the mass error is the criterion that was used to determine the goodness of the solution, If the mean of the
mass error is not zero, then there is an imbalance between what is entering the cavity and what is leaving,
All fluids have a centain compressibility, therefore in a transient situation some mass error in any one cell is
expected. The reciprocal of the parameter G, = d P/dp is a measure of a fluid’s compressibility.

The more incompressible a fluid is, the larger the value of G, and the quicker the pressure response o
changes in mass flow rate, in other words, the greater ihe acoustic velecity. The parameter G, is approxi-
mately the square of the speed of sound. As the acoustic velocity increases, smaller time steps are required
to follow the changes in pressure. If the simulation is solved implicitly in Gme, larger time sieps may be
possible without encountering numerical instabilitics, although the detailed changes in pressure and flow
rates will be lost. The simulation dynamics become more violent as the Rayleigh number increases, requir-
ing smaller time steps for stable convergence.

Figure 10.2-1 shows how heat transfer within the fluid changes with time. Initially all the heat transfer is
from the hot wall to the fluid. The temperature of the fluid rises and heat transfer from the fluid w the cold
wall increases until eventually heat transfer at the end walls balances. The time required for heat transfer in
the x direction to balance will be a function of G,. The larger the value of G,, the quicker the fluid velogity
will approach its steady statc value (as driven by pressure). It can be seen that the heat transfer in the x
direction balances quite quickly for the value of G, used. De Vahl Davis & Jones usc the Nusselt number
Nu as an indization of the heat transfer in their comparison exercise. The more comg.aete expression O(x)
will (theoretically) achieve a balance across all plancs parallel to the hot and cold walls and was therefore
used here. Ne Vahl Davis does however, use this expression, referred to as Nu,, in the benchmark solution.

Figure 10.2-2 shows that G, has a great affect on the mass error variance, as would be expected. One can
draw the conclusion that using a large value of G, is desirable for variance reduction when a steady state
result is desired; larger corrections are made to the pressure ficld for errors in mass conservation, hence the
pressure field will converge more rapidly. There seems to be no optimal value for G; which minimizes the

112 Guckenheimer & Holmes, pp 15 (1983)
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variance, instead the variance monotonicatly decreases as G, is increased. The variance could be made
arbitrarily small by using increasing values of G,. Transient simulations will, of course, use the true value
of G, and the pressure field will converge at the rate determined by the fluid propertics.

The true value of G, is quite large for water, which would force rapid convergence for steady state prob-
lems. if a transient simulation is run for an incompressible fluid, the variance will be significant for only
the fastest of transients. The simulation should be benchmarked under transient conditions, although this is
more difficolt. Future work should determine whether the simulation does indeed converge to a steady
state condition or just establishes itsell in a fimit cycle.

The velocity vector plots for the converged solutions for increasing Rayleigh numbers (10 to 10%) are
given in figures 10.2.3-1 to 10.2.3-4, It can be seen that the area of high flow progressively moves loward
the outer walls as the Rayleigh number increases. The maximum velocity increases quite dramatically with
increasing Rayleigh number as shown in Table 10.2-1. This demonstrates that higher Rayleigh numbers,
which are indicative of higher thermal expansion coefficients, induce mere violent flow behavior.

The advantage of this algorithm is its simplicity which affords a more intuitive grasp of the fluid behavior.
The derivation and exccution are qQuite straight-forward. The use of the compressibility parameter, G,
allows the simulation of fluids with different compressibilities, and should make for more physically realis-
tic pressures under transient situations,

A number of matrix inversion routines were tried. The best solver combination proved to be the use of the
Block Tridiagonal method for the velocity/pressure problem, and either the Gauss-Seidel method or the
Block Tridiagonal method for the temperature problem. The Gauss-Seidel method had convergence prob-
Iems for larger time steps when used on the velocity/pressure portion of the problem due to its nonlinear
nature. The Block Tridiagonal method had no such convergence problems and could exploit the matrix
structure of the velocity problem therefore making for a robust and efficient algorithm. The nonlinear
nature of the temperature problem was less pronounced therefore allowing the use of the Gauss-Seidel
sobver if desired, although the differences in execution time between the two methods was negligible. This
choice of solver routines provided good numerical efficiency and stability of the overall simulation.

11.3.2 Convective Flow Through a Vertical Channel

The thermalhydraulic problem in the complete simulation is convective flow through a vertical channel.
Scparate thermalhydraulic simulations were run in order to explore the behavior of convective flow using
this geometry and to determine the best boundary conditions to use. The initial boundary conditions used
were a hot wali on the left, a cold wall on the right and constant hydrostatic pressure boundaries at the top
and bottom. Examination of the lime behavior and the velocity vector plots showed complex patiems of
flow without much structure. It was reasoned that an insulated extension to the top of the channel was
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required in order for the flow (o "settle down” before encountering the constant pressure boundary at the
outlet. Without the vertical extension, the flow would show the expected generl behavior (bulk movement
upwards) but no noticeably regular behavior pattermns would develop. With the extension and a sulficiently
fine mesh, regular behavior patterns, sometimes in the form of a imii cycle, did deviop.

The flow behavior was chaotic in nature. The simulation showed litde indication of converging o a steady
state solution however it was bounded, The geometry of the problem had great effect on the behavior of
the fluid as was shown in two serics of simulations. Both simulations used 8 points in the X direction with
a mesh spacing of 0.125 (cm). Both simulations used the same number o points in the Y direction, 8 point
for heated wall section and 16 points for the riser section, but differed iu the mesh spacing. The variables
plotted are the mean velocity in the X & Y directions and the mean coolant emperature versus time. When
a finer mesh (1.0 cm.) was used, the flow would develop into a repular pattem as shown in Figure 10,3-1.
A phase plot of the average vertical velocity versus the coolant temperature is given in Figure 10.3-2,
which clearly shows limit cycle behavior. When a course mesh (10.0 cn) was used, the flow showed gen-
eral trends but did not develop into any regular patierns as shown in Figure 10.3-3, The course mesh (long
tube) simulation is an indication of the type of behavior that may be expected in the combined simuliation,

11.4 The Neutronic Simulation

The neutronics section of the simulation (without thermathydraulics) is in two configurations: static and
transient. The results of 2 one-dimensional one-group analytical calculation were used Lo verily the results
of the static calculation and comparison with the results of a point kinetics simulation was used to verify
the transient calculation. The Jacobian for the neutronic simulation becomes very ™ s, de. there is a wide
variation in the eigenvalues of the matrix, when the group velocities are applied in the transient simulation.
Therefore, all the group velocities are set equal to some constant, usually 1.0, when a static calculation is
desired. The stiffness problem for an eigenvalue (K-effective) calculation is thus climinated allowing the
use of the Gauss-Seidel method for the solution of the lincar algebraic problem. This method significantly
reduces computational cost. For static calcutations, Chebychev polynomial acceleration is also used 1o
accelerate the convergence of K-effective. The matrix inversion problem encountered in transient calcula-
tions usually requires the use of a direct solver methed, such as LU decomposition, which significantly
increases the computational effort for ong iteration, but it atlows the use of larger time steps reducing the
overall computational effort, Two forms of the time intcgration routine, cach using a different matrix
inversion method, are available as a consequence. This allows some flexibility in methods used to solve
the neutronics problem.

The results with and without fuel temperature feedback are given. The thermal properties of U,SiAl are
used for the fuel. This material has a high thermal conductivity therefore, the mean fuel lemperature is
only slightly above the coolan| lemperature,

Static Calculations
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One dimensional static calculations using one neutron energy group were compared to analytical calcula-
tions of K-effective in scction 10.4.1. The numerical results approach the result of the analytical calculation
for progressively finer meshes as shown in Table 10.4.1-1 and Figure 10.4.1-1. This would indicate that
the diffusion equation and boundary conditions are implemented correctly in the X direction. This compar-
ison effectively verified the one group static calculation of the flux.

Two dimensional static calculation using one group were also compared to analytical calculations in Table
10.4.1-2. The results, while reasonably close to the analytical result, did not display the progressive
approach with smaller mesh size to the analytical solution as displayed by the one dimensional simulation.
More problems with convergence were encountered with the two dimensional simulations but these seem
related to the large number of data points that are used. Accurate values of K-effective could be obtained
but several attempts were required.

Analytical calculations for a larger number of neutron energy groups was considered too complicated and
unnecessary for the purpose of code verification. Variations in the results of the static calculations were
found when the number of neutron encrgy groups was changed, but this was considered {0 be an inaccuracy
associated with the collapsing of the cross sections. Changes in moderation duc to coolant density changes
could not be effectively illuminated with one nevtron energy group calculations. All calculations involving
changes of coolant temperature were therefore done using two neutron energy groups. The results of one
dimensional calculations using two neutron energy groups for progressively finer meshes are given in
Table 10.4.1-3.

Static Calculations with Temperature Feedback

Two neulron energy group static calculations for various fixed values of coolant temperature were used to
check the reactivily effect of the coolant temperature. As fuel temperature is slighily above the coolant
temperature, both the fuel temperature feedback and the coolant temperature feedback would change as a
result of the coolant emperature variations. The coolant temperature reactivity, as shown in Table 11.5-1
& Figure 10.4.1-2, is not quite lincar and quile strongly negative. The geometry and material composition
were chosen 5o & to produce an under-moderated reactor with strong negative coolant temperature feed-
back effects. This calculation reveals that this is indeed the case.

Temperature Range Temperature Reactvity (mk/"C)
010100 -0.1614
100 to 200 -0.1900
00 200 -0.1756

Table 11.5-1: Coolant Temperature Reactivity Worth

Transient Calculations
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One dimensional transient simulations using one and (WO NCROr energy groups were comparced tw a paint
kinetics simulation with the same (2 mk) reactivity insertion. The results (Figures 10.4.2-1 0 10.4.2-5)
indicate that the response of the space-time simulation is similar to that of the point Kinetics. Figures
10.4.2-1 to 10.4.2-3 indicate that the point Kinetics simulation has a quicker response than the space-time
simulation for the short term (2 ms). The short term response of the space-time simulation shows little
dependence on the number of newtron energy groups, as shown in Figures 10.4.2-2 & 104.2-3. The longer
time (1 s) response is a manifestation of the delayed neutron effect in the kinetics simulations. The point
kinetics simulation is virtually identical to that of the space time simuliation in that regard, as indicated in
Figures 10.4.2-4 and 10.4.2-5. The temporal behavior of the space-time Kinetics simulation was suffi-
ciently similar to that of the point kinetics problem so as to consider it adequately verified.

This completes the verification of the neutronics (only) portion of the simulation. Simulations combining
both neutronic and thermathydraulic effects can now be discussed.

11.5 The Complete Simulation

The two component parts, neutronics and thermalhydraulics, vary simultancously in the complete simu-
lation. While the thermathydraulics can only be run as a transient calculation (i.c. only the rate form is
available), the neutronics may be run cither as a static calculation, where the reactor power is held fixed
and the eigenvalue (K-effective) is varied, or as a transient calculation where the reactor power is allowed
to vary. Thermal feedback from the thermalhydraulic calculation comes in the form of fuel temperature
feedback and coolant density changes, both of which cause a change in the multigroup cross sections. An
increase in fuel temperature will increase absorption due to Doppler broadening of the resonance absorp-
tion peaks and a decrease in coolant density will reduce the scattering cross section (as well as other cross
sections) in the coolant.

During a static calculation, the thermalhydraulic variables, the coolar emperature in particular, are vary-
ing and hence cause the cross sections within the coolant to vary. This variation of material properties
created some convergence problems in the eigenvalue calculation, especially for the Chebychev
acceleration. It was necessary 10 used a time-averaged value of the coolant density to achieve a converged
value for K-effective. Convergence was less of a problem, but still only satisfactory, using the average den-
sity. This time-averaged value of criticality, while giving an indication of the average state of the reactor,
does not indicale the state of the reactor at any specific instant in time. For a transicnt simulation, it is
necessary to have an accurate determination of the eigenvalue at the time the reactor is perturbed. 1L was
found that some manual variation of the eigenvalue was required o attain sufficient accuracy. While the
need for such intervention is undesirable, no simpler solutions could be found. The thermalhydraulic
behavior and fuel temperature response during a static calculation is given in Figure 10.5-1. It can be seen
that significant coolant temperature variation does occur even though the fuel temperature remains rela-
tively constaril.
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The initial state of the reactor, the state of both the neutronics and the thermalhydraulics, is the same for all
the transient simulations. The delayed neutron fraction for these simulations is 0.008 therefore, one dollar
(18) of reactivity would be 8 mk. Transient simulations were performed using 03, 1/4S, 1728 & 18 reactiv-
ity insertions, corresponding to Omk, 2mk, 4mk & 8mk, respectively. Thermalhydraulic behavior had an
obvious cffect on the reactor power as clearly indicated in the simulation results plotied in Figures 10.5-2 10
10.5-11. The prompt behavior (1 < 0.005s), shown in Figures 10.5-2 t0 10.5-5, is roughly what would be
expected with or without the thermalhydraulic contribution for the various reactivity insertions, a prompt
jump followed by delayed neutron effects, The feedback effects of the cootant temperature is quickly felt
after that initial time period though.

The mean fuel temperature did not change significantly during the transients. However, the iemperature at
the surface of the fuel (fuel/coolant boundary), where the concentration of thermal ncutrons in the fuel is
the highest and hence the fission rate at a maximum, follows the coolant temperature. It can be seen in
Figure 10.5-8 that the mean fuel temperature does change but rather slowly and is more a function of reac-
tor power than coolant temperature for shorter time periods. All the longer transicnts, especially the 0 mk
transient shown in Figure 10.5-11, demonstrate how the dynamic behavior of the coolant properties
significantly affects reactor power.

The behavior of the coolant temperature for all but the largest reactivity insertion, displays the same dyna-
mics in all cases, as illustrated in Figures 10.5-8, 10.5-10 & 10.5-11. This behavior bears strong similarity
to that shown in the static calculation as given in Figure 10.5-1. This all indicates that the dynamics of the
coolant is a dominant effect in the behavior of the reactor as designed. An objective in the reactor design
was a reactor where the coolant dynamics would be felt through feedback effects. These results indicate
that the design was more than successful in mecting that objective. The thermalhydraulics had an undesir-
ably large influence on the reactor power. While this clearly iliustrates the effect that the thermalhydraulics
can have on the reactor behavior, the result is not a practical reactor design. A design using greater
moderation less influenced by the coolant dynamics would be more practical. The choice of materials used
in the design was hampered a lack of cross-sectional information, in particular, heavy water.

11.6 Conclusions and Recommendations

The objective of this work was to develop and test a reactor simulation that integrated neutron kinetics and
thermalhydraulics to form a detailed dynamic simulation of a simplified reactor. This was successfully
done within the limited context of the simplified problem. The various components of the code were tested
as well as practically possible. The reactor design was chosen to maximize the effect that the thermalhy-
draulics had upon the reactor behavior, especially the power. The simulation code produced during this
project brought to light complex behavior that was a consequence of the interaction of the neutronics and
thermathydraulics. The simulation warrants further investigation and possibly further development to over-
come some the problems that arc unique to the problem being solved.
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The steady state behavior of the thermaihydraulic simulation wias quite thoroughly tested using, a bench-
mark problem. For completeness, the transient behavior should be tested but the Lick ol 4 benchmark prob-
lem is a hindrance. Benchmark problems exist for testing the behavior of the hydraulics but it is desirable
1o have a test that included the thermal behavior as well.

The simulation of a more comumon reactor design would be usetul in further establishing some of the char-
acteristics of the resultant code. Proper calculation of the multigroup parumeters is required using an
appropriate lattice cell code.

A possible course for further code development would be the combination of a4 nolal themmalbydravlics
mode! with a nodal space-time neutron kinetics model. 1f the same nodal geometry was used in the reactor
core for both the thermalhydrsaulics and the nevtron kinctics, there would fewer ambiguities about heat pro-
duction (fission heat source) and changes in material properties (due to changes in temperature and/or den-
sity) in anode. Such a simulation would be more difficult to implement but it would have a wider area of
applicability.

11.7 Contribution

Contribution can be divided into three areas: the development of a thermalhydraulic simulation based on
the rate form of the equation of state, a space-time dynamic simulation (neutronics and fuel temperature)
with an integral thermathydraulic module, and a study of the methods of solution of the lincar algebraic
problem for banded matrices encountered in the solution of certain PDEs.

Thermalhydraulics:

The calculation of pressare is somewhat problematic when simulating thermalhydraulic systems. The vuse
of the equation of state in a rate form is a relatively innovative concept for the calculition of pressure, one
which has been used as the basis of a thermalhydraulic simulation utilizing the neda! form of the thermal-
hydraulic equations.> A problem encountered with the nodal form is the tendency for the pressure to drift,
which requires an adjustment 1o counteract this effect. The nodal form assumes that the nodes are sections
of pipe containing fluid where only pressure differentials with the neighboring nodes and the viscous drag
of the walls will cause velocity changes. If the desire is to model fluid behavior within a cavity or be, the
viscous effects of the fluid surrounding a point of interest must be considered. This requires the use of a
form of the equations other than the nodal form. The thermalhydraulic equations in the present work were
derived using a finite difference approximation employing a staggered mesh. The necessity that th: pres-
sure be specified as a condition at a minimum of one of the boundarics provides this form of the equations

113 Garland and Sollychio (1987)
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with a reference pressure and obviales the need for any form of pressure correction. The method of
solution of the thermalhydraulic equations developed here represents 2 generalization of the earlier nodal
method based on the rate form of the equation of state,

Time Integration

Time integration is the most CPU intensive part of this, and most any, simufation. Crank-Nicolson, explicit
and semi-implicit Runge-Kutta are the working inegration methods. Crank-Nicolson, the simplest integra-
tion method, was used for the hydraualics (fluid velocity and pressure). The method was modified to handle
a partitioned matrix, the fluid velocity and the pressure were seperated, which facilitated the use of banded
matrix inversion methods. The neutron kinetics was also solved utilizing a partitioned matrix, where the
prompt and delayed components were seperated. A semi-implicit Runge-Kutta integration method was
used for the prompt components and an explicit Runge-Kutta methed was used for the delayed compo-
nents.

The stiffness of the neutron kinetics and the nonlingarity of the thermalhydraulics requires that implicit and
semi-implicit time inlegration methods be used for stability and efficiency. These methods utilize matrix
inversion, therefore, there is strong motivation for finding the most efficient solution methods for the asso-
ciated linear algebraic problems. The applicability of the three matrix inversion method types (direct,
implicit and semi-implicit) were explored. The three method types were compared for various test matrices
and, predictably, the methods that exploited (he banded structure of the matrices performed appreciably
better than the non-banded methods. Conjugate gradient methods have been suggested for the solution of
some thermalhydraulic problems, hence their inclusion. However, their performance in the test problems
indicated that further investigation was not warranted. ‘While the individual methods are well known, spe-
cific combinations of algorithms, such as a semi-implicit Runge-Kutta algorithm using banded LU decom-
position and matrix partitioning, arc not. It was these combinations that proved to be the most valuable,

Efficient methods of storage for the banded linear systems were devised. A method of storage involving
only the nonzero bands was utilized for the iterative (Gauss-Seidel) and semi-iterative (conjugate gradient)
solver routines. Another storage method for use by direct methods (banded LU decomposition) was
devised whereby only the central banded section of the matrix could be stored without matrix rearrange-
ment. A third storage method for block tridiagonal matrices which incorporated only the block matrices
was defined. Memory requirements could be reduced significantly depending upon the matrix size and
bandwidth.

Reactor Physics - The Complete Simulation

A reactor simulation code is not presently known that has the tight coupling of the thermalhydraulics and
neutron kinetics as the code presented here. This coupling is in both the temporal and spatial dimensions.
This can be vseful to show how significanily the dynamics of the coolant affects the reactor power. Several
other combined simulations exist and are more practical for general safety analysis than the present simu-
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lation because the whole reactor core can be represented. However, they cannot furnish the detail provided
by the present software. If a question arose as to the dynamics of a fuel channel and a closer examination
of the coolant-neutronics interiction is required, such a task would be best handled by the code presented
here. The code in its present form would require further development before becoming suitable for com-
mercial applications, but it is a useful (ool for the exploration of the dynamics of certain problems. Prob-
lems associated with combined simulitions were revealed, in particular, the estimation of a K-effective in
static calculations where the coolant propertics are not fixed. Ideally this code could be used o develop
more simplificd models of the reactor dynamics, of the coolant in panticulir, which would then be used in
less computationally demanding simulations. The development of such simplified models however
requires a detniled simulation for the purpose of comparison. Such a detailed simulation is presented here,
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A Thermalhydraulics Equations

This appendix contains algebraic simplifications of some of the theanalhydraslic equations.

1 The Conservation of Momentum Equation

The variable that is conserved here is the product of the density and the velocity. This is substituted into
the microscopic conservation equation,

a%f’ PYV=pg+V-

The stress tensor can be expanded into its normal component, which is pressure, and its shear stress compo-
nent,

al

o=-PI+1
When the time derivative term and the stress tensor term are expanded the result is

av

0 W), 79
or o

When the conservation of mass equation is used to substitule the derivative of density with respect (o time

and the identity

+V.pVV=pr-VpP+V.7

V. pVV=VV.Vp+pV.VV
=VV.-Vp+pV-VV+pVV.V
is used. The result will be an equation that describes the rate of change of the velocity with respect to time,

paa‘;+pv VW=pr-VrP+V.7

If the fluid is assumed to be Newtonian, the shiear stress is a lincar function of the rate of strain,
T=MV- VT + 2%

where A and L are two coefficients for viscosity and

— — ———y = T

V-?=V-MV”- )I+V-|.1[VV+(VV)]

_._._._.

VRV +(VV) )= 25 - V4 vV + 97 . V)
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Note that 7, (W)T =V(@. vy The conservation of momentum equation now takes the form:

WV - ==

p§-+p(v ViV=pg -Vp +er17+(7«.+p)V(V- T")+(ﬁ- V)Vl+23"-Vp
If is assumed that the fluid is incompressible (V - V = 0) and that the viscosity is constant (Vi = 0), the con-

servation of momentum equation becomes the following (after dividing by p)

AV TT=F- TP+ VT

QO

!

The kincmatic viscosity is defined as v= Wp.

2 The Conservation of Energy Equation

Energy is the variable that is conserved here. Energy can be can be expressed as

|
W= p(e + '2- 14 J
where pe = ph — P is tie internal encrgy per unit volume and '5 pV?is the Kinetic encrgy per unit volume,
The conservation of energy equation now appears as

%[p[e +%V’)]+V-p(e +%V‘)?=—V-E+S(F,r)+ pg-V+V.(©-V)

We substitute for the internal energy and expanding the left hand side of the above equation arrive at

d = —l,[ap—-— ——}BP—-—o—an——-—-
— . - — .v . ——— . ol — . = NN
at(ph)+V phV+2V a!+V p+pv-V py V-PV+pVv a’+V VV|[=RHS
The conservalion of mass equation can be used to set the terms in the curly brackets to zero. The equation
v — —
pV-E—+pV (V-VV)}=V.(V.-o)+pV-g

is the dot product of the velocity and the conservation of momenium equation. If this equation is subtracted
from the equation above it, the result (with some manipulation) is

%mmﬁ.p:.V=_v.a+s(?.:>+%§+v.pmv.(E.V)_v.(v'.a)

The identities
V-o-N=V.¥V.0)+o:VV
G:VV =-PV.-V+1VV
V.-PV=PV.V+V.VP
arc of some value. When these identities are used the enthalpy equation takes the form
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a%-(thV-(phV) =V -3+5(F.:)+E;W+%+?-W

The two terms on the right hand side can be expanded to get

N
ar P

V. (phV)=hV . pV+pV-Vh
These can then be substituted into the enthalpy equation with the result

o = —-] oh — = )

—+V-pV —+V-Vh |=RHS.

h{a!+ pv:+p 3 h|=RH

after some grouping of terms. The conservation of mass equation can be used to set the group of terms on

the far Iefi o zero. The result

a
g(ph) =h

p"’ai:+ oV Vi =_V.a+s(?..)+z;W+aa_f+v.w

is the stmplified form of the energy equation.
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B The Multigroup Coefficients

The following is a definition of the commonly used multigroup coefficients.

‘The group flux is

E
0,G.0= " oG.E.0aE

‘The group velocity is

J.EH——Q)(?'E")JE
E,

1
@, v(E)

1
v, A

The groups total cross section is

E
(M= _'..f LG EYOG E,0dE
@, E,

The group diffusion constant if a diffusion constant D(r, E) is defined as

El' —
J' "D, EYOGF.E, 1E
E‘
D@ =

- E.l“—-
j Vo7, E 1 dE
El

The transport cross section may be given instead of the diffusion constant. The group transport cross
section

o
I M= lf "'t F.EYOF, E,E
* D, Je,
is calculated in the same manner as the total cross section. The group diffusion constant
1
25, 5

is defined as a function of the group transport cross section in this case,

The scattering cross section from group g’ to g is

1 (& £y
Z,. P EFL dEJ; 'S F.E" o EYOF, B, 1)dE’
[ ' 1 ’l
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The number of fission neutrons produced because of neutrons in group g (i.e. The product of the fis-
sion cross section for group g and the number of neutrons produced per fission.) is

L (Fe e gy g
V'.Ef'-(-}:) Ea)"—,J; . V(E')Ef(r.fz')d)(r.h AME

The fraction of fission neutrons that appear in group g is

E,.,
x=[ " uEnE
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C Analytical Calculation of K-effective

As a method of checking whether the results of the neutronic simulation were reasonable, an analytical cal-
culation of K-effective for a two region, one and two dimensional reactor was underiaken. The results of
these calculations could be then compared (0 numerical results.

One Dimensional Reactor
‘The Helmhbol equation is used in the static calculation of the flux within a reactor.
Vo +pfd, =0

where the subscript § represents the region, ffor in the fuel and ¢ for in the coolant. The buckling coeffi-
cient P is dependent on the material propertics of the region. In the fuel, the buckling coefficient is:

B: - i:zf B E‘
/i D!

where I, is the fission cross section, Z, is the total cross section, Dy is the diffusion coefficient and, v is the
number of neutrons produced per fission, The general solution of the Helmhltz equation is the fuel is

Dx) =A_,cos(|3,t)+ B,sin(B,x)
At the left boundary, reflective boundary conditions are used and as a consequence, the coefficient B, is
Cro,

ddA0)
T =0= sz 0
In the coolant, the buckling cocfficient is
2 L
Bc = l_):

and the general solution of fac Helmholiz equation is

@, (x)=A_cxp(B_x)+ B_exp(—B.x)
The boundary conditions are: continuity of flux and current at the interface between the two regions,
ddx) D dd(x)

by dx € dx
P Lx) =D (x))
and a reflective boundary at the right,
dd(x)
dx
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where x, is the interface between the two regions and x; is the right boundary. These cquations may he
writlen as

DBAsinBx)+ DB 1A explBr) - B, exp(-B) =0
Agcos(Br,) —A exp(Byy) - B, exp(-B) =0
B:l“‘c CKP(B.J':) - Bc cxp(—ﬂ‘.l})] =0
These three cquations must be solved simultancously. The coefficents multiplying the equations (A,A,B.)
are placed into a vector that multiplics a matrix containing the terms in the three equations. The resolt of
this matrix equation is zero which implies that the matrix must be singular for the non-trivial solution (non-
zero coefficients). The charateristic equation is the determinant of the matrix. ‘This equation is cquaied o
zero and used to solve for B,. This resultant buckling coefficient is then used 1o caluculiated the K-gffective
for the reactor.

Two Dimensional Reactor

The calculation of K-effective for the two timensional reactor requires that buckling coefficients in the Y
direction be determined. The Helmhofiz quation now appears as
@+-Ef3'-+ B, =0
g oy’ '
Seperation of variables is used such that @(x, y) =X (x)¥(y). The seperated equation is
Ld*X(x) 2 .2 1dF(y
UL
where ™ is the constant of seperation. ‘The general solution of the Y(y) equation is
Y(y)=A sin(Ay)+ B cos(hy)
The boundary conditions are symmetric in the y direction which implics that the coelficicnt A is zero (A =
0). The general boundary condition at the top and bottom boundarics is the Cauchy boundary condition
(see section 6.7.3),
D %+ bo=0
where D is the diffusion coefficient and b is some predetermined coefficient. Substituting ¥(y) for @ in the
above equation, the boundary condition equation now becomes

%cos(?m)— Asin(Ag)=0

where a is the distance from the center of the reactor to the top or bottom boundary. This equation is used
to solve for A in both regions of the reactor (there arc two lambda’s).

The equation in the X direction
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a’x 2 a2
—_— -2 X(xy=0
LRI ()

is slightly modified to include the constant of scperation. Similarly, set B = B~ A and solve as before for

B.

The implementation of these calculations can be found in the program listing critical (critical calculation).
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D Heat Transfer Expression

The conservation of energy expression ¢an be written as
T = '{ TV -o¥THdS = ©,
. ot 5

where S is the surface surrounding some volume of interest, v, and (3, is the total heat flow through the
surface. The volume of interest in this case is the volume that is interior to: two planes that are parallel to
the hot and cold walls, which intersect the x axis at points a and b (0 < @ < b < ). The surface integral
will vanish at the top and botiom walls due to the insulated boundary and zero flow velocity, leaving the
surface integral over the two planes. The resultant heat flow expression is

! oT ! aT
Q’— J; (Tvxnaﬁ]x -ad} - J; (TV‘_ué}-)J-bdy

For the steady state condition, 0, will be zero, which implies that the thermal energy flowing through the
planes will be equal. The points a and b are arbitrary, hence the heat flow through the planes must be a
constant.
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E Matrix Properties

There are several matrix properties that are mentioned throughout. The definition of these matrix proper-
tics is outlined here.

Diagonally Dominant

4+ matrix is diagonally dominiant if the absolute value of the elements along the diagonal is greater than or
equal o the sum of the absolute values of all the elements in the same column or the same row (excluding
the diagonal clement):

la, 2 % la,l

JEO e
Positive Definite, Positive Semi-definite and Negative definite

A matrix is positive definite, positive semi-definite and, negative definite if the inner product of a vector
with the product of the matrix and the vector is greater than zero, greater than or equal to zero or, less than
zero respectively,

>0 positive definite
{(v,Av)¢20 positive semi-definite
<0 negative definite

where v is any nONZEro vector.

Symmetric
A matrix is symmetric if it is equal to its transpose, A” = A,
Singular

A matrix is singular if there exists a nonzero vector such that the product of that matrix and that vector is
zero (a zero vector),
3 ved 3 Av=0

Null Space and Range

The null space of a matrix, Nuli(A), is the space that is spanned by all the nonzero veclors {v} that satisfy
Av = 0. A nonsingular matrix is a matrix who's null space is empty. The range of a matrix, Range(A), is
space that is spanned by all the vectors that satisfy Av # 0. Note that dim{Range(A}} + dim{Null(A}} = n,
where n is the dimension of A.
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F Program Listings

1 Main Reactor Simulation Routine

The important sections of the main routine are explained in general twrms in section 9.1, As stated there,
this is the routine that controls the simulation and calls all the necessary subroutines. The following is the
direct listing of the C code.

I#
Main routine for (he reactor simulation program.

return values

0 normal termination
memory allocation error
file error

band array error

solver error

L I -

*

#include <sidio.h>
#include <math.h>
#linclude <signal.h>
#include <string h>
#include <fentl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/times.h>
#include <mathG.h>
#include <react.h>
#include <ansi.h>

/* external variables */
int nx,ntTH,ntN,ntf, ntc,ntm,ntg,nts, nxXN,nXCnXTH,nXV,0Phi,nW;
int nxf,nxc,nxm,nyN,nyTH,ng;
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int ntreg[3).nxrep 3]
double dy,dxfdxe,dxm,
double exf.cxe,cxm,cyy.cxv,cyv,exheyh;

double Prandtl, THexp.mu,grav,G1LITT,Gex.Gty:
double alphaf,wrl,cxregl3],dxregl3).

double cxfuel,cyfuel;

double Kf,Kc,muPr,;

double T_cold = 0.0;

/* delayed neutron data */

intiC;

double betat,betal Keft;

double lambda[6)={0.0127,0.0317,0.115,0.311,1.4,3.87};
double beta[6]={0.038,0.213,0.188.,0.407,0.128,0.026};

/* criticality calculation - Chebyshev acceleration */
double Me=0.8,me=0.0,Chebyshev(),
int IE,Ilim;
/* array pointers */
doublc *BN.*BP,*BTE,*BTcN,*BTc,*BTH,*CN,*CTi,*CTH,*XN,*XTH,*XTHmean;
double **AN,**ANw,**ATH,**ATHr;
double *ATI[5),*ATcN(5],*ATc[5].*AV([5].*A12b{4],*A21b[4],
A2, A22,
double  **Phi,*Cn[6],*dCn[6],*XC,*XdC,*NuEfPhi;
double **DenC,**DenCmean,**DenCold,*DenV, * T, *TeN,* Tc,*Tni, * Temp,**Cg,**Bg;
double *Vx,*Vy,*P,*VyBC,*VxBC,*Pf,*M_err,*work{4],**workN;
double *G,*Vg,*EfT,*EaT,*NuE(f[3),*E1{3],*Eu(3],**Es[3],**Esv,*Est;
struct  BITriDiag BTD1,BTD2;
FILE  *fopen(),”fpbin,*fpdat,*fpout,*fpxsec, *{pstat,* [pplot;

char * head_fluid(3] = {" X velocity\n"," Y velocity\n”," Pressure\n"};
char * head_den[1} = {" Coolant Density\n"};

char * head_muss[1] = {" Mass Sourcen”);

char * head_temp(2) = {" Fuel Temperature\n”," Coolant Temperature\n”};
char * head_Cnl6) = {" Delayed Group 1\n"," Delayed Group 2\n”,

" Delayed Group 3\n"," Delayed Group 4\n”," Delayed Group S\n",

* Delayed Group 6n"};

main(int nargs.char ** args)
{
char fndat[20).foxsec]30),*xspath,* getenv(),comment{80];
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char fnflow([20].MmMux[20].fmTH{20];

struct uns t_sys, *ip= &(_sys;

long docal;

float 1_cpu,clock_tick:

double Phi_mean,Phi_set,Phi_err, MEmean MEvar;

double di,1_sim,ct.lend.dimp,rhogh,*dpir,c1.¢2;

double XTHdotm X THnm,XNdotnm, XNam.*VNO,*VCO,*VNI1*VCI,
double Cnm,Cdotnm,d1C,dtN,d(TH, Vplot[6];

double Vxmean,Vymean, Tcmean, Tfmean, T, Tc0,Vx0,Vy0,PO;
double Power,Power(},Pcoef,

double tolN 1ol TH.epsN.epsTH,alpTH,dK Keps=1.0c-5;

double XNchk=0,XTHchk=0,Cchk=0,

int i,j.k. kg kr,sscNsseTH,ssc_in,

int iter,nstep.nbl1,nbl2,*PivTH,

int binio,view,err=0,BC_N,BC_TH,control.nplot;

int solveN.ssg.nylny2;

int limN,iterN=0,nbAN,bandN[30},bandV[5],band 12[-}].band2 1 [4];
int kKON kOTH=6.kOV k012,k021,kOTT;

int EmTH.nbATH=13,band TH[13},impTH;

clock_tick = (float) CLK_TCK;
FT = 4.0/3.0;
f* interupt handler */
signal (SIGFPE, sig_handle);
signal (SIGINT, sig_handle);
signal (SIGQUIT,sig_handle),
printf ("x07");
if (nargs > 1)

strepy (fndatargs[11);
else

strcpy (fnday,"reacL.dat");

/* input data */
if ((fpdat = fopen(fndat,"r")) == NULL)}
error_exit ("error opening data file",2);
fscanf (fpdat," %d%d%d%d%d%d" &nxf,&nxc,&nxm,&ny 1, &ny2,&ng);
fscanf (fpdal."%1e%le%le%le".&dxf.&dxc.&dxm.&dy);
fscanf (fpdal,"%d%le%le" &nstep,&dt&iend);
fscanf (l'pdal,“%d%le%Ie%d%d",&limN.&lolN.&epsN,&ssg.&solch);
fscanf (fpdat,"%d%le%le%le" & imTH,&wITH.&epsTH,&alpTH);
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fscanf (fpdat," %d%d%d", &binio,&view,&nplot);
fscanf (fpdat," %d%d%d",&BC_N.&BC_TH,&control);
fscanf (fpdat,"%le%le%le%le%le%le" &Ke,& Prandu. XTHexp,&mu,&grav,&G1)
fscanf (fpdat,"%le%lePle” & KI &alphaf & wi);
fscanf (fpdat,"%le%le%le" & Phi_seL&betat, & Kefl);
fscanf (fpdal,"%lc%Ie%lc%d%d".&chs.&Mc.&mc.&IE.&]lim);
fscanf (fpdal,"%le%lc%lc%le%Ic".&Tf‘().&TcO.&VxO.&VyO,&T_cold);
do |
if(fgets (comment,80,fpdat) == NULL) {
strepy (comment,” no comment ");
break;
)
if (strstr(comment,"Comment") 1= NULL) {
feets (comment,80,{pdat);
break;
)
} while (!feof(fpdat)};
fclose (fpdat);

if (alpTH == 1.0) impTH = 1;

if (ssg > ng-1) ssg = ng-1;

if (solveN) /* interval - step size control */
ssc_int = 50,

else
ssc_int = 10;

if (contro! & 2) { /* 1D calculation */
control I=4; /*noTH*/
BC_Ni=4; /*1D¥
nyl=1;
ny2=1;
nbAN=3+ng*2;
kOTf=I;
ssc_int = 100;
!
else { /* 2D calculation */
nbAN=5+ng*2;
kOTf=2;
}
if (control & 4 ll control & 8) { /*noTH*/
view &= 21;
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sscTH=0;
}
else
ss¢TH = 1;
sscN=1;
if (control & 16) { = no step size control ¥/
sscN =0,
sscTH=0;
}
nyN =nyl;
nyTH =ny! + ny2;
/* data for mesh and constants */
for (i=0; 1 < 6; ++i)
beta[i] *= betat;
betal = 1.0 - betat;
grav = - fabs (grav); /* gravity must be negative */
muPr = mu / Prandti;
Gl *=1.0e4; /* adjust units to g / cm s*2 */
X = nxf¥nxc+nxm;
ntf = nxf * nyN;
nic = nxc * nyN;
ntm = nxm * nyN;
niN = nx * nyN; /* # mesh points */
ntTH = nxc * nyTH;
ng =12 * ng;
nts =3 *ng * ng;
nPhi=ng * niN; * flux vector */
nXN = nPhi + n(N;
nXC=6*ntf; I* precursors */
nXTH =4 * ntTH; PV P&ETCY
nXV=2*nTH;
if (control & 1) /* swtic calc */
oW = nXN;
else
nW =nXN + nXC;
cxf = 1.0/(dxf*dxf);
cxc = 1.0/(dxc*dxc);
cxm = 1.0/(dxm*dxm);
cyy = 1L0/(dy*dy);
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cxv =mu " cx¢,
cyv=mu * cyy;

cxh = mu * cxe / Prandt);
cyh = mu * cyy / Prandil;
cxfuel = alphaf * cxf;
cyfuel = alphaf * cyy;
Gux = G1 * dxc;

Gy = Gl * dy,;

nxreg[0] = nxf;

nxregl 1] = nxc;

nxreg|2] = nxm;
nreg(0] = nif;

ntregl 1] = ntc;

ntreg(2] = num;

dxreg{(}] = dxf;

dxreg[1} = dxc;
dxrep[2) = dxm;
cxregl0) = cxf;

cxreg[1] = cxc;

cxreg2] = cxm;

Pcoel = wf * dx[* dy * ntf / 2.43 * Phi_set;
KON =nbAN/2; /* central band - ncutronics */

* MEMORY Altocation */

/* Neutronics */
workN = Mfmalloc (8.nW);
if (workN == NULL)

error_cxit ("\n workN memory allocation error\n®, 1);
VNGO = workN[6];
VC0 = &VNO[nXN];
VN1 = workN[7};
VC1 = &VNI[nXN];
BN = (double *)calloc{nXN,sizeof(double});
CN = (double *)calloc{nXN,sizeof(double));
XN = (double *)calloc(nXN,sizeof(double));
Phi = (double **}calloc(ng.sizeof{double *));
Cg = (double **)calloc(ng,sizeof(double *))
Bg = (double **)calloc(ng,sizeof(double *});
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/* Delayed precursors */
XC = (double *)calloc(nXC,sizeof(double));
XdC = (double *)calloc(nXC,sizeof{double))
for (i=0; i< 6; ++) {
Cn[i] = &XC[i*ni];
dCnfi] = &XdC[i*mf];
)
NuEfPhi = (double *)calloc(ntfsieofl(double));  /* {ission ¥/
for (k=0; k < 4; ++Kk)
work[k] = (double *)calloc(ntf,sizeof(double)); /* RK work */

f* Thermalhydraulics */
BTH = (double *)calloc(nXTH,sizeof(double));
CTH = {double *}calloc(nXTH.sizeof(double)),
XTH = (double *)calloc(nXTH,sizeof{double));
XTHmean = (double *)calloc(nX TH,sizeof{double));
DenV = (double *}calloc(ntTH,sizeof(double));
M_err = (double *}calloc(ntTH,sizeof(double));
PivTH = (int *)calloc(ntTH sizeof{int));
DenC = (double **)calloc(nxc,sizeof{double *¥));
for (i=0; i < nxc; ++i)

DenCli]l = &DenV[i*nyTH];
VxBC = (double *)calloc{nyTH,sizeof(double));
VyBC = (double *)calloc(nxc,sizeof(double));
Pf = {double *)calloc(nxc,sizeof(double));
DenCmean = Mfmalloc {(nxc.nyTH),
DenCold = Mimalloc {nxc,nyTH);
if (DenCmean == NULL |l DenCold == NULL)
error_exit ("\n DenCmean memory allocation ervor\n”, 1);

I* cross sections */

G = (double *)calloc(ntg,sizeof(double)); /* cross sections */

Est = (double *)calloc(nts,sizeof(double)); /* scattering */

Esv = (double **)calloc{3*ng,sizeof(double *)),

/* check allocation */

if (BN ==NULL I BTH = NULL ICN==NULL ICTH==NULLI Il
XN = NULL || XTH == NULL {| DenV == NULL I M_err == NULL |}
G=NULL)
error_exit ("n B,C,X,G memory allocation errorin™, 1);
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I* cross sectional data */
Ve=0G:
EfT = &Vg[ngl:
EaT = &EfT(ng):
i=3*ng;
for (k=0; k < 3; ++k} {
j=(k+3)*ng;
NuEfik] = &G[jl
Etlk] = &Glj+il:
Etrik] = &G[j+2*il;
Es{k] = &Esv[k*ng]:
for (1=0; 1 < ng; ++1)
Esv[k*ng+l] = &Estl{k*ng+1)*ng];
) ,
/* newtronics and temperature */
BTf = &BN[nPhil;
BTcN = &BT{lntf];
CTf = &CNinPhi;
for (k=0; k < ng; ++k) {  /* Phi[group] */
j=k*nmN;
Phifk]) = &XN[j};
Bgfk] = &BNI[j}
Cg(k] = &CN{j}
}
Temp= &XN([nPhi};
Tf = Temp;
TeN = &Tfintf:
Tm = &TcN[nic};

/* thermalhydraulics */

Vx =XTH;

Vy = &Vx[nTH];

P = &Vy[niTH];

Tc = &P[ntTH];

BP = &BTH[nXV];

BTc = &BP[ntTH];

/* initialize band arrays */

/* Neutronics */

if (control & 2) { /* 1D problem */
for (j=0; j < kON-1; ++j)
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bandN[j] = (-kON+1) * ntN;
bandN{k(IN-1] =-1;
hundNJkON] = ();
bundNTkON+1] = |,
for (j=k0ON+2; j < ubAN; 4+j)
bundN(j] = (-kON-1) * niN;
]
else { /* 2D problem */
for (j=0; j < kON-2; ++)
bandN[j] = (j-kON+2) * niN;
bandN{k(N-2] = -nyN;
bandN[kON-1] = -1;
bandN[kON] = 0;
bandN[kON+1] = 1;
bandN[kON+2] = nyN;
for (j=k(ON+3; j < nbAN; ++j)
bandN(j] = (-kON-2) * niN;
)
if (CheckBand (bandN,nbAN,&kON))
error_exit ("bandN emor\n” ,4);

if (control & 4)

goto Matrix_Memory;
bandTHF)] = -2*niTH-nyTH;
bandTH[1] =-2*TH;
bandTH(2] =-ntTH-1;
bandTH[3] = -mTli;
bandTH[4] =-nyTH;

bandTH([5] =-1;
bandTH[6} =0;
bandTH[7]) =1;

bandTH[8] = nyTH;

bandTH[9] = niTH;

bandTH[10] = ntTH+1;

bandTH[11] = 2*mTH,

bandTH[12] = 2*ntTH+nyTH;

if (CheckBand (band TH,nbATH,&k0TH))
emror_exit ("bandTH error\n" 4);

bandV[{3] = -nyTH;
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bandV{1] =-1;

bandV[2] =0;

bandV{3] = I;

bandV[4] =nyTH;

if (CheckBand (bandV,5,&k0VY)
error_exit ("bandV error\n” 4,

band12[0] = -mTH;

bandl2[1] = -mTH+1;

band12[2)=0;

band12{3]) = nyTH;

if (CheckBand (band12,4,&k012))
error_exit ("band12 error'\n”,4);

band21[0] = -nyTH,

band21{1]=0;

band21(2] = mTH-1;

band21[3] = ntTH;

if (CheckBand (band21,4,&k021))
error_exit ("band2! error\n”4);

Matrix_Memory:
* neutronics */
AN = Mbmalloc (bandN,nbAN,nXN);
ANw = Mbmalloc {bandN,nbAN,nXN);
if (AN == NULL |l ANw ==NULL)
error_exit (" AN or ANw memory allocation error”, 1);
* temperature */
if (control & 2) {
for (k=0; k < 3; ++k)
ATIk] = &AN[k+kON-1]}{nPhi];
}
else {
for (k=0; k < 5, ++k) {
ATHK] = &AN[k+kON-2][nPhi];
ATeN[k] = &ATIk]{ntf];
}
}
if (control & 4)
goto Cross_Sections;
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f* thermadhydraulics */
ATH = Mbmalloc (band TH.nbATH.nXTH),
if (ATH == NULIL)
cnunﬁxﬂ(“A1T{nwuuwyamxm00ncnnﬂJx
if impTH) {
ATHr = Mbmalloc (bandFH.nbATH,nXTH);
if (ATHr == NULIL)
error_exit (" ATHr memory allocation error”, i),
)
A2t = Mfmalloc (mTH X V),
A22 = Mfmalloc (ntTH.ntTH);
if (A12t == NULL Il A22 == NULL)
error_cxit (" A12 or A22 memory allocation error”, 1)
for (k=0; k < 5; ++Kk) {
AV[k] = ATH[k+4];
ATclk] = &ATH[kHJ3*mTH];
}
for (k=0; k < 4; ++k) {
AL2blk] = ATH[k+9];
A21blk] = &ATHIK][nXV];
}
/* ermalhydrautics: Block Tridiagonal solver - V& T *f
nbll = 2*nxc;
BTDI = BITrLUInit (AV,nyTH,nbl1);
if (BTD1.em)
error_exil ("\n BTD - V memory allocation errorin”, 1);
nbl2 = nxc;
BTD2 = BITALUInit (ATc,nyTH,nbl2);
if (BTD2.em)
error_cxit ("\n BTD - T memory allocation error\n”, 1);
ZeroMb (ATH, band TH,nbATHaXTH);
ZeroV (BTH.nXTH);
ZeroV (CTH,nXTH),
ZeroV (VxBC,nyTH);
ZeroV (VyBConxce);

Cross_Sections:

/* input cross sectional data; 3 Regions: fuel, coolant & moderator *f
if {(xspath = getenv("XSECTION")) = NULL})
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error_exil ("cross section environment error”, 0%,
spriutf {fnxsec,"Sesv/macxs. %d" xspath.ng),
if ((fpxsec = fopen(inxsee,”rb™)) == NULL)
error_exit("\n cruss section file error®,2),
fread (G.sizeof(double),nig,fpxsec);
fread (Est.sizeof{double)nts fpxsec);
fclose (fpxsec);

for (kg = 0; kg < np; ++kp) {
if (kg < ssg)
Velkgl = Velssgl
}
if (sotveN & 2 && control & 1) { 1* static cale - relative velocity */
for (kg = 0; kg < ng; ++kg)
Valkg] /= Vglng-1k
)
/* INITIALIZE ¥/
ZeroV (BN,nXN);
ZeroV (CN.aXN)
if (binio & 1) {
if ((fpbin = fopen("flux.bin","rb")) == NULL)
error_exit ("error opening binary file”,2);
fread (XN,sizcof(double),nXN,[pbin);
fread (XC,sizeof(double),nXC,fpbin);
fclose(fpbin),
)
clse |
ChllV (Tf, T0.nif);
ChllV (Phi{0],1.0/ng,nPhi);
/* precursors */
ZeroV (NuEfPhi,ntf);
for (kg =0; kg < ng; -++kg)
V_addCV (NuEfPhi, NuEf|0}[kg}/Keff,Phi[kg).atl),
for (iC=0; iC < 6; ++C) {
V_CmulV (CnliC],betaliC}1lambda[iC],NuEfPhi,ntf);
V_CVaddCV (dCn[iC}.betaliC),NuE(Phi,-lambdaliC].Cn[iC]nt0);
}
}
rhogh = grav * dy;
PO = -thogh*nyTH;
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CRUV (Plrhogh®ny TH+PO.nXe);
if (hinto & 4) {
if ((fpbin = fopen("flow.hin","rh")) == NULL)
error_exit (" error opening fow file”.2),
fread (XTH,sizeof{double),n X TH fpbin);
fread (DenV sizeof(double),ntTH.fpbin);
fclose (fpbin);
}
clsc |
CHllV (Tc, TcOntTH);
CaHllV (Vx, VxO0,ntTH);
CHIV (Vy,VyOn(TH);
CfillV (DenV,1.0.0tTH);
for (j=0; j < nyTH; ++j) {
dtmp = rhogh * j + P,
for (i=0; i < nxc; ++)
Pli*nyTH+j] = dtmp;
}
}
for (k=0 k < nxc; ++k)
CopyV (& TeN[k*nyN| & Telk*nyTH].nyN); /* initiatize TeN */

ZeroV (VNG

for (kg = 0; kp < ng; ++kg)
V_addV (VNO,Philkg|.nt),

Phi_mean = Mean (VNGatf);

if (control & 1) {
f* adjust the mean flux - normalized */
Phi_err = 1.0/ Phi_mean;
for (kg=0; kg < ng; ++kg)

V_mulC (Phifkg],Phi_err,ntN);

V_mulC (XC,Phi_errnXC);

]

/* THE MAIN LOOP - INITIALIZE */
t_sim = 0.0;
ct=1.0/dy
diN = dy;
S(TH =dt;
iter = 0;
Timean = Mean (Tatf);
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Tfmean = Mean (Tf.otD:
Temean = Mean (Te,ntTHY,
Vxmean = Mean (Vx,ntTH)
Vymean = Mean (Vy.ntTib:
if ((fpplot = fopen(“react.pl”,"wb")) == NULL)
error_exit ("\n error opening binary plot filen™.2);
ZeroV (NuEfPhint);
for (kg = 0; kg < ng; ++kg)
V_addCV (NUEfPhi, NuEf0][kg}/Keff,Philkgl.nth);
Power) = Mean (NuEfPhi,nt);
Vplot{0] = t_stm;
if {control & 1)
Vplot[1] = Keff,
else
Vplot[11= 1.0
Vplot[2] = T{mean;
Vplot[3] = Temean;
Vplot[4] = Vxmean,
Vplot[5] = Vymean;
fwrite (Vplotsizeof(double),6.[pplot);

if (view & 1} /* clear the screen */
printf("%s",Clear),
else {
if ((fpstat = fopen("react.st”,"w")) == NULL)
error_exit(" status file error”.2),;

}

Flux (AN,KON,BN,Keff,Phi_set.BC_N);
Thermal {ATfXOTE,BT{,BC_N);

/* thermal feedback */
if (control & 2) { /* 1D problem - EaT */
for (kg=0; kg < ng; ++kg)  /* Doppler - absorption */
V_CmulV (&AN[KON+ng-kg+1][kg*ntN],-EaT(kg],Phi{kgl.ntf);
for (kg=0; kg < ng; ++kg)  /* Doppler - fission */
V_addCV (AN[kON+ng+1],EfT(kg),Philkg].nt);
)
else { /* 2D problem */
Density (DenV,THexp,Tc.ntTH);
XSCoolant (AN, kON,DenC,BC_N,Keff);
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for (kg=0); kg < ng. ++kg)  /* Doppler - absorption */
V_CmulV (&AN[KON+ng-kg+2}[ke"niN],-EaT(kglPhijkg]nb),
for (kg=(); kg < ng; ++kg)  /* Doppler - fission */
V_addCV (AN[KON+ng+2] Eff ke | ,Phi[kg].nf);
)

if {Instep) goto react_exit;

I#tt#t** THE MA]N LOO[) *!t'tt:‘f
do {

Copyib (ANw, AN, bandN,nbAN,nXN)

ZeroV (BN, nXN);

if ({(control & 4)) {
ZeroV (BTH.nXTH);
Fluid (ATH,BTH,Vx,Vy,DenV, VxBC,VyBC PILATE,BT{,ATcN,BTcN,
ATc,BTc,BC_TH),
]
/* Neutronics */
il ('(control & 1) Il solveN & 2)
GroupVelocity(nbAN,bandN});

/* STEP SIZE CONTROL %/
* neutronics & temperature */
if (control & 1) {  /* Static Calculation */
ZeroV (NuEfPhi,nuf);
for (kg = 0; kg < ng; ++kg) /* fission production */
V_addCV (NuEfPhi,NuEf[0j[kg)/Keff,Phifkg],nf);
/* delayed neutron - steady state */
for (1=0; 1 < 6; ++i) {
V_CmulV (Cxlfi),betali)/lambda(i],NuEfPhi,nth);
V_addCV (Bg[0].lambda(i].Cn[i].ntf);
}

if (solveN & 1)
err = RKSTLGS (XN, XN,nXN,di,ANw,bandN,nbAN,k(N,BN,
workN, loIN,imN, & iterN);
clse
err = RKSI_LUb (XN, XN,nXN,dt, ANw,bandN,nbAN kON,BN,workN);
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if (sseN && iter > 0 && iter & ssc_int = (h |

£+ two half steps - step size control */
if (solveN & 1)
err= RKSI_GS (XN, VNO,nXN,du2 ANw. bandN.nbAN KGN, BN,
workINLLoIN, limiN, &iterN);
else
emr= RKSI_LUB(XN, VNORXN,d 2 ANw band N nb AN KONBN, workN};

CopyMb (ANw,AN,bandN,nbAN,nXNY;
if (W{control & 1) ll solveN & 2)
GroupVelocity(nbAN,bandN);

if (solveN & 1)
ermr= RKSI_GS (VNO,VN1LnXN,du2, ANw bandN, nbANKON,BN,
workN, tolN, imN, &iteeNY;
else
err= RKSL_LUbB(VNG, VN LaXN,du2, ANw bandN.nbAN kKON, BN, workN);

V_VsubV (CN,XN,VNO.nXN};
XNchk = 0;
for (kg=0; kg < ng; ++kg) {
XNnm = VNorm (Phifkg].ntN); 1* flux ¥/
XNdotnm = VNorm (Cg[kg].ntN);
diump = dt * XNdotnm / XNnm;
XNchk = (dump > XNchk) 7 dimp : XNchk;
}
XNnm = VNorm (Tf,ntf); T
il (XNnm > 1.0e-6) {
XNdotnm = VNorm (CTi,ntf);
dtmp = dt * XNdoinm / XNnm;
XNchk = (dtmp > XNchk) ? dimp : XNchk;
}
dtN = dt * sqrt (epsN / XNchk);

}
if (emr)
g0to react_exit;
}
else { /* transient calc */

if (sseN && (iter % 25 == 0 && iter> 0)) {

if (solveN & 1) {
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1* one step 7/

err = RKSI_GS_N (XN, VMOnXN,XC,VCOnXC.dt,

ANw bandN,nbAN KON, BN, workN,tolN,JlimN,&iterN,BC_N,ssg.Keff),

/* two half steps */

err = RKSI_GS_N (XN, VNInXN.XCVCi.aXCdu2,

ANw. bandN,nb AN KON, BN, workN, 10IN,JimN, &iterN,BC_N,ssg, Keff);

err = RKSI_GS_N {VNILXN,nXN,VCILXCnXC,di/2,

ANw, bandN,nbAN KON, BN, workN, toiN,limN,&iterN,BC_N,ssg Keff});
}
else |

/* one siep ™/

err = RKSI_LU_N (XN,VNO.nXN,XC,VCO.nXC.dt,

ANw bandN,nbAN KON, BN, workN, tolN, linN,&iterN.BC_N,ssg,Keff);

/% two half steps */

err = RKSI_LU_N (XN, VNLnXN,XC.VC1.nXC.d2,

ANw,bandN,nbAN KON, BN, workN,tolN,limN,&itesN,BC_N,ssg,Keff);

e = RKSI_LU_N (VN LXN,nXN,VC1,XC.nXC.d12,

ANw,bandN,nbAN KON, BN, workN,1oIN,limN.&iterN,BC_N.ssg.Keff);
)
if (err)

goto react_exit;
V_VsubV (CN,XN,VNO,nXN};,
V_VsubV (XdC,XC,VC0,nXC);

XNchk =0,
Cchk=0;
for (kg=0; kg < ng; ++kg) {
XNnm = VNorm (Phi(kg].mN);
XNdotmm = VNom (Cglkp],ntN);
dump = dt * XNdotnm / XNnm;
XNchk = (dtmp > XNchk} ? dtmp : XNchk;
]
XNnm = VNorm (TT,ntf);
if (XMnm > 1.0e-6) {
XNdotnm = VNom (CTf,ntf);
dimp = dt * XNdotnm / XNnm;
XNchk = (dtmp > XNchk) ? dtmp : XNchk;
}
"diN = dt * sqrt (epsN / XNchk);
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for (iC =, 1C < 6; ++1() |
Cnm = VNom {CaiC ],
Cdotnm = VNarm {dCa[iC].nttY,
dump = dt * Cdotnm / Cnm;
Cchk = (dtmp > Cchk} ? dimp : Cehk;
}
AtC = dt * sqrt (epsN / Cehk);
dIN = (diN < diC) 7 diN - diC;
}
else {
ZeroM (WOrkIN,8,nW),  feremreenersy

if (solveN & 1) {

err = RKSI_GS_N (XN, XN,nXN.XC,XCaXC,di,ANw.bandN,nb AN, KON,BN,
workN, tolN, limN, & itefN,BC_N,ssp.Keft);

}

else {

emr = RKSI_LU_N (XN,XN.nXN,XC.XC.nXC,d, ANw,bandN,nbAN kON,BN,
wOrkN, toIN, imN, &iterN,BC_N,ssg, Keff);

}

if (err)
golo react_exit;

}
if (control & 2} { /* 1D problem */
for (kp=0; kg < ng; ++kg) /* Doppler - absorption */
V_CmulV (&AN[KON+ng-kp+1][kg*ntN].-EaT[kp],Phikg |.nt);
for (kg=0; kg < ng; ++kg)} /* Doppler - fission */
V_addCV (AN[kON+ng+1),EfT{kg],Philkg].nu);
)
else {
for {kg=0; kg < ng: ++kg) /* Doppler - absorption */
V_CmulV (&AN[KON+ng-kg+2][kg*ntN],-EaTfkg],Phi[kgl.nd);
for (ke=0; kg < ng; ++kg} /* Doppler - fission */
V_addCV (AN[KON+ng+2],EfT[kg).Phi{kg]nf);
}

ZeroV (VNO,ntf);

for (kg = 0; kg < ng; ++kg)
V_addV (VNO,Phi[kg],nd);

Phi_mean = Mean (VNO,ntf);
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ZeroV (NuEPhiatf);
for (kg = {}; kg < ng; ++kg)
V_addCV {(NulPhi, NuEO) kg VKeff, Philkglad),
Power = Mean (NuEfPhi,ml} / Power(); /7 normalize power */

1* Keff - static calculation */
if (control & 1) {
dK = Power - 1.0;
Keff = Chebyshev (Keff,dK),
if {({fabs(AK)Kefl < (1-Me)*Keps) & & (iter > 100))
golo reacl_exit;
AdjustK (AN,kON,Keff,BC_N,DenC);

/* adjust flux */

Phi_err = 1.0/ Phi_mean;

for (kp=0; kg < ng; ++kg)
V_mulC (Philkg],Phi_err,ntN);

V_mulC (XC,Phi_err,nXC);

/™ new power */

ZeroV (NuEfPhi.n),

for (kg = 0; kg < ng; ++kg)
V_addCV (NuEfPhi,NuEfl0])[kp)/Keff,Phi[kg].nuf);

Power() = Mean (NuEfPhi,ntf);

!

if (control & 4 Il control & 8) /* no TH solver */
goto ENDiter;

1* Thermathydraudics */
V_MbonwulV (CTH nXTH,ATH, band TH,nbATH,kOTH, XTH,nXTH),
V_addV (CTH,BTHnXTH);
XTHchk =0;
for (k=0 k<4;++K){ /M V,P& Tc*
XTHnm = VNorm (& XTH[k*ntTH]ntTH);
if XTHnm == 0)
continue;
XTHdotnm = VNorm (&CTH[k*ntTH],niTH);
dimp = di * XTHdotnm / XTHnm;
- XTHchk = {dimp > XTHchk) ? dtmp : XTHchk;
)
dtTH=dt* (0.5 + 0.5 * squt (epsTH / XTHchk));
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if (impTH) |
V_VaddCV (CTHBTiL et X THANTHY;
NeaV (BTH.CTHnXTH).
V_addC (ATH[KOTH]-ct.nX T
}
/¥ (1 - drralpha*AY X(k+1) = (1 + drC-alphad AY X(KY + di*B */
else |
CopyM (ATHLATH.nbATILOXTH),
M_mulC (ATH,-dt"alpTH.nbATH.0XTHY,
M_mulC (ATHr,dt* (1.0-alpTHLBATH.aX THY,
V_addC (ATHIKOTH},1.0.nXTH )
V_addC (ATHr[kOTH], LOnXTEH),
V_MbmulV (CTHaXTHATHrband THRbA TILROTH,XTH,nX 111,
V_VaddCV (BTHCTH.ABTHAX T,

/* BTD solver: V & P ¥/
if (BITALU (BTD1,nyTH.ubl1))
error_exit ("in Block Tridiag Velocitywn",5)
BITriLUSolve (BTD1,BTH,nyTH.nbt1); /* B1" %/
ZeroM (A126,0uTH,nXV),
BtoFt (A12b.band12,4,A121,nXV nTH);
BITrLUSotveM (BTD1,A12,mTH,nyTH,nbll); /* A12° ¥/
k=0;
do |
V_MbmulV {CTH,MTH,A21b,band21,4 k021, At2([k].nXV);
M_ColV {A22,k,CTHnTH),
} while (++k < ntTH);
M_DsubM (A22,&ATH[kKOTH][nXV),A22.0(TH), /* A22 - A21*Al12" */
V_MbmulV (CTH.ntTH,A21b,band21,4,k021,BTH.RX V), /* A21*B1" ¥/
V_VsubV (CTH,BP,CTHntTH); /* B2 - A21*B1" ¥/
if (LU (A22,PivTH.ntTH))
error_exit ("\in A22 Decomposition \n",5)
LUSolve {A22,P,CTH,PivTH,niTH),
V_MtmulV (CTH,.nXV,A12tPTH);  /* AI2™* X2 %/
V_VsubV (XTH,BTH,CTH,nXV); /* B1" - A12"* X2 %/
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/* BTD Temperature ™/
CopyV (Tc,BTe,ntTH);
if (RITALUABTD2.nyTH,nbl2))
error_exit (Mo Blovk Tridiag Temperaturein™,2);
BITALUSolve (BTD2, TenyTiLnbi2),

ENDiter:
if (control & 2} 1D
goto INC_TIME;
for (k=0; k < nxc; ++k)
CopyV (& Tc[k*nyTH],&TcN[k*nyN],nyN);

/* adjust the coolant density and cross sections */
CopyM (DenCold,DenC onxe,nyTH), * save old density */
Density (DenV, THexp, Te,ntTH)Y;  /* new density */
if (control & 1) {
if (I_sim==0) {
CopyM {DenCmean, DenConxe,nyTH);
CopyV (XTHmean, XTHnXTH);
goo INC_TIME;

}

cl=1.0/¢1+dt/i_sim);

2=(1-ci)

V_CVaddCV (XTHmean,c1,XTHmean,c2 XTH,nXTH);
cl *=0.999;

2=(l-c)*0.5

for (i=0; i < nxc; ++H) { /* mean density w.r.t, time */

for (i=0; j < nyTH; ++j) {
DenCmean[i](j} *=cl;
DenCmean[i][j] += ¢2 * (DenCli][j1 + DenCold[i][j1);
}
)
}
else {
for (i=0; i < nxc; ++i) {
for (j=0; j < nyTH; ++j)
DenCmean{i}[jl = (DenC[il(j] + DenCold[il{j]) / 2;

)
XSCoolant (AN,kON,DenCmean,BC_N,Keff);

INC_TIME:
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* ADVANCE TIME */
t_sim +=dt;
++iter;
Tfmean = Mean (Tf.ntf);
Temean = Mean (Te.n(TH);
Vxmean = Mean (Vx,niTH),
Vymean = Mean (Vy.n{TH);
/* plot file - wransient runs */
if (iter % nplot == ) (
Vplot[0] = t_sim;
if {control & 1)
Vplot[1] = Keff,
else
Vplot[1] = Power;
Vplot[2] = Tfmean;
Vplot[3] = Temean;
Vplot[4] = Vxmean,
Vplot[5] = Vymean;
fwrite (Vplot.sizeof(double),6,fpplot);
filush (fpplot);
]
if (view & 1) {
printf ("%s",Home),
printf (" ileration %4.0d di = %8.3¢, total time %8.4c\n",
iter,dut_sim);
printf (" GSSOR N: %d, Mean flux %9.5¢, Power %og, K_eff %9.6f \n",
iterN,Phi_mean,Power,Keff),
printf (" Me %g, me %g \n"Me,me);
printf (" X check N: %g; C: %g; TH: %g \n",XNchk.Cchk, XTHchk);
printf (" T mean fuel: %g; coolant: %g \n",Tfmean, Tcmean),
printf (" Vx mean = %8.4g, Vy mean = %8.4g \n",Vxmean,Vymean);
if (view & 2) {
Mass (Vx,Vy,VyBC.VxBC,DenV,.M_em);
MEmean = Mean (M_emmntTH);
MEvar = Variance {(M_err,ntTH,MEmean};
printf (" Mass Error: Mean = %8.4g, Variance = %8.4g \n",
MEmean,MEvar),
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else {
/* sutus file */
rewind (fpstat);
fprintf (fpstat,” iteration %-4.0d dt = %8.3¢, otal time S%gin”,
iter,de,t_sim),
fprintf (fpstat,” GSSOR %d, Mean flux %g, Power %g, K_eff %9.60\n",
iterN,Phi_mean,Power, Kefl};
fprintf (fpstat,” Me %g, me %g \n",Mc,me);
fprintf (fpstat,” X check N: %g; C: %g; TH: %5, \n",
XNchk.Cchk, XTHchk),
fprintf (fpstat,” T mean fuel: %g; coolant: %g'n", Timean, Tcmean);
Mass (Vx,Vy,VyBC,VxBC,DenV . M_err);
MEmean = Mean (M_crr,ntTH);
MEvar = Variance (M_err,ntTH,MEmeany);
fprinyf (fpstar,” Mass Erm Mean = %8.4g, Var = %8.4g \n",
MEmeanMEvar);
fprintf (fpstat,” Vx mean = %8.4p, Vy mean = %8.dg \n",
Vxmecan, Vymean);
ffiush (fpstat)
}
if {sscN & sscTH)
dt = (dIN > diTH) ? d{TH : diN;
else {
if (sscN)
dt = dtN;
if (ssc¢TH)
dt= dtTH;
}

} while ((iter < nstep) && (1_sim < tend));

reacl_exit:

fclose(fpplot);
if (erm) {
save_flux ("Mux.dmp");
save_flow ("flow.dmp");
printf ("\n Application terminated, data amray dumped\n”);
fprintf (fpstat,"Error Termination: Solver Error; GSSOR=%d\n",iterN);
fclose (fpstat);
error_exit ("Solver Error”,5);
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Mass (Vx,Vy,VyBC,VxBC,DenV.M_err);
MEmean = Mean (M_cerr.ntTH),
MEvar = Variance (M_err.at TH .MEmean);

if (times (tp) '=-1)
t_cpu = (float_sys.tms_utime / clock_tick;
tlocal = time {(long *)0);
if (view & 1) {
print{("%s",Clear);
printf (" GS N: %d, Mean flux %8.4¢, K_effective %I1f\n",
iterN,Phi_mean,Keff);
printf (" Me %g. me %g \n".Me,me);
printf (" T mean fuel: %g: coolant: %g\n”, Tfmean, Temean);
printf(" Elapsed CPU ume (sec) = %8.2f".t_cpu);
printf(" total simulation time = %8.4g\n",(_sim);
}
else
printf (" Reactor simulation complete \n");
if (binio & 2)
save_flux ("Aux.bin"),
if (binio & 8)
save_flow ("flow.bin");
if ((fpbin = fopen("flowm.Jin","wb")) == NULL)
error_exit ("error opening flowm file”,3);
fwrite (XTHmean,sizeof(double),nXTH, fpbin);
for (i=0; i < nxc; ++)
fwrite (DenCmean(i].sizeof(double),nyTH,iphin);
fclose(fpbin),
* ascii output */
if ((fpout = fopen(“react.lp”,"w")} 1= NULL) (
fprintf (fpout," Unix Reactor Simulation %s\n”,ctime{&tocal));
fprintf (fpout,” %s\n”,comment);
fprinif (fpout,” Elapsed CPU time (sec) = %g\n",L_cpu);
fprintf (fpout,” iteration %4.0d, dt = %g, tolal time = %g\n",
iter,dt._sim);
fprintf (fpout,” Neutronics: tolerance = %g\n",10IN);
fprintf (fpout,” GS: Neutronics %d\n",iterN);
fprintf (fpout,” Mean flux %10.6e, K _effective %11.7f, Power %%e\n",
Phi_mean,Keff,Power);
fprintf (fpout,” Me %g, me %g \n"Me,me);
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fprintfl (fpout,” parameters: G1 = %6.21g\n",G1);
fprintf (fpout,”  alpha = %6.21g, lerance = Gg\n"alpTH, ol TH);
fprintf (fpout,” Mass Error: Mean = %8.4g, Variance = %8.4g\n",
MEmecanMEvar),
fprintf (fpout,” Temperature: fuel: %g; coolant: %g; Tcold: %g\n”,
Trmean, Tcmean, T_cold),
fprintf (fpout,” Velocity: X = %8.4g, Y = %84 \n".Vxmean,Vymean),
fprintf {fpout,”\n mesh data\n™);
fprintf (fpout,” nxf = %d, nxc = %d, nxm = %d, nyN = %d, nyTH = %d\n",
nxf.nxc,nxm,nyN,nyTH);
fprintf (fpout,” dxf = %g, dxc = %g, dxm = %g, dy = %g\n",
dxfdxc,dxm.dy),
fprintf (fpout,”\n mean flux per region\n”);
for (kg=0h; kg < ng; ++kg) {
fprintf (fpout,” group # %d\n",kg);
dpir = Philkg)
for (kr=0; kr < 3; ++kn) |
k = nreg[krl;
fprmtl (fpout,” %14.6¢ " Mean(dpir.k));
dpur = &dpurlk];
]
fprintf (fpout,"\n");
}
fclose(fpout);
}
if (view & 4) {
if ((fpout = fopen("flux.1p","w")} == NULL)
error_exit("\n error opening flux file",2);
fprintf (fpout,” Unix Reactor Simulation %s\n",ctime(&tocal));
if (conwrol & 2) {
fprind {fpout,” Neutron Flux\n™);
for (k=0; k < niN; ++k) {
if(k%8==0)
fprintf (fpout,™\n");
fprintf (fpout,”% 10.3¢", XN[k]);
}
fprintf (fpout,"\n\n");
for (j=0; j < 6; ++j} {
fprintf (fpout,” Precursor %d\n”j);
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for (k=0: k < ntf; ++k) |
fke8§==0
fprintf (fpout,"\n™);
fprintf (fpout,” % 10.3¢".Cafjiikl)
}
fprint{ (fpout,"\n\n"™);

}

else |
printdat (fpout. XC.nxf,nyN.6,head_Cn);
fprintf (fpout,"\");
printflux (fpout);
}
fclose(fpout);
}
if (view & 8) {
if ((fpout = fopen("flow.Ip","w")} = NULL)
error_exit("\n error opening flow file",2);
fprintf (fpout,” Unix Reactor Simulation s ctime(&tocal));
printdat (fpout, XTH,nxc,nyTH,3,head_fluid);
printdat (fpout,.DenV,nxc,nyTH, Lhead_den);
printdat (fpout,M_err,nxc,nyTH, Lhead_mass),
fclose(fpout);
)
if (view & 16) {
if ({(fpout = fopen("temp.ip","w")) == NULL}
error_exit("\n error opening temperature file”,2);
fprintf (fpout,” Unix Reactor Simulation %s\n" ctime(&tocal));
printdat (fpout, TE.nxf,nyN, 1,head_temp);
printdat {fpout, Te,nxe,nyTH, 1, &head_templ 1]);
fclose(fpout);
)
printf("\n normal termination\n");
fprintf (fpstat,"Normal Termination\n");
fclose (fpstat);
exit (0);
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it GroupVelocity (int nbA.int * band)
{
int kb.kg.ks.ke,
V_mulC (Bg[0}LVelOLnth); /* group O velocity */
for (kg=0; kg < ng; ++kg) {
for (kb=0); kb < nbA; ++kb) {
ks=kg " nN;
ke=ks + niN;
if {band[kb] < {
if (ke <= -band[kb])
continug,
}
else
if (ks+band{kb] »>= nXN)
conlinue,
V_mulC (&ANw[kb][ks). Vglkg],niN);

}

I* adjust the coolant density */
int Density (double * DenV.double THexp,double * Te,int ntTH)
{
intk;
double dunp;
k=0;
do {
dmp = 1.0 - THexp * Te[k];
DenV[k] = (dunp < 0.01) 70.01 : dtmp;
} while {(++k < niTH);
}

int save_fiux (char * fname)

{
FILE *fpbin;
if ((fpbin = fopen(fname,"wb")) == NULL)

emor_exit ("error opening binary file",3);

fwrite (XN,sizeof(double),nXN,fpbin);
fwrite (XC,sizeol{double),nXC,fpbin);
fclose (fpbin);
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int save_fiow (char * fname)
{
FILE *fpbin;
if ({(fpbin = fopen{faame,"wh")) == NULL)
crror_exit ("error opening flow file”,3);
fwrite (X TH,sizeof(double),nXTH,fpbin);
fwrite (DenV sizeof(double).mTH.fpbin);
fclose(fpbin);
)
int sig_handle (int sig}
{
save_flux ("flux.dmp™);
save_flow ("Now.dmp”);
switch (sig) {
case 2
fprintf (fpstat,"Error Termination: lterruptin®);
printf ("\n interruptin™);
break;
case 3:
fprintf (fpstat,"Error Termination: Quit\n");
printf ("\n quitin™);
break;
case 8:
fprintf (fpstat,"Error Termination: Floating Point\n");
printf ("\n floating point exception\n”);
}
printf ("\n Application terminated, data array dumped\n”);
fclose (fpstat);
exit (sig);
)
void printdat (FILE * fp,double * X,int nx,int ny.int nbl,char ** head)
{
int j,k=0,L,n;
double * dpir = X;
n = nx*ny;
for (k=0; k < nbl; ++k) {
fprintf (fp,headfk]);
i=0:
do {
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for (1=0); 1 < ny, ++1}
fprintf (fp,"% 10.3¢" dpurlj++])
fprintf (fp."\n");
} whiie (j < n),
dptr = &dptr[n];
}
H
void printflux (FILE * fp)
{
int kr.kg.i.j.k;
double *dpir = XN;
if (nyN > 8) golo page2;
for (kp=0; kg < ng; ++kg) {
for (kr=0); kr < 3; ++kr) {
fprintf (fp." Flux in region %d, group %d\n” krkg);
i=0
do {
i=0;
do {
fprintf (fp," % 10.3¢".dpulj++1);
} while (++i < nyN);
fprintf {(fp,"\n");
} while (j < ntrep[kr]);
dptr = &dptr{ntreg[krl);
)
1
return;
page2:
for (kg=0; kg < ng; ++kp) {
for (kr=0; kr < 3; ++kr) {
fprintf (fp," Flux in region %d, group %d\n" krkg);
3=0;
do |
k=j*nyN;
i=0;
do {
fprintf {{p,"% 10.3¢" dptr[k+i]);
} while (++i < 8);
fprintf (fp,"\n");
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} while {(++ < nxreglkrj)
dpur = &dptr[ntreg[krll;
}
dptr = &dptr{-ntN]; /* backup pointer */
fprintf (fp,"\{™);
for (kr=0; kr < 3; -++kr) |
fprintf (fp," Flux in region %d, group %d, page 2\n" kr.kg)
i=0:
do {
k =j*nyN;
i=8;
do{
forintf (fp."% 10.3¢" dpic(k+])
} while {++i < nyN);
fprind ({fp."\n");
} while (++) < nxreg[kr1);
dptr = &dpurntreafkrll;
}
fprint (fp,"\[");
]
)

2 Multigroup Jacobian Routine

This routine calculates the coefficients of the Jacobian matrix for the multigroup neutron diffusion simu-
lation and stores them in the appropriate locations. The Jacobian matrix is modified in the main routine
prior to the system being solved according to the lime step size and the multigroup eigenvalue (K
effective). The routines Coolant, which adjusts the cross-sections and Jacobian coefficients due to changes
in coolant density, and AdjustK, which adjusts the Jacobian coefficients due Lo changes in K-effective, are
derivatives of this routing and will not be listed.

I#

This routine calculates the coefficients for the Neutronics Jacobian
that use the Neutron Multigroup Diffusion parameters and stores then
in the appropriate locations.
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ng number of groups - 3 regions (fuel, coolant, moderator)

Phi neutron flux

Pre  precursors

DenC density of the coolant

DenM  density of the moderator

T fuel Temperatore

H  enthalpy (coolant and moderator)

Df heat Diffusion coefficient

wi  heat produced per fission /Ce(fuel)*density(fuel)
GROUP CONSTANTS

Vg group velocity Vglgroupl

NuEf fission cross section NuEf{region][group]

Et towd "o

Eu transport " "

Es scattering cxoss scction; Es[region}{groupli[group2]

*/

#include <stdio.h>
#include <math.h>

int nx,ntf,nte,ntm,nig,nXN,nPhi;

int nIN,nyN,nxf,nxc,nxm,ng;

int ntreg[3], nxregl3);

double cxreg[3].dxregl3];

double wf,bewal;

double *Vg,*NuEf[3),*E((3],*Etr[3],**Esl3); /* 3 regions */
double dy,dxf,dxc,dxm;

double cyy.cxfcxe,cxm,

Flux (double ** A,int k0,double * B,double Keff,double Phi_set,int BC_N)
{

int ntr;

int ij.k.kg.kr,ig.kband;

int km1,km2.kpl.kp2,ns;

double Ae,Aw,An,As,Ap,cx,ST,dxr,ryr,dxb;

double Aeb,Awb,Anb,Asb,Apb;

double Siptr,SigtSigf,Sigs,Diff,Diffb,cxb;

km1 = k0-1;
km2 = k0-2;
kpl = kO+1;
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kp2 = k0+2;
f(BC_N&I)
goto OnelXimy;

/* top and bottom BCs */

ryr = 0.01 / dy; /* H20 reflecior */
if(BC_N&IL)

ryr=1.0/dy; /* Marshak BC */
if(BC_N&2)

ryr=0; * reflective BC */

for (kg=0; kg < ng; ++kg) |
k=kg*ntN; * index of position in array */
for (kr=0; kr < 3; ++kr) {
dxr = dxrep[kr];
cx = ¢xreg[krl;
ntr = ntreg[krl;
Diff = 1.0/ (3.0 * Etr[krl[kg)):
Sigt = Es(kr][kgl{kg] - Etlkrllka];
Sigf = betal * NuEf[kr][kg] / Kelf;
fke=0&&kr=0) /* fission neutrons appear in group 0 %/
Sigt += Sigf;
Ae =Diff*cx;
Aw = Ae;
An = Diff*cyy;
As=An;
Ap=-Ae- Aw - An - As + Sigt,

/* five central bands subject to Boundary Conditions */
*i=0%/
if (kr) {
*j=0%
Alkm2](k] = Aw;
AkO)X] = Ap-myr;
Alkpllk] = An + As;
Alkp2)[k] = Ac;
++k;
for (j=1; j <nyN-1; ++) {
Aflan2][k] = Aw;
Afkml][K] = As;
AKOI(K]) = Ap;
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}

Alkplllk] = An;
Alkp2)(k} = Ac;
++k;
)
/* j=nyN-1*/
Alkm2][k] = Aw;
Alkml]lk] = As + An;
AlkO)fk] = Ap -y,
Alkp2lik] = Ac;
++k;

else {

}

A[KO)K] = Ap - ryr;
Alkpl][k] = An + As;
A[kp2](k] = Ae + Aw; /* left reflective BC ¥/
++k;
for (j=1; j < nyN-1; ++j) {
Alkmijk] = As;
ALkOlK] = Ap;
Alkplilk] = An;
Alkp2][k] = Aw + Ae; /* left reflective BC ¥/
++k;
}
Afkml]{k] = As + A
AKO)K] = Ap-ryr;
Alkp2llk] = Ae + Aw; /* lefireflective BC ¥/
++k;

for (i=1; i < nxreg(ke]-1; 444) {

Alkm2][k] = Aw;

AkOI[k] = Ap-ryr;

Alkpll[k) = An + As;

Alkp2][k] = Ae;

++k;

for (j=1; j < nyN-1; ++j) {
Afkn2][k] = Aw;
Alkml][K] = As;
AlKO)[K] = Ap;
Alkpt][k] = An;
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Alkp2ilkl = Ags
++k;
}
Alkm2][k] = Aw;
Alkml1]ik] = As + An;
ARO[k} = Ap-ryr,
Alkp2l{k] = Ac;

++K;
}
Je==x* conservation of current BC_N *****/
/* i = nxreglkr]-1 BCs for last column */
if (kr<2) {

Diftb = 1.0/ (3.0 * Eulkr+1]{kel):
dxb = dxreg[kr+1];
cxb = 2.0/ (dxr + dxb);

Awb = cxb * Diff / dxr;

Aeb = cxb * Difth / dxb;

Anb = Diffl * cyy;

Asb = Anb;

Apb = -Acb - Awb - Anb - Asb + Sigt;

* store coefficients */

Alkm2l{k] = Awb;

A[KO][k] = Apb - ryr;

Alkp1i[k] = Anb + Asb;

A[kpZ][k] = Aeb;

++k;

for (j=1; j < nyN-1; +4j) {
Alkm2][k] = Awb;
ATkm1][k] = Asb;
A[kO][k] = Apb;
Alkpl](k] = Anb;
Alkp2][K] = Aeb;
++K;

}

Alkm2](k] = Awb;

Alkm1i}{k] = Asb + Anb;

AlkOlk] = Apb - ryr;

Alkp2](k] = Aeb;

++k;
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|
else {
Alkm2][k] = Aw + Ac; /™ right reflective BC */
AlKOJIk] = Ap -ryr;
Alkpljik] = An + As;
++k;
for {j=1; j < nyN-1; ++j) {
Alkm2]lk] = Aw + Ag; /* right reflective BC */
Alkanl][k] = As;
AIKOILK] = Ap;
Alkpl][k]l = An;
++k;
)
A[km2][k] = Aw + Ae¢; /* right reflective BC */
Alkml]k] = As + An;
AlkO}k] = Ap - ryr;
++k;
H
/* group to group scattering and fission */
i=0;  /* beginning of region */
for (j=0; j < kr, +4j)
i +=ntregljl;
/* altemate k - nir */
ns = ntN*kg + i;
for (ig=0; ig < ng; ++ig) {
if (ig = kg) continuc;
if (ig > kg)
kband = k0 + 2 +ig - kg;
clse
kband =k0 - 2 +ig - kg;
* group ig to group kg */
Sigs = Es{krl[kgllig];
if (kg =0)
Sigs +=betal * NuEfkrl{ig] / Keff;
CAOlV (&A[kband][ns}.Sigs.nur);
}
}
}

/* fission heat source -- region 0 only (fuel) */
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for (kg=0; kg < ng; ++kg) |
$f = Phi_set * wi * NuE[0][ke] /243,
CAllV (&A[kO+kg-ng-2][nPhi] . Sftf);
}

return (0);

/* One Dimensional Calculation */
OneDim:
for (kg=0; kg < ng; ++kg) {
k =kg*nN; #* index of position in array */
for (kr=0; kr < 3; ++kr) {
dxr = dxreglkr];
cx = cxregiksl;
nir = nireg[kr);
Diff = 1.0/ (3.0 * Eur[kr][kg])
Sigt = Es[kr](kglfkg] - Exkr](kg];
if(kg=0)
Sigt += betal * NuEffkr][kg] / Kefl;
Ae =Diff*ex;
Aw = Ae;
Ap =-Ae - Aw + Sigt;

/* central bands subject 1o Boundary Conditions */

*i=0*

if (kr ==0) {
A[kO[K] = Ap;
Alkpllik] = Aw + Ae; /* left reflective BC */
++k;

}

else {
Afkm!]k] = Aw;
A[kO][K] = Ap;
Alkpl]k] = Ac;
+4+k;

}

for (i=1; i < nxreg[kr}-1; ++i} {
Alkml]k] = Aw;

A[kO][K] = Ap;
Alkpllik] = Ae;
+4k;
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}
#* i = nxreglkr]-1 BCs for last cotumn */
if (kr<2){
Diffb = 1.0/ (3.0 * Eulkr+1]ikgls
dxb = dxreglkr+1];
cxb = 2.0/ (dxr + dxb);
Awb = cxb * Diff / dxr;
Ach = cxb * Diffb / dxb;
Apb =-Ach - Awb + Sigl;
Alkml]lk]} = Awb;
A[KOJ[k] = Apb;
A[kpl][k] = Acb;
++k;
}
else {
Alkmi][k] = Aw+ Ac;  /* right reflective BC */
A[kOHK] = Ap;
++k;
}
/* group to group scatiering and fission */
i=0;  /* beginning of region */
for (j=0, j < kr; ++j)
i+=ntregljh
f* alternate k - ntr %/
ns = nN*kg + i;
for (ig=0; ig < ng; ++ig} |
if (ig == kg) continue;

if (ig > kg)

kband = k0 + | +ig - kg
else

kband = k0 - | +ig - kg;
/* group ig to group kg */
Ap = Esfkr](kg]ligh
ifkg=0)

Ap +=betal * NuEf[kr][ig] / Kelf;
ChIlV (&A[kband][ns],Ap.ntr);
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/* fission heat source -- region 0 only (fuel) */
for (kg=0; kg < ng; ++kg) {
Sf = Phi_set * wf * NuEfl0]{kg]/2.43;
ChllV (&A[kO+kg-ng-1 1[nPhi}, St
]
return (0);

}

3 Thermal Conduction Routine

The Jacobian coefficients for thermal conduction in the fuel ane calculated and stored in this routine.

I*
Thermal conduction in the fucl

DenF density of the fuel

DenC density of the coolant
DenM density of the moderator
Tf fuel Temperature

Tc coolant Temperature

Tm moderator Temperature

The default right boundary is a fixed temperature otherwise,
the fuel lemperature at the coolant boundary is handled in the
routine Fluid.

*f

#include <stdio.h>

#include <math.h>

int nx,ntf,ntc,ntm,ntg,nXN;

int niN,nyN,nxf,nxc,nxm,ng;

double cxfuel,cyfucl;

double dy,dxf,dxc,dxm;

double cyy,cxf,cxc,cxm;

Thermal {double ** AT,int k0,double * B,int BC_N)
{
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int i,j.k;
int kml,km2.kpl kp2;
double Ac, Aw,AnASAD;

kml =k0-1;
km2 = k{)-2;
kpl = kO+1;
kp2 = k0+2;

/* fuel emperature - thermal conduction */

Ae = cxfuel;
Aw = cxfuel;
An = cyfuel;
As = cyfuel;
if (BC_N&4){

Ap=-At- Aw,

goto OneDimy;

)
else

Ap=-Ac- Aw - An- As;

* five central bands */

k=0,

AT[KOI[K] = Ap;

ATikp2]k] = Ac + Aw; /* reflective left BC */
AT[kpllIk] = An + As; * bouom reflective */
+k,

for (}=1; j < nyN-1; ++) {
AT[kml][k] = As;
ATKO)k] = Ap:
AT[kp2][k] = Ac + Aw;  /* reflective left BC */
ATlkp1)k} = An;

++k;
]
AT[kml](k] = An + As; * wp reflective */
AT[kO][k] = Ap;
AT[kp2][k] = Ac + Aw; 1* reflective left BC %/
+k;

for (i=1; i < nxf-1; ++i) {
ATkm2][k] = Aw;
ATKOI[k] = Ap;
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AT[kpll[k] = An+ As; /™ botom reflective */

ATkp2l[k] = Ac;
++K,
for (j=1; j < nyN-1; ++j) {
ATTkm2][K] = Aw;
ATkml][k] = As;
AT{kO]{k] = Ap:
ATikpllk] = An;
ATikp2](k]l = Ae;
++k;
]
ATkm2][k] = Aw;
AT[kml][k]= An + As; /* top reflective */
AT[KO)[X] = Ap;
ATkp2}{k] = Ae;
++K;
}
/* right BC - coolant or heat sink */
ATkm2][k] = Aw;
AT[kO])[k] = Ap;

AT[kpll[k] = An + As; /* bottom reflective */

AT[kp2](k] = Ac;

++k;

for (j=1; j < nyN-1; ++j) {
ATkm2]{k] = Aw;
ATkm1](k] = As;
AT{kO][k] = Ap;
AT[kpll[k] = An;
AT(kp2llk] = Ac;
++k;

}

ATkm2](k] = Aw;

AT{kml][k] = An + As;  /* top reflective */

AT[KO][K] = Ap;

AT[kp2][k] = Ae;

return (0);
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OneDim:
k=10
ATIKONK] = Ap.
ATlkpllik] = A+ Aw; /" reflecuve left BC */
++k;
for (i=1; i < nxf-1; ++i) |
ATkml][k]= Aw;
ATIKO)(k] = Ay
ATlkpl](k] = Ae;
++K;
}
#* right BC - coolant or heal sink */
ATlkml][k] = Aw;
ATIKO[K} = Ap;
ATikplllk] = Ac;
+k;
return (0);

}

4 Thermalhydraulic Jacobian Routine

The cocfficients of the hemilhydravlic Jacobian matrix are calculated and stored in this routine. Like the
multiproup Jacobian, the theamalhydraulic Jacobian is modified before the system is solved but only
according to the time step size. The coefficients for convective heat transfer in the coolant are calculated in
this routine, which are then stored in the appropriate locations in the neutronics/heat-transfer Jacobian.

illl
THERMALHYDRAULIC SUBROUTINE for use with the reactor simulation
wf
#tinclude <math.h>
#include <mathG.h>

/* external variables */

int  nxfynxc,nyN.oyTHate.n,mTH;
double dy.dxf,dxc,FT;

double grav,Gl;

double cxe.cyy.cxv.cyv,exhicyly
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double Gux,Gty.cxfuel.cyfuel;
double T_cold,*Tf;
double Kc Kf.alphaf.muPr;

Fluid (double ** A.double * B.double * Vx,double * Vy.double * Dend’,
double * VxBC.double * VyBC.double * Pf, double ** ATT,
double * BTf,double ** AT¢N.double * BTcN,double ** Alc,
double * BTc.int BCs)

int i,j.k.k1,k2,k3,KN;

double Ux, Uz Hx, Hy, Ae,Aw,An,As Ap,
Apx,Aex, Awx, Anx, Asx,
Apy.Acy. Awy,Any, Asy,
Aph,Ach,Awh,Anh,Ash,
Aep. Awp,Asp,Anp;

double rho,Dpx,Dpy.alphac.den,*Tw;

double flerm,cterm;

* conservation of thermal fiux
al fuel - coolant interface */

An = cyfuel;
As = cyfuel;
Tw = &T{ntf-nyN]:/* wall emperature */

i=0;
k = ntf - nyN; /* points along boundary */
tho = DenCli++]; /* density at wall ¥/
alphac = mwPr / rho;
fierm = Kf * dxf / alphaf;
cterm = Kc * dxc;
den = fterm + cterm / alphac,
Aw=2* Kf/(dxf * den);
Ae=2*Kc/(dxc * den);
Ap=-Ae- Aw - An - As;
ATI{0]l{k] = Aw;
ATH2](k] = Ap;
ATIT3][K] = An + As;
ATI[4]k] = Ae;
++k;
for (j=1; j < nyN-1; ++j) {
rho = DenCli++}

-216-



alphac = muPr / rho;
den = fterm + cterm / alphacs
Aw =2 * Kf/(dx{* den);
Ac=2"* Kc/{dxe * den);
Ap=-Ac- Aw - An - As;
ATNOK] = Aw;
AT 1)[k]) = As;
AT2|(k]l = Api
ATA3]lk] = A,
ATR4)ik] = Ac;
++k;
}
tho = DenCli++];
alphac = muPr / rho;
den = fterm + clerm / alphac;
Aw=2* K[/ {dxf * den);
Ac=2* Kc/{dxe * den)y
Ap=-Ac- Aw - An- As;
ATIO](K] = Aw;
ATII1]Ik] = An + As;
ATR2]IK] = Ap;
ATIH4][k] = Ac;

il (BCs) goto Channel,

/* Setup Jacobian Matices - Cavity */
i=0;
do {
i=0
do {
KN=i*nyN+j;
kl=i*nyTH +j;
k2=k! +ntTH;
k3=k2+uTH;
tho = DenC[ki];
Dpx = 1.0/ (tho * dxc); /* pressure gradient */
Dpy = 1.0/ (zho * dy);
Asp =rho * Gty
Anp = -rho * Gty;
Acp =-tho * Gtx;
Awp =rho * Gtx;

7 -217-



Hx = cxh/rho;

Hy = cylvrho;

Ux = cxv/rhy,

Uz = cyv/rho;

* upwinding */

Ace = Dmax ¢-Vxjk1]/dxc, 0%
Aw = Dmax (Vx{k1}/dxc, 0%
An = Dmax {-Vy[k1)/dy, O}
As = Dmax (Vy(k1]idy, 0);
Aex =Ux + Ac;

Awx = Ux + Aw;

Anx =Uz + An;

Asx = Uz + As;

Acy = Acx;

Awy = Awx;

Any = Anx;

Asy = Asx,

Ach = Hx + Ac;

Awh = Hx + Aw,;

Anh = Hy + An;

Ash=Hy + As;

/* BOUNDARY CONDITIONS */
/* part 1, assign the coefficients */
if (i)
Awp = 0.5 * {rho + DenC[k1-nyTH]) * Gix;
else {  /* left boundary */
Ux *=FT;
Acy =Ux + Ac;
Awy=20* (Ux+ Aw);
Hx *=FT,
Aeh = Hx + Ag;
Awh =2.0* (Hx + Aw),
}
if (i < nxc-1)
Aep = -0.5 * (tho + DenClk 1+nyTH]) * Gix;
else { /*right boundary */
Awx=0;
Aex=0;
Anx=0;
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Asx =
Ux*=FT;
Aecy = 2.0 " (Ux + Ac),
Awy = Ux + Aw;
Hx *=FT;
Ach=20" (Hx + Ae);
Awh = Hx + Aw;
]
if ()
Asp =0.5* (rho + DenC[k1-1]) * Gty;
else { /* bottom boundary - inselated */
Uz *=FT,
Anx =Uz + An;
Asx = 2.0 * (Uz + As),
Ash =0
}
if j <nyTH-1)
Anp = -0.5 * (rho + DenC[k1+1]) * Gy,
else {  /* wop boundary - insulated */
Aey=10;
Awy =0,
Any =10,
Asy=0;
Uz *=FT;
Anx =20* (Uz + An);
Asx =Uz+ As;
Anh=0;
}
Apx = - Asx - Anx - Awx - Aex;
Apy = - Asy - Any - Awy - Aey;
Aph = - Ash - Anh - Awh - Acly;

/* part 2, fill arrays */
ATcNID)[kN] = Awh; /* contiguous boundary */
if (i) {
Ald][kl] = Awx;
A[][K2] = Awy;
AlO][K3] = Awp;
}
else {  /* left boundary, fuel */
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Blk1] = VxBC[i] * Awx;
B[k3] = VxBC[j1 * Awp:
}
if (i < nxe-1) {
A[B][k1] = Aex;
A[1][k1]=Dpx; /* {dP/dx)cho */
A12])[k1] = -Dpx;
A[8](k2] = Acy;
ATcN[4][kN] = Ach;
}
else {  /* right boundary, fixed emperature */
BTcN[kN] = Ach * T_cold;
)
if ) {
A[5](k1] = Asx;
A[5][k2] = Asy;
A[2][k3] = Asp;
ATcN{1][kN] = Ash;
)
else {  /* boutom boundary, insulated */
B[k2] = VyBCIi] * Asy;
B[k3] = VyBC[i] * Asp; /* inlet velocity */
}
if (j < nyTH-1) {
A[7]kl] = Anx;
A[7)(k2] = Any;
A[9](k2) =Dpy; /* (dP/dy)rho ¥/
Al10][k2] = -Dpy;
ATcN[3][kN] = Anh;
B[k2] = grav;
} /* wp boundary, insulated */
Al61[k1] = Apx;
Al6][k2] = Apy;
Al6lK3] =0;
ATCcNI2]{kN] = Aph;
A[1][k3) = Aep;
A[3][k3] = Anp,
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} while (++j < nyTH),
} while (++i < nxc);
return{{));
#* Sectop Jacobian Matrix */
Channel:/* flow channel */
i=0;
do {
j=0;
do {
kN =1*nyN+j;
kl=i*nyTH +j;
k2=kl + ntTH;
k3=k2 + ntTH;
rho = DenClk1]:
Dpx = 1.0/ (tho * dxc); /™ pressure gradient */
Dpy = 1.0/ (tho * dy);
Asp = rho * Gty;
Anp = -tho * Gy,
Acp = -rho * Gtx;
Awp=rho * Gix;
Hx = cxh/riuy,
Hy = cylvrho;
Ux = cxvirho;
Uz = cyvitho,
#* upwinding */
Ac = Dmax (-Vx{k1i/dxe, 0);
Aw = Dmax (Vx[k1)dxc, 0);
An = Dmax (-Vylk1l/dy, 0);
As = Dmax (Vytkl}/dy, 0);
Acx=Ux + Ag;
Awx =Ux + Aw,
Anx=Uz + An;
Asx =Uz + As;
Acy = Aex;
Awy = Awx;
Any = Anx;
Asy = Asx;
Ach=Hx + Ac;
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Awh = Hx + Aw;
Anh=Hy+ An;
Ash = Iy + As;

/* BOUNDARY CONDITIONS */
/* part 1, assign the coefficients */
if (i)
Awp = 0.5 * {rho + DenC[k1-nyTH]) * Gix;
eise {  /* left boundary */
Ux *=FT;
Acy=Ux+ Ace;
Awy=2.0*(Ux + Aw);
if (j <nyN) { /* hot wall */
Hx *=FT;
Ach = Hx + Ae,
Awh=2.0* (Hx + Aw);
)
else {/* insulated */
Awh=10;
}
}
if (i < nxc-1)
Aep=-0.5"* (fho + DenClk14+nyTH]) * Gitx;
else {  /* right boundaury */
Awx = 0;/* zero flow ¥/
Acx=0;
Anx=0;
Asx =0
Ux *=FT,
Aey =2.0* (Ux + Ac);
Awy =Ux + Aw;
Ach = 0y/* insulated */
]
if (j < nyTH-1)
Anp = -0.5 * (tho + DenClk1+1)) * Gty;
else {  /* top boundary */
Anh = 0;/* insulated */
Anx=0;
Any=0;
}
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if (j)

Asp = 0.5 * {rho + DenClk1-1]) * Guy,
else {/* bottom boundary */

Asy = 0./ dVyldy =0 "/

Anp= 0" dPidy =0 %/

Asp=0;
)
Apx = - Asx - Anx - Awx - Aex;
Apy = - Asy - Any - Awy - Aey;
Aph = - Ash - Anhi - Awh - Ach;

/* part 2, fill arrays */
if {j < nyN)
ATcN[O][kN] = Awh: /* contiguous boundary */
if (1) {
Al4]k1] = Awx;
Al4](k2] = Awy,
AlON[K3] = Awp:
ATc(0](k1] = Awhy,
}
cise [ /* left boundary, fucl */
Blkl] = VxBC[j} * Awx,
Bi{k3] = VxBC{j] * Awp;
BTclkl] = Awh * Tw[jl;
}
if (i <nxe-1) {
Al8][k1] = Aex;
All1][k1)=Dpx; /* (dP/dx)/tho ¥/
A[12][k1] = -Dpx;
Al8][k2] = Aey,
il (j < nyN)
ATcN[4][kN] = Aeh;
ATc[4]lkl] = Ach;
} /* right boundary */
if G) {
A[51[k1] = Asx;
AlS]k2] = Asy;
A[2](k3] = Asp;
if j <nyN)
ATcN[1][kN] = Ash;
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ATc[l[k1] = Asly
}
else {  /* bowom boundary */
BTcNIkN] = Ash * T_cold; /* fixed temperature */
BTc[k1] = Ash * T_cold; /* fixed temperature */
}
if (j < nyTH-1) {
A[7]{k1] = Anx,
A[71IK2] = Any;
if (j < nyN-1)
ATeN{[3][kN] = Anh;
ATc[3](k1] = Anh;
A[9][k2] =Dpy; /* (dP/dy)itho */
A[10][x2} = -Dpy;
Bik2] = grav,
)
else {  /* top boundary */
A[9)[k2] = Dpy; /* (dP/dy)/rho */ ‘
BIk2] = grav - Dpy * PI[i]; /* outlel pressure */
}
A[6)[k1] = Apx;
Al6)[k2] = Apy,
A[6}{k3] =0;
if (j < nyN)
ATcN[2][kN] = Aph;
ATc[2](k1] = Aph;
A[1][k3] = Aep;
A[3](k3] = Anp;
} while (++j < nyTH);
) while (++i < nxc);
return(0);

}
5 Integration Routines

The integration routines that are used for the time integration of the neutronics/heat-transfer problem are of
the Semi-implicit Runge Kutta (RK-S1) variety. A slightly different implementation is used for the static
and transient simulations due to the reatment of delayed neutron precursors. For the static calculation, it is
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assumed that the delayed neutron precursors are not chan ging in time and hence arc not calculated using
time integration but instead their swady state concentrations arc calculated using ncutron flux. For the tran-
sient calculation, their concentrations are explicidy calculated in time,

The Gauss-Seidel version of the (RK-SI) integration routing is most commonly used in the static calcula-
tions and the LU-decomposition version of the (RK-SI) routine is most commonly used for the transient
calculation therefore, these arc the two routines that are listed.

a) Semi-Implicit Runge Kutta Routine: Gauss-Seidel Version for Static
Calculations

Illl
Semi Implicit Runge Kutta solver - GSSOR version
*/
#include <mathG.h>
#include <math.h>

RKSI_GS (Y.Youl.n.h.A.bund.nbA,ROA.B.work.tol.i[max,il)
double *Y.h,* Yout,** A *B,**work,Lol;
int n,*band,nbA KOA junax, *it,
{
double a1=0.788675134595,bl=-1.15470053838,w1=0.75,w2=0.25;
double *K 1=work[0],*K2=work{1},*B l=work[2],*B2=work[3],
* AO=work{4],* Al=work[5].dunp,alr,
mnkerm,

alr=-10/al;

CopyV (A0,A[kOALN); {* store central band */
V_MbmulV (B1,n,A,band,nbAkOA,Y,n);

V_addV {(B1,B.n);

V_mulC (Bl.alrn);

dmmp = alr/h;

V_addC (A[kOA],dtmp,n);

CopyV (ALA[KOA]n) * store new central band */
err = GSSORD (A.band,nbA k0A, K 1,B1,n,tol.itmax,it);

if (err) retum (1),
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V_VaddCV (B1.Y,bl,LKLn);

CopyV (A[KOA],AQDY; f* testore central band */
V_MbmulV (B2,n,A,bund.nbAKOA,B1.a);

V_addV (B2,B,n);

V_mulC (B2,alr,n);

CopyV (A[KOALALN) /* restore new central band */
err = GSSORD (A, band,nbA,K0A K2, B2.n,tol itmax.it)

if (err) retum (1),

V_VaddCVaddCV (YouLY.wl,K1,w2,K2.n);

retnm (0);

)

b) ) Semi-Implicit Runge Kutta Routine: LU-decomposition Version for
Transient Calculations

,t
Semi kmplicit Runge Kutta solver - LUb version
adapied for neutron kinetics - partitioned
*/
#include <mathG.h>
#include <math.h>
#include <stdio.h>
it rksilu_init=1,*Piv;
double **Ap,*Apptr,**PhiX 1,**PhiK 1,**PhiK2,*CnX2[6},*CnK1[6],* CnK2[6],*CnB2[6];
double *K1,*K12,*K2,*K22,*BK,*XIRK,*X2RK,*B2RK ,**AfRK;
double *NuEf{{3],* Vg, *NuEfPhi, Ve0;

double lambda[6],beta[6);
int ng,ntf,ntN;

RKSI_LU_N (double * X1,double * Xloutint nx1,double * X2,double * X2out,
int nx2,double h,double ** A,int * band,int nbA,int k0A,doubie * B,
double ** work,double tol,int itmax,int * itint BC_N,int ssg,
double Keff)

double al=0.788675134595,b1= -1.15470053838,w1=0.75,w2=0.25;
double dtmp,alr,* VT,

double al2[6),a21{6},a22[6];

int k,kg.emr,nb,nb1,bl= -band[0],bu= bandinbA-1);
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if (rksilu_init) {
K1 = work{Q]
K12=&Kl[axIl;
K2 =work[1]:
K22 = &K2inx1];
BK =work[2];
B2RK = &BKinx1j;
XIRK = work(3];
X2RK = &X1RK{nxl1];
Apptr = (double *)calloc(nx1*nbA sizcof(double));
Ap = (double **)calloc(nbA,sizeof(double *));
PhiX ! = (double **)calloc(ng sizeol(double *));
PhiK 1 = (double **)calloc(ng,sizeof(double *)};
PhiK2 = {doublc **)calloc(ng,sizeof{double *));
if (Ap == NULL Il Apptr == NULL il PhiX1 = NULL Il
PhiK1 = NULL || PhiK2 == NULL)
error_cexit (" RKSI_LU_N memory allocation error”,2);
for (k=0; k < nbA; ++k)
Aplk] = &Appur{k*nx1];
for (x=0; k < ng; ++k) {
PhiX1[k] = &X1RK[k*ntN];
PhiK1{k] = &KI[k*ntN}
PhiK2[k)] = &K2[k*niN];
}
for (k=0; k < 6; ++k) {
CnX2[k] = &X2RK[k*nd];
CnB2(k] = &B2RK[k*nuf];
CnK1[k] = &K 12[k*ntf);
CnK2[k] = &K22[k*nif];
}
if (ssg)
Vg0 = Vglssgl:
clse
Vg0 = VelOl;
AfRK = Mlubmalloc (bl,bu,nx1);
Piv = (int *)calloc(nxI,sizeof(int));
if (AfRK == NULL ll Piv ==NULL)
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error_exit (" RKSI_LU_N memory allocation error”.2);
rksilu_init = 0,
}
Vi =NuEfPhi;
alr=-1.0/al;
CopyM {(Ap.A.nbA,nx1),
V_addC (Ap[kOAlalt/hnxl)

for (k=0; k < 6; ++k) {
a22[k] = 1.0/ (lambdalk] - alr/h); /*-1/A22%
al2[k] = Vg0 * lambdalk) * a22{k]; /*- A12/A22%/
a21{k] = betalk] * a22(k];

}

f(BCN&S)
nbl=1;
else
nbl=2;

ALl - A12/A22* A21 %
for {(kp=0; kg < ng; ++kg) {
if (kg)
nb = kOA + nbl + kg,
else
nb = k0A;
dimp=10;
for (k=0; k < 6; ++k)
dtmp += beta[k] * NuEf[0likg] / Keff * al2[k];
V_addC (Ap[nb].dtmp.uth);
1
ZeroMlub (AfRK,bl,bu,nx1,nx1);
BloF (Ap.band,nbA,AfRK,nx1,nx1);
err = LUb (AfRK,bl,bu,Piv,nx1);
if (err) return (1);

/* stage onc */

CopyV (XIRK,X1,nx1);
CopyV (X2RK,X2,nx2);
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M BK=A11*"X1 + A12* X2+ Bl ¥
V_MbmulV (BK.nx 1A band,nb A KOA X IRK . nx1), /™ AlL* X1 ¥/
ZeroV (Vi)
for (k=0; k < 6; ++k}
V_addCV (VI,VeO*lambdalk].CaX2(k].mDJ/* + A12* X2/
V_addV (BK, VI,
V_addV (BK,B.nxi); »+Bl1¥
V_mulC (BK.alenx1); *=Bl'*

R2=A21* X1+ A22* X2/
ZeroV (NuEfPhi,nt);
for (kp=0; kg < ng; ++kg)
V_addCV (NuEMPhi,NuEf[0) kg )l/Keff,PhiX 1{kgl.ntf);  /* A21* X1 ¥
for (k=0); k < 6; ++k) {

V_CVaddCV (CnB2[k].betalk | NuEfPhi,-lambdalk],CnX 2[k].ntf);
V_mulC (Coli2{klalrat); /B2 =A21* X1+ A22*X2%
V_addCV (BK.al 2[k],CnB2jk].n);

)

err = LUbSolve (ATRK,blLbu, K 1,BK,Piv,nx1);
if (err) return (1);

* Ki[2) = 1/A22 (B2 - A21 * X1} Y/
ZeroV (NyEfPhi,ntf);
for (kg=0; kg < ng; ++kg}
V_addCV (NuEMPhi,NuEf|0][kg)/Kell,PhiK 1 [kgl,nth);
for (k=0; k < 6; ++k)
V_CVaddCV (CaK1{k],-a22[k].CnB2[k],a21[k],NuEfPhi,ntf);

/* stage two "/

V_VaddCV (X1RK.,X1,bl.KLnx1);
V_VaddCV (X2RK,X2,b1,K12,nx2);

HFBK=A11*X] +Al2*X2+B1%
V_MbmulV (BK.nx1,Aband,nbA KOAXIRK,nx1); /*AlIl1*X1 ¥
ZeroV (Vi)
for (k=0; k < 6; ++k)
V_addCV (VI,Ve0*lambda[k],CnX2[k),nth);/* + A12* X2 %/
V_addV (BK,Vinuf);
V_addV (BK.B,nx1); /*+B1*
V_muiC (BK,alr,nx!);
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PB2=A21* X1+ A22* X2
ZeroV (NuEfPhi,aif);
for (kg=0; kg < ng; ++kg)
V_addCV (NuEfPhi,NuEO][kg/Keff,PhiX1[kg],nth;
for (k=0; k < 6; ++k) {

V_CVaddCV (CaB2{k).beta[k ], NuE{Phi,-lambdalk],CnX2{k],ntf);
V_mulC (CnB2{klalrntl);  /*B2 = A21 * X1+ A22*X2*/
V_addCV (BK,al2[k].CaB2{k].nt)

}

err = LUbSolve {AMRK,blLbu, K2 BK, Piv,nx1);
if (err) retorn (1);

*K1[2] = 1/A22 (B2 - A21 * XD) ¥/
ZeroV (NuEfPhi,ntf);
for (kg=0; kg < ng; ++kg)
V_addCV (NuEfPhi,NuEM0](kg)/Kell,PhiK2[kg].mD);
for (k=0; k < 6; ++k)
V_CVaddCV (CnK2{k],-a22[k},CnB2{k],a21[k],NuEfPhi.atf);

V_VaddCVaddCV (X1lout.X1,wl,K1,w2, K2 nx1);
V_VaddCVaddCV (X2out,X2,w1,K12,w2,K22,nx2);
return (0);
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BCG
BWR
CANDU
cG

cpP
CRNL
CNS
GCG
GS
GSSOR
1QS

LU (decomposition}
MC
NTE
ODE
PDE

Pn
PWR
Sn

SOR

Abbreviations

Boosted Conjugate Gradient {method)
Boiling Water Reactor

Canadian Deuterium Uranium (Reaclor)
Conjugate Gradient (method)

Collision Probability (method)

Chalk River Nuclear Laboratories
Canadian Nuclear Socicty

Generalized Conjugate Gradient (method)
Gauss-Seidel (method)

Gauss-Seidel with successive over relaxation (method)
Improved Quasistatic (method)
Lower-Upper (Tridiagonal} decompaosition
Monte Carlo (method)

Neutron Transport Equation

Ordinary Diifercniial Equation

Partial Differential Equation

Pn Approximation method

Pressurized Water Reactor

Sn method - Discrete Ordinates method

Successive Over Relaxation
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List of Symbols

Symbol Description
C(r.1) The density of the 'i'th neutron precursor
C, Specific heat
D, Diffusion coefficient for group g
e Intermal encrgy
E Energy (neutronics equations)
E, Lower energy limit of the "g'th ¢nergy group
G, aP/dp
h Convection cocfficient
z Gravily
G Mumber of energy groups
h H Enthalpy and total enthalpy
k(r) Coefficient of heat conduciion
n Surface normal
Nu Nusselt number
q Thermal flux
P Pressure
Pfx) Legendre Polynomial
Pr Prandu number
T Spatial position vector
Ra Rayleigh number
)] Thermal source term
s Rate of strain tensor
t Time
(.0 Temperature
v Velocity (of the fluid)
(14 Thermal diffusivity
B Delayed neutron fraction (total), thermal expansion coefficient
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< EF > »r =

Ql ©

Q

Z

5
OF . E.b)
®,(.1)
X(E)
Vi(E)

oy

< I

Delayed neutron fraction from the "i’th precursor that was produced by the fission of
isotope j.

Decay constant of the 'i’ th precursor

Neutron generation time

Viscosity, cosine of the scattering angle

Number of neutrons produced per fission

Density

Stress tensor

Microscopic cross section for interaction X
Macroscopic cross section for interaction X

Shear stress ensor

Neutron flux

Group flux (multigroup formulation)

Fission neutron spectrum

Neutron emission spectrum for the 'i’the precursor
Fission heat production coefficient

Neutron direction vector

Variable of interest (conservation equation)

Inner {scalar) product of two vectors
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