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ABSTRACT

A new approach for automnated tool condition monitoring in machining by using fuzzy
neural networks is proposed. The Multiple Principal Comporent (MPC) fuzzy neural

networks are built based on three 1najor components of soft computation, namely fuzzy logic,

neural networks, and probability reasoning.

The system architecture is a partially connected neural network with fuzzy classification
at neurons and fuzzy membership grades for interconnections. Principal component analyses
in multiple directions are implemented for the feature extraction and the "maximum partition”.
The partitions of the Jearning samples are based on the distributions of the monitoring indices
in the principal corponent directions. A fuzzy membership function is used to measure
uncertainties in the sampled data and to form "soft boundaries" between the classes. A
processing element in the network is connected to others through the fuzzy membership
grads and other information available. The partial connections make short training times and
short routines in classifications.

Three major issues in developing the MPC fuzzy neural networks are supervised
classification, unsupervised classification and knowledge updating. The system obtains the
knowledge about classifications by learning. The learning samplcs are obtained from culting
tests performed through a reasonable range of cutting conditions.

Several sensors are used for monitoring feature extraction. The signals from different

iv



types of scnsor‘s at different locations insure that the most siéniﬁcanl information about the
changes in tool conditions is collected. Metal cutting mechanics are fitst considered for the
sensor selection and the sensor allocation. The measured signals are further aral yzed and the
monitoring features are extracted. These indices are the inputs for the fuzzy neural networks.
The tool conditions considered include sharp tool, too} breakage, and a few selected stages
~of tool wear. The experimental results in turning and drilling have shown good performance

of the proposed monitoring system in these tests.



ACKNOWLEDGEMENTS

I would like to express my sincere and heartily appreciations to my supervisor, Dr. M.
A. Elbestawi, for his Support, encouragement, and guidance throughout the coursé of this
study. Special thanks are extended to Dr. R. L. Judd, Dr. M. P. Sklad and Dr. P. A. Taylor,
the members of my PhD supervisory ct;Jmmiltee, for their continuous interests and
encouragements.

Thanks are also given to fellow colleagues and graduate students in the IMMRC and the
Department of Mechanical Engineering, with whom 1 have shared pleasant times and
experiences.

The financial support given in the forms of Graduate Scholarship, Teaching
Assistantship, and Research Assistantship by the Department of Mechanical Engineering and
the NSERC is gratefully acknowledged.

I will always be beholden to my parents, my wife and son for their understanding,
support, and patience during my study. The love and care from them, other family members,

and friends are remembered forever.

vi



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES

LIST OF TABLES
CHAPTERI INTRODUCTION

CHAPTER Il LITERATURE REVIEW
2.1 Introduction
2.2 Tool Condition Monitoring in Machining
2.3 Sensor Fusion
2.4 Modelling Approaches
2.5 Expert Systems
2.6 Neural Networks
2.7 Fuzzy Ciassification

2.8 Research Issues

PAGE

v

vi

Xii

Xvi

13

17

20

23

28



CHAPTER III DECI:SION MAKING STRATEGIES FOR TOOL
CONDITION MONITORING
3.1 Introductiun" |
3.2 Pattern Recognition
3.2.1 The Pattern Recognition Problem
3.2.2 Feature Selection
3.2.3 Classification
3.2.4 Pattern Recognitions for Tool Condition Monitoring
3.3 Neural Networks
3.3.1 Artificial Neural Networks
3.3.2 Structure of Neural Networks
3.3.3 Learning in Neural Networks — Back-Propagation
3.3.4 Neural Networks for Tool Condition Monitoring
3.4 Fuzzy Classification
3.4.1 Basic Theory of Fuzzy Set and Fuzzy Partition
3.4.2 Criteria for Fuzzy c-Partition
3.4.3 Fuzzy Neural Networks

3.4.4 Fuzzy Classification for Tool Condition Monitoring

3.4.5 Improvements Needed for Fuzzy Tool Condition Monitoring

3.5 Summary

viii

35

40

49

50

50

57

61

63

63

69

74

76

86

87

ST



CHAPTER IV THE MULTIPLE PRINCIPAL COMPONENT FUZZY
NEURAL NETWORKS FOR TOOL CONDITION MONITORING 89

4.1 Introduction ‘ 89
4.2 Structure of the MPC Fuzzy Neural Networks 91
© 4.2.1 Partial Least Square Methods for Sensor Fusion 91

4.2.2 Neural Networks and Knowledge Learning 95

4.2.3 Fuzzy Classification and Uncertainties in Tool Condition

Monitoring 97

4.2.4 Construction of the MPC Fuzzy Neural Networks 99
4.3 Supervised Classification of the MPC Fuzzy Neural Networks 103
4.3.1 Learning 103
4.3.2 Classification 105
4.4 Unsupervised Classification of the MPC Fuzzy Neural Networks 108
44.1 Learning with the Urlabelled Samples 108
4.4.2 Clustering 109
4.4.3 Comparison to Other Clustering Methods 116
4.5 Knowledge Updating of the MPC Fuzzy Neural Networks 119
4.5.1 Retraining with the New Information 119
4.5.2 Tuning Old Neurons 121
4.5.3 Adding New Neurons 124
4.6 Evaluation of the MPC Fuzzy Neural Networks 127



4.7 Summary . 130

CHAPTER V EXPERIMENTAL TESTS ON THE MPC FUZZY
NEURAL NETWORKS FOR TOOL CONDITION MONITORING 131

5.1 Introduction 131
5.2 Turning Experiments , 132
5.2.1 Definition of the Tool Conditions 132
5.2.2 Experimental Setup | 133
5.2.3 Signal Conditioning and Feature Selec.ion 134
5.2.4 Experimental Results 137
5.3 Drilling Experiments 148
5.3.1 Definition of the Tool Conditions 148
5.3.2 Experimental Setup 148
5.3.3 Signal Conditioning and Feature Selection 150
5.3.4 Experimental Results 150
5.4 Summary 152
CHAPTER VI CONCLUSIONS 154
6.1 Introduction 154
6.2 Conclusions from the Finished Work 156
6.3 Suggestions for Future Work 160



REFERENCES 162

APPENDIX SIGNAL FEATURES FOR PROCESS AND TOOL

CONDITION MONITORING IN METAL CUTTING 173
A.1 Process and Tool Conditions ) 173
A.1.1 Turning Operation 173
A.1.2 Drilling Operation ' 174
A. 1.2 Chauter 175
A.1.4 Tool Life Criteria 177
A.1.5 Tool Wear 178
A.1.6 Tool Breakage and‘-.Chipping 181
A.2 Signal Features 182
A.2.1 Forces and Torque 182
A.2.2 Vibrations 184
A.2.3 Motor Current | 186



Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8

Figure 3.9

LIST OF FIGURES

Components of Monitoring System

Multiple Sensors in Monitoring

Some Possibilities to Combine Sensors and Models

Sensor Synthesis with Multi-Models

"Intelligent Filtering” for Tool Wear and Failure Deltection
Hierarchical Network Architecture for Machining Monitoring

Architecture of the "Neuro-Fuzzy System"

Conceptualized Pattern Recognition Problem

Canonical Conversion of the Feature Space

Classifier with Discriminant Functions

Bayes Classification

Linear Classification

Block Diagrams of Traditional and Neural Network Classificrs
Nonlinearities at a Neuron

Artificial Neural Network

Effects of the Hidden Layer on Neural Networks

xii

PAGE

10
15
16

19

27

33
37
41
44
46
52
54
56

57



Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Fi gur; 314
Figure 3.15

Figure 3.16

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7

Figure 4.8
Figure 4.9
Figure 4.10
Figure 4,11
Figure 4.12

Figure 4.13

Processing Element Modifying Itself by Learning
Weight Vector Changed by the Delta Rule
Membership Function of Hard Set and Fuzzy Set
Divisions by Hard and Fuzzy Partitions

The Min-Max Fuzzy Hyperbox for Classification
Example of the "Maximum Partition™

Building the Fuzzy Decision Tree through Learning

Principal Component Analysis

Soft Boundaries in Fuzzy Classification

The Multiple Principal Component (MPC) Fuzzy Neural Network

Learning of the MPC Fuzzy Neural Networks
Classification of the MPC Fuzzy Neural Networks
Possible Disiributions of the Learning Data

Clustering by the Principal Component Analysis

and the Cluster Combination

Clustering at a Neuron of the MPC Fuzzy Neural Networks
Clustering Resuits for Fisher's Iris Data

Clustering Results for Simpson's Data

Knowledge Updating of the MPC Fuzzy Neural Networks
Tuning Old Neurons in the MPC Fuzzy Nepral Networks

Adding New Neurons to the MPC Fuzzy Neural Networks

xiil

59

60

64

67

76

83

84

92

98

102

105

107

111

114

115

117

118

120



Figure 5.1
| Figure 5.2
Figure 5.3

Figure 5.4

Figure 5.5
Figure 5.6

Figure 5.7

Figure 5.8
Figure 5.9

Figure 5.10

Figure A.1
Figure A.2
Figure A.3
Figure A4
Figure A.5
Figure A.6
Figure A.7

Figure A.8

Sensor Setup for Turning Tests
Signal Processing
Example of the MPC Fuzzy Neural Networks

Classification Results of the Tool Conditions

by Tow Neural Networks
Comparison of the Classification Results by FNN and BPNN
Examples of the MPC Fuzzy Neural Networks for Clustering

Clustering of the Tool Conditions by the MPC Fuzzy

Neural Networks
Comparison of the Classif-cation Results with Retraining
Sensor Setup for Drilling Tests

Comparison of the Classification Results for Drilling Tests

Turning Operation and the Cutting Force Components
Drilling Operation and the Cutting Force Components
Acceleration Signals under Stable Cutting and Chatter
Wear on Cutting Tool

Infiience of Flank Wear on the Force Ratio

Wear Patterns on Twist Drill

Cutting Force Components vs Flank Wear

Thrust Force and Torque in Normal and Abnormal Cutting

Xiv

134

135

139

140

141

143

145

147

149

151

174

175

176

178

180

181

183

184



Figure A9  Spectra of Acceleration Signals under Different Tool Wear States 185

Figuré A.10 Effect of Tool Breakage on Motor Power 187

XV



Table 4.1

Table 5.1

Table 5.2

Table 5.3

Table 54

Table 5.5

Table 5.6

Table 5.7

LIST OF TABLES

Success Rates of Clustering Fisher's Iris Data

with Different Methods

Definition of the Tool Condition in Turning Tests
Results of Supervised Classification with Different Tests
Detailed Results of Classification by Using Two Neural Networks

Clustering Results of the Tool Conditions by the Fuzzy

Neural Networks
Classification Results with the Knowledge Updating
Definition of the Tool Conditions in Drilling Tests

Experimental Results in Drilling Tests

Xvi

PAGE

116

133

138

141

144

146

149

152



CHAPTER |

INTRODUCTION

Automated tool condition monitoring is of major importance to manufacturing
automation. The need for continuous improvements in product quality, reliability, and
manufacturing efficiency has imposed strict demands on automated product measurement and
evaluation. Manufactured products of the modern day demand higher precision and accuracy
than before. Automated process monitoring becomes very crucial to successfully maintaining
high quality products with low cost.

Automated tool condition monitoring implies identifying the machining process and
tool conditions without interrupting the manufacturing process operation. Monitoring is
performed under minimum human operators' supervision. Clearly, the development of these

systems is necessary to prevent machine tool damages as well as improve machine utilization.
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An "Intelligent Sensor System" was defined by Dornfeld (1986) as an integrated
system consisting of sensing elements, signal conditioning devices, signal processing
algorithms, and signal interpretation and decision making procedures. This system acts not
only as a signal collecting device, but also as a sorting and analyzing machine. In the absence
of a human operator, the system functions to sense possible signals indicating the process
status and its changes, to interpret incoming sensed information, and to decide on the
appropriate control action. Such a sensor system can be enhanced in dealing with
sophisticated information by obtaining the abilities of self-learning, knowledge updating, and
error correction. We define such a system as Automated/Intelligent Monitoring System. Tha
system possesses abilities of sensing, analyzing, and knowledge learning, which are essential
to machining tool condition monitoring.

When human operators monitor machining processes, they use all possible sensory
information, which may be seeing (e.g. observation of chip colour, surface finish of the
workpiece), hearing (e.g. sound generated by rubbing between the tool and the workpiece),
and smelling (e.g. smell of smoke generated in machining). Associating the sensory cues with
machining process and tool conditions depends to a great extent on the knowledge and
experiences of the operators'. An automated/intelligent machining process and tool condition
monitoring system should be able to emulate as closely as possible the sensing, recognizing,
responding, and learning abilities of human operators. To emulate the human monitoring
action, an autornated tool condition monitoring system has four components: (1) Sensing
Technique; Typically, indirect sensing techniques such as cutting forces, vibrations, and

acoustic emission are used. In many cases, signals from a single sensor may not be sufficient
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and other information may also be necessary to result in a correct decision. This technique
involves using multiple sensors. The sensory data from different locations and different types
of sensors are combined to give the maximum useful information. (2) Feature Extraction;
Ideally, sensory signals contain the necessary information required to discriminate between
different process and tvol conditions. However, the sensed signals are usually noisy and have
to be further processed in order to yield useful features which are highly sensitive 1o the ool
conditions but insensitive to noises. This process is called feature extraction. (3) Decision
Making; Decision making strategies process the incoming signal features and perform a
pattern association task. That is mapping the signal feature to a proper class (tool condition).
The processing can be done sequentially or in parallel depending on the architecture of the
monitoring system. And, (4) Knowledge Learning. In order to make a correct decision,
learning algorithms have to be provided. Such algorithms tune system parameters by
observing the sample features corresponding to different tool conditions. Like human
operators, automated monitoring systems should have the ability to learn from their
experiences (past work) as well as the new information from the machining process.

This dissertation presents a novel approach to the development of an automated tool
condition monitoring system — the Multiple Principle Component (MPC) Fuzzy Neural
Networks for automated tool condition monitoring in machining. The thesis consists of six
chapters. The main concepts of these chapters are summarized as follows:

Chapter I gives a brief introduction to the objective and components of this thesis.

In Chapter I, a general literature survey is provided, which includes explanations of

tool condition monitoring tasks, sensor fusion, modelling approaches, expert systems, neural



4

networks, and fuzzy classification. Various approaches to machining process and tool
condition monitoring are introduced. The main objective and research issues are presented.

In Chapter IIl, decision making strategies for tool condition monitoring in machining
are discussed in detail. Pattern recognition, neural networks, and fuzzy classification are
analyzed in separate sections. Each section shows respectively the principles and concepts,
as well as some applications, of these strategies.

Chapter 1V presents the proposed new strategy for automated tool condition
monitoring in machining. It is called as "the Multiple Principal Component (MPC) Fuzzy
Neural Network." First, the architecture of the MPC fuzzy neural network is presented.
Three major issues of the monitoring system are: supervised learning and classification,
unsupervised learning, and knowledge updating. The detailed algorithms for these functions
are discussed. The advantages and developments of the MPC fuzzy neural network for
automated tool condition monitoring are examined in this chapter.

To verify the perforinance of proposed the MPC fuzzy neural networks for automated
tool condition monitoring, cutting experiments were performed in turning and drilling. The
experimental tests were conducted under a range of different cutting conditions. Several
sensors were used for collecting signals from cutting forces, vibrations, torque, and spindle
motor current. The experimental analyses focus on both supervised and unsupervised
learning, as well as the knowledge updating for the monitoring system. The experimental
results are demonstrated in Chapter V.

Finally, Chapter VI presents discussions on all finished research work and the

conclusions of this dissertation. Some suggestions for future work are also given.



CHAPTER |

LITERATURE REVIEW

2.1 INTRODUCTION

Research work for mdchining process and tool condition monitoring has been one of
the most important issues in manufacturing automation. The major goals are to develop self-
adjusting and integrated systems that are capable of monitoring in various working conditions
with minimum supervision and assistance from operators. The monitoring systems aim at
improving quality of the products as well as reducing the costs.

Many monitoring methods have been studied for automated tool condition monitoring
in machining. They include modelling approaches, expert systems and statistical pattern

recognition methods etc. Neural networks and fuzzy logic are also studied for machining



tool condition monitoring.

There are a few major functions in an automated tool condition monitoring system:
signal acquisition, signal processing and feature extraction, knowledge learning and decision
making. Among them, signal prgcessing!featurc extraction and decision making are
considered as an "integrated entity." and called "monitoring methods” (Du et al, 19935).
Moreover, knowledge leaming is also highlighted in recent research work.

This chapter gives a comprehensive review of the most recent research work on the
development of machining process and tool condition monitoring. Several sections introduce

separately the monitoring tasks and monitoring methods by using sensor fusion, modelling

approaches, expert systems, neural networks, and fuzzy classifications.

2.2 TOOL CONDITION MONITORING IN MACHINING

The development of reliable and effective machine tool condition monitoring
techniques is crucial for the realization of unmanned or partially manned machining,
Application of automated tool condition monitoring enables modern manufacturing equipment
to work free of errors and guarantees high quality of the products. Significant research work
has been performed in this research field from various points of views including analytical
forecast, dynamic structure identification, monitoring techniques, and adaptive control
approaches. Among those comprehensive surveys on this subject, Ténshoff and Wulfsberg

(1988), Tlusty and Andrews (1983), Isermann (1984), and Domfeld (1990) gave a full



description of the development of modern monitoring techniques for machining.

Ténshoff and Wulfsberg (1988) described the vital importance of monitoring
machining process in improving the effective machining time of a machine tool, increasing
the productivity, detecting tht; new process phenomena from new materials and new cutting
processes, registering the trends in running the machining processes, and diagnosing the
reason for a process breakdown. Their paper covers conventional and enhanced methods for

monitoring and control of machining process. The review lists the objectives of monitoring

machining processes as:

i) to maintain safety,

i) to prevent fatal damage,

iii) to prevent rejects,

iv) to prevent idling of equipment, and

v) to achieve an optimal use of resources.
In this study, five monitoring subjects are identified: machine, tool, process, tool conditioning,
and workpiece. The monitoring functions are also classified into two groups: time critical and
non-time critical. The former requires a system response within a range of milliseconds while
the later may take seconds or even minutes. The components of a monitoring system are
defined as in Figure 2.1. These include: sensors, signal conditioning, models, and strategy.

Sensor techniques deal with the problem of collecting the featured signals about
machining processes such as the physical principle of sensors and the technical application of
sensors. Multi-sensor systems and intelligent sensors are also applied to monitoring tasks.

Critical reviews on the sensors for machining monitoring were given by Tlusty and Andrews
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Figure 2.1 Components of Monitoring System / Ténshoff and Wulfsberg, 1988 /

(1983) and Dornfeld (1992). The devices include dimensional and proximity sensors, cutting
force dynamometers, spindle (torque and power) sensors, accelerometers, acoustic emission
sensors, ultrasonic sensors and the like. Applications of these sensors include geometric
corrections, machine diagnosis, surface finish controls, tool condition monitoring, and
machining process monitoring.

Signal conditioning and signal processing deal with data condensation in order to
extract the monitoring features which are sensitive to the monitoring subjects. The signals
are evaluated in both time domain and frequency domain.

Models are required to relate the measured valued to the monitoring and control
subjects. Models can either be physically or empirically based. There are fixed models,
adapting models, and self-learning models. Multi-model systems are also used.

Monitoring and diagnostic systems measure the conditions of a machine tool or of its
process and try to find functional or causal relations between failures and their origins. They
are all open loop systems. Strategies are employed to decide how information is acted upon

in the process control. Some of the monitoring functions provided on today's machining tool
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are used mainly for control purposes, even though studies showed that most tool failures in
NC machining were due to the problems with mechanical components rather than the
controller (Kegg, 1984). It is obvious, however, that the monitoring systems are the most

critical link between the machining process and effective controls.

2.3 SENSOR FUSION

In most cases, signals coming from only one s¢nor are typically insufficient to give
enougt: information for machining and tool condilioni‘monitoring. Using several sensors at
different locations simultaneously was proposed for data acquisition (Ruokangas et al, 1986;
McClelland, 1988; Cryssolouris and Domroese, 1988, 1989; Dormfeld, 1990; Cryssolouris ef
al, 1992). Signals from different sources are integrated to provide the maximum information
nceded for monitoring and control tasks. A schematic diagram of using multiple sensors in
monitoring systems is shown in Figure 2.2.

Sensor Fusion generally covers all the issues of linking sensors of different types
together in one underlying system architecture (McClelland, 1988). The strategy of
integrating the information from a va;'icty of sensors will increase the accuracy and resolve
ambiguities in the knowledge about the environment. The most significant advantageous
aspect of sensor fusion is its enriched information for feature extraction and decision making
strategy. It provides much more "strong" data for the decision making process with low

uncertainty which may be created by inherent randomness or noise in the sensor signals. The
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Figure 2.2 Multiple Sensors in Monitoring

features from integrated information are significant within a broader range of cutting
conditions. Sensor fusion is able to accommodate changes in the operating characteristics of
the individual sensors due to calibration, drift, failure and so on.

Lots of efforts for developing and applying the methodologies for sensor fusion have
been reported in machine tool condition monitoring. Linear discriminant functions are the
most commoniy used (Matsushima and Sata, 1980; Dornfeld and Pan, 1985; Liu and Wu,

1988, 1950; Marks and Elbestawi, 1988). Matsushima's and Sata’s objective (1980) was Lo



I
automatically recognize the cutting state and detect tool failures as part of an intelligent
control system. A linear dfsgriminam function was used to integrate machining parameters,
such as cutting speed and feed rate, with four features from the power spectrum of the cutting
force. Dornfeld and Pan (1985) applied linear discriminant functions to integrate acoustic
emission signais with machinihg parameters (cutting speed and feed rate) for the detection of
continuous or discontinuous chip formation during cutting. Liu and Wu (1988, 1990) used
a two-category linear classifier to process the sensor signals from both acceleration and thrust
force for drill wear detection. Marks and Elbestawi (1988) used a dynamometer, an
accelerometer, and the spindle motor power, combined with cutting conditions, for tcol
condition monitoring using a pattern recognition method. Most of these earlier approaches
to sensor integration suffered from the necessity of a time consuming training procedure as
well as high sensitivity needed to process conditions, rendering them':inefﬁcient for real-time
use {Dornfeld, 1990).

Recent work on machining monitoring involved neural networks for integrating the
information from multiple sensors (Rangwala and Dornfeld, 1987, 1990; Dornfeld, 1990; Liu
and Ko, 1990). Rangwala and Domfeld (1987, 1990) used a neural neiwork to integrate the
signals from acoustic emission and force sensors for flank wear monitoring in turning, The
neural network succeeded in filtering out noise in the sensor da}a and made it possible to
applying the strategy over a range of machining conditions, In their work, the measurement
vector with 768 dimensions, coming from the force and the AE spectra, was reduced io a

feature vector with dimensions of six by maximizing the following separation index:
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J = trace (S,'S,) . (2.0

where S, is tﬁe within class scatter matrix and Sy, is the between class scatter matrix. The six
features which were the most sensitive to tool wear were selected using the Sequential
Forward Search algorithm (Whitney, 1971). A three-layered neural network was used for
sensor fusion and decision making. Liu and Ko (1990) explored on-line classification of drill
wear using sensor fusion and artificial neural networks. Acceleration and thrust signals were
used as the inputs to the neural networks. The results were compared with those obtained
from a linear discriminant approach and it was shown that the artificial neural network had
better performance. Most other neural networks for tool condition monitoring also used
multi-sensors in data collection.

The integrating information from multiple sensors was also implemented by sensor
synthesis. These approaches included multiple least-squares regression and the Group
Method of Data Handling (GMDH) (Chryssolouris and Domroese, 1988; Chryssolouris et «l,
1992). Using multiple least-squares regression, the tool wear and wear rates measured during
some initial machining tests are regressed on the corresponding estimates provided by the

models. A typically linear regression model is:

y = Byt Byxy e ByXy e Bx, - €, (2.2)

where y is the synthesized state variable estimate, f, is a regression coefficient, x;s are state
variable estimates provided by process models, and € is a random error. The GMDH is a
heuristic method of predicting a dependent variable from a set of independent variables. By

laying several sets of quadratic polynomials such that the output of one set is the inpul to the
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next set, the method allows the dependent variable to be predicted by a very complex, high-
order polynomial of the independent variables. The GMDH algorithm is self-organizing.
Variables which are least valuable for prediction of the dependent variable are dropped from
further consideration during the construction of each layer.

Sensor fusion was also combined with a fuzzy logic approach for tool condition
monitoring in turning (Du et al, 1992). In this study, lil monitoring indices were
experimentally and analytically selected from six measured process signals. The sensors
included a three-dimensional force transducer, two accelerometers, and a spindle motor
power sensor. In another work on the fuzzy logic approach for multi-sensor proLéss
monitoring in machining (Li e al 1992), sensor signals were fused not only in the signal
selection, but also in the feature extraction and decision making. The partial least squares
method (which will be discussed in detail later in this thesis) was used for the most significant

features in machining tool condition monitoring,.

2.4 MODELLING APPROACHES

Modelling approaches have historically been used to discover the root causes of
problems with existing equipments and to understand the mechanism of machining processes.
There has been a significant amount of modelling approaches for machining tool condition
monitoring. Some models considered are: dynamic structure models for vibrations, such as

multi-degree of freedom machining system structure response model (Endres et al, 1990), and
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one and two ends supported beam models (Lu and Klamecki, 1990), dynamic structure
medels for cutting force, such as empirical cutting force model (Endres er al, 1990),
dynamic models of acoustic emission and feed motor current (Diei and Dornfeld, 1987:
Emel and Kannatey-Asibu, 1987, 1988; Stein ez al, 1986), dynamic models for tool wear
such as diffusion wear models, adhesive wear models (Kannatey-Asibu, 1985) and empirical
model (Koren et al, 1991), linear steady-sfl\tc models for tool wear and cutting forces
(Koren, 1978; Koren et al, 1987; Matsumoto et al, 1988), and parametric models including
AR (Auto-Regressive) for chatter (Yang et al, 1982; Tsai et al, 1983), AR for tool wear
(Liang and Dornfeld, 1989), and AR for tool breakage (Takata and Sata, 1986).

Among the modelling approaches to machining tool condition monitoring, Dynamic
Data System (DDS) methodology (Wu, 1977) was broadly applied. This method uses
dynamic data in the form of a time (or space) series to develop a physically meaningful,
stochastic difference/differential equation, so that the hidden mechanistic features of the
system can be extracted from the experimental or operating data. It assumes that a process
can be described by an Auto-Regressive Moving Average (ARMA) model:

K- Xy - Xy - -0 X, - a -0a,-..-64a ., (23

where X, is time series, g, is the residuals with normal distributions (white noise), @5 are the
auto-regressive parameters, and @s are the moving average parameters. When using the DDS

methodology, 2 major concern is the parameter estimation of the ARMA model. Although

an ARMA model is a linear model, the estimate of the model parameters requires non-linear
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Figure 2.3 Some Possibilities to Combine Sensors and Models / Tonshoff and Wulfsberg, 1988 /

computation for which many algorithms have previously been developed. Some examples of
applying time series model in machining monitoring are Wu et al (1980), Kim et al (1982),
Chung et al (1993) and the like.

The use of multiple sensors for machining process and tool condition monitoring gives
extended information about the process. As most process variables have an influence on one
another, highly sophisticated models, or even more than one model, are needed to work up

the sensor signals. Inthe most practical applications, the measured variable from one sensor



16

- Sensors  Measured | PTOCESS  giato variable -
Variables - Models gqpiates

- Synthesized State
Variable Estimates

Sensor

Process
: - Systhesis

-

|
|

Process
Setting

Figure 2.4  Sensor Synthesis with Multi-Models / Chryssolouris et al, 1992 /

is built up by one model to deliver monitoring features. On the other hand, one can buiid up
the signal of one sensor through several models to get more interesting features of the object.
This system is called "Multi-Model-System" (Tonshoff and Waulfsberg, 1988). The different
possibilities are the number of sensors and the number of models. The usc of more sensors
and models results in a more reliable and more flexible monitoring system. The increase of
information density is indicated by the combination, as shown in Figurc 2.3. A monitoring
process performed by several sensors feeds the sensor signals into several process models.
Each of these models contains a mathematical expression based on the mechanics of the
cutting process. The information provided by the process models is then synthesized to
determine the best estimation for the state variables. This strategy is called "Sensor
Synthesis”, which is illustrated in Figure 2.4 (Chryssolouris et al, 1988, 1992). Utilizing

estimates from several sensor-based models can be considered analogous to taking several
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samples from a random distribution. As more sensor-based information is considered, the
certainty of the estimated parameter values improves.and the uncertainty due to randomness

in the sensor signais is reduced.

2.5 EXPERT SYSTEMS

Expert Systems are a product of artificial intelligence (AI) (Rich, 1983). An expert
system consists of three components: Inference Engine, Man-Machine Interface, and
Knowledge Base. The inference engine is actually a search mechanism that finds an answer
from the knowledge base for a given problem. The man-machine interface is the
communication between human operators and the machine, which is designed for operators
to use the system. Hence, the so-called expert system shells are developed to perform their
tasks. The knowledge base contains the information about.the given problem domain. The
knowledge is usually represented by numerous "IF ... THEN ..." rules. It depends completely
on the given problem domain and has to be developed independently. Therefore, the major
effort in building an expert system is to establish the knowledge base.

Expert systems were reported to be used mainly in manufacturing for designs, process
planning, and production control (Gupta and Ghosh, 1988; Iwata, 1988). However, the use
of expert systems for machining process monitoring and diagnosis was also shown by Kishi
(1986), Kumar and Ernst (1987), Spiewak and Wu (1988), Chryssolouris and Guillot (1988,

1990), Ramamurthi and Hough (1993) and others.
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Kishi (1986) showed an example of a diagnostic expert system for automobile engines.
This system consists of two main processing units: the unit which identifies the faulty parts,
and the unit which searches for the causes of the problems. Kumar and Ernst (1987)
proposed an architecture for expert systems that was based on a predictive monitoring control
strategy. The architecture employs a hierarchy of models, and cach model is detailed and
"deeper” than the previous one. The performance of these models is monitored to recognize
situations where the knowledge base has failed to produce the correct answer. These fatlures
are used as guide to improve performance in the next cycle.

Spiewak and Wu (1988) presented a method of pre-processing measured force
signals, based on the on-line identification of the cutting process. This method, called
"intelligent filtering”, allows decomposition of the measured force into several “streams”
associated with major sources causing force fluctuations. They are: (1) the interrupted and
superimposed cutting action of individual inserts, (2) vibrations forced by deterministic
components of cutting forces, and (3) "white noise” excitation resulting from physical
phenomena associated with the metal shearing process. In tool wear and failure monitoring,
components of the cutting force associated with different sources of fluctuations are separated
and analyzed independently. Too! condition estimates based upon individual signals arc
combined, with weights reflecting their confidence levels, to generate the final estimates. A
block diagram illustrating this strategy is shown in Figure 2.5.

An artificial intelligence approach to the selection of process parameters in intelligent
machining was proposed by Chryssolouris and Guillot (1988). This approach combines

process modelling with rule-based expert system. The modelling techniques considered in this
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Figure 2.5 “Intelligent Filtering” for Tool Wear and Failure Detection / Spiewak and Wu, 1988/

work include multiple regression analysis, group method of data handling, and neural
network. A rule-based module determined the final operational range of control parameters
based on user information and modelling predictions. The different modelling techniques have
been evaluated using data from orthogonal cutting.

Ramamurthi and Hough (1993) developed a generalized Machining Influence Diagram
(MID) for real-time predictive diagnostics for cutting tools. It is formulated for modelling

different modes of failure in conventional metal cutting process. A formal methodology is
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used to tune the knowledge base during training. The diagnostic system consists of four
major subsystems: (1) machining influence diagram model , (2) speed algorithm, (3) numerical
knowledge base, and (4) computational module. The first and the third components form the
knowledge base. Some non-numerical information like the conditional probabilitics are
obtained from numerous variations in machining conditions and different types of sensors.
The best judgment, however, should be then used to estimate or subjectively gencrate the
numerical information.

Even though there have been few examples of application of expert systems in
machining and tool condition monitoring, an expert system can be of significant benefit in too!
condition monitoring as in the selection of process parameters. During machining monitoring,
sensors, feature extraction, and decision algorithms could be properly selected by an expert
system. This expert system should contain different models for various cﬁtting conditions and
different tool-workpiece pairs. It also should have the ability of learning to update the

knowledge base and to improve its capability.

2.6 NEURAL NETWORKS

Artificial neural network models have been studied for many years in the hope of
achieving human-like performance in the field of speech and image recognition. These models
are composed of many nonlinear computational elements operating in parallel and arranged

in patterns similar to biological neural networks. Such systems possess capabilities for fast
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learning and efficient pattern recognition. The applications of neural network in machining
process and tool condition monitoring have been reported since 1987. The main
contributions were made by Rangwala and Dornfeld (1987, 1990), Chryssolouris and
Domroesé (1988), Dornfeld (1990), Elanayar et al (1990), Liu and Ko (1990), Emel (1991),
Tansel et ¢l (1993a, 1993b), Pramod and Bose (1993), Govekar and Grabec (1994), Ko and
Cho (1994), and many others.

Rangwala and Dornfeld (1987, 1990) demonstrated the feasibility of using neural
networks to integrate information from acoustic emission and force sensors to monitor flank
wear during turning. Networks are used as learning and pattern recognition devices. They
were abie to filter out noise in the sensor data and this enhances their ability for successful
pattern association tasks over a range of machining conditions. It is shown that in cases
where the sensor data is noisy and not very clustered, the classification performance benefits
greatly through the use of multi-layered neural networks.

Chryssolouris and Domroese (1988) performed simulations in order to assess the
learning capabilities of these networks. Based on the simulation results, they proposed the use
of necural networks as the decision making component in an intelligent tool condition
monitoring system.

Domfeld (1990) developed and evaluated an on-line tool wear monitoring system for
turning operations. By applying the muitichannel AR time series models with the artificial
neural network structure for learning the characteristics of the signals from multiple sensors,

tool wear is effectively detected. It is stated that the various parameters in the neural network

should be carefully chosen to ensure optimum performance and efficiency of the tool wear
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Figure 2.6 Hierarchical Network Architecture for Machining Monitoring / Elanayar et af, 1990 /

detection system. For the purpose of tool wear detection in turning operations, relatively
small sized networks work well. Ko and Cho (1994) also showed that networks with two
hidden layers gave better performance than that with a single hidden layer. However, it
would appear that three or more hidden layers could not improve the performance. They also
came to the conclusion that a small network was preferable from the viewpoint of efficiency
as well as fast learning.

Elanayar er al (1990) used a hierarchical network architecture to represent physical
relations of the variables and reduce the network size. Two simple neural networks are

connected to predict two critical machining conditions, tool wear and surface finish. The ool
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wear po;tié}? of the neural network is of a 2-3-3 type, while the surface finish portions uses
a3-3-2 nc?t)ifork. This structure involves a two-stage back-propagation training procedure.

L
Figure 2.6 shows the overall architecture. This configuration is also readily amenable to
variations and modifications.

Different sensor signals were reported to be used in the signal integratidn by neural
networks. Acoustic emission and-the cutting force were used in tuming by Rangwala and
Dornfeld (1987, 1990), and Emel (1991). Cutting force/torque signals were used by Elanayar
et al(1990), Govekar and Grabec (1994), and Ko and Cho (1994). Acceleration and thrust

force were used by Liu and Ko (1990) and Tensel ef al (1993a, 1993b) in tool wear

monitoring for drilling and milling respectively.

In most of the work reported above, the most simple neural network structure is

employed. It has three layers, one of which is the hidden layer. The number of outputs is
ﬂsclecled as two or three (in most cases, worn and sharp tools, or initial wear and further
wear). Feed forward neural networks are built and a back-propagation training algorithm is
used. This simple structure makes it possible to apply neural networks for monitoring on the

shop floor.

2,7 FUZZY CLASSIFICATION

Fuzzy concept was first introduced by Zadeh (1967, 1973) to deal with non-statistical

uncertainties. Unlike probability theory, which describes the occurrence frequercy of an
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gncertain event, the fuzzy set theory describes the impression of an uncertain event. In
manufacturing, the fuzzy logic theory was mostly used in control applications. Recently,
fuzzy patterns were introduced to describe the metal cutting states (W:fng et al, 1985) and
tool condition monitoring (Lt and Wu, 1988; Du er al, 1992; Ko ef al, 1992; Li et al, 1992;
Chen, 1993; Ko and Cho, 1994; Li and Elbestawi, 1994, 1995a, 1995b). The use of the fuzzy
set theory for pi‘ocess and tool condition monitoring offers the advantage of providing a
systematic means for dealing with the inherent uncertainties in the metal cutting process, and
particularly in describing the relationship between tool conditions and various process
signatures.

Wang et al (1985) proposed the application of a fuzzy equivalent matrix method and
the fuzzy interactive self-organizing data to the pattern recognition of metal cutting states.
The fuzzy mathematics is applied to recognize the chip shapes (C-shape, coiled, tangled chip),
the existence or non-existence of build-up edges, and vibrations of the cutting. Their results
showed successful classification for types of chip, built-up edges, and vibrations.

Li and Wu (1988) introduced an approach for on-line monitoring of drill wear states
by using a fuzzy C-mean algorithm. Experimental and simulation results have shown that drill
wear conditions can be represented by four fuzzy grades: initial, small, normal, and severe.
The purpose of fuzzy classification is to partition the features into the fuzzy grades. The too
replacement decision can be made upon the detection of the fuzzy grades "severe.” The
thrust force and torque are selected as the features relevant to drill wear states.

Du et al (1992) proposed the fuzzy linear equation method for tool condition

monitoring. The fuzzy model is:
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r=Qop (2.4)

where, r represents the fuzzy degree of the input variables (monitoring indices), p represents
the fuzzy degree of the classes (tool conditions), Q is the fuzzy relationship function, and the
symbol "o" is the fuzzy operator. This relationship is established based on the possibility
distribution (frequency of occurrence) and the probability distribution (strength of support)
of the leaming samples. The proposed monitoring methodology was verified expt;;imentally
in turning under a range of cutting conditions. The details of this method will be discussed
later. The results of classification represent a significant improvement over those obtained
using other classical decision making strategies in pattern recognition methods.

Fuzzy pattern recognition for tool wear monitoring in diamond turning was performed
by Ko et al (1992) and Ko and Cho (1994). The wear on tool edge is classified into two
types: micro-chipping and gradual. Some features selected to partition the cluster of patterns
are obtained from the adaptive auto-regressive time series modelling of dynamic cutting force
signals. The optimal featufes which are sensitive to flank wear are selected using the fuzzy
clustering mean scatter criterion.

Chen (1993) developed a fuzzy decision system for fault classification. Three fuzzy
variables are defined to construct the fuzzy decision system: C, R, and M. C is based on the
class fuzzy set. R is associated with the region set, which is defined by the distribution of
indices. And, M corresponds to the two-dimensional fuzzy set representing the relationship
between R and C. A membership function and a few weighing functions are used to
determine M. The membership function is established based on information gained directly

from data in = learning process. The weighting functions are determined objectively based
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on information measures carried by each index. Torciﬁe and thrust force are used for
generating the indices for diagnoses in the tapping processes.

Li et al (1992) proposed a fuzzy decision tree algorithm for tool condition monitoring
in turning. The strategy combines a decision-tree approach with the fuzzy set theory in
developing a decision making strategy valid for a reasonable range of cutting conditions.
Several sensors are used for the integration of sensory information including force, vibration,
and cutting power signals. The process and too! conditions under the consideration are: three
states of tool wear, tool breakage, and machining chatter. Unlike other fuzzy pattern
recognition methods mentioned above, where fuzzy compatible matrices are used, this fuzzy
decision tree employs a hierarchical structure to classify the tool conditions by several steps
\.ch the "pivot index" in the "maximum partition" strategy. These issues will be expanded
upon later in this thesis.

One of the most recent approaches to automated machining and tool condition
monitoring is the combination of fuzzy logic and neural networks. The author's contribution
is the Multiple Principal Component (MPC) fuzzy neural network (Li and Elbestawi, 1994).
Three major issues for developing the automated tool condition monitoring are superviscd
learning and classification (Li and Elbestawi, 1994), unsupervised learning (Li and Elbestawi,
1995a), and knowledge updating (Li and Elbestawi, 1995b). Experiments were carried out
in turning and drilling. Good classification results were achieved in both cases. The
development of this monitoring system is the major issue of this dissertation. The details of

this approach by fuzzy neural network will be discussed in the following chapters.

Another effort in combining neural network and fuzzy logic by Mesina and Langari
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(1994) discusses a "neuro-fuzzy system” used to predict the tool conditions in a milling
process. The architecture of the neuro-fuzzy system is shown in Figure 2.7. The input
parameters are fed both to the trained neural network as well as the fuzzy linguistic
mechanism. The difference between the output of the network and the fuzzy mechanism is
taken as the prediction error and used to tune the membership functions. The error is used
to refine the factor which contributed to this error. The error-based, density-driven

adaptation strategy improves the performance of predicting the tool conditions.
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2.8 RESEARCH ISSUES

From the above literature review, it is clear that the requirements of future automated
machining process and tool condition monitoring system involve the following:

(1) "Mudti-Sensor System" which uses more than one sensor for monitoring machining
processes and tool conditions. It gives an extended survey of the sensitive features, as most
process variables have an influence on one another.

(2) "Automated Feature Extracting System" which generates automatically, through
learning procedures, the monitoring feutures. The signals sensed from multiple sensors are
not simply fed to the system. They are analyzed, compacted, and selected by the system to
generate the most sensitive features to the monitoring subjects. The extracted features are
also further refined or reselected by the monitoring system.

(3) "Learning and Decision Making System” which builds up flexible and
comprehensive monitoring strategies and generates automatically control parameters, The
concentrated information from the learning procedure is stored in the system for classification
purposes. The stored information can be modified by knowledge updating procedures. With
increasing experience, the system will becorne more and more reliable and promote .lhc
monitoring/control functions. The learning and decision making strategies should be robust
for shop floor applications and valid for a reasonable range of cutting conditions.

The objective of this dissertation is to develop and to verify exnerimentally a
methodology for automated tool condition monitoring in machining. The major research

issues related to this project are identified as follows:
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(1) Selection/development of sensing system suitgble for machining processes.
Several mechanical parameters of interest include cutting forces, vibrations, and spindle motor
current.

(2) Integration of information from multiple sensors (i.e. sensor fusion). Sensor fusion
is applied in both feature selection and decision making.

(3) Development of a robust self-learning decision making strategy which is valid for
the classification within a reasonable range of cutting conditions. This includes three major
functions: supervised learning and classification, unsupervised learning, and knowledge
updating.

(4) Applications of the proposed monitoring system to turning and drilling processes.



CHAPTER 11

DECISION MAKING STRATEGIES FOR TOOL

CONDITION MOMITORING

3.1 INTRODUCTION

The purpose of automated tool condition monitoring in machining is to relate the
process signals to the tool conditions, and detect or predict the tool failure. Automated tool
condition monitoring involves the act of identifying the characteristic changes of the
machining process based on the evaluation of process signatures without interrupting normal
operations. Basically, a monitoring process has three parts: sensing, signal processing and
decision making.

Sensing is a process of obtaining the cutting process signals by sensors. Appropriate

30
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signals used for tool condition monitoring are force, torque, vibration, temperature, acoustic
emission, electric current and so on. Various types of sensors and their applications have
/—"‘ra":‘.:-\

been “;‘j‘évclt)pe\d\“\z‘iﬁd studied.

B

JSigna] processing and decision making may be considered as an integrated entity and
called monitoring methods (Du et al, 1995). Monitoring methods are the major interest of
all researc-:hers working in this field. In general, monitoring methods can be divided into two
categories (Du et al, 1995): model-based methods and feature-based methods. Both
monitoring methods use sensor signals from the cutting process for the system input.

Metal cutting is a dynamic process. The sensor signals can be considered as the
output of the dynamic system in a form of time series. Consequently, process and tool
condition monitoring can be conducted based on system modelling and model evaluation.
One of the most used models is linear time-invariant system, such as state space model, input-
output transfer function model, Auto-Regressive (AR) model, Auto-Regressive and Moving
Average (ARMA) model, and the Dynamic Data Systems (DDS) methodology. When a
model is found, monitoring can be performed by detecting the changes of the model
parameters and/or the changes of expected system responses. This kind of approach to
automated tool condition monitoring in machining has been attempted by numerous
researchers. The detailed discussion on the model-based monitoring is beyond the scope of
this thesis.

Feature-based monitoring methods use suitable features of the sensor signals to
identify the process and tool conditions. This is a mapping process to relate the tool

conditions to the sensor features. Such a technique includes pattern recognitions, expert
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systems, neural networks, and fuzzy classifications. The feature-based methods consist of
two phases: learning and classification. Learning, also called training, is the procedure of
establishing the system structure and classification rules. The knowledge for decision making
is obtained from the learning samples as well as from instructions. Updating and refinement
of the stored knowledge are often required for improving the monitoring performance. This
procedure is called knowledge updating or continuous learning. The system is retrained with
new information available. Monitoring tasks are done in classification phase. The structure
and the knowledge base built in the leaming phase are used for the decision making in
monitoring.

This chapter gives further discussions on some decision making strategies for tool
condition monitoring. These strategies are pattern recognition, neural networks, and fuzzy

classification.

3.2 PATTERN RECOGNITION

3.2.1 The Pattern Recognition Problem

Pattern recognition refers to a process in which an input object is measured, analyzed,
and classified by a machine as being more or less similar to a predefined prototype stored in
memory. The goal of pattern recognition is to provide a machine with a kind of perceptual
capability so that it can be used to automatically analyze and extract useful information from

raw data. Figure 3.1 shows a conceptualized structure of pattern recognition system. It has
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Figure 3.1 Conceptualized Pattern Recognition Problem

three stages: Sensing system, feature selection, and decision making algorithms. In physical
world, a process can be represented by a continuum of parameters and basically has infinite
dimensions. A sensing system is designed to collect certain representative data of that
process. Then, the process will be described by r scalar values. At this stage, a pattern space
is created with the dimensions of r, where r is usually quite large. In order to focus on
features of the monitored process, the dimensions of the space have to be reduced. This is
executed by the feature selection (or feature extraction). The r-dimensional pattern space is
converted to an m-dimensional feature space in which the discriminant capability of
classification purposes is still maintained. Thus the feature space, in which classification rules
can be computed in reasonable amounts of time, is proposed of dimension / being much
smaller than ~. Tn the last stage, decision making maps a variable in the feature space into the
classification space, in which one of ¢ classes has been selected. The decision making is
carried out by the function of the decision algorithm. Classification space has ¢ dimensions,

obviously.
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Thus, the pattern recognition problem can be described as a transformation from the
pattern space P, to the feature simée F and, finally, to the classification space C. The
dimensions of these spaces are reduced one by one.

A variable can be represented by a point in the feature space. The classification
problem is now simply one of finding separating surfaces in m dimensions which correctly
separate the known prototypes. The feature variable should also afford some degree of
confidence in correctly classifying unknown patterns. In order that such a task be
successfully carried out, it becomes necessary to define similarity measures between points
in the feature space. And, the use of such a metric presupposes that the feature space is a
metric space. The necessary metric must then satisfy the following conditions with relation
to these points X, y, and z in the space (Andrews, 1972):

(1) d(x, y) =d(y, ) ;

(2) d(x,y) < d(y, z) +d(x, 2) ;

(3) dx,¥) 2 0;

(4) d(x, y) =0, iffy=x.

Where, d(x, y) is a function relating the two points. Such a metric is often referred to as a
distance function of which there is a large variety. Each dimension may be a measure of
unrelated parameters and must itself be normalized before being combined with other
dimensions, as in a distance calculation. This normalization makes the dynamic ranges of
various axes to be somewhat well behaved. Various normalization techniques exist (refer to
Andrews, 1972 or James, 1985) and should be selected according to their respective

applicability to a given pattern recognition problem.
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3.2.2 Feature Sclection
A pattern is assumed to have certain properties or attributes which distinguish it from
other patterns. In observing a pattern, measurements are made which reflect, either directly
or indirectly, lhése attributes. The pattern space is defined by sensor data which itself may
be defined by convenience rather than classification discriminatory power. These
measurements may carry a very small amount of information and result in high dimensionality
in the pattern space. For convenient classifications, each measurement should be selected
according to the physical meaning of the problem and yield significant information for
classification purposes. In order to make the classification algorithm simple, we have to find
some way to select or extract distinguishing features from the observed samples. This problem
is called feature selection or feature extraction. It is an important part of pattern recognition.
Features are functions of the measurements which are intended to facilitate
classification. Feature selection can be considered as a mapping from the r-dimensional
patiern space to a lower dimensional space, for instance, m. This space is called feature
space. Thus, the feature space must not only be defined by the inherent discriminatory power
of data presented in the pattern space, but also be optimized for specific class problems. It
is desirable that the dimension of the feature space, m, be much smaller than the dimension

of the pattern space, r. A variable vector in the feature space is represented as

Y= 1Yn¥o o Ynl. (3.1)

The objective of feature selection in defining a feature space is to reduce the
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dimensionality of the pattern space yet maintain the discriminant capability for classification
purposes. A variety of techniques have been developed. The real frontiers of pattern
recognition research still lie ahead in developing a viable feature selection transformation that
minimizes the redundant data gathering inherent in the definition of the pattern space
(Andrews, 1972).

Feature selection is generally considered a pfoccss of transforming the original
measurements into more effective features. This mapping can be either linear or non-linear.
Generally, there are two analytical methods of feature selection: canonical analysis and

variable selection.

A. Canonical Analysis

Let x be an r-dimensional variable from the pattern space. We may state the feature
selection problem in a fairly general form, thus:

find a matrix A(mxr) such that a classifier using y = Ax has the best error

rate achievable (James, 1985).

As the number of features is reduced to i, it is usual to add the condition that m is as small
as possible without losing too much performance.

Consider a two-class case in two dimensions. The two classes can be represented by
ellipsoids indicating the regions in which samples are likely to fall, as shown in Figure 3.2.
An arbitrary line between the two classes is drawn. The difference between the projections
of the two class means depends on the angle of the line. The size of the projected spreads on

the line also depends on the angle.



o

37

. means

!
\
4

-,
A

projected spread 1

Figure 3.2 Canonical Conversion of the Feature Space

Using distance measured along the line as a new variable, y, then y is given by the

simple expresston:

2
y o= Xovx, = vX o«WX,, (3.2)

where, the vs are constants which define the orientation of the line. The "Within group Sums
of Squares (SSW)" can be introduced to measure the spread of cases with any of the classes,

and the "Between group Sums of Squares (SSB)", to measure the spread of the class means.
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Then, the best line to separate the t\;vo classes is the one which maximizes the ratio
SSB/SSW.

Mgre generally, for a c-élass;ir-dicmensional problem, ;ome other lines can also be
found to maximize SSB/SSW. The standard extra condition is to require that the scores on
a line be uncorrelated with the others. Each of these lines is known as an eigenvector and the
value- of the sums of squares associated with each is called an eigenvalues. If we have the
normal equal covariance case, or if we are using linear discriminant functions, then we have

Linéar discriminant functions constructed using only the eigenvectors witl: -

non-zero eigenvalues give the same results as linear discriminant functions

constructed using the original measurements (James, 1985)."

That means all the infomation used by the linear discriminant functions is contained in just
few eigenvectors.

In normal cases, we often want to choose the number of indices, m,'beiné fess than
r and we will lose classifying power. It is also possible that another set of m linear
combinations exists which will give a smaller error rate. It is true that there is no simple und
efficient method of obtaining m linear combinations of the original variables that give the
smallest error rate, The selection of the combination depends on the definition of the error
as well as on calculation algorithms. Therefoie, the feature extraction by canonical analysis
can be presented as a search, among all possible singulur transformations, for the best
subspace which preserves class separability as much as possible in the lowest possible

dimensional space.
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B. Variable Sejection

Canonical analysis is used for generating a feature space with linear combinations of
all original variables in the pattern space. If we want to reduce the dimension of the pattern
space, or to select the most information-bearing signals from the pattern space, we usually use
another method: variable selection. Four different methods of selecting a "best" set of m
variables can be identified as follows (James, 1985):

(1) Complete subsets: This consists simply of finding every possible subset of size m
of the variables and calculating the measure of the best set on each. The solution is the set
with the largest value of the measure. This method fails when m and n are too large for the
subset being considered.

(2) Stepwise forward: First, we find the single variable which maximizes our measure
of the best set. Then we find the second variable which, when paired with the previously
selected variable, maximizes the measure of the best. Processed in same way, a third one is
added to the previous two and so on until m variables are selected.

(3) Stepwise backward: We start searching with all the variables and discard the
variable which results in the smallest lowering of our measure of the best. The search is
stopped when m variables are left.

(4) Full stepwise: The full stepwise method works by examining, at each stage, the
decrease in the measure of the best set produced by removing a variable. If the decrease is
below a specified threshold, the variable is removed. If no variable meets this criterion, a
variable is added by the usual forward stepwise method. This is the combination of methods

(2) and (3).
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Feature extraction is a huge objective in pattern recognition research. Numerous
criteria have been studied, and different methods will give different results even with the same
variables in pattern space. For further details about the various algorithms, readers should

refer to the text books and the papers on pattern recognitions.

3.2.3 Classification

Classification refers to the association of a class with a particular feature vector. The
distinction between classification and feature extraction is somewhat arbitrary, and
considerable overlap exists. Given a good feature set, the classification can be simple. Even
powerful classifier will fail if inadequate features are selected.

The problem of classification is to find a way of assigning a nev;J object in the feature
space to one of a number of possible classes. A classification rule must be defined to
accomplish this assignment. The classification rule should be, in some sense, as all-
encompassing as possible so that the "Total Error of Classification”, or TEC, is minimal.

For the ¢ pattern classes: S, S,, ..., S, there is a function which measures each point
in the feature space and assigns to that point a value as to its degree of membership in a given
class. Such functions are called discriminant functions in the context of pattern recognition.
Discriminant functions have the property that they divide the feature space into mutually
exclusive regions, each region contributing to the domain of a class.

The discriminant function is defined such that for all points x within the region
describing S,, there exists a function g(x) such that g,(x} > g(x) for all i»k. Mathematicaliy,

it is expressed as follows:
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Figure 3.3 Classifier with Discriminant Functions

g,(x) > g(x) Vxe§, A Viz#k (3.3)

Thus, within region S,, the Ath discriminant function will have the largest value. The surface

separating region S, and S, is given by

gx)-gx) = 0 (3.4)
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which is equivalent to those points in the space which have equal discriminant function for
both class S, and S, There are c{c-/)/2 such separating surfaces in a ¢ class problem.

Figure 3.3 shows the discriminant function classifier and a possible separating surface in two-

dimensional space.

A. Bayes Classifier
Bayes' rule is the essential base.for statistical classification. As conditional
probabilities can be used to surmmarize any ilrifonnation that we have about an event, they are
central to the claSsiﬁcation of an object based on any measurements that we have made,
Bayes' rule states that:
assign the object to the group with the highest conditional probability.

Formally, if there are ¢ classes, then Bayes' rule is to assign the object to class k where:

PSS, [ x) > P(S, | x), Y i+ k. (3.5)

If, by any chance, there is more thun one class with the largest conditional probability, then
the tie can be broken by allocating the object at random to one of the groups concerned. The
success of Bayes' rule is that it shows that the information about possible group membership
is contained in the set of conditional probabilities.

However, quantities such as P(S, |x) are very difficult to find by the standard method
of estimation. But, the conditional probability P(x|S,), the probability of getting a particular
set of measurements X, given that the object comes from class k, is something that can be

estimated simply by taking a sample of objects from class . To get P(S,|x) from P(x|S,), we
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can use Bayes' theorem:

P(x | §) P(S)
T P(x | S)PES) (3.6)

Yi

P, | x) -

Putting Bayes' theorem into Bayes' rule gives the following result:

assign to class & if

Pix | 8§)PES) > P(x|S) P(S) ., v oi=* k. (3.7)

To apply Bayes' rule, we have to know the value of P(S;) and P(x{S;) for each class.
Although P(S)) is easy enough to find, P(x|S) is a rather difficult problem. However, if within
each class, the variables that make up the measurement vector X, have a multivariate normal

distribution, then the form of p(x|S;) is known. So that

| 1 T -1
PEIR) £ 1" op[-Z ) B Gn) ] (3.8)

In this case, estimating P(x|S,) comes down to estimating two parameters for each class, u,,
the group mean vector, and Z;, the class covariance matrix.
Using the normal form of P(x|S;) in Bayes' rule gives:

assign x to S, if

In | Z, ]+ Ge-u)" T o) - (P(SY) <
(3.9
In | Z]Geon)” 5 G-n)-m(PS) ,  Virk.
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Figure 3.4 Bayes Classification

Figure 3.4(a) presents a block diagram of pattern recognition machine for the Bayes
classification.

Introducing the concept of discriminant function
gx) - WIT] .« x-u) Z'K-ny, (3.10)

we have Bayes' rule as :

assign to class k if

g,(x) -In(P(5Y) < gx) - n(P(S)) ., Vo irk. (3.11)

Where, x is multivariate normal in each of the groups.
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If the prior probabilities P(S,) and P(S,) for a two-dimensional two group problem are

assumed to be equal, as shown in Figure 3.4(b), then the dividing line between the two

i

regions is given by
Px|8)-P(x|8) - 0 (3.12)

It is known that the dividing surfaces are of quadratic form for a normal Bayes classifier.

ar Classifier

In a problem of classification with ¢ classes, only (c-1) discriminant functions are
needed to scparate those classes. The construction and adjusting of discriminant functions
are referred to as “training" or "leéming". If the training is based upon statistics, parametric
and certain nonparametric techniques are used. Some classification theories rely on an
approach completely independent of statistical knowledge or assumption, often referred as. |
distribution free or nonparametric classification. If the training is based on an assumed
functional form for the discriminant function, distribution free techniques are employed.

Linear classifier is the simplest assumed functional form for discriminant functions.

Such a function can be represented in scalar and vector forms as
X)) = wx, s WX, r LW X W (3.13)
or

g - wlx (3.14)
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Figure 3.5 Linear Classification

A scalar term w,,,, is added to allow a translation of all linear discriminant function to pass
through the origin of the augmented space when desired. Figure 3.5 gives an example of this
kind of classifiers.

One of the simplest classification algorithms using a linear discriminant function is the
minimum distance classifier. Suppose that the average point of the prototypes defining a

given class S, be given by

<y> = (3.15)

‘M...

1y
M,

and there exist ¢ such points in m space. Let the Euclidian metric be assumed in the space and
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et the classifier assign a unknown point x to that space which has its average value <y>
closest to x. Thus, the decision rule becomes
assign to group kif

d(x, <y>) < d(x, <y>) vV o i+k (3.16)

5
\i

The discriminant function can be obtained as :

1
gx) = xT<yp> - ;<y,->r<y,-> : (3.17)

In the context of linear discriminants, the elements of <y> become the linear weights
and also the augmenting quantity. The decision surface is defined to be the plane between the
perpendicular bisector separating points <y> and <y;>.

Another way of defining discriminant functions is g:ven by &16 piecewise linear
functions. The separating ;urface of piecewise linear machines no longer defines convex
regions in the pattern space as the linear discriminant function does. The classic example for
the piecewise linear machine is the minimum distance classifier with respect to prototypes.

Thus, the distance of an unknown x from a class S; may be :

d(x,§) - min {d(xyMH}, (3.18)
mel,.. .M

The distance become the smallest distance between all the prototypes of S; and the unknown

X. The discriminant function corresponding to such an algorithm is
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D) 1 OHr (f
T - _ym)yn('l)} .

m

g(x) = max {x
m-l.....Mk

(3.19)

If the second or higher orders are included in discriminant function, a quadratic

surface or a polynomial surface is defined respectively.

tential Function Meth
In linear discrimination, a polynomial surface is always assumed. Instead, the so-
called potential function method utilizes superposition such that a function is defined for cach
prototype over th; entire pattern space with variable x. Such a function, known as a kernel
in probability density function estimators, will be denoted as ¥(x, y,,"), where y, " is the :-mh
prototype defining class S;. The sum of these individually kernel and "potential” functions will

then become the discriminant function:

M-k
Y ¥,y
m-l (3.20)

g,(x) - v

i
Where, the ¥'(- ) function may be different between classes or even between prololypcz_sI within
a class. These functions should reflect a decreasing influence of a sample point, X, upon
points in the pattern space, y,, as the distance between the two points, d(x, y,"), increases.
The average of these ¥'(- ) kernels or "potentials” of prototypes from a given class indicates

the degree of membership of the point x in the class. Desirable characteristics of potential
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fi li;ctions might be enumerated as follows.

(1) (x, y) should be maximized for x =Y.

(2) (x, y) should be approximately zero if the distance from X to y is too far in the
region of interest.

(3) (x, y) should be continuous and dec;;ease approximately monotonically with
distance d(x, y).

(4) If (x,, ¥) = (x,, y) where y is a prototype, then the pattern represented by x, and

X, should have approximately the same "degree of similarity” to y.

3.2.4 Pattern Recognitions for Tool Condition Monitoring

Pattern recognition technique has been applied to recognize the cuiting states and to
monitor the tool conditions in machining for decades. The most simple and popular algorithm
is linear classiﬁqrs.

In appﬁcations of linear classifiers (Zhang et al, 1982; Marks and Elbestawi, 1988;
Monostori, 1988; Liu and Wu, 1989; and the like), the linear model represented in Equation
3.13 was used. The features for classifying the cutting states included cutting speed, feed and
the power spectrum in different frequency bands. The features used for the tool condition
monitoring are usually feed rate, depth of cut, cutting force, cutting torque, sums of the
 magnitudes of spectral components at certain frequencies, and other signai features.
Experiments showed that the number of features and the different combinations of features
had great effects on the correct classification rates. An error-correction procedure was used

to obtain the weight vectors. Arbitrary initial weight vectors were selected and adjustments
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were made whenever the classification scheme responded incorrectly to any pattern. The
success rates of classification with these cases are 77% and greater.

Other pattern recognition algorithms for too! condition monitoring in machining
included the class~mean scatter criterion, the class variance criterion, and Fisher's weighted
criterion (Emel and Kannatey-Asibu, 1987, 1988). The class-mean scatter criterion
maximizes class separation and minimizes within-class variance. The class variance criterion
maximizes the difference between the within-class variance of each class. Fisher's weight
criterion maximizes class separation and minimizes the within-class variance between each
pair of classes. This methodology was applied in order to detect tool wear and breakage in
turning operations using acoustic emission spectral information under fixed cutting conditions.

The tool wear sensing results had performances ranging from 84 to 94%.

3.3 NEURAL NETWORKS

3.3.1 Artificial Neural Networks

Artificial neural networks are an attempt to emulate the computational architecture
of the human brain in electric hardware. Neural networks have great potential in arcas of
intelligent functions such as learning and pattern recognition where many hypotheses are
pursued in parallel, where high computation rates are required, and where the current best
system are far from equalling human performance. However, the architecture of human brains

is exceedingly complex and not well understood at present, so that the current neural network
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architectures resemble the brain only at very coarse level. Despite such rudimentary
representatives, they are very useful in the development of computer architectures based on -
a high degree of parallelism and are able to learn by adapting the strength of the conrections
between the processors. The potential benefits of neural networks extend beyond the high
computation rates provided by massive parallelism. Neural networks typically provide a great
degree of robustness and fault tolerance.

The architecture of a neural network is specified by the net topology, neuron
characteristics, and training (or leamning) rules. Theses rules specify an initial set of
parameters and indicate how the system parameters should be adapted during use to the
improve performance. Both design proccdurff's’:'éﬁ'diraining rules are the topics of much
current research. In general, neural networ‘k.ﬁ; do not do well at precise, numerical
computations (Caudill, 1989). Neural networks can be taught to obtain the knowledge about
pattern recognition or other assignments.

Figure 3.6 presents block diagrams of traditional pattern classifiers and neural network
classifiers (Lippmann, 1987). Both types of classifiers determine which of ¢ classes is the
most likely representative of an unknown input pattern containing m input elements. In
machining tool condition monitoring, the inputs might be process signals such as cutting
forces, vibrations and acoustic emissions, and the classes represent different tool é’t.-nditions.
Inputs and outputs of a traditional classifier are passed serially and internal computatioﬁs are
performed sequentially. In addition, parameters are typically estimated from training data and
then held constant. Inputs and outputs to a neural network classifier are in parallel and

internal computations are performed in parallel. Internal parameters or weights are typically
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Figure 3.6 Block Diagrams of Traditional and Neural Network Classifiers / Lippmann, 1987 /

adapted or trained while using the output values and the labels specifying the correct class.

Traditional classifiers have two stages for classifications. The first computes matching
scores for each class and the second selects the class with the maximum score. An algorithm
computes a matching score for each of the ¢ classes which indicates how closely the input
matches the exemplar pattern for each class. This exemplar pattern is that pattern which is
most representative of each class. In many situations, a probabilistic model is used to
generate the input patterns from exemplars. A matching score is computed to represent the

likelihood or probability that the input pattern was generated from each of the ¢ possible
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exemplars. Matching scores are coded into symbolic representations and passed sequentially
lo the second stage of the classifier. There, they are decoded and the class with the maximum
score is selected.

The input values to a neural network classifier are fed in parallel to the first stage via
m input connectioné. The first stage computes matching scores and outputs these scores in
parallel to the next stage over ¢ analog output lines. Here, the maximum of these values is
selected and enhanced. The second stage has one output for each of the ¢ classes. After the
classification is completed, only that output corresponding to the most likely class will be
designated on "high"; other outputs will be "low". If the correct class is provided, then this
information and the classifier outputs can be fed back to the first stage of the classifier to
adapt parameters using a leamning algorithm. The adaptation will make a correct response
more likely for succeeding input patterns that are similar to the current pattern. Neural
network classifiers are nonparametric, so the form of input distributions is not assumed and
the parameters of distribution are not estimated.

A neural network is composed of many simple processing elements that typically do
little more than taking a weighted sum of all its inputs. The simplest processing element or
neuron sums m weighted inputs and passes the results through a non-iinearity. Neurons used
in neural networks are usually nonlinear and analog. Figure 3.7 illustrates three commeon
types of nonlinearities: hard limiter, threshoid logic element, and sigmoidal nonlinearity.
More complex neurons may include temporal integration or other types of time dependencies
and more complex mathematical operations than summation. A neural network does not

execute a series of instructions; it responds in parallel to the inputs presented to it. The
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Figure 3.7 Nonlinerities at a Neuron / Lippmann, 1987/

knowledge within a neural network is not stored in a particular location. It is stored both in
the way the processing elements are connected and in the importance of each input to the
processing elements, Such knowledge is more a function of the network's architecture or
structure than the contents of a particular location.

Neural network classifiers work well for many real-world problems. These classifiers
frequently provide reduced error rates when compared to more conventional Bayesian
approaches:"_(Lippmann, 1989). Furthermore, neural network classifiers diffcr in their ability
to use unsupervised training data and in the ease with which internal operations can be
understood and interpreted to determine what input features contribute to classification
performance. These issues, more than error rate, tend to drive the selection of a classifier to

a particular application.

{
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-3.3.2 Structure of Neural Networks
A neural network is a computing system made up of a number of simple,_highlyf

i i ) ) .
interconnected processing elements (neurons). The computing system processes information”

by its dynamic state response to external inputs (Caudill, 1989). By this definition, two q_lai;q
elements make up a neural network: processing clements and interconnections. The structure
of a neural network is defined by the interconnection architecture bétween the processing

N

elements, the rules t!mt determine whether a processing element will fire, and the rules
governing changes inﬁ the related importance of individual imerconnectionsmto a processing
element’s input. It is constructed and modified by the training of the network.

A neural network is usqally divided into three parts: the input layer, the hidden layer,
and the output layer. The input layer F, = (a,, a,, ..., a;) has m processing elements, one for
each m dimension of the input pattern A,. On the output layer, F, each node represents a
pattern class of conclusion. If the input and the output layers are directly connected, a neural
network becomes a single-layered network that functions as a direct mapping of the input to
the output. Adding the third layer to the neural network allows .' to develop its own internal
representation of the mapping. The network is not dependent on the intrinsic relationship
built into the data, but can determine for itself which is important in representing the mapping
(Caudill, 1989). The importance of ihis layer, therefore, is mainly due to its dynamics. The
connections can be any functions or logic reasoning that is suitable to the problem and may
be rebuilt through its previous experiences. The middle layer is usually called a hiddcn layer

because of its flexibility. Figure 3.8 shows a typical structure of neural networks with one

hidden layer.

A
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Figure 3.8 Artificial Neural Network

The hidden layer plays a very important role in constructing neural networks. If it is
eliminated, as mentioned before, we have a direct mapping function. A switching function
is a good example of a direct mapping function. By using weighted iincar functions to
connect the input elements with the output elements, we obtain a linear classifier. If nonlinear
functions (say, sigmoidal) are used in the hidden layer, we obtain a typical neural network that
is commonly used in the field of manufacturing process monitoring. Furthermore, a fuzzy
neural network is crealed‘ by introducing fuzzy logic functions into the hidden layer for
interconnections. In some cases, not all of the interconnections between neurons in the
network are necessary when the calculations are performed. Therefore, a partially connected
neural network can be formed by keeping only those connections necessary. The effects of

the hidden layer on a neural network are depicted in Figure 3.9.
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3.3.3 Learning in Neural Networks — Back-Propagation

The knowledge of a neural network is obtained from learning processes. Leamning
implies that the processing element somehow changes its input/output behaviour in response
to the environment. Learning from experience provides a vital organism with the means to
adapt to and survive in a changing environment. For pattern classifiers, the learning produces
reliable, enhanced and flexible performances.

I.earning in neural networks can be supervised or unsupervised. Supervised learning
means the network has some reliable inputs presented during training to tell it what the
correct answer should be. The networ.k then has a means to determine whether or not its

output is correct and knows how to apply its particular learning rules to adjust its weights.
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Unsupervised learning means the network has no such knowledge of the correct answer and,
thus, cannot know exactly what the correct response should be before the leaming,.
Supervised classification has been commonly applied to the tool condition monitoring in

i

rﬁzichining. -

One particular learning rule which is the most commonly used learning algorithm is
the Delta rule or Least Mean Squared (LMS) training law. In learning , the rule will tell how
to change the weights depending on whether or not the output of classification was correct.
Figure 3.10 shows a processing element modified by the Delta learning rule. First, we have
to modify the processing element so it can monitor its own output. Then, we enable it to
compare its output to the desired output signal, /,, and compute the error value, E, for this
input pattern. E is computed by subtracting the actual output, y, from the desired response
lp: E=1,-y. Finally, we calculate how to change the weights by using the Delta rule:

BEX

w_, -W, - , 3.21
ne ld lez ( )

where, X and W are the input and weight vectors respectively,

X| is the length or magnitude
of the input pattern vector and £ is a learning constant. Note that the Delta rule is a vector
equation. The error E and constant £ are scalar values, and the other elements are vectors.
The LMS rule attempts to insure that the aggregate statistical LMS err;; is n.ipinlitzcd in the
network. In this case, the error in the weights of the processing element is based on an idcal

value for the weights. We compute the current error, or how much it deviates from this ideal

value, for the weights for this input. We then adjust the weights by adding this Delta vector
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Figure 3. 10 Processing Element Modifying Itself by Learning / Caudill, 1989/

to our current weight vector. This process has a simple geometric interpretation. It can be
shown mathematically that the aggregate mean squared error is a function of the weight
vector. It is shown in Figure 3.11.

Delta rule is a gradient-descent learning rule. The learning constant £ is a measure
of the speed of convergence of the weight vector to the minimum error position. A back-
propagation neural network is built up of processing elements by using the Delta rule.

The back-propagation algorithm uses a gradient search technique to minimize a cost
function equal to the mean square difference between the desired and the actual output. The
neural network is trained by initially selecting small random weights and internal thresholds,
and then presenting all training data repeatedly. Weights are adjusted after every trial using
side information specifying the correct class until weights converge and the cost function is

reduced to an acceptable level. An essential component of the algorithm is the iterative
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method that propagates the error terms required to adapt weights back from the neurons in
the output layer to neurons in a lower layer.

Since back-propagation refers to a general learning rule, not a specific architecture, _
the details of a building network vary with different practical problems. Nonlinear functions
are usually used for relating the input and the output of a neuron. In many applications, a
sigmoidal function is chosen. The input to a processing element, or neuron, is a weighted

sum of the outputs from previous layer. It is given as

I - f(Zwx), (3.22)

where x;s are the outputs of the previous layer and ws are the weights. The output of a given

neuron is a sigmoidal function:
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- (3.23)

where, 7 is the summed input of considered neuron and T'is a siT'iile threshold. Foliowing
through the network, this output, together with the outputs of other neurons in the same:
layer, is treated as the input to neurons in the next layer. The output of the network is
compared with the desired value and the error is fed back to adjust the weights by applying
the Delta rule (refer to Equation 3.21). Ifa nretwork has more than three layers, we can then
back-propagate this layer's error to the previous layer, compute weight changes the same way,
and so on.

This multi-layered network with one or more hidden layers allows decision surface of
arbitrary complexity and, therefore, can perform a more sophisticated separation of the

feature space (compared to the linear classifier).

3.3.4 Neural Networks for Tool Condition Monitoring

The applications of neural networks into machining process and tool condition
monitoring have been massively reported since 1980's. Major contributors include Rangwala
and Dornfeld (1987, 1990), Chryssolouris and Domroese (1988), Elanayar et al (1990), Liu
and Ko (1990), and other likes.

The most oiten used neural networks for tool condition monitoring in machining are
the feed-forward networks trained by back-propagation algorithms. In most cases, a simple

structure of neural network with three layers is used. The networks perform class association
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tasks in which the monitoring indices are presented to neurons in the input layer, and the tool
conditions are assigned to neurons in the output layer. This simple structure makes it possible

to apply neural networks for tool condition monitoring on the shop f{loor.

EN

.

Rangwala and Dornfeld (1987, 1990) used acouslic_cmission signal;s‘ and cutting
forces as the inputs to the neural network. The output léyer ﬁad one neuron representing the
fresh or worn tool. It was stated that the various parameters in the neural network should be
carefully chosen to ensure the optimum performance and efficiency of the tool wear detection
system. For the purpose of tool wear detection in turning operations, relatively small size
networks worked well. The results showed that neural networks possessed the ubility for
learning and noise suppression. High success rates (about 95 percent) were oblui;cd for
recognizing'r too! wear under a range of process conditions.

A similar neural network was used for drill wear recognition by Liu and Ko (199).
The results of classification were compared wifh those of linear discriminant function. The
neural networks gave better results for recognition of drill wear states. The experiments also
showed that the success rates of classification depended on the number of neurons.

Elanayar ef al (1990) used two simple connected neural networks for machining
condition monitoring. This was previously introduced in Chapter I1.

Apart from the back-propagation neural nctworks, an adaptive resonance theory
(ART2)-type neural network was also applied into the detection of tool failure in end milling
(Tansel et al, 1993). It was reported that ART2-type neural network had a fast and
continuous iearning capability. The details of this neural network are not given in this

thesis.
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3.4 FUZZY CLASSIFICATION

.
o

3.4.1 Basic Theory of Fuzzy Set and Fuzzy PaA\l-.':tition

The problem of classification is to establish a function that describes the refationship
between input patterns and output classe;. In fact, uncertainty often exists when this relation
funclion_is built up. The main sourc?s”;f uncertainty that bear on classification problem are
(Bezdek, 198i): inacc:‘:.uzrate megsdj;éments, random occurrences, and vague description.
Accordingly, three dlffcrentlypes of mathematical models are considered: deterministic,
stochastic, and fuzzy. Fuzzy set theory, introduced by Zadeh (1965), is a means to deal with
problems of nonstatistical uncertainty.

Sets (classes in classification problem are sets) can be represented using the object
property method. If a set is well defined, its object properties provide a complete description
of how to qualify for the membership. One way to describe a set is with a membership
function. Let H be the set of real numbers greater than or equal to 6. We can associate

"beleng to H" with the number 1 and "not in [5" with the number 0. Accordingly, a

membership function, uy,(r), may be defined:

" { 1 when reH, ie rz6 }

u,(ry - . (3.24)
i 0 when reH, ie. r<é

The description is illustrated graphically in Figure 3.12(a). Note that abrupt jump from 0 to

I in the group of uy(r) at = 6. This is a prominent feature of all hard sets: their boundaries

are always "sharp.”
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(a) hard set

Figure 3.12 Membership Functions of Hard Set and Fuzzy Set

A fuzzy set is defined by extending the range of membership functions from the two
point set {0,1} to the unit interval [0,1]. If X is any set, the ug is a fuzzy subset of X in case
up maps X to [0,1]. The membership function ux(r) describes the de;grcc tc which the object
r belongs to the set, where ug(r) =0 represents no membership, and ug(r) = 1 represents fuil
membership. For instance, the set F containing numbers "close to 6" is a typical fuzzy sel.
A number of mathematical definitions can be given to this fuzzy set. One of possible

mathematical expressions for this fuzzy set may be:

ug(r) - PRI {3.25)

The graph of this expression is shown in Figure 3.12(b).
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For r € X, the value {r) is called the gréde of membership of rin F. It me;sures the
extent to which r possesses the imprecisely defined object properties which characterize F.
We notice that fuzzy set mcrhbcrship increases as the distance between the point and the
fuzzy centre (i.e., | r-6 | in this example)} decreases. This comparison cannot be done with a
hard set. We also observe that the values of fuzzy membership functions not on.ly order their
arguments, but also have magnitudes which allow to build continuous decision thresholds.
The fuzzy memberships represent similarities of the objects to imprecisely defined properties.
The membership values are not affected by observations.

The use of fuzzy sets for pattern classification has been examined by many
researchers. Fuzzy partitions produce soft boundaries between classes. This is a better
description to most classification problems.

If X is a finite set, say X = {x,, X, ..., X,}, a collection of hard subsets {4,, 4,, ..., A}

of X is a hard c-partition of X if

U4 = X; (3.26)

ANA - o, Vj+i; i,j=12 .,c.

2 g reny

Now let #; be the membership function of A, so that, fori= 1,2, ..., c,

1, x € A,

I

b (3.27)
0, otherwise
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Then {4,, A,, ..., A_} is equivalent to {u,, u,, ..., 1t.}. The condition of hard c-partition i

equivalent to

c (3.28)

Thus, we can cali either {A;} or {«) a hard c-partition of X. The definition is:

X = {Xy, X3 ..., X,} is any finite set; V., is the set of real exn matrices:

¢ is an integer, 2 < ¢ < n. Hard c-partition space for X is the set:

M, «. { UevV, | u; € {0,1} vy, j; i-}f.fluy.-l Y J, 0<§.I u, <n Vi b (3.29)
Unlike the above functions which map X into {0,1}, if one or more of these functions
maps X into [0,1], we can define a fuzzy c-partition of X to be any set of membership
functions on X into [0,1], which also satisfies Equation 3.28. The definition given by Ruspini
{(1981) is as follows:
X is any finite set; V,, is the set of real ¢xn matrices, ¢ is an integer,

2 < ¢ < n. Fuzzy c-partition space for X is the set

Mﬁ_, « | UeV, | ule[U,l]Vi,j‘, Zu..-l v, 0<Xu <n wil (3.30)
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Figure 3.13 Divisions by Hard and Fuzzy Partitions

As mentioned above, the c-partition can be denoted by a ¢xn matrix U, Row i is the
membership of every x; in subset i and column j is the membership of x; in each of the ¢
subsets. The value of u; is either {0,1} or [0,1] depending upon whether it is a hard or a
{uzzy c-partition.

To demonstrate hard and fuzzy c-partitions, Figure 3.13 provides an example. X is

a set containing the real number between 2 and 10:

X - [2,10] - [2,4)U 1[4, 8]U(s, 10] - UC. . (3.31)
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The three hard sets are

{x|2sx<4 }

L3

= {x ]| 8<x< 10}

3

Hl
H, - {x]4sx<8 } (3.32)
HS

and the corresponding membership functions are

1; 2 <sx<4
Y -l 4ixc1w0 D
0, 2sx<4
u (x) - {1;, 4<x<8 1}, (3.33)
0; 8<xz< 10
0; 2 <sx =< 8
u, (x) = | }
I; 8<x <10
The three fuzzy sets are
F, = "numbers close to 3 in X",
F, = "numbers close to 9 in X", (3.34)

F, = "other numbers in X" ;
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and their possible membership functions are

(x-2); 2 sx<3
u_(x) = {(8-x)/5; 3 <x<38 b,

0; 8 ssx < 10

0; 2 =zxz<4 (3.35)
u(x) = { (x-4)/5; 4<xs<9 },

(10-x); 9 <x < 10

e, (x) = 1 -wug(x)-ug(x);, 2<x<I0.

It is evident that hard c-partitions subdivide the total membership with hard boundaries with
vertical unit jumps, whereas fuzzy boundaries provide a means for continuous, partial

membership allocation.

3.4.2 Criteria for Fuzzy c-Partition

As mentioned previously, three models are used for classification problems. They are
deterministic, stochastic, and fuzzy. Objective functional criteria are usually used for fuzzy
classification. For each class, an objective function measures the similarity of the samples in
the same class. Most used criteria include density functionals, likelihood functionals and

least-square functionals.
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A. Density Functional Method

This method was proposed by Ruspini (1981). Let d, denote the "distance” in the real
p-dimensional vector space, R", between x; and x,; we assume that, for all x; and x; in R", this

function satisfies

ik
{ }
d, - 0 = x - x (3.36)
dﬂr = 4,

Functions that satisfy the above equations are called measures of dissimilarity.
One of Ruspini's classification criteria incorporating the distances {d,} and the fuzzy
c-partition of X is described as follows:

Let Jz: M, -~ R" be defined as

JAUY = TELT o - u))?] - dy P (3.37)
k-1 i

1
j=lk- ie1

where o is a real constant and the number of classes ¢, 2 < ¢ < n, is fixed a priori. J, is the
classification criterion, d is the measure of dissimilarity. Ruspini interprets J, as a measure
of class quality based on local density, because J, will be small when the terms in the { unctions
are individually small. This, in turn, will occur when close points have nearly equal fuzzy

class membership in the ¢ u;s in U.
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Optimal fuzzy c-partitioning of X is taken as the local minima of J,. Ruspini's

algorithm is based on several general results concerning the constrained optimization problem:

minimize {J,(U)} .

UeM, (3.38)

Ruspini's algorithms are the first well-defined fuzzy partitioning methods with a substantial
mathematical basis. However, they are hard to interpret and difficult to implement because
the computational efficiency is poor and generalizations to more than ¢ = 2 classes have met

with little success.

tnctional
This method was developed by Woodbury and Clive (1974). The functional employed
involves products of fuzzy memberships and discrete probabilities, resulting in a ccmposite
fuzzy-statistical criterion. Specifically, let K;= {1, 2, ..., m;} forj=1,2, ..., p. Itis assumed

that the data set X is a subset of the Cartesian product of the K|'s over j:

X ¢ (K xK,x..xK) - KcPR, (3.39)
where |Kj| =m,, and as usual, |X| = n, the number of observations in sample X. Generally,
X,; € K is the jth indicant or feature for individual x;.

Given that

n = No. of observations in X;



n,; = No. of times feature j of x, appears:
ny,;=No. of times 1 € K; appeara?:_-?f‘or X,

py = Prob(‘pure’ v, manifests outcome 7 € K; in feature j),

™
and, P -{P eR"™ |p, 20, ‘):lpu’ =1 Vvij,

the objective function of Woodbury and Clive is:

LetJ,. M xP,~-Rbe

n p My c ¢ my
J(U.p) = X (Zn,llog (Zu,py,) - log [(Zu, (Ep,)1t)  (340)
k-1j1 -1 i1 i1 -1

1, is a "fuzzy-statistical" criterion, in that it combines fuzzy memberships of obscrved
data with probabilities of pure prototypical features. Optimal c-partitions of X are part of

optimal pairs (U, p) which solve the following:

maximize {J (U, p)}.

M, (3.41)

The measure of similarity in this algorithm is somewhat obscured by the combination of
memberships and probabilities. Interpreting J,,, as a maximum likelihood criterion depends
upon the probabilities, p,;, that data vector X; will manifest the outcome ¢ € K, in feature j.
The algorithm is appropriate only for data sets in R”, each of whose feature is 2 catcgorical

variable.
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-Square Functjonal

This method was introduced by Bezdek et al (1981). The criterion gcnéralizes the
within-group sum of square errors function J,. This algorithm, also called fuzzy c-mean
algorithm, uses interactive optimization to approximate the minima of an objective function
using a particular inner product norm as a similarity measure on R” x RP. Th_e_ qistinction
between family members is the results of the application of a weighting expc;hent, n}i‘, to the
membership values used in the definition of the functional.

Let u € M, be a fuzzy c-partition of X, and v be the c-tuple (v,, v,, ..., v.),v; € R".

The fuzzy c-mean functional J;: M, x R" -~ R* is defined as:

J (U, v) - £ Z(u,)"(a,) . (3.42)
k-1l i-1

Where, U € M, is a fuzzy c-partition of X; v = {v|, V5, ..., v, } € R®, with v, € RP, is the class
centre or prototype of class i, 1< i< ¢, and

2

d, - | x

. v 1%, (3.43)

k [
wheref+] is inner product norm metric, and m € [1, «).
The measure of dissimilarity is d; = [ X, - v; | the distance between each data point
x, and a fuzzy prototype v, The squared distance is weighted by the mth power of the
"membership of data x in class i, Since each term of J_ is proportional to (d;)?, J_, is a squared

error criterion, and its minimization produces fuzzy classification (matrix U) that is optimal
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in a generalized least squared error sense:

minimize {J (U, v}}
Mﬁ.qu’

(3.44)
The fuzzy c-mean functional extends the classical WGSS (the Within-Group Sum-of-

Squared-error) criterion J,, which is a very popular and well-studied basis for hard

classification. From the mathematical point of view, I, is intimately related 1o the Hilbert

space structure of R and is thus tied to a profound mathematicat structure.

3.4.3 Fuzzy Neural Networks

Fuzzy classification and neural networks are two powerful and convenient tools for
pattern classifications. The combination of fuzzy logic with neural networks is interesting,
since these two approaches generally deal with the design of “intelligent" systems from
different angles. Neural networks enable one to deal with large amounts of sensor data
simultaneously using simple processing elements, and fuzzy logic provides o structural
framework that utilizes these simply processed results. Two possible ways to merge these
these two technologies are: (i) fuzzification of conventional neural network architectures —
interconnections with fuzzy relationship or fuzzified processing elements, and (ii) the usc of
neural networks as tools in fuzzy models.

An example of recent research on fuzzy neural networks is the Fuzzy Min-Max
Classification Neural Network (Simpson, 1992). Hyperboxes defined by pairs of min-max

points, and their corresponding membership functions are used to create fuzzy subsets of the
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n-dimensional pattern space. The min-max hyperbox B; = {V,W;}in R* is shown in Figure
3.14(a). The min and max points are g}l that are requiréd to define the hyperbox. A
membership | uncti(‘}\n is associated with the hyperb9§ and determines the degree to which
any point x € R* is cqq;ained within the bo_x. ;K"zéllection of these boxes forms a pattern
class. The membership function for each |‘1yperb'ox fuzzy set describes the degree to which

~a input pattern fits within the hyperbox:
1"

b4, - o= B[ max (0,1 - max (0, ymin (Lay, - w,))) (3.45)

+ max (0,1 - max (0, y min (l,vﬂ. -a)))].

- Where Ay = (8, &g, - &) € I"is the Ath input pattern, V; = (v;;, Vjp, ..., V;,) is the min point
for B, W, = (w;;, Wj, ..., W;,) is the max point for B;, and  is the sensitivity parameter that
regulates how fast the membership values decrease as the distance between A, and B,
increases. An example of fuzzy min-max hyperboxes along the boundary of a two-class
problem is illustrated in Figure 3.14(b).

In the fuzzy min-max neural network, each neuron in the hidden layer represents a
fuzzy set of hyperbox where the input to output connections are the min-max points. The
transfer functions are the hyperbox membership functions defined by Equation 3.45. The
connections are aujusted using a proposed learning algorithm (Simpson, 1992). The outputs
at the output layer represent the degree to which an input pattern fits within corresponding
classes. If a soft decision is required, the outputs are utilized directly. If a hard decision is

required, the output node with the highest value is located.
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Figure 3.14 The Min-Max Fuzzy Hyperbox for Classification / Simpson, 1992 /

3.4.4 Fuzzy Classification for Tool Condition Monitoring

Metal cutting is a very complex process. Cutting conditions (cutting speed, feed,
depth of cut) and tool conditions (chipping, wear, chatter) will greatly affect process
parameters such as forces, torques, and the power. The purpose of tool condition monitoring
is to identify the tool working status from the information acquired from the cutting process,
which are mostly force and vibration signals.

Conventional classification methods make an effort to correlate precisely the tool
conditions with the monitoring indices. However, the data substructure for tool condition
monitoring in machining is always mixed. A fuzzy expression of operating parameter-tool
condition relation is much more suitable in practice. The description that the tool is “slightly”
or "severely” worn has more sense for on-line tool condition monitoring. The membership

grade can be used to measure the uncertainty of tool conditicns.
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A. Linear Fuzzy Equation
The basic idea of this approach is to use a simple fuzzy model for too! condition
monitoring. In this model {(Du er al, 1992), the tool conditions are the input and the
monitoring indices are the output. The relationship between the input and the output is

described by a linear fuzzy equation:
r = Q- p. (3.46)

Where, r represents the fuzzy degree of ihe monitoring indices (x), p represents the fuzzy
degree of the tool conditions (h), Q is the fuzzy relationship function, and the symbol "o" is
the fuzzy operator.

Given a process that has c different tool conditions (i.e., h= {4, h,, ..., h.}) and m
monitoring indices (i.e., X = {x, xy, ..., X,,} and h(x) € {h,, h,, ..., h.}); then, r is an m-

‘dimensionai vector, p is a c-dimensional vector, and Q is an m x ¢ matrix that describes the

fuzzy relationship between the tool conditions and the monitoring indices. Equation 3.46
implies that the changes in the magnitude of the monitoring indices are correlated to the
changes in tool conditions by a linear fuzzy equation.

Similar to other decision making methods, the linear fuzzy equation approach consists
of two phases: learning and classification. The learning process is carried out to establish the
fuzzy relationship based on the experimental samples obtained from cutting tests. This
method determines the fuzzy'. JAationship function Q based on the possibility distribution
(frequency of occurrence) and the probability distribution (strength of support) of the

learning samples.
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Suppose that there are 1 learning samples, X, X. ..., X, obtained from the experiments.
Each sample consists of melements: x, = (x (k. i}, i=1,2,....m}, k= 1,2, .., n Usingito

label the monitoring indices, j to abel the tool condition, & to label the learning samples, and

Equation 3.46 can be rewritten in a matrix form:

) 1 90 912 - e P, 1
s . 9n 92 - 9% . Py (3.47)
er ] _qu qm:’ qme ] _pc |
or
r. = g,ep @ g,ep, @ ... @ 4. Op_, i=1,2, ., m (3.48)

where, e is the fuzzy multiplication operator and e is the fuzzy addition operator.

Since the fuzzy operator is a linear operator, the ith monitoring index will be affected
only by g;,j =1, 2, ..., ¢. The element g is the fuzzy rerationship function that relates the ith
monitoring index to the jth tool condition, and it can be described by a set.  For example,
Si={x (1,1, x(2,8), ..., Xx(n, D) is the set which contains the ith monitoring index of all

the learning samples. Furthermore, we will assign that

max { x(1,0), x(2,)), .., x(ng) },

L2
n

{,max

(3.49)

min { x(1,), x(2,), ..., x(n,i) } .

X .
f,min
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Divide the interval between X, .., and X, into L evenly distributed sub-intervals. Each

interval , denoted by v (i, k), k=1, 2, ..., L, is defined as follows: &

v(i,k} - [xj'min* (k-1)Ax, th.m»kA_ x] (3.50)
where AX = (X; oy - Ximn) / L. Then, g, can be represented by a fuzzy set with L-clements:

g, = ‘v@R qGik), k-1,2,..L 3 (3.51)

Here, the fuzzy degree, q(i,j,k), is determined by the possibility and the probability
distributions of the learning samples.

The possibility distribution, denoted by f(ij,k) = C / C;, represents how the ith
monitoring index is distributed in the kth interval when the jth tool condition occurs compared
with the other tool conditions. Cj; is the number of samples (index {) that belong to tool
condition j and are located inside the kth sub-interval, and C; is the number of samples
(index {) located inside the kth sub-interval.

The strength of support S(i,j,k) = Cy; / C; defines how the ith index is distributed in
the kth interval when the jth too! condition occurs. Where, C; is the number of samples
(index i) that belong to class j.

Combining f(i,j,k) and S(i.j,k), the fuzzy relationship function 5

SR + S3JK)

q (lek =
) 2

(3.52)
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and q(i,j,k)s are the elements of the matrix Q in Equation 3.46.
When the value of the fuzzy relationship function is determined, the classification can

be made by the "summation" soiution defined as follows:

P, - Yy min{&ij,ri}, . (3.53)
PR ‘
where, , = (i k), i= 1,2, oy m,and j= 1,2, o C.

B. Fuzzy Decision Tree

The problem of decision making deals with finding some criteria that relate the feature
space to the classification space, then to map a vector in feature space into the classification
space. Usually, matrices are used for this mapping, like the fuzzy relationship function Q in
Equation 3.46 obtained from known r and p. We will refer to this type of decision making
as matrix-type decision making. An alternative approach for relating the feature and the
classification spaces is to use a decision tree.

A tree structure means that the data are organized so that items of information are
linked by branches. A tree is a finite set of one or more nodes such that: (i) there is a specially
designated node called the root; (ii) the remaining nodes are partitioned into nz0 disjointed
sets T|, T, ..., T, where each of these sets is a tree (Horowily, 1976).

The tree structure can be used for decision making. At each node, input data are
partitioned into two or more groups containing the data from the same category. These

categories may be of one class or a combination of different classes. Further searches are
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performed through all the branches until a final result is obtained at a leaf of the tree where

only one class is assigned.

-

The fuzzy decision tree method for tool condition monitorirng combines a decision trec
with the fuzzy classification (Li et al, 1992). In contrast to matrix-type decision making, tree- - 7
type decision making divides the feature space into several subspaces with fewer dimensions.
It gradually increases the precision of the decision. As an example of partitioning the féa:urc )

-

space made by a decision tree for a two-class problem (Class A and Class B}, a portion of thé

L
.

samples from oné‘élass (AorB)canbe isolated from the others initially by an index I, Then,
another portion of the samples from one class is partitioned by index I;, and so on. The
whole space is partitioned in steps by I; (i =1, 2, ..., m) into the regions which contain only
samples from the same class. Because fuzzy classification is introduced, fuzzy decision tree
generates soft boundaries for neighbouring classes at each node and the uncertainty measure
of the decision is also provided. In general, a node in a fuzzy decision tree is a statement such
as "if C; happens, d, is true which is measured by the membership grade p;." It can be

represented by the following form:
C:d;is py. (3.54)

where, C, i = 1,2, ..., M ( M is the number of nodes in the tree), is a condition statement such
as "if the membership function of the input X, u(x), is larger than a particular threshold
value;" d, = 1, 2, ..., ¢ (the number of classes), is the conclusions at the ith node; and p; is

the membership grade for this decision. Note that d, may be either one of, or any combination
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of . the decision sets in the classiﬁ::alibq space. Classification using the fuzzy decision tree
may be performed in several steps. For example, a tool may be classified us "either sharp or
worn," then further classification specifies the final result as “"slightly wqm."

:,5 In the learning phase, a fuzzy dccision"_'\'t_ree is constructed based on available learning

samples. The proposed method constructs the fuzzy decision tree by partitioning the learning

samples using the recursive procedure below:

p:=1
X, =X
= repeat

(A, B, = maximum_partition;

set_node_pointer;

f,:=d, / ng;

¢, := means(Ag, B.);
p=p+l;

X, =B,

until X belongs_to_the_same_condition;

The key operation of the procedure is the "maximum partition:" X, = A, + B,. X, is
the learning data sct used at node p, and A, is the set which contains the samples that belong
to the same tool condition (say h)). This partition separates the maximum number of samples
in A, To do this, all the monitoring indices are examined against all the tool conditions. That
is, for u}l monitoring indices I, i = 1, 2, ..., m, we seek all intervals that contain the samples
from the same tool condition. Accordingly, the partition which separates the maximum
number of samples is chosen as the maximum partition. Note that the maximum partition may

not completely separate the samples of the same tool condition from the other samgles since
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the Pivet Index
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Figure 3.15 Example of the “Maximum Partition”

samples from different tool conditions are typically overlapped. The monitoring index
associated with the partition is defined as the pivor index and is nsed as part of the
information at a node of the decision tree.

Figure 3.15 gives an example of the maximum pariition of a 2-index, 3-class problem.
By studying the distribution of the samples from classes A, B and C, we notice that I, gives
the maximum partition of the learning set for class C with respect to the other classes. Here,
I, is chosen as the pivoi index at this node for the maximum partition.

The maximum partition generates a left son A , which is a leaf of the tree indicating
one tool condition, and a right son B, = X, : A, which is either a leaf or a sub-tree. The
father, left and right sons of the node are represented by the node pointers. Also, the

distribution of the learning samples is used to measure the strength support of the partition.
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Figure 3.16 Building the Fuzzy Decision Tree through Leamning

Suppose that at node p, index / is used to separate some of the samples of class j from the

other samples. Then, the uncertainty measure f, is defined by:
dj.
S = = (3.55)
",

where, n, is the total number of samples that belong to the jth tool condition and d; is the

number of samples in A, The fuzzy centre of the class considered is designed to form a soft
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boundary between A and B, Ttis calculated as the statistical mean of the samples.

The above operation is then repeated for the new X, = B, until all the samples in
- X, belong to the same tool conditien. As a result, at each step of the operation, a new node
is generated and added to the decision tree. Accordingly, a binary fuzzy decision tree is built.
This procedure is illustrated in Figure 3.16. In the given tree, leaves N,, 'N4. wos Nps Ny
contaiq the samples which belong to the same class respectively. Nodes Ny, ..., N, ... Ny

contain the samples from Bp (p=1,.., (M-1)/2} generated by the maximum partitions.
For classification, a recursive procedure called "tree traversal” is used to identify the
class to which a given samnple belongs to. At node p, the calculation of the membership grade
of a sample to class i is performed by the following equation (fuzzy c-mean method, Bezdek,

1987):

1

ip 2
z‘: ( 4y w1 {3.56)
od

P

ther Fuzzyv Classification Methods

Monitoring drill states has also been done by fuzzy ¢-means algorithm (Li and Wu,
1988). The fuzzy classification is reported to be more adequate than crisp classification
methods for drill wear detection. Experimental and simulation results show that the drill wear
conditions could be represented by four grades: initial, small, normal, and severe. The

detection of a large membership grade on the wear state "severe" was proposed as an
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indicator for drill replaccinent.
Other applications of fuzzy classification to the tool condition monitoring in machining
included tool wear monitoring in diamond turning by fuzzy e-means method (Ko and Cho,

1994), the fuzzy decision system used for tapping process diagnosis (Chen, 1993), and so on.

3.4.5 Improvements Needed for Fuzzy Tool Condition Monitoring

The fuzzy set theory has been used to develop decision making strategies for
automated tool cond_it,_ion monitoring in machining. Two algorithms, the linear fuzzy equation
and_ the fuzzy decision tree, were developed and verified by cutting tests in turning. The
re{s'i:l]ls have shown superior performances of the fuzzy classifications in these tests when
compared to other classic pattern recognition methods such as the k-mean, Fisher's method,
and the nearest neighbour method. These two approaches also result in better classification
results than the fuzzy c-mean method (Du ef al, 1992 and Li at al, 1992).

The linear fuzzy equation method uses a matrix to describe the relationship between
the monitoring indices and the tool conditions. Because decision trees are more flexible than
matrix approaches, the fuzzy decision tree method out-performs the linear fuzzy equation
method. The disadvantage of using matrix-type decision making is also seen in considering
the time spent for the learning and the classification. It takes much more time to do matrix
calculations.

In constructing the fuzzy decision tree for tool condition monitoring in machining, the
maximum partition algorithm generates the node holding the samples from only one tool

condition to create a leaf. The other samples are put into another node which is usually a sub-
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tree. Because of this structure, the classification paths to the leaves in lower levels arc much

longer compared those close to the root. A single-class-parition in the maximum partition

- also makes a large number of tree nodes. Thus, the classification time is increased.

3.5 SUMMARY

Decision making strategies are one of the major issues in the development of
automated machining process and tool condition monitoring. A decision making in
monitoring is based on the relationship between the process/tool conditions and the feature-
bearing signals (monitoring indices). This relationship can be described in a number of ways
such as models, patterns, expert systems, neural networks, and fuzzy systems.

Among the large number of decision making methods that have been developed,
statistical pattern recognition, neural networks and fuzzy classification are very interesting
aspects in the development of automated/intelligent tool condition monitoring in machining.
They have been applied successfully to many cases of monitoring tasks in turning, milling,
drillling and other metal cutting processes.

Automated tool condition monitoring in machining includes two parts. They are
feature extraction and decision making. Feature extraction involves the experiences and the
knowledge of the metal cutting process. The principle of the metal cutting mechanics has to
be understood for the selection of the measured process signals. Canonical analysis and

variable selection are two major methods for the feature extraction in the signal processing.
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In classification, Bayes' rule is essential for statistical decision making. The function used for
reIatmg the mom(onng indices and the tool conditions can be linear, polynomial, or in other
forms.

Neural networks and fuzzy logic are powerful tools for automated/intelligent tool
condition monitoring in machining. Neural networks provide the possibility of cieaiing with
large amount of sensor data simuitaneously using simple processing elements, and fuzzy iogic
gives a structural framework that utilizes th=se simple processed results for the uncertainty.
Back-propag.ation is the most widely used method for training neural networks. The back-
propagation neural networks are applied to tool condition monitoring by several examples.
It is determined that the simple neural networks with oné or two hidden layers will work
better for machining process and tool condition monitoring.

The applications of fuzzy logic in machining process and tool condition monitoring
include fuzzy c-mean algorithms, the fuzzy liner equation, and the fuzzy decision tree. Fuzzy
classifications provide soft boundaries between the classes, which give better descriptions to
the class overlaps. The measurements of uncertainty can be calculated by the fuzzy
membership grades through a membership function. Fuzzy expressions of the relations
between the operating parameter and the tool conditions are much more suitable for metal
cutting processes because of the inter-effects between cutting parameters and the overlaps in
the tool conditions.

Linear fuzzy equation and the fuzzy decision tree are two new contributions to the
decision making algorithms in tool condition monitoring. Some improvements are still needed

for further developments of automated machining tool condition monitoring system.



CHAPTER IV

THE MULTIPLE PRINCIPAL COMPONENT FUZLY

NMEURAL METWORKS FOR TOOL CONDITION

MOMITORING

4.1 INTRODUCTION

The tasks of an automated tool condition monitoring system involve the ability to
recognize tool conditions by analyzing measured cutting process parameters such as forces
and vibrations. This ability is based on the accumulation of useful information from related

laws of physics and operators' experiences. In building automated/intelligent tool condition
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monitoring systems, some basic functions have to be considered:

(1) Fusion of multiple sensors;

(2) Learning or training strategies for the monitoring systemn;

(3;) Knowledge updating techniques; and

(4) Description of the imprecision in tool conditions for various cutting conditions.

With the increasing needs for effective and robust automated machining proc?srglgnd
tool condition monitoring, a significant amount of research work has been performed I\'to find
decision making strategies. One of the most recent approaches to machine intelligence is
"soft computation" (Zadeh, 1993). This approach deals with approximation and dis-
positionality in classification problems. The principal constituents of soft computation include
fuzzy logic for imprecision in the acquired data, neural networks for learning, and probability
reasoning for uncertainty. These three components are usually overlapped. The "soft
computation” is easily implemented by fuzzy neural networks.

Iix this chapter, a new approach for automated tool condition monitoring in machining
under varying cutting conditions by fuzzy neural networks is proposed. The system is named
the Multiple Principal Component (MPC) Fuzzy Neural Network. 1t is based on three major
components of soft computation, which were mentioned previously. Principal component
analyses are conducted in multiple directions for feature extraction and optimum class
partitions. Fuzzy neural networks are constructed with fuzzy classification at the neurons and
the fuzzy interconnections. The MPC fuzzy neural networks are built through training with

the leamning data obtained from cutting tests performed within a reasonable range of cutting

conditions. The strategies for supervised learning, unsupervised leaming, and knowledge



o1
updating of the MPC fuzzy neural network are developed. The three major subjects, along

with sensor fusion, are supervised classification, unsupervised classification, and knowledge

updating of the system.

4.2 STRUCTURE OF THE MPC FUZZY NEURAL NETWORKS

4.2.1 Partial Least Square Methods for Sensor Fusion

In general, the signals coming from only one sensor are typically insufficient to give
enough information for machining process and tool condition monitoring. The use of several
sensors at different Jocations simultaneously is proposed for data acquisition. Signals from
different sources are integrated to give the maximum information needed for monitoring and
control tasks. Sensor Fusion generaily covers all the issues of linking sensors of different
types together into one underlying system architecture (McClelland, 1988). The most
significant advantage of sensor fusion is its enriched information for feature extraction and
decision making strategies. It provides more reliable data for the decision making process
with low uncertainty which may be created by the inherent randomness or noise in the sensor
signals.

As discussed previously, one of the classification criteria is the “principal component
analysis" (James, 1985). Assume, for a moment, that there are two fairly compact and distinct
classes. The combined covariance matrix describes the shape of the total sample distribution.

Specifically, the eigenvector corresponding to the maximum eigenvalue gives the direction
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Figure 4.1 Principal Component Analysis

of the maximum variance. As suggested in Figure 4.1 for a two-dimensional space, this
direction may indicate a discriminant for the two classes. If we take t, as the maximum
separating direction and choose a threshold, 6, as the possible discriminant, we can specify

the classes A and B with the following:

x € Class A, iftlTx<B;

4.1
x & Class B, otherwise

The principal component analysis takes into account the directions in which the measurement
vectors, xs, have the largest covariance with the class (tool condition) vector, and ensures that
this direction (eigenvector) is used for the classification. Unfortunately, principal component
analysis is unable to deal with complicated problems, such as those involving ¢ > 2 classes or

cases with non-spherical distribution in the principal direction. The sharp boundary
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(threshold, B) distinguishing two classes in the principal component direction is also not very
precise in describing a practical problem such as tool condition classification.

The Partial Least Square (PLS) methods can be used for principal compongnt analysis
and feature extraction. It provides a systematic means for intégraling the information from
multiple sensors. The PLS methods have been used in many applied sciences ( for example,
refer to Héskuldsson, 1988). Accordingly, only a brief recapitulation is given here.

We seek to estimate ¢ outputs from n variables. It should be noted that ¢ is also the
number of classes considered (i.e., dimension of classification space). If xs,i=1,2, ..., N,

are the measurement vectors, and K is a matrix, then:

i = Kx (4.2)

where, y, is the c-dimensional tool condition vector of the ith sample, and is obtained during
the training by using 1 for the element corresponding to the known class and Os elsewhere.

Using N samples of y and x, we have:

Y - XKT, (4.3)

where Y is N xc and X is N x n matrices respectively. The ordinary least squares solution for

K is:

K, - YTx[x™xy! (4.4)
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To reduce the dimension of X, the PLS method can be used to transform the measurement
vectors to their principal components. The PLS method calculates m largest eigenvalues from
XTYY™X, and gives a new expression for x with linear combination of those m corresponding

cigenvectors

x = tlpl * t2P2 e tmpm ! (45)

where p, is the eigenvector corresponding to the ith Jargest eigenvalue. Constructing an
n % m matrix P whose ith column is p,, we have the new feature vector t (since P is column

orthogonal).
t = PTx. (4.6)

Compared to the original measurement vector X, the dimension of t is significantly reduced.

Consequently, y can be derived as:
y = Kx = KPt. 4.7
Let K, = K P, then y is given:

y = K t. 4.8)
And, the least square solution for K, is:

(K;)P[S = Yr T [TT T]1 L] (49)

where, T is N x m matrix whose rows are t".
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Using the PLS methods, the largest eigenvalues of XTYYTX are easily computed. The
principal component analysis is complemented. This approach takes into account the multiple
directions in the measurement vector, X, which have the largest covariance with the class
(machining process and tool conditions) vector, y, and ensures that these directions

{eigenvectors, or principal components) are used.

4.2.2 Neural Networks and Knowledge Learning

Learning refers to the processes which build the monitoring system in a given
structure witk, information from the leaming data. In addition, some logic rules are also
created, which determine the data processing and govern the relationship between the
processing elements. During the learning phase, a limited amount of learning data is used to
adjust the parameters of the monitoring system. The trained monitoring system uses the
stored knowledge gained from the leaming to classify the data in classification of the tool
conditions.

If the sampled data for training the system are labelled with the class 10 which a
sample belongs, the decision making is performed with a priori knowledge. This is simply
called pattern classification, or supervised classification, an¢ 't is a common problem in
automated tool condition monitoring in machining. When the training samples are collected,
the tool conditions related to each training sample are provided to give the necessary
information.

Unlike pattern classification, which is performed with ¢ priori knowledge (labelled

samples), pattern clustering, or unsupervised classification, deals with the pattern recognition
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with unlabelled samples. The pattern clusters are formed according to some predefined
similarities, i.e. a cluster is defined as a set of samples which are similar to each other.

Knowledge updating, or self-learning, vefers to processes in which the structure and
the parameters of a monitoring system are modified according to the new information about
the classification. This ability is essential for an automated tool céadition monitoring system.
Classification results should be checked on-line to ensure the system gives correct results.
If the results are not correct, the system should be retrained or modified. Also, the new
information about the cutting process may be available and it can be used for improving the
monitoring performance.

Neural networks are computing systems made up of a number of simple, highly
interconnected processing elements. They provide the capability of self-learning for the
system. Using neural networks, simple classification algorithms can be used and the system
parameters are easily modified. One major characteristic of building neural networks is the
training time. Training times are typically longer when complex decision regions are required
and when networks have more hidden layers. As with other classifiers, the training time is
reduced and the performance improved if the size of a network is tailored to be just large
enough to solve a problem but not so large that too many parameters need to be estimated
with limited training data. Besides the size of a neural network, the interconnections between
the neurons also affect the training time. Partial interconnections will reduce the training time

as well as the time for the classificadon.
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4.2.3 Fuzzy Classification and Uncertainties in Tool Condition Monitoring

During machining, cutting conditions (e.g., cutting speed, feed, depth of cut) as well
as tool conditions (e.g., tool wear) significantly affect the process parameters such as cutting
forces and vibrations, which are usually used as the input signals toa monitoring systeni.
Deterministic models which attempt to describe the relationship between the tool conditions
and the various measured parameters are typically valid for a limited range of cutting
conditions. The fuzzy classification can be used to describe the uncertainties and the
overlapped relationship of the toul conditions and the monitoring indices. It is more suitable
to say that the tool wear is "small” or "large” in practice. Briefly, the fuzzy expression of a

tool condition, A, is a fuzzy concept. It is:

A = {x| )t (4.10)

where x is the value of A, and p,(x) is a fuzzy measure, also known as the membership
function. p,(x) is a monotonous function, and 0 < p,(x) < 1. The function increases with
respect to the decrease of the uncertainty of A. If B is also a fuzzy set and is more uncertain

than A, then:

By (x) > oy (x) . (4.11)

This might be interpreted as "the membership grade of small tool wear is greater than that of

large tool wear." The conclusion about a tool condition comes with the measurement. The



98

A : sharp tool AH
< | BH
B : worn tool

—=al o —

- -
—— e e == S e

Y

I threshold

Figure 4.2  Soft Boundaries in Fuzzy Classification

fuzzy representation of the tool conditions in machining has its advantages. The concept of
fuzzy decision making in machining tool condition monitoring is illustrated in Figure 4.2.
Where, Ay and B, are categories classified by the hard decision, while A; and By are classified
by the fuzzy decision. gy is used for hard decision making and forms a sharp edge in the
boundary. Fuzzy decisior. making partitions the classification space with the continuous "soft
boundaries." The use of fuzzy classification for the tool monitoring in machining is
particularly attractive in situations where a few different tool conditions result in almost

identical changes in sensor outputs.
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4.2.4 Construction of the MPC Fuzzy Neural Networks

The Multiple Principal Component Fuzzy Neural Networks are constructed based on
the idea of “soft computation.” Neural networks, fuzzy logic and statistical reasoning arc
employed for the construction of the system. The neural network makes up the mainframe
of the system. Simple classification procedures can be implemented at individual procéssing
elements (neurons). The interconnections between neurons in the nctwork communicate the
information between neurons and make it possible to solve complex classification problems.
The fuzzy classification at neurons deals with uncertainties in the classification. The
measurement of those uncertainties at one neuron is also taken as a part of the input
information to the other related neurons. Statistical reasoning is used in the learning
procedure for the feature extraction and the partition strategies.

For conventional neural networks, each of the processing elements (at the input,
output, and hidden layers) is always connected to every single processing element in the
neighbouring layers. In general, a processing element could be connected only to those
"closely related” neurons in nearby layers and even directly to those in other distant layers.
This is a special case for neural networks. We will denote them as partially connected neural
networks and they provide "shortcuts" to the decision making.

Decision tree classifiers are hyperplane classifiers that have been developed extensively
in the literature (Lippmann, 1989). They can be regarded as a type of partially connected
neural networks since each node in the tree is connected to only its "father” and “"sons.” They
require comparatively less computation for the classification. They can be implemented using

parallelism from decision region by performing simple, easily understood operations on the
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input features. They can use continuous-valued inputs or discrete symbolic inputs. Their size
can be easily adjusted to match their complexity based on the amount of training data
provided. At each node in a tree, the input data are partitioned into two or more groups
containing the data from the same category. These categories may be one class or a
combination of different classes. Further searches are performed through all the branches
until the final result is obtained at a leaf of the tree where only one class is assigned. In
contrast to matrix-type decision making, which gives the final decision in one step after
computations in the hidden layer, tree-type decision making divides the feature space into
several sub-spaces with many fewer dimensions, and gradually increases the precision of a
decision.

The training procedures to build decision trees do not minimize a global cost function
directly but gradually build a tree by minimizing the local cost function at each stage of the
training. The training data are sorted or ordered separately along each input dimension and
a cost function is computed for all possible splits of the training data. This speeds up the
training because only as many features as input dimensions are involved and the local cost
functions are simple. A comparison between a binary tree and a back-propagation classifier
showed small differences in error rates but greatly reduced training times with the binary tree
classifier (Fisher and McKusick, 1988).

The problem of decision making deals with finding some criteria to relate the feature
space to the classification space, then to map a variable in the feature space into the
classification space. Typically, parameters (weights) in a matrix form are used for this

mapping, such as the estimation of weights in a linear classifier or in a back-propagation
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neural network. In more sophisticated implementations, multi-layered neural networks are
employed, which consist of nonlinear connections between the inputs and the outputs.

As an alternative to conventional neural networks, we propose here a partially
connected, fuzzy neural network approach for automated tool condition monitoring in
machjniné. Different from matrix—tyﬁe decision making, a tree structure is used for reducing
unnecessary connections between elements in the input and the output layer. The fuzzy
classifications are used in the neural networks to provide a comprehensive solution for certain
complex problems. The neural network that utilizes fuzzy classification is shown in
Figure 4.3. The input layer, F, = (a,, a,, ..., ay), has m processing elements, one for each of
the m dimensions of the input pattern X,. The hidden layer of the network, Fg, consists of the
neurons that use the fuzzy classification to separately address the subsets of the original data
set while invoking necessary information from other neurons. The probability distribution and
the membership function are used for interconnections within the hidden layer and the
connections to the output layer. The neurons of the output layer, F¢, represent the degrees
to which the input pattern x, fits within the each class. There are two possible ways that the
outputs of F class nodes can be utilized. For a soft decision, outputs are defined with the
fuzzy grades. For a hard decision, the F¢ nodes with the highest membership degree is
located (a "winner-take-all" response). The connections within the hidden layer are not from
one element to every one in the neighbouring layers. The structure depends on the training
data and is created through the training process. These partial connections result in the

simpler and faster training and classification.



102

Output Layer Fc
( tool conditions }

Hidden Layer FB

4

( partial connections )
fuzzy classifications

Input Layer Fa
( monitoring indices )

Figure 43 The Multiple Principal Component (MPC) Fuzzy Neural Network

Similar to other decision making strategies, the proposed fuzzy neural networks for
automated tool condition monitoring have also the learning and the classification procedures.
The learning is used to construct the fuzzy neural networks with fuzzy classifications and the
decision tree, from available learning samples, while the classification is used to estimate the

most likely decision for the given samples.
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4.3 SUPERVISED CLASSIFICATION OF THE MPC FUZZY
NEURAL NETWORKS

3
W,

4.3.1 Learning

In.':t‘he learning procedure, the hidden layer considered as a fuzzy decision tree is
constructed based on the available léarning samples. Suppose that, by appropriate
experiments, N leamning samples, x,, X,, ... Xy, were obtained at the known tool conditions.
They form a set of learning data. We denote X to be the set of all the learning samples, so
X={x, X5, ..., Xy}. Aleamingsample x;(i=1,2, ..., N, the number of learning samples) is
an m-dimensional vector, where m is the number of monitoriﬁg indices. It can be written as
X; = [X;1» Xipy +or Xin]T» Where X, denotes the value of the kth monitoring index of the ith
learning sample. If I; is used to denote the ith monitoring index in all the learning samples, we
have m sets of monitoring index data (i.e., I, = { X, Xg -0 X} and k=1, 2, ..., m). Note
that since a monitoring index is assumed to be continuous, [, can be represented by the
interval I; = [ I i L] (refer to Figure 4.2).

The proposed method constructs a fuzzy neural network by partitioning the learning
samples using the recursive procedure below:

(1) Set up neuron label p =1 and the training set X, = X;

(2) Atneuron p,

i. using "the maximum partition” to partition the training set X so that X, = A, + B;

ii.assignX,,,,= A, and X ,,=B;

(3) Let p=p+1 and go back to (2) unless X, contains only the samples that belong

to the same class.
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For the "the maximum partition,” X, = A, + B, A, 1s the set which contains the
samples that belong to certain tool conditions (say, h; or h; +h) and B is the set of all the
remaining learning samples. The partition separates the maximum number of samples in A,
To do this, all the monitoring indices are examined against all the tool conditions. Thatis,
forall I, i = 1, 2, ... m, we seek all intervals that contain the samples from the same tool
condition. The "same tool condition” here means either one or two tool conditions.

Accordingly, the one partition which separates the maximum number of samples is chosen as

the maximum partition. Note thqff’thc maximum partition may not completely separate the

e

samples of the same tool conriifion from the other samples since samples from different tool
conditions are typically oJérlapped. The monitoring index associated with the partition is
defined as "the pivot index" and is used as a major input of the neurons in the hidden layer.

The maximum partition at neuron p generates two new neurons: one with the learning
set A, and the other with the learning set B, = X - A,. The distribution of the learning
samples is used to measure the supporting strength of the partition. The fuzzy centres of the
classes considered on a neuron are designed to form a soft boundary for the partition. They
are calculated as statistical means of the learning samples. All of the information are taken
as the inputs to the neuron for classification purposes.

The above operation is then repeated for the new X, = A, until all the samples in
X, belong to a unique tool condition. As a result, as each the operation is carried out, new
neurons are formed and added to the hidden layer. Accordingly, interconnections between

neurons are built within the networks. This procedure is illustrated in Figure 4.4.
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Figure 44 Leaming of the MPC Fuzzy Neural Networks

4'.3.2 Classification

The classification procedure deals with identifying the condition to which a given
sample belongs. Suppose that a given samplesisx={x;,i=1,2,..,N,j=1,2,..,m}, then
the classification is performed by searching a path for the decision through the network. This
path passes through a few neurons in the network and will lead to the final decision of the

classification. At each neuron in the hidden layer, the search is directed by the fuzzy
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membership grade of the sample x at that neuron. The membership function u;, that measures

how much a given sample bélongs to class i at neuron p is given as follows (Bezdek, 1987):

u, - L il
1

where, d,, or d,, is the inner product norm metric of the sample to a class centre, M is a
predefined parameter, and I <M <<, According to u,(x) = [uy,, uyp, -0 U J7 (s is the number
of classes at neuron p), the direction of the next step for the search is then determined. The
next neuron takes the information from the neuron under consideration as well as other
neurons in the hidden and/or the input layer. The recursive procedure continues until a
neuron leads to the output layer and gives the final decision. In the fuzzy neural networks,
calculations can be performed simultaneously at several neurons as long as the required inputs
for calculations are given. The results are given in the output layer, and the fuzzy membership
grades are also provided. Th.: proposed classification procedure for the MPC fuzzy neural
networks is shown in Figure 4.5.

In general, the decision at a neuron in the hidden layer is represented by both tool
conditions and their membership grades such as "dj is pij," where dj, j=1,2,..,s5(sisthe
number of classes at the ith neuron), is the conclusion at the ith neuron, and p; is the
membership grade for this decision. In addition, d; may be a cluster containing either one or
any combination of the decision sets in the classification space ( the tool conditions). Each

neuron in the hidden layer gets its inputs from the input layer as well as from some other
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Figure 4.5 Classification of the MPC Fuzzy Neural Networks

related neurons in the hidden layer. The outputs of a neuron are sent to either the output
layer or to other related neurons in the hidden layer. The classification madz through this
fuzzy neural network may be performed in several steps. For cxample, 2 tool may be
classified to be “"either sharp or worn" by some neurons in the hidden layer., A further
classification specifies the final result in the output layer as "slightly worn" with a membership

grade that measures the uncertainty of tool wear estimation.



108

4.4 UNSUPERVISED CLASSIFICATION OF THE MPC FUZZY

NEURAL NETWORKS

4.4.1 Learning with the Unlabelled Samples

The knowledge (rules in the network) for tool condition monitoring is obtained by
training (learning) processes. The classification based on similarity measures and
discriminants are dependent upon the availability of labelled samples, or the patterns
representative of each class. During the training, class labels are usuaily provided, along with
the monitoring features, to give the necessary information for creating the rules that minimizes
the misclassification. This procedure is known as pattern classification.

There are many cases where classification must be performed without a priori
knowledge. Unlike pattern classification, which is performed with a priori knowledge
(labelled samples), pattern clustering deals with the pattern recognition with unlabelled
samples. The pattern clusters are formed according to some predefined similarities. A cluster
may be defined as a set of samples which are similar to each other. Depending on the
similarity criterion or measure, different clustering results are obtained. There are many
possible clustering criteria that can be used (Bezdek, 1981), including distance, angle,
curvature, symmetry, connectivity, and intensity.

A clustering problem is not well defined unless the results of clustering can exhibit
certain properties. The choice of the properties (the definition of a cluster) is a fundamental
issue in the clustering problem. For selecting a suitable measure of clusters, the mathematical

properties mentioned above could be used. Moreover, the variety of “structures" is without
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bound. Bezdek (1981) argued that (i) no clustering criterion or measure of similarity will be

universally applicable, and (ii) selection of a particular criterion is at least partially subjective,

and always open to question. He categorized clustering systems into deterministic, stochastic,
and fuzzy. Accordingly, three types of clustering criterion are presented: hierarchical, graph
theoretical, and objective functional.

The problem of clustering for automated tool condition monitoring arises with the
development of automated/intelligent monitoring systems. Metal cutting is a rather
complicated manufacturing process. With the continuous introduction of new types of part-
tool materials, and more aggressive cutting conditions, there is often no a priori knowledge
about the tool failure. An automated/intelligent tool condition monitoring system should be
able to update its knowledge by unsupervised leaming so that it can recognize and classify
new phenomena of process and tool conditions.

In this section, the MPC fuzzy neural networks are introduced for clustering in tool
condition monitoring within a range of cutting conditions. Like the classification, the
clustering approach uses the three basic constituents of soft computation: fuzzy logic, neural

network, and probability reasoning.

4.4.2 Clustering
A C] ine by Principal C lvsi

Unlike pattern classification, where the class labels are provided with the training
samples and the classifier seeks to find the decision boundaries between classes that minimize

misclassification, pattern clustering is the process to find naturally occurring groups or
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clusters without labelling the training samples. In many cases, the distance is assumed to be
the similarity measure. Alternatively, a cluster may be defined as a region in the feature space
containing a high density of the training samples. With this definition, peaks in the sample
estimates of dchéity functions, for example, are associated with a cluster.

One of the conventional criteria for pattern clustering is the principal component
analysis (James, 1985). To discuss this criterion, we will assume, for a moment, that there
are two fairly compact and distinct clusters as shown in Figure 4.1. The combined covariance
matrix describes the shape of the total sample distribution. Specifically, the eigenvector
corresponding to the maximum eigenvalue is the direction of the maximum variance. If we
take t, as the maximum separation direction, we can project the samples on t,, construct a
frequency vs t,"x histogram and expect to obtain a distribution similar to those shown in

Figure 4.1. Choosing a threshold 8 as the minimum, we can specify the clusters with
x € class A, if t,"x<8. (4.13)

As mentioned previously, the principal component analysis takes into account the directions
in the measurement vector x which have the largest covariance with the class (machining
process and tool conditions) ve«tor, and ensures that these directions (eigenvectors) are used
for partitions.

After the principal component analysis, a local minimum can be obtained as a
"reference of boundary.” There are three possible results of such separation as shown in

Figure 4.6. The first one is the ideal case in which the two classes are perfectly separated by

4
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Figure 4.6 Possible Distributions of the Leaming Data

a boundary line. In the second case, the two classes are overlapped, and the boundary (the
minimum) is actually a mixture of the samples from both classes. Misclassification is
hereditary. The criterion for pattern classification is to minimize such misclassification. For
the third case, one class is included in the other and the principal component analysis fails.
As we noted earlier, the principal component analysis gives a possible way for
grouping unlabelled samples. If we choose a peak on the frequency histogram as a class, the
boundary is usually formed at a valley, the local minimum, of the curve. This is the
conventional principal component analysis in pattern clustering. We try to improve the
separation by introducing a fuzzy classification method. Then, the boundary between two
classes is "soft" and similar to that shown in Figure 4.2. As a membership function is defined
for clustering, the clustering results can be measured by the fuzzy membership grades for each

partition. The clustering decision at this stage is made with

X € classi in the grade of u, (4.14)
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e works

The principal component analysis is one of the most simple and effective clustering
schemes. Unfortunately, it is unable to deal with complicated problems, such as those
involving C > 2 clusters or cases with non-spherical distributions in the principal direction (the
largest eigenvalue eigenvector's direction). A strategy for clustering by the MPC fuzzy neural
networks is proposed, which constructs a combination of certain simple procedures. The
principal component analysis is done in multiple directions at neurons of the network while
the fuzzy classification is applied to each neuron. The fuzzy neural networks are used for
exploiting the parallel nature of the classification and, for providing the fuzzy classifications
for certain complex problems. The partial connections are used for reducing unnecessary
calculations in both the learning and the classification.

To cluster a set of original measured samples, we will first partition them into several
sub-clusters. Then the same scheme is applied to each sub-cluster to get further detailed
partitions. Different from other conventional hierarchical clustering algorithms, which
combine each individual samples to form a new cluster and then try to combine similar
clusters for generating a new one, this proposed scheme uses an "up-side down" tree to seek
a possible separation of the original data set for generating new clusters. The processing
work is performed at every neuron of the network.

The proposed clustering method combines the principal analysis, the fuzzy
classification with a decision tree for defining the structure of the hidden layer. The principal
component analysis on the input data is performed at each neuron. To solve the problem of

non-spherical distributions, several directions of the eigenvectors are considered. For the
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two-dimensional case shown as an example in Figure 4.7, the significant separations in both
directions are required and four regions of separation can be obtained. The membership
grades of the input samples for each region are calculated by using the above-mentioned fuzzy
membership function (Equation 4.12). Accordingly, the samples are labelled with the
membership grades for each of those four regions. Then, an attempt is made to merge those
four regions into two clusters for the simplicity by the following procedure:

As we know, a total of seven possible combinations exist for this example. They are
{C. GuGuG), {[C, CuGuCyl, (G, CuGulCl, (C, CuCuC),
{CiuG, CGuGl, {CuC, CGuCC), (CuC, C,uC,). To choose the most

convenient one, a fuzzy discriminant function is defined:

#(Coty Crewa) = min { dist(C,., C}), dist (Cp,,s, C), V i} (4.15)

Where, C,,., and C,,., are the new-formed clusters, dist(C;, C;) is the distance between
cluster C; and C; which is measured from one centre to the other. By minimizing the above
discriminant function u ( C,,.;, C,...2), @ new pair of clusters is obtained as C,,=C,., ., v
Ciewzr The same procedure is carried out for the new cluster(s) until the final clustering result
is s_atisfactory.

The clustering process of the MPC fuzzy neural networks can be implemented as

follows:
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Figure 4.7 Clustering by the Principal Component Analysis and the Cluster Combination

(1) C,;= all samples;

(2) the principal component analysis on Cg, is performed in two directions to create
four regions for the new clusters;

(3) the calculation of the membership grades of all the samples in C, for all C, s,

(4) the selection of the most convenient pair of combinations by minimizing the fuzzy
discriminant function to generate two new sub-clusters so that C 3 = C.,.y U Crens

(5) Assign Cy = C,.. and go back to (2) until the final clustering is done.

The same procedure can be used for a clustering problem with more than two

dimensions, where the number of the possible sub-clusters may vary. Moreover, the C,
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1) Principal Component Analysis :
t=Kx = Cod=Ci1uC2uC3uC4

2) Softening the Boundaries : uik = f( dik, djx, M)

3) Cluster Combinations :

min { diSt(Cncw-i,Cj)}

Figure 4.8 Clustering at a Neuron of the MPC Fuzzy Neural Networks

may be a set containing either one class or any combination of the decision sets in the
classification space. Each neuron in the hidden layer gets its inputs from the input layer as
well as from some other related neurons in the hidden layer. The outputs of a neuron are sent
to either the output layer or to other neurons in the hidden layer. Like the classification with
the MPC fuzzy neural networks, the clustering tool conditions using thess fuzzy necural
networks may be performed in several steps. For example, a tool may be classified to be
“either sharp or wormn" by some neurons in the hidden layer. Then, further clustering specifies
the final result in the output layer as “slightly worn" with a certain degree that measures the
imprecision of tool wear estimation. The clustering process at a neuron in the MPC fuzzy

neural networks is illustrated in Figure 4.8.
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Clustering Methods Class | Class 2 Class 3 Total
the MPC Fuzzy Neural Networks 100 % 100 % 90 % 96.7 %
the Fuzzy Test A 100 % 100 % 60 % 86.7 %
Min-Max TestB 100 % 94 % 70 % 88.0 %
Necural
Test C 98 % 96 % 18 % 90.7%
Networks
( Simpson, 1993 ) TestD 100 % 88 % 90 % 927 %
the Nearest Neighbour Method  ( James, 1985 ) 96.0 %

4.4.3 Comparison to Other Clustering Methods

The proposed clustering algorithm of the MPC fuzzy neural networks was tested
using data from the available literature. Fisher's Iris Data (refer to James, 1985) is the first
testing data set selected because of its familiarity to the pattern recognition research
community which allows a measure of relative performance. The Iris Data consist of 150
four-dimensional feature vectors (patterns) in three separate classes, 50 for each class.
Fisher's Iris Data was successfully clustered by the proposed fuzzy neural networks. The
samples from class 1 are first separated from the others at a neuron. The remaining samples
are further divided into two new clusters. Table 4.1 gives the detailed results of clustering
Fisher's Iris Data by the proposed MPC fuzzy neural networks as well as other well known
methods. The results of clustering by the MPC fuzzy neural networks are shown in
Figure 4.9, where (a) is the result of the first clustering step (the first neuron in the hidden

layer) and (b) is the result of the second clustering step.
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Figure 49 Clustering Results for Fisher's Ins Data

The other set of testing data is Simpson's (1993). The data consist of 24 (wo-

dimensional points. Figure 4.10 shows the clustering performance of the proposed fuzzy

neural networks, where Simpson's results from the Min-Max fuzzy neural networks are also

given for comparison. The results of clustering such data vary depending on the predefined

number of clusters and the parameters in the nctworks. Even though there are slight

differences in clustering the same data into the same number of clusters, the results by both

neural networks showed great similarity.
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4.5 KNOWLEDGE UPDATING OF THE MPC FUZZY

NEURAL NETWORK

4.5.1 Retraining with the New Information

As mentioned previously, a tool condition monitoring system should be able to update
its knowledge using the new information related to the cutting process. On-line adaptation
is a key problem in the design of fuzzy neural networks for tool condition monitoring in
machining. Many popular neural networks and traditional pattern classification techniques
utilize off-line adaptation. Each time the new information is added to the classification
system, it requires a complete retraining of the system with both the old and the new learning
data. As such, off-line adaptation requires more computer memory and leads to longer
training times. On the other hand, a good knowledge updating algorithm has to be a simple
process that utilizes the maximum information from the new leaming data to modify the
existing structure and the parameters, and without destroying the stored class information.

The knowledge updating algorithm for the MPC fuzzy ncural networks is developed
with the assumption that the system has been trained and keeps only the necessary information
(from the old learning data) for classification purposes. The original learning data which
trained the system is not saved. The idea is that the trained system modifies itself by obtaining
updating information only from the new learning data. The main structure of the old system
is not destroyed. By the updating process, some class information stored at neurons in the
system are renewed. The interconnections might be slightly changed. New neurons may be-

inserted into the network. Behaviour of the retrained system is evaluated by its performance
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Figurc 4.11 Knowledge Updating of the MPC Fuzzy Neural Networks

in classifications after the knowledge updating process.

Updating class information without using old data has advantages. Once the system
is trained, the learning ddld are discarded. Thus, the memory for information storage is
greatly reduced, Modiﬁcﬁtion of the system using only the new learning data takes much less
time than training a new system with both old and new data sets. The difference in training
times becomes more significant when the knowledge updating is performed several times.

The proposed knowledge updating algorithm deals with two issues: Tuning Old

Neurons and Adding New Neurons. Such a retraining scheme is depicted in Figure 4.11.



4.5.2 Tuning Old Neurons

During the learning procedure of the MPC fuzzy neural networks, the maximum
partition is applied in multiple principal component directions. The learned class information
at the neurons is mainly obtained based on the distribution of the learning samples. One
neuron in the network typically contains the following class information:

(1) The pivot index, the monitoring index used at this neuron for the maxiimum
partition;

(2) Class clusters, which are partitioned by the_ﬁmg:ﬁﬁ(__‘igwm partition_\z_{tlhis neuron (in

e . .
this study, two class clusters are generated at each neurofr and each cluster may contain up

to five tool conditions);

(3) Class centres, the class central positions represented by the mean values of the
learning samples;

(4) Number of the learning samples, which are used in the learning at this neuron;

(5) Class boundary, the discriminant function that distinguishes two classes (this
function is given in Equation 4.12 and the parameter M defines the gradient of the sigmoidal
curves); and

(6) Connections, which indicate which neurons in the neighbouring layers are directly
related to this neuron.

In the knowledge updating process, the new learning samples are first introduced to
the system for checking the distribution in the principal component directions. If the majority
of the samples in the retraining set fall around the class centres at an old neuron, then the class

information at that neuron will still be reliable. Thus, the pivot index and the class clusters
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are kept the same. The class centres and the class boundary may be tuned to enhance the
accuracy of classification. Assume that n samples were used for the original learning and
there are m new learning samples available for the knowledge updating. The estimate of old

class centre is O. The new estimate of the class centre, A, is then given by

n

_ =y o
— [ — i{_;xi (4.16)
where the summation is taken for all the learning samples, x;, in the retraining set. The new
learning samples are used for tuning the class centres. The fuzzy membership function
defined in Equation 4.12 could be modified by tuning M to fit the requirement of the new
boundaries. The tuning process at an existing neuron does not change its connections to the
other related neurons.

The tuning of the class information at old neurons is similar to the adjustment of the
expected value (the sample mean) and the feature variance from the new learning data for a
Bayes classifier. The class centre and the sample mean define the location of the samples in
the class. The boundary gradient and the feature variance describe the density of samples
around the class centre. All these parameters are affected by both old and new learning data.
The performance of a Bayes classifier depends greatly on the probability density function.
The new learning samples will adjust the hard boundary position (threshold) from the new
estimates of the data. In the MPC fuzzy neural networks, the boundary between classes are
fitted by tuning M in the membership function according to the distribution of the learmning

data. Distribution estimates of the learning data are not required.
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Figure 4.12 Tuning Old Neurons in the MPC Fuzzy Neural Networks

The procedure of tuning old neurons for the MPC fuzzy ncural networks is

summarized as following:

(1) Set neuron label p = 1, and the retraining set X,, = X, where X is the whole sct of
the learning samples for the knowledge updating;

(2) Partition X, into two sets so that X, = A, + B, where A, and By, respectively, arc
the sets which contain the samples belonging to the two class clusters defined at neuron p;

(3) Tuning the class centres at neuron p using Equation 4.16;
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(4) Fixing the class boundary by adjusting parameter M in Equation 4.12 and
examining the classification results of the leaming samples in X;
(5) Set the retraining sets X,,, = A, and X,,, = B, for next neurons;
(6) Letp=p+ 1, and go to step (2) until
(i) the majority of the samples in X, are correctly classified with the new class
information and neuron p defines only one-class cluster, or

(ii) carrying out the "adding new neurons” process at neuron p.

This procedure is depicted in Figure 4.12. The parameters at the neuron are modified,

but the connections are not changed.

4.5.3 Adding New Neurons

Tuning of old neurons with new information is carried out based on the assumption
that the learning samples for knowledge updating have the same distribution as the old
learning samples in the principal component directions. If this does not apply to the new
learning data, we can add new neurons into the network.

As discussed previously, the class centre and the class boundary at a neuron can be
modificd by a tuning process. First, we can use the new centre and the new boundary to
check the classification of the new learning samples at this neuron. If the majority of the new
learning samples at this neuron cannot be classified correctly, we have to seek new class
information to solve the problem. Among those of the old class information, the connections
can be changed for inserting new neurons. For example, an existing neuron, S, classifies the

samples into two classes, A and B. It generates two separate neurons, Q and R, indicating
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class A and class B respectively. The output of neuron S is directly connected to the single-
class-defined neuron (separating a single class; here, it is B), R in the output layer. Suppose
that most of the learning samples belonging to class A in the retraining set are incorrectly
classified into class B at neuron S. The updated class information by the tuning is not
working for the classification of these data. To solve this problem, we cut the connection of
neuron R to the output layer and implement the maximum partition as defined in the learning
procedure on the retraining samples. The maximum partition on the retraining set
(containing both class A and class B) at neuron R generates two new neurons in the network,
say R1 and R2. After this operation, neuron R is no longer a single-class-defined neuron.
New class information including the pivot index, the class clusters, the class centres, and the
class boundary is obtained. The old output of R connection to the output layer is replaced
by the new connections to neurons R1 and R2.

R1 and R2 are the new neurons inserted in the network. They could be single-class-
defined neurons and connected to the output layer. If they are not single-class-defined, the
same leamning procedure is applied until one single class is separated at a neuron. New
neurons are usually inserted between neurons which are close to the output layer.

The procedure of adding new neurons for the MPC fuzzy neural networks is

summarized as following:

(1) Classify the learning samples with the tuned class information and partition the
retraining set A into two sets: A = Al + A2. Al contains the correctly classified samples.

A2 contains the incorrectly classified samples.
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Figurc 4.13  Adding New Neurons in the MPC Fuzzy Neural Network

(2) Break up the old connection to the output layer of the neuron. Generate two
neurons and put connections to these new neurons.

(3) Learn new class information by using the maximum partition on set A2 and the oid
class information. Replace the old information with the new class information at this neuron
and store the necessary class information in the two new neurons.

(4) Go back to step (1) at the new neurons until single-class-defined neurons are

generated. For single-class-defined neurons, put the connection to the output layer.
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This procedure is depicted in Figure 4.13. The new neurons are added to the network

and the connections are changed.

4.6 EVALUATION OF THE MPC FUZZY NEURAL NETWORKS

There are several properties that a pattern classifier should possess (Simpson, 1992),
They are on-line adaptation, nonlinear separability, dealing with overlapping classes, short
training time, soft and hard decisions, verification and validation, tuning parameters, and
nonparametric classification. The proposed MPC fuzzy neural networks for automated tool
condition monitoring have been developed in consideration of these requirements. The
training and classification algorithms are based on the theories of neural networks, fuzzy
logic, and probability reasoning. In the feature extraction, metal cutting mechanics arc
primarily studied for a distinctive feature space, and the principal component analyses arc
applied in multiple directions.

With the application of fuzzy classification, the neural networks are effective in
dealing with nonlinear separable and/or class-overlapping classification problems, which are
common in the case of tool condition monitoring in machining, especially for the monitoring
with varying cutting conditions. The partial interconnections within the fuzzy neural
networks make the training time very short compared to that of fully connected networks
such as the back-propagation neural networks. The calculations necessary for the

classification are also significantly reduced since not all the neurons in the hidden layer are
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used while a sample is being processed. Soft and hard decisions are optional for different
applications. The maximum partition algorithm is based on the distributions of the learning
samples and no parameler estimations are needed.

The proposed method functions similarly, in the partition of training samples, to the
linear fuzzy equation algorithm proposed by Du, Elbestawi and Li (1992). The linear fuzzy
equation method uses a matrix to describe the relationship between the monitoring indices and
the tool conditions. The proposed MPC fuzzy neural networks use a tree structure similar
to that in the fuzzy decision tree described in the work of Li, Elbestawi and Du (1992).
Because the decision tree is more flexible than a matrix approach, it has better performance
in the case of tool condition monitoring in machining. In constructing the fuzzy decision tree,
the maximum partition generates nodes holding the samples from only orne tool condition.
The other samples are put into other nodes. This means each partition leads to a final
decision at a leaf node of the tree. The maximum partition in the MPC fuzzy neural networks
chooses a better partition so that a new-born neuron can hold samples from different tool
conditions. A neuron can lead to other neurons in the hidden layer as well as neurons in the
output layer. The consequence of this structure is simplicity in the interconnection and the
short routines in the classification. Experimental tests by using the same set of data showed
that the MPC fuzzy neural networks gave a better success rate than the fuzzy decision tree
algorithm (Li et al, 1994).

In the consideration of on-line adaptation (on-line learning) and the tuning parameters,
a classifier should have as few parameters to tunc in the system as possible. Both the back-

propagation neural networks and the proposed MPC fuzzy neural networks have very few
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tuning parameters. The structure of the MPC fuzzy neural network is, however, easily
modified with new learning samples. Unlike the back-propagation neural networks that
require a complete retraining of the system with both the old and the new learning data, the
MPC fuzzy neural networks need only to change partially their neurons and the connections
when the new learning information is added. Both supervised and unsupervised classification
algorithms are easily implemented with the available learning samples.

The proposed classification algorithm of the MPC fuzzy neural networks is based on
the three components of “soft computation." In the learning procedure, partitions of the
learning samples are carried out by examining the distribution of the learning samples in
multiple principal component directions. Like other statistical reasoning methods, the
"maximum partition" relies greatly on the distribution of the data. If the data are scattered
in the feature space, a cluster centre is impossible to be recognized. So the basis of the
classification is that the learning patterns are distributed around their centre(s). This is also
believed to be true to all kinds of pattern classifiers. The major difference in the proposed
algorithm with other statistical reasoning is that parameter estimation is not required.

To insure a good distribution of the learning data, the training samples have to be
representative of the whole span of the feature space. In tool condition monitoring, all
applicable tool and cutting conditions have to be considered during the training phase. On
the other hand, if a poor distribution is encountered, then a modified feature extraction
procedure has to be implemented. Information about new phenomena can be added to the

monitoring system by knowledge updating.
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4.7 SUMMARY

A new approach “to the development of automated tool condition monitoring in
machining is proposed. The system consists of sensor fusion, neural networks, fuzzy logic
and statistical reasoning. These simple procedures attack different problems within a complex
classification problem. The combination of these techniques creates the Multiple Principal
Component (MPC) fuzzy neural networks. The proposed decision making algorithms utilize
the flexible structure of partially connected neural networks and the uncertainty measurement
of fuzzy logic. The maximum partition is implemented in multiple directions based on the
distributions of the learning samples.

The major subjects in the development of the MPC fuzzy neural networks are
supervised classification, unsupervised classification and knowledge updating. Supervised
classification deals with training the system with the labelled learning samples. The principal
component analyses are implemented in multiple directions for feature extraction as well as
for pattern partitions. The fuzzy neural networks are built through the learning procedures.
Classification is done by examining the fuzzy membership grades of the samples at neurons
in the network. The search directions are guided by the membership grades, and the final
conclusion is given at the neurons in the output layer. Unsupervised classification deals with
training the system without labelled learning samples. The pattern partitions are based on the
principal component analyses in multiple directions and the fuzzy membership function which
sorts the optimum pattern combinations. Knowledge updating algorithm involves tuning the

old neuron parameters and adding new neurons to the existing network.



CHAPTER V
EXPERIMENTAL TESTS ON THE MPC FUZZY
NZURAL NETWORKS FOR TOOL CONDITION

MONMITORING

5.1 INTRODUCTION

The proposed MPC fuzzy neural networks for automated tool condition monitoring
in machining were tested by experiments in turning and drilling.
Several sensors were used for measuring the process signals. Force, torque, vibration

and spindle motor power signals were fused using the principal component analysis to

131
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produce highly sensitive features. The features generated by sensor fusion were taken as the
inputs to the fuzzy neural networks for automated tool condition monitoring. The tool
conditions considered in the monitoring tests included sharp tool, tool breakage, chipping and
different states of tool wear. The classified tool conditions were obviously the outputs of the
fuzzy neural networks.

The experiments were conducted for testing the performance of the MPC fuzzy neural
networks in three subjects: supervised classification, unsupervised classification and
knowledge updating. The learning and the testing samples were obtained from the cutting
tests conducted within a reasonable range of cutting conditions.

The experimental setups and results are discussed in this chapter. Tests in turning and

drilling will be addressed separately.

5.2 TURNING EXPERIMENTS

5.2.1 Definition of the Tool Conditions

The experiments were conducted with five different tool conditions, namely Sharp
tool (SHP), Breakage (BRK) and three states of too] wear which are defined as Slight
(SLW), Medium (MDW), and Severe (SVW)Wear. The tool wear criterion considered was
the flank wear (refer to Appendix). For the first tool condition, sharp tools or tools with flank
or crater wear smaller than 0.1 mm and with no chipping were used. Tool breakage was

identified by a chipping area on the tool larger than 0.04 mm?. Tool wear states were defined
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Tool Sharp Tool Breakage Slight Wear Medium Severe Wear
Conditions Wear -
Tool wear < 0.1 mm chipping > 0.04 mm? 0.l mm< lemm< 03 mm<
Fcatures wear wear woear
<0.16 mm < 0.3 mm < 0.6 mm

as follows: slight wear — with average flank wear between 0.1 mm and 0.16 mm, medium
wear — with average flank wear between 0.16 mm and 0.3 mm, and severe wear — with

average flank wear greater than 0.3 mm. These conditions are summarized in Table 5.1.

5.2.2 Experimental Setup

Cutting tests were performed using an NC lathe (Standard Modern model N/C 17).
A schematic diagram of the experimental setup is shown in Figure 5.1. During the
experiments, six process signals were measured which include three components of cutting
forces, F,, F,, and F,, two vibration signals, A, and A,, and the culling power, Pw. The
cutting forces were measured by using a three-dimensional dynamometer mounted under the
tool holder. The vibrations were monitored by using two accelerometers located on the (ool
holder in both the axial and the radial directions. The cutting power, Pw, was measured using
the armature current of the spindle motor along with the cutting speed.

The force and the acceleration signals were first passed through charge amplifiers
(Kistler 5804) and Ion pass filters (cut-off frequency of 1 kHz), and then were sampled at

2 kHz. The power signal was also sampled at the same frequency. The workpieces were
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Figure 5.1 Sensor Setup for Turning Tests

AISI 1014 steel bars and the cutting tools were carbide inserts (grades K21and K6).
Various cutting tests were conducted at 52 different cutting conditions. The
variations of the cutting conditions include cutting speeds ranging from 96 to 322 m/min,

feeds ranging from 0.024 to 0.246 mm/rev, and depths of cut ranging from 1.2 to 3.5 mm.

5.2.3 Signal Conditioning and Feature Selection

A schematic representation of the signal processing system used in this study is shown
in Figure 5.2. A total of 97 features were used to generate a measurement vector x. Of these
features, nine were obtained from time domain records (length 2048) of the force, vibration
and power signals. From each time domain record of the forces, both the mean and the
variance were calculated. The variances of the acceleration signals were also calculated.

From the power records, the root-mean-square values were determined. In addition, 88
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Figure 5.2 Signal Processing

features were obtained from the power spectra of the force, vibration and power signals.
These frequency domain features represented the signal powers in a few specified frequency
bands, calculated by the summation of the signal power at each frequency in the bands. For
both the force and the vibration signals, the width of frequency bands was chosen to be 48
Hz, while for the cutting power signals the band width was 97 Hz. The frequency range of

analysis for all the signals was 0 to 768 Hz.



136

As mentioned above, 97 features were selected to define the measurement vector.
The dimension of this vector is too large for the classification. These features also may not
give the best directions of separation in the classification space. Feature extraction is
implemented to reduce the pattern space and simplify the decision surfaces. We define x as
an n-dimensional vector in the pattern space, also known as a measurement vector, which is
obtained by the signal processing. We seek to extract m features (the monitoring indices, and
m << n) from vector X to form the feature space. Cover (1965) provided the guidelines for
determining the optimum number of features, 71, and the number of samples, N, to be used

for the training and the classification test:

N 2 2(m+1). 6.1

In our experiments, by the principal component analysis, the number of the major
principal components (the most significant eigenvalues) was determined to be six, The
dimension m of the feature vector was, therefore, set to be six. Based on Cover's equation,
it was decidec that 15 samples per class were necessary for the learning. The experimental
data were randomly selected within the considered rage of cutting condition. Each set
contains 75 samples from five tool conditions. For each class, cutting conditions used in
generating the training samples were chosen at random to cover the entire range considered

in this study.
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5.2.4 Experimental Results
A. Tests for the Supervised Classification

The MPC fuzzy neural networks (are simply denoted as FNN in this section) for
automated tool condition monitoring in machining were trained using the procedure
mentioned earlier (refer to Section 4.3). Four sets of experimental data ( namely A, B, C, and
D) were generated from the cutting tests. Both sets A and B were generated under the same
cutting conditions but from different records. Sets C and D were generated under different
cutting conditions. However, all the cutting tests for sets A, B, C, and D were performed
under conditions which fall within the range given in Section 5.2.2. Each set of data
contained 75 samples belonging to the five tool conditions considered in this study (i.e., 15
samples for each tool condition). The principal component analyses were implemented for
the feature extraction. The learning samples were transformed into the six-dimensional
feature space (in the maximum component directions) before they were used for training the
systems. The classification data were also transformed into the same features space.
Table 5.2 summarizes the results obtained from those tests. For comparison, the results
obtained using well-known feed-forward neural networks trained by the back-propagation
(BPNN) with the same sets of data are also given.

As shown in the table, any decision making method performs better when using the
same samples for both the learning and the classification. In general, the results show that
using the proposed MPC fuzzy neural network for tool condition monitoring in machining,
along with the integration of multi-sensor information, has resulted in the higher success rates

than those obtained by using the BPNN. An important advantage of the proposed method
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5 S i assification with Different Tests
Test 'I‘r'aining Data Classification Classifications Success Rate Success Rate
Data of FNN of BPNN
#1 Group A Self-Classification 94,7 % 89.3 %
Group A
#2 GroupB Different Record 893 % 80.0 %
' Same Cutting Condition
#3 Group B Self-Classification 94.7 % 84.0 %
Group B
#4 Group A Different Record 840 % 70.7 %
- Same Cutting Candition
#5 Group C Self-Classification 96.0 % 86.7 %
Group C
#6 Group D Different Cutting 80.0 % 69.3 %
Condition

is its good classification performance in the tool condition monitoring within a reasonable
range of cutting conditions, even though the classification samples used are obtained under
different cutting conditions than those of the training samples.

Figure 5.3 gives an example of the fuzzy neural networks generated in tests #1 and
#2. The classification of a sample at a neuron is carried out based on the information such
as the pivot index, the fuzzy centres, the membership function, and the associated classes.
Then, the sample is either sent to other neurons for further classification, or put to the output
layer where the final decision is given. The interconnections within the neurons are clearly
seen in the network. At each neuron, only parts of the classes, the monitoring features are
considered. The neurons in the network are partially connected.

Figure 5.4 shows the detailed results of classifying the three stages of tool wear in test

#2 by two different neural networks. In detecting tool wear, the fuzzy neural networks give




Output
Layer

Hidden
Layer

Input
Layer

Figure 5.3 Example of the MPC Fuzzy Neural Networks (Test #1 & #2)

better separations between the three wear stages than the back-propagation trained neural
networks. Finally, Figure 5.5 is the summary of the classification tests in detecting each tool
condition. At each test, there were 15 samples from every tool condition. The bars in
Figure 5.5 indicate the numbers of correctly classified samples in each tool condition. The
difference in classifying the sharp tool and the tool breakage by two neural networks is not
significant. In classifying the tool wear, the MPC fuzzy neural networks give significantly

better estimations. The results are detailed in Table 5.3.
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Figure 5.4 Classification Results of the Tool Conditions by Two Neural Networks
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Test | Network Sharp Breakage Slight W Medium W Severe W Total
#2 | NN |15} 100% [15] 100% [ 11| 733% |14 | 933% | 12 [ 200% |67 | 893 %
BPNN | 141 933% [ 15| 100% | 7 [467% [15] 100% | 9 | 600% | 60 | 80.0%
#4 | FENN 130187% [ 15] 100% [13]87% | 9 { 600% |13] 8.7% | 63 | 840
BPNN | 13 | 867% | 15| 100% | 7 | 467% | 7 | 467% | 11 | 733% {53 | 707 %
#6 | FNN [ 15| 100% |13 | 87% | 9 1 600% |12 | 800% | 11| 7332 | 60 | 0.0 %
BPNN | 14 | 933% [ 13 | 86.7% | 5 | 33% | 10| 667% | 10| 667% (52 | 693 %
R 1 BT ETRE] R
0.8
E o] o
a
‘§ 0.4 {
=]
“ oz Testé2
i ._/_ : - Test# 4

SHP BRK SLW MDW SVW Total

Figure 5.5 Comparison of the Classification Results by the FNN and the BPN
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Another advantage of the proposed MPC fuzzy neural networks over the back-
propagation neural networks js the short training time. For example, in tests # 1 and #2, the
training of a back-propagaé?an neural network required 11 minutes and 21 seconds of CPU
time on a PC-486/33 computer. It took approximately one second to trair;n.‘«t'he MPC fuzzy
neural network with the same learning data on the same computer. This is a critical issue
when the system is used for the on-line monitoring where self-improvement and self-

adjustment are needed.

B, Tests for 1[]‘ e Unsupervised Classification

The proposed MPC fuzzy clustering neural networks for tool condition monitoring
were tested with the experimental data obtained within a range of cutting conditions. Two
sets of experimental data, named A and B, were randomly selected. Each set of the data
contained 75 samples obtained at the five tool conditions defined in this study (i.e., 15
samples for each condition). The samples were transformed into their principal component
directions before being used as the inputs to the networks. This transformation was done to
reduce the dimension of the original data vectors. To investigate the effect of cluster numbers
on the clustering results, five-class tests and three-class tests were designed. The five-class
tests included all the tool conditions mentioned earlier. In the three-class tests, the three
stages of tool wear were combined into a single class, so the tool conditions were simply
sharp tool, tool breakage, and tool wear. The results showed that the larger the number of
clusters is, the more levels in the hidden layer are required, and the more complicated the

corresponding network is ( refer to Figure 5.6 ).



(a) A Three-Class Test (b) A Five-Class Test

Figure 5.6 Examples of the MPC Fuzzy Neural Networks for Clustering

Figure 5.6 shows the fuzzy clustering neural networks which were butlt during the
clustering of the data in set A. Each neuron in the networks receives information from the
input layer as well as from other neurons at the preceding level in the hidden layer. The
outputs of a neuron are sent to either the output layer andsor other related neurons at the
next level. These connections are jointed with the fuzzy membership grades.

The results of clustering the tool conditions in the turning experiments by the MPC
fuzzy neural networks are shown in Table 5.4. In the three-class tests, the success rates arce
approximately 94 % while those of the five-class tests are about 80 % . These results proved
the capability of the proposed MPC fuzzy neural networks for dealing with multi-class,

overlapped clustering problems such as the clustering of the tool conditions in machining.
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Five Class Tests Three Class Tests
tool condition* { SHP | BRK | SLW | MDW | SVW ; Total Sharp | Brcak | Wear | Totai
GroupA 14715 14415 12/15 | 14/15 13715 67175 {47145 14/15 | 45745 731175
successrate (%) { 933 | 933 80 93.3 86.7 89.3 93.3 | 93.3 100 97.3
Gl’OI.IpB 12£15 14715 14715 g/15 12715 680/75 12415 14/15 1 45/45 175
success rate (%) 80 933 | 933 53.3 80 80 30 93.3 100 94.7
Aand B 25430 | 27/30 | 24730 | 21/30 29 /30 1264150 | 25730 | 27/30 | 90/90 142 4150
success rate (%) | 83.3 90 80 70 96.7 84 83.3 30 100 94.7

* Class information was not provided for this data unti! the clusters were formed.

Figure 5.7 illustrates one of the results from these tests, where (a) is the distribution of the

original experimental data in the first two principal component directions, (b) is the clustering

result of a three-class test, and (c) s that of a five-class test. The experiments showed that

the proposed MPC fuzzy neural networks for tool condition monitoring in machining was

successful in the classification of the unlabelled testing data.

C. Tests for the Knowledge Updating

Two sets of experimental data, A and B, were generated from the cutting tests. They

were taken under the same cutting conditions but from different records. Each set of data

contained 75 labelled samples belonging to the five tool conditions considered in this study

(i.e., 15 samgples from each tool condition). The samples were transformed into the six-

dimensional monitoring feature space before they were used for learning and testing.
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(a)
o0 — Sharp
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Figure 5.7 Clustering of the Tool Conditions by the MPC Fuzzy Neural Networks
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ati sults e wledg ating
Test Training | Retraining | Classification Results (with 30 testing samples in cach tool condition)
3t Set SHP BRK SLW MDW SVW Total .
1 A none 27 30 26 25 24 132 | 880 %
2 A&B none 29 28 27 30 26 140 | 93.3 %
3 A B | 27 30 30 27 21 | 135 | 90.0 %

Three experiments were designed. The first one used set A as the learning samples
to train the monitoring system. A and B were then classified through the trained fuzzy neural
network. The second test used both A and B to train the system, and then a classification test
was performed with the same samples as those used for learning. In the third test, the system
was first trained using set A, then retrained by set B. Classification was then performed using
both A and B sets. The design of these three tests was aimed at providing a comparison of
the classification results using the monitoring systems trained by the different learning
procedures. As can be seen, the first test is a common classification without retraining. Test
(wo is a self-classification test there all the testing samples are used for the learning. Test
three is a classification with retraining. The results of these experiments are given in
Table 5.5 and the comparison is itlustrated in Figure 5.8.

From these results, it is obvious that the best classification results are given by the all-
data-trained ( self-classification) system in test two. It is also shown that test three, with
knowledge updating, gives better classification results than test one which is without

knowledge updating. These experimental results indicate that the proposed MPC fuzzy neural
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0.92

0.84 —

Success Rate (100 %)

BRK Stw MDw SvW TOTAL

Training Set :
. A andB |—] A, with B for retraining i A

Figure 5.8 Comparison of the Classification Results with Retraining

networks for automated tool condition monitoring has the abilities of self-learning and
knowledge updating. The new knowledge in the retraining data is easily added into the
system by a simple retraining procedure, and the classification results with the retrained

system are improved.
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5.3 DRILLING EXPERIMENTS

5.3.1 Definition of the Tool Conditions

In drilling, the tool wear changes along the cutting edge from the margin to the chisel
edge due to the complex geometry of the drill bit and the cutting process. At the drill point,
wear occurs at the flute (crater weaf), the clearance face (flank wear), the chisel edge, and
the margin. Flank wear was mainly considered in this study (refer to Appendix).

The too! conditions in the drilling experiments are recognized as four categories:
Sharp tool (SHP),,C:'iipping (CHP), Small wear (SMW) and Large wear (LGW). Sharp tool
is defined as f;é"s‘p tools and the tools with a flank wear less than 0.1 mm. Chipping means
chipping occurs on the cutting edge. Small wear is defined as the flank wear between 0.1 mm
and 0.3 mm, and large wear is defined from 0.3 mm to 0.6 mm. These definiions are shown

in Table 5.6

5.3.2 Experimental Setup

The drilling tests were performed on a 5-axis CNC milling machine. 3/16 inch (= 4.76
mm) high speed steel drill bits were used for the experiments. The workpiece was medium
carbon steel AISI 1045. The depth of the holes were 25 millimetres. Cutting__s'peeds ranged
from 12 m/min to 31 m/min, and feedrates ranged from 60 mm/min to 166mm/min.

Four cutting process signals were measured f.c;rl the tool condition monitoring. They
were the torque, the thrust force and two vibrations in vertical and horizontal directions. The

sensor setup is shown in Figure 5.9. A rotating cutting force dynamometer was used for
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Table 5.6 Definition of Tool Conditions in Drilling T

Tool Conditions | Sharp Tool Chipping Small Wear Large Wear

Tool Features | wear < 0,1 mm chipping on cutting edge | 0.1 <wear <0.3mm | 0.3 < wear <0.6 mm

9 rotating dynamometer

deill bit accelerometers

workpiece

Figure 5.9 Sensor Setup for Drilling Tests

measuring the cutting force and the torque. Two accelerometers were used for measuring the
vibrations. The measured signals passed through low-pass filters with the cut-off frequency
of 1 kHz, then were sampled at 2 kHz. The signals were sampled and further processed by

a PC computer.




150

5.3.3 Signal Conditioning and Feature Selection

The same signal processing scheme was used for the drilling tests as for the turning
tests. The measurements were randomly taken in steady cutting processes for one second.
The sampled data during this time period made up the measurement vectors. The
measurement vectors represented five signatures in the time domain and seven signatures in
the frequency domain, The time-domain signals included the mean values of the cutting force,
the torque and the force-torque ratio, as well as the variances of the cutting force, the torque
and the vibrations. The frequency-domain signals involved the powers of these measured
signals in several specified frequency bands. The frequency range of the analyses was O to
400 Hz.

The measurement vectors were further treated with the principal component analyses

to generate the feature vectors for learning and classifications.

5.3.4 Experimental Results

Two sets of experimental data were obtained from the drilling tests. Both A and B
were randomly generated within the experimental data obtained within the considered range
of cutting conditions. Each data set contained 60 samples from the four considered tool
conditions, 15 from each condition. After the principal component analysis was completed,
three features were extracted from the experimental data to form the feature vectors. All the
samples for learning and classification were transferred into these directions.

Three tests were carried out in the experiments for the drilling tool condition

monitoring. Test 1 used both sets A and B for training the neural network, which was a self-
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Figure 5.10 Comparisons of the Classification Results for Drilling Tests

classification. Test 2 used only one set, A or B, to training the neural networks, which was
a common classification test. Test 3 was a knowledge updating test which used either set A
or set B as the learning data, and then used the nfher set to retrain the system. These tests
were designed to evaluate the performance of the MPC fuzzy neural networks for tool
condition monitoring in drilling process. The performance with different learning data and
the system retraining was also tested. Comparisons of the performance with different learning
data are depicted in Figure 5.10. Table 5.7 gives the details of these experimental results.
The results have shown the good performance of the proposed MPC fuzzy neural networks

for automated tool condition monitoring in drilling tool condition monitoring.
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peri IR_‘ sulis i jlling Tests

Classiﬁcatiqn;l?.ésults
Test | Training | Retraining ( with 30 testing samples in each tool condition )
Set Set vk

SHP CHP SMW, # LGW Total
1 | A&B none ] 30 |29 26 L 28 | 113 | 942%
2 A none 30 | 26 | 24 | 25 | 105 | 875%
B none 29 28 27 24 108 90.0 %
3 A B 30 27 25 27 109 90.8 %
B A 29 29 27 27 112 93.3 %

5.4 SUMMARY

The experiments in turning and drilling were conducted to test performances of the
proposed MPC fuzzy neural networks fg_r automated tool condition monitoring in machining.
The tests were designed to verify performances of the system in different cutting processes
within a range of cutting conditions. These performances included supervised classification,
unsupervised classification and knowledge updating of the system.

Several sensors were used for the monitoring featurc selection. Force, torque,
vibration, and spindle motor power signals were fused by _sing the principal component
analyses to give a highly sensitive feature space. The too! conditions considered in the
monitoring tests included sharp tool, tool breakage (or chipping), and the different states of

tool wear. Various cutting conditions were selected during the experiments.
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Supervised classification and knowledge updating tests were conducted in both
turning and drilling. Unsupervised classification was done in turning. In turning tests, the
experimental results showed approximately 94 % success rates in self-classification tests ( i.e.,
the same data samples were used for both leamning and classification), 84 % in the tests
performed using different records for classification than those used for learning under the
same cutting conditions, and approximately 80 % in the tests performed using the samples
obtained at different cutting conditions for classification than those used for learning within
the same range of cutiing conditions. The proposed classification strategies by the fuzzy
neural networks performed better than the back-propagation neural networks in these tests.
) In drilling, the self-classification resulted in a success rate of 94%, and about 88% was
obtained in one-set trained classification.

Knowledge updating with only the new learning samples did improve the performance
of the system in these tests. About 50% improvement was obtained from the one-set trained
system (haif of the samples were used for trainiﬁg) comparing to the self-trained system (all

the samples were used for training).

-
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CHAPTER VI

CONCLUSIONMNS

6.1 INTRODUCTION

The main objective of this dissertation is to explore a new approach to automated tool
condition monitoring in machining by using fuzzy neural networks. This chapter summarizes
the work achieved in developing the Multiple Principal Component (MPC) fuzzy neural
networks for automated tool condition monitoring in machining. The possibility of the future
work is also suggested.

Statistical pattern classification, neural networks and fuzzy logic have been
individually applied in machining process and tool condition monitoring for a long time. Each

of these approaches attacks the problem from different angles and has certain limitations. A
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s’ﬂ‘nple pattern classifier, itke a linear classifier, is available for solving the simple problems
which are linearly partitioned. Most statistical pattern recognition methods, such as Bayes
classifier, need the parameter estimations from a lot of samples. However, the classification
based on the distribution and statistical models is still a powerful tool to solve the patiern
recognition problems. Neural networks have the abilities of parallel computation, self-
learning and non-linearity. They are powerful for solving complex pattern recognition
problems. Some algorithms, such as the bziék—propagation, have more computing work in
the training procedures so that the training times are usually significant. Fuzzy classification
uses the fuzzy memberships to present similarities of the classes. This representation is very
advantageous for solving uncertain and class-overlapped problems, especially in machining
process and tool condition monitoring.

"Soft computation” is proposed in the machine intelligence for dealing with
approximation and dispositionality (Zadeh, 1993). Its principal constituents include fuzzy
logic for imprecision, neural networks for knowledge learning, and probability reasoning for
uncertainty. The combination of these three techniques makes the puttern classifiers much
more flexible and powerful. Using the soft computation, along with sensor fusior, for the
development of automated tool condition monitoring in machining is the major effort and the
contribution of this thesis. The proposed system is the Multiple Principal Component (MPC)
fuzzy neural networks. The algorithms for supervised classification, unsupervised
classification and knowledge updating have been developed. The classification performances

of the system have been tested experimentally in turning and drilling,
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6.2 CONCLUSIONS FROM THE FINISHED WORK

The original contributions of this work to the development of automated tool

condition monitoring in machining can be summarized as follows:

A. System Architecture

Three major components of the “soft computation™ are involved in the construction
of the proposed fuzzy neural networks. The combination of fuzzy logic with neural networks
has a sound technical basis because tﬁcsé two techniques approach the design of intelligent
machines from different angles. Fuzzy neural networks employ the advantages of both neural
networks and fuzzy logic. Neural networks offer good performance in dealing with sensor
information in parallel at a low computational level. The high interconnection within the
networks gives the capabilities of exchanging the information sufficiently and managing
nonlinearity. Fuzzy logic gives a means for representing , manipulating, and utilizing the data
and the information that possess nonstatistical uncertainties.

The proposed t~ol condition monitoring system is a partially connected neural
network with fuzzy classification at the neurons and with the interconnections with fuzzy
membership grades. Statistical reasoning is also used in constructing the fuzzy neural
networks.

The Multiple Principal Component fuzzy neural network algorithm is a new

. contribution to the concept of pattern recognitions. Fuzzy neural networks are applied to the |

tool condition monitoring in machining for the first time.
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A sﬁpervised classification algorithm has been developed for the MPC fuzzy ncural
networks. The "maximum partition" is proposed to give better divisions of the involved
classes. All the monitoring indices are examined against all the tool conditions to select the
“pivot indices" for the maximum partition. Statistical methods are used for locating the class
centrés and the fuzzy membership is used for generating "soft" boundaries between the
classes. Neurons in the network are generated with the pivot indices, the class centres, the
fuzzy membership grades and the connections to other related neurons.

In classification, the fuzzy membership grades of the input pattern are calculated at
the neurons. The membership gr;}ggs define the path directions at each neuron for the
classification. The final results can be given with the fuzzy rnembership grades which measure

the uncertainty in the classification.

C._Unsupervised Classification
Unsupervised classification is based on the principal component ‘unulysis and the fuzzy
memberships to the potential clusters. Two major procedures of the clustering at a neuron
in the network are the principal component analysis in multiple directions and the cluster
combinations. A fuzzy membership function is defined for the optimum combinations. The
fuzzy neural network is built w.hiié"'sucl1 procedures are repeated in the learning procedure.
'i‘hc clustering results of certain published data by the proposed clustering method

have shown the good performance comparing to other clustering methods.
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Knowledge updating is easily implemented with the structure of the MPC fuzzy

neural networks. The proposed knowledge updating algbrithm deals with two issues: tuning

" old neurons and adding new neurons. The updating algorithm is developed with the

A

assumption that the system has been lrain;"d and it keeps only the necessary information for
the classification. New information in the new training data about the classification is
combined with the stored information which were learned previously. The old training data
are not required. The main structure of the system is not destroyed and only some parameters
and minor connections are m&liﬁed.

The proposed knowledge updating algorithm‘without the old training data is simple,

fast and effective. Knowledge updating improves the system's performance in classification.

raction

Several sensors a;e qsed for selection of the monitoring features. The principal
cutting mechanics is studied for choosing the measurement of the process signals which are
the most sensitive to changes in the machining tool conditions. Signals in both time domain
and frequency domain are used. The signals from multi-sensors of different types at different
locations are fused by the principal component analysis to produce the highly information-

bearing features (monitoring indices).
The monitoring indices are further analyzed in the learning procedure of the fuzzy
neural networks. They are selectively used at each individual neuron in the form of the pivot

index. The monitoring features are extracted in both signal processing and learning procedure.

LA
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The experiri;énts for testing the proposed MPC fuzzy neural networks for automated
tool condition monitoring in machining were performed in turning and drilling.. The proposed
algorithms of supervised classiﬁcatio&,unsupervised classification and knowledge updating
were tested by using the experimental data. -

The experimental data for testing the MPC fuzzy neural neiworks were obtained under
various cutting conditions. The data sets were randomly selected from the experimental
samples. Different data sets were designed to test the performance of the proposcd system
in sclf-learrﬁng, in learning with the sample in different time records, and in learning with the
samples under different cutting conditions (within the considered range).

The experimental results showed the good performance of the system with these tests.
The success rates of self-learning were 94 - 96 %. Those of learning with dif I'cr‘cnt thne
records under the same cutting conditions were 84 - 89 %. The leurniné with the samples
under different cutting conditions gave 80 %. The proposed MPC fuzzy neural uet@orks
performed better than the back-propagation neural networks in theses tests. In unsupervised
classification, the_ system gave the success rates of 80 - 97%, depending on the number of
classes (tool conditions) pre-defined. Knowledge updating improved the performance of the

system by 50 % comparing the success rates between the self-learning (all the samples were

used for learning) and the half-learning (half of the samples were used for learning).

Summarizing the above results, we come to the conclusion that the proposed

algorithm of the MPC fuzzy neural networks is a fast, effective and simple method for dealing
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with multi-sensor, multi-class, overlapped classification problems. The system has been

successfully applied for the machining tool condition monitoring in turning and drilling.

6.3 SUGGESTIONS FOR FUTURE WORK

Due to recognizable limitations, this single thesis cannot tackle all the aspects of a

i
“fully developed automatedfintelligent machining process and tool condition monitoring
system, by using only the fuzzy neural network approaches. The following recommendations

are given here to enhance the performance and capabilities of the proposed system:

E s 1“4!-”. Decision

Introduction of som;a well-developed knowledge-base (expert) systems and models
in the monitoring system to create some direct routines (or "short cats” ) will improve the
system's performance and speed up the decision making process. A knowledge base of metal
cutting mechanics can be added for better feature selection and decision making strategies for
different cutting processes, different tool geometries, different materials, and different cutting
condition ranges. Sensor fusion (or sensor synthesis) through multiple models can also be

introduced into the system for this purpose.

Due to time limits, the attempt to use fuzzy classification in neural networks for the
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tool condition monitoring in machining is done only with the fuzzy c-means method. Other
fuzzy classification algorithms, such as fuzzy min-max, fuzzy if-then rules, and the like, can
also be used to optimize the performance of a monitoring system. Other architectures of

neural networks may be also worth of exploration.

unicatjon with Control e
Automated tool condition monitoring is only a part of the work in manufacturing
automation. Monitoring systems have to be connected to the control system to play their full
roles. The communication with the control systems or other monitoring systems is necessary.
The on-line implementation of the tool condition monitoring system still needs to be further

developed.

The fuzzy neural networks for automated tool condition monitoring in machining is
generaily a rough and rudimentary idea. The basis of this idea is to combine a few simple and
advanced data processing methods and to utilize their advantages in different aspects.
Numerous ways of merging different advanced technologies exist. It is the author's intention
that the proposed MPC fuzzy neural network algorithm works like a trigger 1o help exploring
the applications of various new techniyues in automated/intelligent process and tool condition

monitoring in machining.
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APPENDIX

SIGMAL FEATURES FOR MACHINING PROCESS

AND TOOL CONDITION MOMITORING

A.1 PROCESS AND TOOL CONDITIONS

A.1.1 Turning Operation

A typical cylindrical turning operation is illustrated in Figure A.1. While studying the
cutting force in turning, it is convenient to consider three mutual-perpendicular force
components: one parallel with the cutting velocity, F, called the cutting force which is the
power contributing force, one along feed direction, F, called the feed foree, and the third
perpendicular to the finished work surface, F, called the radial force. These three force

components are shown in Figure A.1. The tangential component is the cutting force. The
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Figure A.1 Tuming Operation and the Cutting Force Components

longitudinal component is the feed force. These three force components are of the major

interests in machining process and tool condition monitoring.

A.1.2 Drilling Operation

Drilling involves feeding a rotating cutting tool along its axis into a stationary
workpiece. Twist drills with two cutting edges are usually used for drilling. The feed velocity
is always small compared to the peripherat velocity of the drill. The coordination of these two
movements makes the tool cut into the workpiece and a straight hole is made. Figure A.2
depicts this operation and the related forces. Spindle speed, n, is the number of revolutions
that ti. - tool turns in a minute. The spindle speed, together with the diameter of the tool,
defines the curting speed. Feed in drilling, s, is the distance the tool moves toward the

workpiece along the spindle axis for one rotation of the tool.



Figure A.2 Dirilling Operation and the Cutting Force Components

In study of the cutting forces in drilling, the torque and the thrust force are the most
important features. As shown in Figure A.2, the torque is the major power consuniing
component. It is determined by the cutting force along the tangential direction and the radius
of the drill bit. The thrust force is created by the movement of feeding the drill bit into the

workpiece.

A.1.3 Chatter
An important practical problem in metal cutting is machining vibration. It can be
classified as two types: forced vibration produced, for example, by the force fluctuations in

the cutting process and chatter. Chatter is a self-induced vibration existing between the tool



Vibratlons (V)

Vibrations (V)

R

176

T T I
0.4
G2
|! |' Hit ‘ I a-1H It ) J
00 [Hpfi AR BRI
‘I l ;| 'I|! |" i : r
-0.2 1
-0.4
-0.8 —1 4 !
0.0 a.1 o2 0.3 04 05 0 200 400 800 8C0 1000
Time (sec.) Frequency (Ha)
{a) Acccleration Signals under Stable Cutting
a-o [ T T T | 1.0 Y 1 T 1 T T Y T T
4.0 | [ I
20 | ' I
‘H i | i1 Y L kiib I
ool ...l G AL ] i';.l AR I I I.!'
. i“ N 1[ ;"'; R ARAST Y _lnr ’ e Amt, |‘
I RIS i) (1P ) HeT
_z.o (U neen e |
4 |ll
—4.0 l
-8.0 1 ] 1 1
0.0 0.1 0.2 0.3 . 0.4 0.5 0 200 400 600 800 1000
Titne (vec,) Frequency (Ha)

(b) Acceleration Signals in Chatier

Figure A3 Acceleration Signals under Stable Cutting and Chatter

and the workpiece in the cutting process. They may produce imperfections on the workpiece
surface and also may increase the rate of tool wear or damage the machine. Chatter wil! leave

chatter marks on the machined workpiece surface and will result in chatter noise. These two

characters can be used to identify the occurrence of chatter.
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__thn a vibration is measured by accelcrations, the signals":;r_e gelierally a zern-mean
time series. Under normal cutting conditions, the aéceleration :signal is essentially a:‘white
noise since there is no predominant vibration mode. Under cha’ter conditions, however, the
signals are dominated by structural vibration modes. The structural modes aie easily seen on
the spectrum of the signal. Figure A.3 shows typical vibration éignals in normal cutting

condition and in chatter respectively. The spectrums of these signals are also given. The

differences in both time and frequency domains are noticeable.

A.1.4 Tool Life Criteria

During metal cutting, cutting tools are subjected to high pressures, Severc frictions and
high temperatures. Tools most often fail by either sudden breakage or gradual wear. A tool
life criterion is generally defined as a predetermined threshold value of a tool wear measure
or the occurrence of a phenomenon (Boothroyd, 1975). A tool life criterion depends on the
requirements of the components being produced. In a roughing operation, surface finish and
Jimensional accuracy are less important than the level of cutting forces and power required,
50 a threshold for excessive rise in forces should be set up. The surface finish and dimensional
accuracy is of major importance in a finishing operation, therefore, tools will fail when the
specified condiliops can no longer be achieved.

The length of a tool life will depend on the chosen criterion, which mainly relies on
the requirement of the products. In most of cases, tools fail ejther by abrupt failures which
bring a premature end of the too! life or by gradual or progressive wear on tool rake and flank

faces.
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Thére are tw:(\ major types of wear on a cutting tool: crater wear and flank wear.
Crater wear occurs on the tool rake face, which is charéctcrized by the formation of a crater
and created by the action of the chip flowing along the tool face. The maximum depth of the

crater is usually taken as a measure of the amount of crater wear. Flank wear occurs on the

" clearance face of a tool. The wear is quantified by the width of the wear land. These lwo

types of wear are shown in Figure A4,

Tool wear affects the performance of cutting tools in various ways {Armarego and
Brown, 1969; Boothroyd, 1975). The cutting forces are normally increased by tool wear,
even though at certain circumnstances, crater wear may reduce forces by effectively increasing

the tool rake angle. The wear on the clearance face almost invariably increases the cutting
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forces due to increased rubbing forces. A wear land also increases the tendency of a tool to :

dynarmic instability,ﬁand v_ibralions of‘chatter can be induced. Ano;her result of tool wear is
the complete removal of the cutting point. This may come about by temperature rise, which
virtually causes the tool tip to be softened until it comes to plastic defofmation. A
catastrophic failure which ma_ iake place is mechanical fracture of a relatively large portiqq
.(_lvf the cutting tip. “

Tool wear increases the cutting forces and there is a consistently linear relationship
between the cutting force componenis and the flank wear (Lai, 1986). There exists a stfong
correlation between the cutting force components aﬁd wear land, VB, in different degrees.
Axial force(feed force) is the most sensitive. Radial force(thrust force) and tangential
force(cutting force) are the second and the third, respectively.

It has been shown that the force ratio of the horizontal reé‘.ultant force to the tangcn;ia]

force, FE , is a good signature feature(monitoring index) for on-line monitoring of the tool
[og

wear. Figure A.5 from Lai (1986) illustrates the influence of flank wear on the force ratio.

Rescarchers also observed that the total amount of high-frequency vibration energy
increased with increase in the wear-land. This was attributed to additional vibrations
generated by the greater contact area between the worn cutting edge and the workpiece.

There are a few patterns of wear on a twist drill. Apart from flank wear and crater
wear, there are corner wear, chisel wear and land wear, as shown in Figure A.6. The wear
pattern changes along the cutting edge from the margin to the chisel edge due to complex
geometry of the drill bit and the cutting process. Each of them may be correlated with a

specific combination of cutting parameters. Of these, the outer corner wear is considered the
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-

most dominant in the determination of the useful life of a drill under normal cutting conditions
(Kanai et al, 1978; Kaldor and Lenz, 1980). Flank wear is also used as a criterion for tool
wear detection (Liu and Wu, 1990).

In drilling, too] wear affects both the thrust force and the torque. Some rescarchers
reported that serious tool wear might lead to 50% of observable wear or even more in
amplitude of the both force parameters (Li et al, 1992). Dynamic components of the force
signal have a close relationship with the tool wear condition. Tool wear will affect the energy
of the signals, so that vibrations of the drill are also used for the too] wear monitoring signal.
Since too! wear changes the geometry of the drill bit, the ratio of the force parameters, say

F, ..
—£ ., is also very sensitive to tool wear.
M B
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Figure A6 Wear Patterns on Twist Drill

A.1.6 Tool Breakage and Chipping

Chipping of the cutting tool edge and brcakage are important types of tool failure.
Breakage and chipping being brittle fractures involve the development and the propagation
of micro-cracks in tool material, which normally originale at a critical point where the stress
state is such that it causes local rupturing of the inter-atomic bonds (Lai, 1986). Sudden
loads and transient thermal stresses may also cause fracture of the tool. Chipping and
breakages are usually transient and the whole process of a breakage signal occurs within
several tens or huncreds of milliseconds.

The\ end of useful life of a tool is usually determined by one of the two criteria:
excessive wear, and fracture or chipping. Failure due to excessive wear is commonly
observed in tumiﬁg and with large size drills (> 3 mm). Fracture of a tool is encountered with

small size drills (< 3 mm).
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In the event of extensive breakage, the force componéhis change significantly. Atthe -

moment of breakage, in turning, the chip forming is stopped with consequent drop in the mair -
cutting force and both of the feed force and the radial forée increase rapidly because the
broken tool is squeezing through between the workpiece and the main tool body. After that,
the force compoﬁents remain low as only a small portionﬂOf the broken tool comes in contact
with the workpiece. When drill breakage occurs, both the ihrust force and the torque drop
suddenly in amplitude and then go up to a relatively stable level. The loss of the cutting edge
or the chipping on it changes the force components. It was reported that the force ratio could
be increased by 400% (Lai, 1986). Therefore, the force ratio is a powerful and effective

sensing element in a tool breakage algorithm.

A.2 SIGNAL FEATURES

A.2.1 Forces and Torque

Cutting force is one of the paranieters that can be relatively easy to measure for the
tool condition monitoring. Cutting forces change as the tool wears and have often been used
to detect tool wear. Force sensing methods have been reported to be more sensitive than
other measurements ( Dan and Mathew, 1990). Some experimental results showed that the
feed and thrust forces were influenced much more by tool wear than the main cutting force.
It was also shown that a linear relationship between these forces and tool wear existed, as

shown in Figure A.7. Others showed that the main cutting force gave the best indication of
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Figure A.7 Cutting Force Components vs Flank Wear / Lai, 1986/

tool wear at any given time. Force rati 's, as mentioned previcusly, were used in lots of cases
as the major features in tool condition menitoring. It was also found that the frequency
components and amplitude of the cutting force is greatly affected by the tool wear. The
powers in different frequency bands are convenient monitoring features.

Cutting forces, represented by the thrust force and the torque, are also important
features in monitoring drilling tool conditions. Researchers showed that different
conibinations of cutting condition brought about different tool wear locations, patterns and

magnitudes, and this diversity in drill wear form would aimost certainly lead to changes in

[
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Figure A.8 Thrust Force and Torque in Normal and Abnormal Cutting / Lier al, 1992/

both the thrust force and the torque. Figure A.8 from Li ef al (1992) shows the thrust force

and the torque in normal and abnormal cutting conditions.

A.2.2 Vibrations
As metal-cutting progresses, the workpiece and chips rub against the tool and produce

vibrations which can be easily measured by accelerometers. Vibration information is used
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Figure A.9 Spectra of Acceleration Signals under Different Tool Wear States /Du et al, 1992/

in various ways for tool condition monitoring.

Vibrations are crucial features in the machining process conditions. In detection of
chatters, vibration signals give straightforward the information. The mean-crossing rate of
the signals is quict different in stable cutting and in chatter. This is due to the fact that the
vibration is essentially a signal with high frequency random noise in stable condition, and is
mostly periodic with a dominant frequency which coincides with the weak structural mode.

Vibration signals vary with tool failur¢ in some frequency ranges. The mutual



i«

i

186

relationship between tool wear and power spectrum of vibrations of the tool during cutting
has often been studied in the too! condition monitoring. Figure A9 shows oane of the studies
on the effects of tool wear on the power spectra of the vibrations. Many other applications

of vibration signals for tool condition monitoring in turning and drilling are casily scen in

literatures.

A.2.3 Motor Current

During the cutting process, power/current to the main drive motor is related to the
shaft torque and thus the tangential component of the cutting force. Usually, less power is
consumed when using a sharp tool compared to a broken or worn tool. This variance can be
exploited for tool condition moritoring.

It was reported that a linear relationship existed between motor current and tool flank
wear in turning (Liao, 1986). The resulting signal was found to drop instantancously and
soon recover to a level prior to the drop, when tool breakage occurred. It was also found
that, under constant spindle speed cutting conditions, the percentage increase of motor
current from the beginning till the end of a tool's life was approximately constant if the same
material was machined. Figure A.10 from Du at al (1992) also approves the feasivility of
using motor current signals for tool breakage detection. Researchers have shown that motor
current is less sensitive to too! wear when compared to force and vibration signals.

The current measurement is relatively simple and mounting of the system will not

affect the machining operation.
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In automated machining process and tool condition monitoring, indirect measurements
are always employed. The most used sensor signals include cutting forces, torque, vibrations,
motor current, acoustic emission, and so on. Various methods of analyzing the sensor signals
have been developed in both time domain and frequency domain. Applications of these sensor
signals and their features depend greatly on individual monitoring tasks. Selection of the
sensor signals and the monitoring features is a critical issue in the development of automated

process and tool condition monitoring in machining.



