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DETECTION OF SIGNALS IN CHAOS





Abstract

A new method for the detection of signals in "noise", which is based on thp. premise tha.t the

"noise" is chaotir. with at least one positive Lyapunov exponent, is presented. The method

is naturally rooted in r.onlinear dynamical systems, and relies on neural networks for itc;

implementation.

We first present a theoretical basis for methods of modeli ng the underlying dynamics

of a chaotic system using a time series. The subject matter selected tor this part of the thesis

is written with emphasis on experimental studies of chaos. Specifically, we discuss the issues

involved in the reconstruction of chaotic dynamics, attractor dimensions, and LyapuIIoY

exponents. We describe procedures for the estimation of the correlation dimension and

the Lyapunov exponents. The method of false nearest neighbors analysis fur finding the

niinimum embedding dimension is described. The need for an adequate data length is

stressed.

In the second part of the thesis we apply the chaos-based method to the radar

detection of a small target in sea clutter. To justify the applicability of the new method

to this problem, we clearly need to show in a convincing way that sea clutter is indeed the

result of a chaotic dynamical system. We do this by presenting the results of a detailed

experimental study using surface-truthed real-life data collected by means of an instrumcnt­

quality radar at different geographic locations. Specifically, we show that (1) sea. clutter

has a finite correlation dimension, (2) the largest LyapunoY exponent of sea cluttN is

positive, and (3) sea clutter is locally predictable. Most importantly, we show that both the

correlation dimension and the largest LyapunoY exponent are essentially invariant to the

choice of radar signal component used to construct the time series, and that the correlation

dimension and LyapllnOY exponent do not appear to change appreciably with sea state or
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with g~graphic locations. These results suggest that there may exjs~ :.~ universal chaotic

structu~e responsible for the generation of sea clutter. Perhaps the most' dramatic r~~lt

presented in the thesi~ is the fact that this prior informatiorl (i.e., the knowledge that

sea clutter exhibits chaotic behavior) can be exploited to build a chaos-based detettor

operating on amplitude information only (as in a noncoherent marine radar), realizing a

performance comparable to that of a "conventional" receiver using coherent radar data (i.e.,

both amplitude and phase). This result points to the potential of trading off sophisticated

but inexpensive computer software for expensive microwave hardware. Lastly, we show

exp·erim~ntany that a chaos-based coherent detector can provide a further improvement in

radar detection performance.
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