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Abstract

A new method for the detection of signals in “noise”, which is based on the premise that the
“noise” is chaotir with at least one positive Lyapunov exponent, is presented. The method
is naturally rooted in ronlinear dyramical systems, and relies on neural networks for its

implementation.

We first present a theoretical basis for methods of modeling the underlying dynamics
of a chaotic system using a time series. The subject matter selected for this part of the thesis
is written with emphasis on experimental studies of chaovs. Specifically, we discuss the issues
involved in the reconstruction of chaotic dynamics, attractor dimensions, and Lyapunov
exponents. We describe procedures for the estimation of the correlation dimension and
the Lyapunov exponents. The method of false nearest neighbors analysis for ﬁnding the

minimum embedding dimension is described. The need for an adequate data length is

stressed.

In the second part of the thesis we apply the chaos-based method to the radar
detection of a small target in sea clutter. To justify the applicability of the new method
to this problem, we clearly need to show in a convincing way that sea clutter is indeed the
result of a chaotic dynamical system. We do this by presenting the results of a detailed
experimental study using surface-truthed real-life data collected by means of an instrument-
quality radar at different geographic locations. Specifically, we show that (1) sea clutter
has a finite correlation dimension, (2) the largest Lyapunov exponent of sea clutter is
positive, and (3) sea clutter is locally predictable. Most importantly, we show that both the
correlation dimension and the largest Lyapunov exponent are essentially invariant to the
choice of radar signal component used to construct the time series, and that the correlation

dimension and Lyapnunov exponent do not appear to change appreciably with sea state or
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with égographic locations. These results suggest that there may exist a universal chaotic
structure responsible for the generation of sea clutter. Perhaps the most dramatic result
presented in the thesis is the fact that this prior information (i.e., the knowledge that
sea clutter exhibits chaotic behavior) can be exploited to build a chaos-based detector
operating on amplitude information only (as in a noncoherent marine radar), realizing a
performance comparable to that of a “conventional” receiver using coherent radar data (i.e.,
both amplitude and phase). This result points to the potential of trading off sophisticated
but inexpensive computer software for expensive microwave hardware. Lastly, we show
experimentally that a chaos-based coherent detector can provide a further improvement in

radar detection performance.
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Chapter 1

Introduction

Traditionally, signal detection has been based on statistical decision theory approached
from the viewpoint of hypothesis testing. Specifically, a choice must be made between two
hypotheses through the use of some decision-making criterion. For example, the problem
of detecting a signal process in additive noise is usually solved by using Bayes’ hypothesis-
testing procedure, which is based on a statistical characterization of the noise. Given that
we have a signal that is corrupted by a form of additive “noise” known to be chaotic, we
may raise a fundamental question: How can this prior information be exploited to enhance
the detection of a signal of interest? In this dissertation we develop a new detection strategy
rooted in chaos theory. The power and flexibility of the new method are demonstrated by

applying it for the detection of a small target in sea clutter.

The central claims of this dissertation are:

Prior information that the additive “noise” is known to be chaotic may be exploited

to enhance the detection of a signal of interest.

It is demonstrated experimentally that sea clutter is indeed the result of a chaotic
dynamical system. The characteristics of sea clutter as a chaotic process are shown

to be essentially independant of environmental conditions.

® An universal neural network-based perceptron system able to capture the underlying

dynamics of sea clutter globally is shown to be feasible.

A chaos-based noncoherent detector operating on amplitude information only is shown

1



1.1 PHROHLEM DESCRIPTION ’ . 2

to perform at least as well as a conventioral coherent detector.

e A chaos-based coherent detector is shown to be superior to a conventional coherent

detector.

1.1 Problem Description

Signals (encompassing desired signals as well as interfering signals) have been partitioned

traditionally into two broadly defined classes:

e Deterministic signals, by which we mean the class of signals whose waveforms can be

defined precisely for all instants of time.

e Stochastic processes, by which we mean ensembles of random waveforms with each

ensemble being defined by an underlying probability distribution.

This classiﬁcation; however, overlooks another important class of signals, known as chaotic
signals, that shares attributes with both deterministic signals and stochastic processes.
Specifically, a chaotic signal generally has a very irregular waveform, but it is generated by
a deterministic mechanism [75]. A comparison of various properties of a chaotic process
with that of a conventional deterministic process and that of a ra.ndbm process is given
in Table 1.1, in which the terms of both attractor dimension and Lyapunov exponent are

described in great detail in Chapter 3.

Chaos is the very complex behavior of a dynamic system that is both nonlinear and
deterministic. It represents a powerful notion, permitting the use of a simple determinis-
tic system to explain highly irregular fluctuations exhibited by many physical phenomena
encountered in nature. The first description of a chaotic process was made in 1963 by
Lorenz [60], who developed a system of coupled nonlinear differential equations known as
the Lorenz attractor to model weather patterns. Since then, the study of chaos has attracted

the attention of mathematicians. physicists. and scientists from many other disciplines.

Some novel engineering applications of chaos have recently been reported in the

literature, which may be grouped under two broadly defined categories [38, T1]:
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Type of Process || Attractor Dimension | Lyapunov cxponents Predictability
Deterministic finite all <0 long-term predictable
Chaotic fractal some > { locally predictable
Random | infinite some > 0 unpredictable

Table 1.1: Comparison of properties of various processes

o Synthesis of chaotic signals, exploiting the noise-like waveform of a chaotic signal; this

class of applications includes signal masking and spread-spectrum communications.

o Analysis of chaotic signals, exploiting the fact that some physical phenomena permit

the use of a chaotic model.

The subject matter of this thesis falls under the second category. In particular, we describe
a new strategy for the detection of signals in chaos, and illustrate its application to a radar
clutter-dominated ocean environment. The idea that sea clutter (i.c., radar backscatter

from an ocean surface) may be modeled as a chaotic process, was first reported by Leung

and Haykin [56].

Given that we have a signal that is corrupted by a form of additive “noise” known

to be chaotic, we may raise the following fundamental questions:

1. How can this prior information be exploited to enhance the detection of a signal of

interest?

2. What if, for practical reasons. we are limited to a time series corresponding to a single

component (e.g., amplitude of a received radar signal)?

The answer to question 2 lies in Takens’ embedding theorem [76, 93], which states that it
is possible to reconstruct the underlying dynamics of a chaotic system from a time series of

a single component.
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The answer to question 1 rests on the premise that we have several realizations
of two different time series: time series I corresponding to the chaotic component acting
alone, and time series II corresponding to the signal plus the chaotic component. We
may then proceed in two stages. First, a particular realization of time series I is used to
construct a nonlinear predictive model for a deterministic characterization of the chaotic
background; for example, some form of a supervised neural network can be used to build
the predictive model. Second, with the predictive model at hand, the statistical hypothesis
testing procedure may be a.ppliéd to the prediction error produced by the model. The
performance of the whole system is then tested with realizations of time series I {not used
before) and time series [I. The i-é'eas described here constitute the essence of the new chaos-

b

based detection method.

To illustrate the po“'ér of the chaos-based detection method, we choose a difficult
detection task. Specifically, "'-xlrg consider the radar detection of a small target (e.g., a small
piece of ice, called a growler, ';vith a radar cross section of about 1 square meter or less)
embedded in an ocean environment. In such an environment, the detection problem is
dominated by the unavoidable presence of sea clutter that is the result of an underlying

nonlinear dynamical system.

Sea clutter, referring to unwanted radar echoes from an ocean surface, has a long his-
tory of being modeled as a stochastic process. Some successful models, such as log-normal,
Weibull and K-distribution, have been widely used by radar researchers and designers. In
this context we may raise the following fundamental question: What is the physical or
mathematical justification for the use of a stochastic model to describe sea clutter? Among
the stochastic models mentioned, the semi-empirical K-distribution [49] is the only one that
addresses the issue from a physical point of view. Even the K-distribution model, however,

does not fully address the question that we have posed.

Notwithstanding this long history, it is our belief that sea clutter is basically chaotic
in nature. In particular, we present strong experimental evidence, based on surface-truthed

real-life radar data recorded with an instrument-quality radar, to support this assertion.

A chaotic description of sea clutter has several important implications. First, it

means that we can build a predictive model for sea clutter with a much smaller number
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of degrees of freedom than would be possible with a stochastic approach. Second. we may
exploit the chaotic nature of sea clutter by invoking Takens' embedding theorem [76, 93].
Specifically, as explained previously, we only require a single component {e.g., m.t.}plitudc) to
reconstruct the underlying nonlinear dynamics responsible for the generation of sea clutter,
This raises another provocative question in the context of an acean environment: Is it pos-
sible to exploit prior information that sea clutter is chaotic so as to enhance the detection
performance of a noncoherent marine radar (providing amplitude information only) signifi-
cantly enough to become comparable to that of a “conventional” coherent marine radar that
supplies both amplitude and phase information? We will present experimental results that
answer this question in the affirmative. This is important from a practical point of view.
Basically, it means that, given a noncoherent marine radar, we may be able to exchange the
relatively inexpensive but highly sophisticated computer software involved in the design of a
chaos-based detector for the expensive microwave hardware involved in building a coherent
marine radar for a conventional Doppler processor. Third, the use of the chaotic descrip-
tion of sea clutter may improve the detection performance of a “conventional” coherent
radar, since a coherent radar can provide more information about the target of interest,

and thereby further enhance the target indication for chaos-based detection.

1.2 Dissertation Overview

Chapter 2 gives an introductory review of nonlinear dynamical systems and chaos, A

definition of a chaotic system is presented and discussed.

Chapter 3 presents a chaos-based hypothesis testing procedure, which is based on
the existence of at least one positive Lyapunov exponent in a chaotic dynamical svstem.

The chaos-based hypothesis testing method is demonstrated by computer experiments.

In Chapter 4. we discuss how to characterize chaos from a time series. We start
with a discussion of the reconstruction of dynamics from a time series. which is built around
Takens’ embedding theorem. Then, we consider the notion of attractor dimension. and
describe methods for the estimation of correlation dimension and minimum embedding

dimension from a time series. In this chapter, we also describe anather important notion.
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namely, the Lyapunov ezponent, which quantifies the sensitivity of a chaotic process to
initial conditions. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov

exponent are described. The need for an adequate data length is stressed.
In Chapter 3, the experimental database used in this research is described in detail.

Chapter 6 presents chaotic characterization of sea clutter. We present experimen-
tal results on the correlation dimension analysis, the false nearest neighbors analysis, and
Lyapunov exponent of sea clutter using real-life radar data, discuss the estimation of the

underlying dynamics of sea clutter and demonstrate its plausibility using a neural network.

Detection philosophies and design strategies are described in Chapter 7. Two dif-

., ferent chaos-based detectors are described, one of which is based on the noncoherent radar
data and the other is based on the coherent radar data. A conventional Doppler CFAR,
detector is also discussed. Performance evaluations of these detectors are given. As well,
comparisons with the conventional Doppler CFAR detector are presented and discussed.

Finally practical considerations for each of the detectors are presented.

Chapter 8 studies the search of a global neural network model for the chaotic mod-
eling of sea clutter. A modular network structure is proposed, and an algorithm for training

the network is presented. Recursive predictions for testing data are performed.

Finally, Chapter 9 concludes by summarizing the results and contributions of this

research, indicating future directions that may be taken.



Chapter 2

Nonlinear Dynamical Systems and
Chaos

2.1 Nonlinear Dynamical Systems

A dynamical system is characterized by a set of related variables whose values change with
time in a predictable manner, in principle, provided that the external influences acting on
the system are all known exactly (i.e., the system is deterministic). A model most naturally
suited for the purpose of describing the dynamics of a nonlinear system is the so-called state-
space model. According to this model, we think in terms of a set of state variables whose
values (at any particular instant of time) are supposed to contain sufficient information
to predict the future evolution of the system. Let z(t),z3(t),....zn(t) denote the state
variables of the system, where continuous time ¢ is the independent variable and N is the
order of the system. For convenience of notation, these state variables are collected into
an N-by-1 vector x(t), called the state vector of the system. The dynamics of a large class
of nonlinear dynamical systems, assumed to be autonomous, may then be cast in the form

of a system of first-order differential equations written in terms of the state vector x(t) as

follows

-.%x(t) = F(x(t)) {2.1)

where the vector function F is, in general, nonlinear. We may think of dx/dt as a “volocity”
vector. not in a physical but rather abstract sense. Then, according to (2.1), we may refer

to the vector function F(x) as a velocity vector field or. simply. a vector ficld.

7
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For the state-space equation (2.1) to have a solution and for the solution to be
unique, we have to impose certain restrictions on the vector function F(x). For a solution
to exist, it is sufficient that F(x) be continuous in all of its arguments. However, this
restriction by itself does not guarantee uniqueness of the solution. To do so. we have to
impose a further restriction known as the Lipschitz condition. Let |x] denote the norm or
Euclidean length of the vector x. Let x and u be a pair of vectors in an open set M in
a normal vector (state) space. Then, according to the Lipschitz condition, there exists a

constant K such that

It F(x) = Flu) |[< K || x—ul (2.2)

for all x and u in M. A vector function F(x) that satisfies (2.2) is said to be Lipschitz, and
K is called the Lipschitz constant for F(x).

It is very informative to view the state-space equation (2.1) as describing the motion
of a point in an N-dimensional state space, commonly referred to as the phase space of the
system. The phase space can be a Euclidean space or a subset thereof. But then, it can also
be a non-Euclidean space such as a circle, a sphere, a torus, or some other differentiable
manifold. The phase space is important, because it provides us with a visual/conceptual
tool for analyzing the dynamics of a nonlinear system described by (2.1). It does so by
focusing our attention on global characteristics of the motion rather than detailed aspects

of analytic or numeric solutions of the equation.

In this thesis, we are concerned with dissipative dynamical systems. Such a system
is characterized by the convergence of its trajectories in phase space onto manifolds of lower
dimensionality. By a “manifold” we simply mean the generalization of a surface or a curve
in ®Y, it is usually referred as the attractor of the phase space. The manifold may consist
of a single point in phase space. in which case we speak of a point attractor. Alternatively,

it may be in the form of a periodic orbit, in which case we speak of a limit cycle.

2.2 Strange Attractors and Chaos

Nonlinear dynamical systems have the capability of exhibiting a chaotic behavior that is

highly complex. This form of dynamic behavior arises by virtue of a type of attractors

sl
R
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called strange attractors.

In a nonlinear dynamical system, when the orbits (or trajectories) of an attractor
with neighboring initial conditions tend to move apart with increasing time, the system is
said to possess a strange attractor and the system itself is said to be chaotic. In other words.
a fundamental property that makes an attractor “strange” is its sensitive dependence on
initial conditions. Sensitivity in this context means that if two identical nonlinear dynamical
systems are started with slightly different initial conditions, namely x and x + ¢ where ¢
is 2 very small quantity, then their states will diverge from each other in phase space and

their separation will increase exponentially on the average.

As an example, consider a nonlinear dynamical system described by the following

pair of coupled difference equations:

z(n+1) = %sin(‘Zsz(n)(?z(n) + 0.56)) + %cos(%x(n))

y(n+1) = 0.89z(n) (2.3)

An evaluation of this equation started at [z(0), y(0)] = [0.9, 0.8] is shown by the solid lines
of Figure 2.1. Consider next a new initial condition that deviates from [z(0), (0)] by
a very small amount ¢ = 1012 at z(0) only. Then, restarting the evaluation of (2.3) at
[#(0) -+, y(0)], we get two distinct and very different waveforms shown by the dashed lines
in Figure 2.1. A phase portrait of this system, a plot of z(n) versus y(n), is shown in Figure
2.2. The attractor cescribed herein is strange, which is exemplified by sensitive dependence

on its initial conditions.

For a formal definition of a chaotic dynamical system, we may refer to Newhouse
[68, 69, 70], Farmer et al. [23], Holmes [44] and Guckenheimer et al. [36). In this section we
present a refinement of Newhouse's definition that better addresses our specific problem.

Without loss of generality, we confine our attention to discrete dynamical systems.

Consider an m-dimensional smooth manifold M and a twice differentiable mapping
é: M—+M. It is assumed that ¢ is one-to-one and the inverse map ¢~': (M) = .M is

also twice differentiable. Let x € M. Consider the positive orbit of x, denoted by

O = {x,0(x).6%(x),...} (2.4)
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Figure 2.1: Time waveforms of Equation (2.3), in which the solid curves in both parts of

the figure correspond to the initial state of [0.9.0.8] and the dashed curves correspond to
the initial state of {0.9 + 10~12,0.8].
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Figure 2.2: A phase portrait, plot of z(n) versus y(n), of (2.3).

and the attractor set called w-limit set:

w®) = wix.6)
= {y € M :there is a sequence n; < np < ...such that ¢"™ (x) = y as i — oo}
(2.5)

Note that if O, (x} is bounded, then w(x) is a closed, bounded set, and ¢(w(x)) = w(x). In
general, we are interested in describing w(x, @) for as many x and ¢ as possible. A simple
situation arises when each w(x., o) is a periodic orbit for x € M. Then, each initial state
tends toward a periodic orbit. Such a @ is not chaotic. A particular situation in which ¢

may be called chaotic is when there are uncountably many points x for which w(x,®) is

also uncountable [68, 23. 44].

As mentioned previously. a fundamental property of chaotic systems is “sensitive
dependence on initial conditions.” This could be formally defined as follows [68. 11, 36].
Let d{x.y) denote the distance between x and y. A point x exhibits sensitive dependence

on initial conditions if there are an @ > 0 and a constant C' > 0 such that for any £ > 0
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and any positive integer n > 0, there is a point y such that the following two conditions are

satisfied:

dix,y)<¢

d(¢’(x), ¢ (¥)) > Ce™d(x,y) 1<j<n

The infinitesimal version of this statement can be more easily defined (69, 12]. Specifically,
for sensitive dependence on initial conditions, there has to be a vector v tangential to M

at x such that

lim sup % log [Txd"v] > 0 (2.6)
where Ty @™ is the derivative of ¢™ with respect to x, and |- | is the norm of a vector . The
condition on x and v described in (2.6) is frequently referred to as “(x,v) has a positive

Lyapunov exponent”. The notion of a Lyapunov exponent will be discussed in great detail

in Chapter 4.

Newhouse [70] has summarized the above discussion, giving the following definition

of a chaotic system:

A nonlinear dynamical system described by ¢ : M — M is said to be chaotic if
there is a closed bounded subset V of M with non-empty interior such that
1. ¢ maps V into its interior.

2. There are uncountably many points x in V for which w(x) is uncountable

and x has a positive Lyapunov exponent.
In most practical situations. we only have a time series describing some observa-
tions of a dynamical system. To this end, we offer the following definition that builds on

Newhouse’s definition:

A bounded deterministic dynamical system with at least one positive Lyapunov

exponent is a chaotic system. A chaotic signal is an observation of the system.

By “deterministic” we mean that the system can be described completely by a set of rules:
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these rules may be expressed as nonlinear differential or difference equations. More specifi-

cally, the system is at least locally (i.e., short-time) predictable and has an attractor whose

dimension is finite and generally fractal (i.e., noninteger).

This definition has practical significance. It actually paves the way for testing the
chaotic behavior of a given nonlinear dynamical system. First of all, we check the bounded-
ness of the given system. In most practical problems, the boundedness is obvious. To test
its deterministic property, we have to do two things: estimate the dimension of the system,
and check its predictability. Generally speaking, a deterministic system has a finite dimen-
sion. The predictability is the most important property of a deterministic system. It is very
difficult to confirm the predictability in most practical problems since we need to construct
a model, and then confirm that the model is indeed the reconstruction of the underlying
dynamics of the system. Fortunately, the use of neural networks provides a practical pro-
cedure to perform the modeling task [55, 45, 80, 39]. The predictability is then confirmed
by recursive prediction, a topic that we will discuss in detail in Chapter 4. After both the
bounded and deterministic properties of the system have been confirmed, the existence of
at least one positive Lyapunov exponent would have to be established. This criterion plays
a key role in the characterization of a process as chaotic, because the Lyapunov exponent
of a map provides a measure of sensitive dependence of the map on initial conditions. It
actually gives the average rate of divergence or convergence of the dynam.ical system along
the principal axes of its phase space. Details of how to extract Lyapunov exponents from
experimental data will be given in Chapter 4. Thus, a decision on whether the nonlinear

dynamical system is chaotic or not can be made by invoking the modification of Newhouse’s

definition described above.

2.3 How Can Chaos Arise?

There aze two basic ways in which a chaotic process can arise:

1. The process is purposely designed to be chaotic

2. The underlying physical phenomenon responsible for the generation of the process is

naturally chaotic.
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Examples of the first category include the logistic map, the Henon map. the Lorenz attrac-
tor, the Rossler attractor, and also the map described in {2.3). Examples of the second
category include heart rhythm [31], turbulence in fluids [I, 2], and radar backscatter from

an ocean surface {56], to mention just a few.

In determining the suitability of a model for the mathematical description of a

physical phenomenon, there are four important criteria that we should keep in mind [38]:

1. The model should be rooted in the underlying physics of the process.

2. It should be possible to estimate the parameters of the model from measured data

(observations).

3. The model should replicate in some sense the process which produced the data by

being able to predict the future behavior of the process.

4. The model should permit the use of a minimum number of degrees of freedom (i.e.,

independent variables) for its physical implementation.

Unfortunately, in the literature, not enough attention has been paid to the selection of
a model that builds on all of these four criteria together. Much too often in the past.
a stochastic process has been selected as the model for a physical phenomenon. This is
done not on physical grounds, but rather because of mathematical convenience, or in an ad
hoc manner. This, in turn, has two serious consequences. First, physical attributes of the
phenomenon are overlooked. Second, the use of a stochastic process as the mathematical
model introduces unnecessary degrees of freedom. Herein lies the advantage of a nonlinear
dynamical system over a stochastic process as the mathematical model in that it utilizes a
minimum number of degrees of freedom. The important point that we wish to make here
is that for some specific physical phenomena the use of a chaotic model not only provides
the natural mathematical model, but also does so with the minimum number of degrees of

freedom.



Chapter 3

Chaos-based Hypothesis Testing

3.1 Introduction

Traditionally, signal detection has been based on a statistical decision theory approach
utilizing hypothesis testing. Specifically, a choice must be made between two hypotheses
through the use of some decision-making criterion. The problem of detecting a signal process

in additive noise may be simply formulated as follows:

Hypothesis Hy @ y(t) = s(t) + w(t), 0

IA
1A

t<T
Hypothesis Hy : y(t) = w(t), 0<tLT

IA
IA

(3.1)
where y(t) is the observed signal, s(t) is the target signal of interest, and w(t) is the

additive noise component. This decision-making problem is usually solved by using Bayes'

hypothesis-testing procedure [97], which is based on a statistical characterization of the

noise w(t).

In this chapter, we present a new detection strategy rooted in chaos theory. The
strategy is based on the existence of at least one positive Lyapunov exponent in a chaotic
dynamical system responsible {or the generation of a “noise” process w(t). The basic idea
is as follows: Since a chaotic system is a deterministic nonlinear dynamical system, we may
invoke Takens' embedding theorem to build a model that represents a reconstruction of the
system responsible for generating w(t). When the observed signal y(¢) contains a target
component s{t) as in the first line of (3.1). y(¢) does not match the model any more; hence,

the existence of the target component s(t) is signified by the presence of a corresponding

15
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perturbation at the output of the madel. This new detection strategy has the potential of
outperforming the traditional detection strategy by exploiting the “priot™ information that

the noise process w(t) is in fact chaotic.

3.2 Detection Hypothesis

Let M be an m-dimensional compact manifold, and ¢ be a chaotic dynamical system on
M, which is a map ¢: M — M. An observation on the dynamical system is a smooth
function f: M — R. Consider a trajectory c(¢) of &, which is started from an initial state

¢(ty). ‘Then an observation may be expressed as:

y(t) = f(c(t)) (3.2)
In a signal detection problem, f acts as the receiver. It is reasonable to assume that f is

the identity map, in which case we may set y(t) = c(t). For convenience, we will use c(t) as

the observation process of the dynamical system ¢.

Consider now another signal being added to the system, as shown in Figure 3.1;
it may be a periodic deterministic signal, a transient signal, or another chaotic signal. We

may then identify two kinds of chaotic detection procedures:

1. Deterministic signal in a chaotic background:

Hypothesis Hy : y(t)=ec(t)+s(t), 0<t<T

Hypothesis Hy : y(t) = (1), 0<t<T (3.3)
2. Classification of two chaotic dynamical systems:
Hypothesis Hy : y(t) =c1(t), 0t T
Hypothesis Hg: y(t) =co(t), 0<t<T (3.4)

where co(f) and ¢ {t) are observations of the two chaotic systems. Most particularly,
the two chaotic systems may be of the same structure, but there are some changes in

their free parameters.

Some work has been reported on the classification model [35, 102. 8, 64]. In this chapter,

we focus on model 1.
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S(t)

C(t)

Y(t)

Figure 3.1: Signal model for the detection of signals in chaos. & is a chaotic dynamical sys-

tem for generating a chaotic process, s is the signal to be detected, and f is the observation
function (receiver)

3.3 Detection Principle

Let ¢ be a chaotic dynamical system on M. Consider an infinitesimally small m-dimensional
sphere, an initial state of ¢, in M. During its evolution, the sphere will become distorted,
but being infinitesimal, it will remain ellipsoidal. Denote the principal axes of this ellipsoid

by ci(t) : i =1,...,m. We may then approximately write
ei(t) = ¢;(0)e™ (3.5)

where A; is the i'® Lyapunov exponent of the system, and ¢;(0) is an initial state corre-

sponding to ¢;(t) of the it princibal axis of the ellipsoid.

Suppose that a signal s;(t) is added to the process c;(t), modifying the observations

as follows:

yilt) = cilt) + si(t) (3.6)
yi(0) = ci(0) + 5:(0) (3.7)

Fi(t) = yi(0)e™ (3.8
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Figure 3.2: A schematic representation of signal extraction from chaotic background. The
dashed curve is an assumed chaotic trajectory and the solid curve is the trajectorv of a
signal added to the chaotic system.
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Assuming that the signal is known to change slowly, we may set 5;(f) = 5;(0) for a small
cange of time ¢, in which case we may define the difference between j;(t) and y;(t) as follows:
£i(t) = Gi(t) — wit) (3.9)

Substituting (3.5) to (3.8) into (3.9), we get

£:{t) = 5;(0)(e™ - -1) (3.10)

If A; = 0. which corresponds to a periodic deterministic system. we have {(t) = 0, and the
signal component cannot be extracted in the manner described here. If \; < 0 for all i, we
have a point attractor, which is of no interest to us here. If, however, \; > 0 for some i,

which corresponds to a chaotic system, then e > 1, and so (3.10) can be rewritten as

5i(0) = e_i';(t_)—l (3.11)

According to (3.11), the signal component may be extracted, given that the system is chaotic

with a positive Lyapunov exponent.

The formula of (3.11) cannot be used to extract the signal component from a chaotic
time series exactly, since a strange attractor results from a stretching and folding process; the
stretching expands the volume occupied by the phase space of the dynamical system, while
the folding contracts it. Nevertheless, (3.11) provides the basis of a method to detect the
existence of a signal component., which is still a highly valuable attribute to have. The idea
may be described schematically as in Figure 3.2, where the dashed line represents a trajec-
tory of the underlying chaotic system. When a signal component is present, the obscrvation
process is shown by the solid line in the figure. It is represented by y(to), y(t1), ylt2). - - -
Suppose, next, there is an identical chaotic system at the receiver. Then, applying the re-
ceived signal to the latter chaotic system, we get an evaluation process j{t;), f{ts), -+~ The
reconstruction error process £(t;),c(¢2),- -~ defined in accordance with (3.9). indicates the
existence of the signal component. In what follows we present two computer experiments

to illustrate how the chaos-based detection strategy works.

3.4 Computer Experiments

(a) Transient signal in chaos
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..Consider the well-known [kedn chaotic system [T4]. It is described by the following system

).\of coupled difference equations:
I .

i z(n} = 1+ pf[z(n - 1)cos(v) - y(n - 1) sin(v}]
y(n) = plz(n - 1)cos(v) + y(n — 1) cos(v)]
6
v o= 0'4_1+17(n—1)2+y(n—1)2 (312)

where 4 = 0.9 and n = 1,2,..., N. Suppose that a transient signal s(z). shown in Figure

3.3(a), is added to the z component of the system output. Figure 3.3(b) shows a plot of the
z component of the chaotic system versus discrete time n. Suppose also that the received
signal r(n) is defined by the sum z{n)-+ s(n), as shown in Figure 3.3(c). In this experiment
we wish to detect s(n}) from the received signal r(n}, assuming a signal-to-noise ratio (SNR)
of about —60 dB. Suppose next that we have a dynamical system identical to that of (3.12)

at the receiver; its implementation is described by
g#(n) = 14 pr(n—-1)cos(r) — g(n — 1)sin(v)]

§(n) = plr(n—1)cos(v) + §(n — 1) cos(v)!

v = 04~ 0
T 14 r(n-1)24§(n - 1)2

The processed output is defined by e(n) = &(n) — r(n). Figure 3.3(d) shows the output for

(3.13)

the conditions described here. This figure clearly indicates the existence of the added tran-
sient signal, despite the fact that the signal-to-noise ratio used in the computer experiment
is very low. The reason why the chaos-based detector is able to perform so well is because
of the prior information that the additive “noise” is chaotic, which is exploited in designing

the receiver.
(b) Periodic signal in chaos

Reconsider the same problem. described in the computer experiment (a). The only
difference now is that the signal to be detected is periodic. Without loss of generality. we
may suppose that the periodic signal is a sinusoid, as shown by

s{n) = asinf{wnr) {3.14)

where 7 is the sampling period, w is the angular frequency, and a is the amplitude of

the signal. The amplitude spectrum of the signal, defined as the magnitude of its Fourier
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the presence of the transient signal.
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transform, is shown in Figure 3.4(a). Figure 3.4(b) shows the amplitude spectrum of x(n).
The received signal is r(n} = z(n) + s(n). assuming a signal-to-noise ratio of about =350 dB.
Its amplitude spectrum is shown in Figure 3.4(c). As before, the receiver is implemented by
using (3.13), and the receiver output is e{n) = £(n) — r(n). To detect the sinusoidal signal,
we use the fast Fourier transform (FFT) method, since it gives an optimal solution for an
unknown sinusoid in additive “white” noise. Figure 3.4(d) shows the amplitude spectrum
of the receiver output e(n). In this case, the chaos-based receiver indicates not only the

presence of the added sinusoidal signal, but also the frequency of the detected signal.

3.5 Summary

In this chapter, we have presented a chaos-based hypothesis testing procedure. It is based
on the existence of at least one positive Lyapunov exponent in a chaotic dynamical systems,
Two computer experiments are presented to demonstrate the chaos-based hypothesis test-

ing method. Based on the two experiments described above, we may make the following

observations:
o A chaos-based receiver can detect extremely weak signals buried in a chaotic back-
ground by exploiting the prior knowledge that the additive “noise” is chaotic.

o The receiver preserves the inherent characteristics of the target signal that arc essential

for its detection.
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Chapter 4

Characterization of a Chaotic
Process

4,1 Introduction

We have discussed in Chapter 2 that a dynamical system is chaotic if 1) it is bounded, 2) it
is deterministic, and 3) it has at least one positive Lyapunov exponent. In most practical
problems, we may have only one or two observations, recorded in the form of time series, of
an unknown system. The boundedness of the system is mostly obvious. The question then
is how to demonstrate that the system responsible for the generation of the time series is

deterministic? And how to extract the Lyapunov exponents from the recorded time series?

We start this chapter by discussing the Takens’ embedding theorem, which provides
a theoretical basis for methods of modeling the underlying dynamics of a chaotic system

using a time series.

4.2 Reconstruction of Chaotic Dynamics

An important issue in the study of dynamical systems is that of model reconstruction or
reconstruction of dynamics. Specifically, given a time series made up of a physical obser-
vation of a nonlinear dynamical system known to be chaotic, how do we reconstruct the

underlying dynamics of the system? More specifically, what if the time series is from a

25
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single component of the system (e.g., amplitude of a received radar signal)? At first glance,
such a proposition may appear to be ambitious and perhaps overoptimistic. Fortunately,
Takens [93] and Packard et al. [76] independently proposed the idea of using sequences of
measurements to gain geometric information of the underlying dynamics. The proposition
was put on a firm theoretical basis by Takens [93], and the result is commonly known as
Takens’ embedding theorem. This theorem provides the mathematical basis of the dynamic
reconstruction problem. It states that model reconstruction of a nonlinear dynamical sys-
tem using just one observation of the system should succeed to a certain extent, and the
reconstruction is independent of which signal component is used. Naturally, the model
reconstruction as described here cannot be expected to produce a model_ exactly the same
as the original system. Nevertheless, the reconstruction will have the same behavior as the
original system up to a diffeomorphism [93, 76]. Diffeomorphic equivalence establishes the
equivalence between the original nonlirear dynamical system and the reconstructed system
to within a smooth curvilinear change of coordinates. More formally, we may state the

following [93]:

Theorem {Takens): Let M be a compact manifold of dimension m. For pairs
(¢, f), @ : M~ M denoting a smooth diffeomorphism, and f: MR denoting
a smooth function, it is a generic property that the map &4 ;) : M — R¥™+1
defined by:

D.p(®) = (f(x), f(#(x)),. .., f(87"(x)))
= (¥(0),y(1),...,y(2m)), (4-1)
is an embedding; here ‘smooth’ means that at least twice differentiable and
continuous, and y(i) = f(¢(x)).

The ‘generic’ property mentioned here implies the following:

e If x is a point with period & of ¢ with k¥ < 2m + 1, then all eigenvalues of %?; are
different from each other and different from unity. In other words, the trajectory is

not duplicated even in a small region around the point x.

e Any two different fixed points of ¢ are not in the same level of y. That is, the map is

guaranteed to be injective,
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To see how this theorem can be of practical use, consider an m-dimensional compact
manifold M; a chaotic dynamical system defined on M is described by the difference
equation:

x(n+ 1) = d(x(n)) (4.2)
where ¢ is a nonlinear function. A trajectory of the dynamical system, started at an initial
state x(0), is then a sequence of points {x(i) = ¢'(x(0)),7 = 1,2,...}. Suppose we now
have a smooth observable map, say f, which is described by a sequence of observations
{y(?) = f(x(3)),i=0,1,...}. Takens' embedding theorem says with Dg > 2m+ 1, the map
® : M -RPE defines a corresponding trajectory, in which each point defined by

®(i) = {y(3),y(i+1),...,y(i+ Dg - 1)} (4.3)

is a state of a related dynamical system 3 : RPe — RPE and which is equivalent to ¢:

M — M, up to a diffeomorphism, where D is the embedding dimension. Thus we have

(i +1) = $((i)) (4.4)

or, equivalently,

{y(i+1),y(i+2),...,9(i + Dg)} = ¥(y(i),y(i+1),...,y(i+ Dg - 1))  (4.5)

Equation (4.5) states that each component of the left-hand side is determined by the com-

ponents on the right-hand side. Hence, there exists an F such that

y(i+N)=F(y()y(+1),....,y(i+ De-1)) (4.6)

where F is a nonlinear function that predicts the next entry in the time series. Takens’
embedding theorem is an existence theorem in that it assures us that this function does
exist, but does not tell us how to find it. In principle, then, we may approximate the

reconstructed phase space by using a time series observed from the original system [93, 76].

Typically, a time series is a series of recorded values of continuous observations
of a dynamical system at regular, discrete time intervals. Assume that we are given an
observation y(t), where ¢t € [0, T']. In most experiments, ¢ is a continuous variable. We record
this observation y(t) at time intervals At, corresponding to a sampling rate of 1/At; thus,

we get a discrete sequence y(i) = y(iAt) of real numbers, which is a one-dimensional time
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series. Before using Takens’ embedding theorem to reconstruct the underlying dynamics,
we first have to determine a characteristic time 7 = £At, called the time delay, after which
the system loses an essential part of its information about its previous state. Without loss

of generality, we may set At = 1; then (4.3) becomes
®(i) = {y(i) yli+7),-. ., y(i+ (Dg - 1)7)} (4.7)

~The first zero-crossing of the autocorrelation is often used to determine the delay [55). Aver-
age mutua! information provides a more refined estimate of the delay for the reconstruction

of underlying dynamics [25, 28).

The average mutual information for a time series is defined as:

N 1),y
I(k) = 3 P(y(i), y(i + k) ‘°g2[PI(DzE?i()))f°%r(:(ﬁ ')'3))]
i=1

where P(y(3)) is the probability of observing y(%), P(y(i + k) is the probability of observing
y(i + k), and P(y(i), y(i + k)) is the joint probability of observing both y(i) and y(i + ).

N is the total number of observed data. The first local minimum of the average mutual

(4.8)

information I (k) plotted versus k has been shown to be a good prescription for selecting

the optimum time delay = for chaotic reconstruction [25, 28].

Pineda and Sommerer [79] proposed another method for estimating the time delay
T based on the definition of generalized dimensions of a dynamical system. To chaose a
delay 7 for dynamical reconstruction, we may embed the data in one and two dimensions,

and compute the mutual information dimension
D,=2Dn - Dp, ‘ (4.9)

where Dy is the information dimension for embedding dimension Dg = 1, and Dj, is the
information dimension for embedding dimension Dg = 2. Next, the mutual information

dimension is minimized with respect to .

Since Takens' embedding theorem plays a key role in the estimation of attractor
dimension, Lyapunov exponents, and the underlying dynamics of the given system, the
determination of the time delay provides an important step in performing the above es-

timations. Typically, having chosen 7, we perform the dimension analysis for increasing



4.2. RECONSTRUCTION OF CHAOTIC DYNAMICS 29

values of the embedding dimension Dg and look for a plateau in the plotr"of an estimation

of the attractor dimension versus Dg.

There are two important observations about the reconstruction method that should
be noted. First, Takens’ embedding theorem states that the reconstruction of the underlying
dynamics of a chaotic system can be implemented directly by using the observation data.
The only problem that we may face here is the construction of the map F. In some
situations, a direct construction is possible, because it is simple and some prior information
is given. However, this is not the case in general. For example, in the sea clutter modeling
problem considered later in this thesis, we have no existing knowledge on the modeling
strategy; hence, no prior assumption should be imposed to bias the model. The derivation
of F' is another major and important part of the dynamical reconstruction. Fortunately, the
use of a neural network makes the problem resolvable in an experimental sense (55, 45, 80].
A neural network is ideally suited to reconstruct the nonlinear dynamics of a chaotic process.

We make this assertion for three reasons:

¢ A neural network is inherently a nonlinear device, and nonlinearity is basic to the

existence of a chaotic process.

e A neural network lends itself to training through the use of a set of examples repre-

sentative of the chaotic process.

o A neural network is a universal approximator in that, in theory, it can approximate

any continuous input-output mapping to a desired precision.

The use of neural networks for mode! reconstruction will be discussed in detail in Section
6.5.

Takens’ embedding theorem states that, in principle, model reconstruction using
just one observation component should succeed to a certain extent, and the reconstruction
is independent of which component is used [76]. This point is of great practical significance.
It implies that we may choose any observation component of the process to perf"orm the dy-
namic reconstruction. To be specific, consider a coherent radar system in which the received
(observed) signal z(t) consists of an in-phase component z{t} and 2 quadrature component

zq(t). Typically, both z;(t) and zg(t) are continuous and differentiable functions of time,
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and do therefore lend themselves to the application of Takens’' embedding theorem. Ac-
cording to this theorem, dynamic reconstruction of the process responsible for generating
z(t} may be possible up to a diffeomorphism by using z 7(t) or zg(t) alone. Consider next
the case of a noncoherent radar sﬁfem, which operates on an amplitude signal denoted by
zA(t). Here too we find that z4(¢) is typically continuous and differentiable with respect to
time, and is therefore suitable for the application of Takens' embedding theorem. That is,
the dynamic reconstruction of the process responsible for generating z(¢) may be possible
up to a diffeomorphism by using the amplitude component z4(t). In the context of radar
detection, for example, the latter statement implies that the performance of a noncoherent
radar (providing amplitude information only) may be improved significantly enough via
dynamic reconstruction to be comparable to that of a “conventional” coherent radar. This

observation was first demonstrated experimentally by Li ard Haykin [59].

Throughout the discussion, we have assumed that the system admits a finite di-
mensional model, and this dimension determines the number of variables involved in the
process. Determining the attractor dimension of a nonlinear dynamical system is covered

in the next section.

4.3 Attractor Dimension

Not only does the concept of attractor dimension help to select the correct embedding
dimension Dg, but it also serves as a means of illuminating the complexity of an attractor
structure. In this section, we first describe the well-known Hausdorff dimension; we then
go on to discuss the so-called correlation dimension, which -lends itself much more readily

te computation for a time series of finite length.

4.3.1 Hausdorff Dimension

In 1919, Hausdorft [37] first introduced the notion of dimension analysis to nonlinear dy-
namical systems, and gave the definition of attractor dimension, which has become known
as the Hausdorff dimension. This definition is based on the Hausdorff measure of 2 compact

space. It can be stated as follows:
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Let M be an m-dimensional nonempty compact metric space. We define the
diameter of M, denoted by || M|], as the largest distance between any two points
z and y in M, that is
Ml = sup lz - yll (4.10)
T.YEM
Let C; denote a countable collection of subsets of M with diameter g;, where

0 < £; < 8. Let N(C;) be the minimum number of C; needed to cover M, that
is M c UYE) C;. We define

I%(5) = inf S (4.11)

The d-dimensional Hausdorff measure of the compact space M is then defined

as
d _ lim P4
'y = .lsl-To ['%(6) (4.12)
In general, it can be shown that I'); is positive infinite if d is less than some

critical value, denoted by Dy, and is zero if d is greater than Dy. The critical

value Dy is called the Hausdorff dimension of the compact space M [74].

Unfortunately, the Hausdorff dimension is a mathematical definition that does not
lend itself to numerical implementation. Other definitions of the attractor dimension of
a nonlinear dynamical system include the capacity dimension (also known as the boz-
counting dimension), information dimension, correlation dimension, and Lyapunouv dimen-
sion. Parker and Chua [75] have given a good summary of these dimensions in their tutorial
paper. However, we will focus on the correlation dimension, since it has emerged as the
most popular one used to perform the estimation of an attractor dimension from practical
time series for the following reasons: First, the ergodic characterization of a .dyn:imical
system involves partitioning the phase space M into small subspaces My, My,..., My, and
the probability of observing the orbit falling in the kt* subspace is given by Ni/N, where
k=1,2.....K and Ny is the number of times the orbit falls in the kth subspace out of ¥V
points in the time series. It has been shown in [33] that for finite NV, there is a bias intro-
duced in the calculation of the attractor dimension by using the estimate of the probability,
except for the correlation dimension. Second, most dimension estimation procedures are

based on the assumption that the deviations of the data points from the least squares line
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are Gaussian-distributed random fluctuations, which arises because a finite sample of points
are used to represent the attractor. This kind of statistical analysis has been performed
only on the correlation dimension so far [15], where consistency and asymptotic Gaussianity
of the correlation dimension have been demonstrated. Third, the minimum number of data
points needed for the calculation of the correlation dimension may be specified [3, 21]. The
last point is of practical significance, since the determination of attractor dimension using
experimental data usually requires many data points; it provides a lower bound on the data

length needed for a reliable estimation of the correlation dimension.

4.3.2 Correlation Dimension

Consider a time series y(1), ¥(2),¥(3),. .. generated in the phase space M. The proportion
of points that lie within a ball of radius r is equal to the m-dimensional normalized volume
of that ball, so that the normalized volume of the whole space M is equal to one. The
volume of a ball of radius r is proportional to r2 as r — 0. Accordingly, after fixing a point
y(0) in M, we may write

t k< <
P = lim {Number of integers n such that |y(0) — y(k)| < r

n—too n

} (4.13)

Equation (4.13) defines the prOpori;ion of the sequence y(0), y(1),y(2),... that lies in the
ball of radius r centered at the point y(0). Then, since for 2 D-dimensional space the

proportion F, is proportional to »2, that is,
P~ P (4.14)

we may define the dimension D as follows [55, 94):
In{F")
In(r)

D='{

r—0

} (4.15)

where In is the natural logarithm.

Next we modify the above definition to match the one introduced in [34). The
definition we have just given is localized around the point y(0). The dimension we seek is
global in the sense that it must apply to the whole space. We therefore replace P. with its
average over the whole space, as shown by

. ¢Number of integers k, m < n such that [y(m) - y(k)| < r
lim { 5 }
=k n

Ar=

(4.16)
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The definition of Grassberger and Procaccia [34] for the correlation dimension is given by

. In(A,
D, = m{% (4.17)

On the basis of this definition, Grassberger and Procaccia [34] developed an algorithm for

the numerical computation of the correlation dimension from a time series. A description

of this algorithm follows.

Given a time series {y(i) : i = 1,2, ..., N}, we wish to reconstruct a Dg-dimensional
phase portrait, which is a subspace of RPZ. By the use of Takens' embedding theorem, a

state on the reconstructed attractor is given by

®(i) = {y(@),y(i+7),...,y(i+ (De - 1)7)} (4.18)

where 7 is the time delay, and Dg is the embedding dimension. It is in the nature of most
strange attractors that pairs of trajectories that are initially close will eventually become
temporally uncorrelated. However, both trajectories will still be on the attractor and remain

spatially correlated. This cumulative correlation is defined as [34]

1 N N

Clo = Y. Y Hle-le(k) -2()) (4.19)
k=1 ;=1
i#k

where H is the Heaviside function

H(z) = { 0 ifz<0 (4.20)

1 otherwise

The norm [@(k) — ®(7)] in {4.19) may be any kind of norm measure. In practice, the
Euclidean norm is used frequently, as it provides a convenient method to calculate the

distance between any two points. Our calculations are based on the Euclidean norm.

The relationship between the correlation dimension and the cumulative correlation
function is based upon the power law described in (4.14), which is derived from the geometric
considerations discussed previously. The result is valid for “small enough” values of €. A
determination of the correlation dimension is found by plo't.t.ing C(<) versus € on a log-log
graph. The particular region in which the power law is obeyed usually appears as a straight
line; the slope of that line is found by making a least-squares fit to this part of the curve.

The slope so computed is an estimate of the correlation dimension. If the sequence of
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estimates converges as the embedding dimension Dg increases, then we have an estimate

of the attractor dimension D..

The original algorithm developed by Grassberger and Procaccia [34] is unfortunately
very slow to compute, since the running time scales at least as O(N?) for thel-’calcula.tion
of cu:'mula.tive correlation in each embedding. To improve the computational efficiency of
the correlation dimension, Pineda and Sommerer [79] have introduced the boz-counting
- algorithm to estimate the generalized dimensions from a time series, and developed a fast
algorithm to implement the computation. The algorithm is briefly described as follows:
For a given time series, we form an m-dimensional vector series, in which each vector is a
state point of the attractor in the reconstructed phase space. The first step of the basic
algorithm is to scale and truncate the floating-point values into unsigned r-bit integers;
then for each value, we interleave the r bits of the m r-bit integers to form a single mr-bit
long integer. The tricky point of the algorithm happens at this step. That is, the box size
is restricted to be of the form £ = 2%; we theii only need to examine the first km bits of
each interleaved integer to count the number of occupied boxes at each level of resolution.
This can be performed efficiently by a radiz sort algorithm that requires only O(N) times.
The procedure is repeated for each of the r levels of resolution, thereby getting an estimate

of the attractor dimension.

Care must be exercised in computing the correlation dimension, especially for real-
life data. The number of data points used in the experiment is a very crucial factor for
obtaining reliable results in that the number of data must be large enough to allow the
orbit to go through a neighborhood sufficiently many times. More specifically, the size of
the data set cannot be smaller than a fundamental limit derived by Echmann and Ruelle
[21] for estimating attractor dimensions and Lyapunov exponents in dynamical systems.
Based on Grassberger-Procaccia’s algorithm for the correlation dimension, Eckmann and
Ruelle present a relationship between the attractor dimension and the size of the data set

as follows:
2log N

<
° = log(1/p)
where p == ¢/L < 1, L is the diameter of the reconstructed attractor, which is defined by

(4.21)

L = max(|®{k) - ®(jj]), and ¢ is the maximum mutual distance defined in (4.19). Equation

(4.21) provides a lower bound on the size of the data set, N, needed for estimating the

4
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correlation dimension from a time series by the use of the Grassberger-Procaccia algorithm,
It is imperative that we adhere to this limit for experimental studies of chaocs using a time
series of finite length if the results obtained are to be reliable. A similar formula about the
relationship between the attractor dimension and the size of the data set used to estimate

the correlation dim'é,nsion has been proposed by Theiler as follows [95]:

N 2>4/2p° (4.22)

where D is the fractal dimension of the attractor.

4.3.3 False Nearest Neighbors Analysis

The method of false nearest neighbors [3, 54] determines the minimum embedding dimension
required to reconstruct the state space of a dynamical system from observed data with time
delay embedding. The basic idea of the method is that in passing from dimension d to
dimension d-+ 1, one can differentiate between those points on the reconstructed trajectory
®(7) with time delay embedding that are “true” neighbors and other points on the trajectory
that are “false” neighbors. A false neighbor is a point in the data set that is a neighbor
solely because we are viewing the trajectory in too small-an embedding space. In other
words, in an embedding dimension that is too small to unfold the attractor, not all points
that lie close to one another will be neighbors because of the dynamics. Some will actually
be far from each other and simply appear as neighbors because the geometric structure of
the attractor has been projected down onto a smaller space. When we have achieved a large
enough embedding space, all neighbors of every point on the trajectory in the multivariate

phase space will be true neighbors.

Given a time series {y(i) : i = 1,2,..., N}, we reconstruct a «-dimensional phasc

space by using time delay embedding. A state vector on the reconstructed phase space is

given by
()= {y(@), ¥+ 7). yli+ (d-1)7)} (1.23)

where 7 is the time delay. Consider the nearest neighbour ®*(:) of ®(i) with nearness in the

sense of some distance function, i.e., Euclidean distance. Then the square of the Euclidean
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distance between the point ®(i) and the neighbor ®"(i) is

d=1
Ri(i,n) = 3 [y(i + k7) — y™(i + kr)]? (4.24)
k=0

Rq4(i,n) is presumably small when one has lots of data, and for a data set with N entries,
this distance is on the order of Fl‘!i_ [3]. In going from the phase space of dimension d to a
phase space of dimension d--1 by time delay embedding, we add a (d+ 1)tk coordinate onto
each of the state vectors ®(:). This new coordinate is just y(i + dr). Thus the Euclidean
distance, measured in the phase space of dimension d+1, between ®(i) and the same nearest
neighbor ®"(i) determined in the phase space of dimension d is changed due to the new

coordinates y(i + dr} and y{"){(i -+ dr) to
R34y (i, m) = RY(3,r) + [y(i + dr) — y™)(i + dr)]? (4.25)

If R, (i, r) is large, we can presume it is because the near neighborliness of the two points
is due to the projection from svine higher-dimensional attractor down to dimension d. A
natural criterion for catching embedding errors is that the increase in distance between
y(i+dr) and y{™ (i dr) is large when going from dimension d to dimension d 4 1. A false
nearest neighbor cf y(z + d7) is declared if

|y (i + k7) — y™ (i + k7))

Ry(i, n)

where Rr is some threshold. In practice, it is found that for Ry > 10 the false neighbors
are clearly identified [3, 54].

> Ry (4.26)

The method of false nearest neighbors described above supposes that data used for
the computation of the distance between y(i+ dr) and y(*) (i +dr) has an infinite accuracy.
But with noisy data, which is the case in most practical situations, all points have “near
neighbors” that do not move apart very much as the embedding dimension is increased. As
it happens, the fact that points are nearest neighbors does not mean they are close on a
distance scale set by the approximate size R4 of the attractor, where R4 is the estimation
of the standard deviation of the data. If the nearest neighbor to ®(i) is not close, so
Ry(i,n) & R, then the distance Ryy1(i, n) will be 2Ry(i, n) [3]. This suggests as a second

criterion for falseness of nearest neighbors if

Ra(i,n) < 2R4 (4.27)
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The decision for falseness of nearest neighbor is made when either of the two criteria de-

scribed above is designated as false.

4.4 Lyapunov Characteristic Exponents

The determination of Lyapunov characteristic exponents is important in the analysis of a
possibly chaotic system, since Lyapunov exponents not only show qualitatively the sensitive
dependence on initial conditions but also give a quantitative measure of the average rate
of separation or attraction of nearby trajectories on the aitractor. In this section, we
discuss the extraction of Lyapunov exponents of a nonlinear dynamical system from both the
dynamical equations and time series. We begin by presenting a definition of the Lyapunov

characteristic exponents for a dynamical system.

4.4.1 Definition

To determine the stability of motion of a dynamical system in an n-dimensional phase space,
the asympototic rate of a small perturbation of a trajectory is investigated by means of
average exponential growth or decay rates called Lyapunov exponents. A positive Lyapunov
exponent describes an exponentially increasing separation of nearby trajectories in a certain
direction. This then leads to the sensitive dependence of the dynamics on initial conditions,
which is one of the most characteristic features of deterministic chaos. For bounded systems,

this situation is possible only if a folding property of a strange attractor is involved.

Given a dynamical system in an n-dimensional phase space, suppose we monitor the
long-term evolution of an infinitesimal n-sphere of initial conditions. The sphere will evolve
into an n-dimensional ellipsoid due to the locally deforming nature of the flow. The ith
one-dimensional Lyapunov exponent is then defined in terms of the length of the ellipsoid

_ principal axis /;(t) as follows [12}:

T S 110)) ‘ '
At = f.li)rgo ?log T‘(—Oj' (128)

where the ); are ordered from largest to smallest. Thus the Lyapunov exponents are related

to the expanding or contracting nature of principal axes in phase space. Since the orientaticn
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of the ellipsoid changes continuously as it evolves, the directions associated with a given
exponent vary in a complicated way through the attractor. We cannot therefore speak of a

well-defined direction associated with a given exponent.

4.4.2 Lyapunov Exponents from Dynamical Equations

Let an m-dimensional compact manifold M be the state space of a dynamical system. The
system on M is a nonlinear differentiable map ¢: M — M, which can be conveniently

expressed by the following difference equation:
x(k) = d(x(k - 1)) = ¢*(x(0)) (4.29)

Let v(0) denote an initial perturbation of a generic point x(0), and ¢ be a constant that
is small enough. Consider the separation of trajectories of the unperturbed and perturbed

points after n iterations:

| ¥ (x(0)) — ¢*(x(0) +ev(0)) | = || De*(x(0))v(0)e || +O(c?)
k=1
= [ (J] Do(x(i))v(0)e | +O(*)  (4.30)
=0

where D¢(x(i)) is the Jacobian, that is, the m x m matrix of partial derivatives of ¢
evaluated at the point x(i). For a one-dimensional system the average exponential rate of

separation is
1 k~1 1 k-1
Jim —log | E}qﬁ'(x(m = Jim ; log | ¢'(x(2)) | (4.31)
In general, the occurrence of products of noncommutative matrices in (4.30) renders the
existence and evaluation of the limits nontrivial. It has been shown, however, by Oseledec

{73] that analogous quantities can be defined and evaluated according to the following
theorem [20, 73, 81}

Theorem (Oseledec): Let p be a probability measure on a space M, and
¢: M — M, a measure preserving map such that p is ergodic. Let also D:

M — D, the space of m x m matrices, be a measurable map such that

[ etaxyiog* || Dix) 1< o0 (4.32)



4.4. LYAPUNOV CHARACTERISTIC EXPONENTS 39

where x € M, log* u = max(0, log u). Define the matrix D¢*(x) = [T¥=) D(¢*(x)),
#°(x} = x, then for p— almost all x, the following limits exist:
K = lim [Dg"(x)" Dg* (x)]5* (4.33)
k—oo

where the asterisk denotes the adjoint operation.

Let the distinct eigenvalues of this matrix be denoted by {d; :i=1,...,m}. The logarithms
of the number d;, that is, the Lyapunov exponent A;, can be ordered as A; > A3 > -+ > A,
and the subspaces of the tagent space of ¢ at x corresponding to all eigenvalues < exp ),

can be labeled by E;. Then the following holds [20, 73, 81]

Theorem: For p— almost all x
A= lim = DGl for v e Bi\ Fups (4.34)
—o0

On the basis of this theorem, an efficient algorithm for the evaluation of these
Lyapunov exponents was proposed by Benettin et al [12]. The method can be described
in principle as follows. In the tangent space of ¢ at zg, an arbitrary complete set of
orthonormal basis vectors {v9,...,0%} is chosen. For j = 1,..., k subsequent steps, the.

following calculations are then performed. First, we determine the vectors
i = Do(x(j - 1))~ (4.35)
w; P{x(7 ; 35

where i = 1,...,m. By orthogonalization, these vectors can be restricted to the subspaces

M;, and stretching factors d‘f are obtained by

di=||w]|| and =] (4.36)
with
. . k-l . . .
w=wi - <v,wl > (4.37)
=1
where k= 2,...,m and
i_ 9
Ul = — (4-38)‘.’—
di
The Lyapunov exponents are finally obtained from
1 n-1 .
e I3 i
A= nli}ngo - Z log(d]) (4.39)

=0
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The computational procedures of Lyapunov spectrum for a two-dimensional dynam-
ical systemn can be illustrated by Figure 4.1. In this figure, each vector v; tends to relax
in the direction that permits the largest stretching. After scme transient steps, the first

vectors v] will point in the direction of fastest separation.

Unfortunately, this method cannot be applied directly to experimental data, since
when we work with a time series we usually do not know the underlying dynamical equations
responsible for generating the time series. The next subsection will discuss how to extract

Lyapunov exponents of a chaotic system from experimental data.

4.4.3 Lyapunov Exponents from a Time Series

Typically, experimental data consist of discrete measurements of a single observable. The
well-known technique of phase-space reconstruction with delay coordinates makes it possible
to obtain from such a time series an attractor whose Lyapunov spectrum is identical to that

of the original attractor [93, 76).

Suppose that we are given a time series y(n), which is an observation of an m-
dimensional chaotic dynamical system ¢ : M — M. A Dg-dimensional phase space RP=
is reconstructed by using Takens’ embedding theorem [93, 76]. Then, a state point on the

reconstructed phase space is given by

®(n) = {y(n),y(n+7),...,y(n+ (Dg - 1)7)} (4.40)

where 7 is the time delay discussed in section 4.2, and Dg is the embedding dimension.
Without loss of generality, we suppose = 1. Thus @(n},n € [1, 00) defines a trajectory on
the reconstructed phase space, and an equivalent dynamical system 1 : RPE — RP= then
is

®{n+ 1) = ¥(®(n)) - {4.41)

To calculate the Lyapunov exponents, Dy(®(n)) should be known at every point &(n).
When we incorporate ideas put forward by Echmann and Ruelle [20], the Lyapunov ex-
ponents can be approximately caiculated from the information contained in the dynamical
map if we replace the linearized flow D4 by a suitable linear approximation D+. To con-

struct this approximation at ®(k), the images of various points in the neighborhood of ®(k)
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Figure 4.1: Illustration of the procedure used to calculate Lyapunov exponents from dy-
namical equations.
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are investigated. Let ®;(k) be a point within a small ball of radius r around ®{k). Then
define

vE = &,(k) - B(k) (4.42)
and .
witl = @ik +1) - Bk +1) (4.43)
The relation
Wil = Dy (@ (k))vE (4.44)

determines the matrix Dy (®(k)) if Dg linearly independent vectors w; are given. If the
corresponding points ®;(k) can be found within a neighborhood of ®(k), where a linear
approximation can be justified, the constructed ﬁgb('b(k)) will be a good approximation of
Dy(®(k)). In that case Dy(®(k)) can be used for the evaluation of Lyapunov exponents

as outlined in the previous section.

In most practical applications, usually only a limited set of noisy data points is
available. The distribution of points will be rather inhomogeneous since a smooth distri-
bution of points along the unstable direction but a singular distribution along the stable
direction of the manifold is expected. To get more precise information about the stable
directions, we need to investigate the mapping of L neighboring points of ®(k), where L is
usually considerably larger than the embedding dimension Dg. The matrix Dy(®(k)) is

then determined from a least-square fit in the following way:
Du(@(k) = A(@(k)) B(2(k))! (4.45)
where t denotes the Moore-Penrose pseudo-inverse operation, and
A(®(K)) = W(R(k)V(® ()T and B(®(k)) = V(®(E)V(@(k)T (4.46)
with
W(R(k) = Wit watt, o wit] and  V(@(K) = [vh,vE, - vE] (447)

Because of the limited number of data points available, a compromise always has to be
made between choosing a sufficient number of data points within a small ball of radius »

to reflect the geometric structure of the attractor in all direction and selecting only nearest
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neighbors such that a linear appfoxima.tion of ¢ can be justified. The method described
above is proposed by Stoop and Meier [90]. Note that in the above method a “local linear”
approach is applied to build the Jacobian matrix, as formulized by (4.42), (4.43) and (4.44).
To get more accu}ate estimates of the Lyapunov exponents, it may be necessary to use higher

(i.e., third)-order polynomial fit to build the Jacobian matrix |3, 13].

Wolf’s Metliod

To justify a given time series to be possibly chaotic, in most practical cases, it is only
necessary to evaluate the largest Lyapunov exponent. Wolf et al. [101] have developed an
algorithm for estimating the largest positive Lyapunov exponent from experimental data,
which is started from the deﬁnitioh'given previously and well suited for the purpose of the

research reported in this thesis.

Again, suppose that we are given a time series y(n). A Dg-dimensional phase
space is reconstructed by using Takens' embedding theorem. Then, a state point on the

reconstructed phase space is given by

(i) = {y(i), y(i+ 1),...,yli + Dp - 1)} (1.48)

Thus ®(n) defines a trajectory on the reconstructed phase space. To estimate the largest
Lyapunov exponent, we can in effect monitor the long-term evolution of a single pair of
nearby orbits. The reconstructed attractor, though defined by a single trajectory, can

provide points that may be considered to lie on different trajectories.

A schematic representation of the procedure is shown in Figure 4.2. The solid linc in
this figure signifies a fiducial trajectory. We denote an initial point on the fiducial trajectory
as B(to) = {y(to), y(to+ 7),...,y(to + [Pg — 1J7)}. Consider the nearest neighbor of the
initial point, and denote the corresponding distance between these two points as L(lp), which
we call the initial length. Suppose that the time series y{t) is long enough, so that for each
state point on the fiducial trajectory there exists a neighbor such that L{t;) < r,i = 0,1,- -,
where r is the radius of a sphere on RPE, It is assumed that the radius r is much smaller
than the extension of the reconstructed attractor. After one mean orbita! period, the initial

length will have evolved to length L'(¢;), which may be larger than r. We then replace the
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Figure 4.2: A schematic representation for estimating the largest Lyapunov exponent from
a time series.
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non-fiducial data point with a point closer to the fiducial point ®(t,), for which L{t,) < r,
in nearly the same direction as the original vector. This procedure is repeated until alf
the points of the trajectory are exhausted. The largest Lyapunov exponent, Ay, is then

estimated by using the formula [101]

1 & L)
,\ = 10 —_— 4..’1
YTk —to kz=:; & Litir) (4:49)

where K is the total number of replacement ste"ps. The important point of this algorithm
is that, through a simple replacement procedure that attempts to preserve orientation and
minimize the size of the replacement vectors, we can monitor the long-term behavior of a

single principal-axis vector, and thus get an estimate of the largest Lyapunov exponent of

the system.

Wolf’s algorithm can be easily extended to estimate A; 4 A, by considering two near-
est neighbors of the initial fiducial point, and replacing the initial length in the preceeding
algorithm by the area determined by these three points. But, as pointed out in [:;;-_101],
Wolf’s method almost always gives accurate values for only the largest Lyapunov exponent

A1 due to inevitable numerical errors.

4.5 Summary

In this chapter, we have described methods to extract chaotic parameters from a given time

series. We started this chapter by describing the reconstruction of chaotic dynamics from

observation.

Dimension analysis is commonly used to distinguish a given dynamical system Lo be
whether deterministic or random. In this chapter, we presented the definition of Hausdorfl
dimension, then described the correlation dimension that is well suited to our research.
Various methods to evaluate the correlation dimension fror. a given time series are given
and discussed. The method of false nearest neighbors analysis for finding the minimum
embedding dimension for chaotic reconstruction of a given time series was presented. The

need for an adequate data length was stressed.

Lastly in this chapter, we discussed the estimation of Lyapunov exponents, which
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is an important characteristic in the analysis of a possibly chaotic system,
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Chapter 5

Experimental Database
Description

5.1 Introduction

The Communications Research Laboratory (CRL) of McMaster University is committed to
a program of research to develop improved marine radar techniques for the detection and
classification of icebergs and sea ice. In response to the equipment requirements of this
program, the CRL has developed a research oriented radar system cailed IPIX radar [41].
Figure 5.1 shows the IPIX radar trailer and the antenna. This radar has enabled us to
make real measurements of growler and sea backscatter at X-band. The database used for

the study was collected by using the system.

The IPIX radar has the following features. It is dual-polarized and fully coherent.
It has two identical receivers: one is connected to the vertical polarized antenna feed and
the other to the horizontal polarized antenna feed. Each receiver provides the in-phase
and quadrature output components for subsequent processing. This property is useful in
our study of nonlinear dynamical systems, since it provides a basis for comparison to the
single-component dynamic reconstruction method described in Chapter 4. The IPIX radar
has built-in calibration equipment, which permits quantitative measurements to be made
with high confidence, and a digital control system which allows experimental parameters to

be easily varied. These provisions make the radar measurements highly reliable.

47
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s.1. INTRQDUCTION

Figure 5.1: The IPIX radar trailer and antenna used for collection of the database reported
in this chapter.
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The database described in this chapter contains data collected in three different

locations with different sea states.

5.2 Experimehts at Cape Bonavista, Newfoundland

The IPIX radar system was first installed at Cape Bonavista, Newfoundland, Canada, in
May 1989. Floating ice targets of all sizes commonly pass within radar range of this site
during the Spring season and a wide variety of sea states can be observed throughout the
year. The radar antenna was mounted at'a height of about 25 meters above the water,
similar to tﬁﬁt of a typical ship-mounted radar. During the field trip of June 1989, various
radar data, including returns from icebergs, fishing vesse's and sea clutter, in various sea
states, were collected. Calibrations were performed, whiéh allowed the processing software

to rclate digitized signal values to an absolute power level at the receiver input.

Table I describes the radar and weather parameters of some data collected on the
trip. The relevant parameters are: [ID (identification of each data pack), TYPE (target
type: c=clutter and g=growler), POL (transmit receive polarization, h=horizontal and
v=vertical), PRF (pulse repetition frequency in Hz), PULSE (pulse width in nono-second),
RSTART (distance in meters from the radar to the first sample collected), WSPEED
(wind speed in knots, which were provided by the Atmospheric Environment Service), and

WHEIGHT (wave height in feet, which were provided by a nondirectinnal waverider).

For each data package, there are 38 range gates; in each range gate there is an
I-channel data set and a Q-channel data set, each consisting of at least 40,000 samplies from

consecutive scans.

The data sets used in the studies represented here were all obtained with the [PIX
radar operating in a dwelling mode, that is, with the antenna pointing toward a patch of
the ocean surface along a fixed direction. The sea states for the data sets listed in Table |

vary from near calm to rough.
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ID | DATE | TYPE | POL |PRF | PULSE | RSTART | WSPEED | WHEIGHT
B79 | 6/6/89 | ¢ | hh, hv |2000] 200 3000 13 3.78
B86 | 6/6/89 | < | hh, hv|2000| 200 3000 13 3.51
B95 | 7/6/89 | ¢ | hh, hv {2000 200 3300 8 5.74
B9 | 7/6/89 | g |hh. hv|2000| 200 6420 8 4.59
B115 | 7/6/89 | g | hh, hv {2000 200 4080 5.00
B218 | 9/6/89 { < | hh, hv |2000| 200 7980 11 7.48
B251 | 10/6/89 | < | hh, hv | 2000 | 200 4800 10 5.95
B318 | 10/6/8¢ | < | hh, hv | 2000 200 5700 27 8.30
B362 | 10/6/89 | < | hh, hv | 2000 | 200 7950 12 6.98
B379 | 10/6/89 | < | hh, hv | 2000 | 200 6030 4 6.70

Table 5.1: Radar and sea state parameters for the Cape Bonavista database




5.3. EXPERIMENTS AT DARTMOUTH, NOVA SCOTiA

ID DATE | TYPE | POL | PRF | PULSE | RSTART | WHEIGHT
D6s5 | 6/11/93 c hh, hv | 2000 200 2100 7.45
D7s4 | T/11/93 C hh, hv | 2000 200 2500 6.05
Di2s4 | 12/11/93 c hh, hv | 2000 200 2100 5.28

D12s15 | 14/11/93 c hh, kv | 2000 200 2100 6.70
D14sa0 | 14/11/93 c hh, hv | 2000 200 2100 4.90
D17sa0 | 17/11/93 c hh, hv | 2000 200 2100 5.60
D17sal | 17/11/93 c hh, hv | 2000 200 2100 4.25

Table 5.2: Radar and sea state parameters for the Dartmouth database

5.3 Experiments at Dartmouth, Nova Scotia

Further field experiments at Dartmouth, Nova Scotia, Canada, were carried out in November

1503, using a refined version of the IPIX radar. The radar antenna was mounted at a height

8l

of about 30 meters above the water level and within 15 meters of the shore. The radar

system was maintained with the same parameters as those for the trip to Bonavista, Each
data package shown in Table 2 includes 14 range gates with both I-channel and Q-channel
samples. In each channel about 260,000 samples are recorded per experiment. The radar

system was again operating in the dwelling mode. The sea states for the data shown in

Table 2 fall in the range of moderate to rough.
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5.4 Experiments at Lake Ontario

The IPIX radar was also set up at Fifty Point Conservation Area, Stoney Creek, Ontario,
in May 1993. its antenna was mounted approximately 10 meters above the water level and
within 100 meters of the shore. Since the lake state does not change as much as an océa.n
environment, we will use only one data set, in which the radar parameters have the sime
values as those described earlier. The data set has a length of about 250,000 samplesi.__:'I.‘he :

wave height for the data set was about 4.9 feet.

5.5 Summary

In this chapter, a database used for the chaotic analysis of sea clutter and the detection of
small target in sea clutter is described. The database contains data collected at two locations
on Canada’s east coast, overlooking the occean, and one near McMaster, overlooking Lake
Ontario. At each location, data sets were collected over 2 number of surface conditions,

with radar antenna fixed, staring at a particular patch of the water surface.



Chapter 6

Chaotic Characterization of Sea
Clutter

6.1 Introduction

Sea clutter refers to radar backscatter from a zea surface. It is a very complicated process
that is highly dependent on the sea state. To apply the new chaos-based detection method
described in Chapter 3 to the radar detection of a small target in sea clutter, we first have
to demonstrate that sea clutter is indeed chaotic. To do this, we use the radar database
described in Chapter 5, and present results on correlation dimension analysis and false
nearest neighbors’ analysis, the extraction of Lyapunov exponents from sea clutter data by
applying the methods described in Chapter 4. The validity of the sofiware for performing
these estimations is demonstrated by applying it to a chaotic time series generated by the
Lorenz system; the results of these computations are presented in the Appendix at the end

of the thesis.

We study the effects of various factors on the extraction of chaotic characteristics of
sea clutter. These factors include: data length, different channels, background noise, radar
site locations, and sea states. After the relationships between these parameters and the
chaotic model have been confirmed, we build a model that estimates the chaotic dynamics
of sea clutter. The reconstruction of sea clutter dynamics not only provides confirmation
of local predictability, which is an important property of a chaotic system, but also gives a

predictive model for subsequent application of the signal detection strategy.
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This chapter is organized as follows. In Section 6.2, we present results on the corre-
lation analysis using the radar database described in Chapter 5. In this section, various data
sets are used to demonstrate that the dynamical meéha.nism responsible for the generation
of sea clutter is.deterministic and global. In Section 6.3, we present experimental results on
the computation of Lyéfpunov exponents to further demonstrate the chaotic nature of sea
clutter. The experimental results of false nearest neighbors’ analysis for finding the min-
imum embedding dimension for the reconstruction of chaotic dynamics of sea clutter are
presented in Section 6.4. In Section 6.5, we study the estimation of sea clutter dynamics.
Two neural network structures are proposed and implemented. The local predictability of
sea clutter based on the models is studied. In Section 6.6, a method for defining A new

strange attractor is presented. This chapter is concluded by a summary in Section 6.7

6.2 Correlation Dimension of Sea Clutter

In our database, each sea clutter data set has at least 40,000 samples. To choose a time
delay 7 for dynamical reconstruction, we calculate the mutual information from time delayed
time series of sea clutter using the method described in Section 4.2. A plot of the mutual
information versus time delay is shown in Figure 6.1. We see that the minimum mutual
information occurs at a time delay 7 = 5. To further confirm the result of Figure 6.1, we
embed the data in one and two dimensions, and minimize the mutual information dimension
D, with respect to 7, as described in Section 4.2, Figure 6.2 shows a plot of D, versus
7. The minimum of D, is seen to occur at 7 = 5. For the above computations, a data
file of total 40,000 samples was used. Thus, calculations of the correlation dimension, false
nearest neighbors, the Lyapunov exponents, and estimation of the sea clutter dynamics are

all based on a time delay 7 = 5.

A fast algorithm developed by Pineda and Sommerer [79] was used to calculate
the correlation dimension of sea clutter. Figures 6.3 through 6.10 show the results of the

correlation dimension analysis for data packages listed in the last chapter.

First. the effect of the data length on the estimation of the correlation dimension

is studied. It is found that for a data set longer than 10,000 samples, the estimation of
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Figure 6.1: Mutual information versus time delay for sea clutter data. The minimum mutual

information dimension occurs at r = 5.
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Figure 6.2: Mutual information dimension versus time delay

minimum mutual information dimension occurs at 7 = 3.

for sea clutter data. The
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Figure 6.3: Correlation dimension analysis for sea clutter data set B318_20, where N is the
length of the data set used for the computation. The solid curves correspond to the raw
sea clutter data, and the dashed curves correspoad to the data after being smoothed.

correlation dimension for sea clutter may be considered to be reliable. Figure 6.3 shows four
curves of the correlation dimension as a function of the embedding dimension, corresponding
to the data set B318_.20. The two solid curves are the results for the original sea clutter
data, in which one corresponds to N = 10,000 and the other corresponds to N = 40, 000,
where N is the total number of data points used to implement the computation. The two
dashed curves included in Figure 6.3 are the results obtained for the same data set smoothed
by a filter, more on which will be discussed later. The results are almost the same for the
four cases. We believe that these results are reliable in light of the fundamental limit of
equation (4.21). If we set p = 0.1, w' ich refers to the maximum value of the ratio of possible
noise power to received sea clutter power, then a data set with N = 40, 000 samples satisfies
the lower bound for estimating a correlation dimension d, < 9.4. Figure 6.3 ;shows that the
correlation dimension for data set B318.20 is about 8.4; hence, we are well within the

Eckmann—Ruelle limit.

To test the influence of noise on the estimation of correlation dimension, we choose
two sea clutter data sets, B318_20 and B98_35. B318_20 hasa higher clutter-to-noise ratio
than that of B98_35, as the scattering distance (radar range) for B98_35 is much larger



6.2. CORRELATION DIMENSION OF SEA CLUTTER 57

B3B_35

Correlation dimension

15 20 25 30
Embedding dimension

Figure 6.4: Correlation dimension analysis for sea clutter data set B98..35, where N is the
length of the data set used for the computation. The solid curves correspond to the raw
sea clutter data, and the dashed curves correspond to the data after being smoothed.

than that for B318_20. A smoothing filter of the form £(n) = Y0, a;z(n + i - 2) with
a; = 1/3 was used to smooth the raw sea clutter data. The dashed lines in Figures 6.3 and
6.4 are results based on the smoothed data sets, and the solid lines are the results obtained
from raw data sets. For the almost noiseless data set B318_20, the results obtained from
both the smoothed and the original data are essentially the samy, as shown in Figure 6.3.
But for the more noisy data set B98_35, the estimation of correlation dimension of the
nonsmoothed data set does not appear to converge with increased embedding dimension as
shown by the two solid curves in Figure 6.4, In particular, the two solid curves in Figure 6.4
show that the longer the data set is, the larger the correlation is. When, however, the data
set is smoothed, the estimation of the correlation dimension converges as the cmbﬁdding
dimension is increased, and the results for both N = 10,000 and N = 40,000 are almost
the same as those shown by the two dashed curves in Figure 6.4. The reason why the solid
curves in Figure 6.4 diverge is because the effect of receiver noise is much more pronounced

in that particular data set; and a random system has, theoretically, infinite dimension.

Care must be exercised in choosing a smoothing filter for a chaotic time series. Ref-

erence [10] reported that the Lyapunov dimension increases in filtered chaotic signal since
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a filter with limited bandwidth introduces another negative Lyapunov exponent and that
expoficnt may make the Lyapunov dimension increase. This is not the case in our applica-
tion. Generally speaking, a chaotic time series has a relati:\'e]y wide band spectrum. If the
. smoothing filter is chosen to have a siifficient bandwidth so that all-frequency components
of the chaotic signal fall in the pass-band of the filter, then the ﬁlter cannot affect the
characterization of the chaotic signal. In our application, the frequency components of sea
clutter cozi:éentra.te mostly in the low frequency regigil (see Figure 6.37), and the smoothing
filter chosen for the application is actually a simple :lfow-pass filter with a bandwidth much

higher than that of the sea clutter component.

To compare the correlation dimension of sea clutter with that of filtered noise,
we created 2 new randomized time series with exactly the same Fourier spectrum as the
original sea clutter time series. Specifically, we take the Fourier transform of the original
time series, randomize the phase, and then -'compute the inverse Fourier transform of the
“surrogate data” so generated, as described in [72, 95, 98]. Figure 6.5 shows the results
of this calculation. The dashed lines pertain to the original sea clutter data set B318_20,
while the solid lines pertain to the randomized version of this data set. For the randomized
data set (i.e., filtered noise) there is no saturated region even though it has exactly the same
Fourier spectrum as the original data set. The longer the data set, the larger the computed
correlation dimension. It appears that the time delay has little effect on the computation for
the randomized data set. It is expected if a random noise process has infinite length, then
the computed correlation dimension would increase linearly with respect to the embedding
dimension. This is precisely the result shown in Figure 6.5 for the randomized data set. In
this experiment, the phase is chosen to be uniformly distributed in [0,27]. It is generated
by computation means. A result of the correlation dimension of this process is shown in

Figure 6.6. Clearly, there is no saturated region.

As mentioned at the beginning of this section, our radar system is a coherent system.
[t provides both I-channel and Q-channel data. Let these components be denoted by yr(n)
and yo{n) respectively. We may thus express the complex baseband form of the received
radar signal as follows:

y(n) = yr(n) + jyg(n) (6.1)

where j = v/—1. Correspondingly, we may express the amplitude (envelope) component of
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Figure 6.5: Correlation dimension analysis for sea clutter data set B318_20, where N is the
length of the data set used for the computation. The dashed curves correspond to the sca
clutter data, while the solid curves correspond to a filtered noise process (surrogate data)
with exactly the same Fourier spectrum as that of the original clutter data.
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Figuré 6.7: Correlation dimension analysis for different received data. A data set of 30000
samples is used for each computation,

the received radar signal as

ya(n) = \Jyf(n) + v3 (n) (6.2)

Hence, we have three different sea clutter components to consider. Figure 6.7 shows the
result of applying the correlation dimension analysis to these three components. The solid -
curve corresponds to the I-channel data.',:the dashed curve corresponds to the Q-channel
data, and the dash-dotted curve corresponds to the amplitude data. The resulting values
of the correlation dimension are all very close to each other. The results presented here
provide convincing evidence that a single component (in-phase, quadrature, or amplitude) is

sufficient for correlation dimension analysis, in accordance with Takens’ embedding theorem.

Antenna polarization is also another important feature to be considered in radar
system design. The IPIX radar system is dual-polarized. It provides both the like-polarized
(i.e., HH) data and the cross-polarized (i.e., HV) data simultaneously. It is therefore de-
sirable to study the effect of polarization on correlation dimension analysis. Figure 6.8
shows the results of this analysis for different polarizations. It can be seen from this fig-
ure that the results for both HH and HV polarizations are close to each other. In other

words, the correlation dimension of sea clutter is essentially invariant te the choice of radar

polarization.
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Figure 6.8: Comparison of different polarization on the computation of correlation dimen-
sion. Each data set used for the computations contains 30000 samples.

The next step in the correlation dimension analysis is to study the effects of geo-
graphic location of the observations and sea state at the time of observations. Figure 6.9
shows three estimations of correlation dimension versus the embedding dimension, with
each curve corresponding to a sea clutter data set collected at a specific location. All three
time series were collected for roughly the same wave height. The results show that all three
curves first reach their saturated region at the embedding dimension of about 20. Delining
the average value in the saturated region to be an estimate of the correlation dimension for
the specific data set, we find that the correlation dimensions shown in Figure 6.9 are 8.21,
7.68 and T7.45, respectively. For all practical purposes, we can say that they are sufficiently
close to each other. Figure 6.10 shows the relationship between the estimated correlation
dimension and the sea state, with the sea state being roughly classified by wave height.
The results shown in Figure 6.10 (a) correspond to the data collected at Cape Bonavista,
Newfoundland .(1989), listed in Table 1. The solid curve in the figure shows the mean vajue
based on 38 estimates of the correlation dimension for each sea staﬁe, and the error bar
shows the ccrresponding error, more precisely, twice the standard deviation, in the esti-
mation of the mean. The results in Figure 6.10 (b) correspond io the data collected at

Dartmouth, Nova Scotia (1993), and listed in Table 2. In this case, the solid curve is the
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Figure 6.9: The eflects of geographic locations on the computation of correlation dimiension.
Each curve corresponds to a sea clutter data set of 30000 samp'es, collected at a specific
location. All three data sets were collected for roughly the same wave height.

mean value of the correlation dimension for each sea state, based on 14 estimates; error bars
are as previously defined. We can draw two conclusions from Figure 6.10. First, it seems
that the correlation dimension of sea clutter does not vary apprecizbly with the sea state.

Second, comparing Figures 6.10 (a) and (b), we find that the correlation dimension of sea

clutter does not vary with radar site.

The results of the correlation dimension analysis for sea clutter presented in this
subsection tell us that sea clutter has a finite and fractal correlation dimension somewhere
between 7 and 9. Moreover, the correlation dimension of sea clutter is essentially invariant

with respect to the choice of radar channel (in-phase, quadrature, amplitude, polarization),

radar site, and sea state.

6.3 False Nearest Neighbors Analysis

We have also applied the method of false nearest neighbors described in Section 4.3.3 to
measur2 the minimum embedding dimension for the reconstruction of sea clutter dynamics.

As our sea clutter data were recorded from field experiments by the IPIX radar system
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Figure 6.10: The relationship between the estimated correlation dimension and sea state,
with the sea state being classified roughly by wave height. (a) The resulis correspond to
the database collected at Cape Bonavista, Newfoundland (1989). The solid curve shows
the mean value of 38 estimates computed for each sea state, and each error bar shows Lhe
standard error (twice the standard deviation) in the estimation of the mean; (b) the results
correspond to the database collected at Dartmouth, Nova Scotia (1993)}; once again, the
solid curve shows the mean value of 14 estimates computed for each sea state, and each
error bar has the same meaning as that in (a).
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Figure 6.11: False nearest neighbor analysis of a data set collected at the Cape Bonavista
with wave height of 4.59 fi..

described in Chapter 5, the data are inevitably contaminated by some form of noise. The
quantization noise of the digitized data is another factor that affects the quality of our sea
clutter data, To get a more reliable and conclusive result on the false nearest neighbors

analysis for sea clutter, both criteria of Section 4.3.3 are used alternatively in our algorithm,

The results, plots of the probability of false nearest neighbors versus embedding
dimension, are shown in figure 6.11~‘t0 6.16; each figure includes the use of three thresholds
for the criterion of (4.26) and the standard deviation of the sea clutter data for the criterion
of (4.27), on an alternate basis. As the embedding dimension increases, a false nearest
neighbor is declared when either of those two criteria is designated as false. These results
pertain to sea clutter data collected at two different sites and various sea states. The figures
show that the probability of false nearest neighbors is essentially zero after the embedding
dimension Dg = 9. In other words, the embedding dimension chosen for the reconstruction
of sea clutter dynamics has to be at least 9. The results obtained by the method of false
rearest neighbors are thus seen to be consistent with the Grassberger-Procaccia algorithm

for the correlation dimension of sea clutter.
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Figure 6.12: False nearest neighbor analysis of a data set collected at the Céjpe Bonavista
with wave height of 6.70 ft..
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Figure 6.13: False nearest neighbor analysis of a data set collected at the Cape Bonavista
with wave height of 8.30 fi..
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Figure 6.14: False nearest neighbor analysis of a data set collected at the Dartmouth with
wave height of 4.90 ft..
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Figure 6.15: False nearest neighbor analysis of a data set collected at the Dartmouth with
wave height of 6.05 f..
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Figure 6.16: False nearest neighbor analysis of a data set collected at the Dartmouth with
wave height of 7.45 ft..

6.4 Lyapunov Exponents

6.4.1 Largest Lyapunov Exponent

To calculate the largest Lyapunov exponent of sea clutter, the algorithm developed by Wolf
et al. [101] was first employed to sea clutter data. For this calculation, a mutual time
delay 7 = 5 and an embs = dimension of Dg = 10 were chosen, for which Dy is slightly
larger than the correlation dimension as shown in Figures 6.3 to 6.4. Figure 6.17 shows the
estimations of the largest Lyapunov exponent of the data sets used for the computation
of Figure 6.7. The solid curve in the figure refers to the I-channel data, the dashed curve
refers to the Q-channel data, and the dash-dotted curve refers to the am plitude of the same
data set. Defining the average value of the saturated region to be an estimate of the largest,
Lyapunov exponent of the data set, we find that the values shown in Figu re 6.17 are almost
identical in the range of 0.035 to 0.042, confirming that a single component of sea clutter is

adequate for estimation of the Lyapunov exponent. This is in perfect accord with Tukens’

embedding theorem.
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Figure 6.17: Lyapunov exponents of the same sea clutter data used for the computations of
Figure 6.7. The solid curve refers to I-channel data, the dashed curve refers to Q-channel
data, and the dash-dotted curve refers to amplitude data. Each data set contains 30000
samples,

The effects of transmitter and receiver polarizations on the extraction of the Lya-
punov exponent were also checked. Figure 6.18 shows the estimations of the largest Lya-
punov exponent as a function of iteration time using the data sets that produced Figure
6.8. The solid curve in the figure refers the HH polarization data; and the solid one refers
the HV polarization data. The results show that the largest Lyapunov exponent for both
polarizations lies in the range of 0.03 to 0.04. Here again, we see that they are close to each

other,

As with the results presented in last section, the effects of geographic location of the
observations and the sea state at the time of observation on the Lyapunov exponent were
studied. Figure 6.24 shows three estimates of the largest Lyapunov exponent as a function
of iteration time on the data sets used for the computation of Figure 6.9. All three curves in
their saturated region lie in the range of 0.03 to 0.04. They are close to each other, despite
the fact that the data sets used for this computation were collected at different locations

and at different times.

Figures 6.20(a) and (b) show the relationship between the estimated Lyapunov
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|| Sea State

3.78 4.54 | 5.95 | 3.30
A 0.0358:£0.006 | 0.0345+ 0.004 | 0.0368+0.005 | 0.0371 % 6.005
A 0.000+0.000 | 0.00040.000 | 0.000+0.000 | 0.000 % 0.000
A3 —0.0071 £ 0.005 | —0.009 + 0.005 | —0.091  0.004 | —0.0082 £ 0.005
A4 —0.152:£0.046 | —0.164 £ 0.050 | —0.158 £ 0.050 | —0.172 & 0.068
As —0.226 + 0.084 | —0.231+0.080 | —0.252 % 0.078 | —0.230 & 0.081
A6 —0.301 £0.098 | -0.321+0.100 | —0.3124 0.090 | —0.309 £ 0.098
A7 —0.401+0.112 | —0.424 £ 0.104 | —0.422 + 0.106 | —0.429 + 0.009
Ag —0.589+0.120 | —0.601+0.100 | —0.610% 0.110 | —0.592 % 0.100
A —0.892 £ 0.214 | -0.901+ 0.120 | —0.920+ 0.102 | —0.895 £ 0.120
A0 —1.042+0.342 | ~1.620% 0.380 | —1.583 £ 0.421 | —1.518 & 0.101

Table 6.1: Lyapunov spectrum for different sea states, where the sca state is classified by
wave height

exponent and the sea state. All the data sets used for the computation of this figure are
exactly the same as those for the computation of Figure 6.10. Again, the largest Lyapunov
exponent of sea clutter is positive and almost invariant with respect to geographic locations

and sea state, providing further confirmation for the chaotic nature of sea clutter.

6.4.2 Lyapunov Spectrum

To calculate the complete Lyapunov spectrum of the embedded system of sea clutter, wo
applied two procedures based on the ideas described in Section 4.4.3. For this computation,
four kinds of specific sea states, varied from near calm to rough, were chosen. In each sea
state, classified by wave height, we chose 10 data sets to the computation. The embedding

dimension was cliosen to be 10.

First, the results of the complete Lyapunov spectrum, obtained by the method based
on a local linear approach to build the Jacobian matrix, are summarized in Table 6.1. In
this table, the first row lists the sea states classified by wave height; the subsequent rows
list the corresponding Lyapunov exponents. Consider, for example, A; = 0.0358 4 0.006
for sea state 1. The first number is the mean value of 10 estimates computed for that sea
state, and the second number is the standard deviation in the estimation of the mean. The

resulting largest Lyapunov exponent by this method is in close agreement with the Wolf's

algorithm.
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Figure 6.21: Lyapunov spectrum computed by the mephod based on 3rd-order polynomial
fit to build the Jacobian g

To further substantiate the validity of the results on the largest Lyapunov exponent
of sea clutter presented previously, we have used the method described in [13], using a
higher (i.e., third)-order polynomial fit to build the Jacobian matrix for a data picked up
from data set B218 of Table 5.1. The results of the latter computation are presented in
Figure 6.21. The evolving values of the Lyapunov exponents are summarized in Table 6.2;

on the whole, these results further substantiate the final values summarized in Table 6.1.

The results shown above indicate that the first Lyapunov exponent of sea clutter is

Cength | 10 | 20 40 100 [ 150 200 300 |
A 0.8120 [ 0.0772 | 0.0495 | 0.0408 | 0.0408 | 0.0406 | 0.0405
A2 | -0.3480 | -0.0084 | 0.0086 | -0.0092 | -0.0037 | -0.0037 | -0.0037
As | -0.7557 | -0.0689 | -0.0824 | -0.0548 | -0.0827 | -0.0366 | -0.0386
Ay | -1.8895 | -0.1171 | -0.0854 | -0.1021 | -0.1106 | -0.0071 | -0.0981
As | -2.5475 | -0.1999 [ -0.2000 | -0.1279 | -0.2168 | -0.1854 | -0.1863
As | -3.1362 | -0.2566 | -0.2720 | -0.1571 | -0.2479 | -0.2235 | -0.2230
‘| -3.1845 [ -0.1534 | -0.4681 | -0.3626 | -0.4917 | -0.4615 | -0.4721
As | -4.2345 | -0.1998 | -0.5190 | -0.5188 | -0.5165 | -0.5104 | -0.5108
Ag | —6.5482 | —0.2731 | —0.6590 | —0.6151 | —0.7152 | ~0.7124 | —0.7134
Ao | —13.2502 [ -1.5705 | —1.2511 | —1.1616 | —1.1462 | —1.1437 | —1,1442

Table 6.2: The evolving values of the Lyapunov spectrum shown in Figure 6.21
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“7 'IDE=5 Dg=6|Dg=7|Dg=8| Dg=9 DE=IOH

Ay j 0.0432 | 0.0412 | 0.0408 | 0.0409 | 0.0410 0.0405 |
A | 0.0054 | 0.0028 | 0.0034 | -0.0008 | -0.0019 | -0.0037
Az | -0.0151 | -0.0436 | -0.0386 | -0.0401 | -0.0396 | -0.0386
Aq | -0.5837 | -0.2571 | -0.2487 | -0.2375 | -0.1874 | -0.0981

As | -1.0547 | -0.7267 | -0.6802 | -0.5507 | -0.2833 | -0.1863
As | -1.2043 | -0.8804 | -0.7823 | -0.5140 | -0.2230
A7 -1.2183 | -0.8973 | -0.7063 | -0.4721
As -1.1742 | -0.8854 | -0.5108
Ag -1.1632 | -0.7134
Ao -1.1442

Table 6.3: The Lyapunov exponents of sea clutter for defferent embedding dimensions.

indeed positive, and the Lyapunov spectrum of the embedded system does not appear to

change with sea state.

Two interesting observations can be made from the above computations:

¢ The second Lyapuncv exponent of sea clutter appears to be zero. This may imply

that sea clutter is governed by a coupled system of nonlinear differential equations
{3, 6.

e The sum of the Lyapunov exponents is negative, implying that the sea clutter is

describable as a flow.

To further substatiate this observation, we have embedded the same sea clutter data
used for the computation of Figure 6.21 in a system with varying dimension of 5, 6, 7, 8,
9, 10, respectively, and used the method described in {6] with a third-order polynomial
fit to build the Jacobian matrix. The corresponding Lyapunov spectrum of the embedded

systems are shown in Table 6.3. The results presented here provide further evidence for the

above mentioned observations.

With computational results of the Lyapunov spectrum of sea clutter at hand, we go
on to compute the Lyapunov dimension, or Kaplan-Yorke dimenion, which can be defined
as

Dy = K - B

La=177 6.3
AR +1 (6-3)
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Dg=
3.058

53| Dg=6[Dg=7 | DE=8 | D=9 Dg =10
| 3.002 3.623 | 3.000 | 2.987 2.953

Lyapunov dimension

Table 6.4: The Lyapunov dimension of sea clutter verse the embedding dimension

where Ay > Ay > -.- are the Lyapunov exponents of the system under study, and K
is determined such that X A; > 0 and YR < 0. The Lyapunov dimension was

originally defined by Kaplan and Yorke [53), as a lower bound on the fractal dimension.

Table 6.4 shows computational results of the Lyapunov dimension for sea clutter
corresponding to the results on Lyapunov spectrum reported in Table 6.3. As the embedding
dimension is varied from 5 to 10, the Lyapunov dimension remains around 3. This result
is smaller than the correlation dimension reported in Section 6.2, which is in accord with
Kaplan and Yorke [53].

6.5 Kolmogorov Entropy

The Kolmogorov entropy of an attractor can be considered as a measure for the rate of
information loss along the attractor or as a measure for the degree of predictability of points
along the attractor, given an arbitrary initial point. In general, a positive, finite entropy is
considered as conclusive proof that the time series and its underlying dynamic phenomenon
are chaotic {86). A zero entropy reprosents a constant or a regular, cyclic phenomenon that
can be represented in the state space by a fixed point, a periodic attractor, or a multiperiodic

attractor. An infinite entropy refers to a stochastic phenomenon.

Given a nonlinear dynamical system, we consider two trajectories on its attractor,
which are initially very close. The distance between two nearby points on different tra-
jectories is less than a specified maximum value lo. According to [34, 86], the seperation
of the nearby points is assumed to be exponential, and the time interval AT required for
two initially nearby points to seperate by a distance larger than /o will be exponentially

distributed according to

C(AT) ~ ¢~HaT (6.4)

where K is the Kolmogorov entropy.
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Typically, an experimental time series is a record of continuous observation of a
dynamical system in time interval A¢, corresponding to a sampling rate of -_;—t I[n this case,
AT in (6.4) is replaced by bA¢, where b = 1,2,--- The disﬁrribution function of & can be
defined as

C(b) = e~hbat (6.5)

On the basis of this definition, a maximum likelihood estimate of the Kolmogorov entropy

is derived in [86] as follows:

. 1 1
Kymr = _Mln(l - E) (6.6)
with
b= L3, 61
= (6.7)

which is the average value of the b’s in the sample (by, by, - - +), with an effective s.amplc size

of M. It has been shown that, as M — oo and lp = 0, Ky = K [86).

In practical use of the Kolmogorov entropy estimate of (6.7}, {p is recommanded
to be the average absolute deviation of the time series under study, and M is the number
of full cycles after the first passage through the evarage of the signal [85]. Obviously, the
longer the time series, the larger the value of M, thus, a more accurate estimate of the

Kolmogorov entropy is expected.

The Reactor Research Foundation of the Netherland [85] has developed a software
package for the estimation of the Kolmogorov entropy, based on the method described above.
The software is applied to our sea clutter data. A result is shown in Figure 6.22. The cutofl
length in the figure refers to /5, and the normalized embedding length refers to the average
cycle time. As the cutoff length approuches the value 2, the estimated Kolmogorov entropy
converges to the range between 0.04 and 0.05, which, in light of the computational results on
the Lyapunov spectrum reported in last section, appears to indicate that the Kalmogorov
entropy of sea clutter is not significantly different from its own largest Lyapunov exponent.
This gives further evidence supporting our observation that the second Lyapunov exponent

is likely to be zero.

As discussed in [86, 87], 50 to 200 numbers of points in cach full cycle are needed to
obtain a reliable estimation of the Kolmogorov entropy. In other words, an over sampled

time series is recommanded [85]. In the computation of Kolmogorov entropy for sea clutter,
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Figure 6.22: Kolmogorov entropy of sea clutter. The corresponding data is picked up from
data set B218 of table 5.1, It has length of 35000 samples.

an average number of pnints of about 10 per cycle is found, which is smaller than the
recommanded value of 50. This suggests that a further modification of the radar system

used to collect the sea clutter data is needed such that the sampling rate is higher enough.

6.6 Estimation of Sea Clutter Dynamics

The next issue we wish to consider is application of the chaos-based detection method
described in Chapter 3 to small target detection in sea clutter. To do this, however, we first,

need to build a model to reconstruct the underlying dynamics from sea clutter time serics.

Dynamic reconstruction is an inverse problem. To be specific, suppose that we
are given a time series {y(i) : i = 1,...,N}. A Dg-dimensional phase portrail can be
reconstructed by using Takens’ embedding theorem. If it is assumed that the time series is

an observation of a chaotic system. then there must exist a nonlinear function F, such that
y(i+ Der) = F(y(i),y(i+ 7)., y(i+ (Dg - 1)r)) (6.8)

where 7 is the time delay. This is actually a nonlinear prediction problem. To reconstruct,

the unknown dynamics of the system, two operations are performed:
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1.Choose a nonlinear function ' : RV — R! that approximates the unknown function
. F. A i

2. Optimize the approximating function F by adjusting its free para.meteré to minimize
the mean-square value of the difference between the sample y(n + N) generated by F
and the output §(n+ N) produced by F in response to the input éamples y(n),y(n+
1),...,y(n+ N - 1). “

The solution to the inverse problem described herein is recognized to be actually that of
building a predictive model. To do so, we propose to learn from the sea clutter data in a~
supervised manner, Certain classes of neural networks are well scited to such a learning

process 1.

Neural networks have the inherent ahility to learn a mathematical mapping by adap-
tation in response to examples of the mapping’s action. In the prediction problem for a
chaotic time series, the network learns input sequences and produces an approximation to an
unknown mapping for a deterministic system on its attractor. Indeed, a multilayer percep-
tron trained with the back-propagation algorithm is known to be a universal approximator
[45]. Typically, we are presented with a set of examples (x(1), y(1)), (x(2),¥(2}), ... of the
action of a function g: RN — RM where y{(k) = g(x(k)). The requirement is to design
a neural network that implements an approximation to the function g; s_uch a network is

called @ mapping neural network. For the situation described in (6.8), g = F, and the neural

network is described by F.

The most commonly used mapping neural netwoiks employ an underlying model and
adjust the freec parameters of the network to retrieve useful information from the inputs.
The back-propagation algorithm used to train a multilayer perceptron [84, 39] is by far
the most popular algorithm in use today, even though it has the shortcoming of a slow
rate of convergence during the training session. Once the training is done, the multilayer
perceptron operates entirely in a feed forward fashion and can therefore be very fast. In

this paper, we use a multilayer perceptron trained with the back-propagation algorithm to

perform the modeling task.

'Other techniques reported in the literature for modeling chactic processes include the use of a family of
hidden Markov models [19, 26}, functional interpolation [89], and nonlinear Kalman filters {65].
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As mentioned previously, we believe that our clutter data have a high clutter-to-
noise ratio, measured with respect to the additive froni-end receiver noice. The presence
of noise has the effect of forcing the actual low-dimensional behavior back into a high
dimensional space. To guard against this effect, we choose the embedding dimension to be
an integer which is just-slightly larger than the correlation dimension. Qur experimental
results show that the reconstructed system has essentially the same characteristics as the
original sea clutter. Herein lies an important feature of t{",g dynamic reconstruction method
described in th,i; ba.per. Specifically, the results p:ese.r‘ited in Chapter 6 on correlation
~dimension analysis and false nearest neighbors analysis provide the mathematical basis for
determining the number of input samples used to feed the mapping neural network, thereby
establishing a highly valuable link between the nonlinear dynamics of the sea clutter process

and the design of a multilayer perceptron model.

6.6.1 . A Neural Network Model Based on Noncoherent Data

A noncoherent radar receiver provides amplitude {envelope) information only. Thus, given
the input samples y4(n — 1),ya(n - 2),...,ya(n — N), the one-step prediction computed

by the neural network model may be expressed as follows:

ja(n) = F(ya(n - yya(n - 2),...,y4(n = N)) (6.9)

where the function F is the approximation to the unknown function F,and N is the number

of data points used to do the prediction.

A multilayer perceptron used for the model reconstruction of sea clutter based on
noncoherent data is shown in Figure 6.23. It consists of an input layer of source nodes, two
hidden layers, and an output layer with a single neuron providing the prediction. To be
sure of achieving a satisfactory performance, the size of the input layer, N, must be chosen

properly. In this context, the following two guidelines are noted:

1. The embedding dimension Dg should be an integer larger than the largest pessible

value assumed by the correlation dimension D..

2. The neighbors of each input sample used to reconstruct the phase space are employed

in the prediction process, since sea clutter is observed to be locally correlated. This,
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Figure 6.23: A multilayer perceptron structure used for reconstruction of the underlying
dynamics of sea clutter, based on noncoherent radar data. It consists of an input layer with

50 source nedes, two hidden layers with 80 and 55 neurons, respectively, and one output
neuron.

in turn, suggests using the time delay r determined in accordance with the notion of

mutual information, as described in Section 4.2.

The first guideline is in agreement with the choice of embedding dimension described in
13], in which Dg is 1 to 2.5 times D.. Accordingly, for the case of a multilayer perceptron
model trained on a one-dimensional time series, we may propose a lower bound on N, the

size of the model’s input layer, as follows:
N >7Dg (6.10)

In practice, it is inadvisable to choose a value for N much larger than the bound defined in

(6.10), as the effect of additive (receiver) noise would then become a serious issue.
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Returning tc the task ai hand, the correlation dimension for sea clutter lies in the

range 7 to 9_; we may therefore choose Dg = 10. The choice of this value for the embeddi;ig
_dimension is further su-pported by the results of fqlﬁ’gnea.r%t neighbors analysis presented
. in Section 6.3. Next, we note from Figure 6.2 thé& 7 = 5., To satisfy (6.10), we may -thus
“ choose N = 50 as the size of the input layer of {h‘gtfh‘.ultii:ayer perceptron model for sea

cletter. ' 3

Since our modeling problem is actually one of function approximation, we choose
two hidden layéi‘s‘;: with the first hidden layer consisting of 80 neurons and the second
hidden layer consisting of 55 neurons; this is done to improve the approximation accuracy
[17] in performing the modeling task. The cutput layer consists of a single neuron since the

dynamic recenstruction involves a single component, namely, amplitude.

After the multilayer perceptron has been trained with examples consisting of sea
clutter alone, its synaptic weights and bias terms are all fixed. However, the resulting
model can only be said to have captured the underlying dynamics of sea clutter and is
therefore a candidate for the application at hand, if and only if the following two conditions

are satisfied:

1. During training the prediction error is reasonably small in a statistical sense; this
condition ensures that the model is operating at a global minimum on the error

performance surface or a local minimum close enough to a global minimum.

2. The generalization ability of the model has been successfully demonstrated by testing

its predictive performance on clutter data not seen before.

For our application, recursive (iterated) prediciion provides a well-proven method
for testing the generalization performance of the neural network model [16]. Specifically,
recursive prediction uses new input samples (not in the training set) to start the prediction,
and then uses each predicted point; to dispense with one of the input samples. This oper-
ation is continued until no new inp’ut daté aré needed. At that point, the neural network
predictor begins to operate in an autonomous fashion. Ordinarily, this is a very difficult
task, since there is no new information supplied to the network, except for the initial start-

ing point. Figures 6.24 to 6.27 show the results of recursive prediction for four different
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Figure 6.24: Recursive prediction result of the multilayer perceptron model shown in Figure
6.23. The solid curve refers to the original sea clutter waveform. The dashed curve refers
to the recursive predicted waveform, for which the first 50 points of the sea clutter set {not
shown in the figure) are used as the initial starting point.

sets of noncoherent radar data. The solid lines are the original sea clutter waveform. Using
the first 50 points of the test set (not shown in the figure) as the initial starting point,
we get the predicted waveform shown as the dashed curve in these figures. For about the
first 50 points shown in Figure 6.24, both curves match fairly well, and thereaflter they
diverge. This result confirms that sea clutter produced by a noncoherent radar is indeed
locally predictable, and also demonstrates sensitivity to initial conditions, both of which

are characteristics attributable to a chaotic process.

Chaos-based detection is actually a model-based detection procedure. It is imple-
mented by analyzing the one-step prediction error as described in Chapter 3. To further
substantiate the significance of the multilayer perceptron model trained by the use of actual
sea clutter (amplitude) data, we evaluate the statistics of the prediction error by the use of

Pearson’s rule [50].

Let y;, be the mean of a random process, and pz, g3, and pg be the second, third,

and fourth moments of the process about the mean p;, respectively. Define the skewness
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Figure 6.25: Recursive prediction result of the multilayer perceptron model shown in Figure
6.23. Traces are as defined in Figure 6.24.
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Figure 6.26: Recursive prediction vesult of the multilayer perceptron model shown in Figure
6.23. Traces are as defined in Figure 6.24.
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Figure 6.27: Recursive prediction result of the multilayer perceptron model shown in Figure
6.23. Traces are as defined in Figure 6.24.

5, and the kurtosis 32 of the random process as follows:

m=3 (6.11)
=B 6.12

Then the distribution types of the random process are classified by the use of these pa-
rameters. Applying (6.11} and (6.12) to the one-step prediction error of the multilayer
perceptron model of sea clutter, we find that typically p; = 0.01, 5; = 0.043, and 52 = 3.42.
Thus according to Pearson’s rule, the underlying distribution is, for all practical purposes,

Gaussian for which 8, =0 and 8; = 3.

The empirical formula (6.10) provides a lower bound on the size of the input layer

of the multilayer perceptron model. It is inadvisable to use a size N much larger than this

bound, as the effect of receiver noise would then become more pronounced. But what if N

is smaller? Figure 6.28 shows the result of a recursive prediction performed by a multilayer
perceptron model with ¥ = 45, which is smaller than the bound defined in (6.10) for
Dg = 10 and 7 = 5. Except [or this difference, the model has two hidden layers with 80

neurons in the first one and 55 neurons in the second one, and a single output neuron, as
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Figure 6.28: This figure shows the sensitivity of the recursive prediction process to a change
in the neural network design. The network used for this experiment consists of an input
layer with 45 source nodes, two hidden layers with 80 and 55 neurons, respectively, and one
output neuron.

before. Moreover, the mocel is trained with the same data set used to obtain the result
shown in Figure 6.24, and the recursive prediction process is used to test the model after
completing the training session. There is a dramatic difference between the results shown
in Figures 6.24 and 6.28. In particular, when the size of the input laver of the multilayer
perceptron model is not large enough, the modei behaves as a fixed point attractor and
therefore fails to capture the underlying dynamics of the sea clutter. Clearly, the choice of

a design exemplified by Figure 6.28 is unacceptable,

To emphasize the need for a nonlinear predictive model, Figure 6.29 shows the re-
cursive prediction results using an autoregressive {AR) model and the multilayer perceptron
model for reconstruction of the underlying dynamics of sea clutter. Both models use 50 de-
lay taps. Clearly, the AR model, which is linear, completely fails to capture the underlying

dynamics of sea clutter.
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Figure 6.29: A comparison of both the AR model and the multilayer perceptron (MLP)
model for reconstruction of the underlying dynamics of sea clutter,

6.6.2 Temporal Extent of Local Predictability

Farmer and Sidorowich [24] have studied the local prediction problem in chaotic systems.
Specifically, two distinct regimes are identified. In the first regime the prediction is limited

by noise. This occurs when the typical spacing between data points is approximately
e~ N"T <S5 (6.13)

where N is the number of data points used to do the prediction, D is the attractor dimension,
and § is the signal-to-noise ratio. The second regime occurs when ¢ > 5-1, and the
predicfion is limited by the number of data pbints. In the latter case, we find that the local
prediction time, denoted by T, is inversely proportional to the largesi Lyapunov exponent

A1, as shown by 2

T~ —In(ZX) (6.14)

?Equation (6.14) is a special case of a formula proposed by Farmer and Sidorowich [24]; see also (16].
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where the parameter o is the normalized standard deviation of the prediction error at time

T of the recursive prediction process; it is defined by

o = LESS ((n ) ~y(n + )"
& Tay (y(n) = my)?

where N is the total number of the time series y(n), and m, is the mean value of y(n)

(6.15)

over the observation period. The parameter op is the normalized standard deviation of the
prediction error at the start of the recursive prediction process; it is defined by (6.135) with
T = 0. Equation {6.14) follows from the fact that in a chaotic system under iteration, errors
grow exponentially at a rate equal to the largest Lyapunov exponent of the system. It is
also of interest to note that gg is a measure of the precision with which the initial state of

the attractor is determined by the predictive model.

For the experimental study presented in this thesis, the second regime applies since
the clutter-to-noise ratio is known to be high. For or/go = 10 and A; = 0.04, the use of
(6.14) yields T ~ 58. This result is in close agreement with the “sample” value T ~ 50
noted from Figures 6.24 to 6.27.

6.6.3 A Neural Network Model Based on Coherent Data

A coherent radar receiver provides two independent observations about the ocean surface for
exactly the same sea state. The observations are represented by the I-channel component
and Q-channel component of the received signal. To test the local predictability of the
complex-valued sea clutter produced by such a radar, we may use the multilayer perceptron
model depicted in Figure 6.30. Experimentation with this model shows that we need an
input layer whose size is slightly larger than that of the model described in Figure 6.23; a size
of 60 source nodes was found to be satisfactory for our application. Correspondingly, the
output layer of the model in Figure 6.30 consists of two neurons, which provide predictions
of the in-phase and quadrature components of the sea clutter. As for the case of noncoherent
radar data, the model has two hidden layers with 80 neurons in the first and 55 neurons in

the second.

The model of Figure 6.30 is trained with the clutter data using the back-propagation

algorithm, and after the learning session is completed, the synaptic weights and bias terms
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Figure 6.30: A multilayer perceptron structure used for reconstruction of the underlying
dynamics of sea clutter, based on coherent radar data. It consists of an input layer with 60
source nodes, (with 30 source nodes used for the in-phase component and 30 other source
nodes used for the quadrature component), two hidden layers with 80 and 55 neurons,

respectively, and two output neurons to provide one-step predictions of the in-phase and
quadrature components.
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of the network are all fixed. The results of the recursive prediction performed by the
network are shown by the dashed curves of Figures 6.31 to 6.34, where (for convenience of
presentation) we have omitted the sequences of 30 complex-valued samples used to initialize
the network. The solid curves shown in Figures 6.31 to 6.34 are the actual in-phase and
quadrature components of the sea clutter. The results shown here confirm that both the
in-phase and quadrature components of sea clutter produced by a coherent marine radar

are locally predictable.

To calculate the local prediction time of a multi-dimensional chaotic model, the
largest Lyapunov exponent A; in (6.14) should be replaced with the Kolmogorov entropy
[88]. The Kolmogorov entropy is defired as the sum of the positive Lyapunov exp-onents
of the chaotic process under study {20]. From Figures 6.31 to 6.34 we note that the local
prediction time T of the two-dimensional predictive model of Figure 6.30 approximately
equals 50, which, in light of (6.14), appears to indicate that the Kolmogorov entropy for
sea clutter is not significantly different from its own largest Lyapunov exponent. This is in
closc agreement with the results reported in Section 6.4, which show that there is only one

positive Lyapunov exponent in the embedded system of sea clutter.

6.7 New Strange Attractors

Traditionally, strange attractors (e.g., the Lorenz attractor) are defined by a set of coupled
nonlinear differential (or difference) equations. The neural network models described in

Subsections 6.3.1 and 6.3.3 provide another approach for defining new strange attractors.

Consider first the multilayer perceptron model of Figure 6.23 for sea clutter. The
strange attractor, or the “clutter map” to be more precise, embodied in this multilayer

perceptron is defined by the following set of coupled nonlinear difference equations:

zi(n) = (TN, wiyaln - +0l), j=1,2,...,J

w(n) = ATl wllem +6), k=12...K (6.16)
gam) = oK 0z (n) + 88

where y4(n —~ 1),y4(n - 2),...,y4(n — N) are the input ampiitude data, and the j4(n)

is the one-step prediction at time n. The synaptic weights w“("” and bias term bg-” refer
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“Figure 6.31: "Recursive prediction result of the multilayer perceptron model shown in Figure
6.30 for a testing data chosen from a sea state with wave height of 3.78 ft. The solid curves
refer to the original sea clutter waveforms, in which one is the in-phase component and
the other is the quadrature component. The dashed curves refer to the recursive predicted
waveforms, for which the first 30 points of the complex-valued sea clutter data (not shown
in the figure) are used as the initial starting point.
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Figure 6.32: Recursive prediction result of the multilayer perceptron model shown in Figure

6.30 for a testing data chosen from a sea state with wave height of 4.54 ft. Traces are as
defined in Figure 6.31.
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Figure 6.33: Recursive prediction result of the multilayer perceptron model shown in Figure
6.30 for a testing data chosen from a sea state with wave height of 5.95 fi. Traces are as
defined in Figure 6.31.



8.7. NEW STRANGE ATTRACTORS

92

Va

100 T T T T

| component

0 20 40 60 80 100 120 140 160 180 200

100 L] ] 1 1 1 T 1 ) 1]
£ 50
c
g
E O
[=]
3] |
I

O _so} , |
_100 1 1 1 1 1 1 1 1 J

0 20 40 60 80 100 120 140 160 180 200

Time

Figure 6.34: Recursive prediction result of the multilayer perceptron model shown in Figure

20 for a testing data chosen from a sea state with wave heigtic of 8.30 ft. Traces are as defined
in Figure 6.31.
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to neuron j in the first hidden layer; the synaptic weights wg-’ and bias term b{f} refer to
neuron k in the second hidden layer; and the synaptic weights wﬁ} and bias term bf,a) refer
to the only neuron in the output layer. Note that the output layer is linear, which is the
customary practice in the design of nonlinear regression models. It is further assumed that
all the neurons in the two hidden layers of the model use the same sigmoid nonlinearity

described by the logistic function:

d)(v) = T el (6.17)

The parameters of the model described in (6.16) are determined in accordance with the

back-propagation algorithm acting on the sea clutter (amplitude) data.

The reconstructed dynamics built into the predictive model exhibits a phase portrait
similar to that of the original dynamics of the sea clutter process, as displayed in Figure

6.35, where (a) refers to natural clutter data and (b) refers to artificial data generated by

the model.

To further demonstrate the practical validity of the clutter inap described here, we
may compare the power spectral density (PSD) of the computer-generated sea clutter with
that of the actual sea clutter. Figure 6.36 (2) shows the PSD of an actual sea clutter data
set. Figure 6.36 (b) shows the PSD of an artificial data set generated by the neural network
model of Figure 6.23, for which the first 50 points of the clutter data (used in Figure 6.36
(a)) were used as the initial starting point. The power spectrum estimation was carried
out by averaging 100 different segments, each consisting of 1,024 points. The solid curves
in Figure 6.36 represent the mean of the power spectrum, and the area between the two
dashed curves shows the 95 percent confidence for the estimation of the power spectrum.
Comparing the results presented in Figures 6.36 (a) and (b), we see that there is very good

agreement between the natural and artificial clutter data sets.

Thus, the multilayer perceptron model of Figure 6.23 may be viewed as a sea clutler
simulator. To further emphasize the significance of tkis model, we present in Figure 6.37(a)
the amplitude distribution of a computer-generated data set, and compare it with the
theoretical K-distribution. The solid curve in the figure shows the probability density
function of a theoretical K -distribution with a shape parameter of 2.2 and a scale parameter

of 1.25 [48, 99]. The dashed curve shows the histogram of 100,000 data points generated by
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Figure 6.35: (a) The phase portrait of a natural clutter data set; (b) the phase portrait of
an artificial data set generated by the neural network model shown in Figure 17, for which
the first 50 points of the clutter data (used in {a)) are used as the initial starting point.
Each data set consists of 500 points. Each point of these phase portraits is defined by a
sample value of the pertinent time series and its delayed version corresponding to a time
delay r = 5.
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Figure 6.36: (a) The power spectral density (PSD) of a natural clutter data set; (b) the
power spectral density of the artificial data set generated by the neural network model
shown in Figure 17, for which the first 50 points of the clutter data (used in (a)) are used
as the initial starting point. Each data set consists of 102,400 points. The area between

the two dashed curves in (a) and (b) shows 95% confidence for the estimation of the power
spectrum.
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Figure 6.37: (a) The probability density function of the data generated by the multilayer
perceptron model of Figure 17 (star points) and that of the theoretical K-distribution (solid
curve). (b) A comparison of the normalized amplitude moments of the data generated by
the multilayer perceptron model of Figure 17 (dashed curve) with those of the theoretical
K-distribution (solid curve).
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Figure 6.38: (a) a phase portrait of a natural clutter data set; (b) a phase portrait of an
artificial data set generated by the neural network model shown in Figure 6.30, for which
the first 30 complex-valued points of the natural clutter data are used to initiate the model.
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Figure 6.39: (a) The amplitude spectrum of a natural clutter data; (b) The amplitude
spectrum of a clutter data generated by the neural network model shown in Figure 6.30.
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the multilayer perceptron model. The agreement between these results is further illustrated
in Figure 6.37(b), where we show the normalized amplitude momeuts, which are considered
to be important parameters used to distinguish a /-distributed random process from other
distributions. The solid curve in the figure corresponds to the theoretical K-distribution o.f
part {a). The dashed curve corresponds to the data generated by the multilayer perceptron
model. Here again the agreement is very good. The point that we wish to emphasize here
is that a “deterministic” model described by the multilayer perceptron of Figure 6.23 is
capable of generating a random-like “chaotic” clutter waveform that exhibits the statistical

characteristics that are usually associated with actual radar data.

The clutter mé.p defined by Equation (6.16) pertains to real-valued amplitude data,
In a similar manner, we may define a complex-valued clutter map, based on the multilayer
perceptron predictor of Figure 6.30 that involves the use of in-phase and quadrature compo-
nents. The reconstructed dynamics built into the predictive model exhibits a similar phase
portrait to that of the original dynamics of sea clutter, as shown in Figure 6.38, where (a)
refers to the natural sea clutter data and (b) refers to artificial data generated by the model.
Figure 6.39 shows the amplitude spectrum of a complex-valued received radar signal and
that of an artificial data generated by the model shown in Figure 6.30. There is a very good
agreement between the natural and artificial clutter data sets, providing the basis of a sea

clutter simulator for use with a coherent radar.

6.8 Summary

In this chapter, a detailed experimental study using ireal-life radar data was presented. It
demonstrates that sea clutter is essentially a chaotic process. The experimental evidence for
this assertion is summarized as follows. Irrespective of whether the in-phase, quadrature, or
amplitude (envelope) component is used, or whether like- or cross-polarization is employed,

the following statements can be made:

e sea clutter is bounded;

e sea clutter has a finite and fractal correlation dimension lying in the range of 7 to

9; an embedding dimension of 10 for reconstruction of the underlying dynamics is
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confirmed by the false nearest neighbors analysis;

o the largest Lyapunov exponent of sea clutter is positive {lying in the range between
0.03 and 0.045, normalized with respect to the pulse repetition frequency), indicating

a strong dependence on initial conditions;

» sea clutter is locally (short-time) predictable.

The experimental evidence presented in this chapter is considered to be complete in light of
what we know about chaos theory. It provides solid confirmation that sea clutter is chaotic.
Morecover, the local predictability of sea clutter has been demonstrated experimentally by
building a noniinear predictive model in the form of a multilayer perceptron trained with
3

the back-propagation algorithm ®. The generalization capability of the model has been

};.g_gmg,nst?‘ate‘d‘\?gy performing recursive (iterated) prediction, and local prediction time of the
r;;c(lel has beerll‘ shown to be inversely proportional to the largest Lyapunov exponent of sea
clutter. Several experiments have shown that a mode! so designed has the ability to capture
the underlying dynamics of sea clutter in accordance with Takens’ embedding theorem. In
particular, artificial data generated by the model undergoing recursive prediction exhibits
characteristics very similar to those of natural sea clutter. In building the model, careful
attention has been given to the selection of an appropriate size for the input layer, taking

account of two specific parameters: the embedding dimension Dg, and the characteristic

delay time 7.

The fact that sea clutter is chaotic may be exploited by trading off highly sophisti-
cated but relatively inexpensive software for fairly expensive microwave hardware. Specifi-
cally, a chaos-based receiver using amplitude information only (as in a noncoherent marine
radar) is capable of providing a detection performance comparable to that of a “conven-
tional” Doppler-based receiver using both amplitude and phase information {as in a coherent
marine radar). The chaos-based detector is built around the nonlinear predictive model of
sea clutter. Details about design and performance evaluation of chaos-based detectors are

discussed in the next chapter.

3t is feasible to use other supervised neural network models such as a radial basis function (RBF) network
for the prediction {39, 43, 16).



Chapter 7

Detection of Small Targets in Sea
Clutter

7.1 Introduction

The experimental results presented in the previous chapter provide convincing evidence
that sea clutter is indeed the result of a chaotic dynamical system. Most importantly, we
have computational models for reconstruction of the underlying dynamics of sea clutter
process, which may be used to deal with noncoherent and coherent radar. In this chapter,
we demonstrate experimentally how this prior information, namely, the chaotic property
of sea clutter, can be exploited in radar detection. Our goal is to detect a small target
(e.g., a small piece of ice with a cross section of about 1 square meter or less) embedded
in a background of sea clutter, using the chaos-based {or model-based) detection theory
described in Chapter 3. First, we wish to demonstrate that in such an environment it is
indeed possible to design a chaos-based detector using noncoherent radar data which can
realize a performance comparable to that of a conventional receiver using coherent data.
Then, we wish to demonstrate experimentally that a chaos-based detector using coherent

radar data can provide a further improvement in receiver performance.

This chapter is organized as follows: In Section 7.2, a review of the constant false-
alarm rate (CFAR) processors in radar signal processing is given. The Doppler CFAR pro-

cessor is discussed in this section since it will be used as a frame of reference in comparing

101



7.2. CFAR DETECTORS 102

different detection strategies. In Section 7.2, we describe the design of a chaos-based nonco-
herent detector, evaluate its detection performance, and conipare it with the conventional
Doppler CFAR processor. In Section 7.3, the design of a cliaos-based coherent detector
is described. The detection performance is evaluated and compared with the conventional
Doppler CFAR. processor. In Section 7.3, the effect of noise on the detection performance

of both detectors is studied. Finally, a summary is given.

7.2 CFAR Detectors

The basic concept of _the constant false alarm rate (CFAR) technique is that the amplitude
of a test cell is compared to that of a set of reference cells. If the test cell amplitude
is “similar” to those of the reference cells, a target-absent decision is made. If the test
cell amplitude is not similar, a target-present decision is made. The CFAR processor is
commonly used in present radar systems [22, 67}. It prevents saturation of the detector due
to increases in clutter or noise by adapting the detection threshold in step with the changing
clutter or noise conditions. Likewise, in the case that the clutter or noise decreases, it lowers
the threshold thereby increasing the detectability of weak targets which otherwise would
be missed. The operation of CFAR systems has been widely studied [22, 67). The basic
idea is to estimate a sufficient statistic of the clutter, and to use this estimate to control a

detection threshold so that a constant false alarm rate is obtained.

CFAR detectors are either noncoherent or coherent processors. The noncoherent
CFAR schemes all involve adaptively setting the decision threshold in some manner. These
processors can be subdivided intv iwo groups: the spatial CFAR processors and the temporal
CFAR proqessofé. The spatial CFAR's involve using returns from neighboring cells to
determine the required detection threshoid for a given probability of false alarm. On the
other hand, the temporal CFAR'’s use scan-to-scan processing at each resolution cell in order
to determine the threshold. Clutter maps, two-dimensional maps {azimuth vs range) where
the mean amplitude in each cell is determined by successive scans, are used for comparison
to each test cell. This method is particularly susceptible to self-masking by targets in the
radar cell, and therefore the clutter map cell size is generally larger than the radar resolution

cell size. Additional drawbacks result from making the clutter map cells too large as well.
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Other noncoherent methods include nonlinear receivers, an example of which is the binary

integrator.

Coherent CFAR techniques are also divided into two main categories: coherent
clutter maps and spectral methods. However, only the spectral methods are applicable for
sea clutter; this is due to the uniform phase distribution. Therefore, coherent clutter maps
will not be considered any further in this discussion. Spectral methods (also called Doppler
CFAR) operate as follows. For each of several range cells, the spectrum is computed using
either Doppler filter banks (FFT) or other spectrum estimators. Then each Doppler bin
for the test range cell is compared with the Doppler bins at neighboring range cells in
order to determine whether or not a target is present. In this way, CFAR is achieved by
setting the adaptive threshold for the test cell based upon the corresponding Doppler bins

of neighboring cells. Not only is a decision made, but also the Doppler frequency of the

target is determined.

7.3 Chaos-Based Noncoherent Detector

Given a fully coherent system, the amplitude component of the received radar signal is
defined by

yalte) = /yF(te) + v (tx) (7.1)

where yy is the I-channel component, and ygq is the Q-channel component. Both components
are of zero mean. To extract the target information from the received data by using the

neural network model described in Figure 17, the prediction error is defined as:

elte) = yalte) — falts) ‘ (7.2)

where y4(¢x) is the actual value of the received signal at time t, and j4(tx) is the prediction
on the basis of a set of previous samples. When y.(tx) consists of sea clutter alone, the
prediction error £(tx) is small at the output; but when a growler (c.g., small piece of ice}
is present in sea clutter, £(tx) assumes a relatively large amplitude. On the basis of these
observations, we can now describe the chaotic detection algorithm based on the neural

network model described previously for sea clutter as follows:
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Figure 7.1: A chaos-based noncoherent detector used for the detection of a small target

in sea clutter. It consists of a neural network predictor and a “conventional” noncoherent
CFAR. praocessor.

Step 1: For a received signal y4(t), where ¢t € [0,T], calculate the prediction
7a(t) produced by the reural network model; hence, compute the predicticu

error £(t) using (7.2).

Step 2: Integrate the error in the observation interval, and determine its mean-

squared value

R, = % ]U T eyt (7.3)

Step & Compare R, with a threshold for a given probability of false alarm;
if it exceeds the threshold, a target is declared to be present; otherwise, the

algorithm decides that no target is present.

The chaos-based detection algorithm is illustrated by the block diagram of Figure 7.1, The
new detection scheme differs from a conventional noncoherent radar detector in that a
neural network predictor, which was trained on clutter only data described in last chapter,

is employed as a preprocessor and the detection is based on the prediction error.

As discussed in section 6.3.1, the chaos-based detection algorithm described here is
designed to transform the detection of a target in unknown colored noise {(a term used in the

traditional sense) into that of detecting an unknown signal in additive white Gaussian noise,
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Figure 7.2: Detection performance of the chaos-based noncoherent detector. The dashed
curve is the ROC of the chaos-based noncoherent detector. The solid curve shows the ROC
of a “conventional” Doppler CFAR detector for comparison. It can be seen that the chaos-
based noncoherent detector has comparable performance to the Doppler CFAR detector.

which is a communication theorist’s dream. In effect, the learnable part of the information
contained in sea clutter {i.e., the chaotic component) is transplanted in the mapping neural

network, providing an output that is essentially a sample function of white Gaussian noise.

The detection results are shown in Figure 7.2. The dashed line of this figure is
a sample Receiver Operating Curve (ROC) of the noncoherent chaos-based detector. For
the calculation of the ROC, more than 12,000 independent data sets are used, each data
set consists of 150 time-series samples. For the purpose of comparison, the “conventional”

Doppler CFAR algorithm is employed to calculate the ROC shown by the solid curve in
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Figure 7.2 using the same data sets. This time, however, each data set includes 256 sample
pairs of both I-channel and Q-channel. Comparing the two curves of Figure 7.2, we note

the fellowing:

o A noncoherent chaos-based detector has a performance comparable to that of a con-
ventional Doppler CFAR processor by virtue of the fact that the former uses dynamic
reconstruction (based on amplitude information) to exploit the chaotic property of

sea clutter.

7.4 Chaos-Based Coherent Detector

According to Takens’ embedding theorem, a single signal component is sufficient for the
dynamic reconstruction of a chaotic system. In a coherent radar system, the received signal
consists of two components, namely, the in-phase and quadrature components. These two
comporents provide independent observations of the ocean environment for exactly the sa.rhe
sea state; most importantly, they provide Doppler information about the target signal that
is absent from a noncoherent radar. However, in so far as dynamic reconstruction of the sea
clutter is concerned, the in-phase and quadrature components, individually or collectively,
provide essentially the same results. It is important to note that in light of the computer
experiments reported in Section 3.3, we expect to find that the dynamic reconstruction

model preserves the Doppler information contained in the target signal.
Let the received signal of a coherent radar be denoted by

y(te) = yite) + jyo(te) (7.4)
where y; is the in-bhase component, yo is the quadrature component, and j = /1.
Applying the previous sampies y(tx—1), ¥(tk=2)....,y{tk—n) of the received signal to the
neural network predictor described in Figure 19, we get the one-step prediction
Gtk) = §rlte) + jiiq(tx) (7.5)
Accordingly, the complex-valued prediction error is defined as
elte) = ylte) — 9(te)

er{te) + jeg(te) (7.6)

i
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where

sr(te) = yr{te) — §r(te) (7.7)

gt} = wyolte) — foltk) (7.8)

Figure 7.3 shows a block diagram of the chaos-based coherent detector. It consists
of a neural network predictor operating on the in-phase and quadrature components of the
received signal, followed by a Doppler CIFAR processor. The only difference between this
receiver and the “conventional” coherent receiver is that a neural network predictor is em-
ployed in the former case under the assumption that sea clutter is the result of deterministic
chaos. Note that in the design of this predictor presented in subsection 6.3.2, a multilayer
perceptron with real-valued synaptic weights is used. Alternatively, we may use a multilayer
perceptron with complex-valued synaptic weights for the predictor, in which case we would
have to use the complex back-propagation algorithm [30, 18, 40] to train the predictor. In
any event, the feature that distinguishes the chaos-based coherent detector of Figure 7.3
from the chaos-based noncoherent detector of Figure 7.1 is that in the coherent case the
predictor handles complex-valued inputs and produces complex-valued outputs, whereas in

the noncoherent case both the input and output are real-valued.

Figures 7.4 and 7.5 present some experimental results to demonstrate the predictive

capability of the chaos-based coherent detector of Figure 7.3:

1. Figure 7.4(a), corresponding to a data set of Table 1 with sea clutter only, shows the
amplitude spectrum of a complex—va.lued received radar signal. Figure 7.4(b} shows
the amplitude spectrum of the complex-valued prediction error produced at the output
of the neural network of Figure 7.3. The whitening property of the predictor is clearly

visible in Figure 7.4(b).

2. Figure 7.5(a), corresponding to a data set of Table 5.1 with target plus clutter, shows
the amplitude spectrum of the new complex-valued received radar signal. Figure
7.5(b) shows the amplitude spectrum of the prediction error. As expected, the target

signal is much more clearly visible in the output than in the input of the predictor.

Finally, Figure 7.6 shows the detection performance of the chaos-based coherent

detector. The dashed curve in the figure is a sample Receiver Operating Curve of the



7.4. CHAOS-BASED COHERENT DETECTOR

yi(n)

108

’c ...... T
o)
y;(n)
s
Doppler Hi
Neural Network Predictor \ CFAR —
Yon) ( 5 ) Processor Hy
+
T ....... fr
Yoin)

Figure 7.3: A chaos-based coherent detector used for the detection of a small target in
sea clutter. It consists of a neural network predictor and a “conventional” Doppler CFAR

Processor.
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Figure 7.4: (a) Amplitude spectrum of sea clutter data produced by a coherent radar. {b)
Amplitude spectrum of the prediction error produced by the neural network predictor of

Figure 7.3 for the samg clutter data.
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Figure 7.5: (a) Amplitude spectrum produced by a coherent radar data set containing both
target signal and clutter, (b) Amplitude spectrum of the prediction error produced by the
neural network predictor of Figure 7.3 for the same target plus clutter data.
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Figure 7.6: Detection performance of the chaos-based coherent detector. The dashed curve
is the ROC of the chaos-based coherent detector. The solid curve shows the ROC of a
“conventional” Doppler CFAR detector for comparison. It can be seen that the chaos-
based coherent detector is superior to the Doppler CFAR detector.
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chaos-based detector of Figure 7.3, while the solid curve is the Receiver Operating Curve of
the conventional Doppler CFAR detector. The data used for the computations are exactly
the same as those used for the computations of Figure 7.2. From the results shown in Figure

7.6, the following points are noted:

¢ A chaos-based coherent detector is superior to a conventional Doppler CFAR detector
by virtue of using the prior information that sea clutter is chaotic. But, it is more
complicated than a conventional Doppler CFAR detector since a nonlinear predictor

is included in the receiver.

o The coherent version of a chaos-based detector is superior to its noncoherent version
by virtue of the fact that the coherent system preserves the Doppler information about

the target signal, which is not available to the noncoherent system.

7.5 Effect of Noise on Receiver Performance

In much of the material presented in this chapter so far the effect of the.additive receiver
noise has been ignored. This is justifiable due to the fact that the clutter-to-noise ratio for
the data sets used in the study is known to be high. In practice, this condition is not always
satisfied. Given that the sea clutter permits the use of a chaotic model, it is important to
evaluate the sensitivity of the chaos-based detector described herein to additive front-end

receiver noise, which is always present in the received signal.

As mentioned previously, we believe that our sea clutter data have a high clutter-
Lo-noise ratio of about 35 dB, measured with respect to the additive front-end noise ratio.
To evaluate the sensitivity of our chaos-based detectors to noise in the received signal, a
series of subjective tests were performed on the chaos-based detectors with different noisy
test data. These noisy test data consist of the high clutter-to-noise ratio data described in
Chapter 5, to which computer-generated white noise of different power levels is added. The
clutter-to-noise ratio of the resulting data is estimated to be 32 dB, 28 dB, 24 dB, and 20

d B, respectively.

The evaluation procedures can be summarized as follows:



v.5. EFFECGT OF NOISE ON RECEIVER PERFORMANCE 113

1. Generate white Gaussian noise of different power levels with respect to the average

power of sea clutter data.

2. Add the generated white noise to both the clutter data only and the data of clutter

pl's target; each data set corresponds to an individually generated noise component.

3. Apply the resulting data of the last step to the chaos-based detector described pre-
viously as a new received signal, set a constant-false-alarm rate, and measure the

probability of detection,

The results of this experiment are shown in Figures 7.7 and 7.8. The z-axis of these
figures corresponds to the clutter-to-noise ratio (CNR), and the y-axis of those figures is the
probability of detection. Figure 7.7 presents the results corresponding to the chaos-based
noncoherent detector, whereas the solid curve corresponds to a false-alarm rate {(FAR) set
to be 1073, and the dashed curve corresponds to a false-alarm rate of 10~%. Figure 7.8
presents the results corresponding to the chaos-based coherent detector. Here again the
solid curve corresponds to a false-alarm rate of 1073, and the dashed curve corresponds to

a false-alarm rate of 1072,

From these two figures, the following observations are made:

o As the noise power in the input signal of the receiver is increased, the detcction

probability of the chaos-based detectors is progressively reduced.

o For a false-alarm rate of 10~2 or 102, the probability of detection of the chaos-based
noncoherent detector is less then 0.5 when the clutter-to-noise ratio is less then 29 B

ot 24 dB respectively, which is practically useless.

o For a faise-alarm rate of 1073 or 1072, the probability of detection of the chaos-based

coherent detector is always greater than 0.67 when the clutter-to-noise ratio is greater
than 20 dB.
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Figure 7.7: Detection performance on the receiver noise for the chaos-based noncoherent
detector, where the solid line corresponds to a false alarm rate of 1073 and the dashed line
corresponds to a false alarm rate of 1072
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Figure 7.8: Detection performance on the receiver noise for the chaos-based coherent de-
tector, where the solid line corresponds to a false alarm rate of 10~2 and the dashed line
corresponds to a false alarm rate of 102,
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7.6 Summary

In this chapter, the design of two chaos-based detectors for the detection of small target
in sea clutter has been described. The detection performance of these detectors has been
evaluated by using real radar data, and compared with the conventional Doppler CFAR

processor. From the results reported in this chapter, the following summary is made:

o A chaos-based noncoherent detector operating on amplitude information only is able
to perform in a manner comparable to a conventional coherent CFAR detector for the
detection of small targets in sea clutter by virtue of using the prior information that

sea clutter is chaotic.

e A chaos-based coherent detector is superior to both the conventional coherent detector

and the chaos-based noncoherent detector.

e A chaos-based noncoherent detector is much more sensitive to additive front-end re-

ceiver noise than a chaos-based coherent one.
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Chapter 8

Chaotic Modeling Using Modular
Network

8.1 Introduction

Earlier we remarked on the possible existence of a “global” predictive model for reconstruc-
tion of the chaotic dynamics of sea clutter. For such a mode! to be of practical value, it
should be capable of dealing with a wide variety of sea states, which would be exploited to
provide a further improvement in detection performance. A multilayer perceptron trained
using the back-propagation algorithm is a universal approximator [45]. But it has a short-
coming of continuing to modify the synaptic weights that have already developed useful
properties for a task when it is applied to a new task that is incompatible with the previ-
ous one {92]. Consequently, after learning the second task, the muitilayer perceptron is no
longer able to perform the first task. We may of course alternate the training process be-
tween tasks, and carry on in this way until the multilayer perceptron eventually learns both
tasks. However, the price paid for it is a prolonged learning process. The generalization
performance of the multilayer perceptron may also be affected by the blocked presentation

of incompatible training data [39).

To overcome the shortcomings of the muitilayer perceptron for reconstruction of
the chaotic dynamics of sea clutter, we may adopt a “modular” approach for designing
the predictive model. Specifically, we envision a number of multilayer perceptrons, each of

which is trained using the back-propagation algorithm for a particular range of sea states,

117
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and designed to capture the underlying chaotic dynamics that applies essentially to that
particular range of sea states. The individual outputs of the multilayer perceptrons are
then mediated by means of a gating nefwork [39, 46]. In effect, the multilayer perceptrons
compete with each other in an unsupervised manner for the right to produce the one-step
prediction of the sea clutter; that right is decided by the gating network. The modular

network described here is well suited for solving nonlinear regression problems {39, 46, 47).

This chapter is organized as follows. In Section 8.2, we present a modular network
structure, and describe a learning algorithm for the specific model. In Section 8.3, we apply
the modular network for the chaotic modeling of sea clutter, and compare the recursive
prediction performance with the multilayer perceptron model described in Chapter 6. The

chapter concludes in Section 8.4 with a summary of results.

8.2 Modular Network

A specific modular network structure is shown in Figure 8.1. The structure consists of K
supervised modules called ezpert networks, and an integrating unit called a gating network

that performs the function of a mediator among the expert networks.

Let the training examples be denoted by an input vector x of dimension m and
desired response vector d of dimension g. The input vector x is applied to the expert
networks and the gating network simultaneously. Let y; denote the output vector of the ith
expert network, let g; denote the activation of the ith output neuron of the gating network,
and let y denote the output vector of the whole modular network. We may then write

K
y= Z 9iyi (8.1)
i=1

The goal of the learning algorithm used to train the modular network of Figure 8.1
is to model the probability distribution of the set of training patterns {x,d}. We assume
that the patterns {x,d} used to do the training are generated by a number of different
regressive processes. Then a desired response vector d is generated by the selected rule i

according to the regressive process

d = F;(x) + ¢ (8.2)
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Figure 8.1: Block diagram of a modular network; the outputs of the expert networks are
mediated by a gating network.
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where i = 1,..., K, F;(x) is a deterministic, vector-valued function of the input vector x,
and ¢; is a random vector. For simplicity, it may be assumed that the random vector ¢; is
Gaussian-distributed with zero mean and identity covariance matrix I. To do the learning,

the expert networks and the gating network of Figure 8.1 are all trained simultaneously.

For this purpose, an associative Gaussian mixture model is proposed by Jacobs and
Jordan [46, 47]. In this model, the probability distribution of the desired response vector d
is treated as a linear combination of K different multivariate Gaussian distributions for a

given input vector x, that is

1 & 1
d|x) = exp(—=||d — yi|? 3
18) = g D rexp(= 1 - vil) 63)
where || - || denotes the Euclidean norm of the enclosed vector; y; is the output vector of

the ith expert network, and it is viewed as the conditional mean of a multivariate Gaussian
distribution; g; is the activation of the ith output neuron of the gating network, which is

defined as follows [14]:
_ _ exp(ui)
iy exp(w;)

where u; is the output of the ith output neuron of the gating network.

(8.4)

Let w denote the synaptic weights of all the expert networks arranged appropriately,
and let vector g denote the activations of all the output neurons in the gating network.
The conditional probability density function f(d|x) of (8.3) can be viewed as a likelihood
function, with the whole synaptic weight w and the activation vector g playing the roles of

unknown parameters. Thus a log-likelihood function can be defined as follows:

iy
I(wog)=1nY g exp(—%[]d —vil® (8.5)

i=1
where it is understood that y; depends on w;, all weights of the ith expert network. Then
{(w,g) can be viewed as an objective function, the maximization of which yields maximum-
likelihood estimates of all the free parameters of the modular network in Figure 8.1, rep-

resented by the synaptic weights of the different expert networks and those of the gating

network.

To assist in the formulation of the learning algorithm for the modular network of

Figure 8.1, we may define the a posteriori probability associated with the output of the ith
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expert network as [46]
b = qieXP(-%“d - il
T giexp(-3lld - yill?)

Differentiating (8.3) with respect to the output vector y; of the ith expert network, we get

%zhi(d"‘y:’)’ i=1,‘2,...,K (

T

(8.6)

]

b

-1
—

Equation (8.7) states that, during the training process, the synaptic weights of the ith
expert network are adjusted to correct the error between the output vector y; and the
desired response vector d, but in proportion to the a posteriori probability f; that the ith

expert network generated the training pattern in current use [46].

Suppose now that each expert network consists of a single layer of neurons. Let yi™

i
denote the output vector of the mth neuron in the :th expert network and w}m) denote the
corresponding synaptic weight vector, then

yi™ = xTw(™ (8.8)
To modify the synaptic weights of all expert networks, differentiating (8.5} with respect to

the synaptic weights and using chain rule, we get

-_.-.___al - _i_’)i_____@y,- (8.9)
awi™  yigw{™
Differentiating (8.8) with respect to the synaptic weights wgm), and substituting the result
and (8.7} into (8.9}, we get
al
gw'l™

1

= heel™x (3.10)
where egm) =d™ - ygm) is the error signal produced at the output of the mth neuron in
the ith expert network.

To maximize the log-likelihood function ! with respect to the synaptic weights of
the different expert networks, we may use gradient ascent in weight space. In particular,
we modify the synaptic weight vector w'™ by applying a small adjustment Awf-"'), defined
by

Awl™ = n

) (8.11)
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where 7 is 2 small learning-rate parameter. Thus, using wgm) (n) to denote the value of the
synaptic weight wf-m) at iteration n of the learning algorithm, the updated value of this

synaptic weight vector at iteration n + 1 is computed in accordance with the recursion

wil(n+1) = wi™(n)+Aw(n)

= wi™(n) + ph{™(n)e{™ (n)x (8.12)

This is the desired recursive formula for adapting the expert networks of the modular

architecture shown in Figure 8.1 [39].

To adapt the gating network, substituting (8.4} into (8.5), and rewrite the log-

likelihood function as

R K
= anexp(u;)exp(—%Hd — vl - 103 exp(w) (8.13)

i=1 i=1

The partial derivative of the log-likelihood function { with respect to the output u; of the

ith neuron in the gating network is therefore

ol
3—11'; = h; — g; (8-14)

Equation (8.14) states that the synaptic weights of the ith output neuron in the gating net-
work are adjusted such that the activation of the network moves toward the corresponding

a posteriori probability h;.

Suppose again that the gating network consists of a single layer of neurons. Let
ai(n) be the value of the synaptic weight vector of the ith output neuron in the gating
network at iteration n of the learning algorithm. Applying the same method described

above, we may update the synaptic weight a; in accordance with the following

ai(n + 1) = ai(n) + n(hi(n) ~ gi(n))x (8.15)

Note that in the preceding algorithms we suppose that the expert networks and the
gating network are all single layer perceptrons. For the case of the expert networks and
the gating network being multilayer perceptrons, the well-known back-propagation learning

algorithm can be employed to upgrade the synaptic weights of each hidden layer.
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8.3 Chaotic Modeling of Sea Clutter Using Modular Net-
work

In Chapter 7, we demonstrated that the chaos-based noncoherent detector, which is based on
a multilayer perceptron trained with noncoherent radar data, is more sensitive to receiver
front-end noise than the chaos-based coherent detector, which is based on a multilayer
perceptron trained with coherent radar data. To be of practical significance, the subsequent

chaotic modeling of sea clutter using modular network is based on coherent radar data.

To design a modular network for the reconstruction of the chaotic dynamics of sea
clutter with a wide variety of sea states, we have to divide the sea environment into a
number of specific states, for each sea state we then train an expert network to capture the
local dynamics. For this purpose, we choose four specific sea states, named state 1, state 2,
state 3 and state 4, which correspond to wave heights of 3.78 ft, 4.53 ft, 5.95 ft and 8.30
ft, respectively. Thus, four expert networks are chosen. All have the structure as shown in
Figure 6.30. That is, each expert network consists of 60 source nodes, in which 30 source
nodes correspond to the I-channel components and other 30 source nodes correspond to the
Q-channel components of the received radar signal. Correspondingly, the output layer of
each expert network consists of two linear neurons, which provide predictions of the in-phase
and quadrature components of the sea clutter for the corresponding sea state, As discussed

in Chapter 7, the expert network has two hidden layers with 80 neurons in the first one and

55 neurons in the second one.

The gating network of the modular architecture shown in Figure 8.1 also has an
input layer of 60 source nodes and an output layer of 4 linear neurons. Experimentation
with the model of Figure 8.1 shows that we need a hidden layer for the gating network. A

size of 80 neurons was found to be satisfactory for our application.

As before, the model of Figure 8.1 is trained with the mixed clutter data chosen
from the database of Table 5.2, corresponding to sea state 1, state 2, state 3 and state 4,
respectively. The synaptic weights corresponding to the output layers of all expert networks
and the gating network are adapted using the algorithm described in the previous section.

Other synaptic weights of the model are adapted using the back-propagation algorithm.
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After the learning session is completed, the synaptic weights and bias terms of the four
expert networks and the gating network are all fixed. The results of the recursive prediction
performed by the network are shown in Figures 8.2 to 8.5. Each figure shows the result
corresponding to clutter data from state 1, state 2, state 3 and state 4, respectively. In these
figures, we have omitted the sequences of 30 complex-valued samples used to initialize the
network. All the solid curves shown in these figures are the actual in-phase and quadrature
component of the corresponding clutter data, and the dashed curves in these figures are the

recursive prediction results,

To calculate the local prediction time of the modular network of Figure 8.1, based

on the recursive prediction results, we define the average power op of sea clutter as follows:

N
oo = -;,- > VRO + 30 (8.16)

i=1
where y;(z) is the in-phase component of the received signal and yg(i) is the quadrature
component of the received signal; both have zero mean. N is total number of the sea clutter
data. Let §r(ij be the recursive predicted in-phase component of the model, and fg (i) be
the recursive predicted quadrature component of the model. The recursive prediction error

of the model is defined in complex-valued form as follows:
€(2) = (yr(2) — 91(3)) + 3 (wo(?) — do(i) (8.17)

where j = +/—1. Thus we may define the average power of the error signal after the model

operates L iterations as follows:

L
ol = 7 o) = 310 + (vo () — d (@) (8.18)
i=1

Then the recursive prediction time T}, is defined such that ‘-’-‘a%l = 10%. The subsequent

generation performance analysis for the model is based on the calculation of the recursive

prediction time.

The results shown in Figures 8.2 to 8.5 are produced by the modular network in
which the gating network has a hidden layer of 80 neurons, To choose the best gating
network that satisfies our application, three types of gating network structures were con-

sidered. In the first structure, the gating network has one hidden layer as described above.
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Figure 8.2: Recursive prediction result of the modular network shown in figure 8.1 for a
testing data set chosen from a sea state with wave height of 3.78 ft. The solid curves refer to
the original sea clutter waveforms, in which one is the in-phase component and the other is
the quadrature component. The dashed curves refer to the recursive predicted waveforms,
for which the first 30 points of the complex-valued sea clutter data (not shown in the figure)
are used as the initial starting point.
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Figure 8.3: Recursive prediction result of the modular network shown in figure 8.1 for a

testing data set chosen from a sea state with wave height of 4.54 ft. Traces are as defined
in Figure 8.2.
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Figure 8.4: Recursive prediction result of the modular network shown in figure 8.1 for a

testing data set chosen from a sea state with wave height of 5.95 ft. Traces are as defined
in Figure 8.2.
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Figure 8.5: Recursive prediction result of the modular network shown in figure 8.1 for a

testing data set chosen from a sea state with wave height of 8.30 ft. Traces are as defined
in Figure 8.2.
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Sea State State 1 | State 2 | State 3 | State 4
(wave height in ft.) 3.78 4.54 5.95 8.30

Gating network without hidden layer | 33£5 | 34+4 | 34£5 | 3444

Gating network with one hidden layer | 38+£4 | 39+£5 | 41%4 | 40+ 4

Gating network with two hidden layers | 395 | 39+4 | 40£4 | 40%5

Table 8.1: Comparison of local predictability of different types of gating network structure
in the modular network for sea clutter modeling

In the second structure the gating network has no hidden layer. And in the third strecture
the gating network has two hidden layers, with the first hidden layer having 80 neurons and
the second hidden layer having 55 neurons. In all three cases, the expert networks have
the same structure of Figure 6.30. Again, after the learning sessions are completed, the
synaptic weights and bias terms of the models are all fixed. The generalization performance

of the models is evaluated by comparing their recursive prediction time.

Table 8.1 shows the recursive prediction time of the three types of modular networks
corresponding to three types of gating network structures just described. The first row in
the table lists the sea states for which the testing data are chosen in the range of these
states. The results shown in the second row to fourth row list the recursive prediction time
referring to the gating network with no hidden layer, one hidden layer, and two hidden layers,
respectively. There are two numbers for each recursive prediction time. The first number is
the mean value of 10 estimates of the recursive prediction time computed for the particular
sea state range, and the second number is the standard error {the standard deviation) in the
estimation of the mean. It can be seen from Table 8.1 that the modular network in which
the gating network has no hidden layer has the worst recursive prediction performance,

while the prediction performance of the modular neiwork whose gating network has twa

/,
e

i
vy
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Sea State State 1 | State 2 | State 3 | State 4
(wave height in ft.) 378 | 454 | 595 | 830

Single Perceptron Network | 33 £9 | 38+8 | 518 | 407

Modular Neural Network | 384 | 39+5 | 414+4 | 4044

Table 8.2: Comparison of local predictability of a multilayer perceptron network with a
modular neural network for sea clutter modeling

hidden layers is comparable to that of the modular network whose gating network has one
hidden layer. Considering a gating network with two hidden layers is more complicated than
a gating network with just one hidden layer, and the fact that it converges slower during
the learning session, we recommend the use of a modular network whose gating network

has one hidden layer for reconstruction of the chaotic dynamics of sea clutter.

Next we compare the generalization performance of the modular network to that
of the multilayer perceptron of Figure 6.30. In this comparison, a modular network whose
gating network has one hidden layer is used. It is trained by using a mixed clutter data
selected from ranges of sea state 1, state 2, state 3, and state 4, respectively. The multilayer
perceptron model of Figure 6.30 is trained by using a clutter data selected from the range
of sea state 3. The computation results of the recursive prediction time of these models are
shown in Table 8.2. Again, the first row in the table lists the sea states for which the festing
data are chosen in the range of these sea states. The results listed in the second row and
third row refer to the recursive prediction time for the multilayer perceptron maodel and the
modular network, respectively. There are also two numbers for each recursive prediction
time. The first nuinber is the mean value of 10 estimates of the recursive prediction time
computed for the particular sea state range, and the second number is the standard error in
the estimation of the mean. From the results listed in Tables 8.2, the following observations

are obtained:
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e The multilayer perceptron model has the best generalization performance for the
testing data where sea state is the same as the data used to trained it, and has an

inferior generalization performance when the testing data are chosen {rom another sea

state range.

e The modular network model has an average generalization performance that is con-

sistent for testing data chosen from all sea state ranges.

e The standard error of the modular network in computing the recursive prediction time

is smaller that that of the multilayer perceptron model for testing data drawn from

different sea state ranges.

8.4 Summary

In this chapter, we have presented a modular network structure for reconstruction of the
chaotic dynamics of sea clutter. An associative Gaussian mixture model was described.
The modular network model was applied to do the reconstruction of the chaotic dynamics
of sea clutter. The optimization of the zating network of the modular structure was dis-
cussed. Recursive prediction results are presented and compaied with that of the multilayer

perceptron model described in Chapter 6.

An important advantage of a modular network over a multilayer perceptron for the
reconstruction of chaotic dynamics of sea clutter is that it is robust with respect to a wide
variety of sea states, which could be exploited to provide a further improvement in detection
performance. A shortcoming of this approach, however, is that the modular network, in
which four multilayer perceptrons are employed as expert networks and one is used as the
gating network, is more complicated than a multilayer perceptron model, and therefore
converges much slower than the multilayer perceptron model during the training session.

This shortcoming may be overcome by using parallel processing technology.
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Chapter 9

Summary and Recommendations

In this thesis we have presented a detailed experimental study, using ground-truthed real-
life radar data, which demonstrates that sea clutter is essentially a chaotic process. The
experimental evidence for this assertion may be summarized as follows: Irrespective of

whether we use the in-phase, quadrature, or amplitude (envelope) component, we may

state that

¢ Sea clutter has a finite and fractal correlation dimension lying in the range of 7 to 9;

an embedding dimension of 10 is confirined by the false nearest neighbors analysis.

e The largest Lyapunov exponent of sea clutter is positive (lying in the range between
0.03 and 0.045, normalized with respect to the pulse-repetition {requency), indicating

a strong dependence on initial conditions.

o Sea clutter is locally (short-time) predictable.

The experimental evidence presented in this thesis is considered to be complete in light of
what we know about chaos theory. Indeed, it provides solid conrfirmation that sea clutter

is chaotic, an observation that was first made in 1990 by Leung and Haykin [56).

Another important finding reported in the thesis is that we can exploit the prior
information that sea clutter is chaotic by trading off highly sophisticated but relatively
inexpensive software for fairly expensive microwave hardware. Specifically, a chaos-based

receiver using amplitude information only (as in a noncoherent marine radar) is capable of
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providing a detection performance comparable to that of a “conventional” DOppIer-')ased
receiver using both amplitude and phase information (as in a coherent marine radar) The
chaos-hased detector includes a nonlinear predictive model of sea clutter, the desxg'n of which
is made possible by the use of a multilayer perceptron trained with the back-propagatlon
algorithm. It is feasible, of course, to use other supervised neural network ix.q_d:glgl such as
a radial basis function network for the predictor. In the case of a coherent rada.r,\‘\fu;‘t:her

improvement in the performance of the chaos-based detector is possible by virtue of the

fact that the receiver preserves the Doppler information about the target signal. This';=-.

information is not available to a noncoherent radar,

L

The important point that we wish tostress in this thesis is that chaos theory provides =

a new approach for the detection of signals in “noise” that is chaotic in nature. Indeed,
much can be gained by revisiting signal detection prublems, where the noise component
has traditionally been described by:a stochastic model, and exploring whether the use of a
chaotic model is a better choice by virtue of concrete physical arguments or experimental

evaluations.

An issue that has to be further studied is the computation of the Lyapunov spectrum
and the Kolmogorov entropy for sea clutter. As results reported in Chapter 6 indicate
that there may be only one positive Lyapunov exponent in sea clutter, and the second
Lyapunov exponent is likely to be zero, it implies that sea clutter may be governed by
coupled differential equations. The results, however, is still inconclusive because of the
limitation of data length and the sampling rate of the radar system used to collect the sea
clutter data. To get a more conclusive result on the Lyapunov spectrum and the Kolmogorov
entropy, larger sea clutter data set is needed, and the radar system is suggested to be

modified such that a much higher (i.e., at least 5 times higher) sampling rate is achieved.

Another issue that needs to be considered is that of antenna scanning. The ex-
perimental results presented in this thesis nave focused on the antenna usually staring at
a patch of the ocean environment along a particular direction. In an operational marine
radar, the antenna operates in a scanning mode, thereby introducing scanning modulation
into the received signal. The key issue that needs to be examined here is how the inherent

chaotic nature of sea clutter is affected by the antenna scanning modulation. Ordinarily,
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this modulation process is deterministic, and we therefore expect to see the sea clutter
process remaining chaotic. However, as the antenna rotates, radar backscatter is collected
from different parts of the ocean surface, making the sea clutter component of the received
signal assume a spatio-temporal character. By spatio-temporal chaos, we understand a de-
terministic nonlinear dynamical system that exhibits temporal chaos at different “lattice”

sites, and that has a nontrivial incoherent structure in space [64].
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Appendix

The Lorenz system is described by the following coupled differential equations:

o = (z2(t) —7(1)
dmjt(t) = —zy(t)za(t) + rz(t) — z2(t) o
dmsft) = ml(t)l'g (t) — bza(t)

where we take ¢ = 16, b = 4, and r = 45.92. For these parameters the accepted value for
the fractal dimension D is 2.05, and the values for the Lyapunov exponents Aj, Az, and A3

are 1.50, 0.00, and -22.5, respectively.

In the following table we present a summary of the values of these parameters using
the software that were actually employed for the characterization of sea clutter reported in
Chapter 6. A data set of 50000 samples was used in the calculations. The results of this
table are in close agreement with the above mentioned (theoretical) values for the Lorenz

system. This should therefore establish confidence in the experimental results reported in
Chapter 6.
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Sampling time At
Time delay 7

Correlation dimension

Minimum embedding dimension
The largest Lyapunov exponent by Wolf’s algorithm

Lyapunov spectrum based on linear approach

Lyapunov spectrum based op 3rd-order polynomial fit

AR
l"-

0.01
0.10

- 2.09
3
A, = 1.482
Ay = 1.450
Az = —0.002
Az = —14.988
A = 1.510
Az = 0.003

Az = —22.300
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