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"A great deal· of ,the research by
ph'ysiologists on exercise has concentrated
on the fuel intake (°2:, consumption)
rather than the resulting output of mech­
anical power which is the truly useful
product. "

D. R. Wilkie, 1980
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ABSTRACT

Classical force-velocity studies by A. v.. . 11 demon-

strated that there was an optimal velocity for

o'utput of isolated muscles and human mov nts. Thus t

study muscle performance during namic exercise it

is important to measure mechanical power output at several

constant velocities of movement. At the st rt of this work

no instruments were available to measure maximal power during

this reason a cycle ergometer (CVE) was'
"

isokinetic movements over a wide range f For

which

restricted the crank velocities to chosen upper limits,

aespite maximal efforts by the subject.

Measurements were obtained in male subjects of maxi-

mal peak torque generated

There was a consistent

over 81% of the functional range.
)

inverse linear relationship between

peak torque, and crank velocity, and the results were repro-

ducible from day to day. Considerable inter-subject vari-',

ability in peak torque was aCcounted for only partly by diff-

erences in thigh muscle volume.' Maximal peak power occurred

a t various crank veloc i ties ranging from 120 to 160 rPI?;

differences in muscle fibre types may have contri'buted to the

variation observed. Maximal power occurred when the force

equalled 0.3 to 0.4 of the predicted maximal isometric

tension, in agreement with Hill's studies.
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Torque, work and power were also measured during 30 s

of maximal effort at 60, 100 and 140 rpm. Increases in crank

velocity were associated with 'both a higher initial power,

and a greater rate- and extent of decline in power, but total

(
, .

wprk was similar • The greater decline at faster velocities

. -.\J:!tay reflect differences in energy metabolism, or motor unit

activation. In addition to defining the effects of velocity

on maximal power output in healthy young subjects, the

studies showed the eVE to be a sensitive, reliable instru-

ment, with potential applications to the assessment of human

muscle function in health and disease.
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1. aISTORICAL OVERVIEW

1.1 Introduction

The relationship between force, speed of movement,

and the concomitant work output and effic.iency. of human mus-.

cle was the subject of considerable investigation during the
'.

early 1900's. In a classical paper on the mechanics of human
('

muscle

tained

A. V. Hill (1922) discussed these factors as they per­

.. .
to maxlmal voluntary isotonic contractions of the

elbow flexors (Fig. 1). He demonstrated tha~ as the speed of

movement (~) increased, the work (W) done decreased linearly
~ ~

accorlling to the equation' W = Wo - kv, where Wo is the

muscle's mechanical potential energy, and' k is a constant
~. .

~ "varYlng as the coefficient. of viscosity. of the muscle

fluidp ". Since the distance moved by tne arm was always the

s·ame, the force exerted by the muscles varied di,cectly with

the work •. This linear relation was shown theoretically to

resul t in an optimum speed of movement at which - the mechan-

The calculated maximum mechanical efficiency of•
ical efficiency

greatest.

,
(exte~nal work done/energy used up) was

approximat~.ly 26% occurred when the contraction occupied one, .
second. A cornparative-iy small decrease in the contraction

time resulted in a.marked loss of efficiency, whereas a rela-

tively large increase in the time caused a much small,er lo,ss.

1
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Figure 1. The inertia wheel apparatus used by A. V. Hill
(1922) to measure the maximum work_ capacity of the human
elbow flexors.
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In a follow-up study in the same laboratory Lupton

(1922) measured more precisely the time occupied in maximal

arm flexions and the subsequent work output, and was able to

confirm the validity of Hill's equation. Thereafter the

lineal; relation established in human arm movements between

force exerted and speed of movement was found to be equally

applicable to activities involving the legs. Furusawa, Hill

and Parkinson (l927a) suggested that it could explain the

acceleration of a rUMer, and set a limit to his maximum

running speed. Best and Partridge (1928) confirmed the pre-

diction in an experiment in which external resistances of

varying magnitude were added to a runner (Fig. 2). A con-

stant external resistance caused a reduction in maximum

running speed which was equal to that calculated from the
l

equation of Furusawa, Hill and Parkinson. Dickinson (1928)

determined the maximum speed of pedalling a cycle ergometer.

as a function of the resistance applied to the wheel. Once

again the relation between maximum speed and load proved to

be linear, the speed decreasing as the load increased

according to Hill's (1922) earlier equation.

Hill (1922) calculated that a linear relation in

human muscle between speed and force must result an

optimum rate for the attaihment of peak mechanical effic-

iency. Several studies were published 'reporting results

which corresponded very closely to Hill's theoretical values. /

\
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a, Recording coil; b. Spring bnlnncc!\; c, Cord rrom cll.p.~tan to runncr'1I waist; d, Liol!n
friction blind.

"

Figure 2. The experimental design used by Best and
Partridge (1928) to record sprinting performance with vari~

ous external resistances imposed on a runner.
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Using a variable sp,~ed ergometer, Cathcart, Richardson and

Campbell (1923) determined from measures of oxygen consump-

tion that the highest efficiency for alternating arm move-

ments was between 23 and 24.7%, occurring when the duration

of a single contraction varied from 0.7 to. 1.0 second.

Lupton (1923) on the other hand, reported a maximum effic-
, .

iency of 26.7%, at an optimum contraction duration of 1.36

second's~--''';hen the activity required a simultaneous con-

traction of the flexors of both arms. The peak efficiency

during pedalling on a cycle ergometer proved to be 21. 8%,

coincident with a contraction duration of 0.9 seconds

(Dickinson, 1929), whereas in stairclimbing the respective

values were 24.4% and 1.36 seconds (Lupton, 1923). In every

study the curve relating efficiency to duration of contr-

action was of the same general shape and dimensions as that

calculated' by Hill (1922). At the time it was commonly

believed that these phenomena associated with muscles short-

ening against a load could be explained by the ·visco­

elastic" theory of muscle contraction.

1.2 The Visco-Elastic Theory of Muscle Contraction

In 1892 Adolph Fick published a paper in which he

concluded that it was the. actual process of" muscle short-

ening under tension which was largely responsible for the

expenditure of chemical energy. However, this conclusion was










































































































































































































































































































































































































