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The. problem of'self-tuﬁinx reference signal trackihg ;a
considered for systems represegled by autoregressive moving average
(ARHA) as well as state-space models. By self-tuning control, it iat.
meant to be a3 combination of recursive-parameter eatimagidn and control

-

algorithm. A new strategy of controller design is propos;d, which is
pole/zero placement in the ‘error transfer function’ (éTF;q;; congzéat
with the usual closed-loop pole~placement. Sufficient conditions for
arbitrary simultaneous assignﬁent of ETF poles and zeros are derived.

For ARMA models, a recursive extended least squares type algorithm with

a general nonlinear criterion function, which can be defined by the

-

ugser, is suggested and the strong consistency of the algorithm is

proved. Reference signal model identification is introduced for the
first time into the context ;f adaptive control, whi;; provides great
flexibility to track any unknowqﬁgxternal reference trajectory. The
global convergence of the adaptive ETF pole/zero placement is
theoreticélly established for deterministic. systems. New stqchastic
optimal control algorithms are derived for the case where the control
objective is reference signal tracking. The noyélty of the proposed
algorithms is that the performance indices are determined by the

prespecified locations of ETF poles as well as zeros. State—space

approach to self-tuning control has been studied also. The recursive
. <

~*
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prediction error method is used for joint state and parameter estimation,

of state-space innovations model. Adaptive reference signal tracking

: : ¢
control laws are derived for system output as well as an immeasurable

" physical state.

- Ky

To demonstrate practical applications, the derived self-tuning
\

algorithms were applied te surface accuracy con&ac% in turning and end

'milldng process. The results of simulations indicate considerable

-
improvements in geometric accuracy of finished workpieces over ha
conventional numerical control in the.gpresence of significant tool /
workpiece deflect;on. ) A -_— o
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CHAPTER 1

INTRODUCTION

1.1 Backszround

One of the most challenging fields of modern control theory is

adaptive control. It has received a lot of attention since the early

1950s. .
The task of a control engineer is to produce a desired response
from a variety of systems. The complete knowledge of the systems to be

<
controlled is almost essential to fulfill this task. However, the real

life situation would never be ideal, hence produces several hurdles:-

1. The ihput—output relationship of a system often presents a certain
kind of "nonlinearity™. It is found that linear feedback system can
work well in one operating condition, but the performance can be

degraded when operating point (set point) is changed.

2. Some physical systems are too complex to analyze. The only

information available could be the input-—output data.

3. The aging of systems, changes in operating environments or the
nature of system itself can give rise to time varying phenomena. Hence
the controller design based on linear time—invariant system theory could

become inadequate.
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Because of these reasons, it is desirable that the-gcontrol
system should "adapt”. itself to circumstances.

The first adaptive system repoéted was a model reference
adaptive control scheme fér aircraft by Whitaker et al. at MIT (1958).
From then on, there gas been considerable interest on model reference
adaptive systems (MRAS) for deterministic continuous time systems as
well as discrete time sygtems. (See for examples, Parks, 1966; Monopoli,
1974; Landau, 1974, 1979; Narendra and Valavani, 1979, 1980). The
sﬁecification of MRAS is given in terms of a reference model which tells
how the-system output ideally should respond to the command signal. The
approaches to MRAS can be categorized into: (l) parametric opiimization.
and (2) the uge of Lyapunov function and Popov’s hyperstability theory.

In the early 1970s, Peterka (1970) and Astrom and Wittenmark
(1973) suggested the use of a self-tuning regulator to reduce the effect
of the stochastic disturbance for plants with unknowm parameters. The
self-tuning regulator was originally proposed by Kalman (1958), who
built a special-purpose computer to implement the regulator. étarting
with the work of Astrom and Wittenmark, in the last fifteen years this
branch of adaptive control - self-tuning control haé attracted
considerable attention and ;volved rapidly. This type of adaptive
control system assumes that the plant has known structure but unknown
parameters and is characterized as a combination of recursive parameter

imation methods and control algorithms. Thus, the two substantial

steps are executed sequentially in each control cycle. The controller



is'said to possess the 'self-tunins"préperty. if the' parameter
estimates convérge to abpropriate values and the control goal is
asymptotically achieved.

For minimum phase (inverse stable) sy;tems, there are
similarities between MRAS and self-tuning-control. Hence unification of

MRAS and self-—tuning control methods has'been attempted by many authors

(Ljung and Landau, 1978; Egardt, 1979, 1980; Landau and Lozano, 1981;

v

’

Landau, 1§79, 1982; Astrom, 1983).
| Early design of self-tuning regulators and many MRAS algorithms
invo}ve pole—-zero cancellations, which restricts the planf to be inverse
stable. However, it is more a rule than an exception that a samplgd
data system has unstable zeros (Astrom et al., 1984). In a certain
sense, the development of self-tuning control in the last decade may be
viewed ags to find a solution to the control of invérsa unstable‘giant.
A variety of approaches are used to span the spectrum of all existing
control algorithms, which would produce a stable result when combined
with some recursive schemes for paremeter identification.

Since the 19708, computer hardware and software development
entered a.dramatic stage. It is reported that the world’s fastest
digital integrated circuit Eoday runs at a clock rate of 18 billion
cycles per second. The low-priced microcomputer or microcomputer array,
with sufficient speed, reasonable memory size and software support,
provides an efficient tooi for on-line system identification and controi

law computation. Moreover, it has been realized that thi;7)is a

-



necessity to build an expert system, with the aia of advanced computer
soffware, which provides functions such as stability-supervision and

-

control algorithm selection for the practical implementation of

~— -

gelf-tuning control. Very recently, a few papers have appeared which
';re co;centrated on the design of such an expert system (eg. Trankle and
Markosian, 1985; Isermann and Lachmann, 1985; Astrom et al. 1986).
Where systems are essentially of stochastic nature, tge
self-tuning controller is designed to regulate the effect of disturbance
on system output. For systems where both reference input changes and
disturbances occur, control objective specifications should be different
than original self-tuning ragula;ors. One of the jmportant requirements
for this case is that the expectation of the tracking error, in the
steady state, should be zero for any arbitrary external reference
signal. Most of the existing adaptive algorithms, however, does not
take care of this point. Furthermore, if a system description is given
in state variable form with some entries of the state variable matrices
known, and with a few entries depending on possibly fewer unknown
parameters, 1is it possible to seek a synthesis where the prior
knowledge of the system parameters could be used? In addition, it also
seems unclear how to obtain a solution to the tracking problem in an
adaptive manner for the case where a imme;surable physical state of a
system is required to follow the external reference closely. The main

effort of the research reported in this thesis is to present a

systematic procedure for solving the above problems and investigate the



stability_isaues arisen in the Bituatién concerned. -

1.2 Coptributions and Orzanizations of the Thesis

The contributions made in this thesis are enumerated below:

l. It is well known that the concept of pole-placement is a convenient
’\
way to unify the numerous. adaptive control algorithms (see survey by
Astrom, 1983). In this thesis, the method of arbitrary zero placement

——

in closed-loovp error transfer function (ETF) is derived. According tg
this method ETF zereos could be assignes indepéndently with respect to
ETF poles, which are the same as the closed-loop poles. When the ETF
zeros contains the natural frequency of the external input reference
gignal, the tracking error in the output will be blocked, beoth in phase
and magnitude. The principle of ETF zero placement is thus dﬁﬁ;ribeé in

parallel with adaptive pole—-placement based algorithms with the thrust

on adaptive reference signal tracking. The global stability of adgbtive

-~

ETF pole/zerc placement when combined with certain types of parameter
£ ) N

estimation algorithms is algo analyzed.

2. The samples of the reference signals have been regarded as the
impulse response of a system having a certain transfer function. Qs the
ETF zeros are assigned individually accoraing to a particular aet:og
referencg signals, the identification of reference signal model, which
may be unknown or altered from time to time, is necessary. A method'for‘

identifying the reference signal model from its samples has been



s

1%

I -

suggested.

.

X 3. The method of ETF zerv—placement has been incorporated with the |
- . \

minimum variance gelf-tuning regulator of Astrom and Wittenmark to

obtain a self-tuning version of the minimum variance tracking -
. - ’

controller. ‘ T ¢

-
-

4. A quadratié?optimal self-tuning controller with ETF pole/zero
placement has been'derived in a stochastic environmeht. . The effects of
the choice of performance indices on the properties of tracking errar

propagation have been indicated. ;

5. The parameter estimation qlgorithm adopted in the frequency domain
approach to self-tuning control.ia a recursive extended least sgquares
type algorithm with a general nonlinear criterion functioen. Tg%s has
the merit of a user defined criterion function by which tg; estimation

of the process parameters can be made robust against bad data. Strong

congistency of the parameter update recursion has beem proved.

6. The adaptive ETF pole/zero placement algorithm has been

- —

successfully applied to an existing NC (numerical control) system for

contouring operation in turning. Results of simulation show a

significant improvement in the geometric accuracy of machined components

in the presence of significant workpiece/tool deflection.

extended to self-tuning regulation and trackiﬁ§ of state variables. 1In
o

?} The concept of self-tuning ocutput regulation and tracking has been

<



this case, the process is naturally represented by a general state-space
- . »*
model, where the states have definite physical pignificance. A

staée—spacp ;pproach to. self-tuning control has been derived, by which

an immeasurable state can track external reference signals closely.

8. The practical usefulness of the state—gpace self-tuning control
algorithm is demonstrated by application to surface accuracy contrel in-
engzmilling process. 1t gives fise to inherent difficulties for control

sygtem design that the on—-line assessment of workpiece geometry is not
-

realizable. ‘Results of simulakion indicate a great improvement in

surface accuracy when milling thin webs.

The thesis is organized as follows: Chapter 2 gives a summary

-

of frequency domain approaches'to gelf-tuning controllers from a unified
point of view. In chapter 3 a weighted recursive extended least sqqara%
-

type algorithm for the identification of pseudo regreesion models with

generai nonlinear criterion function has been introduced. The

/
sufficient condition for convergence of the algorithm has been obtained.

In chapter 4, a general approach for arbitrary ETF pole/zero assignment
is derived. A method for identification of the reference signal model
is introduced and the global convergence of the ETF pole/zerc placehant

method combiqu with the new parameter identification algorithm is

-

proved for deterministic systems. In chapter 5, minimum variance and
quadratic—optimal éelf-tuning tracking controllers have been derived by

extending the results obtained in chapter 4 to stochastic systems. »
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Chapter & describes an induqyrial application of the new adaptive
tracking controller to ceontouring operation in turning. 6Lapter 7 gives
the synthesis p;ocedura for the state— space degign of the self-tuning
contrgllera. Recursive prediction error (RPE) method is suggested for
joint state and parameter estimation of state innovations model.
Modified state feedback control 1aw£ are de}ive§ for both the output and

state trﬁcking problems. Chapter 8 discusses a practical application of
. of

the state—space self-tuning control algorithm to end milling process

with simulation results. In chapter 9 conclusions and suggestions for

future research are outlined. - -



N CHAPTER 2 -

SELF-TUNING CONTROLLERS FOR NONINVERTIBLE SYSTEMS: AN OVERVIEW

-

2.1 Introdyction to This Chapter

The original minimum variance gelf-tuning regulator {Astrom and
Wittenmark, 1973, 1977) leads to unbounded contreol for inverse unstable
systems. This is a severe limitation, since it was found (Astrom

et al., 1984) that for sampled data systems unstable zeros often occur,

independént of the fact that the continuous—time counterpart is inverse

-

stable or not. Overcoming this limitation has been the subject of much
subsequent research. An overview of a variety of self-tuninslcnntrol

algorithms for noninvertible systems is presented in this chapter.

2.2 A Generalized Contreller s;;gg;ygg

Consider a single-input single—output system reprasented by the

ARMAX modsel:

atz"Hy, = Bz Dy + iz ey (2.2.1)
7

-1
where A, B and C are polynomials in the backward shift operator z .

and defined as

2 -n

-1 -1 -
Yy =1 432" + azz” "+ ... +a_z 8

Az



B(z™) = z79B"(z™")
!
= z'd(blz + baz™ " + ...+ bnbz_ b) u
: -n
Mz~ )y = 1+ ezt v ez 4 oul + cq 2z ©
c

Also {y,} and {u,} are the system output and input sequences
regpectively. {et} ig regarded as a white noise sequeﬁbe with zero mean

and finite variance.énd d denotes thqﬂigéagral part of the time delay.
For brevity the polynomial aégumants will be omitted in the thesis
whenever they are clear from the context. .

A general structure for self-tuning controller design using
frequen;y domain methods for system (2.2.l1) may be considered as

{M’saad et al., 1985)

(§ + Q)uy = Rwy = Py, (2.2.2)

where {w,} is the external reference gignal sequence.

2.3 Approaches Based on Generalization of the Minjmum Variance Algorithm

(1) Clarke and Géwthrope (1975, 1979) have generalized the minimum

variance algorithm by ueing the following cost function
2
J = £[¢t+d] (2.3.1)

‘where reg = P*yt+d + Q'ut - R*wt . (2.3.2)
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and P*. Q* and R” are polynomials in z=1.

By minimizing (2.3.1), the resulting optimal control law can be

expresded in the form of eqn.(2.2.2) with _ >
g $=0 - (2.3.3) >
Q=B'F+QcC, ) (2.3.4)
R=CR - | (2.3.5)

and P, F are satisfied by the following Diophantine equation:
afF + z79p = p"c (2.3.6)

An appropriate choice for P* and Q* was suggested by using pole-

placement to ensure satisfactory closed-lcop poles (Allidina and Hughaes,

1980). The minimum variance control is a special case, where the

weighting polynomials Q*. R" are chosen as.zero and P" as 1 in (2.3.2).
&
(2} Zeré—assignment and minimum variance control
Kumar and Moore (1983) have proposed the following novel scheme
for assigning system stable zeros in order to apply minimum variancé

contreol:

— F(z7") e —

Fig.2.1l The augmented system.

-
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The zeros of the augmented system are given by
B = AE + BF . . (2.3.7) -
If we rewrite the noise free portion of the original gystem as:
Az, = uy _ {2.3.88)
¥y = Bz, : (2.3.8b)
Then the output it of the augmented system is related to yg by
- Bzy = 371‘. (2.3.9)

2.4 Pole Placement

(1) The explicit pole-placement'self—tuning regulator was first
suggested by Edmunds (1976) and Wellstead et al (197%a,b). For the

problem of regulation, the following control law is used:

Qut = —Pyt ' (2-4-1)
where Q, P can be chosen to satisfy the polynomial identity

AQ + z=d8p = oC {2.4.2)
and ¢ is a stable polynomial in z'1 chogen by user. :
Then we have the closed-loop system

alz™hy, = Az Dy (2.4.3)

It wap further found by Zarrop and Fischer (1985) that by a suitable

overparameterization of the controller polynomials P and Q, the variance

-
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of the output can be redﬁced possibly, in a trade—off with Ehe‘input

variance.

{2) The controller structure (2.2.2) may be interpreted for S5=R as a
partial atéte.feedback (Kailath, 1980; Elliot, 1982). For the noise-free

case, by using the control law (2.2.2) with S=R we have

BR
Yy T = W (2.4.4)
t " AR + AQ + BP ¢
Let ' )
AR + AQ + BP = oR o : (2.4.5)

where c(z-l) is the desired characteristic polynomial and R(z—l) is an
arbigfary gtable polynomial repregenting the observer poles.

After cancellation of R in the closedéloop we have
c(z“l)yt = Bw, (2.4.6)

Elliot (1982) has also derived the corresponding implicit
version of self-tuning controller. If A, B are coprime there exiat two

polynomials U, V such that
UA + VB =1 . (2.4.7)

Then we have the linear regression containing filtered input—output data

as follows:
U(aRut) + V(aRy,) - Quy = Py, = 0 (2.4.8)

Hence the coefficients of U, V, Q and P can be identified using a

recursive algorithm. However, the number of the parameters to be



e
. i

identified ig twice as many as the number of controller parameters.

o

(3) Pole-zerc placement based on polynomial factorization is suggested

by Astrom and Wittenmark (1980). Consider the noise—free case. The

control objective is given by a reference model:
AnYm,t = Ba¥t | (2.4.9)

where Bm and A, are polynomials in z_1 defining the dynamics of a
degsired reference model and Ym,t ig the output of the reference model.

By using control law (2.2.2) with S=0, we have the following

equation for the closed-loop system

(AQ + BP)y, = BRw, (2.4.10)
Let us facto;ize B as

B = pte~ | (2.4.11)
where B* is monic and stable and B~ conta;ns the remaining unstable
factors.
Further, specify By = B7B,, Q@ = B*Q;, R = A_B}. We may obtain P, Q by
solving the equation

AQ + BP = BYAjA,
or
(2.4.12)

AQ, + BTP = AjA,
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where A, contains the desired observer poles.

The restriction is that the zeros of the reference model must
N .
contain the unstable zeros of the original system aga factor. This may

‘not be desirable in many cases.
The controller parameters in eqn.{(2.2.2) may be directly

estimated on-line (Astrom, 1980), however it results in a bilihear

parameter estimation problem. - -

‘

(4) Another interasting approach is derived by Kurz et al.(1980) by
gelecting 5=0, R=AR’, P=A and Q=cfz—d8 in eqn.(2.2.2), i.e. }

au, = Buy_g4 + A[R'w;- ye } : . (2.4.15)
Substitution of the control law (2.4.15) ian (2.2.1) yields'the
following gquation for the closed-loop system:

S -
=2 EX_ BR w +9£t:

b4
t a t aAt

(2.4.16)

Hence the polynomial a(z'l) gives the desired poles. We found that the
control law calculation is straightforward and the choice of polynomial

R® is left open.

2.5 The alternative approaches

¥e have seen that most of the frequency domain approaches to
self-tuning controller.design may be summarized by egn.(2.2.2) with
N "

different choices of'tﬁe weighting polynomials. Basically, they have

-



the nature of pole-placement.
C\T . There are alternative approaches. One is the explicit.control
;
performance criterion minimization within a given controller structure
(Trulsson and Ljung, 1985%; Trulsson 1983). This is a promising appro;ch
and has a potential applicability to general control ?roblams. jncludinx
non-quadratic criteria and nonlingar controller structures. The
difficul;y is how to estimate the gradient of the criterion function
with respect to the controller parameters.
Another important alternative is the state—space design. The
LQG (Linear Quadratic Gaussianj optimallcontrol lawa.hava been employed
in gelf-tuning system (Peterka and Astrom, 1973; Lam, 1980; El-sherief
and Sinha, 1982; Grimble, 1984). LQG control produces reasonably good
performance for noninvertible systems (Lam, }980: Cla;ke, 1984).
However, it involves larger computational lo;d due to either the
solution of a matrix Ricé&ti squation, or spectral factozizagion.
Furthermore, the choice of Qeizhting matrices is also problem dependant.
Harq}ck (1981) and Tsay and Shieh (1981) have proposed state-
gpace pole—-assignment approaches by usink ERLS (extended recursive least
squares) parameter estimation followed by a state feedback control law.
One of the attractions of the state—space polejplacement control law is
that the linear equations involved_?eve much lower dimension than that

of the Diophantine equations used in frequency domain designs.

Recently, Omani and Sinha (1985) have proposed the use of RPE (recursive

prodiction érror) methed for joint parameter and state estimation in the
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controller canonical form. Hence, & novel implicit self-tuning control

is obtained for noninvertible systems due to the fact that the

computation of the feedﬁjjﬁfgdin becomes trivial.

2.6 Concludinzg Remarks

Self-tuning control algorithms were qainly designad for systems
represented by ARMA models. Thesa‘approaches have 1pt of aspects in
common and can be viewed a3 pole placement ;%sed on recursively
egtimated system param;ters.' They offer a feasible solution to the
self-tuning control problem of noninvertible systems._"Hﬁwever. when the
control objecti§e is specified as reference tracking, which is also
important for control engineers, the performance Ef the closed-loop
system may not be satigfactory. ;urthermore, if the system is described
more natu;ally by a state-space model, }t would be desirable to design

self-tuning controllers directly based on such a system representation.

This will be the main focus of the thesis.



CHAPTER 3
STRONG CONSISTENCY
OF A TYPE OF RECURSIVE IDENTIFICATION SCHEMES

WITH GENERAL NONLINEAR CRITERION FUNCTION

3.1 Introdyction :to This Chaeter -

Given a physical system S, we have to select a model set M(9),
which is parameterized by some parameters &, for the purpose of adaptive
control. Howéver. S may or may nét belong to M(8). M(8) should be
chosen such that it ig a close approximation to S for some 6, under some
raasongble met;ic defined ié the space which contains M(8).

With M(8) apecifﬁed, certain recursive identification schemes

- are adopted to estimhte parameter 8 from input and outbut data. For

some 845, If S € H(So), the asymptotic convergence of the estimates to
* the so called true parameter 8y is called the consistency of Lhe

recursive parameter estimation.

- -

Consistency of recursive parameter jdentification is important

for self-tuning control. Self-tuning control first assumes that 95 is

-~
. known, for which an optimal contreoller is derived for a specified

. . objective function. Then 85 will be replaced by its current estimate
8,. In the pioneeringlkork by Astrom and Vittenmark (1973), it has been

shown that if the estimates converge to some limit (not necessarily to

~18-"
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the true parameter), then the self-tuning raxuraior would be globally

convergent. Hence, the central problem is whether ﬁhe parameter

estimates should converge or not.

The strong consistency of the extended recursive least squares

algorithm has attracted considerable attention during the past decade.

" Consider the linear discrete-time system described by the

equation

Az hy, = Bz Hug + Cz™hiey . (3.1.1a)%

where z—1 is a,backward shift operator, {yt}. {“t} and {ct} denote the
sequence of the scalar output’, input and noise respectively , and A, B

. . =1 ,
and C are pelynomials in z~ , ag given below:

n

ad
Az =1+ 1 apd .
j=1
1 nb
B(z™) =} bjz—j
i=1
e
C(z"l) =1+ g ch'j
j=1

]

Eqn.(2.1.la) is the'well known ARMAX time series model, which has been
extensively studied in thq identification and stochastic and adqptive

control literature. We assume that the sequence {ct} isg a martingale

difference sequence adapted to an increasing o—algebra of input-output



sequence whlch.is denoted by {Fy} (i.e., € is Ft-measurable).

asgumed that E(ct]Ft_l) =0 for all t, and

E{e€|Ft} { = for some p

4(3.1.4&)’max be rewritten as ~

\ -—
Yi = ¢{80 + €

where @8p = [al,"-,ana.bl.°'°,bnb,c1.-°',cn 17

\¥ _ : . 'j; ¢

& - -9 - 1 LN N LR N J T
4= [=¥g1»**1=Ypop 1 Ug-10 """+ Utan 26610 "2 Ean ]
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Also we

(3.1.1b)

(3.1.1e)

(3.1.1d)

In practigé‘{?t} can be assumed of consisting past values of y., u, and

e, e being the prediction error (see 3.1.2c), and the natural

-
t

—
prediction of the output y, at time t-l

Ye = E(yelFp ) = ¢

(
where

= -8 8 - .o e asw T
dp = [=ypo1s="* =Ypon 1Ut-10"""+Yeony ®e-1> """ rStn ]

(3.1.2a)

(3.1.2b)

with the unobservable €y in ;t replaced by the prediction error e;

*(3,1.1) indicates that there is a unit time delay between the model
input and output. It is possible that there is a time delay d, which is=
greater then one. In that case the first d components of B polynomial
are identically zero. More explicitly, the B polynomial could be

expressed asg

-1

d 0, -3
B =z bz~
{z™") z j£1 I::

However, the consistency of the identification scheme may be proved
without loss of generality under the assumption of unit time delay.



defined as _
- - _—

ey =¥y - ;'1"} ) (3.1.2¢c)

-

U

- .
Then (3.1.1b) becomes a pseudo regression_equation due to the

-

fact that ¢t contains some unobservable values {et} which can be

estimated by {at}. in contrast with the conventional regression

equation.

To estimate 8y, often it is practiced-tc minimize the criterion

function

v({8) ! l; ! (3.1.3)
= - - a R
Nt=l2 ©

' As a result we get the well known extended least sgquares recursive

-

equations as follows

Et = yt - ¢;Bt_l (3.1.43)
Tz PLLy + o] (3.1.40) °
Pp = Py + opdy . o1

Note that P, can be updated in a computationally more convenient form

. .. . : B ~
ugsing the matrix inversion lemma

P19 $iPeo)

P, =P

. =Py (3.1.4d)

An alternative form of the scheme (3.1.4) is obtained by’



replacing ¢, by ¥, defined by

= [=Yp_1v®**s=Yeon rBel1r """ s8eon, PNl """ 0ep 17 (3.1.5a)

where . G

- -
- .

which is called the residual (or a posteriori prediction error) at time
k.
The recursive scheme (3.1.4) is known as the RML; (recursive

e———— e
-

maximum likelihood of the first kind) method. With the&ﬁbdificahfsg
described in (3.1.5) it is called the AML (a;proiimate maximum
likglihood5 method. This is due to the fact that they are '
asymptotically egquivalent to the celebrated maximum likelihood method

under the assumption of normality on noise. Both the RML; and AML are

commonly referred to as the ERLS (extandedl;acursiva least squares)
method. The AML method was first introduced and named by Young (1974).
The strong consistency of AML method was first proved by Solo (1979).
The extended least squares estimates will converge to Erue parameters
without monitoring, under reasonably weak conditions.

The question.remaining is ;hether the strong consistency is
preservad for parameter estimation of pseudc regression model with a
general nonlinear criterionf The choice and influence of the criterien

function for parameter estimation were discussed in the literature,

e.g., Ljung and Soderstrom (1983), Goodwin and Sin (1984) and Davig and
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Vinter (1985). A comprehensive study of recursive stochastic
approximation with &ifferant nonlinear criterion functions is 3ivenlby
Polyak and Tsypkin (1979) and“Tsxpkin (1982). Géneraliy speaking, .

different parameter identification criterion functions will affect the ;

.
-

parametric estimate convergence rate, the sengitivity to the signal to
noige rat;g/and the possible outliers that may present in the data.
Thege issues are very important to adaptive contrel. Also“the criterion
function of.recursive parameter estimation should be at the user’s
disposal and could be treated 2? a design variable. Hence an pFiori
knowledge on the objective can be used effectively to choose a function
from thé diverse set of pqssible criterion functione. This Is the

~

motivation of the underlying work.

The estimates of the parameters bf a peeudo regression model may

be obtained by minimizing a certain criterion function in a more general

form

v(e) =

x| -~

N
I tle,] (3.2.1)

t=1

where e, is the prediction error and &[+] is a nonlinear scalar function,

chosen by the user. As a particular case, if %{+] is quadratic, we

will be doing a leagt squares estimation.
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For general nonlinear criterion functions, a recursive parameter

estimation scheme for theé regression model (i.e. C(z™!) = 1) was derived

by Puthenpura et al. (1986)_in the context of robust identification.

Here we extend it to the case of éseudo regression models.

Let 3 . :

Y
38,

ple,) = (3.2.2)

N

and p[+] satisfies the followihé assumptions (p[*] is often called the_

influence function):
Al. odd;
A2. plx] is nondecreasing for x > 0; '

A3. p[x] is continuous with an exemption at a point set of Lebesgue

measure 0.

To minimize the criterion function (3.2.1) with respect to B¢

under the constraint
yp = {8p + e, ‘ < (3.2.3)

where ¢, and O are defined as (3.1.2b) gnd (3.1.1c) respectively, we

have
1 K »
_—= p(et) —~ =10 ’ (3-2.‘4)

Ignoring the implicit 6—dependence of ¢,, we have

? T , \\ '
| : r



N

~25«

i S | ' (3.2.5)
a—eo-—.. t Y Y

»

Consequently, (3.2.4) can be rewritten as

t

N
- . ¢ ple,) =0
tP %t
N ¢
.or
1 N .
= LI ade =0 (3.2.6)
Npo - .
where
(e.) : - '
o, = -2t - (3.2.7a)
et
when e, # 4]
and a, = a e gt ‘ (3.2.7b)

when e, = 0.

Therefore (3.2.1) can be minimized analytically, which gives

N . _1 X N
[ % °t¢t¢g] [ 2 °t¢tyt] (3.2.8)
t=1 t=1

Oy

With &, replacéd by ¢, defined in (3.1.5a) we have

-
N _1 N .

By = (I °t*t*€] [Z at*tyt] (3.2.9)
t=1 t=1

provided the inverse exists. '

Ean,.(3.2.9) may be calculated recursively by usins‘tha matrix



inversion_lemma: -

n

ey = vy = ¥g8¢.)

Bp = 84y + o Pr¥ey

-1 -1
Py = Ppoy + ap¥y¥g

(3.2.10a) -

(3.2.10b)

%

(3.2.10¢)

{3.2.10c”’)

” T
*tz [_Yt_lp"'l-Yt_nalut_lr"'rut_nblnt_l-"’vnt_n ] d__(3-2-10d)

or
T
_ _ Py Ve WPy
Py =P
1l + qt*gpt—l*t
" where 'Q
and
T
Ng = ¥p = ¥¢8¢
e .
Q. = ple] for e 2 0
t - t
t —_—
ajd
- + -
-- a, = aeR for e, = 0
THEOREM 3.1

(3.2.10e)

(3.2.10f)

(3.2.10g)

Let {¥,} and {at} be smequences defined as (3.2.10d), (3.2.10f)

and (3.2.10g) respectively, such that

. 1 K 2
lim sup — L |¢t| (=™
Naw N t=1

(3.2.11).

Lo



-27-

0 < sup e ¢ Ky (= , (3.2.12)
te(0,=)

Also assume that {ct} is # stationary ergodic martingale difference

sequence adapted to the increaé%hs sequence of o-algebra of observations

{Ft} such that : .-
E(ct]Ft_l) =0 e (3.2.13)
E(eg(Fp_y) = o ¢ = (3.2.14)
‘and ’
S E(¥, £,) = 0 for all t | (3.2.15)
. -
Then for the algorithm (3.2.10)
%im 8, = 8g a.s. (3.2.16)
and
. N 2
lim = ¥ [n, - £.1=0 a.s. (3.2.17)
provided that
C(z-l) has all the zeros inside the unit circle (3.2.18)
1
and Real | - -] > 0. (3.2.19)

C(z_l)

The proof which is along a similar Qay as that of Splo (1979) is given

in appendix II.
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3.3 Loncludipg Remarks

In this chapter we intrpduced an extended recursive least
gquares type algorithm with general nonlinear criterion function’for
parametef identification of ARMAX models. The strong consistency of_the
recursion hag been established.

Intuitively, the_critarion function is a sort of "measurements”
of‘the "gize" of the pfadiction.errors. This Aeasurement wag originally
restricted in the form of a'quqdratic norm and the corresponding
{dentification schem; obtained is the exgendad least squares. WNe relax
this restriction to general nonlinear criterion functigna. The
"measure” of the‘prediction error in each stage is Fonverted as a
penalty (weight) for the current data vector (pseudo regressor). Ve
have established, as we said in the introduction of this .chapter, that
the criterion function becomes a user selectdble variable. As a result,
the identification algorithm can achieve a fast convergence rate or ’
robustness towards possible cutliers according to different situations.
The algorithm suggested is gimilar to the extended recursive 1éast
squares. It takes care of the stability inherently and the global
convergence isg guarahteed without monitoring. ’ -

ARMAX models are extenéively used to develop a variety of
self-tuning algorithmg. Extended recursive least squares Lype
alsﬁrithms are well guited for ARMAX models and it is easy to implement

on-line, due to its simplicity.



CHAPTER 4
ADAPTIVE ERROR TRANSFER FUNCTION POLE/ZERO PLACEMENT

AND ADAPTIVE TRACKIHG FOR DETERMINIS&IC SYSTEMS
4.1 Ln.tmdnﬂm_ts_hhm_sha.&m

In this chapter we consider the hroblam of adaptive reference
signal tracking for deterministic systems. The methodology to be used
is the adapti&é error tranéfer function (ETF) pole/zero placament.

What is the importance of ETF pole/zero placemant?. A guitable
choice of error transfer function zeros will block the tracking error
for a particular set of reference signals. Moreover, in contrast with
the closed-loop poles and zeros, the ETF poles and zeros can be aaaigna&
independently by using"a control law with constant gain (see section
4.5). We may make use of this principle to design a controller
stabilizing the system and, at the same time, eliminating the tracking
errors in both phase and magnitude with respect to any arbitrary
external reference signals. An adaptive mode is necessary when the
plant and the reference signal are unknown, or the plant—ie slowly time
varying and/or the reference signdi has beenlaltered.

In th; early 1980s unification of a variety of adaptive control
schemes was suggested by using pole placement approatﬁ?xs described in

g
chapter 2. In this chapter, ETF zero placement is proposed as a

—29-



complement to closed-loop pole asgignment for rafarencq ﬁracking
problem. The controller design philosophy is named as ETF pole/zero
placement, due to the fact that the ETF poles are exactly the same as
the closed-loo} poles. In fact, ETF zero placémant stratésy may be used

together with varicus self-tuning algorithms to improve the reference

tracking behaviors. Hence this feature has significant practical

usefulness. \

Unlike the existing methods in the literature, the external
reference signals are suppo;ad to be unknown and detected by the
adaptive éy;tem itself. This is practically useful in real life
situations like radar tracking.

The global convergence of. the adaptive ETIF pole/zero placement
for deterministic systems is theoretically established. The adopted

. -«
recursive scheme for parameter estimation utilizes a user—-defined

general nonlinear criterion in contrast with the least squares method,

as described in chapter 3.

4,2 Problem Formulation

—_—

Consider the time—invariant single—-input single-output plant
represented by

Az Juy (4.2.1z2)

where t is the discrete—-time index, vy and u are the system output and

-

input respectively; A and B are polynomials in the backward shift

N
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operator z'l. given by _
LLPY
A(z7!) =1+ F agzd ) (4.2.1b)
j=1 )
Ny
B(z™') = 279 § b,2d | (4.2.1c)
' j=1 J - \\

vhere d is the time delay, as an integral multiple of the sampling time,
Also, there iz a sequence of external discrete time signal,

denoted as {“t}' which could be the sequential samples of a
continucus—-time signal.
- L3

We may regard {wt} as the impulse response of a system having a

z—-transfer function .

y = (4.2.2a)

-1
where ¥; and W, are polynomials in z , given by °

. ny :
Wiz™) = § gyzd ' (4.2.2b)
3=0 -
n ]
Wa(z™') = 1+ § fy27) (4.2.20)
3=

The coefficients of‘?l and W, depend on the nature of the

external signal as well as éhe length of the sampling interval.

Denote n, as the upper bound of the order n,. The problem can

¥
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be formulated as follows:

Suppose

-

(1) the order n, and n;, and the time delay d of process model are
known;
(2) A, the upper bound of the order of external signal model, is -

known;

(3) the parameters of both the process model (4.2.1) and reference

e

gignal model.(4.2.2) are unknown;
(4) the process output is measurable;
(5) the samples of the external reference input signal are sequentiélly

available. --
It-is required that the process output {y.} should follow the external

reference signal {"t} as clesely as posgible.

4.3 Schematic Diazram of Adaptive Control Jystem

Rased on the problem formulation, the schematic diagram of
adaptive control system is suggested as shown in Fig-.4.1.

The "Controller Design™ block produces an optimal control law
for the control objective Qpacified under the assumption that we have
precise knowledge of all the parameters. The "trhe' parameters will be
replaced by their estimates provided by the "Identifier”™ block in the
implementation, which is known as “certain equivalence” contrel (Astrom,

1976, 1977; Bar-Shalom Tse, 1974).
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AN

4.4 The Xoncept of EIF Zero Placement \
l
A gdod tracking system should operate with as little tracking
error (in both amplitude and phase) Qa possible. ETF zero placement is
an ideal method to eliminate the tracking error for a particular set of
input referange signals. This is true for continuous—timé systems as
we}l as discrete time systems. '

. We illustrate the concept of ETF zero placement by a simple

example. ®

-

Example: Assume that a continuous time process is represented by the

-,

transfer function

ey = 24 2 (4.4.1)

(s + 1)3
An external input reference signal to be fcllowed is given by
Wy = sin (wt)

whitch can be regarded as the impulse response of a system having

transfer function

= (4.4.2)

Suppose that we keep the process pole unchanged and adjust the

numerator of the closed-loop error transfer function as



—y
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1 -
Y(8) = - 3(2 + 1) (4.4.3)

~ .

via certain compensation atsategy. In this casg;‘?(s) contains H;(s) as
331

~at

a factor, for w=1.

Denocte the closed;loop transfer function as

Y(s) _ B(s)

W(s) as)

’ Gc(s) = (4.4.4)

P

where Y(s) and W(s) are the Laplace transforms of the system output and
the reference signal respectively. The closed-loop error transfer *

function can be written as

E*(s) _ W(s) - Y(8)

G (s} =
e ¥is) W(s)
- e (4.4.5)
a(g) ;
where E*(8) ig the Laplace transform of the tracking error and
v(s8) = a(g) — B(=8) {4.4.6)
Then,
B(s) = als) - ¥(s)
f = (8 + 1)+ .15.(2 + 1) ' (4.4.7)

Hence the corregponding closed-lcoop transfer function is.obtained as

8(s)
a(s)

Gc(s)

k] 2
Z 8- + 1.28° + 38 +1.2 (4.4.8)

(s + 1)°
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One éan see from the Bode plot or by simple calculation of Lhe frequency

response i

G (Jw) iy = 1I_0 - | . (4.4.9)
i.e. the system output coincides with the p;rticular external input
signal sin(wt), for w = 1, in_both the magnitude and phase. Hence, ETF
Zero plgcemant ig-very useful to deal with the tracking problem for any
external reference signals.

-

4.5 Controller Degisgn

-

_in this section, control laws with ETF pole/zero_assignment will
be derived assuming that the parameters of both the process and

reference signal are known.

4.5.1 Control stratesy 1

w + U, =W, —B _ _ y
‘—.-ﬁ} bttt Tl BezTh) L
&
1
S
1 —1
l n. (z ¥/ A(z )
5, Y+ Y
+
ny(z-l)/ A(z_l)

Fig. 4.2 Block diagram of the controller configuration (4.5.1)
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A contreller configuration, shirn in Fig.4.2, is=s charactarized

by the following equations

-1

az"Mysy = n (27 )y, + nylz g, (4.5.14)

ut = "t - St - * (4-5-1b)

Thig type of controller structure represehts a quite general

configuration. It was used by Wolovich (1974) and Kailath (1980) for
continucus-time systems and Elliott (1982) for continucus— and discrete-

time adaptive zystems.

Substituting uy in eqn.{4.2.1) by the expression given by

eqn.{4.5.1), we obtain the closed-loop transfer function

-1

)

y a(z"")B(z _
Y atzmhazh) + Az Mngz™h + Bz Hngz™h

(4.5.2)

Denote the output tracking error of the system as e{. then the

" ETF can be expresgssed as

Erz"t)  wiz™h - Yzh
wz™h) vz~
_ [A(z_l)A(z'1)+A(z'11nu(z'l)+B(z_1)ny(z'l)]—a(z‘l)B(z'l)
Az sz Az ng(z" 4Bz a2
) (4.5.3)
Remark:

.Eqn.(4.5.3) represents the characteristics of the tracking error
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. propagation. Also note that the ETF. poles are the poles of the

cloged-loop transfer function. .

Assume that the desired ETF poles are prespecified by a stable
: 1

polynoﬁial a(z”"). Selve the egquation

s(z= Wa(z™h) + az"HB(z™H) = atz™h) (4.5:4)

fto obtain a solution f;r A(z—l). Then the ETF numerator will contain
-Uz(z'l) as a factor. In eqn.(4.5.4) S(z_l) is the other polynomial to
be determined.

| Further, solve the equation

ng(z"HAE™) + ng(z7HBGTY) = atz™h) - AGETHAGT) (4.5.5)

to obtain solutions for nu(z*l) and ny(z—l). Then the ETF poles will be

' . =1
placed at the position prespecified by a(z ).
From the discussion above, it is clear that if the ETF poles and
zeros can be sglected arbitrarily énd independently, the'éysteq

stabilization and perfect tracking -of any external reference signal can

be obtained simultaneously. The sufficient conditions for arbitrary ETF

. pole/zero placement by using control law (4.5.1) is given below:

THEOREM 4.1

Suppose that u(z_l) is a prespecified polynomial of degree n,

(n + ny + dl).

a

< n'min[nb +d+n, n,
T .
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{i) Egqn.(4.5.4) has a unique solution a(z™Y) of degree ;wrl and S(z_l)

of degree nb+d71 if the greatest common facéor of B(z-l) and

1

Up(z™!) divides a(z™');

t

(ii) Eqn.(4.5.5) has a unique solution nu(zhl) of degree nbﬁd—l and

ny(z'l) of degree na-l if the greatest common factor of A(z*!) and \\

B(z-') divides a(z— )-A(z=1)a(z"!).

For proof, see APPENDIX IV, which gives a géharal discussion for the
solution of linear polynomial Dioph?Ptine equations.
COROLLARY 4.1 -

Arbitrary ETF pole/zero placement can be achieved gimultaneously

r

by using control law (4.3.1), if A(z_l). B(i‘l) and Hz(z"f). B(z-l) are

coprime respectively.

4.5.2 Control sgtrategvy 2

An alternative controller structure could be
-1 . =1 =1
Q{z )ut = R(z )Wt + P(z )Yt {4.5.6)

which can be obtained from (4.5.1) if we define

-1 A

R(z™") = &(z77)

Pez™ly = ny(z™h

and -



and pole placement equation

az"") = a(z™h) + ny(z™!

vo(z~hys(z™?) + Bz~ HHrz™h

az"haz™hy + Bz Hrez™) =

).

Thus we have the ETF zero placement equation

g0~

1 ol
= af(z" ), (4.5.7)
,c(z_l)

(4.5.8)

-

where u(z‘l) is a user defined stable polynomial and S(z_l) is another

factor of the ETF numerator, which plays a minor role in our design

procedure.

COROLLARY 4.2

Suppose that a(z'l) is a prespecified polynomial of degree ng,

(nc/f min[;w+nb+d. na+nb+d])f

(i)

(ii)

(iii)

Eqn.(4.5.7) has a unique solution
of degree nb+d—1. if the greatest
Uz(z—l)-divides e(z™');

Eqn.(é}S.B) has a unique solution
of degree nb+d-l, if the greatest

B(z_l) divides c(z"l):

arbitrary ETF pole/zerc placement

by using the control law (4.5.6},

b

R(z-l) of degree ;w-l and S(z~

common factor of B(z'l) and

P(z_l) of degree n,-1 and Q(z"l)

common factor of A(z_l) and
can be achieved simultaneously

if A(z-lj, B(z_l) and 92(2-1).

-



B(z-l) are coprime respectively.

4.6 Parameter Estimation

-4l

Parameter estimation for both the process and refarance'sixnal

model can be put into a common framework as described by eqne.(3.2.10a)

. ) _
to (3.2.10g) with the parameter vector and the regressor

following sections._

4.6.]1 Process parameter estimation

’

‘Rewrite eqn.(4.2.1) as
Yy = $.90 .
wh;re
o = [-yt—l'""_Yt—na'ut-d-l""'ut-d—nbjf

8g

)

Ayjsessegd .b .-..,b
( 1 n, 1 ny ———
Define

ey = ¥p ~ $g8¢o)

where 6,_) is the estimate of 8¢ at time -1,
. -

defined in the

(4.6.1a)

(4.6.1b)

(4.6.1¢)

(4.6.2a)

The parameter estimates are updateggalong the spame line as

described by the algorithm (3.2.10) with pseudo regressor ¥, defined in

[

(3.2.10d) replaced by regressor ¢, in {4.6.1b). We rewrite the

algorithm as follows:



”
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-4 2=
Gt = Bt_l t.dtpt¢tet . ’ ' (4-6-2b)
T .
P, = p,_; — StPe=19t9¢Pe-) (4.6.2¢)
t t-1 1 + Qt¢gpt_1¢t -~
ple ) ’
a, = [ t] for e, # 0 (4.6.2d)
et L -~ -
and. .
a, = a € R+_ for ey = v} ’ ' (4.6.2¢)
and initial value
P =kI, k > 0 _ (4.6.2f)

w

4.6.2 Reference Signal Parameter Estimation

Following Sinha and Kustta (1983) we {llustrate the method of

parameter identification from suftem impulse response.

-1 H1(2-1)

Wiz"") = :
Hz(Z_ )
Bo *+ 812 + 822 T ieeenn + 8n. 2
= v
= =
1l + 4277 + 227 + .coenns + fnvz
- . -n
= wg + Wiz 4+ w22+ ia.... + Wy T L
>
(4.6.3)

where w; = w(ix), 1 being the sampling interval, are the samples of the
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gignal.
From (4.6.3), we have

. =1 -2 .—I'Iu =1
g + B1Z + 82Z + .eea.. t+ gnuz = wg + {(w) + fywglz

nll "nu
+ ceneee + (Hnu.+ igl fi“nu—i)z + oeenann
Ny
+ (wp + 121 fiwm_i)z_m P (m > nu) (4.6.4)
-

Equating the coefficients of like powers of z'1 in eqn.(4.6.4), we have

8o = Wg | (4.6.5a)
3

(wy + I fywyy) = 85 3= L2 Py (4.6.50)
J’ - .

(“j + igi fi”j—i) =0 j = nu+1.nu+2.. ..... (4.6.5¢c)

In fact equation (4.6.5c) is in the regression form and this is
suggested that the algorithm (4.6.2) is applicable to identify the

parameter fi' .

Define
80 = [f1,60 unnueifn 17 t - (4.6.6a)
¢t = ["‘"t_lg—wt_z.------,—Nt_nu]. (4-6.6b)

Eqn.{4.6.5¢c) can be rewritten as

we = 4180 - | ’ (4.6.6c)
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Hence we can use the algorithm (4.6.2) to update the Wy parameters with
e, defined as |

oy =Wy - ${0,_] S T (4.6.7)
where 8,_; is the estimates of 85 at stage t-1 and 8 and ¢, are

expressed in eqns.{(4.6.6a) and (4.6.6b) respectively.

It is evident that the calculation of the coefficients of W,
from (4.6.5h) is atraightforward: provided. that the coefficients of W,
are known. However the identification of the parameters of the

polynomial W; is not necessary for the proposed adaptive controller.

4.7 Summary of Algorithm

Adaptive ETF zero/pole placement requires the following to be

-

implemented at each sampling interval:

(i) Parameter adaption:

-

9?_ = et_l + Qtpt¢t9t (4-7-1‘3)
. p 6. &7
Pt - Pt—l - Q t—1¢£¢t t-1 (4.7.1bB)
1+ apdeProde

e .

a, = oley] for e, ¥ 0 (4.7.1¢)
et : K

and
@, = ae R+ for o, = 4] (4.7.1a)
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and,initial value
Po = kI, k >> 0 (4.7.1e)

where p[*] is a scalar function defined by user.

The parameter vector, regressor and prediction\gnggr are defined as

follows:

for process model

by = [4yt_1,...,-yt_na.ut_d_l,....ut_d_nb]’- (4.7.1¢F)
b]

9y = [al,t""'ana.t'bl.t":"bnb.t]T ' (4.7.1x)
- 1 na -

A(zT) =1+ I aj ¢z . (4.7.1h)

j=1
- 1 nb
Bz™) =z 1 bz (4.7.14)
j=1 '
and
et = yt - ¢€et_1; (4-7-1_1)

For reference signal model

¢t = ["Wt_l:"wt_z.-...—Ht_nU]T (4.j.lk)

0y = [fy pafg peeeenfy, ] (4.7.12)
nu .

B2z =1+ 1 £z i A 7.m)
i=1

and



.‘ 7 * .
ey =Wy — 908y, (4.7.1n)
(ii)} Solve the ETE zero/pole placement equations (using control
strategy 2):

-~ - . k
2027438z + BT HRGEETY) = atz™) | (4.7.2)

Az HaE ) + Bz"HBRGz™) = atz™h) (4T?T3T~\\ ~
where a(z-l) is a stable polynomial prespecified by designer.
(iii) Construct the following control law:
L |

Az = Rez7Hwg - Pz )y (427.4)

For the control strategy 1, instead of (4.7.2), (4.7.3) and

(4.7.4), the following equations are used:

B, (z=)8(z7h) + Bz hHatz™!y = atz™h) (4.7.5)
Atz ng(zh) + BHn iz = atzTh) - AzTHAGET) (4.7.6)
Ly -1 - -1 - -1 - =1

(A(z277) + nu(z ))“t = Az )"t - ny(z )Yt (4.7.7)"

4.8 Stability and Conversence Analvais

This section establishes the global stability of the propoged
adaptive ETF pole/zero placement, which uses the recursive parameter
estimator with a general nonlinear criterion function as described in

eqns.(4.7.la) to (4.7.ln) to identify the parameters of both the process

~
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-

and reference asignal models.

-

The convergence of the deterministic adaptive pole placement
with known external reference signal have been studied in the
literature. The local ‘convergence has been proved by Goodwin and Sin

.(1981), when combined with the standard least squares parameter
estimation. The global'convergence has been proved by And;rson and
Johnstone (1985) and Goodwin and Sin (1984). In the proof by Anderson
:

and Johnatone, the simple gradient algorithm was adopted for parameter
ostimation and a controller with fixed parameters was used for finite
timas: Goodwin and Sin (1984) suggested the use of recursive least
squares method with covariance matrix resetting. To prove the global

gtability of the adaptive ETF pole/zero placement, the approach adopted

here follows the procedure proposged bzéggggyin and Sin {1984), based on

the covariance matrix resetting to assure the exponential convergence of
the parameter estimation. For simplicity, we congider the case of Lthe

control strategy 1 only. ) §

We have the following assumptions required for stability and

convergence analysis.

Al. The model order n

r
LY

a and Ny, time delay d of process and the model

order n, of reference signal are known.

A2. The polynomials A, B and B, Wy are coprime respectively.

A3. The desired closed-loop ETF characteristic polynomial a(z™') has
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all zeros strictly ingide the unit c¢ircle.

LEMMA 4.]
Congidar the system described by model (4.2.1) with known
parameters. . Subject to the aésumptions A2 anﬁ A3, the control law

{4.5.6), where the weighting polynomials P; Q and R are_obtaihed

from eqna.(4.5.7) and (4.5.8), engures that the closed-loop tracking

error
x
e, = W, = ¥ 3 0, as t 3 =,

for any given external reference signal {wt}.
-~
Proof: ' -
Denote the closed-loop error transfer function as

} ¥zl
- —

=1
Ge(z

)
W(z

where E*(z'l) and H(z-i) are the z-transform of e: and w, respectively.
Then

s(z- M ua(z™h)

- (by A2, Corollary 4.2)
=)

-1
Ge(z } =
af=z

where a(z'l) is the desired ETF characteristic polynomial, Uz(z_l) and

S(z~!) are defined in eqns.(4.2.2) and (4.5.7) reapectively.

The final value theorem of z domain is applicable due to A3. Hence

r 1
lim e: = lim [(1 - z=h6 (z7hHue™hH
e ]
Lo z31

Vo
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.S(z'l)ﬂz(z“l)‘ul(z—l)}

-1

= lim [(1 - z‘l) .
a(z ) Wa(z™ !

z31

I z-l).S(z-l)“l(z—l)]

z31 L a(z”ty

The ETF zero placement leads to the cancellation of Ui(z‘l) in

" the error transfer function. Henq%%the asymptotic tracking error is

-1 - =1
zero, even though W,(z ) contains the term (1 = z

<« -7

result above is not valid by using a control law with closed-loop pole
. . 5

yf, p=1,2,%++. The

placement only.
REMARK:

In the case where Uz(z'l) has zeros with magnitude close to

v

unity, the cancellation of Uz(z_l) in error transfer function

accelerates the tracking error decay rate.

Now we prove some algebraic properties of parameter

identification scheme {(4.7.1), when applied to deterministic syatems.

LEMMA 4,2

‘Subject to (4.6.1) and (4.6.6), the algorithm (4.7.1) ensures

that ‘ .
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(1) 18, —Bgh0 ¢ H61~8gl - (4.8.1)
(1)  lim 18, -8, 38 =0 - . | " (4.8.2)
ty=
provided
G : >~
- §
o, = Pl (- for all t-. ~ (4.8.3)
< _
t : .
Proof:

From (4.7.1d} and the assumption that

p{-=x) = -p{x)

© //, we have
| ay > 0 for all t. (4.8.4)
. Let"F at = 8, - 8¢
L
then T ¢§et- : (4.8.5)

From (4.7.1la}),' (4.8.5) and (Al.2) we have

ap Py 9¢5p_2

8, = 8 -
t t-1 1+ apéfPy 19,
L.
P 0 -
= (1 - 2t t“lft¢t 18, _ (4.8.6)
1 + °‘t¢tpt-1¢t
From (4.7.1b) we have
’ . T
Py=[I - °tpt—1tt°t -
;/( 1+ apdgPr_19
Hence . .i.
. . L - T
Gt = Ptpt—let—l (4-8-7)

<y
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Define Ty = 8{Py 8, | : (4.8.8)
we have
. _ Zie=13 Sy L
Ty = Teo) = 8¢Pp 8¢ — 8 1Pp18¢)
~ _1 -~ -~ _1 - ’ .
= BEPt_let_l - eg_lPt_let_l (dqe to 4.8.7)
8] Ip - “ '
= - 2t t“1¢§¢t t-1 prli8,; . (due to 4.8.6)
L+ apoeProity : |
LS LIS
1 +'Gt¢zgt_1¢£. .
2
- - at <0 (4.8.9)

1+ Gtégpt_l¢t

That is, {Tt} is nonnegative and nonincreasing, hence converges to a

nonnegative constant, and

2
e
lim atTt
b= 1 + apdePey 9t

£

We have from (4.7.1b) and (4.8.4)}

-

1 -1 -1
lmin(Pt ) # Amin(pt-l) 3 Amin(Pl )

where Amin denotes the minimum eigenvalue of a matrix.

Hence

-1 ot 2 -l - 2
Apin(PT 18,07 € A (P U6

{(4.8.10)

(4F8.11)
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< 8,P7'8, (due to 4.8.9)

-1, % .2
€ Apax (P ;ueln_B

’ P "'\ .
bu Amax 11) =']1 (due to-4.7.la), hence
' Amin(Pi )
18, - 8ol € 16; — Bol for all t )

i.e. (4.8.1) has been proven.

Also from {4.7.1la) we have

2,102 2
2 apdpPr_14pey
08, - 0,1 .

; 2
(1 + opéfPy_1é¢)

. 2
ardPr_jdpey

£ - 3 atxmax(Pl)
; >
2
2t Gy Apax(P1)
max"*
1 + Qt¢épt_1¢t
Hence we have proved (4.8.2) due to (4.8.10), i.e.
lim !Bt - Gt_lﬂ =0

L= a

DEFINITION-1:

Due to the assumption A2 and continuity there exist neighborhood

of 8g, defined as U8, - 8,0 < q, where q, > 0, in which A(Bt.z_l).



\ «
ﬁ(et,z'l) and ﬁ(Qt.z‘l).,ﬁz(et.z'l) are coprime.

When the estimates ﬂ. B and iz lie within the region 19, - 8ol ¢
q;, the eqns.(4.7.2) and (4.7?3) are solvable. The coprimeness of

polynomials could be measured by the masnituda‘of the determinant of the

'corresponding Sylvester matrix S, say, absolute value of |5 > &, where
S

>

™ ¢ ig a small positixe/number. .

We have the linear mépping R, B 3 ﬁ; 6, via eqn.{(4.7.3). The

gstability of the adaptive system depends on

AQ + BF = ap(z™") (4.8.12)

"

where a;(z"l) ig a time varying polynomial during the adaptive

implementation. If cE(z'{)'is stable, for all t > tg, then the system

-

ig asymptotically stable.

DEFINITION 2:
Suppose that P and 6 are obtained.}rom eqn.(4.7.3). Define
48, — 8ol < g2 as the region where u*(z_l) in eqn.{(4.8.12) is stable.

Let q = min(q;, qa), if 18; — 8g0 < g holds, then the adaptive
system ic =table due to LEMMA 4.2. This is referred as the local
stability of the adaptive system.

To prove the estimated parameters converge to “true” value 3nd

the global stability of the adaptive ETF pole/zerc placement, we need
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-

the persistently exciting condition for the external rafﬁrence gignal

and modifylthé algorithm as one with covariance matrix resetting.

-

LEMMA 4.3 (Elliott, Christi and Das, 1983)
Consider the system (4.2.1), subject to A2, provided that

(i) the input is generated by a control law of the following form:

up = —Kéy + wg “ (4.8.13)

such that X is constant .over the interval I{tg, tg + N - 1] and‘¢t is

defined in eqn.(4.6.1b)
(ii} the extarnal input, w:. is of the form:

®

Nt_

1rk8in(ukt .+ Gk) (4-8-14)

N e @

k
¢

where w, € (0,m), rk 2 Q and w, * wj, k=1,...,8, j=1,...,8

-

(iil) the length N and the number s satisfy

(a) N 3 10n ' (4.8.15a)
(b) 3 3 4n (n = max[n,,np+d])  _  _ (4.8.15b)
: &
then
) t°+N—i
dpint I &80 ) 3 €20 (4.8.16)

where £ is independent of tg and ¢t0'

ALGORITHM 1 (Modified algorithm):

-



1. Replace (4.7.1b) by

py =-Pt—1 i ?tpt-1‘§¢ipt-1 (4.8.17a)
. , 1+ apdePy by
and if/t = kN, k =0,1,2,..., N 3% 10n, then
// Py = Kol ke 0 | (4.8.17b)
elge -
P, = P{ - (4.8.17¢)

Use (4.7.1a), (4.8.17), (4.7.lc) through (4.7;1n) to update the

.parameters of model (4.2.1) and (4.2.2)._

2. If t = kN, then evaluate (4.7.2) ahd (4.7.3) using the current

estimates, otherwise

P(t,z”') = P(t-1,2"%) ~
e, z~t) = Qee-1,z7h)
R(t,z™") = R(t-1,2"") (4.8.18)

In casge ﬁ. B or B, ﬁz is not coprime, an auxiliary controller with

fixed parameters (e.g. the controller used in the previocus stage) is to
be uged. The relative primness is tested by use of a lower bound on

the magnitude of the determinant of the correspondin} Sylvegter matrix.

-

3. Output control action: .
Yy, = R(t,27 "y = Btz Dy, (4.8.19)

THEOREM 4.2
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- Suppose that the assumptions Al to A3 hold and {w,} is a
. N - .
persistently exciting external reference signal sequence in the form
given by (4.8.14), then the ALGORITHM 1 provi&es

(i) O, approaches the true value 89 exponentially fast for both the

process model (4.2.1) and reference signal model (4.2.2);

(i1) {up} and {rel} reméin boundéd for all t;

(iii) lim a(z-l)[wt - yt] =0

) A

Proof: )
e ':\’
Ve have from the Lemma 4.2 K
8] prrl L 8 ¢ er.prie
k+1)N" (k+1)NS(k+1)N kN“ kN kN
whare
et = Bt bl 90
From eqn.(4.8.17)
-1 -1
Pen = ko I (4.8.20)
. (k+1)N
P lesl)N = ko I+ I apdedf (4.8.21)
) ' EN+1

For the process model (4.2.1), denoting « as the minimum of a,, for

min

kN < t ¢ (k#l)N, from Lemma 4.3 there exists a positive number ¢, such

that

=1 -
(65" + apn€ )85 ) ypt
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<A . (P’ )19 12
min (k+1)N (k+1)N
€ 00+ INP (k+1INB(K+1)N
' é{NPE;EkN . (due to Lemma 4.2)
< = kElltékNIZ
Hence
ie 12 ¢ a8, 07 (4.8.22)
(k+1)N k' OxN -8
where

e = 1/{1+koapg ne1) <1

For ;eferenca signal model (4.2.2), from (4.8.14) we can immediately
c;ncluda that
{k+1)N

I oopdpdp > afyntal (4.8.23)
kN+1 . ‘

where ap:, ( > 0) is the minimum of a,, for kN < t ¢ (k+1)N, and €; is a

pogitive number. Hence

- 2 - 2

'9(k+1)N' Ao Nt (4.8.24)
where

Ap = 1/(l+kgag;nca) <1

min

Also from Lemma 4.2

nékm_inz < IékNI2 for i=1,2,....N (4.8.25)
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- /) .

Hence ét converges to zero exponentially fast for both model ( 1) and

(4.2.2).

The exponential convergence implies that there is a fikite-time
kg, for t > tg, net ~ 8ol < q, i.e. the pairs R, 5 and é. ﬁz are
cogrime, the syat;m is stable and the number of gh; times of using the
auxiliary controller is finite. MNoreover, 186, - Bt_lﬂ L nétu + Hét_ln,
hence uet - et—ll ;pproachas zero exponentially fa;t, and from the
small gain theorem (Desoer and Vidyasagar, 1975} it follows thaF'{ut}

and {y,} remain bounded.
Assume that y' is the output of the model Ay: = Buy with the

known coefficients A, B. Replace R, B and ﬁz by A, B and W3 in the eqns.
' &

(4.8.18) to (4.8.19), then we have

-~

H

lin [y, - w1 =0 (Due to Lemnma 4.1) (4.8.26)

and the closed-lcop relationship between y: and wy is given by
(AQ + BP)y, = BRw, (4.8.27)

Let {§t} and {at} be the ocutput and input sequences of the

model with the estimated coefficients, i.e.

Ay, = Bu, ' ‘ (4.8.28)

For t > ty, the resulting closed-loop relationship between ;t and Wy is

given by /
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(AQ + BP)y, = BRw, - s (4.8.29)

Also ﬁ. 6—and R -converge  to their true value exponentially fast.

-

Then we have

tha a(z™ )Wy ~ 7] o * %

in alz""){yp - ¥l (due to 4.8.26)

=1
ty=

L

»

= 1im [(AQ + BP)y; - (AQ + BP)y,)

= lim [(AQ + BP)y, — BRw,] -:f (due ta 4.8.28) _
b= . P
= lim [(AQ + BP)y; = BRw, ]

=0 C

This completes the proof. ' . O

4,9 Simulated exampleg
Example .
Consider a discrete time gystem given by B

Physically this system could arise by sampling an unstable and

ronminimum phase continuous-time system given by

-0.1¢
- 8 (s = 5)
68) = e |

at the sampling interval of 100ms.
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‘Supposa that an external reference signal is given by

Wy = e_o'éteinzt

Let the sampling interval T-be 100ms, then it can be regarded as the

impulse résponse of a system having the z-domain transfer functidn

0.1909z~"
1 - 1.8833z" + 0.9231z~2

The ETF poles for the continuous time system are prespecified at

g =-=2 and s

-4, i1.8. the closed-loop characteristic polynomial of the

corregponding discrete time system is given by

alz=!y = 1 - 1.4891z~' + 0.5488z™°

(i) Nonadaptive controller design (using strategy 1l).

We have

o o Y

=1 - 1.8460z"" + 0.8187z~7

B-3

—~
N

—
|

= z72(0.0676 - 0.1130z"})

m
—~
M-
~r

l

Wa(z™') =1 - 1.8833z7) + 0.9231z7°

-1

Notice n, = 2, ny + d = 3, n, = 2. Hence, the order of A(z"l). n,(z7 )

and ny(z'l) are 1, 2 and 1 respectively.

Solve the ETF zero placement equation

Vatz" sz + 8z HBGz™Y) = a(z7h)



? wr
( A
) o -e-
i.e.
i ) 0 0 0 0 .|-S°W 1
-1.8833 1 0 0 0 S, -1.4851
0.9231 -1.8833 1 0.0676 0 s, | = | 0.5488
0 0.9231 -1.8833 -0.1130 0.0676 || &o 0
0 0 0.9231 o -o0.1130 jLs& | | ©
Ve obtain

A(zh) = 80 + &1

-5.4770"+ 6.0316z~"

Solve the ETF pole placement equation .y

Az Dng(z™H) + B ingz™h) = azh - A HaEh

i.e
RS 0 o 0 TS 6.47701
-1.8460 1 0 0 0 S, -17.6313
0.8187 -1.8460 1 0.0676 0 S, | = hal6-1671
0 0.8187 -1.8460 -0.1130 0.0676 || %o -4.9380
.0 0 0.8187 0 -0.1130 ]| &, | 0
We obtain
oM 1 1
n,(z~ Yy = rg + riz” + raz”

-1

6.4770 - 5.6747z~" + 1.13502~°

1

~—
1l

BO + 812—

~11.0396 + 8.2234z "
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The simulation results of nonadaptive control with ETF pole/zero

placement for the system described above is as shown in Fig.4.3.

Fig.4.4 shows the system response, if we consider closed-loop

pole placement only, i.e. A(z"l) is chosen arbitrarily rather than by

solving the ETF zero placement equation (4.5.4). In the simulation;

¢

A(z-;) was taken asg )

-1 -1
aA(z™") =(d - 0.2z

and the closed-loop characteristic polynomial G(Z_l) remains the same.

Example 2: 3
A discrete time process is given by
Ye ~ 1;6457yt_1 + d.ATOSYbi?==0.0601ut_2 - 0.1012u, _3 + &, + 0.2¢ey
which ig obtaiﬁed by sampling ; stable but nonminimum phase continuous

time system (subjected to stochastic disturbance)

8_0-15(8 - 5)
G(s) =
(s + (e + ) -

S

at the sampling interval of 100ms.

An external reference signal sequence {wt] is given as the

samples of a triﬁ%gular wave at aempling interval 100me, which can be

regarded as the impulse response of the system having the z transfer

function
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cro L | | B N BITS

TIME IN 0.1 SECOND

100.0

Fig.4.3 - System response by using control law (4.5.1) with -

ETF zero placement

0.0 20.0 40.0 . 80.0 B80.0

TIME IN 0.4 SECOND

100.0

Fig.4.4 System response by using control law (4.5.1) without

ETF zero placement

/
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Adaptive control with ETF pole/zero placement (using strategy

 2) was simulated. Uniform distributed noise with variance 0.1 was added_
’

. , B
to the plant dynamics. The extended recursive least squares and ordinary

leagt squares {i.e. with p[x]=x in the algorithm (4.7.1}) were used for

process and reference signal identification with p'rameter initial

values -

a = -1.0.-’ 3, = 1.0, by =0.1, by=-0.2, i = 0.0
for the process model and.

f, = 0.0, fz =0.0 - L

for the reference signal model respectively. The initial value for

covarlance matrix was taken as

Po = 10°. "

The tracking behavior of éhe system output and tge control
action are shown in Fig.4.5a and Fig.4.5b respectively. The ;stimates
of the process parameters are shown in Fi3;4.5c. Fig.4.5d shows the the
reference signal parameter estimates, which converge to the correct
value‘at th; 3rd steps because no noise wag added to the samples of the
reference signal. )

Fig.4.6 shows the adaptive control with closed-loop pole

placement only. In comparison with the adaptive ETF pole/zero placement

the tracking behavior is mugh poor.

-
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Adaptive control with pole/zero placement

in error transfer function , noise & =
(1 + 0;2z"1)et with varience of ex = (0.7

izcooperated in the process dynanmics.
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., CONTROL

1

100.0 llllllll!lfillllil!Illllll]'lq'll'llllIl‘l]l'll"l]l]'l

60.0

20.0

-66— |

TITTITTITTITITRTITNT}

lllllllilllllllllllllllll IIIIIlllllllJlllllll

-20.0
-60.0
_100‘0 !Illlllll!lll;ll!!llllllIllll]l'llll‘lllllll‘Alel!I- -
0 100.0 200.0 300.0 400.0 S500.0
TIME IN‘O.I SECOND
' &
. X3
Fig.4.5b Control actiop of adaptive errovr transfer fuiction
pole/zero placement controller
ré?. v \
a
.i\ o
- ' _. 3 /
7. I
B 'ﬂ } .fa ) ’ .
= \ )
s . “} .



'PROCESS PARAMETERS

s

2.0

-6 7=

lIiflllll'ilIl]ll!‘!l‘rlll'll]llllliii"lil]llll]’

ol el

o
T

TTFTTITITIINOITITITOT

«0

-I .O

nesss llllITI[‘J{

. - o
‘e

=Z=0

n.lllllllllllll llllllllllllll I 1111 lllllllllf!l

_3 OEIl'lllllll!!lilllIlIllll'l!ll[llllllllllllIl!lLl
L

L

«0 100.0 200.0 300.0 400.0 , 500.0

TIME IN 0.1 SECOND

Fig.4.5¢ Process parameter estimation



N

REFERENCE PARAMETERS

———

-68—

.

2.0 _'1'1] L L] I L L L L LS I LIS L L ] L R O L L I B | iI] LI L L
s - ) :

= 3

= 3

c 3

& =

b . 3
1+0h — -
» 3
» .
- -
I -
=t -
. 3
Pt -
a -
<0 3
! =
M -
3
m
3
. 3
» -
-le0 N s -
" 3
. 3
n n
. - -
= -
_250_ Y -
o -
E -
- -]
= -
p= -
- -

=
_3.0-| L1 1 ]_,LLLLII Lt 1 1 1 4 ' f [] 1.1 1 1 1.1 t 1 l I S I T I ] 12 1t 1 1.1 1.1

.
o

TIME IN SECOND

Fig.4.5d Reference signal parameter estimation

100.0 200.0 300.0 400.0 500.0



AMPLITUDE

1 00 L 0 L2 NN SN BN NN NN TR i | [PV sT T YT T T UTTTPTIT T Frysrryry I Trrvrre - T T 7T
L ]
80.0F - —
60.0 -
: ‘*I. '.l .r‘\ .‘n ’t :
40 - 0 - "' ‘\‘ 'r' ‘\‘ '-" “: .p" “\‘ ;" \‘\ —-
ur 'J‘. ‘\\ :’ ‘\ f, ‘\ ,‘ ‘\ ," I\ :
- 4 [ ] ‘\ : ‘\ , ‘\ ! \
- " Ly [ [} [ » .‘ [} ,‘ LY ]
2040/ " -
- 0 j - -
_20.0 -1111 11 111111_111 NE RSN l_l',{l NSRS SRR
«0 100.0 200.0 300.0 400.0 S00.0

-69—

TIME IN O.1 SECOND

Fig.4.6 pdaptive control with pole placement only,
noise £¢ = (1 + C.2z Vet with variance
of e+ = 0.1 incooperated in the process

Arnamics.

(Broken line -~ Reference & Solid line -
Cutput) .
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4.10 Concluding remarks

Adaptive ETF pole/zero placement has been illustr#ted in this
chapter. It is extremely useful to solve the-time-invariant or time—
variant reference signal tracking problem for parameter unknown plants.

An important component of adaptive control systems hag been
introduced in this chaptaf, which is the on~-line modeling of reference
signal. It provides a great flexibility to cope with tracking problem
with unknown reference trajectory.

The ETF zeros play a major role in perfect tracking of a
particular set of reference signals and, on the other hand, the ETF
poles and zeras can be assigned independently. Hence the ETF zero
placement can be incorporated with pole placement based self-tuning

-

algorithms to obtain a significant improvement in reference signal

tracking. This aspect will become more c¢lear in the following chapter.



CHAPTER 5
OPTIMAL ADAPTIVE TRACKING FOR STOCHASTIC SYSTEM
5.1 Iptroduction to This Chaster

in th;sAqhapter. the results obtained iﬁ thellast chapter are
extended to the case of the presence of stochaqtic disturbances, which
implies that the system output can be prggicted. at the best, up to ;
"white noise” residual_(thé innovations). The well known minimum
variance gelf-tuning regulatof {Astrom and Hittenmafk. 1973; Astrom et
al., 1977) énd’éeff—tuning controller with géﬁé;al cost function {(Clarke
and Gawthrop, 1975, 1979) have been mcdified to achieve better reference

gsignal tracking.

5.2 Minimum Variance Output Tracking
5.2.i Backsround

Where systems are essentially of a stochastic nature, the
control objective is often specified as to regulate the effect of
stochastic disturbance. This is the original motivation of self-
tuning regulator of Astrom and Wittenmark.

In general, for systems where both reference input changes and
stocggstic disturbances occur, a trade-off has to be made for control

bbjective specifications. When one tries to achieve a specified

, - ~71-
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closed-loop characteristics and/or refarenée signal tra;king. it usually
leads to large output variance.

However, for an invertible pFocess, both the reference traéﬁing
and process noise rejection can be established. In the following
sections, a minimum variance type self-tuning controller with ETF zero
placement is suggested. Porfect tracking of any arbitrary reference
signal ig achieved while the noise cancellation is still preserved in
- the geonse of minimum variance. The inherent reason why one can do so,
is separate assignment for ETF poles and zeros could be realized under
the weak conditions as shown in chapter 4.

For minimum Qariance reference tracking, a different methed has
'been reported in the literature (;ae Goodwin and Sin, 1984), by which,
however, one has ﬁo use the future samples of tge reference signals to
gonerate the current control. Hence the scheme may not be realizable if
the future reference gignals are not available at current time. 1

As in the case of minimum variance self-tuning regulator, the
suggested self-tuning controller is applicable only to invertible

systems due to the fact that thse algorithm involves cancellation of

system zeros.

5.2.2. Review: Minimum variance regulation

(Astrom and Wittenmark, 1973, 1984; Astrom et al., 1977)

Consider a gsingle—input single—-ocutput process represented by the

following ARMAX model
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atz"tyy, = z7987(z"Huy + Cz7 ey (5.2.1)

The polynomial A, B’ and C are given by

1 “b j
B(z"' ) = I_ bz
) j:l J -
n
c
C(z7'y =1+ ¢ cyz J -
J=

and {Et} is a sequence of uncorrelated random variables defined on a

probability space (Q,F,P) having the following properties:

E{et+i'Ft} =0, i 0,1,2,... (5.2.2a)

|

Q
=
il

2
E{at+i|Ft} = 0,1,2,... (5.2.2b)
Assume Lthat

(1) all the roots of C(z~') lie strictly inside the unit circle;

(2)‘311 the roots of B’(z'l) lie strictly inside the unit circle.

Pe
Introduce an identity
cizhy = azHF ) + 27967z h (5.2.3a)
where
FPz=) = 1+ f1270 + ..+ £3,279%! (5.2.3b)
- > :
G'(z'l) = g; + g'{z‘l + . + 3; -12 a {5.2.3¢)
: d



From (5.2.1) and (5.2.3)

6 (z™?
®x, =1
Y, =F (27 e + u
t+d b T T T
*, =1 -lym*, =l
_ 6" (z~%) B* (z"MHF (z™h)
= F (27 Ve q + —, - u, (5.2.4)
c(z™") cz™h)

Let uy be an arbitrary function °fhyt'yt—l"" and up_),Up_9,°"".

We have
*x, 1 el o, o1
2 x, _1 2 G (z77) B’(z )F (27 7) 2
Elyeq!Fed = ELIF (27 e, 17 IF HEBIl———, + — u J71F,}
- C(z ) C(z )
(5.2.5)
The mixed terms vanish because Eppdr---16p4) are uncorrelated with
Yer¥p-1r°** and'ut.ut_l,:--. Since the last term in (5.2.5) is
nonnegative, it follows that
2 * * 2
E{ypagqtFed 3 1+ £+ oo+ £y 10 , (5.2.6)
where the equality iz obtained for
Bz HF (2 g = =67 (z7hyy (5.2.7)

which is the desired control law for minimum variance regulation. By

uging the control law (5.2.7), from ¢(5.2.4) we have

E{yt+dlst] = 0.
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5.2.3 Minimum variance tracking
Y

The subject of this section is to derive a minimum variance
control law with arbitrary ETF zero assignmant.

Rawfita the control law {4.5.6)

Q(z'l)ut = R(z"l)wt - P(z'f)yt ‘ .0 (5.2.8a)
Let \\\\
atz"h) = F¥z~hB (2!

) (5.2.8b)
Then the closed-lcop relationships between yi, W, and €y can be

expregsed as

(acz " (27 a2 %z ) Yy = 2 9R(zT DwC(zTHF (T ey (5.2.9)

While obtaining the equation (5.2.9), the stable factor B'(z-l) has been

cancelled.

One can place the closed-loop poles at the position specified by
C(z_l) due to the fact that C(z_l) is stable. In this case the ETF pole-
placement equation is formulated as

atz"HF iz + 279z = ez h (5.2.10)

There exist a unigue solution of F*(z'l) of degree d-1 and P(z"l) of

degree n, ~1 due to Corollary 4.2. That is, we have

y = f; + f:z'1 + ...+ f;z—d
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P(z™') = Po + Pyz~ + ... + Py _2

and f; = 1 due to the fact that both A(z™') and c(z~') are monic.

In fact eqn.(5.2.10) is the same as the identity (5.2.3) used
for constructing a minimum variance reguiator in the last section. Also
note that eqn.(5.2.10) can be solved 5y simple long divisgion.

For given reference signal w,, which is regarded as the impulse

response of a system having z transfer function in the form of eqn.
(4.2.2), one may place the ETF zero along the same line as described in

chapter 4. In the case that Q(z_l) has been specified in the form of

eqn.(5.2.8), the ETF numerator can be expressed as C(z_l)-z-dR(z_l) due

to eqn.(5.2.9). Hence the corresponding ETF zero placement equation

becomes
. S

.

B Wa(z7HSGTh) + 279RezTh = oz (5.2.11)

3

We have a unique solution of S(z-l) of degree d-! and R(z'l) of degfee

n,~1 by Corollary 4.2. Eqn.(5.2.11) can alsc be solved by tong

division. Hence R(z‘l) and S(z-l) can be expressed as
N

S(z_l) = Sy + S;z_l + ...+ Sdz-d
— - : -n_+1
P(zY) = Po + Pzt + ... + P, 12 °
a

An alternative way to solve eqna.(5.2.10) and (5.2.11) is

equakting the coefficients of the like powers of z'_l to obtéin a
¢
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recursive formula for the solutions .(Astrom, 1970). Hence for

eqn. (5.2.10), -
c; = a; + f: ] g
C2 = ajz +_;1f: + f;

. x*
Cq = ad + ad_lfl + Le. t alfd_l + PO

"
0 = anafd_l + Pna_l

Similarly, the coefficients of the polynomial S(z'l) and R(z-l) in
eqn.(5.2.11) can also be determined recursively.

Verification of the optimality (minimum vaéiance) is
straightforward. From eqns.(5.2.9) and (5.2.10), system cutput at time

t+d can be expressed as

_ R(z™") x, _1

Yesd = —He + F (27084 -
C{z™") _
= Lz wy + Fz e,y (5.2.12)
where
-1
R ) :

Ly =X L et e 2



_Taking the conditional ekxpectation for the both side of eqn:(5.2.12),

we have ’

. E{yg,qlFp} = L(Z7w, : (5.2.13)

Hence

E((Yppq = EPpaq Fp) 1 1Fp} = ELIF (27 0ey (7 1F,)

LY

= [l 4 £] % coo + £5110° (5.2.14)

The mixed terms in (5.2.14) vanish due to the fact that &, 4,°**,€p4]
are uncorrelated with wy,w,_j,***. Comparing with ,(5.2.6), the

optimality of controller design in the sense of minimum variance is

proved. -

5.2.4 On—line self-tunins implementation

Replacing both procéss and reference signal model parameters bg
their estimates obtained.friom the recursion (3.2.10), an explicit
self-tuning tracking controller is obtained. The Persistent excitation

. i
of external reference signals is necessary to ensure parameter
convergence. Therefo;e. On-line implementation of gelf-tuning minimum

variance tra&king requires the following steps for each sampling

interval:

Step 1 Use algorithm (3.2.10) to estimate the parameters of process

model (5.2.1): aj.bj.cj.
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Step 2 Use algorithm (3.2.10) to estimate the parameters of the

reference signal model (4.2.2): fj.

. v
Step 3 Determine the controller coefficients f;. Pj°and Rj Tqﬁmjeqnl.
(5.2.10) and (5.2.11) by long division or recursive

coefficient equating.:
Step 4 .Construct the control law

B (27 )F (z"Muy = R(z"Hw - PGz Dy

5.3 Quadratic—optimal Self-tunine Coptrol with ETF Pole/Zero Plagement
5.3.1 Backzround

There exiat some self—;uning qontqa& algorithms {(e.g., Clarké hd
and Gawthrop, 1975, 1979) which minimize a certain quadratic criterion.’
One offlhe merits of the Clarke—-Gawthrop tfpe algorithm is its wide
applicability to both invertible and non-in;artible gystems. Here we

lshall adopt the idea of prediction error identification methods (see
Ljung and Soderstrom, 1983) to construct a self-tuning control iaw which .
minimizes é quadratic criterion function similar to that of Clarke and
Gawthrop, then to concatenqta ETF pole/zero placement to improve the

reference tracking behavior of the controlled system.

5.3.2 Performance crijterion
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"I‘v'l,\\:‘:a"-' J] . —_—
The control law is designed with the aim to mi;imize the

following criterion

J = EUP(z" Dy gqg = RCZTDwpyqh? + 10¢z"ugn®) (5.3.1a)

where li«l is the euclidean norm and

n

: Piz”)¥ 1+ 1 Pz (5.3.1b)
j=1 .
=1 hes -
R(z™) =1+ I Rz J (5.3.1¢)
=1 ' 7
=1 g j
Q(z") = I Q2 ‘ (5.3.1d)

5.3.3 Optimal control law with fixed parameters

N\
Wo remove the restriction on zeros of B'(z'l) and the other

—

assumptions on the process model remain the same as stated in section

5.2.2. B

The optimal control law is to be derived by using the minimum
variance output prediction. Optimal (in the sense of minimum variance}
output prediction is described by Astrom (1970), as in the derivation of

minimum variance coffrol law. We here state it in a slightly different

way“for more convenient use in the following context.
Yeai/t denotes the minimum—variance output prediction, which is

the conditional expectation based on known data (sigma algebra up to

time t):
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- ;t+i/t = E(Yt+1ipt) ’ (5.3.2)
Replacing t by t+]1 and taking conditional expectation E{-|Ft} for the
.. -——— both sides of the eqn. (5.2.1), we hav&

- Na Np - ) Ne
Yerlse = 75 3eeloy b L) Paleaslog L C3feel-g. (5.3.3)

Let.et denote the l-step zhead prediction error

ey = Yp < Yese-l
=et

which is available as soon as the true output has been observed.

Hence - -

=

- a Ny’ Ne
Yeelst = = E0 @g¥pe1-3 + I byupg-j t. I Ci0py)_j (5.3.4)
j=1 j=1 j=1

- ~Replace t by t+i and taking the conditional expectation E{-|Ft}

for the both sides of egn. (5.2.1). Then the i-step (i < d) output

« prediction can be calculated at time t by

n nb nc
5y Bitema-lei-g R Cifrai-g (5.3.5)

&8

Y e

where yﬁi;-j/t = Yeei-jo for t+i—j ¢ t.
\.
Let €t+' N denote the i—step prediction error, then we have from

the egqns.(5.2.1) and (5.3.5) —_—

raist T Yeai T Ye+ist



i=l i-1
= fpei * Iy Cifrei-j TiE) Tg0tei-jse (5.3.6)

Crai—j/tr 1<i—j<i, in the last term of (5.3.6) can be extbénded further
ags a linear comﬁination of €y from ;ima t up to t+i-j. Hence, Opai st is

.-

the linear combination of €, ;+€¢yq_)r--+1E¢4) and can be expressed as

epatse = F (27 )€y (5.3.7a)
where : ‘ . - -
x, _1 i=1 x_—j . .
F(z7")=1+ I f:z (5.3.7b)
j=1 J R

The optimal control law is derived by using—the d-step
e;edictor.

Since Otyd/tr--r Srsl/t 3TE uncorrelated with w;, for ail.t.
and Yy, ¥po]r-e- UpoBgTyve-- and consequently Y. t» 1 ¢4« §. the

L5

J = HP(z_i);t+d/t‘R(z-l)"E+d"2+"Q(z—l)“t“2+5{’P'(z—1)°£+d/tn2}

. . (5.3.fj)

cost function (5.3.1) can be expressed as

where .
-1~ - .
27 Yeei/t T Yesi-l/t for all i
Ye+d-j/t = Yewd-j for t+d=J ¢ t
and

B,
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Py = 1 4% p pp-d (5.3.8b)
=1 4 .
which consist of the first d teqpﬂ.of P(z~).
Thé—}mﬁ{;\ of J is found by : oo
-1, .
aJ [Pz )yt+d/t] 1.~ =1 -1 L
3:: = 2 Sug [PL{z" )y 4q/e — Rz MW gl + 2QQ(z" Dy, = 0
i.e. - -
bilP(z™ g/t — R(Z™ Impeq) + Q2 0y = 0 (5.3.9)
From eqn.(5.3.5)
~ na - nb nC ' 14
yt"'d/t = - jzl ajyt+d_j/t + JE]_ bjut_l_j + jid cjet+d_j (5-3-10)
Let '
na . nb . n
Xt =7 I Yeeamgse T, Pite-l-g L C5%ted-y (3.3.11
Hence the optimal control strategy is obtained as ‘
] -
s 2, "p n. ng
Ut = "‘(bl"‘QO) {bl[xt+j£.lpjyt+d-j/t— wt+d -jEIR‘JWt_'_-d_j}_ QOJEIqut_j}
(5.3.12)

5.3.4 Arbitrary ETF pole/zerg placement
™~
From eqn.{5.3.7), the control law (5.3.9) caane expressed as
zdbx -1 -1 Tl % ;1
u, = - —— ~[P(z )yt - R(z )wt - P(z77)F (z )et] (5.3.13)
Q*(z-l) . .
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where Q*(z'l) = QoQ(z-l).

Let B'(z'l) =_blB‘(z_1)._ Substitu;ing-ut'in eqn.(5.2.1) by the

expression given by eqn.{5.3.13), we have the following relationship for

the closed-loop syatém -

[az"ha"(zh) + 8" (z"HP(z" Dy, =
B (2" Rz wy + (0270 (Y + Bz P F 2 ey T
_ (5.3.14)

Arbitrary ETF pole/zero placement can be achieved by a suitable

choice of weighting polynomials P, Q and R in the performance index.
b ]

Supposge that -

(1) the external reference sighal W, can be regarded as the impulse

response of a system having z transfer function (4.2.2);
(2) the ETF poles ig specified by stable polynomial a(z_l).

Then we have ETF pole/zero placement equations

-1

az=H iz Y + BNz HPz™) = az™h (5.3.15)

Wa(z=hsz™ty + BY(z"HR(z™Y) = a(z™h (5.3.16)

The degree of the solutions of eqns.(5.3.15) and (5.3.16) will be

different from the one described in chapter 4 due to the fact that we

0 -1 ' -1 . .
prespecify the coefficients of z of both P(z ) and R(z ") as unity.



-

Suppose u(z'l) is a prespecified polynomial of degree Rg

-

{ny <min[ng+ny-1, “u+“b'1])' then

Q

.

(1) eqn.(5.3.15) hag a uniqﬁ;‘ﬁolution P(z'l) of degree n, and Q*(z'l)

- X,
of degree ny if the greatest common factor of A(z 1) and B (z 1)

divides a'(z“l), where

Le-|
e’ (z~h) = fa(z™!) - B (z™%) - (aq - bola(z™ "))z

(2) eqn.(5.3.16) has a unique solution R(z™!) of degree n, and s(z™")

- * -l
of degree n, if the greatest common factor of Wa(z 1) and B (z ")

]

divides c”(z-l). where

a"(z=Y) = [a(z™!) - B (z™%) ~ (ap - bolWa(z™')l-z

A

Proof: .
Equating the coefficients of like powers of z'1 of (5.3.15) we
have - - | N
Q = @0 — bo
Let

LY

-

e’ (z=) = [alz™?) - 87(z"1) - QpA(z™ 1))z

Then equation
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. Az7HQ (z7h + Bx(z7HP (27N = @’ (27

has a unique solution of Q‘(z'l) of degree ny-1 and P’(z”") of degree

-

na-l if the greatest common factor of A(z‘l) and B(z’l) divides u’(z‘l).

Now let
, o, =1 x x _1 * —nb+1
Q'(z7") = Q; + Q22 + ... + anz
- - -n ;1
- Pr(z™') = Py +Pyz™ 4 ..+ Bn 2z as
Then.
Q" (z™'y = Qo + z7'Q (=)
P(z_l) =1% z'lP'(z_l) ~

is a unique solution of eqn.(5.3.15). This completes the proof of (1).

> -

o«
By the same argument the part (2) of the theorem 5.1 can be

proved. a
Remark:

Ve can always choose ag > b;, due to the fact that any
polynomial can be multiplied by a real number, while k;ping its roots

unchanged. Hence Q; 3 0 can be guaranteed and Q(z'l) existse.

COROLLARY 5.1

For the model (5.2:1), the poles and zeros of the closed-loop

’



ETF can be assigned arbitrarily using the optimal control law (5.3.12)

if A(z'l). B'(z‘*) and B'(z'l), Uz(z'l) are coprime respaectively.

~

$.3.5 On-line gself-tuyning implementation

On-line explicit self-tuning implemengation of the algorithm can

be summarized as follows (assume that the reference signal model is

Eﬁown): f?

Algorithm 1:
,/’\“ )
Step 1 Use the recursive extended least squares type algorithm

(3.2.10) to provide the parameter estimates of model (3.2.1):

aj,bJ,CJ.'

Step 2 Solvv/EE;‘ETﬁ}pola/zaro placement equation (3.3.15) and
. -

i (3.3M46) to obtain the coefficients of the weighting

polynomialse P(z_l), Q(z_l) and R(z—l).

Step 3 Compute the i-step prediction ;t+i/t' i=1,2,...,d=1 by

eqn.(5.3.5).

Step 4 Generate the new control according to eqn.(5.3.12).

The output prediction §t+i/t can be estimated directly from

=

known data. Hence one can construct an implicit self-tuning cdntroller(

by using an implicit self-tuning predictoer.
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From edn.(5.3.5), ;t+i/t is the linear combination of y.,¥p_y,
"‘yt+1—pa'“t+i—d'""“t+1-d-nb'":'st?""€t+1“nc and can be expressed

as .

-
——

na - nb+1 - . nc -

Yerist = 7S5 3eelog ¥ GE) Piteelei-a-g TL) Cgfrer-y (50311

From eqns.(5.3.6)} ang 5.3.7)

Yeei = Yeai/st * Crei/t

. . 3
i-1

. x '
= Verist L) F5%eriog t S : (5.3.18)

Define

= - ° - " 3 T

g = [31...anabl..-bnb+id1...dnc+i_1]
where

. 3 .
dy= fJ - for _]=1...-.1-1
d_j = CJ_1+1 for j=i,---,nc+i_1
and

T
¢ = (=g oo Vialon, Yt+i-d co0 Utal-d-ny Stei-l oo €t+l-n,]

From eqns.(5.3.17) and (5.3.18) we have

~~y

— &7n
Yeei = 68 + €4y

or
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Yt = 9010 +-€¢ ‘ (5.3.19)

Obtaining the new measurement y,, E can be estimated by ektended

—

recursive least squares type algorithm (3.2.10) and hence §t+i/t can be

-

calculgted directly by (5.3.17). Note that the coefficients of the

L ) .
one-gtep predictor are exactly the same ::\Ihosa of Fhe process model

(3.2.10. . . L

Hence the procedure for implementation of implicit self-tuning

tracking controller requires tha atep 3 in the Algorithm ! to be:

Step 3 From (5.3.19) diréctiy estimate the coeffTET;;Ls ot\ the

-

—_ predictor (5.3.17) by algorithm (3.2.10) and compute he

i—step prediction §t+i/t' i=1,...,d-1. \\\J///’—‘\\\

5.3.6 Simulated examples

Example ;

Consider a discrete—é?ka\non-invertible process given by

yy - 1.6457y, ) + 0.8703y,_5 = 0.060lu;_5 - 0.1012u;_3 + € — 0.2¢¢)
Physically this system could arise by sampling a stable but nonminimum
phase continuous time system Hs;ing Laplace transfer function

exp(-0.13)(s - 5)
(s + 1)(8 + 1)

G(s) =

and digturbed by coloured noige (produced by passing white noise through



-

the filter C(z"l) 1l - 9.2:_1) at a sampling interwval of 0.ls.

An external reference signal is given by ’ -

-

w, = exp(0.4t)sin2t .

Let the sampling interval be 0.1 second. Then the reference signal can

be regarded as the impulse response of a system having the z-tranafer

-

function.
-l
W
H(z'l) _ 1(z 1) .
"2(2- ) N
0.1509z™"
] - 1.8833z~" + 0.9231z™°

The ETF poles are selected at 8 = -2 and s= -4, i.e., the

closed-loop characteristic polynomial of the corresponding discrete-time

-

gystem is given by

a(z=by = 1 - 1.4891z~! + 0.5488272
The_poise-free cage:
We have
ACz=') = 1 — 1.64572~ + 0.548827° .
Br(z=') = b;B’(z~}) = 0.003612 - 0.006082z™"
: 2
Wa(z7h) = 1 - 1.8833z71 + 0.9231z"
with ng; =2, ny=1, d= 2, n, = 2 and n, = 2.
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Hence ,Q*(z_l) = Q; + Q:z_l
‘ .
P(zl) = 14 Pyzt o+ PazT
R(z_l) =1+ R;z'1 + Rzz‘2
s(z7') = 50 + §;z7°
Solve the ETF pole placement eqqation¢(5.3.15). i.e.
1 0 0 0 [ Qg 1= 0.003612
~1.6457 1 0.003612 0 | Q- ~YT4891 + 0.006082
0.6703  -1.6457 -0.00£082 0.003612| | P, | 0.5488 '
0 0.6703 0 -0.006082| | Py 0o
Ve obtain
P(z~') = 1 - 48.534z" + 36.5946z7°
Q(z™') = 0.9982 + 0.33262" : .
Solve the ETF zero placement equation (5.3.16), i.e.
1 0 0 0 —7-1Se 7 1 - 0.003612
{—1.8833 .1 0.003612 0 5, ~1.4891 + 0.006082
0.9231 -1.8833 -0.006082 ,0.003612{ | R, 0.5488
0 0.9231 0 —=0-Qp6082|! | R» 0
Ve obtain

R(z™) =1- 122.54272% + 126.9003z™°

The system output using quadratic—-optimal control law with ETF

pole/zero asgignment is as shown in Fig.5.la.

-




. Properly.

If R(z™') is changed to ’ - ——

R(z™!) = P(z"}) = 1 - 48.534z~1 + 36.59462"2
(that is, we consider quadratic-optimal control with pole placement
only), the output of the closed-loop system is as shown in Fig.5.1b. It

is seen that the system output can not track the reference signal

b
P blected hastic distur]

_ * Consider the case that the process subjected to stochastic
disturbances and the controller works in self-tuning mode. The'o}¢inary

recursive extended least—squares method is used for on-line parameter

estimation. The initial values a;=-1.0, az=1.0, b;=0.1, by=-0.2, -
c;=-0.15, and the variance of noise €y is taken to be 0.00l. The

outputs of the controlled system with.and without ETF zero placement are
shown in Fig.5.2a i?d Fig.2b respectively. The parameter convergence -
properties in both the cases are.shown in Fig.5.3a and"Fig.5.3b. The
~ontrol actions in both the cases are shown in Fig.5:4a and 5.4b.

Comparison of the different simulation results suggests the

importance of performance index gpecification.

EXAMPLE Z2:

The process and the prespecified ETF characteristic polynomial

are the same as that of Example l. %he variance of noise g, is taken to
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be 0.01. -
Let reference signale be a sequence of triangular waves and the

sampling interval be 0.ls. In such a case the reference signal can be

regarded as the impulse response of a system having z-transfer function

-1 -1
u(z—l) - ul(z ) = 0.1z

wa(z™ly  (1-z7hH

2

Fig.5.5 shows the 6utpu€/5f the closed-loop system, where the
performance criterion for optimal controlle; design is chosen such that
: ~
the ETF poles and zeros have been placed properly. In contrast, Fig.5.6

-

shows the output of the controlled system, where the degree and the
coefficients of R(z-l) in the performance index are gimply the same as

that of P(z™1).

5.4 Congluding Remgrks

In this chapter, the principle of ETF pole/zerc placement has
been applied to minimum variance and éuadratic—optimal gelf-tuning
control to deal with the reference signal tracking problem in a
stochastic environment. It is well known that minimum variance control
is a special case of gquadratic-optimal control, where the weights for
control action have been set to be zero. éoth the derivations of
control laws are based on minimum variance output prediction. Under the
assumption that the system noise can be regarded as the output of an

- —

polynomial filter having white noise input, the optimal prediction

R %
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reduces the effect of stochastic noise teo minimum. Hence the control
law (5.3.12) provides more accurate control than that by using the
control law (4.5.1) for systems subjected to coleored noise.

The original quadratic—-optimal s@lf—tuning control of Clarke and.

- |
Gawthrop (1975, 1979) solve the instability problem that arises from the

pocle-zero cancelldtion of self-tuning regulators. In this chapter, we
\

have further suggested that the Bpécification of control criterion

should depends on the characteristics of both the process to be

controlled and the reference signal to be followed.



CHAPTER 6

APPLICATION: ADAPTIVE CONTROL FOR S "
GEOMETRIC TRACKING IN TURNING iy

6.1 Qverview-of Thig Chapter . k-

In thig chapter, the adaptive ETF.po;e/zero placement technique
is adopted to develop an adaptive control system for é;ntouring

operations in turning. The control objective is to‘mainpain the
geometric accuracy of the finished workpiece in the presence of
significant workpiece/tool deflection as well as random and periodic =
disturbances. A model incorporating the NC (numerical control) servo
loop, the cutting process and the machine toocl/workpiece dynamiéﬁ-is
used to demonstrate the effectiveness of the algorithm. |

It is shown, using computer simulations, that the proposed

corntrol system results in significant improvement in geometric accuracy

of the workpiece in contouring over conventional NC controllers.

6.2 Intreoductioff to Geometric Adastive Control in Turning

. —

Research and development efforts for adaptive control of machine
tools have been concentrated in recent years. Several types of adaptive
control systems have been proposed, including adaptive control

optimization (Centner and Idelson, 1964; Uatanébe. 1986), adaptive

-100-
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controi cdnafraint {Tlusty and Elbestawi, 1977; Stute and Goets, 197&%
Daneshment and Pak, 1986; Masory and Koren, 1980), and geometric
adaptive coﬁtrofd%;AC) (Stute, 1980; Watanabe and Iwai, 1983; Rao and
Wu, 1982; Wu et al., 1986).

GAC has been proposed for NC macﬁine tools to maintain the

—

accuracy of the finished workpiece within accept#ble levels. There are
a number of_ppB;ible sources of geometrical errors (Peklenik, 1970;
Jona, 1970 and Shiraishi, 19B4). %or example, the elastic deflections
due to cutting forces during'gachining.will change the relative
displacement of the geometric position between the tool and the
workpiece. Additional random disturbances are the thermal deformation
of the machine tool, thermal expansion of~the tool and workpiece, and
tool wear. Periodic disturbances include, fof'example. unbalanced
rotating members, gear backlash and motions transmitted through the
floor. These disturbances will change the relative pogition between the
tool and workpiece, and accordingly the dimensional accuracy will
deterio;ate without continuous adaption of the parameters of the
positioning system.

Peklenik (1970) presented a systematic survey of the basic
concepts of the GAC system. On-line agsessment of the workpiece
geometry is accomplished by variocus measuring system. This represents
one of the two basic units of adaptive control. The second is the

compensation system for controlling the tool position according to

geometrical requirements of the system output.

ey
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For the on-line assessment of the workpiece geometry in turning,
Jona (1970) suggested that a transducer atta;hed'to the tool-post could
indicate periodic deviations from the correct form &ue to rélative
motion between the tool-post and workpiece. 5Such a transducer

esgentially utilizes fiber optics to gage the distance between the probe

and any reflecting sgurface through the intensity of reflected light.

-

Jona’s technique was'suggested for straight cuts and its success

——

obviously depends on the accuracy of the tool post motion. A more
sophisticated measurement technique was reported by Shiraishi (1984).
In this work, on-line monitoring of the change. of the radius of a

workpiece is performed using double laser beams. The important feature

of this measuring technique is its applicability to workpieces with

-curvatures. Satisfactory results were reported for the curved profiles

with overall errors within *13 um.

For the design of the machine tool controller in turning,
adaptive as well as nonadaptive algorithms have been suggested in the
literature. Doraiswami and Gulliver (1984) used a digital filter to
generate a copy of the discretized reference and disturbance signals. A
digital stabilizer was then used to drive the d-c motor amplifier.

Their strategy, however, ihcreaaedithe gsystem order. The observer
theory was applied by Mitchell apd Harrison (1977) Qe design an active
machine tool control system that will reduce the tendency to chatter and

forced vibrations, which can be detrimental to the finish of the surface

of a workpiece. The theory of aelf-tuninz regulators has recently been

—
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Yo

uged by Lin and Liu (}§85) to devélop a GAC system for improving the
accuracy and stability in plunge cutting of cylindrical parts.

For turning oparat&ons. hawaver, very little work has been done
to imprg;e the accuracy of machining in contouring operations in thg
pregsence of significant workpiece / tool deflection error. In.these
gituations, the process .is time variant sincé the resultant cutting
force (accordfngly the procesg parameters) is continuously changing in
magnitudg ahd direction. This suggests the use of adaptive control as
an improvement to conventional NC controller, especially in the presence
‘of workriece and tool deflection and many other disturbances. Adaptivaw
controf'is algo attractive for the case of variable input geometry as
indicated by Peklenik (1970). The need and importahce of geometric
" adaptive control systems for automated manﬁfacturing has recently been
emphasized by Mathias et al. (1980).

In this chapter the algorithm of adaptive ETF pole/zero
placement is demonstrated in the improvement of the geometric accuracy
in contour turning when>incorporated with an existing NC system. The
contrélled variable is the position command for the'servo loop and the -
measured output is assumed to be the workgﬁece actual geometry as
described by Shiraishi (1984). The adaptive loop includes three basic

functions:

supervisory mechanism (monitor);

parameter identifications

control law’design.
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The supervision provides a few switching on/off functions to eliminate

the’hndesired'transient gstate and possible output blow-out. A

- L]
two~dimensional contrdl system structure (see section 6.4) is presented.

-

The required trajectory of the tool movement with constant ér

time—varying speed results in time-variant reference signals ;n each "~
\ ?
dimension. Hence the adaptive control system proposed is a more general

approach than that };bposad by Lin and Liu (1985) where the set point is

fixed.

It is shown that the adaptive control with ETF pole/zero

assignment results in significant improvement in geometric accur@cy of

-
the workpiece contouring over conventional NC controllers in the

presence of workpiece/tool deflection.

6.3 Ihe machining gvstem ] K

A reference system of coordinate axes X, Y and Z is used in
conjunction with the machine tool as shown in Fig.6.1. In develbping a

model for the machining system, consideration must be given to the

machine tool dynamics and its role in the generation of geometric error

in the workpiece. JN\

- ’
The relationghip between ‘the cutting process and the machine

tool structure is shown in the block diagram of Fig.6.2. The vib;at%on
between tool and workpiece affects the cutting process so as to cause a
variation of the cutting force-which, acting on Rpe vibratory system of
the machine, :creates aggin vibrations. ﬁndeéfcertain conditions, mainly

N,

L
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£

{n cuts with a large chip width, the variations in the cutting force can

cauge additional deflection which in turn builds to larger vibrations
one revolution later and quickly becomes chatter Eregenarative process).
During a finish cut made with a round nose tool for example, chatter
developing is not of the violent type that is associated with high metal
removal rate SHitchell and Harrison, 1977).

Referring to Fig.6.3, the cutting process is represented by the

static cutting stiffness Kc' which is generally assumed to be

proportional to the width of cut (Koenigsberger and Tlusky, 1970). The

transfer function of the tool / workpiece structure in the X-direction

is therefore represented by:

2
Kgu2

G,(s) = (6.3.1)

2
8° + 2f;wz8 + wy

where Kg represents the directional structure stiffness in the X
direction, while E; and wy; are the corresponding damping ratio and

natural frequency respectively.

Thé regenerative process is represented by the term (1 - uedts),
where ¢t ig the time for one revolution, - and u is an overlap factor
ranging from zero to one (u=0 for thread cutting and u=l for plunge
cutting). Two type of disturbances were considered in this model. A

determiniastic component D, which could result from periodic disturbances

"such as unbalanced rotating members and gear backlash, was used:
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D, = Asin{wt + ¢) \ (6.3.2)

where A is the amplitude, w the angle speed and ¢ ; phase angle. In

addition, a random component €, modelled as Gausian whitenocise was

added to the system output. Examples of random disturbances are thermal
expansion of the tool and workpiece, toel wear, and machine tool thermal
deformations.

The NC servo (for every machine axis) was represented also by a

second order system (Poo et al, 1972):

K m2
6,(8) = ot - . (6.3.3)
g8 + 251&)18 + W

where X, is the gain in the servo loop (essentially the gain in the DC

servo motor, power amplifier and transmigsion ratio). For both the X

and Y axes, the NC servo\ijjff wore considered identical. §&; and w; are

the damping ratio and natural frequency of the servo loop respectively.
Hence the transfer function of the system, incorporating the NC

servo loop and the machining dynamics, in the X direction is given by:

|
Y(s) 1 EE w2
U(S) = 8 - _ (6.3.4)
B (%428 w s+l (82426 up8+(1+ K_c)uf— =€ wiue~T8)

8 ]

-

As gseen, this transfer function is expressed in term of the ratio Kc/Ks

which represents the stiffness ratio.

In the simulation p;gganted in this chapter, the value of the
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-

-

overlap factor was considered_zero. Thie imblies a chatter frady

process. N

Combining a zero—order hold the corresponding discrete time

model is as follﬁws:

Atz"M )y, = Bz Dy + g (6.3.5)
" where ~
atz7ty =1+ A1Z 0+ casans + a,z
B(z™') = blz'1 + oeneaes + buz"“ .
and {st} ig the random noise. JAf

In the Y direction, the machinihg sygtem is congidered
infinitely stiff as compared to the X direction. Accor&ingly. thq
transfer function in the Y direction is simply a second order system (NC
gervo loop only). The resultant cutting force was decomposed in the X
and Y directions according to the feed direction, tool side cutting edge
angle, and nose radius. The value of K. also depends on the depth of
cut. Therefore, in turning.oppration. the ration ;S represents the time

8

variant facter in the controlled process.

6.4. gimulation

The designed computer control system has a two dimensional

structure. Two computers are used to implement the adaptive ETF

e
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P

pole/zero placement algorithm described byi%qn.(4.7.1) to (4.7.4) in X
and Y direction respectively. The supervision functions is mainly
accomplished in another master computer.

The desired final finished shape of fhe workpiece is shown in
Fig.6.4a, which is the resultant trajectory composed by the ideal tool
movemeg}g in X and Y directions. Conaequeﬁtly, the reference
displacement in' each axis, which is the function of time t, was
specified by designer according to certain feedrate. In this case the
reference signal‘ie a known deterministic signal. ‘Normal%y the
reference signals are alfered for various cuts and the corresponding

coefficients of the W, polynomials are stored in the computer memory.

In the case of templet copying, which is more often encountered in
milling and robot systems, only the samples of the measurements of the
reference trajectory are available and the reference signal models are
unknown and to be identified. Then the referénce gignal identifier
introduced in the chapter 4 is used for this purpose.

In the simulation, as stated in section 6.3, the time varying
continuous model (6.2.4) and time invariant model (6.2.3) were used for
the X-axig and Y—axis—;espectively. The dashed line in Fig.6.4c
represents the geometry of the initial blank, which indicates 102 change
in the depth of cuts. The time varving cutting direction and the depth

of cuts, affecting K /K, as described in section 6.3, are the time

varying factors of the process model in the X-axis. The time varying

rate could be adjusted by changing the feedrate. During the simulatiéﬁ.
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the feedrate was chosen such that the parameter jidentification algorithm
can be successfully carried out (i.e. no blow-out). However, in our

" gimulation, the feed was always kept in the range of 0.1 am/rev. to 0.3
mﬁ/rev. (the spindle speed is assumed to be 100 rev./min.), which is
typical for turning operations. For real time control, this function
could be provided by an expert system, which would accomplish the

3 \\ .
monitoring functions.

The sampling interval is taken to bg 10 milliseconds.-f.

Correspondingly, for K./Kg = 1.0, the nominal paraheters of the discrete

time model in X-axis were:

ay = -1.2277, as = 0.9821,

ay = =0.0527, ' a, = 0.0406,

b, = 0.000021, by = 0.00011, !
by = 0.000055, b, = 0.000003.

The nominal values of the process model parameters can be used
as the initial value for parameter estimation and design of an auxiliary
controller with fixed coefficients.

To cope with the time-varying nature of the system, the scheme

of resetting the covariance matrix Pt wag adopted during the process

N
-

model identification. It has been proved by simulation that this
technique is extremely useful in dealing with time varying system as
compared with using a forgetting factor 6niy. A dither signal was also

added to guarantee the condition of persistent excitation, which is

4

LS
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neceseary for the process identification, to avoid the possible system

blow-out.
. A contouring operation was simulated in the stochastic
environment (additive white noise with standard deviation 0.005). In
comparison a conventional NC system was also examined. -

The first 20 stepe or 1 unit length is specified to be the -
initial portion for pérameter egstimation, which is excluded from the
final finiéhed workplece.

In the simulation the adaptive controller was set under the

following conditions:
(1) The ordinary recursive least squares algorithm is used to identify

the process model parameters. Pg = 10" and reset every 40 steps.

A forgetting factor 0.96 was also used.

{(2) Dead beat control was used.
(3) Hard bound 1.0 was used for the incremeng_of the control action.

(4) PRBS (pseudorandom binary signal) dither signal with amplitude

0.005 was added.

The adaptive control loop was incorporated with an existing NC
gystem and the command signal was the desired relative displacement.
Hence, from practical consideration, a constraint (hard limit) was put
on the increment (not magnitude) of the controiﬂaction.

Fig.6.4b shows the surface generated by the given position

F
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command (i.e. NC system). As expected, the error is-essentially in the
X direction and it ig due mainly to tool deflecQ}onT\\;:é variation of
the reference signal versus time in X direction is showdi in Fig.6;58.
Fig.6.5b shows the cgrreaponding response of NC system. The oscillatery
behavior seen at the beginning of the cut is due to the step change in
axial depth of cut. Fig.6.4c, Fig.6.5¢c and Fig.6.6hare the surface
generated, the system response in X axis and the control action in X
direction, respectivpiy. when using the suggested adaptive ETF pole/zero
placement algﬁritﬁm. The improvement achieved in keometric accuracy is

’

further demonstrated in Fig.6.7 and Fig.6.8, which represent a
comparison pf the resulting geometric accuracies at various cross
gsections along the X axis with and without adaptive control.’

The sinusoidal disturbance added in the simulation is shown in
Fig.6.9a. Fig.6.9b demonstrates the rejection of the sinusoidal
disturbance when using an adaptive controller inceorporated the natural
mode of tse disturbance in the Q wheighting polynomial of the controller
equati;n (4.7.4).

The variation of the plant parameters (in X direction) is shown
in Fig.6.10, which clearly shows the time varying character of the
process. ’

The supervision provides the switching function between the
adaptive and nonadaptive auxiliary controller. In this simulation,

during the whole period of the workpiece processing the adaptive

controller is kept "ON". However, it may happen that there is an
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undesirgd trangient state due to a sudden change of the plant parameters

(eg. a sudden change of cutting direction). The supervision could

switch the adaptive controller "OFF™ and turn the nonadaptive

counterpart "ON" for a limited period of time. Generally spaa#{ns.
adaptive control may fall if the plant parameters change too fast.
Howaever, in turning, the time varying rate of Ehe plant can always be
lowergd by adjusting the feedrate. “The function of feedrate adjustment

can be realized on—line by the monitor.

6.5 Concluding Remarks:

A GAC system, which is based on adaptive tracking of the
reference signals, is used for contouring operationg in turning. It was
demonstrated that the proposed control system offers a aign%ficant
improvement in the geometric accuracy of machined component‘in the
;:esence of significant workpiece/tool deflection errer. 1t is
suggested that the adaptive controller with ETF pole/zero placement
could be applied to an exigsting NC turning system in conjunction with a
suitable measurement system as the one described in Shiraishi (1984) in
automated manufacturing. The supervision function described may be

1

realized by an expert system written in PROLOG or LISP.

-l

*



CHAPTER 7

STATE SPACE SELF-TUNING CONTROL .

7.1 Intreduction to Thig Chavier

Most of the existing self-tuning algorithms have been developed

for systems represented ?y transfer function in z-domain with z-1

interpreted as a backwardéshift operator. The transfer function
representation has the advantage that the simple least squares type
parameter identification schemes are.directly applicable. ,

However, on the other hand, the state—space representation of
physical systems is usually more suitable. The state—space model™gives
an internal descriptio; o% the system, which could be derived.from law
of physics. The gtate variables, which may have their own particular
physical meaning, completely describe the dynamics of the system. Also
for the stochaétic disturbed systems, if there are more than one noise
source, state-space modeling is more appropriate.

In the earlier work on state—gpace self-tuning coptrol. e.g.,
Warwick (1981), Tsay and Shieh (1981), the extended recursive least
squareg (ERLS) meﬁhod ig used for identifying the parameters of the
process model. These approaches may be summed up as follows:

Assume the system to be represented by the.ARHA model (3.1.1).
At each sampling interval the parameters of model (3.l.1) are estimated\\
-by the ERLS algorithm. The estimated parameters are then used to obtain

-131-
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the state estimates via state—space innovations model, which is,

however, in the observer canonical form: ) -

it"’l = Foit + Gout + .Koet (7-1-15)
ve = Bgxy . (7.1.1b)
’ - €y = Yt - ;'t. . ' (7.11ed .
where
M —a, 1 0o ... 0
—az 0 1l ... 0
fo=i . ;
« . + H 1
L-an 0 s e m v 0 ]
F by )
b2
Gy = )
L Pn ] °
) [ ¢y — a; ]
Ccz2 — az -
Ky = :
€a T 3n

and

H,=[1,0, ... ,0]
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up = - kx, | » (7.1.2)

whare the ga&h vector k is chosen such that the closed-locp poles are-

-1 . : : %‘b
given by a preselected polynomial «(z™ ).

There are several problems associated with the above algorithm.

(1) To tackle to the problem of reference tracking, the simple

modification of (7.1.2) like

ut = Wt - K;t E ) (7-1-3)
where Wy is the external reference input, however, could not eliminate
the steady stéte earror, even for simple cases, ©.g5., a step or

sinusecidal input. Moreover, the value of "offget ivariea as the pole

locations are changed.

.(2) The extension to multivariable case may lead to higher dimension

of the system matrices due to the use of block canonical form.

{3) The system model is often preferred to be directly given in the
state—space modsl with entries 6f the state variable matrices unknown or
partially unknown. The quantity, yhich ig required to follow some
external reference gignals, may not be measurable and appear as a gtate
in the model. We shall call this type of control objective as “adaptive
state tracking’ in the following context. It does not appear possible
to deal with the adaptive state tracking problem by using the appreach

described above. -



~134-

(4) In particular, when system matrices of the state—space model have
some known entries, one can not use the prior knowledge in the above

algorithms.

The concepta of controllability, observability, and feedback
gtgbilization of linear state-Bpace ﬁodals were important breakthroughs
in the development of control theory during the 1960= and 1970s. The
application of this theory, althopgh impressive, has been limited in
scope due to the often unrealistic assumption that the system matrices
were completely known. Henca..adaﬁtivd conﬁrol for aystems represented
by state-space models is very important.

Omani and Sinha (1985) proposed a‘quite progising method for
state—-space approach of adaptive control, where the recursive prediction
error (RPE) method has been employed for joint skgte and parameter
estimation of state—space model in the controller canonical form. The
main aim to deo so is overcoming.the problem of on-line computation of
transtﬁ?ation matrix and the control task is basically pure regulation.

In the present work, the flgxibiliéy in model representation
of fered by RPE method has been further utilized to handle adapﬁive
control problem for systems répresented by general state-space models.
Adaptive reference tracking is established for system output as well as

an immeasurable state, which may have definite physical gignificance.

7.2 Problem Formulation
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Congider a discrete time stochastically disturbed gingle-input

‘sinsle-output process described by the general state-space model
b g

Xpp1 = Fxp + Gup + vy ' o (7.2.1la)

- Yy = Bxp + g (7.2.1b)

where

Xy = nxl state vector

Ye cutput

Uy input

{Vt} and {st} are sequences of independent random vectors, each

being of zero mean and covariance
E[vev{] = R,
2

E[Vtst] = R12

“a

Th; model (7.2.1) could be obtained- as a result of sampling a
contlnuous-time Btochastic_qt;te-space modél. In this caase the states
of the continuous—time model beccme the'gtateé of the discrete-time

model and the output matrix H is equal to the &orrasponding one in the

continuous counterpart.

Suppose that {wt} is a sequence of external discret time gignal,

which can be regarded as the impulse  response of a éystam having the
T

\
z-transfer function described by eqn.(4.2.2).
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The problem ia formulated as follows:

Supposze
(1) the order of process model is known;

(2) the upper bound of the ordér_of external signal model is known

as nw:

(3) the entries of the state variable matrices in (7.2.1) are unknown

qr partially unknown;

- [

(4) the pafameters of the reference signal model (4.2.2) are unknown;

(5Y the samples of the external reference input signal and the system

output are available;

(6) the stétes of process may not be measurable.

It is required that either system oufput or a specified state

should follow the external reference signal {“t} as closely as possible.

7.3 Joint State and Parameter Estimation of State Innovations Model <.

The state-space innovations representation co[rgsponding to

model (7.2.1) can be formulated as

Xep1 = Fxp + Gup + Key ' (7.3.1a)

yp = Hxp + €, o (7.3.1b)

i
A

where K ip the steady state Kalman gain which has been explicitly



parameterized.

The Recursive Prediction Error (RPE)‘method (see Ljung and
Soderstrom, 1983) may be used for joint state and parameter estimation -
of the state innovatioﬁs model (7.3.1).

The criterion function is gpecified as

v(e.n) = Ellelne,] - | (7.3.2a)

-

where et'is the prediction error given by

ey = ¥y - Y (7.3.2b)
Xpe] = F(OL)xe + 6(8,)uy + K(By)ey '(7.3.2¢)
Yeel = H8 Xy 4] , (7.3.2d)

A the covariance of the prediction error, © a parameter vector

containing the unknown elements of the system matrices of (7.3.1), 8,
the estimated parameter vector at time t, ;t the estimated state vector
at time t and ;t the predicted output at time t.

Consider

Min V(6,A
Bin ( )

subject to (7.3.2b); (7.3.2¢c) and (7.3.2d).

1

Suppogse that the dimension of & vector is m. Define

de dy
*t = - _t= _EE (a m vector) (7.3.3a)
de de :
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‘We note that Ve is the negative gradient.of'thé prediction error aﬁd

/

hence provides a descent direction for the recursive minimization of /

(7.3.2a).

To compute *t the following gquantities are introduced:

Ht = %E[;t(e)] (an,pxm matrix) © (7.3.3p)
DO, . x,) = g_e[‘me)it].e:et (a m row vector) 0330
and
M, = %gtFte)it + 6(8)u, + K(e)eg];e=e£ (a nxm matrix)  (7.3.3d)
Then

¥y = (@MW, + Dy (7.3.4a)

where Ut satisfies the dynamics

. -
We,.1 = [F(B) = K(O)H(8)IW, + M, — K(8)Dy . {7.3.40)

The RPE method for joint parameter and state estimation of

state-space innovations model can be summarized as follows:

(1) Compute innovation

‘ .
| ey = vy - Yt 2 (1.3.5a)
(2) Update variance of e
Ap = Apy + [ep — A/t (7.3.5b)

{3) Compute parameter adaption gain
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Pe—1¥%¢

Ly = W T (7.3.5¢)
(4) Update parameter estimates 9
{6, =91 + LtétJBtEDé . ) (7.3.54d)
(5) ﬁpdate covariance matrix
P, = :IP Pt—l*ttgét-1 ] (7.3.50)
t Aphy + ¥ePro¥y
(6) Predic£ next states
"Xpgl = Fexp + Gpup + Kpey (7.3.5¢6)
(7) Predict next output
ool = Hekesp : T (7.3.58)
&= | -
(8) Compute gradient of ;t+1
Wop = [Fy @;)t]ut + My - KDy (7.3.§h)
{(9) Compute sradieni of ;t+1 |
¥isl : HeWesy + D(By.Xg4) | (7.3.51)
Here we have used the notations:
o = F(8p)
6, = 6(B,) . 7
Hy, = H(8,)



~140-

Ky = K(8y)

Dy = D(8;,x;) | -

Ds: the stability region for the predictor:
DB = {6|F(8) - K(9)H(B) has all eigenvalues strictly

inside the unit circle}.

Ay could be a time varying forgetting factor senarate& by
At = Xgolt__l + (1 - }00) (7-3-5j)
with typical values

Ao = 0.95, loo‘ = 0.99

Initial values:

Po = koI, kg > 0
;C0=0
¢o=0-
)
and Vg = 0.

REMARK:

The RPE method may dﬁrectly apply to the general state space

model (7.2.1) (see Ljung and Soderstrom, 1983). However, the algorithm

is more complex than that for the corresponding innovations model

(7.3.1). \hﬁ

7.4 State Feedback Contro]l Law with Pola/Zero Agpirnment

3
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Agssuming that the process parameters, states and the reference
signal parameters are known, a state feedback control law with pole/

zero asgignment is derived in this section.
7.4.1 Controller copnfiguration

Suppose that the control law is in the following form:

up = r W~k oxg . (7.4.1a)
/'/-_-\ ‘
where x is the state vector, ¢
A R FIRRRS (7.4.15)
r= [ry,ra2, «-o v Ty ] C(7.4.1¢)
and k= [kl.kz. ane 3 kn]. (7.4.1(!)

»

The gain vector k and r are to be determined in the context of

pole/zero placemenﬁ.

7.4.2 Pele placement

Suppose that the process (7.2.1) has the characteristic

polynomial

-,

a(z) = det(zI - F)} = z" + aqz“-l + ... + a, (7.4.2)

Using the control law (7.4.1), we.have the realization for

c¢losed-loop system

xpq) = (F = GK)xy + 6r W, (7.4.3a)

Ye Hx, . (7.4.3b)
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If the process is completely controllable, Base—Gura method
(Bass and Gura, 1965, see also Kailath, 1980) may be used to select the
gain vector k such that the closed-loop poles could be placed as will.

It is summarized as follows:

Let a{z) be a desired closed-loop characteristic polynomial,

843Y,
alz) = 2" + 0,z"t + Lo+ q  (1.4.4)
Then )
afiz) = det(zI - F +.Gk)
= det(zI - F)det[I + (zI - F)~'Gk)
.
= a(z)[1 + k(zI - F)"'G)
l.e. hY pa—
alz) - alz) = a(z)k(zI - F)"'6 (7.4.5)

Eqn.(7.4.5) can be reformed as

T’k =a-a : (1.4.6a)
where -

o = (1.0, oo sap)’ (7,4.6b)

a=[ajg,a3, --- .an]'r (7.4.6c)

T =TU (7.4.6d)

I = [6,FG, ... ,F?7lg] (7.4.6)"

and U ig an upper triangular Toeplitz matrix with firat row as

[l'al-' s .an__l].
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Apparently, T is the transformation matrix, which transfers the

system state representation to the controller canonical form.

In fact, the poles of the closed-loop are the same as that of

tra;iing error transfer function related to the system output as well as

any state in eqn.(7.2.1).

7.4.3 Qutput tracking

For the prbblem of output tracking, the output tracking error

transfer function zero must be assigned according to the natural

frequency of external reference signal.

can be worked out ag:

-1

< -1
a(z

)

where

r(z") =r; + rzz'l +

b(z=') = byz™! + byz™2
and

(by,b2, ... ,by] = HT
Denote

*—
@ T W V¢

¢ (z=Yy = rtz”hnz"h)

+

'

_Using the control law {(7.4.1), the closed-loop transfer function

+ rzz'

(7.4.7a)

(7.4.7b)

(7.4.7¢)

(7.4.7d)

(7.

Thus the output tracking error transfer function can be expressged. as

=
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~1 E (
. Gel= ) = Y
) w(z™")
_atz”h) - riz”Hvz™h

(7.4.9)

The output tracking error will ‘be blocked if the numerator of the
expression (7.4.9) contains the characteristic poiynomial of the

reference signal model as a factor. Thus we have

Uz(z;l)S(z'l)-+ ez b(z") = a(zh) (7.4.10)

where S(z-l) is the other polynomiallto be determined.

.

Eqn.(7.4.10) has a unique soluti r(z™') of degree n,~1 and
s(z~') of degree n-1 if the greatest common factor of b(z~') and Ug(z"l)

divides c(z_l);

7.4.4 State tracking

Assume that X ¢ is the specified stateéﬁn the process state—space

model ¢(7.2.1), which is required to follow the external reference

signals.

n n k
Define a new system {F , G , H } such that

®

and H = [0, ... ,0,1,0, ... ,0]
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The H* is a unit vector with 1 as the ith element. .
If an input—output transfer function is specified for system

(*), it is in the form

*® -1
¢*(z7ty = b (") (7.4.11a)
- -1 .
a(z™")
-../_'-"“ 4 — \\
where K
b (z"') = biz™ + b3z> + ... + boz® (7.4.11b)

Using the control law (7.4.3) the system (*) has the closed-lcop

transfer function, which represents the input—-putput relationship

£
between X5t and Wy, as follows:
. by w, 1 ]
6h(z7l) = Lz Jb (z ) (7.4.12a)
atz™h) .
where -
-1 ' -1 -1 .
r(z7") = r; + raz + ... + TgZ {7.4.12b)

In the expressions above, ry is the jth component of the gain vector r

in eqn.(7.4.1). Also [b:.b;. . .b;] ig simply the ith row of the
matrix T in eqn.(7.4.6).

Verifjcation of (7.4.12):

The simplest way to verify eqn.(7.4.12) is to assume a

r

controller canonical form

* » *

{Fe 6o He) (7.4.13)

- for the system (*), where
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-31 -'8.'2 .-h —an‘
- 1 0 ces 0
. . . )
fem | - -
. neeean 0
0 ...... 1 0
- 1 - .
0
S
G: = _"\\ =
0
\
and
* »* x
He = { by1. b2, ... 4by ] )
Then Fro= TIF'T .
- LI I
Go = T°'6 5
® * .
and He = HT .

where T is-the matrix given by eqn.(7.4.64d).

Since ' is a unit vector with 1 as the ith elemant, HY =

c
* *® x 0 . .th - -

{ bys b2, --. b, ] is simply the i row of the matrix T. Denote X as
the state vector of the controller canonical form (7.4.13), then x = ?i.

Using the control law (7.4.1) the system (*) has a realization
- * x - x % ’
Xpyp = (Fo = Gk Xy + Gowy (7.4.14a)

x o

v, = HX, .(7.4.14b)



-147-

for the noise free portion of the closed-lcop system, where

and

k. = kT-

- -1
W,y TwW, = ri{z )"ti

(7.4.14) is still in the controller canonical form, hence the transfer

function related y: and'w: can be written as b*(z-l)/c(z_l) and the

I

closed-loop transfer function of pystem (*) cgn be expressad as

.
(/Ban;(7.4.12>.

The design proc@dure then remains the Bame as that hescribed in

-

section 7.4.3 with polynomiai b(z"l) replaced by b*(z'l).

- 7-59n;line._1maLe_men.t.a.;i.9.n_an&mm

The on-line implementation procedure is summarized as follows:

Use the recursive least squares type algorithm (4.6.2) to.estimate
the parameters of polynomial Uz(z'l) of the reference signal model

(4.2.2);

Use RPE method (7.3.5) to estimate both the parameters and

states of the process state—space innovations model (7.3.1);

Calculate the transformation matrix T using the parameter estimates
. i h
obtained in step 2; T \‘

Compute b = HT for output tracking, or b = BT for state tracking;
. Snn,
©
L -4
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5. Solve the linear equation (7.4.6) to obtain gain vector ki -
6. Solve the linear equation (7.4.10) to obtain gain—vector r;
7. Output current control actien
ut = r;t - k*t N ' . (7-5-1)

In the case that the reference trajectory is knoﬁn beforehand,
the.step_l could be omitted. There is no matrix inversion involved

during the execution of the above suggested algorithm.

(7.6.1)

where

k =G(1) ) .
ToB(l)

and assume that b(l) = O.

The output and state tracking behaviours for exponential
reference signals, when the process is free of noise aq%iwith known

parameters and states, have been_invastisatea in the first example by

using thg different control laws with fixed coefficients.

Example I:
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Suppose that the system to be controlled is in the controller

canonical form a8 below:

rl.6 =0.631 rli (7.6.2a)
x = | Ix, + | ju .6.2a
yg = [ 1.0 1.5 ]xi (7.6.2b)
The given reference signal is specified as
w, = sin (2t) . (7.6.3)

Let the sampling interval be 0.1 second, then the signal can be regarded

as the impulse response of a system having the following z transfer

function ~/ LN
. .‘\
1] J- “1
H(z'l) - sin(0.2)z (7.6.4)
1 - 2cos(0.2)z~" + z~2

The poles of the cloéed-loop system have been placed at different

positions. =

~
S

(1) alz"') = 1 - 1.4891z~% + 0.548827° (7.6.5)

which gives the closed-loop poles at s=-2 and g=—4 for the corresponding
continuous time system. Using the control law (7.4.1) with ETF zero
placement and the control law (7.6.1), the output responses have been

shown in Fig.7.la and 7.lb respectively.

(2) Dcad beat control, i.e. all the poles of the ciosed-loop system

were placed at the origin of the z plane. The responses of the system

-

output by using the control law (7.4.1) with ETF zero assignment and
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\
(7.6.1) have been shown in Fig.7.2a and 7.2b respectively.

It is clearly indicated that the state—feedback control law with
ETF zero p}acement may ideally eliminate the tracking errors both in
magnitude and phase. In contrast, using the control law (7.6.1). the
system output could not track the external references properly, even for
sipple sinuscidal signal, and the magnitgdea and phases of the tracking

errors vary as the pole locations have been changed.

Now let the external reference signal be

wy = exp(-0.4t)sin2t ) (}-6-6)

and the sampling interval 0.1 second, then the signal can be regarded

as the impulse response of a system having the z transfer function

-
u(z—l) = 0.1909z

(71.6.7)
1 - 1.8833z~" + 0.9231z~2

The state x; of the process (7.6.2) is required to.track the

external input.
The closed-loop poles have been placed at three different positions:

(1) The damping ratioc 0.7071 is required for the continuous time
closed-loop system. The discrete time closed-loop characteristic

polynomial may be selected as
-1 -1 -2
a(z” ") =1 - 0.7497z + 1.1782z (7.6.8)

{2) Underdamped system with closed-loop characteristic polynomial

-
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specified as (7.6.5).
(3) Dead beat control. I
The responses of state x, with state tracking error transfer function

zero placement and gain vector r simply taken as [1,0]7 have been shown

in Fig.7.3 to 7.5.

The convergence of the adaptive algorithm is examined in the

-

next example.

Exapple 2:

The process to be controlled is given by

-

1.6 1 1.0 [2.1 ] ('769 )

= X, + u 4 £ .6.7a
¥+l [—0.63 0 ] t [1.5 ] t " j-0.63] ¢t

ve = [ 1 Olxy + &y (7.6.9b)

where {e,} is a sequence of white Gaussian noise with variance 0.1.

It is required that the state x; follows the given reference

gignals. In fact, the model (7.6.9)435 in observer canonical form,
hence it is equivalent to requiring that the output reaches the set
point in one step advance. A dead-beat controller is used in this

example.

The parameter vector to be estimated is specified as

6 = [-a; l“a2rblvb2-K1lK2]T

o
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=[ -1.6, 0.63, 1.0, 1.5, 2.1, -0.63 ]T

In this case

= [ =X ¢ 9 u, 0 e, 0
0 -X| .t 0 u, v e
and

Dt=0-

A monitor was used to supervise the parameter identification.
Whenever the state predictor is unstable, i.e. the roots of F-KH is out

of the stable region, the current estimates were simply ignored.

Fig.7.6a and 7.6b show the response of the state xz with

respect to square wave reference sequence and the corresponding control
actions, were a hard bound *3.0 is used to limit the magnitude of qhe
control actions. Fig.7.6c shows the convergence of the parameter

estimates. Fig.7.6d shows the error norm of the state estimates.

Fig.7.7a shows the response of the state xz, when the reference

signal is a sequence of triamgular wave. Fig.7.7b, 7.7c and 7.7d
indicate the control action, error norm of the parameter estimates and
the state estimates respectively. Fig.7.7e, 7.7f and 7.7g show the

model parameter estimates. The variation of the gain vector of the

adaptive controller is shown in Fig.7.7h and 7.7i respectively.

The convergence rate of the parameter estimates is related to

the excitation of the process input, which in turn depends on the



-158-

X2

AEF .

b
TIME IN 0.4 SECOND

Fig.7.6a Adaptive state tracking for square wave reference

( dash~line: reference, solid-line : state x2)
5.0 L4
!
e.s
=
C 0.0
(onl
'—
s
O
Q
-2.5
PR T NPT D |
'B‘oo-o 100.0 RDC.O 300.0 400.0 8oL .0

TIME IN 0.1 SECOND

Fig.7.6b Control action of adaptive state tracking for square
wave reference :



-159-

s 3.0

o A
o [

=z | )

T !

(@]

[x 9

L,k

w

|—

<

= \ -

- ~

g’J 1.0 -
T

w

i.-

L

Z

T 0.0 [t TS DD DRI DU
P “To}o 100.0 200.0 200.0 400.0 200.0
o

TIME IN O.4 SECOND
¢
Fig.7.6c Parameter convergence of adaptive state tracking for
square wave reference
0.0

=

8 .

m)

Z.

o 30.0

O

jus t

T

i

W 20.0

’_

<{

z

—

}....

$ 10.0

W . <
= o

< -

S Al

(1)) 0.0 LT h AL . abA i i B A R

0.0 100.0 £00.0 300.0 / 400.0 500.0

TIME IN 0.31i SECDND

Fig.7.6d State estimation error of ‘adaptive state tracking for
square wave reference



— e ——

~160-

130.0

100.0 |-

Xa

0.0

REF .

| IO B O

BOC.O 300.0 T 400.0 8300.0

TIME IN 0.1 SECOND

Fig.7.7a Adaptive state tracking of ;riangular wave reference
( dash—-line: reference, solid-line : state x2)

5.0
- 3.0
.
1.0
|
O
c
pd -4.0
o
o '
-3.0
_G‘o )AAlllA_'j.lllllAllll!lll[lllAJlrll!l!AALJIIAA‘Inljl
. 0.0 100.0 200.0 300.0 400.0 500.0

n - TIME IN O.4 SECOND '

Fig.7.7b Control action of adaptive state tracking for
triangular wave reference
1




»

-161-

= 8.0
@ i .
(] [ - .
ray s

L
o L
o !
m 9
E e-o~
w
- !
< . ) .
=
B " .
- F . ’
! 1 : .- -,
‘w ° - ]
18 1 -
15) o 1
I—. b
w [
‘-&: [
m oo-l:llIl.lllllllll_l_l_ill!IAIlllllLRJl‘ll_‘l'lllillJ.lfl
< - N 100.0 200.0 300.0° 400.0 500.0
& -

'Fig.7.7c Parameter

TIME IN 0.1 SECOND

convergence of gadaptive state'pracking for

*

triangular wave reference -
40.0 .
= -
o
Z .
o 30-0 A
@)
. .
e
w
w eo.o
'_.
<
=
=
o
L 10.0 =
w s
P [
= f
N .0
©.0 100.0 200.0 300.0 400.0

TIME IN O.1 SECOND

Fig.7.7d State estimation error of adaptive state tracking for
triangular wave reference



- -162-
1.0 i
o L
N m -p
‘-‘ H
9] L
0 +
T 0.0 |j=—
- [
< R .
= i ‘A
] L
N
1)) L
w [
o -1.0 s -
w
-
uJ-,
=
<
5 \
< . .
O —p.o Lo e daa.. | ISP B SR N | IO
.0 | / 100.0 . 200.0 300.0 400.0 50_0.0
TIME*IN 0.4 SECOND

Fig.7.7e Parameter estimates al and a2

PARAMETER ESTIMATES bi b2

. . A PP S
100.0 200.0 " 300.0 400.0 B50C.0

@ TIME IN 0.1 SECOND

Lo ]
o
o

"™
[»]
.O IIIIIIIIIIIIIP-IIltl—l—Ll—x.I_J_LLHi!!lll'll

Fig.7.7f Parameter estimates bl and b2



3
i

ESTIMATED KALMAN GAIN Ki K2

N v
/
| / - =163
. . }
1.8 -
1.0
0.5 .
- ? - 5
0.0 Lo RS ST IR DU I I
0.0 100.0 200.0 300.0 400.0 500.0
TIME{ IN 0.4 SECOND
% o “
Fig.7.7g E'sti‘;.mated Kalman gain K} and K2 =
ay
. e
-
E." -
Ie} ’ -
-~
- -h, LR %
"\:T J . -



P

.
S

=164-
5.0 a '
o L
x BOF g
-t
> .
z -
H 1.0
< R
L)
x |
(&)
<L’ .
g b.o - .
L C
1w 3
ll.. =
-1.0 -ll_!lll_l_t__lllllJlllJlIleJ‘j!!L'Ll!IlJ_ll_lILl_lllnlAl
0.0 100.0 200.0 300.0 400.,0 800.0

TIME IN 0.4 SECOND

=4

e

Fig.7.7h Feedback gain vector of adaptive controller

/

10.0
0J
C
- 5.0 v
L
=z
=
L=
© o.0
a
o
<
£«
% -%.0
L
Q F )
Lu v
) “~
I

P A R DTS DU BT DU
L] 100.0 200.0 300.0 T 400.0 500,08
a TIME IN'CO.1 S'ECOND‘

Fig.7.71 Feedforward gain vector of adaptive controller

) ) . x

s )

| -~

-
7



———

-165-
. )

excitation"of external reference input signals.

P

7.7 Concludins Remarks

The alggf{Lh;s ﬁroposed in this chapter are motivated by
applying adaptive control to a wide range of industrial processges, which
are naturally described in state space eqﬁations according to celtain
laws of physigs.. In su;h cagses, the étaées.have particular physical

. N
meanings and ;: have the ext;a information about process model
gtructure. The existing self-tuning control algorithmé hgve been
conventionally developed in frequéncy domain for ARMA models. Thp gstate -
space approaches reported 4n literature essentially transform thé ARMA
models to state—space canonical forms. As a result, when the
measurements of a gtate are not available, the stat; tracking objective
is hard to achieve by using the e*isting design procedures.

The recurgive prediction error (RPE) method, which offers a
great flexib&lity in meodel representations, thus suggested for joint
state and parameter estimation of the state innovations model. In fact,
the RPE method is essentially an oﬁ-line technique for optimizing a
criterion containing the prediction error of the estimated model.
Comparing .with the approach dirgctly based on control performance

, ’
ériterion‘optimization (Trulssen, 1583. Trulsson and Ljung, 1985), the
suggested adaptive cbntrol-algorithm represents an indirect approach.

The well recognized shortcoming (Trulsson and Ljung, 1985) of the method

by Trusgson and Ljung, which is how to estimate the gradient of the
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criterion with respect to the regulator parameters, has been overcome.
‘-Ié the opinion of the author, the extension of self—tgning
concept to state regulation and state reference tracking, is significant
both in theory and applications. The convergence of the RPE method is-
well established (L jung and Soderstrom, 1983) and its application to
adaptive contreol is straightforward. State—space self-tuning control is
very effective. Particularly, it is easier to extend_to multivariable
systems. Although computational effort is increased, it basically
involves the solution of linear eﬁuations only. Hence, practical

implementation on microcomputers should not present any major problem.



CHAPTER 8
APPLICATION: SURFACE ACCURACY CONTROL IN END MILLING

USING SELF-TUNING STATE TRACKING ALGORITHM

8.1 gverview of This Chapter |
!

In this chapter the practical uaefulne%? of the adaptive state
tracking algorithm derived in the last chapter is demonstrated by
application to surface accuracy control in end milling process.

Computer control of end milling process is a ratgar interesting
and challenging problem. The machining system, incorporating a DC motor
ser;ﬁ loop, cutting process and workpiece deflection, can be represented
by a state-space model. The elements of the system matrices are
partially unknown due ﬁo the fact that the chip thickness, depth of cut,
cutting stiffness and workpiece stiffness are varying depending on
different cutting conditions. Moreover, on-line assessment of workpiece
geometry is not realizable in practiqe. These {ssues giye rige to
inherent difficulties for control‘aystem design. -

This chapter presents a new aﬁiroachlto the design of geometric
adaptive controller for end milling process. " The control specification
is given by an external reference frajectory. which represents the
desired geometry of the finished workpiece. Only the cutting force is

assumed to be measurable. The RPE method is used for joint estimation

of tﬁe ﬁnknown elements of the system matrices and the states of the
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gtate innovations model of end milling process. And thé necessary state
tracking contro& law is constructed by'uaing tge estimated gtates and
system matrices. The desired control is achieved by manipulating the
position command for the servo-loop so that the actual tool position
fo;lows the desired workpiece geometry. The simul;tioﬁ is obtained for
the proposed geometric adaptive contrel system anq tha re;ults are shown
to be quite satisfactory. L

This approach has a number of notable features. Some of these

are listed below. .. %

’
{1) The process is naturally represented by a general state-space

model, where the states have definite physical gignificance.

(2) The prior knowledge of the structure of the model and the
parameters of the serve loop, which appear in the system matrices as the

known entries, has been sufficiently used:

(3) The quantity to be controlled is not measurable.

8.2 Introduction to Surface Accuracy Contrel in End Millins Process

End milling is a very significant-machining operation in the
aerospace and automotive industries. Typical applications are, for
example, pocketing‘of airframe panels and end milling of stamping dies
in automotive manufacturing. In this machining operation, it is
generally accepted that the end mill and itslclamping to the spindle

represent the most important source of flexibility in the machine tool
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system (Koenisberger and Tlusty, i970). The cutting f0fcea during
mééhinins produc;-deflections of the cutter and, particularly when
milling thin-walled gections, deflections of the workpiece.. These
deflections result in diﬁens}onal"inaccuracies or surface error on the
finished compconent. The generated surface may be undersized {up
milling), oversized (down milling), inclined, convex, or concave
depending on the number of teeth, helix angle, radial and axial depth of
cut (Tlusty, 1980).

The effects of the tool/spindle flexibility on,the accuracy of
the workpiece in end milling operations has been investigated in the
past (Kline et al., 1982; Devor et al., 1980, 1983; Tlusty et al.,

1978). Typically, the deflections of the end mill were taken

-

.proportional to the forca; i.e. sgtatic deflections. For the workpiece

3
deflection, Devor et al. (1980, 1983) used the finite difference method

to generate a data base of static flexibility coefficients at particular
points on the workpiece and hence the deflection of the workpiece was
determined. Experimental investigations to quantitatively study end
mill deflection and surface accuracy was reported by Fujii et al.
(1979), These studies offered solutiona.to these probléms such as using
the shortest possible end mill Eo; groatest rigidity and reducing feeds
for finishing cuts. However, with advances occurring rapidly in the
development of new cutter materials and geometries, and workpiece
L

- . - //-
fabrication processes, a more generalized control acheme 1is clearly

neaded:
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‘Geometric adaptive control (GAC) systems hava‘bean suxgésted-for
various machihing operations in‘order to maintain the accuracy of the
workpiece within acceptable levels. For end milling, Stute (1980)
developed a GAC system, where the machining operaticn is controlled by

Ay
manipulating the feedrate to maintain-the cutter deflection below a

maximum value Gmax' The cutter deflection is related to the cutting

force Fc {measured variable) by a function é = f(Fc). which must be

determined experimentally in each case for the particular tool/chuck
/machine combination. Watanabe and Iwai (1983) estimated the surface
location and waviness errors in end milling by maaauriﬁg bendiné moments
generated in the tool holder by the cutting force. In their system, the
surface location error is compensated for by shifting the tool path,
while the surface waviness error is main&ained at a constant value by
adjusting the feedrate.

Typically, PI controllers were used in the realization of these
GAC systems. In order to deaal with the possibility of large variations
in the gain of the cutting process, a dynamic model parallel to the
cutting procegs was used b; Stute (1980) to vary the gain'iuﬂthé PI
controller according to changes in cutting conditions. 'In the approach
by Watanabe and Iwai (1983) the gain in the PI algorithm used was
selected sufficiently low to ensure stability.
] In general, GAC systems for end milling operations published so

far were designed to maintain the tool deflection at a constant value by

manipulating the feedrate. However, in the majority of these studies,
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tﬁe adaptive Qiratagieﬁ were not a théoretically based design and
accordingly, they do not provide systematic means to adjust the

parameters of the cofitroller. Extensive off-line simulations are
therefore needed to select these-par;meters for various machining‘

conditions.

8.3 Horkpince Surface Errors in Flexible End Millins

Ags mentioned earlier, the flexibility of the cutter/spiqdle
gystem ig an important source of purface errors in end milling. A
second source of errors is the deflection of the workpiece itself
particularly when milling thin webs (Kline et al., 198?: Devor et al.,
1983). The generation of finished aurche by end milling is illustrated
in Fig.B8.1. Referring to Fig.B.la, a tooth first begins to generate Lhe
finished surface at the bottom of the cut (point 1). This point of -
contact between the cutter and the finished surface climbs from the
bottom upwards, as the cutter rotates, due to the helix angle B and
throysh the axial depth of cut b (Fig.8.1b). The resulting cugting
forcqs vary both in maénitude and direction with cutter rotation. 1In
end ﬁilling operations, it ls well known that the magnitude aﬁd
direction of the cutting forces vary with cutter rotation. Fig.B.2

shows t}pical variations ofy the resultant cutting force F_ as a fungction
) c &

of the angle of rotation ¢.
In the conventional range of cutting speeds (50 - 200 m/min),

the static deflections of the end mill due to the X and Y component of

@
—-
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the cutting force FC are only of interest. These deflections can be

" calculated by assuming that the end mill acts as a caﬁtflévér baam-

rigidly supported.by the tool holder (Kline et al., 1982). These
. o

deflections will in turn be transferred to the machipad,;urfaca.

Fig.8.3 shows typical surface error profiles as a function of the axial
depth of cut calculated assuming a rigid workpiece. Fig.8.4 reprcduced
here from the referenée by Kline et al. (1982) shows ‘typical surface;:B
-errons in the case of flexible workpiece using a different set of
cutting conditions ;han those of Fig.8.3. In the case presented in
Fig.8.4, the workpiece wag designed to simulate a thin-wall airframe
flange and was clamped to a (~shaped fixture along three sides. In
Fig.8.3 and 6.4. the Z axis is parallel to the axis of the toocl. In the
following sections, the adaptive control scheme is used to track the

desired workpiece geometry thus~Q§Pimizins location errors and

consequently avoiding over and under cuts.

8.4 The State-gpace model for End Milling Process

y .
The main element in the serve-loop (per axis) of the milling
machine is a DC motor. Referring to Fig.8.5, the dznamics of the -
servo—loop is.repregented by a sacona order system as foliows (Poo et

al., 1972):

G,(8) = L - (8.4.1)
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where Ky is Cifiyfyop gain,'E the damping ratio a w,. the loop natural

fréqugncy.

-y - The cutting force in milling, Fé. ig typicallly related to chip

-

-thickhess by the linear equation (Koenisberger and Tlusty. 1970; Dover

et al., 1980; Elbestawi and Sagherian, 1987): D ’ -

-

Fo = Kiebeh - - . (8.4.2)

A . -
-

where Ké is a material dependent constant, b the axial depth of cut and

h the average chip thickness.
It has been shown that in end milling with flexible tools, the

L3
* - dynamic behavior of the cutting process can be represented by a first

order system, where the time constant is determined by the ratio.of the

cutting stiffness Kc-b to'the-spindle stiffness KS (Elbestawi and
Sagherian, 1987). The value of Ks is considered to represent the tool /
4

spindle stiffness as obtained at the end of the tool. Therefore the

transfer function of ‘the cutting procegs is expressed as:

' K.*b
G.(s) = S v (£.4.3a)
1 + 31
c
where ~
A =) K '_b ——
.= < (8.4.13b)
KS
K' = v .
K. = < (8.4.3¢)
NeZ

and N is the spindle speed in rev./sec, Z is the number of teeth.

(



1

, S . o . -179-

The contribution of the'wonkpiece.deffection is_inbluded in the
o . N . -.-.

model by using a simple gain element ¢” as shown, in Fi'g.B.S,.' &£
Y me : :

The transfer function of the system incorporating the NC servo
(-3 .

loop and ghe_machine dynamics, in the k directioﬁ‘is identical to that

in the Y direction. The resultant cutting fbrce_is decomposed in the X

and Y directions depending on the desired contour: ‘\\
. A . ' . - }
fy.= F.cos a - (8.4.4a)
/7
1
~ Fy = Fesin a . .(8.4.4b)

-

-where a« is the feed direction.

It should be stressed her; that the cutting force Fc used in

-
-

the simulation is the envelop of the maximum instantaneous resultant

force.

Referring to Fig.B8.5, the state vector ia chosen as
* - T
x = {(x;, X2, x3) = (z , 2, z) (B.4.5)

. n
where z is the output of the servo loop, = 1is the component of the

actual todl displacement. Hence the state—gpace model of end milling

process has been worked out as follows:

x(t) Ax(t) + Bu(t) + w(t) (8.4.6a)

v(t)

Cx{t) + e(t) . (8.4.6b)

where

-
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S B *
< K, c K, ]y
A= 0 0 1 . - (B.4.6c)
; \\ r) L 0 —mf‘ "‘ZEN; '
1' ,. - -
.0
! 1- .
*. : .
v B = 0 1 . (B.4.64d)
. , . _
- | K |
C=1[ -Keby Kgbo 0 ] (8.4.68)

' 3 . . .
and {v(t)} and {e{t)} areithe plant and observation noise respectively.

) The discrete-time state-space model of end milling process is
s - . . .
obtained from the continuous-time counterpart. In fact, the states of

-

the continuous-time model become theé stateb of the discrete:}ime model.
Thus the natural states of the system are preserved.
Suppose that a zero-order hold is used and let the discrete-

/\ . ;
.time model be of the form (7.2.1), i.e.

Ye = th ‘+ Et o (8.4.7b)
Then
F=efT : (8.4.8a)
T
6 = [,e*Tatn (8.4.8b)
and
H=2C" - (B8.4.8¢)
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B.5 Simulation

Simulation results were cobtained for the adaptive state tracking

algorithm fsee section 7.5) when applied to the end milling process.

N 7
The control objective is that the actual tcol position z*. which is a

function of Fime t, should tr;ck as closely as po#sible the givenr
referengce sigﬁel. which in turn depends on the desired finished
workpiece geometry as well as feedrate. It is assumed thap the
components of the cutting force are measurable.

" In the simulation, the following values were used for the

parameters of the model of the machining system in the X-axis:

Ko = 1380 N/mmz. b =% mm,
K, = 14000 N/mm, ¢" = 0.0010 ma/N,
£ = 0.7071, | 6, = 10 Hz.

n

Consequently, the system matrices of the continuous—time state—space

model in X direction were:

[ ~15.6908  14.00 1
A = 0 0 1 (8.5.1a)
o -3948.0 -88.86
S -
B = 0 (8.5.1b)
) | 3948.0 | ’
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»
and _ )
¢ = [ -8280.0 8280.0 0 ] (8.5.1c)

- - FRY

The sampling interval being 50 millisecond, thé system matrices of th&
discrete time model €8.4.7) were evaluated according to eqns.(B8.4.8a)

A Y .
to (8.4.8c). Thus we obtained

& .
[0.4563- -0.4596  0.001661"
. F= 0 0.0206 . 0.001942 | - (8.5.2a)
o 0"  -7.6676. —-0.1520 .
[ 0.9447 o 7
G = | 0.9794 . © (8.5.2b)
7.6676
h . ]
and . .
H=c5 —ezeo.ojulazeo.o 0 ] " (8.5.2¢)

~

The nominal values adopted'for the parameters of the_model in ¥

direction were:

KZ = 1380 N/mm®, b= 6 om,
Ko = 16000 N/mm, ¢ = o.oooe‘gh<n. _ -
£ =0.7071, w, = 10 Hz.

n

-
]
i

hence the system matrices of the continuous—time model were:

-11.5342  9.600 1
A= 0 A p! (8.5.3a)

,[ 0 -3948.0 -88.86
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_ ; r O | | :
- B= l ° |  (8.5.3b)
. L 3948.0 | " -
" and ) | -
¢ = ([ -8280.0 8280.0 0 ] (8.5.3¢)

Consequently, the corresponding system matrices of the disqrataftima .

~ « - ¢
model used in the simulation were: ‘ SR
~ fo.5618 - -0.5725 0.001586 | =
i .
F=1] 0 0.0206 0.001942 | (8.5.4a)
0 =7.6676 -0.1520
_ [ 0.9372 )
6 = | 0.9794 : — < (B8.5.4b)
. -
| 7-6676 ]
and .
H=0¢C=[-8280.0 8280.0 0. ] (B.5.4c)

The effect of stochastic disturbances on the machin}ng process

were included in the simulation by ng that {vt} and ¢} are

, / . » .
sequences of independent Gaussian réndom variable with zero mean and the

covariances ’ . z
Ry = E{vyv(} = 0.11I (8.5.5a)

Rlz = E{Vtst} =0 " -(8-5%-5b)
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and o * — -

’ Ry = E{ef} = 0.1, . | (8.5.5¢)

The stale innovations model was evaluated, by compdting the
. . : -

Kalman gain vector a priori. -

The time-varying Kalman gain vector was calculagsd’acccrding to

the well known discrete~time Kalman filtering recursive equations:
r"(

Ky = FPLHHTP(H + Rz)™ (8.5.6)

Peep = [F =~ Ktﬁ]Pth + Ry (8.5.7)

- ) o

-

where Pt ig the error covariance matrix of the state estimétion and Kt

ig the Kalman gain vector.

It is well known that subject to mild assumptions, Pt and hence

Kt converge to steady-state values. K denotes the steady-state Kalman

gain vector. For the end milling process simulated, we cbtained
‘ Y

[ =0.00007342

K

94000001231 ) (8.5.8a)

t -0.0004620

] - :
| /

for the X direction and

[ ~0.00006851 |
| .

X = l 0.000001230 : (8.5.8b)
L

~0.0004619 ]
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fof the Y direction: In fact, the solutions were obtaiped at the 4th
- ’d'.'
iteration. ¥

Assume that K., K, b and ¢ were the unknown parameters. It

can be shown from eqn.(8.4.8) that Ké. X bnaﬁa c* appear in the first

B‘

Jyow of F matrix, first element of vector G, and H vector in the model

(8.4.7). Hence the parameter vector 8, which is to be estimated’

on-linie, was specified as °

8 = [Fi1, Fr2, Fi3, Gy, Hy, Hp, Ky, Koo K317 (8.5.9)
TS

for both X axis and Y ax}s. Thus the corresponding Ht and Dt in the
’ .

RPE algorithm (7.3.5) ‘are exprossed as , ~

- - -

P [xltxz FXapu 0 -0 e 0 0
Mt=‘0 0 0 0 0 0 0 e 0 -
[0 0o o o o 0o 0 0 e

Dy = [ 0 0 0 "0 xyyx2¢0 0 0

s

In Fig.B.6, the dashedsline indicates the desired geometry of a

finished workpieée. and the solid line shows the geometry generated in

- the case when numerical control was used (i.e., the control sigmals were

ra

simply taken.as the:desired position commands). The location error

resulting from the deflectioqs of the tool and workpiece is clearly

—

" geen.

The geometry of the finished workpiece generated using the

-
-
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-

. '
suggested adaptive atate trackKing control algorithm is given by the

sdlid’line in Fig.B8.7, while the dashed line-represents the desired one.

" The first 10% of the total length of the workpiece was specified as the

initiallportiop fg;,parameter estimation and excluded from the final _
finished surface. [t ‘can- be seén that the tracking error is quite

small; During the simulation, the same feedrate as that of numerical’

control was taken. The components of the cutting force wére measured

every 50 ﬁillisééonds. The output speed and displacement of servd motor
(per axig) and the components of the actual tool position along with-the
unknown system parameters were estimated correspogdingl&. And a
dead-beaé controllpr was uged. A critical part of the imblementation of
t he suggesygd algorithm is the choice of the initial valu;, which is a
commeon problem for optimization metﬁods. The initial value of the
estimated paramster vector used in the simulation was chosen to have 10%
deviation from the nominal parameters. The system responses in the X
and Y directions are shown in Fig.8.8a and 8.8b réspéctivelyi The
control action in X and Y.direction are shown in:Fig.8.9a and 8.9b.
Variations of estimates with gimé for F and G matrices are shown in
FigT;TTbk~andl8.10b for X- and Y- axis respectively. Similar results

P

fgr the Kalman gain are shown in Fig.8.10c and Fig.8.10d.

N S
8.6 Concluding Remarks
" A very promising geoméﬁg{é adaptive control system iz developed

for the end milling process. A state—space model is formulated'for the
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machining system which accounts for the flexibilit& of the cutter and
workpiece. In this model, only the cutting force is considered to be

measurable and the actual tool position appears as a stgte. Joint state

and parameter estimation of the state innovations model is achieved

using the recursive prediction error method. The control law derived in

-

chapter 7 ensures little state trackiqg error in the stochastic sense.
-
| i

Thg—feasibility of the proposed approach tc the problem of controlling

surface accuracy in the end milling operation-is demonstrated by the

L
simulation studies.

T
.

—



CHAPTER ¢
CONCLUSIONS AND RECOHHENDATIONé
9.1 Conclusions

In fhis,th;;is. adaptive reference trajectory tracking has been
discuaaed'ih some det;il for systems represented by auto}egressive
moving average (ARMA) as well as state-space models.

The AEHA models have been widely used for thé purpoge of
self-tuning controil Thié is 6ue to the fact that the simple recprsive
least squares method is airect}y applicable for parameter
1dentification. However, the sqpared_efror criterion is the optimal
loss function for identification of ARMA models onlx in-the case of

Gaussian noise distribution (Tsypkin, 1982). In chapter 3, the

recursive extended,lbast pquares type algorithm with a general noniinear
criterion function has been introduced and the strong consistency of the
al%orithm. for the first time, has been proved. While preserving the
yimplicity, the algorithm has the feature of a usef defined criterionA
function, which may ensure fast convergence of the parameter estimates
and robustness to possible outliers. These issues are of great'vr
importance ;; practical implementation of Eelf—tuning controllérs.
Although state—gspace approach has been adopted for the design of

self-tuning controllers by a number of authore, all the previously

reported algorithms deal with the state—-space model in canonical forms.

-198- * -

at
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In guch‘cases, phyaical statga are in general not used for feedback. In

chapter 7, sfstq&g which are naturally.represented by general state-

space models have been considered. - The recuqsiva.predictibn error, (RPE)

r

_algorithm was Bugsested for joint estimation of states and parameters of

state—space innovations ﬁodei._ Comparing with the recursive extended

‘s

least squares type a}gorithnﬁ._*l‘ie RPE method requires more computation
. . .

and the stability of the algorithm has to be monitored on-line.

However, the RPE méthod offers a.great fiexibility in system model
~ ’ ' y

repreqeﬁtations. Consequently, a—prior knowledge of the relationships
between the physical states of the gystem may be sufficiently used.
L~ —— -

The discuseions presented in chapter 2 give a brief idea about
how most of the existing self-tuning control algorithms can be °
catego;ized into a framework of adaptive pole—placement.' In chapter 4,
the notion of cipsed—loop error transfer function (ETF) zero placemept.

has been introduced, which‘}s.motivated from.the following facts:

{1} Reference signal tracking is fundamental for contrel engineering

.

and a basic requirement for tracking problem is ‘unbiased’, i.e. the

expectation of the tracking error in Btéady state should be zero for -’

arbitrary external reference signals. '

(2) The tracking error will be blocked in bgth the phase and magnitude,

if ETF zeros contain the natural frequency of external reference

signals.‘ ,

'
Sufficient conditions for independent assignment of ETF poles (which are
) . !
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.

5 .
the same as that of closed-loop transfer function) and zercs have been

deri;ed. The global convergence of the adaptive ETF pole/zero placement
- has also been theoretically established. ETF pole/zero placement thus
has been adopted as a principle for the design’of gelf-tuning

* controllers in frequency domain as well as state—space.

Reference signal model idpntification ig introduced for the,
first time in the context of adapfive contrel, which provides.a-better
adaption of contr%lier to circumstances. The same parameter estimator
c;n be used for both the ;ro:ess and reference signal mo&élé -
identification if the frequency domain ;pproaqh has been.édoptéd.

. Hence, the increase in the computation load is very small.l

Sei?—tuning trécking controifbrs'were deriveg‘for stochastic
aystems in chapter 5. The novelty of the proposed algorithma is that it
ig closely related tq optimal éontrol and the performance index is to be
determined in the context of ETF poles gnd Zeros.

The state-space design procedures of gself-tuning controllers
were also.discussed in detail. In chapter 7, for an immeasurable
physical state of a B;Btem. adaptive reference signal tracking has been

1

well egtablished via combination of RPE system identification and state .

~

feedback control. Therefore, the necessity of extending the
conventional concept of self-tuning control in fregquency domain to

self—tuning state regulation and state tradking was emphasized.

To demonstrate practical applications, the derived self-tuning
t

algorithms have been applied to surface accuracy control in turning and
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.end milling. The suggested control systems also represent very

promising new approaches in the area of automated manufacturing. .

- -~

In chapter 6, using the frequency domain approach of adaptive

-

ETF pole/fzero placement, a two dimeﬁsional geometric adaptive controi.'
systéﬁ w;s developed for contouring operation in ‘turning. The results
of simdlation indicate a.significant improvement in geometric accuracy
of workpiece over conventional numerical cogtrol.

The adaptive state tracking-algorithm has been applied to end

milling of thin webs in chapter 8. The priori plant knowledge has been

" incorporated into the algorithm rather than just being used in the

initialization. The assessment of geometry of workpiece is not
realizable in end milling.' However, the results of simulation show

that the controlled system performs satisfactoriiy in the presence of

significant tool/workpiece deflection.

9.2 Sugsestions for Further Research

t
Some remaining interesting problems appear to be:

1. Global convergence of self-tuning control via state—space approach

in 2 stochastic environment is to be eatablished.

2. Is it possible to establish a robust self-tuning control with
respect to unmodeled dynamics by a careful choice of influence function

for parameter identification?

3. Development of adaptive reference_sigrial tracking algorithms which
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use nonlin¢ar process dynamic -model, the simplest being bilinear models.
Recent paper by aniech and Ljung (1987) has discussed the aspects of

the bilinear system identification.

4. Design of adaptive decoupling reference gignal trackiEé algorithms
for multivariable systems. Some results in the sense of ‘adaptive

decoupling model reference Epntrol' were obtained recently by Tade and

Bayoumi (1986). ' . ) 1

5. Real time adaptive control, specially, with the add of expert
systems programming technique, of turning and end milling process will

be very attractive and inspiring.

Finally, a wide range of applications remains to be
investigated. Synthesis and étability analysis of self-tuning control
algorithms may suggest prototype strategies. A successful application,

howeve is still up to the ingenuity of the designer.

-\
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LEMMA Al (Matrix Inversion Lemma)

. -1 1

- a~'scr + ca~'By team
[

(A + BC)-1= A

where A, B and C are the matrices H;;h,@atched dimensions.

,F 3
COROLLARY Al
. B
if Pols T awiv]
! t 32,%5%5%)

where a; and wj are real number and n-dimesional vector respectively,

then

T
(l) P = P ctpt_1$t¢tpt—l

d (Al.1)
1 + C!t"’tpt__lvt

' P ¥
(2) -~ Py, = -1t - (Al.2)
l + ctﬁtpt_lﬁt

-
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Yos



(3

(4)

(5)
(6)
(7
(8)

Proof:

-1
tly Py

1 - apvgPvy = (A + g ¥{Py_1¥e) T

3
T
VePyvy

VIP, ¥, =
e I T

0 < ctwgPt¢t <1, for aj > 0, all j

cthPtPt_lwt = trace P, _) — trace P,

trace Pt { trace Ft—l' all &

- 2
N S T

-

=1 T
= Py v ey
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(Al.3)

(Al.4)

(A1.5)

(Al.6)

(AY. 7

(A1.8)

Then (Al.1) is direectly derived from the Matrix Inversion Lemma.

(2) From

7/

(Al.1) we have

T
epPe_1¥e¥ePeo1ve

-
1+ g ¥ePeoive

]



(3)

(4)

(5

(o)

(7

Pe_1%e

d
L+ apbePe_ ¥

(1 -~ atwgtht)(l + utwgptﬂlﬁt)

— T
=1 -0
VP
T _ t
VePivy =

Pey

e-1%t

T : T
1 = apvp(Py = Pyo) + apPpvebePro v

T
apPeojve v Py

1 + O.t‘bgptflvt

-

Hence we have {(Al.4)

P

T -
Hence, 0 < attht¢t =

ap v PePe_1¥y

Immediate from

T . '

L is positive definite, if @a; > O

J

.
ap¥ePro) ¥y

1y, (due to Al.2)
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(due to Al.l} QO

A3

(due to Al.2)

(due to Al.3)

for all j.

1 + Qt\l»’gpt__l'bt

trace[ctthtwgPt_l]

traceIPt(le— Pzil)Pt_ll

trace Pt—l - trace Pt

(a1te)

»

's

-



(8) From (Al.2) and (Al.6) we have

1p2, _ o T £=-1¥t
; a ¥ Py ¥, = § ap ¥y P

YT+ o biPioy ¥y

1~

T T
; GtthtPF_lwt.

S N

s trace(P,_y - Pt]

1)

trace{Pg - P_.]

{ - (due to Al.7)
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APPENDIX 11

PROQF OF THEOREM 3.1

v
From the assumption that
p(-x) = = p(x)
and also from (3.2.10g), we have -
ple.) )
a, = o0 for all t. , (A2.1)
t =Ty .

We have from (3.2.10e), (3.2.10b) and (3.2.10a) that,
f

- T
Ny = Y — W8t

T T
Y = U8y - sy Prveey
=’

(1 = a, ¥ P ¥ e, : (A2.2)

n

And from (Al.2), (Al.3) and (AZ2.2)

Po_q¥
P v e = t-17t e

1 + Gtwgpt_lwt t

T

Pt_lwtnt : (AZ2.3)
Then we can rewrite (3.2.10b) as

et = et__l + tht_l‘&'tﬂt (AZ.A)

Dencte

-207-



-208-

T, = (8, - 60)"Py (8 = 80) 3 0

since Pt isg positive definite.
~

From (A2.4) we get

=1 -1 ’
Pyro1¢6y = 80) = Pi1(8p_) & 8o) + ap¥yny

-1 )
= (Bp_) - 80)TPL_1(By = 6p) = & (By_y — 80)T¥yny

-3
cr
|
—
I

. -l
= (8 - apPy_j¥eny = 80) [Py — op ¥y ¥{1(8 ~ 8o)
- ap (8 ~ agPyo)dene - 80) ¥pny

2 : -
T, - g (8]0, - 80017 = ap(Py_p¥eny) TPEI (0, - 60)

2 2
- ap (8, - 80) ¥ N + Qt*Tf;-lwt”t

1]

2 .
Tt - at[wg(et - 80)] - th t t - eo)nt
- cszP v, (1l - a,¥,P.¥ )e2 (due to Al.4 and A2.2)
t¥ePevt t¥ePevedet .

(A2.5a)

or Ty o= Tp_] + ap¥(8, - eo>[¢g2?t - 8g) + 2(n, = &)

-

2 2
+ ZGtﬁg(et - Bo)et - Qt¢gpt¢t(1 - ctwgptﬁt)et (A2-5b)

or Tt = Tt_l - ctft(th - ft) + 2ct£t[¢g(8t_1 - 80) + ctwgpt¢t(et-€t)]

+

2 . 2 2 7 T 2 .
thwtptwtﬁt - utthtwt(l - ct*tpt*t)et (AZ.SC)
where

T
= —wt(et - 80)

-
(ad
1
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by = ng — &
Moreover
C(z )ht = fy - (A2.6)

Claim of (A2.6):

Define Bg

! T
[all.--'ana‘bl'.."bnb]

Yo = Fgf’.---.cn ]T

c
Notice that n, = y, - ¥ 6, )
-1
and ClzT ey= vy ~ [‘Yt-l""'"yt-na'“t-l""‘“t-nb]8°
=

Cz"H(ny - €y)

nt + [ﬂ}_._l-_"".nt_nc]Yo
Py Yy 9ge] 8, 180)

+vp - VB - omy

= -y (8, - 8g)
Hence we have eqn.(A2.6).
-
Defi h fr
efine g, = - =
t t 7
1 1 )
then gy = [—— - _]f . (AZ2.7)
-1 2° t
C(z" ")
—

Since 1 - aththt : 0 (See Al.5), the last term in (A2.5c) is

positive and we have
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* .

. 2 . .

Define

—— t

I

Tg = Ty + 2-£1cjfjsj
3
we have
1. . ’ T Tp ) ) y) 2 Ip 2
Ty € Ty + 2op6 [W((B_1 — 80) + ap¥ePy¥pley ~ €)] + Zag¥ePrbp ey
(A2.9)

From (3.2.12), (42.9) and (Al.5) we have
2
T, ¢ T{_) + 2K1|ct|[|¢g(et_1 - Bg)| + ey — €p4] + leatw;9t¢tet
Notice that

ey = &y = ¢€90 - W;et_l (A2.10)

which is F,_; measurable. ; .

-

We have from egns.(3.2.13) and (3.2.15)
’ ) v T 2 E
E(Tt[Ft_l) $Tiop # ZKls(ctthtwtatIFt—l) (A2.11)
T
Let TE = = for 0 ¢ t € =
t
{A2.1]1) can be rewritten as

E(TpIF,_)) € Tioy = by + a (A42.12)
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= 2K,ECa,¥] 2 5
and a, = 2K, (E°t¢tpt¢t5t| t=1)
From the éssumption (3.2.12)
' t t
=1 2 2
tr P =2 a v, ¢ K{ T  |¥
t j=1 tl t lj=1 tJ
Hence we have from (3.2.11) ’ \
1 -1 )
lim sup - tr PN (= (A2.13)
N

Naw

. . ‘
From (Al.8) and (AZ2.13) we conclude that there exist K; € rT such that

-] -1 1 2
- Tp™
L o vEPeve = 5Py Py \q
=1
= tr P
* t T2
itgl a ¥, Prvy
¢ Kp < = (A2.14)

and

T levip v e (T L erp 1 .
et P Ll ot vePeve

1

< Kg < - ‘ (A2.15)

We have by Schwarz inequality

1 1

- 1 ) - 1 ” - . -
r 1 1
tzlz(zctwgthtatiFt_l) ¢ tglts(tzct¢gPt¢t] |Ft_l)J2[E(ct|§£:})J2

o~

n| -

- 1
- 42 2 1
=0 tzl{g([E°t*gpt*t] o))

Also due to the fact that
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1 -
0 < ;“t“’ﬁpt“’t £t 1, for t € (0,%) (by Al.5)

”

we conclude
T £, vIPpv e 1F,_p) € oF 3 E([aagblPyb )2 1F_))
kAN A A AR | poy o troeET e Te-d

, ¢ (Kpo)? <= (A2.16)

{by the ergodicity assumption and A2.15)

-~

Hence, a,, the last term in (A2.12), is summable.

Claim TE 2 0:

(due to dt>0. for all t)

Define fE = Jutft .
Bt = Yors&g ' /
we have
L.t : Tt (A2.17)
g, 7 | DL
¢ ezt 2§t
due to (AZ2.7). -
Hence
fefig, 20 {6 Real| — 1 o
a.f . i ea _ - - .
j_—_l J JSJ = [ C(z-l) 2
7 ) i
Thus we have shown in (A2.12)
Tg 2 0.‘ tﬁlat { = a.s. under the given assumption

By applying MGCT (see APPENDIXIII) we have

«» (1) T't'- T d.5.



where T Is a nonnegative finite random variable;

G I ¢ -
Vs T

(i) and (ii) imply T = 0 a.s.

Since TE is the sum of two positive terms we conclude that_the

Mahalanobis distance betwsen 6, and 8¢ given by -

t

-1
lim (8, «_8g)F 8, - 8g) =0 .8.
t:ﬂ(txo)l’t(t o) a.s

Hence lim Gt
t—.--

Also,

Besides

lim
ta=-

since [

i
t

o |—

1

e

C(z

ey
-

€0

s ™

a.s5. {(see Mahalancbis, 1936)
0 a.s. ag L o =
.18) we have
0 a.s

.

(see Ljung and Soderstrom,l1983)

is a stable filter.

From (3.2.12) we have

lim

- =1 J
s o= ti=]

1

Tf

2

=0 4.5

-213-

(A2.18)
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But n, = €&, = gE + %ft
. A~

Hence 1lim - I [n, - ¢ ]2= 0 a.s.
L Nt=1F Tt
N'.'-' . . .
. F ] -
which implies that the residual sequence convergee to the driving

-

neise.

: %
This completes the -proof.

-
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APPENDIX ILL
MARTINGALE CONVERGENCE THEOREM .

-

THEOREM (MGCT)

If Tt—l'at and bt are nonnegative random variables, .measurable
with respect to an increasing sequence of o-algebras Ft—l' and satisfy

E(Ttlpt;l) £ Tt—l +a, = b

t t
and
~, .

%Elt(- a.s.

we ‘have
-

X bt ( = a3.9. \
and

Tt.‘ T (= 4.8.
;o
¢

i
.

The proof of MGCT is given in Neveu (1973).
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APPENDIX IV

THEOREM D1

Let A, B and € be polynomial with real coefficients. Then
Diophantine equation
AX + BY = C

,has a solution if and only if the greatest common factor QE A and B

divides C.

For proof, see Kucera (1979>.

LEMMA D]

Polynomial A of degree n and B of degree m are coprime if and

only if the corresponding Sylvester matrix $§ is nonsigular, where S is

defined to be the following (n+m)2 matrix:

. ag b bl

a, a) 0 b .
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where 2=
N
alz™h) =ag + a1z + ... + az "
-1 -1 - i

B(z7') = bg + byz™ " + ... + bpz™.

v
Proof:

Necessity: Let
_ T
r = [rosr1veeasTham-1]

and b be the n+m dimentional unit vector with the first element as 1,

i.e. N \\

b=1(1,0, ... 017
Then the equation
Sr = b . {(D.1)
has a unigque solution for r if and only {f S is nonsigufar. h
The equation (D.l1) can be rearranged as

Ap + Bgq = 1

where the polynomials

-1 ~1 o+l
p(: )y = Pp + P12 + ... *t pm_l..
— =1 —m+1
= rg + 12 + ... + rm_lz
and . s A
-1 -1 —n+1
q(z” ) = gg + 9,2 + ...t Q12
= -1 + ~ntl
= rm + rm+lz + ... rm+n_1~



3
Hence A and B.are coprime. o= o~

. oo

At

Sufficiency: : By reversing the argument above. - 0O

The Diophantine equation
P .
AX + BY = € ' ~(D.2)

has a.unique solution X of degree m—-l and Y~ of degree n-1 if the

greatesi common factor of A and B divides C, where

= a s -n
Az Y = ap + a4,z + ... + anz
8(z"") = by + bz~ « b z® :
= = o * 12 + . m= -
- .
-1 -1 - .
Clz ") = ¢cg + C12 + ...+ CyzZ .
and & £ n + m. . _
Proof: . .

-

Suppose that the polynomial g of degree k is the graétgsf common
fay .

.

factor of A and B, i.e. ' . ) ' 4

A = Rg

B = Eg R
and

C = Eg p

Hence we have

/ o o



=T

. -219-

NG

AX+\BY=-C-

Yy

(D.S)r

3

Equating the coefficients of like powers of z=! on both sides of (D.3)

¥

gives

~

I
Sr = ¢

whore S is the corresponding Sylvester matrix of A and E.

and \\\gb

r = [_x'O peoe l;ﬁn.k_h:;O peee t?n—k—-l]‘r

c=[eo, +--n--- cn+m—2k-1]T'

From Lemma DIl § is nonsingular, since H and B are coprime. Hence we
have a2 unigue solution for X and Y satisfying (D.3). where the degree of
X and ; are m—k-1 and n-k-1 regpectively.

Hence X=ig and Y=§g igs a unique solution Qi;(D.Z). where the

degree of X and Y are m—~1 and n-1 respectively.
~

.
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