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ABSTRACT

The. problem of self-tuning reference signal tracking 1s

)
considered for systems represented by autoregressive moving average

,
(ARMA) as well as state-space models. By self-tuning control, it ls'

meant to be a combination of recursive parameter estimation and control

algorithm. A new strategy of controller design is proposed, which is

pole/~ero placement in the 'error transfer function' (ETF) in contrast

with the usual closed-loop pole-placement. Sufficient conditions for

arbitrary simultaneous assignment of !TF poles and zeros are derived.

For ARMA models, a recursive extended least squares type algorithm with

a general nonlinear criterion function, which can be defined by the

user, is suggested and the strong consistency of the algorlt~ is

proved. Reference signal model identification is introduced for the

first time into the context of adaptive control, which provides great

flexibility to track any unkno~-!xternal reference trajectory. The

global convergence of the adaptive ETF pole/zero placement is

theoretically established for deterministic. systems. New stQchastic

optimal control algorithms are derived for the case where the control

objective is reference signal tracking. The noyelty of the proposed

algori~hm9 is that the performance indices are determined by the

prespecified locations of ETF poles as well as zeros. State-space

approach to self-tuning control has been studied also. The recursive

v
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prediction error ~ethod is used for joint state and parameter estimation.

of state-space innovation~~odel. Adaptive reference signal tracking
(

control laws are derived for sY8te~ output as well as an i~easurable

. physical state.

To demonstrate practical applications, the derived self-tuning
\

.;

algorith~s were applied to surface accuracy co~ in turning and end

~ill~ng process. The results of simulations indicate considerable
./

. ..

improvements in geometric accuracy of finished workpieces over

conventional numerical control in the~sence of significant tool /

workpiece deflection.
~
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CHAPTER 1

INTRODUCTION

1.1 BacKground

One of the most challenging fields of modern control theory is

adaptive con~rol. It has received a lot of attention since the early

19505.

The tasK of a control engineer is to produce a desired response

from a variety of systems. The complete knowledge of the systems to be
c

controlled is almost essential to fulfill this task. However, the real

life situation wO'\ild never be ideal, hence produces several hurdles:-

1. The input-output relationship of a system often presents a certain

kind of "nonlinearity". It is found that linear feedback system can

work well in one operating condition, but the performance Can be

degraded when operating point (set point) is change~.

2. Some physical systems are too complex to analyze. The only

information available could be the input-output.data.

3. The aging of systems. changes in operating environments or the

nature of system itself can give rise to time varying phenomena. Hence

the controller design based on linear time-invariant system theory could

become inadequate.

-1-
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Because of these reasons, it is desirable that the-@ontrol

system should -adapt-. itself to circumstances.

The first adaptive system reported was a model rbference

adaptive control scheme for aircraft by Whitaker et al. at MIT (1958).

From then on. there has been considerable interest on model reference

adaptive systems (MRAS) for deterministic continuous time systems as

well as discrete time systems. (See for examples. Parks. 1966; Monopoli,

1974; 'Landau. 1974, 1979; Narendra and Valavani, 1979. 1980). The

specification of MRAS is given in terms of a reference model which telis

how the system output ideally should respond to the 'command signal. The

approaches to MRAS can be categorized into: (1) parametric optimization,

and (2) the use of Lyapunov function and Popov's hyperstability theory.

In the early 1970s, Peterka (1970) and Astrom and Wittenmark

(1973) suggested the use of a self-tuning regulator to reduce the effect

of the stochastic disturbance for plants with unkno~~arameters. The

self-tu~ing regulator was originally proposed by ~alman (1958), who

built a special-purpose computer to implement the regulator. Starting

with the work of 'Astrom and Wittenmark, in the last fifteen years this

branch of adaptive control - self-tuning control has attracted

considerable attention and evolved rapidly. This type of adaptive

control system assumes that the plant has known structure but unknown

and is characterized as a combination of recursive parameter

~
•,
I\ parameters

~mationmethods and control algorithms. Thus. the· two substantial

steps are executed sequentially in each control cycle. The controller

{
/

~



law computation.

-3~

r
is said to possess the 'self-tunIng': property, if the: parameter

.
estimates converge to appropriate values and the control soal Is

asymptotically achieved.

For minimum p~ase (inverse stable) systems, there are

similarities between MRAS and self-tuning-control. Hence unification of

MRAS and self-tuning control methods has been attempted by many authors

(Ljung and Landau, 1978; Egardt, 1979, 1980; Landau and Lozano, 1981; "
,

Landau, 1979, 1982; Astrom, 1983) .. ~

Early design of self-tuning regulators and many MRAS algorithms

involve pole-zero cancellations, which restricts the plant to be inverse

stable. However, it is more a rule than an exception that a sampled

data ~ystem has unstable zeros (Astrom et al., 1984). In a certain

sense, the development of self-tuning control in the last decade may be

viewed as to find a solution to the control of inv~rse unstable ~ant.
A variety of approaches are used t? span the spectrum of all existing

control algorithms, which would produce a stable result when combined

with some recursive schemes for parameter identification.

Since the 1970s, computer hardware and software development

entered a dramatic stage. It is reported that the world's fastest

.
digital integrated circuit today runs at a clock rate of 18 billion

cycles per second. The low-priced microcomputer or microcomputer array,

with sufficient speed, reasonable memory size and software support,

provides an e{ficient tool for on-line system identification and control

Moreover. It haa been reell.ed thet tbe~la •
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necessity to build an expert system, with the aid of advanced computer

so~ware. which provides functions such as stability-supervision and

control algorithm selection for the practical implementation of

self-tuning control. Very recently, a few papers have appeared which

are concentrated on the design of such an expert system (eg. Trankle and

Markosian, 1985j Isermann and Lachmann, 1985; Astrom et ale 1986).

Where systems are essentially of stochastic nature, the

self-tuning controller is designed to regulate the effect of disturbance

on system output. For systems where both reference input changes and

disturbances occur, control objective specifications should be different

than original self-tuning regulators. One of the "important requirements

for this case is that the expectat~on of the tracking error, in the

steady state. should be zero for any arbit~ary external reference

signal. Most of the existing adaptive algorithms, however, does not

take care of this point. Furthermore, if a system description is given

in state variable form with some entries of the state variable matrices

known, and with a few entries depending on possibly fewer unknown

parameters, is it possible to seek a synthesis where the prior

knowledge of the system parameters could be uaed? In addition. it also

seems unclear how to obtain a solution to the tracking problem in an

adaptive manner for the case where a imDeasurable physical state of a

system is required to follow the external reference closely. The main

effort of the research reported in this thesis is to present a

systematic procedure for solving the above problems and investigate the












































































































































































































































































































































































































































































