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ABSTRACT
Brainstem auditor} evoked potentials (BAEPS): the
ti.me_ lécked scalp recorded electrical responses to auditory
stimuli, are clinically useful for diégnosing and monitoring
<
the disorders Qf neurological system. The first part of the
= thesis presents the aevelopment and evaluation of computer
based statistical qlas;ifierg"to recognize normal and
patients’ BAEPs. T'he‘classif?'.ers‘g using time domain
features; namely, latencies of peaks V, f% and III of BAEPs,.
gave 'du&.optimal_performance as measured by accuracy
“’N\\\‘_i§5>3%)' sensitivity (80%) among other indices. Power
spectra of BAﬁPs in normals s?ow three main frequency
bands.‘. In a second formulation of classifiérs. three
feature;. each feature representing the total power in each
of the three frequency bands were used. The classifiers
designed with these frequency domain features vyielded a
o .
perrormance wi?h accuracies upto 77%. Both of “these
classifiers may be used to assist the clinician while

. assessing the BAEPs.

The second part of the thesis examines the effects of

i1



cooling on canine spinal cord blood flow (SCBF). The SCBF

is an imporéant physiological variable altered during spinal

.cord injury (SCI). Localized c¢ooling of the . spinal cord
improves functional recovery after SCI. Hence. the aorffecLs”
of cooling on SCBF in normal canine cord were studied. A

computerized system to measure the SCBF us;ng— hyd rogen
polarography-—at two contrél sites and t%o cooled sites was
developed. In five dogs, SCBF decreased to 50% of the
normothermic values during cooling of the‘cord to a
temperatuée of 16 degrees Celsius. The SCBF did not change
at control sites. It is postulated.‘tﬁat following SCI.
décreasgd SCBF due to localized cooliﬁg'tends to prevent the
outpouring of edema fluid and.othér ;oxic factors from the
injured Qessels. preserving the cord function. Thus, the
finding of decreased SEBF duriﬂg spinal cord cooling 1is

clinically gelevant.
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CHAPTER 1 5
" SCALP RECORDED EVOKED POTENTIALS IN MAN

1.1 Int;bduction:

Ever since Dr.Bans Berger rgcorded electroencephalo-
gram in 192Qs['scalp recorded electrical activity in han has'
been u§E£B} dgring diagnosis in clinical medicine. However,
it was e¢enly in 1847, when Dawson ushered in the first
averager to record the evoked electrical response ‘on. the
scalp, that the <:oﬁcept of selective stimulation of a
receptor or end-ofgén in order 1o test a sensory modality
noninvasively. was realized in practice [Dawson, 13947].
Since the advent of integrated-electronic circuits in 1960s.
appropriate instrumehtation for recording evoked responses/
or evoked potentials (EPs), in clinical setting has become

readily available.

In humans. the [recording of pattern-shift visual,
brainstem auditory and short latency somatosensory evoked
potentials yields reproducible results under controlled

conditions. The EPs provide the physician with objective
. 1



&

ga‘pa to assess a sensory organ and its related sensory
pathways and/or structures. The _presencé of lesions along
.the path of transmission of a sensory signal can be usually
., recognized &ds delays in the sigv.;xa‘l or changes in its
ampli tude. Gross changes in the waveforfn morphology are
evident in seriously diseased states. The EPs also aid the
monitoring of pétierit status following an injury or c'.iuri\ng
specific therapeutic interventions. Although recent :@n.
origin, the EPs have been accepted in clinical. practice
‘rgather‘qﬁickly as evide’nced_by many documen‘;ed .studies, text
‘books__a_nd ‘mo.nographs on t};e subject [Callaway, 1978; Kiloh .
‘et al. ;Sél: Courjon et al.. 19_8‘2: Halliday, 1982; Chiappa.

1983].

The_'.neurophysician uses the evoked potential
characteristic's such as latency and amplitudes as the
indices during diagnosis of disorders re_lated to the central
nervoﬁs systen{. The waveform morphology also p.rovides
important diagnostic information. albeit qualitative in’{
nature but nevertheless useful, and is usually scrutinized
by the physici‘an. In order to 1improve the quality of
objec}:ive inf'orrﬁation obta'i\ned from the evoked potential
'wa:e-f}:m. it is desirable t}';at operator independent indices
be extracted. There has been significant research effort in

-

the recent past, to pravide both manually and with the aid



3
of .computers, 'reliable and _quantitdtive measures derived
from ail modalities of evoked potential wav‘eforms [Morley
and Liedtke. 1977; Aunon and McGillem. 1982: Madhavan et -
al., 1986). In addition, appropriate mathematical Fqchniques
have been employed to ideptify normal ané pathological
'waveformé and tég them ‘for easier identification during.
diagnosis [McGillem et al., 1981]. The problem of suitébl}
quantifying evoked potential waveform for automatic
classification is an intéresting one, in tt_mt. one may
examine the indiéés’employed emperically by the physician
for u.se in automatic recognition éystems and - extract other
useful parameters for defining the: evoked potential waveform ‘

both uniquely and parsimoniously.
1.2 Brainstem Auditory Evoked Potentials:

This thesis addresses the brainstem aud{ppry evoked
potentiéls'and presents an attempt towards automatic'
classification of human brainstem.auditory evoked potentials
(BAEPs) . The BAEPs recorded from scalp in humans are a
sequence S_f. seven peaks each less tha.n a microvolt 1in
amplitude and appear within ten milliseconds following the

delivery of an auditory stimulus. -~Figure 1.1 shows a

4 -+

typical idealized BAEP [Stockard et al., 1977a). In general,

eaéh peak is also called a "wave”.
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In ordeé to understand the oriéin of different
Components‘of fhe BAEP in man. a number of clinical studies
have been ﬁngp£t§ken [Chiappé. 19831. Since. the BAEPs
that are generated in feline &and = other animal species
closely resemble the human BAEP. investigations have been
attemﬁtiﬂ in such animal models [Jewepp et ala. JSTOa.and
1970b: Wada and Starr. 1983]. The effects ofmdifferent
pha;macological agents and experimentally induced lesions
have been decumented to give an insight into the generation
and transmission of the BAEPs in humans. in healthy and in
diseased conditions [Starr.  1975: Stockard et al.. 1877h:
Desmed@l 1977;: Desmedt., 1980]. These investigations suggest
that wave 1 is generated in the VII1 nerve. wave I in the
cochlear nucleus, wave III in superior olivary complex, wave
IV in the lateral lemniscus and wave V in the inferior .
colliculus. It has been also observed that waves VI and VII
are not found in all human sublijects. g However. the

generatorss responsible for ‘them are presumed to lie in

thalamic and/or cortical locations.
1.3 Objectives:

Research conducted in several laboratories during the

’ o . ’
last decade suggests that the latencies of initial five

4
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waves in human BAEPs have been found to be ihe most stable_
indices that can be dérived from the waveform‘[Roﬁe. 1978].
Cﬁ;équently. most clinics establish a set of mean' lan;!
s.d.) basal values; for_ these latencies and any variationa
from them by two or three qpandard deviations are nggeptive
' of possible pathological state. The work reported in this

thesis was started with the goal of answering the following

questions:
i) What indices are used to identify normal and pathological

BAEP waveforms uniquely in a clinical setting?

ii) What are the best features which describe a BAEP for.

computer based classification of waverorms of normal

-

subjects and patients?

1ii) Can the frequency analysis of the BAEP aid the
clinician in discriminating between the normal and
pathological waveforms? Further, can the frequency domain

features provide information for automatic classification?

iv) What types of classifiers can yield clinically userul
classification of BAEP indices, based upon measures \such as
their sensitivity, specificity, positive predictive value

and negative predictive value?
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It was perceived. when the werk for this thesis was
initiated. that the BAEPs hold clues to unravelling seversl
important aspects of the brainstem function which can not be
studied by any other non-invasive technique'and that
research in class;l.f-ication and guantification of BAEPs would
contribute towards furthering the knowledge on BAEPs. The_
wealth of research on BAEPs that Was been reported in

several important Jjournals and conferences and their

increased use in clinical practice has wvindicated this

initial assumption., which motivated the work presented in

this thesis. - »

Chapters 2 through 6 present the results *of the
investigations undertaken to answer the above guestions. 1In
chapter 2. current metheods of recording BAEPs are delineated
and a summary of clinical applications of BEAEFs .is
presented. Chapter 3 deals with the pattern recognition
techniques used for this work. The results of pattern
recognition of BAEPs, usiné time domain features, are
presented in chapter 4. The power spectra of normal and
patients’ BAEPs are examined to evluate their I requency
content and as likely gcadidates for obtaining frequency
domain features to perform pattern classification. Chapter 6

summarizes the work presented in the chapters 2 through 5,



-,

and points vut to possible avenues for future work. -

N I - .

J

14

1.4 Summary: B : g
v )

Evoked potentials provi.de a means of testing the
response of a ‘receptor or an organ to a speciric inp‘ut and
transmission of the generated electrical signal in the
nervous system. The brainstem auditory evoked potentials

(BAEPs) have evolved as a non-invasive probe for assessing

the brainstem fun_ction. Their utilit.y‘has been well

.- —

established as an aid during diagnosis of disorders related

to central nervous system.

The work reported in this thesis examines the
quantitative indices usetful for automatic recognition a1;1d
classification of normal and pathological BAEPs. Pattern
classifiers have been develbped to carry out classification
of normal and patholegical BAEPs. Frequency analysis of
BAEPs has been performed to evaluate the nature of their
power spectra and i;,he suitability of power spectra for

pattern classification.
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— ' CHAPTER 2.

THE BRAINSTEM AUDITORY EVOKED POTENTIALS
AND THEIR APPLICATIONS

2.1 Introduction:

In this chapter. the brainstem auditory evoked
potentials fBAEPs) introduced in the previous cﬁapter are
examined more closely. The recording condiﬁions and the
methods used for obtaining clinically reproducible waveform
are described. The applications of BAEPs are studied and
clinical parameters used for evaluating the BAEPs in normals

and patients are identified.

2.2 Recording:

The BAEPs were K first recorded by Jewett and his

colleagues in humans [Jewett. 1970b]. The BAEPs represent
volume conducted events recordéed on the scalp due 1O
activation of auditorv brainstem mnuclei and pathways

[Jewett, 1970a: Jewett and Williston. 1971].

o/
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In clinical practice. the BAEPs are usually recordgd'

from scalp. in response To monoaural stimulation. ipsi-

lateral to the ear being stimulated. A normal hearing is

.assumed. unless indicated otherwise. during interpretation

of the BAFPs. A click of 100 microseconds width applied to
the head phones is used as the auditory stimulus. The clicks
are set at 60-65 dBs above the hearing thresholdi A masking
white noise is fed to the unstimulateé{ ear to minimize
cross-stimulation via bone and air conduction. The clicks
are applied at the rate of 10 times a second. The ambient
noise is kept low. The differential amplifier inputs are
taken from vertex-right mastoid and vertex-left mastoid on
the écalp and amplified in the fregquency range of 100 - 3000

Hz {Rowe, 19787.

The EEG signal along with the BAEF is averaged Tor

roughly 2000 clicks and displayved on a monitor. Such

continuous display of the BAEF {on the monitor) during
e

recording provides a feedback to the technician regarding
the quality of Ehe waveférm. The recording trial is repeated
twice.for each ear, to ensure waveform reproducibility and
fidelity. A hardcopy of the waveform is obtained on a X-Y
recorder. These stimulus and recording parameters have been

generally agreed upon by various laboratories [Rowe, 1978:

Scherg and Speulda. 1882].

10
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The evoked potent.iagl recording system ﬁerforms the

averaging of the BAEPs qhder the following assumptions?

a) The repeated stimuli elicit the same response. -time

locked to the stimuli.

b) Biocelectric events. other than -those due to the stimuli,

are statistically independent of the response.

-

c) The background biloelectric events have the same
statistical characteristics from one stimulus epoch to the

other.

Whereas.thé first assumption is not always valid
especially while recording certain types ol evoked
potentials t(sucn as visual evoked response) all the
assumptions are necessary Ifor pracﬁical recording of the

evoked potentials. Averaging ot N applied :timuli leads to

the enhancement of the BAEF signal over the background EEG,

Nt/2 <times. A time locked signal when summated N tTimes

results 1in.

Signal = S1 + Sz + _..o...... + SN \\\\\\%“ (2.1)

Signal

"
Z
wm
o
-
@

11
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where Br. B2 L immeee e SN are indiwvidual

* responses and.

As the'backgrounq EEG is assumed tS'be random with
respect.to the.signal. it.summates in the root mean square
sense aﬁd is termed as noise.

{Noise})2 = A2 + A22 + : + ANZ (2.2)
where A1, A2z ... AN are thé background |
EEG for individual epochs.

. By é;sumption (), A1 = A2 = ...... =AN = A

Noise = N1/Z2 A (2.3)
From (2.1la) and (2.3).
Signal/Noise = N1/2 S/A {2.4)
Equation (2.4) implies that if averages of evoked
respsonses to N stimuli are performed, the signal—EP-noise

ratio improves NlsZ2 times.
!

Whereas the averaging technique described above has

been used in some rorm or the other. in recent vyears there

~



/
is a strong trend towards finding better methods foar

recording evoked potentials [McGillem et al., 1985:
Madhavan, 1985: Boston, 1985]. Specifically. in the case of
BAEPS. erked responses to a few stimuli (as few as 256 aor
less!) are being obtained using adaptive filters, [Thakor,
1987)1. It is envisaged that evoked poténtial—recording
systems providing such responses would be available in
clinical.practicg shortly. Of significance would be their’
applications to head injury and in operating theatre where
the status of the subject changes rapidly and;the.ayeraging
method may be taking too %ogg a time.

- 2.3 Normative'DataL,

In normal adults, latencies of initial five peaks
have been found To be the most stable measures derivable
from BAéPs. It has been observed that latéhcies Tor normal
subjiects are statistically stable within individuals,
between individuals and between different laboratories under
similar recording conditions [Chiappa, 1878: Rowe, 1978]. A
variation of more than three standard deviations from the
normative mean values indiéates a high probability of
disorder in the nervous system [Chi?gpa. 1983]. Thus,

accurate identification of peaks is crug;;T‘for BAEPs to be

of clinical utility. Figure 2.1 shows the BAEPs of a normal

-

13



subject recorded in the neurology clinic of McMaster
University Medical Centre. The stimulus‘was delivered at 9.8
times per second 60 dB above the threshold to the ipsi-
lateral ear. Two trials of 2000 ayeréges were conducted for

each side.

The mean latency values (in milliseconds) for normai
subjects from different laboratories a;E (Chiappa, 1983]:
wave 1 :1.7+0.15, wave II : 2.840.17. whve III : 3.8x0.19,

-

wave IV 5.120.24 and wave V : 5.7x0.25.

The absolute values of amplitudes show standard

] .
deviations of more than 50% of their mean values. Similar-
observations have been made on the amplitude ratios of

difrerent peaks. Hence these two indices of BAEPs are used

less often i giinical context.

I

~

The effects of variations in recording paraméters
have been investigated by several workers and are summarized
by Kowe [1978]. .A stimulus rate of 10 clicks/second gives
better waveform reproducibility and smaller variance of
conduction times than a stimulus rate of 30 clicks/second.
There is a progressive loss of amplitude and hence
recognizability of the peaks. as the frequency of

stimulation increases. The temperature of recording should

1

14



be kept constant. In patients with no hearing lo;s. a change
of teﬁperature from 27 degrees Célsius to 37 degrees Celsius
produced an a@erage‘ increase o? 1.4 milliseconds in I-V
interpeak interval (Stockard, 1978). The interpeak iatency
({IPL) of peaks I-V has been reported to be 0.3 mseconds less
in females than in males [Beagleyland Sheldrake, 1978]. The
I-v IPL de;;eases during the ffrst vear of life, and there
is an increase.of the I-V IPL huripg the rifth decade or

\ .
lite. which is likely to be related to‘peripheral hearing

- \

deficits that develop later in life [Robinson and Rudge,

1982a].
2.4 Clinical Applications of the BAEPS:

The BAEPs have found extensive clinical use as
evident from the literature reported during the past decade.
Salient references relate@Jto the applications 1n

diagnosis. prognosis and intraoperative monitoring are

. reviewed below.

LS

The BAEPs are rormed due to the transmission of the

\ -—
ggund in the auditory arferent system and the passage of
_fLe electrical voltage generated thereby. through the

brainstem structures. These events are volume conducted to

the scalp where they are recorded. A damage to the brainstem

15
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by means of tumors, loss pf circulation or demyelination can

result in loss of amplitude or increased delays in various

components of BAEPs. A delay in the interpeak ‘interval of

I-III waves would indicate a lesion in the pontine-medullary:

region’and_an,increase in the III-V interval may be due <10
dysfunction in the midbrain-pontine région [Chiappa. 1983].
Some specific etiologies wherein BAEPs have
contributed to ,diagnosis of le;}éns in the Central Nervoug
System (CNS) ére reported below in section 2.4.1. Section
2.4.2 examines how BAEPs are used to evaluate the head
injury. Section ‘2.4.3 describes the utility. of BAEPs

recorded during intracoperative monitoring.

-

2. 4.1 Clinical applications of BAEPs in the diagnosis of CKNS-

disorders;
Multiple Sclerosis:

‘In demyelinating disease such as Multiple Sclerosis
(MS), BAEPs are useful to detect the ‘presence of
unsuspected lesions, for confirmation of the diaénosis and
for monitoring the treatments of the patients.: There have
been a number of studie§ on the application of BAEPs in

patients with MS [Stockard. 1977b: Chiappa,. 1880; Kjaer,

-
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1980a and 18980b: Green and Walcoff. 1982]1. The results of

major studies of BAEFs in patients with MS have been
reviewed by Chiappa [1983] where it is reported that the
BAEF waveforms were abnormal in 38% - 46% of patients. The
IPL éf III-V; which corresponds to the white matter segment
ofthe neural tissue between- the superior oli;ary complex ana
finf?rior- colli;ulus. increases in 28% of the MS patients
with abnowmal BAEPs. Figure 2.2 shows BAEPs recorded from a
patient diagﬁosed. to - have multiple ;clerosisf 1t can be
observed that the latencies of the peaks have increased and
conseduently. inter-peak intervals have also increased.
This increase has been attributed to the fact that the
demyelinating process slows the transmission time of the
signal, thus resulting ijxfthe increased latencies. In many
instances the definition of peaks is poor [Chiappa, 1980 and
1984]. -
4 ¢

Birth Trauma:

-

In infants. the BAE#s&have been particularly
sensitive to disorders such as birth trauma. anoxia, sudden
infant death syndrome. postmaturity. intracranial
hemor rhage, encephalitis and brain death [Nodar et al.,

1980: Salamy et al.., 19807. Infants afflicted with such

disorders have been observed to have significant increases

17
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in latency and amplitude ot I.III and V peaks among other

changes of BAEP parameters.

b

Tumors:

BAEPs are the most sensitive test for screening

patients suspected with acoustic neuroma [Chiappa, 1983]." In

- one study conmprising of 35 acoustic tumors and 7 temporal

bone tumors, it was noted that. tumors that press on the
VII1 nerve gave rise to an interaural latency of (0.4 msec
(normal<0.2 msec) at fhe first peak {Seltexrs and Brackmann,
1977). It was also found that the size of the tumor was also
directly proportional to 1-V interval in 18 subjects.
However. it was observed that if the subjec;.has a ‘hearing
1655 >75 dB. the BAEPs wvield greater talse posigive
Tindings. The BAEPs may be especially useful in detecting
acoustic neuromas at an early stage where the abnormalities
of wave 1 and wave II suggest the presence of tTumor
ipsilaterally {kRobinson and kudge, 1982b]. The
cerebellopontine tumors may cause extinction of peaks after
wave I1. b

2.4.2 Applications of BAEPs in Prognosis:

Head Injury:



Several investigators Qave reported- the mqnitoring-of
BAEPs in patients with .severe head injury from the tim; of‘
admission tollowing injury to several months after injury
[Greenberg and Ducker. 198%; Seales et al.. 1979].L The
presence of an intact BAEP 12 hours after the injury. even
with prolonged IPL I-V i=s a gooﬁ-indication of a favourable
prognosis. Facco et al. [i985] state that the break point
between the irreversible brain damage‘ar‘:d reversibl:
dysfunction.is determined by an interpeak latency of peaks
I-V of 4.48 ms, as observé& in 40 patients with head injury..
It was found that 19 out of 29 survivors (65%) had an IPL of
I-V in the range 3.82 - 4l48 ms, six months after injury.

-

Gregnberg et al. [{982] developed grading schemes to
quantify the level of abnormality of the BAEPs following
head injury. According to their classifiéation-strgtegy.
normal waveform is grade I. In a grade I1 waveform. only the
waves 1 and V are discérnible and delays.in the latency of
these waves may be seen along with amplitude reduction for
other waves. In a2 grade I1I wavefoéml all peaks except the
first peak show significant deviations from the normal. A
grade IV BAEP is one in which only the wave I is seen. Based.

oa-their study of more than 100 Head Injury patients, Green-

berg et al. [1982] report that. majority ot patients with
-
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grade I1 BAEPs survived: but patients with grade III and IV

deteriorated and died or were left severely disabled. It is

postulated that patients wifh'@rade I1 BAEPs have impéire@
neural systems which are still viable [Newlon et al., 19827 .
Anderson et al. [1984] have also found the abéve scheme
clinically userul tor predicting the prognosis of patients
with severe head injury and report that BAEPs"yield a low
rate of ftalsely pessimistic prognosis. They notgd. from a
data of 39 patients with closed head injulry.‘ the BAEPS

proved to be the best predictors of outcome cpmpared to

intracranial pressure. - -pupillary reflexes and motor

responses.

Karnaze [1382) studied 26 patients who were comatose
following head injury and found that 19 patients (73%) with
normal BAEPs on admission survived and that ;;eserVation ot
BAEP correlgped with a go?d quality of survival. Karnaze et
al. [1982] state that. while decerebration is associated
with brainstem dysfunction, it does not always result in
abnormal BAEPs, an observation also reported by Greenberg et

al. [1982].

Figure 2.3 shows BAEPs of a pa%iént with head injpry
and admitted to the McMaster University Hospital. One can

observe that there is a poor definition of peaks accompanied

‘goé
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by the degeneration of morphology of the waveﬁorﬁ.
. -
, S
In summafy, for patients with-head injury, a normal
‘or near normal BAEF recorded within 24-48 hours after the

trauma predicts good prognosis; however, abnormal waveforms

are predictors of unfavourable‘?athée.
2.4.3 The BAEPs in Intraoperative Monitoring:

The BAEPs have been immensely useful in neurosdrgical
operations in the cerebellopontine angle [Grundy. 1982]
whereby the changes in BAEPs have been seen with surgical
retraction, operative manipulation., positioning of the head
and neck for retromastoid craniectomy and a combination of
hypocarbia and (moderate hypotension. It is sﬁggested that
the monitoring the BAEP waveform may prevent 1injury to
auditory nerve and brainstem during operations in the
cerebell opontine angle [Samii. 1986]. It 1is pérticularly
useful during procedures where hearing is at risk, such as

during removal of tumor in the vicinity of cochlear nerve or

vastibular nerve section [Raudzens and Shetter, 1982].

2.4.4 The Effect of Barbiturates and Similar Compounds on
BAEPs:



Stgrr et éiw[lSTS] studied nine patients whb-had
taken a variety offdfugs inclqding benzodiazepihes. phéno—
thiazines and propoxyphene. The BAEPs were resistant to all
the above drugs and were normal when other clinical measures
of brainstem function such as ‘spontaneous respiration, cold

il

caloric response,- oculocephallc reflexes were absent or

depressed.' If the cortex was not»damaged. these patients

with normal BAEPs were fournd to make_ good recoverie
- Similar results were observed in animals [Sutton et al.,
.1982; Bobbln-et al., 1979]. it 15'be11eved that synapse 1is

site of action of hypnoﬁic compounds {Sharpless, 1970] and

the effect of such agents would be seen minimally at the end.

organ or nearby synapses which generate the volume conducted

potentials_[Sutton et al., 1982]

2.4.5 Brain Death;

In patients supected to be brain dead, BAEPS have
been used to make a definitive diagnosis. In twenty patlents
with isocelectric EEG. ﬁhe BAEPs have been either absent or
have shown 'only the presence of wave I which also
disappeared subsequently. The components of BAEP were
abnormal and disappeared in a rostro-caudal segquence [ﬁ;a;r.

19767]. Figure 2.4 shpws a BAEP recorded in McMaster

32



[ .
University Hospital, from & patient with suspected brain

death, who subséquently died. - -
2.5 Summary: . ‘ /’

In this chapter, a summary of the characteristics of
ﬁormal BAEP waveform and some of the clinical applications
of BAEPs were presented. It would be userul if classi-
fication of BAEPs was performed aupomatically as an ald to
clinical diagnosis, which is the objective of this research.

The automatic classification of biological ;§vef$fms
islan important area .which Paptern kecognition 1is

..addressing. currently. Spvecifically. the automatic

recognition of ECG. EMG. EEG has .brought significant

clinical benefits. In this context. computer based
"classification of BAEPs would complement the clinician in

providing objective assessment of the wavetform.

23
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CHAPTER 3

AN INTRODUCTION TQ PATTERN RECOGNITION TECHNIQUES

AND THEIR APPLICATIONS TO BIOLOGICAL EAVEFORH PROCESSING
3.1 Introduction:

Pattern recognition has emerged as a novel discipline
in the recent past with strong interdisciplinary ties. Its
development has been inflﬁenced by such diverse rields as
) étatlstlcal decision theory. estimation theory. neural
dvnamics. bilology. medicine. psychology and llngqistics
amongst others. The techniques drawn Irom these aféas have
been 1nvokea ana adapted Tor developing macnines which
measure. categorise. recognlze'and classify patterns. This
chapter presents two such techniques which are used ror
class3itying BAEFs 1n this thesis. The implementation or

these classifiers is presented in the next chapter.
3.2 Concepts of Pattern Recognition:

The term. pattern. encompasses a wide variety or
oblects or data. including images. waverorms. handwritten

and printed characters or a mathematical description of an
28
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obiect or some process. A class is described by some common
attributes or 1TSS members. Consequently. & pattern’
recognition system categorizes the input patterns or their
description into identifiable classes via the extraction o1

signigficant features rrom a broad background or 1irrelevant

detail [Tou and Gonzalez, 1974]. T

Automatic pattern recognition systems are 1ideally
suited when thel .inr‘ormation to,be handled is large:- such as
when the features wﬁich des;:ribe t;xe objects are several,
when there are multiple classes and when the mathematical
processing is too complex to be done in a reasonable aﬁount
of time. Fattern recognition has made signiricant
contributions in enhancement and segmentation or satellite

and medical images. analvsis of biomedical ana radar

signals, towards geophysical exploration and 1in economic

torecasting.

Fig.3.1 shows & typical pattern recognition scheme.
The incoming data from the object to be classified 1is sensed
through some iensors. The relevant features are obtained
and th;a classification is then carried out based on decision
rules whicB are either specified earlier or are “learned”
from the patterns. If the féatures convey significant and

userul information for discriminaztion between dirferent

classes. the classifiers tend to be simpie. Un the
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contrary. complex classifiers are needed to discriminate
between patterns which are represented by features that do
not differentiate various classes unequivocally. The design
‘of subsystems for aefficient Teature selection. Teature
extraction and the implementation of classifiers which

provide low misclassificajtion rates are principal goals of

pattern recognition methods.

Often. .the patterns are perceived and modelled as
samples from a statistical distribution and the features can
be represented by numerical guantities. In such an instance.
the classifiers will be a set of statistical decision rules
based oh class statistics such as mean vector and covariance
matrix. This method of assigning patterns to ditferent
classes based on their'statistical de scriptors is called

statistical pattern recognition.

-~

ln certain applications where structural or

contextual intormation is of relevance. a complex pattern is

divided into its simpler entities called primitives. The
primitives are éombined through certain grammatical rules
called the pattern grampar and difrerent classes result from
various combinations of primitives. 1f a given unclassified
pattern can be generated by a particular grammar. then the

pattern belongs to the class des;::ribed by that grammar. This

approach 1s termed as syntactic pattern recognition [Fu.

kY

LY
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1982].

Because of the quantitative nature by which the BAEPs
are characterized in the present work. statistical pattern
recognition techniques are used to classiry the BAEPs. A

description of these techniques is presented below.

—

i

3.3 Techniques of Statistical Pattern RecognitiOE\Used in

The Present Work: .

Whenever a set or objects are given. those objects
which appear similar to each other, in general, will be sgid
to belong to the same class. If some measurements are taken
of an obiject or a pattern. the relative proximity or
similarity of any two sets oI measurements will suggest that
those patterns which generated the measurements belcﬁg o
the same class. An objective measure of similarity between

the measurements may tfurther help in making the decision.

Mathematically, if there are N measurements 01 an

object, they can be represented by an N dimensional wvector.
. —

Usually. these measurements are real numbers and form.a

pattern or a feature vector. X.



X = x1 where x1, x2...... XN are
x2 individual measurements.
xN

In statistical pattern recognition systems, the
vector X is treated as an observation of a random variable
with N dimensions. ( Bold faced variables represent a vector

or a matrix).

If there are no labelled samples available'to the
designer while developing a pattern recognition system, an
initial exploratory .technique such as cluster analysis may
be used to eiamine the existence or naturai classes ig 8
given set of patterns [Dude and Hart. 19873]. Such an
analysis may pfovide insights into the nature of patterns.
1t there is some previous information about the patterns., 1in
terms of ;he probabilities of different classes and cless
conditional density -functions. then the probability of each
class. given that pattern X has been observed. can be
computed. Bayes classifier is one such classifier, which is
based on concepts of statistical decision theory, for
evaluating the a posteriori probabilities of a pattern
-belonging to & particular class. 1t is used in the present

worlk.

Baves classifier treats each pattern as an obser-
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vation of a random variable and -assigns the pattern to a-

class with maximum 'a posteriori probability. The design of .

the Bavyes bla351rier minimizes the error of nu3013331r1—

cation and consequently it is very attractive in statlstlcal

pattern classification problems.

Alternately, one may project the samples i1n 'N’
dimensions on a line which produces a separation of the
'samples. This procedure is termed as Fisher’s Linear Discri-
minant Function (FLD) and is also used in the present work
.to classify the BAEPs. Sections 3.4 and 3.5 describe the
RBayes classifier .and FLD, and present the equations used for

classification.
3.4 Bayes Classifier:

In this section. the design criteria Ior development
of Bayes classifier are presented. The rfollowing description
assumes that there are only two classes. These concepts can

be extended to multiple classes.
a—

Given a pattern X, such as a BAEP. with N features
(i.e. xt(1), xt2)..... x(N)), one can decide that pattern X
belongs to class A or class B depending on.

P(A/X) P(B/X; given X (3.1)

B

WA v =
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In equation (3.1), P(A/X) and F(B/X) are thg a
posteriori probabilities of class A and class B, given that
the pattern X has been observed. Equation (3.1) states that
the'éecision to aséign the patéern-x is based on the maximum
a posteriori probability of either of the two classes. By
Bayes theorem [DInida and Hart. 1973]..equation-(3.1) can be

written as,

il

/

rP(X/A) P(A) P(X/B)P(B). (3.2)

m AV B

.

In equation (3.2), ptXs/A) and p(X/B)are the
conditional probability density functions of the observation

vector X, F{A)yand P(B) are the a_Exig;f“nxebabilities of

occuren of class A and class B respecfively. The & priori

probabilities can be estimated' fro-r-n a knowledg; of the

number of normal and abnormal BAEPs recorded in thg evoked

pétentials laborator?. Arbitrarily, class A has been taken

as the class ceontaining the ébnormal BAEPs. and class B ie

degigﬁated té be the normal class. The inequality sign bet-

ween two sides of the equation (3.2) iﬁplies. decision is in J
T—

favour® of class A if the left hand.side ot the: equation 1is

greater than right hand side; otherwise, the decision is in

favour of class B. The decision is to be arbitrary. if the
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acceptable in practice as multivariate density tunction is

35

two sides are aqual.

As the conditional probability density runctions,
describing the data in either class A or clas=s B. are not
known, an assumption that the BAEF patterns would satisty
the mulﬁiva;iate normal density function is made. This is

’
ceasily defined by the mean vector and the variance-

covariliance matrix.

-

L

I1f theré are N Treatures, the multivariate normal

density is, -

exp(-(X-MITS-1(X-M)/2)

p(X) = (3.3)
(2 PI)N/2 ISt /2
In equation (3.3), X is the data vector, M is the
- mean vector. S is the variance-covariance matrix. {51 1its
determinant and PI = 3.14159.;. ‘
M = E[X] ) (3.3a)
S = E[{X-M)(X-M)T) (3:3b)

In equations (3.3a) and (3.3b), E[- ] denotes the
expectation operator. Eguation (3.3) is usually abbreviated

as.
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p(X) = N(M.S) L (3.4)

The 'N' dimensional multivariate normal dehSitY

function, for classes A and B, is written as,

p(X/A)=N(Ma ,Sa) (3.5a)

p(X/B)=N(Ms,Ss ) ' (3.5b)

where Ma 1is the mean vector and Sa variance-

covariance matrix for class A respectively. Similarly Ms and

"

Ss define +the mean vector and variance-covariance matrix of

class B. The computation of the Ma, Sa, Me, S is described

in the next chapter.

From (3.2) and (3.3),

1)

" P(A)exp(-((X-MA)TSa1 (X-Mr))/2) > P(B)exp(-((X-Ms)TSe-1(X-Ma))/2)

— (3.6)
(2 PN/ |Sel1/z

(2 PI)N/2 I1Saqis2

t

Taking the natural logarithm and simplifying (3.63,

T

results in the governing criterion expressed as,

(X-Ma)TSa~1 (X-M8)-(X-Ha}TEa-1 (X-Ma) 2 In(P(B)/P(A))+In(ISatsiSal) (3.7)

mA v >
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The terms
42 (X.Me.SB)= (X-Ms)TSe-1(X-Ma)  (3.7a)
d2 (X,Ma,Sa)= (X-Ma)TSa-1 (X-Ma) (3.7b)

are scalar measures of distance “or pattern X from the
corresponding normal distribution.

If we let,
T = 2 In[P(B)Y/P(A)] + In(1Sa] /|SBd) (3.8)

as a threshold. the first term on the right hand side
Eiases the decision in favour of the class with larger
probability ard- the second term biases the decision in
favour of the cPass with a smalle—r-. determinﬁnt of the
variance -covariance matrix. Since the _de£erminant of .the
covariance matrix 1is pr0portibnal to the square or the
volume oT the probability density  functions. the Bayes
classifier favours the class with the smaller volume or the

denser class [Duda and Hart, 1973].

The vectors Ma, M and matrices Sa. SB  are not
known & priori and  are estimated from a set of labelled
patterns. The computational procedure for_ obtaining
estimates of these parameters and the implementation of

Bayves Classifiers is described in +the next chapter.
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3.5 Classification by Fisher's Linear Discriminant

Function:

Given a set o patterns Tor classification. the goal
of FLD is to find a line which best separates the patterns
F

when patterns are projected on tog that line. Figure 3.2

.shows a two dimegsional case for two classes. A and B.

-

A discriminant W. onto which samples are projected

is5:
vy = WX (3.9)
Since projected pdints lie on the same line. the
patterns yi. yz ...yn becom2 scalars. Optimally, the

r

samples should fall into two separate clusters. Une should
choose & diseriminant as in Figure 3.2 and not as in Figure
3.3. 1t has been shown that an optimum- choice for W 1is

[Duda and Hart. 1973:7Johnson and Wichern, 1982]:

.

W = Sp-1(Ms-MA) v

Stated geometrically, Sp-! rotates the vector between
the means to take into account the shapes of class distri-

butions, to find the optimal discrimin:ant._ B
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WX = (Ma- MAVTSp-1X £3.101

The midpoint between the two classes 1is the point
which demarcates the two classes and decides the class
me&befshi )

P 8

The mid point.’'m’. between the two pattern classes is

‘given by.

m = frﬁ;—_mws#—um+m)/2 (3.11)
Iﬁ equétion (3.11), 'm’ is a scalar.
For any new pattern X0. to Ee classified. let,
YO0z (Ma~-Ma¥TSp-1X0 {3,120
Allocate X0. according to the classification rule:
Pattern X0 belongs to class B, if
YO > m (3.13
Paﬁtern X0 belongs to class A, if

.~

YO < m (3.14)

Computational details for the estimation of matrix

Sp. are given in the next chaptler.
It must be stated that both Bayes classifier and FLD
are asymptotically identical under the simplifying assump-

tion of equal variance-covariance matrices for both the

~lasses A and B. Althouegh. this may not bé‘alwayé true in
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pradtice, FLD is an usefgl approach in several practical
situations. For example. the FLD can be implemented
separately to test the performance of Bayes classifiep;.Thié
mutual test method is implemented for recognizing BAEPs from
normal and patients, as described in the next chapfer.

-

‘3.6 Summary:

In this chapter the mathematical preliminaries
required for désigning the Bayes Classifier and Fisher’s

Linear Discriminant Function was presented. Although, the
' BAEPs show considerable consistency and uniformity 1in
normals. they do differ significantly in patients. Under
these conditions, it is useful to characterize theg by their
statistical wvariations. Cénseqﬁently. Bayes classifer and
Fishgr’s Linear discriminant function are good candidates
for developing appropriate classifiers as they use the
underlying statistics to classify a pattern such as a BAEF
waveform into appropriate class. The ipxt TWO dhaéters
describe the resulgs of such an investigation 1into thé

efficacy of using these two classiliers ﬁ' identifying the.

normal and pathological BAEPs.

/ :

b
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CHAPTER 4
GSTATISTICAL PATTERN CLASSIFICATION OF BRAINSTEM AUDITORY

EVOKED POTENTIALS USING TIME DOMAIN FEATURES -

4.1 Introduction:

The role of BAEPs in assisting the neurophysician for
evaluation of brainstem function during diagnosis, prognosis
of neurological glisorders. and during neurclogical =surgery
has been outlined in the eéfli‘er chapters. 1t is thus
evident that latencies and amplitudes of the BAEPs are being
used during the diagnosis of a wide spectrum of disorders ot
the central nervous system. ¢« It is of interest tc develop
classifiers which will provide information regarding the
normal ity or pathogenicity of a given BAEF to aid the

ﬁhysician while making objective evaluation ot the patient.

The classification of waverorms 1s performéd by
extracting relevant Tfeatures /I"rom the wavefOf-m. These
features must represent the waveform and 1its signitficant
attributes in a concise and unique manner To pf’o‘}ide data
compression and at the same time provide acceptable"’accuracy

of classification. Whereas. a waverorm may be represented
' 43
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¥
by mathematical sbstractions such as Legendre polynomisals,

—

" splinesf or similar functions, it would ‘be attractive to

choose simpler measures of characterizing the BAEFs.

i1t was a logical step to &sttempt the BAEP
classification on a computer wWith the  latencies of the
earlier five. peaks used as Teatures. The amplitudes of the

peaks 1-IV are not generally used in clinical practice due

to thei;miaééeHQAEiahéés:-uThé amplitude 6f'béékﬁv'has.spméf-
relevance especially in patients with multiple sclerosis
[Robinson and Rudge, 1977]. The present chapter describes
"the devéiopment and application of péttern classifiers to
classify normal and pathological BAEPs by employing thOSe
rfeatures the neurophyéiciap makes use of while examining the
BAEPs. namely the latencies of the earlier five peaks and
amplitude of the fifth peak. In the next section:
justification for using the Bayes classifier and Fisher’s
linear diseriminant (FLD) is given. The data acgquisition and
the design of the classifiers are presented in section 4.3.
The feature selection and implemeptation details are given
1n‘section 4.4. The results and periormance of the

classifiers are presented in sections 4.5. These results are

discussed in section 4.6.

4 _ 2 Choice of the Classifiers:
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The classification of BAEPs can be achieved by »
syntactic or statistical approaches. However, with either
method.. it would be advantageous to take into account the
inherent statistics of normals for the design of the
classifier. Under these conditions. Bayes classifier is
suitable as it treats each new observation. such as a BAEF

waveform as the sample of a stochastic variable. In

addition. the Bayes classifier makes the classif_ication

process probabilistic, which is intuitively very attracti_ve.
The theoretic-al errors of class\ification ére also minimal
for thel Bayes method ([Hand, 1881: Duda and Hart, 1873].
Simpler sta_tistical distributi&ns can be devi_sed by Fisher's
lineay discriminant method which was aléo used in this work

as an alternate classifer to verirfy the c¢lassiiication,

accuracy. -

o
3 &
4.3 Materials and Methods:
X
4.3.1 Data Acquistion
1
\ The BAEP data used in this study was recorded at the

Neurology clinic of McMaster University Medical Center.
Every year, a large number (n>1000»n of BAEPs are recorded
from patients with wide range of neurqlggiéal compli-
ca‘t:ions:\ Only the BAEPs of those patients who had a normal

.}
hearing threshold were used. The BAEPs were obtained from
. ‘ L
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. -

C;-Ml. Cz -M2 ife vertex-right mastoid and vertex-le:it

<
mastoid electrode locations on the scalp employing a Nicolet

Patnfinder II system in our Evoked Pé%entials Labofatory.

The contralateral mastoid was used as the reference. The

stimulus was & 0.1 ms pulse delivered 5.8 times per second
at 60 dB above the hearing threshold. The fregquehcy range of
recording was 150-3000 Hz. Two thousand BAEP responses were

averaged, displayed and plotted on paper.

The latencies of the initial five peaks were measuread
from th§ computer display of the evoked potentials instru-
mentation system. The physiéian's diagﬁosis of the patient,
based on the.loverall neurologicél assessment of several
other cfiteria. is taken as the standard for evaluaticn of
the accuracy or reliability of classification. The

clinician’'s assessment of severity of disease was not used

as a criterion for inclusion of BAEF in the study. Rather,

v

it was the clinician’'s statement if the patient was healtﬁi”l,

or patholeogical with & normal or abnormal waveform based on
latencies that was used as the criterion to indicate the

normality or otherwise of the BAEPs.

The BAEPs were obtained from two groups: a normal
group of 49 c¢linically healthy patients (group B) and a

p.atient group (group A) of 20 patients with cont irmed

multiple sclerosis (MS) and 21 ‘gatients with head injury
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(HI). ~Thus. the patients in group A ﬁad - abnormal BAEPs.
Thé mean age of normals was 35.1x18.1 years ({32 Temales,
17 males) and that of the patients was 34:9*18.1 yé;rs tlg
females and 22 males). The BAEPs of right and letft sides'of
all patients were used. The BAEF of each side was taken as
ohe pattern. with the initial five latencies or the BAEP .
and the amplitude of the fif;h peak used as features.' In
eight patients (6 M3, Z Bl). BAEPs from one of the sides
were normal. These BAEPs were excluded from rfurther
analysis. Thus. there were a total.of 172 BAEF patterns

from 90 patients, used in this study. The feature selection

process and implementation of the classifier are’ given in

section 4.4. ¥

4.3.2 Design of Bayes Classifier:

Equations (3.3) through (3.7) were implémeqted on a
: aéinframe computer. The wvectors Ma., Ms and maﬁrices S,
Sa  are not known apriori and are estimated from 2 set of
labelled patterns. In the present sfudy. latencles from a
subset of BAEPs labelled those of patients were selected to
estimate Ma, Sa. Similar computations are performed for the
estimation of MB and Sg using latencies from BMEPs of'nbrﬁal
subjects. The vectors Ma, M. and métrices Ss and Sp are

. »
computed as follows:

<
S~
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.

For ¥ = 1.2 ....N features. -
na
Mr (i) = 1l/nA & Xi(i)a (4.1}
=1 | ’
ne )
My (i) = 1/nB € x§(i)B ’ (4.2)
i=1 |
In equation t4.1), Xj(i)a‘'s are the 'j ’ (totalling
na) measurements on each .of 'i ' <features (totalling N of

lgl;-elled patterns Ifrom class A and na is the number of
labelled samples from .class A (called the training set).
Similar computations were do;ne Tor class B usinggindividual
features of lébelled nf-terns. x;(i)s’'s {equation (4.2)).
where ne is the number of labelled patterns in the training
set of class B. Both M\ and M are veeitors of dimension
it X 1) where N is the number of fe;.xtures. Each element
si,j. of the covariance matrices S5a and S is 'computed as

F

follows, from a training set of na \de me labellad samples:

- IR
s,y = 1l/m € (xik --M(i))(xyx - M(3))
. k=1

“

(4.3)

-

In eguation (4.3 substitute. n=na or n?/

)
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corresponding to class ‘A or c¢lass B. Also. the appropriate

-

mean vector is substituted for M. The dimension of each

’

covariance matrix is N X N.

4.3.3 Design of Fisher's Linear Discriminant Functionm:
) t
. Fisher’s Linear Discriminant (FLD) projects all
patterns on to & line which maximizes .the separation of

means between the classes when weighted by the covariance

matrix. Given a labelled set of samples, the FLD is

- determined from: -
L

-~
=
1]

linear discriminant function

{ ' Ms =_mean vectqr of class A
‘j Ms - mean vector of class B
S = pooled variance-covariance
matrix. | Lo
- : -
Se = [(na~1)Sa +(ne-1)S8]/[na+ne-2] {(4.5)

The computation of MA. Sa, MB, S8 is performed from a
training set as in Bayes method. The equation (4.5) implies

that +the second order moments tor both the classes are

-

v
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equal.

4.4 Feature Selection and Implementation of the Classifiers:

Both'the Bayes classifier and FLD were implemented in
FORTRAN on & CYBER 170 computer system. In order to
evaluate the erficacy of using each latency as a Ifeature,

‘the classiTication of BAEPs were done using one dimensional

*

Bayes classifier given by eguation (3.7) with each
individual lﬁtency as the ‘only Ifeature. It was hoted that
latency of the fifth. peak gave the highest accuracy of
classification (76.7%3 followed by the latencies of the IV
peak (72.7%), 111 peak (71.0%)}, Il_peak-(GB.S%) and 1 peak
(65.6%). The amplitude of the V peak and interpeak intervals
did not yield accuracies greater than 65%. Classifiers were
then designed_ with two. three. four “best” features
(Fig.4.1). Finally, the following combination of features

were utilized to develop the Bayes and FLD classifiers:
a) Latencies of initial five peaks (N = 5).

b) Latency of the first peak and interpeak intervals of the
initial five peaks {N=5) . .

c) Latencies of the initial five peaks and I-V interval

{N=6).
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d! Latencies of the five peaks and the amplitude of the

fifth peak (N = 8).

e} Interpeak intervals of peaks I-II., II-III., III-IV and
IV-V (N=4) ' |

The classification of BAEPs was performed by the

following procedures [Aﬁhon'and McGillem, 1982]:

1) Partition-Substitution method 2) Leave-one-out

method.

1) 1ln the Partition-Substitution (P5) method. a
subset of BAEPs was used as the training set. Initially,
BAEPs of 20 normal and 20 pathological subjects were used as
the training set for each of the above implementafion with
different sets of features taj-{e). The mean vectors,
variance-covariance matrix for class a (pathological class)
and class B are computed using equations t4.1)-(§.3). All
the BAEPs (n=172) were then used as test patterns. The
élass membership of test BAEPs were determined from
equation (3.7) for the Bayes classifier and from equations
{3.13) and (3.14) for the Fisher'as Linear Discriminant

function.

L
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The accuracy of classification was compﬁted for each
iteration using the diagnosis given by the clinician as the
referénce. The percentage accuracy of.correct classification

was computed from,
Accuracy (%) = No.of BAEPs correctly classified X 100/NT

(4.6)

- where NT = 172 i,e.. total no. BAEPs.

The training set wés slowly increased from 20 to 70
(in steps 6f 10) in each of the two classes, whereas the
test set was always the set of all the BAEPs. The class
membership was computed for each new‘implementation of the
classifier. The percentage accurac& was vplotted as a

function of the number of patterns in the training set.

2) 1In the Leave-one-cut (LO) méthod. all patterns
except one BAEP. to be classified. were used as the %raining
set. The classifiers were designed, and the test BAEP was
then classified using Bayes and FLD cléssifiers. * After
classification. the test BAEF was returnea to the training
set. In turn. each BAEF was rehoved from the t}aining set,
new classifiers were designed and the BAEP was subjected to

classification. The\?ccuracy of classfication was computed
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. » -
from the equation t(4.6). after all the BAEPs were
classified [Fukunaga. }972]. The feature selection method

described above was also performed using LU method.

The PS5 method yields optimistic results. Although a
significantly large amount of computation is involved . the
LO method uses all samples for both~Fraining and testing and
yields a conservative estimate of the accuracy of the
classifier [Fukunaga, 1972: Aunon and McGillem. 1982]. The
performance of the classifiers were evaluated by computing
the sensitivity, specificity, positive predictive valﬁe and
negative predictive value for the LO “method [Sackett et
al., 19853]. Table 4.1 show sample computatiéns— for the
evaluation of the Haves "clasgifier with three 'best’

features., namely latencies of peaks V, IV and IIl.

4.5 Results:

Figure 4.1 shaows the results of feature" selection
prbcedure using LO method. The accuracy of classification

.

attained a maximum at 85.3% for three reatures. namely the
latencies of peaks V. IV and III. These features are hence
termed as optimum féatures. Addition of }atencies of peaks
II1 and 1 did not affect the classification accuracy

significantly. Figures 4.2 through 4.7 present the results

of applying Bayes'classifier end FLD to classify BAEPs with
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combinations of 1latencies. interpea'k intervals. the I-V
latency, and the Ramplitude ot the firth wave used as
featur’g The accuracy of class'ifi;:ation for PS5 method
steadily‘/ir;qproved with the increasing numbér of patterns in
trainiﬂé_sets. This impfovement ma} be attributed'to better
estimates. of under;ying statist.ics of the distributions due
to Jarger training sets. -as well as to the overlap'of éhe
test and training pattegns. : .
Table 4.2 presents the results of accuracy of
‘classification with different sets of featu:re'% each for
Bayes and FLD classifiers. using Leave-one-out method. The
highest accuracy of classificatior; achieved using Bayes
. .
classifier was. 85.3% for the LO method. 87.1% for the PS
method with a training set size of 70 (Figure 4.2). These
results show that the latencies 6f peaks V., IV and III1 used

as features gave the best performance for classification by

both the PS method and LO methed.

Figure;, 4.8 and 4.9 show the results of evaluation of
the performance of all the classifiers using sensitivity,
specifici;ty. positive predictive valué (PPV) and negative
predictive value (NPV) as the criteria. The classifiers
with features (a) and (b! gave the overall best performance
for the Baves and F-LD method as assessed by accuracy,

sensitivity. PPV and NPV. Further. the classifier with

RN
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optimum features (N=3) yields performance equal to. if not

-

- bettexr than the above two classifiers.
4

The A’ppendix A, presents typical mean values and
covariance matrices of normal and pathological classes.
Samp‘le computjat‘ions for two BAEPs 1(Fig.4.10 of a normal
subject ‘a‘nd Fig.4.11 of a patient) are illustrated in
Appendix A. It may be noted from these sample computations,
the determinant of the covariance matrix of class A is
several hundred times that of the determinant of covariance

matrix of class B. Thus. the c_.'Lass B is denser -compa_red to

class A, a characteristic which facilitates the
discrimination between the two classes [Kamath et al.. 1986a
and 1986b ].

.‘
4 8 Discussion:

The classification procedures described in this
chapter employed features derived from visual identification
ot peaks. Hence those BAEPs for whiéh some of the peaks
were absent or could not be identified, such as for patients
with severe head injury. have not been included.
Conseguently, the recording conditions in the evoked
potential laboratory are critical to. obtain good and
reproducible waveforms. The stimulus rate and intensity

levels must be predetermined and set. Ambient noise must be
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low. McMaster Neurology .Clinric has been using the
parameters - described in section_é.z. These parameters have

been reported to vield good waveform reproducibility and
smaller variance of conduction time. The BAEFs from both
right and left sides in the normal popu‘lation di.d not differ
significantly, 'and. dat‘a from both the sides have been pooled
together for this work while developing the statistics of
the normal class. The latencies of the affected side(s) were
utilizéd for computations of patholoéical clags.

If is not surprising that the latencies of the
succe ssive peaks I-V become relatively rr;ore va luable as
feitures. The delays (when present) of individuml peaks

accfmnlate. with the result that latency of peak V tur¥ns out

o be %e most valuable feature.

Chiappa [1984] states that absolute latencies should’
not be used. by the clinician for interpretation of BAEPs
since they are affected by stimulus intensity changes and
"other extraneous factors all of which induce excessive
variability. It has also been .recommended that interpeak
intervals be used during diagnosis. But one may argue that
there is no significant difference between using latencies
or interpeak intervals for classification as same

information is present in both sets of features. Indeed.

our results demonstrate only marginal difference in any one
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criteria measure for classifiers designed with these two
sets of features (i.e. set (a) and set (b)). For example,

sensitivity for Bayee'method equals aﬁproximately. 80%x for

classifiers designed with these two seﬁs of feﬁ?ures.

Further, our results show thdt ‘the classification of
BAEPSs may be perfor)rned on a eemputer with only three
features as seen in figure 4.1 and table-4.2. comparable. to
that obtalned by other feature sets. . The accuracy of

~

class:.flcatlon in tlgure 4. 1 decreased with the addition qf.
latencies of peaks .II and I as features. It is noted that
the ‘addition .of t.hese two features reduces the quality ot
the feature set. Hence. latencies of waves I and II‘may not
provide sufficient discriminatory information. The accuracy
of classification did not improve with the addition of
either the amplitude of wave V or the I-V interval as a
feature [Kamath et al., 1887b]. Alternatively. it has been
noted that both the latency and structural information of
peaks II-_III-IV—_V were useful in the design of syntactic
classifiers which yielded a classification ‘accuracy of 83%

¥

[Madhavan et al.. 1984. 1985, 1986].

Whereas significantly larger amount of computation is
. . . < . o
involved in the implementation of 4..§ve-one-out me thod,
»
compared to the Partition-Substitution method. the results

obtained. independently from bothmethods agree with each



L i

58
" other thus wvalidating the techniques. The classification
accuracy decreased with a training set of 60 samples
tFig.4.5). This decrease may be attributed to either
variations in covariance mat;_rix or to increased sensitivity
of the feature set (2). A large training set is necessary
for implementation of the classifiers especially in clinical
settings, where a wide spectrum of diseases that result in
abnormal BAEPs are diagnosed. for representing the
pathological class. Similarly, aata banks of BAEPs may be
created for different age groups.

This work did not address the question of whether the
classifiers. described herein, are more‘efficient in picking
out BAEPs of patierts with HI or MS. Individual class
pro.habilities and larger training sets would be needed for
such work. For classification of BAEPs from patients with
severe HI or MS and where peaks can not be ident:ified
easily. featdfés from frequency domain analysis may provide
additional discriminatory information. An investigation to
address '.this latter quevstion is presented in subsequent
. ci‘aapters [Kamath et al. 1984: Kamath et al., 1987a].

o~
The performance of Bayes classifier was generally

<
better than FLD. as measured by accuracy and other criteria
(Fi’gs.4.1- 4,9 and Table 4.2) esper::ially for classifiers

'using_,‘ optimum features and using feature sets (a) and (b).
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It can be shown that the Bayes classifier is asymptotically
identical to the FLD under the condition that covarianca'
matrices for the two classes with multivariate .normal
.density function are equal [Hand., 19813. Hence the improved
accuracy obtained by using ﬁhe Bayes méthod implies that not
only are the first order stétistical variﬁbles {mean)
different for normal and pathological classes But that the
second order moments described by the covariance matrices

also differ for these two classes (see Abpendix A).

The a priori probabilities for both the c¢classes
depend upeon patient population at each c¢linic and would have

to be tuned tao an individdal zite. The a priori

probabilities can be computed by a careful analysis ‘of
previous BAEP records in .the clinic. and may be updated
periodically. Preciselvy computed a prior:i probabilities
would be especially useful if in a'particular geographical

area, there is preponderance of a specific pathology.

On-line implementation of the classiriers degcribed
in this work. on a microcomputer for example, would provide
sﬁpplemental information to¢ the clinician. Appropriate
filtering and peak detection algorithms could be substituted

for manual'peak detection to automate the procedure {Fridman

et al., 1982].°
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4.7 Summary:

~y

In this chapter t}e development and results of
classification schemes to reédgnize and classify normal and
patienﬁs' BAEPs using time domain date were presented. The
results indicate that aﬁtomatic classification -using
features of BAEF waveforms may be performed. which may
finally aid the physician. It was also noféd that the
latencies of peaks V. IV and III can be used to etffectively
classify BAEPs with similar results as with a larger set of
features. The appendix A shows a sample set of computations

on two BAEPs.
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TABLE 4.1 .
EVALUATION OF CLASSIFIER PERFORMANCE

The rollowing results were obtsined for the Baves
classifier using opti&al Teatures 1latencies of peaks V., 1V
and ITI1). The sensitivity . specificity. positive predictive
value (FPV) and negative predictive wvalue lNPV)_wdre

coﬁputed as shown below:

Reference Diagnosis

Pathological Normal
Classification |[class A 59 ta) 10 (b
Result class B 15 (c) 88 (d)

a+b+c+d= 172

Accuracy = (a+d)/(a+b+c+d) = 147/172 = 85.3 %

Sensitivity = a/(a+c) = 59/74 = T9.7 %

Specificity = d/{(b+d) = BB/48 t 89.7 %

PPV = a)(a+b) = 5%/69 = 85.5 %

NPV = d/(c;d] = B8/103 = 85.4 %
N



TABLE 4.2
RESULTS OF CLASSIFICATION OF BAEPS
USING LEAVE-ONE-OUT METHOD

Percentage Accuracy

Number/and Bayves Fisher’s
Description | Classifier Linear
of features | Discri-
. f "~ - minant
3/Latencies of peaks III.IV and V 85.3 80.1
5/Latencies of initial five peaks 34 .1 80.1

5/Latencies of initial five peaks and

interpeak intervals of I-II. II-III.

III-IV and IV-V. 83.3 80.0
5/Latencies of 5 peaks and I-V 75.0 80.0
interval

8/Latencies of 5 peaks and amplitude
of fifth peak B0.0 83.0
4 /Interpeak intervals of I-1I. II-III.

III-IV and IV-V peaks. 78.3 73.8
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CHAPTER 5

POWER SPECTRAL AﬂALYSIS AND PATTERN CLASSIFICATIONKOF
BRAINSTEM AUDITORY EVOKED POTENTIALS USING
FREQUENCY DOMAIN FEATURES

5.1 .:Introduction:
‘ -

Whereas the time domain reatures TIor claésifving
BAEPs resulted in a periormance as described ip the previous
chapter, such classifiers depend on accurate identificatjon
ofﬂ?eaﬁs in the BAEF waveiorm. Although the exant locatioq
ofé;eaks is easy to identify 1n normal subjects t1such as in
Fié.b.l). it may be difficult to localize the latencies when
there are ran&om coﬁponents in the BA?E or when the peaks
become difghsed as & result of_bathological conditions suph
as head Anjﬁry aTc.: this 1s Hliustrated in Fig.5.2. in the
case ¢TI a parnient with scoustid ‘neuroma on the l=tt side
where peaka are el1ther zbsent or are hard t¢ identify. Iin
such cases. the possibility of using rrequency domsin peaks
15 very attractive, In this c¢hapter. the power spectrél
analysiﬁ‘or BAEPs is desacribed in -order to obtailn reatures

tor classification of BAEFPs.

T4
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The section 5.2 deslcribe.s the applications ;)t‘ power
'spectraT ot signals ot bic*ogical origin. This is Ttollowed
by a mathematical description oI the power ‘spectra in
section 5.:.*}he data acquisition and computational
pr8cedures tfor "ést.imat.ingl the power spectra are discussed
in se’ction 5.4. The characteristics or normal and
pat.nojlogical BAEP‘ power spectra and the results ot
classification of normal énd pathologicai BAEPS using the
teatures derived from TIrequency domain are delineated in

section 5.5. Finally. the results’ of power spectral esti-

mation and classification are discussed in section 5.b.

5.2 Some Applications of Power Spectra of Biological

signals:

Power Spectral analysis of biologi~al signals.
mostly based on the agsumption of stationarity., provides
quantifiable information about the frrequency components 1n
the signal. Information about the frequency compeosiTion OT
the signal can then be used to compare -t.he'normal ana
rathological states. For example. Sklar (1871] has
successfully used spectral analysis of EEG to differentiate

between normal children from dyslexic ones. correlation
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bgtween the muscle_function and motor recruiting patterns
has also beerr studied by spedfjral analysis of EMG -[Yoo et
‘al., 197%]. Heart rate variability p;weg spectra feveal the
status ot s_vmpat.hétic ana parasympat‘ﬁetic,‘.systems tor

controlling hesart rate and arterial pressure [Kémath et al..

-4
1987c].

Thus. frequency analyéis of biological signals often
provides insights into the origirx ot the waveform and
physiclogical relevance of its various components. However.
the speo%ral components oOF KAEF have not been examined
critically.iexcépt to provide design c¢riteria for filters
tor iﬁétruﬁentaﬁion to record the BAEPs [Boston et al..
1980]1‘.Ence. power spectral analysis of BAEPs was performed:

initially to examine the nature of Trequency content or the

BAEPs [Kamath et al.. 19884].

An alternate method Sf studying a signal along with
1ts spectrum 1s to develop a model. again under the
assumption of stationarity. such that the power spectrum oI
the model approximates that of the-signal. The model
parameters can then be used to compare two sSets oI signals.
Signal modelling has found applications in analysis of
waverorms such as EEG‘and short term speech among other

si1gnals {Jansen et al.. 1981: Makhoul. 1975]. Usually. the

N
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number ot moﬂel parameters required-to describe the 'signal
15 significantly le=ss than the original data length or its
_spectrum. Since variapility between signals will be
rerlected in thgir m&del paraméters. it sholild be useful in

the analysis of BAEFs.

1

5.3 Power Spectral Analysis and Autoregéessixp Modelling:

5.3.1 Power Spectrum:

Unless 1t .is visibly rhythmic. the periodicities in a
given Signal x(t}). can not be easi;y determined. If x(t) is
periodic with additive randem component or if xtt) 1s a
staticnary random process, the periodiéinies can be better

understood by its autocorrelation function Rxx (7),given by

T
1t .
Rxx (1) = S x(tixtt+T)idt .. (5.1)
T 6]

ror a continuous %}gnal.

\

However. periodicities in a given signal can often be
better quantified into the rfrequency domain Vvia the Fourier
transtorm. According to Wiener-kKhintchin theorem. the

Fourier transform of the autocorrelation function of the

signal is its power spectral density (PSD!.
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Thus, the power spectruﬁuéxxlf). of x{t) is given by,

e
Sxxlf) = SRxx (Trexp(-j2fmedy .. (5.2)

The power spectrum of a given signal represents the
average distribution of power in the signal as a function of
frequéncy. The power spectruﬁ brings out the existence and
location or dominant trequencies and the power contained at
those frequencies. The estimation of the power spectrum vié.
the correlation function is known as the Blackman-Tukey (BT}
method. This method has been appliéd for power spectral

analysis or auditory evoked responses due to psuedo random

noise excitation [Reddy et al.. 1978].

5.3.2 Modelling and Computation of the Power Spectrum by

Maximum Entropy Method (MEM):

ln recent years. a number oI nonlinear spectral
analvsis techniques have been proposed and implemented on
various kinds or signals including those of brological
origin ([Jansen. 1981: cChilders, 1978; Haykin. 1972]. These
methods characterize a signal by a model . The model
parameters describing the “signal are determined and the
parapeters are subsequently used to estimate the power

spectrum of the signal.



1n one such model commonly used in signal processing.
a discrete signal xtn) is considered to be the output of a
system with an input gaussian sequenge uin). The output xin)

is represented as a rombination o the pravious input’s and

outputs:

p ) q
xtn) = - H akxin-k) + G & biuin-i) ..(5. 3}
k=1 i=1

where ak (l<k<p). bil(1<i<q) and G are the parameters

of the system. ’ . - .
The coefficients b1 ... .. P are known as the zeroes
. 3

and a@l.,.....ap are known as the poles. The model 1= called

Fole-zero model. In Time series literature. Thils

tormulation is rererred to as autoregressive-moving average
madel . 1t 18 possible To use only an all-pole or
autoregressive model to represent a signal. The polées of the

. :
model can be’ estimated by s&gving a set of linear equations
and hence the all-pole model is favoured in signal analysis.

i

: in the autoregressive (AK' modelling apprcach. the

(;stimate ot the signal amplitude., xtn), at a given instant
'n’ is represented &as a welghted linear sum of its 'p’

1
(%)
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previous samples plus u(ni:

o .
xtn) = - € ak xin-ki + u(n) U (5.4)
k=1

where the process uini. n=l....... N, torm the samples or a

stationary Gaussian white noise process. The parameters ai.

az.... .ap are to be estimated trrom the signal and are

called the AR parameters.

Since utn' is a Gaussian white noise. one can write

[Makhoul 19751 from equation (5.4) an expression IOr. poWwer:

spectra. P(tf), of x{(n):

B(fY = N o _ (5.5)
&

+ % ax expl(-j2tkmt)

where st is the sampling 3nterval and Gz

equals the variance or the white noise uln).

Several methods have been developed tfor computation

‘or AR parametérs from the signal {Childers. 1978)]. In one

such formulation., known as maximum entropy method (MEM). the

-
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spectrum whicﬁ corresponds tc‘n the most -unpr‘edi'ctable time
series; and  whose a-utocorrelation approaches that or the
.glven sigﬁal for the given set or lags is chosen. In the
maximum entropy method. tne autoregressive parameters are so
estimated as to redude the errors by running the model in
rorward and backward direction%L Such a. computation of the
mod;l pgrameters» has oeen”showﬁ to ‘-be equivalent <o

maximizing the entropy of the spectrum of the model {kav

and Marple. 1981).°

The fingl'prediction error (FPE), which is defined as
sum of the saquares of the errors between the measured signal
xin, and the predicted signal. is used as an index for pre-
determining the optimum nomber of parameters required to’
estimate the MEM 's'pectrum. The Tirst local minimum or the
FPE as a function of order often indicates the optimum model

order.
5.4. Materials and Methods:

5.4.1 Data Acquisition:

[y
-

The BAEPs of 60 subjects were recorded from vertex-
right mastold and vertex-left. mastoid locations. in the

Evoked Fotentials laboratory oI McMaster University
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J .
hosptial. The subjects comprised of 23 Normals tage 29+16

\
yrs.}. 1% with multiple sclerosis (MS) (40£9 yrs.), 13 with
head injury (HI1(16x15 yrs.) and 5 with acoustic neuroma
tAN) 140+Y yrs.). Two patients from Hl group and one patiént

L

from MS group exhibited normal . BAEPs from one of the two
sides: the spectra of these three BAEPs and those of

-

_patients with, AN were not included in the subsequent
a;ﬁalysis although their pow_efr spectré was computed Ifor
verification. Thus. 107 BAEF wavefbrms-were analyzed for
fhis study.

The stimulus was a 0.1 ms pulse delivered _at the rate
of 9.8 times per second at 60 db above the.hearing
threshold. The recording of the BAEP was done for 10 ma
following the auditory stimulus over a frequency range of
150-3000 Hsz. Two thousand BAEF responses were averaged‘and
plotted on paper. The plotted BAEP signal of 10 ms duration
was digitized on a'Summagraphiqg Bit Pad into 256 samples
corresponding to a sampling rate of 25.6 KHz. The digitized
signal was transmitted To and anlayvzed on CYBER 170

computer.

5.4.2 Computation of Power Spectrum by Blackman-Tukey (BT)

method:
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’lassical methods of power spectral estimation are

based on cosine transtorms and subsequent smoothing in the
frequency domain. However. with the advent of fast Fourier
transform tFFT) algorithm and high speed computers. the
power spectrum is estimated by Welch FPeriodogram [(Welch.
1467] or the implementation of Blackman-Tukey (BT
correlatioﬁ‘ method partially or fully with FFT algorithm
[Schwartz and Shaw. 1975]. Herein. the correlation function
was estimated directly and then the smoothed power spectrum
was estimated as the Fourier.transform of the estimated

correlation function.

The power spectrum of each digitized BAEP waveform is

~omputed by the BT method as follows: - -

Let the discrete version of the BAEF signal be

represented as xt0), xt1)....x(1).....x(N-1). where 'N’' is
the number of samples. The autocorrelation function of x(1i)
then is
N-m-1
R{m} = 1/N = x{nmix(n+m)  ...... (5.86)
n=1
where m=(¢.,]....K is the number of lags.

The autocorrelation function Rim), is multiplied by a
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lag window such as Bartlett window. Next. the spectrum 1is

-~

L

computed using the relation,.

M
S(f) = at =EWm) R(m) exp(-j2fmus} ...(5.7)
m=1 ’

where at.is the sampling interval and

Wim) is the Bartlett window for m=1.,Z,....M.

The FFT procedure is invoked for erfficient

computation of this equation. The wvarious parameters used
in the computation are shown in Table 5.1. For each power
spectrum. S(fi1. 1ts decibel equivalent Jlulogo S5tf) was

computed tao yield the power 3pectrum on a decibel scale tor
convenient plotting. The power .spectra oF BAEPs from both

right and left side were computed and plotted using CALCOMP

plotter.

It was noted that there were three principal peaks in
the normal BAEP power spectra at 170 . 52u and at 250 Hz.
In order to gquantitate the power spectra of BAEPs of normals
and patients. the power contained in each spectrum WwWas
divided into five principal bands (Table 5.2): each of the
first three bands’ included a peak. The fourth and fifth

bands were chosen to separate tThe power bevond 2 KHz.
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Finally. a mean-power-correéponding to each ftrequency band
was computed for each normal. MS and HI groups. In order to
test the hypothesis that mean power across each Irequency
band in M5 and HI groups équals that of the mean power in &
corresponding frequency band in a normal group, the student. .

't' test was performed at 95% level of confidence.

5.4.3 Autoregressive Modelling and Computation of MEM

Spectra:

Of the various methods used in practice for computing
the AR parameters of_}he BAEP signal, the MEM due to Burg
was chosen [Ulrych, 1975]. From these AR parameters. the
power spectrum of BAEF was es;imated using egquation (5.4},
Power spectral estimates for different model orders were
also computed and plotted one above the other (Figs. 5.1z-
5.14) to racilitate the examination or the MEM spectra Ior
various model orders. The final prediction error was

plotted as a function of the model order for each oI the

signals.
5.4_4 Feature Selection and Classifier Design:

Since the mean power in the bands lying around the

frequency peaks 170. 520 and 95u Hz differed significantly
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(Table 5.2). between normals and patients (p<0.0%5), these
powers were used as the reatures. The total powers in the
frequency range 1.05 - 2.0 KHz and from 2.05 -12<8 KHz did
not differ significantly ‘between 'the normals and papients
(p<0.05) and consequently were not used as thé-features.
Bayes classifier -agd Fisher’s Linear Discriminant

Function were implemented in FORTRAN on CYBER 170 computer
using leave-one-out method as descriged in the last chapter.
Briefly, all | BAEPs except the one to be classiﬁied. are
treated as design set. Both Baées classifier {equation 3.7)
and FLD tequation 3.10U) were designed using equations
presented in the chapter 3. The test BAE? was subjected to
classification at<ter which. it wes returned to the desiin
set. This procedure was repeated for all 107 BAEFs. The
accuracy of classification was estimﬁted from .physician’s
diagnosis as the reference. |

In order to evaluate the relative merit of using each
of the fteatures mentioned abéve. both Bayes classifiers and
FLD were designed with a single dimension and classification
accuracy was -computed. It was noted that power in the band
containing 950 Hz peak geave the highest accuracy o1
classification. of 74.2% (Table 5.3). The classifiers with

two best features and the three features were then designed
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and sccuracy of classification was evaluated. The

performance of the classifiers ( both Bayes and FLD) with

/all the three frequency domain features were assessed using

e

sensitivity. specificity. positive predictive' value and

negative predictive wvalue as the criteria.

-

5.5 Results:

The results of spectral analysis by Blackxsaan—'l‘ukey-

and by Burg's method-"é.s well as o1 classificatio? by

—

. — . .
frequency domain featuxes are presented below. The -
difterences in spectra of normal and patients’ BAEPs are

described. The results of evaluatl

the classifiers described in the section £.4, are also

presented.

5.5.1 Blackman-Tukey (BT) PSDs of BAEPs of normals and

- -

patients:

For comparative purposes, the hypothetical ideal BAEP
of Figure 1.1 [Stockard et al.. 1877a) was digitzed and its
PSD was estimated (Fig.5.31). ‘I‘he'PSD exhibits three
principal peaks at 20u Hz. 50U Hz and 90U Hz. In order to
determine which componentis) of the signal contributes

towards the power at each of the three principal frequency
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bands of BAEF power spectrum. an &artiricial signal was
cgenerated on the compﬁter by combining t.;lree sinewaves artT
the above frequencies along with some added noise (inset ot
Fig.5.4) The power spectrum oI the simulated Signal (Fig.

5 4) indicates that the power in the frequencies near 200 Hz

corresponds to the part of the waverorm starting at the

-

valley following the third peak in the time domain and)

ending at the valley folleowing the fifth peak.. an interval
that is roughly 2.5 ms: this component resembles halt a
sinewave (without the fourth and fifth latency peaks). The
first three waves in normal BAEF appear about 1 ms apart
tfor example. 1n Fig. 5.1 and provide the maljor
contribution to the power at 1000 Hz. The peak around 60U
Hz is due__;_;g wavelets containing the peaks VI_.and VII in the
time domain. - .
L 4
The power spectra of normal BAEPs were computed. The
BT power spectra of the normal subject in Fig.5.1 is shown
in Fig.5.5. " To visually compare the BAEPF power spectra
across different normal subjects, the power spectra oI ten
pormals were plotted. one abpove the other. by shifting the
power spectra and eliminating the hidden lines (Fig. 5.6).
Prominent peaks were located in all the  power spectra.
Three major peaks appear at 170255, 52040 and 950£50 Haz.

while =& minolr peak appears at 1950100 “Hz. The spectral

-
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energy decays rapidly after 1500 Hz.

The BAEFP power spectra of patients differed from
those of normal subjects with respect to their location and
spread of power. The power spectra of patients with AN had’
no well derined peaks. However. the spectra of the
unaffected side appeared normal. For examé&e. Fig.5:7 shows
the power spectra of the BAEP in Fig.5.2. The peaks in the
power spectra of BAEFP from the left side affected by

. o~
acoustic neuroma are not well formed.

—

f‘ \ -

-
In patients wWith demyelinat.ing.':i;sease such as

multiple 'sclerosis (MS) the conduction abnormalities are
manifested in BAEPs as delays in -one or more latencie-s as
well as reduced amplitudes of some of its components
(Chiappa. "1980]. in the frequency domain. these variations
from normal waveform transform to dispersion of power in the
frequenc:;r' bands corresponding to the affected components.
As' an example. Fig. 5.8 shows the BAEPFs of a patient
afflicted with M3; the latencies of peaks IV and V are
delaved and the amplitudes of wave V are reduced
bilaterally. Figure 5.9 shows the computed BT power spectra
of the BAEPs in Fig. 5.87 The first three peaks 1in the time

-

domain. which appear approximately one millisecond’ apart

. bilaterally. result in a 850 Hz peak in the riéht side and a
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comparatively large power around 800-800 Hz on the left
side. The abnormal temporal relationships between different
time domain peaks has resulted in the loss of a peak at 5b0
Hz in the power spectra of right side BAEF and 1in ﬁﬁe

appearance of a peak at 320 Hz on the left side.

Tn patients with head injury. the BAEPs are often-
delayed on the side with injury: sometimes one or several of
the peaks are absent, or not well form;d. depending on tbe
nature and severity of injury. Typical BAEPs of a patient
with head iniury are shown in -Fig.d.1l0. The patient
sutfered injury to the right pareito-temporal region in a
motor wvehicle accident. The waves I[.II,I1I are not well
_represente_c_j_:_ wave IV is not very éharp. and wave VYV is=
delayed-in th= right side. The damage to the left side is
minimal. Fig.5.11 depicts the BT power spectra ol BAEPs in
Fig.5.10. The power spectrum of the right side differs
from normal KAEP power spectra. The left side was
unaffected clinically and the corresponding PSD has' well
defined peaks at 220 Hz.600 Hz and 1020 H=z.

The mean power in the two lower frequency bands were
significantly higher for PSDs of BAEPs.of patients with BRI
and MS (p<0.05) whereas the normal subjJects had higher power

in the 850-1200 Hz band in their BAEP PSD (p<0.05). Thus an
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increase in thqﬂgAEP latencies or augmented waveform morpho—‘
‘logy for patholgéical stifes {in MS and HI) results in a PSD
quite different from normal BAEP PSD. Because of the small
sgmple size. the results cf AN patients were.got subjected

to statistical analysis.

5.5.2 MEM Power Spectra of Normal and Patients’ BAEPs:
2
The MEM ppwer-spectra were computed_for orders
varving from 15-4% with an arbitrary step size of <.
Figures 5.12. 5.13 and 5.14 show the MEM power of BAEPs in
Figs. 5.1. 5.8 and 5.10. At low model orders. the major
frequency peaks present in the BT power spectra do not
appear distinctly. Only when the model crder is greater
than 30 does the MEM ﬁower spectra appear well formed and
‘stable. The power spectra corresponding to model orders
predicted by a local minima in the final prediction‘error
(FPE) were examined. A plot of FPE vs. model order for
BAEPs (shown in Figs. 5.1. 5.8 and 5.10) is given in Fig.
5.15. —
1t was noted rrom such plots for all the BAEPS. that
a first local minimum in FPE correlated with well formed
peaks in the MEM power spectra (the same Trequencies of the

BT power spectra) only in 10% of the BAEPs. Usually. an AR
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model greate¥ than one indicated by the local_minimum in FPE
was needed for an- acceptable MEM spectra. Hence, optimum
model orders were obtainedfby a visual examination of .plots
of the MEM spectra for i_ncreasil:lg model orders for all the
BAEPs used in this study. Typically. 40 or more Aﬁ
parameters were necessary to represent the BAEPs The mean
order (nearest integerzs.d.) for characterizing BAEPs was
42+4 for normals. 40¥5 for patients with MS% and 4214 for
patients suffering from head 1injury. The sample size of
patients with AN was too small to estimate the mean ?rder
required to represent the BAEPs. Figure 5.16 shows a plot
of optimum order number for individual BAEPs in normal; MS
and HI and AN groupé. The frequencies at which.peaks appear
in MEM power spectra. at the cptimum order <hosen (as
‘described). were obtained in all normal subjects. These

spectral peaks were‘found to be at 165255, 550x45 and

100055 Hz.
5.5.3 Classifier Performance:

The percentage accuracy oI classirication for

J';n‘dividual and combination of features is listed in Table
“J3.3. It can be obsérved that the maximum classification
accuracy -of 77.4% was obtained with the powers in. three

principal frequency bands, namely at 170. 520 and 950 Hz., as
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the features. The power in the frequency band 850—1é00 Hz
- yielded the maximum accuracy ot classification (74.2%)
Addition of other two rfeatures increased the aécﬁracy of
classification by only 3.2% . The Bayes classifier éave
marginally better classification accuracy than FLD.ﬂ_Figure
.17 shows the classifier performance Tfor both the Bayes
classifi&r and FLD. It may also be noted‘that the
performaﬁ&e of the Baves classifier as measured by
sensitivi}y. specificity. positive predictive value and
negative predictive value was close to that using FLD.
Appendix B gives sample calculations ror classification of
two EAEPS using frequency domain features.

H
¢

5.6 Discussion:

This chapter presents an attempt at characterizing
" the poher spectra or the BAEPs from normal and pathological
. subjects. by Blackman-Tukey (BT method and maximum entropy
method. (MEM)., in order to examine their tfrequency
composition [Ka@ath et al.. 1987a). The efficacy of using
ffequency' domain features Tfor classifying normal and

. pathological BAEPs is also examined.

The observation that power spectra computed by BT and

MEM show peaks at frequencies that agree with one another,
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to within one freguency resolution of the computation (i.e.
50 Hz) tends to confirm the wvalidity of these methods in
'analﬁzing the BAEPs. The minor peak observed at aboutlz KHz
in the BT power spectra of BAEFs of normal subjects was not
always seen in the MEM power spectra. because the re;ati§e
power at this frequency tended to be small compared to the
major peaks at 17p Hz. 520 Hz and 1 KHz.
The student 't’ test. perrormed on BT power spectra.
shows that power contained in three specific frequency bands
of BAEPs of patients with multiple sclerosist’ and head
injuries difrer significgntly from the power spectra of
pormal BAEPS. This observation prompted the development ot

classifiers based on frequency domain teatures.

A major limitation of the Fourier transrorm based
methods (such as the BT method). ror estimating the power
spectra is that the signal exists outside the- data window
being analyzed. Conseguently. in the power spectra computed
using the BT methods there is & leakage of power into the
neighbouring frequency bands. A number of window Tunctions
have been recommended to minimize the leakage of powver. But
the window Tunctions are not specirfically tailored to take
inﬁo consideration the sfatistical pnnmrt{és of the

individual =signal. The HKBAEF lasts less than 10
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milliseconds. and because of its short duration. the MEM
method app