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" optimization problems.

. ABSTRACT .

-
.

This thesis addresses itself to computer oriented techniques for large scale

s

optimization of analog circuits. New techniques for simulatién and sensitivity

analysis are described and are used .to improve the performance of circuit

optimization. A powerful automatic deéomposition technique & developed directly

-

enabling a normal optimizer to solve large circuit problems. Our theory is applied to

the design of microwave circuits. \_ o =

The status of large scale circuit optimization and the state-of-the-art of
. N \ N
microwave CAD are reviewed. The necessity of circuit oriented optimization tech-

niques is demonstrated by formulating design, modetling, diagnosis and tuning into

A comprehensive treatment of large change sensitivity computation for
linearized circuits using generalized Householder formudus is presented. A téchnique
for circuit respdnse updating via a minimum order reduced svstetn is devetoped. By

avoiding re-analysis of the complete circuit, our method is responsible for efficient
el A .

simulation of large circuits when a subset of the circuit parameters is frequently

perturbed.

An elegant theory for simulation and exact sensitivity analvsis of branched

cascaded networks is described. Our approach explicitly takes the circuit-structure
g———

into consideration and does not deteriorate as the overall network becomes large. The

_practicality of the theory is illustrated by efficient optimization of microwave muiti-

plexers consisting of mult'r-cavit)é filters distributed along a waveguide manifold.
Examples of optimizing 12- and 16-channel multiplexers are provided

il



A novel and general automatic decomposition technique for large scale
optimizatidn of microwave circuits is presented. The partitioning approach proposed
by Kondoh for FET modelling problems is verified. The application of our technique is

demonstrated by the large scale optirqj'zati'c-m of a 16-channel multiplexer involving

399 nonlinear functions and 240 variables.
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. 1 ’ .

INTRODUCTION

Circuit oriented optimization techniques have been .instrumental'in‘
advancing the state-of-the-art in compt_xter-aidcd cirguit deﬁign. During the past two
decades of active research and development by both numerical analysts and
engineering professionals, optimization techniques have gained popularity and
appreciation by circuit designers. The power of these techniques 1:. further enhanced
due to the astonishing progress made in the computer industry. With their high speed
and vast capacity in data processing, computers are now being used to optimize
circuits with acctiracics ar;d sophistication ‘tk-mt were only dreams 9_1' the previously
unaided designers.

~

Interestingly enough, the ambition of electrical engineers g.rows as fast as
their corr;putin‘g capability. A seriows advance they havi’: made is the increased size
ﬁnd complexity of today's analog systems. On the oth-cr‘hund. requirements on the
accuracy and practicality of design and modelling methods become more stringent,
which in turn necessitates the use of sophisticated techniques such as multi-circuit
modelling and yield maximization. Large scale problems become a critical
consequence due to the increase in both the size of circuits and the complexity ot
design methods. The solution of large circuit problems challenges rescarchers even
equipped with up-to-date computers. Considerable efforts by software engineers are
inevitable before a cc;rnplicated system can be designed.

The immediate difficulty with large scale problems is due to the limitation

- of computer hardware. Prohibitive CPU times and storage requirement often make



.- ordinary CAD software balk at large problems. A frequent frtxstration with large

.

scale optimizatio;'x‘ is 1 crgased likelihood of stopping at an undesired local mini-
mum. Other di.t'ﬁculti:‘:‘zzecia.lly in prototype and postproduction tuning, are due to
human inability to cope with p invélving large numbers of independéni
varigbles t:o be adjusted simu ta‘neodsly to meet a specified response pattern over a
wiée frequency range (Bandler and Zhang 1987¢).

E;undamental to all circuit optimization pt:ocedures is an efficient circuit
simulator. A vital mechanism for a powerful gradient based optimizer is a circuit
sensitivity analyzer. The preliminary step towards large scale optimization is the
development of elegant simulation and sensitivity analysis techniques. Lastly and
most importantly, the mathematical optimizer itself must be made ;apable of
handling the large numbers of variables and functions.

Consider the effort of solving N linear equations with N unkowns as an
example. As N increases, the storage requirement increases quadratically and the
computational effort increases cubically. The trouble often associated with much
existing software is that some simple but redundant operfxtions,' almost trivial for
ordinary problems, become unbearable for large scale problems. -Threg such
situations are worth serious consideration.

One situation occurs when a program, designed to be powerful for a com-
pletc~circuit simulation, is used very repetitively. Examples can be found in sensiti-
vity approximation, design, tuning and yieid optimization where only a few elements
oronly a subnetwdrk are frequently adjusted. The straightforward approach is to
simply repeat the entire circuit simulation each time even when a majority of circuit
subnetworks remain unperturbed For large circuits, this becomes extremely

»
ki

inefficient.



————
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The second situation is when a general circuit analysis method is applied to
a speciglly structured network. Obvi.ously. a certain amount of operations and
storage will become redundant. For example, large microwave circuits belonging to
the category of branched cascaded structures should not be treated using the general
riodal analysis method and the adjoint network approach, unless special

mathematical tools, e.g., the sparse matrix technique is used.

The third situation can be observed directly in an optimization procedure.
A general optimizer takes all given functions and variables into consideration. For
large scale optimizatioh problems, this is not always necessary. For example, thege

often exist weak interconnections between certain variables and functions that could

be decoupled during initial optimization stages. ’

The realization of the above facts has prompted investigations into a

~

number of approaches to improve large scale CAD techniques. We can exploit
possible properties of the particular circuit, e.g., physical or topological properties.

We can use advanced mathematical tools. We can rearrange CAD software into

suitable formats for special computers, e.g., the vector processors.

From the simulation and analysis points of view, large scale circuit

problems have been fairly treated in the literature. But {from the optimization point’

of view, only sparse and loosely related materials are available. .
This thesis attempts to offer a formal treatment to the problem of large
scale optimization of-analog circuits. We propose new approaches to improve

simulation, sensitivity evaluation and optimization, which are all essential for

executing a circuit optimization. The approaches include a comprehensive treatment

of large change sensitivity computation for repeated circuit analysis, an elegant

method for simulation and sensitivity analysis of branched cascaded networks und un



L]
.

automatic decomposition technique for circuit optimzation.' The thesis is based on
frequency domain equivalent circ‘uit models. The automatic decomposition technique
directly enables a mathematical optimizer t;) handle large c¢ircuit probl'e.ms. The
r.r.:chni‘que is use;i together with our branched cascaded analysis method to produce the
optimal solution of a 16-channel microwaye multiplexer involving 240 variables and
399 nonlinear .functions, representing the state-of-the-art in cir2uit optimization.

The next two chapters serve as géneral review and introduction to some
important aspects ofcontembo;'ary circuit oriented optimization techniques, namely,’
optimization techniques for design, modelling, diagnc.:sis and tuning. In Chapter 2,~ we

-

review the state-of-the-art in large scale circuit optimization and in microwave CAD.

.

The design centering problem is formulated as a minimax optimization problem.

~
——n

Chapter 3 offers a review of optimization techniques for modelling,
diagnosig.and tuning (MDT) of electrical circuits. A general formulatiormof circuit
diagnosis as an optimization problem is introduced. [t’is followed by a detailed
investigation into t.hree specific formulation cases. Optimization methods for
modelling and tuning are presented z;nd compared with those“'t'or diagnosis

Chapter 4 presents an efficient approach to large change sensitivity
analysis in linear systems. The approach is based upon a set of generalized
Househc{lder formulas. Efficient schemes for computing large change sensitivities of
a linear system with different m'lmbers of inputs and outputs ‘are developed. The
concept'of response updating via solving a minimum order reduced system is
introduc%;\ systematic approach to formulating a minimum order. reduced system
for linear circuits is devised. . o

In Chapter 5, wedescribe a novel approach to the simulation and

sensitivity analysis of branched cascaded networks. Formulas are derived for such



responses as input or output reflection coefficient, common port and branch output
ik

port return loss, insertion loss, gain slope and group delay. . Exact sensitivities w.r.t.

-+

all variables of interest, including frequency, are evaluated. An explicit aigorithm is

provided describing the details of the computational aspects of our theory. Qur

dpproach is\ used in the optimal design of microwave multiplexers consisting of multi-
-

cavity filters distributed along a waveguide ma'ni,fold.

In Chapter 6, we describe a powerful and general decomposition technique

———

for optimization of large microwave systems. Using sensitivity information, variabies

and functions are systematically grouped following the construction of 2 decompostion

.

didtionary. The overall problem is automatically separated into a sequence of sub-

optifnizations. The partitioning approach proposed by Kondoh for FET modelling

.

problems is verified. The technique is successfully tested on large scale optimization

of microwave multiplekers involving 16 channels, 399 nonlinear functions and 240

4

variayles.
We conclude in Chapter 7 with some suggestions for further research.

The author contributed substantially to the following original

developments presenied in this thesis:

(1) . The use of genefalized Householder formulas for large change sensitivity
analysis, and'a comprehemstve treatment to the efficient computation of
response changes of linear systems with different numbers of inputs and
outputs.

(2) A systematic scheme for direct formulation of a minimum order reduced

system for linear circuit response updating. -



(3)

(4

(5)

(6)

» .

B

A simple algebrai::: treatment to branched cascaded networks and a set of

formulas for calculating various responses and their sensitivities for such

*y

networks.

a———

An algorithm for systematic simulation and exact sensitivity analysis of -

-

branched cascaded networks, -

“A theory and an algorithm for automatic decomposition in darge scale

: . \
microwave optimization-problems. -

A theoretical description of multiplexer decompesition properties and their

use in optimal design of practical multiplexers.
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LARGE SCALE CIRCUIT OPTIMIZATION ~ REVIEW AND BASIC

CONCEPTS M 3 —

2.1 INTRODUCTION
jThe use of opt'“imizat'ion techniques in circuit design has been advocated for

over 20 years. These techniques are now widely appreciated as essential CAD tools in

S

the design of analog circuits. In the case of large scale circuit design, however, direct
oo ;
use of optimization is only sparsely reported in the literature.

In the same period, the use of computers in microwave circuit design also
receiv;zd serious attention. In 1969, the [EEE TRA.\'SACTIO-.\'S ON E\llCROWA\_‘E )
THEORY AND TECHNIQL’ES Special lssue on éom.;':uter-Orientcd AIigEQW'u\'a:
Practices summarizcﬂ the early developments in this area. Since then, extensive

research has been performed resulting in various successful CAD techniques for

analysis, modelling and design. Sophisticated microwave CAD software is being

‘marketed and used. ‘ T

In this chapter, we review the state-of-the-art in large scale cireuit
optimization and in microwave CAD. The basic.mathematical formulation of circuit

-
design as an optimization problem is introduced.

*

-

REVIEW OF LARGE SCALE CIRCUIT OPTIMIZATION

xS
o

Temes and Calahan (1967} are among the earliest to formally advocate the

. .-&
- use of iterative optimization in circuit design. Waren, Lasden und Suchman HA967)

illustrated that optimization methods can be applied to 2 wide range of engineering.

~

r
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problems. The.introduction of adjoint network methods for circuit sensitivi_ty' com-

putation by Director and Rohrer (1969) {acilitatgd theuse of .pc-werful gradient based

optimization methods in circuit design. Bandler (1969, 1973) systematically treated

. the formulation of error functions, the least pth objective, nonlinear constraints,

. ~
optimization methods and circuit sensitivity analysis. Further activities in this area

are summarized by Director (1971), Charalambous (19?‘4), Bandler and Rizi-: (1979), ]
Brayton, Ha;:h‘tel and Sangiovan;li:Vincentelli (1981). The recent review paper of
Bandler and Chen (1987) add'ressed. a variety of circuit optimization techniques for
reulistic. design and modelling problems. DennisJr. (1984) gave electrical engineersa |
user's gpide to nonlinear optimization aIgc;rit.hms. ) 2

The evolution of very large scaie integrated circuits (VLSI) prompted the
fesearch in solving larﬁe scale problems, Th'e-immediate work is to simulate and to
analyze such circuits. One major effort in this area has been the development of
network partitioning and -various -ltearing megkods‘(e.g., Sangiovanni-Vincentelli, -
Chen and Chua 1977). Another effort is to useé vector computers (e.g., Calahan and
Ames 1979; Yamamoto and Takahashi 1985) and parallel processors {e.g., Huang and
Wing 1979). Sparsc matrix techniques have been often involved (e.g}.. Huang and
W-ing 1979). More details of large scale simulation are available in Newton (1981),
Hachtel and Sangiovanni-\'incentélli 11981) and Pederson (1984).

Other wc;rks done for large scale circuits are the computation of poles and
Zeros tw;:hrhahn R. 1979) and vield estimation (Downs, Cook and Rogers 1984).
Largcl ::,cule networks is also considered fronﬁ the graph theory point of view, e.g.,
Boesch (1976). )

Sparse matrix techniques and decompos_itlﬂ{techniques are two powerful

mathematical tools for solving large scale problems. Both techniques take advantage
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of the fact that as a prﬁg;m becomes large, more weak interactions between
subproble_ms are likely to occur. The sparse matrix techniques are used to avoid

unnecessary storage and computation of zero components of a matrix. Work in this

area can be found in books of Reid (1971) and Duff (1981). The_décomposition

techniques are generally used to solve decoupled sub[{roblems separately and th-cn Lu;)
solve the overall problem using the knowlege of subproblem solutions. An excellent
survey of decomposition for large scale problems is provided by Himmelblau (1973).
Large scale'm#thematical programming became dn important topic for
operations researchers in the 1960'5. A ma_jgr inspiratior; in this field-has bec:n the
discovery of the decomposition principlf: by Dantzig and Wolfq (1960). The work-of
Geoffrion (1970} and Lasdon (1970) summarized the major pioncering activities in
this field. More recent reviews are available in H:.ximes {1982) and Luna (1984).
Many people have used decormnposition approaches, e.g., Bunch and Kaufman (1981),‘ ‘
Shapiro and White (1982), Borison, Morris and Oren (1984} and Mandakovic and _
Souder (1985). Others used sparse matrix techniques (Murtagh and Saunders 1978,

}

Coleman 1984), matrix spliiting (O'Leary 1981), recursive quadratic progrumming

(Biggs and Laughton 1977) and dual optimization methods (Templeman 1879).

Although the simulation and analyvsis of large scale analey circuits huve

-

been fairly treated in the lite¥ature, the direct optimization of such circuits however,’
is 2 much open subject. Bandler, Chen, Daijavad, Kellermann, Renault and Zhyng
(1986) successfully optimized a 16-channel microwave mukiplexer involving as many
as 240 nonlinear design variables. The first formal attempt to large scale microwave

éptimization is made by Bandler and Zhang (19872) who developed an automatic

decomposition technique for device modelling and large circuit design.



23 REVIEWOF MICROWAVE CAD

The early stages of cor;lputer-oriented microwave practices can be repre-
sented by the comments of Getsinger (1969). As he pointed out, in the late 1960's,
within microwaves, the electromagnetic field analysts ‘were the group most {ully
converted to the computer. In microwave circuits, old ciesign methods were adapted to
the computer and new design approaches were devised. Compﬁtez; programs were
used to do such things as analyze arbitrary microwave circuits, design filters,
transistor'amplifiers and other components.

Bandlér (1974) edited the s;_-con;l Special Issue of Computer—Orien.ted‘
Micro.wave.Prac.:tices of the [EEE TRANSACTIONS ON M[C'ROWAVEZ THEORY
AND TECHNIQUES. A wide range of opinions held by contributors to the field as_
well as users were revealed from Lhé panel discussion on the status of computer-
oriented microwave practices (Cermak, Getsinger, Leake, Vander Vorst and Varon
1974)., The gap between numerical technig_tle_ei_ and real ‘éngineering problems was
brought into serious consideration. Rigorously derived methods for design rather
than only for anul_;'sis were increasingly used (Bandler 1974).

Without attempting to trace all historical details of microwave CAD, here
we devote more attention to the current state-of-the-art in this area.

. A wide range of microwave circuits can be covered as candidates for the tool
of CAD. As stated by Eioﬂ'man (1984), essentially it does ﬁot matter ver_.v much if the
circuit is passive or active, linear or nonlinear, whether it is asingle component or a
subassembly  Also, the frequency of operation of the cilrcuit is in g;neral nt;t a
significant parameter. A treatment of the .subject area 15 also compiled into a

textbook by Gupta, Gary and Chadha (1981).
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The contemporary and recognized industliy-standard in microwave CAD
can be represented by the commercially available software SUPER-COMPACT (1986)
and TbUCHSTO‘NE (1985). SUPER-COMPACT provides the necessary- tool for
choosing a design topology and active elements, s;'nthesizing amplifier mutcfming
circuits: and san optimize complete circuits having as many las four. external ports.
Circuit elerments include lumped, microstrip and stripline, ﬁlter, thin film, coupler
an;:l active devices. SUPER-COMPACT can run under mainframe operati_ng-s_vstems
such as VAX/VMS, HP-UX(UNIX) and IBM/CMS, It can also be run simultaneously
by m.c‘{e than one user, i.e., as a time sharing software. On the other hand,
TOUCHSTONE (1985) is the most advanced software for RF/microwave CAD,
running on personal computers such as IBM PC-XT, AT and lB.\I-compu;ibles. With

 acomplete element and measurement catalogue, TOUCHSTONE can b‘e treated as a
laboratery instrument to set up.‘ a microwave circuit an_d to perform si-mulution.
optimization and tuning. Other commercially available microwave CAD software
also exist, e.g., CIAO (1985) for circuit analysis and optimization and CADEC +
(1987} for-computer aided degign of electronic circuits, both running on desk top

computers. MIDAS (1987) is a microwave/RF CAD program incorporating a Network

Descriptive Language, which allows the use of algebraic expressions to define any

'

values for network analysis. Allen and Medley Jr. (1980) developed a set of network
analysis prog;'ams for microwave circuit design using programmable calculators.
Toé‘a}"s research of microwave CAD continues to be active in a broad
subject area. Topics of major interest include modelling of active and passive micro-
wave components (e.g., Salmer 1987; B.andler, Chen and Daijavu;i ;5-986b).
characterization and‘modelling of transmission structures and discontinuities {¢.g.,

~

Pramanick ar.xd Bhartia 1986; Koster and Jansen 1986), lineur and nonlinear analysis

-



of devices and cir::uits (e.g., Rizzoli and Lipparini 1985: Gilmore 1986; Curtice 1987),
large scale numerical simulation and design of devices and -circuits (e.g., Rizzoli,
" Ferlito and Neri 1986; Bandler and Zhang 1987a) ard optimization techniques
applicable to microwave CAD (e.g., Bandler, -Kellermann and Madsen 1985; Bandler
and Chen 15'387).7 In addition to the popular frequency domain, fixed t.c:pology :;nd
equiva].er'lt circuit model description of microwave’circuits. methods using time .
domain (Sobhy and Hosny 1981), changable topology (Dowson 1985), and physical
device models (Snowden 1986) are also developed. Besides the scattering pararm.ater
approach used in software such as SUPER-COMPACT (1986) and TOUCHSTONE
(1985), the wave analysis approach has been adopted in éAD programs for noise
analysis of intercc:;nnec_ted multiport networks (Kanaglekar, McIntosh and Br_ygnt
'1987). In Europe, extensive research in microwave CAD is currently unde'rway as
evidenced by the survey paper of Gardiol (1986) and by the IEE PROCEEDINGS-H
Special Issue on Computer-Aided Design of Microwave Circuits edited by Pengelly
(1986). | )
In dealing with problems of large numerical size, Rizzoli, Ferlito and Neri
. (1986) exploited the hardware capability of vector processors (supercomputers) such
as the Cray X-MP. They presented a possible approach for vectorization of microwave
CAD programs. As opposed to the conventional way of processing a circuit via a
sequence ofs{nglc frequency analysis, the.:_v perform a single multifrequency analysis
of the circuit. Common computational operations of the circuit at different fre-
quencies are exploiteci. According to their report, speed up factors of the order of 50

were obtained. However, the memory requirements of this method are increased

significantly.
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Bandler and Zhang (1987a) treated large sc;ilc microwave CAD problems
by exploiting advanced mathematical tools. Their approacﬂh used an autor'natic
decomposition scheme. Large scale optimization problems were solved using ordinary
mainframe computers with memory limitqtions within rc;asonable computer time.
Their method is effective on microwave circﬁits having decomposition properties.

Optimization methods are now considered important tools in the
microwave CAD community. - The survey papers by Bandler {1969), Charalambous
(1974) and Bandler and Chen (1987) summarized mathematical programming
methods for solving microwave circuit design problems. Optimization methods were
used in integrated design centering, tolerancing and tuning (Bandler, Liu and Tromp
1976b), in device modelling (Bandler, Chen and Daijavad 1986b) and postproduction
tuning (Bandler and Salama 1985b) of microwave devices. As a general CAD tool,
optimization techniques have also b?}n used for diagnosis (e.g., B-andler and Zhang
-1987b) and yield maximization {e.g., Hocevar, Lightner and Trick 1984) of electrical
circuits. Mathematical programming techniqués involved ranging from the random
optimization method (TOUCHSTONE 1985) which does not use any derivative
information, t¢ various gradient methods using either approximated gradient
{Bandler, Chen, Daijavad and Madsen 1986)., or exact first-order derivatives (Bandler,
Kellermann and Madsen 1983), or exact second-order dherivat.iv;zs tIobost and Zaki
1982). Particularly, the minimax (Hald and Madsen 1981) and the €; (lald and
Madsen 1985) optimization algrithms dev;loped by Hald and Madsen of the Technical
I’Jniversity of Denmark have been very practical for modelling and dc-s--ign of

microwave circuits (Kellermann 1986; Daijavad 1986).
> .

™~
P
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2.4 FORMULATION Of‘ CI‘RCUIT DESIGN AS lAN OPTIMIZATION
PROBLEM
Basically, a design problem is to find a set of designable parameter values
which let the circuit respdse or performan;:e optimally meet some given specifications
(Bandler and Rizk 1979). Inthis section, the circuit design problem is formulated. .
241 - The Circuit Model
In computer-aided design, a circuit is usuglly described by a mathematical
model. Let '
¢ 2 (&1 d2... dnlT SRCRY
replresent the design parameters. The circuit responses Fy, k = 1, 2, ., np, are
functions of parameters ¢ and of other independent variables y, ie.,
. Fx £ Fi(®, w). ‘ (2.2)
Fig. 2.1 depicts a general circuit with multi-inputs and multi-outputs. The response
functions Fy are evaluated or measured at output, p.orts and can represent, e.g.,
voltage, current, insertion loss, return loss, group delay and S parameters. T\;'o
responses, e.g., Fy and Fo are distinguished either by two different output ports or by
two different types of responses at the same port or by « mixture of both. The circuit
topology is usually fixed. The design parameters ¢ can be accessed either directly
(physical parameters), e.g., length of.a waveguide, or indirectly (model pa;e:;ﬂeters),
e coupling parameters of a cavity filter. The independent variables y represent,
e.g., frequency, time, tempreture, etc. 'i‘he functions Fy(d, ) are assumed continuous
-in the ranges of ¢ and of interest. Performance specifications are usually functions

of wonly (Bandler and Rizk 1979).
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Fig. 2.1 A general representation of multi-input and multi-output analog

system. Fy, k = 1,2, .., nrpare responses being meusured, monitored or
used as outputs subject to design specifications. Different types of
responses {e.g., voltage, current, return loss, insertion loss, § puram-
eters) may exist at the same output port. (a)system representation
{b) responses corresponding to each output port.
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242 Design Specifications and Error Functions

In this thesis, we will treat circuit problems mainly in the frequency

domain. In sucha casgf the independent variable.s Yy are commonly substituted by a
frequency parameter w. - Let Syk(w) and Spy(w) represent the upper and the lower
specifications for the response Fy(¢, w), respectively, k = 1,2, ..., np. Letwe, £ = l,-2,
.., R,y bea qset of frequency points sampled in the frequency range of interest, In an -
optimal design problem, the objective function usually ix}.volves a set of nonlinear °

error functions fi(¢), j=1.2, ..., m. Typically, the error [unctions represent the

weighted differences between circuit responses and given specifications in the form

wik(wed (Fild, we) — Syxlwe) , (2.3a) .
— Wikl )(Fr(d, we) — Spplwe)), (2.3b)
k€{1,2,...nF, ' (2.3c)
.
€€{1.2,...,n.} {2.3d)

where wy and wpy arg_{non-negative)'w_eighting factors for upper and lower
specifications, respectively.

Let J be an index set defined as

J2{,2, .., m}. (2.4)
Let '
M) £ max (). (2.5)
jed

Then the sign of M ¢) indicates whether the specifications are satisfied or violated.
As described by Bandler and Rizk (1979), if
> 0 the specifications are violated,
Mad) § = 0 thespeciflcations are just met,

L < 0 thespecifications are satisfied. -

-

L3y
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An o.gt_i-mization approach to the circuit design problem is to ﬁnd‘ $ s:uch
that M) i_s minimized. This corresponds to tﬁe effort to meet (when specifications
are violéted} or to- exceed (when specifications are satisfied) dp‘sign specifications as
much as possible. Mathematically, this is'a minimax problem where the maximum of -,
all error functions is minimized. A practical solver to the minimax problem is the 2-
stage algorithm developed by Hald and Madsen (1981).

2.4.3 The Coding Scheme Between Indices of Error Functions, Responses and

Frequehcy Points  * )

. There exists a coding scheme representing the one-te-one correspondence

'U/ 14

between. the index of fj and the indices of the'pair {F\, we) for the error functions of
both (2.3a) and (2.3b). We define weighting factor matrices W (for upper
specification) and W (for lower specification). Both matrices are np by n,. The (k,
€)th compbnent of Wy and Wi-are the weighting factors wyklwe) and wpglwe),
respe_ctivcly. w[;k(wi‘) or wpklwy) is zero_‘if no upper or lower specification is imposed
on Fild, we). The coding scheme relating the index of fj to the indices of nonzeros in
Wi and W are constructed b\ systematicall__v scanning through W and then Wi,

respectively (Bandler and Zhang 1987¢).

25 CONCLUDING REMARKS ’g

In this chapter, we provided a review of large scale ciréuit optimizatign und
of microwave CAD. Fairly treated in the literature are the simulation and sensitivity
analysis of large scale circuits. The optimization of such circuits remains a4 much open

subject.
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Also in this chapter, circuit design has béen formulated as a minimax

-~

optimization problem. Such a formulation will be used for circuit design problems

throughout the thesis.
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3 .

OPTIMIZATION FECHNIQUES FOR MODELLING, DIAGNOSIS AND
7 ) -

TUNING

3.1 INTRODUCTION

This chapter deals with the a_pplication of optimization techniques for
modelling, diagnosis and tuning (MDT) of electrgcal circuits. A conventional inter-
pretation of such techniques'fo-r modelling and diagnosis is the determination of
dppropriate network parameters leading to the best match hetween cireuit responsés
and measured data. When the measurer:nents are insufTicient to evaluate all network
elements, the most likely faults may be located. Otherwise, if the measurements are

. , s

sufficient, parameter identification is initiated, resulting in a circuit model whose

performance best fits the measurement data in the presence of uncertainties and

_ noise. T‘_v related is the tuninglproblem which has been approached mostly from

the optimiz3tion point of view. Existing software for mathematical programming can
be readily exploited in this case.

This chapter is based on the work of Bandler And Zhang (.198‘-'1))-. The
presentation is tutorial, but"'!&signed to be helpful for a state-of-the-art under-
standing. We first review circuitb oriented optimization methods with emphasis on

aspects important to MDT. A general formulation of circuit diagnosis as an

optimization problem is irtroduced. It is followed by a detailed investigation into

three specific formulation cases. Optimization methods for modelling and tuning are

presented and compared with those for diagnosis. [llustrative examples are provided.

S
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3.% CIRCUIT ORIENTED OPTIMIZATION TECHNIQUES

Optimization methods have played an important role in computer-aided
R .

design of circuits an¥ systems (see, e.g., Bandl'er and Rizk 197:9'. Brayton, Hachtel and
' Sangiovaﬁ/ni-ifincentelli 1981; Bandler and Ch"en 1987). Typical cir{:uit design
objectives are to satisfy o‘f to exceed design sg\eciﬁEations as much as possible. The
MDT problems, however, are usually oriented either towards (response) data fitting
or towards "parameter fitting” or a combination of both. The "parameter fitting" can
be interpreted as forcing parameters to approach a desired pattern. Such a pattern is
constructed to best represent.: |

D " an estimation of the parameters, e.g., results from a deliberate

perturbation to the circuit (for more measurement information), a projected

target parameter point for tuning;

2)/ an assumption of the circuit philosophy, e.g., type of faults, whether
catastrephic or soft;
3) a criterion for optimality, e.g.. the objective for minimum parameter
&

adjustment in tuning.

3.2.1 Introduction to Mathematical Programming

An optimization problem can be stated as

minimize U} (3.1a)
¢
subject to constraints .
gl =0 ' (3.1b)
and
hid) =0, - (3.1c)

\.vheret.b 2ldr P .. dalTgdig g ... gn:]T, and b 2 [hy h2 ... hy 4T
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When U, gand h are all linear functions of §, (3.1) is a linear programming

, g .
problem (LP), readily solvable by the simplex method (see Luenberger 1984), a
classical approaéh\being currently challenged by Karmarkar's algorithm (Kamiar
. . .

1984). e 7

To handle the nonlinear programming problem {NLP), i.e., the nonlinear

-

case of (3.1), a variety of methods have been developed. The unconstrained NLP ¢an
be solved by conjugate direction methods and quasi-Newton methods. The
constrained NLP can be handled using, e.g., penalty and barrier methods, and
augmented Lagrangian methods. .

A systematic treatment to (3.1) can be found in muny text books, ¢ g,
Lu'énberger (1984), . A comprehensive examination of optimization from the circuit
design point of view is provided in e.g., Temes and Calahan (1987); Bandler 11973,
Charalambous (1974): Director (1971); Bravton, Hachtel :;nd Sangiovanni-
Vincentelli (1981); Bandler and Chen (1987). In this section, we highlirht those
aspects of optimization which are relevant to MDT.

322 Lea‘st pth Optimization
A frequently _enwred objective U(d) is the ;‘)'Lh rnorm of

fld) 2 [fi{d) fold) ... fu(PIT, Pe.,

m Up
Uio) =( NP . opal

/

13.2)

1=1

The larger the value of p, the more emphasis is being put on
max{/fy],|fal,....|fml}. At the solution, large (small) p typically produces many .{'s

which are equal to max{|fy|,if2}, .. ., ifml} (equal to zero).
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The p=1 case of (3.2) corresponds to the £, norm gpt;ir_nization, solvable by
the two-stage algorithm of Hald and Madsen t1985). The algbrithm combines a first-

order method that.'app'roximates the solution by successive linear programming, with

a quasi-Newton method that uses approximate second-order information to $olve the
system of nonlineak equations arising from the necessary first-order conditions at a
- - . -

solution. _

The p=2 case of (3.2} (least-squares or €2 approximation) is a problem of

wide Publicit_‘;f. Both first-order and second-order methods have been derived for. ~ N
. . -
general nonlinear-€, problems (see Marquardt 1963 and Dennis Jr. 1977). For certain

linear €2 problems, a clésed form solution is obtairable by invoking generalized
matrix inversion (Rao and Mitra 1971; Nashed 1976).
The c'ibjective function defined in (3.2} is used to penalize the modulus of f.

. =
To penalize the value of f;, we use the generalized least pth function (Bandler and Rizk

1979 . o .
- 'R__ q T L ¢
- M ( N (L (dyM Jq) fM_=0 -
A —— f f -
Lig) = l Tk ey e B3
0 ifM. =0 - ,I« -
where _ ‘ v ’
) 2
M= max f.(d) . —_—
- i€d . (3.4)

and

'LF.\Ir:-O,then.K={ilfi30-i€'1.} and g =p @5 d

if M, <0, then,K=J - . and q = —p.
. o . ‘
In the case of My >0 (My <'0), the larger the value of p, the more nearly

"would we expect the maximum tminumum) Ifi] to be e'mphe;sizcd: Therefore, the



minimization of (3.3) corresponds to the frffort*to meet (when M¢ > 0) or to exceed
(when Mf < 0) a design specification as much as possible.

As p—=x, the generalized least pth optimization approaches the minimax
optimization, the latter being effectively solved by the combined LP and quasi-
Newton metl;od of Hald and Madsen (1981). The algorithm is a two-stage one similar
tc; the £ optimizatjon algorithm of Hald and Madsen (1985). Initially, Stage 1 is used
and at each.point, fis approximated by linear functions using first-order information.
In Stage 2, the quasi-Newton it_erﬁtion is used to solve a set of nonlinear equations
t.h?t necessarily hold at a local minimum. Usually, Stage 1 is used to obtain fast
convergence to the neighbo.urhood of the solution. Stage 2 is used to obtain super-
linear 'g'mal convergence, but several switches between the two stages may.take place.

The two-stage algorithms for él and minimax optimizations ure
computationally practical and have been implemented by Bandler, Kellermann and
Madsen (1985, 1987). -

—

323 Quadratic Programming

3 -

In a quadratic programming problem (QP), the objective function is defined

' U2 A+sTo+ %¢TH¢_.- Co {3.6)
where A is a-scalar, s1s a n-vector, and H is a n X n matrix.

The QP problems ar;se both in their own right and as subproblcn;s within
gerieral nonlinear optimization methods. Typically, a QP problem is to minimize the
function of (6) subject to linear equality and/or inequality constraints. Such a problem
can be solved, e.g., us_‘t' %he iterative methods described by Gill and Murray (197D

and Gill, Murray, Saundefs and Wright (1984). The linear inequality constraints are
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treated using -the active-set methods in which a predi'ctiop of tﬁe set of constraints
thai are active at the solution is maintained. This prediction is'called the working set
and is updated by adding or deleting constrajnts as the iterations proceed. By
treating the working set as equality constraing'the constrained QP problem is trans-
formed into an unconstrained one. The problem is relatively c;asy to solve if the
original H is positive definite (Gill and Murray 1977).

For unconsfrained QP problems, with H as positive deﬁ\nit;e, the minimum

can be uniquely located in a finite number of steps, using, e.g., Newton's method and

the conjugate %radient method.

3.2.4 MINMAX and MINBOX Approaches in Linearization
Linearization is often used in solving nonlinear programming problems.
Hachtel, Scott and Zug (1980) described the MINMAX and MINBOX approaches

where the range of the validity of a linear approximation is specified in the varixbte~

domain and the function domain, respectively. Used in nonlinear minimax optimiza-
tion, the MINMAX approach resemb[eé_the conventional way of locating the minimax
point of linearized functions subject to‘ia prescribed “"box constraint”™ on ¢. The

,

MINBOX approach, on the other hand, either produces a smallest step Ad which

achieves user-specified levels of improvement in f, or states that the levels are

T

infeasible.

*
3.2.5 Gradient and Nongradient Approaches - ~
- - L] »

The employment of exact gradient information al/a¢ significantly

improves the effectiveness of an optimization algorithm. The well-known adjoint

network method developed by Director and Rohrer (19694, 1969b) remains a powerful
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tool for sensitivity calculation. An equivalent, but pure algebraic approach has also
been studied (Branin Jr. 1973; learidler and Zhang 1986). For special types of

\

networks, e.g., branched cascaded net\;'orks, more effective methods can be derived
{Bandler, .Daijavad and Zhang 1986)_.- l - b ’

" Not infrequentl.y..the ‘gradient'i-.s _déf’f'mﬁlt or even impossible to obtain.
Appro:r.imte gradient methods have been de\::z-loped. in addition to the direct search
methods which do not ciepend e:.tplicitly on 'evz;luation or estimation of gradients. The
theoretical background is the Broyde.n i:ormula (Broyden 1965}, which utilizes
function values to improve the gradient estimation as’ tl';e optimization proceeds. This

feature has been implemented in nonlinear €; and minimax optimization packages

{Bandler, Chen, Daijjavad and Madsen 1986).

/

3.3 GENERAL FORMULATION OF DIAGNOSIS AS OPTIMIZATION
PROBLEMS
3.3.1 Introduction ’

The analog diagnosis techniques are described here using a single
frequency measurement. Such a description offers both conceptual and notatipnal
simplicity. Particular mathematical manipulations required for ’multi-frcq:mnc_v
cases are illustr .ed whenever necessary.

Suppose from the circuit under test (CUT), we obtain a set of measurements
represented by a np-vectol FM. TQ@ corresponding respons.cs as functions of circuit
parameters ¢ 2 [d; &7 ... dalT are given by F 2 Fig. w). FSr single frequency cases,
F:2 F($).is used for notational convenience. A nominal design of the circuit is

characterized by ¢0 and Fo.

Ny



26

When the measurements are insufficient to identify all parameters, e.g.,

when np<n, the equation

™ = F¢° + 44) . @D

is an underdetermined one. An optimization technique can be used to find the most

likely Ad, among an'infinite number of solutions to (3.7). Such a problem can be

stated as -
. minimize C(Ad) (3.82)
ad
. st. h(FM, A¢)2 Fo® + agy - FM = 0, (3.8b)
where U is an increasing functionof |Ady],i = 1,2,...,n.

A convenient approach to. solving (3.8) is to use penalty methods. For

example, a least pth formulation is

n 3

s . vp (3.9
minimize (" w a3 P+ > B.[F.(@°+ ag)—FY| ") ,
Ad i i1 ol
‘h
where w;, i=1,2,...,n and f;, i=1,2,..., np are appropriate weighting factors
(Bindler, Kellermann and Madsen 1987).
3.3.2  Constraint Equation
Suppose the N-node circuit is characterized by its nodal equasion

YV=I (3.10

where Y, V and [ are the nodal admittance matrix, voitage vector and current

¥

excitation vector, respectively. We assume, for convenience, that the measurable
responses of the CUT, namely F, can be represented by linear combinations of nodal
- 1S

voltages using a N X np matrix C such that

(3.11)
F=CTv.

Thus,



F=F@) = CTIv@ ™. | G

To simplify the nonlinear optimization of (3.8) and (3.9), rescarchers have
employed two effective formulations transforming the constraint equation into linear
fo:ns by in'tx.-oducing intermediate parameters. Th;ase formulations are the current/-
voltage source substitution model and the component connection model. The former

model will be used throughout this chapter. A comprehensive treatment to the latter

can be found in Ransom and Saeks {1973), and in DeCarlo and Sacks (1981).

3.3.3  The Current/Voltage Source Substitution Model

The current]voltagt source substitution model was used by Bandler,
Biernacki and Salama (1981), Bandler, Biernacki, Salama and St.'irzyk (1982), and
Bandler and Salama (1985a) for fault diagnosis. Insucha model, changes in element
val-lués are equi\;‘z'ﬁéﬁtly characterized by current or voltage sources. Fig. 3.1 shows
equivalent representations for some typical elements in linear circuits, Without loss
of generality, we a.ssume that the changes are represented by current sources only.
Let AIb be a n-vector c.ontaining such sources corresponding to the n variable

elemnents, and Q be a NXxn incidence matrix relating the n branches containing

variables to the N-nodes of the circuit. By invoking the superposition theorem, we

may write
Y$Hav = —Qar. (3.13)
where AV is the deviation of actual nodal voltages from their nominal values. Also,
AF2F-F'=cTav=—cTiywp®-'q@ar. (3.14)
Denote. )
a d-cTiye¥'q. ' (3.15)
Then we have the constraint equation in linear form as
AAlPr=rFY_F° (3.16)

or, in real form, as
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. . Ax=b, . - (3.17)
where
A Re(A) =Im(A" ) (3.18)
Im(AN Re(A")
b=[ReF¥ = FY  ImFY¥ -FHTT (3.19)
and -
x = Re(da®’  Im@ADT. (3.20)

To compute A from x, we simulate the network with all components held -
at nominal values and with additional current excitations ALY = x; + JXiea,
i=1,2,...,n connected across corresponding components. After measuring or

calculating branch voltages V-b, i=1,2,...,n, the component change is evaluated as

X +jXx,
1 14 N -0 .
Acbi = ——h—(jm) ,1=1,2,..,n
v v

{3.21)

where a = q;, whose value can be 0, 1 or —1 dependifig upon whether the ith

comporient is resistive, capactive or inductive.

For multi-frequency diagnosis, we use Ad as optimization variables

directly. A, b and xare redefined accordingly. For example,

a . Q,
A = =CTIY@% o)™ Qdiag{w) ' Vi), (o) *Viw), ... (u) ”V:(w)[

) 322 °

A F‘“(wl) - Flw))
A= [ l . 1 l (3.23)
A, F‘“(mz) - Fo(wgJ
_ RetA") l _ Re(b™ l (3.24)
. Im(A7 | Im(b"

and
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where we have assumed thatfwo {requency points are taken. The branch voltages
Vidwpk=1,2,...,n a¥-c inftially assumed. An iterative procedure updates Vi(w;)
and at the same time computedthe char;ges in¢. |

_Ii‘ the nodal equat:.ion of (3.10) is replace‘d by a hybrid equatibn, a more
general form of (3.17) can be similarly deduced where both current and vdltage

sources exist for an equivalent representation of Ad.

3.3.4 The Component Connection Model .
The component connection model was used by Ransom and Saeks (1973,

1975). We assume that the system topology is described by a matrix relation -
Lu L12
I..,_,1 0

Here, u’ and v are the component input and output variables, respectivély, related by

u
F

v 7 (3.26)

u

v=2Zu', | (3.27)
where Z is the component parameter matrix. The u and F in (3.26) are the system

input and output variables related using the system matrix N as

J/T: Cu. . (3.28)
By introducing intermadiate varﬁables R, we have linear relation
~— -
] ['= LaRLy, (3.29)
where R is related to Z, using
R=(1-ZL)"'2Z. (3.30)

It has been smc Ransom and Saeks 1973) that for small changes in Z,

AZ = AR, ‘ (3.31)

-,
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As such, R can be used instead of Z for.optimiza‘tion. Final results of Z can be
computed using either the exact (i.e., deduced form (3.30)) or the approximate (i.e.,

deduced from (5.31)) relation between Rand Z.

3.3.5 General Formulation .-

The intermediate variables x defined in (3.20) exhibit a similar pattern to
the parameters A¢ since an equivalent source current ard increases as the
corresponding Ad increases. Also, AI® = 0 if and only if Ad = 0. Now, we can solve
the optimization problem with x as variables and use the solution to find &4d. A

simple yet reasonable objective function is the least pth function of x. A general

formulation of diagnosis as an optimization problem is

2n

=1 lp . 9.
. minimize pfx)%( S 1xi|f’) (3.32a)
X ‘ i=1
(3.32h)
s.t, Ax—-b=0, _
where wi, i = 1,2,..., 2n are weighting {actors and the constraint (3.32b) is derived
A" . .

from (3.17-3.20). For the multi-frequency case, (3.22)-(3.25) can bg used to define A,
?&‘.’ R

b, and x for the constraint equation (3.32b). In this case, the objective {unction U is

the weighted least pth function of x;, i = 1, 2, ..., n. After solving (3.32), A¢ can he

i

found using (3.21) or (3.25). S |

3.4 DIAGNOSIS USING THE LEAST-SQUARES METHOD
The diagnosis technique using least squares optimization was suggested by
Ransom and Saeks (1973). It is based on the assumption that the catastrophic faults
have been eliminated and the circuit failure is due to components drifting out of

tolerance (as from age, temperature changes, etc.).

V2
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The optimization problem can be stated as

(3.33a)
minimize U (x)2 X' W x @
X

st. Ax—-b<s 0, (3.33b)
where the constraint equation {3.33b) is defined consistently with {3.32b). W is a
diﬁgonal matrix containing weighting factors w;, i = 1,2,...,2n. An appropriate

L]

choice of the weightings can be such that the U of (33a) approximates

n

5N 2 :

1=
under the assumption that A¢;, i = 1,2,...,n are quite small. For example (see
Bandlerand Salama 1985a), for 1 < i < n, -

1 Q.
w, = = Reljo) ' VD77,
: (3.34)

1 a. o
¥ o = 5 (mlfe) vy,
The solution of the €; problem is-directly obtained using generalized matrix
inversion (see R;;o and Mitra 1971), e.g.,
x=W-tATA w-taAh)-1p 931
Such a technique using a component-connection model has been presented
in Ransom and Saeks (1973). - The variables x consist of elements of the matrix AR.
The optimization problem is to minimize the €2 norm of AR subject to
| AP = Lo AR Ly, y (3.36)

where Al is the difference between the measured values and the nominal values of I".

The solution is the generalized inverse of the matrix in (3.36). The component

connection medel is effective here since AR = AZ under the assumption that no

parameters have significant deviation from nominal.



3.5 DIAGNOSIS USING THE QUADRATIC PROGRAMMING METHOD

The quadratic pfog_ramming technique for diagnosis was suggested by
Merrill (1973). He considered such a class of situations where a system becomes
inoperative due to the failure of one Vor a few components, Pfe pointed our: that because
the individual system components are generally highly reliable and well muin-tained,
a diagnosis that implicates many components as having failed is:‘probably not correct,
Therefore, contrary to the €2 optimization technique, the main aséumption here 1:.
that the difference between the 'actual and the no‘minal val\Bfgs for a few clerr;cnts,
which correspond to the faulity elements, is much greater tha#fthat for the remaining
elements that are nénfaulty.

The optimization probl%n be described as

-
N < 3.37a)
- minimize U(x)é S wi\/lxgl + 8 (3.37a
X ' i=1
st. Ax-b=0, (3.37b)

where the constraint equation (3.37b) is defined consistently wi-th {3.32b). The §
under the radical prevents the derivative of the objective function from becoming
unboﬁnded.

To solve (3.37) efTficiently, Merrill put the constraint (3.37b) into the

objective function in a quadratic form as a penalty term, applied uniform weightings,

w;=1,i=1,2 ..., 2nand transformed the problem into
& 1 3 3 3.38
minimize Uy} & S Vy +8 + = [(Ay - b (Ay - b) 13.55u)
y 1= . -
-,
st. va0, (3.33b)

where A [A =A) éx?d y is a 4n-vector related to x via
A

Xy
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¥, =X, and y, .. =0 ifxiEO

. ~ -
y, = 0 and Yogei = =X, i_f‘_‘i <0 (3.39)

~ 1

i=1,2..2n.
Also, x can be calenlated from y using s .
(3.40)

w——

X. =yi_yﬁ1+i’ ;:1,2,...,2!1.

Furthermore, the square root portion of U(y} is linearized at y.= vi,

resulting in

Uj(_v) =A+ sTy + %yT Hy, (3.41)
- where _
s= % 6+ 877 8™ L+ e - A'b (3.42)
and
H =g ATTA “:TA | T (34Y)
—ATa  ATa

The scalar A 15 also a function of B, §, yJ and b, but as its value is irrelevant to the
- minimization of Uj(y), it will never actually have to be caleulated. -

As Merrill indicated, the use of variables v, instead of x, ¢can e!im‘inate the
difficulty of dcrivative‘ discontinuity of U at x, = 0. The quasi-linearization of U { om
(3.38a) to Uj of (3.41) leads to the natural application of powerful quadratic
programming methods (see Gill and .\1-urru_v 1977). The optimization problem of

*
(3.38) is solved iteratively by the following steps. -

Step 1 j=0,wi=0
Step 2 Compute s as a function of ¥J using (3.42).

Step 3 Minimize Uj(y) of (41), subject to ¥ = 0 using the quadratic programming

method. The solution is defined as yi~1,
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Step 4 If Ulyi+1) = Ulyi), then calculate x using (3.40) and stop: otherwise,

" j+<j+1andgotoStep2.

3.6 DIAGNOSIS USING THE LINEAR PROGRAMMING METHOD -
Bandler, B.iernacki and Salama (1981), and Bandler, Biernacki, Salama
and Starzyk'(1982) proposed the diagnosis technique using the €; norm optimization.
The main assumption is similar to that for the quadratic programming approach,.
However, instead of solving a seque;lce‘of quadratic optimization problems. a linear
prﬂg‘ramﬁxing problem is formulﬁted,'taking advantage of the nature of the & norm as
well as the linelarit_v of the constraint equation. A solution KQ_EH.Q‘%& problem tends to
satisfy the constraint with minimum number of parameters different from zero This

is consistent with the assumption that a few elements are actually faulty.

The optimization problem can be expressed as

n
minimize U (x) 2 > w |x|| (3.44a)
—_— 1 H *
X i=1
st. Ax-b =20, . (3.44b)

where the constraint equation {3.44b) is defined consistently with (3.32b).

Such a problem can be solved directly using €; optimization algorithms,
e.g., Hald and Madsen (1985).” It can also be handled by using a regular linear
programming solver in a similar n;anner to th:‘tt of Barrodale and Roberts (1978), Let
¥ be defined by (3.39). Thé problbr;1 of 13.44) is transformed into a standuard LP

problem as
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.minimize Ul(y) £ [w, Wy o Wy oW we o ow, y (3.452)

. y . :
st.[A -Aly =b _ (3.45b})
y=0. {3.45¢)

At the solution of (3.45), x can be caleulated from {3.40).

37  MODELLING USING OPTIMIZATION METHODS
In a modelling probiem, it is reqt‘.tired to find parameter .vplues of an

equivalent device model to best fit measurement data. As Hachtel, Scott and Zug

(1980) have described, the prablem is of a type that is frequently encountered by

p:"oduct assurance engineers. These engineers are faced with the fact that the circuits
which come off the product line differ from the circuits designed with circuit
simulation\;'&ta‘ms. Consequently, they need device models which agree with

on-chip measurements. in order to estimate the statistics of the on-chip circuit
C

Let f = fl¢) be a m-vector containing the weighte-d difference bgt»:-een'

performance.

37.1 Basic Formulation

calculated response F(¢, w) aﬁd measured data FM(w) in the form of

w ) (F (§,0) - F;“(coj))‘. i€{1,2,..,nd, j€{1,2,...n}. (3.46)

Due to measurement errors and nonideal effects, f = 0 may not be possible. Therefore,

"the modelling problem can be stated as

(3.472)

minimize U ($)
% .
st.d sd=o., (3.47b)

M
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where U is arf increasing functionldf]fi(s‘b)l. i=1,2,...,m. ¢rand dp arc lower and _
upper bounds, respectively for ¢. e

A reasonable objective functiomt(¢) can be the least pth function of f() in

' ti:ne form of (3.2).
With a sméll value o'i: p, the objective. function tends to accommodate
'mea§uz-'ements which may contain accidental _large; errc;rs. | Large values of p vroduce
satisfactory results when all measuremen{ errors ﬁnd nonidleal effects are small.’
Successfully implemented algorithms have used p = 1 (e.g.; Bandler, Kellermann and

- .
Madsen 1987), p = 2 (eg. Kondcoh 1986), and p = = '(e.g., Hachtel, Scott and Zug

1980).

3.7.2 ~ Limitations of the Basic Formulation
. The basic formulation of modv.:lling problems is a traditional appreach
‘ which is almost entirely directed at achieving the bést’ poss;ible match between
melasured and calculated résponscs. This .l.lpprouch has serious shertcomings in two
frequently enc‘bunter.ed cases. The first case is when the equivalent circuit
parﬁmc.ters are not unigque w.r.t. the response;; selected and the second is when
nonideal effects are not modelled adequately, the latter causing an imperfect mateh,

~even if small measurement errors are atlowed for. In both cases, a family of solutions

for circuit model parameters may exist which produce a reasonable ind similir match
between measured and simulated responses (Bandler, Chen and Daijavad, 1986h)
Such pro.blems become more difficult to h:.mdle with a large num.bcr of variables
" wherea direct_optimization is hopeless unless started with aceurate estimates of most

circuit element values from independent measurements or calculations (Tsironis and

Meilerer 1982; Curtice and Camisa 1984). -
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Efforts:~ih allev_i-ating' thosez!fd)-ifﬁcultiés have been made in several
directions.'Stra..ightlfdrwafd -approaches; include seeking additional 'independent .
measurements and/or predetermining some variables. Since both actions reduce the

; freedom of variables, they can be effectively applied if a further exploitation of

»

_physical properties of a given dev.i_cé' is permitted. However, when faced with a

prescrilﬁed set ;)f _pgssible measurements and variables, we can proceéd‘to general -
approaches such as decomposition and multi-circuit measuring.
3.7.3 ° Reductionof Mosie[ Parameters anfi Decompqsition 'Appro;ches

Reduction of model parameters mayossible by full investigation Qf‘_
“physical propeftiés of the device tc; be modelled. Such an approach was demonstrated
by Curtice and Camiéa (1984) in a FET modelling problem. Using de¢ and zero bias
measurements, they reduced the number of variables from 16 to 8. The final results of
the modelling was reported to be accurate an& unique. |

In laboratory experiments, a repeated trial and error procedure may be
necessary.” Reduction of model variables can be achieved by exploiting the lab
cxperience with sample devices. Insensitive variables should be removed al initial
stages of an optimization process. Variables tending to reach the upper or lower

bounds during the optimization can be fixed in an appropriate manner {(Hachtel, Scott

1

and @g 1980).

Tsironis and Meierer (1982) and Kondoh (1986) have suggested to decom-
pose. ihc overall optimization problem of (3.47) into a sequence of suboptimizations.
They illustrated successful FET modelling by properly defining and ordering subs;ets
of parameters and responses. Insensitively related parameters and responses are

separated into different subproblems. A series of suboptimizations can provide a good

é



.starting point for the overall optimization. 'I‘t also uhproves modél accuracy and

reduces the possibility of stopping at an undesired loc 1 minimum.
- An autematic decomposition approach for Qevice 'modellin'g and large
circuit desigh was de.veloped by Bandler and Zhang (1987a). Using this app'rouch,\
Subop;imizationé for FET modellit;xg proBlems have been for;mulaited automatically

using computerized sensitivity analysis of the device. The results were consistent
. L

with those of Kondoh (1986).
3.7.4 Multi-Circuit Approach .
This approach was proposed by Bandler, Chen and Daijavad (1986b). The
' .

¢1-norm objective function -was used. Suppose that after taking measurements on a

device at @ number of frequency points, we make an easy-to-achieve physical adjust-

ment, such that one or a few components of ¢ are changed in a dominant fashion and .

the rest remain constant or change slightly. Consider the following optimization

problem

143

2 n :
minimize > > I+ X B 1o - ¢ (3.48)
¢l.¢2 k=1 t=1 1=t

with superscript k identifying the original network model (k = 1} or the model ufter
ﬁhysical adliuﬁment {k = 2). B;represents an appropriate weighting factor and mX is
an index whose value depends on k, i.e., a different number of frequenci‘es may blc used
for the original and the- perturbed model. &! and ¢2 are vectors containing circuit
parameters of the original and perturbed net»;rorks, respectively.

* By ad.d'mg the second segment to the objective function, wé take advantage

of the knowledge that only one or a few components of ¢ should change dominantly by

A
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perturbing a physical component of the device. Therefore, we penalize the objective

function for any change in ¢. However, by cleverly selecting the €, norm, we still

allow for one or a few large changes in .

The confidence in the validity of the ~équiva1ent circuit parameters

-

increasesﬁan optimization using the objective function of (3.48) results in a

ch between calculated and measured responses for both circuits 1 and
.

reasonab
2 (original and perturbed) and 2)the examination of the solution.reveals changes from
d! to 4)2‘ whiéh are consistent with the physical adjus_tmeht, i.e., only the expected
' components have changed significantly. We can build upon our confidence even mo;e

by expanding the technique to more adjustments, i.e., formulating thé optimization -

~

problem as
nc mk nc n
minimze > O I+ > 3 plel - ok, (3.49)
&’ k=1 i=1 k=2 j=1 B
3
/

where n, circuits and their corresponding sets of responses, measurements and
parameters are considered and the first circuit is the reference model before any

- -

physical adjustment. ¢’ containsalldk, k = 1,2,.. . n,.

38 TUNING USING OPTIMIZATION METHODS
Postproauction tuning is often essential in the manufacturing of electrical
circuits. Tolerances on the circuit components, parasitic effects and uncertainties in
'.the circuit model cause deviations in the manufactured circuit performance, and
vielation of the design speciﬁcatiorrs’ may result. Therefore, post—producr.ion tuning is
included in.the final stages of the production p;ocess to re:‘ﬁd_just the network

performance in an effort to meet the specifications.

L}
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Computer-aided designers have approachéd the tuning problem inl two
ways, ;each empha}sizing one distinct facet. Before production, at the time of designing
a circuit, one can consider tuning as an integral part of the design process (Bandler,
Liu and Trom{) 1976; Polak and- Sangiovanni-Vincentelli 1979).‘ the objective being to
relax the tolérances‘on the circ;.lit components and compensate for the uncertainties *
in the model parameters. The integral design ‘problem is formﬁlated and solved using
optimization su;h that the essential de;nand of production cost reduction. is optimally
met. The solution of the design problem provides the manufacturer with the allowed
design to}erances and the tunable para.meters.

In the final production stages, the manufactured circuit is usually tested to

-check whether or not it meets design specifications. Tuning is Vof‘ten needed. Here, it

is required to implement necessary changes/m the tunable parameters to adjust the

manufactured circuit to satisfy the design requiremé.nts {Bandler and Salama 1981).

3.8.1 Preproduction Tuning

Suppose ¢ £ [g] &2 ‘. .. gplTand t 2 (t; to ... t,)T are vectors containing
tolerances ahd: maximum tuning amounts, respectively, for the parameter
d 2 [d1 ¢2 ... dalT. A nonlinear programming problem integrating design

centering, tolerancing and tuning can be stated as:
: minimize U(¢°, e,1) (3.50a)

-d°% e, t '

s.t. ¢=¢°+Ep+Tp€Rc

forallp, p¢€ Rp and {3.50b)

_some p, pGRp,
: 4
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where E and T are nxh diagona} matrices containing g;, i = 1,2,...,n and t;,
. .

i=1,2,.., n respectively, and
TR TR
. - T ' .
pdlp, py . g ' - (3.52)
Also, R is a constraint region in which all responses satisfy their specifications. R, is

a regioﬁ inwhich |pf = 1,1 =1,2,...,n. R, is defined as the region {p| -1 sp; = 1,

i=1,2,...,n} for two way tuning and, {p|0=sp;=<1,i=1,2,..,n} or

{pl=-1sp;s0,i=1,2,..,n} for one way tuning. The objective function can be an

. increasing function of |t;/${% and a decreasing function of |¢i/d;0], respectively. A

detailed treatment of the preproduction tuning was presented in Bandler, Liu and

Tromp (1976) and in Polak and Sangiovanni-Vincentelli (1979).

3.8.2 PostproductionTLming: Problem Formulation

Prior to postproduction tuning, the manufactured circuit is characterized by

. theactual parameter values given by

¢g = ¢0.pf‘_ E pa‘ (3.53)

Suppose, for convenience, that the preproduction stage resulted int; > 0 for

i=1,2,..«,npandt; = Qfori = n+1,...,n Therefore, the tunable parameters are
dini=1,2,...,n. Asetofcircuit performance functions given by
Fip, o) = Fip® + Ep® + Tp. 0 €3.54)

are usually monitored during the tuning process. The desired values for F, denoted as
FY can be either an optimal response or a design specification. Define f = fid)asa m-
vector whose elements are in the form of
wL.i(wj)(Fl@. mj) - SL’i(mj”
(3.5%)

- w[_l{mjl(F‘(tb. wjl - Su(wj))

T .. (35))

'
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where i € {1,2....n¢}, j€{1,2,..,n,} and ¢ = $O+E po+T p. Sdi and St are upper
and lower specifications, respectively. wy; and wy; are weighting factors and are
nonnegative. If it is required to match Fi(d, w) with its desired value F‘d(m). one can

either use (3.55) by setting

- — pde (3.56)
. S0 = 5 {w) = Fl(w)
or define elements of fas _
d {3.57)
wi(mj)l F.($, wj] - Fi(mj) . . J
The pestproduction tuning can be formulated as the optimization problem

* minimize Llp) ‘ (3.58a},

pl
s.t. ij[S 1, j=1,2,...,n'_ , ‘3'58.“’,

where p' is a ny — vector containing the first ny elements in p. The objective function
can be a least pth or a generalized least pth function of f{lp0+E p*+Tp), ie., in the

. forms of(3.2) and (3.3), respectively.

3.83 Postproduction Tuning: Functional Approach
Functional tuning is a traditional approach. The tunable parameters are
sequentially adjusted until the circuit speci;‘lcations are met. Here, the .nct.work
elements are ge'nerally assumed unknown.
Let J be a m X ny Jacobian matrix whose (i, j)th element is defined by
of of )
J;j=a_pj=£jtj' /./@)

i=1,2,...,m and j=1,2,...,nl.

The least squares optimization of (3.58), namely, taking U = 1§, was
proposed by Antreich, Gleissner and Muller (1975) and Adams and Manaktala (1975).

The solution is given by



/ -
ap'= =T N ITEH + Ep® + Tp). . (3.60)
The minimax optimizatiorr of (3.58), namely, taking U = max f;, was
approximated by Bandler and Salama (1981, 1985b) who solved the following linear

programming problem

) minimize 2z (3.61a)
.\ Ap.,r z

n
t

st. £ %+ Ep"+Tp)+ z JijApj Sz
i=1 {3.61b)

Py = Apj = Pu; i=1,2,...,m, j=1.2....,nt.

p is initially set to 0. After each solution of (3.60) or (3.61), p is updated using Ap’. As
proposed by Bandler and Salama, simulated sensitivities and Brovden formula can be

used for obtaining and updating J.

3.8b Postproduction ’I‘unipg: Determinist.ic Approach

In contrast to the functiona’l tuning approach, deterministic tt{ning
requires that all circuit parameters ¢ and possible parasitic paramete;-s ¢ (or its
effects) can be either measured or identified. By utilizing this information, the
optimization of (3.58) becomes faster,

A sequential tuning algorithm has been introduéed by Lopresti (1977). Let
fbe the m-vector defined in (3.55) or (3.57). Initially, we set p = 0 and define ‘

f A% < ¥ 34 | (3.62)

which represents the deviation of f from f(¢9) due to parasitic effects and tolerances in
untunable parameters. In the kth iteration, we have .

= e, J, 0T, k212,00 (3.63)



45

*
By defining U of (3.58} as a quadratic function of f+1 and adding a term penalizing

Iarge changes in Ap’, we obtain an optimal co‘ntrol problem, i.e., finding Ap’ such that
T o
n +1 n +1 A
U:(f‘ ) Bf® +EBj(Apj)2
< v j-_——l

(3.6

xs minimized subject to (3.63). B of(3.64) is a positive sg_midcﬁnite matrix and f; > 0,

i=12,...,n. Aclosed form&)lution can be obtained ina form as

) = Tk _ ' (3.65)
where yy is 2 m-vector calculated using Riccatti equation (see Lopresti 1977).
i [nstead of using first-order sensitivity information J which becomes invalid
when components of Ap’ are not small enough, Alajajian, Trick and El-Masry (1980)

" have suggested a large change sensitivity method for deterministic tuning. The

resulting equation is

= —fld"h, (3.66)

A ’
W - £ @Y [ P
c b

where JL is the large change sensitivity matrix of f w.rt. p’ and ¢ is an unknown

variable, ‘ *

3.9 EXAMPLES
In this section, we first Rresent the application of optimization teéhniqucs
for circuit diagnosis through a simple illustrative example followed by selected

problems of practical interest for diagnosis, modelling and tuning.

3.9.1 Diagnosis Using Optimization: An [llustrative Example .
Consider the passive resistive network of Fig. 3.2. Nominal values for
elements G;, 1=1,2,...,5 are equal to 1. Each element has *+5% tolerance. The

measurable responses are nodal voltages, ie., F =V, Va V3IT, causing the C of
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.(3.11)tobe a 3%3 identity matrix. Also for the exarhple. N=3 np=3and n=35.

The incidence matrix is given by
1 1 0 0 0 .
: . . (3.67)
=0 =1 1 1 0 . . .
Q P
o o 0 -1
'I‘he‘yariable parameters are defined as ¢ = [G; G2 Gz Gy GslT. The nodal

admittance matrix at nominalpoint $2 ={1 1 1 1 1]Tis

[ 2 <1
Yo = {-1 3 (3.65)
0 -1

For such a circuit, all quantities are real. Therefore, the constraint

equations as well as the related definitions (3.17)-(3.20) becomes

Ax=b, ’ (3.69)
where
A= -—cTiydM'Q
532 11
e Y S U (3.70)
. 1 =1 2 -3 5

LS
(\ _ M CruM .0 oM .0 .M 0,7 3.7
b=F _E‘O_[\l_\l. vit-v) vl e )
and a
Cra1b agb b T (3_%2.)
x=[al] AL, Ay aly ALl .

where ALP, i = 1,2,...,5 are the equivalent current sources representing G,
i=1,2 5 shown in Fi inal res s FO = (V% v vy can be
1=1,2,...,5showninFig. 3.3. The nominal responses [V, 2 1 1T can be

caleulated as F = [5/8 /8 1/8]T.

Case 1: Her€ we assume that no elements have much greater deviation from nominal

than other}'s. Table 3.1 shows the results of diazgnosis using the €1, €» and the
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- * TABLE3.1

RESULTS OF DIAGNOSIS USING OPTIMIZATION TECHNIQUES
FOR THE CIRCUIT OF FIG. 3.2, CASE 1 -

CUT Measurement ‘ ‘Actu"al Detected AG/G0%,1=1,2,...,5
VM - AG{#Gi9% —
i=1.2,...5 €a | Quadr. 4}
Optim. Program. Optim.
"#1 5730 44 436 14.02 - 13.23
2326 18.0 18.07 1.80 73,14
1186 9.0 7.61 10.00 0.00
30.0 '33.04 0.00 4.00
25.0- 2793 ~3.85 0.00
#2: 6437 ~2.0 -2.33 , 000 0.00
| 2241 -12.0 —1141 ~15.07 ~15.07
1145 6.0 528 7.92 7.92
20.0 23.73 4.35 4.35
i 15.0 18.58 0.00 0.00 .
#3 6266 3.0 —0.42 0.00 0.00
2412 -8.0 —2.44 -3.12 —312
1307 By 1'96 1 0.60 0.60
10.0 17.69 18.23 18.28
-7.0 -0.50 0.00 0.00
*
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quadratic programming method. It is demonstrated that the least ,squa.\res method
gives a mo;e reasonlab_le solution, while the other two methods have mistakenly
detected, e.g., Gq as nonfaulty while this element actually changed 30% for CUT #1.
_However, the £ optimization method may also fail to give correct results, see CUT #3
where the Go and the Gs are not detected as out of tolerance.
Case 2: In this case, we assume that only a few elements are faulty having much
greater deviation from nominal than the rest el,e‘mgnt that are within the 'speciﬁed
tolerance of- #5%. Table 3.2 shows the results of diagnosis using the three
optimization techniques pregenfed. [t can be seen that both the £, and the quadratic
techniques give much sharper results than the €5 technique. In many cases, both €;
and the quadratic optimization produce the same solution. ln_some cases, as shown

for CUT #2 and CUT #3 in Table 3.2, one method yields a beﬁter solution than the

other. .-

-]

For the quadratic programming technique, we have used § = 10°5 and

B = 10'%. The QPSOL Fortran pag}uge for quadratic programming (Gill et al 1981
was utilized to perform Step 3.in Section 3.5 with a limit on the number of iterations

for each quadratic programming as 3.

39.2 Diagnosis of a 28 Node Circuit

Kellermann (1986) experimented with the non[inear-o.l}-:timization problem
of (3.9) with p = 1, on a 28-node cireuit shown‘in Fig. 3.4, The nominal values of the
eiements G, = 1.0 and tolerances g; = £0.05,i = 1,2,...,52. Al outside nodes are

assumed to be accessible for measurements. The actual ¢ireuit includes four faults

where elements Gy, Gay, Gys and Gyg have = 50%% deviation from nominal. All other

LF
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TABLE 3.2

RESULTS OF DIAGNOSIS USING OPTIMIZATION. TECHNIQUES |
FORTHE CIRCUIT OF FIG. 3.2, CASE 2

CUT  Measurement Actual betected AG/G9%,i1=1,2,...,5
VM AG{/G;0%
1=1,2,...,5 €a Quadr. &

Optim., Program. . Optim.

#1 .5000 0.0 16.98 0.00 0.00

3333 200.0 149.06 200.00 ~200.0Q

16867 . 0.0 —-8.49 0.00 ‘0.00‘

0.0 -33.96 0.00 0.00

0.0 —-33.96 .00 0.00

#2 5933 - 2.0 1.95 177 T st

' 2207 6.0 6.08 6.36 0.00

1755 -3.0 9.68 0.00 0.00

300.0 238.72 288.35 235.89

3.0 -12.78 0.00 —-13.51

#3 .2688 200.0 63.71 199.62 199 04
.1304 40.0 304.67 20.73 41.87

0660 -3.0 93.19 =0.00 000

4.9 378.57 : 0.00 245

2.0 367.12 239 0.00

s



1]

* Fig. 3.4 A resistive mesh network (28 nodes).
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.

element values are within their tolerances. The diagnosis was performed successfully
with only one excitation. Resulting deviations for G4y, Gag, G.;‘s' and Ggg are —36%,
—54%, —45% and — 53%, respectively. Deviations for other elements are mostly zerd

except for a few small nonzero values.

393 GaAs FET Modelling: Multi-Circuit Approach

This example is due to Bandler, Chen and bziijavad '(T§§6b). They used the
equivalent circuit at normal operating bias (including the carrier), as illusl..ratcd in
Fig. 3.5, and created artii'fcial measurements using TOUCHSTONE (1985). ij‘o sets
of S_-pargmeter (scattering) measurements were created; one set us{ng tiw.- parameters
reported by Curtice and Camisa ('1984) (operating bias Vgg = 8.0V, V= =20V and
[gs = 128.0 mA) and the other by changing the values of Cy, Co, L, and Ly to simulate
the effect of taking different reference p[a.haes for the carriers. Both sets of data are
shown in Fig. 3.6, where the S-parameters of the two circ;u?ts are plotted on a Smith
Chart. Although the maximum number of possible variables, namel;v 32 (‘16 for euch
circuit), were allowed for in t‘he optimization, the int.rinsi.c parameters were found to
be the same between the two circuits, and as expected, Cy, Ca, Ly and L4 chunged from
circuit 1 to 2. Table 3.3 summarizes the parameter values gobtained. The problem
involved 128 nonlinear functions (real and i'maginar;v parts of 4 S-parameters, at 8
frequencies, for two circuits),. 16 linear functions and 32 variables.

N

3.9.4 A Highpass Filter Exampie for Postproduction Tuning

The highpass notch filter circuit shown in Fig. 3.7 was used by Bandler and

Salama (1981) to demonstrate postproduction tuning algorithms. The circuit example

&
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Fig. 3.6 Smith Chart display of scattering parameters Spy, Sag, S12 and Say, for
the carrier-mounted FET, before and after adjustments on parameters.
Points a2 and b mark the high frequency end of original and perturbed
network responses, respectively.
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TABLE 3.3

RESULTS FOR THE GaAs FET EXAMPLE

Parameter ' Original Circuit Perturbed Circuit

C, (pF) 0.0440 . 0.0200°
Co  (pF 0.0389 | 0.0200*
Ceg (PP 0.0416 0.0416
Cp P . 0.6869 0.6869
Cy4s (P 0.1900 0.1900
C;  (pF) 0.0100 00100
Rg (@) . 0.5490 .0.5490
Ry (@ 1.3670 1.3670
Ry () . 1.0480 1.0486
R (D 1.0842 - 1.0842
Gg-t (kQ) £ 03761 0.3763
Ly (nH) 0.3158 0.1500°*
Ly (aH). . " 02515 0.1499*
L (nH) 0.0105 0.0105
Em  (S) ©0.0423 0.0423
v (ps) 7.4035 | 7°4035

* significant change in parameter value
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Fig. 3.7 The highpass noteh filter circuit,
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-

was originally employed by ﬁflajajian (1979). Rg3, Rs, Rg and 'R-; q.ré tunable
_ puram;at.er_s. The nomina!l ar;d actual element values are given in Table 34
To use the functional tuning approach of (3.61), Béndler_a.nd Salama
defined fj as r.ﬁe absolute value of Vg, from its nominal, i.e., us}ng (3.57) with
F(d, w) = Vould, ©) and Fd(m) = Vour{d?, w). Twenty frequencies on the interval
410-505 Hz were used. The limits in (3.61b) are pU}= Py = 0.02. After 11
| iterations, the tuned responses very closely approached the nominal responses, as
shown in Fig. 3.8(a). After tuning, the values for tunable parameters
[R3 Rs Rg R7] ={201.952 2.115 13.061 0.973).

The deterministic approach of (3.62)-(3.65) was performed with"

F =[F; F2 .. Fs|T, where the F; are coefficients in the transfer function of the filter

= (s2+F s+Fp)~! (Fps2+Fys+Fs). B of (3.64) was taken as diag.

1l

{4, 0.04, 4, 1012, 0.0625} and B; = 0.001. The responses associated with the tuning
is shown in Fig. 3.8(b). After tuning, the values for tﬁnable parameters

[R3 Rs Rs R7] are . [184.487 2.241 13.747 0.9993).

3.10 DISCUSSIONS
Close links and similarities exist between optimization techniques for
modelling, diagnosis and tuning. In this section, relevant common aspects are

discussed.

3.10.1 Use of Sensitivity Information

Sensitivity Matrix

Suppose fid) is defined by (3.46) for modeliling and diagnosis and by (3.55)

or (3.57) for design and tuning. Let 9 be the design nominal. Define the nXm

-
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"TABLE 3.4

ELEMENT VALUES F:OR THE HIGHPASS FILTER OF FIG. 3.7

-

Element Nompmal Value - Actual Value Percentage Deviation
Ry (kD 13.260 13.260 0.0
Re (kQ) 93.0 93.0 0.0
Rz (kQ) 214.0 192.6 -10.0

" Rg  (kQ) 2.0 2.0 0.0
Rs (kQ) 2.0 1.8 -10.0
Rg (kQ)P 12.467 11.221 -10.0
Rr (kQ) 16.00 9.00» —10.0
C: wh 0.01 0.00973 -2.07
Co (P 0.01 0.00965 -3.35

A 10000.0 10000.0 0.0
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Fig.3.8(a) The'responses for the tuning of the highpass notch ﬁltez: using functional
tuning.
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20r-
- nominal response
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dB

voltage gain

-60
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Fig. 3.8(b) The responses for the tuning of the highpass notch filter using
deterministi¢ tuning.
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sensjtivity matrix as 4

af (o)

-

diagff®) ™" @73

S(@) 4 diag (9%
¢ is said to be a regular point (see Saek§, Sgngiovanhi-Vincentelli énd Visvanathan -
i981) of S(d) if there ex.ists an open neighbourhood of ¢" in which S(¢) has constant
rank, Parameter identification (or modelling) is usually performed with the
assumption that the actual param-et.er P2 is ata regular peint and Rank[S(¢a)] = 'n:
Otherwise, if Rank[S(da}] <n, i.e., the rﬁeasﬁrement is not'su'fﬁcient, we should
either use the diagnosis technique inproduced' in Sections 3.3 to 3.6, (.)r seek possible
additiqnal measurements by creating any or a combination of 1) more accessible nodes
for excitation and/or measur:nient, 2) more freqUency points, STEt'h'eF_typeé_'. of
responses {e.g., voltage and current), 4} additional circuits‘_obtained by perturbing a
few parameters in the CUT. Research has been performed on the selection of
excit;;tiorLand measurement ports and frequencies (Bandler.and Salama 1985a) as
well as the multi-tyvpe response and multi-circuit concepts, e.g. (Bandler, Chen and
Daijavad 1986b),

In tuning problems, it is desired that the submatrix containing the first n,
rows of S (assuming that only the first n, elements in (¢, da ... &u]T are tunable)
has a rank whith should be as high as the rank of S. Such rank comparison implicates
the degree of difficulty to achieve the desired response by tuning &;, i = 1,2,....n,
only. P -

" By checking the S matrix, possible decomposition can be carried out,

sequentially optimizing subsets of responso: vs. variables which are sensitively

N ‘ -
related (Bandler, Chen, Daijavad, Kellermann, Renault and Zhang 1986},
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Laxge Change Sensitivity - . ‘ -

The embeddin‘g of large change sens.itivity calculations in an optimization
procedure, where only a small subset of éircuit parameters are updated eu:h iteration,
can greatly increase the efficiency. The application'of Householder's formula in fault
diagnosis was reborted by Temes (1977), Johnson dr. (1879) and Chen and Saek.s
(1979). Such application can reduce re-cvaluutipn of F(&) frogithe order of ntor, r be-
ing a rank measure of the subcircuit to be updated._ ris less 'tl;1:'1n or equal to the

number of parameters in the subcircuit (Haley and Current 1985; Bandler and Zhang

1986). | 2 '

3.10.2 Conv;efgence and Possible Difficulties Using Optimizati;a-'!'-oq/hniqdcs

- F‘o‘f problems using the £, and minimax optimization method of Hald and
Madsen (1981, 1985), superlinear or quadratic convergenc'e are guaranteed. The con- ;
vergence for Merrill's quadratic approach was reperted to be about 2 or 3 itcratiuns.-
For a decomposed problem, sequential optimization may div‘erge if the subproblems
are not well defined or not reasonably ordered. Therefore, it may be desirable to have
the system less decomp?sed as the solution is being approuched. Usually, an
optimization converges only to a local minimu:"n unless the objective and the
constraints satisfy certain conditions. Global ‘optimization meth.oc'is are being studied
(Groch, Vidigal and Director 1985). )

Poor or unacceptable results ‘n computer-aided eireuit optimization are felt

to be most likely due to bad preparation of the problem, a lack of understanding of the
hazards that can be encountered and the wrong choice of algorithm (Bandler 1573).

Compared with other techniques for modelling, diagnosis and tuning (if gpplicable),

optimization techniques often require more computer time and storage. The choice of
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-

starting point is often a demanding task for satisfactory solution and fast

rd

convergence. . ST .

311  CONCLUSION

We have presented basic principles of optimization techniques for

modﬁlling, diagnosis and tuning. Emphasis is centered on the problem formulation

and related properties, rather than mathematical saphistication of optimization

“procedures and detailed circuit aspects-of MDT. Further research can be directed

4
toward effective modelling techniques to improve the validity of identified

. i .
parameters. The use and organization of decomposition needs further investigation.

The desired outcome is an 'aut,omatiic' procedure capable of identifying circuit
) ; e
parameters and making decisions of physical adjustments upon monitored responses

and identified parameters. ) -

-

v
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LARGE CHANGE SENSITIVITY ANALYSIS OF LINEAR SYSTEMS

-

4.1 INTRODUCTION

In computer aided circuit design, it is often required to cu}culate neu;rork
responses after a certain set of paramete:;s are changed. This problem, referred to as
large change sensitivity problem, becomes especially important when the network is
lar.ge and/or when a large number of repeated circuit “anaL_vsis is needed. Without
sqlving the entire network equati;ns for every set of parameter chianges, on; can
update the network responses more éﬁicien-t_fy by using.largr.; change acnsﬂ"ﬁnt\ _
analysis methods. This apprc;ach has been studied by many people. Fidler11976) and

Singhal, Vlach and Bryant (1973), considered single and multiple parameter changes,

" respectively, and developed methods to calculate the response function as a mufiti-

-~

k4 -
linear form in variable parameters® Another method is to formulate a reduced

system, whose solutions are then used to update the responses This method has been

treated from different angles, e.g., the current source substitution approach of Leung

+ and Spence (1975), the adjoint r'iet.wogk approach of Temes and Cho (1978), the

Householder formula approach (Leung and Spence 1975; Hajj 1981), the scattering

matrix approach of Haley (1980} and the matrix partitioning approach of Viach and

Singhal (1983). Hajj (1981) derived and summarized a set of algorithms where finite,
infinite and zero parameter changes are all permitted and sparsity is exploited
Rauscher and Epprécht (1974) (also, see Guﬁta—. Gary and Chadha 1981) used the

doncept of large change sensitivities to update wave variables in analyzing perturbed

microwave networks. A recent overview of this area is given by Huley and Current

+

65



(1985) who pr-esented general ap;-)roaches encompassing most of the previous methods. '
A survey of upd:;ting matrix. inverse formulas was given by Henderson and Searle
{1981). . . -

As already noticed, large change analysis algorithms will lose efficiency
when too many parameters are changec%. This is mainly beca?se the algorithms

involve the solution of a reduced system of order n, the number of variables. However,

cases exist where this system is larger than needed. Also, ina Monte-Carlo ana[ys_is‘
or in en optimization procedure, it is possible that some variables change slightly
while others-cha{lge substantially. In this case, the small parameter changes may
cause ill-conditionipng in a non-iterative méthod‘(e.g.. Leung and Spence 1975‘). and

the large parameter changes may affect the convergence rate in an iterative method

(Hajj 1981).

g In this cha;@-, we present a set of generalized Householder formulas which
.is cupu.ble of handling complicated caées encountered in practice. The problem of
determining a2 minimum reduced system is investigated. Different aspects of the
basic set of formulas ure discussed in terms of duality property and operational count.
Applications to general linear systems are considered for original ur:d adjo?nt

- .

responses with single and multiple inpt.}t. and output situations. Also, as a sPecial
case, a series of first-order sensitivity expressions are obt.ained without reference to
Tellegen's theorem. Numer{cal exampl'es are. given for a general svstem of linear

-

equations and for two electrical eircuits.

/

e
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4.2 ‘ A SET OF GENERALIZED HOUSEHOLDER FORMULAS
4:2.1 Generalized Householder Formulas . <ot
Let the linear system be t;harécterized by a N XN matrix A. Suppose the
parameters ¢ c.!f' the system are changed by Ag. The system mz}trzix ‘A will then be
affected by.AA. We can express
dA =V 6W'T, ‘ +.1)
where V, D and Ware N X r1, r1 Xroand N Xrp matrices, respectively. For a network
example, D can be .a. nXn diagonal matrix containing variables and V and W are
N Xn matrices containing + 1 and :1 (Vlach and Singhal 1983}
The effect of Ad in the response matrix A™" is defined as
_ AATH 2(A + A AT (4.2)
For the calculation of A(A-!), commonly suggested is the Houscholder formula
(Householder 1957), whi;h can be represented b}; |
AATH) =-AT VD! = WwT ATty wT AL (4.3)
Notice that inqolrder to obtain A(A™!), one needs to deul with a separate
linear system characterized by matrix (D' +WT A~! V). This is usually called a

reduced system and its size is usually smaller than the original system.

L
[n (4.3), D is required to be a square and non-singular matrix. Even if this

can be satisfied, ill-conditioning may still happen when D is inverted. in fact, casc;i
exist where D is simply ﬁot invertible and additional measures such as the
partitioning procedures d.e‘velopcd by Hajj (1981), Vlach and Singhal 11983) must be
applied. Another formula by Householder (1953) is

) AMATH =-ATVDD « DWT AT vD)y i DWT AL (4.4)
This formula avoeids actually performing the inversion of D. But it still hus

the same limitation as that of (4.3).
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According to the formulation of I}, we refer to (4.3) as Square with
Inversion Formula (SIF) and (4.4) as Square.without Inversion Formula (SF).

To ?.lleviate the limitations, different variations of the Householder matrix
" inversion formulas have been derived (l:ienderson and Searle 1981). Bandler and

Zhang (1986) considered two imp-or'tant variations and applied them to linear network

sensiiivity analysis. The two variations are .
A(A™) = -A" VDI1 + WT A"l VD)t WT A-! (4.5)
and . . — _
aA™h) = —AT Vil + DWT AL vyl pwT A-1 . (4.6)

These two formulas permit D to be singular or even rectangular. Thus,
more freedom can be exploited using different formulations of D and ill-conditioning
can be avoided.

J—

The reduced systems in (4.5) and (4.6) are the order of rs and ry,
respectively, where ry is the number of rows of D g.nd rais tine number of columns of D.
Therefore, (4.5} may be preferred if r| '> ro, otherwise (4.6) should be used. It is
reasonable to refer to (4.5) as Vertical Rectangular Formula (VRF) and {4.6) as
Horizontal Reétangular Formula {HRF‘)-, respective_ly, refllecting the form of D. OEher
~ variations of the Househéldcr formula also exist (Henderson and Searle 1981 }, but the
re;iuced systems are as lurgé as the original system.

The case of a rectangular D may occur, e.g., when we construct a minimum
order reduced system involving variables that are active element parameters, and
when large change algorithms are applied to algebraic linear systems ot}.ler than
electrical networks (Bandler and Zhang 1986). In those cases, the rectangula_r D may

be used in VRF and HRF without modification leaving V and W free of values Ad

Hence, V and W need to be preprocessed only once.

F;

f



- It should be noted that mathemuticéll_\r. the Square Formulas are special

cases of the Rectangular ones. Compur.ationafly. the latter have good stability.

The various forms of Householder formulas presented above were also

studied by Tylavsky and Sohie (1986). They attempted a generalized representation

]

and co::iﬂected the Householder formulas with -other methods of solying lincar
equations, e.g., the lower-diagonal-upper (LDU) decomposition method. .~

a
4.2.2 ‘ Prof)erties of Generalized Householder Formulas

Duality Property

The HRF and the VRF can be considclred as dual to each other. If we apply

the following interchanges "?‘
' A — AT, (4.7
£ D« DT . T 48)
and
VeWw, _ ‘ ' (4.9

then the two formulas, i.e. (4.5) and (4.6), are completely interchanged.
This duality property can be employed to save our analytical effort by half,
Unless otherwise stated, we will focus on the ¥Vertical Formula in the ensuing

sections. Resultsfor the Horizontal ones can be\gmilarly obtained.

The Minimum Order of the Reduced Svstem

Using the scattering theory approach, Haley and Current (1985) huve
found that the order of the reduced system can be as low as rank (3A), Using our

approach of only simple matrix manipulations one can also verify that

min r = min 1, =rank(3A).. (4.10)

\ V., D.W) (V,D, W)



This equation yields the conclusion that, for evaluating large change effects
involving Householder formulas, the minimum order of the reduced system is equal to.
the rank of AA (Bandler and Z};ang 1986). |

Consider the circuit of Fig. 4.1 in which 7 parameters are changed from
their nominal values. By the conventional methods, e.g. Vlach and Singhal (1983),
the reduced system is 7X7. However, the rank of ti';e nodal z_zdmitt.ance deviation

matrix is 4. Thus, an even smaller system of size 4 X 4 is sufficient for this problem.

~ Operational Count

Consider the computation of A(A™}). Supposer; + re < N and the matrix A
has already been LU factorized. Usually, V, D and W are formulated such that D
contains variables and V and W indicate the positions of the variables and are con-

stant. Preparatory calculations involving V and W are performed only once for each

set of variables. Table 4.1 gives operational counts (number of operations, i.e., multi-
;lications or divisions) for the set of generalized Hous—eh_older formulas. As shown in
the table, the computational stability of the HRF and th;z VRF is achieved at the cost
of one more matrix multiplication, as compared w;th the SIF. It'should be noticed
that these operation counts are for arbitrary algebraic linear equations. When linear
circuits are concerned, the operational count is reduced -as_discussed in Section 4.3,

4.3 . COMPUTATIONS OF ORIGINAL AND ADJOINT LINEAR SYSTEM
RESPONSES CORRESPONDING TO DIFFERE‘:\'T NUMBERS OF
INPUTSANDOUTPLUTS |

In this section, we examine the computations of large change sensitivities
in different Enput and output cases. The VRF is applied. All results of Forward and

Backward Substitutions (FBS) involving A are calculated in the preparatory step and.
3
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OPERATIONAL COUNT FOR THE GENERALIZED

TABLE 4.1

HOUSEHOLDER FORMULAS

Square without

each setof
parameter
changes -

Cases Square with Vertical Horizontal
Inversion Rectangular Rectangular Inversion
Formula Formula Formula--- Formula
(SIFy 7/ (VRP) {(HRF) (SF)
Case } )
[=r
preparatory - Cp Cs -
caleulation
calculation for - C2 C’:1 -
cach set of
parameter
changes
Case 2
rNEr,=r
preparatory -G Cp ' - Cp | Co
calculation :
calculation for 2C, +Cyq SCA+C§ 3CA-:-CB 5C,+Cq

CP'= N¥r, +r,) + Nry1,

C,=rrr, + "12 + N+ N3 Gy = 2,21y, + r,- + rN + N7
C, =13 Cq=rN(r+XN) '

A
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are represented by P and p for the'original system (coefficient matrix ATand by Q an 7
q for the adjoint system (coefficient matrix AT). To distinguish these solutiags for
different R.H.S., we use the characters, similar to the R.H.S., as subseript. For

_example, Py is the solution of

APy =V o (;.11)
and qy is the solution of .
ATq, =b. (4.12)
® .
431 Different Cases for Computing Response Changes ...
Case 1: Rgspor;:;e Matrix A~} .
AA™Y = ~Py DSQuT, : (4.13)

where S is the inverse of (1 + WT Py D).

Case 2: Svstem Responses for a Single Excitation Vector e

Suppose theresponse vector corresponding to excitation ¢ is x = {x x ..
. &,

il e, A
) Ax=c. . : (4.14)

We have ,

' Ax = MA Tl e) | ; ‘
= _PyDs, £415)
where s is the solution of
/ (1+WTPDIs=wTlx -~ (4 16)
&
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Case 3: Adjoint Responses for 2 Single Excitation Vector b’ p

Suppose the adjoint response vector corresponding to excitation bisy = [y,

ya..yxIT ie.,
ATy=b. (4.17)
We have
syl =amTA™h
= _gT Q;la.v ’ (4.18)
where s’ is the solution of ]
1+ QwTVD)Ts' = DTvTyg,. (4.19)

Case 4: Response of Single-Input and Single-Output (SISO) Svstem

If we use vector b to select the desired output from response vector x, then

AT Tx) = AbTA ¢)

9
= bTDs . (4.20)

where s is defined in (4.16) and b; equals Py'h and is obtained in the preparatory

step.

Case 5: Responses of Multi-Input and Multi-Output (MIMO) Svstem

Suppose C is 2 N Xn' matrix whose columns represent different excitation

vectors and B is an N Xm' matrix whose columns select the desired output measure-
ments. Theh the n'-input m'—output case can be expressed, formally, by BT A-! C.

Thus
| ABATCO =-BTA VDI + WTA VDI WT AL G g2
We notice that the term BT.-}‘IV can be computed either as BT Py or QETV
with a difference of operational count :;b N2(ry-m"). Therefore, comparingr; and m’,

[

we can caleulate (BT A~ V) as



N
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s .
' B'P,, ifr, sm’ (4.22a)
T -1
- B*'A™'V = [ .
QV. ir,>m" (4.22b)
Similarly, .
wip , ifr.>n' {4.23a)
W AT C=
Q.\rv C . i_frz <n'. (4.23h)

Also, at least one of (4.22a) and (4.23b) should be used in order to yield either Py or
Qw which is required in caleulating
| , (1+WTAT VD)= (1 + Qw' VD)
=1+ WIPyD). (4.24)

Hence, according to the values of ry, ro, m’ and n’, we can choose appropriate

“formulations. Forexample, whenm' < n'andm’ < rs, we use

ABTAlO =-sTQw'C, (4.25)

whert{: Sisthe solution to |
{1+ QwIvDITS = (QgTvD)T. ‘ (426
This approach requires m' + ro FBS in the adjoin,t. system for Qp and Qw us

preparatory calculations, one LU factorization and m’ FBS in the reduced system of

(+4.26). \

Expressions for Different Cases of Large Change Evaluation
. - 1 4
in Table 4.2, we summarize the various cases of the above discussion.
Different situations of the MIMO case are distinguished so that the number of FBS in

the N X N syvstem equals the minimumofm’ + ra, n’ -\rl and ry = roand the number

of ¥BS in the reduced system equals the minimumof ry, ro, m” and n', as shown in
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TABLE 4.2

FORMULAS FOR THE COMPUTATION OF LARGE CHANGES
WHEN A~ ISINVOLVED ANDWHENT, 21,

/.
/ Identification Formula Definitionof Sors
, —
AA~h =P, DSQ,T H S=1lorH,S=1
amTAh =sTQyT H,Ts = DTy
MA~ o) - P,Ds H,s = WTj,
ATA~ o) -~ (bTP,)Ds Hys = Wip,
+ aBTa-1o) 1 -sTQ,TO H,Ts = pTvTQy)
2 -BTPIDS ~H,§ = WI'P,
' T ' - T o
(3) —(QgTVIDS H S=Q,TC
(4) —(BTPODSIQ,TC) H S=1orH,S=1
Txr T —

where H, = (1 + VD) H, = (1+ WP, D)

-

*  Table 4.3 can be used as a guide to select among (1) to (5) by the minimum FBS

, c?kerion.
A‘V N

N



Table 4.3. This minimum FBS criterion can be used as a guide to sclect appropriate -
expressions for the calculation of ABBT A~ C).
When the number of FBS exceeds the order of the system, a matrix

inversion may be directly performed.

4.3.2 ° Discussions

Computational Cost Consideration

In éect.ion 4.2.2, the operational count has beer discussed 'f'or a genckal-
linear system of equations. However, when an electric eircuit is concerned, the cost is
much less. We consider the SISQ network as an example. Suppose the reduced
system is of order r. In the preparatory step, we calculate Py whose operational count.
is tN2 and PTy b, WT Py and WT x which are simply element selections and
additions. Then, for each set of parameter changes, we formulate and solve the

reduced system by at worst 4r3/3 -r/3 + r2 operations. The operational count for

N\ T
updating-the output is r for the SIF and r + r2 for the HRF and the VRF. e,

~ . e
*

Special Case: First-Order Sensitivity

As a special case of large change sensitivity analvsis, small change

s

sensitivity computations can be deduced from_our'large change formulas without
reference to Tellegen's theorem. TaEle 4.4 gives examples of such first.order
sensitivities w.r.t. components of a matrix. These results are obtained by putting _\‘.p
into the denominator of lurge change formulas and then letting the ;Jurumctcr change

Ad approach zero. The formulas in Table 4.4 are consistent with the existing ones

derived using other approaches, e.g., Bandler (1973},

ar
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TABLE 4.3

MAJOR COMPUTATIONAL EFFORT FOR CALCULATING A(BTA~! C)
BY FORMULASIN TABLE 4.2 WHERE r, & r, -

Category Corresponding The N X N System The re X r:g System
Casein Represented Represented
Table 4.2 By A -By H; or Ho
No.of LU .
Factorizations (1)-(5) 1 1
No.of FBS (N A m’ +.r, @'
b (2) n'—~+ i n'
(3) L m +r, n'
{4) r,+ T, ry
A
{3 m’ + r, .
” o
a
iy
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_ TABLE 4.4

EXPRESSIONS APPROPRIATE FOR COMPUTATIONS FOR SENSITIVITIES
W.R.T. COMPONENTS OF MATRIX A WHEN A~! ISINVOLVED

Sensitivity Expression

Identification -
(a) General (b) when A = ATandi =
sA~!
- _ T T o T
aAij Py Ay ) _(puipuj " Py Py )
T,a-1
(b A" "¢) - )
—— " =ayp © =PyP * PPy
3A ‘ . . _
Ta-1
B AT C) T T . T
— T
aAij -B Py 9y C -B'(p; Py + Py Py 1C
T -1 :
alBTA™!IC] R o
o -a, P’ Py P, T BPy) *

u, (u) is a unit N-vector'containing 1 at the ith (jth) row and zeros everywhere

else. '

e

+ “where [*] , is the (£,k) th element of matrix *.
++  where b is the £th column of B and ¢ is the kth column of C. Both b and c are
) g
used as the R.H.S. of the system involving A for original solutions p,, p_ and
adjoint solution q,
»
.

W &
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44 LARGE CHANGE SENSITIVITY ANALYSIS DF LINEARIZED

CIRCUITS
In this.section, we ilI'ustrate how to formulate the large change sensitivity
. P _

problem of an electrical circuit into the algebraic representatic;ﬁs presented in
Sections 4.2 and 4.3. Here, we introduce the conventional formudation. A new
formulation is presented in the next section.

Suppose a linear circuit is represented.b_v

Ax=b, (4.27)

w‘hcre A 15 2 N X N matrix characterizing the network, b is a N-vector representing
the excitation and x is a N-vector cclrlr.}jning s_\-'stem responses. A simple form of
equation (4.27) is tl;he nodal equations of the linear circuit. * —_

When system parameters ¢y, $s, ..., ¢, are changed, causing the change of

© A by AA, response changes can be calculated by large change forn-mlas. The

commonly used method is to express AA as a triple product as (Hajj 1981)

' AA=VDWT (4.28)
or using parameter mut\rix décdmposi;ion of A%\ as (Haley 1980; Haley and Current
1985)

r
AA = E v, Acbi w;r, rsn. (4.29)

1=1

The response changes' Ax are then calculated using the Householder formula or its

various equivalents. These calculations involve the solution of a reduced system
whose size is determined from-the formulation of V, D and W. We focus on this
formulation. Subs:equent calculations leading to Ax can be performed according ta the

- e

presentation in Secgion 4.3.
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o . .
U.sing the well-established methods (e.g., Hajj 1981: Vlach and Singhal

-1983. Haley gnd Current 1985), one can generate'a nXn reduced system f"o-r“ an

-

arbitrary linear network by choosing

D = diag{Ad,, Ad,, ... Ad }, (4.30)
= v = ' 430
. V =lvy vy vl - (
and ¢ -
_ 2
W= [w1 Wo o wn] . (4.32)
where v; and wj i=1, ..., n are N-veators containing =1 and 0. &;, i=1, ... n

represeht" the value of variable i, being of the type that enter the tableau or modified

nodal éqgations in the forn; v; ¢; wiT (Hajj 1981) T

———

# [t can be seen that this formulation gives each variable an equal treatment

and no consideration regarding topological relations of these variables is taken into
account. In a case-where the numberfof perturbed variables is not very small
comparpd to the order oi’ the original system, the efficiency of large change algorithms '
is greatly degenerated. Such a case occurred in Example 8.1.1 of Vlach and Singhal

- -

(1983) where a 3X 3 system had to be solved in order to update the response of 1 22
. o~
.system, merely because 3 variables éxist,

- A-further reduction of the reduced system is mage possible by the dism‘wery
that the order of such a system can be as low as the rank of the original system
deviation matrix (Haley and Current 1985), This manifests itself s a minimum

system {Bandler and Zhang 1986). Su.ch a minimum svstem can be achieved by a

thorough exploitation of the topological relations among variables.

L]



45 A NEW FORMULATION OF V, 'D\A.\’D W FOR VARIABLES OF RCL
TYPES ) ' : —
A new formulation of V, D and W was developed to achieve the minimum

order reduced system for large change sensitivity corﬂputa:tion. It was bxjeﬂy \

intr;duced by Bandler and Zhang (1986). A systematic description is given here.
Let the network ‘;opology be ref.\resented By graph G and thre edge se.t of G
be represented by E, x;espectikly. "Let E’ be a swiset of E such that an edge in £
corresponding to a variable is class-iﬁed in E°. Thé induced subgraph of G on edge set
‘E' is denoted as G’ Separate G’ into blocks G, Gy ...,Gy' b1, ;:.uch that G’ = Gy’
UGa' U Gy and G0 Gj'is either null or empty containing only 2 cut-vertex of G’
for all ij = 1,2,...,b and i=j. Relevant‘ terminologies used here are.defjned in
Appendix A. - . \ | < -
"~ ForRCL type variables in a linear network, V, D and W can be formulated
using nodal relations instead of the conventional branch relations so as to achieve a
minim‘um order reduced system. V, D and W are NXr, r->< r and N Xr matrices,

respectively and are decomposed such that

/ vz (V) Voo V], 4.33)
W=[W; Wa.. W] _ (4.34)

and
D = diag{D,, D2, ..., Dy} . (4.35)

where D; is the nodal admittance matrix of G’ using the Adras parameter and V, and
. B

W, are.incidence matrices of G;' indicating vertex locations of G;' as seen from G.

Suppose G’ has m vertices, m = 2. D; is (m=1)X(m—1) since one vertex can be

considered as "ground” and is taken as a reference vertex. ¥; and W, are both

-

N X (m=1) where each column vector corresponds to a non-reference vertex of G;". If
=%
o



- - .
this non-reference vertex and the reference vertex of G’ appear in G as the kth and /™
‘e -

£th vertices, respe‘ctively, the corresponding columns of V; and W; are equal to uy —ug
or uy, if the £th vertex corresponds to the ground, uy being a unit N-vector with 1 in
its kt?h position and zeros everywhere else. For mathematical simplicity, a vertex in

G/’ is taken ag a reference vertex if it corresponds to the ground of the overall circuit.

.

46 EXAMPLES ' ' :

4.6.1 A System of Linear Equations With Rectangular D

Consider a 10X 10 system of linear equationd with coefficient matrix as A.

-

Suppose the intersection elemeénts of rows 2, 5, 9 and colurins 3 and 6 are constantly
M . <

changed. We formt:xlate V, D and W such that L i v
V = [ug us ug . | (4.36)
s W=lugugl— -~ | (4.37)
and ; ’
.AAm AA,.

{4.38)
D= , AASS MSG

AA, AAL
where u; , 1=2,3,5,6,9, is a unit 10-vector containing 1 in the ith row and zeros
- - - u, .
everywhere else. In this way, no additional effort is involved when applying the VREF
and HRF. If we use the Square Formulas, elementary transformytions must be
"

employed in order to obthin a square matrix D.

Numerical so[utio&c:} as well as intermediate results are shownin Fig. 4.2, -
]



e

\\ _ . o
. . i -
] . -7
MATRIX.[A] . VECTOR [B)
- . L0 5.0 5.5 1.0 5.0 2.0 1.0 1.0 7.0 2.0  35.0
2.0 3.0 3.0 7.0 0.0 4.0 3,0 6.0 8.0 3.0°  32.0
3.0 0.0 'i.o. 4.0 2.0 6.0 4.0 4.0 9.0 7.0 6.0 ¢
6.0 1.0 2.0 5.0 2.0 3.0 3.0 7.0 3.0 5.0 51.0
’ 8.0 1.0 2.0 2.0 4.0 4.0 6.0 8.0 4.0 B.0 - 42.0
4.0 1.0 6.0 7.0 3.0 5.0 7.0 3.0 5.0 3.0 15.0
.7.0 0.0 6.0 5.0 9.0 40 8.0 9.0 2.0 9.0 34.0
-2.0 0.0 40 2.0 2.0 3.0 3.0 5.0 4.0 3.§ 71.0
. 3,0 2.0 0.0 1.0 5.0 3.0 4.0 2.0 3.0 1.0 36.0
4.0 2.0 4.0 4.0 6.0 2.0 9.0 6.0 1.0 7.0 s3.c
N v
SOLUTION BEFORE ANY CHANGE : . .
VECTOR [X]}
il -8.89217 -
. Tt T 39.80097 |
-3.00067
" 2.31014
~5.40544 . _
) L AB.42778
;12.1162§
N -3.61726
i -32.93004
16.99799.

Fig. 4.2(a) The original linear system and its solutions. A is a 10X 10 matrix
containing parameters of the system. b is the.excitation vector. x is the
solution vector. :
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MATRIX IFI MATRIX [W] -
L. 0.0 0.0 0.0 0.0 0.0 A
" ko 0.0 0.0 00 0.0
0.0 0.0 0.0 1.0 0.0 '
0.0 0.0 0.0
: / 0.0 1.0 0.0
<
0.0 0.0 0.0
. " 0.0 0.0 0.0
. 0.0 0.0 0.0
A~ 0.0 0.0 1.0 T o 0.0
- ) * e - 0.0 0.0 0.0 ' 0.0 0.0
* ] . i ‘_\\ MATRIX [PV]
, el -.03684  .19072  , =.00936
B -.30799 ¢ -.26526" 04838 .
77 00454 09406 -.15865 °
-.04645 -.23600 .02949
) o .02608 ~.09579 .12002
-.48948 -.43199 .13012 ¥
b .18919 .22984 .01487
\ .27060 3754 L .00846
.36321 .32717 -.02238
. - ~.27658  *  -.20670 -.09789

" VECTOR [RHS)
-3.00067

AB. 42778

)
Fig. 4.2(b) Matrices V, W, Py and vector RHS, where Py is the solution of A Py =
S Vand RHS = WTx,



MATRIX (D)
- 2.00000 3.00000
N 4.00000 °  5.06000 ¥
. , 2.00000  3.00000 y
- N [ 4
MATRIX [H)
. " 1.06802 .00797 v
~2.44666 -2.23801 -
’
VECTOR [S}). ~ ,.-—--\
‘ T -2.66983
—~
-18.72004
i »
SOLUTION AFTER THE FIRST LARGE CHANGE :
VECTOR [X)
’ 8.15496
L )
-3.82546
24.40133
, 27.88727

22.14824 o
-27.58607 -

9

Fig. 4.2(c) Resulis corresponding to the first change of variable parameters
represented by D. H represents (1 + WT A-1 VD) and s is the solution of
~the reduced system Hs = WTx. '

w
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-

VARIABLES CHANGE AGAIN GAUSING A CHANGE OF (D).

(v] AND [W) REMAIN UNCHANGED.

MATRIX [D} - )
- - 6.00000 . 7.00000
5.00000 4.00000 B ) - -
3.00000 4.00000
MATRIX [H]
1.02140 -, 22657
- =4.70646 -3,.63383

VECTOR [§] ’ :
’ .
~4.,57788

-7.39775

SOLUTION AFTER THE SECOND LARGE CHANGE :

VECTOR [X]

~2.20615
3.56798
-4.57788 o
-12.47901
~3.16642
-1.39778
. ) 15.58395
. 25.41279
1208534

-20.00992
“

Fig. 4.2(d) Results corresponding to the second change of variable p:irame_ters. H
; and s are similarly defined to those in Fig. 4.2(c).
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‘4.6.2 An Electrical Network with Its Minimum Order Reduced System Achieved
The 19-node circuit of Fig. 4.1 is solved using the generalized Householder
formulas with simultaneous changes of ®variable components. Topological relations
showing the network graph G, the induced.subgraph of G on edge set E’ and the blocks
. “ , .

are given in Fkig. 4.3. G is divided into Gy’ and Go’. The minimum order of the

réduced system is 4, which is achieved by formulating V, Dand W as

V=V, V,] ,
=[“3'“_9 ug-uy  ug-ug, u —ugd
- ’ “
(o 0 0 0
0 0 0 0
1 0 o 0
0 ! o. 1 (4.39)
0- 0 0 -1 :
0 0 0 0
0 0 0 0
‘0 0 1 0
-1 -1* -1 0
0 0 0 o
(4.40)
W =V
and °
)
D= -
/‘ D,
A . -
Ad +A0,+Ad, -39, - Ao, 0
A Ad,+Ad.+Ad. C_Ad. 0
- ® BT IR T b ®s - (441
-39, -3 Ad,=Ap,+Ad, 0
0 _ 0 0 Ad.
- - ) ‘.J
5

Notice that nodes 9and S/h.we been taken as references for G) " and G+’ respectively.

-
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Fig. 4.3 Topological relations for the circuit of Fig. 4.1. (a) Graph G, {b) Edge
induced{x\subgraph G’ and, (c) Blocks.G;" and G»'. ‘
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- The changes of variables range from 0.00001 to 90. Zero changes are also
i'ncluded as-shown in T.nble 4.5. These simultaneous small, largeand zero changes ar;e
hﬁndlcd directly by the VRF. For the two éxtreme cases of ."lcp. the SIF can handle
Adp—= while thc; VRF and HRF accommodate Aé—vo. in a Monte-Carlo analysis,

network optimization, identification and tuning, various unpredictable patterns of

A¢—0 in multiparameter changes may be possible while Aqr—-os is often limited by,

¢.g., tolerances and tuning ranges or by step size constraints. For 100 sets of variable
changes‘of ¢y to ¢7, the operational count for our method using SIF,-VI:{F, the
conventional method and the direct method are in the order of 11230, 11030, 24930
and 43430, rcspective[y".
463 The Caseof Example 8.1.1 of Vlach and Singhal (1983)

Consider the circuit of Fig. 4.4 where Gy, Go and Gz are all variables.

Evidently, the "reduced” system is of order 2 using the nodal based approach which

-~ -

gives
AG, + G, -3aG,
| AG,+aG,

and —_

(4.42)
' 1 0
V=W=1=

75
01

Compared with the branch based method which vields a 3x 3 system, the operational

count is reduced frpm 23 to 16 for each set of values of AG;,i=1,2,3.

Although for this circuit, one would rather solve the original network
equations than use large change formulas, such a variable structure can exist in a
large system as a subnetwork where an efficient large change algorithm is extremely

important,
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TABLE 4.5

PARAMETER CHANGES FOR THE CIRCUIT OF V

The First TheSecond .  The Third
Variable Change Change Change -
~ (Vo (e - (/)
a9, 8.0 <’ 0.00001 02
Ad, ' 0.5 0.001 .0
Ady 0.00001 012 - 30
Ad, 0.02 15, - 0
Adyg 40. 0.00003 0.02
Ao 50. | 90. 15
Ad, © 0.00002 - 0.1
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- Fig. 4.4
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The simple circuit from Vlach and Singhal (1983).



3.7 CONCLUSIONS )

1

We have presented a multiparameter large change sensitivity analysis
approach for a general system involving solutions of linear equations. Particular

-

attention has been devoted to the formulation and order of the reduced system, which

.

in turn affects the stability and efficiency of the system response.evaluation. The
mathematical essence of the generalized Householder formulas also provides basic
links with other approaches, indicating their theoretical equivalence. However, our
extended formulas accommodate more cases of various formutations of the reduced
system which the traditional methods cannot handle directly. For 2 general circuit
with arbitrary distribution of varie;blé components, proper formulations of V, D and
W can be used to ensure the large change calculation to be performed via a minimum
order reduced system‘.‘ Thu;s, under certain circumstances, large change algorithms
are still feasibl)e"even if many system parameters are changed. Our work was rccentl‘_v
referred to by Haley and Pham (1987) as one of the distinct, useful contributions to the
analysis of modified systems. [t is eftvisaged that a general formulation of V, I) und
W, together with the set of Householder formulas,can be embedded into the different

iterative and non-iterative methods of Hajj) (1981) to vield various powerful design

procedures.
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EXACT SIMULATION AND SENSITIVITY ANALYSIS OF MULRIPLEXING

NETWORKS

5.1 * INTRODUCTION

Many circuits can be categorized or reduced to the class af branched
cascaded networks. The simulation and sensitivity evaluation of such networks can
be directly performed using general software gvhich solves nodal equations and
adjoint networks. However, when the circuit becomes large, the general methods
often detericrate rapidly. On the other hand, the cascaded structure (\‘vi_thoutl
branches) has been treated using 2-port transmission matrices (e.g. B_andlcr. Rizk and
Abdel-Malek 1978; lobost and Zaki 1982) Such treatment has been .ver_v eflicient

especially for large cascaded circuits.
I
Bandler, Daijavad and Zhang (1985, 1986} developed a novel and clegant
approach to the simulation and sensitivity analvsis of branched cuscudcci cireuits.
They explicitly took the circuit :;tructure into consideration. The forward and reverse
analysis method of %ndler, Rizk and Abdel-Malek (1978) was extended to gcn.ur:l.l
branched cascaded netowrks. Our theory permits an efficient and fast analytica! and
numerical investigation of responses and sensitivities of all functions of interest wort
any variable parameter, including (requency. Thevenin equivalent circuits at any
reference plane and their sensitivities are also expressed analytically and calculated
systematically. Thus, responses such as common port return_loss, branch output

return loss, insertion or transducer loss, gain slope and group delay can be handled

exactly and efficiently. All analyses are performed in the original circuit and no

. 94
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adjoint networks ‘are needed in Sfys'.t.ivity computation. More importantly, the
method does not deteriorate for large circuits since possible redundant storage and
— .

computational requirements are eliminated by explicit exploitation of the circuit

structure.

.

In this approach, each basic cc;mponent of the structure is either a 2-port
model or a\3-port junction and can contain variables or be con§tant. The fundamental
requirement for the approach is that the transmission matrix description of all basic
éomponents and their derivatives, if they contain variables, are provided. This
information is utilized in a systematic and efficient scheme which leads to the
evaluation of various responses of the network at all ports of interest.

Microwave multiplexers consisting of multi-coupled cavity filters are
structurally branched cascaded. The design of contiguous band multiplexers was a
prob-lem of significant theoretical interest for several years (Atia 1974; Chen, Assal
and Mahle 1976), however, the manufacturing ;'.>f such structures with more than 5
chanrels did not appear to be feasible. Recently, the subject has turned into an
ip\{)ortunt dexelopment area in microwave engineering prac‘gice due to reporis by
leading manufacturers of successful production of 12 channel contiguous band
multiplexers for satellite applications (Tong et al. 1982; Chen 1983; Egri, Williams
and Atia 1983: Holme 1984). The employment of optimization techniques to deter-
mine the best multiplexer parameters has been an indispensable part of the design
procedures reported. The use of a powerful gradient-based rr}inimax optimization
technique has reduced the CPU time required in the design procedure significantly
(Bandler, Kellermann and Madsen 1985; Bandler, Daijavad and Zhang 1986).

The implementation of a gradient based optimization technique in multi:

plexer design requires, as a vital step, a robust and efficient algorithm for simulation

o
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and sensitivity analysis. This is achieved by applying our branched cascaded analysis

technique.
This chapter is organized in the following way. We [irst describe the basic
‘cascaded analysis approach as applied to a-general branched cascaded circuit.

*

" Formulas for Thevenin equivalents, reflection coefficients and branch output voltages

-

as well as their first- and second-order sensitivities w.r.t. design variables and
frequency at any reference plane are developed. A 4-branch cascaded \circuit is
presented to illustrate our theory. We consider multiplexers consis\ting of multi-
cavity filters distributed along a waveguide manifold. "Transmission matrices and
sensitivity expressions for typical components in a multiplexer, which are required by
_our approach, are tabulated. :I'he optimization of a 12-channel 12 CHz multiplexer is

_ deseribed. ’

5.2 BRANCHED CASCADED NETWORKS

The category of a gene::al:"-lclass of metworks, namely, branched cascadéd
structures, can be depicted as in Fig:'S.l. For such structures, we develop a novel
procedure to calculate the reflection c‘:oemcients at the common port and branch

output ports as well as branch output voltages. Simultancously, first- and second.

order derivatives are evaluated The approach is based on the computation of

Thevenin source and impedance equivalents and their first- and secopd-order

sensitivities w.r.t. design parameters and frequency at the ports of interest.

LAl
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5.2.1 Preliminary Description of the Network -

Models of Basic Components

Although the basic components of a branched cascaded ciréuit are 2-port
‘elements or 3-port junctions, internally they can be compli'cated subnetworks
characterized by admittance, impedance or hybrid matrices. An example of sucfx a
‘:;ubnetworl.c is the multi-coupled cavity filter deseribed by an impedzfnce matrix und s
containing many design variables. As a prerequisite step towards using our theory,
_ the transmissigﬁ matrix for each 2-port element should be deduced either by a
reduction procedure or by direct measurements. Also, if variables exist in a
sibnetwork, the derivative of the cor;eéponding transmission matrix should be
provided. For the 3-port junctions, however, a 3-port destriptien in the form of an

arbitrary hybrid matrix, is sufficient.

Reference Planes

-

Consider the branched cascaded network of Fig 5.1, which consists of N
sections. A typi;:al section, e.g., the kth one, has a junction, n(k) cascaded elements of
branchk and a s;xbsection along the main .cascade, as shown in Fig. 5.2, All reference
planes in the entire network are defined uniformly and numbered consecutively
beginning froﬁ the main cascade termination, which is designated reference plane 1.
The source port is at reference plane 2N +2, The termination of the kth branch is
called reference plane t(k) and the branch main caseade connection (branch input
port).is reference plane olk), k=1,2,... N, where

)= 2N+3
o) =ck) +nk), k=1,2,..,N
tk)=ok-1)+1, k=2,3.....N.

. . (5.1)
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Fig.5.2 Detail of the kth section of a branched cascaded circuit showing
reference planes along the branch where ¢ = t(k) am).
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5.2.2 Reduction of Junctions to 2-port Representations

Bandler, Rizk and Abdel-Malek (1978) intreduced the concept of forward

. ) . .
and reverse analysis for cascaded networks. To simplify the structure under

-

consideration to a cascade of 2-ports for which the forward and reverse analysis is
applicable, the 3-port junctions are reduced to 2-port representations.

Consider the 3-port junction shown in Fig.5.3. To carry the analysis

»

through the junction along the main cascade, we terminate port 3, e.g., by caleulating
the equivalent admittance seen at this port given by Y3 = (<I3)/V3 and represent the

transmission matrix between ports 1 and 2 by A.” The analysis can also be carried

through the junction into the branch by terminating port 2, e.g., calculating
Yo = (-I2)/V2 and denoting the transmission matrix between ports 1 and 3 by DD.
“As an example, suppose the 3-port junctibn is characterized by a h_vbr?

matrix H spch that

, T , . T (5.2)
v, I, LT=HN, I, VI,

where H = [hjjlgx3. Then A = [ajj]2x2 can be found from
_ i—1 .o 5.3
g, = (=17 ih =k ghy Y+ R
For various forms of hybrid matrices H, the 2-port representation A or ) iy

-

evaluated in a similar manner using elements ofH and the cquivalent termination at

.

port3or2.

523 Casfaded Analysis

Having reduced the junctions to 2-port representations, the network
structure between any two reference planes is transformed to a simple cascade of two-

ports. Assuming that the transmission matrices for all 2-ports are given, we define

the equivalent transmission matrix between reference planesiand j by

e

’

v
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WA 3-port _function in which ports 1 and 2 are considered along a main

cascade and port 3 represents a channel or branch of the main cascade.
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" A B

Y A ] 1) 5.4
Q; ey qyy '[C.. D.I' - '
ij 1)
where .
©oo [t N (5.5)
Pii” le. I %D
1] 1]

In a forward (reverse) analysis, Qj; is computed by initializing row vectors
;T and waT (column vectors u; and ua) at ;'eference plane i(§) and successively
premultiplying (postmultiplying) each transmission matrix by the resulting row
{(column) vector until reference plane j(i) is reached. uy and us are unit vectors given
by (1 0lTand[0 1]T, respectively. ’ ‘ “

Let ¢ be a generic notation that can be used to represent any design

variable in the network. “Sensitivities of Q;; w.r.t. any variable ¢ located between

reference planesiandjare evaluated as “
->

o 2 of -~ (5.6)
R

:p_ . .
where [y is an index set whose elements identify the transmission matrices

containing ¢ and §Q;%/5¢ is the result of a forward or reverse analysis between
reference planesiandj with the fth matrixseplaced by its derivative w.r.t. ¢, Second-

order sensitivities can be derived in a similar manner as

2 2 Ak
Qlj _ X < o Ql] (51
o dw C-G—I:, k'z_fm o

where [y and I, are index sets, not necessarily disjoint, identifying those matrices

which are functions of ¢ and w. Also, we define 62 Q;f%/(8¢ dw) as the second-order

sensitivity of Q;;as if ¢ and w exist only in the £th and kth matrices, respectively.
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524 ° Thevenin Equivalent Circuitsrand Basic Responses

To calculate the input reflection coefficient at the'common port, the output
reflection coefficients at the branch output ports, as well as the branch output
voltages and their sensitivities in a unified manner, we employ Thevenin equivalents
at the ports of interest evaluated by the method of forward and reverse analysis

(Bmﬂt;r, Rizk and Abdel-Malek 1978). Denoting the Thevenin equivalent voitages

and impedances at réference planesiandj by Vgi, Zgi, Vgl and Zgi, we have

-

i o Vs (5.8)
s~ . ol
Aij + ZSC.ij
and ' -
i
7z = Bij+‘ZsD“j (5.9}
5=

- .
Aij + ZSC”.

“where reference plane i is located towards the source w.r.t. j, as shown in Fig 5.4. The

sensitivities are obtained as

iy i iy e v _
W (\S)Q-[(Ai;)qa : ZS(C:j).p*.(?_‘S)q:Cij] Vs (5.10)
Se A +2C ' " -
1] S )
and
-7 ‘
. 1 5 1 _ 7
Cnozy@), [ S @y, 0, -7 C,) 511,
(Z3) = .
S A +ZLC
1] SV
where subscript ¢ denotes 3/5¢. . N

If the reflection coefficient at the kth branch output port and its

sensitivities are to be calculated, then (5.9) and (5.11) are specialized to

VAR 5 (5.12)

5 A
and ) ' S

-



104

refarence teference
plane | pions |
R‘ )
— - - __l._,_ _,:,_ P .
]
E @ ! Qy 1 D )
- — .~ o
)
L :
1
]
)

(a)

—1_1 o

! |
talerence
- -él,— - -%_plnnl i

refarence
plane
——

. —

G]

: w®

1
o—

v
; .
i DY‘-

[ —
'

Fig. 5.4 Thevenin and Norton equivalents at reference planes i and j, where
reference plane i is towards the source w.r.t. reference plane j.
reference plane j is in the main cascade.

branch.

ta)
(b) reference plane j is in a
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+1 )
®), - (A)¢z; (5.13)

(Zé+ I&c A ' ’

where A m Agxy2.+1, B ™ Baxsz.+1 and © = t(k). This is simply due to the fact

that there is no impedance to the left of reference plane 2N +2, i.e., Zg2N+2 = 0. The

- corresponding output reflection coefficient is defined as

' ~
t+1 k - . -

Zg " -R (5.14)

ka =2 =
+1 k"
25+ R

nts

-

where Rk is the load resistance at the kth channel output. Clearly, (5.13) is utilizeﬂ,
in the evaluation of (pk)y as - . '

i+l k
(Zs )¢(1—-p_) . (5.15)

+1° k
23+ Ry

Branch output voltage is also computed by utilizing the Thevenin

o _
(p)tb—

equivalent voltage source and impedance at the branch ocutput port. At the kth

thannel we have- 4

; - RY ' 618

- ‘.'k = —-——
\ A (R{ + Z§+ h

i -
assuming a normalized excitation at the source port. This can be easily explained by

noticing that Vk is evaluated using a voltage divider once Vgt*! is known. Using’
(5.8} and taking into account that VgIN+2 =1 and Zg2N+2 = 0, we have Vgi+!
=1/A. Also
(A), (Zt+l) . (5.17)
Wk ="R1]:Vk ® . S & . A
$ A ko, 2“'1
R+ 2 .

The second-order sensitivity of VK wort, ¢ and w, i.e., 32VK/(3piw) is

r
obtained via evaluation of 82 Zgt+1/(ad dw). Substituting w for ¢ in (5.13) and

differentiating w.r.t. ¢, gives

- i+l — t+1 t+l
'ty = (B)'bw B 2S (A)m - (A)u(zs——)c:)———(zs )u (A)¢ . (5.18)
S dw T : 4 ,

™
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where double subscript ¢w denotes 3243 dw).

¢ . _—-

s Now, replacing ¢ by w in (5. 17) and differentiating w.r.t. $, we have
N ) Ky vk
v _(V) (Vv ), Ry A(A)W—A¢Au+
b v RL P

A® .

Zr.-t-l) (R +Zt+l)_(zt+l) Mc+1
S ¢u L s (5.19)

(RL + Z;’ L2 )

Norton equivalent admittances and current sources are calculated

sirfilarly to the Thevenin equivalents, Denoting the Norton equivalent currents and

admittances at reference planesiandjby I i, Yii, [ and Y, we have
[

j
v Cij+YLDU . (5.20)
L' A +viB ;
1] L™
_ and
P . Tou521)
I.L‘IL“O' '
Also,
4.‘ 1 ' H L
-_l ] rl
=¥, ”(Qu)¢ vi + (), 0 =Y B) (5.22)
(&",_)Q}:
) A +Y' B
i) L g

As spec.:ial cases of (5.20), the equivalent admittances Y3 and Y2 required in

the reduction of junctions to 2-port representations are calculated as

C . = o
Yk = Yotki _ otk uk: K = 1.2.?”:\_ ) (5.23)

3 L -
Ao&k),:lk!

and, for a short-circuit main cascade termination,

k.1 : . (5.24)

‘ 2 L B&_l '

The common port reflection coefficient is also computed using the Norton

equivalent (at the source reference piane) as



2 RS D2.\' +21 (5.25)

B

22;’+2.1
Its sensitivity is given by
8, D-{D) B
@) =2R, -2 ¢
Ph™%% T

{5.26)

where B = Box ,pjand D = Doy oy

525 Responses of Interest

Suppose the frequency responses of interest include return loss, insertion

loss, transducer loss, gain slope and group delay for each individual branch and the
return loss at the common port. Table 5.1 érovides equations for calculating the
responses and their sensitivities w.r.t. design parameter &. It is clear that the
_ evaluation of reflection coefficients at the common port and .branch output ports (p®
and pk), branch output voltages (Vk) and the first- and second-order sensitivities
(ap" apk avk svk Fvk )
w W we  e )

as deseribed in Section5.2.4, is sufficient to compute all responses and sensitivities

tabulated.

53 ALGORITHM FOR CALCULATION OF THEVENIN EQUIVALENTS
AND THEIR SENSITIVITIES
The fol]owi?g algorithm can be used to obtain Thevenin equivalents at
output ports and their sensitivities w.r.t. any variable. The algorithm assumes that
the transmission matrices for all 2-port elements and the hybrid matrices for all
Jjunctions, as well as their sensitivities are given. The reverse analysis along the main

cascade is initialized by us for a short circuit termination or, u; for an oper: circuit
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TABLE 5.1

VARIOUS FREQUENCY RESPdNSES AND THEIR SENSITIVITIES
EXPRESSED IN TERMS OF BASIC VOLTAGE RESPONSE
AND REFLECTION COEFFICIENT

Response Expression for
Type Formula Sensitivity w.r.t. ¢
return loss ) Po
(commeon port =20 logw!pl cRe [ —
or channel p
output port)
4 [VKE R (V%)
—101lo - cRe 2
transducer loss * 810 k -k
R v
V¥ Rg + R - A
insertion loss * -20 log, | ———= Re | —2
insertion loss €10 X VK
(vk) vh v vl
oot cRe[ E Re | —2 _ —2_= ‘
gain slope vk vk k)2
-k -k K, ek
- { (v )u (o l(\f )W (v )‘b(\ )‘_J
. T - - - 3
group delay vk ‘ vk (V)2

20
T en10

* between common port and channel k output port




Q_.

- 109

termination. Correspondingly, the resulting analysis is represented by q vectprs (as

in the algorithm) or p vectors.

Step 1 .

Step 1.1

Comment

Step 1.2

Comment

Step 1.3

Comment

Step 1.4

Comment

Step1.5

Fork=1,2,..., N,seto and t to o(k) and t(k), respectively, and execute
Steps1.1to 1.7. ) | ;
Cz.ﬂcu_late Qic+1by fé'verse amilysis fori = t+1,t+2,..,0. Calculate
Qqj by forward analysis forj=g0,0-1, ..., t+ 1.

Cascaded analysis is pe'rformed on the kth branch. The reverse
(forward) analysis starts from the branch output (input) port and is
carried to the branch input (output) port.

Pa—Qor+1Are. .

Calculate Ya* using (5.23).

The equivalent admittance of th&kth‘l_afanch. looking from the branch
input port, is computed. \This admittance is utilized in the 2-port
representation of the kth junction. Ex

Ca!culat_c.: dpa/dd using (5.6) and.aYaklacp from (5.22) for all the
variable ¢'s in the kth branch.

Sensitivities of tb;e branch equivalent admittance w.r.t. all variables
in the bra:_ch are caleulated. In evaluating 9Yzk/0d, we use a special
case for (5.22) which corresponds to Y3k given in (5.23).

Calculate Asg using (5.3). Calculate dAq0i/a¢ for all the variable ¢'s in
the kth junction and the kth branch. .

The 2-port representation of_tlw kth junction, when terminating its

port 3, is computed. The sensitivities of the resulting transmission

~ matrix are readily obtained.

-~

Caleulate oy by reverse analvsis and Yok from (5:24).

-



Comment

- Step1.6

Comment

Step 1.7

Comment

Step 2

110

The equivalent admittance at port 2 of the kth junction, looking
towards the main cascade termination, is calculated after a reverse

analysis from reference plane 1 to reference plane 2k.

"Caleulate dqoi 1/d¢ using (5.6) and aYqk/ad usin:g (5.22) dor all

variables ¢ in section k’, k' < k and in the kth spacing.
The sensitivities of the equivalent admittance Yok, w.r.t. all variables

geometrically located to the right of junction k, are computed. In

. . -
evaluating dYok/3d, we use a special case for (5.22) which corresponds

to Yak, givenin (5.24).

Calculate Doy using the method described in Section 5.2.2. Caleulate
aD{k/aq) for all the variable ¢'s in the kth junction and spacing, as well
asinall k'.sections, k' <k, "

The 2-port representation ofj;mction k when terminating its port 2, is
computed. The sensitivities of the resulting transmission matrix
w.r.t. all variables, included in or located to the right of the junetion,
are computed, ‘

Calculate q;g-_\- ~2.1 by extending the reversc. analysis already

performed up to reference plane 2N in Step 1.5, to refercnee plane

" 2N +2 Note that Aoy has been evaluated in Step 1.4,

Caleulate dqax «2.1/6¢ using dqon 173 (¢ belongs to the set ol all
variables to the right of section N and the Nth spucing), which has
been evaluated in Step 1.6 and dA\/6d (d belongs to the set of all

variables in the Nth branch and Nth junction), which has been

‘evaluated in Step 1.4
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Comment The reverse analysis from the main eascade termination is carried
back to the source port. The corresponding sensiﬁvities are also
calculated. These results are used to calculate the common port
reflection coefficient and its sensitivities w.r.t. all variables in the
entire network.

Step 3 For k = N, N-1, ..., 1, set 0 and t to ofk) and t(k), respectively and

execute Steps 3.1 to 3.3.

Step 3.1 .. Caleulate Qg.\ +2. 2% +1 by forward analysis.
Comment The forward analysis is carried along the main cascade from the
- source port to the inp'ut port of junction k.

Step 3.2 Q2N+2_;+1 —QoN+2.2k+1 D2k Qor+1-

Calculate 3Qax 42, 1 +1/3¢ using (5.6) for all the variable &'s in the
entire multiplexer. '

Comment A cascaded analysis from the source port is carried through the kth
juncti‘on into the kth branch. The sensitivities w.r.t. all variables :1re

) comﬁuted.

Step33 ~ Caleulate Vgt +1 and Zgt+! using (5.8) and (5.9). Also, calculate
dVgr+l/ad and §Zg* +1/3¢ using (5.10) and (5.11) for all variables ¢ in
the entire network. |

Comment Thevenin equivalents and their sensitivities are computed fo;- the kth

branch output port. ) .
The theory and the algorithm have been implemented into a computer
program for simulation and sensitivity analysis of branched cascaded networks. The®

. L e q -
number of branches and the numbers of branch elements are user defined. Exact
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sensitivity analysis can be performed w.r.t. any variable, including frequency. A brief
description of the computer program is available in Appendix B.
54 . A 4BRANCH CASCADED NETWORK EXAMPLE

This example was presented by Bandler, Daijavad and Zhang (1935a) to

illustrate the basic concepts for simulation and sensitivity analysis of branched
cascaded networks. The circuit diagram is shown in Fig.5.5. The circuit has.-t
branches, i.e., N = 4. The numbers of cascaded elements for the 4 branches are
n{l) = 3, {}(2) =4,n(3) = 3and n(4) = 2. According tg Eq. (5.1), the reference planes
for branch term_ina'tions are -t(l) = 11, ¢(2) = 15, ©(3) = 20 and ) = 24 The\:
reference planes for branch-main cascade connections are o{(l) = 14, o(2) = 19,
o(3) = 23 and o1) = 26. ]

The computer program described in Appendix B was used to.culcu‘lute ail
responses of interest and their sensitivities. Table 5.2 lists values of computed
responses (e.g., output voltage, Thevenin equivalent voltage and impedance, insertion
and return loss) for each branch, The common port (i.e. at reference plane 9) return
los;s s also evaluated. Tables 5.3-_5.8. provide sensitivities for each response in
Table 5.2. These sensitivities are evaluated w.r.t. circuit variables ¢,, i = 1,2, ., 8
Table 5.9 shows sensitivities of the circuit responses w.r.t. frequency w. Gain slope
and group delay responses are listed in Table 5,10,

55 COMPUTER-AIDED DESIGN OF-MICROWAVE MULTIPLEXERS
5.5.1 Analysis of Specific Multiplexer Structures
While the approach developed in Section 5.2 is general, as a special case,

the design of multiplexers consisting of coupled cavity filters distributed along a



113

. ‘papnjaut 21w sauL|
UOISSIUISURI] SB [[0M §T S]UdWD|3 ASS0’[ “3PRISEI UTRW DY) jO MONBUNUID)

1IN2112-3104S Y} JIN2IID PIPEISEI Y2URIG-§ AJBII(IE UB JO UONRNST[] G'g iy
} ¢ £ 14 S 9 | L 8 6 01
o L | “ o L
1 ! 1
o P “ “ S P
001
4 T

s

Zh ----

o

Q Ll —-—- «

I T




114

TABLE 5.2-

NUMERICAL VALUES OF THE RESPONSES FOR THE 4-BRANCH
CASCADED NETWORK OF FIG. 5.5

Type of Branch 1’ B'ranch 2 Branch3 Branch 4
Response

output '0.03624 -0.07595 0.05983 -15.00361
voltage -j0.07487 -]0.068175 -j0.04039 +31.16405
Thevenin 0.03008 0.03529 0.03193 -15.65346
equivalent -j0.07785 -j0.30176 -j0.08172 -j2.31876
voltage®

Thevenin 0.000063 0.72129 0.00004 0.02515
equivalent -0.08225 +j2.41490 -j0.69080 +50.23408
impedance*

insertion 55.57892 53.76940 56.81050 10.42942
loss (dB)

branch port, .
return loss 1.72670 0.00052 0.41430

(dB)

0.00055

common port return loss = 0.41243dB

Branch 1 is the furthest from the cotnmon port.

Thevenin equivalents for each branch are evaluated at the reference plane just
before the load corresponding to that branch.

P

A

.
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TABLE 5.3

SENSITIVITIES OF BRANCH OUTPUT VOLTAGES W.R.T.
VARIABLE PARAMETERS FOR THE CIRCUIT OF FIG. 5.5

‘Variuble Branch1 Branch 2 Branch 3 Branch 4
, -0.09888 . 0.01602 -8.12152 -0.06148
+j0.19690 +j0.01904 +j0.07920° +j0.43382

®, -0.02178 0.00008 -0.00083 -0.00081
+j0.03689 +j0.00013 +j0.00037 +j0.00263

& 0.41840 0.42340 ~3.17461 -1.54074
(per Gm) -j1.02730- +0.49683 +j2.09775 +§11.39034
, -0.00015 . 0.02421 -0.00152 -0.00123
+j0.00018 +]0.02442 +j0.00078 +j0.00500

D, 0.00000 0.00000 -0.84583 0.00000
(per Gm) +j0.00000 +j0.00000 -j1.25308 +j0.00000
d, 042131 ~1.05647 0.75952 -~1.32161
(per Gm) -j1.01718 -j0.85004 -j0.57964 +j10.30781
$. 0.00216 0.00347 0.00061 0.16241

: +j0.00231 -j0.00175 +j0.00267 +j0.04932

d, 0.03997 -0.14168 0.08734 -12.42431
-j0.13157 -j0.09279 -j0.08130 +j0.17372
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. TABLE 5.4

SENSITIVITIES OF THE\CENIN EQUIVALENT VOLTAGE SOURCES
W.R.T. VARIABLE PARAMETERS FOR THE CIRCUIT OF FIG. 5.5

3

~

Variable Branch1 Branch 2 Branch 3 Branch 4
o, ~0.08217 -0.01837 ~0.06664 ~0.20599
+j0.20531 +j0.07139 +j0.16342 -j0.03020

b, -0.01556 -0.00019 -0.00058 -0.00125
+j0.04023 - +j0.00043 +j0.00095 -j0.00039

& 0.33572 -0.47001 -1.72106 . -5.40867

~  (per Gm) -j1.06095 +j1.87577 +j4.29805 -j0.75803
' d, -0.00014 -0.01427 -0.00097 -0.00237
+j0.00020 +j0.08775 +j0.00183 -j0.00060

&, . 0.00000 0.00000 . -0.46211 0.00000
{per Gm) ~ +j0.00000 +j0.00000 +i1.18227 +j0.00000
P, 0.33964 0.24151 0.36033 ~1.89480

{(per Gm) -i1.05097 —j4.04905 -j1.10264 -j0.65144
d. 0.00235 0.01021 0.00246 0.15861
+j0.00213 +j0.00537 +10.00225 +0.03550

o, 0.02916 20.01986 0.03119 -13.35199
-j0.13486 -j0.50186 -j0.14165 ' 4j1.80362
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TABLES.5

SENSITIVITIES OF THEVENIN Eal:'IVALE.-\'T IMPEDANCES W.R.T.

VARIABLE PARAMETERSFOR THE CIRCUIT OF FIG. 5.5

Variable Branch1 " Branch2_ . Branch 3 Branch 4

MY ©20.00017 -0.00019 - -0.00016 " 0.00038

+0.00707 +30.00077 +j0.00450 +30.03072

o, ' ~0:00003 0.00000 -0.00001 ~0.00003

‘ +j0.04250 +0.00000 +§0.00003 +30.00019

>, 6.00085 0.00501 .~ -0.00334 0.01498

(perGm) ~  +j0.02364 +30.02006 +§0.11797 +§0.80592
¢, 0.00000 0.06160 -0.00001 .. - -0.00003 _ .

+j0.00000 +j0.11222 +0.00005 +]0.00036

I
¢ 0 00000 0.00000 -0.00129 . 0.00000
(per Gm) +j0 00000 +j0.00000  +j30.93848 +j0 00000

®, 0.00066 0.17452 0.00051 001860

(per Gm) +]0.02605 +0.29796 +0.02879 +j0.72854

o, 9.00000 £ 0.00000 ,  0.00000, 20.00052

+j0.00000 +j0.00001 +j0.00000° ¢ +j0.00350

S, 0.00005 0.00058.:; , & 0.00005 0.04283

+j0.00000 -0.00028, +j0.00000 -0.05844

i
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TABLES.6
SENSITIVITIES OF INSERTION LOSS W R.T.
VARIABLE PARAMETERS FOR THE CIRCUIT OF FIG. 5.5

Variable

Branch 1

Branch 2 Branch 3 Branch 4
o, 23.00568 2.09034 - 17.45152 -0.05475
b, 4.45823 0.01270 0.10816 -0.00059
boe -115.59096 54.88169 457.83905 ~1.39517 -
b (per E}m)
o, 0.02412 2.91144 0.20388 -0.00093
o, 0.00000 0.00000 0.00000 0.00000
{per Gm)
o, -114.77168 -114,77168 ~114.77168 -1.22074
~ {per Gm) .
¢, 0.11859 0.11859 0.11859 0.09126
b, -14.18466 -14.18466 ~14.18466 -7.15740
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TABLE 5.7

" SENSITIVITIES OF BRANCH PORT RETURN LOSS W.R.T.
VARIABLE PARAMETERS FOR THE CIRCUIT OF FIG. 5.5

Variabie . Eirahch 1 Branch 2 Branch 3 ) Branch 4
d, \ -000292 -0.00050 -0.00183 0.00055
.9, -0.00057 0.00000 -0.00006 -0.00050
o, 0.01465 -0.01278 ;0.03917 0.09851
(per Gm)
®, 0.00000 -0.00071 ~0.00008 -0.00059
o, 0.00000 0.00000 0.00000 . 0.00000
{per Gm) -
b 0.01133 0.02123 '0.00598 0.17232
(per &m) X
b, 000001  -0.00002 -0.00001 - -0.00813
o, 0.00084 0.00155 0.00063 0.71641
-
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' TABLE 5.8

. SENSITIVITIES OF COMMON PORT RETURN LOSS W.R.T.
VARIABLE PARAMETERS FOR THE CIRCUIT OF FIG. 5.5

- ’ L

Varjable . Sensitivity
¢, , . 0.00533
®, . 0.00004
2 / .
&, (per Gm) 0.13797
d, . 0.00008'
o, (per Gm) 0.00000
&, (per Gm) 0.12286
o ~0.00909

?, ' 0.71310
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TABLE 5.9

SENSITIVITIES OF VARIOUS RESPONSES W.R.T, #
ANGULAR FREQUENCY o FOR THE CIRCUIT OF FIG. 5.5

Type of Branch | Branch 2 Branch 3 Branch 4
Response .

output =0.17778 0.03944 -0.44100 2.39068
voltage . - +j0.33120 +)0,08791 +j0.26906 +j7.36235
Thevenin ~0.14889 ~0.10880 -0.24384 0.15888
equivalent - +j0.34666 +j0.09567 - +30.59055 +30.51010
voltage

Thevenin : -0.00028 0.73081 ~0.00051 " _0.00138
equivalent +j0.02219 +j1.32535 +j0.28101 +j0.50624
impedance

branch port -0.00484 -0.00153 . ~0.00590 -0.11597
return loss :

sensitivity of common port return loss = -0.10460

=
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TABLE 5.10

GAIN SLOPE AND GROUP DELAY FOR THE CIRCUIT OF FIG. 5.5

»

Type of Branch 1 Branch 2 Branch 3 Branch 4
Response

gain slope 246.411 47.006 390.162 6.579
(dB/Hz) .

group delay 0.18892 0.37785 0.32862 0.50006
{(s) )




123

waveguide manifold is considered here in more detail. Contiguous or nor;-contiguous

band multiplexers are treated in a similar manner. Fig. 5.6, whichisa épecial case for

the structure in Fig. 5.1, .illustrates a typical eircuit equivalent for a multiplexer. A

branch consists of a coupled-cavity filter, together with input-outpat transformers,

and an impedance inverter. A subsection is the waveguide section separating two

- adjacent filters and the junction is the equivalent circuit model for the physical

junction between channel filters and the manifold. The ma-in cascade is s;'hort-

circuited and the responses of interest are common port return loss, channel output

/] return loss, insertion or transducer loss, gain slope and group delay between common
port agd channel output ports. _

To apply the general method of Section 5.2, the subnetworks, namely,
channel filters, waveguide spacings and junc;tiouis should be represer_xted by 2-port
transmission matrices. Recently, a comprehensive set of formulas for reduction of
muiti-cavity filters to two-port equivalents which also provides sensitivities w.r.t.
variables of.intcrest in tﬁe filter st;-ucture, has been presented by Bandler, Chen and
Daijavad (1986a). The formulas evaluate short-circuit admittance parameters and
their sensitivities w.r.t. all couplings as well as frequency for the ﬁnterminated fiiter
model.  Evaluation of transmission matrices from sl;ort-circuit admittance matrices is
straight-forward.

In Table5.11, the transmission matrices for the individual components of
the multiplexer structure shown in Fig.‘ 5.6, have been listed. The series 3-port
junctions are reduced to 2-port equ‘ivalénts using the method described in Section 5.2.
Ta-blgs. 12 lists the sensitivities of transmission matrices in Table 5.11 w.r.t. relevant

parameters and {requency. ‘ |
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- TABLE5.11

EXAMPLES OF TRANSMISSION MATRICES FOR SUBNETWORKS
I[N THE MULTIPLEXER OF FIG. 5.6

Transmission Matrix

Subnetwork
Expression Notation
’
output transformer n, 0 A
na:l 1
0 —
-
. ‘ -q -1
multi-coupled 1 n A
cavity filter’ q 2
1 ql - pl qn pl
< £
input
transformer - 0 A
l:ny n,
0 n, )
series junction
terminated at port 3 1 l Y+Y, L A
by Y3, (Y =Yc+Y3) Yoy v+ Y2 v+y
= - a a a
series junction W
terminated at port 2 "1 [ Y+ e 1 I D
by Yo, (Y =Yy + Yo YUY+ Y)+Y Y, Y+Y,
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TABLE 5.11 (continued)

Transmission Matrix
Subnetwork

Expression Notation

: a  ig owan
waveguide spacing™ cosd  jZ,sinG

A
j sin@
'ls; cost
o .
t pi(qi) is the ith element of vector p(q) which is the solution of Zp = u,

* (Zq = up), where Z = j(sl + M) + rl and s = (wp/Awiw/wg - wg/w) for a nth
order filter with coupling matrix M centered at wg and having a bandwidth
parameter A% and a uniform cavity dissipation parameter r. 1 isa nXn
identity matrix. -

~
tt a waveguide section has a characteristic impedance Zyand 8 = €, B = 2o/),.,
where € is the section length and 1, is the guide wavelength.

>
X

Vi
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TABLE5.12

FIRST-ORDER SENSITIVITIES OF THE TRA{\'SMISSIO.\'

MATRICES IN TABLE 5.11

Subnetwork

Identification Sensitivity of the Transmission Matrix
output 1‘ 0
dA
transformer —_ 1
an 0 -= |
2 : n-
« 2
multi-coupled ot
cavity filter dA Je
- v s P g Fap)A T
d .\Tuh 2q,"® a
= )
9 P99, T 9P P9, (P, TR PaPy
- T
JA bu ( T A+ [ qq 0 )
50 o \P4 T T T
dw  q, Pa'a+q P P-2q,p'q ppl
-
. 1
input -— 0]
dA P
transformer — - n”
an 1
1
0 1
series junction -
. dA
terminated at — HEY (Y) K
port3™ i 3 Yo
dA i . e i
0 .0€d (\c]th-f-ﬁa)‘phg
5A vy vy
Jdw (Y3 .* \.(c}u I\1 + u)uh'.!

/
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TABLE 5.12 (continued) -
Subnetwork Identification Sensiti\"'ity of the Transmission Matrix
_serie§ aD =
junction — ,bEY, ¥, L,
terminated ¢ - SRS ¢
atport2™ 3D
;; L, d€EJ (Ya)¢(L1+ L2)+(Yc)¢l..3
dD
— Y,+Y) L +(Y) L,
dw 2 1w 1 aw 2
_/J . * (Yc)u L3
-
."‘f\] . *
. | —sin® jZ_cosd
waveguide 3A 0
spacing - B|jcosd )
3L, Z —sin0
. 0 )
~sinB Zo cosf
dA .
— £(B) | jecosB .
dw w —5inB
ZO
. 2 ifa=b .
Tl fa=b
L
1 “-2 y'g v . ' - Y 2(\' +Y) 1
a a
. 1 ) Yc 1 1 0 0 1 1 0
+-.-+L=_.—. . L,,=__ s L, = — C ey
1 y2 YY Y, 2oy [ 1-.‘! 1 Y[Y,+ 0 |




L1l

+ 129

552 Optimization of a 12-Channel 12 GHz Multiplexer

A wide rang;a of possible multiplexer optimization problems can'be
formulated and solved by appropriately defining specifications on various frequency
responses of interest: "fhe sensitivities are used in conjuncr.ion‘ with the gradient.

-based minimax algorithm of Hald and Madsen (1981) to ensure the fastest possible

solutions.

As an examplej we have used our simulation and sensitivity formulas to -

optimize a 12-channel, 12 GHz multiplexer without dummy channels. Waveguide
spacings, input and output transformer ratios, cavity resonant frequencies as well as
intercavity couplings are used as optimization variables. The optimization was
executed'by_ Kellermann (1986) and Daijavad (1986) and described in Bandler, Chen,
Daijavad and Kellermann (1984) and in Bandler, Daijavad and Zhang (1986). -

The problem is described as follows. There are twelve Sth-order multi-
cavity filters 'mounted on the waveguide manifold. An optimization on a singly
terminated filter was performed to obtain the starting value.s for the non-zero
couplings My, Mag, Mgs, Mg, Mys, Mss and the same values were ussum.ed for all
ﬁl‘tcrs. The model for the nonideal junctions, i.e., the equivé]ent admittances Y, and
Y. of Fig. 5.6, which have also been assumed in the transmission matrix de.scription
of'junctiohs as appearing in Table 5.11, are consistent with the moedels suggested by
Chen, Assal and Mahle (1976). Fig. 5.7 shows the common port return loss and
channel insertion loss responses at the starting point for the optimization of the whole
structure.

The specific optimization problem considered in this example was to satisfv
a lower specification of 20dB on the common port return loss over the entire

frequency band of interest for the multiplexer. From Table 5.1 it is clear that the

-y

e
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evaluation of common port retlirn loss and its sensitivities w.r.t. the generic
optimization variable ¢ is straight-forward once the common port reflection
coefficient po and its sensitivities (po)y are known. We will describe the particular

variables considered in this example later. Recalling equations (5.25) and (5.26) and -

* the definition of q;j in (5.5),'po and (§°)¢, are evaluated from qon +2, 1 and its sensi-

tivities. Finally, by referring to the algorithm and §peci.ﬁcally Step 2 in this case,
qoN+2.1.9q2n + 2, 1/ddarecalculated.
The optimization involved 60 varia_ﬁles, namely, 12 section lengths, 14

variables for each of channels 1 and 12 (all 6 possible intercavity couplings, 6 cavity

resonant frequencies, input and output transformer ratios) and 4 variables for each of

" channels 2, 8,9, 10, and 11 (input and output transformer rativs, resonant ﬁ-equgncy .

of the first cavity and coupling M;2). The total CPU time on the Cyber 170/815 system
was about ten minutes. The results-of the firal optimization are sh_o{-»_'n in Fig. 5.8.
Equi-ripple return loss response satisfving the requireme'nts over the entire

communication band has been achieved.

56 * CONCLUDINGREMARKS

Wé have presented a new ai)proach to sirnu_la&on and sensitivity analysis of
branched casc;xded networks, By.utilizing our i;t;rmuias of Thevenin equivalents and
their sensitivities w.r.t. new-:orl'k parameters as well as frequen'c_,'. various frequency
x"(;sp;onses and their sensitivities at arbitrarily chosen reference planes are evaluated.
The me‘thod prescn.ted-has been utilized in the optimal ciésign_ of a state of the art 12
channel contiguous band multiplexer. 'Attrﬁcti\'e and fast computer results obtained

using a gradient-based optimization technique justify our treatment of sensitivity

evaluation as an integral part of the analysis. All the sensitivity formulas presented
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in this chapter éan be verified indeﬁendently. Actual implementation of our '

" . approach, howe;'e_r, requiresonly an undérsﬁanding of the definitions of the responses,
formuias for which are available ’in Table 5.1.. For moré theorétically oriented
researchers or engir{eers,'our method of dealing with the sensitivities (Section 5.2) is
strai‘gl\'xt.forward and should be épplicable to almost any comple.x linear circuit

structure in the frequency domain’ - -

- TN
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" AN AUTOMATIC DECOMPOSITION APPROACH TO OPTIMIZATION OF

LARGE MICROWAVE SYSTEMS

-
-

6.1 IN’I‘RODUCT!QN _

A serious challcrigc to researchers in microwave CAI\)\‘areas is‘ due to the
size of praétical microwa\;e sysferns. Existing CAD techniques, matux:c c{:\ough to
handle systems ofordi‘nary' size, generally bdlk at large circui.ts. The reasons for their
failure include prohibitive computer storage and CPU times required. A.fmqucnt
frustr;'xt.ion with large scale optimization is the incre.ased likelihood ofstopping atan
undesired lqcal optimum Other difficulties, espetially in prototype and proﬂucticn
tuning, are due to human inability to r.;)pc with problems involvihg large numbers of
i.ndependent variables to be adjusicd simultaneously to meet a specilied response
pattern over a wide frequency range.

Recently, FET modelling (Kondoh 1986) and rrl:anifoid multiplexer design
{Bandler, Chen, Daijavad, Kellermann, Renault and Zhang 1986) probfems were
solved usiné appropriate decompesition schemes. “The optimization problems were
cleverly treated by systematically or ri?péatedly selecting and adjusting various small
sets of parameters and responses until the systcr-n becomes accepi.ably operational.
The success of these efforts motivated us to pursue the generalization and aut‘omutiun
of decorﬁposition. approﬁchcs for microwave optirr;:izat.ion problems,

’I:he concept of decomposition has bee_n a traditional mathematically bascd.

: : -
vehicle for approaching large scale problems. Himmelblau (1973} has an excellent

134
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“collection of surveys from the areas of mathematics, engineering, economics and

management sciences, I[n this chapter, we will be interested in such aspects of

degomposition that are beneficial to circuit optimization problems.

-

Decomposition methods used in mathematical program ming theory usually
assume .centain_s_tr;uctures for t-he objective function and constraints. ;Pheoréticz;l
investigations ﬁave been performed for linear prpgramming, nonlinear progrémming
and miniméx optimizations (e.g., Geoffrion 1970; -Lasdon 1970; Himmelblau '1973;
Luna 1§84).

In circuits and systems, diakoptic analysis, generalized hybrid analysis
(e.g. ("lhua and Chen 1976) and network tearing methods (e.g., Wu 1976; Tong and
Chen 1986; Asai, Urano and Tanaka 1986) have been developed. Important to those
methods.are circuit relations, especially top-ologil:al relations. In addition to being
used for- circuit analysis, théfdecomposition techniques have been used in design
(Himmelblau 1973) and fault diagnosis (Salama, Starzyk and Bandler 1984).

Decomposition has also been an active subject in electrical power S{shems
since such problems easily result in thousands of variables and equations. Examples
can be found in optimal power flow (Talukdar, Giras ar;d Kalyan 1983; Coni,axis,

elkis and Korr.es 1986), state estimation (Lo and Mahmoud 1986) and real and
reactive®ower opt:.imizgtiori problems (Bilii:nton and lShachdeva 1973). The decom-
position patterns involved are obtained usin\g both physical and analytical
investigations of the systéms. '

Microwave engineers have their own special difficulties. Thorough
laboratory experimentation has to be performed before using certain function

structures assumed in mathematical programming theory. They do not take

advantage of topological analysis often exploited in the areas of circuits and systems

N
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sincer microwave device models are oriented more to physic.al than t.opoIo'gical
analysis. Unlike power systems, most microwave responses are. much more
complicated and highly nonlinear. It is often difficult for microwave engineers to
analyticélljr indicate possible decompé;sition patterns.

The state-of-the-art in large-scale optimization of micro»;{ave circuits is still
device dependent and ba:sed‘on heuristic judgement Very recently, Bandler and
Zhang (1987a) made a first attempt to develop 2 general a:nd abstract theory
describing a decomposition approach to microyave circuit optimization not requiring
particular physical or tepological knowledge of the system. \

[n this chapter, we present the novel technique o-f Bandler and Zhang
(1987a, 1987¢) for the optimization of large microwave systems. Using sensitivity
information obtained from a suitable Monte-Carlo analysis, we extract possible
decomposition properties which could otherwise be d.educed only through a physical
and topological investigation. The overall problem is automatically separated into a
sequence of subproblems, each being characterized by the optimization of a subset of
circuit functions w.r.t. variables which are sensitive to the selected responses. Qur
suggested technique has been successfully tested on microwave multiplexers
involving up to 16 channels and 240 variables.

In Section 6.2, we describe the basic concepts of decomposition for circuit
optimization problems. Using these concepts, the partitioning approach for FET
modelling problems suggested by Kondoh (19886) is ‘veriﬁed and the decomposition
property of multiplexers is explained, as presented in Section 6.3. Section 6.4
illustrates the automatic determination of suboptimization problems. An automated
decomposition algorijhm for large scale microwave optimization is presented in

Section 6:5. In Section 6.6, the method is applied to the optimization of microwave
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multiplexers. Interesting results demonstrating the whole procedure of automated

decomposition for a 5-channel multiplexer are depicted in illustrative graphs. The

results of optimizing a 16-channel multiplexer using our approach are provided.

6.2 THE DE_COMPOSITION'APPROACH FOR CIRCUIT OPTIMIZATION
PROBLE"MS
6.2.1 Circuit Optimization Problems
Let
¢ = [$1 d2 ... dalT | (6.1)

represent the system parameters. The circuit responses, denoted as Fy(d, w), k=1, 2,
..., NF, are functions of variables ¢ and frequency @. In an optimization problem for
circuit design, the objective function usually invelves a set of nonlinear error
functions f|($), j=1,2, ..., m. Typically, the error functions represent the weighted
differences between circuit responses ahd given specifications in the form defined in
(;2.3).

Suppose sets l and.J are defined as
(

|le

I
J&4,2, .. mh. (6.3)

The overall optimizatien problem, e.g., a minimax optimization, is

- minimize max fj(}). (6.4)
¢, i€l J&d :

In a decomposition approach, one attempts to reach the overall solution by

solving a sequence of subproblems. A tvpical subproblem is characterized by

minimize max fe), (6.5)
$:, 1€1¥ jed®

where [*and J* are subsets of [ and J, respectively.
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The basic idea for decomposition is to decouple a variable ¢ from a function
f; if the interaction between them is weak. A subproblem contains only the sensitively
"related variables and functions. A proper arrangement of the sequence of different

subpreblems to be solved is often important to ensure convergence and cfficiency.
: it ‘

-

6.2.2 Greuping of Variables and Functions Using Sensiﬁvity [nformation

The essential task for the éutomatic decpmposition technique is the
automatic decision on I® and J*, and the automatic sequential arrangement of various
subproblems. This is accomplished through an appropriate decomposition dictionary

to be introduced P&the ensuing text.

Sensitivity Analysis - -

We perform sensitivity analysis at a set of randomly chosen points ¢¢,

- €=1,2,.... Ameasureofthe interaction between ¢; and {; is defined as
¢, ,0 °
A D5 ¢
SﬁE( — ) (6.6)
[4 o(bl fjo ‘
where &0 and f;0 are used for scaling. AlltheS,;,i=1,2, .. ,nand j=1,2, ., m,

constitute a nxm sensitivity matrix . Itis reasonable to conclude that ¢, und f, can be

decoupled if §;; is very small.

Grouping of Variables and Funetions

The examination of various interaction patterns betweend, i € [Landf), j €
dJ, results in the breakdown of all variables ¢ into p groug{identiﬂcd by index sets {4,
~

ls, .... [, and all functions f into q groups identified by séts.Jy,Js, ..., .J;. We have

I=hulau. ul, (6.7)
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and
J=Jiudau. Udg . (6.8)
The partitioning of ¢ or f can be achieved either manually or

automatically. The manual procedure corresponds to the manual determination of
variable groups an.d function groups using a priori knowledge. Sh(;h knowledge is
typically obtained through extensive laboratory experiment and an excellent
un_derstanding of the particular device. The automatic procedure corresponds to the
computerized partitioning of ¢ or f based upon the sensitivity matrix S. The parti-

tioning of ¢ and f can be performed 1) both manually, 2) manually for ¢ and

-

autématically for £, 3) automatically for ¢ and manually for f, 4) both automatically.

As an example for manual partit{oning of f, we consider a N-channel
multiplexer. The common port return loss and channel insertion loss responses
associated with the same channel can be grouped together since their behavior is
similarly affected by variables ¢. Therefore, we have N groups of functlions. iLe.,
g=N. Jecontains inﬁiccs of error functions related to c’hunncl £,€=172 .., N.

b

A Procedure for Automatic Partitioning of Variables &

Suppose the function groups have been determined, i.e., J has been
decomposed intode, € = 1,2, .., q. We define a nxg matrix C whose (i, £)th component

s

C,= > w .S, (6.9)
i —_— i

JEJ(

whete wy, is a weighting factor A very small value of an entry in the C matrix, say,
Ci¢, implies that the ith variable and the €th function group are weakly

interconnected.
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Let Cyye represent the average value of all components in the C matrix.

For a given factor-\, A 0, the matrix is made sparse such that C,s is set to zero if it is

less than AC,y,. By making C sparse, insensitive variables are eliminated and weak

interactions between variables and function groups are decoupled. -

-

Two variables ¢; and ¢; belong to the same group if they interact only with

the same groups of functions, i.e., if the ith and the jth rows of C have the same

' zero/nonzero pattern. A thorough co;nputerized checking of the C matrix results in

the automatic determination of index sets Iy, k=12 ..

An Illustrative Example of Matrix C

.p-

Consider the fictitious relations between variables and function groups

shown in Fig. 6.1(a). The functions f have been arranged into 5 groups The C matrix

{already made sparse) is

r"

.
bt

N

22.

0.

100.

100.
100,
1006.

0.

B3.

100.

100.

100.

0.

95.

Q.

-

0.

0.

-

16.10)

As seen from Fig. 6.1{(a), ¢» and ¢ both afTect only the 2nd function groﬁp,

In the C matrix, rows 2 and 3 both have only one nonzero iocated at the 2nd column.

Therefore, variables ¢o and ¢g are grouped together. Similarly, variables ¢4 and ¢y
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Fig. 6.1 A fictitious example showing only the strong interconnections betwgen

variables and funetion groups. (a}system configuration corresponding to
matrix C. (b) system configuration corresponding to matrix D.
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belong to the same group. The rc.sult:ing index sets for variable groups are I_I = {9}, I»
={2,3}I3={Th1s={5}1s = (4.6} I = {1} an;l-. I; = {8}. The index sets have been
ordered s‘u-'.:’h that the kth variable group correlates with no more function groups than
the (k +1)th variabic group does, k = 1, 2.6 Such an arrangement is made to kecp.

subsequent description simple.

6.2.3 Decomposition Dictionary "~

*

To manipulate directly with groups of variables and groups of functions, we

_ construct a pxq dictionary decqmpo‘%‘ttion matrix D. Define the (k, €}th componentof D

as 5

=)

i
1
M

e
m
—
L
A

ke = £ WS,

r\f-

(611

C.-

!
M

[

=

i€ ) .
If Die is zero, variables in the kth group are decoupled from functions in the €th group. ‘
Otherwise if Dye = 0, we sdy that ¢, i€ly, and fj, jéJg. are corrclated, The
decomposition dictionary gives a clear picturt; of the correlation patterns between
groups of var';ables and functions, fac‘i@ti’n—g_t-hc.automatic determination of
suboptimization problcms. The ideal tgictionary is a diagonal matrix where a

~ subproblem simply 'co_rresponds to a diagonal element. In this case, only one variable
group and one function group is invclved in a subproblem. If a diagonal dic_tionary '
can be obtained without artificially making C sparse (i.e., using spa.rse factor A = 0),
then the sys.t.e;n is completely decomposable. For a completely decon;poéable system,

different subproblems can be calculated in parallei. Details of decomposability can be

found in Courtois (1977).
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Consider Lhe. previous example with the resulting C ﬁ:atrix déﬁﬁéd in
(6.10). According to the index sets Iy, k =-. 1,2,r.., 7, the decomposit.ion dictionary D
) o . L
ean be obtained from C by adding rows 2 and 3 éﬂd-ndding rows 4 and 6, respectwely .
" The relntxons between groups of varmbles and funct.xons are shown in Fig. 6.1(b). 'I‘he .

resulting dlctlonary is

{ 100 0. 0 0 o |

0 200. 0 0 0

0. - o 100, 0. 0.

0. 0 0. 0. 100. , T (6.12)
T o o s 10. o

20. 100. 30. 0. 0.,
o C 70 10 - s, o |

—Where cach entry has been rounded to multiples of 10.

6.3 | PRACTICAL EKA&iéLE:S OF DECOMPOS[TION DICTIONARY
6.3.1  Decompeosition Dictionary tor FET Device -Models

Through cxtensive cxpé.riment on practical FET devices, Kondoh (1986)
Ssummarlized 8 suboptimizaf.ion problems which can be repeatedly solved to y_ield a
‘FET mod_el with improved accuracy. The equivalent circuit is shown in Fig. 6.2. |

Using the theory described in the previous section, Bandler and Zhang (19887a)

presented a decomposition ciictionar_v for such devices. The 13 variable parameters
wel;c‘automaticall,\,' parti;.ione& into 8 groups. Their result was in complete
agreement with the 8 Subprob[ems of Kondoh (1986).

Here we describe the experiment reported by Bandler and Zhang (198¢a)

A set o['t.rue parameter values listed in Kondoh (1986) isusedasa referencc point &0,
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as shown in Table6.1. The e.ntire frequency range‘o‘f measurement is 1.5 GH? to
26.5 GHz. We perform slen.sitivit.y ahalysis at 10 rénc}omly chosen parameter po‘ints in
the 10% neighbourhood of $0. The function f; used in (6.6) is defined as the wei‘ghted
difference between the calculated and the measuréd values of -Lhe modﬁlus or the
| pha-se of a particular S parameter. Functidns associated with the same S parameter
are grouped together. Table 6.2 shows the C matrix of (6.9) befqre being made sparse,
inﬁicating strong as \;éll as weak Intércc;nnection 'patterz';s between each individual
parameter and di{'feregt grou\pg of functions. Table 6.3 provides arn example of the
decomposition dictior’mry calculated and normalized from the C matrix of Table 6.2.
Table 6.3 yields 8 subproblems w’rhich agree with and further verify the decomposition
scheme proposed by Kondoh (1586}, When the dictionary is made sparse, certain
entries, whose values are only slightly less than the dominant ones, are also set to
zero. Therefore,as mentioned by Kondoh, repeated cyéling and careful ordering of the

'8 suboptimizations are necessary. The feasibility of computerized automatic

aecomposition is demonstrated by this example.

6.3.2 Decﬂﬁposition Dictic;nary of a 16-Channel Multiplexer

L\Iu[tiplexers- consisting of multicavity filters distributed.along a wave-
guide manifold was introduced in éhapter 5. It has been obser.ved that parameters
associated with a ﬁarticular chzfnnel of the multiplexer structure have a strong eiTect
on responses corresponding to that cha.nnel and a weak effect on responses related to
other channels. The theoretical descriptién of this phenomenon was presented in
Bandler, Chen, Daijavad, Kellermann, Renault and Zhang (19868). A prototype

decomposition dictionary was constructed from mahual partitioning of variables and
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TABLE 6.1

PARAMETER VALUES FOR ¢0 FOR THE FET CIRCUIT MODEL

) ) .

i - Parametefq;i U .it | Valuefordy °
1 €m " mS. '50.0
2 R ps 30
—- 3 ‘ Cos oF 0.25
4 Cus : pF : 0.08
5 Cag : pF 0.025
6 ' Ry Ohm 4.0
X Ry : Ohm . +.0
T g : Ry Ohm .30
9 . Ry~ . Ohm 250.
10 R, ‘ Ohm 0.2
11 Le . pH 60.0
12 L pH 25.0
13 ' L, : pH 150

A

<
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R
TABLE 6.2
THE C MATRIX FOR THE FET MODEL

(a) FUNCTION GROUPS INVOLVING THE ENTIRE FREQUENCY BAND
(1.5 GHZ TO 26.5 GHZ) | )

Function Groups
Variables ¥ .

511 Entire S0y Entire 812 Entire Saa Entire

Freq.Band  Freq.Band Freq. Band .- Freq. Band
gm Ig.55 | '10.0.00 87.55 68.33
Ces . 100.00 83.74 67.98 ‘62.25
Ces ——  4.88 6774 4573 100.00
Cax 4.24 48.88 © 100.00 81.27
R, 35.53 37.14 . “100.00 5.88

3

Rys 17.44 97.68 7051 100.00

Each row of the table haafleen scaled.
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TABLE 6.2 (continued)
THE C MATRIX FOR THE FET \IODEL

(b) FUN CTION GROUPS INVOLVING ONLY THE UPPER HALF FREQL EN CY
BAND (14 0 GHZ TO 26.5 GHZ)

Function Groups

Variables
: S11 Upper Soy Upper Sy2 Upper S22 Upper
Freq.Band Freq. B_and Freq. Bgnd Freq. Band
t 31.91 100.00 36.61 59.31
Rg 100.00 50.67 24.87 29.89
Ry 34.65 7431 85.85 100.00
R 10000 65.63 §8.43 2953
Lg 10000 7.85 . 5716 3744
S L 9.99 97.88 618 100.00
L, 62.94 3131 100.00 2199

Each row of the table has been scaled.
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TABLE 6.3
NORMALIZED DECOMPOSITION DICTIONARY D FOR THE FET MODEL

(2) CORRESPONDING TO THE SENSITIVITY ANALYSISOF TABLE 6.2(a)

Function Groups

Variable . ,
Groups |, Si1i Entire S92, Entire S12 Entire { So2Entire
' Freq. Band Freq_-Band Freq. Band Freq. Band
Ras, Cas 0.00 0,00 1.00
Cgs 1.00 ~0.00 0.00
< Cag: Ry 0.00 0.00 1.00 0.00
gm 0.00 1.00 0.00 © 0.00

(b) CORRESPONDING TO THE SENSITIVITY ANALYSIS OF TABLE 6.2(b)

Function Groups

Variable
- Groups Si1 Upper 8oy Upper S1oUpper - Soa Upper
Freq. Band Freq. Band Freq. Band . Freq. Band
Ry, Ld - 0.00 0.00 0.00 1.00
Ry, Ri, Ly 1.00 - 0.00 0.00 0.00
L. 0.00 : 0.00 1.00 ) 0.00

t 0.00 1.00 - 0.00 0.00
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fgnctions. The following description is based upon their ex.periment and the
. : . s )
sensitivity matrices they used.
Consider a 16-channel, 12 GHz contiguous band multiplexer whose equi-
‘valent circuit follows Fig. 5.6. All channel filters are 6th order. We perform
sensitivity analysis at 30 points selected randomly within 40% region of the optimal

point of the multiplexer. Sixteen function groups are composed, each corresponding to

a particular-channel of the multiplexer. The kth function group consists of common

*

port return loss functions calculated at 7 frequency points; 3 of which are in the
passband of channel k, and the remaining points are in the stopband of channel k.

- In the first experiment, we have 16 groups of variables.‘ The kth variable
group includes all coupling parameters as well as input and o.ur.put transformer ratios
of the kth channel filter. The decomposition dictionary is shown in Table 6.4, As
performed by Bandler et al. (1986), this dictionary matrix was normalized such that
each element of the matrix is divided by the average \-a.lue of the corresponding row
before normalization. The matrix is then made sparse by roun;:iing off all entries to
integers. [n the second experiment, 16 varifble groups were used, each gréup con-
taining only one variable. The variable in the kth group is the distance of the kth
channel filter from the short circuit main cascade termination, The corresponding
dictionary is shown in Table6.5. The dictionary is normalized and made sparse
similarly to that for Table 6.4.

These dictionaries provided a theoretical background for the large scale
minimax optimization of the 16-channel multiplexer reported for the first time by
Bandler, Chen, Daijavad, Kellermann, Renault and Zhang (1986). Their approach
was a manual manipulation of the decomposition propertie$ discovered. The band

form of Table 6.4 and the near band form of Table 6.5 correspond to the phenomenon

nr
ter
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TABLE 6.4

DECOMPOSITION DICTIONARY FOR A 16-<CHANNEL MULTIPLEXER, WHERE

VARIABLES ARE COUFLING PARAMETERS AND TRANSFORMER RATIOS

channels (responses}
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TABLE 6.5

DECOMPOSITION DICTIONARY FOR A 16-CHANNEL MULTIPLEXER, WHERE

VARIABLES ARE THE DISTANCES FROM THE SHORT CIRCUIT |

channels (responses)

5 10 11 12 13 14 15 16
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that variables in a channel mainly affect responses at the same channel and adjacent '
channels. The nonzeros in the far off-diagonal regions in Table 6.5 mdlcate the effect
between non-adjacent channels due to adjustments on the distance of a channel filter
{rom the main cascade.

i

64 AL’TOMATIC DETERMINATION OF SUBOP’TIMIZATIO;\' PROBLEMS
6.4.1 Theoretical Description . "
The Reference Function Group _ \

Usually, theldccomposition dictionary is not diugonal. A suboptimization
often involves severdl function groups and several variable groups. Among the
function groups involved, there is a key group which we call the reference group
Such a group typically contains the worst error function. - The referen;:e fu‘m:tion

group is used to initiate a subproblem as deseribed in the subsequent text.

LY

Candidate Groups of Variables
| Suppouse the index set Jy indicates the reference function gro.up. The
randidate groups of variables to be used {or the suboptimization ar;: those which affect
fi€de
In the decomposition dictionary, ‘the fth column associates with the
reference function group. Rows having a nonzero in the fth column, are candidate
rows, each corresponding to a caﬁdidate vafiable group. Take -Fig. 6.1tb) as an
example. Suppose thut the function group associated with index ;‘;et Ja is the reference
group, i.e., £=2. The candidate groups of variables are ls, [ and [7 since they corre-
late with the reference fuiction group. Correspondingly, in the D_matrix of 16.12),

rows 2, 6 and 7 are candidate Tows since théy all have a nonzero in the 2nd golumn.
1
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|

Determination of a Suboptimization Problem

An automatic procedure for the determination of I¥ and J* for the sub
optimzation of (6.5) has been developed. Suppose J, indicates. the reference function
grou;. For a selected candidate variable group, e.g., the one correspondiny to ~et [,
the index set J* indicates thé union of all function groups which correlate wir.l';
variable group k. I®identifies variables in the kth group, as well as all other variables

which correlate with functions only within fj, j € J%. Also, I® excludes vuriub}es not

correlating with any active functions in £, j € J®. A function ['is said to be active if

£> 0.8M; when M;>0

»

(6.13)
f>1.25M; when My<O,
where
M, 2 max f . (6.14)
!
jesr - - A
r-3

Prioritv of Candidate Groups of Variables .

It can be seen that a®air of (I".. -J%) associate with a pair of ([, J2). Fora
selected reference functien group.ieach candidate variable ‘group leads to a sub.
pr;)blem.‘ The sequence of subpro;)lems Used to penalize f, j € J¢, are determined by
the priority of ail res;.xlting candidates.

Since each candidate determines the function set J* for a suboptimization,
the priority of the candidate is based upon the pattern of error functions it wil®a(Tect,
i.e. patterns of fjj € J%. Firstly, the fewer the number of function groups in ‘-J“. the

.higher the prioritv. Secondly, the worse the overail errf;r functions in .}>, the higher

the priority. The overall error functions in J® are ranked by the generalized least pth



- 155

function (GLP) (Bandler and Rizk 1979) as

- M (S €@V M =0 } |

T GLP = €K _ (6.15)
' 0 if M, =0,

where Mg was defined in (6.14) and

ifM, >0, thenK={iIfj‘E:0,j€J"'} and g =p
{6.16)
M, <0, thenK =J% - andq = —-p.

Typically, we choosep = 2.

The priority of candidate variable groups can be similarly determined in

the decomposition dictionary. The fewer the number of nonzeros that exist in a

candidate row, the higher the priority. For-two candidate rows containing an equal

number of nonzeros, a higher priority is given to the candidate having a larger value
Y d

in its generalized least pth function.

6.4.2 An Example for Deciding on a Subproblem and Candidate Priority

For the example of Fig 6.1, suppose that the maximum error functions

within each of the 5 function groups are [3.3 4. 1. -1. 2. Suppose that we choose

the worst group, i.e., group 2, as the reference function group. According to our pre-
vious discussions, the candidate variable groups are I, Ig and I7. I» has the hiéhest
priority since it affects fewer (i.e. only one} function groups than I; or [ does (g and I+
both affect three function groups). To rank the priority between candidates g ‘}n’d I+,
wé compare the overall error functions they will affect. The functions affe';.“ted by
variables in lgtor [7i aref, j€3=Jy U J; Udg '(or J® = JaUJg U dy) [ghasahigher
priority than I; since the overall error functions inJ; U J» LJ ~j3 are worse than that in

dJoUdg U dy.

-
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Correspondingly, in the decomposition dictionary of (6.12), rows 2, 6 and 7
are candidates. Row 2 has the highest priority since it contains fewer nonzeros than
others. Row 6 has the second highest prio}ity since its GLP value is obviously l;irget;
than the GLP value for row 7.

To I'ormul:..ite a suboptimization problem, i.e., to decide I* and J*, we choose
a pair of (I, Iy), e.g., candidate vaxjiable group [ and reference function group Ja. The
index set J3 = J; U do U J3. The vgriable index set I® includes Ig (indicating the
candidate variable group), as well as [y, I> and I3 (indicating all other variables

_aﬂ'ectin‘g functions only within J%). Further., I3 can be excluded {rom I* since ;-uriubles
in I3 do not affect dctive functions in J5. Therefore, we have [° = lg U1y LJ L.

6.5 AN AUTOMATIC DECOMPOSITION ALGORITHM FOR €IRCUIT
OPTIMIZATION
An automatic decomposition a[gorithm for optimization of microwave
systems has been developed and implemented. The algorithm can decide \x:hcn to
update the sensitivity matrix and the decomposition dictionary. The formulation and
the sequence of suboptimization. problems are dynamicall.y determined The degree of
decomposition is reduced as the system converges to its overall solution. As a special
case, if all variables intera;:t with all functions, our approach solves only one
subproblem, this being identical to the original overall optimization.
Step 1 [nitialize sparse Tactor \. Caleulate the sensitivity matrix § und the
decomposition dictionary D. Calculate f.
Comment The initial sensi\tivity matrix can be obtained from a suitable Monte-

Carlo sensitivity analysis performed off-line. All error functions are
,

calculated in this step.



Step?2 - Define € such that .
e _
. . fworst. = max f; = max fj.
S : j€de jed

Comment The ¢th function group qutains the worst res#ons.e.‘ S.uch" a function
group will b;i frequently cho;en as the reference group to be penalized.

Step 3 For t‘he gi-ven ¢, determine the sequence of candidate rows in D. _ ﬁénk
the candidates in decreasing priority. Setk = 0.

éoﬁzr;uen; The ¢th function group is the reference group to be penalized. All
variable groups correlating with the €th function group are considered as
candiaateé. |

Step 4 slf k = 0 then set k to the row index of the first caqdidate. otherwise set k

" to ti’le row index of the ne:ét candidaté. If such a candidate does not exist

then éo to Step 8. )

Comment  The candidate groups of variables are sequentially sé[ected. Each entry

into this step results in a selection of a candidate with a lower priority

than the current one.

-

Step 5 Define I* and JSausing the current k, €. If I¥ and J® are identical with

their pre»i_ou's values then go to Step 4. Solve the suboptimization

problen":
minimize max f{¢) .
y ¢i, 1€ jeJt
/ .
w Terminate the optimization if

max f > A fuoret .
j€J®

Comment A subprdk;[em is formulated and solveli in this step. By checking the

functions not covered in the present suboptimization, any significant



Step 6

Comment

Step 7

Comment

Step 8

Comment:
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deterioration in the overall objective function is prevented. The factor \'

canbe eg., 1.2, o
Ife =.[ and J® = J then stop.
The program t.er'minatefs foliowing theH completion of an overall
optimization which is considered as the last subprol;lem. |
Calculate f. Calculate | °

fworms = Mmax fj.
. jed
GotoStep5. 2 .
An overall simulation is performed. By going to Step 5, the current .
reference function group can be contiyﬂ_sly penalized in the next

subproblem even if this group does not include the worst error functions

If

-

max fj.<‘mux §
jed® Jj€dJ

then go to Step 2. If A = 0 then stop otherwise, update S, reduce A,
update dictionary D and go to Step 3.

When the selection of a candidate fails, a new sequence of candidates will
be defined by going to Steps 2 or 3. By reducing the spurse factor ), the
degree of decomposition is rc;d;.lced as the overall solufton is being
appf'nached. The reference function group will be readjusted if the
existirg one does not contain the maximum error function. For
completely decomposab?e problems, the terminating conditions in Step 8

will not be satisfied and the program will exit from Step 8.

\ §
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{Bandler, Chen, Daijavad, Kellermann, Renault and Zhang 1'986; Bandler and Zhang

Fig. 6.5. THen a full optimization is activated resulting in all responses
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6.6 LARGE SCALE OP;FI.\:{IZA‘I"IO.\' OF MULTIPLEXERS

The automatic decomposition technique was tested on the optimization of
- i .
microwavk multiplexers used in sateI-I:i.t‘_é communications. Specifications were

imposed on the common port return loss and individual channel insertion loss .

- funetions. Each suboptimization was solved using a recent minimax algorithm of

Bandler, Kellermann and Madsen (1985). Until our recent paper on I‘nu[tiplexers

~

1987a), the reported design and manufacturing of these devices wefe limited to 12

channels (e.g., Egri, Williams and Atia 1983; Tong and Smith 1984: Holme 1984:

Chen 1985; Bandler_, Daijvavad :;.nd Zhang 1986). v gy
A contiguous band S-channel multiplexer was specifically optimized to
illustrate the novel process gf automatic decomposition, as shéwn in Fig. 6.3.

¥ .
Functions associated with the.same channel are grouped together. Variables for each

channel include 12 coupling parameters, input and output trafsformer ratios (n; and

na) and the distance measure from the channel filter to the short circuit main cascade
termination. The overall problem involved 75 variables dnd 124 nonlinear functions..
As the parameters approached their solution, weak inteéractions between variables
and functions were also considered. The final subproblem was.the overall
3 . - - ’
optimization. ) , a8
We also tested our approach on a 16-chanrel multipiexer involving 240

variabies artd 399 nonlinear functions. Th} responses at the starting point is shown in

Fig. 6.4. Only\O suboptimizations were performed before reaching the respo_n:'ge of

satisPving
.-

e
their specifications as shown in Fig. 6.6. A comparison between the optimal design

with and without dccomisition is provided in Table 6.6. When used to obtain a good

4

87 -



Fig. 6.3
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fl -

" Return and insertion loss responses of the 5-channel multiplexer for each

suboptimization. The 20 dB specification line indicate® which channel(s)
is to be optimized in the next subproblem. The variables to be selected
are indicated in the graph, e.g., 35 representing coupling Mgs, d repre-
senting the distance of the corresponding channel filter from the short
circuit main cascade termination. The previously optimized channels
are highlighted by thick response curves. (a) responses at the starting

point. (b)~(k) responses for each suboptimization. (€) re3ponses at the
final solution. ' '
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3
A ' | TABLE 6.6 _
COMPARISON OF 16-CHANNEL MULTIPLEXER OPTIMIZATION
WITH AND WITHOUT DECOMPOSITION |
Purpose ) Red{xction in Criteria for With Without
of Objective Comparison Decomp, - Decomp. -
Optimization+ Function
’ ] from CPUC time* 99 250
to provide a 13.46
good starting working space 2,197 483,036
point for needed?
further opti-
mization to number of
2.4 suboptimizations 10 -
from CPCU time* 651 553
toobtaina 13.46 i )
near optimum working space 73,972 183,036
solution needed? -
to number of
0.32 suboptimizations 51 -
from . CPU time * 1045 1289
to obtain 13.46 '
optimum h working space +33.036 483,036
solution needed! :
to \mmber of
-0.09 subopiimizations 11 -
+ different sparse factors \ have been used to control the degree of decomposition

for the three different purposes.

seconds on the FP$-264 mainframe.

optimization package (Bandler, Kellermann and Madsen 1985

of machine memory units (one unit per real number! required by the minimax
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starting point for subsequent optimization, the decompesition approach offers
* considerable reductions in both CPU time and storage. The feasibility of obtaining a

near optimum for large problems using computers with memory limitations is

observed from the table. However, when close to the desired solution, the sizes of the

subproblems may approach those of the overall problem. In this case, the performance

of optimization does not differ significantly with or without decomposition, unless the

ori;iinal problem is aimost completely decomposable. .
13
{ .
6.7 CONCLUDING REMARKS -

We have presented an automated decomposition approach for optimization
q[’ large mlicrowawaf»\-g;gm_s._The approach is ger}erall_v fapplicable to the optimal-
design of large analog circuits. Compared with the existing decompo‘sition methods,
the novelty of our approach lies in its generality in terms of device indf;pendency and
its aL-:tor'nar.ion. Advantages of the approach are 1) a very significant saving of CPU
time and/or computer storage and 2)efficient decompeosition by automation. By
partitioning the overall problem into smaller ones, the appggach promises to'provj'de a
basis for computer-assisted tuning. It contributes positively towards future general

computer software for large-scale optimization of microwave systems.

»
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CONCLUSIONS

This thesis addressed three important phi\scs in large scale optimization of

4
analog circuits, namely, simulation, sensitivity analysis and ization. Novel

.

approaches have been described for large changé sensitivity anglysis, branched
. '

cascaded network analysis, and automatic decomposition of circuit optimization. The

F" -

use of mlicrowave circuit examples demonstrated the practicality of our new
apP oaches.
s * .
' / Our approaches offer immediate reductions in computer storage and CPU

| times required, enabling an engineer to optimize a large circuit with existing

\ computers. The large change sensitivity analysis method is used to perform repeated
circuit simulation. When used to solve adjoint systems, the method is also applicable

P, Ty . .
e . i Sy .
to repeated sensitivity evaluation. The branched cascaded analysis method is a clever

alternative to general simulation and sensitivity analysis methods such as the nodal

equation approach and the adjoint network approach. The use of-our metheds in
simulation and sensitivity evaluation significantly speeds up a circuit optimization

procedure. The automatic decomposition technique directly partitions the large scule

problem into small ones manageable by a mathematical programming softwaure.

P
- v

In addition to their computational efficiency, our novei approaches also
P 4b € 3 :

provide better insight into the various effects between variables and responses, ;:s‘

.

discussed in Chapters 4, 5 and 6, fespectively,
Logically, the thesis intends to fill the gap between the stule of circuit
design problems and the practical limit of available computers. It is interestingato

H)

) - : L
N 172 . .

-
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notice that this -gap remains widely open eventhough the power of computers has
increased dramatically over the past two decades. [t isuworthwhile to mentica that
the methods described in the thesis are directed towards large scale problems. In case
of small circuit problems, the efficiency of our methods may be less than desired. The
impl-ementation of these methods is generally much more complicated than that of
conventional methods. |

The application of oux.' methods is possible in many situations. Repeated
simulation and gradient evaluation are often essential in optimization problem_s
arising fro‘m modelling, &esign, yvield maximization etc. A large number of repeated
circuit simulations also exist in constructing a fault dictionary for circuit diagnosis
(Bandler and Salama 1985a) and in constructing the database for statistical design
usirig the parametric sampling method (Singhal and Pinel 1981). All these situations
provide background for use olf the large change sensitivity analys-is method. The
emcier_ic_v of the method increases if the Aumber of perturbed variables is small

+

whereas the overall problem is large.

) The branched cascaded analysis méthod'is directly applicable to any
circuits structurally branched cascaded, or af.ny circuits reducible to such a structure.
We have illustrated how-to extend the forward and reverse analysis mt_ethoci of
Bandler, Rizk and Abdel-Malek (1978) to branched cascaded structures. The critical
step for such~an extensic;n is"the reduction of 3-port junctions into suitable 2-port
representations. Using this idea, it is also natural to extend the met};od to cascaded
networks Eaving multiple levels of branches, formulating a possible direction for
further r.esearch. .

The application of automatic decomposition has been demonstrated

through a FET modelling problem and the minimax design of a 16-channel multi-

-
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.

plexer. General applications in minimax optimization problems originating from
design and tuning can be envisaged. It is also worthwhile to embed the automatic
decomposition into £, and least squares optimization used in largg scale modelling
problems. The efficiency of our method increases a‘s the circuit becomes hig};ly
décomposable. : -

The sparse matrix technique is another important tooy sciliving large
scale problems. The essence of our branched cascaded analysis method can be
considered as explicitly taking the topological sparsity of the ci':-cuit;_into
consideration. .The sparse matrix technique can be directly used to analyze t;ranched
cascaded networks byhsolving the nodal equz;tions for the original and the adjeint

"networks. As a further research effort, it is worthwhile to compare the e{'ﬁcien_c_v of

the sparse matrix approach with the branched cascaded ahal_vsis approach. On the
'other hand, the automatic decomposition technique is to systematically exploit the
sparse pattern of the Jacobian matrix obtained from differentiating error functions
w.r.t. circuit variables. It is. profitable to use appropriatc id(;as from the sparse matrix
technique to improve the effect of automatic de&omposition, e.g.. the sequential
%rangement of subproblems. |

We have not considered another alternative of treating large scale
problems, i.e., exploiting speci.al computers such as vector processors (Calahan and
Ames 1979, Yamameoeto and Takahashi 1985; Rizzoli, Ferlito and Neri 198;31 and
parallel processors (Huang and Wing 1979: Jacob, Newton and Pederson 19865, For
example, circuit analysis at different frequencies, simulation of different circuits in a
muiti-circuit- approi.ch {Bandler, Chen and"baijavad 1986b), circuit simulation at
different parameter points in a stati.s-tica[‘ désign, and different suboptimizations in a

highly decomposable problem, are all suitable situations for vector and/or parailel

~
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processing Research in this area is currently active in the circuits and systems

community.

The fundamental mechanisms-for executing a circuit optimization are a
circuit simulator, a sensitivity analyzer and a mathematical optimizer. General ¢
efforts towards large scale circuit optimization can be considered as the embedding of -

‘common approaches such as decomposition, sparse matrix manipulation and

vectorization into the three fundamental mechanisms. The automatic decomposition

.

algorithm described in the thesis has been designed to operate externally to a

mathematical optimizer. it is envisaged that future optimization of large analog

circuits can be performed by optimizers having internal capabilit_\.r of decomposition,

sparse matrix manipulation or vectorization. .
A number of other probIems_ are also worth further research and

development,

{a) We havi: considered theoretical and computational as'p-e-qts of large change
sensitivity evaluations with relatively simple anlgeb'raic and electric cireuit
examples. The application in practicai circuit design problems should be
) ' LghN
fully tested. For instance, in a quadratic approximation to a ecircuit

-
response, one needs to solve a large set of linear equations. The repeated
solution of the linear equations’is necessary if the qu;}dratic approximation
is to be updated with replacements of sampling parameter points. Large
2 change sensitivity formulas in this algebraic case can be used to 'minimize

«

the effort of solving the updated linear equations.
{b) The automatic decomposition theory has been tested through dutomatjc

partitioning of variables and manual partitioning of functions. Further

- . -



(d)

' ’ L.
- N L

" research is needed to examine automatic partitioning of functions and

completely autpmated grouping of both functions and variables.

When we tested the automatic decomposition algorithm on multiplexers,
;vhave assumed that the decomposition dictionary takes'a band matrix
¢ .

form. This assumption may not be true for general circuits. The

arrangement for different subproblems needs to be further ‘tested with

decpmposition dictionaries having forms other than the band matrix form.

. 2 - -
- ~
-
.

-

.The multiplexer problem has been used to demonstrate the practical use of

the bra_hched cascaded analysis and the automatic decomposition

techniques presented in the thesis. During our experiments with such a
—_ .

-

device, it was discovered that as the number of channels increases, strong

. * . ~ ’
interactions exist not only between adjacent channels, but also between

\ certain non-adjacent channels, e.g., those about 7 channels apart.

-

Abnormalities in the response curve, particularly, sharp kinks, are likely

to occur for large multiplexers. Such a phenomenon has plagued our

e:.cperiment' with multiplexers having more thaneg6 channels. How to

control the occurrence of such abnormalities, is still unknown. Further

research is needcd{
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APPENDIX A

© oo - SOME DEFINITIONS IN GRAPH THEORY -

Let G = (V, E} denote a graph where V and E are the vertex set and the
edge set, reépec‘tiveb,-l.v. l[?e:t V and E’ be subsets of V and £, respectively. -
Definition1: ~ G' = (V*, E') is an edge-induced subgraph of G if every vertex in V*
is the end vertex of some edge-in E" ; |

Definition 2: A vertex v is a cut vertex of a connected graph G if and only if there

exist two vertices u and w distinct from v such that v is on every u'w

path.'
Definition 3: A block of a separable graph G is a maximal nonseparable subgraph
of G. T

The books by Swamy and Thulasiraman (1981) and by Chen (1976) can be

referred to for the relevant definitions.

-

-
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)

BRIEF DESCRIPTION OF THE COMPUTER PROGRAM FOR

SIMULATION, SENSITIVITY ANALYSIS AND OPTIMIZATION OF -

BRANCHED CASCADED NETWORKS

. PN . - >
- 7

A comp-uter program has been developed implementing the branched

cascaded analysis method described in Chapter 5. " The program can be used to

perform simulation and sensitivity analysis for a general branched cascaded circuit.

Limited optimization capability is alse available. Circuit elements are either 2-port
rd , -

subnetworks or.3-port junctions. A'catalogue of some frequently used elements are.

*

coded. The option of user-defined elements.is also available.

h -

« There are three entries to the program. The first entry is used to perform
simulation and sensitivily analysis at the element level. It is designed(to analvze
circuit subnetwarks individually or to help checking the correctness of user-defined

~ elements. The second entry is used to perform simulation and/or sensitivity analysis
of a general branched cascaded network. The third entry is used to perform design

-»

optimization of branched cascaded circuits, ¢ ~)
The program is written in Fortran-77. The block diagram of the program is

shown in Fig. B.1. Here we briefly describe each of the blocks.

MAINT is a main program defined by the user. It is used Lo execute the

N
program through Entry 1. In Fig. B.2., a list of the main program and an illustrative

. . )
session of execution is provided. In thewexecution, the element tested is a simple 2-

port containing only a seriesly.connected resistor.

~
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MAIN® || || MAIN2 |7 .|l MAIN3

BLOCK DATA

BAH4 | BAeB

BAH3 MMLC

.~

" BRH4 . | |

BAHZ2

USER DEFINED ELEMENTS (optional) | e

Fig. B.1 Block diagram of the computer pregram for simulation, ;‘.eng,iti_vi_ty analysis N
and optirnization of branched cascaded networks.

\



; ’ ) ?-
. a ‘ _ . 180’. Cved »
\l * - ’
c ' . ’ ' by ) . :
SIMULATION AND SE_NSITIV_;"I"Y;%NALY?IS QF 2— AND 3-PORT .
C _ ELEMENTS . -

" . PROGRAM ENTL *—-—-;j : | P o
CALL TESTCH ' i

STOP
END - . L

ELEMENT TYPE = ? N .
Input : 1 i ; T

NO. OF VARIABLES ( NX ) = 7

Input : 1

PARAMETER VALUE ( 1 - 3.) = ?

Input ¢ -1, 1, I

CODINGS FOR PARAMETERS (1 - 3 ) =7

Input : 1, 1,1

WHICH PARAMETERS ARE VARIABLES ( 1 INDICES ) =?
Input : 1 ' .
TYPE 2 -FOR 2~PORT ELEMENT.

3 FOR 3-PORT ELEMENT. -
Input : 2 . ‘
FREQUENCY = ? o | .
Input : 2 . ’ .
I’********!’K*****R***t*R*t*!R***ﬁ!’kt‘kl’******!*‘ll!’*!t!‘!k*Il!l
CHAIN MATRIX ( A,B,C,D.) FOR ELEMENT-TYPE 1

A . 1.00000  0.00000

C ‘ 0.00000 - 0.00000

. » - .
B - - 1.00000  0.00000 S
D * S 1.00000  0.00000

Fig. B.2 Main program and the computer output for the simulation and sensitivity
analvsis of a 2-port element. ‘
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~——————— PERTURBATION CHECK .OF SENSIT.IVITY e ————

VAR  ABCD, ABS(4;,D) RIFF(Z) SENSITIVITY

0 A o.1osfbs ¥.00 0:00000 ~\.- *0.00000
0 ' ¢ 0.10E-05  0.00 0.00000 ~  0.00000
0 B 0.10E-05  0.00 0.00000 0.00000
0 D 0.10E-05  0.00 0.00000 0.00000
1 - A  0.10E-05  0.00 0.90000 0.00000
1 ¢ 0.10E-05  0.00 0.00000 ° 0.00000-

. N -~ ."\

1 B 0.10E+01 0.00 1.00000 0.00000
! D 0.10E-05  0.00 - 000000  0.00000
VARIABLE 0 REF. ™0 FREQUENCY.

ANOTHER ELEMENT 2  Y¥/N ..... 1/ 2

Input : 2 ' .

FORTRAN STOP

Fig. B.2 (continued)

1

G
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o

MAIN2 isa mgin program defined by the user. It is used to execute the

program through Entry 2 InFig. B3,isa Ilst of' the main program for the 4-branch.

cascaded network of Fxg 5.5. This network ha:a been described in Section 5.4. The

output of an interactive session is alse included in Fig. B.3.

MAIN3 is a main f)rogram éeﬁned by the user It is used to execute‘ the
progrém through Entry 3. Fig. B.4 gives an example of the main program for
optimizing a multicavity filter, a device considered as a branched casc:adcd network

with 1 branch. Such a filter has been described in Table 5.11. The filter is 6th order

with center frequ;ency as 4 GHz and bandwidth as 40 MHz. The output of the

Fa
optimization is also included in the figure.

-
d

i . BLOCK DATA is a Fortran data block defined by the user. In this block,

the user is required to define the network structure, the elementsinvolved, the source

and the loads, the varigbles, and the optimization specifications. The following is a’

briefdescription of the arguments.in this block.

(a) ) ¢« Structure of the network: N is the total number of branches. NIR 1s the

total number of reference planes. NK(k) is the number of elementy in

branch k. .

-

{b) Circuit./elemegts: ITYPY) is the index for the t¥pe of the jth element.
RDAT{(i,)) or RDATB(,j) or RDATC(i)) contains the V:.lll_l_s of ;he ith
parameter_in tbe jth element. *An elemient may have up to 3, 17 and 10
parameters for RDL\T RDATB and RDATC, reapcctnz.lx 1D \TH,J) or
IDATB(IJ)\OF IDATC(i j} is an index for the ith parameter in the jth c!ement
{e.g., whether inductive, resistive or capacitive) and corresponds to RDAT

-

or RDATB or RDATC, respectively.

-
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SIMULATION AND, SENSITIVITY ANALYSIS OF BRANCHED
CASCADED NETWORKS.

(n s NN NeKyl

PROGRAM ENT2
CALL BRANCH’
STOP

END

BLOCK DATA
IMPLICIT REAL*8 (A-H,0~2)

Cltltt****t*ﬂ*t#*lk****l'***ﬂﬂ***t****t!***l***ﬂ**iN**t***l’**ik**l*t

C 2055 ADJUST :

PARAMETER (N=4,NIR=26,NX=8 ,NINT=3) »
CA R AR AR AR R AR AR AR RN AR R A RRNK KRR RA AN KRR R RXTIR TR N AR RN AR KN R KR
C DO NOT ALTER :

»

PARAMETER (MN=6,MNIR=27,MNX=36,MNFR=91)
PARAMETER (NDATB=17,NIRB=6,NDATC= 10,NIRC=6,MNFLT=6)
PARAMETER  (MNINT=10)
CHARACTER*10 INFL,QUTFL,IFILEl,IFILE2, OFILEl OFILEZ2,FLNAM
COMPLEX*16 VS,RS,RL
COMMON /BLOK1/ ITYP(MNIR),NK(MN)
"COMMON /BLOX2/ RDAT(3,MNIR),IDAT(3,MNIR)
COMMON /BLOK3/ . IXX(2,MNX) B
COMMON /BLOK4/ VS,RS,RL(MN),ISO v
COMMON /BLOKS/ OMG1,0MG2,NOMG,MODOMG '
COMMON /BLOK7/ OMGA(2,MNINT),NPO(MNINT), ISPEC(MNINT),
+ SPEC(2,MNINT)
COMMON /BLK1/  VLIGHT
COMMON /BLK2/  INFL,OUTFL,IFILELl,IFILE2,OFILEl,OFILE2
COMMON /BLK3/  RDATB(NDATB,NIRB),IDATB(2,NDATB,NIRB),
+ RDATC(NDATC,NIRC),IDATC(2,NDATC,NIRC)
COMMON /BLK33/ OMG(MNFR)
COMMON /BLK36/ SPE(2,MNFR),ISPE(MNFR)
COMMON /BLK37/ NT,NIRT,NXT,NINTT
DATA NT,NIRT,NXT,NINTT/N,NIR,NX,NINT/

llﬂ*t!l**tt*m*u**l*l*t*l***ti*tl***ﬁktik*ﬁt*****l*ﬁ!*a!!’**t*tltl:l‘

C > SET DATA :

-~

-~

(o'

DATA (NK(I).I=1.N)/3.4.3,2/
DATA VS,RS,(RL(I),I=1,N),IS0/100.,5*1.,,2/ o -

Fig B3 Main program Sioch’data and the computer output for the simulation and
sensitivity computat:on ot the 4-branch cascaded network.

- .
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-DATA (ITYP(I),I=1, NIR)/

+ 42,105,1.0, 42,1050/
#  DATA ((IXX(J,I),J=1,2),1=1,N%)/ _
+ 12,1, 12,2, 3,1, 18,1, 21,1, 7,1, 8,3, 25,2/
DATA ((IDAT(I,J),I=1,3),J=1,NIR)/
+ _3%0, 2,2,3, 3*0, 3*5, 3*0, 3*1, 3*0, 3,3,2, 3*1, 3*0
+ 371, 3,2,0, 3*0, 3*0, 3*1, 3%0, 1,1,1, 3*2, 3+0,
T+ +.  3*1, 0,0,0,.73*3, 3*0, 3*1, 3*0,:0,0,0/ ..
DATA" ({RDAT(I,J),I=1,3),J=1,NIR)/ -0
+ .kal.,0., 1.,1:.,2.,7.06,1.,0., 0.,0.,0., .1,1.,0., 0.,0.,0.
+ .05,1.,0., 1. .1.,2 , 1.,1.,1., 0.,0.70., 1.,1.,k., 1.,2.,2.
+ .1,1.,0., 0.,0.,0., 1l.,1.,1.,.06,1.,0., .1,10.,0.,3.,3..3.
+ 0.,0.,0., 1.,1.,1., .05,1.,0., 2.,2.,2., 0.,0.,0., 1.,1.,1.
+ .1,1.,0., 0.,0.,0./ , _ .
DATA OMG1,0MG2,NOMG,MODOMG/6.2831853,6.2831853,1,2/

DATA VLIGHT/.3/

DATA INFL/°SYSSINPUT"/
DATA QUTFL/’ SYSSOUTPUT /
END

OUTPUT FILE NAME ? )
Input : SYSSQUTPUT

* ‘il‘**ﬂﬂ*!*ﬂﬁ**l********‘X**ﬂ*********t‘kl**ttﬂﬁ***t*t**tﬂ!ﬂRilﬁﬁﬁtttt!t

EXACT SIMULATION AND _ SENSITIVITY ANALYSIS of MULTIPLEXING NETWORKS

- NUMBER OF BRAHCHES'. (N )

NUMBER OF VARIABLES ( NX')}

(1) >>» 1. SIMULATION, OR .
‘ 2. SIMULATION & SENSITIVITY .
Input : 2.
(2) » SENSITIVITY W.R.T.
1. [X], OR
2. [X] & FREQUENCY, OR N Co

N 3. FREQUENCY.
Input : 2 =
(4) >> CHANGE FREQUENCY ' ? Y/N ...1/2
( PREVIOUSLY, FREQ= 1.000000000000000 - )

Input : 2

Fig. B.3 {(continued)

+ 105,7,105,2,105,1, 105, 8 41,0, 42,3,105,0, 42,105,3,2.0.

.; - !l“



AARAANR AN AR A RANA AN AA N R

VARIABLES :

1.000 2.000 0.060

FREQUENCY :
1.00000
BRANCH VOLTAGES :
0.03624 -0.07595

~0.07487 -0.06875

THEVENIN VOLTAGES :

0.03008 0.03529

~0.07785  -0.30176

THEVENIN IMPEDANCES :
0.00003 +0.72129
-0.08225 2.41490
INSERTION LOSS :

55.57892 53.76940

RETURN LOSS :

0.00055 1.72670

COMMON PORT RETURN LOSS :

0.41243

Fig.
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3.000 0.050 0.050

0.05983  -15
. =0.0403% 1

0.03193 | -15,
-0.08172 =-2.
0.00004 0.
-0.69080 0

56.81050 10,

0.00052 Q0

B.3 {continued)

-00361
.16405

65346
31876

02515

.23408

42942

.41430

2.000

1.000
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(6) »> fRINT PATA : -
- 0 NONE, OR _
i, 2, 3, 4 - BRIEF ,;,, DETAIL.
Input : 0 '

LCONTINUE FOR SENSITIVITY ?°

Input : 1

Y/N R |

/2

LAY

em——

AANKRR AKX AN AR EA AN AR NA A AN AANRR NN

*

]

* 'SENSITIVITIES W.R.T. VARIABLES *

»

- x

MHHA XA N AARAARNRA AN AARNANRARRRANN AR NN

SENSITIVITIES OF BRANCH VOLTAGES :

-0.
0.

-0
0

09888
19690

.02178
.03689

.41840
.02730°

.00015
.00018.

.00000 _
.00000

.42131
.01718

200216
.00231

.03%97
.13157

0
0.

oo oo

oo

.01602
01904

.00008

.00013

.42340

.49683

.02421
.02442.

.00000

. 00000

.05647
.85004

.00347
.00175

.14168

.09279

Fig.

-0.12152 -0
0.07920 0
-0.00083  -0.

0.00037 0.
~3.17461 -1
2.09775  1l.
-0.00152  -0.
0.00078 0.
-0.84583 0
-1.25308’ 0
0.75952 -1
-0.57964 10.
0.00061 0
0.00267 0

0.38734 -12.
-0.08130 - 0.

B.3 (continued)

06148
. 43382

ooostl
00263

.54074

39034

00123
00500

-00000
.00000

3216l

30781

.16241
.04932

42431
17372
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SENSITIVITIES OF INSERTION LOSS :

23.00568°

4.45823

2.09034

0.01270

7115.59096
10.02412
" 0.00000
-114.77168

0.11859

~14.18466

SENSITIVITIES OF
A - -~ -0.00292
~0.00057

0.01465

000000

0.00000

0.01133
T

 -0.00001

© 0.00084

SENSITIVITIES OF
0.00533

" 0.00004
0.13797

. 0.00008

54.88169
2.91144
0.00000

-114.77168
0.11859

-14.18466

RETURN LOSS :

~0,00050
0.00000
~~0.01278
-0.00071
0.00000
0.02123
-0.00002

0.00155

COMMON PORT RETURN LOSS :

+*

0.

457

0.

. 0.
-114.
0.

-14.

17.

187

45152

10816

.83905.

20388
5
00000
77168
11859

18466

.00183

.00006 -

.03917

.00008

.00000

.00598

.00001

.00063

-0.
-0.
-1.
-0.

Q.
-1.

0.

-7.

Fig. B.3 {(continued)

05475

00059
39517
00093
00000
22074
09126

15740

.00055
.00050
.09851
.00059
-00000
.17232
.00913

.71641



0.00000
0.12286,
~0.00%09
0.71310
(7) >> CHECK szxszrxvf%? 7 YN ..., r /2
Input : 2 - .
CONTINUE SENSITIVITY W.R.T. OMEG ? Y/N ...1/2.
Input : 1 ’ .
AARRARAARARRAARRRRAAR A AR AR RRRR AR R RN REN K&
v =
* SENSITIVITIES W.R.T. FREQUENCY *
x . *
HARAAARXAAARNAE AR AT RAANRRRR R KRR ARk RN AR )
SENSITIVITIES OF BRANCH VOLTAGES
-0.17778 0.03944  =0.44100 2.39068
. 0.33120 0.08791 0.26906 7.36235
SENSITIVITIES OF RETURN LOSS :
-~
-0.00484  -0.00153  -0.00590 . -0.11597
SENSITIVITY OF COMMON PORT RETURN LOSS : .
B 0.10460
GAIN SLOPE :
- 39.21750 7.48130  62.09628 1.04703
GROUP DELAY :
. - 0.18892 0.37785 0.32862

0.50006

Fig. B.3 (continued)
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(8) >> CHECK SENSITIVITY ? /N L., 172

Input : 2
@ (%) 2 1. SIMULATION AND SENSITIVITY CONTINUED, OR
2. EXIT
Input : 2 - . .
FORTRAN STOP ) ‘ *
- . Fig. B.3 (continued)

F
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b OPRIMIZATION OF MULTIPLEXING NETWORKS 2

OO a0

PROGRAM ENT3
IMPLICIT REAL*S (A-H, 0-2)

*I!***‘R**********R****‘k**‘k*!*************'k*****l*****'ﬂi*t**i'ﬂtﬂ LR R B B

*  3>»>>>>.ADJUST : _ R
“ PARAMETER (NX=6,L=6,NFR=60) ' ' K ) .

. NX, L, and NFR are the number,of variables, the number of

* linear constraints and the number of sam{:\le frequencies, °
respectively, for the circuit optin}ization. :
********!kk,****************‘*l*******ti***ti******k**i*l’*tittk***ﬂIn*
C° DO NOT .ALTER : '

¥ PARAMETER (IW= 2*NFR*’NX+5*NX*NX+5*NFR+10*NX+4*L)

DIMENSION C(L,NX),B(L),W(IW),X(NX)

********t*****R****!*****I‘Rl**t********i****ﬂ'l*t*’***t*!I*tﬁilﬂ*i*tt*

LD S5 PP 'ADJusf‘:

w -

' DATA C, B/ﬁz*o /-
DATA LEQ,IPKR,ICH,KEQS/0,10,643/
DATA EPS,DX/1.E-6,1.E=2/
DATA MAXF/40/ '

®

DATA MODE,MODX/2,0/. "
* C,B LEQ,IPR, ICH KEQS,EPS,DX and MAXF are defined consistently
* ., with the MMLC package. .
* MODE = 1 or 2 for Ll or minimax optimization. :
* If MODX = 0, the initial values of variables are defined in
* the block data, otherwise they are defined in a file.
Do 20 I=1,L
. 20 C(I.I)= 1. .
. C(é6,6)==1.
C n
CALL HULOP(NX NFR,L,LEQ,B,C, L X DX, EPS,MAXF,KEQY,W, IW,ICH,IPR,
+ MODE , MODX)
STOP
END . ’
W
Fig B4 Muinprogram. block data and the computer output for optimizetion of a 6th
> order multicavity filrer.
'

/_’ -



191

BLOCK DATA

IMPLICIT REAL*8 (A-H,0-2) .
Cllttwt*t!itl’*tt*t*ﬂ****t***tt*l‘k*t****I**W**#It**tﬂ**.*R‘A‘*tt*l'**'\lI'R*
C 0» ADJUST :

PARAMETER (N=],NIR=8,NX=6, NINT-3 NFR=60)
ctt*ntlt**t**mk*tt*t*tt*lt********tt***tt***nt*t***t****l***t**t**
C DO NOT ALTER : .

PARAMETER (MN=6,MNIR=27,MNX=36,MNFR=91)

PARAMETER (NDATB=17,NIRB=6,NDATC=10,NIRC=6,MNFLT=6) -

* ~ PARAMETER (MNINT=10)

CHARACTER*10 INFL,OQUTFL,IFILE], IFILEZ OFILE, OFILEZ FLNAM

COMPLEX*16 VS,RS,RL

COMMON /BLOK1/ ITYP{MNIR),NK(MN)

* COMMON /BLOK2/® RDAT(3,MNIR),IDAT(3,MNIR)

COMMON /BLOK3/ IXX(2,MNX) _

COMMON /BLOK4/ VS,RS,RL(MN),ISO

COMMON /BLOKS/ OMGl,OMG2,NOMG,MODOMG. -

COMMON /BLOK7/ OMGA(2,MNINT),NPO(MNINT), ISPEC(HNINT)

4+ SPEC(2,MNINT)
TN\COMMON /BLKl/ VLIGHT o
COMMON /BLK2/  INFL,QUTFL,IFILEl,IFILE2,OFILEl,OFILE2
.COMMON /BLK3/  RDATB(NDATB,NIRB),IDATB(2,NDATB,NIRB),
+ RDATC(NDATC,NIRC),IDATC(2,NDATC,NIRC)

COMMON /BLK33/ OMG(MNFR)

COMMON /BLK36/ SPE(2,MNFR),ISPE(MNFR)

COMMON /BLK37/ NT,NIRT,NXT,NINTT '

DATA NT,NIRT,NXT,NINTT/N,NIR,NX,NINT/
CI’!I**tt**n**tw**t***!t**l**l!**l*t'k**k**ilt!****t**l**t**t**w***n*t
C »»>»>»> SET DATA : ; b
C

"

DATA (NK(I)I=1,N)/3/ .
DATA VS,RS, (RL(I),I=1,N),IS0/1.,1.,1.,2/ N
‘DATA (ITYP(I),I=1,NIR)/ -
.+ . 5.,2,41,0, 42,402,301,0/
DATA ((IXX(I,J),J=1,/NX),I=1,2)/
+ 6%6, 4,6,7,8,9,10/ _
DATA ((IDAT(I,J),I=1,3),J=1,NIR)/
+ 15*Q, 6.,7,0, 6*0/
DATA ((RDAT(I,J),I=1,3),J=1,NIR)/
+ 3*0, 3*0, 3*1., 3*0, 3*1., 4000.,40.,0., 6*0./
DATA (RDATB(I,1),I=1,7)/ X o
+ T .979796, .979796, .8101, .48%94, .8450, .1197, -.4010/
DATA (RDATB(I,2),I=1,8)/0.,0., O0.,-1., O.,-l., 0.,0./
DATA ((IDATB(J,I,2),J=1,2),I=1,8)/16*0/
DATA ( IDATB(l,I,1),IDATB(2,I,1),I=1,7)/
+ 4*0, 1,2, 2,3, 3,4, 1,6, 2,5/
DATA VLIGHT/11802.85/ .
DATA OMG1,OMG2,NOMG,HMODOMG/3940., 4060., 121, 2/

Nagdier

"Fig. B.4 {(continued)
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/
-

DATA (OMGA(1l,I),0MGA(2,I),I=1,NINT)/ . . -
+ 3950.,3970., 3970.,3976., 3980.,4001./
DATA (NPO(I),I=1,NINT)/21,17,22/ :
DATA (ISPEC(I),I=1,NINT)>/0,0,0/
DATA % SPEC(1,1),SPEC(2,I),I=1,NINT)/ .. '
+ -100., .9993, . -100.,.9993, 100.,.1/ :
DATA INFL,OUTFL,IFILEL,OFILEL/’SYSSINPUT’,’SYSSOUTPUT’,

-

DATA OFILE2/°FLRSPC’/ .
END,

+ *FLXXX’, “FLXXC*/ . -

- ——

A AEAAR KA A AR AR AR A AR AT AN N A A AR A RA AN AR A ARRARNARAARAAR A AARARANRARNARN RN

COMPUTER AIDED DESIGN OF MULTIPLEXING NETWORKS

RAAMARAATAXAARARRAAR AN AR A RN

* * : . :
* NETWORK DESCRIPTION *
x : *

B S R S R L L

NUMBER OF SECTIONS (N) + = = o o o o o e e e e e e e e e

> vt ‘o,

NUMBER OF BRANCH ELEMENTS INTSECTION 1 _

YK 2 Y O R R R R N R R R Wk

. . x -
* DESIGN OPTIMIZATION * ' o

* : ' * -
W*!t*tt**tl*ﬂt!t****wt;

METHOD ' MINIMAX OPTIMIZATION

Fig. B.4 (continued}
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SPECIFICATION

FREQUENCY - QUTPUT RESP. WEIGHT SPEC.
INTERV. # dF LOWER UPPER PORT TYPE VALUE
PT. . .

! 21 3950. °3970. REF. COEF COM. PT LOWER 100.0 0.999
2 . 17 - 3970." 3976. REF. COEF COM. PT LOWER 160.0 04999
3 22 3980. 4001. REF..COEF COM. PT UPPER 100.0 0.100

——

OPTIMIZATION CONTROL DATA .
" © NUMBER OF VARIABLES (NX) .L. . P

" NUMBER OF FUNCTIONS (M) . . . N % & i i s e e s v oo a 60
TOTAL NUMBER OF LINEAR CONSTRAINTS (L) . . . . : Y -
xuuaaé OF EQUALITY CONSTRAINTS (LEQ) . . . SRR .0
STEP LENGTH (DX) . . . . . . . . R - .i.ooog-dz
Atcunacv (BPS) . . . ... ... ...t ... ... . 1.000E-06
MAX NUMBER OF FUNCTION EVALUATIONS (MaXF)*. . . . e 40
NUMBER OF SUCCESSIVE ITERATIONS (KEQS) . . o « . . . . . . . 3
WORKING SPACE (I¥) . » +  + o v oo .. s e e e .. 1284

-

PRINTOUT CONTROL {IPR)'. . w v v & v v o v o o o v v .

Fig. B.4 (continued)
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STARTING POINT -—- VARIABLES AND FUNCTIONS
VARIABLE IDENTIFICATION VALUE
‘ PARAMETER  OF ELEMENT -
1 4 6 9.797960000E-01
2 6 6 8.101000000E~01
3 7 6 4.894000000E-01
4 8 6 8.450000000E%y)
5 9 6 1.197000000E-01
6 10 6 -4,010000000E-01
FUNCTION IDENTIFICATION VALUE
FREQUENCY RESPONSE  OUTPUT - SPEC. WEIGHT
' PORT TYPE
1 3950.00 REF. COEF COM. PT LOWER 100.0 -3.8468E-02
2 3951.00 REF. COEF COM. PT LOWER 100.0 -3.7153E-02
3 3952.00 REF. COEF (COM. PT LOWER 100.0 -3.5855E-02
4 3953.00 REF. COEF COM. PT LOWER 100.0 =-3.4594E-02
5 3954.00 REF. COEF COM. PT  LOWERe 100.0 -3.3399E-02
6 3955.00 REF. COEF COM. PT LOWER 100.0 -3.2305E-02
7 3956.00 REF. COEF COM. PT LOWER 100.0 -3.1354E-02
8 3957.00 REF. COEF COM. PT LOWER 100.0 -3.0598E-02
9 3958.00 REF. COEF (OM. PT - LOWER 100.0 -3.0l01E-02
10 | 3959.00 REF. COEF COM. PT LOWER 100.0 -2.9939E-02
11 3960.00 REF.'COEF (€OM. PT LOWER 100.0 -3.0198£-02
12 3961.00 REF. COEF COM. PT LOWER 100.0 -3.0981E-02
13 3962.00 REF. COEF COM. PT LOWER 100.0 -3.2396E-02
14 3963.00 REF. COEF COM. PT LOWER. 100.0 =~3.4558E-02
15 3964.00 REF. COEF COM. PT LOWER 100.0 -3.7572E-02
16 3965.00 REF. COEF COM. PT LOWER 100.0 =~4.1514E-02
17 3966.00 REF. COEF COM. PT LOWER 100.0 -4.6391E-02
18 . 3967.00 REF. COEF COM. PT LOWER 100.0 -5.2082E-02
19 3968.00 REF. COEF COM. PT LOWER 100.0 -5.8244E-02
20 3969.00 REF. COEFr COM. PT LOWER 100.0 -6.4179E-02
21 3970.00 REF. COEF COM. PT LOWER 100.0 -6.8671E-02
22 3970.00 REF. COEF COM. PT LOWER 100.0 -6.8671E-02
23 3970.38 REF. COEF COM.. PT LOWER 100.0 -6.9625E-02
24 3970.75 REF. COEF COM. PT LOWER 100.0 -6.9998E-02
25 3971.13 REF. COEF COM. PT LOWER 100.0 -6.%661E-02
b3

‘Fig. B.4 (continued)
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27

28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59
60

3971.50

3971.87
©3972.25

3972.63
3973.00
3973.38

3973.75

3974.13
3974.50
3974.88
3975.25
3975.63
3976.00
3980.00
3981.00
3982.00
3983.00
3984.00
3985.00
3986.60
3987.00
3988.00
3989.00
3990.00
3991.00
3992.00
3993.00
3994.00
3995.00
3996.00
3997.00
3998.00
3999.00
4000.00
4001.00

REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEE
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF
REF. COEF

REF. COEF -

REF. COEF
REF. COEF

"REF. COEF

REF. COEF

"REF. COEF

REF. COEF
REF. COEF
REF. COEF
REF. COEF

195

con.
con.
coM.
coM.
con.
coNM.
coM.
con.
conM.

.con.

con.
conm.
com.
coM.
COM.

coM.

con.
coM.
coM.
conM.
con.
con.
CcOM.
conm.
com.
con.
CcoM.
CcoM.
comM.
con.
coM.
Ccon.
coM.
com.
COoM.

PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT.
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
PT
T
PT
PT
PT

LOWER
LOVER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER

UPPER °

UPPER
UPPER
UPPER
UPPER
UPPER
UPPER

100.0
100.0%
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0.
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0 «
100.0
100.0
100.0
100.0

" 100.0
"100.0

100.0
100.0
100.0
100.0
100.0
100.0

. 100.0

100.0
100.0
100.0

-6 .8480E-02
-6.6333E-02
-6.3124E-02
-5.8812E~02
~5:3455E-02
-4.7263E-02
-4,0677E-02
-3.4463E-02
-2.9802E-02
-2.8331E-02
-3.1982E-02
-4.2260E-02
-5.8074E-02
2.5537E+00
~3.2249E+00
~2.2767E+00
-6.7620E+00
-8.0003E+00
-3.7464E+00
-9.8285E-01]
3.0138E-01
3.0779E-01
-7.0967E-01

=2.4955E+00

-4,.8093E+00
~7.4311E+0Q0
-9,.8356E+00
-7.1611E+00
-4 .6872E+Q0
=2.5274E+00
-7.6811E-01
5.2872E-01
1.3220E+00
1.5889E+00
1.3222E+00

VALUE OF OBJECTIVE FUNCTION

»

Fig. B.4 (ccntinuéd)

-

. 2.55371E+00
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"AT SOLUTION ——— VARIABLES AND FUNCTIONS
VARIABLE IDENTIFIE€ATION VALUE P
- PARAMETER OF ELEMENT -
\
177 4 - 9.898047042E-01
2 3 6 B.159142169E-01
3 7 6 5.105933013E-01
4 8 6 . 8.235514350E-01
5 9 6 9.2365073258-02
é 10 6 ~3.557522286E-01
S ,
FUNCTION IDENTIFICATION VALUE
FREQUENCY RESPONSE QUTPUT SPEC. WEIGHT
. \ PORT TYPE
1 3950.00 REF. COEF COM. PT LOWER 100.0 -5.3588E-02
2 3951.00 REF. COEF COM. PT LOWER 100.0 ~5.3085E-02
'3 . 3952.00 REF. COEF COM. PT LOWER 100.0 -5.2624E-02
4 3953.00 REF. COEF COM. PT LOWER 100.0 =5.2219E-02
5 3954.00 REF. COEF (COM. PT LOWER 100.0 -5.1888E-02
6 3955.00 REF. COEF COMT PT LOWER 100.0 -5.1655E-02
7 3956.00 REF. COEF COM. PT LOWER 100.0 =5.1544E-02
8 3957.00 REF. COEF COM. PT LOWER 100.0 =5.1586E-02
9 3958.00 REF. COEF COM. PT LOWER 100.0 ~5.181SE-02
10 3959.00 _REF. COEF COM. PT LOWER ~ 100.0 <-5.2268E-02
li 3960.00 REF. COEF COM. PT LOWER 100.0 -5.2985E-02
12 3961.00 'REF. COEF COM. PT LOWER 100.0 -5.40845-02
13 3962.00 REF. COEF COM. PT LOWER 100.0 -5.5340E-02
14 . 3963.00 REF. COEF COM. PT LOWER 100.0 -5.7074E-02
15 3964.00 REF. COEF COM. PT LOWER 100.0 =-5.9143E-02
16 3965.00 REF. COEF COM. PT LOWER 100.0 -6.1521E-0Q2.
17 3966.00 REF. COEF COM. PT LOWER 100.0 -6.4090E-02
18 3967.00 REF. COEF COM. PT LOWER 100.0 -6.6629E-02
19 3968.00 REF. COEF COM. PT LOWER 100.0 -6.8766E-02
20 3969.00 REF. COEF COM. PT LOWER 100.0 -6.9940E-02
21 3970.00 REF. COEF COM. PT _LOWER 100.0 -6.9413E-02
22 3970.00 REF. COEF COM. PT LOWER 100.0 ~ -6.9413E-02
23 3970.38 REF. COEF -COM. PT LOWER 100.0 -6.8614E-02
24 3970.75 REF. COEF COM. PT LOWER 100.0 =-6.7432E-02
25 3971.13 REF. COEF COM. PT LOWER  100.0 -6.5851£-02
Fig. B.4 (continued}
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ind
. 26 3971.50 REF. CQEF COM. PT LOWER 100.0 -6.3880E-02
27 3971.87 REF. COEF COM. PT ° LOWER 100.0 -6.1564E-02
28. 3972.25 REF. COEF COM. PT LOWER _ 100.0 -5.9005E-02
" 29 3972.63 REF. COEF COM. PT LOWER 100.0 -5.63B4E-02
30 3973.00 REF. COEF COM. PT LOWER™ - 100.0 -=5.3979E-02
31 3973.38 REF. COEF COM. PT LOWER 100.0 -5.2192E-02
32 3973.75 REF. COEF COM. PT LOWER 100,0 -5.1544E-02
33 3974.13 REF. COEF COM. PT LOWER 100.0 -5.2638E-02 .
34 3974.50 REF. COEF COM. PT LOWER 100.0 -5.5985E-02
35 3974.88° REF. COEF . COM. PT LOWER 100.0 =6.1575E-02
36 3975.25 REF, COEF COM. PT LOWER 100.0 =6.7844E~02
37 3975.63 REF. COEF COM. PT LOWER 100.0 -6.9343E-02
38 3976.00 REF. COEF COM. PT LOWER 100.0 -=5.1544E-02
- 39 3980.00 REF. COEF COM." PT UPPER 100.0 =5.1544E-02
40 3981.00 REF. COEF COM. PT UPPER 100.0 <-1.7255E+00
41 3982.00 REF,. COEF COM. PT UPPER 100.0 =5.1544E-02
42 3983.00 REF. COEF (COM. PT UPPER 100.0 =4.0692E+00
43 3984.00 REF. COEF COM. PT UPPER 100.0 ~9.3586E+00
44 3985.00 REF. COEF COM. PT UPPER 100.0 -5.9621E+0Q
-45 3986.00 REF. COEF COM. PT UPPER' 100.0 =2.5942E+00
46 3987.00 REF. COEF COM. PT UPPER 100.0 -6.6540E-01
W47 3988.00 REF. COEF COM. PT  UPPER 100.0 =5.1544E-02
(/ 48 3989.00 REF. COEF COM. PT UPPER 100.0 =5.3600E—01
- 49 3990.00 REF. COEF " COM. PT UPPER 100.0 ~1.8782E+00
50 3991.00 REF. COEF COM. PT UPPER 100.0 -3.8407E+00
51 3992.00 REF. COEF COM. PT UPPER 100.0 -6.1989£+00
52 3993.00 REF. COEF COM. PT UPPER 100.0 -B8.7470E+00
) 53 3994.00 REF. .COEF COM.-PT UPPER 100.0 -8.&6FV9E+00
54 3995.00 REF. COEF COM. PT UPPER 100.0 -6.2926E+00
55 3996.00 REF. COEF COM. PT UPPER 100.0 =-4.1653E+00
56 3997.00 REF. COEF COM. PT UPPER = 100.0 -2.41595+00
57 3998.00 REF. COEF COM. PT UPPER 100.0 -1.1178E+00
58 3999.00 REF. COEF COM. PT UPPER 100.0 -3.2037g-01
59 4000.00 REF. COEF COM. PT UPPER 100.0 -5.1544E-02
60 4001.00 REF. COEF COM, PT UPPER 100.0 -3.2024E-0]
VALUE OF OBJECTIVE FUNCTION- . =5.15445E-02
OPTIMIZATION CONCLUDING DATA
f 2 _
TYPE OF SOLUTION (IFALL) 0
NUMBER OF FUNCTION EVALUATIONS . . 16
© T,

k]

Fig.

B.4 (continued)



- . 198

NUMBER OF SHIFTS TO STAGE=2 & v v v v v v v e e e e e o e 2
STEP LENGTH (DX) = v = « % « = e o v o o v « o « « « « 4.030E-0%
?

v EXECUTION TIME (IN SECONDS) . . . . . . . « . v « « « . 54.200

FORTRAN STOQP ) -

' Fig. B.4 (continued)

-~
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(c) Source and loads: VS contains the value of the voltage excitation. RS
contaiﬁs the value of source impedance. RL(k) contains the load impedance
of the kt:h branch. 1SO is 1 (or 2) if the main cascade termination is open (or
short) circuited,

- (d) Variables: NX is the number of variables. The jth variable is identified as
the IXX(2j)th parameter in the [XX(1 j)th element.

{ef ' Optimization: NINT is the number of frequency subintervals. Within each
subin.terval, a uniform design specification is imposed. NPO(k) is the
number of frequency points in subir;terval k. OMGA(Q,k} and OMGA(2,k)
contain the lowerrand the upper frequencies for subinterval k. SPEC(1,k)
and SPEC(2 k) contain the weighting and the specification for subinterval
k. ISPEC(k) equals 0, i or —1i if the specification SPEC(2,k) is in?})osgd on
Lhe‘common-port reflection coefficient, the ith branch reflection coefficient
or insertion loss, respectively. SPE(ij) and ISPE()) are r'eservec? for €, -
optimization. OMG1, OMG2, NOMG are the lower f'rcque;ncy. the upper
{requency and the number ofbflrequency points used for a complete circuit
simulation (obtaining all eircuit responses) at the optimum solution.
MODOMG 'indicates the mode of such a simulation and is usually set to 2.

(0 tiles: INFL and OUTFL are character stringé containing the input and
output file names, respectively, IFILE1, OQFILE1, IFILE2 and OFILE?2 are
also character strings reserw‘:_g‘for file names for complicated use of the

program.

(€} . - Constant: VLIGHT is the velocity of light.
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4

In ng. B.3.the _dat.a block for the 4 branch cascaded network olf' Fig. 5.5 is
provid_ed. In Eig. B.4, the daﬁa block for optimizaticn of the mylticavity filter example

) . _ g
is listed. _ - . -

-

BRH1 containsl'. a set of subroutines used to perform various forward and
reverse analysis-in the overall circuit. This block incorporate;}the branched cascaded
analysis technique described in Chapter 5, formulating the heart of the entire
program. It existsin a library form.

BRH2 cor;tains 2 set of subroutines used to perform simulation :-md
sensitivity calculatioh at the element level. A catalogue of standard 2-port and 3-port
elements are coded here. BRH2existsina Iibfar_v form.

BRHS3 contains a set of subroutines used to initialize vartous arrays_for
simul'z;.'t.ion and sensitivity analysis of the overalleireuit. [texists ina library f;arm‘

BRH4 contains a set of St.xbroutinesl which provide interactive access to the
program for simulation and sensitivity analvsis both at the element level and at the
overall circuit level. [t exists ina library form. “\

BRHS contains a set of subroutines used to perform circuit optimization,
specifically, to formL_:late the opumization problem, to call the minimax aptimijzer and

to print both the initial data and the optimal solutions. It exists in a library form.

-
.

USER DEFINED ELEMENTS is an optional block which contains a set of
subroutines written by the user to define his or her own 2-port or 3-port clements,

Users are responsible themselves to represent their 3-port elements in tweg port forms

-

using the method of Section 5.2.2. All elements should be defined in tHe.

orm of
transmission matrices.
and Madsen

MMLC is a minilnax optimizer. It was developed by Hal

based on their 2.stage algorithm for nonlinear minimax optimization (Hald and

1)

AN
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Madsen 198]). It is available as a standard software (Bandler and Zuberek 1983).



APPENDIX C
BRIEF DESCRIPTION OF THE PROGRAM FOR MULTIPLEXER
OPTIMIZATION USING AUTOMATIC DECOMPOSITION
oL

A computer program has been developed for minhgax optimization of
microwave multiple:.cers using automatic decomposition. The theory and the
algorithm have been described in Chapter 6. The program is)written to be compa@'biu B
with the MXSOS2 (1984) package developed by Optimization Systems Associates Ine.
Users are required only to define parameters for the multiplexer before executing the
program. All control parameters for decompaqgition are prompted int.cractivei_v.

The pl’ogram_ is written in Fortran-77. The block diagram of the program is
shown in Fig. C.1. Here we briefly de§cribe each of the blocks.

MAIN is the main program .used to open necessary ﬁ]cs- un;i to initialize
necessary 'paramcters. Users are not required to alter this part.

SETMUX is a subroutine in which users are required to define all
ﬁ-ecessary pax.‘ameters and codes for the multiplexer device. This subroutine is
completely consistent with t:he main program of the MXSO0S2 puackage. The MXS5082
;zser‘s manual can be referred to for all detailed definitions of arguments in this
subroutine.

PARAIO is a subroutine in wh_ich users are required to define initial values
or default values of all variables of the multiplexer. This subrout.ine‘is completely
consistent with the main program of MXS0S2 package. The MXS0S52 user’s manual

can be referred to for all necessary definitions,of arguments im this subroutine.
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+ SETMUX

—1
PARAID

. AUTOMX

DECOMP

7S

SIMFF

SUBTUN

 IBMOPT

I

MMLC

FOF

l

j‘\

MXS0S2

Fig.C.1 Block diagram of the computer program for optimization of multiplexers
using autematic decomposition.
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AUTOMX is the major subroutine for sequential arrangement of the
automatic decomposition strategy.

e DECOMP contains a set of subroutines for Monte-Carlo sensitivity analysis
ghd for the constructi;:)n of a ;iecomposition dicticnary based up-on a'speciﬁed sparse
fa'ctor. |
" SIMFF contains a set of suBroutines for calculating necessary function
values. It is used to check the pattern of all error functions alter every
suboptimization or during a suboptimization.

. SCBTUN contains a set of subroutines for choosing the most suitable
suboptimization p_r'obiem to solve. The selection procedure is based upon the pattern ..
of all er:o,:t functions and the current decomposition dictionary.

t IBMOPT is th‘e shortened version of the main program of the MXSOS2

package. It makes appropriate arrangement for calling the mi.nimax optimizer.

MMLC is a minimax optimizer. It was developed by Hald and Madsen
based on their 2-stage algorithm for nonlinear minimax optimization (Hald and
Madsen 1981). Itis available as a standard softvhire (Bandler and Zuberek 1983).

FDF, contains a set of subroutines for calculating the selected subset of
functions and their sensitivities w.r.t. the selected subset of variables. The distances
of channel ﬁlte‘rs from the main cascade termination are converted to waveguide
spacings here.

MXS0S2 is a computer package for simulation, sensitivity unalA_vsis and
optimization of microwave multiplexers. It was developed by Optimizution Systems
Associates Ine. )

Fig. C.2 gives the computer output of optimizing the 5-channel multiplexer

described in Section 6.6. In this output, a SUB-DESIGN means solving 2 sub-
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e

tﬁ***ti**t*t***************K’******?************I****************t***

OPTIMAL DESIGN AND TUNING USING DECOMPOSITION

A MULTIPLEXER EXAMPLE :

NUMBER OF CHANNELS 5
ORDER OF FILTERS 6
NUMBER OF VAR. PER CHANNEL: 15
TOTAL NUMBER OF VARIABLES = . 75

tt**tt*tt*tkkR*****t*l***R**W*****t***********W***#*****t*tﬁ*****tt**

AUTOMATED DESIGN ' .

SELECT : SEND OPTIMIZATION OUTPUT TO
l. A SEPARATE FILE
2. ' SCREEN OUTPUT
3. OUTPUT FILE
4. NOT NEEDED -
1 : 7
SELECT : 0. PRINT BRIEFLY
1. PRINT IN DETAIL
2. SAVE X FOR SUB-DESIGN
0
DERIVATIVE VERIFICATION REQUIRED ? (Y / N )
N

MAXOPT = ? ( MAX # OF SUB-DESIGNS ) . -

. 11
MCHK = 7 ( SUGGEST : 5 <= MCHK <= TI5 )
é
MINIMUM # OF VAR PER SUB-DESIGN =7 ( E.G. 5 )
5

WANT TO READ: CM,PN1,PN2.WGL FOR EACH CHANNEL ?
N
WORST OBJ COMPARED BY RATIO ( E.G, .99, 1., 1.01 )
RATIO = 7
1.3000000
NEXT WORST DBJ COMPARED BY ( E~G, .4 )
RATIO = ? . . :
€. 4000000

N

LY

Fig. C.2 Computer output for the optit;lization of the 3-channel multiplexer using

automatic decompesition.
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- | - ; Yoo

THRESHOLD LAMD FOR LEVEL UPDATE (' E.G. 2.E-1 )
LAMD = ? e -
0.2000000- - T ~
NO. OF POINTS FOR EACH MONTE-CARLO ANALYSIS.= ?
3 ‘ | -
INITIAL SPARSE FACTOR = ? ( E.G. .6, MUST < 1)
0.6000000 = ' B
SELECT : INITIALIZING DECOMPOSITION DICTIONARY (D) USING
1.  OLD RESULTS ( IN FILE.MONTE )
2. NEW MONTE-CARLO ANALYSIS ( TO BE PERFORMED )

2 ' ‘ o
: CHANNEL # PARAMETER VALUES

1 0.00000 0.59395 0.00000 0.53514  0.00000
, 0.42471 =0.39967 0.00000 0.83371  0.00000
0.76313  0.00000 . 0.83646 1.04618  0.64385
2 0.00000 0.59395 0.00000 0.53514  0.00000
0.42471 -0.39967  0.00000 0.83371  0.00000
0.76313  0.00000 0.83646 1.04618- 1.29143
3 /' 0:00000 0.59395 0.00000 0.53514  0.00000
0.42471 -0.39967 0.00000 0.83371  0.00000
0.76313  0.00000 0.83646  1.04618  1.94280
4 000000 0.59395 0.00000 6.53514 .0.00000
- 0.42471 -0.39967 0.00000 0.83371. 0.00000
0.76313  0.00000 0.83646 1.04618  2.59800
5 0.00000 0.59395 0.06000 0.53514  0.00000

Q
0.42471 -0.39967 0.00000 0.83371 0.00000
~0.76313  0.00000 0.83646 1.04618 3.257Q9

> -
AN AN AR AN A AT A AR A AR AR RN AN N RAARAARAN A NAA NN RANANRN AN R R A NR

A SUB-DESIGN IS CHARACTERIZED BY

(1) RESPONSES OF CHANNELS N1 -— N2.
(2) NX VAR.'S AS A SUBSET OF ALL VAR.’S.
—

RESULTS OF A SUB-DESIGN ARE GIVEN BY

AN AT KA AN AR K AR RN A AR KRR A KK ARNRAXN AR AR AR AN ANRANRNRNRNRNARARRANAR AR R R & AR

IFALL MAXF 0QBJ S 0BJ( 1 — 5

**ﬁ******t**t***!l****lR**I**l**l*!!*****ﬂtt*ll’l‘ll’!’*‘ltttl!l‘.tk*!’kﬂ!ktt

0 0 16.025 15.117 3.037 0.898 5.076 16.025

Fig. C.2 (continued)
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\
-
Nl =0 EXIT =~ - -
Nl < 0 REW D
NL)N2,NX = ?
-1 0 0
NO. OF MONTE-CARLO POINTS ?
3
SPARSE FACTOR = ? ( E.G. .01 OR >l TO EXIT) .
0.6000000 ~ g -
GRP N1 N2  -NX 'VAR.’S IN GROUP
1 1 | 9 Y 4 6 7 9 11 13 14 15
2 2 2 9 - 17 19 21 22 24 26 28 29 30
3 3 3 9 32 34 36 37 39 41 43 44 45
4 4 4 9 - 47 49 51 52 S4 S6 58 59 60
5 5 5 8 62 64 66 67 69 71 14 75
- 6 4 5 1 73 7
7 0 0 16.025 15.117 3.037 0.898 5.076 16.025
NI = 0 EXIT
Nl < O NEW D
N1,N2,NX = ?
5 5 8 ,
B VAR. INDICES = 7
62 64 66 67T 69 71 T4. 75 !

1 12 15.143 15.143 3.028 1.936 9.605 9.605

SUBDESIGN # 1 IMPROVE 0.88+000
Nl = 0 EXIT
Nl -¢ 0 NEW D
N1,N2,NX = ?

4 5 18

18 VAR. INDICES = ? R . )
47 49 51 52 54 56 58 59 60 62 L ﬁ
64 66 67 69 71 73 74 75

P .
1 8 15.187 15.187 2.595 6.378 6.433 6.433

SUBDESIGN # 2 IMPROVE-0.44-001
Nl = 0 EXIT
Nl < O NEW D
NI ,N2,NX = 7

! 19
9 VAR. INDICES = ?
2 4 6 7 9 11 13 14 15
1

- 15 7.674 7.674  7.674 6.409  6.437 6.437

Fig. C.2 {continued)

N .
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>

4 : /
\ .
SUBDESIGN # 3 IMPROVE 0.75+001
Nl = 0 EXIT
NI < O NEW D .
N1,N2,NX = ?
-1 0 0
NO. OF MONTE-CARLO POINTS ?
3 .
" SPARSE FACTOR = ? ( E.G. .01 OR >1 TO EXIT)
. 3000000 : \
GRP Nl N2 NX VAR.S IN GROUP
1 1 1 11 1 2 3 4 5 6 1 8 9 11
. 14 * .
2 2 2 14 17.18 19 20 21 22 23 24 ,25 26
. 27 28 29 30
3 3318 31 32 33 34 35 36737 38 39 po
- 41 42 43 44 45 ' ' .
4 4 4 14 46 47 4B 49 50 51 s52 53 54 55
5 58 59 60 _
5 5 5 11 62, 63 64 65 66 61 68 €9 71 T4
.75
6 1 20 2 13415
7 2 3 1 16
8 3 5 1 73 -
. a
0 0 7.674 7.674 7.674 6.409 6.437 6.437
Nl = 0 EXIT o
NI ¢ O NEW D
N1,N2,NX = ?
1 2 27
27 VAR. INDICES = ?
1 2 3 4 5 & 71-879 11
13 14 15 17 18 19 20 ‘21 22 23
24 25 26 27 28 29 30 . )
1 15  6.489 0.121" 0.118 "6.354 6.409 6.489
SUBDESIGN & 4 IMPROVE 0.12+001
Nl = 0 EXIT -
Nl ¢ O NEW D
N1,N2,NX = ?
3 5 4l -
41 VAR. INDICES = ? )
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 58 59 60 632
63 64 65 66 67 68 69 Tl 73 74
75
Fig. C.2 (continued)
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1 5 4.028 1.167 4.028 3.801 3.801 3.808

SUBDESIGN # 5 IMPROVE 0.25+001
Nl = 0 EXIT .
NI < O NEWD - -
N1,N2,NX = ? '
2 3 30
30 VAR. INDICES = ?
16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45

.

. 1 5 4.292  3.519 -0.476 -0.922 4.206 4.292
SUBDESIGN # 6 IMPROVE-0.26+000 ’
Nl = 0 EXIT
Nl < O NEW D
N1,N2,NX = 2
3.5 26 o : : \

26 VAR. INDICES = 7 _
46 47 48 49 50 51 52 53 54 55

56 5B 59 60 62 .63 64 65 66- 67
68 69 71 73 74 75
1. 31 3.322 Q)h322_ 0.975 0.664 0.668 0.668.

SUBDESIGN # 7 IMPROVE 0.97+000
Nl = 0 EXIT .
Nl ¢ O NEVW D
N1,N2,NX = 7 .
3 S 41 3

41 VAR. INDICES = ?

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 \\\

51 52 53 54 55 56 58 59 60 62 .
63 64 65 66 67 68 65 Tl 13 74
75 :

1 5 3.735 3.735 2.729 0.163 |0.156 0.169

SUBDESIGN # 8 IMPROVE-0.41+000
Nl = 0 EXIT
Nl ¢ O NEW D
N1,N2,NX = ?
] 1 11
11 VAR. INDICES = ?
' 1 2 3 4 5 é 7 8 9 11
*l4 . . .
1 8 2.726 2.248 2.726 0.159 0.152 pJ176

Fig. C.2 {(continued)



SUBDESIGN #
Nl = 0 EXIT
Nl < 0 NEW D
N1,N2,NX = ?
1 2 27
27 VAR. INDICES = ? o
1 2 3 4 5 6 1

13 14 15 17 18 19 20~

24 25 26 27 28 29 30
' 1 9 0.657

SUBDESIGN # 10 IMPROVE 0.21+00
Nl = 0 EXIT ;
Nl < O NEW D ~
N1,N2,NX = ?

-1 5 11 .
NO. OF MONTE-CARLO POINTS ?
3

SPARSE FACTOR = ? ( E.G. .0l
1.0000000E-023

rd

GRP N1 N2  NX

2

B
21

1
s

\/

OR >1 TO EXIT)

10-

9 IMPROVE 0.10+001 .

‘9

22 23

11

0.333 0.323 0.323

~ VAR.'S IN GROUP

0.298 0.657

1 1, & 2 10
2 2 5 1 70
3 1 5 72 1
12

- 22

. 33

43

53

63

74

0 0 0.657

"Nl = 0 EXIT
N1 ¢ 0 NEW D
N1,N2,NX = 2
1 5 73
73 VAR. INDICES = ? -

25

2
13
23
34
44
54
64
75

-

3
14
"24
35
45
55
65

0.333

e

4
15
26
36
46
56
66

0.323

5
16
27
37
47
57
67

Fig. C.2 (continued)

6
17
28
38
48

58

68

0.

"7
18
‘§9
9
49
59

69

323

8

19.

30
40
50
60
71

9~

20
31
41
51
61
72

0.298

11
21
32
42
52
62
73

0.657
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1 2 3 4 5 6 7 8 9 1
12 1314 15 16 17_18 13 20 21
22 23 24 26 2728 29 307731 32
33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 SO 51 52
53 S4 55 56 51 58 59 60 6l 62
63v 64 65 66 67 68 69 70 71 72
73 74 75 - -
3 64 ¥-0.025  -0.025 -0.693 ~0.695 -0.695 ~0.695

SUBDESIGN # 11 IMPROVE 0.68+000

NO. OF SUB-DESIGNS PERFORMED : 11 -
SUGGEST TO PERFORM A SIMULATION AT THE SOLUTION
DETAILS OF OPTIMIZATIONS SAVED IN FILE : MXDOPT

WRITE: CM,PN1,PN2,UGL' FOR EACH CHANNEL ?
Y ‘ .

<

VRITING CHANNEL DATA: ENTER LOCAL FILE NAME
FLXX :

RESULTS OF MONTE-CARLO ANALYSIS SAVED IN FILE : MONTE

CHANNEL # PARAMETER VALUES §

1 ~0.04718  0.70930 -0.10560 = 0.55167 =0.04397 .
0.42314 -0.37637 -0.02665 0.79935  0.00000
0.62737 -0.00%79  1.05925 0.91543  0.73072

2 0.08258  0.61762 -0.0251%9 0753718 -0.02078 *
0.40834 -0.43245 -0.02801 0.83029 0.00612.
0.73380 0.00847 0.90316 1.06973 1.33536
3 .11558  0.62033 -0.02077 .53476 -0.01795

oo
oo

-41570 -0.41449 -0.02229 .8231%9  0.00430 .
0.7493C¢ 0.00624 0.92125 1.07112 1.95865

.28426  0.66443 -0.0079%
.39010 -0.48177 -0.01631
.74938  0.00187  0.9%681

.54219 -0.0095%7
.86340 0.00991
. 10682 2.56751

o0 o
— 00

; .
Fig. C.2 (continued)
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- . - . p-

5 0.08014 -0.64788 0.03984 0.55282,  0.01415
‘ 0.40545 -0.45203 0.00330 0.84896 -0.02884
0.71103 -0.02860 0.79837 1.06257  3.08771

) . \
TOTAL TIME SPENT (SECONDS)  ........ - 179.2657

-

' Fig. €.2 (conti?‘tued)
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-optimization problem. Duringa Sbeoptim'rzqtiq;_t,.,.\dCH_K is the m.:x-x;nb’ér of iterations
required per occurrence of an o‘vgrall functi‘gd'check. The maximum nu;mber-fof -
: iterat'ions. for one subopt.imizétion is automatically set to MCHK*MCHK. The term.
OBJ denotes the objective function of ‘t.he overall optimiza;ioq c_n'- of a suboptimizatiori
as theesse may be. The first ’ratvio to compare objective functions is us‘e'd to compare
. the overall objective function before (old OB;J‘). and after (new OB.JJ) Aeach ‘sub-d.es'ig_ri.'
The comparison results in the rejection or acceptance of the sub-design depending
. u‘pon whether the division of the new OEJ by the old OBJ is greater or fess than the’
- specilied r:i;io. The second ratio is usually set to 0.4 and is used to gheck the.
deterioration of the overall error functions during a suboptimization. The "Eh;:éshold
LAMD for level update” is usually set to 0.2. A large value of LAMD- leads to the
qu:ick and premature termination of suboptimizations. Aé\:{on‘te-Carlo analysis will
be activated if the decompositic;n dictionary is to be updated. Each occurrence of such

an updating causes a reduction in the sparse factor which is used in constructing the
. L &
.- . ST

- deeomposition dicti-on:ir}: The initial sparse fact(;r is speciﬁed by the user. The
“suggested value f'dr this factor is about 0.6. -_IF:\I_,L:i.‘ridiéafes the type of a sub-
. A
optimization solution, Being consistent w-ith_\t‘he. I'FAL_L in the MMLC packa—ge ~«
(Bandler and Zuberek 1983). MAXF gives ;he number of iterations actually
performed in a suboptimization. OBJ(k) indicate the objective function for the sgbset
of functions associated withchannel k, k = 1,2, ..., 5.

In Table C.1, the indices of variables appeared in Fig. C.2 are interpreted

into specific variabies for the 5-channel multiplexer.

S
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" TABLEC.1

INTERPRETATION OF VARIABLE INDICES IN FIG. C.2
FORTHE 5-CHANNEL MULTIPLEXER

‘Channel Standard Notation for Variables +
. Number

My M2 Moo Maj Mgz Mzq Mge Mag Mys Mss Msg Mgg np na d

1 3 2 3 4 5 6 T 8 8% 10 11 12 13 1415
2 16 17' 18 18 20 21 22 23 24 25 26 27 28 29 30
3 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
4. 46 47 48 49 50 51 52 53 54 55 56 57 538 59 60

5 61 62 63 64 65 66 67 68 69 7T0 T1

-1
to
-
[
-1
N

75

+  where M; is the cavity resonance or the coupling parameter, i,j € {1, 2, ..., 6}.
ny and n» are the input and the output transformer ratios. d is the distance of a

channel filter from the short circuited main cascade termination.




REFERENCES

R.L. Adams and V.K. Manaktala (1975), "An optimization algorithm suitable for

computer-assisted network tuning”, Proc. IEEE Int. Svmp. Circuits and Svstems-

{(Newton, MA), pp. 210-212,

-

~ " .
C.J. Alajajian (1979), "A new algorithm for the tuning of analog filters”, Ph.D. Thesis,
University of [llinois, Urbana-Champaign, IL

C.J. Alajajian, T.N. Trick and E.I El-Masry (1980), "On the design of an efficient
tuning algorithm®, Proc IEEE Int. Svmp. Circuits and Svstems (Houston, TX), pp.
807-811.

J.L: Allen and M.W. Medley, Jr. (1980), Microwave Circuit Design Using
Programmable Calculators. Dedham, MA: Artech House.

K. Antreich, E. Gleissner and c. \Iulier (1975), "Computer a1ded tuning of electrical
. circuits”, Nachrichtentech 2, vol. 28, Heft 6, pp. 200-206."

-

H. Ass# M. Urano and M. Tanaka (1986), "A new éxmulatxon technique for a large
scale transistor circuit based on relaxation method using network tearing", Proc.
IEEE Int. Svmp. Circuits and Svstems (San Jose, CA), pp. 161-164.

‘ALE. Atia (1974), "Computer-aided des1gn of' waveguide mulnpletera“ IEEE Trans.
Microwave Theory Tech., vol. MTT-22, pp. 332-336.

JW. B.mdler(1969) "Optimization methods for computer-aided design”, [EEE Trans
\I:crowave Theory Tech., vol. MTT-17, pp. 533-552.

J.W. Bandler (1973), "Computer-aided circuit optimization”, in Modern Fiiter Theorv
and Design, G.C. Temes and S. K Mitra Eds. New York, NY: Wileyv-Interscience,
~ Chapter 6. - .

J.W. Bandler (1974), "Editorial”, [EEE Trans. Microwave Theorv Tech., Special Issue
of Computer-Oriented Microwave Practices, vol. MTT-22, pp. 153-154.

J.W. Bandler, R.M. Biernacki and A.E. Salama (1981), "A linear programming
approach to fault location in analoeg circuits”, Proc. IEEE Int. Svmp. Circuits and
Svstems (Chicago, IL), pp. 256-260. Yoy

B} . . .
J.W. Bandler, R.M. Biernacki, A.E. Salama and J.A. Starzyk (1982), "Fault location
in linear analog circuits using the €; norm", Proc. IEEE Int. Svmp. Circuits and
Svstems (Rome, [taly), pp. 1140-1143.

“

J.W. Bandler and S.H. Chen (1987), "Circuit optimization: state-of-the-art”, Dept. of
Electrical and Computer Engmeermg, McMaster University, Hamilton, Canada,

215



- . | 216

f

Report.’{SOS-B"tr 2- R To appear in IEEE Trans. throwave Theory Tech., vol. MTT-36,
1988. .

J.W. Bandler, S.H. Chen and S. Daijjavad (1986a), "Exact sensitivity anzil_w, 'sis for
optimization of multi-coupled cavity ﬁlters" Int. J. Circuit Theorv and Applications,
vol. 14, pp 63-77. =

JW. Bandler S.H.Chenand S. Dauavad (1986b}, "throwave device modelling using
efficient €; optimization: a novel approach" IEEE Int. Microwave Svmp. Digest
{Baltimore, MD), pp. 491-494. .

J.W. Bandler, S.H. Chen, S. Dajjavad and W. Kellermann (1984), "Opumal design of
multicavity filters and contiguous-band muluplexers Proc. European Microwave
Conf (Liege, Belgium), pp. 863-868.

J.W. Bandler, S.H. Chen, 8. Daijavad, W Kellermann, M. Renault and Q.J. Zhang ’
(1986), "Large scale minimax optimization of microwave multiplexers”, Proc.
European Microwave Conf. (Dublin, ireland), pp. $435-440.

J.W. Bandler, S.H. Chen, 8. Daijavad and K. Madsen (1936), "Efficient gradient
approximations for nonlinear optimization of circuits and systems”, Proc. IEEE [nt.
Svmp. Circuits and’Svstems (San Jose, CA), pp. 964-967.

J.W. Bandler, S. Daijavad ané Q.J. Zhang (1985a), "Computer aided design of

- branched cascaded networks”, Proc. [IEEE Int. Svmp. Circuits and Svstems (Kyoto,

Japan), pp. 1578-1582.

J.W. Bandler, S. Daijavad and Q.J. Zhang (1985b), "Novel approach to multiplexer

simulation and sensitivity analysis”, Electronics Letters, vol. 21, pp. 408-409.
= .

J.W. Bandler, S. Dajjavad and Q.J. Zhang (1986), "Exact.simulation and sensitivity
analysis of multxp[e\cmg networks”, IEEE Trans. Microwave Theory Tech., vol. MTT.
34, pp. 93-102, '

J.W. Bandler, W. Kellermann and K. Madsen (1985), "A superlincarly convergent

‘minimax algorithm for microwave cireuit design”, IEEE Trans, Microwuave Theory

Tech., vol. MTT-33, pp. 1519-1530.

J.W. Bandler, W. Kellermann and K. Madsen (1987}, "A nonlinecar €, optimzation
algorithm for design, mddeling and diagnosis of networks”, IEEE Trans Circuits
Svst., vol, CAS-34, pp. 174-181,

J.W. Bandler, P.C. Liu and H. Tromp (1976a), "A nonlincar programming approach to
optimal design centering, tolerancing and tuning”, IEEE Trans. Circuits Svst., vol.
CAS-23, pp. 155-165.

i .
JW. Bandler P.C. Liu and H. Tromp {1976b), "Integrated approach to microwave
design”, IEEE Trans. Microwave Theory Tech., vol. MTT- 24 pp. 584-591.

»

J.W. Bandler and M.R.M. Rizk (1979), "Optimization of electrical circuits",
Mathematical Programming Studv on Engineering Optimization, vol. 11, pp. 1-64.




G

‘\

217

J.W. Bandler, M.R.M. Rizk and H.L. Abdel-Malek (1978}, "New results in network
simulation, sensitivity and tolerence analysis for cascaded structures”, IEEE Trans.
Microwave Theory Tech., vol. MTT-26, pp. 963-972. )

J.W. Bandler and A.E. Salama (1981), "Postproduction tuning employ n—etwork
sensitivities”, Proc. European Conf Circuit Theorv and Design (The Hague,

" Netherlands), pp. 704-709.

J.W. Bandler and A.E. Salama (198&3). "Fault diagnosis of analog circuité“, Proc.
IEEE, vol. 73, pp. 1279-1325. ‘

J.W. Bandler and A.E. Salama (1985b), “"Functional approach to microwave
postproduction tuning”, IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 302-
310. Y

~

J.W. Bandler and Q.J. Zhang (1986), "Large change sensitivity analysis in linear
systems using generalized Householder formulas”, Int. J. Circuit Theorv and

Applications, vol. 14, pp. 89-101. .

J.W. Bandler and Q.J. Zhang (1987a), "An automatic decomposition technique for
device modelling and large circuit design”, IEEE Int. Microwave Svmp. Digest (Las
Vegas, NV), pp. 709-T12. ’

J.W. Bandler and Q.J. Zhang (1987b), "Optimization .Techniques for modelling,
diagnosis and tuning”, in Analog Circuits: Computer-aided Analvsis and Diagnosis,
T. Ozawa Ed. New York, NY: Marcel Dekker, Chapter 14, (to be published).

J.W. Bandler and Q.J. Zhang (1987¢), "An automatic decomposition approach to
optimization of large microwave systems"”, [EEE Trans_Microwave Theory Tech., vol.
MTT-35, (to be published). .

J.W. Bandler and W.M. Zubex.'ek (1983), "MMLC - a Fortran package for linearly
constrained minimax optimization”, Department of Electrical and Computer
Engineering, McMaster University, Hamilton, Canada, Report SOS-82.5-L2,

I. Barrodale and F.D.K. Roberts .(1978). "An efficient algorithm for discrete ¢, linear
approximation with linear constrainss”, SIAM J. Numerical Analvsis, vol. 15, pp.
603-611. .

M.C. Biggs and M.Ar Laughton (1977), "Optimal electric power scheduling: a large

- nonlinear programming test problem solved by recursive quadratic programming”,

Mathematical Programming, vol 13, pp. 167-182.

R. Billinton and S.S. Sachdeva (1973), "Real and reactive power optimization by
suboptimum techniques”, IEEE Trans: Power Apparatus Svst., vol. PAS-92, pp. 950-
956. A .

F.T. Boesch £d. (1976}, Large-Scale Networks: Theory and Design. New York, NY:
IEEE Press w .




218

b

A.B. Borison, P.A. Morris ard S.S. Oren (1884), "A state-of-the-world-decomposition
approach to dynamics and uncertainty in electric utility generation expansion
planning”, Cperations Res., vol. 32, pp. 1052-1068, 1

. !
F.H. Branin, Jr. (1973), "Network sensitivity and noise analysis simplified", IEEE

Tr_gns. Circuit Theory, vol. CT-20, pp. 285-288.

R.K. Brayton, G.D. Hachtel and A.L. Sangiovanni-Vincentelli (1981), "A survey of
optimization technigues for integrated-circuit des:gn Proc. IEEB“Vol.'69, pp. 1334-
1362.

C.G. Broyden (1965), "A class of methods for solving nonlinear simultaneous
equations®; Math. Comp., vol. 19, pp. 577-593.

J.R. Bunch and L. Kaufman (1981}, "A computational method for the indefinite
quadratic programming problem”, Large Scale Matrix Problems, A. Bjorck, R.J.
Plemmons and H. Schneider Eds. New York, NY: North-Holland, pp. 341-370.

CADEC+ (1987), Communxcatlons Consulting Corp., 52 Hillerest Drive, Upper
Saddle River, NJ 07458,

D.A. Calahan and W.G. Ames (1979), "Vector processors: models and applications”,
[EEE Trans. Circuits Svst., vol. CAS-26, pp. 715-726.

LA. Cermak, W.J. Getsinger; B.W. Leake, A.S. Vander Vorst and D. Varon (1974),
"The status of computer-oriented microwj practices", IEEE Trans Microwave

Theory Teth., vol. MTT-22, pp.155-160.

&
C. Charalambous (1974), "A ynified review of optnmzatmn" [EEE Trans. Microwave
Theorv Tech., vol. MTT-22, pp. 289-300.

. . \ .
H.S.M. Chen and R. Saeks (1979), "A search algorithm for the solution of the multi.
frequency fault diagnosis equations”, IEEE Trans. Circuits Svst., vol. CAS-26, pp
589-594, .

M.H. Chen (1983), "A 12-channel contiguous-band multiplexer at KU-bynd”, IEEE
Int. Microwave Svmp. Digest (Boston, MA), pp. 77-79.

M.H. Chen (1985), "Current state-of-the-art technology on contiguous bund
multiplexer”, Proc. [EEE Int. Svmp. Circuits and Svstems (Kyoto, Japan), pp. 1583-
. 15886,

M.H: Chen, F. Assal and C. Mahle {1976}, "A contiguous band mulupletcr COMSAT
Tech. Rev,, vol. 6, pp. 285-306.

W.K. Chen {1976), Applied Graph Theorv (2nd edition). Amsterdam, The
Netherlands: North-Holland, Chapter 1.

L.O. Chua and L K. Chen (1976), "Diakoptic and generalized hybrid analysis”, IEEE
Trans. Circuits Svst., vol. CAS-23, pp. 694-705.




v . 219

CIAO (1985), SPEFCQ Software, 18 Benfett Lane, Stony Brook, N¥A11790.

‘T.F. Coleman (1984), Large Sparse Numerical Optimization. ‘Berlin, Germany
Springer-Verlag. -

G.C. Contaxis, C. Delkis and G. Korres (1986), "Decoupled optimal load flow using
linear or quadratic programmﬂxg",'lEEE Trans. Power Svst., vol. PWRS-1, pp. 1-7.

P.J. Courtois (1977), Decomposabilitv. New York, NY: Academic Press, pp. 4-6.

W.R. Curtice (1987), “Nonl.inear analysis of GaAs MESFET amplifiers, mixers, and
distributed amplifiers using the harmonic balance technique”, IEEE Trans.
Microwave Theory Tech., vol. MTT-35, pp. 441-447.

W.R. Curtice and R.L. Camisa (1984), "Self-consistent GaAs FET models for amplifier
design and device diagnostics”, IEEE Trans. Microwave Theoryv Tech. vol MTT-32,
pp. 1573-1578. , -

S ijavad (1986), “Design and modelling of microwave circuits using optlmizatxon
methods”, Ph.D. Thesis, MeMaster University, Hamilton, Canada.

G B. Da\mg and P. Wolfe {1960), "Decomposition principle for linear programs”,
Operatton‘-'. Res., vol.8, pp. 101-111, o

R. DeCarlo and R. Saeks (1981), Interconnected Dvnamical Svstems. New York, NY:
Marcel Dekker.

J.E. Dennis, Jr. (1977), "Non-linear least squares and dquations”, in The State of the
Art in Numerical Analvsis, D. Jacobs, Ed. New York, NY: Academic Press, Chapter
1.2,

J.E. Dennis, Jr. (1984) "A user's guide to nonlinear optimization algorithms", Proc.
IEEE, vol. 72, pp. 1765-1776.

S.W. Director (1971), "Survey of circuit oriented optimization techniques”, IEEE-"
Trans. Circuit Theorv, vol. CT-18, pp. 3-10.

S.W. Director and R.A. Rohrer (1969a), "The generalized adjoint network and
network sensitivities”, IEEE Trans. Circuit Theorv, vol. CT-16, pp. 318-323.

S.W. Director and R.A. Rohrer (1969b), "Automated network design - the frequency
domain case”, IEEE Trans. C:rcunt Theory wl -CT-16, pp. 330-337.

T Downs, A.S. Cook and G. Rogerb (1984), "A part:txomng approach to vield
estimatio®Yor large circuits and systems", IEEE 'I‘mns Cu-cmts Svst., vol. CAS-31,

;#1"" 485. - !

. Dowson (1985), "Computer-aided design of equivalent circuit models for
microwave frequencies”, Computer-Aided Design, vol. 17, 353-362.




- Technical Report SOL 84-6. -

220

[.S. Duff, Ed. (1981), Sparse Matrices and Thetr U'ses. London, England Academic
" Press. .

-

R.G. Egri, A.E. Williams and A.E. Atia (1983), "A contiguous-banﬂ multiplexer
design”, [EEE Int. Microwave Svrhp. Digest (Boston, MA), pp. 86-88. .

J.K. Fidler (1976), "Network sensitivity calculation”™, IEEE Trans. Circuits‘Svsti, vol.
CAS-23, pp. 567-571.

F.E. Gardiol {1986), "Microstrip computer-aided design in Europe”, IEEE 'I‘r.ms - T
Microwave Theory Tech., vol. MTT-34, pp. 1271-1275. ‘

AM. Geoffrien (1970}, "Elements of' large-scale mathematical programming”,
Management Science, vol. 16, pp. 652-691. . .

W.J. Getsinger (1969), "Introduction”, IEEE Trans, Microwave Theory Tech., Special
[ssue on Computer-Oriented Microwave Practices, vol. MTT-17, p. 415.

P.E. Gill and W. Murray (19:7) "Linearly-constrained problems mcludmg linear and
quadratic programming”, in The State of the Art in Numerical Analvsis, D. Jacobs, °
Ed. New York, NY: Academic Press, Chapter II1.3.

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright (1984). "User's guide for
QPSOL: A Fortran package for quadratic programming”, Systems Optimization
Laboratory, Department of Operations Research, Stanford bnuerbxt) Stanford, CA,

R. Gilmore (1986), "Nonlinear circuit design using the modified harmonic balance
algorithm", [EEE TransA Microwave Theory Tech., vol. MTT-34, pp. 1294-1307.

A. Groch, L.M. Vidigal and S'W., ‘Du‘ector {1985), "A new global opumu.mon method
for electronic circuit desxgn" IEEE Trans. Circuits Svst., vol. CAS-32, pp. 160-170.

K.C. Gupta, R: Gary and R. Chadha (1981), Computer-Aided Desm{n of Microwave
Circuits. Dedham, MA: Artech House. -

G.D. Hachtel and A L. Sangiovanni-Vincentelli (1981), "A survey of third-generation
simulation techniques”, Proc. [EEE, vol 69-pp. 1264-1280.

G.D. Hachtel, T.R. Scott and R.P. Zug (1980), "An interactive linear programming
approach to model parameter fitting and worst case circuit design”, IEEE Trans
Circuits Svst., vol. CAS-27, pp. §71-881.

Y.Y. Haimes, Ed. (1982), Large Scale Svstems. Amsterdam, The Netherlands: North-
Holland.

I.N. Hajj (1981), "Algorithms for solution updating due to large changes in svstem
parameters”, Int. J. Circuit Theory and Applications, vol. 9, pp. 1-14,

=
J. Hald and K. Madsen (1981), "Combined LP and quasi-Newton methods for

minimax optirpization", Mathematical Programming, vol. 20, pp. 49-62.
<




221 -

J. Hald and K. Madsen (1985), "Combined LP and quasi-Newton methods for
zglinear £1 optimization”, SIAM J. Numerical Analvsis, vol. 22, pp. 68-80.

S.B. Haley (1980), "Large change response sensitivity of linear ‘networks”, [EEE
Trans. Circuits Syst., vol. CAS-27, pp. 305-310. )

y . !
S.B. Haley and K.W. Current (1985), "Response change in linearized circuits and
systems: computational algorithms and applications”, Proc. [EEE, vol. 73, pp. 5-24.

S.B. Haley and B.V. Pham (1987), "Nonlinear system analysis:. computationally
efficient modification algorithms”, IEEE Trans. Circuits Svst., vol. CAS-34, pp. 639-

649. Y
~ -

H.V. Henderson and S.R. Searle (1981), "On deriving the inverse of a sum of
matrices”, SIAM Review, vol. 23, pp. 53-60.

D.M. Himmelblau Ed. (1973), Decomposition of Large-Scale Problems. Amsterdam,
The Netherlands: North-Holland.

D.E. Hocevar, M.R. Lightner and T.N. Trick (1984), "An extrapolated yield
approximation technique for use in yield maximization”, IEEE Trans. Computer-
Aided Design, vol, CAD-B,\pp. 279-287.

G.R. Hoffman (1984), "Introduction to the computer aided design of microwave
circuits”, Proc. European Microwave Conf., (Liege, Belgium), pp. 731-737.

S.C. Holme (1984), "A 12 GHz 12 channel multiplexer for satellite applications”,
[EEE Int. Microwave Svmp. Digest (San Francisco, CA), pp. 295-296.

A.S. Householder (1953), Principles of Numerical Analvsis. New York, NY: McGraw-
Hill, Chapter 2.

A.S. Householder (1957), "A survey of some closed methods for inverting matrlceb ,
SIAMJ., vol. 5, pp. 155-1689.

J.W. Huang and O Wing (1979), "Optimal parallel trmngulatxon of a sparse matrix"”,
IEEE Trans. Circuits Svst., vol. CAS-26, pp. 726.732.%

K.W. lobst and K.A. Zaki (1982), "An op*imization technique for lumped-distributed
two ports”, IEEE Trans. Microwave Theo; v Tech., vol. MTT-30, pp. 2167-2171.

. %
G.K. Jacob, A.R. Newton and D.O. Pederson (1986), "Direct-method circuit
simulation using multiprocessors”, Proc. IEEE Int. Svmp. Circuits and Svstems (San
Jose, CA), pp. 170-173. )

A.T. Johnson, Jr. (1979), "Efficient fault analysis in linear analog circuits”, IEEE
Trans. Circuits Svst., vol. CAS-26, pp. 475-484.




202

4

N.G. Kanaglekar, R.E. Mcintosh and W.E. Bryant (1987), "Wave analy sig of noise in
interconnected multiport networks”, IEEE Trans. Microwave Theory Tech vol. MTT-
35, pp. 112-116.

N. Karmarkar (1984), "A new polynomial-time algorithm for linear programming"”,
Combinatorica, vol. 4, pp. 373-395.

W. Kellermann (1986), "Advances in optimization of circuits and systems using
recent minimax and €, algorithms", Ph.D. Thests, McMaster Umversxty. Hamilton,
Canada,

H. Kondoh (1986}, "An accurate FET modelling from measured S-parameters”, [EEE
Int. Microwave Symp. Digest (Baltimore, MD), pp. 377-380.

N.H.L. Koster and R.H. Jansen (1986), "The microstrip step discontinuity: a revised
description™, IEEE Trans. Microwaye Theorv Tech., vol. M'T'I'-3'-§‘pp. 213-223.

L.S. Lasdon (1970), Optimization Theorv for Large Svstems. New York, NY:
MacMillan. L_.\
K.«H Leung and R. Spence (1975), "Multiparameter large change seﬁsitivity analysis
and sys“rmatic exploration™, IEEE Trans. Circuits Svst., vol. CAS-22, pp. 796-804.

K.L. Lo and Y.M. Mahmoud (1986), "A decoupled linear programming technique for
power system state estimation”, IEEE Trans Power Svst., vol. PWRS-1, pp. 154-160.
M

P.V. Lopresti (1977), “Optimum design of linear tuning algonthmb", IEEE Truns.
Circuits Syst., vol. 24, pp. 144-151.

D.G. Luenberger (1384), Linear and Nonlinear Programming (2nd edition). Rcddmg
MA: AddlSO}WeblE\

H.P.L. Lun¥ (1984), "A survey on informational decentralization and mathematica}
programming decomposition”, Mathematical Programming, R.W. Cottle, M.L.
Kelmanson and B. Korte Eds. Amsterdam, The Netherlands: Elsevier, pp. 249-270.

T. Mandakovic and W.E. Souder (1985), "An inLeraA/ive decomposable heuristic for
profect selection”, Management Science, vol. 31, pp. 1257-1271.

’ - o

D.W. Marquardt (1963), "An algdrithm for least-squares estimation of nonlinear
parameters”, SIAM. Appl. Math. vel. 11, pp. 431-441.

H.M. Merrill (1973), "Failure diagnosis using quadratic programming”, IEEE Trans
Reliability, vol. R-22, pp. 207-213.

MIDAS (1987), David Sarnoff Research Center, CN 5300, Princeton, NJ 08543-0332.

B.A. Murtagh and M.A. Saunders (1978), "Large scale linearly constrained
optimization”, Mathematical Programming, vol. 14, pp. 41-72.




'MXS0S2 (1984), Optimization Systems Associates Inc., 163 Wat.sons Lane, Dundas,
Ontario, Canada L9H 6L1.

. ,
M.Z. Nashed Ed. (1976), Generalized Inverses and Applications. New York, NY:
Academic Press.

A.R. Newton (1981), "Computer-aided design of VLSI circuits”, Proc. IEEE, vol. 69,
pp. 1189-1 199.

D.P. O'Leary (1981), "A generalized conjugate gradient algorithm for solving a class
of quadratic programming problems”, Large Scale Matrix Problems, A. Bjorck, R.J.
Plemmonsand H. Schneider Eds. New York, NY: North-Holland, pp. 371-399.

D.O. Pederson (1984), "A historical review of circuit simulation”, IEEE Trans.
Circuits Svst., vol. CAS-31, pp. 103-111.

R.S. Pengelly (1986), "Editorial, computer-aided design of microwave circuits”, [EE
Proc., Special Issue on Computer- Alded Design of Microwave Circuits, vol. 133, P H,
p.329.

—’\ E. Polak and A. Sungiovanni-Vi‘ncentelli (1979), "Theoretical and computational
aspects of the optimal design centering, tolerancing and tuning problem”, [EEE
‘Trans. Circuits Svst., vol. CAS-26, pp. 795-813.

P. Pramanick and P. Bhartia (1986), "A new model for the apparent characteristic
impedance of finned waveguide and finlines", [EEE Trans. Microwave Theory Tech.,
vol. MTT-34, pp. 1437-1441.

) N. Ransom and R, Sacks (1973), "Fault isolation with insufTicient measurements”,
IEEE Trans. Circuit Theory, vol. CT-20, pp. 416-417.

N. Ransom and R. Saeks (1975), “The connection function - theory and application”,
Int. J. Circuit Theorv and Applications, vol. 3, pp. 5-21.-

C.R. Rao and S.K. Mitra11971), Generalized Inverse of Matrices and Its Applications.
New York, NY: Wiley and Sons.

C. Rauscher and G. Eppr-echt {1974), "Large change sensitivity analvsis of a
microwave network by meanb of seattering parameters”, A.E.U., Band 28, Heft 2, pp.
95-96.

J.K. Reid, Ed. (1971),. L.\rﬂe Sparse Sets of Lmear Equations. London, England:
Academic Press.

V. Rizzoli, M. Ferlito and A. Neri (1986), "Vetorized program architectures for
supercomputer-aided circuit design”, IEEE Trans. Microwave Theorv Tech.. vol.
MTT-34, pp. 135-141.

V. Rizzoli and A. Lipparini (1985), "Computer-aided noise analysis of linear multiport
networks of arbitrary topology”, IEEE Trans. Microwave Theorv Tech., vol. MTT-33,
pp. 1507-1512.




. 224 )

. R

. 0y

R. Saeks, A. Sangiovanni-Vincentelli and V. Visvanathan (1981), "Diagnosability of '
nonlinear circuits and systems - part II: dynamical systems”, IEEE Trans_Circuits
Syst., vol. CAS-28, pp. 1103-1108,

AE. Salama, J.A. Starzyk and J.W. Bandler (1984), "A unified decomposition
approach for fault location in large analog circuits”, IEEE Trans. Circuits Syst., vol.
CAS-31, pp. 609-622.

G. Salmer {(1987), "Modelling of new microwave devices”, IEEE Int. Microwave Svmp.l
Digest (Las Vegas, NV), pp. 767-770.

A. Sangiovanni-Vincentelli, L.K. Chen and L.0. Chua (1977), "An efficient huristic
cluster algorithm for tearmg large-scale netw orks" IEEE Trans. Circuits Svst., vol.
CAS-24, pp. 109 717 :

\\ . >
J.F. Shapiro and D.E. White (1982), "A hybrid decomposxt:on method for integrating
coal supply and demand models”, Operations Res., vol. 30, pp. 887-906.

K. Smghal and J.F. Pinel (1981), "Statistical design ccntermkand tolerancing using
parametric sampling”, IEEE Trans. Circuits Svst., vol. CAS-28, pp. 692-702.

t [}

K. Singhal, J. Vlach and P.R. Bryant (1973), "Efficient computation of large change
multiparameter sensitivity”, Int. .J. Circuit Theorv .md Applications, vol. 1, pp. 237-
247.

C.M. Snowden (1986), "Compute‘r-aided design of MMICs based on physical device
models”, [EE Proc,, vol. 133, Pt. H, pp. 419-427.

M.1. Sobhy and E.A. Hosny (1981), "Microwave filter design in the tima domain®,
IEEE int. Microwave Svmp. Digest (Los Angeles, CA), pp. 57-59.

SUPER-COMPACT (1986), Communications Consulting Corp., 52 Hillcrest Drive,
L'pper Saddle River, NJ 07458,

N.S. Swamy and K. Thulasiraman (1981), Graphs, Networks .md_ Algorithms. New
\ork NY: Wiley-Interscienee, Chapter 1.

S.N. Talukdar, T.C. Giras and V.K. Kalyan (1883), "Decompositions for optimal
power flows", IEEE Trans. Power Apparatus Svst., vol. PAS-102, pp. 3877-3884.

G.C. Temes (1977), "Efficient methods of fault simulation”, Proc. 20th Midwest Svmp.
Circuits and Svstemsd Lubbock, TX), pp. 191-194.

G.C. Temes and D.A. Calahan (1967), "Computer-aided network optimization: the
state-of-the-art™, Proc IEEE, vol. 55, pp. 1832-1863.

G.C. Temes and K.M. Cho (1978), "Large ch¥nge sensitivities of linear digital
networks”™, IEEE Trans. Circuits Svst., vol. CAS-25, pp. 113-114.




}

225

A.B. Templeman (1979), "Optimal sizing of large engineering systems by separable
duals”, Mathematical Programming Study, vol. 11, pp. 108-115.

M.D. Tong and W.K..Chen (1986), "Hybrid analysis of a large-scale network by node-
tearing”, Proc. [EEE Int. S¢mp. Circuits and Svstems (San Jose, CA), pp. 178-181.

R. Tong, J. Dorey, P. Mabson, W.C. Tang, E. Klein-Lebbink and C.M. Kudsia (1982),
"An 11 GHz contiguous band output multiplexing network for Intelsat VI spacecraft”,
IEEE Int. Microwave Svmp. Digest (Dallas, T_X). pp. 405-407.

R. Tong and D. Smith (1984), "A 12-channel contiguous-band rhultiplexer for satellite
application™, [EEE Int. Microwave Svmp. Digest (San Francisco, CAJ, pp. 297-298.

TOUCHSTONE (1985), EEsof Inc., 31194 La Baya Drive, Westlake Village, CA
91362, o

C. Tsironis and R. Meierer (1982), "Microwave wide-band model of GaAs dual gate
MESFET's", IEEE Trans_Microwave Theorv Tech,, vol MTT-30, pp. 243-251.

D.J. Tylavsky and G.R.L. Sohie (1986). "Generalization of the matrix inversion
Lemma", Proc. IEEE, vol. 74, pp. 1050-1052.

J. Vlach and K. Singhal (1983), Computer Methods for Circuit Analvsis and Design.
New.York, NY: Van .\'Qstrand-ReinhoId. Chapter 8.

A.D.“Waren, L.S. Lasdon and D.F. Suchman (1967), "Optimization in engineering
design®”, Proc. IEEE, vol. 55, pp. 1885- 1894 .

E. Wehrhahn R. (1979), "A new approach in the computation of poles and zeros in
large networks", IEEE Trans. Circuits Svst., vol. CAS-26, pp. 100 707

b

F.F. Wu (1976), "Solution of large scale networks bytearing”, IEEE Trans. Circuits
Sest. Vol CAS-23, pp. 706-713.

F. Yamamoto and . Takahashi '(1985) "Vectorized LU decomposition algorithms for
large-scale circuit simulation®, IEEE Tmm Computer-Aided Design, vol. CAD-4, PP.
232-239.




H.L. AbdeI-Maleic
R.L. Adams
C.J. Alajajian
~
Jilf Allen
W.G. Ames
K. Antreich
H. Asai
F. Assal
A.E. Atia-

J W, Bandler

1. Barrodale
P. th‘lrtia
R.M. Biernacki:
M.C. Biggs

- r
R. Billinton
F.T. Boesch
A.B. Borison
F.H. Branin, Jr.

R.K. Brayton

L2

g

£

AUTHOR INDEX

94,100, 103, 173
43
45,58
11
8,174
13

135
95,129
95,159

2,8,8,10,11,12,13, 14, 16,17, 19, 20, 21, 22, 23, 25,

26, 27,31,35,37,39. 41,42, 44, 53,62,63, 6? 70,77,

81, 82,94, 95,100, 103,112,123, 129, 134, 135, 136,

L

143, 145, 150, 155, 159, 170, 173, 174, 201, 204, 213

35

11

226 b



A

C.G. ﬁroyden '
P.R. Bryant
W.E. Bryant’
J.R. Bunch
D.A. Callaha.n
R.L. Camisa

[.A. Cermak

- R.Chadha

C. Charalambous

H,.S..\!. Chen

‘L.K. Chen

M.H. Chen

S.H.Chen

W.K Chen

K.M.Cho

L..O.Chua

L

e

. T.F. Coleman

_ G.C. Contaxis

\S Cook

PJ. Co-urtois
K.W.Current
WV.R. Curtice

S. Daijavad

G.B. Dantzig

227

125

65
12

9
7.8,21,174
37,38, 53
10

10,65
8,13,21

63

8,135

85,129,159

8,9, 11, 12,13, 20, 21, 25, 37, 39, 53, 62; 123,129, "

134,145,150, 159, 174

135,177
65
8,135

. .

135

S

142
63,565, 69, 80, 81

12,37, 38,53

9,11, 13, 25,37, 39, 53, 62, 94, 95.:\112, 123,129, 134, ’

145,150,159, 174

g

)

L

~

il



DNy

R. DeCario

C. Delkis

J.E. Dennis, Jr.

S.W. Director
T. Downs

M. Dowson

LS. Duff

R.G. Egri
E.I-El-Masry
G. Epprecht
M. Ferlito
J.K. Fidler
FE Gardiol. .
R. Gary.

A.M. Geoffrion

wy. Getsinger

P.E.Gill_

R. Gilmore -
T.C. Giras
E. Gleissner
A. Groch
K.C. Gupta
'G.D. Hachtel
Y.Y. Haimes

LN, Hajj

PAEE):

27
135
8,22
8,21, 24, 63
8.
12
‘9
95,159
45
' 65
12,174 -
65
12
10, 65
9,135
10
23, 24, 34, 50
12
135
€ 43
63
10,65
8.20, 21, 24, 36, 37. 38

9

© " 65.66.67.80,81,93

b Yy,



J. Hald
S.B. Haley

H.V. Henderson

D.M.Himmelblau

D.E. Hocevar
G.R. Hoﬂ'maﬁ
S.C.Holme

E.A. Hosny

AS. Housel:mlder -
J .‘W. Huangu
K.W:. Iobst
.G.-K—..Jacos

N

R.H. Jansen

AT Johnson, Jr.
V. K. Kalyan
N.G. Kanaglekar
N. Karmarkar

L. IKaufman

W. Kellermann

N.H.L. Koster
L.S. Lasdon
M.A. Laughton

B.W. Leake

m, 12,13, 23, 26, 37, 50, 62, 95, 129, 134, 145, 150,
{ .

229

13,47, 22,23, 35,63, 129, 200

63,65, 69,80,81,93

-

66, 68 <

9,134,135
13

10

95, 169

Al
y
N

12

67

8,174

13,94

174 ' '

11

135

159, 170
37,38, 39, 134, 136, 143, 145
135

1

7.9,135

. _

10

-



K.H. Leung

M.R. Lightner

A. Lipparini
‘P.C. Liu

| K.L;I.,o

‘P,V.. Lopresti .
D.G. Luenberger
H.P.L.Luna *

K. Médsen

C. Mahle
Y. M. Mahmoud
V.K. Manaktala
T. Mandakovic
D.W. Marquardt
R.E. McIntosh
MW, Medl.ey. Jr.
R. Meierer
H.M. Merrill
S.K. Mitra
- P.A. Morris
G. Muller
W Murray
B.A. Murtagh

M.Z. Nashed

44,45

230

‘65, 66

13 ' o~
12
13,41,42

135

21

9,135

12,13, 17, 22,23, 25, 26,35.37,63,95, 129, 159,170,
201 ' |
85,129
135 -
43

9

22

I1
37,38

33

43

23,24, 34

€O

(3]
o



JA. Nert - .

A.R. Newton '
D.P. O'Léary
S.S. Oren

D.O. Pederson ~

.S. Pengelly
B.V. Pham
.J .F. Pinel
E. Polak
P. Pramanick
M.N. Ransom
(_:.R. Rao
C. Rauscher
J.K. Reid
M. Renault
M.R.M. Rizk
V. Rizzoli
. F.D.K. R-o}ert.s
G. Rogers
R.A. Rohrer
S.S. Sachdeva
R. Sacks
AE. galama
G Salmer
A, Sangiovanni-Vincentelli

M. A, Saunders

231

12,174

8,174

8,174

12

93

173
41,42 .

11

27, 30,31, 32
22

65 °

9

9,62, 134, 145,150,159

8,14, 16, 20, 22,94, 100, 103, 155,173

12,174 =~

r

35

135

-
27, 30, 31, 32, 62, 63
13, 27, 35, 41, 44, 53, 62, 135, 173

11



T.R. Scott

S.R. Searle

J.F. Shapiro
K. éinghal
D.. Smith
C.M. Snowden .
M.IL Sobhy’
G.R.L. Sohie
W.E. Souder
R. Spence
- J.A. Starzyk
D'F. Suchinan
MON.S. Swamy
S. Takahashi
~ 8.N. Talukdar
M.'}‘anaka
G.C. Temes
AB. Templen:lan
K-. Thulasirkaman
M.D. Tong
i‘l. Tong -
T.N. Trick
H.Tromp
€. Tsironis

D.J. Tylavsky

69,

232

-24, 36, 37,38

66, 68

9

65,67,70,81,90,173

159
12

12

9

65, 66
27,35, 135

] .
177

8,174

135

135 -

T 7,21,63,65

135
95,159
13,45
13,41, 42
37,38

69



S e 233

M.Urano : . _ 135
A_S. Vander Vorst.- 1o
15. Varon ’ 10
L.M.Vidigal " e e
V. Visvanathan 62 )
J. Viach _ "+ 65,67,70, 81,90 ' N
"A.D. Waren ' 7
. v
E. WehrhahnR. 8 R
D.E. White 9
AE. Williams 95,159
0. Wing 8,174
P. Wolfe 9 -
F.F. Wu 135
F. Yamamoto 8,174
K.A. Zaki 13,94 s
Q J:Zhang 2,9,12,13,17, 19, 25, 39, 62, 63, 68, 70, 81, 82. 94,

r 95,112,129 134, 136, 143, 145,150, 159
W.M. Zuberek 201, 204, 213

‘R.P. Zug '24, 36, 37, 38

-

/N



SUBJECT INDEX

Adjoint, .
network, 8, 24, 174
system, 70, 172
Broy;ien formula, 25
CADEC+, 1

Candidate,
row, 153, 156
variable group, 153-158

CIAQ, 11
Coupling,-.

matrix, 126

parameters, 132, 151, 159
Decomposability, 142
Decompeosition dictionary, 142-152,176
Equivalents,

Norton, 106
Thevenin, 103-107, 111,112, 114,116,117, 121,

Error functions, 8, 16, 17, 137, 154, 155
e -~ ~ ~ oy
FBS, 70, 57,67, 78

FET,
model, 143, 145
modelling, 5, 38, 39, 53
Forward and reverse analysis, 94, 100, 173
Functional tuning, 43, 58
Gain slope, 107, 108, 122,123
Generalized, :
Householder formulas, 4, 5, 66-70, 72, 93

least pth function, 22, 43, 154, 153
matrix inversion, 22, 32

234



235

- : g ' 5
Group delay, 14‘, 107,108, 122,123
Householder formula, 4, 5, 65-70, 72, 80, 93
HRF, 68, 72,77, 83
'Impledance inve_rtgr; 123
[nput-out‘éut t::ansformer, 123,129,159 o«
Insertion loss, 14, 10'?, 108,118,123, 129,159
Jacobian, 43, 174
€, optimization, 13, 22, 25, 35, 47, 49, 51, 199
£, optimization, 33, 47, 49, 51
Least pth,
function, 31, 37, 43
optimization, 21
Linear programming, 21, 35, 135
MDT, 4, 19,20, 21,64
MIDAS, 11
MINBOX, 24
Minimax optimization, 4, 13, 18, 23, 25, 137,170
Minimum order reduced syste;n, 4 5,68, 69, 82,93
MINMAX, 24
' .\IMLC. 200, 204, 213
Model,
component connection, 30, 32
current/voltage source substitution, 27
FET device, 143 '
Multicavity filter, 5, 95, 96, 125,'1'.?.7, 182, 200
Mul-ti-circuit approach, 39, 53, 174
Multiplexer,

. -~
decomposition dictionary, 145, 150-152, 176
optimization, 5, 129, 136, 137, 159



-

structure, 112
MXS08S2, 202-204
Nonlinear programming, 21, 135
Postproduction tuning, 42-44, 53
Pi'eproduchion tuning, 41

Priority of candidates, 154-157

Rank,
of sensitivity matrix, 62
of system deviation matrix, 69, 81
" Reference, -

{unction group, 153-158
plane, 98, 100, 103, 112

" Reflection coefficieat, 103, 105, 107, 199

Return loss, 14, 107, 108, 119, 120, 123, 129, 150, 159

S-parameters, 14, 53, 145
Sensitivity matrix, 62, 138

*
Specifications, 16,42, 129, 137, 159

Suboptimization, 136, 153, 154, 156, 157, 159, 170

SUPER-COMPACT, 11, 12

TOUCHSTONE, 11, 12,53

Transmission matrix, 95, 98, 100, 107, 123, 125, 129

VRF, 68, 70, 72, 77, 83

Wa_veguide manifold, 5, 123, 129

Weighting factor, 16, 17, 26, 31, 32, 39, 43,139



