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ABSTRACT

..
This thesis addresses itself to computer oriented techniques f<?r large scale

optimization of analog circuits. ~ew techniques for simulutil1n and sensitivity

analysis are described and are .used .to improve t?e performance of circuit

optimizati~n. A powerful autoljlatic dec'omposition technique \s developed directly
'- -

enabling a normal optim~zer to solve large circuit problems. Our theory is applied to ,

the design of microwave circuits. "-

The statU5 of large scale circuit optimization and the state-of-the·art of
,

microwave CAD arc reviewed. The necessity of circuit oriented .optimization tech-

niques is demonstrated ~'formulatingdesign, modelling, diaL;Tlosis and.tuning into, . - ~

optimization problems.

A comprehensive treatment of large chan~e sensitivity computation for

linearized circuits using generalized Householder formuius is presentcd. :\ technique

for circuit response updating via a mini'mum ~rder reduced sy~;tel'n is devciopcd. By

avoiding re-analysis of the complete circuit, our method is responsiblc for efficient

simulation of large circuits when a subset of the circuit parameters is frequently

perturbed.

An elegant theory for simulation and exact scnsitivity analysis of branched

cascaded nct\\:orks is described. Our approach explicitly takes the circuit-structure--iNo consideration and does not detcriorate as the overall network becl)~cs lan~e The

.practicality of the theory is illustrated by efficient optimization of microwavc multi-

plexers consisting of multi'-cavit3( filters distributed alon~ a wave~uidc manif.)ld.

Examples ofoptimizing 12- and 16-channcl multiplexers arc provided

:11

,



A novel a,nd general automatic decomposition technique for large scale

optimization of microwave clrcuits is presented. The partitioning approach proposed . -

by Kondoh for FET modelling pro~lems is \'erified. The application ofour tech~ique is

demonstrated by the large scale optinYzatfon of a I6-channel multiph~xer in'(.olving

399 nonlinear functions and 240 variables.
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1
INTRODUCTION

Circuit oriented optimization techniques have been instrumental in'

advancing the state-or-the-art in computer-aided cir.cuit design. During the past two

decades of active research and development by both numerical analysts a~d

engineering professionals. optimization techniques have gained popularity and

appreciation by circuit designers. The power of these techniques is further enhanced

due to the astonishin-g progress made in tbe computer industry. With their high speed

and ~ast capacity in' data processing, computers are' now being used to optimize

circuits with acc~racies and sophistication that w!!e only dreams ~r the previously

unaided designers.

Interestingly enough, the ambition of electrical eng~nec~s grows as fast as

. "
their computing capability. A serio.s advance they have made is the increased size

and complexity of today's analog systems. On the other "hand, requirements on the

accuracy and practicality of design and modelling methods become more strin~ent:

which in turn necessitares the use or sophisticated techniques such as multi·circuit

modelling and yield maximization. Large scale problems become a critical

consequence due to the increase in both the sizc of circuits and the complexity 01

design methods. The solution of large circuit problems challenges researchers f~VCn

equipped with up-to-date computers.. Considerable efforts by software en~ineers arl~

inevitab1e b~fore a complicated system can be designed.

The immediate difficulty with large scale problcmsis due to the limit;..ttion

of computer hardware. Prohibitive cpe times and stora~e requirement ofkn m;..tkc

I
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• ordinary CAD software balk at large problems.. A frequent frustrati1>n with large
/' ~.

s.cale optimization' is ~r~~sedlikelih~odof stopping at an undesired local mini-

mum. Otf1.er difficulties,~ecially in prototype and postproduction tuning, are due to

human inability to cope with plJ:rahl~~ inv6lving large numbers of independent

vadables to be adjusted simu taneously to meet a specified response pattern over a

wide frequency range <Bandler and Zhang 198icL

Fundamental to all circuit optimization procedures is a,n efficient circuit

simulator. A vital mechanism for a powerful gradient based opti.mize'" is a circuit

sensitivity analyze~. The preliminary step towards large scale optimization is the

development of elegant simulation and sensitivity analysis techniques. Lastly and

most importantly, the mathematical optimizer itself must be made capable of

handling the large numbers of \:ariables and functions.
. .

Consider the effort of solving ~ linear equations with ~ unkowns as an

example. As ~ increases, the storage requirement increases quadratically and the

computational effort increases cubically. The trouble often associated with much

existing software is thitsome simple but redundant operations, almost trivial for. .
ordinary problems, become unbearable for large scale problems.. Three such

situations are worth serious consideration.

One situation. occurs when a program, designed to be powerful for a com·

plete circuit simulation, is used "ery repetitively. Examples can be found in scnsiti-

"ity approximation, design, tuning and yield optimization where only a few elemcnts

.or only a subnetwork are frequently adjusted. The straightforward approach is to

simply repeat the entire circuit simulation each time even when a majority of circuit

subnetworks remain unperturbed For large circuits. this becomes c'xtrcmely

inefficient.

•

'.
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The second situation is when a general circuit analysis methosl is applied to

a specially structured network. Obviously, a certain amount of operations and

storage will become redundant. For example, large microwave circuits belonging to

the category of branched cascaded structures should not be treated using the general

riodai analysis metl)od and the adjoint network approach. unless special

mathematical tools, e.g., the sparse matrix technique is used..

The third sit~ation can be observed_directly in an optimization procedure.

A general optimizer takes all given functions and variables into consideration. For

large scale optimizatiort problems, this is not always necessary. For example. thet:..~

often exist weak interconnections between certain va·ria~es and functions that could

be decoupled during initial optimization stages.

The realization of the above facts has pro~pted investigations into a

number of approaches to improve large scale CAD techniques, We. can exploit

possible properties of the particular circuit, e.g.. physical or topological propert.ies.

We can use advanced mathematical' tools. We can rearrange CAD software into

suitable formats for special computers. e.g., the vector processors.

From the simulation and analysis points of vie.w, large scale circuit

problems have been fairly treated in the literature. But from the optimization point"

of view, only sparse and loosely re.latedmaterial~areavailable.'

This thesis attempts to ofTer a formal treatment to the problem of large

scale optimization of· analog circuits. We propose new approaches to improve

simula'tion, sensitivity evaluation and optimization, which are ;.lll essential for

executing a circuit optimization. The approaches include a comprehensive treatment

of large ch~nge sensitivity computation for repeated ci~cuit analysis. an elel;ant

method for simulation and sensitivlty analysis of branched cascaded networks anG. an




















































































































































































































































































































































































































































































