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ABSTRACT

....,
",,-

The impact of the array geometry. for linear arrays. on

the estima~ion of the direction of arrival of incident plane

waves is examined in this thesis. The fundamental result is

the establishment of the -conditions under which array

struc~ures•. different from uniformly spaced. may provide
-

impro.ved.:.·~ccuracy ,or reliability' in·'these est-imates. We are

primarily concerned wi th ~he use . of high accuracy

estimators. attempting t~ obtain accuracies well within t~~,

classical beamwidth of the.aTray.

Several different criteria for designing thinn~d array

structures. are described. with the principal emphasis on

redundancy based designs. For a single plane wave incident

on tl)~ array. the' Weiss-Weinstein bound. which is an

estimator independent bound. is applied to a variety of

array structures and indicates that the thinned arrays will

yield greater accuracy .. provided the SNR is sufficiently

. large. The bound allows us to investigate the effects of a

priori information on the estimation performance of the

diff~rent structures c~nsidered.

Maximum likelihood estimation is applied to the

identical problem and similar tradeoffs are observed. We

i11
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propose the concept of outl~er probability as a.measure fot,

discriminating between array structur-:s and provide models
(.

for characterization. Certain algorithms in the literature

~environment consisting a target with

•I'
I

i
')
/'

The impact of array s,tru·cture.

a

in a

strong

l11ul tipath

specu.lar
...

reflecti9n. is illustrated using exact maximum likelihood

.- est 1ma t ion .- It Is shown that the ~oSt significant gains to

be made for thinned arrays oCCur when the multipath is such

that target and
...

image are we 11 wi thin a beamwid th of the

array. Under these' conditions. ~t is found that the

nonuniform arr~ys often o~~perrorm uniform arrays consisting
."

of many m~re elements":-for all values of SNR and phase

differences between the two plane waves.

, An experimental. 32-element array was constructed and

brought into the field in order to gather multipath data.

ov~r water. in a real world environment, For the 'very

closely spaced target and image of this experiment. the

nonuniform arrays outperform uniform arrays consisting of

even twice as many elements.
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CHAPTER 1

INTRODUCTION

1.1 General

A linear array structure consists of a finite number ~f. . .

sensor-s arranged in a single dimension .. ·T.he outputs of the

individual sensors are combined to provide estimates of the

..

parameters which characterize a propagating wave

disturbance. Array. sIgna 1 processing. which is the

estimation of the parameters of interest. is a continuing

area of research
. -

in a variety of disciplines. The

parameters of interest vary among the different areas. as do

the 'major constraints governing th'e operation of the array.

Linear and higher-dimensional array structures have

been used in radio astronomy. radar. sonar. and geophysics.

The most common application is the determination of the

location of an object or disturbance relative to the array

orientation. The principal interest is the determination of

the direction pf arrival of the propagating wave impinging

on the array structure. In an active system. a signal 1s

1

-
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, sent out and the reflected return carries information about." .

the targ~i and ,its location. The tra~s~itted signal may be

highly' directive" thereby concentrating' energy in a

particular region of space. Passive systems 'listen' to the

entire field for signal sour~es and often operate with

significantly lower received signal powers, •

When the' outputs of the sensors at an· instant o#f time

are considered, we refer to this as a snapshot. There is a

, ,
#'

direct relatiqnship between 'the estimation of the direction,

of arrival from a snapshot of a linear array (spatial.,
problem) and frequency estimation from a set of discrete ,

samples in the time domain (temporal problem). Array signal

processing techniques are therefore often referred to in the

context of spectrum analysis. The 'space-time analogy'

[39], is the interchange of temporal dimension (time) with

spatial dimension (distance). In the Fourier transform,

domain, (l/time) replaced by
/

frequency is wa,enumber

(l/distance). Therefore, temporal
.f

the domai'n signal,

processing techniques can generallj be applied}~ the'array
,,

processing prQblem.

Consider a plane wave (in the far field of the array),

as depicted in Figure 1.1, impinging on the structure as in

a typicai radar env i ronmen t . We are interested in

estimating the elevation angle of the targ~t, measured from

boresight, which is taken to be perpendicular to the.
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vertical array. For a narrow band sig':ri"al. the mathematical

I I ... h th
~odel of' ~he comp ex enve ope at tel sensor is

sl = a exp{j(9 + 2vsln(.)x i /X)}
•

(1. 1)

where X Is the radio wavelength.

• Is the ·elevation angle.

a is the amplitude of the signal.
~

9 is an arbi trary phase shift.

and is the locat i·on in space of the .th
Xi 1 sensor.

- '.
The quantity. 2vsin(.)/X .is referred to as the

p.roj ec ted wavenumber. or jus t simp ly. wavenumber. and wi 11

hence for th be represen ted by the symbo I k.. The wavenulI\ber

has dimensions of l/distance. The expression fo.r the signal

at the sensor can then be expressed as

J
!

~
\

The analogy.--

si = a exp{j(9 + kx i )} (1.2)

wi th time domain sampl ing and. frequency

estimation is clearly evident 'from equ,ation (.1.·2) and

virtually all of the same features apply. Consider a set of

~ uniformly spaced time samples. If the sample spacing in the

time domain is T seconds. then the unambiguous frequency

region is ±v/T radians/second. The aliasing effect has been

. '.
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well documented for time domain sampling [1], and n!sim11ar

effect exists in the spatial problem. It 1s impo~s1ble to

'~istingulsh frequencies outside this i~terval from those

inside this interval.

Another commonly observed phenomenon occurs when

samples are taken at a rate very close to twice the

bandwid th of - the signal. al so known as the Nyqu 1 s t rate.

For an inf ini te number 0 f samp 1es taken wi th' i nf in i te

precision. there is no loss of information when the signo.l

is sampled at the Nyquist rate. However. for a finite

number of sample points this is n~t the case. In addition.

since our measurements are generally not of infinite

prec is ion and are of ten corrup ted, by no i se. errors are made. ,

in determining the parameters of the wave field. This error

can be
~ .

yery 'significan~ near the edges of the. signal

spectrum when it has been~sampled at the Nyquist rate. Even

'a small amount of noise'may identify a 'Signal haVing a
'-.;,

f.requency close to one end of the band a-s actually being

located at the opposite end of the spectral interval .. When

such, an error is critical and mU9't be avoided. the sample

rate must be increased well above the Nyquist rate.

For the spatial prob lem. the wavenumber is res t ric ted

theobtaintoTherefore.

distance le~han X/2 is

o
-90from

tota 1 fie'll, d 0 f view. a

lie anywhere

I

to lie in the interval (-2'lT/A. 2'lT/A). since. the target may l

\
\



t.

6
,~

.'

required.
-~

Fail1.ng to do so. restricts the field of view and

.
structure will ~espond in exactly the same way to targets in

\
,.,
~enerates what is known as, grating lobes. The

'.
array

the grating lobes as in the . true' fie ld of view. For

7
nonunifo~m arrays a si~ilar restriction applies and the

small es t in tersensor spacing is normalitly taken to be no

the Nyquist rate and a complex-valued sinusoid is

at one end of the band. is analogous in the sp~tial

array s truc ture.

may indicate thenoise

of theend-fire

amoun t of

larger than X/2.

( "-
The probl~m discussed earli~r. when samples are being

( rob 1em 0 f targe ts near

That is. even a small

target is located in the opposite direction. This would

cons t i tu te an error of ISO 0 in the tJ3.rge t I oca t ion. Por

this reason the minimum spacing of an array is normal,ly
..)

chosen to be less than the required X/2. where X corresponds

to the maximum operating frequency. and so will prevent

significant grating lobes. •

The beamwidth of a radar. conventional dish or array.

1s given by X/A radians' of physical ipace; where A is the

length of the aperture and is assumed significantly greater

than the wavelength. The wavenumbe.r beamwidth is,

therefore, 21t'/A. In a conventional radar system, where the

aperture consists of one large antenna. the accuracy and/or

resolution limit is normally taken to be equal to the














































































































































































































































































































































































































































