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ABSTRACT

The impacF'Bf the array geoﬁetry. fo; linear arrays. on
the estimg:ion of the direction of ar?i;al of incident plane
waves 1s.éxamined in this thesis. The fund;mencal result is
éhe establishment of tﬁe -condifiéns under which array
structures, different from uniformly spaced. may provide
improyed;gccuraéy_or reliability'in“tﬁese estimates. We arec

primarily concerned with _the use . of high accuracy

estimators, attempting tgo obtain accuracies well within the_

v

c}assical beamwidth of the. array.

Several different criteria for designing thinned array

structures. are described. with the principal. emphasis on
redundancy based designs. For a single plane wave incident
on the array., the’ Wei;s-Weinstein bound, which 1is an
estimator independent bound, is applied to a variety of
array structures and indicates that the thinned arrays will

yield greater accuracy. provided the SNR is sufficiently

. large. The bound allows us to investigate the effects of 2

" priori information on the estimation performance of the

different structures considered.
Maximum likelihood &estimation is applied to the

identical problem and similar tradeoffs are observed. Ve
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propose the concept‘of-outluer probability as a. measure for
discriminating between array structures and provide models
for characterization. Certain algorithms in the literaéhre
for the deésign of nonuniform arrays are shown to be poor
under these .measures.
The impact ° of array structure, in a multipath
tenvironment consisting a target with a strong specular
reflection, 1is illustrated using exact maximum iikelihood
estimation. It is shown that the most significant gains to
'be made for thinned arrays occur'when the multipath is such
that target and image are well within a beamwidth of the
array. Under these : conditions, At is féund that the

-

nonuniform arrays often outperform uniform arrays consisting
L] .

~

of many mqre elementézyfbr all wvalues of SNR and phase
.differences between the é;o plane waves.

An experimental, 32-element array was constr#cted and
brought into the field i; order to gather &ultipath data,
over water, in a real world environﬁént. For the 'very
clo;ely .spaced targei and image of this experiment, the

nonuniform arrays outperform uniform arrays consisting of

even twice as many elements.
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CHAPTER 1

INTRODUCT ION

-

1.1 General

’

-

A linear array structure consists of a finite number of
sensors arranged in a single dimension. .- -The outputs of the
individual sensors are combined to provide estimates of the

parameters which characterize a propagating wave

distgrbance. Array. signal ©processing, ~which is the

estimation of the parameters of interest, is a continuing
area of research in a variety o} disciplines. The
parameters of interest vary among the different areas, as do
the‘major constraints gov;rniﬁé the operation of the array.
Linear and higher-dimensional array structures have
been.used in radio astronomy.‘radar. sonar, and geophysics.

The most common application is the determination of the

location of an object or disturbance relative to the array

orientation. The principal interest is the determination of -

the direction of arrival of the propagating wave impinging

on the array structure. In an active system, a signal 1is



"sent out and the reflected return carries information about
the target and its location. The trapsmittea signal may be

highly * directive, thereby concentrating energy in a

particularAreéion of space. Passive systems "listen’ to the

entire field for signal soupsgs' and often operate with

significantly lower received signal powers.

¥When the outputs of the sensors at an. instant of time

are considered, we refer to this as a snapshot. There is a
, . _

direct relaciqnshib between ‘the estimhéion of the direction
of arrival from a snapshot of a linear arréy (spatial

-
problem) and frequency estimation from a set of discrete

samples in the time domain (temporal problem). Array signal
processing techniques are therefore often referred to in the

context of spectrum analysis. The ’'space-time analogy’

[39]. is the interchange of temporal dimension (time) with

spatial dimension (distance). In the Fourier transform
domain, frequency (1/time) is replaced by wayenumber
(1/distance). _ Therefore, the temporal doma¥n signal

’

process}ng techniques can generally be applied FB the array
processing problem. / .
Consider a plane wave (in the far field of the array),
as d;pictcd in Figure l.lﬂ impingihg on the structure as in
a" typical radar environment. Wel'are' interested in
estimating the elevation angle of the target, measured from

boresight, which 1is taken to be perpendicular to the
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" vertical array. For a narrow band signal. the mathematical

model of the comﬁlex envelope at the ith sensor is

s ; a exp{j(e + 2wsin(¢)xilk)} (1.1)
Y
where A is the radio wavelength,
¢ is the elevation angle,
a is the amplitude of the signal,
8 is an a;bitrary phase shift,

and x, is the location in space%of the ith sensor.

The quantity. 2wsin(¢)/A .15‘.referred to as the
projected wavenumber., or just simply, wavenuﬁber. and will
henceforth be represented by the symbol k. The wavenumber

has dimensions of 1/distance. The expression for the signal

at the sensor can then be expressed as

s; = a exp{j(6 + kxi)} (1.2)

\

The ;galogy with time domain sampling and. frequency
estimation 1is clearly evident from equation (1;2) and
virtually all of the same features apply. Consider a set of
uniformly spaced time samples. If the sample spacing in the
time domain_ is T seconds. then the unambiguous fr?quency

region is *7/T radians/second. The aliasing effect has been

o
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well documented for time domain sampling [1]. and a’similar

effect exists in the spatial problem. It is impossible to

‘distinguish frequencies outside this interval from those

{nside thi§ interval.

Another commonly observed rhenomenon occurs when
samples are taken at a rate very close to twice the
ban&;idth of‘;he sign#l. also known as tﬂe Nyquist rate.
For an infinite number of samples taken with' infinite
preéision. therg is no loss of information when the signal
is sampled at the Nyquisf rate. However, for a 'finite
number of sample poinfs this is not the case. In addition,
since~ our m;asurements are generally not of infinite
?recision and are often corrupfed,by noise, errors are made
in determining the.parameters of the wave field. This error
can be very ‘sigdifican?' near the edges of the. signal

spectrum when it has been’ sampled at the Nyquist rate. Even

‘a small amount of noise; may identify a signal having a

. .
frequency close to one end of the band as actually being

located at the opposite end of the spectral interval.. Wh;n
such- an error is critical and must be avoided. the sample
rate must be inéfeased well above the Nyquist raCe.' )
For th; spatial problem., the wavenumger is restricted
to 1ié in the interval (-27/A. 2w/A). since, the target may

. .
L4 . ~

lie anywhere fron;'-QOo t 190 . Therefore. to obtain the

total field of view, a sam

ling distance leés\lhan A2 is

(\l
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required: ,Failihg to do so, restricts the field of view and
%enefates .what 1; kno;n‘ as . grating lobés. The arra}
structure will'respond in exactly the same way to targets in
the grating lobes as in the .'true‘ field of view. For
nonuniform ar;ays_ a similar res;riction applies and the
'smalles; 1nte;$ensor spacing is normalkly taken to be no
larger than R/2;

The préblpm éiscussed earliér. when samples are Leiﬁg
taken at thé Nyquist rate and a complex-valued sinusoid ts-
located at one end of the band. is analogous in the sp&tial
{ roblem of targéts near end-fire of the array structure.

That 1is, even a2 small amount of noise may indicate the

target is located in the opposite direcrtion. This would
‘ [N

=]
constitute an error of 180 . in the target location. For
this reason the minimum spacing of an array is normally
__ chosen to be less than the required A/2, where A corresponds

—

to the maximum operating frequency. and’ so will prevent
significant grating lobes. !

The beamwidth of a radar, conventional dish or array,
is given by A/A radians of physical space: where A is the
length of the aperture and is assumed significantly greater
.fhan the wavelength. The wavenumber beamwidth ‘is,
therefore, 2w/A. In a conventional radar system, where the

aperture consists of one large antenna, the accuracy and/or

resolution limit 1is normally taken to be equal to the



N 1
beamwidth. -~ In a rTadar' array. each sensor requires a
. . \ _
separate receiver. For large numbers of elements, this may
" become pfohibitively expensive. Since the field of view

resty}gts the winimum sampling rate, it.mgy be possible 'to
decrease the beamwidth;below'that of a uniform array using
nonuniform spacing. It is desired to obtain maximum
performance from a given, finite number of\sepsors.

In this‘theéis. we are primarily comcerned with high
accuracy estimation. This may be defined as'target location
accuracies significantly less than a beamwidth. Using
optimal estimators Qe are interested in 1mp}oving' the
performance by using a judicioﬁs placement of the sensors.
The array geometry will ;mpacc the estimator performance and,
the trédgoffs that may be encountered i?kchoosing certain
éonfiguratioﬁs needs to be investigated.

A further complicafion to the target location/
estimation problem.occurs whén more than one ’'target’ |is
pn?sent. This may be due to several indeﬁendent targets in
an area or by reflections of the target eého. for egample.
from a water surface. The latter effect 1is known as
multipath.' It is a particularly éifficult problem when the-
target is at a very low‘elevation. In this instance, the
target and image (specular reflection) may be separated by
much less than the beamwidth. The effect of different arra&

™

-~ ’ .
structures using optimal estimation procedures needs to be

-



- studied and understood. ' . .

_estimation problem, we can develop a normalized system of

Since the value A acts only as a scale factor in the

parameters, which are independent of A. VWe measure the

sensor locations in units of A/2. . This implies the smallest

\

spacing in the array must be less than or equal to 1 unit in

this normalized ?ystem. In turn. this restricts the
normalized wavenumber to 1lie in a range (-7, 7). The

=

majority of the structures discussed in the thesis consist

* ’ N ‘\__/"
of sensor spacings that are multiples of -the minimum

spacing. This simplifies the description of many of the.

structures.

e

The normalized wavenumber has an alternative<:
interpretation. The wvalue k, is now exactly equal go the
observed phase difference (in radians) between two elements
which are separated by the minimum spécing of.one unit. All
of the results may easily bewscalqd to the ackual operating
conditions by multiplying spatial distance quantities by A/2
and dividing the w&;:;umber or ﬁransform domain locations by

A2, .

1.2 Background

The literature provides a rich assortment of

-

descriptions for the structures in which the spacing between



_nonuniform. sparse, -thinned, ape;}édic. and space-tapered

"spacing. called broadbanding the array. ' .

elements 1s unequal. Some of the most common are;

-
-

arra}s. In addition. many authors simply refer to the
structurés according to the class construction or array
design . algorithm. .In the 1960"s,~” the advantagcé of
eliminating the restriction of equal spacings beca;e

v

apparent [2]. One of‘ the prime motivations was the
reduc;ion of the ﬁumber of elements required to obtain a
desired antenna beéq' pattern, rteferred to .as thinning.
Another common application of nonuniform arrays was the
increase in the effective bandwidth through ;;riablé
~
The ‘optimum’ array structure is very specific to the
particulaf problem being considered. The formulation of. the
constraints greatly influences the final solution. In very _
few of the formﬁlati?ns was a closed form solution found.
One such result was-obtained when a.spgcific characteristic
of the side lobe response was required and the array was
constrainéd to operate with 2 uniform —cufrcnt excitation
{3]. A good summary of the early wéqk is provided in .[4].
Beam-shaping.-'particularly Dolph~Chebyshev patterns: in
which the beamwidth is fixed and the side lobe lévél is

minimized, was one of the early incentives of unequally
\

spaced arfays. The advantage being that.it was easier to

"achieve space-weighted than excitation-weighted uniform

»
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- -
structures. The disadwantage was the very close spacing of
some elements (significantly less than A/2), and the

resultant mutual coupling effects [S].

» .
Another common constraint of many of the designs was a

specified aperture for the array structure, The number of
possible ‘arrangements of N elements within ®his aperture may

~
become astronomical. On the other hand, exact solutions for

the problem were in many cases not obrainable and dynamic

programming approximatioWs were,K implemented in many of the

. . @
proposed solutions. An alternative to these procedures was
the examination .0f random arrays. A large number of

possible configurations were obtained at random and then the
properties of each structure examined, most commonly for the
peak side lobe-level. A comparison of these results may be
found. in [6].

Eveﬁtually. ;imulcaneous optimization procedures for
both space- and gxcitat{qn-weighted, structures were alsé
studied [7, 8]. The latter reference provides a procedure
for obtaining the optimum current excitations of the
elements for an arbi?fary set of spacings in order to obtain
a dlsired beam pattern (in ‘the least squares sense). As
mentioned earlier, in many of these studies, optimal
solutions could not be found and an assortment of different

techniques have beeq proposed. This line of research still

continues and alternative solutions are proposed using a

z )
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var?ety of constraints and optimality conditions [9_- 12].
Of principal interest in this thesis are sparse arrays.

for which the average spacing between elements is

significantly larger than A/2. ;:Eﬁ are also primarily

concerned with the high accuracy estimation problem as

opposed to the side lobe structure as an entity onto itself.

Cne of the J:;rs t s 'tudlies of the ‘redundancy’
canstruction of non form arrays is that of Moffet in the
often referenced paper [13]. in which a case is made for
ma&imizing ghe resolution of an array for a given number of
Sensers. The structures discussed., are actually thdﬁé
proposed by Leech [14], in a W%Jhemgticgl paper whose

original intent did not address the array problem. In these

constructions we do not impose an aperture ‘length constraint

on the array. For a given number of sensors. one or more
'E;st' arrays are proposed. Although the conceptual
solution is straightforward. it is difficult and

computationally intensive "to implement for large numbers of
elements. Therefore, suboptimal ways of extending these
structures for very large numbers of elements have also been
{%}oposcd [15]. Recently, the minimum-redundant arrays cited
by Moffet have been obtained from other interpretations as
well [16., 17]. There is also considerable work in the
region of 2-dimensional arrays. unfortunately, many of the
construction algorithms for lihear arrays do not, extend to

;

-
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higher dimensionality [18 - 227.
An alternative procedure to the minimum redundant
sampling was proposed in [23] and is known as a nonredundant
construction, although some authors. prior to this paper,

referred to those of. Moffet as nonredundant. The

grid—searchm;::de’provided a set of arrays that were very
nearly the nimum length arrays having zero redundancy. An
alternative procedure is developed in this thesis requiring

-

much lesé numerical ;omputation time, i§ exhaustive, and
indicates an anomaly in the results of [23,34,35]. -
The prqblem of interest, in this thesis, is direction
of -arrival ;stimation or bearing estimation as it is often
teferred to in the sonar area. It is difficult to divorce
the estimator and array geometry relationship. The actual
‘optimum® structure’ may depend upon the c¢stimator being
employed. This poses a difficult problem in defining array
performgncé. An estimator-independent lower bound on the
minimum attainable, mean-square wavenumber estimation error
is a useful tool for discriminating between the different
structures. A comprehensive evaluation‘of this type has noty
been found ;n the literature. One of the few papers which
even address the variance bounds and array geometry. does so
for a limited set of array structures under. high

signal-to-noise ratio {SNR) conditions using the Cramér-Rao

Lower Bound [24].: The bound used does not indicate any
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p
tradeoffs that must exist between the.different structures,

and neither is it tight at low SNR. ' | o7

- A variety of techniques feor boundipg;tﬁe mean-squa}e

parameter estimagion error are available such as Cramér-Rao.

Barankin and Ziv-Zakai bounds. A comparison of these
bounding techniques may be found in [25]. aﬁd a subset has
been applied to the wavenumbeﬁ estimation problem [26].

Some of these techniques are only strictly valid for certain
types of esﬁimators and/or may be far from ‘tight® in tﬂe
regions of interest. In many circumstances, there exists a
priori infgfmation about the location of.the target which

would have to be taken into account. A recent bounding

technique has been found [27], which permits the inclusion

.0f the a ‘priori informatiop and 1is independent of the

\

estimator. This bound will be shown to possess the desired

characteristics for bounding the wavenumber estimation e;ror

of 2 single target in additive, white. Gaussian ngfse.

In the past, spectral estimation procedures have often
been applied to this problem. The location of the peaks of
the estimated spectrum are taken to be estimates of the
frequency of the sinusoids, or in our case, the target
positions. The paper by Kay and Marple, [28].. is a good
survey of the common spectral estimafbrs.. Some of the newer

estimators. many of which involve spectral decomposition,

have been compiled in a gﬁeciai issue of the Proceedings of
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the IEEE.‘Septémber. i982. This issue describes the work in
; variety .of disciplines including geéphysics. radio
astronomy. sonar and radar.

The work of Lang es-él. is also significant for being
one of the first works .imp;emencing high resolution
estimation® procedures bn. nonuniform arrays. Since that
time, other researchers have also indicated the suitébility
of nonuniform arrays for direcgigz\jf)arrival estimation and
spectral_estimation using other te?hniques [16, 45]7. HThere

has been some study, in the sonar area, using cross-sensor

beamforming techniques for output SNR pefformance.
resolution, anﬁ array gain with nonuniform arrays,
principally. the minjmum * redundant structures of Leech
[29-32]7.

Unfortunately. - a detailed study comparing perfofmance
of the reduna;ncy based array ‘§f;:2tures has not been
undertaken. Neither have the tradeoffs involved from
choosing one of these thinned arrays over a uniform. array
been demonstratéd. Most of the previous works present a
single simulation result ;ndicating the pbssible-imprgvement
which may be obtained. The tradeoffs and stat{stical
performance have not been explorgd. In fact, in 1582. in
the Proceedings of the IEEE special 1issue on spectral

estimation, we quote from the conclusions of D.H. Johnson.

[33]. "The impact of array geometry on spectral estimation
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procedures is largely unknown.” The only references given
in qhis:respect are [24] and [23]. It is this imﬁact of
array geometry -which we wish to explore and, thereby,
provide a comprehensive understanding of the behavior of

nonuniform arrays for the directiomn of arrival estimation

problem.

1.3 Approach and Stope of the Thesis

While the minimum redundancy arrays, described by
Moffet [13]. have received a great deal of attention
recently in the radar/sonar literatﬁre. the description of
the nonredundant array has been virtually nonexistent.
Chapter 2 builds upon the initial concepts of Lang e; al
[23]. and describes a computational search technique that
does not suffer from the limitations of Lang. This allows
us to point out an anomalous result quoted in [23] and
provides an ;;haustivé list of tﬁege arrays for up to 10
elements, where the previous list ended with 8 elements.
These. results have already been published ‘in two papers
[34. 35]. The limitation in extending the results is the
computational effort invelved, which grows as N!.

Recently., these array structures have received further

attention in the geophysics area. The efforts of Robertson

have been presented in an issue of Scientific American [36].
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in which these structures are called Golomb rulers. A

challenge’ was proposed tb_ extend the. results beyond 12
elements found in 1984. The follow up issue, [37]. provides

the latest results for a 14 and 15 element array found at

the IBM Thomas J. Watson ReseaFcH Center, again using the

" same algorithm. Clearly. these structures. are now receiving

a tenewed interest. °

In Chapter 3 we examine the single target 'lo;gtion
problem.  Using the very recent bounding techﬁique of Weisé
and Weinstein. we are able to obtain useful insiéhts into
che‘jbrfo;mance of-linéar array structures for direction of

. . .. !
~arrdval estimation. - The tradeoffs in, performance that may

Bel expeét;d through the use of nonuniform sampling are
or%ginalf concepts of this thesis. i To the author’s
knowledge, these ideas have never been presented in the
literature. In fact, the bound itself has never been
applied to this problem so that the analyt{cal results and
simplified expresgions; presented in Appendix A, are also
new. ‘

. Chapter 4 deals with the identical estimation problem
by simulating therﬁaximum iikelihood estimation procedure.
The results build upon éhe concepts first described in the
now classic paper by Rife and Boorstyn [38]. Their.basic

discussion of the estimation error dealt exclusively with

uniform structures. Those concepts have been extended here
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to arbitrary array configurations, of which the uniform is =a
special case. We have also addressed several implementation
problems of the maximum likelihood estimator, and have
extended the results for both uniform and nonuniform

structures.

A tradeoff iq performance, similar to that found in
Chapter 3. using the different array structures is
identified. Iﬁ addition, we provide an a&te;native measure
of performance for discriminating between the various array
structures which may. for certain appi£cations. be more
useful to the radar system designer. This. also. has not
been -addfessed in the literature prior to our recent
presentaﬁion [42].

Chapter 5 describes the results for a typical targei
location prollem in the presence of multipath. The
perfonmanées of the uniform and nonredundant arrays are
compa;ed- for the first time. A complete statistical
simulatior using exact maximu«b’gikelihood ';stimation was
implemgnted. Previous works have, (at best, _compared
pe;formancp for a siﬁgle simulation. ¥e have not only
examined the high SNR.peréormance. shown to cﬁincide with
the g;amérfkao Lower Bound, but have also examined threshold

+ »

effects. The tradeoffs are now significantly more complex

.

e
owing to the larger number of parameters describing the

system. The analysis was also carried out for the best and
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worst case . phase differences between ﬁJirec; and specular
echoes; < |
Finally. an actual 32—elemént sampled aperture array.

operating at X-band. was designed, and field-tested as part

of this research program in conjunction with another Ph.D.
candid#te. V. Kezys. This system provides ‘real world' data
of a target in a multipath- environment. It was then
possible to examine the performance of the nonredundant
structures u;ing ;rue experimental data. The performance
improvements have been clearly established in the final
section of Chapter 5. This probes'ﬁhe sensitivity of the
nonredundant structure to calibration grrors and other
performance-limiting error sources which will be present in
a working environm;nt. Data of the required accuracy for
the examination of high resolution estimators had not "been
previously gvailable. These results are also Qriginal.

We conclude this thé;is with a summary of the results
obtained in the earlier chapters. The research has pr;vidéd
;ignificant insights on the impacf of grray geometry on high
accuracy estimation procedurés and several further. areas of
invcstigatidn‘have been established. These consiéerations

for future research, both analytical and ekperimental. are

presented in the.final chapter.



- ‘ " CHAPTER 2

. . NONUNIFORM ARRAYS

We have presented a description ‘of the background
material initiating the study of nonuniform arrays ‘in
Section 1.2 of the previous chapter. Almost all of the
recent papers of the 1980's, examining‘.high accuracy
direction of arrival estimation. using nonuniform arrays.

- -

involve one of the three <classes .0of redundancy-based

structu}es.‘ Since there haé ﬁ&&\tiij“j;detailed-assessment
made of thege structﬁres. we will conceéntrate on these and
the corresponding ;niformly spaced ar}ais in this thesis.
This chapter will discuss the origins -of redundancy-
based ar}ay designs and the differences bctween-che minimum
redundant, (restricted and unrestricted,) and the
non}edundant structures. fhe last section will descrige the
P)
algorithm generated in 1981 to imﬁrove the search for the

nonredundant arrays and describes the latest results in the

search for these structures.

2
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2.1 Origins

r—

In simple terms, an ‘array may be viewed as a grating or
compound interferometer. The array is utilized by

considering the outputs from all of the possible pairings of

‘elements, with each pair acting as an interferometer. Given

ﬁ:elements. there are N{(N-1)/2 possible pairings. In order
to determine ctheir spatial—frequéhcy sensitivity, _it is
necessary to determine the separation between elémbﬁts of
each pair. Ebr a uniform structure having unit spacing (as
df;cussed in Chapter 1, this is génerally taken to be A/2):
there aré N-1 p;irs having a separation of one unit, N-2
pairs having a separation of two units: etc.. ending with
one pair of sensors separated by N-1 units.

We can-pqesent this type of structural analysis thréugh
the use of the coarray. The coarréj is described by marking
the values of tha‘separations which exist for each pairing
of elements as an interferometer. Figure 2.la presents an

| i -
eiample of this type of characterization for the
fodr-element‘nnifOrm array. Also preéented in the figure
are the four pairings obtained by considering an element
paired with itself. In this context, there are N(N+1)}/2

possible pairings. The redundancy concept can Teadily be

seen in Figure 2.1a as there are three pairings separated by

one unit compared to only one pair separated by three units.

~ . .
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Array X x X X .
Coarray x X x x
x x x
X x
x
a)
i £
Array x X x x -
Coarray x X x x x x x
x
x
x .
b)
Figure 2.1: Comparison of 4-element arrays and their
: associated coarrays (a) uniform, (b) optimum
nonredundant.
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Reducing the redundancy involves spreading out the coarray,
thereby,., increasing the number of distinct separat?&hs that

may be obtained. } B

An alternate motivation for reducing the redundancy
»

comes from the spectral estimation problem directly. It is.

wgli known that the power spectral écnsify is the Fourier
transforﬁ of  the autocorrelation function [1]. A sequence
- obtained by sampling a process at df;crete points | is
described by an autocorrelation functibn which s aléo
defined at discreée points. As mentioned in the
Introduction., Chapter 1., there exists a _direct analogy
between temporal sampling and spatial sémplinglﬂ\Therefore.
there are abundant references- to w&ii};égz élassically
associated with the time-frequency transform relationship
and is here understood to be .appiied to the distance-
wavenumber transform pair. . -

In our case. the wavenumber spectrum is the Fourier
trangform of the autocorrelation functioﬁ,obtained from the
Sensor outputs. In this discussion, we realize the
fundamental difference in using a finite number of sample
points versus sampling the entire space, and the arguments
are understood to be stridtly valid in the latter case
alone. Since the wavenumber domain is limited, we can make

use of the sampling theorem of Nyquist, [1]. In effect,

this states ‘that the wavenumber spectrum may be determined
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if the autocorrelation function is known at uniform points
_sepé;ated by less than '3/2. The coarray represents the
ﬁoints af which the autocorrelation function 1is known.
Therefore, it,is.the‘coa;ray. not the initial data sequence,
"for which uniform sampling is desired. The redundaﬁcy—based
structures attempt fo arrange . the samp}e points such phat
the coarray is approximgtely uniformly spaced and 1is
extended beyond the conventional aperture by °“spreading out’
the redundant estimates of the correlatian function.

Figure 2:1b depicts the four-element nonredundant
array. Each spacing of elements provides an estimate of the
autocorr?lation function at a unique sample point. The
coarray gontafns all positions between zero and six. and
only the value at zero ;s repeated. Comparing the results
to the four-element uniform a}}ay as described in Figure
2.1a, the increased ﬁperture is immediately ap;arentl'_The
three redundant estimates of the uniform array effectively~™
have been 'added’ to the end of the aperture.

Unfortunately.. for N greater than 4, no ideal
nonredundant arrays exist. An 1ideal nonredundant array
would be one for which the coarray contains exactly one
estimate of a particular autocorrelation sample and the set
of samples are contiguous. This would imply an array having
an aperture exactly equal to N(N-1}/2. since. this is the
number of. nonzero separations provided by N elements.

J
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As the_ideal-array deces not exist, several 'approximate

solutions’ have been.proposed in the literature. The next
section presents the descriptions of these structures.

b}
2.2 Suboptimal Nonuniform Arrays

One of. the first works considering redundancy-~based
structures for direction of arrival was that of Moffer,
[13]. His analysis, based upon the interférometer approach,
led him to consider a set of structures originally
determined by Leech in 1956, [14]. The minimum redundancy
arrays are structures for. which the redundagcy is minimized
under the constraint that the structure still provide a
coarray that is contiguous.

This definition leads to two further subclasses called
restricted and unrestricted. If the coarray 1s to be
strictly filled with no missing values this constitutes a
restricted array. If the solution is the one providing a
coarray with the greatest number of contiguous estimateg,
the resultant structure™is terﬁed,unrestricted‘{sincg'é%e
entire coarray need nd% be filled). - .

This difference is best illustrated by an example for N

i’

equal to eight. Figures 2,22 and 2.2b provide a coqbarison
A
of a restricted and unrestr?qfed solution. The 3 péijtions

e
.in the coarray are characteristic of more than one pair of
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Array XXX ' X X X X X

Coarray HMMMNAAXXXXMAXXXXAXXX XXX

- i a)
Array x x XX X X X , X
Coarray MXXXXXXXM*XXXXXXXXXXXXXXXX R X
b} .
Figure 2.2: Comparison of S8-element minimum redundant
arrays-developed by Leech, [14]. a) restricted,
b) unrestricted. *» indicates repeated

estimate.
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sensors. The restricted solution has no missing values
. I N ' - - R
although three of theﬁpppzero spacings are repeated in the

twehty—three unit aperture (excluding the zero lag). The -

Y

unrestricted-array‘has a number of missing points in its’
thirty—nipg unit aperture:_ﬁoﬁever. it provides a set of
twenty—-four contiguo;s estimates. Leech has pompiled a set
of solutions for values of N less thah of equal to eleven,

although not _necessarily exhaustive.. " These, results are

- -

reproduced here in Table 2.1. For N equal to nine., the
.unrestricted array was identical to thét_of the restricted

struc ;ur_e .

It was originally proposed that only lthose pairings
‘which wefe involved in the uniformly-filled portion of the
coarray would be used in the estimation prbqedhre t13. 18].
However. as shown in sdb%equeﬁt-chaptéra of this thesis. one
“can obtain ah optimal est}mqti&n.procqﬂuré. based on maximum

. E o . *
likelihood estimation. U?ﬁich makes use of all of the

information available.” Therefore, although there are holes

~

in _the unrestricted coarray. it -is not necessary to

eliminate the information contained in the lags beyond the

largest contiguous spacing. This knowledge then leads to an

alternative, redundancy-based structure known as—. the

nonredundant array.,
Nonredundant arrays., 'in the most general sense, are

defined as arrays - in’ which there 1is zero redundancy.

t
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Table 2.1

Minimum Redundant Arrays Compiled by Leech, [1471

No. of ) Location
Sensors - )

restricted

e
5 o 1 4 7T 9 ‘
0o 1 2 6- 9
6 °© 1 2 6 10 13
o 1 6 9 11 13
o 1 4 5 11 13
7 0 1 2 6 10 14 17
o 1 2 3 8 13 17
o 1 2 8 12 14 17 ‘
o 1 2 8 12 15 17 -
© 1 4 10 12 15 17
o 1 8 11 13 15 17
8 o 1 2 11 15 18 21 23
- 0 1. 4 10 16 18 21 23
9 0O 1 2 14 18 21 24 27 29
0 1%4 10 16 22 24 27 29
~~ 0 1 -3 6 13 20 24 28 29
10 01 3 6 13 20 27 31 35 36
11 - 0 1 3 6 13 20 27 34 38 42 43
»

o -
unrestricted (if different from restricted) !

10 17 22 24
12 18 23 25
14 15 18 24 26 31
13 14 16 21 25 31
g 18 19 22 24 31 39

5 3 4. 9 11
4 ) T =13 .
6 4 5 6 13 16
- 6 T -9 11 19
1 4 -10. 12 17
1 8 i1 13 17
6 9
8 9

.

»

-1
leNoNollNeNoNoNoRoNoRaoRoRo oo

w

16 17 28 36 42 46 49 51 73
7 22 27 28 31 39 41 57 64
18 18 22 31 42 48 56 58 63 91

S
Q

. Lol
-
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Optimﬁﬁ nonredundant arrays are those structures which
. min;mize the number of ‘holes’ in the coaréﬁy under the
constraint thqt they be nonredundant. This should be
compared to the restricted arrays which minimize the number
-of redﬁndant pairings under the co;;ﬁraint that fbere be no”
Holes in the co#rray. ‘The nonredundant Iarrays fould.
therefore, provide the densest packing of the coarray of all
possible zero-redundancy arrays.

Nonredundant structures were initially developed
differently by Lang et al. [23]. -Their algorithm for
.searching was based upon maximizing the minimum separation
in the coarray. They define the array to lie on a grid of
400 points with the two exterior elements at the ena of the
grid. The processing time increases significantly as the
grid qensity increase;p They estimate that 400 values would
provide enough sensitivity fof convergence to a reasonable
structure and was computationally feasible, provﬁéed. the
number of elements was not large. Upon convergence, the
'.st;ﬁcture_would be norﬁalized S;Eh that the minimum spacing
is taken to be one unirt. )

The unnormalized arrays obtained. from the previous
algorithm, as‘found J§.[23]._aré reproduced in Table 2.2a.
When thefndrmalizatioﬂ ;s appliedl sucb that thé smgllest

spacing is oné unic, the;fesqltant desciiption is found in

Table ?.2b. We note that the algorithm was never claimed to /
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Table 2.2

A

“*Nonredundant' Arrays ngniléﬁ by Lang et al, [23].

No. of Location
Sensors

2) unnormalized array locations

5 o 36 144 328 400

5] 0 23 a3 2353‘ 281 400 ’

7 0 16 - 176 256 304 368 400

8 0 11 66 211 244 288 378 400

b) normalized to unit minimum spacing (approximate
locations)

S 0.00 1.00 4.00 9.11 11.11

6 0.00 1.00 4.04 110.22 12.21 17.39

7 0.00. 1.00 11.00 16.00 19.00 23.00 25.00
8

0.00 1.00 6.00 19.18 22.18 26.18 34.36 36.36



be exhaustive and the final conciusions‘urge the development
of a fasfer technique for this.search. It was this work,
[23]. which inspired both the development of the algorithm
déscribed in Section 2.3. and the need fo} a systematic

Eomparison of the various structures.

»

3 2.3 Nonredundant Arrays . . . .
g S '

The result of Lang et al. [23]. as presented in fhb}e
2155. clearly indicates the tendency:of the.structures to -
‘iie on a érfd for which the spacing between any two qiements
is an integer'multiple of the minimum spacing. The slight
discrepancy is due ‘to the fact that there waq' finite
resolutign available and the unnormalized spacings ﬁﬁs; lie
on a 400-point grid. This number was. arbitrary, in so far
as the structure was concerned, and was only dictated by the
processing time.

To 1improve the processing time in seg’khing or

nonredundant arrays a significant</;mprovement results by

defining all the spacings as exact multiples of the minimum

spacing. There 1is, therefore, no fixed aperture size

associated with this procedure. We can define a minimum
{ .

aperture from N sensors, since. .an "array having zero

redundancy must be at least N{N-1)/2 units in length.’

It is much simpler to deazl with the consecutive inter-
3
L
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element spacings than the absolute locations themselves.
The aperture of the arr;y'is equal to thg sum of tbe N-1
spacings. For a given integer length. L. we begin by
listing all of the sets of distinct integers which sum to L.
If any spaciné _were repeated: the array could not 'be

nonredundant. For each set, all possible permutati®ns are

generated and the coarrays evaluated. If no coarray -was

A

found to be nonredundant, the length would be increased to
L+1 and the pfocedure repeated.
"

Eventually. there will occur a length for which a
coarray is found which will possess zero redundancy. At
this point, the remaining permutations of “the sets of
integers which also sum to ‘the‘ current value of L are
exaﬁined and the search is complete. Every increase in, L
.will necessitate an additional hole in the coarray. On{y
those arrays having the same value of L as the first zero
redundancy array discovered. will have the minimum number of
holes as required by the definition for the optimum
nonredundant array. |

Prior to the examination of a particular permutation of
integers. a vector of length L is zeroed, which‘représents
_ the coarfay. As each pair{ng of elements is found, the
éorresponding_coarray value 1Is examined: - if the coarréy

value was zero. it is incremented: if not, this permutation

cannot be nonredundant and_ no further processing of this
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permutation is necessary.

To determine all of the possible pairings of elements,
the array positions are determined begining at zefo. by
summing spaces together one at .a time, and the corresponding
coarray values set té one. F}om\fhe array positions, the
remaining coarray values are determined by indexing through
the list and determining the difference in‘posfiion for each
pair of elements. As position zero is set to zero. we begin
with position two subtracting position one. The next step
begins bf choosing position three, sﬁbtracting position two
and then position one, eth; The last set of values oaccurs
by choosing‘position N-1 and subtracting in turn positions
N-2, N-3. ... . 1. In this wéy. N{N-1}/2 add;tions or
subtraccions are required. The index for which a redundancy
occurs also indicates where the next permutation should
begin. In this way, all permutations which have any
possibility of yieljing a nonredundant structure will be
exapined and the search isTexhaustive.

The results of this technique, in searching Ebr optimum
npnredundanf arrays. &re presented in Table 2.3. The arrays
agree with most of those presented by {[23], as shown in
Table 2.2b, to within a small error, easily accounted for by
tﬁgﬁrestriction of using 400 points o¢f resolution. There
are a greater number“of.arrays in Table 2.3 because this

* Ed
technique is exhaustive and. because o¢of the increase 1in
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— Table 2.3 -

\ Nonredundant Arrays
No. of po ‘ Location
Sensors
5 0 1 4 9 11
0o 2 7 8 11
6 0 1 8 11 13 17
0 1 s 12 14 17
o 1 4 10 12 17
0 1 -4 10 15 17
7 0 1 11 16 19 23 25
o‘ ; 7 11 20 23 25
0O 1 4 10 18'/32\\22
0O 2 7 13 21 22 25
0 -2 3 10 16 21 25
8 O 1, 4 9 15 22 32 34
o -6 1 5 12 25 27 35 41 44
1o 0 1 6 10 23 26 34 41 53
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speed. we could examine a larger number of eiements.

Ther; i{s, however, ;nqjanomaly in the'ar}ays presented -
in [23]. which is the case for eight elements. In this
particular case, the array identified by Lang et al. extends
over approximately thirti-six unit sEEEings. while -the array
we present,. extends over only. thirty-four unit spacings.

The thirty-six unit array has ten holes in the coarray and

" the thirty-four unit array has onlyleight. It is clear

that, in this instgnce. their algorithm éid not reduce to an
optimum nonredundant array. although the sensors still lie
on a grid which is spaced at approximately integer multiples
of the smallest spacing. ¥We conclude for.the case N equal
to eight, the algorithm ;f Lang et al’ [23] would have
required more than a 400-point grid for convergence to ;he
optimum array and fherefo;e greater computational effort.
Recently., optimum nonredundant arrays have been found
by other résearthers. such 2as Robertson, working in Very
Long Baseline Interferometry (VLBI), using an algorithm

similar to the one just described, [36. 37. 40]. These

works denote optimum nonredundant arrays as Golomb Rulers,

named by M. Gardner after Dr. Solomon W. Golomb [40]. .To
date, the longest known Golomb ruler consists of 15 elements
and is 151 units in length. [37]. found by James B. Shearer
of the IBM Thomas J. Watson Research Center. The problem

N
would now seem to, be beyond the scope, of general purpose
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computing machines. Dr. Robertson. [41]. has pointed out
the need ~ for dedicated érchitectures in u_furthering the

search for these structures.



CHAPTER 3

BOUNDING THE ERROR OF TARGET LOCATION

In this chapter., a model of the direction of arrival
estimation problem is formulated. The array structures of
the previous éhapter are characterized in terms of lowsr'
bounds on the mean ‘square error (MSE) of wavenumber
estimation. We begin by considering the Cramér-Rao Lower
Bound and‘applyingtit to a general linear array. WVhile
_results of practical value are obtained for high'eigmental
signal-to-noise ratios (SNR). the bound is definitely found
- lacking f;r lower SNR. This observation lead to the use of

a recently ©proposed lower bound on MSE for random
- Eant

parameters, develcoped by Weiss and Weinstein [27]. The

results of this technique provide some fresh observations on
. g :

the usé'of nonuniformly spaced arrays. -

3.1 The Estimation Problem

%

# As was shown in the introduction, Chapter 1, angle of

arrival estimation is equivalent to the frequency estimation

36



~of =a complex sinusoid in additive white gaussian noise
(AFGN). We formulate the problem specification in this
section,. and define the terms to be used.throughout the
remainder of this thesis.

Given the sensor locations { Xi. Xzgo on0- o Xy } . the
radar operating wavelengfh A , the amplitude of the
returned signal a , and the anéle of the target from
borésight ¢ the signal at the various sensors can be
modellgd‘ in dnathemat_:ical terms. W'e take boresig_}_;t to be
broadside to the array. with positive ® being meaénred
toward the axis of increasing x.” We further-a§sume }hat'the
target is at a sufficient range to modelbfhé propagat;ng
signal as a plane'wave. ' . ’

With the previous definitions. the sig 1 at sensor

position X; .can be modelled as a complex scalar

s, = a 'exp{j(8 + 2rsin(¢)x /X)} ' (3.1)

where 6 1is an arbitrary unknown phase shift.

We define Lk , the projected wavenumber, to be 2w.sin(¢)/x{
wvhich may be viewed as a‘ spatial freqﬁcncy. ;t is

conve;ieqt to express all terms in a normalized scale. A
useful norqaiization iould be to measure the X in units of

A/2 . This, in turn, provides the wavenumber as r sin(¢).
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This conveﬁtion ‘'will be -employed. henceforth. For %he
arrays considere&. the minimum spacing 1is typically to be
A/2. corresponding. in the normalized sqalé. to 1 unit. The
wavenumbg£ may then range over the interval (-7 . 7 ).
Let a = {( a,. az. aa)T = ( k., a, 6)T represent the
parameters of the targer, where‘(-)T denotes transﬁosition.

This =allows the vector of received data to be written

compactly as ‘ -

s{a) = { s,. sz.a.;. . Sy )T.

The receiver noise is AWGN, modelled as a complex term,
where the real and . imaginary components are scat§scic£1l{\
independent, each of'zero mean and variance oZ. They are
also considered independent from sensor' to sensor. .The

vector of sensor outputs 1is then written as

z = s(a) + w (3.2)
where w represents the vector of noise terms that are
independent from element to element. We define the SNR as
the elemental signal-to-noise power ratio, TI. For the

- .

, -
problem just described this corresponds to
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a®/s(20%) (3.3)

The problem of interest is to estimate one or more
parameters of the target, denoted by the vector a ,-given
the vector of N sensor outp;ts. z. We consider  the
receivér 'nbise. to be a measurable quantity and therefore
known. ¥We are primarily concerned with the estimation of
the target wavenumber, which is explicitly related to its
direction of arr;val.

As remarked earlier., the arrays are all normalized to o

minimum spacing of 1 unit. The wavenumber is considered

limited to the interval (- , 7 }. In general, additional
R 1

- ] / 3

information may be known about the target location. The a

priori knowledge may be used to improve the estimation
accﬁracy. For example, if the minimum spacing is actually
less than A/2, say A/4 , this translates to a reduced region
<

of wavenumber range, namely (-w/2 , w/2 ). There are still
other ways in which a priori knowledge may be derived. It
mdy be. the illdmination function is restricted to cover only
a portion of the visible‘regiqn. or the sensors themselves
are directive. These forms ofla. prioritknowledgé will
provide .improved estimation of the farget location.

I1f the wavenumber is considered .a random parameter,

knowledge aboutr the target is specified by the a priori
d .
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probability density function (PDF); We let Lk take on any
value 1nside_tﬁe 1ntervall( kn' kx) with equal lfkelihood;
that' 1s, the PDF may be considered uniform over this
interval. While the nature of the problem may indicate some
information a£out the phase is known, for the sradar type
prdblems considered, we will generally assume no a pri;ri
knowledge of thcuphase.

¥ith the proﬁléh describ;d. we may now proceed to bound
the performance of estimatérs used to determine the
wavenumber from a set of ‘m-easur.ements_; made at a g;_-neral

linear array. . -

3.2 The Cramér—-Rao Lower Bound

The. use of the Cramér-Rao Lower Bound (CRLB) to
degermine the perform;nce limitations . .of‘ wavenumber
estimators is well described in _ the literature, see for
example [38, 25, 43]. The bound has begn'clearly documenteé
in [44]. where its special considerations are described.
-F;r these reasons, we will simply stateifﬁe results of the
bound aga apply. them te our problem. We follow the
proéedure of [38]. fhe osgervafion;' &aqé in the latter
-refereﬁce are here generalized to nonupifbrh arrays.

The PDF of the ,received data, =z, given the actual

parameters., a, is defined by
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. p(Z/a) = {2702)-Nexp{ - Nz - S(a) "2 } (3-4) )
) 202 :

1

where ll*ll denotes the norm of'&pe vector enclosed within.

The Fisher information matrix, J ., has terms Jij given by

-

¥ .
a : a '
Jij = E{ EEI In p(z/a) EE; In p(z/a) } (3.5}
where. E{+} denotes expectation. The CRLB for wunbiased
estimato;7fcan now be written as -
- 2 ii ' ‘
E{ (e, - a)® ) 2 3! © o (3.6)

[-d

wiere Jii is the ith diagonal element in J-l.

-

The .Fisher Information matrix\pis a form similar_to.

that given in [38]. as‘sﬁown by

_2FV 4] 2re
. J=1]0 N/ . O (3.7)
2rp 0] 2TV
- .
. .
where P = = Xy : V = 3 x? and I' is the elemencal SNR.

If a parameter -i% known, rather than one to be estimated,

. the ,appropriate row and column are simply removed from the
' - 3

—
-



- matrix J; . The resultant bound on the accuracy of

-

.wavenumber estimation for unknown phase becomes

E{ (k - k)% } » (2rs)~t - (3.8)

-

whé}e the spread is given by S = 3 (xi - C)z. and C .is the

centroig given by P/N.

We can now make several §bseryétions sjmilér to those
ﬁade in [38]. ' First, equation (3.8) is the correct bound
whether or not the amplitude is assumed to be known. The
fact’ tha |

t that knowledge of the amplitude does not improve the

ST

bound is quite significant. It indicates thaf the amplitude
need not be considered a randoﬁ par;meter. Also if P = 0.
then (3.6) reéu;es to (3.8) whether or ﬁqt the phaSe. 8 . is
‘known a priori. That is., the CRLB indicates no change in
performance.if the phase is known at the centfoid of the
array. Since S A{; independent of the absolute location in
space of-the a}ray. the CRLB is also independent of absolute
position. ‘ | -

This boupd then provides a technique tojlompare the

performance of two different array structures. For a given

specified MSE, we are interested in determining the saving

in SNR associated with two different arrays in achieving

this specification. Let S, and S, be the values of S for

At
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.t;o different #rray syructures. Then.-thé ;aving-in gNR“can
be detefmined'as’a  atio givgn b.y-Sz./Si_T We definérthe
 "Sampling Gain”, SGi" of an array as 'Ehe saving in SNR
reqﬁired to achieve the ‘same MSE performance as the

corresponding  uniform arfay " having the same number of’

clements. Clearly. the greater Sg.. the better the
1 . .
performance, The spread, § , for a uniform array having
interelement sﬁacing_of 1 is equal to N(N®-1)}r12. ~We ‘may
- therefore define the Sampling Gain-.as - o
. : -
‘\r- ) l . !
A » ;o 3(x -C)?
Sg = (3.9)
N{N*-1)/12 '

It is interesting to observe that it is the "variance”
of the element positions and not simply the aperture which
governs'--the performance. In general, we may have an array

defined on a larger aperture and yet not achieve the same
‘ ' \

sampling gain. Consider the S-element unrestricted array of
- Leech [14]. compared to the 8-element nonredundant array
provided in the previous chapter. “Ihe unrestricted array

spans an aperture from O to 39 while the nonredundant array

- »

spans only 0 to 34. Yet the éampling gains for the two

arrays are 25.0 and 30.4, respectively, {(or 14.0 and 14.8

dB). Thus, despite the lower span of the  nonredundant
: . /

array, it offers a sampling'gain of about 1 dB in excess of



that produced by Leech’s unrestricted array.
We observe from (3.8) or (3.9) that the CRLB does not
imdicate ~any tradeéff in performance for different array

structures. - Indeed._the CRLB tells only a portion of the

Wholclsfory. For instance. doubling the separations between
‘ _ .

all the elements in 2 uniform array would clearly increase
S. However,. this also introduces grating lobes. These
lobes correspond to ambiguities in the estimation procedure.

Such an-effect is not accounted for in the CRLB. Another

issue of concérn involves knowledge of the phase at the

centroid of an array. This can, in fact., provide additional

information which would- improve the estimation. Consider,

for example, a 2-element array (interferometer) operating art

high S&R. If the measured data is (-1 , 1 )T. being
consistent with a wavénuﬁber of —ﬁ or +7 , that is end-fire,
\%}owledze of the "phase at the gentroid would clearly
indicate which direction is correct.. Wi;houg this
knowledge., "eéither direction is poss{ble: hence, no real

decision may be made.

There is another difficulty. namely. the fact that the

CRLB requires the estimator to be unbiased. In general, for
2 nonlinear estimation problem, there may not exist an
unbiased estimator. Unfortunatgﬂy. the CRLB for biased’

estimators requires knowledge of the bias function: this

makes it unsuitable as an estimator-independent bound.
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_ Finally. :tHe addition - of a ‘p£iori' inf&rmation.
ﬁarticulariy with ﬁniform PDF's, {5 essentially invalid, as
certain regularity conditions..would be violated. The
;equired conditions on ihe result to be a valid bound are
presented in [44]. . An important manifestation of .thig
effect is the 1;w' SNR region. Since the wavénumber ﬁas
limited to a finite interval, this 'perﬁits‘ the use of a
sampled - aperture, Therefore, any estimator would ‘onli
search over the interval in which the wavenumber is assumed
to lie, for example (-w, w). For very-low SNR, where the
estimator may be making random selections, we realize that
ghére is ‘an upper limit to .- the MSE. The CRLB would,
however, approach infinity as I = 0. This 1is a direct
consequence of the inability to introduce the search limits
(a priori knowledge) into the CRLBE.

These limitations in the CRLB require us to search for
an alternétive bounding technigue. ¥e wish to find a bound
on the ﬁySE of the parameter that is independent of the
esti@ator. (holding for biased or unbiased estimators). In
addition. we would like the bound to be able to make use of
any a priori information that is available. It is precisely
these considerations that lead us to apply. in the next

section, a recently developed bounding technique to the

wavenumber essimation problem.
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3.3 The Weiss—VWeinsteih Bounds

Recently. a new technique for lower bounding the mean

square error of a random pdramgter estimator has been
. -
d?veloped [27]. 1t does not have the regularity é%sumption
fequi;ements -of the Cramér-Rao Lower Bound, nor is the
estimator required to be-dnbias;d. In general, however, the
B;und may become ;omputationally i;tensive. We will show
that for our wavenumber estimation problem, the bound can bé
implemented with ﬁ three-dimensional ;earch. providing a
significantly tighter result than the CRLB.
-- In addition, the Weiss-Weinstein Lower Bouné {WWLB)
allows us to make use of any a priori information available.
Wé show that the bound lies ;ithin 0.5 dB of the.achievable
;HSE]at low SNR. and is identical with tﬂe CRLB at high SNR.
As, the bound is "so recent, we repeat the derivation
provided in the original paper [27] in Appenqix A to verify
some of the intermediate steﬁs not included in the
correspondence. This wili_also permit our 1mplementatioﬁ of
the bound to be consistent with’ the notation used in this
thesis. Appendix A also contains the application: of the
bound to the wavenumber estimation problem -since this is
initially alge?raicaily tedious. |

L

The wavenumber k and the phase 6 are. considered random
° .

. parameters. We assume no knowledge about the phase.
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However, we assume that the wavenumber is restricted to lie
in an interval ( kn. kx). a subregion of (-w, w). . with
‘equal likelihood. Then as shown in Appendix A, equafion

(A.31)., the WWLB on wavenumber MSE is given by

E{ (k-k)2 } > h,2/Q T (3.10)

where Q = H(h,) [exp{ 4Iq®c(h) }+ exp{ 4T'{1-q)}3c(h) }]
B H%(h,) '

2H(2h, )exp{ 2rq(1-q)(2c(h)-c(2h}} }

(3.11)
H*(h,)
c(h) = ¢ hy. hy ).
N ..
= N = ) cos(hyx, *+ ha). (3.12)
i=1
and 1 - |a|/(k_- k_}. a|l ¢ (k.- k
, I A s L
0. elsewhere .
The required search regions for the parameters are
-r £ kn £ kx < T - (3.142)
0 < hy < (k- k) (3.14b)~
-r ¢ hp.{ 7™ (3.14¢)
O 0<q¢ #% (3.144d)

]
S

Equation (3.10) is a bound for any values of h,.'hz.
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aﬂdﬂﬁ,- The tightest bound of this .class {s then found by
maximizing the right. side of (3.10) with respect to- the
threeif}ee parameters, always requiring therthree conditions
.of (3.14)“t§;b¢ satisfied. From (3.19) through (3.14) we
notice Ihat.the bound is in@ependent of the actﬁal values o{

k or k . it 15 just dependent on the size of the interval

i 3

they span. Finallly. as shown in Appendix A, in the region

(k.- k )f2 < h, (k.- k). the maximization with respect to
X, n x n

q will always oceur at q = %.

It is also shown in Appendix A.3 that the bounding
- .
technique is independent of the absolute array position.

Section A.4.1 demonstrates the low SNR results are within

0.5 dB of . the attainable performance. We also show that the

»

previously developed CRLB of section 3.2, as apﬁlied to our
¢ ] : .
estimation problem, is an asymptotically special case of the

WWLB for high SNR.

3.4 A Tvypical Result and Implications

: N
We display the results of the WWLB in Figure 3.1 and

provide the CRLB results for comparison. The configurations
used to compute the results are the S-element uniform and
nonredundant arrays described in Table 2.1 and 2.2 of) the

previous chapter. In both cases., it is assumed that the

target lies 1inside " the interval [-wv/2 , #/2] with equal
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Figure 3.1: Comparisen of WWLB and CRLB for

uniform and nonredundant arrays.

20

g-element -



. ' ' 50

>

probability. A_we notice that at high SNR. the bound is
coincfdent with the CRLB. At low SNR, the bound #ccuratply
reflects thé-perfofﬁance of the minimum ;ean square ;rror
estimator (within 6.5 aB). which is identical for b@th“
arrays. That is, the estimator that always chooses the

;&époint of th; interval will ip fact.have a MSE Fqual to
0.822 rad®, while our bound provides 0.73 rad®. ]
) _P;rhaps the most»significant result of the new bound is.
the ‘threshold’ effect. As the SNR decreases the MSE
Py . > : : -
increases inversely with SNR untid a critical -gsdnt is
reached after which it -rises dramatically. eventually
levelling off as the SNR gets very low. This critical point
'is termed the threshold SNR', and is commonly ‘defined as

&

sthe point for which the MSE has risen 1 dB above the CRLE.
The existencé of this effect is well known in nonlinear
maximum likelihood- estimation [25. 38]. To the auchor:s
.knowledge. the threshold éffects for nonuniforﬁ arrays have

-

never been evaluated in fhe literature:..nor have any
tradecffs been established. In fact. Figure 3.1.iﬁdicates
that atr° high SNR the improved performance of the
nonredundant érray is .penalized by a larger threshold SNR.
iThat is, we require a larger SNR for the system to reach the
performance bflthe CRLB. The crossover point, fog which the

curves indicate identical performance. lies between the two

thresholds.



"effectively inc¥ease the SNR. If the reﬁuirement is that to
. : .

- h
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- For low SNR conditions, it is often possible to improve
the results. by observing the array for longer periods of
s ’ ' .

time. In this way, by observing more than one ‘snapshot’,

4

the data may .be averaged in "an appropriate' manner to.

operate on the linear portion of ‘the curve (log scale), then

the threshold penalty translates to a larger number of

required snapshots. However., once this is achieved. the
performance increase may be 'significanc. We will now-

consider an example using the results from Figure 3.1 to

indicate‘thé trade6ff. )

" The 8-element uniform and nonredundant arrays have

’

respective thresholds of —3.4'an§ 2.4 dB (ffomAFig. 3:1).
Using L ‘snapshots, and _for ' a&di;%ve. -thte gqu;sign
receiver ﬁdise. ind:pendent from one‘sensor #o another, we
may consider the SNR to improve by a factor of L.- If ;He

receiver were gperating below the threSthds of both arrays.

then it would require about 4 times the number of snapshots

]

to reach the. linear Rg:tioh with -the nonredundant-array as .

compéred to the uniform array. However, at this point, the
performance would haye improved bﬁ_a factor of 30 in -MSE,

{the sampling ga{n SG of " the nonredundant drray is 30 ‘or

14.8 dB). Conversely, if the specification were to obtain a

certain MSE. which was beyond the thresholds of both arrays,

the uniform array would require 30 times as many snapshots’

°

X
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to.AChieve the per{ormaﬁce of the nonr;dundahf array.

The ﬁ;epeding discussion reduces to a simple tradeoff
based upon the expected 6r ;equired dﬁeréiing coﬁditions.
For the S-element érrayé considered. there is a region-of -
SNR for which ftie uniform array will outperform the
nohredundant array: However, at high SNR (abo;e threshold),

or if sufficient averaging (observation) is acceptable, the

nonredundant array outperforms the uniform array.
» . '

3.5 The Effect of A Priori Information - ' _ /)
\

We géw_conside; the effects of Ai{fereﬂt amounts of a
priori knowleage. Using the sﬁme arrays as described in the
previous section we compare results for which thé region of
anenumb;r. k ¢ (-awr., aw) -, and parametér‘ a vgries from
1.00 down to 0.03. These results are presented in'Figure’3.2
for  che ‘S;element unifo;; array and Figqrel323 for the
. S-element nonredundant afray!

Exceﬁt for the éaselgf a = 1. we see that forxbéth
arrays the WWLB bound on MSE eventually coincides with the
CR%B for a sufficiently high SNR. Therefore,. Fhe a priori
knowledge effectively varies the threshold point. but not
the high SNR ﬁerformance. ~ If we make the analogy‘ with
time-domain samplisg.then for the case of a = 1, we are

+
sampling at a rate exactly equal to the Nyquist rate [1].
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A Priori Knowledge with WWLB, NR—8
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Figure 3.3: Effect of a priori information on the 8-element
nonredundant array based on the WWLB. ‘
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The'Sampiipg'theorem normally applies for'aq_infini:e number
of samples, But, in our  case, we are 'specificaliy
intgrested in finite numbers of samples. Since the signal

is assumed to lie anywhere in ‘the band . {(-7. 7). there is a

"distinct problem at the ends. For =z restriction on =a

Ky

such that a < 1, there will occur -an-?SNR for whifh
perforﬁance will againlreach the CRLB.

The reason éor the sudden departure as a - 1 , cén be
understood as =an aliasing problem.r For infinite SNR. only

the values for k = . m are ambiguous. At sufficiently high

" but finite SNR. we can consider the CRLB to .be "

rTepresentative of the error. The MSE increases
proportionally with decrease in SNR. For targets having
wavenumbers close to the ends of the interval, at a

sufficiently low SNR., the error in estimation may indicate 2a
value ju;t slightly greater than . This can only be
interpreted in our sagplgd system as a value slightly
greater than -w; -the effect is similar to that kngwn as
aliasing. This would .then translate to an extremely }arge,
er}or“ manifesting itself as a tremeﬁdaus increase in MSE
"for targets ﬁear end-fire { k near *e-r }. whereas targets
not near end-fire would have comparatively‘minute errors.
These résults indicate the need to either oversample
the field or find some other way of increasing the a priori

‘kﬁowledge. As pointed out in section-3.1. oversampling can

7 -
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be.modelled as an increase in a priﬁrf knowledge. It is
in;e;esting to note ;hat'the.nonfedunﬁ%ht array, will require
less o%ersampling than the corresponding uniform array. For
exampfe. the 8-element unifermyarray-will operate pooyly_in
terms of MSE for "elemental SNR less than 10 dﬁ.when the
system is pushed to operate out to :0;98v (corfesponding to

oversampling at’ 1.0204 ﬁime§ the Nyquist  rate). ° The

- -

gonredundant arraj will perform admirably in this condition.

While this difference might be considered trivial, as a

discriminator between arrays., it is nevertheless an

/

imporcant'consideration in an operating environment or when

an a:%ay is being characterized by simulation experiments.
The WWL# then provides us;ful insight, quantifying the
amoﬁnt of a priori knowledge required. It also points out
that when a sys‘em is making consecutive estimates of a
target’s location. the resultant estimates ?houldhprobably
.not bhe averaged to obtain an impfoved est;mate. but rather a
median estimate would be better. If not for all SNR and all
values, at least for those -conditions for which the: WWLB
indicates significant performance” degradation may ré;ult.
such as those values near‘end—fire. |
We now turn our attgntion to the-dpposite end of the
scale for which we have significant amounts of a priori

information. The normalized wavenumber beamwidth of the

array 1is defined as 2w7/A., where A is the aperture of the
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array. W;'notice ffoé\?iguré 3.2 for the é-elemeﬁt uniform
array that the 'threshéld E?fect' v&nishé#'for those cases:
for which the target is cénstrained'{o lielin an interval
less than (-v/8,. 1)8) which is approximatol; the beamwié;h
definitiE;. That is. 1if the targét lpca;ion is k;owﬂia
priori to within a ¥% beawmwidth, there will be no evidence of
a threshpld SNR.' The identical outcome mayfbé observed for
Fhe 8-element ndnredundaﬂt.array as shown in Figure 3.3 for
which the aperture is 33 unit§. The threshold vanishes éor
intervals less than‘ut (—‘::-/33. T/33).

| For’ constraints greater than a beamwidth and yet not
‘excessivély close to the maximum visible range, the ‘\
.threshold variés in a regular manner with the amount of o
.priofi knowledge. For comparison purposes. we do not wish
to cho&se either of- the extreme cases:‘ hénce, the next

section uses . the case a=0.5 for evaluation of the

different array structures.

.
-

3.6 Comparing Some Array Structures

Several different array structures are evaluated for
threshold end sampling gain. Ranging from 5 to 10 elements,

we choose one representative from each category of uniform

-

(U}, minimum redundant "(MR) and nonredundant .{NR) as

v .
described in Chapter 2. Certain unrestricted (UR) arrays

’ .
A -

- MR



. -

are also prt::ntcd for' those element numbers for which-
i

neither the midimum redundant nor nonredundant array has the

- property of the unrestricted array. Table 3.1 describes the

particular arrays chosen. %

For céch of‘the afrays af Table 3.1. we determine the.
high'SHﬁpperfbrmance'as predicted by the CRLB. The results,
presented in Table 3.2a. are éﬁo;ed for a 30 dB SNR.- The

Sampling Gain, SG . as defined 1in section 3.2, Dbeing

-relative to the uniform array having the same number of

elements is also recorded. The_threshold SNR for each array
is listed in the fiﬁal column of Table 3:23. determined from
the FWLB for which the waanumber was assumed to lie in fhe
interval (-7/2. w/2}. Tﬁis point was obtained by first
generating the boﬁnd versus ‘SNR én é curve sampled evéry 2

dB. Upon ' approximately locating the threshold, the

procedure was repeated with a 0.1 dB step. The threshold

point was chosen as the value for which the WWLB exceeded

the CRLB bw» 1 dB. From this set of results, the value
~ h

providing the closest approximatioh to the 1 dB threshold
was chosen. This will then locate .the pred;cted threshold
to a.O.l dB aqcuracy in SNR. {or about 2.3%X). We have also
inciuded the 16- and 32-element uniform arrays for
comparison. . ' ~

It is immediately clear that the uniform arrays have a

lower :hréshold SNR than the other arrays considered. The
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Table 3.1

. ‘. " Arravys to be Evaluated
No. of . _ . . Location . " Array
Sensors ¥ . : Property
5 o} 1 2 3 4 ' o~ 4]
0 1 4 7 9 MR
0 2 7 8 11 : : - NR & UR
6 0 1 2 3 4 5 : u -
0 1 2 1) 10 13 ' MR
0 1 4 10 12 17 NR & UR
7 0 1 2 3 4 S 6 9)
o 1 2 6 10 14 17 - MR
0 6 9 10 17 22 24 UR
0 1 4 10 18 23 25 NR
8 4] 1 2 3 ’ 4 5 -.86° 7T '_ U
0 1 2 11 15 18 21 23 MR
0 8 18- 19 22 24 31 39 UR
0 1 4 9 15 22 32 34 . NR
s o0 1 2 3 4 '5 6 7T 8 U -]
0 1 2 14 18 21 24 27 29 MR & UR
0 1 5 12 23 ~27 35 41 44 NR
10 0 1 2 3 4 5 6 7 8 9 U
0 1 3 6 13 20 27 31 35 36 MR
-0 T 22 27 28 31 39 '41 57 64 UR
0 1 6 10 23 2634 41 53 55 NR

Propérty Terms from Chapter 2
U Uniform
MR Minimum Redundant
UR Unrestricted
NR Nonredundant

[

»



Sampling Gain and Threshold

Table 3.2a

i~

Comparison

No. of
Sensors Type

- MR
NR & UR

MR

NR & UR

MR
UR
NR

MR
UR
NR

MR & UR
NR
10 U
' MR
UR
NR
16 U

32 1§

2}

(=772, w/2)

Using Elemental SNR, T

Arréyf Aperture .
Length

29
44

9
36

64
55

15

31

Mse (dB)=
@ I'=30dB

-43.
-50.
-52.

-45.
-54.
-56.

-47.
-57.
-=59.
-61.

-49,
-60.
-63.
-64,

-30.
-63.
-66.

-52.
-65.
© -68.
-68.
-58.

-67.

- =10

~NON NAWO QW

b W Wo=1 N -} N D

Sampling
Gain (dB)

= (0O 0 ~O
=] O

-
W oo

WO OO WONO = 0O MNOO
3

11.
14.
14.

12.
15.

0.0

0.0

'Arrays correspond to those listed in Table 3.1
MSE as determined by CRLB @ 30 dB elemental SNR
3 Threshold elemental SNR determined by WWLB for k e
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'Thresholda

SNR (dB)
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8-, 98- and 10-element arrays have approximately a 5.0 dB.

lower threshold than the minimum redundant arrays, - The
improved perforﬁance at high'SNR of the minimum reduidant
arrays grows from 11.7 to 13.5 dB over the uniform arrays. .

The minimum redundant arrays always had 'a smaller
threshold value, but provided less Sampling Gain than the
nonredundant arrays. ‘For element numbers 7 to 10 the
minimum redundant placements provided- from 0.4 to 1.2 dB
lower threshob&s. However., for this price. the nonredundant
arrays provided from 3.1 to 3.5 dB of increased performance
at high SNR.

Therefore, £o} these arrays we have a -tradeoff
situation. These results provide the radar system designer
with the ability to tradeoff some threshold SNR for improved
performanee at the higher SNR values. The choice of the
appropriate array would now depend upon the particular
application being considered.

There was an interesting aﬁomalou% behaviour with the
unyestricted arrays of length 8 and 10. In both cases’
coﬁpared to the nonredundant arrays., the unrestricted arrays
required an aperture approximately 15X larger. had a poorer
threshold by 0.3 and 0.4 4dB. and yet_provided about 23% and
7% less improvement at high SNR. It seems that in these

cases, there does not even exist a tradeoff condition. One

can simply state that, the 8- and 10-element unrestricted

—~—
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arrays, conéidered here, . aré a poor choice of element
placement; In all measured respects, the compéréti&e‘
honredundant'arrays outperformed these ﬁnre§tricted:ones.

We therefore conclude that careful placement of the
elements is critical for performancé. That ‘is. increased
Sampling Gain 1is not always .at the expense o¢of increased
threshoid SNR.

To compare arrays h?vrnindifferent numbers of eiements
is somewhat more difficult, For the elemental SNR, TI. the
total SNR of the gathered data is NI', hereafter referred to
as the array SNR. Wh;n arrays compfised of different
numbers of elemeﬁts are cémbarea. the. array SNR varies as
well as the array structur&l Consider, éor example, Any 5-
and 10-element arrays for I' = 30 dB. The 5- and 10- element

arrays have respective array SNRs of 37 and 40 dB. or in

[ ]
+

other words, there exists a difference of a factér of 2 in
the total received signal SNR. Suppésefa 10-element array
was created by placing 5 additional elements ‘on top of' 5
uniform elements. The array structure would be unchanged
and yet the threshold performance woﬂ?& improve when
measufed by the fixed elémen:aL SNR. The question of the
impact of "the array structure &tself on the perforﬁance is
then not clearly answered. To separate the effect of

increased SNR from the effect of the structure itself, it is

useful to compare the results based upon a fixed array SNR.

P - -
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Tth-exgrcise As instructive in understanding the effect of

-the array structﬁre glone. ol
This aiso. addresses rthe ‘éffect of pf0portioning the
t?tal SNR 4n dt}ferent ways 1hc1uding th§ use of a larg;r
nqﬁb;r of elements of perhaps inférior‘ qualicy. In
ﬁracticg. we:can comp;;e syééems in which'the\convefsion
loss of the first set of mixers may be 3 dB worse (which may
be much less .expensive). but twice as .many elements are
used. Similar specificafions on Jlow-noise front-end

amplifiers c¢ould be exﬂ&essed' in this way. The cost
g

analys;s'may.bexéfgnifiégnély.more complex than this when
cﬁn%idering' different numbers of ‘;lements in a fréal‘
system, therefore an appfeciation of the actual effects of
the structure must be’ obtained.
To facilitate this‘measurement. we . provide fable 3.2b,
e

in which the comparison is made using the array SNR, NI, in

place of the elemerftal SNR. The MSE is éompared'for a given

array SNR and the threshold SNR 1is also measured {n thif.

ﬁuanxity. If we now' consider the MSE for tﬁf uniform
arrays, we find that it decreases-with increasing number of
elements. That is. the total SNR has been spread over a
laréer r;gion and the MSE has been improv?d. For N large,
we see from equation-. (3.8) éhat the uniform érrays will

improve by 6 dB for every doubling of N for a constant array

SNR. For a constant elemental SNR, the improvement is 9 dB

\

f

-
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Table 3.2b -

Sampling Gain and Threshold Comparison
Using Array SNR, NI :

No. of Array! Aperture Mse (dB)? Sampling " Threshold?
Sensors Type Lquth @NI'= 40dB Gain (dB) SNR (dB)

5 U e -46.0 " 0.0 3.0
MR 9 ~-53.7 7.7 10.3
NR & UR 11 -55.1 9.1 10.35
6 U 5 -47.6 0.0 4.3
MR 13 ~56.6 3.0 10.3
NR & UR 17 -58.8 11.2 11.0
7 . U ' 6 -45.0 0.0 5.1
N MR 17 -58.8 9.8 11.2
UR 24 -61.1 12.1 . 11.0
) NR 25 -62.7 13.7 11.4
S U 7 -50.2 0.0 5.6
MR 23 -61.9 11.7 10.5
UR 39 ~-64.2 14.0 11.8
NR 34 -65.1 14.9 11.4.
9 U S -51.3 0.0 5.8
MR & UR 29 -63.7 12.4 10.8
NR - 44 -67.2 15.9 11.8
10 U - -52.2 0.0 6.1
MR 36 -65.7 13.5 11.2
UR 64 -68.5 16.3 11.9
NR 55 -68.8 16.6 11.6
16 U ! 15 ~56.3 0.0k 6.7
32 U 31 -62.3 0.0 .3

Arrays correspond to those listed in Table 3.1
MSE as determined by CRLB @ 20 dB array SNR, NT

Threshold array SNR determined by WWLB for:
kK e (-v/2. w/2) :

2]

Q

*
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for every doubling of. N. The majority of the improvement
quofed in Table 3.2a, 15 therefore from the array structure
change and not from the iﬁcreaéed SNR. Interestingly, the

improvement for the nonuniform_ arrays is even greater than

. that determined for the uniform arrays. The minimum

redundant and nonredundant arrays grow3approxiﬁ;tely as N*-
iﬁ 'aperture while thé uniform arrays grow as N, This
accounts for the increase in performance. ' ’

The fh:eshold effect does sotdindicate the’ same trend
as the MSE.. For_ a ‘given' array SNR. the threshold SNR

increases with N for the uniform arrays. Therefore, "for the

———

uniform Structures, the .sprgading out of the SNR
deteriorates the threshold phenomenon. However, for a fixed
elemenfal SNR. the threshold still improves with N. That
is, the increaﬁed total SNR. overcomes the effect of the
larger array geometry, see Table 3.2a. The nonu;iform

arrays behave similarly in this respect. The minimum
redundant and nonredundant structures generally have larger
- . R \\
\
threshold SNR wvalues as N increases. However., for a fixed

Ve
elemental SNR. the threshold value decreasgp’?t{h/&ncreasing
N. ) e

I

(.
\



CHAPTER 4

SINGLE TARGET NAXIHUH.LIKELIHOOD ESTIMATION
7

— — =

Contrasting the: bouqding -approach of the previous
_chapter.' in this chapter ‘we examiné"the performance of
vari&ds liheﬁf afrays using‘the maﬁimum‘likelihood estimator
(MLE). VWe follow a similar apbroach to that given in [38].
where the concepts were developed for uniform arrays. Many
of theoériginal ideas are generaliied{to be made meaningful
for arbitrary linear array structures. The implementation
of the estimator is examined .from a statistical viewpoint.
The probability density function of the wa;enumber enror is
examined through computer simulation experiments. Empirical
characterization of the error process len&s'uaefql insight
to the performance of the variﬁus arrays. The results of
‘this chapter‘should provide an accurate and practical guide

to performance tradeoffs.

4.1 Maximum Likelihood Estimator Derivation

The estimation problem has been described in section
: !
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3.1. where the majority of the terms have been defined.
Briefl}. the problem is the determination of the wavenumber,
k. «from noisy data. We assume the zmplitude, -phase and

wavenumber are unknown parameters. The wavenumber is

assumed to lie in an interval { kn' kx).‘where'

“

' T < kn,< k < kx {7 (4.1)

. f' ! T

We let @, be the vector of target parameters, (kt' a.. Bt) .
and a- be the maximum likelihood estimate of a, . We find

. -
, .
-

it convenient to define the vector

y(k) = (exp(gkx,). exp(jkxa). ... . exp(ikxy))|  (4.2)

The vector of received data from the N sensors is

z = s(at) + w
= a exp(j8 Jy(k.) +'w (4.3)
V4
where ' w is the N-dimensional complex vector of white
Gaussian, zero-mean noise, with the real and imaginary
components statistically independent. The 1probability'
density function (PDF} of the data, given a set 'ofl

parameters, is



ER—

p(2/a) = (270%) Nexp{ - L2 2@l 1 4 (4
I : . . 202 .

The ML estimate is the value of « that maximizes the right
side 65 (4.4).. Im our situavion, it 'is a constrained
maximization for k_ < k < kx; Equivalently, wermay miniﬁize
t z - s(a) N%. If we let ¢ =.a-;kp(j6) .be the complex

amplitude, then the objective is to.minimize
< . .

1
. ‘\J . . . ’ . “" -
§ ' A=z - cy(k) u? (4.5)
; -

This can be minimized with respect to c :(see [46]) by

"noting that at the minimum, say c¢. the projection of the

~

"error vector, z - cY., is normal to the surface cy. as shown

£«

by

-

(cy)H(z—cy) =0 ' ¢ e C (4.6)
’ 2
-« - * -
Since ¢ is a free parameter, which specifies the surface, we -

' have\%:\ & | ' 1 %

*

.~

H ~ H ' .
: " (y z-cy 'y) =0 : (4.7)

~

This providEs the, solution for ¢ as _ -

=28
r
o



. 69
§
: c=ylz/ N
N L]
. 1 . . :
. =+ ) z exp(-gkx,) (4.8)
i=1 .
where we make ﬁse of the fact that yHy Q N. This solution

~

for ¢ is then substituted -into (4.5). which requires the

minimization of the quantity:

" A=l z - ysz/N ne
- « L
- = 2z - ZByyHa N -
0 . . X
g2t .. H =2
= Nzil® - Ny zU*/N (4.9)

i

v

-4

Equation {(4.9) indicates that the minimum,qf the objective
fugetion is realized when HyHiﬂz is maximized.  The ML

estimator reduées to maximizing

._.\\ ‘
. ‘ Vo )
A H 'Tt_Z‘ -

= Iy
_\N X 2.
v N
5 = 2 ziexp(jdkxi) (4.10)
i=1 T :
’ A Y
with f&ﬁpec; to the wavenumber, k. ‘The other parameters may

then be obtained directly from equation {(4.8}).

¥hen ihe x; are uniformly spaced., expression {(4.10) can

£ ~
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be recognized as :Ee discrete Fourier .trahsfg{m' of the
received data z: it may therefote be evaluated using - the

fast Fourier Transform algorithm. If the x are not

i

uniformly spaced. but lie on an integer grid, the summation
may still be evaluated uéing the Fast Fourier Transform.

‘Specifically. the received data vector is padded with zeroces

wherever a sensor location is "empty’. .

’4.2 Implementation of MLE

\
The maximization of equation (4.10) is a nonlinear

Jszbieéu- We inityally search the wavenumber space on a
coarse grid, determining the approximate location of the
méximum. Upon locating 'this point., a fine grid seafch is
performed over the coarse intervals on either side. The
. '

fine search is repeated in multiple levels until Ehe desired
accuracy in estimation is obtained. . .

The objective of the coarse search is to locate the
global . maxi%um. In this way tﬁe '{ine searches are
implemented ;assuming the surface to be convgk over Ithe
prévious search interval. Thisl then necessitatés some
kriowledge of the density required for the coarse search. Iﬁ
dn earlier paper. [38]. the conclusion was that for uniform

arrays of length N, a density of N points in 27 was

adequate,



This determination is madg from a gtatistical
viewpolint. Given a performance measure to be-determined.
simulgtioné are conducteq. increasing the density of! the
coarse seatch at each stage. At the point for which the
measure does not change significantly. we say that for
practipal pugpoggs._—fhe density is adequa;e. Rife and.
Boorstyn, [38]. view the mean square erfzr as their
performance measure. The simulations were performed with
the wavenﬁmber at the center of the interval and estimates

made at uniform spacings. one of which coincides with the

true result.

We will show that nonuniform arrays will, in geﬁeral.
require significantlf larger densities than 2w/N. "It is .of
interest to examine the' ‘beam pattern’ of the array
structure. The beam pattern, or array power gain pattern,

in our notation is defined by

N =
G(k) = % T exp(jkx.)| . (4.11)
i
izl
.
with Lk varying over the interval (-w, ). This result is

proportional to that obtained for the objective function of

the MLE operating in infinite SNR when the target is at
: *

" boresight, kT= 0O ., as given in (4.10). The beam patterns

for T-element uniform and nonredundant arrays. described in
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Table 3.1, are presentéd in Figq}e 4.1. . The pattern for the
untform array s very regular, with side lsbes tapering as
the distance from boresight 1increases. The nonredundant
array has a somewhat more erratic behaviour. with the peak
side lobe  bheing relatively * larger than‘ its un;form
counterpart. Th; other principal observation obtained from
Figure 4.1 is the reduction in the width of the main Ilobe
for the nonredundant array. The standard beamwidth, in
physical spaée. {measured in radians),. for-an aperture of
size A 1is defined as A/A. Translated té the normalized -

-

wavenumber space, it becomes 2w/A. This definition is
v

-

approximately 14X wider than the 3 dB beamwidth definition
for uniform arrays.

From equation (4.10) and Figure 4.1, we see that the
objective functioﬁ will have multiple maxima. The coarse
search must be dense enocugh such that the maximum located

.should corréspond to a point on the ‘main lobe. Under

—
ot

"noisy” conditions, it 1is difficult to determine the

required density which would guarantee this: however. we may

use a pragmatic approach. The density will be assumed
adequate if the 'average’' performance (ie., mean square
estimaé‘onferror. or threshold SNRj. is not degraded. We

note the result of [38] for uniform arrays. a density of N

coarse points for the N element array. is effectively one
. . '
sample per beamwidth. As an initial starting point, we

. s
=
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. " -~

* \ . . .
could consider a similar density by tsing A+l sample points

for the coarse search. We mith expect that since the
nonredundant arrays have larger side lobé levels, they may -
‘réquire higher densities:

The mean square error {MSE) for the two 7-element
érrays is presented in Figufe 4.2 for different coarse
search densities. The Earéet wavenumber was varied over an

interval of (-w/2, w/2), and -the search was carried out over
16 | '

\

! e ,
(-m. w). using ‘2 (65536) simulations. This variation in

wavenumber was used to ﬁreveﬁt the true wavenumber always
coinciding with one of the coarse sampling ;oints. Aftg;
locating the coarse mgximu; position., a fine-grid search was
performed extending one interval to either side of the
candidate positio:i The simulattons were carried out in the
threshold regions.

The results with the 7-element uniform array show a
density of 14 points to provide sufficient accuraéy in -
determining the variation of MSE as a funetion of SNR. For
large SNR, 7 points distributed over év were found to be
sufficient. In the threshold region. the T7-point coarse”
search provides an error of up to 1 dB in SNR. This would

_ appear}to be a contradiction of. the results obtained in
[38]. Rife aﬂd Boorstyn in [38] clearly stéte. however,

that they C:lieve their result to be accurate only if the

tone is located at the midpoint of the interval. In their

t

e



75

Coarse D.ensi’rg_ Eff_eé’rs
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Figure 4.2: Effects o©of the coarse search density on the
' performance estimation of 7-element uniform and
nonredundant arravs. .
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simulation.\:}e of the .coarse search point; always fell at

the true value and the others were located at the nulls of

N
the ‘beam pattern’. This is obviously a fortuitous

- circumstance that cannot be expected to occur often.

Furthermoxe. this demonstrates the necessity of using moriﬁ

points in /the coarse search for an accurate characterization

of performance. The fact that the'other'sampling points

occurred at the nulls gf the beam pattern. also permits =a

simple analxisEal deriva?ion of performance. This.:péint
will be reexéﬁined‘iﬁ a later section of this chapter.

. Turning to the nonredundant array. the results indicate
thai for a coarse search having two pointé per beamwidth,
the threshold region characteristics are in -error by
approximately % dB in SNR. For a denéity of 3 points per
beaméidtﬁ..th; per}ormance is in agreemeht with the higher
densities within statistical accuracies. °~ This increased
density requi%ement was expected as _the peak side lobe
levels éf the estimator power-gain pattern are larger ;haﬁ&

—

in the uni?q;w_ array. It 1is possible to examine the

threshold effect for maximum  likelihood estimation in

greater detail. This is the focus of tﬁe next section.

-

4.3 Threshold Effect in MLE

———

‘The examination of the maxiﬁum likelihood estimator in
{
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-

the threshold ‘region provides- meaningful insight to the

error process. The probability density funggion of the

wavenumber estimation error is gauged from simulation

results by generating a histogram of the errors. For each

20 (1048576) estimates of the wavenumber were

-

value of SNR, 2

generated. During each investigatioh. two histograms were

accumulated. The first involfed 256 bins covering th;
regton of (-, w)..The second_consisced.of 64 bins spread
over the ‘'main beam’, covering (-B/é. B/zl-wheré B iélthe
beamwidth defined earlier as 21/&.

The results shown in Figqfes 4.3 and‘4.4_a€é“£or the

same two T-element arrays described earlier, wiﬁh?the target

-,

-

L

wavenumber reifﬁ?éted to the interval (-w/S, v}S). anégthe o

estimatbr searching the interval (-w. w)}. The expersgéﬁts
were performed at the same SNR values, -2, 1 and 4_dB.-‘Fo{
clarity. the +1 QB SNR was ﬁot displayed- for the
nonreduqdant array in Figure 4.4. Sinée‘}he significance of

the curves cover such a large dyﬁamic range, the natural log
(Iln) of the hiétogram bins are displayea. Alchougﬁ each
exper{ment was carried out w;th the same number of
simulxtions. the histogram was still normalized by dividing

by the total number. .of tfiaLsT“ Similarly} each bin was_
idgncical in size for all eprriments. AThe logarithm of the
antenna gain pattern is aiso ;resented as the solid curve in
< ~
each figure. ]

3

¥
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It is clear that the form of the estimator. define@ in
equatioﬁ (4.10)., 1is closely related'to_the gain pattern,
defined in equation (4,11}. Figures 4.3 and 4.4 both
inﬁicgte that the probability of an errﬁ; does not decrease
monotonically as the absolute err@r increases. It is also
clear, that when a large error is made, it is more.likely to
occur héar a peak of the side lobe pattern than at the null.
In other words, noise increases the likelihood of one of the
';ide lobes® being greater dﬁaﬁ_the area surro;nding the
main beam. When this occurs, the error is termed an outlief
£38]. The probabilii? of an outlier is defined as the
probability.that the error in wavenumber falls outside the
beamwidth of the array.

For errors within the ‘beamwidth ;f the array. the
performance is more cpnventional. Figures 4.5 and 4.6
present the normalized histograms Fovering the ‘beamwidth.
For each wvalue of SNR., the solid curve repr;sents Fhe_
predicted performance based upon a Gaussian diftribution of

zero mean and variance gyéenﬁby the Cramér-Rao Lower Bound

e .
of section 3.2. These predictions were co%;ensated for the

probability of outlier value measured, P, - The adjustment

-

is only necessary for the lower SNR values. Fbr +4 dB, P,

~was such that the prediction requires less than - a .3%

adjustment in scale for the nonredundant array. and less

than 0.1%Z adjustment for the uniform array.- We note that

¢ | | R b‘\,'

5
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for lower SNR values, the Caussian distribution is not as
geod an approximation as for the higher SNR. . As the SNR is
decreased, the width of the Gaussian eventually becomes
comparable to the beamwidth, at which point the gaih pattern

. of the array. becomes significant.

¥hile the mean square error is certainly an important

measure of performance, it is not the only consideration.

. o .
We can view the errors as - coming from one of two

-

distributions. With probability Py (a function of SNR). it
is an ouctlier, and with probability (l—po) it is Gaussian

distributed with variance given by the CRLB. The threshold

.

SNR is determined to be the minimum SNR at which the system
" should be operated. Rather than choose the point for which
MSE is 1 dB greater than the CRLB‘ a radar design engineer
may require a ce;tain maximum probability of outlier

occurrence., When an outlier occurs, -it is almost as liketly

~

to make extremely large errors, near w, as it is to make
those just outside a beamwidth. In this region the

probability does not fall off ‘as a Gaussian would. and the

existence ‘of very large errors may be critical ‘to the design
engineer."

We return to the model used by Rife and Boorétyn [38].

for which an N-point coarse search was implemented on an
. . .

N-element uniform 'array. Provided one of the coarse search

points falls on the true target location. their definition

-



of outlier is the event for which one of the incorrect

—

values of the coarse search would providé a greater maximum
- v

. than the one corresponding to the true location.

These assuMptidns allow the probability of outlier to

be calculated analyticall

yv. This result has beenqdetérmined

- by Rife and Boorstyn [38. eq.60]. and is reproduced here

{using our notation) as

N
1
Pe = ﬁz (N
m=2
For High SNR., the equatio

P, =

or taking logarithms,

In( p, )

The probability of
approximation given by (4
of N in Figure 4.7. VWe

for small wvalues of T,

N (-7 exp{ -NI" Lﬂill } (4.12)

- m)y! m!

n is dominated by the term m=2,

N

exp( -NI'72 ) (4.13)

N N - 1
-5 T+ In( —5—) (4.14)

[

outlier given by (4.12) and the
.13} are plotted for various values

see that the approximation is poor

where P, iis near 1; however, for

p°< 0.01., the approximation is adequate for use in the

:determination of SNR.

Ll
»

Unfortunately this definition of an outlier is specific

to a particular set of parameter circumstances. In general,

-

the target will not coincide with one of N points in the

r
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Figure 4.7: Outlier probability distribution for uniform
arrays as defined by the Rife and Boorstyn. [38]
and the high SNR approximation.
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coarse search region, and therefore we find an increased
number of points are required in the initial grid search.
Finally, it is also not suitable for extensions to

o1
nonuniform arrays. —_

We will now show. however, that the trend indicated by
~" “equation (4.13) is nevertheless accurate, That is. for

p°< .01, we show empirically that the probability of outlier

decreases as a simple exponential in SNR. We begin- by
considering the result for uniform arrays. We position the
target at boresight, and- using a . proper search

—

implementation. indicate thg measu;éd probapfli:y of outlier
ve;sus SNR. . To validate the estimator and previous
expressions, we also implement the search described in [38];
The nesulté are presented in Figure 4.8 for the S-clement
uniform array, for which we ﬁlof P, {on a f;%arichm;c scale)
.versus I (on a linear scale). . The error bars shown are éhc
estimates of the s;aﬂ&afd deviation o©f the value of
log( P, }. determined statistically:

The solid curve is a plot of equation (4.12) which fits

the S8-point <coarse search —quite well. The ‘true’

performance {s indicated through the uSse of a 128—po?nc

cdoarse search. For p°< 0.01, we fit the ln(po) to 2 linear -
TN . . .
curve in I'. THe results of the calculationm~qre displayed as

the ‘empirical fit® in Figumfe 4.8S. The
.(

performed as a weighted least-squares fit using oNthogonal

f tting was
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polynomials. The entire statistical analysis 1s described

" in Agpendix B. including the goodness of fit criterion used,

" namely. the reduced chi-squared test.

Tge probabilities of outlier were found in two stages,
;nitially using 214 point simulations which would provide

reasonably* accurate estimates of the probabilities in the
-

larger regions of P, The region having lower values: of P,

were then simulated again with a greater - number of
simulations. The fitting procéss used those. data points for

which p°< 0.01" and at least 25 outliers occurred

(corresponding to a relative accuracy of 2%3\:n the estimate

-

of po). Cléarly. if only 1 or 2 events ar observeq. the

A . v . . : 3
statistical validity of the estimate of P, must be suspect.
. L .
The 25 outlier requirement. then restricts the P, range to

values above 25/NS. where N is the number of s}mulﬁtions.

S
Typically. for NS equal to 2;6. this translates to fitting
values of P, in the region 4x10_4 <{p < 10-2h'(if NS equals
220 5 T2

).

The error bars plotted are the estimate of the standard

., the effective range for p6 is 2.5x10 © ¢ p <. 10

deviation of the measured quantity. This corresponds to,
approximately, the 682 conf;denée‘limic. In other words,
for a valid model, in the range of P, for which the fitting
was .performed, one would expect about 1/3 of the points to

lie off the curve (that is, the vertical error bar does not

intersect‘the'curve).
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For the data in Figure 478 ~we find" 11 points in the

range for P, (the max imum va}de of Ns was‘218). Therefore,

there are 9 degrees of freedom, producing the reduced

chi-squared value of 0.35, as described in Appendix B. The

probability that a value greater than this would oécur with- . -

9 degrees of freedom if the model was accurate would be
about 0.85. This indicates that the model is quite
reasonable, and that we were fortunate in this experiment to

-

obtain thi% low 2 value for the#@kduce& chi-squared. (see
Appendix B). A vefy. low prohpE{}ity would have been
indicative of an incorrect model selection, and we expect
0.5 to be_typical. |

We note from Figure 4.8_that‘ﬁlthough the . values of

P, > 10'-2 were not chosen: for the fitting. they still lie

-

-

very close to the estimated curve for values up to 0.1.°

Finally, we observe thekRife and Bébrstyn simﬁlations were
optimistic, both in the probability of outlier and the rate
at which it falls off. The Rife and Boorstyn result

predicted a curve in this region of SNR to be of the shape

3.5 exp(-4r)

n

Pps

1

exp(1.25 - 4.000T7) (4.15)

n

-

The fit (we performed) indicates the true behaviour to be

————
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‘exp(a + b(r-B))

. Py =
) . % exp{(0.53 - 3.318T) (4216)
£ i "
where

——a = -5.83 % 0.02 (4.172)
b = -3.318 + 0.062 - (4.17b)

. ' : )
. B = 1.9150 UL (4.17¢)
Therefore, _a-bp = 0.53 x 0.12 . (4.18)
Figire 4.9 presgn:&*“the probability of outlier
simulation results and ‘'straight line fits for 4—.‘8— and
I16-element udiform arrnyé. We discuss the-goodness of fit-

in more detail folloy{ng.thb analysis of a large selection
.oyt .

.0f arrays below.

We now use this  technique to examine the same

" performance in nonuniform arrays. Simubations similar to

those described earlier are repeated for the 7~element

uniform and nonredundant arrays. The estimated probabilirty
of outlier and the straight line fit arle presented in Figure

4710. The reduced chi-squared values were 1.24 and 1.07 for

. . &
the uniform and nonredundarnt arrays, respectively, providing

v
I

associated probabiligties of 30% and 40X. Again the model

would be justifjed within the statistical errors.

Figure 4.10 clearly shows. the increased probabilirty of

,
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'outliep for the nonredundant array. Not only is it larger,

hut it also falls off at a slower rate with SNR than it does

. \ #
for the uniform array. . Therefore, we can define a new

critical SNR, which is the point at whick the probability of
outlier reaches a required specification. Using the fit

results, we can invert the function to find the expected SNR

b

corresponding to the required P,- $ince orthogonal
polynomials.were used, the coefficients are independent and
a2 propeér error can be assigngd to the SNR. For values of P,
-within the fitting range. this will be an interpolation with
very accurate results. However, Qe may now extrapolate to
much lower values of p_. using the inverse as well. For

these results, the estimated error of extrapolation grows as

the value of P, decreases. The advantages of this technique
o

for moderate extrapolations will be a creasonable estimate of
/ .

SNR. for which the outlier probability may be impractical to

simulate. It also provides an estimate of the required SNR,

-

and once a designer has narrowed- down the array

configurations to be considered. a more accurate simulation

“. r

may be performed. .For example. far a 20%- reliability in

probability o& aufiier at p_ = 10-6. it would require some

25 million trials. Clearly., we would -like to have an
approximate idea of thg required SNR, so -that experiments of
this magnitude.are not wasted.

The selected arrays described in chapter '3, Table 3.1,

- H
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are examined for this probability of outlier variation with /ﬁ\_
' - 7

SNR. If we consider each\étray to be an 'independent test of

the goodness of fit, we <can compile some statistical

results. Let P(x%,v») .be the probability of exceeding x°

with v degrees of freedom (see Appendix B -and [47]). We

expect approximately 50X of our arrays to provide values of

P(xZ.v) gréaterﬁ_‘{fhx;rn.o.s. and 50% less than 0.5. Of cthe 24
arrays ekamined:§33 produced a value gféater than 50X%. In
terms qfrche spread. we expect 50X of éhe arrays to provide
values oflP(xz.v) between 25X and 75%. For this statigtic.
13 of 24 arrays indeed fell in this eategory. There did not
appear to be any correlation with the number of elements or
with the array structure. - From these figures, we feel
justifie&i in proposing tge single exponential fit for
probability of outlier versus SNR for sufficientky low
values ,of P, In fact, for the arrays up to 9 elements. the
Eit,/é;;eed with. the simulated lvglueg of P, up to 0.10,.
///within statistical errors. For 32-elements, the f%t was'in
3 error by about 9.25 dB at poE 0.10. For larger numbers ' of
‘ elements, it would be %uggested that the upper limit on p0
u;ed be reduced below 0.01, although this will require

increased computational effort for the same degree of

accuracy. .

For each array. the interpolated/extrapolated SNR
corresponding to values of P, éﬁual to 10-3 and 10_6 are =

3
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determined from the fit. along with the accuracy of the

estimate. The_  SNR values are measured in dB. as is the
‘error. For all arrays. the accuracy of the fit at P,= 10"6
is better than O.I-HB. while at 10-3 it was accurate to

better chan 0.05 dB. The results are presented in Table
4.1la.’ whg;e the Sampling Gain is quoted from the previous
Table 3.2a. In order to compare the differenf arrays, we
also measure \thé quantities- in terms o;‘"thé array SNR,
defined as NI'. Table 4.1b reneats the data of Table 4.1a,
usingj this measure. The rgsults for maximum likelihobd

estimation can now be further reduced.

We obtain the significant result that. for all uniform
6

arrays measured, for P,= 10”7 . the_ rTequired array SNR is._

15.4 dB + 0.1 dB; this includes 5- to 32-element uniform
“arrays. In‘this'fegioh. the rehuiyed array SNR is virctually
independent of the number of_elemen£s. We find it is also
possible to make similar statements about the ronuniform
arrays. All minimum redundant arrays. labelled MR. required
17.2 + 0.1 dB of array SNR. again well within the.
measurement accuracy. The non;edundant arrays reduired 17.3
dB * 0.3 dB in all cases. We néte that these arrays exteﬁd
from 11 to 55 units of length. Since each individual value
has an érror standagd deviation of 0.1 dB, these results may
be considered constant to within statistical €rrors. In

fact. in 4 of 6 cases. the nonredundant arrays were equal to
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Table 4.1a
. * V
Sampling Gain and Threshold CompaTison
Using Elemental SNR, T

No. ,of Array! Sampling 1:;:10_3 @ p=10-6 @ Threéshold”
Sensors Type Gain(dB) - SNR (dB)™ SNR (dB}~ SNR (dB)
5 U 0.0 5.4 S.4 - 5.6

MR 7.7 7.4 10.3 8.7
NR & UR , 9.4 7.5 10.3 9.0
6 U 0.0 4.6 7.7 4.9
MR 9.0 6.6 9.3 S.1
NR & UR 11.2 6.8 9.6 $.5
7 U 0.0 4.0 . 6.8 4.5
. MR 9.8 6.0 S.S 5.7
UR 12.1 6.1 8.8 - - 7.9
NR . ,13.7 6.3 9.1 S.5
S U 0.0 3.5 6.4 4.2
MR 11.7 5.5 S.2 T4
UR 14.0 5.6 S.3 7.7
NR 14.9 5.6 S.1 7.6
9 u "7 0.0 ., 3.1 5.9 3.8
MR & UR 11.7 5.0 7.7 7.0°
NR 15.9 5.0 7.6 7.2
10 U 0.0 2.6 5.5 3.5
MR 13.5 —_— 4.4 7.1 6.6
UR 16.3 4.5 7.0 6.8
NR 16.6 4.5 7.0 6.7
16 U 0.0 0.8 3.4 2.0
32 U 0.0 -2.0 04 - .4

"

Arrays correspond to those listed in Table 3.1

Elemental SNR, r, required™ to obtain specified
probability of outlier determined from empirical fit.
Threshold elemental SNR determined by MLE for target at
boresight and search over (-m. 7). Mse greater than CRLB
- by 1 dB. .- ! ) '

“’.\‘\; .

-

8]
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No. of
Sensors

10

|3 I

of outlier,

(5]

Table 4.1b

I

Sampling Gain and Threshold Comparison

Using Array SNR, NT

Array?! .Sampling

u 0.0 12.
MR 7.7 14.
NR & UR 9.1 14.
U . 0.0 12.
MR 5.0 14.
NR & UR 11.2 14.
U . 0.0 12.
MR - 3.8 14.
UR 12.1 14.
NR 13.7 14.
u 0.0 12.
MR 11.7 14.
UR 14.0 14.
_NR 14.9 14.
U 0.0 12.
MR & UR 11.7 14.
NR 15.9 14.
U 0.0 12.
MR 13.5 14.
UR 16.3 14.
NR 16.6 14.
u 0.0 12.
U 0.0  13.

Arrays correspond to those
Array SNR, NI', required to obcaig specified ‘probab
determined from empirical fic.
Threshold array SNR determined by MLE f{for
boresight and search over (-w. w).

-3
p=10
Type  Gain{(dB)  SNR

4
4
5

W

0

nwunhd and (U RORRE (R ORGR b Wb

2 p=10 2
(dB)® .. SNR (dB)

15.
17.
17.

ot gt s
=)~

el
-] =] ~] {h

15.
listed in Table 3.1
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Threshold?
SNR (dB)

12.
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16.
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15.
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16

16
16.

13.
16.
16.

13.
16.
16.
16.
14,
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.or better than 'thé minimum redﬁndant value of SNR for

poﬁ 10-6."a1chough the difference was always within one

standard deviation of the statistical error.

These results providé an extremely accurate and vyet
veryi simple design guideline 16" choosiﬁg amongst " the
different array structures.-provided_the maximum likelihood

rd
estimator is employed.

We will now compare the estimate of the mean square

(]

error to that observed in the simulaéions. Using a similar
approach to [38]. with the appropriate modifications. we

consider the total MSE to be a weighted sum of the wvalues

-

obtained with and without outlier ;Lcurrence as

~

MSE = po(HSE given an outlier) + (l—po) o

-
-

iR (1.19)

.

where céR is the Cramér-?ao Lower Bound vari;nce. and po-is
derived from the emp%fical models. To simplify the
calculation. we assume the error to be uniformly distributed
outside the beaﬁwidth. B, given an outlier has occurred.

The MSE, given an outlier has occurred, is then given by

2 P
MSE given outlier = (2m)” + ?EB + B {4.20)

We also put an upper limit on P, {for low SNR)}. to be
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(2% - B)/2i. and we acknowledge tha; the fitting 4s not
accurage 'in this . region. - Also, since aéR increases
indefinitely with decreasing SNR, we hard limit the MSE
restimate to that obtained by random guesses over the
interval.:' Hence.“ we do noc‘ allow the MSE to go above
(2#)2/12:} These restrictions are actually cosmetic, since
we are only critically interested in performance at SNR
vaiues inc}easing from just below threshold. and., it is in
these regions we require a ‘good’ fit.

Figure 4.11 demonstrates the ’quﬁlity of the ﬁSE

estimate described above. For the wuniform array, the

simulated points fall .on.the predicted “curve throughout the

threshold region. Of course at high SNR, the curve follows
the Cramér-Rao Lower Bound values. - For loﬁ SNR values. the
curve oveérestimates the MSE since the value of P, is

— -

overestimated in this region.

For the nonredundant array the performance for most -of
p 5.

the thresﬁold"region is accurately deétribed by (4.19). At
the thrgshold point itself, there are\éffew points which do
not lie on the predicted curve. Upon closer inspection, we
det;rmine that the pgediqted'value of P, in that region is
close to 10-5. fqr which the simulations are simply not very

-

accurate. Our results, in fitting the "probability of

outlier for such a modest extrapolation, lead us to believe

the predicted curve is in fact a2 better representation of

. 4.-;"

n
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the MSE in this reéion than the simulations could be. The

*
»

result is significant for thé-égnredundant array since the
deviation froﬁ ‘the CRLB occurs for a much lower probability
of outlier than the uniform array. That is, the improved
MSE, (sampling gain is 13.7 dB), will deéeriorate earlier
fof even a -small number of outlier éqcurrences. This effect
will become ‘more important as the number of ‘elements
increases. Therefore, we use the predicted MSE given by
(4.19) to estimate the 1 dB threshold point and -provide
these re;ults in the last célumns of T;ble 4.1la and Table
4.1b.

Man} researchers evaluate the 1 dB threshold (see for
example [25, 38]). although i; this author’'s opinion. when
maximum likelihood estimation is employed. the probabilirty
of outlierlspecificapion would appear to provide the better
measure for comparison purposes. These results should not
be compared wyéh the Weiss-Weinstein Lower Bound results of
Chapter 3., sinhce no acc;unt has been taken of a priori
information. The \next section will focus on the effects of"
having a target which may lie anywhere in a specified

interval and the maximum likelihood performance.

4.4 MLE and A Priori Knowledge

r

We will now examine the effects of a pfiori knowledge

g
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: y {
on the performance of maximum likelihood estimation of the

target wavenumber. Thé modelling of the a priori-knowledge
of the target locatibn has beep deal? with-1in d;tdil in
Section 3.1 of _the previouﬁ/éﬁ;pter. Ehe basic qssumption
consists of restricting the target tc be located in a given
'fﬁkgrval { knf.kx)’ a subset of the visible region. We
asséme the target is equally likely to acc;r at any point in

this interval.

" . ———

/Ihe“ihﬁlications of this knowledge on the probability

-

—

of outlier . the threshold SNR, and the high SNR MSE will be
investigated. This determination will be made by simulating
the MLE with the target taking randam.positions over the

-

interval from trial to//criai. The target 1is uniformly

.distributed over the interval (-aw, aw). where a<l. The

maximum likelihood estimator is then constrained to operate
P 1

on the same interval. -

We begin with an analysis of <the probability of
coutlier. The 7T-element unifeorm array evaluated using
'various values of a with the p}obability of outlier
characterizea as in Section 4.2. The simulation results are
presentqq in Figure 4.12a with the error bars omitted for
clarity. For large values of a. very close to 1, the values
of Pq are_cleariy‘ﬁét distributed linearly. The reduced
chi-squared values for a = 0.98 and a = 0.95 are 4.43 and

| .

3.02. respectively, with correspond;hg values of P(x*.v) of
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lesg'than C.001 in both cases. This indicates the model
chosen, a linear curve, is very likely incorrectt However,
"for a = 0.85 down to 0.25 the reduced chi-squared wvalues
were close to 1. ' Examinat;on of the figﬁre would also
reinforce this knowledg;. where the linear curv;E provide
reasonablﬁlmodels of the values of ln{ﬁo) versus elémental
SNR." To emphasize this. we plot the results of the previous
chapter: where .xhe target was kept at bo§esight and the

estimation performed over the full interval (-, 7). in

Figure 4.12b along with these a-priorf curves. .

-

The interval (-0.857, 0.857) restricts the target to a
regioﬁ more than a half beamwidth from eigher end of the
‘visible region. If the fa;get wasrlocated at 0.85w, the
error required :o estimate the target at -0.S57 would be at
least one beamwidth. ) For  a = 0.85, the curve is
indistinguishable érom the ‘boresight’™ curve. We alsp
notice that the curves all ave nearly identical slaopes.
The error analysis indicates values of -3.00 + 0.06, -3.04 +.
0.05. -3.18 # 0.07 for the values of a = 0.85, O.SO; and
0.25, respectiv?ly. The ‘boresight’' slope was -3.00 + 0.07
for which one c¢an say that all -of these values are
equivalent within statistical errors with 95% confidence.
Fdrther. the ;robability of outlier decreases approximately
proportionally with a: For example., at 4.0 dB SNR. P, was

{1.00 + 0.15)x10_3. for the boresight curve. W¥hile for



\ 106

a = 0.50 and 0.25, the values were {0.52 :0.07)x10_3. and
(0.21 =+ 0.03)x10—3; rcspecfively. ’

As the search region' is’ narrowed. side lobes of the
antenna gain pattern are eliminated.. If eachfside lobe 1is
assumed to exer; apprcximately the same influence on the
error, then reducing the’nﬁmber of sidé lo$es should reduce
the probability of- putlie}. The side .ldbes for uniform
hrrays are essentially equally spaced.\\Of course, this is
only an approximation, and clearly larger side lobes may.

have a more significant effect on P, than the smaller ones.

[

.I fhe ‘'same procedure is repeated for the nbnredundant.
--7T-element. array. and the results are presented in Figures
,4.13a - and 4.13b. The Dbeamwidth of this array |is
approximately "G.08Tw, and thérefore ' ;%e interval
. (-0.95m, b.QSw) provides a2 full beamwidth of buffcr: For
0.08 < a <-0.95. the maximum valge of the reduced
chi-squared was 1;15. and we feel the linear model was
justified. The comparison ;ith the nonreduﬁ%ant simulakions
at boresight of the previous section are displayed in'Figure
4.13b% The curves for a = O.95land the boresight results
are almost identical. The slopes are also in agreemeﬁt for
a = 0.95 down to 0.08 within statistical errors. The val;e
of the slope at boresight was -1.50 + O.Qé. ‘while for

a = 0.95, 0.50 and 0.08 it was -1.81 + 0.03, -1.86 * 0.04

and -1.87 + 0.06, respectively. The probability of outlier

\
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’

also varies approximately proportionally with a;: for
- ' ra

da = 0.95, the probability of outlier at 6.0 dB was

0.21) x 10-3l vhile for a = 0.08, the value was

3 :

I+

(1.93

(0.18

0.04) x 10~

I+

In boih cases, we see the re591CS of positioniqg the
-target at boresight may be viewed as‘the limiting case for
a - 1. The deviation for cases in which a > 0.98 from the
ofhgr values waé anticipated fr;m the use of the
Weiss-Weinstein bound. and was discussed ih'great detail in
Section 3.5. For wavenumbers near the edges of the ‘visible
region. we may expect the target to be estimated at the
opposite epd of the interval %n noisy data. We find thar
for maximum likelihood estimaftion the target should be no
closer than 1 beamwidth from fﬁe edge of the visible region
for the trends in prébability of oﬁtlie% discusse& so fér to
hold. Failing this restriction., we requi;e éxtremely large
values of SNR for reasonable accuracy in target locarction.

At the lower énd. it is clear that if the interval of
the target location 'is known to much better than a
beamwidth, it restricts the occurrence of outliers. As the
interval gets below'aﬁout 2 beamwidths, thé probability of
outlier is signif&cantly -reduced. . Thﬁs. is due to the-
ellmina;ion_ of even the firsi side lobe, and depends
significantly on the. location of the 'thiget. For a ¥

beamwidth interval. no outliers may occur according to our

-
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definition, regardless of the target wavenumber.

Figures 4.14 and 4.15 display the simulation results.of

the mean square error of wavenumber estimation for various
Fs

values of a. We observe trends veéy siﬁilar to the results
of Section 3.5, using the bounding-technique of Weiss and
Weinstein: For targets located within one beamwidth of the
visible region, the MSE curves indicate extremely poor
performance. There is a greét deal of difficulty in
simulating this region, since even 2 single outlier will
produce .a very large 'eéror. For these figureé. th;
simulation was performed with 2IS trials in the threshold
regions. “For large enough SNR, .the curves ;11 coincide.with
the Crgmér-Rao Lower Bound.

A; the interval is reduced, the performance is somewhat
more gtahlé. allowing a reasonable estimate of the threshold
SNR. éowever, for values of 2 such ;hat the intérval was
less than % of a beamwidth, the threshold effect disappears.
This is coincident with the disappearance of the outlidrs
discus?ed earlier. For this region, perforﬁance is qlways
below the CRLB and approaches it from below. This effect
was predicted by the WwLB. albeit for a larger value of a.

The set of representative arrays. of Table 3.1, will be
compared for threshold pérfonance for the dﬁse where

“a = 0.5. The results of the WWLB are compared with the MLE

simulactions. The * threshold results are accurate to
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approximately-O.S dB with 99X confidence; they are presented
in Tables 4.2a and Table 4.2b. The comparison is done for
eleﬁéntal SNR. I', and for toﬁ?l array SNR, NI respectively.

The MLE was found to approach the WWLB performance far
high SNR. As predicted by the WWLB, the threshold array SNR
increases with the number of elements as displayed in Table
4.2b and discussed in Chapter 3. At low SNR. the WWLB
predicts the qualiﬁative behaviour demonstrated by the MLE;
however, the actual location of the threshoid po{nts
‘indicates a gap of 9 dB for the 5-element uniform array and
é_éBffor the " 32-element uniform array. The gap is slightly
leég than 5 dB for the nonredundant arrays compdsed of 5 to
10 elements, inclusive.

This gap in ﬁerformance estimation may be explained a
number of ways. It may be that even the WWLB is not tight
enough in .the threshold region, in which c¢ase improved
bounds must be soughrt. It must be remembered tﬂat fhe WWLB
is a bound on any estiﬁato;. There are bounding techniques
which claim to provide performance within 2 dB for the
threshold region  for MFE type estimators., see [25]. On the
other hand., it may be that the maximum likelihood estimator
is not the minimum mean square error estim#tor in the
.threshold region. This-is'ceftainly true for very low SNR,
for which the mean sq;?fﬁ error is 2(23)2/12-and ryet the

biased estimator. which chooses the midpoint of the interval
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U
MR
UR
NR
U
MR & UR
NR
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Table 4.2b

Sampling Gain and Threshold .Comparison
' Using Array SNR, NT

No. of Array!? Sampling Threshold? Threshold?
Sensors Type Gain (dB) MLE (dB) WWLB (d4B)
5 U 0.0 12.0 3.0

. MR 7.7 15.2 10.3

NR & UR 9.1 15.5 10.3

6 .U 0.0 12.3 4.3
MR 9.0 15.6 10.3

NR & UR 11.2 15.8 11.0

7 U 0.0 12,5 5.1
MR 9.8 15.7 11.2’

UR 12.1 16.0 11.0

NR . 13.7 16.2 11.4

S U 0.0 12.5 5.6
MR 11.7 16.0 10.5

UR 14.0 16.5 11.8

NR 14.9 16.3 11.4

9 8) 0.0 12.7 5.8
MR & UR 12.4 16.2 10.8

NR 15.9 16.5 11.8

10 u 0.0 12.9 6.1
MR 13.5 16.3 11.2

UR 16.3 16.7 11.9

NR _ 16.6 16.5 11.6

16 U 0.0 13.6 6.7
32 U 0.0 14.5 8.3

Ll T

Arrays correspond to those listed in Table 3.1
Threshold array SNR from MLE simulatien k e (-w/2. 7/2)
3 Threshold SNR determined by WWLB for k e (-w/2, w/2)

2]
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k = 0, will only have an error of (2a)23/12. In fact-. the
WWLB actually accommodates this ggtimatorl This leadé us to
believe ;hat there may well b? other estimators, which may
have better threshold characteristics: altho;gh they may not
have the equivalent high SNR performance of the MLE.

As discussed earlier, the MLE i; closely related to the

2
antenna gain pattern. Although not pursued in this work,

the use of windows to suppress the side lobes"(although
. \

generally increasing the width of the main lobe). may have-

‘different characteristics than the MLE. It has been pointed

out that windows may increase the MSE at high SNR [48], and
N4
as such involve ad?itional tradeoffs for the radar design

-

engineer.,

'-‘—-H-

The "anomalous b;haviour. predicted by the WWLB for the
8; and 10-element unrestricted arrays Qas also obser%ed
using-the MLE. They required larger apertﬁres. pfovi&ed
less sampling gain and QAd poorer ihreshold SNR va}ues than
the equivalent nonredundant arrays. Theréfore, we conclude
that there is no advantage to choosing thege arrays over the
nonredundapt ones,

Tﬁ; nonredundant arrays generally had threshold
performance not larger than 0.3 dB of the minimum redundant
arrays ané yet provide up ._to an additiongl 3 dB of MSE

reduction (for N=10). Generally. we would expect that the

nonredundant arrays would be preferred over the other
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~J
nonuniform arrays considered. In terms of probability of
outlier, .the results are similar. The primary tradeoff is
for the uniform arrays vérsus the nonredyndant ones. We

summafige the simulations to obtain .the result that the

nonredundant arrays require épproximately a 2 dB larger

‘elemental SNR to provide the same probabild+y of outlier as

‘the uniform arrays. The benefit is an improved MSE at the

higher SNR values of 9.1 dé for the case N=5, to 16.6 dB for
N = 10. That i$§, provid;d the éata can be averaged for the
additiona1;4ime. or the SNR is above the critical point for
one‘snapshot. the 10-element nonredundant array will provide

a mean square estimation error 45 times smaller than the

T

10-element uniform array.

fb_‘



CHAPTER &5 -~

MULTIPATH:

5.1 Some Preliminariés

In this chapter ﬁe\ consider a direction of arrival
estimation problem that is different from the one studied in

the previous two chapters. The situation now involves two

coherent plane waves. Of particular interest is the case of
a single target flying close to the water surfﬁce such that
e radar receives both the direct target as well as an
image-xeflected from the water surface. This reflection may
have  all the charac;eriscics of a second Fagget at the
radar. W¥hen reflections or multiple signals‘are received |
. ) -
from a single target, the phenomenon is known as hultipath.
For radars in the gigahértz region: and low flying
targets, the reflection from the water surface .is highly
§pe;u1ar. That is, the image appears at the radar with an
amplitude almost equal tp-the direct signal but with a fixed
and unknown phase difference. E{ ;s of great concern when

the separation between the two signals gs less than a

beamwidth. Many high-resolution estimation schemes have

118
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.

been proposed for prgcisely these conditioﬁs. A good survey
of the earlie; techniques may be found in [28] which are
based upon spectral estimation. Recently,  several new
techniques have a;bo éeen studied which use an eigenvalue
decomposition of fhe' autocorrelation matrix of received
data, [43.49]. Thraughout this time, the maximum likeliho;d
estimator has also been studied. [55, 56], and amany .of the
previous works.compa{e performance to the MLE. The. primary

advantage of the other estimators occurs for large numbers

of targets, for which the estimation schemes often require

rm—
-

only a minor increase in computation. In all cases, the
goal is to ;chievg maximum likelihood performance with less
computational effort. The maximum likeliﬁbod esfimator. as
it is proposed hére. requires a nonlinear search over K
dimensional space for K targets. A recent paper., [50].
provides a useful overview of these new methoés and compares
them to the MLE.

For ~two targets, or one target with a direct and
specular image., we find the maximum likeiihood estimator to
be well suited fﬁr the direction of arrival estimation
';roblem. It will be deriv;d for Iuse‘ with gn arbitrary
lineaxr array geometryﬂand.studied for threshold effécts as
well as high SNR performance. We find that performance may

be significantly Effected both by the separation between

image and target., as well as by the phase difference between

‘-
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1

them. ;Therefore. it would be unsuitable to model any of
these parameters as random vﬁriables. In this sensé random
parameter estimation bounds such as the Weiss—Weinsteiﬁ
bound are not applicable. The litééature does not contain

reference to any other nonrandom parameter bounds which

might be applied in the multiple target environment. At any
\\?Qg

e, we find the Cramér-Rac Lower Bound (for nonrandom

parameters) to be a useful indicator of the MLE pecrformance
at high SNR.

-Early in the research, it was proposed to build a
sampled-aperture radar with sufficient accuracy to examine
the performance of high-resolution estimation algorithms.
The épecifications of the hardware may be found in Appendix
C. with the pertinent details and exberiment description
outlined in the body of this chapter.

Finally. we examine the performance of the
seven-element nonredundant array and compare it to various
uniform arrays. This is a 'real-world’ demonstration of the
practicality of the new array structures for use in
direction of arrival estimation in. multipath. The
pefformance is ‘compﬁfed using data that has all of the
characteri;tics associated ﬁith real. data including

calibratjon and placement accuracy limitations, as well as

possible modelling limitations.
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5.2 NMLE Derivation

We follow the technique of [49]. in the development of
the maximum likelihood estimator for two plane waves. with a
straighqforward extension to‘ nonuniform arrays. The
derivation is similar to that used in Chapter 4, Section 4.
Let the target and image be described .by the parameter

vectors as follows, respectively.

(5.1a)

and a

: (5.1b)

I
~
=
op
©
g

Using the conventions described in Chapter 4. we obtain

\

z s(at)'+ s(a{) + w

c ¥k} + ciy(ky) + v (5.2)

for the received data from each sensor, where y(k) is
defined by equatit?) (4.2) and €..¢; are the complex
amplitudes. As before., the noise is assumed white. Gaussian
of zero mean .and variance az“with the feal énd imaginary
portions 'independent. ) It is convenient to use 2 matrix

notation for this problem. and so we require the definition

of two new symbols. We define the matrix

Mo,
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Y = [oy(k) 4 y(ky) ] (5.3

and a complex-valued vector as

ec=(c .c5) : . (5.4)

We can now., write thg\giobability density function of the

received data given the parameter sets, as

- - ) 2 ’ L
p(z/a,.a,) = (270%) Nexp - Lz Ye {5.5)
1'72 -
20° .
The maximum likelihood estimates are thosé values for which

A=zl z - Ye 1II® (5.6). .

is a minimum. As in Section 4.1, this linear least squares
problem can be solved for ¢ { see [46] ); by{noting that at
the minimum, say ;. z—Y; is orthogonal to the sﬁrface Yc.
We therefore have

(Ye)¥(z-Ye) = 0 | (5.7)

Since ¢ is a free parameter, we may also write

0

viz-viye = o . (5.8)

Making use of the pseudo-inverse, we obtain
~ -1,H
z

c = (Y'y ly (5.9)

Substitution of this result into equation (5.6) yields
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A= ozo- x(yiy)"ixHy g2
L) - " :-\ . .
= 2%z - Zfy(yiyy iy (5.10)
Therefore the maximization now reduces to minimizing the
. 'scalax: ‘ll PN - "-‘}h‘ T
A = 2y eyt ivly © o (5.11)
"Define the scalars Dm a;d p as follows:
i D = yH(k Yz ' "“(5 12)
. m = m .
- B : H ) )
and - p =y (k)y(ky) (5.13)

The previous equation (5.11} can then be simﬁiified £urther\

since,
- H T : . - ‘4
Y'z-= {( D1 D2 Q«g " (5.14)
B
=
‘ o " —1. N 0 -17
and (Y'Y) = *
. p N
2 * -1 - —
= (N® - pp) x - (5.15)
’ -p N A
The expression thus reduces to maximizing the new scalar
- ) :
2 2 *_.
lDll +,|D2L = 2 Re{ pD|Dy/N ) -
A" = ——— (5.16)

N¥ - |pf®

"«_‘,
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The maximum likelihood estimate is found by performing a

2-dimensional - search in wavenumber for pairs of values

kl' k2.
The maximization will be performed by firste
implementing a coarse grid search. The values of p, which

are independent of the data.'may be precalculated for all
pairs of kl.k2'uséd in the ;oarse search.

Before presenting the simulation results, we will
ée?ive'the éramér—Rao Lower Bound fhr this problem. In _this
way the simulatian performance may be compared to the

bqunding resultcs.

5.3 CRLB for the Multipath Problem

-

The, CRLB has Eeen,derived for the multipath problem by

other authors. for example [51] and [48]. and as such. we

.present only a briefY derivation here. For greater detail,
A . ‘ .
we refer the interested reader to [44]. The procedure is

similar to that of [48]. where it was initially derived for

r

an arbitrary linear array: howevér.‘the majority of their
results were obtained ass;ming a uniformly _spaced array.
Although the exuensions are straightforward, we wish to
‘stress those properties which will hold for the nonuniform
array structures considered in this work. .

We require the determination of ‘the Fisher Information

matrix J. whose terms are defined by
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n = E{ gaféggghlh[p(z/a)] } (5.17)

The parameter set is def-ined as

¢

(5.18a)

@359 = Ky
dyy_y = ay (5.18b)
ag; = 8, i=1,2 (5.18c)

The terms of equation (5.17) can now be rewritten as

J3i1-2.3m-2

n

= Rc{aiamexp{j(si-sm)} znxnz exp{j(ki~km)x }} / ai

J3i-2.3m-1

J

J

93121, 3m-1

’J3111.3m -

J

J3i . 3m

i.3m-

3i-2,3m

3i-1.3m-2

3i,.3m-2

1

= Re

Re{jaiej(ef—em) E xnej(Ei_km)xn} / o*
alameJ(e -8 ) z X e (k ~k )x } / oF

Re Ja ej(ei-em) E J(k -k )x } / a2

. eJ(e -8_) 2 ik -k )xn} ;o

v

]

o

e

e

a.a ejggi_em) E X ej(ki—km)xn} / o=
i™m n ‘

= Re Ja e‘](s -6 ) E J(k ~k )x } / o*

1)

-

Re

{
{-
{
RN RS RS ST
{
{
{

a.a e‘(si_em) E ej(ki—km)xn} / of
i%m n ’

-

12.19a-1)
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The bound on the wavenumber becomes -

E{ (k, - k)% } 3 Jt (5.20)
where J'! {s .the first diagonal element in‘J-I. It can be
shown that . -

b
t
Jit = Q*isk (5.21)

here I equals a,/20%, and Q!! is indqéendent of a,. a; and
2, [48]. Therefore, the CRLB is again inversely
proportional to SNR and is independent of the amplitude of
thé interfering signal.

At this point, the work of [48] assumes uniform spacing
of the array. We will use a similar technique Qithout
restricting the samples to be uniformly spaced and show that
Qimilar properties hold for the nonuniform arrays discussed
in this work.

From équation (5.1%a-i), it is clear that the Fisher
Information matrix. and hence the bound. is oﬁry dependent
upon the difference in phase and wavenumber of the two
targets and not on the absolute value of either of these
parameters.

The CRLB is pgriodic in phase B8, or 6, w;th périod T.

This property requires a simple'proof as follgws.
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Consider the submatrix

I31-2.3m-2 J3i-2.3m-1 .J3i-2.2m

Mim = | J31-1.3m-2 J31-1.3m-1 J3i-1.3m _ (5.22)
J31.3m-2  J31.3m-1 J3i.3m e
Then the Fisher matrix can be written as
[M“ M, ] < o3
- 3= M2y Maz (5.23)

-

‘where M,, and M,,; are independent of wavenumber and phase.
Now let 6,'. =6, + wv. From (5.19) we find that My,' = -M,.,.

. . : '
Hzg. = -Hgl. Hli. = Hll and sz. = sz- Therefore

[ .Hx 1 ""sz

[ I, O, I, O,
= 03 _Ia J 03 -Is (5.24)

where I; is the 3x3 identity matrix and 0; is the 3x3 zero

matrix. The inverse of the primed Fisher matrix is

RIFEA b
(J)y " = 0, -1, | J 05 -1, (5.25)

which leaves_ the diagonal submatrices equal to those of J-l.

Therefore the diagonal elements of (J')_1 are identiecal to
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the diagonal elements of J°! and the CRLB is unchanged.
This shows that the CRLB is periodic in 6,. Clearly, the
same argument gan be made with respect to 6.. thereby
completing the proof. B

We note that the structures being examined have elemenf
positions which may be written as iﬁtege} multiples of the
minimum Qpacing. in our case normalized to be 1 unit. It
follows from;inspection of (5.19a-i) that the matrix, J. is
periodic in the normalized wavenumber with value 2w, since
the X ~are all integers. In general, if the x =~ are all
inceger multiples of d. not necessarily uniform. then the
CRLB is periodic in wavenumber with period 2w/d.

For the remainder of this section. we will examine the
CRLB when-the_amplitudes of the two targets are equal. We
exqfft to use the estimator under conditions in which there
will be a strong specular reflection. For the case in which
the amplitudes are equal and the phase difference is 0° or
1800. the worst case conditions result. This c¢an also be
thought of as the opposite condition to that examined in
Chapter 4. In thig framework. the single target case might
be considered to correspond to the case in which the image
amplitude is O.. Other conditions would lie .somewhere

.

between the zero amplitude image and the equal amplitude

image.
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When we speak of the phase, or phase difference; we
understand this to be measured ‘at the midpoint of the array.
Further, since the CRLB for the MSE of w#venumber estimation
is . inversely proportional to the elemental SNR, T, we
evaluate it for I' = 0 dB. T@e value for any other SNR is
then simply obtained by subtracting from the quoted value
the desiréd operating SNR determined in dB..

Using a 7-element nonredundant array, (see Table 3.1},
Figure 5.1 demonstrates the variation of the CRLB with Phase
difference, 8, for various wavenumber separatioqs. The
range of separation extends from a third of a2 beamwidth to
abproximately six beamwidths, where one beamwidth equals

27/25 in normalized wavenumber. The aependence on phase

may. in certain instances be quite severe. particularly for

sepafations less than a beamwidth. The curves do in fact
have. a period of . Although the plots seem to be even
about the worst-case .phase point,. they are not exactly
symmetrical. In addition. the worst-case phase point varies
with separation. In -general a search 1is required tg
accurately determine this point. For the case in which
ky-ka = 27/6,. the worst-case phase point occurs at

- . . ¢

approximately 160. and the minimum CRLB phase is 106° . It

was observegd~ that as the separation gets well below 2

-

beamwidth, the maximum CRLB phase difference tends to 0°

when measured at the midpoint of the array. The best phase
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Tigure 5.1: Variation of the CRLB with phase difference for
several target/reflection separations for the
7-element nonredundant array.
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difference tends to 90 under the same conditions. .

Given this variation with phase difference, it becomes

instructive to examine the CRLB versus separation for .the

worst and best~case phase differences. This is evaluated
for the T-element -uniform and nonredundant arrays and

presented f;‘Figure 5.2. Also shown in the figure are the

bounds for a single target at the same SNR (0 dB)}, which

..

appear as horizontal lines "in the plot. This gives an idea

~

of the variation that can be expected with, phase for the two -

-

array structures.

The 7-element wuniform. array is significantly more

sensitive to phase difference at the smaller separations.

*

For a single target. the 7-element nonredundant array has a

performance improvement of 13.7 dB. For small separations,

-

this improvement may be much greater.

5.4 MLE Simulation Results b

In this section we examine the implementation of the
maximum likelihood espimator as it will be used for the
mulgipath problem. It is to be used for the estimation of
target position when that target is low over the water
surface. It is instructive to examine the performance using
simulated data to analyze .the required coarse search density,

and threshold effeéts. as well as the high SNR performance.
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Since we expect to use the estimator under conditions

with' a strong specular reflection. the simulated data was

gener#ted' using equal amplitude target and image. Of
course, the escimator. makes no6 assumptions about the
relative strengmhs‘of the targets. It.is assumed: that the
.heighf of the array gbove,the water surface is known. The
horizon angle for the structure may then be calculated. We

search for a target above the horizon and for an image below
the horizon. corresponding to a fefleqtion from the water
surface,

The maximum likelihood estimator then chooses pairs oé
candidates (D;.D,). D, from the target domain. D, frqm the
reflecteq image domain according to (5.12) and evaluates the
objective function. (5.16). The pdir of values which
maximize the oﬁjective function are then considered to be
the estimates of the target and image wavenumber. In all of
our simulations, we measure the mean square error of the

target estimate from the "true' target position.

For Té:ﬁéﬁmulations we simply set the horizon to be at

.k = 0, with the targét having a positive wavenumber and the
image wavenumber negative. The set of Nc "steering’

vectors., y(k). used in the coarse search are generated prior
to any estimation from equation (4.2). This requires 2NCN
floating-point numbers to be stored. In addition., we also

evaluate the set of corresponding values of p. and (N2-]p %)



- 134
using equation (5.13) which require 3ch floating-point

storage locations. _
L} . .
The fine search consists of iterative evaluations of

the objective function. surmrdunding the previous level
estimate. The number of levels is calculated to provide the-
desired accuracy in wavenumber.rfihis technique -is almost
entirely limited in terms of.computation‘timg, by the coarse
search density. which requires (Nc-/2)2 objective function
evaluations. Tﬁere are in'fa;cl(Nc/2) in each of the-target
and image domains:

The first priorisy is-the determination of a.suitable
coarse density. As was done -.earlier, we establish the
required density from a statistical viewpoint. We will
tolerate a 2 dB error in SNR in the threshold region and
antiéipate the threshold may vary with phase; therefore. the
analysis will require several cases.

For large separations in wavenumber.,-it is reasonable
to assume a value equivalent to that obtained from the
s}ngle ‘target estimation of Chapter 4 would be sufficient.
we examine the performance for wvarious coarsE . search
densities with a T7-element nonred&ndant array which has a
beamwidth of 2w/25. The target and image are simulatéd with
equal amplitudes and are loc#ted at + w/4. The CRLB is a
minimum at 91O and a maximum ai lo. Figures 5.3 and 5.4

present the results of these simulations consisting of 1024

o

-

)
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best-case phase difference for the 7-elemenz
nonredundant array when target separation is
AT/ 4. ” '
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trials. "We find that there was 'little difference 1in
performance'beyond 4 points per beamwidth. Similar results

were found in Chapter 4 for the single target case.

For small-sepéiations. less than a beamwidth, we find
the density'm;st‘ﬁe }ncreaséd further. In general, we found
an éverage of 3 points between target and image separation
was adequate for the nonredundgnt arrays. In Figures 5.5
and 5.6 the separétion is 27r/64, corresﬁqﬁd%ng to less than
half a beamwidth of the 7—e1eﬁent nonTedundant array. We
‘found that for the "1° phase differencébgf Figure‘S.G. the

: perfo&mance characterization required bgtween 4 and 6 poﬁnts

per beamwidth, (27/25), for the coarse . search dens&ty.

Since the horizon point is known and we always begin the’

.
coarse search just on either side of it, we guarantee Having

coarQe search éamp{es b;tween the target and image. As a
general rule, we require a density greater than the miniﬁﬁm

: separation of target and image for which accurate position
estimates are:desired.' _ ’ -

The 7-element wuniform  array performance is- also

examihed for the effect of the coarse density search.
~ .

Figures 5.7 and 5.8 exhibit the effect when the spacing

between target and image is 2w/4, with _ the .Sest— and

worst-phase conditions. There would appear to be nothing

——

gaiﬂed by increasing” the coarse search density beyond 2

samples per beamwidth_.. However. for separations less than a

VA

LAt
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bea;width Ehi; is no loﬂger true. The uniform array was
gﬁplied to a target-image séparation of 27/32. or sllghfly
less than a fifth of a beamwidth.-and dis%layed in Figures
5.9 and 5.10, The worst phase' conaition{ Figufe 5.10,
clearly demonstrates the need for a greater sampling'
density. There was a s;gn{ficant improvement in goiné from
8 to 17'sample§ per beamwidth and virtually no 1m§rovement

beyond this point. The use of 17 samples per beamwidth

corresponds to approximately 3 samples between target and

. image.

From this point on. all arrays are compared with the

same computational efforc. We use a coarse search density
of 2w/200, which was adequate for,lseparations down to
2w/64. This requires about 10,000 xobjective function
evaluations fo} each simulation. The worst-case phase is

demonstrated for that value of phase- near Oo. and the best
case phase used was the ;alue close to 900.

We summarize éhe performance for the two seven-element
arrays with various separations between image and target in
Figures 5.11 to 5.15. Xt 2r/4, Figure‘S.Il. the separation
~is well over ‘'a beamwidth for ‘both the uniform and
nonredundant arrays. There is very little sensitivity in
the high SNR region to phase difference. ’The_nonredundant

array provides about 13 gB of sampling gain in this region.

The threshold SNR values are also not susceptible to the
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Compqrison for Separation 2Pi/4
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ph##c diff@r;ncp. Eith the uniform value apsroxim;tely 5 t;
6 dB lower - than that %f the nonredundant array. For this
i;rge éeparatfon.- we wouid exp%ct "the performance to
parallel that of the singfe target cases studied in Chapter

4. which it doe&._' , , .

A

As the_sepa;ation decreases to 2n/S8, just less than the
beamwidth of the uniform array:' the results change
_significdntiy as shown in Figure 5.12. The phase difference
is'éxtreme;y important for the uniform array structure. At
high SNR. there is =2 dif%erence of ‘S' dB in ﬁerformance
depenéiné upon the gﬁtual phase dif%erence atc thc‘centgriof
the array. - The nonre@undant ﬁrray exhibits a sensitivity of
2 AB. thisupartycular separation Is one of the worst-case
sensitivities for: the noﬁred;ndané structure, as seen in
Figur; 5.2. The nonredundant arra& provides 17 dB of gain
when bath ;;rays are evaluated at the o#timum phase
differencg .#nd 2%55 dB o& ‘gampling gain when- the phase
differenée is fhe worst case for both arrays. .This is a
significantly ‘larger improvement than was obtained when
there was only ;ne target present. The threshold SNR value
is also sensitive rto the pha;e difference’ The worst-case
threshold fbp éhe ugiform.argay lies . above the best case of
the nonredundant by 1 dB and about 5 dB beiow the worst-case
nonredundaht array. The best-case phase difference i; $rill

about 4 dB below the best-c¢ase nonredundant array. The
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threshold SNR 1is therefore quite sensitive to the phase

difference of the two plane waves.

Decreasing the target and imagé-separation to 2w/16,
the effect of the phase d;fference is even more strikiné:as
presented in Figure 5.13. ‘The high SNR sampling gain now
varies from 21 dB to‘34.8 dB. The lack of sensitivity to
phase of the nonré&unﬁgnt array is .as preéicted by the.
cu;ves of Figure 5.2 where the best and wofst case CRLB
" almost coincide. Thé :héeshold SNR varies‘by approximafely
2 dB for the best and worst'phase coﬁditions. The ﬁn}fofm
%rray chre;hold is now quite sensitive to the .phase
diffeyence. It is interesting to note that the threshold
SNR occurs %t almost the same wvalue oﬁ'Hsg in both cases.
In fact the. threshold SNR varies from 10 dB to 24 dB. while
the CRLB varies over.13.S dB. oFor‘high SNR. the square ;oot
of the CRLB is indicative of the width of the probability
density functioa of che-wévenumber errors as déscribed in
Chapter 4. There will cl;arly be a problem when the width
of the PDF becomes significant with the separation between
target and image. For this separation of 27/16. both
threshold poihts occur when the“ SNR is such that the
separation is equévalent to ipproximately 3 standard
deviations as caiculated by‘the CRLB. |

This effect is observed as the sebaration is decreased_

even further to 27/32 and demonstrated in Figure 5.14. This
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separation corresponds to a value Jjust less than "the

beémwfdth‘of_NR-7;and appfoximately %qual to a fifth of the

U-7 beamwidth. The high SNR improvement ranges from 25.8 dB

to 36.; dB.  The uniform afray threshoia SNR corresponds to
the same .MSE as it did for the 2#/16 :séparation. The
nonredundan£ array thresholds were not very' sensitive to
these phase differences and both were approximately equal ;o

that of the best case uniform array. In these  cases, the

nonredundant array exhibits threshold performance as good as

‘or better than the uniform array while providing Sampliﬁg

Gains rapging from 25.8 to 35.1 4B.

Qecréasing the sep#ration further to'Df/éé. we qbtaihcd
numerical ProBlems with the 7—element'uniform arr;y. This
separation corre;ponds to a tentﬁ of a beamwidth and the 38

bit floating-point representation of the Array processor was

insufficient to accurately evaluate the objective function

of equation (5.16). The separation is just greater than a
‘ : ' S
third of the beamwidth of the “nonredundant array. The

siﬁulation results are presented in Figure 5.15 where the
threshold qnd high SNR samplfng gain sensitivities are
clearlf displayed. The threshold SNR occurs at che point
whe;e the MSE are approximately equal. The threshold varies
frgp Y dB to 25 dB and the CRLB varies over 14.1 dB. The
statisticél nature of the threshold determination. for one

or two outlier events could easily account for the small
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discrepancy in the two.resulcs. The MSE is less .than that
found in the uniform arrays of the previous two examplés and
c:}responds fo about 2 .standard _deviatkons as determfned
from'the'CRLB..‘ . :
This concludes the simulation stu of the arrays in
the . presence of multiﬁath. We hdve shown that for
separations between target and irage wavgnumber much larger
than the beamwidth, the performance ié quzlitatively similar.
to that e;;eriencéd in the single target simulations of
. Chapter 4. There is a tradeoff of-abbut 4-6 dB in threshold
ﬁerfo}mange for a Sampling Gain of 13 dB in using the
T-element nanedundant arréy in place of the uniform array.
The_npnredundani array is less sénsitive 'to phase difference
~over a larger range of’;eparations bbth in threshold as well
as the high SNR pérforman;ii For. very.small separations, we
find the nonredundant array may have a betfer threshold
performance than the uniform array. rinally. the high SNR
Sampling Gains may b; signific;ntly lérger. fﬁr small
sepgrations. than whag was determined for the single target
case.

AY
5.5 Experimental Darta

This section deals with the results obtained in an

experiment conducted off Tobermory. Ontario on Lake Huron.

-
a7

»
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A 32;e1gmenc uniformly spaced‘sémpled éperture was built at.
the_Commﬁhicationisesearch Laboratory.. HcMastef Univé?sicy.'
by this authﬁr ing collaboration with“another Ph.D. séudent.
Hr.‘V" Kezys, under the supefvision pf Df. Simon Haykin. A
10~dB gain horn was positioned at the top of a tower located
on one side of the mouth of a bay. acting as ﬁ stationary
taiget or beacon, effecgively flqbdlighting ~the _wafer
‘surface. At a2 distance of 4.75 km the feceiviﬂg array was
erected, Vwith both towers approximately 10 m from the
water‘.s edge. The data used i'\is t};esis was colle.cted in

December ' of 1984, The hardware and other experiment

characteristics are discussed in greater -detail in Appendix

LY
C. Thg basic system configuration, experiment
specifications, calibration procedure and accuracy
Fimitations may be found in that section. Only the

essential statistics are quo}ed‘in this chapter.

The transmitter -heights were approxfmately 19 and
16.6 m and the center of the receiving array was located at
§.6 m. As described in Appendix C, eonverting all units to
the nofhalized system of this work,. for the upper
transmitter we obtain the prdjected wavenumbers of the
target and image to &e 0.023 ana —Q.OS?. respectively. In
terms of the elevation angles measured i{n physical space.
they are at 0.11° and —9.330. The lower heighrt transmitter

corresponds to a target at 0.08° and image at -0.30° of

~

-

& | -
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elevation angle. :

-—

Data was collected with various water roughness

conditions over 3 days. We denote the different. surface

roughness levels as ‘smooth”, ‘chop’., and “rough’ where the .

. . ?
respective total peak to trough waveheights were less than

approximately 0.25m ,  Im* and 2.5m. The data sbaﬂs

'appfoéimately 2 seconds for  which 256 snapshots. were

obtained.-

For each snapshot an estimate of the target and image
pdsition are obtained. Using the enqire array- of 32
elements the avérage_‘targéf‘hand image wavenumber are
presented in Table 5.1 for each scenario. The RMS vzlue
obtained over the tiﬁe_of data collection for each gquantity
is also provided. For thé larger separation, the mean
value; of the estima;es all differ by less than 0.012 units

of normalized wavenumber from the expected values. This

' =]
corresponds to an error of 0.06 of elevation angle or about
th '

4

1717 of ; beamwidth. «

The‘ smaller separation performance {s much less
accurate and clearly shows the breakdown of the estimation
scheme setting in. Qualitatifely. the mean va}ues of the
estimate§ are still within a beamwid;h of the antiéipated
location, although the errors are larger thah c¢an be

accounted for by sway of the receiving tower. We are led to

believe that for this separation, the calibration errors are

o
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almost certdinly the limiting factors.

‘ .~ Table 5.1 /
. f

Y j'
Experimental Target and Image Wavenumbers

|

Target + rms jImage :'rﬁs
h = 19.0m 023 - 087
Smooth L011. .004 -.075  .006
Chop .018  .016 -.054  .018
Rough .011 .012 -.061  .018
h = 16.6 m 017 _-%062
Smooth -1013  .004 , -.087  .006 .
Chop .033 ' .005 -.104  .013
" Rough .009  .010 -.065  .033
. T

It should be pointed out that the MLE based upon equal

additive noise powers at each sensor is not necessarily

- optimum in a calibration accuracy limited environment. The

most general MLE. in which an accurate assessment of the
calibration error statistics would be required, 'may be
significantly more complex in terms of the implementation.

Factors such as gain errors., which may not be Gaussizn

distributed etc., greatly complicate the final expression
Y

*»
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Y

and the reddctioﬁ ;hich leads to thé form of equation (5.16)
might not be possible. Therefore, the form of‘ the MLE
implemented for the multipatﬁ problem, equation (5.16),
assumed the overall effects of all. the noise sources could
be modelled as independent, additive and Gaqssian
,distribu;ed from element to element. .

The larger separation, and to some degree the smallér

seRaration.- performance indicates that high accuracy

. ) -~
estimation for'ﬁub-beamwidth separations is obtainable in a
work{ng system. _It now remains to ekayine the nonuniform
array performance; The primary question of interest is
whether 'tﬁe nonuniform arrays can operé?; “in a system
limited by calibration errors and other limitations found in
a2 ‘'real world' environment.

From the 32-element array. we can ‘'select .subsets
corresponding to the array c;nfiguration; outlined in
Chapter 2. The ‘7T-element nonredundant array spans.a‘total

| . | | ‘ AN
of 26 elements, and w;ll therefore be examined as the .
nonuniform representative cbn%iguration. There are a tog;l_'
of,? such arrays, each one ob;ained by 'Qliding' the £i¥sty
subset alonglthe length of the full array. Since the array
is not_symmetrical. we can identify another 7 arrays using
the inverted }epreseﬂtation. These two configurations will
be referred to as NR7a and NR7b. For comparison purposes we

.

use the 26-element uniform array which spans the same
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aperture as NR7T and therefo}e find 7 such subarrays-in‘the
32f§1ement set. We also compare the fesqlts ob?ained by
using a l4-element uniform array o&f which_ﬁhere are 19.

Each estimate i§ comparedrsnapshot by snapshot to the
correspon&ing result obtained by using the 32-element
uniform array at the same time instant. Thisfyf1¥—fcmove-
the effect of tower sway and wind loadd from infl;encing
the estifmation errors. Since our'primary-ingerest is the
comparison of differentjgrray structures; we wish to avoid
the factors stated éreviously as well as the change in
surface conditioﬂs etc., over the 3 dgys of meqsurément.. We
cal]l the 32-element estimates, the "true’' values for a given

snapshot, and determine the mean squared error for each

array structure over the 256 snapshots. The arrays U26,
NR7a and NR7b all have beamwidths defined as 0.25 units of

normalized wavenumber. The array Ul4 has a beamwidth of

+

0.45.

Since the phase differemce at the midpoint of “the array
under investigation may greatly in{luence the performance as
- shown in the simulations of Section 5.3, we keep ecach
subarray separate and determine thq errors independently.
Figures 5.16 to 5.18 demonstrate the performaﬁqufor each
‘subarray as compared to the 32-element full array for the 3
different surface conditions. Since the combined MSE of

target and image wavenumbers cover a large dynamic range. a
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log scale was used for the presenﬁationn .-The horizontal
axis coffesbonds to the loéat@on o{ the midpoint of the
;ubaper e a;ray me;sﬁred wit? respect to the toﬁ_of the
32-element £u11 ar;ay (whose midpoint would be 15:5 on the
.same axis). The figuresrare best appreciated by initially
considering ‘the resuﬂ%s. qualitétively. The ncnredundant
array.perfo;mance generglly osci}lates about the 26-element
unifoerm array performance for all 3 surface conditions. Ve
" found a strong null. in the received amplitude 1in . the
vicinity of element 26 implying a phase difference of iSOO.
As sho#n in Section 5.3, this is the worst-case phase
condi;ion for sub-beamwidth 'separations:.. Therefore, ;e
anticipate perﬁorpanée to- be payéicularly poor for arrays
centered near ;hks point.- Similarly. the phase difference
is well below 90° at the other end of the array.

In all of the nonredundant subarrays considered. the
.performance was better than that of the l4-element ﬁniform
array when cémpdred with the same midpoint. In 37 of the 42
comparisons the improvement was greater than 3 AB‘ ‘

A comparison of the minimum MSE is presented in Table
5.2 for the uﬁiform l4-element array and the 2 sets of
.nonredundant arrays. This comparison Es made independent of
the subarray center and we find the improvement was 5.2 dB

on the zmooth surface, 16.1 dB for the choppy sen state and

8.5 dB on the rough surface data.
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.- Table 5.2 - -

-——

Minimum MSE Comparisons

Array Smooth Chop R&ugh

. \-"_ —4' .
Ul4 4.3 74.0 §.5 x10
NR7a 1.3 1.8 - 1.1 x10" %
NR7b . 1.3 1.4 1.2 x107}

”

-

)
For the smaller separation., the absolute performance of
the 32-element ar?ay.was not as accurate as for 'the larger
separation. We can still examiné the_performance of tge
PN
_subarray§ wiLh.rcspect to the 32-element array: This will

still indicate how sensitive the different structures are to

having elements missing. ' Figures 5.19 to-5.21 present the

results_bf this examination. The results are similar Lo
those observed in the previous 3 diagrams. The degradation

of the l4-element uniform array is significantly larger than

it was when the spacing was larger. That is, the NRT and
. - .
U26 arrays provide results which are in mueh closer

agreement to the 32 element estimates than does Ul4.
The results of these experiments were not limited by
the thermal noise but rather by calibration accuracy. This

. ' i
is the accuracy with which the relative phase and amplitude

of each channel can be evaluated as well as tHe d.c.

offsets. The calibration procedure is discussed_in Appendix

/
/
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+C where some of the limitations are addressed as well as the

improvements which may be made t the system. It is howevef‘
clear,™ that for the same calibration accuracy, the
nonredundant arrays. perform significantly better than .

uniform arrays consisting of even twice as many elements.

~

5.6 Multipath Summary
X

In this chapter the effects of  multipath in
direction-of-arrival estimaiioq were examine§ in ‘great
detail. The Crﬁmér—Raﬁ'Lowe; Bound for nonrandom parameters
was develoﬁ‘# with ﬁppropriﬁte extensions to' arbitrary
linear .arrays. The exact maximum likelihood estimator for
the muttipath problem was also deécribed and simulated.

Several important results we;ei indicated from this
portion of the study. For larée SNR, the simulation results ;
were shown tu be in agreement with the .CR bound for
arbitrary linear arrays. Nonredundant arrays exhibit
reduced sensitivify in ;estimation performance to the phase.
difference betweeé the. two plane waves compared to the

P
.unfform array consisting of the same number. of elements.
This is primarily due to the larger aperture and the effect
is -most significant for closely spaced or low flying

targets.

The threshold effect observed at lower SNR values was
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similar to that demonstrated in Chapter 4 when the spacing
between the targets was large compared to a beamwidth. For

~

closely spaced targets the thresholds were lower for the

‘nonredundant arrays than for the- corresponding uniform
arrays. In these regions. it appears the tradeoffs made in
choosing an array structure are not similar to the single

s :
plane wave situation. That 1is, the nonredundant arwsay

provided a lower RMS error .than the uniform array for 311”

values of snr. -

___This chapter also provides a comparison demonstration
©of performance for the nonredundant and uniform arrays in a
"real world® multipath environment. The target and image
were closely.spacéd with respect to the 32-element aperture.
From the avzilable conditions. the nonredundant arrays
performed significantly better- thaR the wuniform arrays
consisting of up to twice as many elements.. This addresses
the quesgion of calibration error ef?ects on the array
structures. For the calibration errors obtained in the
experiment, the larger aperture of the thinned array was
more significant than the more depsely spacéé uniform array.

The greatest -limitation of the experimental data was

‘ .

the number of distinct scenarios that could be generated.
An improved system, presently undér construction. would have

multifrequency <capability. " Even small variations of

frequency would generate a large number of phase
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relationships between the target and image

receive aperture. s

i
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impinging on the



CHAPTER 6

CORCLUSIONS, CONTRIBUTIONS and FURTHER RESEARCH

b
P

‘ In this chapter, we highlight and summarize the results
of;the previous chapters. The original contributions made
ing this fbrk‘ are indicated. Areas which have not been
explored and may ~prove fruitful for ‘tﬁinned .array
applications are described _in the last section of this

chapter. “ s&\

6.1 Conclusions and Contributfﬂ;s

The fundameﬁtal result obtﬁined in this research has
been the establishment of the céndi??ons under which a
thinned array may provide improved direction of arfival
estimatioq,;erfqrmancé. It has nevér been demonstrated in
‘the literature, to the author's knowledge. that there exist
tradeof® conditions under which a’ thinned arrays may not
provide improved performance and prior to this work., a

framework for this evaluation had not been established.

Using the Cramer-Rao lower bound for unbiased estimation,

170
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this éffect is not evideﬁt. W¥e have been able to apply fhe

‘1

Weiss-Weinsteiﬁ lower bound which establishgk the tradeoff
in SNﬁ phr&ugh Ehe threshold effect, when a ;iven,nuhber of
Ielements_ are - used to estimate the direction of a single
target in additive, white, Gaussian noise.. The threshold
SNR is lower for uniform arrays than it is for‘ thinned
arrays. The high SNR,region (above the threshold.) showed
the nonuniform ;rrays provided a significant savings in SNR.
| The generalized maximum likelihood estimator was used
in simulationg in order to characterize the effect of array
geometry. The tradeoff was identical ;n nature to that
obtained by the WWLB. Both the MLE(and the WWLB provided
qualitatively simiTar performance indications under a

variety of a priori informatign conditions. .
An alternatige view of the threshold condition. using

the <¢oncept of- outliers, was extended to include the
performance T‘of' " nonuniform arrays when exact maximum
likelihood estimation is used. In this assessment of an
array structure, the SNR is. determined which produces a
specified probability of haviné a 'poor’ estimate occur. An
empirical, asymptotic interpolation/ex;rapolation procedure
was determined and was shown to/ be adequate for many
practical problems. This expression could be used éo
‘

determine the minimum éNR for which a specified performance

level would be met. This proved to be a useful measure in

-, . -
! /
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discriminating between array structures as well as providing

further insight on the impagt of the structure on estimation

performance.

-

The tradeoffs in a multipath environment. were found to
be more complex than in single target scenaries. This

analysis involved simulations using an exact maximum

likelihood estimator for 2 targets. . For large seﬁarationé

between target and image, the tradeoffs were similar .to
those determined in tﬁe single target das;. Howevér. when
the sepatation betweenl target and image ;wgé wiéhin the
beamwidth of the uniform array. we found the thresholds wer;
lower for the thinned arrays than they were for the uhiform
structures. As such. no tradeoff exists since the RMS error’
was always less for the thinned arrays. The thinne& arrays
also indicated lower sensitivity to the phase difference
between target and image than did the uniform arrays- for
small separations. O0f course, for sufficiently l;rgc
separations, neither form' of a;rgy exhibicted gﬁeat phase
sensitivity. This was also s?gigfusing the Cramer-Rao lower
bound for unbiased estimators at Thigh' SNR. . These
rélationships betweeﬁ thinned and full a;rays have not been,
demonstrated&in the Eiterature.
- D —
A further question remained as to the performance of

thinned arrays in a ‘real world’ ‘environment. An

experimental, 32-element. sampled-aperture array at X-band,
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was developed and brought into the field for data

~\collection. This apparatus provided real data of an

(e

accuracy that was pre iously not available for the

evaluation of high ac cy/high resolution  estimation

algorithms. The limiting source of error was calibration

énd electrical/mechapical tolerances as opposed to additive,

- - A 3
white, Gaussian noise. For the set of conditions under

which data was collectigé_the nonredundant array performed
substantially b;tCef thaﬂ the uniform arrays consisting of
twice as many-elements. The target and image were closely
R .

spaced in this experiment. ¥e conclude that the thinned
arrays had les; éensitivity to calibration- errors than did
the uniform arrays. *

Other contributions of'this reééarcﬁ p?ovide estimates,

based on_ a. statistical analysis. of the search densities

required in implementing a maximum likelihood search over

the mul timodal expressions developed Q:: wavenumber
estimation for both uniform and nonuniform aArrays. We also

illustrated the error distribution for maximum likelihood

estimators is related to the classical ‘beamn pattern of the:

-
array.

6.2 Future Research . .

‘ -
-

¢

" The observation of the PDF of the error distribution,



174

.

coupled with the outlier analysis, indieate the ppssib}lity
of {mpfoving the threshold pef%ormance of an array using
windowing. The effects of windows in this type of analy;;s
has not-been documented. In addition, there is a very large

selection of possibilities. see [52] for example, and the

‘optimum’ choice is not clear.

This work ﬁas assumed detection ha&'occdrrgd and the
« .

number of targets has beeén determined. It seems thf next -

logical step would be to examine the detection performance

of thinned versus uniform arrays. By virtue of the larger

k3
B

aperture obtained with a thinned array. it would seem there, .

=
. o

»

is promise for improved detection and determination of thg .

Bt T

number of tar&ets present. Perhaps further tradeoffs will
be encountered which will necessitate the désign engineer

anticipating the final operating conditions. .

Rébently: 2 determination of' the number .of signals

which .may be resolved by a uniform array has . been

determined, see {53]. The authors of this paper

specifically state their results do not apply to nonuniform
/ " o

arrays. Cl ar{zk this is an important determination which

should Be clarified for nonuniform arrays as well.

The fnclusioﬁ of a multiple frequency capability ;nto
g;e experimental ap‘paratus would allow for a significantly
greater variety of ~eXperimental conditions. For ;: given

target location. the. relative phase between target and image

-

.

RN L0
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’ ’ L] -\‘ . .

could be varied, ideally from O to 27 with a2 small]l change in

frequency. Further improvémenfs in the calibratioﬁ-

procedures and greater accountability for the receiver sway
, .

would then increase the amount of evidence from 'real world®

data in determining the improvement obtained through the use

-

- -

of the wvarious array structures.
Finally. much of the work in this thesis was
illustrated using nonredundant arrays. - These were chosen

because. of their lack of visibility in the literature as

compared to their minimum redundancy counterparts. of
course, there exist other structures based on different
constraints such as aperture limits. The concepts developed

+

in this thesis will apply to arbitrary linear array
structures and as new arrays are proposed. an identical
analysis may be performed in order to make sound comparisons

-

Tetween different structures:
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APPENDIX A

THE WEISS—WEINSTEIN‘LOWER'ﬁdUND

. n A

~

A.]1 Derivation of Weiss—Weinstein Lower Bound

-

Let Z = (Z,. Zaov..o., ZN)T be the N-dimensional vector
of rgceived“data random variab1e§ taking on complex values,
z = (Zy. Zoweo.. zN)T. Let A = (A;. Aa.,.... AM)T be the

N

M-dimensional vector of random variables representing the

random parameters og the est{mation problem, taﬁing on
values a.; {(a;, . az..... aﬁ}T. .To save on notation, we let
p(z.a) be leA(z.a). the joint probability density
function of the N received values and the M parameters. Let

'g(z): and f(a) be functions from C' to R! and BY to &',

T

-respectively. Finally. let h = (h,{ ha,.... hH) . be any

other M-tuple in RM and q a real number of the oper interval

(0.1). We may show the identirty

fdz Jda f(a-h) pl_q(z.a-h) p?(z.al}h

= J&z jéa f(a) p Yz.a) pi(z.a+h) (A1)
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| Jaz faa [f(ash) - f(a}] p " Y(z.a-b) pI(z.a)

177

is true by replacing a-h with a on the left side. °
Subtracting sz j&a f(a) pl_q(z.a-h) pq(z.a) from both

sides of (A.1). we obtain:

-

= Jéz J&a f(a) [bl‘q(z.;)pq(z.q+h)-p1‘q(z.a—h)pqﬁ;.a)] (A.2)

~

We can also verify the identity : o

V4

J&z g(z) Jéa pq(z.a+hi.p1fq(z.a)'

= Jaz g(z) [da pl_q{z.a—h) pq(z.a) - (AN3)

with the replacement of a+h by « on the left side. This

result can then be summarized as

. v
sz_g(%) da [pq(z.a+h)p1‘q(z.a)—p1‘q(7{a—h)pq(z:h)J = 0 (4.4)

t(': >
\

- -

Combining (A.2) and (A.4). we obtain

-

Jer Jee Efﬁa}-g(z)l[pl'q(z.a)pqcz.a+h)ep1‘§(z.a-h)pq(z.a)]
= Jaz Jéa [f{a-h)-f(a)] pl'q(z.a—h)pﬁkz.a) (A.3)
. ‘ e .

.
)

g | BN
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Since " 0 ¢ q {1 we can understand the'intggrafs of
equation (K.S) to be performed over the regions where
ﬁ(z.a} 5'0. This allows terms of the form p(z,a+h)/p(z.a)
to be well defined. The original paper [27] uses this fact
fmplicitly. ¥With this undersfanding. we continue by
sﬁuéring equation (A.5) and applying the Scﬁha@tz

Inequality as follows ' !

Udz Jd& [£(a-h) - £(a)] Pl-q(z.a-h)pq(z.a)};
[szjd“[f(a) g(z)][p q(z a)p* (z a+h)- P q(z a- h)P (z. a)]]
[szfda(f(a) -g(z))°p(=. %)] . . .

[ szJda pI(z.a+h) _ pl—q(z.a—h)]zp(z.a)} o (A.G)
S Uz.a) 1:,l—q(z.a} ,
7

We now identify the terms as expectations, and after

~

rearranging, obtain:

E([f(a)-g(z)]?} 3 L E{[f{a=h) - £(a)1 L'"%(zia-h.a)) 1°

E{[LY(z:a+h.a) ~- L' 9(z:ia-h.a)]%)

" (A.7)
where Lq(z;B.a) = pq(z.B)/pq(z.a). : We may_‘iacntify
f{a) = 1Ta and g(z) = l a where a is any estimator of a
based on received data =z. 1 is an arbitrary M-dimensional

-

H

}

, ‘ -
- ® v
e
L} . ) t . . .
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-,

» vector defined o; ﬁﬁ. We .note that f{(a-h) - f(a) -'—ITh{

N

Equation (A.7) nowfreduCQS'tp
. - c-

1TE{(a-a) ¥ (e-2)T} 1 » 1Th @ nT1 (A.8)
whe%e:.

Q= E3{LY Yz a-B. @) }/E{[LY(z:a+h.a)-L " z: a-h.a) ]?} (A.gi

N . . ) - -,
Finally. we obtain : T - ‘ - .

-

lT[E{(a—;) (a-a)T} - hQ_lhT]_l > 0 (A.10)

. L3

‘where (A.10) holds for any 1. and as pointed out. in
’ : .
[27]. this implies the, internal mwatrix in (A.10) . is
. 5 .
nonnegative definite. This, in turn, provides a lower bound

on the mean square error of any parameter estimator:

E {(ai-;i)z} > hi2 / Q ~(A.11)

As this expression-is valid for any h and q. we bbtainlthc
tightest bound by maximizing the right side of (A.11). This
maximization is on the order -of an {(N+1}-dimensional

b

search.
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A.2 Application of the Weiss—Weinstein Lower  Bound: —

- -

‘We'noﬁ attempt to apﬁly this bound to the direction of .
arrival estimation problem. We assume the wavenumber and
pha;e of the incoming plane waves are raqﬁom parameters. We'
;lso assume the’amplitu%; is known. In ‘this w ¥ we obtain a
lower bound on the mean square estimationerror as a
function of signal to noise ratio. It tdrns out that
knowledge of the amplitude does not in fact change the
Cramér-Rao boundi;ither. as GES"ﬁhgwn in Seétiog~§.2. In
any event, this is still a lower bound ‘'n mean square error
performance. As in the CRLB derivation, we identify'
a = (a,.az)T with (k.G)T where k 15.'the _unknown
wavenumber and . 6 is the unknown phase of the plane wave at
the centroid- - of the array. In all other respects, the
problem is identical to that outlined in section 3.1. The
wavenumber i{§" normalized such that the ‘visible‘ regioﬂ is-
within (-m; 7). :

As we have done earlier, we dfdp the subscript"oﬁ the
probabiliky density funttions: It shqula be clegr from the
context, which‘ density function is bei;g employed.
Therefore. p(az,). p(hy) or ptk) all refer to the PDF
pr(') as p(az). p(hz2). p(8) ali refer to the PDF
pAz(:). Similarly Ey p(z/a). we implicitly o assume

pz/A(z/a) etc.’

——
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All terms can be reduced to the general expression

E(LY (z.a'.a) LY (z.a".a)}

' Jda J&z [ p(z.aiJ]q [ P(Z.f")]q p{z.a)
: 3 B p(z.9) | -

Jda Jﬁz pq.(:.a') pq"[z.a“) ﬁlfq._qu.a) "(A.13)

where the integration is taken over the region for which

p{z.a) > O. VWe continue by expandiﬂg the joint densities so

that

‘E{L?l(zla'.g) LY (z.a".a)} ’

= [aa »¥(a) p9 (@) BTV (@) T(aa @)

f(a',a”,a) = sz pq.(z\a') pq"(z\a") pl-q'-q"(z\a) . kA.lS)

_ ¥Wich -('

3

p(z\a) = exp{-lz -s{a)ll®/ 20%}

(2o

E tion (A.13) becomes ,
qua '.10 ( ) . . /
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f(a..a;la] = exP{*d(a'.a“.a)/202}‘.

(2m0")N : -
Jaz exp[-"z = (ﬁ's(a')+Q"S(a")+(l-q'—q")s(a}nz]'
. - 20_2
= exp{-d(a'.a".a)/20%} (A.16)
_where .

d(a’.a".@) = [a'(1-a°) + q(1-a”) + (1-q'=a")(a"+q")INa’
- a'q"(s7(af) s(a") + s7(a") s(a’))

'-q")(s?(a') s(a) + s'(a) s(a'))

-q") (s (a") s(a) + s'(a) s(a"$)

(A.17)

H .
We denote a to be the complex conjugate -transpose or

hermitian of «a. We define

. N .
¢(h) = ¢(h,.hy) = 3 {1 - cos(h,xi + ho)}

i=1"
N .
=N- =2 cos(hixi + hs) y (A.18)
i=1
We notice c{h) = e(-h} 2> O , whieh will simplify

calculations during implementation. - Equation (A.17)

simplifies to
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d(e’.a".a) = 22 [q'(1-q°) c(a-a’) + q"(1-q™) c(a-a”)

- q'q"(c(a-a’) + c(a-a) - c(a"-a'))]  (A.19)

Since @' and a” are of' the forms a + h, euntion (A.19)
indicates that d(a',a”",a), and hence f(a'.a".a), are
1hdependent of a. Therefore in equation (A.14) it only
remains to evaluate terms.consisting of che_rapdom parameter
PDF. This integral contains the a priori information known
about the random parameters.‘

We consider the wavenumber and_phase‘to be independent
parameters, and as such the a priori integral cah be

expanded as

Jae 29 @) 2@y p17 (@)
= [fem 2% @) 2 @) 21T @] -

"

[[aez »%" (22") p¥ (221p? 8 " (a2 | . (A.20)

—

" At this point, ~the a prieri information woula be
éntered into the*ﬂﬁﬂnding formul#. We begin by_assuming the
phase to take on any value with equal likelihoéd. If we set

~ .
‘ the phase Hensity to be uniformly distributed over "[-mm,

+ . .
mr]. me Z and take the limit as® m = ®, the second

integral tends to unity. As we show later, this will



provide a position-indepdndent.boﬁnd.

-

The wavenumber is considered to be - uniformly

distributed oveﬁhx(kn.kk). normally taken to be: a subregion

of (~w. 7). The result of the integration then becomes:

-
.

"(as™) 27T (@)

P

- Jﬁax pl (a,') p?

{‘(ax = e ) ok). e g

= * - .‘ . (A'zl) .
0. elsewhere - -
where
a# = miﬁ{k#. kx*(ax'-a{). kx-(a,"-a,)} )
= k, -wmax{0. (&;'-a;). (a,"=a,)}. : (A.22.2)°
.\:7- : .
and

o,

a =.max{kq. kn-(ax'-a,). kn_(az"-a,)}_

; k;‘-.miﬁ{o. (a;"?i)- (a;"-a,)} . (A.22;b)

We ‘motice that it is only the range of uncertainty which
governs this a priori integral. The result depends only

upon (kx ——k;j. and not the individual values.

The result can then be summarized as

- (a -a ) e{—d{a'.a".a)/2g2}

E{Lq (z.a" .a) Lq"(z.a".a)} =
: k.- k
x n

(A:23)
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. s’ .
where d{a’.a”,a) “1s defind by (A.19) ‘and will be
independent of a for the choices of a'. a" tonsidered and

a .. a defihed in (A.22). Equation (A.9) is reproduced here

without the inversion:

o
I

= E{[Lq(zﬂd+h:a) - L17%z.a-0.0)1%) 7 B2 (LY Y (z ek )}

e

E{(L2%(z.a+h.a) - 2L%(z.a+h.a) L'"Y(z.a-h.a

+ L?f2q(z,a-h.a)]} / B2 (L1 Yz, ah.a)) (AL 24)

We define the function:

N M Y ~
H(ﬁ) _ 1 - |h]/(kx- kol In} < (k,-k )  (A.25)
- 0, . elsewhere
The denominator of {A.24) can be evaluated with q'' = 1-q.
a' = a-h, q" = 0, a" = a’ substituted in (A.23). The
result is
E{L!™9(z.a-h.a)} = H(h,) exp{-2T'q(1-q)C(h)} (A.26)
Making similar comparisons, the numerator expressions -are

also obta&ngd as follows

-

/F\
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‘E{qu(z.a+h,a)} = H(h,) ekg{-zrzq(1-éq)c(h)} Y (A.2T)

E{LY(z.a+h,a)L "Y(z.a-h.a)} =H(2h, )exp{-2T'q(1-q)c(2h)}

) (A.zéj
. E{L2729( 2, a-h.a)} = H(h,) exp{-2I'2(1-q)(2q~1)c(b)} -

| - . (A.29)

7" Equation (A.24) now reduces to:
~

H(h )[exp{-2I'2q(1-2q}c(h)}} + exp{-2r2(1-q)(2q-1)c(h)}]

Q= HZ(h,) exp{- 2r2a(3-a)e(m)
-'2H(2h1)exp{-2f(q(1-q)c(2h)}
- ; " H®*(h,;) exp{-2I'2q(1-q)c(h)}
* H(h, )(exp{4Ta®c(h)} + exp{4r(1- a)®c(h)}]
N H*(h,) )
2H(2h,) exp{2rq(1 q){(2¢c(h) - c(2h))} . (A.30)
) - H? *(h.) :
| o

-
- &
Finally, the bound reduces to

E{(k=k)?} > h,%/Q * (A.31)

where this {s true for all h and q. as defind earlier. The

i

"tightest bound”™ will result for those values of h . and q

-

which maximize (A.31).
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‘A.3 The Search Implementation
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2 !

¢ The maximization of (ATBI) involves a three-dimensidha}
search, for which the .regions of. search need to be
specified. For |h,| 2 (kx;kn)f >the value of Q . is
undefined. As |h,]| = (k,~k_ ). Q-+ and hence th; bound -
tends to zero. This limits the nqces;ari search reﬁipnﬁj We
observe Ehét ha appggrs only as a térm in c(hf.fwhich ffspm
(A.iS)j caﬁ_be seen to be periodic in h, with period év.

Again this constrains the necessary searchk in h, to be over
. T s .

vty

(-w.w}."THe bound is also m%rgd%ed for #h. _.Using these
results, the final sd; giéqﬁ for h are defined below:
"5,
: o {(A.32)
(A.33)

" Finally., from (A.30)-we observe Q-has an axis 'of symmetry
: - .

about q = %. Therefore, we need only search the region

[0..8] for q.. 1

- ¥e can éo further than this. in determining the maximum
of Q with respect to q. We examine two cases separately:
{ .
7
Case 1 : (kx—kn)/2 € h, Skx-kn - (A.34)
. o

Case II _ 0 ¢ hy ¢ k ~ky/2 (A.35)
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i

Case I x -

Q. = afexp{ba®} + exp{b(1-q)%}1 > (A.36)
S = a[2qb exp{ba®} - 2(1-q)b exp{b(1-a)*}] ' (A.37)
“""i:—"; - al[2b exp{bq®} + 2b exp{b(1-a)?} + 4qa°b? exp{bq®)
q * . ——
+ 4b7(1-q)? exp{b(1-q)}] (A.39)
. ' ) ' NN
. ) ’///
whe;e : a = l/ﬁ(h,)t and b = 4Ic(h) are both positive
quqntitiqs.: From (A.38) we noti;e.thé second derivative of
Q: is strictly greater chanrzero whenever b > 0. Equation

. . -

(A.37). however, indicates that dQ/dq = O at q = %.
Therefore. Q must have a minimum (and the only one) at q =
. This, in turn, implies the bound is a global maximum

, | K . . )
(h;"/Q) at q = %, whenever (kx kn)/2 ¢ hy <k Rn

Case I1
L
-

Qz = Q, -c exp{-eq(l-q}} . ~ (A.39)
d0. d s : A.40
=T ¢ ee(1h2q) expl-ea(1-q)) (4.40)
2 4 .
3q‘2 = gqu - ce(2 + e(l—%q)z) exp{-eq(l-q}} (A.41)
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where a,b are defined as.in Case I- 2H(|2h, }/H?*(h,)
‘and e = 2I(c{2h) - 2c(h)).
Again the derivative of Q at q = % is zero. We cgnnot

PR

show that Q has a winimum for all h. To eliminate a search,
we would need to establish this was the global minimum as
well. Therefore, in this region of h;. a grid search is

performeh for O < q ¢ %.

Finally, this bound can be shown to be independent of
the absolute location . in space of the array. Ve 'will
demonstrate this by showing ‘that a " shift of the array

elements will still produce the same values of the bound, .

although they may occur at different points-of the search

’

areq,.

Consider the bound evaluated at a point h for a given

’

set’ of array locations. {x,. Xz, ...}. Now shift th§-array
by d\ units such that xi = x, + d. If h, = h, -and
ho' = ha - h,d modulo 27 , then from .eéhatiod (A.18).
c(h') = ¢{h) and <c(2h') = c(2h). Since the only value

changed is h;. and 511 other terms in the bound fgrmula are
independent of h,. the bound evaluat%?n will provide the
same result as for the prefious array structure. Thus., any
change in the absolute locétion of the array in spa#e merely
_tr#ﬁﬁiates the surface of evaluaticons over the  search

region. This property is also evident with the Cramér-Rao
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A.4 Special Cases of JWLB - .

We nowiconsider sevqral spécial conditiéns of "the WWLB.
For low SNR, this implementation will be shown to be within
0.5 dB of the attainable mean square error. This may be
contrasted wi£h ;h; CRLB. ﬁhichiis clearly not valid for our
wavenumber estimation ﬁroblem'at.these very low values of
SNR. At high SNR., we show this feorm to be greater than or

equal to the CRLB developed in Section 3.2.

A.4.1 Low Signal to Noise Ratios

-

*

elemental SNR, T. is very small. Equation (A.30) then

becomes

- 2[H(h,)-H(2h,)]

lim Q (A 42)
-0 , H?(h,)
We note that (A.42) is -independent of q and of h,. To

simplify the-notation we replace h; by h and (kx_ kn) by r.
Further we denote the boﬁn& in (A.31) as B. The solution is

broken into two cases: Case 1 for h < r/2. and Case 2 with

T
-

,1/
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| : .
h> rs2. ! L \

‘Case 1 : h € r/2 The bound becomes ] i [/A\‘
_h® (1 - h/r)* T :
B = =%/ (A.43)

Dl

After taking the first and second derivatives, we find the

maximum of B occurs at h = r/3, and  so the bound becomes
.rz ’
) Bmax = 135 (A°44)‘.

Case 2 : h > r/2 The bound is determined to be

(1 - h/r) 7 2 - (A.45)

B =nh
having a maximum at h = 2r/3, for which the bound is
: \
!‘2
Bma.)‘:.E 13.5 (A.46)

At very low SNR, the estimator which simply cho&scs the
midpoint of the interval will have a MSE equal uﬁ r¥/12.

Hence, this technique will provide a bound within 0.5 dB of

the attainable performance at low SNR.

-Ah. 4.2 High SNR Comparison with CRLB

.The .last special\case to be examined will be for very

high SNR. I'. To simplify the notation we will assume that

!
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ﬁhe array locations are adjusted such that the centroid is
3

zero. Since the phase 1is assumed, urknown. the absolute

-

ioca;ibn in space;is érbitrary.‘and so this. can always be
done. We will show‘that if hy = 0 , q = % then a value of
h; can be found, aependent upon I' . such.that as I' » @ ; the
bound will approach the CREB. Note thaf this only states
that at high SNR the WWLB bound is at least as tight as the
CRLB. and other values of the parameters may exist for which

the bound is in fact larger than CRLB.

If 4 is a positive constant, such that d << 1, we take

’ h, = [@]% (A.47)..

where L

. i=1
_ l; x 2 (A.48).
-, i
i=1 N
.
For I' large and hence h, small. we approximate the function

defined in'(A.IS) by the first term of the expangion as
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) "
| N _
: c(h) =2 {1 ~.cos(h,xi+h=) }
i=1 ” _
N
=3 (h,xi)2/2_
=1
= h,2s/2
=d /T (A.49)
and c(2h)= 44717 7 (A.50)
We now evaluate the .bound. B. from (A.31):
B = : h,® (1-h,/r)? )
2(1-h;/r)ed = 2(1=2h,/r)e @
) d (1-h./r)? / (IS) (A.51)

(1-h,/r)e® - (1-2h,/r}e ¢

As T = o | or 'equivalently. h; = 0. terms of the form

(1-h,/r} - 1 , and so equatioh {(A.51) becomes

AsT -, x4/ US] c (A.Qs)
e - )

If d <<1 then. (A.52) can in addition be approkimatcd as

B = (2rs)”? ' (A.53)

Here we have shown that this version of the WWLB hgs the
original CRLB as a special case at high SNR. Of course; it

may turn out that the bound is always much larger than this

A
e



value, depending upon other parameters

a prior{ knowledge.

194

such as the amount of

N



APPENDTX_B

STATISTICAL ANALYSIS OF PROBABILITY OF OUTLIER.

Determining the probability of outlier, p., is essentially a
counting problem. We keep track of the number of c{mes the

error. falls outside the beamwidth of the array, say N_ of Nt

trials. The estimate of p is then given by po‘as
Py = N, 7/ N, (B.1)
with . o2 = N_ 7 N? .
P p t
{ . .
. 2 «
_ = PN, FB.Q)

Provided Np is large and P, is small, the mean square error
in the estimate of ﬁo is given by (B.2)}. For each value of
SNR, Fi. an estimate of the probability of. outlier is

determined, P having an estimated standard deviation, %,

i
To characterize the probability of outlier as a
function of SNR. a least squares fit must be performed. We

follow the procedure of [47]. using orthogonal polynomials

to fit the 1In{p) to =a linear curve by minimizing -the

-

185
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chi-squared with respect to the free pgrameters. The .
formats of the terms are; - v
In(p) = a + b(I-B) ) (B.3a)
2 = 2 '
71 = %In(p,)
- . = /N | (B.3b)
Pi \

-

The coefficients are found from the following expressions

B =3 (/o) /4 (B.4a)
. i :
a =3 ( In(p;)/a] ) / & (B.4b)_-

i AR
T ( (Ty-B)*/07 )
i .-

A =3¢ 1/a§ ) ‘ (B.44)

LA

—

The choice of B. in equation (B.4a). provides us with

independent coefficients a and b. ¥e may estimate the

—
-

respective variances of these two parameters as follows

( -

. a; =1/4 . : (B.5a)"

and o2 =17 X ( (ri-ﬁ)=/o§ ) - (B.5b)
. . _
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For comparison purposes, it is convenient to determine

the, simplified model

- -

) ' . in(p) = ¢ + bl ' _(B.6)

where the coefficient ¢ is given by

5 .
c =a - bp _ - (B.7a)

with it's viriance given by

oy = c; + pza; (B.7b)

However. the coefficien@ ¢ is not independent of b, and any

error analysis shoyld use the format of equatién (B.2}.
»

--We can invert equation (B.2) to obtain the expeccted SNR

for a given probability of outlier. and also estimate the

-

error of this calculation (which may be an interpolaé%on or

extrapolation}. 'The inverse function is given by

—

r =p - ( In(p) - a }/b (B.S)
T T v ‘ .
with variance a? = {dnfp)-2a) o2 + L g2 (B.9)
R b‘i . b b2 &

The above procedure for fitting was based upon the
aﬁp{;ximate analysis of Rife and Boorstyn, {38]. in the

limit of high SNR, the probability of. outlier occurrence

o~

~—
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r——— . " -

‘varied as a single exponential. - In this respect, ,the

fitting of the“data to a straight,}ine must be_considered an
empifical'resultl Therefore. we also include an estimate of
the goodness of fit of the data.

We will use the chi-squared value as a pargméter for

the goodness of fit: It may be obtained from.

-

. [in(p,) - a - b(T.-B) ]2 ‘
ey lne) T e b ®.10)
—_ i .ai . . .

With NT data points, the reduced chi-squared is .
2 _ 240w |
X, = x-/(Nr,2) . (B.11)

- >

—

‘ . a -
If the fit is justified and the error analys&s is correct,.

the reduced chi—équared should be approximately equal to 1.
The probability . that chi-squared exceeds the determined

value for a given number of degrees of freedom has- been

/
- i . .
tabulated in{ [47]. This quantity should ,be approximately
equal to 0.5. sing these figures, we.can usualiy determine
whether or not. g;e fit is adequate.: The probability is
. "

usually either close to 0.5, indicating a reasonable fit, or
it is very small, indicating a poor fit within the

‘experimental' accuracy.
Ao
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APPENDIX C

MULTIPATH DATA COLLECTION -

-

C.]1 Overview ' ) *

Thgb appendix pfovides the specifidations_and‘discusscs
the a;cufacy limitations of the experimentql sampled array
constructéd ~at the Communicaéions Rese#rcﬁ . Laboratory.

»

McMaster University. The experiment was conceived,

‘constructed "and field tested in collaboration with another

——

Ph.D. candidate, Mr. V. Kezys also under the supervision of
Dr. S. Haykin. The objective was to collect multipath data
representative of a low ‘elevation target., located over

water, which would allow the edaluation of high resclution

direction of arrival estimation procedures. Oﬁr goal was to

develop a larger array (32 elements). providing greater

- N ! 3 £l '. .'
accuracy and operating over a wider variety .of surface

roughness than existing systems and would be sufficient_for

the evaluation of high &accuracy/high resolution estimation
algorithms. ‘The design effort was started in 1981 with the
first phase of data collection completed in Decembef. of

1984, It is this data which is used to evaluate the‘arrhy

4 \g\;

- -
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structures studied in Chapter 5. To ensure the _§3§EQQ

»

:design specifications and parameters would be applicable to

realeorld. practical,problem&. meetings were held during

the development period with individuals® .at the

Communications Research Cenger in Qttawa.

.

The first section describes the hardware ét the block
diagram Jlevel. .T specification$ aﬁd toleraﬁc;s; gfé
described as‘;:TT‘izpihe opefat&nglco;diqions. Section C.2
provides an'explanatign of the calibration procedures. .Thg

N \
third section covers the actual experiment logistics,

including the geometry and ground-truthing. he

From - these original data \sets. modifications and
improvements are- being made to the existing hardware to
ﬁreate a data base providiné both greater a;curacy and
covering a wider range of scenarios. These 'changes are

+

discussed in the final section of this appendix.

C.2 Hardware Describtion

f

» The operational .frequency was 9.81 GHz, providing a

free space wavelength of approximately 3.05 cm. The

-

transmitter is blocked in Figure C.1. It consists of a free
running 5 MHz double-oven, crystal oscillator which is phase
locked up to 9.81 GHz. The signal r?;’ amplified to-

approxXximately -10 Watts out of a TWTA and transmitted thréugh

-

~
.L,‘-.
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a 10 dB gain horn.

The 5 MHz crystal oscillat found 1in the

reéceiver, provides very low phase n The short term

phase noise -was characterized by an Allan variance; of

12_1n one second. After a 24 hour burn in, the long

10

5x10°
term drift waékquoted to be is less than 3 parts in 10
per day. Since there was no hydroelectrig‘power available
at the expeériment sites and'generacors were used during daté
collection. a 48 hour rechargeable battery backup system
powered the 5 MHz ovené to maintain these specifications.

The receiver consists of a 32-element sampled apertﬁfe.
with.a ;ingle channel presented in Figure C.2. Each channel
consists of a 10 dB gainh horn followed by a iO dB
directional coupler. A test signal may be injected to the
system throughl this coupler when the -transmitter is shut
dowq aﬁd can be used for calibrating most of the
elecéron}cs. The signal is then mixed dowﬂ to.approximately
45 MHz and amplified.. The path is sﬁlit and mixed down to
“inphase’ and ‘quadrature baseband’ signals having
frequencies of 15.625 Hz. After further amplification and
tlow péss filtering (cutoff at 31.25 Hz). it is sampled at
125 Hz. or‘S samples per cycle.

The .low frequency signals were all digitally generacted,
synchronous with the $-100 computer system c!ock. including

the_ switched-capacitor filter signals and the sample and

/*#/////
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.

A

hold timing generation. The basebgnd frequenc&.. filter
bandwidths _and sampling signals are all under computer
gontroll and coular be véried as exper}ﬁentdl conditions
required. The EF amplification was also varied throuéh
sof tware cdncrolf

Prior to data collection, with the tr;nsmitter on. the
5 MHz aiq}llator at the receiver was finF_tunpd such that
the receiver was bpeqating wiéhgnwo.l Hz of the transmitted
sighal at X-band. Because of the specificat{ons described
earIYe}.-(and\Porne out in our own laboratory testing). we
may desbribé the receiver as coherent for the duration of
the data collection., usually less than 10 seconds. For long
term \data coflection.‘ pro;ision was made for continuous
adjustment of the 5 MHz oscillator. When the test signal is
applied instead. the system is truly coherent. Since the
electrochic gain and phase Shift ;jll va}y slightly with
frequency, we wish to operate the system at the identical
frequencies for which it is calibrated. _Whiie not studied
in this work, ‘rhe coherence ailon for extremely fine
doppler measurements éué to th; motion of the water surface.

_The verjtical linear ar;ay sists of 32, 10dB gain
horns or{;ntéd fotihorizontal pqﬁé;ization. The structure
is machined such that the spacing between horns is 5.715 +
0.010 cm. A s?milar tolerance is used for the remaining two
horizental 'dimensions. The eleétrical phase error with

N % -

V



respect to neighboring elements is less than 1°. Since tHe‘

spacing is larger than A/2. the unambiguohs field of view

205

-~

The unambiguous field of view

does not extend over :'900.

is approximately i'iS:%p. In terms of the normalized

parameters, where the spacing between elements is considered
is + w, ﬁith +T

the span of wavenumber

equal to 1 unit,
corresponding to a physical elevation angle of 15.5°. Since

the aperture is 1.77 m the beamwidth in physical angle is
. -

approximatel& 1°.
X-band are all cut to equal
and all

These

Transmission lines at
specification,

lengths within the same 6101, cm
‘connectors are tightened with a torque %wrench.
precautions are taken to ensure that differ;nt channels will

~ While the

react in similar ways to environmental changes.
o]
tolerances,

connectors and cgbles are not gﬁataqteed to: 1l
we only require that the relatiwe variations over several
. : .
minutes do not to exceed this speciftftation. For example,
cetting the cables to this accuracy will help ensure th#t
temperature  fluctuations change the cables of neighboring
elemenCS' by identical amounts. The actual channel. -
characteristics are determined from ‘'several "calibration
techniques.. -
r""
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C.3 Calibration . . t

- Immediately before and after a set of data is
"collected., an electronic calibration is performed. This
consists of turning off the transmitter through the radio
link. and turning on the test signal. VWe ob&ain 256 samples

of the test signal, at 8 sémples per-haseband cycle. From

this signal-m}e characterize the gain and phase of each
channel due to the electronics following the directional
couplers. In this experiment only the relative amplitudes

and phases of the channels are required. The electronic

-
v

calibration allows us to determine the . change 1in the

relative paraméters which we anticipate to be most sensitive
to temperatur; and vary most with time.

The total time from initial electronic calibration.
data collection and final calibration was usually less than

, ! . . ’ .
30 minutes. The two calibrations allow us to determine .

1
whether any significant changes occurred in any of the
relative channel characteristics over the time period of the

dara collection. The system operates under virtually the

same conditions during electronic calibration as during the,

experiment. - -

To accurately characterize the °‘front end' components

not covered by the electronic calibration we use a different

-

technique. We place a horn 0.4 m above the water surface,

-
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4.75 km distant, and model the. return as a single plane

wave. Although the multipath exists. the separation between

target and 1image is smaller than we hope to be able to
resolve. By knowing the geometry., we can ’“focus®' the array

on this target. As in all measurements, the data is

.

collected along with electronic calibration measurements.

By using the electronic cal at the time of the

focussing experiment and using the electroni¢ cals made when

multipath data was collected. we can determine the relative

changes in the system paraméters. . Figure C.3 shows the
channel model we used for calibration. The d.c. offsets
~

he 90° splitrter

must be determified for each channel.

providing the Q ‘channel has a typical erré¢r of 2% - 4° and

the different filters may also provide varjous phase shifts.

This quadrature erro is labelled ¢ in he figure: Erc

will be a gain imbalan

from the different amplifiers

- and splittefs +in each br2 . /These parameters may_ be

£

immediately determined from the electronic calibration. The

.

‘values of A and © represent the‘variation in amplitude and
phase fron1/:;annel to channel and are determined by the
focus e§periment in conjungtion with the electronic
calibratién!

/
C.4 Site Description

The experiment was performed on the mouth of Dorcas Bay
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which opens onto the ‘eastern end of Lake Huron. The
transmitter was situated at a distance of 4.75 km from the
receiver, both being within 10 m of the‘Water‘s edge, (and .
occasionally, during scormé.'within the bay when the water
leyél rose). The site is described in Figure C.4 showing
the alternative transmitter heights which were selectable
through the'raéio link. The center o; the receiving array
was at 8.6 m above the water surface. The effective
normalized wavenumbers for the targe;_.'and specular
reflection point are provided 1in Table 5:1 usiﬁg curved
earth calculgtions as found in [54]. In all calculactions we
assume a sphericql earth and use %Re/B for the radius of

L J
curvature.

A tiltmeter wés located inside the array which would

allow absolute angle measurements from gravitational
vertical. The measurements were accurate to 2 seconds of
arc and were provided approximately every % second. This

translates to approxjmately 0.0001 wunits of normalized

wavenumber or 1/2000 of the full array beamwidth. The array
could be easily hoisted and secured to the tower and there
was‘é provisiom for adjusting the orientation. On certain
days, there was a significant amount of sway in the tower,

with deviations up to 0.1° from the nominal position. This

.
-

quantity is significant because of the accuracies involved

-~

in this experiment. Generally the sway was restricted to
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+ 200 seconds of arc or + 0.011 units of normalized
| ™ .

~

C.5 Limitations and Modifications

<

- .
-

After careful study of the data, we found it was
possible to isolate the factors which mosu limit the final
accuracy. Calibrdtion is always a difficult ﬁrea and jé

’ . -
generally recognized as a limiting condition when attempting
to obtain sub-beamwidth estimation aécuracy. In fhe
lﬁboratory enﬁi}onment we found the d.c. offset was easily
measured and therefore removed. -In the field,. for which we
were exposed to sub-zero temperatures, we found the d.c.
offset drift over time/temperature was slightly 1arger'than.
anticipated. This was probably due to temperature’
fluctuafions and the time required to reach_ thermal
equilibrium inside the baseband boards. |

It appears that there may hav; been a2 second reflection
gff of a natural breakwall in front of the array. entering
through one of the grating iobes. The inictial {ndication is
that it-i; approximately 20 dB down in power from the direct
and specular reflection signals, putting ‘it just on the
observable limit. Fo}.situations in which a 25 dB null is

observed, this near field reflection is most dominant in the

region of the elements near the null. //—-
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. "The next phase of Measursments. expected‘ to be
completed'ig 1987, will,address‘tpese two sources ¢f errors.
Bécadse-of the attainable estkmation accuracy which has been
demonstrated in Chapter 5, we are required to account for
the sway in the tower. lThis requires measurements of the

antenna orientation be obtained more often than once every %

second. In this way the sway may be compensated during che

estimation procedure. Finally, the greatest limitation of
the data sets is the variety of the scenarios obtained. To

provide a third dimension to the data base. the new system
will be multi-frequency. The use .of Erequgnc;es from 8 rto
12 GHz will result in a variety of phaseJdifferenées between
the specular and diréct signals.

Because of the small bandwidth.required. 31.25 Hz. and
since tﬁe system was bistatic, the thermal noise is not a

limiting concern. With the aforementioned additions, the

-

next data base should provide increased accuracy over -a

broader range of scenarios and will certainly increase the
y - 3 3 ' 3
confidence with which we may discriminate between various

estimation procedures and array configurations:
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