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Abstract

A numerical method has been developed to model the jet-to-jet impingement in
a mixing head. The g;averning equations are discretized in non-orthogonal curvilinear
coordinates and higher-order upwinding methods ‘are used for convection term
discretization. Several problems with known solutions are used to test accuracy of the

method. The results show that the method can predict the flow fields at moderate and high

Reynolds numbers accurately.

The opposed jet flow field is used by the reaction injection moulding mixhead to
mix pre-polymers. The steady state flow field exists at Reynolds numbers below 90 and -
unsteady state exists at Reynolds numbers above 90. The results of numerical simulations
show that at the Reynolds number 50, the flow field is symmetrical and rotating ring
vortices are formed around the mmpingement point, Symmetry breaks down as the
Reynolds number is raised. Time integration showed that the flow field oscillates at
Reynolds numbers above 100 and multiple frequencies exist at the Reynolds number of

125. The results are consistent with experimental results.
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In the last chapter, the dynamical system theory is used to examine the opposed
jet flow field. The stagnation point is a hyperbolic point of a dynamical system and can
promote mixing. The elliptic points which exist at the core of vortices hinder mixing. The
(D:D)'* field was evaluated and confirmed the results of the dynamical system theory.
The area surrounding the hyperbolic point had highest (D:D)'? values indicating that the

flow field can stretch more efficiently. A flow pattern which consists of multple

hyperbolic points is proposed as an alternate design for the mixhead.
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1. Introduction

This thesis presents a numerical study of the flow ficld created when two
cylindrical laminar jets are impinged head-on near the closed end of a cylindrical mixing
chamber. The steady s:tate and oscillatory behaviour of the flow field are studied. The
steady state exists at low Reynolds numbers. The oscillatory behaviour occurs above a

critical Reynolds number.

Jet-to-jet impingement ;mixing in a confined chamber is used frequently in
industry. The RIM(reaction injéétion moulding) process for making polymer parts uscs
jet-to-jet impingement mixing to mix two or more pre-polymers[Macosko(1989)]. In
commercial RIM applications, mixing occurs in a cylindrical mixing chamber 10-15 mm
in diameter, closed at one end by a piston that is driven forward after the operation to
clean out the chamber. Two nozzles are positioned so that the jets of reactants leaving
them impinge head-on. A similar flow field at higher Reynolds numbers is used by in

a side-dump combustor to mix fuel and oxidant[Nossier and Behar(1986)].

To better understand an impingement mixer, it is necessary to understand the flow

field created by the jet-to-jet impingement. Two different approaches can be used to study
"a flow field: experimental and numerical. The experimental approach uses a measuring
device such as the LDA (Laser Doppler Anemometer) to obtain quantitative information
about the flow field and flow visualization to obtain qualitative information. The
numerical method uses a grid to represent the physical domain ana somputers to solve the

discretized equations that are approximations of the continuum equations.
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The numerical study of a flow field belongs to the recently emerging discipline

called Computational Fluid Dynamics(CFD). The developments in computer hardware
have made many important advancements in CFD possible. However, chemical engineers
have been slow to adopt CFD techniques to solve problems in process engineering.
Traditionally, approaches based on the simplified full transport equations are used to solve
problems in chemical engineering. Only recently, CFD techniques that employ full
transport equations have been applied to the problems in polymer
processing[Vlachopoulos et al.(1984)], and CVD(Chemical Vapor Deposition)
prbblems[Jcnscn(1991)]. In the design and optimization of reacting processes, a detailed
model involving fluid flow and conservation of heat and chemical species are solved. A
new term ‘micro-reaction engineering’, has been coined to describe the analysis based on

the computational fluid dynamics technique[Jensen(1991)]

 In the first section of this chapter, the fundamental concepts of computational fluid
dynamics are introduced. The opposed jet impingement problem is discussed in the -
second section. In the subsequent chapters the numerical method is developed and steady
and unsteady state solutions of opposed jet impingement are given. Some aspects of
mixing in the opposed jet configuration are discussed in the last chapter using the velocity

field obtained from previous chapters.

1.1 Computational Fluid Dynamics(CFD)

In computational fluid dynamics, the basic equations that govern the fluid flow are
solved using computers. CFD does not belong to the category of rigorous theoretical
analysis[Roache(1980)]. It is closer to experimental fluid dynamics in that the analyst

solves the equations and waits to see what happens, just as the experimentalist observing
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physical phenomena changes a set of conditions and waits to observe the effects of the

change.

CFD has been used as a serious engineering tool since the 1970's. Early
applications of CFD were in the aerospace and nuclear industriesfRoach(1980)]. Limited
memory and computational speed allowed only two dimensional problems to be solved.
By the late 1970's, the falling cost and enhanced capabilities of computers allowed the
solution of the Reynolds stress mode! of turbulence and some three dimensional problems.
In the 1960's and 70's, the computing speed grew exponentially[Peyret and Taylor(1983)].
The recent trend is towards a rapid decrease in the cost of computing. Low cost work
stations and numerical accelerator boards for PC's have made CFD available to a wide

range of users.

The most obvious advantage of CFD compared to an experimental investigation
is the turn-around time. Unlike experiments, which require time consuming design and set
up, CFD techniques can be applied rapidly and the parameters in the model can be altered
freely. Other benefits of CFD are mentioned in the paper by Chapman(1979). These are
briefly summarized below;

1) The technique is non-intrusive.

2) CFD is more economical.

3) CFD provides more detailed and comprehensive information, and provides

estimates of quantities that are difficult or impossible to measure, ¢.g., pressure.

4) CFD can simulate extreme conditions impossible using the experimental model.

However, CFD cannot replace physical experimentation. The approximate

equations solved in the numerical analysis approach the continuum equations only in the
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limiting case, i.e., when the mesh size becomes vanishingly small. In actual physical
problems, it is impossible to have a vanishingly small mesh. Another limitation is that the
constitutive relationships employed are only approximations[Roache(1982)]. Therefore,
experimental data is essential in validating the assumptions used in the numerical model.

1.1.1 Governing Differential Equations

The governing equations express conservation principles for dependent variables.
The dependent variables are usually specific properties. These quantities are expressed on
a unit mass basis. For example, velocities are expressed as the momentum per unit mass.

For a general dependent variable 0, the conservation principle can be stated as

Rate of accumulation of 6= rate of input of 0-rate of output of 8+source or sink

of 0

In mathematical form the conservation principle becomes

0 (aete) +V'3=S 1.01

where p is the density, t is the time, and S is the volumetric generation rate or the source
term. 5 stands for the total flux vector(Fig 1.01). The total flux consists of 1) the
convective flux due to the bulk motion of the fluid and 2) the diffusive flux caused by

the gradient of g Therefore,

J=pd 6-T'V 6 1.02



Zi E;?/L-{,+(~{,)YAY

YT | = ket QAx

{Ji)iz__ i=({x,y, =)

Fig.1.01 : Conservation principle
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where 7 is the velocity in the direction parallel to 7 and 1 is the diffusion

coefficient. The transport equation for the generalized variable g can be written as

a(apf) +V-(p08) =V-(T'V0) +S 1.03

The mass conservation equation also can be derived from the generalized
conservation principle. Since mass is conserved, the source term becomes zero. The mass
flux depends upon the convection velocity only, therefore g=1 and the mass

conservation equation can be written as (also known as the continuity equation)

P i oi) = 1.04
at+V{pu) 0

The transport equations written in the above form are in "conservative™ form. The
non-conservative form can be obtained by applying the chain rule and with the addition .

of the continuity equation,(eq 1.04) becomes

Do
Ny 05
P Bt V-{I'VD) +5 1
-where
D 0
L =Y gV .06
Dt ot T l

is the material derivative.

The continuity equation also can be put in a non-conservative form



P, vg- 1.07
DE pV-ii=0 )

For constant density flows the familiar ¢.jj=g results

1.1.2 Numerical Methods

The conservation principle given in the previous section can be applied to a
physical system to arrive at a mathematical model of the process. Models are in the form
of differential equations and auxiliary (boundary) conditions. The next step is the
discretization of the governing model equations. In this step exact continuum equations
are transformed to a set of approximate algebraic equations. There are four major methods
used to discretize governing equations: 1) finite-difference, 2) finite-volume 3) finite-
element and 4) spectral. Many factors govern the choice of a method to solve a problem.
If the flow is convection dominated and Newtonian, the finite-difference or finite-volume
methods may be appropriate[Roache(1980),Gosman et. al(1972), Patankar(1982)]. For
creeping flows in which the convection terms can be ignored, the finite-element method
may be better, especially if the flow occurs in complex geometries[Vlachopoulos et.
al(1984)] or is non-Newtonian. If computational speed is important, the finite-volume or
finite-difference method may be a better choice. In the study done by Ramanathan and

‘ Kumar(1988), the finite-element method is compared with the finite-volume method for
heat conduction problems. The authors concluded that for an identical mesh system, the
non-orthogonal, curvilinear, finite-volume method converges to a solution about 10 times
faster than the finite-clement method. The spectral method is used frequently for small
scale flows which require a high degree of temporal and spatial accuracy. The spectral

method was used to simulate a turbulent shear layer[Riley and Metcalf(1980)].
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After obtaining the discretized model equations, the solution is obtained by
applying a solution algorithm to solve the algebraic equations. The final step is the
interpretation of the solution. Vector or contour plots may be used to represent the
solution graphically. The steps involved in numerical modelling are illustrated
schematically in Fig. 1.62. Since the jet-to-jet impingement is Newtonian and convection

dominated, the finite volume or finite difference method is probably the best choice.
1.1.2.1 Finite Volume Method

The finite-volume method is close!y related to the finite-difference method in that
a pointwise approximation of a continuous function is used. However the basic method
of discretization is different. In the finite volume method, the starting point is the
conservative form of the governing equations. The governing equations are integrated over
a fixed interval to construct the integral conservation statement and then the pointwise
approximations are substituted for the continuous dependent variables. The method can ‘
be interpreted as a class of the weighted residual methodfPatankar(1982}]. In the weighted
residual method, the governing equations are multiplied by a weighting function W, and
then integrated over a prescribed interval. For the finite volume method the weighting
function is 1 and the interval is the control volume. This method is also called the

-subdomain method[Patankar(1982)].

If the generalized transport equation is integrated over a region R, then we obtain

f%%edR+fV-{pﬁﬁ)dR=fV'(I‘VB)dR 1.08
R R R

Because t is independent of the space variable the integration can be transposed with the



Governing Differential
Equations and B.C.'s

Discretization

Algebraic Equations

Solver

Approximate Solution

Navier-Stokes Equations

Finite-Volume Method

Tridiagonal Matrix Algorithm
Stone’s Implicit Method

Fig.1.02: Numerical modelling procedure
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the differentiation in the first term.

A L‘if?dma%’!;peda 1.09

Using the Gauss divergence theorem we have

fv-(pﬁe) dR=!’(pﬁe)-n*ds 1.10
R R

and

fv-(rve) dRz!(I‘VB) -fids 1.11
R R

where dR  is the boundary of R Then Eq.1.08 becomes

aitfpedfz=-J‘(paa) 'ﬁds+J (TVO) -fids 112
R R R

For a one dimensional, time dependent, convection diffusion equation the integral

conservation statement can be reduced to

dat
The centre of the region R is denoted by the letter P and the right and left boundaries are

308 _ .08 _ 1.13
{[ +(pud-(P2)) 1 dx =0

denoted by letters e and w respectively(Fig.1.03). The distance between the intervals are

assumed to be equal, Then integration of the above equation yields
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apeAx+[(puB—I‘ 2) o~ (pud- Pae) =0 114

The density and diffusion coefficient arc assumed to be constant. For the
convection term the values at the cell faces are assumed to be the average of the grid

points. Therefore,

0,=0.5 (8,40,  6,=0.5 {6,+6,) 115

For the first-order derivative a central differencing scheme is used

30 0.6, 30 8,-9, 116
()—Ax ()—Ax -

Substituting the above approximations into Eql.13 yields.

(6,-62) 0,40, 6,+0,
— Axreul=5=) mpul—=5=)
_ eE_eP Bp-e"_ 117
r Ax +T Ax =0 '

The above equation can be rearranged to obtain

AP =AL0.+A.0,+5 1.18



T

W
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e
E EE

Fig.1.03: 1-D Control volume

Control Volume
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where
-_U _pu ¢
A= 119

. _ I u
A= sz+.E’2_ 1.20
a=2L,pu_pu, p _2I, p 121
x 2 2 At Ax At
and

s=_P g3 1.22

An identical result would be obtained if the finite difference method is used. For
more complex equations, the finite volume method is more versatile. A grid with
unequally spaced grid points and anisotropic diffusion coefficients can be handled more
easily using the finite-volume method. Another advantage of the finite volume method is
that it is based on the macroscopic physical laws, rather than continuum mathematics.
Torrance (1968) has shown that the use of the conservative formulation, with only a first-

order method is more accurate than the second-order, non-conservative formulation.

1.2 Jet-to-Jet Impingement

Jet-to-jet impingement of two liquids is used in the RIM process to mix the
prepolymers. The important geometrical parameters for the RIM flow field are the
cylinder and jet diameters and the position of the clean out piston during mixing. In

Fig.1.04 a schematic of the RIM mixhead is shown. The mixing chamber diameter is
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denoted by D, the jet diameter is d, and H is the distance between the jets centreline axis
and the clean out piston head. In industrial practice, the Reynolds number based on the

jet diameter and mean velocity,(Re,=pdV/p) is between 100-600.

Previous studies of the RIM flow field used mainly flow visualization techniques.
Tucker and Suh(1980), defined four distinct regions of flow based on the flow
visualization techniques: (1) laminar flow, (2} small eddies, (3)large eddies and (4)
turbulent mixing flow. They concluded that laminar flow occurred at Reynolds numbers
below 50 and turbulent mixing flow occurred at Reynolds numbers above 150. A
correlation for the striation thickness was derived based on the assumption of isotropic
turbulence. Lee et. al(1980) used the slight density difference between the impinging jets
to visualize the flow field. They observed formation of two large vortices at low Reynolds
numbers and several vortices at higher Reynolds numbers. The study performed by
Sandell(1983) presents a different result. Decolorizing dyes were used to visualize the
flow field. The zone which was mixed became colourless, and the zone which was not
mixed was seen as coloured. Through a video tape of the flow field, Sandell (1983) was
able to observe and measure the periodic oscillations in the flow field. The dimensionless
frequency of these oscillations increased monotonically at low jet Reynolds numbers and
then reached a limit at higher Reynolds numbers before the jets themselves became

‘turbulent. Apparently there was a threshold value of Re,, for the onset of oscillation.

Planar laminar jet-to-jet impingement has been studied using a flow visualization
technique[Denschikov et. al(1983)]. The flow developed auto-oscillations as a threshold
Reynolds number was reached for a given jet separation distance. They found that the

dimensionless frequency of the oscillations could be well correlated with the jet Reynolds
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Fig. 1.04: RIM mixhead
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number and the distance between the jets.

The previous studies show an unclear picture of the jet-to-jet impingement
phenomenon. The work of Hama(1962) pointed out that when the velocity shows a
sinusoidal oscillation, the streak lines may show a false impression of vortex role-up. The
works of Ottino(1989) and Aref(1983) showed that oscillating laminar flows can induce
chaotic particle paths. Therefore, flow visualization studies using dye streak lines and

particle paths must be interpreted with care.

In this thesis a computational scheme is developed for solving three dimensional,
unsteady laminar flows in irregular geometries. The flow field created by jet-to-jet
impingement near the closed end of a cylinder will be the ultimate test of the model. In
Chapter 2 the method is developed for two dimensional flows. The development follows
that of Patankar(1981 , 1982) but several improvements are made to the algorithm for the
convective terms. In Chapter 3 the method is generalized to 3-D non-orthogonal,

curvilinear coordinates.



2.0 Two Dimensional Method

The aim of this chapter is to lay the necessary foundation for the next chapter in
which a detailed discussion of the 3-D numerical method in complex geometries is
presented. The discussi(;n of the numerical method is given for simple 2-D, Navier-Stokes
equations written in Cartesian coordinates. The discretization of the governing equations

and the solution of the discretization equations are discussed in detail. The algorithms are

simpler to illustrate in 2-D and the extension to 3-D is straight forward.

2.1 Governing Equations

TR

For 2-D fluid flows in Cartesian coordinates, the governing equations for the

motion of a fluid without body forces are

Continuity
d{pu) , 3{pv) _ 201
ox oy =0 ’
' x-momentum
Spu i ou 3 duy._0p 2.02
ot Tox PUTR ) e (puviR ) =50

17
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y-momerntum

dpv, O vy, 9 w9vy__9p 2.03
Be e PV gy PR =Ty '

Eq. 2.01 is the statement of the conservation of mass. Eq. 2.02 and Eq. 2.03
express the conservation of momentum in the x and y directions respectively. Since many
dependent variables obey the generalized conservation principle, it is more convenient to
work with the generalized transport equation. Denoting dependent variables by 6, the

transport equations can be generalized in the following form.

%Ltg"v' (pu 0+J) =59 2.04

J=-T'V0 ' 2.05

puB is the convective flux and J is the diffusive flux. S° denotes the source term. For
the continuity equation 8=1 and $°=0 while for the momentum equations S° is the
pressure gradient source term. Eq. 2.04 is the mathematical statement of the generalized
conservation principle. The transport equations given in the above form are said to be in
the conservative form. Integration of the conservative equations over a control volume

yields the integral conservation statement.

The non-conservative form can be obtained by applying the chain rule and
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substituting the continuity equation. For constant viscosity and density flows

continuity

- du, v -0
9x Oy

X-momentum

d{pu du _ ap u du
__L +p (u +V ) T { ay2 ) 2.07
y-momentum

a.Y i 9x? 6y2
Equations 2.06-2.08 are the familiar Navier-Stokes equations in this limit.
‘2.2 Discretization
In the numerical method, the differential equﬁtions are solved approximately by
transforming the differential equations into a set of algebraic equations. This process was

illustrated briefly in Chap. 1. The finite-volume method is chosen, since the method is

more flexible with discretization and the convection terms can be handled without
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difficulty.

The finite-volume method is generally well tested and documented for a wide
range of problems. The well known finite-volume code, TEACH( Teaching Elliptip
Axisymmetric Characteristics Heuristically) code that was developed at Imperial College,
London has been used for more than two decades to simulate high Reynolds number
laminar and turbulent flows[Gosman et. al(1972), Patankar and Spalding(1972)]. The

development given here follows the TEACH terminology closely.

The steps involved in the finite-volume discretization method can be summarized
as follows.

1) Divide the solution domain into a number of control volumes which fill the

whole domain.(Grid Generation)

2) Write integral conservation equations for each control volume.

3) Define discrete points, one per volume, and approximate all terms in the

integral equations using the discrete point values.(Discretization)

The solution domain in Cartesian coordinates can be divided into a number of
rectangular control volumes. The terminology used for the control volumes is given in
Fig. 2.01. The capital letters indicate the control volumes centres and the small letters
indicate the control volume faces separating the control volumes. The integral

conservation statement can be constructed by integrating Eq. 2.04 over the control volume.
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Fig.2.01:2-D Control volume
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3{p6) 3 (nnre®,, 9 e o6 _[ a8
BI;-—E%:——dV’LJ;[a_X{pJﬁ I“’ax)+ay(pv6 I*’ay)]dv [vs dv 209

where

AV=dxdy-l1 2.10

The second term in Eq.2.09 is the volume integral of the divergence of the
convective and diffusive fluxes. It is transformed into a surface integral by application of
the Gauss theorem. If the surface integral is expressed as the sumn of four surface integrals

over the four control volume faces, the result is

3(p0) o, f o) _(ue-_e.0
[V_&__dvi[(pue D) o~ (pud-T°—) 1 dy

+f[(po—I‘°%)n‘(pVB—I'°-gg)s] dx=A[S°dV 2.11
o v

Step 2 of the discretization procedure is now accomplished. The above equation
states that the net accumulation rate of @ within a control volume is balanced by the net
convective and diffusive fluxes across the control volume faces and the source terms
within the control volume. The integral conservation statement is still an exact equation.

The conservative finite-volume method requires discretization of the integral conservation
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statement rather than the original differential equation.

The third step of the discretization process involves two key assumptions about the
terms in the integral equation. The integral terms are approximated using the mean value
theorem.

1) The fluxes through the control volume faces are expressed as the product of a

mean flux, approximated by the value at the center of the control volume face and

the cell face area.

2} The source terms and time derivatives are expressed as the product of a mean

value, associated with the cell center, and the cell volume.

Using these assumptions the above equation is integrated to give:

9pb 088y _ e 90 e, _ .yo. 90
=+ [{pud I*’ax)e (pud wax),]Ay+[(pw Iﬂay),, (pvO I"ay),,]A

For the continuity equation 8=1 and s°=0. Therefore

[{(pu) ;- {pw) JAy+[{pV) - (pV} 1 Ax=0 2.13
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The transport equations are generally nonlinear and iteration processes are
employed to obtain the solutions to them. In the iteration process, linearized equations are
solved at each step. The momentum equations are linearized by assuming that the cell

face velocities are known from their values at the previous iteration.

Now the discretization of the individual terms in Eq.2.12 is discussed in the order

of appearance in the equation.

2.2.1 Time Integration

A first-order implicit method is used to integrate the time derivative. Therefore,

9p8 5 = (00) - (p6)° 4 1, 2.14
dt At

o denotes values from the previous time step. All the space derivatives and source
terms are evaluated at the present time level. This is equivalent to backward-differencing

and lacks stability restrictions on the time-step size At.
2.2.2 Convection Terms

The convection term discretization requires approximation of the cell face values
0.9,.0, and O, The simplest approach would be to assume a piecewise linear
profile(Fig.2.02a) for 6. If the cell faces lic midway between grid points, then for the east

and west faces



a)Central-differencing

b)First-order upwinding

Fig.2.02:Convection term discretization
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ee=-:2¥ (6,+0,) 2.15a

: e,=-§ (6,49,) 2.15b

This method is equivalent to central differencing in the finite-difference
method[Patankar(1981)]. Certain problems are encountered if this method is used with
the convection dominated flows. The iteration scheme may diverge, and even when the
iteration scheme converges the solution may contain physically unrealistic oscillations.

This problem is discussed in detail in Patankar(1981).

The first-order upwinding method iilustrated in Fig.2.02b is the simplest stable
scheme for the convection terms. The idea behind this scheme is that as the fluid flows .
from one cell to the next, the value of © at the upwind cell center is assumed to apply at
the cell face. This assumes convection dominates diffusion in this direction. For the east

and west faces

6 {w U O] 2.16a
Y Bs u, <0

g L F Ug> 0 2.16b
i u<0

Therefore the discretization for the convection terms can be written as in compact

notation as: .-



{pu) B =max[ (pu),, 0108, max{-(pu),, 016, 2.17a

(pu) B =max[ (pu),, 016 ,~max[-{pu),, 018, 2.17b

max{ ] denotes the maximum of the values enclosed by the brackets. Equations 2.17a,
b, can be shown to be order AX( Q(Ax) ) accurate. That is, when approximating the
continuously varying function 0 by the discrete function using a Taylor series about the

cell face, the largest term neglected is Q(Ax) [Smith(1978)].

2.2.3 Diffusion Terms

The gradients in the diffusion terms are approximated using the central

differencing scheme. For the east and west faces

dd =ep_ew
(2) i 2.18a
(8 9% 2.18b
dx {6x),

This discretization is Q (Ax2) accurate.

2.2.4 Source Terms

A single source term can be lineanized and divided into two parts. One part is
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included with the source and the other part which is linear in 6 has its coefficient

summed up with A,. Therefore,
58=5,+S.0, 2.19

For stability S, must be positive[Patankar(1982)].
2.2.5 The Discretization Equation

Substituting the discretization schemes for the individual terms into Eq.2.12 yields

A P0P=2n; Anbe,,b+sg+-(%§t)—'A v 220
where
g Anp0np=Abc*2,0, A0+ A0 221
POy
Ap=AgtAytAytAs-SptZAxAy 2.22
and
= Ay
A,T2Y smax{o, - 22
R T max {0, -pu,Ay] 3a



A,,,*I‘e {ély) tmax [0, pu, Ay} 2.23b
— Ax _ ik
Ay I‘g-—--—-—(ay)n+max[0, pv, Ax] 2.23¢
AT 8% imax(o, pv,Ax] 2234

8y .

2.2.6 Under-relaxation

The linearization of the nonlinear terms is usually not sufficient to obtain
convergence in the iteration process. The corrections implied by the method are usually
too great and will lead to a divergent solution. The equations need to be under-relaxed,
using the under-relaxation factor . In under-relaxation, new estimates of 6 are obtained

from previous estimates plus a small part of the computed corrections.

Orew=g 0+ (1 -a) B9 . 2.24
0<ax<l

Incorporating under-relaxation, the discretization equation(Eq.2.20) can be

rewritten as

BPBP=§ Anbenb+b . 2.25
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where

1
={(2) A 2.26
BP ( J 3=

- 1 AV 1-
p=LpP 12‘: +S,+ ( aa) golda, 2.27

2.3 Staggered Grid Method

The discussions to this point have been centered on the discretization of the
generalized conservation equation. The method can be applied to the solution of
momentum equations which are a particular form of the transport equations. However, a
unique problem ari.s because of the nature of the pressure gradient in the source terms.
An explicit equation for the pressure does not exist; therefore, the pressure field is.
specified indirectly through the continuity equation. When a correct pressure field is

obtained, the velocity field satisfies the continuity constraint.

The dependent variables of the transport equations are usually positioned at the
center of the control volume. This approach may present problems for the Navier-Stokes
equations. If the velocities and pressure are positioned at the control volume center and
the convection terms are evaluated using the linear interpolation of the cell grid velocities,
only the alternating grid points are coupled[Patankar(1982)]. This leads to unrcalistic{
oscillations in the velocity and pressure field. Several approaches to remedy the problems
associated with the oscillatory pressure field are possible. The most widely accepted

approach uses a staggered grid and a semi-implicit method to solve for the pressure. A
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more recent approach developed by Rhie(1981), uses the traditional cell centered (non-
staggered or co-located) arrangement of the variables with a special interpolation scheme

for the cell face velocities to prevent an oscillatory pressure field.

In the staggered. grid scheme, the velocities ar: stored at the cell faces as shown
in Fig. 2.03. The u-velocity component is located at the center of the west face of the
pressure control volume. For u-velocity, the P- grid point for pressure becomes east face
center of the control volume and the W- grid point becomes the west face center of the
control volume. Therefore, control volumes for the velocities are different from the control
volumes for the continuity equation. The cell face velocities(u,, ,v,) for the continuity
control volumes are the cell center velocities{u,,v,) for the velocity control volumes. The
staggered arrangement ensures a strong coupling between velocities and pressure. The
velocities are driven by the adjacent grid pressures. Note that three separate grids are

required, one for each equation.
The discretization equations for the staggered grid are

x-momentum

B:u,=§ AnpU, +b Y+ (P~Pp) Ay 2.28

y-momentum

B;st-; AV tb ¥+ (Pg-Pp) Ax 2.29
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Fig.2.03 : Staggered grid
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continuity

plu~uAy+p(v,~v,) Ax=0 230

The equations are written with respect to the continuity control volumes.

The solution procedure for the above equations uses a semi-implicit procedure to
obtain the solutions. Since the pressure field is indirectly determined by the continuity
equation, the momentum equations and the contin}xity equation can be combined to form
the pressure correction equations. This idea was used successfully in the SIMPLE
algorithm of Patankar and Spalding(1972). Later several improvements were proposed.
SIMPLE and one of the modifications, SIMPLEC {(Van Doormal and Raithby(1987}] are
described below.

2.3.1 SIMPLE

SIMPLE is a member of a class of methods classified as segregated methods. In

a segregated method the pressure and velocity fields are uncoupled. One first estimates
a pressure field and then finds the velocity field that satisfies it. The computed velocity
field generally will not satisfy continuity so a..new pressure field is estimated. The-process

is continued until continuity is satisficd.

The solution to the momentum equations initially is obtained using an estimated

pressure field p'.
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B,uy=Y_ ApyUnp* {Dw-ps) Ay+b" 231
b

B v, =; AVt (Ds—Dy) AxtbY 232

Since p’, is only an estimate, solutions obtained by solving the momentum
equations(Eq.2.31 and Eq.2.32) do not satisfy the continuity constraint. Let p, u and v be
the improved estimates of pressure and velocity respectively. Let p’, u' and v' be the

corresponding corrections such that

p=p*+p’  u=u+u’  v=v*+v/ 2.33ab,c

In terms of the improved estimates the momentum equations(Eg.2.31 and 2.32) can

be written as

B (u*+u’) .=§ A% (ur+u)) ,+ ((putDw) ~(Dp+Dp) ) Ay+b® 234

B;(v'w');g A (v +v) L+ ((D3+pd) - (Datpa) ) Ax+bY 235

Equations 2.34 and 2.35 are subtracted from Equations 2.31 and 2.32 to obtain

BY u.’,=§ AY uly* (Di-pr) Ay 2.36

By Vé=§ AVt (Dé-ph) Ax 237
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Since u' and v' are the velocity corrections which are small in magnitude, it seems

reasonable to approximate that

; At Uus,=0 § AL vip=0 238ab

Therefore combining Equations 2.38a,b with Equations 2.36 and 2.37 pives

u,=u, +d, (Dy-ph) 2.39
V=v; +d, (D5~Pr) 2.40
where
=AY d,-A% 241ab
B, By

The pressure correction equation can be derived by substituting the

equations(Equations 2.38a and 2.38b) into the continuity equation(Eq.2.30).

APpi=AP pi+AF pi+AR plraf pirbP 2.42
~ Where
AF=AP+AR+Af+AF 2.43
Af=pd Ay 2.44a
2.44b

Af=pd Ay
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Ay=pd Ax 2.44¢
- AP=pd Ax 2.44d

and
bP=p{us-us) Ay+p{vy-v2) Ax 245

where b is the residual mass source. As the iteration steps proceed to satisfy continuity,

this b® becomes smaller.

The steps in the solution algorithm can be described as follows;
For a given time step.

1) Assemble the coefficients of the momentum equations using the estimated -

values of the field variables.

2) Solve for the velocities u”,and v using the estimated pressure p (Eq.2.31 and

Eq.2.32).

3) Assemble the coefficients for the pressure correction equation.

4) Solve for the pressure correction p' using the intermediate velocities u” and v°

to evaluate the mass source term(Eq's 2.42 to 2.45).

5) Obtain the correctéd pressure, p and velocities u and v.

6) Check for convergence either by evaluating the residuals or the maximum

change for each variable.

7) If convergence is not reached use the new values p,u,and vasp , u’, and v’

and go back to step 2
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One of the drawbacks of the SIMPLE method is that the rate of convergence is
rather slow. The approximations in Eq.2.38(a) and (b) are not the optimal ones and the

pressure correction must be under-relaxed to obtain convergence.

p=p*+ap’ 246

2.3.2 SIMPLEC

A more consistent pressure correction scheme can be obtained by subtracting the
underlined terms from both sides of the correction equations(Eq's 2.36 and 2.37) as shown

below.

Byuy-Y AsbUus=Y " AdbUns= Y AgpUu* (Dh~Dp) AY 247
£Lb 0 onb ab 0000

stvé—g ;A,l’bv;=§ A&Vﬁb-é ;An‘;v,’w (pi—ph) Ax 2.48

In SIMPLEC the tollowing approximations are made[Van Doormaal and

Raithby(1987)].

) Ab(um-ul) =0 Y Az (viy-ve) =0 2.49a,b
nb

The coefficients for the pressure correction equation are given below for the

SIMPLEC scheme
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= AY
d=—_ -t
B"u Anub :

d-_—_Ax 2 51
8 st—gAn‘;J 5

The steps in the SIMPLEC algorithm are identical to SIMPLE except the pressure

correction is not under-relaxed.
2.4 Non-staggered Grid Method

The benefits of using the non-staggered scheme, in which the velocity and pressure
occupy the same location, are many. Only one set of control volumes is required; -
therefore, the method requires less memory and the code would be simpler than the
staggered grid method. In this section the non-staggered method for two dimensions is
explained. In the next chapter the method is extended to three dimensions and complex

geometries.

The first successful attempt to use the non-staggered grid for fluid flow problems
was achieved by Rhie(1981).l The method was developed for two-dimensional fluid flow
in a complex geometry. Many details on the implementation of the method are o'mitted
from his thesis. The missing details were filled by later researchers. The work by Peric
et. al(1988) provides more details on the determination of the cell face velocities.

Majumdar(1988) examines the effect of under-relaxation of the cell face velocities on the



accuracy of the solution.

The discretized momentum equations for the cell center velocities during the

iteration process can be written as:

D Adblg,
. + . P
up= — +(py-po) 2L e (1-a) uSM 252
B} B,
> AV
vi= — +(p;-pa) 2X+ (1-a) v 253
Bp Bp

The velocities are located at the cell centers and the cell face pressure differences

become the source terms for the momentum equations(Fig.2.04).

There are three parts to the discretized velocities(Eq.2.52 and 2.53). The first part
comes from the coefficients . The second part comes from the pressure source term, and
the remaining part comes from under-relaxation. To evaluate the coefficients, we require

the velocities at the cell faces.

If all three parts are linearly interpolated between grid points, the solution obtained
~will contain unrealistic oscillations since the velocities and pressures at alternating grids
are coupled. Rhie's scheme requires linear interpolation of coefficients, but the pressure
source is evaluated using thé adjacent cell grid pressures. Majumdar concludes that the
linear interpolation of the under-relaxed part leads to the dependence of the solution on
the relaxation parameter, To avoid the linear interpolation of grid point velocities, the cell

face velocities are stored separately.
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Fig.2.04: Non-staggered grid
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A new notation is introduced where the terms enclosed within a bracket with an

overbar denote a linear interpolation. For example

(BY) ,=f By +(1-f) By 2.54

where f is the weighting factor or the linear interpolation. When the cell face is

equidistant from the adjacent gnids, f/=0.5.

The evaluation of the cell face velocities is illustrated at the west face.

Y Al .
w=(Z ), + (B) (pi-pi)+(1-a) ult 23
BvY B
Where
EAnbunb
ab AppUnn A Up, 2.56
——— w: f + l_f} .
(Z—) (3~ X =),
and
(A7) It 1D By 2.57
BY BBy

The important feature of the above equation is that the cell face velocity is directly
linked to the neighbouring cell grid pressures. The cell face velocities determined using
the above formula are used to evaluate the coefficients in the discretization equations. In

the pressure correction step, for the mass source term in Eq. 2.45 the velocities at the
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faces are also evaluated using the above method.

The pressure correction equation is derived again using the continuity equation and
the approximate form of the momentum equations. Since the corrections at the cell faces
are required, the coefficients at the cell center values are interpolated. At the cell centers

P and W the corrections for the velocity can be written as

up:u;+dp(p:r—pé) 2.58

=t +dy (lop) 259
The cell face velocity correction is
u,= u, +d,, (p;,—p;,) _ 2.60

and

T=F dt (1-£) d,

2.4.1 SIMPLE

For SIMPLE the cell center corrections for the velocities are obtained by making

the identical assumption as the staggered grid case(Eq2.38a,b). Therefore,

The cell face correction coefficient is
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dy= AJ: dp:ﬂ: 2.61
Tar,=( ——EB{ ) 2.62

This is identical to Eq.2.57.

The solution algorithm can be described as follows

1)Estimate all the field variables and assemble the coefficients for the velocity
equations. ‘

2)Solve the momentum equations for the cell center velocities, u,” and v, (Eq's
2.52 and 2.53).

3)Interpolate using Eq.2.55 to obtain the cell face velocities, u, v, .
4)Assemble the coefficients for the pressure correction equation. Use the result
from Step(3) to calculate the mass source.

5)Correct the cell center pressure and cell face and center velocities.

6)Check for convergence.

7HIf convergence is not obtained take the corrected pressure and velocities(p,u,v)

as the new estimates(p’,u’ and v") and go back to Step(2)
2.4.2 SIMPLEC
SIMPLEC for the non-staggered grid is derived in the same manner as SIMPLE,

To determine the cell center velocities, the difference of velocity corrections rather than

the velocity corrections themselves ore assumed to be zero. For the west face



Ay
w (——_'_) w
B u_g An.b 2.63

The steps in the algorithm are identical to the SIMPLE algorithm.

-

2.5 Boundary Conditions

The Navier-Stokes equations presented in Section 2.1 are partial differential
equations with parabolic behaviour in time and elliptic behaviour in space. Boundary
conditions are required along cell boundaries of the solution domain. The boundary
conditions can be classified into three different types.

1) Dirichlet - values of the variables are given along boundaries.

2) von Neuman - gradient of the variables normal to the boundaries are prescribed.

3) Robin - combination of type 1 and 2.

Type 3 seldom occurs with the Navier-Stokes equations. Solid walls and inlet planes
where the velocity is known belong to the first type. Outlet boundaries belong to the
second type. The Dirichlet boundary conditions can be implemented by simply plugging
the known value at the boundaries. The discretized equations at the boundaries contain
one less unknown. The most frequently occuring von Neuman type boundary condition
is the zero gradient condition. If the zero gradient condition occurs at the east boundary,

the condition can be implemented simply by setting the east coefficient to zero,

Ag=0.0 .

2.5.1 Wall Boundaries
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The no-slip condition is used on walls. Velocities in all directions are set to zero

u=v=0.0 2.64

2.5.2 Symmetry Plane

On symmetry planes, the normal gradient of the tangential velocity and normal
velocity are set to zero. If the symmetry plane is the south boundary, the following
boundary conditions are applied.

NU_g.0 v=0.0 2.65
ay

2.5.3 Inlet Plane

Usually profiles of u and v taken either from dats or from prescribed analytical

formulae.

2.5.4 Outlet Plane

If the exit plane is sufficiently far way from recirculation regions, fully developed
flow can be assumed, i.e., gradients in the streamwise direction can be neglected. If the

outlet plane is located at the east boundary.
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du_ov_ 2.66
% 9% 0.0

2.5.5 Boundary Conditions for the Pressure Correction Equation

Two kinds of boundary conditions are possible.
1) boundary pressure is given.

2) normal velocities at the boundaries are known.

Pressure boundary condition of type 1 is not considered since this type arises less
frequently. For type 2, since the normal velocity is known it does not need to be
corrected. For examples if the boundary is in the south direction v'=0 and the pressure

correction equation becomes

PUAY-p L AYV+P, V,AX=S 2.67

or a'=0. This is equivalent to setting zero gradient(von-Neuman) type boundary

conditions.
2.6 Solution of the Discretization Equations

For each control volume a set of algebraic equations is formulated. There are as
many equattons as there are unknowns. One of the methods for solving the linear equation
set is Gaussian elimination. However, such solution techniques are computationally

inefficient and require large storage{Patankar(1981)]. Iterative techniques, which take
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advantage of the sparse structure of the matrix, require less storage and are
computationally more efficient. The solution technique employed in this work is a

combination of the line-by-line method and a block correction scheme.

2.6.1 Line-by-line Method

If, in the discretized equation(Eq.2.25), the y-direction neighbours 6, and 0, are
considered to be tentatively known, then the equation would have only three unknowns,

0;,0; and Oy, In x-direction, the discretization equation can be written as
aiei=biei+1+ciei_1+di .i=2, -1 2.68

where 6,0,,, and 0,, stand for 0,,0; and Oy, respectively. The coefficients are related to

those in Eq.2.25 by

ai =BP 2.()921
b;=A; 2.69b
C:=Ay 2.69¢

2.69
;=20 *+ADs+h ¢

The resulting tridiagonal equation set can be solved by the TDMA(Tridiagonal
Matrix Algorithm)[Patankar(1981)].

New coefficients P, and Q; are calculated from the recurrence relations
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Fig.2.05: Line-by-line method
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p=____ "1 2.70
o {a;=c;Pi,)

_ (direi0:)

e S it 1 2.7
< (@;-C;iPsy)
for i=2,1-1. The solution can be obtained by using
0;=P;0,.,+0; 2.72

in the reverse order. The procedure requires a special treatment at the boundaries. When

1=2

A0 d=d+A, 0, 2.73
and when i=l-1

Ag=0 d=d+A 0, 274

The above boundary modifications are not necessary if a small change is made to
‘the algorithm. By setting 0,=0, and retaining the boundary coefficients, the boundary

condition is automatically incorporated into the TDMA.

The line-by-line method consists of employing the TDMA along all the lines in
the x direction. The procedure is then repeated along the lines in the y direction(Fig.2.05)

and can be repeated until convergence is obtained.
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A simple modification to the TDMA algorithm can accelerate the convergence
significantly. The method is given in Van Doormaal and Raithby(1984). When sweeping

from south to north, © at the east grid point is approximated using

gld=egld+ (l __1) {egew__egld) 2.75

The discretized equation becomes

[BP-Ag(A-a)10,=A,0,+A. [ (639 - (A~1) 629 +2,0,+A0,+b 276

The TDMA algorithm is applied to the modified equation(Eq.2.76). The best result
is obtained when A is in the rage 1.6-1.95.

2.6.2 Block-Correction Scheme

The line-by-line method converges slowly if the nitial starting value is very far
from the solution. The purpose of the block-correction scheme is to obtain an approximate
value of the final solution. Before the application of the line-by-line method, uniform

corrections §; are added along the lines of constant i. Therefore

0,,=0},+8; 2.77

The corrections g, are chosen such that the integral conservation over the
control volume blocks defined by each constant-i line is exactly satisfied. The equation
for the correction v is obtained by substituting Eq.2.68 into the original discretization

equation and summing such equations for all values of j. The result is[Patankar(1981)]



A= +Cc B, [+D 2.78
where
B; =E Ag 2.79a
A;=Y (Bp-Ay-Ag) 279
C; ZE Ay 2.79¢
D;=¥" (A 0:+A,0+2ABi+AH5+d-BH}) 2794

The summations in these expression are taken over j=2,m-1. The equation set can
be solved by the TDMA. It should be noted that D, represents the integral residual for the
constant-i. The correction reduces all the integral residuals to zero. The same procedure

is applied to the lines of constant j.

2.6.3 Diagonal Dominance

To obtain convergence with the iterative solution technique, an important condition
needs to be satisfied. The discretization equation must be diagonally dominant. The

coefficients must satisfy the following condition.
sz; A 2.80

First-order upwinding of the convective terms allows this requirement to be met.

Therefore the iterative technique converge to a solution. The central differencing scheme
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for the convection terms, when incorporated directly into the coefficients of the
discretization equation does not meet the diagonal dominance condition generally. When

the iterative solution technique is applied, the process may diverge.

This condition forces the implementation of higher-order upwinding for the
convection terms in a certain manner if convergence is to be achieved. The implemen-
tatton of higher-order upwinding methods is discussed in the next chapter in the context

of three spatial dimensions.



3.0 Three Dimensional Method

Since the geometry of the RIM mixhead tube is a cylindrical chamber, the obvious
choice of coordinates seems to be cylindrical coordinates. However, several difficulties
are encountered if cylindrical coordinates are used. The jet inlet boundary conditions
(e.g., fully developed parabolic profile) cannot be specified correctly and it would be
difficult to consider more complicated mixhead geometries. To solve the problem without
introducing simplifying assumptions, we need a more flexible method that can handle

complex geometries.

There are several ways that the finite-volume method is used to treat problems
in complex geometries. When simple Cartesian or cylindrical coordinates are used, the
boundaries do not generally coincide with the coordinate lines and approximations to the
boundary must be made. The first approach to overcome this difficulty is to treat the
boundary as series of straight line segments and use interpolation. This method is not used
frequently since the inaccurate interpolation at the boundaries degrades the accuracy of
the numerical method considerably[Maliska and Raithby(1984)]. An alternative is to use
fhe generalized coordinates(or body fitted coordinates). Two different approaches are

possible with the generalized coordinates; general orthogonal and non-orthogonal
coordinates. With an orthogonal coordinate system the mesh that can align the grid lines
with the boundaries may be impossible to generate in a three dimensional space[Maliska

and Raithby(1984)]. The generalized non-orthogonal curvilinear coordinate system is more
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flexible than the orthogonal method with regards to mesh generation. The methods for the

mesh generation are discussed extensively in the works by Thompson et. al(1985)].

With the generalized non-orthogonal coordinate system several different
formulations are possibfe depending on the choice of the dependent variables. In most of
previous formulations, Cartesian velocity components are chosen as the dependent
variables. With this choice the Cartesian velocities can be located in many ways(Fig.
3.01). The Cartesian velocities can be staggered with the pressure at the cell
center(Fig.3.01a). Shyy and his co-workers showed that a convergent calculation scheme
can be developed[Shyy et al(1985) and Shyy and Vu(1991)]. However, the procedure
breaks down when the grid lines are rotated by 900 [Vanka et. al(1985)]. Vanka et.
al(1985) located pressures at the corners of the cells and velocities at the centers(Fig.3.01
b). This arrangement 1s also not satisfactory since an uneven pressure field may result as
the solution. The third arrangement proposed by Maliska and Raithby(1984) locates all
Cartesian components at the cell faces(Fig.3.01.c). This approach requires additional
storage and computational effort. The fourth al-pproach(Fig.fv.Ol.d) is most economical in
terms of the storage and computational efficiency. The Cartesian components are located
at the cell centers with the pressure field, requiring least storage. A study performed by
Melaaen(1992) showed that the grid non-orthogonality is handled better by the
nonstaggered grid than a staggered grid.

Karki[1985] used the covariant velocity components as the dependent variable. The
covariant velocities are aligned with the grid lines. Since these components are not normal
to the cell faces, some averaging was necessary to calculate the normal flux. Another
disadvantage of this method is that additionai source terms arise due to the curvature

effect[Shyy and Vu(1991)].



Fig.3.01: Possible cartesian velocity arrangements
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In this chapter the details on the numerical method that has been developed to

solve the 3-D transient Newtonian laminar flow in complex geometries are given. The
Cartesian Navier-Stokes equations are transformed to the generalized non-orthogonal
curvilinear coordinates. This transformation allows the computational physical boundary

to coincide with a coordinate line in the transformed space.

The variables are discretized on a non-staggered mesh and second order accurate
schemes for both convection and diffusion terms are used. The method is similar that of
Rhie(1985) which was developed for 2-D turbulent flow. Yet, there are significant
improvements with the interpolation of the cell boundary velocities. The original Rhie
scheme has been the subject of controversy. The work of Acharya and Moukalled (1989)
showed that mass conservation is not enforced with their scheme; therefore the solution

obtained using their method is not accurate.

3.1 Governing Equations

Before introducing the governing equations, tensor notation is discussed briefly.
Using tensor notation simplifies writing the three dimensional equations. The indexed
variable, x;, denotes (x,y,z). Repeated indices denote summation as shown below

ou; Ju, dv, dw
9u; _du, dv, dw 01
ax, ox Jy 0z 30

For 3-D, laminar, Newtonian fluid flow the following equations describe the

motion of incompressible fluid in a Cartesian coordinate system[Aris(1989)].
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Continuity
opu,
- iz 3.02
ox; o
Momentum
. 3.
p(au1+ 3 (uu))__ap+a aul) 03

3t " Bx; ax; P,

i

Before proceeding further with the discussion of the transformations and

discretizations, the following generalized transport equation is introduced in the tensor

(pe) a - (pus9) =50+ 9 (o B

ax; 3x; ) 3.04

notation.

As in Chapter 2, S° represents the pressure gradient source term. For the

continuity equation 0 equals to 1 and 5° equals to 0.
3.2 Transformation

The transformation of a point in Cartesian coordinates to curvilinear coordinates

is given by[Aris(1989)]
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ei=el(x,y, 2) 3.05
The inverse transformation

xi=xi(e,n,T) 3.06

is assumed to be unique.

3.2.1 Jacobian and Inverse Jacobian

The first geometrical quantity that is defined is called the Jacobian or transform

matrix.

gi=9%] 3.07

The inverse Jacobian matrix is defined as.

Ti=e 3.08
ox3 :

The equations written in Cartesian coordinates can be transformed to generalized
- non-orthogonal coordinates by applying transformation rules. The first-order derivative in
generalized coordinates can be related to the first-order derivatives in Cartesian

coordinates through the chain rule. For example

B _H0ox, oy, Moz 3.09
Jc Ox dc Jy 0 0z ¢
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The above equation can be generalized and rewritten using the tensor notation to
give

0 _xT 30 _,5 0 3.10
del Oe'! oOx1 dx

Where 57 is the transpose of the Jacobian matrix.

The inverse transformation can be carried out sirmlarly using the chain rule.

B _ o 0 G KB 3.11
oxJ oxJ dek dek

Where FE is transpose of the inverse Jacobian matrix.
Fi

The transformation of the governing equations given in the physical coordinate
system to the new coordinate system gives rise to geometric derivatives expressed relative
to the physical coordinate system(e.g., ¢, , €, , €, etc.). Since the physical coordinates
are expressed as a function of the transformed coordinate system, we need to relate the

inverse Jacobian matrix { ¢, , ¢, , €, etc.) to the Jacobian matrix ( Xer Vs Yo ctc.).

For this we can use the identity,

3’? Jlk'_'a:li 3]2
Solving for the inverse Jacobian matrix( ,T: } assuming that the Jacobian matrix(

Jlk ) is known gives the following

g GRD A# u 71 Xl 1 X
J11=€:=__'_1_.|‘”_fz'l J;=€)=ﬁ|jl'l_[' J;=€z=__ﬂ'|:,_lf.'__'.l. 3.13a,b,c



Jip Yo Fp REATE Fop FTe 313ghi
Y T <

N is called the "Jacobian™ and defined as the determinant of the Jacobian matrix

W1 =%y, 20 *% ¥ oy &,

F Yy F Y E YT 314
3.2.2 Covariant and Contravariant Metric Tensors

The differential increment of length in Cartesian coordinates is
ds=dx*dx* 3.15
This can be related to the generalized coordinates as follows;

ax* ox*

ds®=="_="_delde 3.16
oe! o¢
The covariant metric tensor
ko k
g~ & 3.17
Y o o

relates distance in the Cartesian coordinates to the infinitesimal coordinate increments

in the generalized coordinate system.
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The inverse of the covariant metric tensor can be defined. It is called the

contravariant metric tensor.

- g¥="=""=. 3.18

3.2.3 Covariant and Contravariant Vectors and Normal Flux

In the new coordinate system, a Cartesian vector can be decomposed in two
different ways. Let Cartesian basis vectors be denoted by i;. Define a set of basis vectors

such that they are normal to the coordinate surfaces(Fig3.02a)
e® =}zit 3.19

The reciprocal{dual) basis vector which are tangents to the coordinate surfaces are

defined as

k.
e(‘_) =‘Ii lk 320

The basis vectors coincide only if the coordinates are orthogonal.

The contravariant components are normal vectors to the coordinate surfaces. These
can be formed using the first set of basis vectors. For a Cartesian vector u, three

contravariant components are given by

F=u'em=£u. 3.21
axd



X

Basis Vectors

a)
U2
u
®
Vector Components
b)

Fig.3.02
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The covariant components, which are tangential vectors to the coordinate surfaces

can be formed using the second set of basis vectors

— ax/
- U;=use=—u. 322
0] aei J

The contravariant and covariant components of a velocity vector are illustrated in Fig.3.02

The contravariant components of a velocity vector can be scaled by the Jacobian

determinant to obtain the normal flux components.

i T7i 3! 23
L] '_“IJ|U =U|a}uj 3.

The product of the Jacobian determinant and the transformation matrix gives the

area vector.

. i
A== 324
/<M1=

These arc vectors with magnitude equal to the area of the face and direction
perpendicular to the face. If the control volume has the dimensions( Ae,An,AT )inthe

computational space, the corresponding area in the physical space is given by

AAS=A°AqAT 3.25

The three normal flux components of a velocity vector are given below.

U=N(en+e,y+ew) =A}uj 3.26a
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V=W |mu+nyin w=Al, 3.26b

W=W|Tu+T T w)=Au, 3.26¢

3.2.4 Transformed Equations

With the knowledge of the coordinate transformation relations presented above,
we can proceed with the transformation of Eq.3.03. Two different transformation rules are
applied. For source terms chain-rule differcntiati.on is applied[Thompson et. al(1985),
Rhie(1985), Meakin and Street(1988)]

F _oF od Az
o’ o &'

For the transport terms, a conservative transformation rule is applied[Thompson -

et al.(1985),Rhie(1985)]

a_F_ 2(1)i_( JF.E_) 3.28
ax' Jod @t
Application of these transformations to the Cartesian transport equations gives the

‘following results

Continuity

L
<

3.29

1
o
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Transport Equations

3 3 : d . .uvg OO
— ) +—(pU'9) = SOj+—(GPTO—= 330
7 M1PO (VD) W+ 5@ T3

where U' are the normal flux components given in Eq. 3.22, and G*=|Jj|g* .
3.3 Discretization

The Navier-Stokes equations written in generalized coordinates are discretized

using the finite-volume method. The steps outlined in the previous chapters are followed.
3.3.1 Grid Structure

The computational space has a uniform rectangular domain of dimensions | x m |
x n. The computational domain is divided into a number control volumes. In three
dimensions, the control volumes are cubes with unit boundary surface areas. The
terminology used for the control volumes is illustrated in Fig.3.03. The capital letters
denote the cell centers and small letters, the cell faces. The cell center coordinates are
'stored in the three dimensional arrays x(i,j,k),y(ij,k) and z(ijk). The cell corners are
stored in another set of three dimensional arrays xc(i,j,k),yc(ij k) and zc(ij k). The cell
centers are the centroids of the control volumes. The transport equations are discretized

by constructing discrete conservation laws for the control volumes.
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Fig.3.03: 3-D Contol volume
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3.3.2 Geometric Quantities

As shown by Rosenfeld et al.(1991), an accurate discretization in the curvilinear
coordinates requires the geometric conservation tule to be obeyed. The geometric

conservation rule arises because of the conservative formulation. Eq. 3.28 implies

_‘?__(Jﬁ_) =00 331
aej &7 i N

This equation says the sum of area vectors for the control volume should be zero, or that

the individual control volume is closed.

To enforce this rule, the geometric quantities must be evaluatec at the control
volume faces. The interpolation of the cell center values to the cell face may violate the
geometric conservation rule [Thompson et al.(1985), Rosenfeld et al.(1991)]. Evaluation

of the Jacobian matrix is illustrated for the east face.

@5 _x'(+1,j,k)-x "(ijk) 3.32
e Ae
i, 56 G 5 (=L R e (k1) xe gLk =1) 333
/e 2Aﬂ
(r T k) k=) 1) xc -1 k1) 334

2AT
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determinant can be determined using Eq. 3.14. The inverse Jacobian can be used to

determine the contravariant metric tensor.

3.3.3 Integral Conservation Statement

-

Eq3.30 is integrated over the control volume to construct the mtegral

conservation statement

3 9, yri i1 71 09 yq 117
[ [ (WIe0)+—=(pU e-I*’g"‘andV— [ s*Wlav 335

AVol ot AVol

AV=AeAnAT

This cquation states that the net accumulation rate of 6 within a control volume
is balanced by the net convective and diffusive fluxes across the control volume faces and
the source or sink terms within the control volume. In the finite-volume method, the

integral conservation statement is discretized rather than the original differential equation.

Several assumptions are introduced. The fluxes through the control volume
boundaries are expressed as the product of the mean value through the face and the area
of the contro} volume face. The source term is expressed as the product of the mean value
associated with the cell center and the cell volume. The equation is linearized by
substituting the unknown variables by the values from the previous iteration step. For

example with the first convection term
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o 3
—{plU0) dV= | —(pU D)dV
f ae(p ) f ae(p ) 3.36

AVel AVol

The result is

He O A vrurcatr - B, rea 0
= AVol+[(pU 8 T% ¥ lJ|-—=).~(p U0 f“’g”"lll-é(—:;),JAnAI‘
. d0 . a0
+[(pV e-I“’g’*Ul-a;),,—(pV e—I*’g”UIQuAeAF

[(pWa~r“g3*u%),-(pwe—r‘*g*m%mmn=s°.L!tAVot 337

3.3.4 Time Derivative

A first-order backward time difference is used. This scheme is unconditionally

stable for an arbitrary time step size At.

Kp[10) ;. P HIO) (e W1B) 4 pp AT 3.38
ot At

The convective and diffusive fluxes are evaluated at the present time level. Only the term

denoted with ° is evaluated in the past time.
3.3.5 Diffusion Terms

Owing to non-orthogonality, the diffusion terms contain cross derivatives. At the
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cast face, the diffusion term fully expanded is;
e .90 _re 11y 7.0 21 By, og131 7158 3.39
T Maek)‘ " V1T I-’Iaﬂ)c T VIR

Central differences are used for the derivatives.

30y %% 3.40
de ¢ Ae

(_@g) = e’”-'_e-* 341
on”c A

(@,) 80 3.42
ar’c AT

3.3.6 Convection Term

Discretization of the convection terms is important in obtaining accurate solutions
to computationat fluid dynamics problems. The first-order upwinding method presented
in Chapter 2 is the simplest stable scheme for the discretization of the convection terms.
However the use of this scheme produces inaccurate results due to the false diffusion

‘error[De Vahl Davis and Mallison(1976), Leonard(1979)]. At high Reynolds numbers,
false diffusion plays an important role, producing solutions which contain artificially
higher levels of diffusion. Several proposals have been made to improve the accuracy of
the convection term discretization. Some of the proposals contained in the literature are
briefly reviewed below. A method of implementing higher-order upwinding schemes is
presented. The discussion for each method begins with the finite-difference analog of the

convective dertvative since the finite-difference is more easily conceptualized.
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3.3.6.1 First-Order Upwinding

A more detailed discussion of the method than in Chapter 2 is presented. When
a convective derivative is discretized using the first-order upwinding scheme, the

following result is obtained.

0,-0
— “’+a92—‘2- if Up>0
aU 9)_| € O 3.43
de 09 0 .
Uy AeP'“E;E. if Up<0

The derivative is discretized at the cell center. Grid points are equidistant with Ae

as the spacing. This method introduces a nonphysical coefficient =1UAe which is
2

called the numerical or artificial diffusivity of the upwind scheme. When convection

becomes dominant this term introduces a diffusive effect which does not physically exist.
In the control volume sense this scheme is equivalent to step wise

interpolation(Fig.3.4). The contribution from the convection coefficients for the 3-D

scheme are given below.

Cl=max[-p U,AnAT, 00] 3.44a
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Cl-max{ pU,AnAT, 0] 3.44b
Co-max[-pV,AeAT, 0.0] 3.44c
T Clemax[ pVA€AT, 0.0] 3.44d
Co-max[-pW AeAn, 0.0] 3.44e
Cg=max[ pWAcan, 00) 3.44f

Although smooth converged solutions can be obtained with this method, extensive
studies[Han et.al(1981),Shyy(1985)] show that the method fails to give accurate solutions
at high Reynolds numbers. Due to the false diffusion error, the strength of motion is
severely underpredicted. For recirculating flows, the method predicts weaker vortices and

sometimes an incorrect flow field[De Vahl Davis and Mallison(1976)].
3.3.6.2 Flux Blending
This scheme, first proposed by Khosla and Rubin(1974) blends first-order

upwinding with a central differencing scheme to obtain a more accurate discretization for

the convection terms. The finite-difference representation of this scheme is

U AU - U,>0
a(U9)= F P( 2Ae Ae F 3.45
de 0.-6 0.-0., 6.-0
U.SEP sy £ w_TYE VP U<
F K 2A¢ Ae ) #<0

The terms enclosed within the round brackets are included in the right-hand side
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(source term) of the matrix equation and are evaluated using the values from the previous
iteration step. This is called the deferred correction approach and allows the stability of
the first-order upwind scheme for the higher-order schemes. The blending factor A can
be between 0 and 1. When A is 0 the scheme becomes the first-order upwinding and when
A is 1 the scheme becomes central differencing. The optimum value of A damps out the

wiggles due to central differencing.

The flux-blending scheme is not implemented in this work, since it is difticult to
obtain the optimum A which damps out numerical oscillations. The.implemcntation of the
higher-order upwinding follows the deferred correction approach. The higher-order scheme
is split between a stable upwinding scheme plus source terms which lag behind one

iteration.
3.3.6.3 Second-Order Upwinding

A better approximation of the cell face value would be to use two upstream nodal

values to find the cell face value(Fig.3.04).

For the east and west faces[Shyy (1985)]:

- €
150,-50, U0 + 46

4

hse,-s6,, U0
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a) First-Order Upwinding
b) Second-Order Upwinding
c) QUICK

S———

Fig.3.04 : Higher-order upwind schemes



U0
U <0

1.56,-.50 45
|158,-.58,

3.46b

w

To retain the diagonal dominance of the discretized equations, some terms must
be grouped with the source term. The formulation that ensures this is first-order
upwinding with the remaining terms grouped with the source term. The coefficients retain
the same form as the first-order upwinding method and the remaining terms are lumped

with the source term. The value of the variable at the faces can be written as

. 8,45,  S5,=5(0,-0,) U0 3474
oS, 8.=5(0,-0,) U<0

. WS, 5,=50p-0,) U">0 347

Y 10,48,  S,=50,-6) U"<0

The source term in Eq.3.37 contains the contributions from Eq.3.47a and Eq.3.47b

and the similar formulation from the remaining faces. Therefore,

$e=s0HCWS,,~CES ) +(CS'S,-CN'S,) H(CSS,-CT'S)
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3.3.6.4 QUICK

If a third node is included, a higher-order approximation can be
obtained[Leonard(1979)].  This method is equivalent to fitting a polynomial,
9,=C,+Cg+Cg’ with ﬁpstream weighting. For east and west faces the approximations

for O are

3
2e -e 38, U0

O V4 3.49a
<3 3. -« e

28, 86,3576,E U<0

39 —lew 3, U™0

o 8 87 4 3.49b

*| 3 3 "

The QUICK scheme, depending on the method of implementation may yield
cocfficients which can become negative, thus destroying the diagonal dominance
condition, Various workers have experimented with different forms and many of them
‘found convergence problems. To obtain convergence, a false transient term must be added
or a very small relaxation factor must be used [Han et. al(1981),Pollard and Siu{1982)].
To achieve stability, the scheme must be recast into a diagonally dominant form. As with
second-order upwinding; first-order upwinding, with the remaining terms lumped with the

source term, can ensure diagonal dominance and stability. Therefore,
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0,45, S =%(3es~2e,,—ew) U0

4 4

o = 3.50a

-1
S+5, s,=%(3a,,—zeﬁ—am) Ue<0

S, =1(30,-20,-6,,) U">0
8 3.50b

0p+S

w

sw=%(3e“,—2eP—e,; U*<0

In the study of Shyy(1985), the QUICK scheme generated spurious numerical
oscillations which were not as serious as with central differencing. In some problems, the

oscillations were serious enough to affect the accuracy of solution, however.
3.3.7 Discretization Equation

Substituting the individual term discretization into the integral conservation

statement(Eq.3.37) gives the final discretization equation.

APeP=§Anbeu,,+s° 351

The individual terms are given by

A =CE+([%G"), 3.52a
A =CW+TG"), 3.52b

AN=CN+(I‘°Gn)n 3.52¢



78

A s=c,g+(r9(;22)s 3.52d
A =CT+T*G%), 3.52¢
A =CB+I%G®), 3.52f
Ap=AgtA +A+A+A+A 353

The coefficients can have an alternate form if the non-orthogonality terms are
included with the coefficients. The non-orthogonality terms are included with the source

term S

Since the equations are nonlinear, underrelaxation is provided using the parameter

of Patankar(1981a), Patankar(1981b). The discretization equation(Eq.j.Sl) is modified to

B9,=Y A,0,,+S° 3.54
nb
and

A
B.=_2% 3.55

Pa
SB=S°+(1_a)AP9P 3.56

o

3.4 Pressure-Velocity Coupling

The discussion up to this point focused upon the discretization of the generalized

transport equation. In this section the numerical method used for the solution of the
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Navier-Stokes equations in generalized non-orthogonal curvilinear coordinate system is

discussed.

3.4.1 Discretized Navier-Stokes Equations

The discretized momentum equations contain the dot product of pressure

derivatives and the area vector. The discretized momentum equation is

ae oP

Bul=Y" A ut+sv [ 3.57
SR Lrwrv
The discretized continuity equation is
Ue_Uw+VnwV.7+W:—Wb=0 3.58

3.4.2 Evaluation of the Cell Face Velocities

When a non-staggered grid arrangement is used, a linear interpolation of the ccll
grid velocities to obtain the cell face velocities can lead to wiggles and oscillations in the
‘velocity and pressure field. A method to overcome this difficulty was to use the staggered
grid. The staggered grid method is compact and efficient for the Cartesian coordinates in
two dimensions. However, with 3-D curvilinear coordinates, four-sets of control volumes
are required and the storage of the geometric coefficients for four-sets of control volumes
would require a large amount of computer memory. The non-staggered grid method first
proposed by Rhie(1981) allows the velocities and pressure to be defined at the same grid

points. The implementation of this method in two-dimensional Cartesian coordinates is
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discussed in Chap. 2. Here, Rhie's scheme is extended to a three-dimensional non-
orthogonal coordinate system. The tmplementation in non-orthogonal curvilinear
coordinates is discussed in Burns and Wilkes(1987) , Rodi et al(1989), and Kobayashi and
Pereira(1991). Other approaches are possible with the non-staggered grid system.
Thiart(1990) uses prcs-sure upwinding. Regio and Camarero(1986,1987) use opposed

differencing.

The method proposed by Rhie is described first. A straight forward interpolation

of the normal flux at the east face can be written as

U,=0.5Ug+Uy) =-I.T¢ 3.59

The overbar denotes the linearly interpolated quantities at the location indicated
by the subscript. The linear interpolation of the normal flux contains the pressure gradient
which is the average of central differencing. Rhie(1981) proposes that the pressure -
gradient evaluated at the cell center is substituted with the pressure gradient that is

evaluated directly at the face. Therefore

— = OP, 0P
U,= ,*Ce((&-)c'(g)c) 3.60
‘where
rdie iy 3.61
AP

Several workers examined this method and arrived at the conclusion that the



Z;'—e:(l_{ff_“)c 3.0l

Several workers examined this method and arrived at the conclusion that the
solution obtained with Rhie's original method may create problems. Majumdar(1988)
showed that the solution obtained with Rhie's method depends upon the under-relaxation
factor o, due to the presence of linearly interpolated underrelaxed velocities. The study
of Acharya and Mukalled (1989) showed that Rhie's scheme failed to enforce mass
conservation for skewed grids. This may be attributed to the way the contravariant
velocitics were evaluated at the cell faces. The pressure gradient correction(Eq.3.60)
provided to the averaged normal fluxes may not represent the true mass imbatlance at cach

iteration step[Acharya and Moukalled(1989)].

To overcome the difficulty with enforcement of mass conservation, the Cartesian
velocities are interpolated to cell faces and the pressure gradient correction is applicd. The
corrected Cartesian velocities are then transformed to the normal fluxes using Eq.3.26.
This route requires less averaging of the geometric information and the geometric

conservation rule is not violated.

At the cell centers E and P the equation for the u-momentum can be written as

1 @ -
u,,=F((§An,,u,,,)p+s”—(AiPsA?P,, +ATPDp (-0 )up 3.62
P
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centers are substituted by the cell face values which are stored. For the pressure gradient
in the main direction( e-direction for east face velocity), the neighbouring cell grid

pressures(E and P location pressures) are used to evaluate the pressure gradient.

1 u *
(D A S AP, HATP) IR (1 -,

[

=H,-(A/P)H(1-au, 3.64

Therefore, the cell face Cartesian velocity consists of three parts; 1) a linearly
interpolated part which consists of the coefficients and the pressure gradients in the
transverse directions, 2) the pressure source term in the main direction, and 3) the under-

relaxed part.

The other Cartesian components, v, and w, are evaluated using a similar method.
The normal flux components are determined using Eq.3.26. The normal flux component

at the east face can be written as

— = AlA] .
U -A'H*+AJH +ALH] ‘_‘—L(%S)J(l U, 3.65
B

(4

The normal flux at other faces can be determined in a similar manner.

3.4.3 SIMPLEC Algorithm
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The problem of finding pressure that satisfies continuity is more complex in the

non-orthogonal curvilinear coordinate system. The continuity equation must be used to

find the pressure field indirectly. When a correct pressure field is obtained, the velocity
satisfies the continuity constraint.

In non-orthogonal coordinates, continuity is written in terms of the normal fluxes.

The normal flux at each face is linked to all three components of the Cartesian velocity.

The normal fluxes and cell center Cartesian velocities need to be corrected to drive the

velocity field to convergence. The corrections can. be written as

U=U*+U’ 3.66a
V=y"+V’ 3.66b
W=W"+W’ 3.66¢
u=u*+u! 3.66d
y=y*+p/ 3.66¢
w=w"+w’ 3.66f

Initial solutions are obtained with the guessed pressure field p’.

i OP”

de
Buip=(Y A u +S“~J—L) 3.67a
ol Z nbfénb 3 3; P



de; aP

By -(E Anbnub+S“—(J 3.67b
J
The corrected solution 1s
de.
Bptp =) Ayt ™S "'(J . aP))p 3.68a
nb
BE“E“(EAnb"nb’“S“‘(J % a""))_E 3.68b

The correction can be derived by subtracting Eq.3.67 from Eq.3.68. The result is

d; gp’
I
Byug= (EA..b et (J % 8P ))E 3.69b

The equations relate the velocity corrections to the pressure corrections in all

directions. If the pressure corrections are retained in all directions the resulting pressure

correction equation would involve 15 points. This is not tractable using the tridiagonal

matrix algorithm and a more complex matrix solution technique is required. To obtain the

solution to the pressure correction, without resorting to special solvers, an approximation

is introduced where the pressure correction only in the main direction is taken into
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account. The u velocity correction is related to the pressure correction in e-direction only,
and for v and w velocity corrections the pressure correction in the p and T directions
are used respectively. This approximation is valid if the grid does not contain severe non-

orthogonality.[Shyy et. al(1985), Peric(1990)]

The SIMPLEC[Van Doormal and Raithby(1987)] approximations require that
Z A buP and E A ubuE are subtracted from Eq.3.69a and Eq.3.6% respectively.

Thcrefore

= 3.70
.= (B_Anb))"il( E P)

Similar equations can be written for other Cartesian components. The normal flux

correction can be written as

U’'=Alu'+Ajv'+Asw/ 3.71

Therefore

oo A;’Ali 1

- (P.-P 3.72
(B-Y 4 ,.z),( e~Fr)

For other cell faces similar normal flux corrections can be derived.

Substituting the above equations into the continuity equation yields

ApP{=A Pi+A Pi+A Py+tAPtA Pr+A Py+b 3.73

where



i 1
A=A A) ——M-
= )‘(B—EA AN

T AW=(A1‘.A 1i)w

1
(By3 4.,

i, 1
A=A ———
N { 2A2),, (BN‘ZA

nb A

i, 1

Ag=(AA)) ———

T Gy A
l'lb S

Aaad—L

(B, EAM)

nb

i, i 1
A, =(A4,), ——M
el v
nb b

and

Ap=Ay+tAAA A A Ay

b=~(U;-Ug+V, -V +W, -Wy)
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The iteration steps can be summarized as follows.
i) Using the guessed pressure field (p") and cefll face normal
fluxes(U’,V" W' )obtain the solutions to the momentum equations ( u",v",w").
2) Obtain the cell face velocities using the method outlined in section 3.4.2.
3) Solve the pressure correction equation to obtain corrections to the pressure
field(p”) and correct the cell face normal fluxes and pressure.
4} Check for convergence.
5) If the iteration is not converged return to step 1) using the result as the initial

guess.

6) If converged, end iteration process.

The discretization equations are solved using the block-correction method and the
line-by-line sweep using the TDMA algorithm. The one dimensional algorithm is applied
plane by plane in all three directions. The implementatton of this method is discussed

in the previous chapter.



4, Test Problems

Before applying the method developed in the previous chapters to the impinging
jet problem, a rigorous test of the method is necessary to establish its accuracy. The code
developed is used to solve various problems with previously published solutions. The
problems selected test various aspects of the algorithm. The driven cavity problem, at high
Reynolds numbers, test the accuracy of the convection term discretization, The driven
cavity problem is solved using both rectangular Cartesian and non-orthogonal coordinate
systems. The polar cavity problem tests the accur:a:cy of the method using an orthogonal
curvilinear grid system. Finally, the three-dimensional aspect of the algorithms is tested

using the 90-deg bend rectangular duct.
4.1 Driven Cavity

The two dimensional driven cavity problem solves the flow field in a square cavity
with the top of the cavity moving at a constant speed. The geometry of this flow field is
rather simple and shown in Fig. 4.01a. The Reynolds number for this flow field is based

on the cavity length.

Re=Pud 401

Where p is the density of fluid, u is the velocity of the lid and d is the dimension of
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cavity.

The governing equations are two-dimensional Cartesian equations.

o a __dp, 9 ,, 9y 2
3%, (puju;) = axi+axi (ani) 4.02
=12

The problem is made dimensionless by normalizing the variables. The velocities
are normalized with the lid velocity and the distance is normalized with the dimension of
the square cavity. The governing equations can be rewritten as

8 mmy=-9p,1 9 4.03
a0 as‘fReai(a?c;)

The normalized variables are

i p=—F_ 4.04

The lid velocity , density of fluid and dimension of cavity are all set to unity.

Therefore, the viscosity is the scaling parameter for the flow field.

At low Reynolds numbers a central recirculation zone is present, but as the
Reynolds number is increased secondary recirculation zones develop. At a Reynolds
number of 100 one secondary recirculation zone forms in addition to the central
recirculation zone. An additional secondary vortex appears in the left-hand corner when

the Reynolds number reaches 400. A third secondary vortex appears in the upper left hand
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comner when the Reynolds number reaches 1000(Fig.4.01 b). The solution by
Burgraff(1966) at a Reynolds number of 400, using a stream function-vorticity
formulation and central differencing scheme is compared to the present scheme.

4.1.1 Grid and Boundary Condition

Three different types of grids are used to solve the problem(Fig. 4.02 a,b,c). The
first type used is a uniform Cartesian grid. The second grid is a non-orthogonal grid in
which the grid lines intersect at angles other than 90 degrees. The third grid is a non-
uniform expanding and contracting grid with higher grid density near walls and comers.
The grid size was fixed at 31x31 for all three types. For the top wall a constant velocity
is specified and for side walls no-slip condition is specified. The iteration was carried out
until the sum of residuals of each velocity components and the sum ‘of mass residuals’

decreased to 1x107%.
4.1.2 Results and Discussions

The first two grid types are used to solve the problem at a Reynolds number of
400 and the results at the vertical centreline are compared with the solution of
Burgraff(1966). The third grid type was used to study the qualitative details of flow field

at the higher Reynolds number of 3200.



Fig. 4.02a: Driven cavity grid, Cartesian

31x31
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Fig.4.02 b: Driven cavity grid, non-orthogonal,

31x31
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Fig. 4.02 c: Driven cavity grid, non-uniform

31x31
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The vertical centerline(Fig. 4.01 line ab) u-velocity comparison is given in
Fig.4.03. The result obtained with the first-order upwinding scheme shows poor agreement
with the Burgraff's results. The false diffusion error causes the profile obtained using the
first-order upwinding to be less steep. The second-order upwinding results are in good
agreement with Burgraff. The non-orthogonal, skewed grid results differ only slightly

from the orthogonal Cartesian grid result.

The difference between the orthogonal grid result and non-orthogonal grid result
is attributed to truncation errors due to the non-orthogonality. Additional discretization

error arises when the grid is non-orthogonal[Thompson et al.(1985)].

The velocity vector plot for a Reynolds number of 3200 is given in Fig.4.04. The
result is obtained with second-order upwinding. Street and Meakin(1988) used a 41x41°
grid to compute the same flow field and also obtained four vortices. If a first-order
discretization scheme is used, the vortex in the upper left-hand comner may not appear{De
Vahl Davis and Mallison(1976)]. The stream function contours plots are given in Fig.4.05
and the pressure contours are given in Fig.4.06. The results are nearly identical to the
results obtained by Kim(1988) in which a quadratic finite element method was used obtain

the solution.
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Fig. 4.04: Driven cavity velocity vector plot , Re=3200
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4.2 Polar Cavity

The driven polar cavity was studied numerically and experimentally by Fuchs and
Tillmark(1985) and Fuchs(1985). The experimental appratus consisted of an inner
cylindrical surface, straight side walls, and a section of another cylinder with a larger
radius. The inner cylinder rotated at a constant angular velocity(Fig. 4.07). Fuchs and
Tillmark(1985) used Laser Dopper Anemometry to measure velocities at various points
inside the cavity and the multigrid algorithm to solve the problem numerically. The
multigrid solution algorithm which uses the solution from the coarse grid as the initial
condtion for the solution at the fine grid was used. Second-order central differencing was
used for both convection and diffusion terms. Their solution using a 80x80C grid gave

results which matched the L.D.A. data.

4.2.1. Grid and Boundary Condition

The polar cavity grid is displayed in Fig. 4.08. A 39x39 non-uniform curvilinear
grid is used. The grid is finer near the walls and corners. The boundary conditions
imposed are similar to the previous problem. The inner wall moves at a constant angular
velocity and the other walls are stationary. The Reynolds number of the flow based on

the length of the bottom wall is 350.
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Fig. 4.07: Drtven polar cavity, Re=350



Fig. 4.08: Driven polar cavity grid
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4.2.2 Results and Discussions

The horizontal centreline(line ab in Fig 4.07) u-velocity calculated is compared
with the L.D.A. measurements from Fuchs and Tillmark(Fig. 4.09). The plot shows that
the calculated results agree closely with the L.D.A. measurements. The numerical results
of Fuchs and Tillmarks using 80x80 mesh gave results which are nearly identical to the
numerical predictions of this work. The equally accurate results at a lower grid density
than the scheme of Fuchs and Tillmark(1985) is probably due to the use of a fine grid
near the walls and corners of the cavity and the conservative formulation of the primitive
variables in this study. The method used by Fuchs and Tillmark was non-conservative
stream-function vorticity formulation. As discussed earlier in Chapter 2, the conservative
formulation is more accurate. The velocity vector plot given in Fig. 4.10 shows three

distinct recirculation zones

4.3 90-Degree Bend Square Duct

Humphrey et al.(1977) carried out a detailed experimental analysis of laminar flow
in a 90-degree bend(Fig. 4.11). Their velocity measurements will be compared with the
numerical predictions of this study. Numerical comparisons to theses experiments have
also been made by Humphrey et al.(1977) and Rhie (1985), who used 60x15x10 and
50x22x15 grids respectively. The Reynolds number of the flow, based on the hydraulic

diameter, was 790. The Dean number was De=Re(d/2R)'?*=368 where d is the hydraulic
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diameter and R, is the mean radius of curvature. The longitudinal velocities were
measured using a laser dopper anemometer, but the other velocity components were not

measured.

At x=-5,(5 hydraulic diameters before the bend) a fully developed veltocity profile
was observed by Humphrey et al.(1977). As the fluid travelled through the bend, there
was an acceleration towards the outer radius wall and deceleration near the inner radius
wall. A small longitudinal recirculation was observed immediately into the bend, near the
outer corner of the duct. The secondary flow pattern was not expermentally investigated;
only numerical results were given. Numerical results on the 90-degree plane showed the

presence of two counter-rotating vortices, each filling half of the plane.

4.3.1 Grid and Boundary Condition

In this work, the presence of a symmetry plane is taken into consideration and
only half of the domain is discretized. The boundary conditions are:

at the inlet(x=-5): U,V,W= fully developed laminar profile

at the walls: U V,W=0.0

at the symmetry plane{(z=0) : %:0 .0, aV:o .0, W=0.0

a
atthee.t _IO: .QE.I= . ﬂ,: . _@..F.fz .
XI(y‘)aeoo,aﬁoo,aeoo

The grid used is shown in Fig.4.12. The problem is first solved using a

40x17x11( exnxT" ) grid. The grid is then refined to 61x23x17 and 70x25x19. The
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results from the intermediate grid are presented. The highest and lowest grid densities are

used to study the grid density dependence.

4,3.2 Results and Discussions

Three different methods of discretiztion of the éonvection terms are used to solve
the problem. The numerical results at the 90 degree and 60 degree planes are plotted in
Figures 4.13 and 4.14 for the 61x21x17 grid with'the experimental results of Humphrey
et. al(1977). At the 90 degree and 60 degree planes the first-order upwinding method
results are consistent with the previous work, i.e., the velocity profiles were not as steep
as the data and the peak velocities were consistently under-predicted[Humphrey et
al.(1977) and Rhie(1985)]. The results obtained with the higher order methods are in
excellent agreement with the observed experimental values at the 90 degree planes(Fig
4.13a). The higher-order methods under-predict the velocity in the symmetry line at the
60 degree plane(Fig 4.14a). The experimental results show a sharp rise in the velocity

profile indicating that a finer grid is needed near the wall.

The weak longitudinal recirculation zone, which was observed experimentally, is
also determined numerically with all three discretization schemes. The streamwise velocity

vector plot is given in Fig. 4.15 for the QUICK scheme.
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In Fig. 4.16 the vector plots of the secondary flow in the 90-degree plane are
given. The upwinding results indicate the presence of one vortex, while the higher-order
schemes indicate a cellular-type flow pattern with weak secondary vortices. The first-order
upwinding result is consistent with other published results{fHumphrey et al.(1977),
Rhie(1985)]. The higher-order upwinding results indicate a more complicated flow pattern
which is consistent with the phenomenon first studied by Dean(1927). If a critical Dean
number(which indicates the ratio of the curvature effect to the viscous effect) is exceeded,
the secondary flow is unstable and results in the development of a second, stable laminar
flow pattem which consists of several vortices superimposed on the main
flow[Nandakumar and Masiliyah(1986)]. This phenomenon was observed by Cheng et
al.(1977) using flow visualization studies which showed complex flow patterns at high De

numbers,

In Fig4.17 the effect of grid refinement for the three schemes is shown at the 90
degree symmetry plane. The first-order upwinding scheme solution is not grid-independent
and changes significantly as the grid is refined. The higher-order upwinding scheme
solution at the lowest grid density are very similar to those at the highest grid density and
the 61x23x17 grid shows near grid independence of the solution. It is difficult to achieve

total grid independence, especially with highly convected flows in 3-D.
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Fig. 4.15: Velocity vectors in the plane z=0.485

showing longitudinal recirculation
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5. Steady State Opposed Jet Flow

Within a certain range of parameters which characterize this flow field, the flow
pattern is symmetric and stationary; the variables are independent of time and only spatial
dependence exits. The parameters which describe a flow system include the geometric
dimensions of a system, velocity of the flow field, and the fluid properties. The
parameters are expressed in dimensionless form by the Reynolds number. The
experimental works indicate that the range of Reynolds numbers at which steady state
exists 1s very narrow for jet-to-jet impingement[Lee.et al (1980), Sandell{1983)]. However,
as described in Chap. 1, previous investigators present an unclear picture of the jet
impingement process. In this chapter, the steady state solution of jet-to-jet impingement
is investigated using the numerical method developed in the previous chapters. The steady
state algorithm(time derivative of zero) is used to obtain the solution at low Reynolds
numbers. In Chap. 6, the unsteady state is explored using time integration. No previous
calculations of this flow field appear to have been reportzd. Steady, finite-element
calculations of very low Reynolds number impinging jets were recently published by
Schunk et al.(1990). However, they assume_d_ that the flow was symmetric about an axis

through the jets.

5.1 Grid and Boundary Conditions

The RIM mixhead geometry grid is shown in Fig. 5.01(c.f. Fig.1.04). In the axial
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direction, two grids of 51 and 70 lines are used. The cylinder is formed by transforming
23x21 rectangular computational domain into a circular physical domain using the
transfinite interpolation technique[Thompson et al.(1990)]. The inlet boundary condition
1s specified using a 7x7 rectangular grid at the side of the cylinder, The round jet is

spectfied using the fully developed equation for a pipe flow.

V=2V, (1-(3)?) 5.01

where V. is the average jet inlet velocity. Therefore, the round jet is specified by
stepwise approximations on a rectangular grid. The no slip or zero velocity condition is
specified at the wall, and for the mix-chamber outlet, the zero velocity gradient condition

is specified.

The flow problems are conveniently formulated by expressing the variables in
dimenstonless forms. The length units are divided by the diameter of the chamber and the
velocities are scaled by the average jet inlet velocity. The resulting governing equation

in nondimensional form 1s

1 %y 5.02
Re g%,

2z

D

+

3
Silsi
A

where
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F=d p=—B_ g=_ 5.03
D pVan Va"g
and
- Re=H2 5.04
v

The chamber diameter(D) is set to 1 and the jet diameter(d) is set to 0.1. The

distance from jets to the exit is 10D. The inlet jet Reynolds number is
A v
Rejet=-__v_§-"3 5.05

The density and average velocity are arbitrarily set to unity and the Reynolds number is
adjusted by changing the viscosity. For example, to obtain the jet Reynolds number of

10 the viscosity is set to .01.
5.2 Results and Discussions

All variables were initially set to zero. The second-order upwinding method was
.used for the convection terms and second-order central differences were used for the
diffusion terms. Iteration was continued until the convergence criterion was met. For
velocities and pressure, the following convergence criterion was used at each point.

182620 107 5.06

avg




5.2.1 Back Piston, full diameter away from jets

The distance between the piston head and jets was set to the chamber diameter in
the first set of runs and.0.5 times the chamber diameter in the second set of runs. The last

result 15 obtained with the jets at unequal velocities.

The results for Reynolds number 10 are given in Figs. 5.02 to 5.04. In Fig. 5.02
the vector plots at four different horizontal planes'are shown. In Fig.5.03 the vector plot
at the vertical jet impingement plane and corresponding u-velocity contour plots are
shown. At this Reynolds number the viscous terms dominate the convection terms. Small
recirculation zones are present near the jet entrances. The pressure contours show the

highest pressure occurs at the jet entrance(Fig.5.04).

The vector plots for the Reynolds number of 50 are given in Fig. 5.05 to 5.07.
The velocity vector plots in four horizontal planes are shown in Fig.5.05. The vector
and u-velocity contour plots along the vertical jet impingement plane are shown in
Fig.5.06. Two connected recirculation zones form above and befow the jets. The pressure
contours are on the horizontﬂ jet impingement planes are shown in Fig.5.08. The highest
pressure occurs at the impingement point. The vector and pressure fields are symmetric

with respect to the vertical center planes.

At a Reynolds number of 75, the recirculation zone becomes stronger(Fig.5.08 and
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Fig5.02: Velocity vector plots at
different horizontal planes, Re, =10
1. 0.1775 D from bottom
2. 0.6870 D from bottom
3. 1.0000 D from bottom

4. 1.4250 D from bottom
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Fig.5.10) and the center pressure also increases(Fig.5.10). The u-velocity contour
plot(Fig. 5.09b) and the pressure contour plot(Fig. 5.10) show that the flow field is now
slightly asymmetric.

A comparison of the centerline axial velocity is given in Fig.5.11, As the Reynolds
number of the flow increases the velocity profile becomes sharper reaching a higher
maximum. A comparison of the pressure through the vertical centerline is given in
Fig.5.12. The pressure at the impingement point increases as the Reynolds number
increases. At higher Reynolds numbers, the velocity cannot be damped out by viscosity
and most of the kinetic energy is converted to pressure. The theoretical inviscid limit for

the stagnation pressure is 0.5 since the average inlet velocity 1s 1.

The calculated flow field is in good agreement with the experimental visualization. -
The study of Wood et al. {1991) using flow visualization techniques showed that the jets
impinge head on and form a radial jet that travels radially. The part of the jet travelling
toward the closed end will impinge on the bottom and divide. Similarly, the material
leaving the impingement point toward the cylindrical walls will tmpinge and divide. Re-
entrainment of this material by the jet creates a 3-D recirculation zone going around each
of the jets. These zones a;re counter-rotating ring vortices on either side of the

impingement plane.
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5.2.2 Back piston, half chamber diameter way from jets

The bottom of the chamber 1s set at one-half chamber diameter away from the jet
outlet. The results are nearly identical to the previous case. At low Reynolds numbers(Re
less than 10), the jets do not impinge, but spread out into the chamber without forming
recirculation zones. At higher Reynods numbers, the jets impinge head on and four
recirculation zones are formed. At a Reynolds number of 50, LDA measurement data are
available[Johnson(1990)]. The numerical results: for two different grid densities are
compared with the LD A data in Fig.5.13. The initial results at 51x23x21 grid density
agrees with the L D.A. results closely. A grid refinement to 70x23x21, changes the

solution only slightly.

5.2.3 Unequal Flowrates

The distance between the back piston and jets is kept at a half chamber diameter
and one jet is twice the velocity of the other jet. The Reynolds numbers are 50 for the
slower jet(left) and 100 for the faster jet(right). The results are given in Fig. 5.14 to Fig.
5.16. The velocity vector plot along the vertical impingement plane shows that jet
impingement points moves to a location near the entrance of the weaker jet. The velocity
vectors along the honizontal jet impingement plane(Fig. 5.15) also show that the
impingement point has moved to the enirance of the weaker jet. The pressure contour

plot(Fig. 5.16) shows that the highest pressure occurs near the entrance of the weaker jet.
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5.2.4 Concentration

One of the main purposes of the opposed jet configuration is to promote mixing.
The mixing phenomenon is very difficult to quantify in detail{Ottino(1989)] . In this
work, an approximate treatment is given using the transport equations. In polymer
systems, the mixing occurs mainly through convecﬁontOttino(l989)] and diffusion plays

an insignificant part. The transport equation for monomer can be written as

=0 5.06

The inlet concentration of 1 unit is specified for the left jet. For the wall zero
concentration is specified. If mixing occurs, the exit concentration profile would become
uniform. The results are given for the Reynolds number 10 and 50. The concentration
contours along a horizontal plane, 3 chamber diameters from the jets are given. With the
Reynolds number 10, mixing does not occur at all(Fig. 5.17a). The monomer stays only
on one side. With the Reynolds number 50, the concentration contours show that the
monomer which enters from one side travels to the other side. The contours show that
the concentration is still higher on one side. The slight mixing at the Reynolds number
of 50 can be explained by rthe presence of the impingement point which acts as the
hyperbolic point of a dynamical system. The presence of hyperbolic points promote
mixing{Ottino(1989)]. The existence of a hyperbolic point is discussed in detail in Chap.

7.
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6. Unsteady Opposed Jet Flow

In this chapter the time dependent behaviour of the opposed jet flow field is
studied. Flow fields can be steady and symmetrical for limited ranges of parameters that
characterize them. Qutside these ranges, a flow field encounters instability and can exhibit
a more complicated asymmetrical steady state or unsteady behaviour. The point at which
the symmetrical steady state can no longer be sustained is called the transition or critical
point[Sobey and Drazin(1986)]. The transition from, a symmetric steady state to another
set of states is called bifurcation[Drazin and Reici(1981)]. Several modes of bifurcation
can exist. A pitchfork bifurcation occurs when a symmetric steady state forms a new
more complex asymmetric steady state. Transition to a time periodic oscillation is called
the Hopf bifurcation[Drazin and Reid(1981)]. The purpose of this section is to explore
the behaviour of the opposed jet flow field above the critical point using nonlinear time
integration as developed in the previous chapters. Several previous numerical studies,l
which explored the transient behaviour of a flow field, are reviewed first. Although
previous studies predominantly focused on the 2-dimensional flow field, some useful

insights can be gained with the numerical methods used to capture the oscillations.

Flow around a cylinder shows an instability at a Reynolds number based on a
cylinder diameter of about 30. Above this Reynolds number, the flow field oscillates and
vortex shedding occurs. The first numerical study to predict vortex shedding was carried

out by Fromm and Harlow(1963). The initial perturbation was provided by impulsively
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starting the cylinder, i.e., a uniform velocity field was specified everywhere. They used
central differencing for both convection and diffusion terms, which resulted in physically
unrealistic oscillations in front of the cylinders. Sobey and Drazin(1986) showed that the
flow through an expanding channel exhibits a wide range of steady state and unsteady
behaviour. At low Reynolds numbers, the channel flow field is symmetrical and steady.
When the Reynolds number is increased, the symmetfy through the channel centerline
breaks down and the flow field forms an asymmetrical two dimensional steady state. At
lhigher Reynolds numbers three dimensional steady state occurs and when the Reynolds
number is sufficiently large, unsteady oscillation occurs. A numerical method was used
to integrate the two dimensional equations in time. A typical run took 30 CPU hours on
a Cray 1 computer. They concluded that their numerical results agreed with experiments
up to a Reynolds number of 150. Davis and Moore(1982) used the QUICKEST scheme
of Leonard(1981) to study the flow over rectangles. To obtain the oscillations that are
consistent with experiments, a higher-order upwinding method was needed for the
convection terms. The grids used varied from 41x40 to 61x74, and up to 24 CPU hours

were required to obtain a steady oscillation.

The experimental works of Sandell et. al(1985) and Wood et al. (1991) suggest
that the opposed jet flow field becomes oscillatory above a critical Reynolds number.
Using the stability theory terminology, a Hopf bifurcation exists. The critical or the
transition point depends on the geometry of the system. Important factors include the jet

diameter to chamber diameter ratio and the angle of jets with respect to the cylinder
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wall.

6.1 Problem formulation

The non-dimensional formulation of the previous chapter is extended to include

the time derivative. The dimensionless time is given by
=tV 6.01
D

where V is the inlet velocity. A dimensionless number called the Strouhal number is used

to characterize the fluid oscillation.
se=1d 6.02
v

The jet diameter,d, is chosen as the characteristic length since the distance at
which the change in velocity occurs is nearly d. Dynamically similar systems have the

same Strouhal number.
6.2 Results and Discussions

The grid used in the unsteady simulations is shown in Fig. 5.01 . Two mesh
densities were used in the simulations(51x23x21 and 70x23x21) to determine the effects
of grid density on solution accuracy. The grid size limitation is imposed by the need to

do the problem in a reasonable CPU time.
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At low Reynolds numbers(less than 75), the steady iteration process yields
solutions that satisfy the mass and momentum constraints and the selution obtained is
symmetrical about the vertical center planes. At Reynolds numbers greater than 75 the
steady iteration process_produces an asymmetrical solution. At time t=0 this asymmetric,
steady state solution is used as the initial condition for the Reynolds number of 100. In
the first stage we advance the velocity and pressure components from the previous stage
at t=t, to the new state at time t=t +At. At each time step, the SIMPLEC algorithm is
applied. The momentum equations are solved first and the pressure correction equation
is solved to obtain a velocity field with zero divergence. The time integration was carried
out with an arbitrary time step size At at first. The time step was decreased unti] the
velocity oscillation, monitored at 4 diameters above the jets, did not change. The largest
time step, At, used is .1 and the smallest, at high Reynolds numbers, is .005. Usually up
to 50 iterations are required to obtain convergence to le-6. At higher Reynolds numbers

the solution from lower Reynolds numbers are used as the initial condition.

6.1.1 Piston head full chamber diameter away from jets(H=D)

In the first set of runs, the bottom of the chamber{piston head) was positioned at
a full chamber diameter below the jets. A grid size of 51x23x21 is used. At a Reynolds
number of 100, the time integration with the steady state solution as the initial condition,
shows that a rather slow movement of the flow field exists. The lateral velocity at 4 jet

diameters above the jet impingement plane on the chamber centreline is monitored. The
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1. 0.1775D from bottom
2 . 0.6870D from bottom
3. 1.0000D from bottom
4. 1.4250D from bottom
Fig. 6.02 : Velocity vector plot horizontal

planes, Re=100
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result is plotted in Fig.6.01 for four different Reynolds numbers(100,200,300,400). Ata

Reynolds number of 100 the period is rather large and the magnitude of the oscillation
less than 1.e-3. At higher Reynolds numbers the period decreases and the magnitude of
oscillation increases. The results are expressed in Strouhal numbers and are plotted in
Fig. 6.05. The instantaneous flow pattern at the Reynolds number of 100 is shown in Fig.

6.03 to Fig.6.04.

Several observations can be made. The dimensionless pressure at the impingement
point reaches .32 which is close to the theoretical, maximum inviscid pressure of 0.5.
The vector plots on the horizontal planes show that the oscillation ts symmetrical with

respect to the center plane that corresponds to the vertical jet impingement plane.

6.1.2 Piston head half chamber diameter away from jets(H=.5D)

Initial results were obtained with a 51x23x21 grid. The time series of the lateral
velocity at the monitoring location were obtained and the results showed the same trend
as the previous case with H=D. A sinusoidal oscillation was obtained at each Reynolds
number. However, the flow ﬁeld oscillates at a higher frequency for the same Reynolds
number compared to the case of H=D. The results are expressed in the form of Strouhal
numbers and plotted in Fig. 6.05. Also included in Fig.6.05 is the data of Sandell et
al(1985). They obtained the measurements in a model for which d/D=0.2 and the jets

were directed back towards the piston face. The trend in the data is similar to that of
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calculations. The dimensionless oscillation frequency increases monotonically for
increasing Red but levels off beyond a critical value. Since the Strouhal number 1s not
a function of the Reynolds number(viscosity) above the critical value, the oscillation is
a phenomenon dominated by 1nviscid mechanisms{Panton, 1984] for large Reynolds

numbers.

6.1.2.1 Results at higher grid density

The results obtained using the 51x23x2! grid density were obtained before
detailed experimental results were available. A detailed flow visualization study and LDA
measurements|Wood et. al(1991)] show that there are multiple frequencies in the
velocities and the flow structure is more complicated than predicted by the 51x23x21 gnid
model at a jet Reynolds number of 125. The grid size was increased to 70x23x21 and
the steady-state solution at the Reynolds number of 125 is used as the tnitial condition.

More than 600 CPU hours on the Personal Iris workstation were used to do 4250 time
steps. In the beginning At of .05 was used and reduced to .02 once the initial transients
died out and a regular pattern emerged. The axial and lateral velocity components and
pressure at 4 jet diameters above the impingement point are monitored and the results
are shown in Fig.6.06 to Fig.6.12. The power spectra for these signal are determined using
the maximum entropy method given in Press et al.(1989). The alternate method, Fast
Fourier Transform(FFT) requires much more data to resolve the spectrum accurately. The

time series for the axial velocity(Fig.6.06) shows that the frequency pattern is rather
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analysis resolves three different frequencies: 0.04 , 0.1 and 0.14 cycles/unit time (Fig.
6.07). The lateral velocity shows that there are two dominant frequencies, 0.02 and 0.125
cycles/unit time(Fig. 6.09). The pressure spectrum(Fig. 6.11) shows a more complex
pattern. Four distinct peaks are visible and the peaks which occur at 0.02, 0.1, 0.124 and
0.14 cycles/unit time correspond to the frequencies in the velocity spectra . The
frequency of 0.04 for the axial component is due to the lateral oscillation of fluid which
generates an oscillation frequency of 0.02 for the lateral component. The idealized
illustration of this is given in Fig. 6.12. If the lateral velocity oscillates at a given

frequency f the axial velocity should contain a frequency of 2f.

A better understanding of the complex flow field can be gained by examining the
flow field at different time steps. The flow field at t=112.5 is shown in Fig. 6.13 to 6.15.
The velocity vector plots along the horizontal jet impingement plane is shown in Fig.
6.13 . The velocity vector plot along the vertical jet impingement plane is shown in Fig.
6.14 and the pressure contour plots along the vertical and horizontal jet impingement

plane are presented in Fig. 6.15.

The flow field at t=116.5 is shown in Fig. 6.16 to Fig. 6.18. Several observations
can be made. The symmetry plane which exists at a Reynolds number of 100 no longer
exists at Re=125. The oscillation is 2 complex three dimensional motion that involves

axial and lateral movement of the fluid.
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For the opposed jet flow field, the transition from the steady symmetric flow field
to oscillation occurs due to the creation of a sharp pressure peak at the point of
impingement. As the Reynolds number increases, the impingement pressure also
incre_ases and a slight perturbation of the flow field creates a sustained perturbation which

cannot be damped out by viscous force.

The grid refinement at the Reynolds number of 125 has a significant effect on the
quatlity of the time dependent solution. This indicates that with the lower grid density the
grid was not fine enough to capture the small sub-grid scale motions which exists at this
Reynolds number, and the phenomenon captured with the lower density grid does not
represent the actual physical phenomenon. This is clearly shown by the previous work
of Freitas et al(1985). They studied the flow in a three-dimensional cavity at the Reynolds
number of 3200 and with the hybrid-upwinding and lower grid density, the transient
numerical method failed to resolve the experimentally observed Taylor-Gortler-like
vortices. Only with grid-refinement and a higher-order upwinding scheme for convection,

were they able to capture Taylor-Gortler like vortices.

The model results at the higher grid density agrees with the experimentat results
quite well. Johnson(1990) used an L.D.A. to obtain the time series of the axial velocity
at the location 4-jet diameters above the jets. The time series is shown in Fig. 6.19 and
the corresponding spectrum is shown in Fig. 6.20. The experimental spectrum is similar

to the calculated spectrum shown in Fig. 6.07. A slow moving osillation with a Strouhal
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vertical jet impingement place, Re=125, t=116.5
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number of 0.0017 is present and two other frequencies with smaller amplitudes occur at
a Strouha! number of 0.0083 and 0.01. The Strouhal numbers obtained from the

simulated spectrum are 0.0045, 0.01 and 0.014 respectively.



7. Impingement Mixing

Since the main purpose of the opposed jet configuration in RIM is to mix pre-
polymers, it is important to quantify mixing. The description of mixing involves both the
fluid flow and the movement of interfaces as a function of space and time[Ottino(1989)].
The fluid velocity field can be obtained by solving the Navier-Stokes equations, and the

motion of the interfaces is given by the following relationship:

8%

=3 7.01

where u is the solution to the Navier-Stokes equations. The solutions to the above
equations seem to be simple once the fluid velocity field is knov:m. However, the theory
of dynamical systems indicates that the solution to Eq.7.01 may be complex. The work
of Henon{1966) and Dombre et. al (1986) have shown that in 3-dimensional steady state
flows, the particle paths may be chaotic if a hyperbolic point is present. They called this
phenomenon "Lagrangian turbulence”. In two-dimensional flows, chaotic particle paths
may occur with time-periodic flows[Aref(1984), Khakhar et al.(1986)]. A detailed
mathematical treatment of chaotic dynamical system is given in Guckenheimer and

Holmes(1983).
7.1 Opposed Jet Flow as a Dynamical System

Once the velocity field is known, results from dynamical system theory can be
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used to examine the nature of a system. Fixed points are defined as the points at which

the velocity vanishes. Three different types of fixed points exist:

hyperbolic point - one etgenvalue of the system greater than one, other eigenvalues
may be zero

elliptic point - the eigenvalues of the system are complex conjugates

parabolic point - the eigenvalues of the system are +1 or -1

In the oppsed jet flow field, the stagnation point is a fixed point since by
definition velocity vanishes. Other fixed points are located within the centers of the
recirculation zones. The nature of fixed points can be determined by linearizing about the
fixed points[Dombre et. al(1986)1. The linearized form of Eq.7.01 near the fixed

points(x.} can be written as

X 7.02

where X=x-x, Vu, » the velocity gradient matrnix at the location x, is evaluated
numerically using the velocity field information obtained from previous chapters and the
etgenvalues of the velocity gradient matrix are calculated. Ata Reynolds number of 50,
the calculations show that the impingement point is hyperbolic since all three eigenvalues
are real. The previous studies[Dombre et. al(1986), Aref(1984)] indicate that a region
of "Lagrangian turbulence” would exist if hyperbolic fixed points exist and the flow lines
connect hyperbolic pomnts. In the opposed jet flow field the stagnation point is a

hyberbolic point and the flow lines connect the hyperbolic point. These lines are called
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homoclinic orbits and an infinite number of orbits can exist{Dombre et al(1986)]. The
trajectories which are close together can separate exponentially in these orbits. The elliptic
points and the orbits near them hinder mixing. These orbits are known as
"KAM(Kolmogorov-Amold-Moser) curves" and are invariant curves formed by quasi-
periodic finite number of trajectories[Khakhar et al.(1986)]. Since particles always stay

within these orbits poor mixing results

The tracking of particle paths using Eq.7.01 is difficult in chaotic systems since
precision is lost at an exponential rate. Franjione and Ottino(1987) state that a numerical
study of mixing through the particle paths would be nearly impossible for chaotic systems

except simple two-dimensional cases.

7.2 Mixing as Stretching

Accrording to Ottino and co-workers, the essence of mixing lies in the ability of
the flow to siretch and redistribute material lines and surfaces. A is defined as the length

stretch and the specific rate of stretching is given by[Ottino et al,(1979)]

— =D mm 7.03

dx
Ted|

of the position vector. Since |mm|=1 - the Cauchy -Schwarz inequality provides,

D is the symmetric part of the velocity gradient tensor and p= is the orientation

D:mms |D||mm)= (D: D} 2/ 7.04
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The specific stretch rate depends on the orientation of the fluid element and is
difficult to evaluate for three-dimensional flows. One way to quantify the mixing
potential of a flow field is to determine (D:D)'”, which is related to dissipation. Where
(D:D)'"is higher, the flow field has a greater ability to stretch the fluid at a higher rate

than when (D:D)'* is low.

The (D:D)** field is determined numerically by evaluating the velocity gradient
tensor using central differencing . The chain rule 1s used to determine the dernivatives in
generalized coordinates. The results are given in Fig. 7.01 for a Reynolds number 50
case with H/D=.5 , and Figs. 7.02 to Fig.7.05 for the Reynolds number of 125. Fig. 7.02
to 7 .04 are instantaneous plots of the (D:D)'” field at the time steps 112.5, 116.5 and
125.2 . Fig. 7.05 is the average (D:D)'* field for 600 time steps with the time step size
of 0.05. The (D:D)'* field obtains the highest value at the impingement point; therefore
the stretch rate is at its maximum at the impingement point. The results confirm that a

hyperbolic point promotes mixing.

7.3 Approximation of Length Scales

When the jet streams mix in the mixing chamber the combination of stretching and
periodic oscillations produce a mixture which contains length scales much finer than the
unmixed pre-polymers. Several attempts were made to determine the length

scales(striation thicknesses) of the mixture. Lee et a!.(1980) used a two dimensional
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Fig.7.01:  (p.p)1/2 Contour plots for Re=30
a-horizontal jet impingement plane

b-vertical jet impingement plane
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Fig.7.02: (p,p)/2 Contour plots for Re=125, =112.5
a-horizontal jet impingement plane

b-vertical jet impingement plane



181

30
28.4211
26.8421
25.2632
23.6842
22,1053
20.5263
18.9474
17.3684
15.7895
14.2105
12,6316
11.0526
9.47368
7.89474
6.31579
4.73684
3.15789
1.57895
0

Fig.7.03: (p.p)1/? Contour plots for Re=125, =116.5
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Fig.7.04: (D: D) /2 Contour plots for Re=125, t=123.2
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stretching flow assumption to derive the following relationship for the mean striation

thickness;

=1 2(1+1/1,) d5]1/2 1 7.05
np3 Rel/?

*

where S; is the striation thickness, d and D are the diameters of the feed nozzle and the
mixing head respectively, n is the size of mixing zone in terms of the mixing head
diameters, r, is the ratio of the volumetric flow rates of the two streams and Re is the

mixing nozzle Reynolds number.

In another formulation of striation thickness, Lee et al.(1980) used the Kolmogorov

isotropic turbulence assumption first proposed by Tucker and Suh(1980) to obtain

ndnp3 1/4 1 7.06
1+1/r, Re3/4

Sf=(

The experimental data of Kolodziej et al(1982) showed that a distribution of
thicknesses exist and Baldyga and Bourne(1983) used the statistical theory of turbulence
to derive a formulation for the distribution of striation thickness which matched the data
of Kolodziej et al(1982) closely. The difficulty in applying the Baldyga and Bourne(1983)
formulation is that the residence time distribution function is required. The residence time
distribution for the RIM mixing head is not known and the assumption of perfect macro
mixing used by Baldyga and Bourne(1983) is questionable since the RIM mixing head

is a distnbuted parameter continuous flow system.
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In this work a dimensional argument ts used to determine the range of length

scales which exist in the mixing chamber. Dissipation, €, is defined as

e€=2uD: D 1.07

Dissipation can be related to the local velocity, U and length scale, | as follows

e~v{U/8)?2 7.08

where vy is the kinematic viscosity. The kinematic viscosity can also be related to the

local velocity and length scales

v~Ud 7.09

The approximate length scale relationship can be obtained by combining Eq.7.08

and 7.09,

6=(v3/e)1/4 7.10

Dissipation can be easily calculated since D:D field is known. The result for the Reynolds
number 125 is given in Fig. 7.06 using the time average value of dissipation for 600 time

steps.

The actual length scales(d) are normalized with respect to the chamber
diameter(D). If an actual chamber diameter is 1 cm, Fig. 7.06 indicates that the smallest

length scale is about 30 um and the largest is about 300 um. Small length scales occur
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Fig.7.06: Dimensionless length scales(8/D) in Impingement Mixer
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in the region near the impingement point where dissipation is large. The model of Lee
et al(1980) which assumes two dimensional stretching gives the average striation thickness
of 4 um for the Reynolds number of 125 with the assumption that mixing occurs within
2 chamber diameters. The other model of Lee et al(1980) which assumes isotropic
turbulence gives the average striation thickness of 150 pum for the same Reynolds
number and mixing zone length. The stretching model of Lee et al gives a result much
stnaller than other model indicating that the assumption of 2-dimensional stretching flow
for the mixing head is not a realistic assumption. The Baldyga and Bourne(1983) model
gives the equation of dimensionless thickness as a funtion of the dimensionless time, 6.
For the mixing chamber with the inlet jet diameter to the chamber diamter ratio of 1 to
10, the equation for the dimensionless thickness with the assumption that mixing occurs

within 2 chamber diameters is

%=o.76(1+214oo.392)-°-25 711

d is the inlet jet diameter. The residence time distribution is required to determine the
distribution of the striation thicknesses. Since an experimental residence time distribution

is not available , a perfect macroscopic mixing of fluid is assumed. The resulting

distribution curve is given in Fig.7.07. The thicknesses range from 25 pm to 350 pm.
7.4 Recommendations

The results of this section suggest a way to improve mixing. In the current RIM
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mixhead design two jet streams are impinged head-on, creating only one hyperbolic
point(Fig. 7.08a) . The previous studies have shown that a distribution of striation
thickness exists and mixing is not uniform. With the aid of dynamcal theory, the reasons
for inadequate mixing in RIM mixhead can be explained. The contour plots show that
mixing is confined only to a region surrounding the hyperbolic points and the existence
of elliptic points hinders mixing, A flow field with multiple hyperbolic points would be
more effective in mixing the pre-polymers. A RIM mixhead design with four jet streams
can be conceived(Fig. 7.08b). Three hyperbolic points would exit and the ability to mix
would be improved significantly. A computer simulation of this flow field should be

carried out and (D:D)'? should be calculated.
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8. Conclusions

In this thesis the flow field created by two cylindrical lamminar jets impinging head-
on near the closed end of a cylidrical mixing chamber is studied numerically. This thesis
is divided into two major parts. The first part is devoted to the development and testing
of a numerical method powerful enough to solve the jet-to-jet impingement problem. In
the second part, the method developed is used to study the steady state and unsteady state
fluid flow in the mixing head and mixing and length-scales in the mixing head are also

examined.

The numerical method developed consists of the discretization of the Navier-Stokes
equation in generalized non-orthogonal curviliear coordinates using the finitc-volume
method. A stable method for discretizing the higher-order upwinding methods for the
convection terms is developed. The method is tested using several two dimensional and
three dimensional convection dominated flow fields with known experimental data and
the numerical results agree with the experimental data closely indicating that the method

is accurate.

The steady-state jet-to-jet impingement has been simulated and the quantitave and
qualitative aspects of the flow field explored. Two recirculation zones form above and
below the jets and the strength of the recirculation zones depend on the jet Reynolds

number. The highest pressure occurs at the impingement point and the pressure at the
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impingement point increases as the Reynolds number increases. The centerline axial
velocity at a Reynolds number of 50 is compared with the LDA data and the two results

match closely.

The unsteady state jet-to-jet impingement is explored using the time-integration.
The results obtained with the grid density of 51x23x21 showed sinusoidal oscillation for
the Reynolds number range of 100 to 400. A detailed study at a Reynolds number of 125
using higher grid density of 70x23x21 showed-that the fluid motion is much more
complicated with multiple frequencies present. The experimental LDA data confirms the
results at the higher grid density. The discrepancy between the results at two different grid
denstties is due to the fact that at the lower grid density, the scale motion that is smaller

than the grid size is not captured by the numerical method.

The mixing in the jet-to-jet flow field is examined using the dynamical system
theory and evaluating the (D:D)'* field. The dynamical system theory indicates that the
impingement point is a hyperbolic point and may promote mixing by creating chaotic
particle paths. The (D:D)" field show that the highest value occurs at the impingement
point indicating that the ability to stretch the fluid element is highest at the impingement
point. Length scales are determined using a dimensional argument. A range of length
scale from 30 pm to 300 pm exists in a mixing head of 1 cm diameter and the jet
Reynolds number of 125 and agrees closely with other correlations reported in the

literature.  Since hyperbolic pomts promote mixing, a mixing head with multiple
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impingement points is proposed as an alternate design.
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