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ABSTRACT

"

..

The infrared multiph.oton diss.ociation (IRNPD) of

~neat~ hexaflhoroethane has been investigated for the first,

time. The stable products of photolysis are CF 4 , C2F 4 ,

C3Fa and C4FjO ' Product analysis involved tunable

diode laser (TD~) and fo~ri~r transfor~ infrared spectro

scopy, as well as gas chromatography where applicable. '-The
•

high sensitivity and resolution of the TDL allows for the--
measurement of the stable products _CF.; and C2 F-4 after

irradiation by a single infrared laser pulse.

A high frequency modulation TDL technique has been

developed t~.nonitor the transient infrared ab~orptions

produced by the IRMPD of various fluorocarbons. The tech
"

nique was applied tq the det~ction of, CF 2 and CF3 radicals

produced by the IRMPD of known precursors. In thecas~ of

hexafluoroethane the TDL modulation technique was used to

confi~m that the primary dissociation pathway involves c-c

bond

~
/

CF 4

,scl.ssion.

The role :of added H." leading\ to 'elimination of, .'

and increase of C2 F4 as products, is ~larified~~

}.

Evidenc~'for~a second disso~i~tion pathway producing C~F5

." • I •

~and a F atom is also present~·. The understanding of the
....

overall che~i~al~m~chanisrnof IR~PD of C2 F6 and reactio~.
of the internediates formed has been considerably extended.

I
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