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- ABSTRACT
kY .
3
This thesis offers a unified and integrated treatment of

three essential aspects of computer-aided circuit design: effective

~

use of the state-of-the-art optimization tools, efficient calcula-

tion .0of exact and approximate gradients, and adequate mathematical

representation of the eJ%ineering problems. .

* .

The recent advanees ig’gradignt-based 2, optimization are

~reviewed. The essence of the trust region Gapss-Newton method and

the quasi-Newton solution to optimality equations is described. A
new algorithm for linearly constrained one-sided £, optimization is
presented.
& -
Efficient approaches to network sensitivity analysis gre

addressed. ” Useful formulas are derived for general multi-ports,

especially two-pbrts. _Novel proofs of an important result for
lossless two-ports are given. £ ’ )

The basic formulations of nominal circuit optimization are

introduced through a hierarchy of simulation models. Variables,

error functions and £, objectives are idemTified. Optimization of
~

multi-cbupled cavity filters is described and .illustrated by exanm-
4 ’ "
ples of elliptic, self-equalized and asymmetric designs. Large-

scale optimization of multiplexers is also discussed.

.

Realistic consideration of tolerances and uncertainties is

3 -
Yl

of prominent interest to circuit, especially integrated circu

»

designers. A multi-circuit approach to design centering, toleran-

iii



-
>

-

c;ng, tuning ppd'yield enhancement is presented. Techniques for

statistical design are reviewed. A generalized £ centefing algo-

) . . — . -
rithm is developed. ‘ .

~

A novel approach’ to device modeling which utilizes multiple

circuits andrexﬁloics the theoretical prqﬁerties of the £, nomm is

. described. It emphasizes the uniqueness and consistency of an

equivalent circuit model. Practical applicatjons are formulated

and illustrated through industrial examp1e§.'

N 4

A new algorithm for optimization with integrated gradient
approxjmations is offered. Implemeﬁcations for the minimax and 2,
problems are shown, The efficiency and usefulness are demonstrated

by a large variety of examples.

iv . Q
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. CHAPTER 1

INTRODUCTION

The continuing effort to formulate and solve increasingly

complex engineering problems through the state-of-the-art mathemat-

ical optimization represents one of the driving forces of advanced
study in computer-aided design (CAD). The astonishing progress in
computer hardware, leading to drastic reduction in the cost of mass
computation and the widespread use of personal_;omputers, has given
further impetus to the development of efficient CAD techniques.

In electrical engineering, one of the eafliest applications
of CAD techniques is in the area of filrer design. Methods that
were popular at the time have been summarized in the classié paper
by Temes and Calahan (1967;, 'Si;ce then, advances have been made
in many directioms. Optimization techniques have evolved from
simple and low-dimension-orienﬁgd methéds into sophisticated and
powerful toolsisgfging practiciﬂg engineers. Efficient approaches

have been developed for large-scale network simulation and sensici-

vity calculations.

A ) -
In recent years, there has been a continuing trend toward

dealing more explicitly with process imprecision, manufacturing

tolerances, model uncertainties, measurement errors, and so on.

-

Such realistic considerations arise from design problems in which a.

large volume of production is envisaged, e.g., integrated circuits.

They also arise from modeling problems in which consiscéhg\zfsu;ts

2t

1



are expected despite measurement limitations, model approximations

-

and simplifications.
This thesis offers a unified.and integrated treatment of
three essential aspects of circuit CAD: effective usg\zisj:j“scace-

of-the-art optimization tools, efficient calculation o act and

approximate gradients, and adequjte mathematical representation of
engineering design and modeling problems. Emphas;s is~gi§en to
recent, but wéll-testéd. advances in gra&ienc-based minimax, £, and
2, optimE:;ZEBQ;//?B provide the required gradients, elegané and:
efficient approaches.CO n;twork sensitivity analysis are qkséribed.
Since the difficulties in exXact sensitivity calculation.ﬁor some

applications have contributed a sizable gap between the:advanced

- ~

optimization theories and their actual implementation, we also

,

develop an efficient and integrated algorithm for gradient approxi- =

mations. A hierarchical representation is identified for the nomi-
nal circuit which is then exkended to including tolerances and
model uncertainties, resulting in a consistent f§xmulqtion of the
Ep circuit optimization. A multi-circuit app;oach is presented
which unifies the concepts of realistic’circuit design and robust
device modeling.

The methods described for desigﬁ' modeling and gradient
approxim®rions are applied to relevant practical examples such as
multi-coupled cavity filters, waveguide manifold multiplexers and
FET devices. Not only serving to illustrate the theory, these

' .

examples are also of current significance to researchers and engi-

neers, especially in the field of satellite communications.

+F

-



Chapter 2 is concerned with the recent ,tl;eo;eciczil and
algorithmic advances iﬂ the 2, optimization. 'The definitions and .
properties of t’:ixe £, norms, one-sided and generalized .Eplfunct.:ions
are reviewed. i"ollowing‘ the essence of the Hald and Madsen (1981,
1985) algorithms for minimax and 21; we describe the trust region
Gauss-Newton xl;ethod. which solves a sequence of semi-linearized 2,
problems, and the quasi-Newton method which is applied to solving
the optimality equations. Ve ghen.presenc a new algorithm for
linearly constrained one-sided 21:; optimization which is ver;r useful
in circuit fle_si'gn and centering. Based on' the same principle as
the Hald and Madser; appréach.. our algorithmig.'a 2-stage combined
method. Linear programm'ing techniques are utilized' to find a
trust region solution to a linearized subproblem. The optimality
equations for the one-sided 2, f:roblem are also derived to which a
quasi-Newton iteration is appiied.

Chap‘cer..' 3 deals-with.efficient and systematic calculation
of network sensitivities. A simplified algebraic approach to
linear network sensic;vicy analysis is ‘reviewed. Useful formulas
are derived for unterminated and terminated general multi-ports.
The results are specialized to two-ports which are widely used to

represent filters and subnetworks. Elegant and original proofs

are showt‘m for an important formula for lossless reciprocal two-

porets. Sensitivity expressions for some commonly used £frequency
-
responses are also given. I
Chapter 4 is devoted to nominal circuit optimization. A

hierarchy of simulation models is introduced, and the parameters
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and responses associated with these models are identified. Error
functions. and an 2, objective are formulated from the model res-
ponses and the p;rformgnce specifications. The nominal minimax
optimization of multi-coupled cavity filters, whose large variecty
and complexity have made them prime candidates for CADf is des;ri-
bed .in detail. Three examples of ﬁfaccica}.inCerest, 1ncluding
elliptic, self-equalized and asymmetric filters, are presented.
Large-scale circuit optimization is demoqstrated by a lé-channel

multiplexer design.

p—

Chaé:er 5 considers realistic circuit design. Tolerances.

and uncertainties associated with the models ‘of different levels

are exposed. Multiple circuits are defined to relate these uncer-

tainties to.a nominal point. The concepts of design centering,

tolerancing and tuning, with the aim of improving the yield and

reducing the production cost, are discﬁssed. Techniques for stat-
istical design are reviewed and several representative mechods are
shownn in some detail. A generalized £  centering algorithm is
proposed which offers a natural extension to nominal Ep optimiza-
tion-and a umified approach to yield enhancement.

In Chapter &, we examine the motivation, theoretical foun-
dation ana pra&tical applications of a novel approach to device

modeling. Attempting to overcome the adverse effects of wvarious

uncertainties to modeling, the new approach utilizes the concept of

simultaneous processing of multiple circuits and exploits the theo-

&

retical properties of the £, optimization. Unlike the traditional

® approach, it emphasizes the uniqueness and consistency of the res-.
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ults of modeling. Applications to parameter identification and
"

model verification are illustrated by industrial examples.
Chapter 7 addresses itself to the subject of optimitation

£

with %ftegrated gradient approximations. An' algorithm combining
pgrtur;;tions, the Broyden update (Broyden 1965) and the specialﬁ
iEeratioqs.(PowelL—&970) is described. A weighted formula which
may improve the performance of the Broyden update is developed.
FIhtegration of the gradient approximations with an optimization .
routine is discussed and illustrated through the minimax and 2,
impleme?tations. The effectiveness and gfficiency of the'proposcd

approach are demonstrated by abundant examples.

We conclude in Chapter 8 with some suggestions for furcher

<
research. J

The author contributed substantially co the following ori-

ginal developments presented in this thesis:

-~

(1) A new algorithm for the linearly constrained one-sided jx
optimization. - -

{2) New proofs of a sensitivicy formula.for reciprocal lessless
two-portcs.

(3 An efficient approach to the"simulation, 'sensitivity analy-

sis and optimization of multi-coupled cavity filters.
: (
(4) A generalized 2  centering algorichm for statistical design
centering and yield enhancemenc.
{5) Theoretical results of a novel approach to device modeling

-
which utilizes multiple circuigs and its application to FET
-

modeling,



(6)

(N

A general approach to gradieut approximations and the wuse
of a weighted update. Y
Integration of the gradient approximation method with the

minimax and £, algorithms and its practicalv applicatiomns.



CHAPTER 2

ADVANCES IN GRADIENT~BASED OPTIMIZATION

2.1 INTRODUCTICN

In the last two decades, the advances in the theoretical

- -

and algorithmic aspects of optimization techniques have been truly
astonishing. Nonlincar optimization.has become not only a subject
for. academic research, but alse a powérful tool serving practicing
engineers. Modern state-of-the-art methods have largely replaced
éhe‘ priﬁitive‘ trial-and-error approach. Especialiy. gradient-
based optimi:agion methods have gained increasing pbpularicy “in
recent years, since they demonstrate in general a far superior
berformaqce to q;rect {non-gradient) mechods.

Traditionally, the minimization of a least squares measure
has been favored for its relative sigplicity and differentiabilicy.
How%?ér, incxeasingl& complex and diversified engineering applica-
tions have demanded more -sophisticated techniques, e.g., cthe use of
minimax and 2, nﬁrms.and multiple objectives (multiple crizeria).

This chapter concerns itself with the recent advances in 2,
(least pth) optimization. The earliesc cir?uit applications of the
least pth approximation were -addressed by Témes and Zai (196%9).
Later, Bandler and Charalambous (1972) have developed the theory of
generalized-ﬂp optimization. Recepély. the approach due to Hald
and Madsen (1981, 1985, also Madsen 1985) has proved highly succes-

sful in solving minimax and 2, problems,




8y

We begin this chapter with the formulation of a least pth

measure H(f) which may be an 2; norm, a one-sided £p function of a

~generalized '2; function. In circuit optimization, £ typically

represents a set of discretized ;rror functions with respect to the

;pecified (in design) or measured (in modeling) circuit responses.

In this chapter we concentrate‘on the methods of minimizing H(f),
leaving the construction of f to subsequent chapters.

Following the essence of the Hald and Madsen approach, we
describe the trust region Gauss-Newton method and the quasi-Newton
me thod aéplied to solving optimality equations. We establish the
nonlineaf programming equivalent to 2, optimization which leads to
the solutions of linear minimax, £, and 2, problems by line#r or

quadratic programming. In the Gauss-Newton method, a sequencé of
semi-li;earized 2, problems.are defined and a trust region solution
is found for each problem.: This has been shown (Madsen 198S) to
provide global convergence.éf the algorithm. From the Xuhn-Tucker
(1951) conditions for nonlinear programming we can derive a set of
optimaliey equations for an 2, problem and solve these équations by
a quasi-Newton method. Hald and Madsen (1981, l985j have combined
the Gauss-New;on and quasi-Newton methods into reliable and power-
ful algorithms for minimax and £, optimization.

We then présent a mnew algorithm for lineg;ly constrained
one-sided 2, optimization based on the Hald and Madsen approach.
Iz is a é-stage algorithm»combining a trust region Gauss-Newton

method and a quasi-Newzon iteratiom.

Finally, a unified Fortran library for minimax: £,, £, and



-

'
one-sided 2, optimization is described.-
2.2 FORMULATIONS OF 29 OPTIMIZATION ’
2.2.1 £p Norms, One-Sided and Generalized 2p Functions e
Given a set of nonlinear functiqns
£(x) = [£,(x) £,(x) ... £(0]7," ‘ (2.1)

where the superscript T stands for vector or matrix':rénspo§ition. ¥

-

. and

x =[x %X, ... x,]T E C(2.2)
is the set of wvariables, the Ep norm of £ is defined as (Temes and

Zai 19%?)
m
e, = 1 lefjlpll-“rr o C2.3)
j.—

Least squares (£,) is perhaps the most widely used norm,

A

which is given by
‘ m
D€, = 1 Z t£,121%. L (2.4)
' j=1 . -

In practice, we often use [f|3 as an objective function
which is differentiable and its- gradient can be easily obtaincgt
from the partial de:iQatives of f. Furthermore, it is a quadratic
function if £ is linear in x. Parcly due to these pr;perties, a
large variety of 2, optimization techniques have been developed and:
popularly impleménted in CAD software (e.g., TOUCHSTONE 1985 and
SUPER-COMPACT 1986). _ J

The parameter p has an important implication. By choosing

a large (small) wvalue for p, we in effect place more emphasis on

-~ - . \
p __
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those error functions (£,’s) that have larger (smaller) values.

Letting p = =, we have the minimax norm .

£la - max 1£, ' (2.:5)

. j e . . :
which directs all the attention to the worst tase and the other
errors are in effect ignored. . The minimax norm is suitable if we

wish to minimize f in an optimal equal-ripple mamnmer (the worst

£,’s beiﬁg equal Iin magnitude).-for.eiample. in filcter design.

On the other hand, the use of the-l, norm, as defined by

m g .
e, = Z1£0. - (2.6)
3=t :

implies attaching more importance to the error functions that are
closer to zero. This property is often exploi:ed in data-fitting -
problems (e.g;l Barcels‘and Conn 1981). The application of the £,
norn to medeling will be egposedfin Chapter 6.

Notice that neither [£l. nor [f], is differentiable in the
ordinary sense. Therefore, their minimization requires algorithms
that are much more sophisticated than these in the £, case.

With theizp norm, we-~are minimizing the error functions
towards*a zero value. Suppose that our true intention is to have
£, s 0,‘then a negative value of f, simply indicates that the goal
is exceeded and is, in a sense, better than having fJ = 0. This

fact leads te the use of the one-sided £, function defined by

C(E) = [ X |E PP . (2.7)
Cjer _

where J = (3 1 £, = 0). Actually, if we define £] - max(£,, 0},

then HJ (f) - ”f*”p.

-
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and Charalambous (1972) have proposed the use of a

generalize function defined by

‘ HS(£) if the set J is not empty
v B (E) - | : - (2.8)
H,(£) otherwise -

where

m ) .
Hy () - -[jZl(-fJ)'P]‘”P.q" | (2.9)

L -
In other words, when at least omne fd‘is nounegative we use H;, and

H is défined if all che error functions have become negative.
Compared to the one-sided fﬁnctibn, the generalized 2
' function has an advantage in that it is meaningfully defined for
the case where all rthe £, are negétive, thus permicting furcher’
miniﬁizacibn of the objecéive funccion. ‘
A classical example with extensive circuit applications is
the generalized minimax funétion

H,(£) = max {fJ} , (2.10)
3

which can be found in, for Instance, the design of Chebyshev type

bandpass filters.

2.2.2 Nonlinear Programming Equivalent Problems
3 :

2,, 2, and £, are by far the most useful members of the i,

family. Apart from their distinctive theoretical properties, it is
very important from the algorithmic point of view zhat the exact
sclutions to linear 2, 2, and !, problems can be found by linear
or quadratic programming. Besides, the other members of :hclip

family have a contindbusly differentiable objective function and,



therefore, can be treated similarly to the 2, case.

In this section, we define nonlinear programs which are

equivalent to 21,\12 and £, problems. The equivalent formulations

often clarify the concepts of local linearization aﬂd'optimality

conditions.

For instance, the minimization of [|f], is equivalent to

-~ m N

minimize } y,
x.y j=-1 ./ .
- (2.11)
subject to
vy 2 £,0. y, 2-f,(0, j=1,-2...., n. .
The one-sided £, problem can be treated as
m
minimize J y,
X,y j-1
{2.12)
subject to
¥y, = £, (x), y, =0, §=-1,2,..., m.

These results, as well as those for the minimax and least
Squares, are summarized in Table 2.1. For the convenience of pre-

sentation, we denote these nonlinear programs by P(x,f).

2.2.3 Llinear £, Optimization

A linear £, problem implies that the set of error funttions
f is linear in the variables x. As an important consequence, the
equivalent problem P(x,f) becomes a linear or quadratic program
whose exact solution can be found using standard techniques (e.g.,

)
the simplex method.for linear programming due to Dantzig 19S51).



TABLE 2.1
NONLINEAR PROGRAMMING EQUIVALENT FORMULATIONS

FOR 2,, 2, AND £_ OPTIMIZATION
”

Original problem; minimize H(F)

x .
L] ‘ .
Equivalent problem: minimize V(x,y) subject to the constraints
x,¥
\‘
H(E) Vix.y) constraints (for j = 1. 2,..., m)
i
. m . !
"f|]1 z ¥ vz £, ¥, = -
i=1 -
1£1. ¥y ' s = £
I £ y y= i, y=z-f
L m .
H{(E) v, v,z £, y, 20
j=1 -
HI () ¥y yyz £, y, 20
HL(£) y yzf, y=0

H(£) y vz f
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For instance, Eonsider a linear !, problem. Let the set of
linear functions be

£, =elx+d,, j=1,2;..., m, R (2.13)

-

where ¢, and d, are constants. Then the solution to the following

iinear program
/

m
- minimize J ¥,
' X,y j=1

subject to
€2.14)

is the minimizer of [£],.
An equally important fact is that linear comstraints can be
easily incorporated into the solution of a linear 2, problem. Let

P(x,f.D) be the problem of P(x,f) subject to a set of linear cons-

-~
traints of the form
aEx +b, =0, k=1, 2,..., L‘q.
D: . (2.15)-
‘ a{x + b, =0, k- L?q+l, ..., L,

where a, and b, are constants. Ié P(x,f) is a linear or quadratic
program, so is P(x,f,D). In other words, linearly constrained
linear £,, 2, and {, problems can also be solved using standard

linear or quadratic programming techniques.

2.3 TRUST REGION GAUSS-NEWION METHOD
2.3.1 Semi-Linearization of a Nonlinear £, Fugection
For a general problem P(x,f), if we substitute f with a set

of linearized functions %. then P(x.i) becomes a linear Ep problem



15

-~

which can be solved using standard techniques. In a Gauss-Newton
\

method, we define and solve a sequence of such linear subproblems.

I3

¢

At each iteration, given X, 2 set of iinqg:izad functions
is defined as —

E(h) - £(x,) + G(x)h, ‘ - (2.16)
‘where G is the Jacobian'given by -

G(x) - [3£F/3x]T. * C @an

We then solve the linear subproblem'P(h,Ej“using linear or
quadratic programming; From a slightly different viewpoint, we may
call this a semi-linearizdcion (Madsen 1985) of the nonlinear obje-
ctive function U(x) = H(f) resulting in o

U(h) = H(ECR)). . (2.18)

It should be noted that (2.18) ‘is quite different from a
nbrmal linearigation as U(h) = U(x, ) + [U'(xk)]rh wgich corresponds
to a steepest descénc wethod. In fact the gradient U’ may not even

exist,

2.3.2 Trust Regions

-

In general, the set of linearized functions f as given by
(2.16) s wvalid only as a local model and, therefore, its use
should be restricted to within a neighbourhood of x  in which £ is
believed to be a 'good approximation to £. Such a neighbourhood is
called, appropriately, a trust region and typically defined by
A 2 hJ, 1i=1,2,..., n,
D: (2.19)
Az —h:, i=-1,2,..., n.

At each iteration, we incorporate a trust region and solve
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. ?
a Ii)early constrained linear £, subproblem P(h,£,D) - Denote its

solution by h, . If x +h, reduces the original nonlinear objective
function we take .it as the next iterate, i.e., N U(x +h, ) < U(x,)
then x ., ~ x +h , otherwise we let X 4+; = X . In the latter case,

: - -~
the trust region is apparently too large and, consequently, should

_ ‘% reduced. )

Hald and Madsen (1981, 1985) suggested that the locul beund
A, be adjusted according to the goodness of the linearized model.
More precisely, if _

Uk ) = Ulxe+hy) % 6, [U(x) - O(h )], (2.20)
then the trust region appeans to be too large and the bound is dec-
reased: A, ., = KA, . OtherVise] if _

U(x,;) ~ Ux +h) = §,[U(x) - U )], (2.21)
then the bound is increased: Aoy = KA, . I neither (2.20) nor
(2.21) holds then Ayy: = A, . The constants 16y, 65, ¥,. K ) should
satisfy 0 < §, < §;,<land 0 <K, <1< £, .

Madsen (1985) has shown that the trust region Gauss-Newton
method provides global convergence in which the pro;er use of trusc
reg;‘.ons constitutes a critical pare. In some other earlier work b.j.r
Osborne and Watson (1969, 1971) the problem P(h.%j;;;s solved with-
out incorporating a trust region and the solutioa h, was then used

as the direction for a line search. For ir algorithms no con-
g

vergence can be guaranteed and {X, ) may even converge to a non-

stationary peint.

The trust region methods in @ broader context have _been

- ) 5"

surveyed recently by Moré (1982). -

.‘6 :
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2.3.5 The Levenbérg-narqugrdt Method

Normally for the least squares problem we have to solve a
quadratic program at each iteration, which can be a time-consuming
process. A remagkable alternative 1s the method due to Levenberg
© (1944) and Marquardt (1963). Given x,, it defines

minimize h' (GG + 4, 1)h + 2£TGh + £T7£ , : (2.22)
" h

’ wher;’c - G(:i); £f - f(x) and 1l is an identity matrix. The mini-
mizer h, is obtainedssimply by solving a linear system |

(GTG + 4, 1)h, = G'f (2.23)
using, for“example. LU factorization.

The Levenberg-Marquardt parameter Bk-is very critical for

this method. First of all, it is chosen to guarantee the positive.

\
definiteness of (2.23). Furthermore, it plays, roughly speaking,

an inverse role of A, to control the size of a trust region. When
fy = =, by gives an infinitesimal steepest descent step. When f, =
0, h, becomes the solution to P(h,¥) without bounds, which is equi-
valent to having A, — = Hence, the rules for updating 8, should

be ‘opposite to those for A .4

2.4 QUASI-NEWTON METHOD APPLIED TO AN 2p P%PBLEM
Quasi-Newton methods (variable metric methods) emerged from
Fhenoriginal work of Davidort (1959). Fletcher and Powell (1963), as

well as Broyvden (1965, 1967).

For a differentiable objective funclion U, a quasi-Newton

.step is given by

h, = - B U (x), (2.24)

.

o



¥
where B, 1s an approximation to the Hessian of U(x) and the step

size controlliﬂg parameter a, is to be determined through a line

—

search. However, for the £, and the minimax objective functioms,

the gradient U’ may not exist, much less the Hessian,

2.4.1 Solution of the Optimality Equations

fhe optimality conditions for an L, probleﬁ provide more
inéight to the general case. Applying the Kuhn-Tucker conditions
(Kuhn and Tucker 1951) to the nonlinear programming problem P(x,f)- -
we shall find é set of opcimali&y equations

R(x) =0 (2.25)
which must be satisfied by a local optimum x". Naturally, we are
motivated to solve (2.25), as a means of finding the minimizer 4&f
U{x). A quasi-Newton step for solving’ nonlinear equatioms (2.25)
is given l;y

b, - - a Ji! R(x), o . (ElEG)
where J, 1is. an approximate Jacobian of R(x). Only when U(x) is
differentiable will the optimality equatidns be R(x) = U (.:° -0
and (2.26) reverts to the more familiar formula (2.24).

Consider the £, case as an example. The optimality equa-

tions can be shown as (Charalamboﬁs 1979) -

L uy £ (x) + T8 £(x)
jez jez IS .
R(x,g) - - -0, (2.27)
£ (x) ~
where Z is an index set, as 2Z(x™) = (j | fj(xf) = 0}, identifying

the zero functions at the optimum. The vector f.(x) consists of

the functions in the set Z and the mulcipliers satisfy |6, = 1,
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jez, By = sign{f}(xf)f}‘jez. A quasi-Newton step is obtained by

solving the lineaf system

1

Jy - -R(%.8), (2.28)
L

where J, is an approximace'Jacobian of (2.27) which consists of a

mixture of the first dFrivacives f, and approximations to the

Hessians

jgzpdf;'(x) + j*gzssfg'(x) T (2.29)

(Bandler, Kel}ermann and Maqsen i987). It is important to notice
that in order to define the correct set of optimalicy equétions,'we
must first identify the set of zero functions at the optimum. In
practice, we typically use the current set of zero functions to
cbnsﬁruct and solve the optimalicy equations,‘known as the active
set method. For this methed to succéed. we must be sufficiently
close to the solution. A similar concept applie§ to the ﬁinimax
case in‘which the acti;e set is defined by cthe ;orst error func-

-

tions (Hald and Madsen 1981).

]

. This example reveals that the application of quasi®Newton™

method can be quite involved when the ordinary gradient U’ does not

-

~exist. The theory of generalized gradient, (Clarke 1975) addresses

the opctimality for a broad range of non-differenciable problems.

2.4.2 Updates of a Hessian '

Quasi-Newton methods, whecther in (2.24) or (2.26), all re

quire update of certain approximate Hessians. Among the formulas

-
N

that have been proposed over the years, the most well-known are the

¥
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-~ ‘ '
Powell Symmetric Broyden (PSB) update\;;::éi% 1970b), the Davidon-
Fleﬁcher-Powell (ﬁF?)' update (Davidon 1959, Fletcher and Powell
1963) and the Broyden-Fletcher-Goldfarb-Shanno (BFdé) update
(Broyden 1969, Fletcher 1970, 'Goldfa;rb 1970, Shanno 1970). They

are given by, respectively,

PSB ws® + ;:: w s sst

Byer = + - '
1 Bk sTsg . (STS)Z'

N T .
Bk+1 - "&'. + y:s . (yIS)Z ' (2. )
BFGS - yy: B, 55" B, .

«1 — B+ . - ' -

¥'s s'B, s

where s, - x ., - x, y'; U (x,,) - U’ (x,) (if B is to approximate
the Hessian of U) or y = £ (x,;) - £(x) (if B is to approximate
fj:), and w = y - B s. A thorough tr;a:meﬂt of the cheory under-
lyiﬁg_these updates has been given Zy Dennis and Moré (1977). Aas
they have poincéd out, nqmerical evidence seems o suppgré.the BFGS

update as the best formula for use in minimization. The interes-

ting expression

BFGS

8 A
o qu-l -0 Bg-o-; + (l - ) Bk . {2.31)

describes the Broyden family (Broyden 1967, Fletcher 1970). Dixon

. /
(1972) has proved theoretically that when an exact line search is/

/

used all members of the Brovden family would have the same perfor-

. - - !
mance. In practice, the merics of a great many wvariations aie
often compared in terms of their preservation of posxcxve defznltek“

ness, convergence to the true Hessian and numerical performance

Sometimes it is more efficient to.update the inverse of an

/

e
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approximate Hessian using fofmulas similar to those iph (2.30),

2.5 COMBINED METHODS

. L r o
The Gauss-Newton and quasi-Newton methpds each fias its own

advantage. The Efust Tegion Gauss;Newtén method is globally con-
vergent. Bur, like other first-order methodé. it suffers from a
very slow rate of convergence when flose to a singular solution
(Madsen 1985). é&\the other hand, the quasi-Newton method enjhys a
fast rate of convergence near a solution but is not always reliable
from a bad starting point, These complementary prqpéfties of the
two methods seem to sugBest thelr combination in one algorithm.

Hald and Madsen (1981, 1985) have. developed a class of two-
stage aiészithms. A trust region Gauss-Newton method is employed
in Stage 1. to provide global convergence to a neighbourhood of a
solution. Wheﬁ Eﬁe solution is singglar, the first method suffers
from a very slow rate of coﬁvergence and a switch is made to a
quasi-NewtonJmethod (Stage 2).' Several switches betweén the ctwo
methods may take place and the switching criteria ensure the global
convergence of the coébined alporichm. " This approach has demons-
trated a verj strong performance in circuit optimization (Bandlér.
Kellermann and Madsen 1985, 1987).

Powell (1970¢) has extended.the Levenberg-Marquardt method
and suggested a trust-region strategy which interpolates between a
steepest descent step and a Newtoa step. When far awaw from the

solution, the step is biased toward the steepest descent direccion

to make sure that it is downhill. Once near the solution, taking a

. "
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. M -

full Newton step will provide rapid final convergence.

2.6 AN ALGORITHM FOR LINEARLY =CONSTRAINED

- ONE-SIDED £, OPTIMIZATION®

2.6.1 Introductory Remarks T .

- -

The linearly constrained ‘one- -sided 2, optimization problem
£o' be considered has the following formulation.

minimize U(x) = J £, (x)

x - j=d )
subject to . : . ‘ o= .
' . . ) ' ‘ (2.32) )
ajx + b, =0, i=1, 2,..., Lo
.alx +b, 20, =1L+, ..., L,
where x = (%, xé e x“]’.'J.J (i | £, > 0) identifies the éet of

- - - vi
» positive functions among £, £5,..., £ a, and b, are constants.,

" The problem arises In a number of applications Ic can’ be

applied to circuit design where f represents error functions ari-

. sing from upper and lower specificééions. " Bandler, KeéM¥lermann and
-Maésen (1987) have coﬁsidergd multiplexartJESlgn by the‘one-;ided
2, optimization. In Chapter 5 of Ehfﬁ‘thesis, the one-sided &,
op;imi:atipn constitutes an inteé;;ted pért of the\ggaefﬁlized £,
. centering algorithm for yield enhancement.

Traditionally, the one-sided 2, problem is treated by defi-

ning

£, . if £ >0, _
£ - , . ©(2.33)

0 , " otherwisge, .
. . . . ' R - " . . . " - . ’
and minimizing the £, nérm of £'. This simplistic approach has two

shortcomings. Firstly, the discontinuity of f; at £, = 0 can be

- .
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and should be‘taken into account explicitly in the linear proéram-

ming subproblem of each. Gauss-Newton iteration. Introducing the

discontinuity externally may affect adversely the local lineariza- .

tion of the error functions, which is essential to the Gauss-Ngwton

-

method.. Furthermore, the £, and the 6ne-sided 2, problems have

different optimality conditions. Using an £, algorithm to solve a
one-sided £, problem may.lead to a false solution which satisfies
the wrong set of optimality equationms.

We now describe a one-sided £, algorithm which is based on

the Hald and Madsen approach.

2.6.2 Stage 1: A Trust Region Gauss-Newton Method

This is a direct application of, the trust region Gauss-
Newton method (Section 2.3) to the one-sided 2, problem.

At the kth ireration, a feasible point %, and a local bound

A, are given.~ The following subproblem is defined:

m
minimize 3 ¥;
h,y J=1 s

subject to

vy = £,(x) + £5(x)Th, j=1,2,..., m
. ' (2.34)
yJaov ’ ‘j-l. 2.....m,
A, 2R, A Z-h,, i=-1,2,...,n
aj(x, +h) +b, =0, ~ i-1,2,..., L,
aj(x, +h) +b, =0, Ci=L,+l, ..., L,

which can be solved by a standard linear programming rouctine. In

‘theiﬁzghc of the discussions in Section 2.3, we can relate (2.34)

b

L]
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to a semi-linearized subproblem H(f). For each f,, we define a

plecf-wise linearized model as

- £, + (£0™h, if £, + (£)™h > O,
£,(0) = - (2.35)

0. ~ otherwise,
which corresponds to two linear comstraints in (2.34). The discon-
tinuicy at f_’ ~ 0 is builc into the local model and handled -inter-

nally by activating the appropriate constraint (both constraints
»

are active at f, - 0). In comparisen, the "'::'.implist‘i;c appr‘;ach
(using the two-sided £, and f‘;) assumes either EJ - £ + (f_',)rh or
4‘:::_1 ~ 0 chroughout one iteration, depending on which side of £, =0
the i-teration starts. | Such an assumption becomes invalid if the
point of discontinuity is crossed during the iceration.

Denote sthe solution of (2.34) by h,. If x + h, reduces
the noﬁlinear objective function, i.e., if U(x, + h) < U{x. ), then
it is taken as the next iterate. Otherwise Xees = X .

The l.ocal bound A, is adjusted in every iteration based on
the goodness .of the linearized model, following the general rules
described in Section 2.3. More precisely, if

U(x) - Ulx+h) < 0.25[U(x) - U(h) ], (2.36)
t.hen the trust region appears to be too large and the bound is dec-
reased: Ak*-]: = 0.254,. O‘therwz.se, if -\/ | |

Ulx) = Ulx+h) = 0.75(U(x) - Uthy)), 3 (2.37)

then the bound is increased: Apey — '2Ak. If neither (2.36) nor‘

.
b ¥
‘

“

(2.37) holds then Ay = A
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' 2.6.3  Stage 2: A Quasi-Newton Method
‘The Stage 2 of the algorithm applies a quasi-Newton method

to- solving the optimality equations of the one-sided 2, problem.

The nonlinear programming equivalent to the linearly cons-

T

.trained one-sided £, problem fgz?ﬂ

minimize U(x,y) = -3 Y,
x.y j-l
Subject to
(2.38)
g =y, —£,(x) =0, =1 2,..., m <
gj'?m-ydzor j-ll 2""lm.
8y+zm = @jX + b, 20,  §=1,2,..., L
A local optimum must satisfy the Kuhn-Tucker conditions as
au 2m+L ag, .
- ¥ & - 0, {2.39)

J
a(x,y) j=1 a(x.y)
where §, are nonnegative multipliers. &, - 0 if gy, > 0.

First we examine the derivatives with respect to y. It is

obvious that

dusay - [1 1 ... 1)%,

8g, /8y = w,, 3 =1,2,..., m,

' S (2.40)
ag_,-.-n/a)"u‘t. j-l. 2.....m,
38y,22/8y =0, j =1, 2,..., L,

where u, is the jth column vector of an M by M identity matrix.

It has 1 in the jth position and zeros elsewhere. From (2.39) and

(2.40) we bave

m .
1.7 - j}:l(e'sduJ + 6,.54,) = 0. (2.41)
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. The jcth equation is actually

by + 644y = 1. -~

(2.42)

Notice that at least c.e of the two constraints correspon-

ding to f,, namely g, and By+p. Dust be active. If £, > 0 then g,

18 active'buc.gj+m is not, thus §,,, = 0 and §, = 1. If, on the

other hand, fJ < 0, then §, = 0. When £, = 0 both g, and g,,  are

active. We summarize these results as

5, = 1, if ] e,
126,20, ifjez,

GJ - 0, otherwise,

(2.43)

vhere J = (j | £, >0) and Z = (j | f, = 0) are mutually exclusive

index sets.

Now we inspect the derivatives with respect to x. We have

?U/ax - 0, -

" 8g,/3x = —f, (x), j=1,2,...
38,.5/3x = 0, i=1,2,...
38y42,/3x = a,, j=1, 2,...

Combining (2.39), (2.43) and

of optimality equations as

Y f(x)+ ¥ 8§,£(x)- T pa =0,
. jez

we arrive at the

G4)

.

set \\)

jeI iea
'~ (2.45)
£,(¢) =0, - jeeg,
ajx +b, =0, i€a,
vhere 4 = {i | aix + b, - 0} identifies the active set of linear

constraints which will always include the equality constraints, 1 =

SJ = 0._§~é/;. and p, = §,.,_ = 0. A local optimum of the linearly

constrained one-sided £, problem must satisfy (2.45).
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Using a matrix notation, we express (2. 45) as R(x . 40) - 0,

The Stage 2 of our. algorithm obtains a quasi-Newton step by solving

the linear system

. %
T ax | - mex. &), (2.46)
Ay T |
_where Jy i1s an approximation to the Jacobjan of R given by
jéjf';(x) +j£sz £(x) E F
R = ET 0 0 (2.47)
-F 0 0 \

where E and F are matrices with colummns £(x), j€Z, and -a , ieA,
respectively, and they can be calculated exactly at each iteration.
The submcotrix at the upper left-hand corner contains second-order
derivatives, cherefore; the corresponding part of J, is updated at
each iteration using a modified BFGS formula (Powell 1978., also

Bandler, Kellermann and Madsen 1987), as

yy*  BssTB .
‘___ Beoy = B + s - e . (2.48)
with
s = Ax,,
y- G[G(kaxk'.&‘) - 6(x,,8)] + (1-6)B, s, (2.48)
G(x,8) = } £,(x) + 1 &,£(x) ,
jeJ ez

where § satisfying 0 =5 # < 1 is selected such that y's > 0, in

order to maintain a’positive definite B, .,
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2.6.4 A Combined 2-Stage Algorithm
In the combined algorithm, the trust region Gauss-Newton

method in Stage 1 is intended t; provide gldbal-convergencg and the

quasi-Newton iteration of Séage 2 is used to obtain fast finai
convergence near a solution,
In Stage 1, the following steps take place.

Step 1 Given x and A, X+, and A ., are found using the trust
region Gauss-Newton method described in 2.6.2. The active
sets are estimated as Z,,, and A, ,, by the zero functions
and active linear comstraints at x,,,, respectively.

Step 2 An estimate (841, ,,) of the mulripliers is found through
a least squares solution of (2.45) using x..;, Z,,, and
Ay.y-  The ;pproximar.e Jacobian is. updated by the BFGS

—~

formula, giving J,.,.

A switch from Stage 1 to Stage 2 is }mde if the following
conditions are met.
(a) The estimated active sets Zy+, and A, ., have been constant
over K consecutive Stage 1 iterations (we use K = 3).
(d) The estimated multipliers corresponding to Zy., and A,
are in the correct ranges: 1 = SJ = 0 and g, 2 0.
The requirement of stable active sets and acceptable multi-
pliers is intended to avoid premature switches to Stage 2.
The steps in Stage 2 have.been described in the last skc-
tion (2.6.3). A switeh from Stage 2 back to Stage 1 is made if one
-

of the following conditiens holds.

(a) The active sets are not complete because a function f, with
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J € Z has become zero or changed sign, or a constraint not
included in A has become violated.

(b) The value of a multiplier is outside its range. °

(¢) " A quasi-Newton step fails to decrease the residual of che

4

optimality equations:
[Ressll > 0.999]R, |
S (

The use of thgitrust region Gauss-Newton method as Stage 1,
the quasi-Newton method as Stage 2, and chese switching conditions
are at the heart of the class of algorithms described by Madsen
(1985) who has proved global convergence in general.

The description of our algorithm for linearly constrained

one-sided 2, optimization is complete. . In Chapter 5, this algori-

thm is applied to circuit centering.

2.7 A UNIFIED fORTRAN LIBRARY FOR NONLINEAR OPTIMIZATION

Several optimization routines based-qn‘the Hald and Madsen
approach have been: implemented in a unified Fortran library which
is named the KMOS library (Bandler, Chen and Renault 1987). It
includes routines for linearly constrained minimax, linearly const-
rained £,, linearly constrained.one-sided-ih and unconstrai;ed 2,
optimization problems.-

The routines for linearly constrained minimax problems were
‘originally developed by Banc-ller and Zuberek (1982) for the CDC
170/730 system. Since then, many changes have taken place, both in

the hardware and the software. Most importantly, many new algori-

thms have become available, including the 2, (Bandler, Kellermann
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and Madsen 1987), the 2, (Madsen 1986) and the one-sided 2, (desc-
.ribed in this Chapter)-algorithms. Methods which do not requiré
exact gradients have‘also been &eveloped and implemented }which
will be described in Ch;pcef 7). T

The KMOS library is created basically for the convenience

of its use.  The calliné sequence to the optimization routines and

the printing service provided by these routines are standardized

and unified. To employ different optimization methods, only mini-
mal changes need to be made to the user’s program. By sharing some
common codes, the unified library is also smaller in size as com-

pared with the separate phckages combined.

2.8 CONCLUDING REMARKS -

In this chapter, we have addressed the recent advances in
the state-of-the-art 2, optimization techniques. The formulation
and the properties of the 2, fuhctions have been reviewed. An
important class of solution methods has been discussed in detail.
We have shown Fpac linear and linearly constrained linear minimax,
2, and £, problems can be solved by linear or quadratic programming
techniquesi We have described the Gauss-Newton method which is
based on-ﬁQE'trust region solutioﬁ of a semi-linearized subproblem
and the quasi-Newton method which 1s applied to solving the set of
optimality equations. The Levenberg-Marquardt method for the least
squares problem has also been reviewed.

A new algorithm for the linearly constrained one-sided 2,

optimization has been presented. The shortcomings of the tradi-



tional approach to the one-sided prpblems by externally defining\
discontinuous error functions have been exposed and, therefo:e. the
need of a true oﬁe-siéed hlgoFithm was justified. We have'défined
‘the trust region Gauss-Newton iteratzion which solves a ;equence of
semi-linearized subproblems by linear programming. We have also
derived the optimality equations for the one-sided £, problem and
aﬁplied a quasi-Newton method to the solution of these equations.
Following the Hald and Madsen approach, the Gauss-Newton and the
quasi-Neyton methods have been combined into a 2-stage algorithm.
'éhe optimization techniques which we.hd?e described provide
the powerful tocols for solving the wvarious circuit opciéi:acion
problems covered by the subsequent chapters. Due to their proven

success in many practical applications, software based on these

techniques has been integrated by EEsof Inc. into TOUCHSTONE Ver-

11

sion 1.5 (1987).
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CHAPTER 3 (::?\

EFFICIENT APPROACHES TO NETWORK SEHS\TIVITY ANALYSIS'

3.1 INTRODUCTION

»
The application of gradient-based optimization techniques

to circuit problems requires the evaluation of network sensitivi-
ties, typically firgi-order. Director and Rohrer (196%a, 1969b)

pioneered the adjoint network approach to sensitivity analysis for
S " « i i
linear circuits. Their work and subsequent contributions by many

—

other researchers have greatly falilitated the advance in CAD tools
from non-gradient (random, direct) techniqugs to sophisticated and
powe;ful ones,

Relating to the gradient-based Ep optimization methods in

Chapter 2, we are interested in the first-order derivatives of the

i

functions f,, f,,..., £, with respect to the variables Xy Xpyenn,
X,, 1i.e., the Jacobian of £ with respect‘.-'to;x. For a c¢ircuit
problem, the functions £, are typically derived from.the errors
between the circuit responses and the given (constant) specifica-
tions. Therefore, the derivatives of £, can be obtained from the
appropriate network sensicivities. .

Iq this c¢hapter, we describe 'é unified and systematic

approach To efficient semsitivity calculations for linear networks

in the frequency domain. Useful formulas are derived from a nodal

description of a linear network. Unterminated and terminated

.

multi-ports are analyzed in géneral. The results are then applied

32 ~
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to two-ports which -are widelj_used to represent filters as well as
~ -

subnetworks. For two-ports, we also present some second-order
sensitivities useful in the optimization of group délay and gain

slope. Formulas for some commonly used frequency responses are

also given. ~

A special class of two-ports, namely lossless two-ports,
deserves separate attention because their sensitivity expressions

can be shown in a simple analytic form. This result was staced by
~
\

Orchard, Temes and Cataltepe’ for the first time in 1983. Three

-

original and different proofs have. been presented by Band{er, Chen

and Daijavad (1984a, l98&b1 1985p). Here, we describe two of the -

proofs using a notation consistent with the rest of the chapter.

-

7
®
3.2 SENSITIVITY ANALYSIS USING A NODAL DESCRIPTION

For the nethrk under consideration, assume tﬁat a nodal
description is available. For simplicicty, we further assume an
admittance hacrix.l The f;rmulas are, of course, applicable rto an’
impedance or ﬁybrid matrix,

. We have

YVv=-1 (3.1
where Y is the N by N admittance matrix, V the nodal voltages and I
the excltation vector. Differentiating (;.l) with fespecc rto a
generic variable ¢ gives

av 04

— --Y!—v. (3.2)

a¢ 3¢

To select the sensitivity for a particular voltage of inte-
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rest, say, V,, we define a unit vector w, which is the kth columm

vector of an N by N identity matrix (its kth element is 1 and the

others are zeros). Premultiply (3.2) by uf,

i

av, ay - a3y N N &y, -
— =g Y V-V V-7 F —9v,, (3.3)
3¢ 3¢ a¢ i=1 j=1 3¢ :

where we define an adjoinc system by _
Y Ve, - ' (3.4)
For example, consider a’'capacitor connected between nodes a
and b. The parameter C appears in four places in Y: as jwC in Y,
and Y,, and as —jwC in Y, and Y, . Therefore,
3V, X i i . - )
— = ~Je(V V + V-V V-0V ) - =jwlV =V ) (V, =V, ). (3.5)
If we solve the original circuit (3.1) by LU factorizatioen,
then the adjoint solution (3.4) requires minimal extra effort.
Director and Rohrer (1969a) have arrived at essentially the

.Same results from Tellegen’'s theorem. The concise ‘derivation by

matrix algebra as shown here was due to Branin (1973).

3.3 GENERAL M-PORTS.
3.3.1 Unterminated M-Ports

It is quite common to separate the nodes of a network into
internal and external nodes, and designﬁte some pairs of extermnal
nodes So constitute external ports. This is especially useful in
the analysis of a complicated system consisting of subnetworks. We
can describe each subnetwork as an unterminated M-port and the rest

of the system as terminations of the M-port. Such an equivalent of
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Suppose that the nodal equations (3.1) describe an untermi-

the subnetwork may then-be analyzed Lndependentiy.

nated network. We use
Vo = [Voy Voo ... vPH]I' .

| - (3.6)

Ip = [Tpy Tpp ... Ipulrv

to represent the voltages and currents, respectively, associated

v -

with the external ports, as shown in Fig. 3.1. Conventionally the
. ‘

unterminated M-port is characterized by

SN
Vo =z I, .° (3.9)

where 2z is the M-port open-circuit impedance matrix.

Consider a typical element of z, say z, 5. Suppose that the
kth port is created between nodes i and j, and Vpy = V, =~ V,. By
introducing a vector u,, which has 1 in the ieh position, =1 in the
jth position and zeros elsewhere, we can write

Ve = up, V. _ (3.8)
If node j is the ground then u,, has 1 in the ith position and
zeros elsewhere. wuyjp is similarly defined for the £th port.

It follows that

T g = Uy Y upy - ui, py. (3.9)

where py is the solution of

sz-uPz. (3.10)

The sensitivity formula for 2,2 <an be derivdd, similarly

to the derivation of (3.3), to be ‘
dz,p &Y : T a
- % — py. (3.11)
dé 3¢

vhere p, is the solution of

'
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Y B = upy . - S (3.12)
.Generally ,in order to complete the‘evaluation of z and its
sensitivities, we need to solve the o;iginal nécwork'with M diffe-
‘rent right-hand sides, namely w,,,..., u,,, leading to Py,--
We also need M adjoint solutioms p,, ..., py. If the network is

recipfocal then Y’ = Y and consequently P, = B, for all k. While

the use of an unterminated M-port allows us to analyze a network or
subnetwork independent of its terminations, it also increases the
amount of computations. Weﬁ'emphasiie that all the solutions,

original and adjoint, require only ome LU Ffactorization of Y.

3.3.2 Terminated M-Ports

e

Now assume that the kth port is terminatéd by an indepen-
dent curreént source JPk with an admicrance YPk (see Fig. 3.1). The

currents and voltages of the M-ports are related by

L= Jp =Y, Vp,° | (3.17)
where
’
Fdp = [Jpy Jap o0n Joyl®,
/ ‘ (3.14)
Yp = diagl¥p, Yp, ... Yo,1.

éolving (3.7) and (3.13) concurriﬁfly gives

Vo = (1 +z Y)™? 23, S : (3.15)
Differentiating (3.15) and after some algebra, we can arrive at a
sensitivicty formula for the terminated'H-por:-as

av, - ‘ dz | 8%,

= 1l+zY) (— 1, -z
36 s6 8¢

v Pue

wh Yy,
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TWO-PORTS

3.4.1 Generai,Two-Pdrts e : . . .

A spééial case of M-ports,'nﬁmely'two-ports, is videiy'used

to describe networks for whick we -are primarily interested in a

pair of

input and output variables. Conventionally the input port

is defined between node 1 and ﬁhe-ground. and the output between

node N and the,groﬁnd. Thus,” Vo, = V, and Voo = Vy.o ) -

Following the general approach for'ijorts, we define two

selutions of the original network as

Yp -, .
‘ £3.17)
Y.q-uﬂ,
as well gs_:;o-adjoint'solptiéns~ash."., S < :
.YT--ul" . -
Y q = u,
where w, = [1~0 ... 0]7 and u, = [0 0 ... 0 1]7.

-

The open-circuit impedance matrix for the unterminated

two-port is given by

and itcs

WYty WY tuy Pr.ay | :
z=-| - , . (3.19)
WY lu, wiYiu | [ py gy :
sensitivities by b
3z A N NaY, [ pp, P, 9y
—==lpqal'™=[paql =% T —| i .. (3.20)
3¢ ~ 8¢ i1l j=1 3¢ 9P, 4,9,

Usually, the output port is terminated by a load Y, , and

the input port by a source J = 1A with an admittance Y . " These

* terminations are represented by
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. -_ : -_ 1 O]I . -' ) - . | \\

Y 0] e : S (3.21)°
,LO0 Y ': ‘ : . . '

Formulas (3.15) and (3.16) can then be-applied directly to

.

solviﬁg the terminated two-port and evaluacing‘its sensitivities.
3.6.2 ) Sg;ond:Ordér Sensitivities

In the optimization of group delay and gain slope respon-
ses, second-order derivatives of z are needed. In thesé cases, the
first-order derivatiVesiof z' with respect to.the frequenéy‘é are
uged to evaluate the r;;;ERSe itself} Thefsensitivicies of dz/0w

with respect to a circuit parameter ¢, namely 38%z/3wdé, are of

. . .
second-order.

Using (3.20) we ﬁave : ' .- ) \

- az .Y o[ u ay _
— ~-lpql’™—[pq} - - Y P — vyt ofu gl (3.22)
dw dw : '..'I.Ti dw

Differentiacing (3.22) with respect to ¢ leads to

where - p, q, P. g are solutions of, respectively,
Y p - [8Y/3u] P,
Y q - [3¥/30] q.
¥ b~ [6%/3017 .

Y! q - {8Y/6w]” q.
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Eigﬁt éolu;ions'of the network are involved in (3.23) which
réﬁuire one LU factorization of Y and eight forward and backward
substituti;ns. Notice that four solutions will suffice for a reci-
procal network.

3.4.3 Sensitiviﬁies of Commonly Used Frequency Reésponses

It is very common, espeéially in filter design, t; ‘use
frequency responses, such as reflection coefficient._xeiufn loss,
insertion 1655. scatﬁering parameters and group déléﬁ, to describe -
che.external beh;viour of a circuit. Once we have the sensitivi-
ties of the port voltages and currents, the corresponding formulas
for the frequency responses can be reac_.'l‘ily derived. Table 3.1
summarizes the results for some commonly used frequency responses

according to their conventional definitionms.

.

3.4.4 Lﬁssless Two-Porés ‘ .

Lossless éwo-pprts are widely uséd as procotype.models in
filter design. Iﬁ the context of this chapter, lossless CUo-port§
deserve a special treatment becausg we can prove that the relaced
sensicivicy expressipns'require only one network analysis.

The central 'sensitivity formulas for lossless two-ports
were due o Orchard,.Temes and Ca;al:epe.(1983; 1985). Between
1983 when the formulas appeared for the first time and 1985 when
their proof was presented by Orchard et al., three different and

original proofs were published by Bandler, Chen and Daijavad

(1984a, 1984b, 1985). Here, we present two proofs based on the
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TABLE 3.1

S

Response

Formula

Sensitivity Expression

inputfreflection
coefficient p,

input return loss

insertion loss

roup delay

scattering matrix

Y . -
—(26.V, - 1]
Ys

—2010310]p13|

—201og,; o [Vy Yz |

18V, 18y,

hY

~In[— — + — —]

Vy dw Y; dw

(z - )(z + 1

d YgGg ¥sGg 8V,

2{V,—(—) + —1
3¢ Y: . YL 3
20 L dp,,
- Re[ ]
2nl0 Pin 09
20 1_3v, 1 8y,
- Ref— — + — —}

10 YV, 3¢ Y, s

1 &%y, 1 8V, &V,

—@1 -5 —Q=5)
22, P

Gg = Re(Yg),® ¥Yp = ¥g + Y, , Yg is the complex conjugate of Y.

z - z/Z, where Z; is the normalizing impedance.

S is the scattering gatrix.




. 42

.f&éas of the prévious pubiicatiogs but following the notation con-
sistently used in this chapter. The first proof ié'derived througg
algebraid manipulations.' The second prﬁof is based on the princi.
ple of conservation of energy and the CauchyoRiémann equations of
complex differentiation. -It bears clear physical interpretation
and mathematical elegance. |
Theorem

Assuming that a lossless two-port is terminated by a source
J =-lA.with a conductance Gg at the input port and by a load G, at
Ehe output port, the evaluation of the sensitivities of che‘trans-
ducér coefficient which is defined by

¢ - - v, ST, o (3.25)
requires only one solution of the network.
Proof 1

Define

Y = Gguul + Guul + Y (3.26)
as the admittance matrix of the network including the terminations.
The reciprocal and lgssless propﬁFtieg of the network implies

YT - Y,

(3.27)
Y =~ Y. .

where * stands for complex conjugate. The terminated network can
R

-

be solved from
Y Ve-u. - (3.28)
From (3.3) and noticing that Y is svmmetrical, we have

av, ay’

—_— -V — V.

g¢ 3¢

° (3.29)
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Differentiate (3.28) and premultiply the result by (¥)T,

av ay’ : '
(VT Y === (v — v, (3.30)
- 3¢ 94 B

Using (3.26) and (3.27) we have

Y o+ [(¥)7)F = 26wyl + Gugul) + Y + (YT

(3.31)
= 2(Gsuwyu] + Gruyug).
Evaluate Y from (3.31) and substitute the resulc for (3.30),
o av ay’
(V)26 uyu] + Guyud) = [(¥)"]T)— = ~(V)T—V, (3.32)
3¢ 8¢

From (3.28) we notice that (V")T{(Y:)']T = ul, therefore
(3.32) can be reduced to

, av, avy &V, 3y’
WBgV] — + (Vg — — — = (V)T — v, (3.3
N\ 8 e ae 5

b

By substituring (3.29) in (3.33) and using the input ref-
lection coefficient p = GV, - 1'(Tab;e 3.1), we arrive at
v, 1 Y’

: (p" V= V)T — v, (3.34)
3¢ 26, vy . dé

—

Finally, from the definition of the transducer cocfficient

as given in (3.25), we ‘obtain \)
a8 1 av, 1 ay’ N
— e — - — (V" - ") — v, (3.35)
3 v, 36 2B, 3¢

where Py is the power in the load, given by P, - GV Vj. Clearly,

(3.35) involves only one solution, namelv V, of (3.28).

L4
For example, let ¢ be ¥, (the admittance connected between

nodes i and j). Then ?

§Y /3y, , = (u, = u)(u, - u)7, (3.26)
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and consequently, ! ) -
ae 1 i .
— = — V] = PV = (V] = 2TV (¥, - V)
3y, 4 2Py .
N : (3.37)
|V1‘1 Iz - P.vf_,

2Py

where V;J -V, -V, is the voltége across y,, .
" Eroof 2

Consider an internal branch between nodes i and j as cha-
racterized by I,, = ¥4V, where Yig — By T ixy, aﬁd 8y = 0 at
nominal (i.e., y,, represents a lossless element). The real power
assoclated with this branch is given by P,y = 8,;1V,;1%, which is
equal to zero at nominal. Denote the power in the load by P, and
define <

P, = Re[- VII,] = Re[VI(V,Gs - 1)]. (3.38)

The conservation of energy of the-whole system implies

Py v Py + L P, =P + P +7 g IV,[? =0, (3.39)

where the summation is taken over all the internal branches.

Differentiating (3.39) with respect to g, and x

S we have
ap, arp,
+ + |V, 1* =0, (3.40)
ag, , 3g, N
and, at g, = 0, )
ap, 3Py \1
+ - Q. (3.41)
6:«:1J 8xiJ :
From (3.38), we obtain, after simple manipulations, .
3p, v, .8V,
— = Re[(2G4V] = 1) —] = Re[p" —]. (3.42)

dé g¢ dé
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e

Following (3.29) and (3.36), we have aV,/3g,, = - V2, and

av,/ox,, = ;jvfj. . Therefore, E
3P, ap, _
-j = Re[p"VZ,] + jRe[§p V2, ] = = PIVE, L (3.43)
38y 4 ax, ,

Combine (3.40), (3.41) and (3.43),

APy dPy

- |vidq§ + piVE, . C(3.44)
ag,d axld :

The complex valued transducer coefficient given in (3.25%)
is analytical in the network parameters wherever it is defined.
Let it be § = a + jB. With respect €O ¥,y = 8, * J%,,. we know

that the Cauchy-Riemann equations are satisfied as

. da ag .
98y 8%y |
g / (3.45)
da a8
ox, 8, ,
Accordingly we find that (Lang 1977) . \
3¢ 3 da
- - j . (3.46)

ay, , 9g, , ax, ,
By definition,
a = Re[-2n(2Vy J GgG )] = = (1/2)2n(4|V, 26,6, )
. (3.47).
- = (1/2) [4n(4Gg) + n(2y)], '
therefore, da/d¢ = - [Py /d¢]/2P,. It follows that
a¢ 1 GPy 32y |V,

- - ( -] ] - — . (3.48)
dy, | 2Py dg;, ax, | 2Py

This formula is identical to (3.37).



3.5 .  CONCLUDING REMARKS |
| In chis chapéer, Qe hhve\Qfscribed a unifiediand systematic
approach to efficient sensitivity‘calculations for linear network
_in the frequency domain. = Useful formulas have been derived for
networks Aescribed by a nodal matrix as wéll as unterminated and
terminated mulFi-poQts. A more elaborate treatment has been direc-
ted at cwo-poEFs including results for_second-ordefssensitivity and
frequency responses. _Tv6 elegant proofs have been derived for.an
important sensitivity expression related to lossless two-ports.

. We recognize that  exact sensiéivity expressions are not
always available, e.g., when time-domain aqalysis and nonlinear
circuits are involved. Iﬁe subject of gradient approximations is
treated in Chapter 7. |

Even for linear circuité in the frequency domain, large-
scale networks present new problems which need to be addressed.
Cften, a largé network can be described through compounded and
interconnected subnec;;rks. Many commercial CAD ﬁroérams such as

SUPER-COHPACT (1986) and TOUCHSTONE (1985) have facilitated such a

block structure.
]

One possiﬁle. approach is- to assemble the overall nodal
matrix and solve the network equations using sparse technigues,
Another approach is to rearrange the oterall nodal matrix into a
bordered block structure which is then solved using decompositien
techniques (Hachtel and Sanglovanni-Vincentelli 1981). Also, it
may be possible to develop efficient formulas for a special struc-

ture, such as the work of Bandler, Daijavad and Zhang (1986) for
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muitiplexiﬁg networks’,

- In conjﬁnction with these techniqﬁes, the sensitivity ana-

-lyses outlined in this chapter can be carried out at the subnetwork

lé#gl.
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* NOMINAL CIRCUIT OPTIMIZATION
4.1 . INTﬁObUCTION

Nominal circuit design‘is an approach to the optimization
of a single point, in the.;péee'of designable variabies, which best
meets a given ;et of performancé specifications. The classical
paper by Temes and Calahan in 1967 was one of tﬁe earliest to for-
mally advocate the use of iterative optimization in cirecuit design.
Also, pioneering papers by Las&oﬁ. Suchman ard Waren (1966), Waren,
LasdJ: and Suchman (1967) demonstrated optimal design of linear
_arrays and filcers‘using thé_pehalty function approach. Since then
optimization oriented CAD techniques have become indispensable
tools in many engineering fields.

At the heart of the prboblem is the mathematical description
of the engineering system under consideration and the design goals.
In this cﬁapter, we first introduce ; hierarchy of models which are
employi? to simqlate the physical system. The parameters and the
response funccicps associated with fhese models are identifi;d.
‘Error functions which arise from the performunce specifications and
the simulated responses are defined. The objective function and
variabie‘s for optimization are therg discussed. The formulation of
a nominal circuit optimization problem, at increasingly abstract
levels, is clarified in our presentatiog.

Practical illustrations of nominal design are provided by

48
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the 6péimizatioﬁ of mul£i-coup1ed ca;iqrnfiICers vhich are of sig-
nificant interest in satellite communicatign systems.. The large
var;eéy and éqmplexity of these frlcers.have made ﬁhem prime ;;ndi-
da;esl for computer-aided design. ~ An efficient approach to the .
exact sensitivicy analysis of mulfi-cdupled‘cavity filters has been
ti?sented by Bandler..Chen and Daijavad (i986&). In this chapeter,
three examples of filter désign are described, includi;g'a.IOth-
orde; elliptic filter, a 10th-order sel%—equali:ed filcer obtained
from-simultaneous oﬁtimi:ation of the ampiitude and group delay, as
well* as a Géh:order asymmetric design. Firgt;srder prediction of
the effect of cavity dissipation using filter gensitivities is also

- 2
discussed. i \

A 1l6-channel mul:iplexer-consisting of cavity filters dis-
tributed along a waveguide manifpld which involves 240 nonlinear
variables is also presented co'gllustrate efficient solutions to

large-scale nominal optimization problems.

4.2 BASIC FORMULATION
}.é.l A Hiégarchy of éimﬁlacion Models

In‘order to apply‘the mathematical tools to an engineering
probiem, we| have to be able to describe the physical system under

a .

consideration by suitable simulation models.

The physical system being described can be a network, a de-
vice, a process, and so on, which has a fixed structure and given
elemgnt types‘ We manipulate the system through some adjustable

. 7
parameters denoted by a column vector ¢'. Wwe use the supecscript M



. . ¥
to identify concepts related to thé physical system. Geometrical
dimensions such as the width of a strip and the 1éngth of a wave-
guide section ;re exampl;s of adjustable paradeters.

In the production of integrated circuits, ¢! may include
some fundamental variables which controi, for instance, a photomas-
king or doping process and, consequently, determine the geometrical
and electrical-parameters of a chip. Externai controls, such ﬁs
the biasing .;oltages aﬁpliéd to an active device, méy also be
candidates for ¢*.

The-perform;nce and characteristics of the éystem are usua-
llyrdescribed in terms of some measurable quantities. . Frequency
and . transient responses are typiecal examplés. Tﬁese measu?ed
responses, or simply measurements..are denoted by F“(¢F)nf

Simulation models can "be uscfully defined at many levels.
Tromp (1977, 1978) has considered an arbitrary number of levels
(also see Bandler, El-Kady, Kellermann and Zuberek 1983i. Such a

hlerarchical definition often clarifies the concepts of tolerance

and model uncertainty (which will be treated in Chapter 5).

For simplicity, we consider a hierarchy of models consis-
ting of four typical levels as

F - F(F),

Fo- Rg), ' (¢.1)

¢ = F(¢).

¢ is a set of low-level model parameters. It is supposed
to represent, as closely as possible: the édjustable parameters in

the "actual system, i.e., ¢!. . '



_ .
¢ defines a higher-level model.'typically‘anlgq;ivalent
circuie, with respect to a fixed topology. Usuélly. the reason for
using an eﬁuivalenc'circuiﬁ is'thg convenience ;f-its analysié.
The‘relationshiprbetween ¢ and ¢ is -either derived from theory or

given by a set of empirical formulas.

Next on the hierarchy we define the model responses at two

- 'possible levels. The low-level external represencation. denoted by~

F', can be the frequency-dependent scattering parameters, unter-
minated y-parameters, transfer function coefficients, and so on.
Although these quantities may or may not be directly measurable,

they are very often used to represent a subsystem.

The high-level responses F¢ directly correspond to the

measured responses, namely R, which may'bé, e.g., the fregquency

responses such as return loss, insertion loss and group delay of a

suitably terminated circuit.

"

A realistic example of a one-section transformer on strip-
line was originﬁily-considered by Bandler, Liu and Tromp (1976b).
The circuits and parameters, physical as well as model, are shown
in Fig. 4.1. The physical parameters ¢! (and the low-level model

.

¢ ) include strip widths, secticn lengths, dielectric constants,
S .
strip and substrate thicknesses. The equivalent circult parame-
ters, denoted by ¢f, include the effective limewidths, junction
parasitic inductances and effective section length. The scattering

matrix of <cthe circuit with respect to idealized (matched)

terminations can be a candidate for a low-level external represen-
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A microwave stripline transformer (Bandler, Liu and Tromp
1976b) showing (a) the physical structure and (b) cthe
equivalent circuit model. The physical parameters are

¢ = [w) wy w3 £ Sepg Jepg Jep3 by by by top tep te3il

where w is the strip width, 2 the length of the middle
section, ¢, the dielectric constant, b the substrate
thickness znd Tty the strip thickness. ¢# is represented
in the simulgtion model by ¢“. The high-level parameters
of the equivalent circuit ars

[}

where D is the effective linewidth, 2. the foective

section length and L the junction parasitic inductance.
. - )
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tation (F'). The reflection coefficient, Eaking into account the

actual complex éemiitions. could be a high-level response of

interest (F9).

-

‘ :
For a particular case, we§miy choose a certain section of

this hierarchy to form a design problem. We can cho&se‘either ¢ -

or ¢ as the designable parameters. Either F- or F® or a suitable

‘combination of the’.both may be selected as the response funcrions.

Bearing this in mind, ,we simplify the notation by using ¢ for the’

- designable parameters and F for the response functions.

4.2.2 Specifications and Error Functions

We express the desirable performance of the system by a sec
~ ( - -

of specifications which are usually functions of some independent

variable(s) such as frequency, time, temperature, ete. (Bandler and

Rizk 1979). In practice, we have to consider a discrete set of

samples of the independent variable(s) such that satisfying the
specifications at these points implies satisfying them.almost eve-
rywhere. Also, we may consider simultaneously more than one kind

of responses. Thus, without loss of generality, we denote a set of

-~
i

sampled specifications and the corresponding set of ‘“calculated
response functions by, respectively,
SJ. ji-1, 2,..,, m,

(4.2)
\?"(¢)| j"l. 2,...,m.

- Error functions arise from the difference between the given

specifications and the calculated responses. To formulate the

error functions properly, we may wish to distinguish between having

-
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\ R '
upper and lower specifications (windows) and having single specifi-

#cations, as illustrated, gespectively, in Fi;s. 4.2(a) and 4.3(a).
Sometimes the one-sidedness of uppef and lower specifications is
qgité obvious, as in the design of a bandpass filter. On other
éccasions tﬁ;a distiﬁction is more subtle, since a single ;,speci-
fication may as well be interpreted as a window h;ﬁing zero widtﬁ.

In the case of having single specifications, we define the

error functions by *
(@ = w IF(® - §1,  J=1,2,..., m, (4.3)

where w; is a nonnegative weighting factor,
2 :
In the case of having an upper specification S, and a

lower specification SZJ' we define the error functions as

e, (@) = u, (F(® -5,  jeld, .
(4.46)
where w, aru:i't-:vz_j are nonnegative weighting factors. The index
sets as defined by ) -
Ju - lj1| jz.---- jkl ]
(6.5
Jg = Users Jyoze---» ol .

are not necessariay disjoint (i.e., we may have simultaneous upper

and lower specifications). In order to have a set of uniformly

indexed error functions, we let

e, = e, (@), J=3,, Li=1,2,..., Kk,
(4.6)
e, - -e23(¢0, J=3, 1 =k+1l, k42,..., m. :

The responses corresponding to the single specifications

can be real or complex whereas upper and lower specifications can

only be defined for real responses. Notice that in either case

£t
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Fig. 4.2 Illustrations of (a) upper specifications, lower speci-

fications and the responses of circuit a and circuit b,
{b) error functions corresponding te circuits a and b,
and (¢) generalized £, objective functioms.
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Fig. 4.3 Illustrations of (a) a discretized single specification
and two discrete single specifications (e.g., expected
parameter values to be matched), and the responses of
circuit a and eircuit b, (b) error functions related to
circuits a and b, and (¢) the corresponding ‘Ep norms.
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the error functions are real. Clearly, a positive (nonpositive)
error fuﬁction indicatqs a violation (satisfaétion) of the corres-
pondiﬁg sbecifiqgtion. Figs. 4.2(b) and 4.3(b) depict the error
functioﬁs corresponding to upper/lower specific#tions and singl;

specifications, respectively.

4.2.3 Variables and Objective Functions
In a nominal design, without considering tole;ances (i.e.,
assuming that modeling and manufacturing can be dome with absolute
{accuracy), we seek a single set of parameters, called a nominal
point and denoted by ¢, which best satigfies the specifications.
Fufthermore, if the functional relationship of @ - @ (¢) is
considereé to be precise, then it does not really matter at which
leve} the design is conéeived. En facet, tradicionaily it is often
oriented to an equivalent circuit.
A classical case is network synthesis where ¢#:° is ob-
tained through the use of an equivalent circuit and/or a transfer

function. A low-level model ¢-° {is then calculated from ¢*-©,

typically wich the help of an empirical formula (e.g., the number -

of turns of a coil is calculated for a given inductance). Finally,
we try to realize ¢ % by its physical counterpart ¢*:°.
With the tool of mathematical optimization. the nominal

design ¢® (at a chosen level) can be obtained through the solution

of the following problem

minimize U(x), (6.7)
x

vhere x is a set of optimization wvariables and U(x) is a scalar

[,



objective Ifun?:t:ion which is typi.cally"defined as an £, function
ﬂ(e). such as the ubiqﬁitous least séua:es, the more esoteric
generalized zp or the minimax objective, as has beén discussed in
Chapter 2 and is depicted.in Figs. 4.2(c).hna 4.3(e).
Optimization variables and model parameters are in fact two
separate concepts. The vector x may contain all the elements or a
subset qf the elements of ¢f. It is a common Practice to have some
of the wvariables normalized. It is also_comg?n to have éeveral
c_"xm':del parameters tied to a single variable.- Such dependencies

usually exist in symmetrical circuit structures but, host impor-

tantly, they become a facz of life in integrated circuits.

L4 -
-
N -

4.3 OPTIMIZATION OF MULTI-COUPLED CAVITY FILTER

The application of mulﬁi-coupled cavicy filters iqﬁmoderﬁ

microwave communication systems has received increasing attention.
’The cheofe;ical work of Atia and Williams’(197l, 1972) has inspiéed
many advances in this area. These advances have been responsible
for many improvements in satellite multiplexinglne:works. as has
been discussed by Chen, Assal and Mahle. (1976), Campron;§H982),
-Kudsia (1982), among others. |

The growing variety and complexity of this type of filter
necessitate the employment of modern CAD tgchniques. Eo; example,
the traditional approach to an analyticgl solution may become
inappropriate when asynchronously tuned or nonminimum phase designs

have to be considered. Bandler, Chen and Daijavad (1986a) have

presented an efficient approach to the exact sensitivity analysis

L S
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of multi-coupled caviéy filters, which has facilitated effective,
flexible and systematic design optimization of these fiiters. N
Besi&é their own significance, the filter examples in this

sectidn serve .as illustrations of practical minimax nominal design

optimization.

-

4.3.1 The Physical Structure and the Equivalent Circuit

The typical structures for longitudinal duai-mode éoupled
cavity filters are shown in Fig. &.4. The physical parameters
include the geometrical dimensions of the cross slots thfough which
the cgvities are coupled and the penetrations of the coupling
screws by which differentsmodes in the same physical cavity are
coupled. Thé cavity resonant frequencies may also be adjusted

using the tuning screws.

The narrowband unterminated equivalent circuit introduced
»

by Atia and Williams (1971) is described bty a symmetrical impedance

matrix as . . N
» . ;
Z = j(sl + M) + rl, (/ (4.8)

where 1 denotes an N by N identity matrix and s is the normalized

frequency variable given by

wo w wo
§ = — (/- —), (4.9)
&w Wy w -
wy and Aw being the synchronously tuned cavity resonant frequency

and the bandwidth parameter, respectively. In (4.8), r assumes the

uniform cavity dissipation which is zero for a lossless filter. r
4

is related to the unloaded Q-factor by : )
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r = wy/(8R) . e
M is an N by N coupling matrix whose element ‘M, , represents
the normalized coupling between éhe ith and jth cavities.f’The
diagonal entry M,, represents a deviation from §ynchronous tunihé.
M is a symmetrical matrix, i.e...MLJ - M,,. Not all the elgments
in.H.corresQSnd to desirable and degignable'couplings. Some of

them may indicate stray couplipgs. Dispersion effects.,on the

: , 2
filter can be modeled by a frequenc

dependent M matrix. Fig. 4.5

depicts the equivalent circuit.

~

[N

4.3.2 Efficient Simulation and Sensitivity Calculations
In Chapter 3, we have described an efficient apprcach to

sensitivity analysis of general networks. It can be applied most

beneficially to the case of multi-coupled cavity filcters.

From the nodal description Z I -~ V, where Z is given by -

(4.8), we define and solve

Zp=-u, .
(4.1
Zq=u,
where w, = [1 0 ... 0]7 and u;, = [0 ... 0 1]°. The unterminated

filter is then modeled by a two-port whose short-circuit hdmittancc
; Eal
' 5
Y1 Yix P: 9
y - .- . (4.12)
Y1 Yuw Py Ay

Following the results of Section 3.4.1, the sensitivities

matrix is given by

of the y matrix are obtained as



w4

Fig. 4.5 Lumped-element equivalent cireuit for an uncarmlnated
' multi-coupled cavity fileter, -

-
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[ PPy Py ] - | |
— - - - . (4.13)

8¢ i=1l k=1 3¢ QP 9,9

N NazZ,,
Since Z is symmetrical, we. need dnly two ‘solutions of the circuit

day

[

(a nonreciprocal two-port would require four solutions).

For instance, consider ¢ = M.

PP (Pi% + Pqy)

-

]. (4.14) .

3y
- - —-cj .
M, y (Pex + Peqy) 29,
where ¢ = 1 if 1 » k (in which cask M,, appears in two places of Z,
namely the (i,k) and (k,i) positions) or ¢ = 1/2 if.i = k. Also, o
ay PP P'qQ ' .
—_— - : , ' (4.15)
. 3r P’q q'g :
which is useful in predicting a first-order change due to cavicy
dissipati;n. We also have :
8y ay
—-ys, =, ' (4.16)
dw ar
where i
ds 1 - Wy :
S, = — = — {1+ (—)?*]. W (4.17)
do  Aw w
We can use (4.16) in group delay and gain slope calculations.
By defining two additional solutions of the system as
Zp=3s,p
_ (4.18)
z q - j Su q'
and following (3.25), we can evaluare
a ay ‘ p’_ az. _
(= =2+ _° (p al. (6.19)
q | oM,

oM, dw
These second-order sensitivities become very useful in group delay
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optimization, as illustrated later in this chapter. *
We enjoy a computational advantage in the analysis of loss-
less filters. Since r « 0 the impedance matrix Z in (4.8) is

purely imagiﬁéi‘jr. - Consequently, the systems defined by (4.11) and

- .

(4.18) can be solved by real arichmetic‘.; which_is obviously less .

time consuming than complex calculations.
An ‘interesting special case 1is the canogica]‘ symmetrical

-

filter structure (Kudsia, 1982). The coupling matrix of such a

filter exhibits a dual symmetry with respéct to its atiti-diagonal

as well as i::s diagonal, meaning (fhas My, - M, fora-N+1-k
and b =N + 1 - i. Using a matrix notatioen, it impliés ¥
- . 9 ‘ N " . . 3 - \(

i M- 1M1,
- = (6.20)
Z-121, .
where 1 is ro.tati-on. matrix which has l's on its anti-diagonal and

zeros elsewhe:_:'e. It can be easily verified that 11 = 1.

-~
Compar_ing ' -
- - - - - . -
,le-llep-lZp—lu.l-\:;‘ : (4.21)

with (4.11), we find that T

~ -

q=-1p ] (4.22)

i.e., 'q'L' = Pyay-i- Similarly, El -1 5 In other wordsd for this

type of filters, the solutions®of only two svstems, instead of

~

four, aﬁgfficient for the evaluation of the firsc- and second- °

order ‘sensitivities. s .
; : .

-

v Once che two-pott analysis is Completed, varidus fr:équency'

responses of the filter and their sensitivities can be Treated

<

using the gene':a; formulag given in Table 3.1.

1 .
-~

*
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4.3.3  Cubic Interpolation in M!nimax Design

In order to apply mathematical optimizacion techniques to a

filter design prbblem. discrete frequency samples have to be consi-

v

dered. 1In @gnimé§ désign. a peoor selection of frequeﬁcy sﬁmpies
may cause some difficulties, especially for a high-o;der Chebyshev
filter whose responses exhibiﬁ many ripples. If the peaks of some
ripp1e§ are missed (in frequency s?mpling)._then the discretized
solution may noﬁ be. adequately close to the continuous minimax

optimum. Conventionally, we try to overcome this difficuity by

using densely spaced sample points. This, however, may lead to a

P
prohibitively large number of error functions to be minimized

Bandler and Chen (1984a) employedhts cubie interpolation

technique to dectect the ripples of the responses and keep track of
- .

their locations during che optimization process. Consequently the

R

frequency samples can be automatically._and optimally selected.
letr e be a\function which is continuous and differentiable
in w. A ripple peak of e is a.local maximum with respect to w and

characterized by e’ = de/w = u and 3%e/3w® < 0. This implies a

change in ﬁhecsign of de/éw in the neighborhood of the maximum. It

follows that if rthere exist two frpquencies w, < w, such that
- , Q

e’ (w) > 0 and e (w,) < 0, at least one maximum of e lies in

beéséhg;\/ff w, and w, are close enough to exclude the existence of

multiple mDaxima, the cubic interpolation formula (Flercher and

. Powell 1963) can be used to escimate;:h;/éétected maximum as

-

M
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(di -w)[x -y e (w)]

W o= W, — — -
2 e (w,) -~ e’ (w,) + 2x

s e(w,) — elw,) | (4.23)
'y"'_e'(“’}_) - e (“’2) + 3‘ »
: Wy T W

x = [y —"e’ (wy)e’ (wy)]*.

This technique has proved to be very effective in practice.
The response.functions of interest as well as. their sensitivitiesl
wi;h respect  are evaluated at some base frequencies suitably'
selected (e.g., uniformlj spaced points with adequate density).
The ripples are then detected, located using (4.23) ;nd chosen to
form exror functions to be optimized. Naturally, the number of
such ripples are much smaller than the number of base points. In
chis-uay, the dimensionality of the optimization problem can be
substantiaiiy reduced. ) ?

We have incorporated such techniques in the fii:er design
examples of-the following sézkioné.and, as a result, have been able
to-use a relativelyismall number of-frgquency samples to ach}eve
virtually continuous minimax solutions.

t
4.3.4 lOth~0rder\Ellipcic and Quasi-Elliptie

Self-Equalized Filters : i '

A 10th-order multi-coupled icavity filter with a center
frequency of 4GHz and a bandwidth of 40MHz is considered. It has a
dual-symmecri;al coupling matrix with 26 nonzero elements, namely

) .
M jere Moy o i=1,2,0.., 9, and ¥, C My, =1, 02, 3,

L11-4

4. Taking the dual-symmetry into account, we have 9 indepehdently
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desiénable couplings. The input and output t:ansfbrmer ratios are
also considered as variables. Tﬁe'éiltet,is assumed lossless.

The first example (Bandler and Chen 1984b) is a convention-
al elliptic (Chebyshev) bandpass filter. The design goal consists
of an upper specification of 30dB on the return.loss for the pass-
band (3980MHz - - 4020MHz) an& a loweF specification of 70dB 'on the
insertion loss for the stopband (below 3976MHz or above- 4024MHz) .
_Since the amplitude responses are known to be symmetrical with
respect to the center frequency, we need only consider od; half of
the operating frequency range. The cubic interpolation technique
is employed ‘;o automatically determine, at each iteration, cthe
positions of the frequency samples. The minimax solution is given
in Table &.1 and the filter responses are shown in Fig. 4.5,

Optimal trade-offs between the attenuation and group delay
characterigtics are required for high fidelity signal transmission:
As has been demonstrated by Atia{ind Williams (1974), no§minimum-
phase filters have the potential of realizing optimum amplitude and
flat group delay characteristics.

Our second example is a 1Oth-order quasi-elliptic self-
equalizea filcer achieveé through simultaneous cp:timizarion of the
amplitude and group' delay (Bandler, Chen and Daijavad 1986a).
Compareds to ﬁhe first example, the amplitude specificzations are
relaxed to be 22dB return lﬁss for. the passband and 4548 insefgi;;
loss for the stopband. An additional specification of 1.5ns-is

imposed onr the relative group delay (delay variation) at four fixed

sample points in the lower half of the passband, namely 3985MHz,



TABIE 4.1

PARAMETERS FOR THE 10TH-ORDER ELLIPTIC FILTER

Parameter Solution
Mizo Moy M5 400 Mo o . 0.97284
Mag. iz, Mag, Mgy 0.63006
Myy, Moy, Myg, Mg, 0.54981
Hoso Mgy Mgy, M7;s : 0.39867
Myg, Mgs . . 0.88914.

M osoe Mgy " 0.00298
Moy Mgy ‘:. -0.02422
Mg, Mg, ' 0.15196
Moy, My, : -0.49440

. n . 1.15823

.



~3

69

.
o
T

rs
o
T

P
o
T

-
o
1

w
o-
T

o
©

o -4
a =4
[ T 1 T

RETURN 0 THSERTION LOSS (DB

[N

L
, Y

]

SNV D W S WIS SN NI SN S——

1 ! L H 1 1 !
3340 3350 3360 1970 3RO 3990 4000 4010 4020 4030 4040 ° +050
FREQUENCY (MH2)

060

-
HS )
.-
w
o
I

GROUP DELAY
o

L3

-

I [ T i #‘(\ T - T

P DY RS SN RN DR SR .

L

Fig. 4.6

L
Eetiy 3320 4000 4010
FREQUENCY tMHZ !

Responses of the optimized 10th-order elliptic
coupled,cavity filcer,

mulci-



70

3990MHz, 3995MHz'and 4000MHz (since the passband gfoup delay is
relatively smooth, cubic interpolation wis not used). .

The solution is given in Table 4.2 and thé responses are
shown in Fig. 4.7. Although no explicit manipulation of the
transfer function is necessary, we have achieved a nonminimum-phase
design as expected. Fig. 4.8 shows that two zeros of the transfer

"function are located on the right hand half of the s-plane.

4.3.5 An Asymmetric Design
The responses of a synchronously tuned filter, for which
the nom;nal values of M,, are zero, are always eleczrlcally symmet-
*ical (with respect to the center frequency). Cameron (1982) has
described the use of filters that have asymmetric characteristics,
particularly in satellice communication syscems. Advantages can be
gained in applications to contigubus band multiplexers, . where
‘asynchronously tuned filters are utilized to annihilate inherent
asymmécric distortions (such és a dispersive slope) by building
compe:sgting characteristiég into the ™Mmominal design. They are
also utilized to avoid the use of dhmmy channels by making the
cut-off slope sharpef on one side of the passband-of the first and
the last channel filters. T .
, The conventional synthesis procedure is not applicable for
asymmetrlc filters and a far more complxcacad érocedure is needed
{(Cameron 1982). ) Fr;¢ a péescribed transfer function a prototype

coupling matrix is constructed, and a sequence of rotatienal. tran-

sformations wusing appropriate pivoting matrices is performed to

)

,——]

»
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TABLE 4.2

PARAMETERS FOR THE 10TH-ORDER QUASI-ELLIPTIC SELF-EQUALIZED FILTER

Parameter.

<. Solution

Mi20 My, Mg 4o, Mig. 0.84424
Moy, Mz, Hyg . Mg 0.59318
Msar Moy, Myp, Mg, 0.54438
Mygs Mgyo M7, My 0.53059
Mg, Mgs | 0.46916"
Mo Mygoy 0.01597
Mg, Mg, -0.02673

Myg, Mgy -0.05570

Moy My, 0.13067

n,, ng 1.02258

‘



72

YTy Ty T T

N ¢ —]
S S

: < :

N ﬂ .

40

4000 0 4020 830 +Ce0

J4s0

3380

=]
o \l”
n
a
e e
N
-

—l 1 1 L L4 i ¢ L1 4. _
o a v o n o wn =] o o N 0.
-+ - NN M - - i oa e

1801 5501 hOTIHISNT Ot 3o

}

-~
-

FREQUENCY ( Mm

I 1rTUrr v ity
= e - - - o
lllllllll e
...... - - a
-—— -
J N
r
2]
N i
B o
-
+
Y o
Jo
- . o
-
1
' o
n
- o
-
|\|\\|\\\ 0
- ————— -
SeEat n
-
—
‘ Jll'iifuff
L1 1.1 ¢ 0 ¢ 4_ L4 _2_ 2 ) _]
€« (=] a [+] L (=] L=} L= (=] i=] - (=3 «© (4]
3 1 g n = & u

-4 «t -4 I

"3ISH b MBI JanOnd

-
-

optimized

FREQUENCY ([ Mn
self-equalized filrer.

quasi-ellipric

th-order-

1

the

of

Fig. 4.7 Respouses

a



Fig. 4.8

zero.

73 , T

AN
djw
-?-1.5 % .
o
°
® =+1.0
® &
%
° $-0.5
o) o
R b e L |
-0.6 -0.4 e-0-2 0 0.2 0.4 0.6 ;
o o
® T los B
,""a‘; ’
™ -
.ri'?“-
® ot-t.0 _ o
o)
|
L5

The poles and zeros of the transfer function of the
10th-order self-equalized filter. e is a pole and o a -
The zeros on the right-hand half of the complex
plane reveals a nonminimum-phase transfer function.



74

‘remove Che unrealizablé couplings.
) In comparison, the optimization approach is very flexible.
The diagonal elemenés ‘of the couﬁling_ matrix, wh#éh fepresenq
deviations fromhsynchronoué tuning, are inciuded as variables;' The
specifications are simply défined to be asymmetrical as desired and
can be modified conveniently.

We present a 6th-order example. -The i;lter is centered at
4GHz with a 4O0MHz bandwidcth. Including the diagonal elements there
are 10 independently designable‘couplings. The passband upper spe-
cification is .25dB rech; loss. The stopband lower spécification
is 40dB in§ertion loss. The lower stopband is defined as beiow
3978MHz, allowing only 2MHz for the lower transition band, whereas
the upper stopband begins at 4035MHz, 15MHz  apart from the pass-
band.

At the solution, the amplitude responses, as plotted in
Fig.'&.g, exhibit the desired asymmetry in an optimal equal-ripple

manner. A very sharp cut-off slope is achieved at the lower end of,

the passband. The filter parameters are given in Table 4.3.

4.3.6 First-Order Prediction of the Effect of Cavity Disslipation

Lossless filters are often used as an ideal model to obtain

nominal designs. In reality, the actual devices are subject to
cavity dissipation. The performance of a lossy filter can, of
course, be re-evaluated by exact simulations. This would require

complex matrix analyses and, if different values of the Q-factor

are considered, such complex analyses would have to be repeated for

i
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PARAMETERS FOR THE 6TH-ORDER ASYMMETRIC FILTER
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TABLE 4.3

Parameter Solutien

My, Mg -0.05092

Mo, Moo -0.07059

My, M., 0.76097

Mize Moy, Myg, Mg d 0.91876
Moy, My M0 My, 0.44780
M. Mey 0.24704
Mg, Mg, -0.08815

My, My, 0.41092

‘Mls' Heyn M:_s- Mg, '0-01&62
Moy, Mo, Myg, M, ~0.31096
n,, n, 1.08666

“
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each value of Q.

More efficiently, we can ﬁredict the non-ideal résponse by
a first-order estimation.. The basic sensitivity formula with-
respécc to the .cavity dissipation is given by (4.15). We have
applied this methed to-one of our earlier examples, namely the
10th-order self-equalized filter. As shown 1Iin Fig. 4.10. the
predicted passband insertion ‘loss is iIndistinguishable from the

exact simulation of the lossy filter (the numerical differenéé‘is

less than 0.001dB). . ‘ . .

It is a known fact thar a filter with flac group delay
characteristics is also less sensitive to dissipation. Bandler,
Chen and Daijavad (1984b) have shown expliggfly that the sensitivi-

ty of the amplitude with respect to dissipation is propdré;onal to

the ‘group delay (this is also élear from (4.18)). " For the cxample'

depicted in Fig. 4.10, cthe insertion loss variation is less than

- 0.1dB over 80 percent of the passband.

-~

R LARGE-SCALE OPTIMIZATION OF MANIFOLD MULTIPLEXERS

The design of contiguous band manifold microwave multip-- -

) P P . .- -
lexers has been a problem of significant interest (Atia 1974, Chen,

Assal and Mahle 1976, Bandler, Chen, Daijavad and Xellermann 1984,

Chen 1985). It also presents a practical example for large-scale

~
3

nominal circuit optimization. , ~—~ S
A typical multiplexer structure is shown EB’FiS’ 4,11, It
consists of multi-coupled cayity channel filters distribuced along

a2 waveguide manifold. The interface between a chamnel filter and

\

- N
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Fig, 4.10 Passband insertion loss of the ldth-order self-equalized.
- filter for"Q - 10,000 and Q = =. The lossy response
predicted by first-order sensitivity is indistinguishable

from the result of exact simulation. '
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the manifold waveguide can be a T-junction for which an_empirical
madel has been proposed by_Chen.'Aésal and Mahle (1976). The

location of channel filtgfs along the manifold can be modeled by

spacings. ’

A major task in multiplexer optimization‘i; to design the,
channelEEiICers aﬁd t; determine their spacing along the manifold:
The responses of interest for a typical problem are co;moﬁ port
zeturn loss and %nsertion loss between the common port and*each
channel output port. - Recently, a generalrapproach to the simula-
tion and sensitiviﬁy analysis of muitiplexers has been presented by
Bandlér, Daijavad and Zhang (1986). .

Bandler, Kellermann and Madsen (1987) have described a

lZéH: 12-chanpel multiplexer which has a channel separation 'of
_40MHz and a usable bandwidcth of 39MHz. The center frequency of
channel No; 1 is 12180MH=z. TWelv; 6th-order filters are used. A
lower specification of 20.dB on the common port return ;oss is

—impoﬁéd over the passband of all 12 channels. The design process

1s started with a one-sided 2, optimization in order to. deemphasize

-
-

the worst violé;ions of the specification-and concentrate on the

-smaller errors. From the 2, solution miﬁimax- optimization is

employed which invalves 60 variabies. The final optimized return
loss ;s shown in Fig. 4.12.

Bandler, Chen, Daijavad, Kellermann, Renault and Zhang

(%986) have described a novel decomposition approach to large-scale

minimax optimiation. It has been applied to expanding thé 12-

channel design into a 16-chanhel multiplexer which involves 240
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nonlinear designable parameters. Instead of making a biind‘at.tempt
to optimize all the variables simultaneously, a suitable decomposi-
tion approach was taken in which we define, by adding omne channel

at «a time, a sequence of localized problem involving a relarively

- 4

.-small number of variables 'and functions. For example ,. when' the

: . ~ -
13th channel .is added, We optimize only variables in channels 12
C -

‘and 13 with specifications on résponses in channels 11, 12 and 13.

- -
By repeating such a decomposition procese f_ouf times, in which

channels 13 to'l6 are added and optimized successively, an optimal,

design is reached, as shown in Fig. 4.13. -

Although the decomposition procedure may be justified. in-
tuitively, it is actually soundly based on sensitivicy a.nalyses.
An automatic gecompo’sition technique has been developed.,_\_(Bandler

and <Zhang 1987) which® can save computational time and alleviate

memory storage problems for general l'argeascale applications.

S .

i -
4.5 - CONCLUDING REMARKS

In this chapter, we have demonstrated the applicarion of

: ppcimivhniques to nominal circuit Elesign. A hierarchy of

simulatio odels has been introduced. Physical and ‘model parame-

ters and responses have been identified. A general formulation has

been defined which leads to a nominal design through minimiziﬁg a

suitable £, measure of the errors between the given specifications

and the calculated responses.
-~
Illustrations of nominal design have been provided by the

optimization of multi-coupled cavity filters as well as manifold
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multiplexers. - Practical examples of significant .interest have been
described in detail. The use of the cubic interpolation techniques
in minimax optimization has also been discussed. - .

¢
The nominal design approach is based on an ideal assumption

that, the simulation models are precise and accurate. The removal

of this -assumption leads to more realistic approaches to circuit
optimization, both in design and modefing;’bhich will be addressed

in the next two chapters.

*

R
s

»



CHAPTER S
REALISTIC APPROACHES TO CIRCUIT DESICGN

5.1  INTRODUCTION -

The approach of nominal circuit optimization, which we have

.

covered in Chapter &4, focuses attention on an idealized si®iation
in which the models are assumed to be precise and accurate. In

reality, unfortunately, there are parameter tolerances and model

4

uncertainties to be accounte

arise from design pr

v

enviéaged, e.g., integr?ifd ¢ircuits,

-which a large volume of production is

Recognition that an actual redlization of a nominal design

Dy

is 'subject to fluctuation or deviation led, in_ the past, to the

so-called sensitivity minimization approach (e.g., Schoeffler 1964,

Laker, Ghausi and Kelly 1975). Employed by ,filter designers, the

v

approach involves measures of performance Sensitivity, typically

first-order, and including it in the objective function.

, LJ

for. Such realistic considerations

The statistical design approach emerged from the pioneering .

-

work of Karafin (1971), Butler (1971), Pinel and éoberts‘(l972) and
Elias (1975). Zé/deals more. explicitly with prgcess imprecision,

manufacturing tolerances, model uncertainties, and so on, with the

aim of improving production yield and reducing cost. There has

[
been an increasing interest in statistical design in recent years,
perhaps due to the growth of large and integrated circuits,

In chis chapter, we first identify the possible tolerances

85. -

-
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and uncertainties associated with a typicii physical system and its

simulation ﬁo&elé. &ultiple circuits are definéd:to relate these

L

uncertainties .tomt nominal point. The concept# of centering, tole-
rancing and tuning are discussed in relation to yield enhancement

and—cost reduction. o - -

~

A review of- statistical design techniques is then . given.

We dé%cribe in some detail several representative methods including
the worst-case design approach, the simplicial and multidimensional
approximations, the gravity method and the pgraEFtrgs sampling

metbod.' . :

We alsc propose a generalized £, centering algorithm as a

. _ » .
. natural extension to theifp noiminal optimizamgion. It provides a

unified formulation of yield enhancement for both the worst-case

and the case where yield is less tHan 100%. -

Circuit examples are also presented as illustrations.

.

. N
5.2 A MULTI-CIRCUIT FORMULATION

5.2.1 Physical Tolerances and Model Uncertainties
Tolerances and uncertainties can be defined for the physi~

cal syétem and represented in the simulation models of different
levels. For the physical system, consider
' ~
- FLO(gY) + aFt, ' ' 2
R (5.1)
¢ - @0+ agt,

.

where AF! represents measurement errors, ¢'° a nominal value for

@' and a¢! some physical (manufacturing, operating) tolerances.

~

In order to represent the physical system more realistical-
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ly, the hierarchy of -simul_gi:_‘io i ‘models, which we have introduced in

_ "Section 4.1.1, .}';;eds to be modifie:l as

"

F _»rafo}w, +oF, -
F - F.9(¢f) + aF,

& - FO(F) + o,

¢ - F° + o,

where ¢:%, gf.0 pL.0O and F.7 are nominal models applicable at

(5.2)
AY

. . L £
“different levels. A¢F, agl, AR and AFE represent uncertainties or

ponds to the tolerances Ad!. a¢¥ may be due to rthe approximate

: : . .
-~ nature of an empirical formula. Parasitic effects which are not

adequately modeled in ¢ will contribute to AF‘, and finally we

attribute anything else that causes a mismatch between F-° and

M. to AF, | ~ L

~ « These .concepts can be illustrated by the one-section strip-
line transformer example due to Batdler, Liu and Tromp (1976b)

which has also been consider@in Section 4.2.1. Tolerances may be

imposed on the physical parameters incliuding the strip widths and.

thicknesses, the dielectric constants, the section length and
substrate thicknesses (see Fig. 4.1). Such tolerances correspond
. i - -
to &' and are represpnted in the model by agF. We may use A¢' to
represent uncertainties associated with the empirical formulas
R . =
which relate t¥e physical parameters to the equivalent circuis
parameters (the effective linewidths, the junction inductances and

the effective section length). Mismatches in the terminations at

different frequencies may be estimated by' AF®, vhich contribute to

-

— inaccuracies associated with the -respective models. A¢F corres-

a ~pef
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-

the discrep'ancy between the actual and the nominal (assuming mat-
ched terminations) reflection coefficieni:s. | —

The distinction betwee.n different levels of model uncer-
tainties can be qu;Ce subtle, For example, consider the parasitic

résistance r associated)with an inductor whose inductance is L.

-

Both L and r are functions of the number of turns of a coil (which

~ -

is a physical parameceri.. Depending on whether or not r has been
mcdeled by the equivalent circuit (i.e., whether or not r has been
included in ¢*), the uncertaincy associated with r may appear in

ad? or in AF-.

5.2.2 Mdlti‘ble Circuits and Yield -
If our primary concern is to improve production yield and
reduce cost in the presence of the tolerances A¢F and the model
H . i

uncertainties A¢, a single-circuit nomimal desi:gn will not be

-

adequate. We have to consider, as representatives of the  actual

production outcomes, multiple circuits defined by
A\ -
¢ - + sk k=1, 2,..., K, - (5.3)
LY
wheXe ¢, ¢ and s* are generic notation for the nominal parame-

ters, the kth set of parameters and a deviate due to the uncertain-
4

ties, Tespectively. A ‘more elaborate ‘definition will be given as
" ’
we proceed. ‘
: Z .
For each. circuit, we define an acceptancéo-index by
1 if H(e(®)) =< 0
L =9 : (5.4)
0 " otherwise \ ’

where H(e) 15 a ger;eralizéd :I.p/f‘&nction defined in Sectiom 2.2.1,

. -
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F

.

and H(e(¢»)-s 0 indicates satisfaction of the specifications by ¢.

_ An estimate of the yleld is given by the percentage of acceptable

AY

Y= [F I (&)K. a (5.5)
k=1 . - 3

The merit of a design can then be judged more fealistically

-
"~

“according to the yield it promises. Fig. 3.f shows ﬁbree nominal

’

points and the related yield. Now we shall have a closer look at

the definition of multiple circuits.-

-

In the Monte Carlo method the deviates s* are constructed
from random numbers gegératéd by a physical process or arithmetical
alge?ithms. Typically, we asghme a statistical disctribution for
&g, denoted by bL(eF) wheré € is a vec;&r of tolefance variables.
For example, we may consideg a multidimensional uﬁifoym distribu-
tion on [;eF, €]. Similarly, we assum; a DE(el) for agl.

Af the low level, consider

¢r - @0 4oshok, k=1, 2,..., K-, (?5.6)

where s“'* are ‘samples from the distribution D. At the higher

level; we have, for each k,

. T R 00 S i=1,2,..., K&, (5.7)

@0 F (g0,
(5.8)
STt o gl O(gh k) (g 0) + &
with &-! being samples from thehdistribution DE .

‘One might propose a distribution for s¥.-%*.% yhich would

presumably encompass the effect of both D' and DY. But, while we

. where N
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parameter space

13

tigh yield.

Fig. 5.1 Three nominal points and the related 'yiéld.
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may féasonably‘assume simple and independent distribucions for A¢i

.

and- a¢#, the compound distribution is likely to be complicated and
correlated and, therefore, much less desirable.

+ AY

5.2.3 Centering, Tolerancing and Tuning

Again, gin order to 51ﬁp}ify the notation, we use ¢ for the

nominal circuit and €-for the tolerance varisbles.

Design centering is generally related to the enhancement of

yield, directly or indirectly. An important class of problems
involves design centering with fixed tolerances, usually relative

¥

to the correspoﬁding nominal wvaluwes. .This.is called the fixed
tole¥ance éroplem @FTP); The optimizatisn variables are eleﬁents
_of éhe nomindl-circuit.parameEers ¢ . Incidentally, ‘the noﬁinal
optimization préﬁlem {(i.e., singlé-cirbuit design) is sometimes
referred to as the zero tolerance problem (ZTP).

Since impo;ing p?ght_tolerances on the ciréuithparametcrs
will increase the cost of componeﬁt fabricagion or process opera-
tion, we may attempt tohmaximize the allowablé ‘tolerances subject
“to én accepFaﬁie.yield: In this case both ¢ and € are considered
és variables to be oﬁtim;zed: Such a pr&Bleé is referred to as
optimal tolerancing.-optimal tolerance assignment, or cie variable

tolerance problem (VTP).

Tuning some components of @' after prddugtion, whether by

the manufacturer or by a customer, is cquite commonly used as a
. y v

¥

means of improving the yield. This process can also be simulated

using the model by introducing a vecrtor of'designable tuning adjus-

-

1
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; 2
. . : o . J |
tments T for each circuit, as '
. -+, k=1, 2,..., K. (5.9
. We have to determine, through opcimiz;cion. the value of 7

>~ such that the specifications will be satisfied at ¢ which may
otherwise be unacceptable, as depicted in Figs. 5.2 and 5.3. The

introduction of rtuning, on the other hand, also increases deSign

* complexity and manufacturing cost. We seek a suitaﬁle compromise
by solving an optimization problem in.which ™ are treated as part
of che‘variablef. Analogously "to 2ZTP, FIP and VTP we can define
zero tuning, fixed tuning and variable tuning problems (Bandler. and *

Kellermann 1983). ,

. From nominal, design, centering, optimal tolerancing to
‘ optimal gu;ing, we. have defigédxé_;ange of.problems which Tead to
increasingly improved yield but, on the other hand, correspond to
‘increasing complexity. An increaée in yield does not necessarily
lead to a dec%éase in cost. A commonly assumed cost versus yield
curve (Singhal and Pinel 1981) is shown iq Fig. 5.4. dften, a
rather abstract ebjective function (cost function) is:seleCCeq_for

-

thg cost-yield design problem. Fig. 5.5 illustrates a design with

.-

a 100% yield and a second'design'corresponding to the minimum cost.

5.3 A REVIEW OF TECHNIQUES FOR STATISTICAL DESIGN

The statistical design approach wasapioneered by Karafin
(;971), Burler (1971): Pinel and Roberts (1972), Elias (1975), as
well_as Bandler, Liu and Tromp (1976§). Dufing the years, signi-

ficant contributions have been made by, among others, Director and

*
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- Fig. 5.4 A cypical cost-versus-yield curve (Singhal and Pinel
1981).
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parameter space

maximum yield
(100%)

minimum c¢os!
{<100% vyield)
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Hachtel .(the simplicial method, 19773, Band%gr and Abdel-Malek
(muitidimens;onall approxiﬁac%on. _1978), Palak and Sangiovanni-
Vincenteili (a2 method using outer approximation, 1979), Soin and
Spence (the gr;vity method, 1980), .Singhal ;nd'Pinel (the‘parhméef‘
ric sampling method, 1981), as well as Biernaéki_and Styhlinski
(dynamic'&énstraint.abpfbﬁimation, 1986) . ' :

In this ;ection. we dé&crib; in some detail several repre-
sentative techniques for s?atistical design.

5.3.1° Worgc-Case Design-

At the heart of the worst-case approach is an attempt to
achieve a 100% yield. Since this impliesfkhat the specifications
have to be satisfied for all the possible outcomes, it will suffice
to conéider only the worst cases,

Bandler, Liu'and Tromp (1976a) have formulated worst-case
design as a nonlinear programming problém as

minimize C(x)
x

. ! (5.10)
subject to e(¢F) < 0, for 41l k,

where C(x) is a suitable cost function and ¢ are candidates for
the worst case. For instance, we may have

a

C(x) = ¥ +) bt |, (5.11)
i€l e, iel,

where I, and I, are index sets identifying the toleranced and
tunable parameters, respectively. ¢, ‘and t, are the tolerance and
the tuning range, respectively, associated with the ith paramet;:f\“

a2, and b, are nonnegative weights. A cost function can also be



defined for relativs tolerances and tﬁning by Including ¢ into
{5.11). ‘ .

A critical part éf this approach 1s,che'deterq§nacion of

the worst cases. Vertices of the tolerance region, for example,
- . .

are possible candidates for the worst case 5& aésuming one-dimen-
sional convexity. The yiegld fuﬁ;tion does hot.appear explici;ly in
(5.10), instead, a\&ggj'yield'isimplied by a feasible solution.

Bandl;r and Cha:aIgabous (19%&) have derived a solution to
(5.10) by minisax optimization. Polak and Sangiovannf-Vipcentelli
(1979) have proposed a different but equivalent formulationlwhich
involves a nondifferentiable optimization.

Thelworst-case approach is not always appropriate. . While
attempting to obtain a 100% yield, the solution ﬁay necessitate

unrealistically tight tolerances or excessive tuning. In- either

case, the cost may be too high. -

5.3.2 Approximations of the Acceptable Region
The acceptable region with respect to a g&ven set of speci-
fications is defined as

R, = (@ | H(e(®)) s 0}, i (5.12)
where H(e) is an 2, function, Sin;e fhe vield is given by éhg
percentage of ecircuit outcomes  that fall wicthin the acceptable
region, wé may wish to find an approximation to that region.

Director and Hachtel (1977) have developed a simplicial

approximation approach.‘ it begins by determining some points ¢ on

the boundqu of R, which is given by Q‘*- {¢ | H(e(g)) = 0). The
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c&nvex hull of these points forms a polyhedrdn. The largest hyper-
sphere - inscribed within the pblyhedron gives an approximacion to R
and is found by solving a linear programming problem Using line

searches Tore points on the boundary are located and the polyhedron

.1s ekpanded. The process thus provides a monotone increasing lower

LY

bound on the yield. The center and radius of the hypersphere can

be used to determine the centered nominal peoint and the tolerances,

Yespectively. The application of this method i§. however, limited
by the assumption of a convex acceptable region.
Bandler and Abdel-Malek {1978, 1980) presented a method

which approximates each eJ(¢D by a low-order multidimensional poly-

: . . . s :
nomial. Cireuit simulations are performed at some ¢ selécted

around a reference point. From the values of gj(dﬁ) the coeffi-
cients -of tbe approximating polynomial are determifed by solving a
linear -system of equations. Suitable linear cuts are conscruéted
to approximate the boundary ,. The yield is estimated through

N

evaluation of the hypervolumes that lie outside R, but inside the

tolerance region. 1In critical regions these polynomial approxima-

tions may be subsequently updated dur1ng optlmx"atlon The one-
dimensional convexity assumption for this method is much less
restrictive than the multidimeq;ionq% convexity required by the

simplicial approach. Sensitivities for the estimated yield are

also avajilable..

Recently, Biernacki and Styblinski (1986) have extended the
work on multidimensional polynomial approximation by considering a

dynamic constraint approximation scheme. It avoids the large

LD



number ofjbase points required for a full quadratic inﬁérpolation
by selectihg a maximally flat interpoldtion. During optimization,

whenever -a new base point is added the approiimacion,is updated,

It leads to improved accurﬁé& compared with a linear model and also

reduced computational effort compared with a full quadratic model.

5.3.3 The Gravity Method

- .

Soin and Spence (1980) proposed a statistjcal exploration
approach. Based on a Monte Carlo analysis, the centers of gravicy
of the failed and passed samples are determined as, respectively,!

< o

&-[Z&]/K:.il ' . - l <
kel .-

CAEN I BV S : :
keJ

(3.13)

where J is the index set identifying the failed“famples. K.,,; and

J
x. .
K,u2s “dre the numbers of failed and passed saméles. respectively,

The nominal point ¢ is then adjusted along the direction giwen by
s = ¢ - ¢ using a line search. This algorithm is simple but also
heuristic. The relacioﬁship between the gravity centers and the

vield is not clear in a general multidimensional problem.

5.3.4 The EarametricfSampling Method .
The parametric sampling method by Singhal and Pinel (1981)

has provided another promising direction. A continuous estimaté of

*
E

vield (as opposed to the Monte Carlo estimate using discrete sam-

ples) is given by the following integral

— i

A
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L)

where .I. (¢ 1is ghe acceptance index dqfinedr{n (5.4) and I'{¢,x) the

parameter distribution demsity function which depends on the design

- ~

variables x’(g.g., :he nominal point specifies the mean value apdﬁ
the tolerances control the ;candard deviations). Normally, in
order to estimate the yield, we generate samples ¢&, k = 1, 2,...,

K, ﬁFom the component deni}cy T, perfoﬁm-x c¢ircuit analyses -and
then take the average pf I.(¢F). Tor each new 3%: og,variables x
we would have a newJ?ensicy function and, therefore.iche sampling
and circuit analyses‘have to be repeated,

R )
The approach of parametric sampling is based on the concept

of importance sampling as

e =~ E(®X) | -

Y(x) = [ NI () h(¢) dp , T (5.19)
: we h(®) !

where h(@) is called the sampling density function. Thg,samplcs ¢

are generated from h(¢) instead of T(¢.x). An estimate of che

vield is made as

1 X . T(¢.x) 1 K N
Y(x) == ) I () ——"= = T I (¢) WF.x).  (5.16)
K k-1 h(gr) K k=1

i
”

. ~ . B
The weights W(¢f,x) compensate for the use of a. sampling dénsxty_
L
different from the component density.
Yy

This approach has two clear advantages. Firstly, once the

L1
acceptance indices I.(¢*) are calculated, no more model simulations
are required when x is changed. Furthermoxe, if ' is a differen-

. ot N, . > ;
tiable density function, then gradients of the estimated vield are

~ -
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readily available. Hence . powerful optimization techniques may be

. employed. In practice che algorithm starts with a large number of

base points sampled from h(¢) to construct the initial databank.

To maintain a sufficient accuracy, the databank needs to be updated

- by adding new samples during optimization.

This approach however is not applicable to non-differen-

tiable density functions such as uniform, discrete and truncated

distributions. It can be extended to include tunable parameters if .

the tuning rahges are fixed or practically unlimited. In this case

the index I «(¢F) is defined as 1 if ¢* is acceptable after tuning.
= .

If ¢¢ is not acceptable before tuning, then whether it can be tuned
and, if so, by how much will have to be determined through optimi-

‘ation (which is separate from the optlmlzation of yield). a

-

--variable tunlng range (in, order to minimize the cost) can not be

accommodated. :
5.4 A GENERALIZED £, CENTERING ALGORITHM

In cthis section, we opose a generalized 2, centering
algofithm which encompassed, in a unified formulation, problems of .

100% vield (worsoc-case design) and lesé than 100% yield.

- >
5.4.1 Representingfan Outcome by an £, Function

First we consider the centering problem where we have fixed

tolerances and no tuning. The optimization variable vector x con-

tains elements of the nominal parameters ¢f. Define

£ - [e7(¢) e (&) ... e (¢) 7 (5.17)

—
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as the set of multi-circuit error functions. We can achieve a

-

worst-case minimax design by

minimize U(x) = H_(£) = max max (e, (¢F)} , (5.18)
b N . k .3

where the multiple circuits ¢f are related to ¢f by (5.3).
If a 100% yield is not possible, we would naturally loek
for a solution where the specifications are .met by as many points

(but_of K circuicts) as possible. For this purpose minimax is not a

proper choice, simce unless and until the worst case is dealt with

-/

nothing else seems to matter. We may attempt to substirtute for
H,(£) a generalizedsf, or £, function, i.e., H,(f) or H,(£f), hoping
co'redqce the emphasis given to the worst case. However, in (5.18)

“

each outcome (¢F) is represented by a set of discrete error func-

tions 'and each error function makes a separate contribution to the

£, objective, thus obscuring’ the relationship between different

cutcomes. r -

The problem is better represented by finding, for each ¢,
a scalar function which indicates directly whether ¢f satisfies or

violates the specifications and by how much. For this purpose, we

choose a set of generalized 2, . functions as . :
v, (x) = H (e(gr)), k=1,2,..., K (5.19)
The sign of v, indicates the acceptability of ¢F_and':he magnitude

of v, measures, so to speak, rche distance between ¢ and the boun-

i

. -

. L~ : :
dary of the acceptable region. For example, when p = = the it is a

worst-case measure whereas when p = 2 it becomes closer to the
. N . -
Euclidean norm.
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5:6.2  Generalized £, Centering
7 Ve define a generalized £, centering as

minimize U(x) = H (u(x)), - o (5.20)
= A

where x contains the nominal (center) point, and

| oy vy a,H_ (e(¢h)) _' S
S B . (s.21)
oy agH, (e(@F))
and a, , .~ ., a, are a set of positive mhltipliers. JDifferent.values

-

-of p and q lead to different variations of the_aigoFithm. 'ﬁe shali
discuss separ#celj the éase where a nonpésitiye U(x) exists and the ~
case where we always have U(x)‘s 0, noficing that for a given x the
éign of U(x) does not depend on p, q or any_ax:' -

In the first.casef the existence of a’ U(x) = 0 indicates
chat a 1008 yield is accainable. Since the sign of U(x) is inde-
p;ndent of p, @ and @, we should ge able to achieve a U(x) = 0
(i.e., a 100% yield) using ahy values f;r P. q and @. However, che
specific sqlutioﬁ x at which U(x) attains ;c; minimum depends on p,
q and @. It means that the centered desfén ¢ will be influenced
.by the choice of p, q and a. Interestingly, ébe minimax worst-;ase
centering beéomes a special case by letting both p, q = = and using
unit mulcipliers. | |

Now consider the case where the oprimal yield is less than
.100§. In this case the set J - {tk | v > 0} is not empcf and the
generali:ed.ip objective is defineé by the one-sided 2, function HY
(see (2.8) of Section 2.2.1). To cmphasize the effect of p, we

write the one-sided Ep'sum as
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Ulx,p) = J Iy (x))? . ' (5.22)
keJ .

As p decreases.towdrdg zexo, U(x,p) approaéh;s the total number of
unacceptable outcomes which is also given by K(1 - Y(x)). Y(x)
'being the discrete yield. We may, therefore, attempt to minimize
U(x,p) as a means-of increasing Yéx). However, for p < 1 U(x,p) is

not a convex function. The smallest p that preserves. the convexity

is 1, which leads to the one-sided 2, function as

Hy (u) = ¥ u (x) -3 a vy (x). (5.23)
keJ keJ

If we choose the multipliers as
o = 1/v(x), ' (5.24)

where X, is a reference point, then H{ defined in (5.23) becomes

. -

precisely K(1 - Y(x)) at x. . From this point of wview, (5.23) and
{5.24) define a smooth and cogvex interpolation function for the
purpose of enhancing the discrete yield. The one-sided 1. algori-

- thm developed in Chapter 2 is a powerful tool for miﬁimi:ing HY .
’- From a different viewpoint, we know that a stationary point
x" of U(x.;) as given by:(5.22) is characterized by the derivatives
of [u, (x")]? which is
Wil = (g )P e, vy = afvR iv | . (5.25)

A stationary point of H] as given by (5.23) is characterized by
| ) W o= v . (5.26)
In o;der for i‘ﬂgo be a s:atioﬁary point of HI also, wg equatg
(5.25) %o (5.26), resulting in the multipliers given by (5.24) with
thé reference point x, = x°. In other words, by using appropriate

multipliers, we may be able to approximate the minimizer of U(x,p)
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by solving a convex £, problem. Miniﬁizing U(x,p) is in turn an
approximation teo maximizing Y(x). * N\
 In practice, we can not know x prio:': to the optimization.
We may take the starting peint io as a convenient reference point

and, consequently, define the multipliers by .

o { 1/v, (x,), if v, (x5) > o,

1/ , - otherwise,

k=1, 2,..., K, (5.27)

where ¢ is a small posiéive number suitably cthEh~£0;>a numerical
implementation. Notice that byﬁ definition the .magnitude of v,
Qeasures the closeness of ¢ to the acceptable region. A small v,
'indicates’that ¢ is close to be satisfying' the specifications.
?herefore, we’ assign a large hultiplier to it so that m;re emphasis
will be given to ¢ during optimization. On the other hand, we
deemphasize those points that are far awgf/from the boundary}of the
acceptable region because their contriblucions to the yield are less

likely to change.

The roles of the multipliers can also be discussed in the

light of cthe penalty function approach. £ we consider v< 0 as a *

set of nonlinear constraints, then the maximizer of the discrere

vield will have a maximum number of constraints satisfied.” The

-
Y

rgeneralized £, centering is like a penalty function method. If a

1008 yield is possible, then the centered sglution will satisfy all
the copstraints, regardless of the walues of multipliers. Other-
wise, the yield is less than 100% a;d the optimum satisfies only a
subZet of the constraints. In this case if we assign sufficiently

-

large multipliers to the constraints in the optimal subset, then
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’tpe 2, objecﬁive (5.23) becomes an exact penalty function. In the
present algorithm, we consider those outcomes that are close to_the
acceptable region as likely candidates for the optimal’ subset. We

also consider l/a..in (5.27), as a sufficient large bound for the

-multipliers.

A sequential process may also be constructed in which we
solve (5.20), updacte the multipliers at the solution and repeat the
optimization. ‘Bearing in mind that desigﬁ centering should always
be initiated from a good nominal solution and, therefore, drastic
changes in the variables are unlikely to také place, we can expect
sucg a sequential process to be a stable one. Incidentallf. the
generalized £p centering algorithm can certainly be applied to a
.single circuit to obtain a niminal design.r In zhat sense, the new
algori:hm:is a natural extension to the Ep nominal circuit opcimi-
zation. £ we can not achieve even an acceptabie nominal point,
then any attempt to optimize the yield is doomed to failu;e.

2.4.3 Tolerancing and Tuning

The generalized 2, centering algorithm can be extended to
accommodate considerations of tolerancing and tuning. _

We mneed to define a function or functions which approp-
riately relate the tolerances and runing to the cost of producction,

One possible choice of such a cost function is, similar to (5.11),
' .

C(x) = F +7% b, -Cp, . (5.28)
i€I, ¢, i€l

where the index sets I, and I, identify the toleranced and tunable
i : .
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parameters, respectively. a, and b, are nonnegative weights. C,

is a rgaliéti& target for the' cost. ‘It is also possible to define

several cost functions representing separate trade-offs in a comp-

PR

lex environment such as VLSI design (similar to the multiple objec-
tives described by Brayton, _Hachtel and Sangiovanni-Vincentelli
(1981)). For instance, (5.28; may be broken up into multiple cost
functions associated with separate groups of parameters.

By this formulaéion, the cost function is treated in the
same w3y as we treat e(¢). When C(x) s 0, we say that x satisfies
the specification (C,) on the cost. In.fact, we can adjust C, and
the weights a,, b Eo that C(x):is made comparable in wvalue with
the error fdnctions. R

The optimization problem is defined as

minimize U(x) = Hp(u(x)), (5.29)
xX

///\\\fhere the variables x include the neminal point ¢, the tolerances

!

‘ .

-

v

—

¢, 1€I,, and the tuning adjustments r%, |r%| <'¢,, k -1, 2,...,

K, }€l,, for the multiple circuits defined b& (5.9). We also have

- -

ay vy [ aH (e(¢)) ]
u(x) - ' - ' . (5.30)
\ oy Vg axH (e(¢))
- SN T | @y, C(x)

Following the discussions of the last section, we can solve

(5.30) for a solution, say x*. If U(x") = 0 then the design speci-

fications have all been satisfied and the target for cost has been

-

met. JIf, on the other hand, U(x") > 0, we can conclude that either

the design specifications are too tight or the target cost is un-

&*
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realistic or perhaps both.

N
5.4.4 Circuilt Examples

In ‘this section: we present two circuit examples to illus-
trate the usefulness of the theory. -

The'first example was originally-sdﬁsidered by Singhal and
Pinel (198l). The circuit involved is a Chebyshev lowpass filter
as shown in Fig. 5.6. Fifty-one frequencies (0.02, 0.04,..., 1.0,
1.3.Hzl are ;onsidered. An'upper specification of 0.32dB on the
insertion loss is defined from 0.02 to l.OHzﬂ and a lower specifi-
cation of 52dB on the insertion loss is defined at 1.3Hz.

Valuable results on the statistical design of this circuiﬁ
have been reported by Singhal and Pinel (1981) using the paramecric
sampling method. Normally dist%ibucad tolerances were .assumed for
the 1l circuit components. Starting from a nominal point obtained
by standard filcer synthesis, a worst-case design as well as a

minimum cost design were achieved.

As we have pointed out in Section 5.3.4, the parametrie

i

sampling method is not 'applicable to non-differentiable (such as

the uniform) distributions. Here, we apply the generalized 2,

. (yith P = 1) centering algorithm to the Chebyshev lowpass filter,

t

assuming a uniformly distributed 1.5% relative tolerance for each
component. The nominal design by standard synthesis was used as a
starting point. It has a yield of 49%. A yield of 84% is achieved

by our centered solution which involved a sequence of three design

cycles with a total CPU time of 66 seconds on the VAX 8600. The



. | 110 h -

{ .
X1 X2 X3 X4 X5 *
' 1
I‘ﬁ .
o)

13 -*{* ‘

Fig. 5.6 The Chebyshev lowpass filter (Sinmghal and Pinel 1981).
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one-sided £, algorithm developed in Chapter 2 was employed Cf solve-

the optimization problem. Some details are provided in Table 5.1.
C -

For the second example, we-consider the design centering of

multi-coupled cavity filters. The .nominal optimization of these

filters has been described in detail in Section 4.3. This example

involves a 6th-order filter. The center frequency is 4GHz and the

n

~

bhndw%dth 40MHz. We have for the passband (3980HH2 - 4020MHz) a .
lower specification of 20dB on the return loss and for the stopband
(below 3976MHz or ;bove 4024MHz) a lower specification of 20dB on
the,K insertion loss. Five ;ouplings of the filter as well as the
input’ and output t?gnsformer ratios are congidered as variables.

With respect to the glven specxflcatlons a minimax nominal
deszgn was obtained atc w?xch the yleld is 41%, assuming a.uniformly
distributed 2.5% relative tolerance for each variableaEJPSing our
centering algorithm a 65% yield was achieved, after two design
cycles and a total CPU timg qf 23 'seconds on the VAX 8600. The
details are given in Table 5.2.

In (5.27), for numerical reasons, we have defined a bound
on the multipliers. In the examples of this section, ¢ = 0.01 was
used (i.e., the bound on the'ﬁaicipliers was 100). —

We conclude.this section with a discussion on the computa-
tional efficiency related to our centering algorithm. Notice that
as long as’ the yield is less than 106%, negative error functions do

not contribute to the generalized Ep pbjective. Therefore, under

certain conditions, the circuit analyses corresponding to these

error functions can be saved. Such a saving becomes increasingly

-
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\ ' © TABLE 5.1

GENERALIZED 2, CENFERING OF THE CHEBYSHEV LOWPASS;FILTER

Nominal Values

Component } . . ' .
Qgse 1 Case 2 Casg 3 Case ?
%, 0.2251 0.2195  0.21705 0.21530
x, 0.2494 0.25157 0.24677 0.23838
Xy 0.2523 . 0.25529 0.24786 ~0.24120
X, 0.2494 f’ 0.24807 0.24019 .  0.23687
Xy 0..2251 0.22042 - 0.21753 -~ 0.21335
Xq 0.2149 0.22628 0.23565 0.23093
X, 0.3636 - 0.36739 0.37212 0.38224
X, 0.3761 0.36929 0.38012 0.39023
Xq ©0.3761 0.37341 0.38370 0.39378
X0 0.3636 10.36732 0.37716 0.38248 )
X, 0.2149 0.22575 0.22127 0.23125
Yield 498  78% 80% . 84s
Number of circuits | 50 100 - 100
Starting point Case 1 Case 2 Case 3 .
Number of itesatioms 16 - 18 13
CPU time (VAX 8600) . 10 sec. 30 sec. 26 sec.

-

A uniformly distributed 1.5% relative tolerance is assumed for each
component. The yield in this table was estimated by Monte Carle
analyses with 300 samples. . .The parameter values in Case 1 were
obtained by standard filter synthesis (Singhal and Pinel 1981).

{b'

-
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TABLE 5.2

GENERALIZED 2, CENTERINﬁfQF‘A MULTI-COUPLED CAVITY FILTER
. : \

Nominal Values

Component

Case 1 Case 2 . ‘ Case“ﬁ
. _—'K -
Mig =My = Myg - Mg, 0.93240 0.93795 0.93728
My = My, = M, = M,, 0.52648 . 0.51946 0.50747
T M, -n,, . 0.8816D 0.90228 0.92950
Myg = Mg, ) 0.16173 0.16798 0.26720
My, =M, -0.44036 -0.46782 -0.54209
n, =n, 1.25824 1.25778 1.27982
Yield ' 41% 55% 65%
Number of cirecuits 100 . 100
Starting point Case 1 Case 2
Number of iterations-~ 20 17
CPU time (VAX 8600) .11 sec. 12 sec.

A uniformly distributed 2.5% relative tolerance is assumed for each
component. The yield-in this table was estimated bm Monte Carlo
analyses with 300 samples. The parameter values in Case 1 were
obtained by a minimax nominal optimization:
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7
significant as the yjeld is improved (since moTe functions become

-

negative), This technique has been incorporated in our implemen- -

tation. Hore‘specifically{ at the ith iteration, e calculate a
firsc-order estiﬁate by.

: e, (#) = ey (g ) + gUE ~ &), (5.31)
where ¢ denotes the parameters for the kth circuit at the. ith
iteration and'g contains the sensitivities of e, with respect to
the circuit parameters. If this estimate ;J < =6, where § is a
small positive number, then the compu;ation_of‘ed(¢§) is saved apd

e, is used as an approximation, otherwise an exact simulation is

required. The senmsitivicies g are updated whenever a relevant

exact simulation is p;rformed or otherwise kept constant. § is
intended as a safe margin to allow for the accumulated errors in
thehfirst-ofder estimation. A suitable value may depend on each
application. In the examples we have set it to 10% of the corres-
ponding specification. The computational saving realized by this
method can be significant. Without the benefit of this technique,

it todk 203 seconds, instead of 66 seconds, to achieve the same

result for the first example.

5.5 CONCLUDING REMARKS f -
Realistic approaches to circuit design'have been studied in

this' chapter. The common aim of all these approaches has been to

improve the yield and reduce the production cost in the presence of

tolerances and uncertainzies. The various possible uncertainties

associacedlwith circuit models at different levels have been iden-
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tified. | &he concept of multine circuits has been-defiqéd and
related to yield estimation, design centering, optimal tolerancing
and tuning. We have also reviewed some important.techniques'ih
statistiéal design incldhing thé worst-case approach, the siﬁpli-
cial "and multidimensional approximations, .the gravity method and

the parametric sémpling method.
A generalized 2, centering algorithm has been proposed as a
. : /

natural extensio® to the 2, nominal circuit optimiiation and the

' minimax worst-case design. It has provided a unified approach to

design centering and yield enhancement. The theoretical {mplica-

tions of the proposed formulation have been discussed. Also, two

circuit exXamples have illustrated the practical usefulness of tﬁg
- . 5
algorithm. The incorporation of suitable simulation saving tech-

e

niques, such as the one that we have introduced, as well as the
rapid progress in mass computation hardgg:e will certainly further

reduce the expense of statistical design.

-



CHAPTER 6

A MULTI-CIRCUIT APPROACH TO DEVICE MODELING

6.1 INTRODUCTION B '

Devicé modeling essentially involves approximating measured
.respons;es of a iyst:em by calculated responses @si:ng a suitable
model. It {is al;o related to verifying a propdéed model based on.
its consistency with respecé to‘ﬁhysicai perturbations. Als;, we
mayﬁémploy modeling tecﬁniques to establish an analytical relation-
ship between the physical parameters and the pafameCers of an
'equivalen: circuic. |

- The traditional approach to modeling is almost enéirely
directed at achieving the best possible match between the measured
attld calculated responses. When the presence of uncertainties
causes ah imperfect matech between model.responses and measurements
or a family of nonunique solutions (with respee: to the responses
selected}, the traditionel approach has sgrious shorﬁcomingsf

.'Recently, a novel approach to robust device md&eling was
presented by Bandler, Chen and Daijavad (1986b). It exploits the
unique‘groperties of the £, optimization and employs the concept of
simultaneous procéssing of ﬁ;1tiple c;rcuits. It has the advantage
——of establishing not only a good circuit model whose responses match
as much as possible the measurement, but also.a reliable measure of
the self-consistency of the model.
This chapter is devoted to describing che motivation, the

v

116
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theoreﬁical fo;ndétion and the pracﬁical applications of this new-
. approach. Tﬁe unique;‘properties of cthe 21‘ optimizatioﬁ .are
discussed and a supérlinearly convergent £, algorithm deséfibed by
Bandler, Kellgrmann énd Madsen (1987) is employed. We show ch#c
the use of mulctiple circuits may incfeas; the identifiability cof a
problem, leadiné to ?he identification of a unique set of model "
parameterﬁi An illusfrati;e Qimple RC cireuit as well as an ac;ualp
FET device are provided as examples,

The new approach is aléo_applied to automatic model verifi-
cation, where~thi_consiSten§y'of Fhe identified model parameters
with respect o physical.perturbations is checked. 1If succéssful.
the method provides confidence in the proposed medel; otherwise it
proves the model:; incorrectness. This technique is demonstrated
by an 8th-order multi-coupled cavity filrer example.

The multi-circuict formulation is also employed to establish
a loqal relationship between the physical parameters. and the equi-
valent circuic-pérameters for a éth-order cavity filter. Such an
experimental reiétionship will be extremely useful in guiding post-
production tuning of an ac;ual device.

6.2 EXTENSION DF THE NOMINAL DESIGN CONCEPT TO MODELING

" Traditionally, che approach of nominal design hds been
extended to solving modeling probléms. A set of measurements made
on the physical system, denoted by F!, serves as single specifica-

tions. Error functions are created from the differences between

the calculated responses F(¢f) and the, measured responses F,
, P _
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similarly.to (4,3), as - R .
ey () ~w, |F(¥)~F, 3-1,2,..., . - (6.1)
By minimizing an'£p norm of'tﬁ:<érroi functions, we attempt

to identify a set of model paraﬁé%ers ¢ such .that_,F(4P) best
matches F. o : : T ' -

Such a casual treECmqnt of modeling as if it.yere a special
< : ! .

case of design is’ often unjustifiable, due to the lack of conside-
ration to' the uniqueness of the solution. In circuit design, one
sarisfactory nominal poiﬁt, possibly out of many feasible solutions

(i.e., not unique), will suffice.. In modeling, however, the uni-

~ -

s

}queness of the solution is almest always an essent part of the

- problem. Affected by the uncertainties at many” levels as well as
" unayoidable measurement errors, the model -obtairfed by a nominal

optimization is often nonunique and unreliable. ,

6.3 MODELING USING MULTIPLE GIRCUITS - =

6.3.1 'Uncertainties that Affect Modeling” .. ; ' ’
O N .
’ . S e .
For the convenience of discussion,"we replicate the uota-
tion introduced in Section 5.2.1 for tolerances and uncertainties
as

(P + aF, -
U

‘O (FLy + aF®,
ey v aEe,

' '
% 1

I.
% % 7 U

(6.2)

O (F) + o, - L .

® & 7 0% 6 7
%

0 g :



. ' 119

-

where the supetscript 0 identifies a nominal value and the prefix a

indicates an associated uncertainty or inaccuracy.

The adverse effect of these uncertainties on modeling can

be discussed under the following categories.

1) Measurement errors will Inevitably exist in practice, as

represented by aF? in (6.2).

-

-

2) Even withogt measutement errors, the calculated response
jfa-° may never be able to match F¥.° perfettly. due to, e.g., the
use of a simulation model of insufficient order or inadequate
complexity. Such an inherent mismatch is accounted for by aFY.

3) Even if neither AF! nor aF® exists so that F¥ 9 o« B e
may still not be able to uniquely identify the model parameters
from the set.of'measurements that has been sélettéd. This happens
lwhen tﬁe systeﬁJqf (generally npnlinear)iequations F .0ty - ! = 0
is-underdetermi;eq. It typicaliy occurs when, for any reason, many
internal nodes—;;e inaccessible to dirett measurement. An over-
complicated equivaient circuilt model is often at the heart of this

%
phencmenon.

4) The parasitic effects that are not adequately modeled by

¢ contribute to the uncertainty AF“, which becomes another source

of interference with the modeling process.
- - .

Consider the case in which modeling is applied to obtain a
suitable ¢ such that F2(¢) approximates F'.  The nominal circuit
approach, as described in Section 6.2, may be able_to-cope with
Deasurement errors and ths uncertainties due'tolthe use of a lower-.

order mode{. identified by 1) and 2), and comes up withva ¢ whien

~

4
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-

minimizes AP and AP ‘in a certain éense. But it will not be able
to overcome uﬁ:/::oblem of nonunique solutions. |

Often in practice, we are not able to determine ugambiguou-—
sly the identifiability of a system and the uniqueness of a model,
because_all the uncertainties described above can be present at the

same time. There will be, typically, a family of‘solut}é;s which '

all produce yeasonable and similar matches between the measured and
a

the calculated responses. We can not, therefore, rely on any par-

tlcular ‘set of parameters.

6.3.2 Multiple Circuits and Common Variables

The use of multiple circuits in device modeliﬁg was origi-
nally considered by Bandler, Chen and Daijavad (1986b). Multiple
circuits are created by makfng deliberate adjustments on some of

the physical parameters. For example, we can change the biasing

conditions of an active device and obtain multiple sets of measure-

ments. By doing so, we introduce perturbations to the medel which
P .

Cause some parameters in ¢ to change by an unknown amount. For

+ this approach to be? successful, each physical adjustment should

. . ,
produce changes in only a few parameters in .

‘Although we do not know the changes in ¢ quancticatively, it
is often possible to identify which model parameters may have been

affected by each of the physical adjustments. Suck a qualitative

knowledge may be apparent from the ‘definition of the model or may

-

come from practical experience. In the attempt to pProcess cthe

multiple circuits simultaneously, we define those model sarameters
£ . )
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that ‘are not supposed to ch;nge as common variables an§. at the
same time, allow the others to vary between different circuits.
By doing so: we subject the solution to the ancicipaﬁed topological
constraints. In other words, from a family of possible solutions_
we give preference to the one that exhibit; the desirtd consistency
with respect to physical pertﬁrbations,'qhus increasing the reli;b-
ility of the resule. < , -

To formulate this mathematically, let
M
& - J , o (6.3)
&
where ¢t contains the common variables and ¢ contains the indepen-
dent variables& i.e., model parameters that are allowed ro vary
between the kth circuit and the reference circuit ¢?. We then

define the optimization variables by

R
¢
X - . . (6.4)
~ L &
and state the optimization problem as to -
minimize U(x) - [£], , (6.5)
. _
where
o E-{eT(¢) e () ... T ()7, (6.6)
The concept of common and independent vzriables is depicted
in Fig. 6.1.
? "Now, suppose that we do not have a clear idea as to which

model parameters may have been affected by the adiustmepnt on ¢ .
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Fig. 6.1 .

c2
&
- L 3 (T ' >®
St rR 1
(a) (b)

An illustration of common and independent variables in
multi-circuit modeling. Three circuits are created by
making two physical adjustments. Assume that we know
that ¢1 should not be .affected by the physical adjust-
ments. CO, ¢l and €2 are contours of the error functions
corresponding ro the three circuits.

(a) The three circuits are processed separately. é?, éi
and ¢{¢ turn out to have different values {which is incon-
sistent with our knowledge)- due to uncertainties.

(b) Consistent results are obtained by defining ¢; as a

‘common variable and processing ‘three circuits simulta-

neously.

™~
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In this case, we let ,
R . | -
¢; . . . _
X =- . . (6.7)

&

and change the objective function to an £, norm of

= -

- .

. [ e ]
e(¢) ST ;
“f - . - T (6.8)
QI(# _&)
_Qx(dc -d:) i
where a,, &,,..., @ are nonnegative multipliers (weighets).

Using this formulation, while minimizing the errors e, we
penalize the objective function for any deviates between ¢ and &,
since our only available knowledge is that only a few parameters in

+

¢ should have any significant changes.

6.3.3 Computational Considerations

A brief discussion on com;utational considerations.-rel&ced
to coordinating the multi-circuit formulation with an optimizer. is
in order. In the process of solving the optimization problem given
by (6.5), a new set of values is‘obtained for x at each i:eraéion.

The following steps should then take place.

Step 1 Recover from x the multiple sets of circuit parameters,

namely ¢F, k = 1, 2,..., K.
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‘Q_Qmmg_n; If common variables are defined as in (6.4), then (6.3)

should be’ used to construct ¢f. Otherwise, ¢ is simply a

subset of x, as in (6.7).

Perform K cirxcuit simulatioms to obtain the model respouses

-

F(¢<) as wel]: as their sensitivicie.s 3F/a¢F .

From the calculated and measured responses formulate the
error functions ‘e(d‘),_ and from the se'nsitivit:ies of F
formulate the Jacobian matrices J* = [deT(¢F)/a¢c]T.
Construct the multi-circuit error functions f according to
{6.6) or (6.8) as appropriate. The Jacobian of £ with

respect to x is given by

JO AQ .
fT . i : .
(—)F - .
ax
JKaF
if (6.6) is used, where A* = [3(FF)T/3x])T, k = 1,..., K,

are constant index matrices. If (6.8) is used, then

- [ F 0o o ... 0]
af* 0 o o ... J
[—]F - :
ax -7 - SR S 0 | ‘
L ~axl 0 0 cer @l ]

where the multipliers a, are deﬁined in (6.8).

Usually, the 1dalues of £ and its Jacobian obtained after

these steps are sufficient for cthe optimizer o proceed with the

o

next iteration. Here, we have assumed that exact network sensici-

vities

are .made available using, e.g., the approach described in



" presented in Chapter 7.
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Chapter 3. Efficient methods of'gradfént approximations will be-,
. i~ . Q '

.

6.3.4 Exploiting thé‘Unique ?;operty of tﬁe 2, Optiﬁizati;n

The use of the £, norm as compared to the oth;r'norms has a
distinct.propérty that some large components of £ are deemphasized,
i.e., at the solution it allows for a few f,’s which are much
larger than'the others. This mean;‘that a few gross measurement
errors are better tole:atedrby Lhe 2, than any other norm,ias has
been discussed by Bartels and Conn (1981). .Furthermore. in the
context of this chapter, the 2, norm is pafticglarly suitable for
the formuléti;n giﬁen by (6.8). An 2, solution is most likely to
produce fewer deviates between ¢¥ and ¢P, which‘is Eonsistent with
our assumption that only a few model param;ters should change due
to a'deliberate adjustmen; on the physical device.

To, illustrate the above assertion, consider the gxample
u§ed by‘Bandler. Chen and Daijavad (1986b).A We wish to find the
rational apéroximant of the fgfm

X, + X0 + XywP

K(x) = ; (6.9)
1+ %0+ x0°

to the function /o in the interval w e [0,1] vsing 51 uniformly
spaced sample points. Without errors in the data, both the £, and
£, solutions to this problem give a virtually perfect match to the
actual-function (Jo) over che given interval. Ler chis be case A.

. .
We now introduce a few large deviations in the actual function in

two separate cases. In case B, Jo is replaced by zero at five
- :
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points, namely w = 0.2, 0.4,..., 1.0, In case C we use zero at 0.4

and 0.8, and one at 0.2 and 0.6. The £, solutions in these two

cases are consistent with the 2, solution in case A. On the other
hand, the presence of large devietions has severely affected the 2,

solutions, as clearly shown in Fig..6.2. -

This unique property of the 2, optimization has als; found
applftations in f;ult-isolation in analog circuits (Bandler and
Sa%gma 1985a) as well as the functional appro#ch to postproduction
tuning (Bandler and Salama 1985b).

™

6.4 PRACTICAL APPLICATIONS
6.4.1 Unique Identificatioﬁ of Model Parameters

The concept of parameter identifiability of a system has
been discussed by ‘Bandler and Salama (1985a) E; the context of
fault diagnosis in ap;log circuits. We can apply tﬁis conc7pt to

device modeling.

-

A measure of identifiability of ¢ from the systeﬁ

e(@®) = K@) - F' =0 | | (6.10)
is deterg{ned by testing che rank of the Jacobian matrix - ’
J = [3e7 /31T - [3FT/39)7. - _ (6.1

If J is not of full rank, cﬂen.¢ is not_uniquely iéentifiable frem
the set of measurements thaé-has been selected. Usually J has more
rows than columns (i.e., there are more functions than variables),
therefore the rank of J is equal to its column rank. ‘

To emphasize the partitioning of the parameters into common

and independent variablés, as in (6.3), we define
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l.al ¢
1.0
.8
5 .6
by
o
S . (a)
s |
[N
o2
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-.2
1a2
1.0
8
S .6
=
= (5)
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|
.2

Fig. 6.2 Approximatiohs using 2y and 29 optimization. The solid
line is the actual funcrionm. Diamonds identify the
approximation using £; and circles represent approxima-
tions with £5. Stars represent data points after large
deliberate deviations. (a) and (b) correspond, respec-
tively, to cases B and C. :
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J (@) = I (@,.9,)= [3F f3¢ |7,
T () = 3,(d,.9,) - {aF /3¢, ]T.

Then J = [J, J,].

(6.12)

The Jacobian matrix corresponding to the multi-circuit

formulation, namely G = taf’/ax]f with f and x given by (6.4) and -

(6.6), can be construEFeg as ' Vs
N [J2 32 o ... o
4 o0 3 ... o
G - : , (6.13)
L JE o 0o ... J

where the supqgscripé identifies different circuits..

Assuqing that a unique solution is not possible by using a
single cif?uit, l1.e., the matrix J is rank-deficient, we sBow two
necessary conditions for G to be of full rank. If these conditions
are met, we may be able® to increase the identifiabilicy.of'che
system:under consideration by using multiple circuits.

.

Necessa ondjtion
The matrices Jt - J (@, .¢) must have full rank for k - 0,
l,..., K. Otherwise, suppose that for at least one k J5 is rank-

deficient, then the corresponding submatrix of 9, namely

:0.

0

e -

s y LN . .
is rank-deficient and so is the matrix G.

P
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- )

This necessary condition imposes a restriction on the se-
lection of independent variables. It requires that each single set
of measurements must be at least sufficient to identify ¢ (with ¢

fixed)., \ ) -

Necessaxy Condition 2

The matrix J. (¢, .¢,) must be a funetion of ¢,. Otherwise,

the matrices J?, J..., JX "would be-identical and, consequently,
: : ' »
the following submatrix of G
. ) _ .
Nl h
Jg o
L JE 0

would have the same rank as [JO J¢] which is the Jacobian for a
P .

single circuit. 1In that case, G would be rank-deficient it J is.
The second necassary condition states mathemazically the
fact that if rhe designated common and independent variables are

cozmpletely decoupled with respect to the measurements, then we can

-

NOL expect to increase the idencifiability' by using multiple cir-

cuidd. This is a mild condition since in most cases the network

responses are nonlinear functions in circuit parameters.
We mow illustrate the theory by a simple RCMcircuit as
shown in Fig. 6.3 '(Bandler, Chen .and Daijavad 1986b, also Daijavad

1986). The parameters to be identified are ¢ - [R, C Rzi' I we

have measurements only on

sCRy R, -

V, = —— = (6.14)
.1 + sC(R; + R;) .
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Fig. 6.3 Simple RC network.
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where s = jw, lt is clear by inspectioﬁ that ¢ can not be uniquely
" determined regardless'of the number or choice of frequency samples,

k4 M .
simply because R, andR, are obsexrved in exactly the same way by

V,. Formally, we definetthé Jacobian maﬁrix as :

3F - aF aF
J - - .

Ry ;E ;;: £
i slcgz(1+slcg;) s, R R, 5, CR, (1+s,CR,) ]
(145, C(R 4R, )12 [L45,C(R +R,) ]2 [L#s,C(R 4R, ) |2
- * ‘ (6.15)
s.CR, (143, CR,) - SRR, saCRy (1#s_CR,) | -
L [1+s,C(R,+R,) ]2 [1+s,C(R,+R,)]? [1+s,C(R +R, ) 12 l
where F contains V., evaluated at m frequencies.
‘ We find that J can not have a rank greater than 2, Sincg
8F  C(R, -~ R;) 3F R: 3F | -
+ L, . (6.16)

&R, R? 8¢ R} 4R,
Therefore, a unique identificaci&n is impossible using only V,.

Adjusting R, by an unknown amount, wé create a_;wo;circufz
modeling problem in which the variables, i.e.. the parameters to be
iderttified, are x = [R} ¢° RY RI)T.

We proceed to show that in cthis example the rnecessary
conditions for a unique parameter identification are satisfied,

The first necessary condition requires that for each k (k =

0 and 1 in the present example) J¥ has full rank. Since
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[ s, CR, (1+s,CR, )

- [?.'-i:SIC(Rl-!'R%)]z
JE - — - i | (6.17)

oR} -

SaCR; (145, CR, )

| [1+s_C(R,+RE)}? | .

is a Eolumq vector, it has a rank of ome (full rank) if nonzero

frequencies are used. Also, from (6.15) it is quite obvious that

' 3F aF | - o
J - | — — . (6.18)
3R, a&cC ‘

is a function of R,, hence the second necessary condition is also
satisfied. Bandler, Chen and Daijavad (1986b) have shown that by
S r .

using’ two different frequencies a full rank .qacobian G can ‘be;
obtai?ed, hence RJ, §°, R} vand Rl can be uniquely§identified from
the measurements on V,. This simple exanile has demonstrated the
potential of improving identifiability by using multiple circuits.

| In.practice. especially for a complicated circuiz, we may
not ‘observe a clean-cut deficiency in identifiabilicy. Scill,
difficulties may ariée from an ill-conditioned Jacobian: In such

VS - -

cases we may be able to formulate a better conditioned problem by
thelmglti-circqit approach. |

-

-

6.4.2" Multi-Circuit Modeling of a FET Device
The development of an eﬁuivalent circuit model for FET
dev#pes_is an important part of the design process of monolithie’

microwave integrated circuits (MMIC). The small-signal equivalent

c¢ireuit model shown in Fig. 6.4 is widely used in the literature

-
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MA—o drain

source

Fig. 6.4 Small-signal equivalent circuit model for a FET device.
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-

(e.g., Curtice and Camisa 1984) and by cpﬁmercial,pacghges 1like
TOUCHSTONE (1985) and SUPER- COMPACT (1986);.'?ractical moaeling 65

i

FET devices has been frequencly trbubled'by nohunique solutions.
To demoﬁstrafe‘ the  multi-circuit modeling approach, we
utilize three sets of actual measurements on scattering parameters

of a FET device which were taken at 17 frequency points from 2GHz

i7/18¢ﬂzu 1GHz apart, under the following blasing conditions (Pucel

1988).
1. V,, =&V, V,, = 0.00V, I, = 177ma. ;
‘ 2. Vg, = 4V, Y, = -1.76V, I,, - 92ma.
3. Vg, =4V, V| = -3.10v, I,, - 37mA. :
Eleven model parameters, namely ’
- ) le'Rd'I:‘:'r‘: Rds-_R1-R=-C5a*~Cd;'Cds-&a)'

are taken as variables. The first four parameters are.considered
to be bias insensitive and, therefore, treated as common varizbles.

Follewing formulas (6.3) and 66.4), we ha&e

¢F

x- | @& : . (6.19)
LA

The vector of reference parameters actually has two parts as
' A

P, o . .

& - . ’ .‘,‘ (6‘20)
%

where ¢, consists of the common variables as
@ = [R, R, L, r]T. o (6.21)

Also, for k = 0, 1, 2, we have

- IRE, RE RN CE, CE b, gT. (6.22)



g . The total n&mber of wvarlables 1s 25,

For each clrcuit and each fr uency, by treating the real
and imaginary parts of the four sca tering parameters separately.
- we created 8 discrete error fhnctions. Overall, a total of 408

" error functions was considered. : 1‘,

The superlinearly convergent £, algorithm described by

Bandler, Kellerman@iand Madsen (1987) was utilized to solve the

resulting optimizaticon problem. The identified model parameters
are givan in Table 6.1. The match between the model responses and
the measurements, at both the starting poipt and the’ solutlon is
shown in Figs. 6.5, 676 and 6.7. Here, the exact sensitlvities of
the scatterlng parameters as rnquired by the optlmlaatron algorithm
were calculated following the approach described in Chapter 3 In
Chapter 7 we will solve the same problem wlthout requiring exact

sensitivities but, instead, utillZlng approximate gradients.

6.4.3 Verification for a Multi-Cngled Caviky Filter _

lri-circuit. approach can also be applied to model
cation. This is typically related to cases where the para-
sitic uncertainty AF* (Section 6.3.1) has put the wvalidity of a

model in doubt. Instead of explicitly defining common and indepe-

~

ndent variables, we use the formulation given by (6.7) and (6.8),
where all the parameteap are allowed to vary and chebdeviation of

each parameter from 363 reference value- forms a penalty term in the
¢ s -

- s

£, objective function. By this formulation, our confidence in the

model is strengthened if the result not only produces a reasonable

LRI

N

i
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_TABLE 6.1

- PARAMETER VALUES OF THE FET MODELS

Solution

P eter SEarting Poinct . .
. E Circuit 1 Cireuit 2 ~Circuit 3

R, (dH)
Ry (OH)
Ry, (OH)
R, (OH)
R, (OH)

L, (nH)
Cys (PF)
Cag (PF)
Cy, (PF)
&, (/OR)

7 (ps)

1.0 © 2.6025 2.6025 - 2.6025

1.0 3.7630 3.7630 3.7630
143.0 . 199.1591 163.8249 . * 163.1911
1.0 0.0099 ' 0.0999 0.389%
1.0 1.0016 0.9220 0.6482
0.02 0.0039  0.0039  0.0039
1.4 ‘ 0.7181 ° 0.4417 0.3454
0.07 0.0306 . 0.0475 0.0609
0.4 0.2228 0.2229 0.2151
0.09 0.0696 .. 0.0521  0.0410

7.0 © 3.9558 3.9558 3.9558

Bias irig Conditions

| Cizcuit 1:  Vds=4V _ Vgs- 0.00V  Ids-177ma

The .three

Circuit 2: Vds=4V  Vgs—1.74V  Ids= 92mA
Circuict 3}' Vds=4V Vgs=—3.10V Ids= 37mA

circuits start with identical model parameter values.
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Fig. 6.3 The scattering parameter match between the FET model

and
the measurements acd (a) the starting point and (b)

the
solution, with the biasing conditions being V4, = 4V, Vgs
= OV and. 4. = '77mA.
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The scattering parameter match between the FET model and
the measurements at (a) the startghg point and (b) the
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match between the measured and calculated responses, but also
demenstrates éonsist;ncy with respect to the physical adjustments.
Otherwise we should probably r;ject the current model and consider
a more adequate one.'l -

As’ a practical example, consider an 8th-order mglti-éoupléa
cavity filter centered at 11902.5MHz with a §0MHz bandwidth. The
general structure and equivalent circuit model of these filters
have been descfibed in Chapter 4. The return loss and inserﬁion

loss measurements of an optimally tuned filter and the same filter

after an adjustment on the iris which dominantly controls coupling

e . ’ :
M,y were provided by ComDev Ltd. (1985). Baced on the physical

]

structure of the filter, screw couplings Mia, My, Mg -and M,B\and

iris couplings M,,, M, ., Mg; and M,,, as well as all cavity reso-

-

nant frequencies and input/output transformer ratios are considered

’
-

as possible nonzero parameters to be identified. ' ' .
In the fifsﬁ attemprt, the stray coupling M,, ka parasitic
elemend) was ignéred. The parameters of the equivalent circuit
- model, which did not include M,., were identified from the measure-
.ments and summarized in Table 6.2. An examination of the results
shows no apparent tfend for the change in parameters, i.e., it
would have been impossible to guess the source of perturbation (an
adjustment on the iris conérolling M,,) from these results. This
kind of inconsistency would not have been discovered if only a

single circuit had been considered. -
a

-

- Consequently, the inconsistent model was rejected. A new’

model which included the stray coupling M,. was introduced and we

e
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TABLE 6.2

IDENTIFIED PARAMETER VALUFS FOR THE 8TH-ORDER FILTER

+

/

Moo ignoréd :r - M,, present
Coupiing ‘Original Perturbéd‘/ Original” Perturbed
M, , -0.0306 ~0.1122 . -0.0260 .  —0.0529
M, 0.0026 .=0.02643 0.0354 0.6503°
M, -0.0176 -0.0339 0.0676 -0.6113"
M, . -0.0105 -0.0579 -0.0078  -0.0151
M, , -0.0273 - =0.0009 -0.0214 0.0506
My o -0.0256 0.0457  -0.0179 7 =0.0027
u,, o.0502 00679 -0.0424 ~0.0278
Mg g -0.0423 0.0594 ~ =0.0426 =0.0272
Mo 0.7789 0.7462  0.3879 0.2876"
oM, 0.8061 0.8376 0.9990 0.8160°
M, 0.4460 0.4205 0.0270 -0.1250"
M, , 0.5335 0.5343 0.4791 0.5105
M, , 0.5131 0.5373 0.5006 0.5026
M, , 0.7260 . 0.7469 0.6495 0.6451
M, , 0.8330  0.8476 08447 0.8463
M, , 0.3470 ~0.3582 -0.7648  -0.7959
M., -0.1995 -0.1892 -0.1000 -0.0953
Mg - - 0.1314 0.1459

Input and oﬁcput couplings: nf = n3 g 1.067

® -
* Significant change in parameter value.

7N\
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processed exaccly.:he same measu?ements as before.- The filrer
parameters identified in this case are also.contained in Table éeZ.
A ccomparison of the original and pertufbed filter parameters shows
significant changes inM,, MN,, My,, M, and M33 (all related to
cavicies 2 and 3y, which is absolutely consistent with the actual
adjustment By inspecting the change in model parameters, it is
possible to deduce which physical ﬁarameter has been adjusted. The
match between the model respofises and the measurements is shown in
Figs. 6.8 and 6.9.

It is worth mentioning that the calculated responses of the -

-

inconsistent model which ignored M:s- match the measured responses
almOSt as well as the correct model. This justifles the essence of
the multi-cigpueit approach. which aCtemﬁts to identify the most
consistent set of parameters among many that produce a reasonable

and similar match between measured and calculated responses.

6.4.4 Modeling of the Relationship Between Physical and
Equivalent‘Circuit Parameters *

- Another important abplicatidn of multi-circuit modeling is

to create analytical formulas which relaze the modelr:; o the

physical parameters ¢'. Such formulas will become extremely useful

in guiding'an actual production alignment or postproduction tuning

procedure.
A sequence of adjustments on ¢! can be systematically made
and multiple sets of measurements can be taken. By single-circuic

optimization, these measurements would be processed separately to

L
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. . . _
obtain a set of static.models. In the presence of uncertainties, a

single change in ¢* maéiseen to cause flnncuations in all the model
parameters. Obviously. such resnits are of'very 1itn1e use. By
including penalcy terms in the .objective function (6.8) and using
the £, optimization, we may be able to supgress small fluctuations
in the-model param \tter values and emphasize the dominant relation-
ships. In other words, the multi- circuit approach is more likely
to producé models that "are meaningful” " and— useful  in practlce

» } 'r
‘Simply put, it certainly makes sense to process simultaneously the’

~measurements that are made systematically.

. Actually, the variables to be optimized need not always be

. & ’
the model parameters. They can as well include he coefficients of

r

a preposed formula. g . ]

/ As an example, consider a ‘6th-order multi-coupled cavicey

——

filter centered at 11783MHz with a S6MHz bandwidth. Three coupling

screws, whose positions are represented as elements of. ¢!, were

~adjusted, These screws were assumed. to control the couplings M, 5

My, and Myq, which.a® model parameters in ¢. Starting from a
. ~y
reference position)\each screw was adjusted four times, cwice in

the clockwise directfon (screw increasingly penetrates the cavity)
for 90 and 180 degrees, as well as twice counterclockwise —aAfter

—~—~ ‘\
each adjustment, filter responses (input and output return loss,

g
insertion loss and group delay) were measured (the measurement data
was furnishe¢ by ComDev Ltd. (1986)). Using the techniques we have

described, the model parameters were identified.

The variation of the identified coupling values versus the
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relative positioh of the screws”is shown in Figs. 6.10, 6.11 and
6.12 (these figures were originally produced by Daijavad (1986)).
The correlation between each screw and the coupling it dominantly

controls is clearly pronounced while fluctuations in other parame- -

ters are kept minimal.

6.5 - CONCLUDING REMARKS

In this chapter, we have discuséed under, seﬁeral categories
uncertaxnties which tend to deteriorate the results”?ﬁ‘bdelzng
We have introduced 'a multi-circuit approach whicq compared with’
the more craditional concept of nominal eircui¢ formulation, is
more likely to produce consistent and reliableg results in che
presence of various uncertainties.

The mathematical formulations of the new approach as well

r

as’ some relevant computatiocnal considerations .have been presenced.\J
The unique pgoperty of the £, optimizati;;'in rélation to modgling
has been exposed. A suitable measure of identifiabilicy has been
defined and two necessary conditions for improving a.rank-deﬁicienc
'system by using multiple circuits have been developed. Practical
applications to the unique identification of model parameters,
model verification and tuning-related modeling have been described
in derail. These applications have been_illuftrated and justified

through significant examples inecluding the modeling of a FET device

and multi-coupled cavity filters.
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- ‘CHAPTER 7
'OPTIMIZATION WITH INTEGRATED® GRADIENT APPROXIMATIONS

7.1 - INTRODUCTION

Many powerful gradient-based algorithms have been developed
in réc?ﬁt years for nonliﬁeaf optimization._ However, the effort };
extend their application to a wide range of practical problems has
been frustrated by the requirement of -exact gradlents of all funec-
tions with respect to all variables. For! some applications, either
an explicit sensitivity expression is not avdilable, e.g., when
time-domain analysis and nonlinear circuits are involved, or the
actual evaluation of such an expression is very tedioﬁs and time-
*consuming, e.g., for large-scale n%tworks; Partly due to these

difficulties, exact sensitivity calculations have yet. to be imple-

micted in many general-purpose CAD software packages, although the

concept of the adjoint network has been in existence for nearly two
~ N

decades and has had success in many specialized applications. The

-«
inability or inconvenience in calculating the exact derivatives has
-

created a gap between the theoretical advances in gradient-based
nonlinear optimization techniques and_théir ectual impleméntation.
With only the function values available, as-is the case for
many CAD packages on the market, one usually resorts to the method
of perturbacions (finite differences) for gradiencs, H;wever,

except for racher simple problems, the computational labor for

estimating gradients entirely by perturbations is wvery expensive.

150 _ ‘ s

o
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‘This chapter adaresses itsgelf ts a flexible and effective
- approaqh to o;)timization with integrated gradient a;\ac:ximacions
(Bandler, Chen, Daijavad and Madsen, 1986, 1987). It is ; hybrid
ap#roach which incorporates the use of:perturbations, the Eroyden
update (Broyden 1965) and the special {terations of Powell (1970a).

Approximations to second-order derivatives have been exten-
sively studied in the context of quasi-Newton methods. Those
results are not ?irectly applicable to gradient approximationst
because certa;p importamt properties of a Hgssian séch as symmetry
and positive definiteness are not geﬁerall& relevant to a Jacobian.

Previ&ﬁs work on gradient approximations has been repoEted

by Madsen (1975) and Zuberek (1984). They have used the Broyden

- rank-one formula in conjunction with the special 1iterations of

Powell in their work. Such an implementation may not be able to -

provide sufficiently accurate results for highly nonlinear problems
or-for certain optimization techniques. 1In the{gpproach described
in this chapter, perturbations are integraéed in a fle&ible hanner
to allow regular correctipns to the approximate gradients. There-
fore, a suitable compromise between accuracy and. compuzational
labor may be achieved for various applications. We also propose a
modification of the Broyden update which incofporates a knowledge,
if available, of the structure of the problem {(e.g., one that has a
sparse Jacobian).

Suitable methods of integracing gradient approximations
with an opcimi;acion algorithm are 'also discussed in this chaprter.

A general-purpose transparent interface is desgcribed. Specific

\

1 -

T
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examples of integrated optimization are provided through a minimax

‘and an 2, implementation. The performance.of these algorithms is

tested using several standard problems. The practical usefulness
of the new method is demonstrated t}:irbugh significant and diversi-
fied circuit applications, including examples of-worst-case design,
multiplexer optimization, fault locarion and FET modeling. '

Y

7.2 GRADIENT APPROXIMATIONS

7.2.1 Estimating Gradient by Perturbations '
The first-éder déri\iative of fJ (x) with respect to X, can
bf estimared by

ai:'j (x) 4‘:'J (x+hu, ) - f_1 (x)
-~ . cprm (7.1
ax, h

where u, is a column %ect:or which has 1 in the ith position and
zeros els.ewhere, as has been consistently used through this
thesis. The accuracy of such an estimate may be impr.:oved by using
a\smalle'v{' h as well as by averaging the results of a two-sided
approximation (using both positive and negative perturbazions).
This method has been widely 'used by commercial packagés such as
TOUCHSTOﬁE (1985) and SUPER-COMPACT (1986), since it is straight
forward and quice reiiable. However, the computational ‘labor
involved grows in proport:i.on to the dimension of the problem.

in the new algorithm described in this chapter, perturba-
tions are used to obt:a-in an initial approximation to the gradient

at the starting point of an optimization process, unless such an

initial approximation is already available (e.g., it may“have been

=AS
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stored from a previous optimization) and can be retrieved. During

the optimization, we may alsp incorporate a regular use of pertur-

of

bations to maintain the accuracy of gradient approximations at a

desirable level

7.2.2 The Broyden Update

The Broyden update refers to a rank-one formula proposed, by

Broydeo (1965) as

N E(x+he) — £(x) - GRy |
Gvy =G + - b - (7.2)
B

where G, is an approximation of the Jacobian [3f7/dx]T at x , h 1is

an increment vector and Gx+f prov1des an updated Jacobian The

\

values of the function f at x, and (xk+h&) are assumed availaoic
If these two points (x, and (x, +h, )) are iterates of the optimiza-
tion algorithm, then the Broyoen update requires no additional
function evaluations, regardless of the dimension of the problem.
Apparently, the approximate Jacobians genera:ed by the
Broyden update are in general less accurate as compared with those

obtained from -perturbations. Hence, the optimization may require

more steps to reach the solution or may not reach the correct 5011;9-

‘tion#At all. Broyden.(l965) has shown thar fof quadratic functions

the Broyden update will comverge and will reduce the overall compu-

-

tational effort. Although such properties can not be proved for a

general nonlinear problem, thj/jfs;;:n update still provides an

efficient alternative for approximating derivatives. -

From (7.2), we can vérify that the updated approximation
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Gyay satis_fies the following equation

f(x, +h, ) —'fg(xk-)'- G by . ‘ o (7.3
In other words, cku provides a pe'rfect linear inﬁe;pql_atiop bg:-ﬁ -
ween the two points x and (x +b, ).

Some difficulties in the application of the Broyduen update
have been observed by many researchers (Powell 1970a, Madsen 1975
and Zuberek 1984). - ¢ )

(1) If some functions are linear in some variables and:if
the corresponding components of h, are nonzero, then the approxima-
tion of constant derivatives are updated by nonzero values. We
illustrate this difficulty by a simple example. Let f, = x} + 2x,

¢ .
‘be a function in £. Denote the variables by x = [%, %, %X,]° and

-

the gradient by fi(x) = [g, g, 8 17. Two components of the gra-

dient, namely g, - O and g, = 2, are constants and- canﬁ/found

accuratel} by perturbations. g, is the only complonent: that needs

to be updated. Suppose that x, - [1 1 1]T, h, = [0.5 0.5 0.5]F and

a perfect estimation of f; (x) is -available as {2 0 2].7. The

approximation ro f‘; (x +h, ), as given by the Broyden updaté. would %

be [2.167.0.167 2.167]% (the true’value -is [3 0 2]T). |
(2) Along directions orthogonal to h, the Jacobian is not

updated. Mathematically it can be verified from (7.2) that ™ -

, 6,..P - Gp, for p'h, = 0. , - U

To overcome these difficulties, we implement a weighted

updating formula and the special iterations of Powell (1970a).

—
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7.2.3 A Weighted Broyden Update
. The  weighted update is to be applied to the Jacobian matrix

on a row-by-row basis, i.e., we update the gradient vectors of

individual funor&nsr The jth row vector of the approximate Jaco-
bian, denoted by <&, )y, is an approximation to f_; (x, )., the gradient

of fJ.

Suppose that the Hessian of f, is available to us and

denoted by H, , then

f.; (x +h ) = f;(xk) + H(xn) b . ’ ' (7.5

Analogously to (§.5), we devise _an upcating formula to obrtain an

approximation to fj (x +h ) as T

(Bydyer = (B + o H(x) hk , (7.8)

—

~1f we choose the coefficient a as

fJ (xe+hy ) = £(x,) = (g,)ih,
a = - R . (7.7
b Hy (x, ) oy

" then the linear model as gi\%en by (7.3) will be preserved, namely
. »

Ey(mtby) = £, () = (8)fa By (7.8)

‘In practice we are very unlikely to have access to the

Hessian of any 'f‘j . Eveh so, two basic facts are obvious: the Hes-
sian of a quadratic function is constanc, and if £, is linear in x,
then the ith row and the ith column of the Hessian contain only
zercs. Hence, we propose‘ the use of a constant diagonal matrix

LF = diagjw,, cee Wyl ow, 20, i-1,..., n (?.95
where n is the dimension of x. This leads to a weighted Broyden

update as follows.
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£ (%) - £, (%) - (g,)iby
qu by N
Q. = é: L L PL PR T W L

The weights w,, provide a measure

(gj)kq:l - (gJ)k + QJk 4

(7.10)

f the linearity of £,.

If £, is linear in xi.;we set w,,=0, and if f, is nearly Iinear in

X, , we assign a small value to w

g1+ 1t should be clear from (7.10)

. that only the relative magﬁitude of the weighté 1s important, not
their absolute vaiues.
N\ . Consider the simple example we have/used in Section 7.2.2,
namely £, - x{ + 2x,. Since £, is independent of x, and linegr in
Xy, wé set vy, = Wy = 0 and w,;, = 1. Under the same conditions as
in Section 7;2.2. we obtain an approximare gradient using (7.10) as
(2.5 0°2]7, compangd’to the result given by the Broyden update as
[2.167 0.167 2.167]%, and the true gradient [3-0 2]T.
' The assignment of weights requires some knowledge of the.
functional .relationship of £, (x). SucH a knowledge may éome from
experiencé or may be gained from sensitivity analyses by perforpfhg-
a few perturbations. For instance, for a particular circuie, it
maf be known that some designable.parameters have little influence
on the Eerformance function over some frequency or time intervals.
Using an adaptive method to find v, migh: be‘zf some theoretical
interest. But it was feit to be unnecessary and too complicated to

be practical at the present time; N
s . ;

The applications of the weighted update to practical cir-
» [J
cuit optimization are demonstrated later in this chapter,



A

157

7.2.4 ;he Speclal Iterations of Powell

As has Been shown in (7.4), along directioﬁs orthégodal to
b, the approxihate Jacobilan is not updated by the Broyden formula.
If some: consecutive steps of optimization happen to be c¢ollinear,
the updating procedure may not convergé. Powell (1970a) suggested
a methed which produce# strictly lineayly independent directions.
For this ﬁurpose, special ite:ations age.introduced-which intervene
between the ordinary iterations of optimization. ' The increment
vector of such a épecial iteration is not calculatgddtb minimize
the error funetioms, instead it serves the purpose of improving the

éccuracy of gradient approximations.
o

The algorich?ffgg;, computing the increment vector for a
speciﬁl iteration, as derived by Powell (1970a), is given in the
Appeﬁdix. Powell has shown that the application of the Brgyden

Jépdate on these specially generﬁted directions is likely to improve
.CEP accuracy of derivative approximations.
- 7.2.5 A Hybrid Approximation Algorithm
"Our hybrid algorithm for gfadienc appfoximat%ons Consists
of an initial.approximation, the Broyden update, Powell's special
iteracions and fegul;r corrections provided by perturbations.

At the starting point of optimization, the initial approxi-
mate Jacobian G; is usually computed by perturbations. However, G,

may be already available, for example, it may have heen stored £rom

a previous optimization, and can be urilized to avoid unnecessary

computations. This option would be useful if similar problems are
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being solved repeticively (e.g., the same circult is optimized with .

"respect to different specifinﬂqions). The acéuracy of .G, is not
very‘critical to the overall approximation. We'have-obse:ved for.-

some examples that convergence was achieved despite the erromneous

-

estimates of G, -
There is little ha;d evi&éncg as to how frequently the
special iterations should be used., Numerical experience, ours as
well as other authors’, has suégésted the use of a special itera-
tion between everyltuo ordinary ones (i.e., ev;ry;;hird itération
is a special iterapion). Also, in our implementagion. a special

iteration is skippedgbrqvided that the changes in the functions

agree fairly well wich the linear prediction by the approximate

1€, (x +0y )£, (%, )G by

The purpose of this provision is to aveid unnecessary computations.

gradiegr. This is considered E?:be-true if

< 0. 1€, (x +by )-£, (x ) ]. (7.:11)

P
Whethar perturbations should be used during optimization
|

" depends on CEL appl}cat@on. For small or mildly nonlinear prob-
lems, the B?Byden update may suffice. For large-scale problems,
espécially in circuit applications where highly nonlinear functions
are invoclved, the correction proﬁided by,perCurbaéiéﬁE is likely to
be necessary. We have incorporated in our algorithm the use of
perturbations with prescribed regularity, say, at every kth optimi-
zation iteratien.

-The Broyden update Qith or without weights, depending on
whether the necessary knowledge of f(x) is available, is emplo}gd

between perturbations.
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This-hybridiapproximacion method has proved to be flexible, .

effective and efficient for a large variety of applications.

7.2.6 Integration with Optimization Methods
Software for gradient-based optimization typically requires

a user-defined routine which accepts a set gf values for x as input

and Teturns the values of f(x) as well as the firsc-qrdei deriva-

1

tives.

Ve have‘implemented an interface which integrate§ g£adient
approximations with ‘optimization, Taking a set of values for x
from an éptimizer,’it calls a‘user-QEEined routine for the func;ion
values, carries out necessary operations for gradient approxima-
tions, and then returns to the optimizer the values of f(x)‘as well
as the approximate Jacobian. The interface'is transparent to: £och
the optimizer and the user-defined simulation routine. The optimi-
zer 1is provided with the required gradients, and the user-defined
routine (typical}y' a circﬁit simulation module) works as if che
optimizer did.not require gradiencs.

Some sophisticated optimization algo;ikhms have distinct
stages of operations. Typically, onme of the stages is to be
employed near the solution to accelerate the rate of convergence,
for which the acecuracy of the approx%mate gradient may become
cricical. Hence, it is desirable.to allow :h? use of different
aéS)QE;mat?on schemes at different phases of optimization. This
and the other options related to gradient approximations (e.g., the

use of perturbations) should be selected by the user.
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We 1Illustrate the actual integration of our algorithm-
problems, respectively.

. 3

through two specific implementations for the-minimmx,and the 2,
| ’ .
7.3

A MINIMAX ALGORITHM USING APPROXIMATE GRADIENTS
7.3.1

Implementation of a Forttan Subroutine

The gradfent approxima;ions.described in thiﬁ chapt%nggve ‘
been integrated with the Hald and Madsen (1981) algorithm for cthe

. 1 .-
minimax problem as

minimize max {fé(x)ﬂ
subject

-~

(7.12)
: ) N e . A
to possible linear constraints. As has been described in

¥ 2
Chapter 2, the Hald and Madsen algorithm consists of two stages,

v

Stage 1 being a trust region Gauss-Newton method which provides
global convergence and Stage 2 a quasi-Newton method which is

intended to achieve a fast rate of convergence near a solution.

Y
"

The original algorithm requires a user-supplded subroutine

-

which calculates the values of the error functions as well as their
first-order deridatives.

an interface which organizes gradient approximations as outlined in
Section 7.2.6.

-
-

This is replaced in the new algorithm by

4
. the function wvalues.

_ =
The user'’'s subroutine .is req@gired to supply only

Also,
;,cohmon block parameters, ;

the user 'is allowed to specify, via
hether an initia

jpproximate Jacobian is
already available and héw frequently “perturbations should be used
during..optimization. W%h

<

Stage 2 of the glgorithm is activated
near thie solution, -it is desi

—
le to agquire and maintain a higher
. ve f . )
- - ! - - .
accuracy of the approximate gradients. To this end, the user may

. S
5 o
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request incénsified'correéti ns be provided by perturbations in
Stage 2 (at a different rate than-Stage 1).

The complete Fortran implementation is included in the KMOS

software library which has been described in Chapter 2.

&

7.3.2 'Performance on Some Test Problems

\ ¥ large variety of ?ng&ems\gsve been solved using the new

algprithy. 1In this section we present the results for some rest
problems. Convergence was achieved for all the test problems.
. More precisely, the solutions obtained using approximate gradients

agree with those using-exact gradients to five significant figures.

» A comparison of computational effort between the new alggi}thm and
- ‘ -

> .
-

a method that uses perturbﬁtions'only is given in Table 7.1,

Problem M1

-

Consider the classical two-section 10:1 transmission-line

o

transformer shown in Fig. 7.1. Originally proposed by Bandler and

v

— Macdonald (1969), this prﬁblem has been widely used to test minimax
aléorithms. The error functions (fi) are givea by the reflection

- coefficient sampled at 11 frequencies normalized:with respecf Lo

" 7 1GHz: (0.5, 0.5, ..., 1.5%. Madsen and Schjaer-Jacobsen (1576)

v
have shown that when we take the characteristic impedances Z, and

2, as variables and keep the lengths £, -and 4, constant at their

optimal values (thq'quartgr wavelength at the center frequency),

the minimax-problem islgihéuiar. " To solve it effectiveyyj.:he
N ’ éuasi—Newtoé izeration (Stage‘i).of tﬁe algorithm is neéessaryf N
Fig. 7.2 1illustrates, on a mninimax contour diagram, the"

-
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‘TABLE 7.1
. . *
COMPARISON OF COMPUTATIONAL EFFORT FOR THE MINIMAX EXAMPLES

Number of Function Evaluations

Problem ‘
Entirely by Perturbations - By the New Algorithm
M1 24 (8) 18 (10)
Mﬁ ‘ 24 (8) 18 (12)
. M3 59 (11) 30 (18)
M4 T ﬁll)‘ 66 (41)
MS - 9 (3) o 5 (3)
M P32 0 . 19 (14)

M7 29 (9 14 (1)

. The entries in parentheses are numbers of optimization iterations.

- -

-
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Fig. 7.2 Minimax contours for problem Ml (a two-dimensional sin-
gular minimax problem arising from optimization of the
two-section transmission-line transformer). Eight itera-
tions using exact gradients are illustrated.
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optimization process and the solution given by Bandler, Kellermann

and gadsen (1985) which used exact derivatives. If the gradients

were estfhated entirely by. perturbatigsf 24 function evaluacxons

-
would have to be performed. Using approximate gradients, the solu-

tion, shown in Fig. 7.3, requi;éa]only_18 function evaluations.
Problem 12 : ] SN

- For the same two-séction transformer, pe can define a
reéglar minimax problem by choosing Z, and 2, as variables while
keéﬁing Z, and &, at their optimal values’ (Bandler, Kellerﬁann'and
Madsen 1985?. Figs. 7.4 and 7.5 illustrate, respectively, the
solution using exact derivatives and the solution using approximacte

gradients, 3%‘

Problems M3 and M4

Two examples aéé considered of the design of multi-cougled
cavity filters. Tﬁese filters have been discussed in general in
Chapter 4. Example M3 is a Ath-order“filter having 4 designable
coupliﬁgs. M4 is of 6th-order and has 6 variables. The reflection
coefficié%t in the passband is minimized and the transducer loss

over the stopband is maximized.

Problems MS, M6 and M7

This is a2 test problem proposed by Bren; (1972) for which
the Newton-Raphson methed is not globally convergent. We wish to
solve the systeﬁ of equations

h, = 4(x; +x,) =0,

Ry = (% = )%y, = 2)2 + xZ) + 3x, + Sx, = O.

We treat h, as a linear equality constraint which can be

i
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Fig. 7.3 Problem M1 is solved after 10 iterations of the minimax
algorithm using approximate gradients.



167

78,

725

Fig. 7.4 Minimax contours for problem M2 (a two-dimensional regu-
lar minimax problem). Using exact gradients, a total of

8 iteratioms 1s required to reach the solution. The
firsg 5 l.eracions are shown

L 4
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Fig. 7.5 Problem M2 is solved after 12 iteratioms of the mimimax
algorithm using approximate gradients. The firsc 8
iterations are illustrated. . ;

a4



v
~ handled directly by the minimax algorithm. * We also define two

error functions as £, = h,, £, - -h,.

7 The problems M5, M6 and M7 correspond to three starting -

poiﬁts“n:ed/éo solve (7.13), namely - {2 2]7, [2 0]T%and [2 1]7,

respectivély. . %

7.3.3  Worst-Case Design of a Microwave Amplifier"

- <
The worst&case fixed tolerance design of a microwave ampli-

fier is considered. Section 5.3.1 has addresseq worst-case design
in general. The amplifier, as shown in Fi}: 7.6, consists of an
NEC70000 FET and five transmission-lines. The FET is characferi:ed
by tabulated scattering parameters provided sy the manufacturer
(see TOUCHSTONE 198S5). The design variables are the characteristic
impedance Z and fhe lengths £, of rthe transmission-iines. The
design specifications are given by

7.05dB =< 20log|S,,| < 8.2dB, for w, ~ 6, 7,..., 18GHz.

Assuming a five %ercent tolerance associated wi:h each

length 2,, we seek an optimally centered design through a minimax

optimization, as

minimize max max {fj(¢F)} ) ‘\> (7.14)
& j ok : .

where the error functions fj, j =1, 2,..
the upper and lower specifications  ac "13 frequency points. The

vertices of the tolerance region are considered as candidates fo

H

the worst cases, denotéd by ¢ .

The worst-case design was accomplished by two phases of

optimizatiqﬁf\\ In the first one, we predicted an initial ser of

., 26, are derived from

PRIV P T



170

O "
| Transistor
NEC70000

Fig. 7.6 A microwave amplifier.
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worst-case vertices by first-order changes. For each £,, a ¢ was

defined by <
¢ - #Y + Ble,, Bl - sign(afj/aéi). i- 1....( n, (7.15%)
where y,, is the tolerance assoclated with #,- The derivatives at

the. starting point, which were also required for gradient hppfoxi-
mation, were estimated by perturbations. Consequently, 26 worst
cases (one for each fJ) were considered and the minimax problem

Qinimize mgx.{fd(¢9)l . (7.18)
J 4 N

“ ~ ¥

was solved. At the solution, by using (7.15) with respect to the

new nominal point, we found that 10 of the uorsg casés had changed
/Ei.e., the signs of some afj/a¢i had changed). . The ﬁew vertices
were added to the worst;case set. The correspon&ing old-ver:ices
wére kept, instead of replaced, in order to stabilize tﬂe algori-
thm. We had, thereforet a total of 36 worst cases. A second

optimization was performed and at the solution the worst-£ase set

> -
was found tS be complete (i.e., no more sign change in (7.15)).

.

The nominal parameter values at the starting point and the

- -

final solution are given in Table 7.2. The total number of Ffunc-

tion evaluations is 280, opposed to 585 required if perturbations

k-4 .

were used throughout the optimization. Fig. 7.7 depicts the worsc-
@
case envelop at the solution.

7.3.4 Design of a S5-Channei Multiplexezr
Manifold multiplexer optimization has been distussed in
. Section 4.4, where a l6-channel contiguous band hultiplexe:fwas

LY

presented as an example.
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TABLE 7.2

s PARAMETER VALUES OF THE MICROWAVE AMPLIFIER

"Parameter . Starting Point Solution
: I 52.96 69.01
£, 148.13 152.01
g, . 26.80 . 16.48
2, 7 : 26.01 5:10
2 L 46.63 | - 36.49
z - 81:27 | . 156.39

'The starting point is a minimax nominal design.




e,

GAIN (DB)

Fig.

173

5 ri\ | 1 | | L K
5 8 10 12 14 16 18 ..
) FREQUENCY ( GHZ) '

7.7 Worst-case envelope for the
centered solution.

i .
. -

"L F

amplifier response at
»
‘-i‘

20 -

cthe



— T . ;

- A minimax solution .of a 5-channel 11GHz noncontiguous band

multiplexer was given in detail by Bandler, Kellermamnn and Madsen

. -

(1985Y. To obtain the exact sensitivities required, . the theory‘{iue
. R -
to Bandler, Daijavad and Zhang (1986) was implemented in a computexr

program‘which has taken months of effort to develop and test.

Furthermore, because th;_ sensitivity expressions depem;l_highly on
the circult struwcture—and vary—from-tomponent to component, every
change to- the problem, suc_h as assigning different variablésl..
requires expert modification to the software. In fact, 'sens_itivi-

ties with respect to all possible variables were computed even
s .

thc;ugh some of them have not been actually used, otherwise the

coding scheme would have become unmanageable. Large amounts of

.

computer memory were required to store varxidus adjoint solutions

and intermediate expressions.

By utilizing our'éradienc approximation, it is poss’iblg to
efficiently design a multiplexer wichout:gll these trt;ubles.' asso-
clated with computing t;1e exact sensitivities. The complexity and
size of the program can therefore be considerably reduced. It is
obvious thar to evaluate responses alone' is more straightforward
than to evaluate responses and sensitivities simultanec;usly.

The 5-channel multiplexer can be an excellent illixscration
of effici'ent: gradient approxima;ions for two reasons. Firse, it
involves 75 variables ‘ansl'h, therefore, td-rely on perturbations
R
would be prohibitively. expensive. To be more specific, suppose
that we use the initial parameter v&_lues and specificatrions sugges-

. Y .
ted by Bandler, Kellerdann and Madsen (1985). The.?nulz:iplexer res-

.
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ponses at the starting point are depicted in.Fig. 7.8. An optimi-
zﬁtiqp after 50 iterations resulted in the responses of Fig. 7.9
(45 seconds on fhe FPS 264'via IBM a381),.when exact éepsieévities
were provided. To reach a similar result relying on perturbations
for gradi;nts, we would have to compute multiplexer responses 3800
times (50 x 76). Ee will show that efficient gradient approxima-
tions reduce the number of response evaluations significantly.

Also, this example is naturally suited for the use of cthe

weighced.Broyden update described in Sectiom 7.2.3. From Fig. 7.9

it is intuitively obvious that the response functions at lower °

freéhencies-should be almost independent of the wariables that are
_ related to the filters of chanmels 1 and 2 (channe! 1 has cthe
highest center frequency). Similarly, the responses at higher
frequencies are almo;t independent of the variablles related to the
filters of channels 3, 4. and 5. We will show that the use of

appropriate weights improves the performance of the optimization.

= *

The center frequencies and bandwidths of the five channels
are given in Table 7.3. in the following experiments, all the

channel filters start with the same 6th-order coupling matrix:

0 .0.62575 0 0 0 0 }
0.62575 0 0.57615 0 o 0
o 0.57615 0 0.32348 0. =0.74957
T 0 0 0.32348 0 1.04102. O
0 0 0 1.04102 0 1.04239
.0 0 -0.74957 0 1.04239 o |

The filters are lossy with an estimated Q factor of 12000.  The
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TABLE 7.3

MULTIPLEXER CENTER FREQUENCIES AND BANDWIDTHS !

Chanmnel Center Frequency (MHz) Bandwidth (MHz) .

o,

1 11618.5 154

2 - 11495 T- 16

3. 11155.» 76

4 11075 76

- .

5 109892.5 81
.



Al .

inicial spacing for the waveguide section associated with each

" charnel is set equal té kalf the guide wavelength evaluated at the

R B h
center frequency of the corresponding channel. The input and out-

put transformer ratios start from n} = 0.68820 and n2 = 2.04417.

o
"A lower specification of 20dB is imposed on the common port

return- loss, fof which a total of 52 frequency points is used.

-

‘These points are spaced 10MHz .apart in the passband of each channel

with additional single frequencies at the crossover of two conti-

-

guous channels. A lower specification of 20dB on the transition

band insertion loss is also_ipposed at frequencies of 10935, 11210,

11215, 11440, 11442, 11712 and 11725MHz. Table 7.4 summarizes the

parameter values of the solution obtained usifg exact gradients.
. 1 -

- -

Experiment 1
i . ‘
In the first experiment, perturbations were used only at

the starting point but not during the optimization. The approxi-

mation of gradients relied’ on the Broyden update with special

iterations, which was similar to the methods of Madsen (1975) and

.

Zuberek (1984). The optimization stopped after 266 response eva-

-~

luations (81 seconds on the FPS 264), of which 75 were used for

the initial perturbations. The responseé at this solution as shown
ih Fig. 7:10 are os;iously not as good as the ones shown 'in Fig.
7.9. ' The. optimization hés stopped prematurely. This experiment
has demonstrated that the Brovden update may not be sufficient for

1arge-§cale and/or highly nonlinear problems.

Experiment

In a second experiment, regular corrections were provided



TABLE 7.4

MULTIPLEXER PARAMETERS OPTIMIZED USING EXACT GRADIENTS

{

Parameter Ch. 1 Ch. 2 ch. 3 Ch. & ¢h. 5
M, -0.0417  0.2194 -0.0859  0.0454  0.0459
My, 0.0708  0.0301 =0.0596 -0.0098  0.0310
My, ~0.0209 -0.0215 -0.0113 =-0.0097  ~0.0069 .
M, . -0.0196 -0.0621  0.0158 =-0.0121 —0.0070
M, 0.0416 =-0.0172 - 0.0121  0.0023  0.0l41
Mg 6 0.0402  0.0117  0.0339 -0.0058 ' 0.0104

M. 0.7598  0.7383  0.7091  0.6115  0.6592
M, , 0.5723  0.6096  0.5845  0.5551  0.5873
M, 0.4239  0.4221  0.4086  0.3048  0.3644
My -0.5326  ~0.6346 -0.6021 -0.7519 -0.6948
My © .. 0.8971  1.0266 "0.9916  1.0317  1.0468
M, 1.1023  1.1518  1.1715  1.0558  1.1186
n, 1.0547  0.9358  0.9343  0.8188  0.8031
n, 1.4350  1.4311  1.4286  1.4153  1.4120
2 0.7033  0.6039  0.9219  0.7191  0.7295
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\\L, | by  perturbations for every 20 iterations. 'After 500 respoﬂse
: evaluations, of which 375 were used for perturbations, we obtained,
the responses shown in Fig. 7.11. Continuing‘ the proces% for
another 500 responsS'evaluations\the responses shown Eﬁ;?ig-_7.12
were achieved, which are as good as the ones in Fig. 7.9. Table
7.5 summarizes the parameter values_of the final solution. From
the starting' point.‘ a total of 1000 response evaluations 6293.

seconds on the FPS 264) bas'performed. Recall that 3800 respopse'

evaluations would be required ,1f ‘the gradient' calculations were

simply replaced by perturbations. o~ TN
E . 3 . . B
Experiments one and two %ave both used the original Broyden
»
update. Our third experiment demonstrates the weighted -update

described in Section 7.2.3. For this formula, a weight w,, is set

31

to zero when we know that a function £, is almost indepe&dent of
a variable X,. For instamce, the insertion loss of channels 3, &4
and 5 and the common POrt return logé/;ver the passbands of these
channels are almost‘independent of fﬁe filter couplings -in channels
1l and 2. Similarly, tﬁe responses within the frequencies of chan-

nels 1 and 2 are almosg—imdependent of the filter couplings in

channels 3, 4 and 5. 2, -we set the corresponding weights

to zero.
v © Utilizing the weighted j)pdate, we optimize the multiplexer .

without any regular corrs by perturbations. The responses

—

shown in Fig. 7.13 were obtained after 500 response evaluations

(166 CPU seconds on ,the FPS 264). By comparing this result with

. i
e L)
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P TABLE 7.5
MULTIPLEXER PARAMETERS OPTIMIZED USING APPROXIMATE GRADIENTS
e E
Parameter Ch. 1 ch, 2 T 3 Ch. &4 Ch. 5
M, , “ -0.0432  0.1801 -0.0788 . 0.0384 0.0601
My,  ~0.0526  0.0294 -0.0514 ° —-0.0067  0.0254
My, | _0.0082 -0.0178  -0.0082 -0.0055  0.0044
M, . 0.0158 -0.0582  0.0160 .-0.0064 -0.0102
My; . 0.0160 -0.0206  0.0090 00021  0.0038
Mg -0.0255  0.0100 -0.0248 -0.0037  0.0066
M. . - 0.7427  0.7077  0.6969  0.612¢ 06495
M., 0.5796 075551 0.5815 = 0.5567  0.5800
My, . 0.3855  0.3876  0.3780  0.3050 - 0.3491
M, -0.6314 -0.6699 -0.6540 -0:7520 -0.7083
My, 0.9657  1.0338  1.0064  1.0325  1.0324
My 1.1330 © 1.1279  1.1366  1.0553  1.0983
a, 0.9976  0.8915  0.8997  0.7993  0.7862
n  l.akls 1.4236  1.4223  1.6140 14154
o 0.6958  0.6132  0.9235  0.7228  0.7360
\

-
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experim;ntrl we can clearly .see th;t the ﬁse of appropriate weights
has prevented the optimization from stopping prematurely. We can
also conclude from a’ comparison between experiments 2 and 3 (also,
.between Figs. 7.11 and.7.13) that applying tﬂ; weighted update has

effectively reduced the use of time-consuming perturbations.

7.4 AN £, ALGORITHM USING APPROXIMATE GRADIENTS
7.&:1‘ Implementation of a Fortran Subroutine
.Ue_have also ihtegrated gradient approximations with the

Ha¥§ and Madsen‘(1985)'algorithm for the £, problem as

z _
minimize J |£, (x){~ (7.17)
- 0 % j=1 ~ '

subject to possible linear constraints. Similar to the mirimax

algorithm in its structure, the £, algorfthm also comsists of two

stages, Stage 1 being a trust region éauss-Newton method which
provides global convergence and Stage 2 a quasi-Newton method which
is intended to echieve a fast rate of coé%érgence near-a solution.

\ The original algorithm requires a user-supplied subroutine
) which calculates the values of the error functions as well ‘as their
first-order derivatives. This‘is replaced in the mnew algorithm by
an interface which organizes gradient approximartions as outlined in
Section 7.2.6. TFrom the uéer's peint of view, the £, package is
aTmost identical to the minimax package which has been described in
Section 7.3.1. An ex:ernal'subroutine is required to supply the

’,

function values. The user specifies, via common block parameters,

the method of obtaining the initial approximate Jacobian and the
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use of regular perturbations du:iné optimiﬁation. Different rates
of perturbations for Stage 1 and Stage 2 are g}loﬁéd.
The KMOS software library described in Chapter 2 has also

included the Fortran implementation of this algorithm.

7.4.2 Performance on Some Test Problems

We have tested the £, aigorithm using Qpproximate gradients
on a large variety of problems. Some.of thé tests are’described in
this section. Convergence was achieved for all these problems aﬁd

our solutions agree with the- exact. splutions to at least fivé sig-

- —

. nificant .figures. The computatidnal effort required by the new

algorithm and the effort required for estihating gradients entirely
by- perturbations are compared in Tabies 7.6 and 7.7:
Problas L1
The two-seciion traqsmission-line _transformer, which we
have used in Problem M1 of Sectiom 7.3.2, is considered here for
parameter identification using~the 2, optimization. The reflection
coefficient of the transformer at the solution of Proplem Ml was
taken as the measurement, -from which.we attempt to identify the
values of zl‘ and Z,. Figs. 7.14 and 7.15 illustrate, om the £,
contours, two solutions, one obtained with the gradient estimated
enpivety—bw-perturbations and the other by our approximate gradient
algoriéhm.
rob 2

This is a data-ficcing problem considered by Madsen (1975)
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TABLE 7.6

. h\ * B
- COMPARISON OF COMPUTATIONAL EFFORT FOR EXAMPLES L1 TO L4 -

Number of Function Evaluations

Problem .
Entirely by Perturbations By the New Algorithm

Ll . 42 (16) ) 27 (19)

L2 ' 'Sh (9 32 (19)

L3 " 105 ¢15) T' 63 (40)

L CTnan 65 (48)

The entries in parentheses are numbers of optimization iterations.
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- TABLE 7.7

. COMPARISON OF COMPUTATIONAL EFFORT FOR EXAMPLE LS

Number of Function Evaluations

[y

I Size of.the Problem

Case 1 Case 2 Case 3

l ' ) - -
n-5 36 (6) 17 (9) 13 (7)
n = 10— 66 (6) 25 (10) C 19 (7
n = 20 12% (6) 39 (13) 29 (7)

Case 1: The gradients were estimated entirely by perturbatioms.
{ Case 2: Using the Broyden update without 'weights.

Case 3:. Using the weighted update.

The entries in parentheses are numbers of optimization iteratioms. .

L



Fig. 7.14 27 contours for problem L1 arising from parameter iden-
tification of the two-section rransmission-line transfo-
rmer. Using perturbations for the gradients, the solu-
tion required 14 iterations (42 function evaluations).
The first 7 iterations are illustrated.
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Fig. 7.15 Problem L1 is solved after 19 iterations (27 function -
evaluations}) of the 27 algorithm using approximate
. gradients. The first 9 iterations are illustrated.
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in which e is approximate.d by a third-order rational function over

+
-

the interval -1 sy s 1. . The error functions are e

-

. X Xy _
£, (x) = — — exp(y,) .
: 1+ x5y, + x,5F + %73
: . : (7.18)
¥, =-1¥0.1¢j -1y, J=1,....721,

-

where exp(y) represents e, . : o

oblem

This is a problem due to El-atrar, ‘Vidyasagar and Dutza

(1979) of finding a th:.rd order model foy a seyenth-order system.

-~

The problem involves & variables and 51 functions.

£,(x)" = xlexp(—xzt‘{)cos(xatJ + X)) + X,exp(-X,€,) - ¥, i
y‘d\‘- 0:5e'-“P(‘t_,) - exp(=2t;) + 0.S5exp(-3c,)
/ \‘“""‘— : (7.1

+ l.S_exp(;l.ScJ)sin(7tJ) + exp(=2.5¢,)sin(5¢t,),

& = 0.1 -1), j=1; ..., 5L.

This problem has alse been solved by Bandler, Kellermann
}
and Madsen (1987) using exact derivatives,

Problem - ’ .

This problem involves a set of nonlinear equations given by

£(x) = x% + x3 +x% -1, . L
£(x) = x3 + x2 + (x; - 2)2,
fa(x)-x1+x2+x3——l,

{7.20)
Fo(x) = x, + %, =x, -1, .
fo(x) = 2x] + 6% + 2(Sx, - x, + 1)2,

fo(x) = x3 = 9x,.
Ei-Attar, Vidyasagar and Dutta (1979) have attempted an 2.

N—

solution to (7.20). ‘Banciler. Kellermann and Madsen (1987) have

[
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also conside:éa this prob}em, and their solution was reported to ﬁe
singular. o -
Problem L5 N

In Section 7.2.3, we have proposed a weighted Broyden
update. Using :he-zﬁighﬁed dpdaté. possible special structure of.a
system, such as a sparse Jacobian, can be explioited. Consi&gf a
classlof equations (Broyden 1965) given by " .

£ (x) = (3 - O.leqxl + 2% ~ 1,

£,(x) = xy.; = (3 - 0.5%,)x, + 2x,,, - 1, - (7.2

j=2,3,..., o1,

Ba(X) = %,y = (3= 0.5%,)%, - 1.
In chis tridiagonal system f, 1is "linear in él for all i =» j.
Following the discussion' in Section 7.2.3, we definé a set of
weights as w,, = 1 and wyy =0 for i » j. Using the weighted
update we have solved (7.21) for n = 5, 10 and 20. The results in
Table }.7 show clearly that the weighted update Ts more efficient
than the original Broyden formula in this example. The saving in
compukation 'becomes more significant as the size of the system

¢

inereases. - The potential advantages of the weighted update in
practical 2, optimization will.£e further demonstrated later in
this chapter through applications to FET modeling.
7.4.3  Fault Location of a Mesh Network

faultjlocatién of a resistive mesh netwgrk has been solved

by Bandler, Kellermann and Madsen (1987) using-an £, algorithm

which requires exact derivatives. ~As shown in Fig. 7.16, the
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Fig. 7.16 A resistive mesh network.

o
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network consists of 20 elements with the nominal values G, = 1.0
for 1 =1, ..., 20. Two faults are assumed in the network, namely
G, = G, = 0.5. A five percent tolerance is associated ?1th each
of the non-faulty elements. All outside nodes are assﬁmed to be

accessible aga a single excitation is appliéd to node 1.

.

Utilizing ouf‘f1 algorithm with integrated gradient appro-

ximations, the faulty elements were correctly located after 34

network simulations. The same problem was also solved using per-

-

turbations for the gradients, which required a total of 147 network

simulations.

—

7.4.4 Multi-Circuit Modeling of a FET Device ) ‘

In Chapte{ 6 we have described a novel approach to device
modeling which exploits the.unique froperties the £, cptimi:é-
tion and employs the conéépt of simultaneous processing of mgltiple
cirecuits. Ilts applicaéion to the modeling.of an actual FET device

has also been presented in Section 6.4.2.

In cthe context of this chapter, the same FET modeling

problem is solved, this time without calculating the exacr sensiti-

vicies, to illustrace praEcicai BN opcimizhtiorx with integrated
gradient approximations. \ |

A detailed description of the small-signal equivaient cir-
cuic, éhe model parameters and the measurements of the FET device
was given in Section'é.&-E. From 1l model parameters

{Rgyw Ryo L,. 7. Ry, Ryw R, Cear Cag: Cay 831 '

the first fqur were selected as common variables. Three sers of
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‘measuremeﬂts ©on scattering paraﬁeters were utiiized. The overall
optimization problem involved 25 vari#bles and 408 error functionms.
| In Section 65.4,2, we ;gve solved the problem -using exact
sensitivities. The programqing‘was quite involved because a comp-
. Tehensive 'coding scheme was 'Ei;deé to identify the appropriate
sensitivitcy exp?essions for the function; and variables associateq )

with different circuits. It would be difficult to change the

circuit topology or the variable designation without considerable

labor. In comparison, a subroutine which calculates the function
v
- .S
values quly is much less complex. . \

Three experiments were conducted which have used different

Schemes to estimate the gradients. From the starting peint given

-

>
in Table 6.1, they have reached practically the same soluzion,-

»

which has also been given in Table 6,1;

In the first experiment the gradients were estimated solely
by perturbations. A total of 468 circuit simulations were required

to reach the solution.

In the second case, the Broyden update without weights was

-

used. Regular corrections were also provided by perturbations for

every five iterations. Only 128 circuit simulations ‘were needed
r >

for this solution.

For the third experiment, we took advantage of an inherent
decomposition .in the multi-circuit formulation. The responses (and

error functions) of one circuit are absolutely unrelated o the

independent parameters .of any other circuits. Obviously, the deri-

-

vatives corresponding to such decoupLed'functions and variables are

ve
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S

" always equal to ‘zero. However, when we use the Broyden update
.

‘without weigh;:s, these derivatives may be changed to some nonzero
values, thus introducing apparent errors to the approximation. We
can avoid this by using the weighted update. By assigning zero,

weights to decoupled functions and \fariables. we can keep the zerorJ_
derivatives undisturbed ‘throughou_t the optimization process}. The
application of t:‘l;zis concept has reduced the use of perturbations'
and led to the solution after only 79 circuit simulations. This
represents less than 1/5 of the simulations required by the first
éx_p/eriﬁent as well as a‘ 38% saving in computailtional effort as
compared to the second experiment.
7.5  "CONCLUDING REMARKS

In this chapter, we ha.vg described a new approach to gra-
dient approximations. Combining_ p;x..'turbations. 'tb:e Broyden updéte
and the special iterations, the new approach has significantly
improved the com-'put:acional_efficiency as cpmpa;red with the more
conventional methods. A weighted update has also been proposed
which exploits possible sparsﬁ and decohpled structures of a
svstem to further reduce ;;.b{computations involved in estimating
gradients, Intégration of cur approa;ch with powerful gradient--
based optimization techniques has been described and illustrated by
the minim'ax and 2, implementations. The effectiveness and effi-
clency of our algori/thm have been demonstrated’ :hréugh a large

variety of problems. Examples of significant practical interest

have been given in detail, including worst-case design, multiplexer
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optimizatidn. fault location and multi-circuit modeling.
Knowing that many‘CAD packages currently used in industry
are not capable of proﬁiding exact sensitivities, the author stron-

//_gly believes that efficlent gradient approximations will contribute

/ greatly to extending the application of advanced optimization tools

to a much broader range of practical proglems.

L
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CONCLUSIONS

This thesis has offered a unified and integrated approach
to- the application of the state-of-the-art optimization techniqugs
to circuit design, nominal as well as statistical, and modeling
problems. Essential aspects related to both the gormulation of the
probfems and an effective and efficient solution method have been
addressed.

At the heart of our formulation of‘the design and mddeling
problems is a hierarchy of circuit‘models which unified the presen-
tation of Chapters 4, 5 and 6. The use of ideaiiz;d.models has led
to the optimization of a single set of nominal circuit parameters
by mipimizfﬁg a suitable ;p measure of the errors between the pex-
formance specifications and the circuit responses of interest. The
explicit consideration of tolerances, model uncertainties as well
as‘measuremenc inadequacy and inaccuracy has given rise to the more
realistic multi-circuit approaches. In design centering, “chg
multiple circuits are generated according to a suitable statistical
assumption, whereas in modeléng éhey are created from deliberate

manipulations of the system. In both cases, our aim has been to

expose -and overcome the uncertainties that inevitably exist in an

'
engineering problem.

3

~ In chis thesis, gradient-based optimization techniques have

noC only served as powerful tools for solving abstract mathematical

- .

__— 200
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problems, but also contributed as an integral part to the overall
strategy. ' The éxtensive use of minimax'éptimization in design is
justified by the fact that equal-ripple responses are bogh feasible
~and desirable for the filters, amplifiers and multiplexers that we
have considered. Without ekﬁioiting the theoretical properties of )
the 2, norm, the multi-circuit modeling approach might not have
been successful. The discontinuity in derivatives has in the pa;t
frustrated the appligation of the minimax and 2{ objectives. The
- .
critical contributions made by Hald and Madsen have resulted in &
class §f fast and reliable algorithms for nonlinear 2, optimization
as we have described in Chapter é. These algorithms have demons-
trated a superior perfofmance in numerous circuic applications,
including design, modeling, tuning and fault diagnosis.

The supply of derivatives, exact or approximate, is also an
integral part.of gradient-based circuit optimization. In Chapter
3, we have described efficient approaches to exac:t sensitivicy
calculation, applicable at both terminated network and unterminated
subnetwork levels, When an exact sensitivity expression is not
available, we have developed gradient appr;ximations-iq Chapter 7
which effectively and efficiently integrate the optig}:ation alpo-
rithm with the circuit simulation module. Since many commercial
CAD programs currently available lack the capability ;E\Braviding
exact sensitivities, gradient approximations can and should .be
utilized to facilitate the practical implementation of advaéced

optimizers,

The theoretical results presented in this thesis have bheen
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supported amply by circuit examples. These ‘examples served both as
iTIustrations of the feasibility and'efficiency of the proposed

algorithms and to maintain the engineering relevance of the work.,

- A

Particularly, the application's to cavity filters, multiplexers and

‘FET devices are of current significéng:e and their development has

been motivated by industrial démand. The close cooperation with

ir:'dt;.stry has proved invaluable to the theoretical-development. For

instance, the model verification technique described in Chapter 6

was investigated only after some ,limitations of the experimental

environment b-eéime evident; as the actual data was processed. _In
return, the theoretic.al advances will undoubtedly further the indu-
strial -application of modern CAD techniques.

A number of problems related to the topics ”Ji.n this thesis
are worth furcther Fesearch and  development. '

(a) In Chapter 5, we have described a generalized £p centering
algorithm. Like most statistical design methods, its major
computational effort is related to the Monte Cirlo analyses
wf rhe circuit (i.e., simulation of the multiple circuits).
Although we have proposed a simulation _saving technique, it
would be extremely useful to incorporate amultidimensional
approximations, which we have reviewed in Section 5.3.2,
into the algorithm. By this approach, a suitable model,
linear, maximally flatr or quadfatic. is co:r:structed for
each error function by performing exact simulactions -at a

~ _
v number of base points. During optimization, such models

are’ used to provide function values and derivatives instead
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of requiring.new circuit simulations. This would improve
the efficiency of the centering algorithm tremendously,
especially for. large networks.

The multi-circuit modeling technique described iq Chapter 6
can be comﬁined with the functional tuning approach pro-
posed by Bandler and Salama (1985a) to develop a strategy
for computer-aided actual tuning (as OppOSEd‘tO simulated
tuning). From measurements made on a manufactured device,

the modeling technique is used to produce a consistent and

‘ééliable relationship between the physically adj&stable

-

elements and the parameters of an equivalent circuit. Such
a relationship must be updated autematically and adaptively
as the tuning proceeds. Using this result the algorithm
would suggest the nécessary adjustments on the physical
device. Anticipating imprecisions in the imple;encation.

the determination of tuning adjustments may have to be

toleranced. In other words, such algorithms may have to

.

integrate the relevant concepts of multi-circuit design and

modeling.

Another recent research direction. in devic; modeling has
been model evolution, i.e., auromatic modification of the
equivalent circuit tspology. At the present tiﬁg; such
strategies are usually heuristic and of limited use. H?w-__
éver.-fér specific applications, it may be pos;ible and
useful to combine a circuit topology modification technique

.

with the modeling abproach introduced in this thesis. -For



(d)

instance, we can précess simultanecusly a simplified modél

. usir;g DC or low-frequency"measurement:.s and a more complica- .

ted model at the normal operating frequencies. Common
variables can be identified betweéq these models since they
are éﬁpposed to represent the same device. .

In Chapter 7, we have developed'a weighted update for the

gradient approximation algorithm. At the present time, the

\

weights are defined prior to and kept constant during‘the -

-

be broadened if we can develop an automatic and adaptive

scheme for modifying the weights during the optimizacio.n.

optimization. The application of the weighted update may ’



“APPENDIX
FORMULAS FOR POWELL'S SPECTAL ITERATIONS

The algorithm for computing the increment vector for a
special iteration, as derived by Powell (1912?), is as follows.

An n by n (n being the dimension of x) orthogonal m%trices
D, is constructed at each iteration. Denote the rows of D, by dF.‘

i =1, 2,..., n. At a special iteration, the increment vector is

set to a multiple of the first row vector of D, , as

h,:A'-A,: d1 . : . (A1)
where A, is a parameter coétrolling the step.size of h,. Usually
it is set to the step size 9f the latest ordinary iteration.

At the starting point D, is set to an identity matrix. At
the kth iteration D, is revised to produce D ,,. We use .y’ for the

" rows of . For a special iteration, we simply let
+1 P

Y, = diyy, i=-1,2,..., o1,
(A.2) .
Yo = &
For an ordinary iceration, the following steps take place.
Step 1 Compute ¢, = dih , i =1, 2,..., n,
Step 2 Find t which is the greatest integer such that o, = 0.
step 3 Let e, = 0 and z, = 0. For i = t-1, t-2, ..., 1, compute ‘
z

[ -
b4

= Zyey o040,
@ = ay,, +oi,,, < : (a.3)

. = (a4, = 0,2,)/[a,(a, + o7)]".

cep & Lety, =d,,, i=2¢, t+l,..., n-10 Let y, = h /(hlh )",
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