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ABSTRACT

This' ~hesis offers a unified and int:egra~ed ~reat.me.nt of

three essen~ial aspects of compu~er·aided circuit design: effective
'-

use of the ~tate.of-the-art optimization tools. efficient calcula-

cion .of exact and approximate gradients, and adequate mathematical

representation ~f the eJgineering proble~s.

The recent advanees in ~rad~ent-based 2p optimization arc
~,

rreviewed. The essence of the trust region Ga~ss-Newton method and

the quasi-Newton' solution to optimality equations is described. A

new algorit~.for linearly ~onst~ained one-side~ 21 optimi:::ation is

presented.

•
Effici.ent approaches to network sensi'civi:y
~

addressed. "" Useful "formulas are derived for general

analYSis~t"'e
.

multi-ports,

~ssless tw~-ports are given.

e~pecially two-ports. Novel proofs of an important: result for

l , .
The basic formulations of nominal circuit: opc:imi:::ation arL~ .......

.,'

.. error functions and i
p

objectives are idencified. Optimi:::ation of,

multi-coupled cavity filters is described and ~illust~ac:ed by exam­..
ples of elliptic. self-equali:::ed and asymmetric -designs. La::-ge-

introduced c:hrough a hierarchy of simuladon models. Variables,

•
L

scale optimization of multiplexers is also discussed.

Realistic consideration of tolerances and uncertainties is

of prominent inte:-esc to circuit. especially integrdc'cd ci.::-C\.li.:::.

designers. A multi-circuit approach :0 design cen:eri.ng, toleran-
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c~ng, tuning .~nd 'yield enhancement is presented. Techniques for

statistical design are'reviewed. A generalized 2i centering algo-

•
rithm is developed.

A novel. approach', t'o device modeling which util,izes multiple

circuits and exploits the theoretical pr~pertles of ~he 21 norm is

described. I't emphas~es the uniqueness and c:onsiseency of an .

equivalent circuit model. Practical applicat¥ons are jormulaeed

and illustrated through industrial example:.

Pte' new algorithm for' optimization with integrated gradient

appro~mations is offered. Impleme~tations for~ the minim~x·and 21

problems are sho~ The efficiency and usefulness are demons,trated

by a large variety of examples.
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CHAnER. 1

INTRODUCTION

The continuing effort to formulate and solve increasingly

complex engineering problems through the state-of-the-art mathemat-

ical optimization represents one of the driving forces of advanced

study in comput~r-aided design (CAD). The astonishing progress in

computer hardware,'~eading to drastic reduction in the cost of mass

computation and thewidespr~~d use of personal.~omputers, has given

further impetus to the development pf efficient CAD techniques.

In electrical engineering~ one of the earliest applications

of CAD techniques is in the area of filter design. ~c thods tha t

were popular at the :ime have been summarized in the classi~ paper

by Temes and Calahan (1967) .. Since then, advances have been mad...

in many directions. Optimization t~~hniques have evolved from

simple and low-dimension-oriented methods into sophisticated and

powerful tools serving practicin~ engineers. Efficient approaches--. .

have been developed for large-scale ne~~ork simulation and scnsiti-

vity calculations.

In recent years, there has been a conti~uing t~end toward

dealing more explicitly with process imprecision, manufacturing

tolerances: model uncertainties, measurement errors, and so on.

Such realistic considerations arise from design problems in which a

large volume of production is envisage'd, e. g., integrated circuits.

They also arise fro~ modeling problems in which ~~nsiste~su~ts
'..' ,

1
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are expected despite measurement limitations. model approximations

and simplifications.

This thesis oftfers a unified, and integrated treatment of

three essential aspects of circuit CAD: effective us~ of th,~sta~­

of-the'art optimization tools. efficient calculation~act and

approximate gradients, and adeq~te mathematical re~resen~at~on of

engineering design and modeling problems. Emphasis is .given to

recent, ut w:ll-tested, advances in gradient-based minimaX, ~l and

,"

i: optimi::ati
.

To provide the required ,gradients. elegant and-

efficient approaches to networ~ sensitivity analysis are ~escribed.

Sirice the difficulties in ~exact sensitivity calculation for some

applications have contributed a sizable gap b~tween the· advanced

optimization theories and their actual implementation, we also

develop an efficient and integrated algorithm for gradient approxi-

mations. A hierarchical representation is identified for the nom~-

rial circuit which is then extended to including tolerances and

model uncertainties, resulting in a consistent ~ul~tion of the

.2 p circuit optimi:ation. A multi-circuit approach is presented

which unifies the concepts of realistic'circuit_design and robust

device modeling.

The methods described for design. modeling and gradient:

approxi~ions are applied to relevant practical examples such as

multi-coupled cavity filters. waveguide manifold multiplexers and

FEr devices. ~ot only serving to illustrate the theory, these

examples are also of current significance to researchers and engi-

neers, especially in the field of satellite communications.



3

Chapter 2 is concerned with the recent. theoretical and

algorithmic advances in the lp optimi:z:ati~n. . The definitions and

properties of the l p .norms.o~e-sided and generalized 1p .functions

are reviewed. Following the essence of the Hald and Madsen (1981.

1985) algorit~s .for minimax and 11' we describe the trust region

Gauss-Newton method. which solves a sequence of sem~-lineari=ed 1p

problems. and the quasi-Newton met:hod which is applied to', solving

the optimality equations. Ye ~hen. present a new algorithm for
,

linearly constrained one-sided 1 1 : optimization which is very useful

in circuit de_sign and centering. Based on the same principle as

the Mald and Madsen approach. our algorithm·i~ a 2-stage combined

method. Linear programming techniques are utili:::ed' to find .:l

trust region solution to a lineari:::ed subproblem. The opti~ality

eq~tions for the one-sided 11 problem are also derived to ~hich .:l

quasi-Newton iteration is applied.

Chapter 3 deals"with ,efficient and systematic calculation

of ne~work sensitivities. A simplified algebraic approach to

linear ne~ork sensitivity analysis is 'reviewed. Useful formulas

are derived for unterminated and terminated general multi-ports.

The results are sp.eciali:::ed to ~o-ports which are ~idely used to

represent filters and subne~orks. Elegant ar:d original proofs

are shown for an important formula for lossless reciprocal t~o­..
ports. Sensitivity expressions for some commonly used frequency-responses are also given.

.
Chapter 4 is devoted to nominal circuit optimization. A

hierarchy of simulation models i~ introduced, and the parameters






















































































































































































































































































































































































































































