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ABSTRACT

The thermodynamics of Fe-Nb-C, Fe-Ti-C, Fe-Nb-N austenites and

that of binary carbides and nitrides of Ti and Nb essential in the

understanding of the precipitation behaviour 'in microalloyed steels has

"-

been investigated in this study. A dy~~ic gas equilibration technique
>

has been used in ',the experimental investigation of the ther-modynamics'of

ternary austenites and binary carbides of T1 and Nb. The ~esults

obtained in this study have been analyzed using the modified Wagner-

formalism for dilut~ ternary austenites and the sublattice - subregtll,ar

model s~&ested by Hillert and Staffansson for the int~stitial carbides

and nitrides. The solubili~es ,of NbC, TiC and NbN in austenite have

been detennined from the isoactivity measurements done in this study.
~

The, solubility-- minimum and the variation of solubili~y limits of ,

carbides of Ti and Nb and the increase in ,carbon 'con~eni at constant

carbon activity have been quantitatively related to the te"'~ary

, "

interaction .parameter. The.C-Nb, C-Ti and N-Nb ~nteraction parameters

have been deter~ined. The dissolution free energies of Nb and Ti in fcc

Fe have been obtained from the analysis. 0lf the SOlu~,lities of NbC,

and TiC in thelr respective austenites.

NbN

Expressions describing the variation of the partial molar free

energies of the components in ,the binary carbides and nitrides Df
I

transition metals 'have been obtained via
•

statistical mechanical

considerat ions. The pai~ interaction free en~rgies involved in the

statistical mechanical description of interstitial solutions have been

related to the interaction parameters in the sublattice model. The



carbon activity ~easurements 1n the NbCy and T~Cy phases and the

..:' .

nitrogen-- activity measurements in the NbNy phase obtained in this study

together with the data available 1n the literature have be~n analyzed to

obtain the. intera~tion parameters in the sublattice model. The

limitations in applying the clas~ical Wagner-Schottky model to highly

'"non stoichiometric compounds have been discussed. The necessa"y

modifications to this class~vebeen made by referring to the'

expressions obtained via 'the statistical mechanical ppproach.

The micro?lloyed ternary austenite nonstoichiometric ca.-bide

equilibrium ha$ oecn evaluated for the Fe-Nb-C ,and,Fe-Ti-C ~ystems. The

effects du~ ~~ solute inter actions and
I

t~e nonstoichiometry of. the

preci;JitC'te have been clarified. The solubility of TiN in Fe-Ti-N

austenite has been calculated using the"dissolution free energy of Ti

evaluated in this . study. Rational correlations between the terna"y

interaction parameters and the free energies of formation of carbides

and nit!'"ides have been established. Using this correlation an

...

app"ox imate value ,.of the ni trogen-ti tanium interaction parameter' has

been evaluated.

~.
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CHAPTER. 1

INTRODUCTION

The developm~nt of high s~rength low alloy steels for line pip~
\
~

and other sheet metal applications has been one of the important

endeavours in the design of steels. One of the main reasons· for the
.-

success in tRe design of. these steels is the effective utilization of

the microalloying additions such as niobium,
'-

titanium, and
.

va"nadium.

These transition metals form fine carbide, nitride and carbonit~ide

. precipitates during hot deformation of. austeni~e, thereby influencing

its ~ecrystallization and growth kinetics.
.

The thermodynamics of

microalloyed austenite and the precipitate pha~s is one of the many

impo~tant facto~s that are involved in the complex interplay of

defor~ation and pr~cipitation in these steels.

Th"e solubilit y of ca rbides, nit rides, and carb'oni trides of Ti,

Nb, v etc. in alloyed austenite has been the focus of many

the past two
.;.

decades. The mutual stability is

gene~ally unde~stood in terms of solubility limits of the bina~y

stoichiometric compounds of these elements in austenite devoid of solute

interactions. The carbides and nitrides of Ti and Nb are

nonstoichianetr;c and hence their composition can va~y when precipitated

in steels. As the 6roup IV and V transition metals are very strong

carbide ind nitride for~e!""s. their interaction with carbon and nit~ogen

in austenite is very pronounced. Th~ effects of nonstoichiometry and

the solute inte~actions on the solubility of these precipitates have not

----....



2·

#"
biin addressed in the past investigations. All of these inves~igationsl

wer-e performed at low carbon levels (below 0.·2 Wt~) and hence are not

capDble of predicting the solubility at higher levels ~here the effects

of solute inte--actions become significant.. The present work was

unde~taken to gain insight into the natu~e, ~nd the magnitude of thes~

interactions in rnicroalloyed austenite.

In this study." the thermodynamics of the Fe-"I'i-C and Fe-Nb-C

~i~es and the solubility of the carbides in these austenites in the

tempe~ature range 1273K-1473K and at carbon levels g~eater than 0.1 Wt~

have been expe""irnentally investigated using gas ,equilib"ation me'thods.,

The expe"imental ""esults are then analyzed in terms of :solution' models

to obtain the par-a~eters defining the interaction~between the solutes in

•

the austenites as well as in the carbides.
'7

The thermodynamics of

Fe-Nb-N austenite and the solubility of NbN have also been investigated

using nitrogen atmosp!1.eres and the Nb-N ~nteraction is determined to a

""t:3sonable des"ee o'f accuracy. The effects of solute inter-act ions and

the nonscoichiomet ... y on the solubility of the precipitat~~ have been

clarified. Rational correlatipns between the dissolution free energies

of tr-ansition ~etal solutes in fcc iron and the atomic number of the

solute and the size factor are shown to exist. Correlat ional

relationships between the ternary interaction parameters and the free

ene"'gy of formation of carbides and nitrides from austenite have also

been established. These relationships are utilised in the assessment as

well as systernetization of thermodynamic data.

The predominant, iflteractions in steels arise from· the

.substitu.tional-interstitial solute combinations. The results· on solute

•






































































































































































































































































































































































































