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" ABSTRACT

2

¥

The Transient Energy Function (TEF) method represents

a powerfﬁl technique’ to analyze the transient stability of large-

scale power systeﬁa. Currently, in the applications .5ff the - TEF
33. method, the power network is reduced by eliminating .all buses and

retaining only the internal nodes of the generators. This Redﬁ@ed

——

Netwo;k Egrmulation {RNF) yields dense .(non-sparse) matrices "in the
comb&?étions"and‘ consumee‘ significant cogputa;iqpal §f$e. ‘This
represents:-a serious Erawback of the RﬁF, especgally“{n applicaiions to
large poﬁe} networks. Also,. all system loads are modeled as constant

impedance loads in order to use conventional techniques to reduce the

.

,[natonk to-the inte}nal nodes of the generators. Many loads in practical

Bower gystems can be represented as constant power hagads. Such 1loads
5 , e
. >

are;coh?éntionally approximated as constant impedance type based on the
g W W e ot . b

E L meny
- (%

ﬁﬁé-fauﬁt conditions. Consequently, accurate, results may not ‘. be

: >
obtained. Moreover, the TEF is not applicable.to very large-scale power

systems due to the computer storage- related problems (e.g. file paging)

and excessive computational time.

$ ) ‘
A novel formulation sof the TEF method, retaining the original

gtructure of the system network, _is presented and the associated
-computerizéd algorithm is described. All the above mentioned problems

are solved using the proposed Sparse Formulation (SF).

-

(\\' iii
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_~The aparsé' formulation avoids netwoyk reductiqn-_cbmpletely.
All‘mat}lcea used in the calculation of both the' Stable Equilibrium-.

Point (SEP) and the UnetaBle Equilibrium Point (UEP), for which the

computational times are dominant in the calculation process of the
energy margin (the stability index), are very sparae."Thie leads to

a gignificant saving in computational time, i.e. the sparse formulation

¢ K {
18 more efficlent as compared with tﬂe RNF approach.

R

The sparse formulation is applied to different (realistic)
utility 'systems of up to 300 generators and 1724 buses. The’ results

prove the superiority of the.sparae formulation in contrast-with other

——

current methods. . . "\ ‘ . .
— e ‘
/ -

In addition, either constant impedance o

ﬁodpls, or any combination thereof, can be ﬁandled‘” explicitly...

Considgring these actual load models, the stability indices (the

-

critical clearing time and the trans ent' stability limit)' can be

calculated more accurately. N

‘ . ’ -

The.proposed technique can hanFle very large scale power Byatemé'
) ) o By i Sl

which are beyond  the scope of RNFf‘approach. Consquently, it enableé_‘
an improved design methodology of transmission hetwofks. by . including
provision for modeling the network in more detail. Using the_ sparsd

formulation,'it is possible to perform a transient stability aﬁalyaia

on a microcomputer. This will render cost-effective the use of such

)
'

analysis throughout the wo;ld, Also, a very powerful and robust

numerical technique tg¢ deal with ill-conditioned power \systems ié
LY

iv
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vaescribed. Therfore, practical (stressed) power systems can ‘- ba

handled, i.e. the sparse

techniques such as RNF.

formulation

is more reliable

than

other
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- CHAPTER 1
. ® INTRODUCTION
N ' -
1.1 Statement of the Problem

Suqcesaful operation of a power system depends lérsly .on the
engineer,s ability to provide reliable and uninterrupted service to the
loads. This means that both voitage and frequency, at all loads, must be
held within acceptable tolerances so thét the consumer’s equipment will
operate aatisfacicrily, In order to achieve that two requirements are
v ) A
necessary; dipsf&y. the system generators sho#ld run synchronously-,(in
step) and with 3¢equate capacity to " meet .the load demand. Secondly,
the integrity of the power network should 'be maintained to ensure
continuity of service. Power systems occasionally suffer perturbations.
These psrturbations may be small originéting from random changes in
loads or they may be severe a}ising out qf a fault on the network,
a sudden application of & major load, or loss of a line or a generating
unit. These perturbations may éause the power system to go from one
equilibrium state (operating céndition) to another. Continued successful
operaéion of the system depends upon a stable transition to the new
operating,condition. The study of the behavior of the system in the

A

transition period is described as power system stability analysis.

The transient following the system perturbation is oscillatory

in nature. If the system is stable, these oscillations will be damped

toward either: (a) the original 6perating condition if there is no net

» 1



3

change in bowar, or (b) a new’ operating condition if ‘there 1is an
unbalance between the suppiy and demand due to this lparturbation. In
either caae'a;l interconnected synchronous machines should malntg{ﬁ fn
aynchron}am if the system is to remain. ntéblg. Thé power system

stability definitions -[1], often used in the lféerature. are ase -

follows:

Steady state stability refers to the stability of a power system.
subject to small - and gradual changes }n loads: thq sygtem remains

stable with conventienal excitation and governer controls.

Dynamic stability refers to the stability -of 'a power system

rd
¥ubjact to a relatively small and "sudden™ disturbance: the system can
be described by linear differential equations. Typical‘examplea are the

low-frequency oscillations of irnterconnected large powar systems_and the

toreional oscillations of a steam-electric power plant.. \\\_

Transient Stability refers to the stability of a power sgystem
gubject to a sudden and severe diafurbance. For thies definition to apply
the system muat be described by differential equatione which may be
nonlinear. Typical examples resulting in transient étabillty analysie
Include a fault on the network, sudden application of a hajor load, or
loss of a line or a generatiné unit. Thie type of atability‘is analyzed

throughout this thes?s.

Transient stability can be explained physically as follows [2].
Aasume that the system {gs in steady state, i.e. the power supplied by

the generators exactly matches the power absorbed by the loads plus the



elactrfc power lossg in the transmission system. Suppose that a large

perturbation in the system occurs,, é{g. a fault on a transmiseion 1line.

Thia disturbance upsats the ﬂhargy balance existing prior to the

disturbance and results in an excess or deficit of the mechanical powser

supplied . over the electrical power produced by each generator in the

e

system. Consequently, the generator rotors accelerate or decelerate

+

p ) ‘
respectively. Thg, rotor angles either increase or decrease with respect

to the synchronouqu rotating reference " frame. When the fault is

. -
removed, possibly by isolating the faulted 1line 80 that an energy:

(3

balance is again possible, the, excess or deficit kinétic energy acquired
) . )
by the system until the instant of fault clearance must be

~

redistributed. %f the system can abasorb this energy after the fault 1is

cleared, it is considered to be transfently stable; if the system cannot
abgorb all of this energy, then Instability results. Synchronism must be
maintained to ensure continuous operation of a power d{atem. Hence

trangsient stability analysis is an important consideration in all stages

of power system design and operation.

The critical clearing time of circuit breakers, which isolate the
faulty portion from the rest of the system, is important for the system
planner ;n order to coordinate the relay setting for a given fault.

b

Also, for the system operator, it is necessary to define appropriate
o

gecurity indices [3] (the transient stability margin described in

section 1.2.2.1) to ensure a stable operating condition.

This chapter des?ribes generally the different methods to tackle

the problem of tranelent stability analysis, as well as the advantages
J .

r



4

and the disadvantages of each. The phyeical agpects of tﬁe proposed

; . .
method are also described. The scope of the thesis ie summarized at the

end of the chapter.

1.2 Methode for Transient Stability Assessment
. . I
1.2.]1 Time Domain Simulation Method
The conventional method to solve the transient stability problem

- .
is by time domain simulation of rotor angles of the synchronous

generators of the system (the swing curves}. ngs method requires
golving a Bset of differentidl equations which represent the system
dynamics using a£ep—by—stép numerical integrafion techniques. The main
advantage of this method is that it can simulate large systems with
complex generator, exciter, ana governor models. In-laddition. the %oad
can be repraa;nted in a practical' ﬁanner; However, solving the
differential equationé requires considerable computational effort
eaﬁecially when the system is large as in the case of North American .
networks. Moreover, the step—by~stsp_maihﬁﬁ__¥ialdB only a result to

indicate whether or not stability .ie maintained. It does not Iindicate

the quaiity of the system stability (or instability).

To calculate the critical clearing time uqlng thf% method, the
simulation is performed for a certain clearing-time. If the system I=8
gtable, the clearing time is increased and the simulation i;f repeated
once aga;n. The process 1is repeated“until the sawing curves reveal

instability. This is a tedious, trial-and-error process, besides being



b

a

expensive in tLterms of computer time. THE continued .growth of
interconnections as well as their increased use for bulk power transfer

has increased the heceasary system representation 'size to the point

-where the number of poessible studies 1is quite 1limited in many

Ay

applications.’ 1

1.2.2 Lyapunov Direct Method

The equal area citerion {4] and phase plane methods’ [5,6,7]
repregent direct methods td solve the transient stability proLlem in the
sense that thdy do not‘need to solve the system differential equatioﬁa
in the time domain. Unfortpnatély. such applications are limited to

?.“u

dual-machine systems.

D

In the past few decades power system researchers have been
investigating a direct method to solve the transient stability problem
for multimachine power systeme. This method .is based on 'the second

method (alsec called the direct method) of the Lyapunov stability theory

"[8,%). The statement of the second method of the Lyapunov atability

theory and the definitione of ;tability and aaymptotic stability [10)]
are given in appendix A. In this method, the tfansienfﬂ energy of the
poast—fault system is used as a Lyapunov Ffunction. In agreement with most
literature on the subject, we describe it as the Transient Energy
FunctioA (TEF) method. The mainladvantage of thia method\?ver the time
simulation ie that it does not need to solve the system differential
equationp in the tima\gomainf Other important advantages are described

—

in the following section.



1.2.2.1 The Transient Stability Margin Concept L ' : ,L“>

The transient Btabifity (or instability) of the eysteml can be
predicted [11] by comﬁaring the value of the system enargy .functlon at
the‘instant of fault clearing (the kinet?c enefsy described in Bectlén
1.3.2) with the critical energy associated with the initial digturbed
system trajectory gnd the poat—faulg aystem configuration. The
difféfance between these two energies is what 1is called Lthe Enérgy

Margin (EM) which represents a quantitative measure of pystem stability.

R

The energy margin can algo be translated into additsonal disturbaﬁéggﬁ&

that the system can withstand.

The energy margin can be normalized by relating it to the

transient kinetic snergy at the end of the disturbance. The Normalized
Energy Margin (NEM) can then be used as an indicator of the robustness

of the system, i.e. as an index for secunity assessment. It can aleso be

uged to rank different contingencies according - to their severity.

The TEF method, though it represents_ a powerful technique to
analyze the transient stability of large-scale power systems, faces some

serious problems. The power network has to be reduced by eliminating
all buses and retaining only the internal nodes of the generators.
Consequently, thas RNF- ylelds dense (non-sparse}) matrices In the
computations oand consumes gignificant computational time.- 'This
represents a seriocus drawback of the RNF, eapecially in applications
to large power networks. Also, all system loads are modeled an

constant impedance loads Lﬁ order to be able to reduce the network to

the internal nodes of the ganafators. Other types of loads (e.g.
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congtant power loads), which represent .a majority in all practiqal

——

power systema;\must be épprox!mated as constant impedance type loads
: \

based on the pre~fault conditions. Conse accurate results may

S

not bes obtaineds Moreover, the TEF is no applicalile to very large-scale

powar systems (e.g. 300-generator sayste due Lo Eﬁe computer storage-—
related problems (e.g. file paging). All problems are solved

using the proposed Sparse Formulation (SF).

1.3 The New Proposad Method

The Bparae'formulation proposed in this thesis uses the principle

of the transient energy function but it kéeps the original structure of

the Bystem network, i.e. it avoids network redyction completely. All
matrices wused in the calcﬁlation of both the Stable Equllibriﬁm
Poiﬁt (SEP) and the Unstable Equilibrium Point (UEP), for which‘ the
computational times are dominant in the calculation process of the
energy margin (the stability inde¥), are very eparse, This leads to

a significant saving in computational time.

In addition, either constant impedance or constant power load
models (or any "~ combination therecf) can .be handled wexplicitly.
Considering these actual load models, the -stabilitfy indices (the
critical c;earlns time and 'the transient stability 1limit) can be
" calculated accurataiy. Moreover, the voltage collapse can also be
monitored if the system I8 worqus near the stabilipy limit.,

The proposed technique can hardle vary large scgle power systems

which are beyond the escope of the RNF approach, so a'better design of

\

]



_more’ accurate and, .in some cases, more reliable as compared fo the RNF

.transmisaion networks can be obtained by modeling the network in more
- .

“detail. Using the sparse formulation, it is possible . to perform

a transient atability analysis on\\i_Eispbcoﬁputar; This will render

cost-effective the use of such anaiyais throughout the world. Also,
a robust nuﬁerical technique to deal with:ill—éonditioned power systems
ié described so that practical (stressed) power systems can be handled
efficlently. The sparse formulation Is claimed to be more efficient,

technique when applleq to large scale systems.

- . -
1.3.1 Assumptions ‘

Thé follow{ng asgumptions are conafdered for convenient anaiyaia
of the problem: _ 2
(1) The classical model of the aynchrpnous generator is wused: constant
“emf behind the direct axis transient reactance.
(2} The mechanical input powers of synchronous generators ara.cohatant.

(3) Damping is neglected. ’ &

1.4 Scope of the Thesis

The scope of the thesis can be summarized as follows:

Chapter 1,‘thia chapter, is an introduction to the transient
gstabllity problem. It has heécrlbed generally the different ﬁethods_tb
tacklé the problem, together with the advantaggs and .the digadvantages,
of erach. The physical aspects and the contributions of the proposed

method have been emphagized.



Chapter 2 provideeka compfehenaive survey of direct methods for
golving the transient stability problem. It dascribas. the important
aspectsa of different techniques since the introduction of the methods

in power system traneient stability analyeis by Magnusson [12]} in 1947.

»~
L

L]

~Chapter 3 presents the sparse formulation of the system equations
and the energy margin. It also descfibas a computerized algorithm to
aﬁply the . gparse formulation Eechnique for transient ~ stability

assegsment. .

Applicatione to ;everal practical systems of up to 300 generators
and 1724 buses using constant impedance load modelﬁ_ are. dascribed in
Chapter 4. A detailed comparison with RNF results are given showing the
superiority of the apafae formulation teclinique with regard to both the
cumputapionalﬁtime and sﬁorage. ~An app}iéation of the SF on a micro-
computer is aleo given. |

st
Chapter 5 describes a robust algorithm which applies the sparse
formulétion technique to ill-conditioned {stressed) systems. It also
provides a general description of the ill-conditioning problem in
- LY

E%ranaient stability analysis. A complete comparison with the RNF method

is also presented.

Chapter 6 shows applications to several systems using differernt
1oad\modgla. Tﬂgﬂeffect of load modeling on the criticql clearing time
and the trqnsleng}gtabitity limit is emphasized. The valfdity of the SF

_jjuhq{ifferent load model applications is proved by comparing its reaulgg

with those obtained using time domain simulation.
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Chapter 7 contains conclusions and recommendations for Ffurther

regearch.



.- CHAPTER 2 o)

GENERAL REVIEW AND BACKGROUND

2.1 Introduction

Stability was first recognized as a problem in the 1920°s [13].
It was noted that the gtabllity phenomenon was related to the-§3tablish—
ment of a grid of hydraulic stations remote from the metropolitan areas
they gerved. The methods .0f analysis used in early studies‘were dictated
- by the Bt;té of the ‘art of the gomputation. Therefore, the models and
methods of -analyeis had to be gimple. In addition, graphical.techniquga
guch as the equal area criéerion and circle diagrams were developed.
Such techniques were adequate for analysing very simple syslems which
could be treated as two-machine systems. The ac network analyser’
developed in the 1930‘s permitted analysis of multimachine power
aystemé. The network analyser was well suited fGr the solution of the
network algebricAequations but not the machine differential equations.
Therefore, simple machine models had to be used and the resulting swing
equations weare Bo}ved by hand calculat}ons. In the early 1950°s,
electronic analog computers were uased for analysis of s8pecial problems
where the dynamics of synchronous machines, excitation systemg and speed
governors had to be modeled in more detgil. The digital computers
developed later Iin ther 1950°s allowed the analysis of the overall
behaviour of multimachine power systems using simple models. The first

digital computer program for power system stability wae developed in

11



1956 [14]..S£nca then, digital computers have been enhanced very rapidly-

and cdmplicafed programs capable of handling large systems and very
- . . N
detailed models have been developed. Developments . in control system

theorfﬂand numerical tecﬁniques have had significant Influence on thé

methods currently used for the stability analysis of power systems {15].

As power systems have grown rapidly and become more complex, the
time domainlaimulation methoal(using the swing curves of different
éEhgiators, as described in Chapter 1) has become more complex to apply,
.especially for'securit} assesament and on-line s&stability calculatioﬁ.“
In the last two decades power system researchers have been investigating
a direct method to assess transient stability without having /to solve
the aystem equations in the time domain. A tecfhique which achieves

this purpose is based on the sscond method of Lyapunov’s stability

. +

theory (see Appendix A).

The scope of this'chépter can be summarized as follows:
(i) Description of the Lyapunov criterion.
(11i) Hathematical modeis of multimachine power systems.
(iii) Direct methods for a single Tachine ;r two-machine systega;

(ivl\:i review of the direct methods of multimachine power systema. .-

Detailed descriptions are given for‘ the methods and teachniques
which are relevant to the work of thia thesia. For more details,
a monograph by Pal {2] or surveys by Willems [16], Ribben-Pavella

[17,19] and Fouad [18] are recommended.



13

2.2 Lyapunov Direct Method and Asymptotic Stebllity

The principle of Lyapuﬁovfa criterion as applied to conventional
transient 'stability anaiyaia cgnaiata of constructing a euitable
Lyapunov function-ﬂ(i) , where X ig a vector of 'syatem state variables;
and determining a atability domain surrounding Lh? ;ost—fault\)Sthble
Equilibrium Point (SEP) of the syétem. In Pthar wqrda. Lyap&ghv's
criterion consiatq of two main steps. The first Bfep is to define,
fn state space, a region of asymptotic satability of th; poet-fault
SEP inslde which V(f) >0 (except at X = 0) and V(%) < 0. If. Voin
18 the lowest value of V(E) on the surface 0(5).=:0 (thg boundary of
the reglion), then that region ie determined by V(E) < Vnipn+ The gecond’
step is to determine the point of intersection of the systam trajectory
with the boundary of this region. Then by itegration of system equations
up to this point, the Critical Clearing Time (CCT) can be obtained. It
should be noted that differentr Lyapunov functions yield differeng values
of Vnine and power system researchers have tried their best to constfuc£

~

Lyapunov functions that give less consarvative results.

'

2.3 HMathematical Hodels fPr Multimachine Power Syatené

Tge modeling process has been dealt with extensively {20,21].
Modelas of (almost) any desired degree of precision can be specified
for the generator and its controls [19]). In transient stability study,
it is difficult to use detalled models which provide ultimate accuracy.
Therefcre. it is traditional for this type of studies to make

simplifying asgumptions. The usual assumptions associated with setting

”~
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pp the mathematical model are as follows [2]: : \
1. The network is asspumed to be in the sinusoidal steady state, i.e.
the time constante of,phé transmission network are negliéible compared

nto‘the electro-mechanical frequency of oscillation.

2. A synchronous machine is represented by a constant voltage behind
its direct axia'transient'reactance; i.e}'the flux linkages are assumed
to be constant during the tranaiént period.\\Hence. flux decay and

: \

-

voltage regulation are not taken into coneideratiﬁhi\
N

3. Damping, if not neglected, is proportional to 8lip speed.’

4. The generator mechanical input power is constant and equal to the
pre—fault wvalue. In some applications to single machine or two-machine

systems, governor action may be considered.

‘5. _Loads are represented as constant impedances based on the pre-
fault voltage conditions obtained from the load flow. So the network
can be represented by the redﬁcéd bus admittance matrix (?h); that {8 by
eliminating all the network external nodes (physical buses) aﬁd

raetaining only the,internal nodes of the ‘generators.

Although the previous assumptione are good approximations and
satisfactory f;r most applications, it ie “sometimes desirable to use
more exact mathe;;tical models. Now, consgider a pbwer system consisting
of Ng gynchronous machines (or groupe of machines)., The dynamic equation

(the swing equation) which Qeacribes the motion of the gth generator is

gliven by: X L
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428 (t) * dég(t).
HB,“ L2 + Dg —-—::“— +, Pog(t) - Ppg = 0 (2.1)
where:

58 " is the rotor angle of generatdr g In a synchronous frame of

refetence in radians, . -
v :
Hg Is the inertia constant of generator g in (second)?/radian,

Dg is the damping constant of generator g in second/radian,

Peg 18 the electrical- output power of generator g in per unit, and

Pmg is the mechanical input power of generator g in per unit. .
. ‘l~

The electrical qutput power of generator g can be expressed by the

following equation:

N : -
g .
—rp2
Peg = Eg ng +j§1[ Eg Ej Bgj ain(ég—ﬁj) + Eg Ej Ggj cos(dg—ﬁj) ] (2.2)
J+g
where:
Eg le the magnitude of generator g internal voltage (emf) behind the

direct-axis transient reactance {n per unit,

Ggg 1l the driving point conductance of YR in per unit,
Ggj 18 the tranefer conductance of Yp in per unit, and

Bg 1e the transfer susceptance of -Yp in per unit.

It should be noted that the matrix YR changes with network -topology

o

. duriné a fault and after cleariﬁg the fault (which may differ from the

pre-fault conditions). Equation (2.1) can be rewritten as follows:
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d8(t) dé,(t) .
M : + D + P__(t) - P, = 0 (2.3)
g dtz E dt . eg 4
where: . ‘ :
ooy 6 e -
og _jzl[ Eg Ey Bgy elnl8,-84) + Bg £y Ggy coal8=6) ] (2.4)
Je '
and P. = P__ - E2G 4 (2.5)

To cast equation (2.3) in an appropriate state space form, we
have to specify the state variables firet. There are several types of
state space models proposed in the literature expredseing different

aspects. These aspects are disscussed in the following subsections,

~N

2.3.1 State Space Model 1n a Synchronousiy Rotating Reference (SRﬁ)
- T .
Frame ‘ : . ’ |
In power system problems, a referende angle is always required,.
One choice is to take the angle of one of the machines as a reference
-Engle (generally the machine having the largest inertia) and measure the

rangle of each of the other machines with respect to thie machine. Let us

define the state variablea as:

El = [ul,mz,...,mﬂg | 61'62"“'6N81T (2.6)

v
.

Then, equation (2.3) is equivalent to the following 2N8 equations:
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R *
. D_. )
g " *
wg = - " wg + P8 153 P98
& g=1,2,.... N, (2.7
6g = ug

where ug is the rotor spsed deviaﬁion of generator g in radian/sec.
: J .

This model has 2 H8 state varlables. It was used in earlier workas by
Willems [22] and Pai [23], but Sastry and Murthy 4] and Ribben—Pavella
{17] have pointed oqt that the Lyapunov functions used in [22.23j are
valid on1§vif the partial étability concept [25] is invoked, and not
valid in the state séace defined by 51 if’stability is congidered in
the sense of Lyapunov. P;i's of equation (2.7)' are functions of the
angular diffefances only and not the absolute rotor angles, i.e. we must
tak; the angular differences of all machines with }aspect to a reference
machine. lHence. the proper state variables are (agguming that the N;h

machine is the reference machine):

<2 T .
X = [Wy,5,.0., f 81=8y 1828y yeu-s8yy _; — &y ] (2.8)
~ 1,32 Ng 1 Ng'™2 Ng Ng 1 Ng

]
and the coressponding state space model is described by [17]:

ug = _-Hi wg *+ Pg o= Po_ g=1,2,....,N,

5 (2.9)
s, - é = W, - w g=l.2......NG44
1 Ng g Ng g
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Moreover, if the case of uniform damﬁing'or zero damping 18 yconsidered,
L]

the state variables will be the differences in anglea and the

-

differences in spesda as well, i.e. the order of the state space model'
L

is ZNS —.2. Thig hae been dlecuassed in detail i{n {26]. The etate

‘variables are:!

3 . o T
xT = [wy-ty ,wo-w gty g — iy | 41-4 -4 veesly _y ~ &
» 1 Ng! 2 Ngl ' Ng 1 Ng 1 Ngs 2 Ng' ’ Ng 1 Ng]

—

* -
— P

{

(2.10)
and the state space model in this case takes the form:
" x
. - P, - P Py - P
g eg N eN
we - mNg= Jﬁﬂ ( wg ~ mNg) + - E E g=1,2,...N8—1
. . M M .
-9 NS
(2.11)
-7 . . o .
68 - 6"8 = Wg - ”Ng g={.2...,N8—1
Di -

where n = T_-* for all 1 {n the uniform damping case and n =0 1n
M

the cage of zero damping. The derivation of the correct order of the

state space model has also_been done via:

(1) controllability and obeervabllity notion [24], and

(ii) minimal.realization theory [27]%

2.3.1.1 State Space Model with Post-Fault SEP Transferred to Origin
This form is necessary if we wish to construct Lyapunov functions

in a systematic manner by one of the following methods:
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(1) First integral method [28]. : -
(i1) Quadratic forms (Krasovekii’s method) [29]. -
(i111) Variable gradient methed [30].

{iv) Zopovré method (31].

(v) Absolute stability (Popov’s method) [3#]. v g .
In thias case the state varlables afe: ) -
) a8 8 g 1T
5 = [h\l,h\z.--..fdus ' 51—61 ,62—62 '..-'GNg—GN&] (2.12)

where dg represents the post-fault SEP of generator g. Then the state

apace model of equation (2.9) can be reduced to the following canonical

-»
-

form:

R
1
L)
>
1%
|
m
.
o~
Q
Tt

(2.13)

- -
where A, B and' C . are matrices whose elements depend on the 1{inertia and

-
L]

damping constants of system generators and the network topology.

)
2.3.2 State Space, Model in Center Of Angle (COA) Reference Frame
Another possibility to define a reference angle is what {g called
the Center Of Angle (COA) reference frame. Thie is a center of angle
proportional to the inertia-weighted angle of each generator, a concept

analogoug to the center of mass in mechanical systems. COA was proposed
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by Tavora and Smith [33], Stanton [34] and Fouad and Lugtu {35). The COA

denoted by s,

and

respectively,

L

{g defined an: -/
1 N
g
o = - E Hg 68
o 8=!
Ng
(+} = I Mg '
8-:1

4 . :

where w =

o = 6o.

Accordingly,

(2.14)

(2.15)

(2.16)
(2.17)

the B8state sgpace model

’

in the case of uniform or zero damping takes the following form:

where

while

the

ﬂ. * Hs P
- Dgwg + Pg - Peg - COA
Mo -
g:l,Z,...Ng (2.18)
g

% Ng
Pcca = I ( Pg —.Peg ) (2.19)

g:l
model in the nonuniform damping case 18 glightly more
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- compliqated [36]. This model, given by equatjon (2.18), is suitable foi

the ene?gy funct}gh“apprdach. _
“ . ’ _ . \gﬁ‘ . ‘ ) P

e

-
.
N

: _ o . | ‘ )
2.4 Direct Methode for One-Machine and Two-Machine Systems.
The. transient stability problem of power s}dtems ha#ing one . or

Ewc machines héé'been 1nvestiga£e& and stqdiedl using classical direct

- maethods well befo;e the Lyapunov qdiqecﬁﬂimethod was applied, Théae
c£9gaiéal methods are the Equal AreahCriterion-(EAC)‘and the phase plane

- method. ‘In applying these mgthods, the assumptions mentioned in section

L . .
2.3 are considered with the exception that dampfng is neglected‘fof EAC

~

applications. - - .

-

2.4.1 Equal Area Criterion (EAC) nethod_.-

The EAC method is cohs}dered.aa,? speclial case of Lyapunov direct

method since L}apunovfs fuﬁcgio is a generalization of the eénergy
O T F

function. This mé€h0q~§h§ proposed by Skilling and Yamakawa .[37] and,
since then, m;ny ﬁbélfpétinna on EAC have been done. For a detailed
study of the EAC, reference [4] i{e recommended. The EAC can be applied
to a two—ﬁachine Bystem-by converting this 9y5£em to a gingle machine-~-

infinite bus system. A significant amount of research wéork has been done

ueing the EAC method some of which exist in references [38-43].
7 C -

‘B . ;

2.4.2 Phase Plane. Method -

This method has been used extensively in the pagt in the thecory

"of automatic control to analyze the second order nonlinear systems. It
'



+ B | 3

has been introduced to power system applications by Dharma Rao [44]
who could extend the application of this technique to multimachine power
.gystems {45]. - Kashkari [46] usﬁg}the rhase plane approach to show that

the transient stability limit can be improved wusing feedback signals

based -on the rates of change of voltage, -current, power or rotor angle.
L

" Gless [47] (one of the early papers on the appiication of the Lyapunov

direct method to transient power system analysis) presented 'a valuable

¢

"comparison between the direct method of Lyapunov, the phage™ plane

-

technique and thg EAC, with all three approaches giving identical

results for the equivalent l-machine system.

2.5 Direct Methodes for Multimachine Syg}e-l.

Lyaplnov’s direct ﬁethod was first proposed agda solution to the
power system stability problem by Gless [47] and El-Abiad and
Nagappan . [48] " who gave an ngorithmic procedure for computer
implementation to obtain the tranaient stability region’and to calculate
the CCT. Since then, theré has been a significant growth |in reaearéh

work on this area. The main objective has ‘:on to improve the quality

. of Lyapunov functions in order to include a larger region of asymptotic

stability (region of attractiqn) or more complex aystams. A historical
summary of various methods of constructing Lyapunov functions |is

contained in a paper by Gurel and Lapidus [(49]. In the following

" subsections, previous research work is classified according to either

the type of Lyapunov function or the typse of load model.



2.5.1 Zobov Hethod . . ’

. _ E - e 5 '

The main ad¥antage of this method is that it enables us to
sengrate a Lyapun§v funcii;n together ﬂith the coréeaponding region of
attraqtion or an approx{matibn'to it. Unfortunately, tﬁg inherent draw-
back of this method asaoéiated with solving linear partial differential
equations precluaes i;s apﬁglcation to }éfge—aca;e systems. A descrip-
tiok_of the costruction procedure of the Lyapunovv function exists in
a paper by Margolis and Vogt [50j.‘ The authors showpd that if the
solution of linear partial differential equationg of the system is"”
obtained in a closed form, the exact stability region can beﬂ'obtained.
Yu and.Vongasgriya {51) constructed a‘Lyapunov funcgion in a series form
and consequently an approximate region of attraction was obtained.

-

!
2.5.2 Lure Type Lyapunov Functions:

Ingl944, Luré and Postnikov £(52] conétrgpted. a Lypunov function
for‘aygtems with the nonlinearity existing in the first and third
quadrant. This function consists ;} a sum of a quadratic form in the
atate variablea and an integral of the nonlinearityterms. Lﬁré derived
a sget of npnlinaar equations called Lﬁré'a resolving equations. He
proved that the existence of a Boiution of these equatione is
a sufficient condition of global asymptotic stability of the nonlinear

- 7\-
gsystem. Kalman [53] and Yakubovitch [5;] established the connection
between Popov 8 atabilzty criterion [32] and ture functicna by providing

that satisfaction of the former is a necaessary and su.ficient - condition

for the. existance of the latter. Later, Moore and Anderson [55]
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gucceeded in- extending Popov‘s criterion Vto Bysteme with <mu1tig&3
nonlinearies and, based on their theorem, a significant amount of work

has been done. The mathematical model given by -equation (2.13) {8 of

Luré type and it has_been used in thie case.
x = AXx - B f(o)

. - ' - (2.13)

2.5.2.] Mcore and Anderson Theorem (8ensralized Popov Criterionm)
If, with s and I representing tﬁe complex frequency and the
unity matrix, there exsist real matrices N and Q such that
[}
2(s) = (N+Qs)C(s8I-a)'B (2.20)
. M ]

w . R
is poeitive real, then the system (2.13) is asymptotically stable in

the large providing ( N + Q 8 ) does not cause pole-zero cancellation.

Then the related Lure type Lypunov function hae the followiiz form:

-

g .
v = xXTPx + [ £T(o) Q do (2.21)
g ~ ~- 0~ -~ ~ .

+

ana P 1ieB a positive definite matrix satisfying the following set of

-

equations:
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ATp + Pa = -7 =
PB = C'N + AT cTq - LW ) (2.22)
Wy = qce + 8T clg

-

where L and ¥ are auxiliary matrices.

‘

The Moore and Anderscn theorem haa bean applied for the first
. R .
time to a multimachine case by Willems [56] and by Willems and Willems
{57]. They derived two functions * corresponding to uniform and non-

uniform damping cases, but the state space models used in this work

have been corraected after a discussion with Sastry and Murthy [58,59].

‘The Popov’ cfiterion has been exploited further and different forms of

Lyapundv function were obtained by Pai and Murthy [27], Manasour [60] and‘
Hillems [25]. Kakimoto at al. [61;62] and Kakimoto and Hayashi [63]
extended the wofk of Moore and AndersQn to handle syslems with machine
models of. third order. Their funcéion has an addiﬁionall term to
represent the affect of field flux decay and, therefore, their method
allows couptjng for automatic voltage regulators if the timF congtants
lie within a limited range of values. Tpeir work is conside;ed as

a valuable contribution to the transient stability analysis.
.‘

2.5.3 The Energy Type Lyapunov Functicns
Magnusson [12] and lgtar Aylett [6] developed the original energy

baged methods to determine the stability of powe} s}stema and proposed
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the use of the tranesient energy function, obtained ags a sum of firaf
ineegrals of the rotor accelerating power equations, for “the analysis
- of transient stability. Later on, DiCaprio and Saccomano ‘[64] and
Ribbens-Pavella [65] derived an energy function depending on the, aysteﬁ

4
model given by equations (2.10) and (2.11). This energy function has the

\
folliowing form (neglecting the transfer conductances):
b
Ng-1 Ng

VO,w) = TF 5 [ 0.5 MyMy (wgewg)?

i=1 =i#1 : :

- (PyMy-PyMy ) oy -0%5)

M, gy Ey Bjj ( cos 81§ - cos 8% ) ‘ (2.23)

% | «

where eij = 61 - 83 , Mo Es_the total inertia (the summation of all
generator inertiasg) and-the suﬁerscript 8 denote the value of 911 at
the SEP. The authors showed that V is a Lyapunov function satisfying
V>0 and.V = 0, f.e. fhe post—fault SEP is Lyapunov stable. The guthora
also showed that including a uniform damping makes 'the system asymptot-
ically stable but does not enlarge thé domain of stability. Athay et al.
[66,67} used the state spacé model in the COA reference frame described
by equations (2.18) and (2.19) to formulate the ene;gy function. Thina
function, which ia known ae Transien Energy Function (TEF). has the
advantage that its v;;ious terms cag be given physical meaning anaiogoue
to the single machine case. Neglecting damping, the saystem m;del of

equation tifla) can be rewritten as:

S ———
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M : . » Hg P
g Vg < Pg - Peg - COA s
M, .
8=1'2"""8 (2.24)
9% = g
-
Then the TEF (described by Athay [66]) can be expressed as:
: N - N
4 g ’
Ve,0) = 0.5 3% M, w2 - 1 P, (6, -6%)
~' o i™ | g 1
i=1 {=1 o ,
N -1 Ng ' . ‘
] -~ 1% Ump ey ey costeyy) - contef ) )
i=1  j={+1 )
’ ) I 3
e}+ej . ’
- : E: E; Gy coa(B,,) d(8;+6.:) . (2.25)
e§+ej i*y i) 1J im™] . {

The firat term represents the kinetic energy while the second, third and

fourth terms represent the potential energy (positional, magnetic and

dissipated energies respectively). All these 'Byggg? energies are
. - . ¥

relative to COA.

2.5.3.1 Determination of the Stability Region -
4
Each of the system models described in section 2.3 can be written
in the following general form: $ .
¢
x = f(x) (2.26)

. - B
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The equilibrium solutione are obtained by setting x =0 , !.e. by

golving:

’ ‘ N » -.'. ' .r. \

™
—
1=

]
-

" One solutian of thia.set' of eqpations (in the ‘poatffault condition)
"is the SEPw while 3ll other 901ution3 (saddle poiﬁts) are lUnspable
,Equilignium Points (UEP’s) lBurroundiné'the SEP.'Since the speed is zero
at the UEP’'s, and so Lhe kinetic energy, the surface formed (in angle'“
gpace) by these UEP’s is called the Potential Energy Boundary Surface
(PEBS) [67]. The system at different UEP’P haa. different values of
energies. The stability region is determined by that UEP which gives

the minimum value. The TEF evaluated at that UEP is called the critical

energy (Vcr). The CCT can then be calculated by integrating the

faulted system équations until V(x) = V-

2.5.3.2 Conaervativeneas and Difficultiea of the TEF Appllcatlon ST

Lyapunov direct ‘gﬁthods have generally led to conservative
stabllity prediction for practiéBI multimachine power aygteme. This
charactdristic can be attributed mainly to two factors:

(a) Tﬁe first factor is the cdnservative nature of Lyapunov theory
itself; which gives only sufficient conditiona for stability.
(b) The second factor relates to the difficulties associated with ;thbi

stability region calculation. The determination of the UEP corresponding
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to vcr .represents the most difficult step to calculate the astability

region. The number of possible UEP’s {=m ENS_I — 1 “which meana that

-

a cohsiderable amount of calculations could be performed before the UE?

with minimum energy can be obtained. Horover.'ﬁhé. practical experience

hag proved that usging the concept of miﬁlmum>energy UEP to calculate vcr

for ‘a large ayatem may lead to very conservative Tesults if the fault

configurations (e.g. .the fault location) are not taken into account.

HMuch reaearah work have been done to obviate these difficulties.
To reduce the amount of calculation required to caleculate the UER’s,

Prabhakara and El-Abfiad [68] suggested that the accurate determination

of these UEP’s is not necessary. The procesB of uging the analogy of the

one machine-infinite bug system gives an acceptable stability bdoundary.
Gopta and El-Abiad [69] provided a systematic method qf elimiﬁating the
UEP‘s which are of no interset in the search for the stability region
which leads to the exact determination of the UEPrclosest to the posL—
fault SEP in the sense of energy. Pai and Narayana {70] and Ribbéns—
ngalla [71] shogad that the UEP’s of interest lie in the proximity of
certain points (called the corner points) on the boundary of a polytope.
These corner points which are eagily identifiable can be used as approx-—
imations of the exact UEP’s for different modes of instability (a mode
of instability defines the advanced machines which teﬁd te be separate
from the aystem), e.g. the corner point associated with the mode in
which the ith machine being advancea is: )

(8F, 63,..., -267,..., agg) where (48§, s83,..., aﬁs) is the post-fault

SEP. Ribbens-Pavella [72] showed that the change in the energy function
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in the nelghborhood ofmah UEP is very small and, henéde, she esuggested
. 1

|th9t Vc}“ can.be determined quickly by calculating Ng approximate

. UEP’s only (instead of the 2Nz-1 -] possible UEP’e). However, all
power systems used in the previous works ([68—?5&) were small systems of
~ho more than 10 machines and no applications were @ to large-scale

power systems.

1 Another prgblem appeared when applying the énergy function - given
by equation (2.25) iv COA (deacriﬁed by. Athay [66]}), namely ﬁha
evaluation of the integral term which depends on the wunknown aystem
trajectory baetween the post-fault SEP and the UEP. Therefora, it ig'not
poseible to judge analytically the sign definiteness of V or V. Athay
[66.67]‘used an approximation of linear trajectory'between the SEP ‘and
UEP. sHe removed a major part of the conservativeness of the direct
methods by incorporating the fault location in determining the exact
mode of inatability: He chose‘the UEP nearest to the point at which the

-

criti;al unstable trajectory crosses the boundary of the PEBS. That |is

by integrating the faulted trajectory and at the same time monitoring
the mismatch function F(ﬂ) ae an Euclidean norm €f the power mismatches
fi(g) for the post-fault syatem. When F(é). reaches a maximum, the
corrasponding_anglss E are very close~to the intersection point of the
fault-on trajecto;y with the PEBS. The UEP 8o chosen |ls8 then"fault

depandent and ig referred to as the controlling UEP. The TEF with the

linear approximation mentioned above takes the following closed form:
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(2.28)

where the superscript u denotes the values at the UEP. The TEF with
. ot

these features has been used successfully in assessing the stability Iﬁf

‘\

practical, large-scale power systemsa.

2:5.3.3 The Transient Stability Margin Concept

The Energy Margin (EM) i{s the difference between system critical
energy ch and tﬁe system energy at the tnatant of fault clearing ch:
The energy margin represents a ddantitative measure of system stability
and can aleso be translatéd into additional disturbances that the system

”'cen withstand. Fouad and Stanton [73] added a correction term to Vor

to overcome the inconelatancy that vcl ia calculated referring to the

pre~fault SEP while Vcr is calculated referring to the post-fault SEP.’
L
Fouad and Stanton [73] and Fouad and Vittal [75] also introduced the

concept of kinetic energy correction that not all the transient kinetic
e

enrgy contributes to system instabjility. Only that part of the transient

-

kinetic energy which contributes to system separation should be
considered in calculating vcl' Therefore, they clasgsified the s&system

generators into twq,g:bppa; the firet group is the critical generators

. ]

[
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tending to separate from the system and the second group is the rest of

the 3eneratorﬁ% Analogous fb the two~machine system, the KE correg-

pondiné to the critical geﬂé;ég}ra (advanced ‘machines) separating from

., the rest is given by: ﬂb
2 .
KE = _0.5 Heq theq - (2.29)
! ' :
M Hadv . Hraat '
. where aq = ' l“’eq = Wady ~ Yrest
Hadv * Mrest ‘
S
Hadv = 1 Hi ' 1 € C which containe all advanced machines,
i
. )
Heogt = T My yi € C* which containe the remaining machines,

1
w = L M W 1 € ¢
adv i i '
' Maad i
-
- J. .
- . 1 '
and Yragt = = Hi y | g C
: rest i -
&b

Fouad et 'al. [74] used the TEF technique for contingency analysis. They
presented a scheme that can be used in system planning : as a screening
tool to identify the é?itical cases for detailed study, and in system
operation, as a means of performing dynamic‘aécurity asgegssment. Fouad
et al. [16] generalized the concept of the mode of {nstability: it {=s
not always the casé that all advanced machinéa agsociated with a certain

~

mode are initially seen to be unstable. Some machinee, although are

s
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advanced, may'atill be stable depending on the severity and location of

)

the fault with respect to the machines. Fguad et ‘al. descfjbeq‘

a technique to identify the controllinx'.UEP among several candidates
. : i

¢
-

having similar energy levels acéording to this concept. In the work
praeagnted in thie section, the TEF was appiadl to‘ 17-generator system
(reduced Iowa network). A recent publication {77] showed that the .TEF
method has been applied successfully té large-scale power eystems of up
ko 228 generators and 1644 buses. The results presented in [77]
indicated that the TEF method is faster (taking less CPU time) than the
step-by-step methéd (performed “for a Vﬁhrae . secdnd period) - for
applicationa.to systems having up to 100 generators. The efficiency of
the TEF method has been extended successfully [78]~to larger systems by
. S%hancing the computer program of the TEF, Bpecialiy the routiﬁe for

™.
network reduction,

2.5.4 The Structure Preserving Model
. .

All the research work described so far” has been dole based - on
converting the aystem loads to constant {impedances and reducing the
network to the internal nodes of the generators by elimintaing a;I
physical busges. Besidgs the disadvantagé of modeling the loads
incorrectly, this approach masks tﬁe topology of the network, preventing
the éxplicit monitoring and display of voltages, energy and power
tranefers during the disturbance peried. The first step to ggf:e

the problem of load modeling was taken by Bergen and Hill {[79] who

proposed a structure-preserving model where- the loads are explicitly

-

N
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retained. The authors used a frequency dependent load model where the
load wvariation with frequency iﬁ faken'to be piecewiaa—liﬁear about’ the
nominal frequency. Although this work has opahea the way to'aolye the
problem of load modeling and remove a ‘major' obstacle of applying ;he
direct methods to real power systems, 1t. has sgome drawbacks. This
technique ig valid only for an anealistic type of load models in which
the bus.voltages have to be assumed congtant. The mathematical trans-—
formation required by tﬁis technique may 1nv61ve consiqgrablf more
computational efforts than other methods previcusly used. Moreover, the
energy dissipated in the network was nééiected in their- formula;ion.

ﬁowever, a further study on the structure—-preserving model by ﬂili and

Nai [80] emphasized the role of different types of damping wusing the

‘Popov stéﬁility criterion, but no examples or apﬁlicationa were given.

} \ .
We conclude that the structure-preserving model, in its current state,
is not applicable to real power systems where moaﬁ of the loads are
nonlinear (constant power type) and also because of the computational

efforts required for large scale applicationg.

¥

A

2.5.5 Vactor Lyapunov Approach

In previocus sections, wa have dsecribed the direcﬁ méthods which”
use different types of agcalar Lyapunov functions. Another Iinteresting
approach is the so called vector. lyapunov function o;iginally proposed
by Bellman {81]. This approach involves decomposition of the entire
gygtem into small ;nterconnected subsystems, For each subsysgtem,

a gcalar Lyapunov function is constructed and the stability region is
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determined by one of the aboye techniques. Then, in order to assess the
Btability of the overall system, an aggrégate model is constructed by
forming-a vector Lyapunov function based on the subaystem'fuhctiona- and
the stabilitg reglion of the composité eystem is8 determined wusing' the
subaystem-stability ragidﬁs and the properties of the intqrconﬁections{
The concept of vector Lyapunov function was-‘first applied to 1q£er—
conneéted dynamic systems by Balley [82] and was first appiied to: the
transient etability problem of power sysiems by Pai' and‘iNarayaﬁa [70j.
Since then extensive research has teen done in this area. The main
a&vantage in using decomposition—aggregation méthods‘is their easé ;nd
effoectiveness for _the  following ‘two reasons: (1) much more
sophisticated subsystem hodeling may be 1coP31dered_ when constucting
a Lyapunov function fo1~ a 2-machine syshﬁﬁ. (ii) an analx}ical
exgreaaion may be derived for the stability‘region';} tﬁe subsystems. On
thé other hand, decompoﬁition—aggr;gation methoés have the disdavantage
that they rely on a mathematical decomposition since the pnger system is
modeled Saaad on reducing the system to: tﬁe internal nodes of the
géheratore, Howeve;; this _probleh may be solved 1if the structure

preserving model is used. In this case the phyaical decompositlon can be

performed.

¥ |
2.6 Conclusion

Lyapun&v direct methods are faster and more reliable techniques

to analyze the transient stability problem as compared to the

corfventional step-by-step method. Moreover, they can be used for on-line
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purposéa'(aecurity asbapameﬁti. JIn this chaptef. the Lyapunov criterion

and thafaasociated'mathematical models . of multimachine _power systems

have ﬁaen'described. Different techniques to apply tha Lyapunoﬁ direct..
method to.the stability analysis ofﬂﬁubéimachine power.syatéms havq‘begn
-raviewed with emphasis on thq'&isaduantagas aﬁd the potehtiélitiea of
each. From this review; we conclude that the powef system sEabillti
analysia, -at the prgsenﬁ state—-of-the art, seeka‘a method which has Ehe.
advantages of the TE?‘(aB asplied_to.iarge—scala power Bystemﬁ) and  the
advantage of inciuding different load models e;plic!t&?. fn aéﬁltion. iF;
should be faster than those qyrrently available to be more suitable‘ for

on-~line ﬁecurity assegsment. All thesé ‘advantages gre gainad by the o

Spafse'Formulatiqn ofathe:TEF method described in thie thesis.



CHAPTER 3

- .

SPARSE TEF FORMULATION

‘
. . . ~

3.1 Introduction L *
’ } -

L]

(TEF) 'method, the power network ie reduced by eliminating all buses and

retaining only the :internal nodes of the generators., This Reduced-

Network Formulation (RNF) may consume significantl computational"time.

)

espeéiail&‘ in ';pplications to large ﬁ&agr- networks. The Sparse,

Fomplation (SF)‘ déséribed in Lhis chapter has many .advantagea: the
-netﬁork reduction is av;ihed complefaly. Ali. m;trlcea used !n' the
calculaﬁion of.the Stable Eq;jllbrium Point (SEP)l and the . Unstable
Equilibrium Point EﬁEP). which are theﬂ main steps to ' calculate the
_Ener;y nggln tEH) (the.stagility fndex), arq vary sparse. Therafore,
the computational tima 18 reduced siggificangly as_compared to the RNF.
The conventional load flow Jacoblan matrix (alre;dy‘ formulated and
avallable from the load flow golution) is ‘a ‘major‘.éart of the main
Jacopian matrix used to calculate the SEP and UEP. Both constant
“impedance and constant power type 1loads can ve handled ‘éxplicitly,

N -

. r .
Hence, more accurate results (very close to the time domain results) can

be obtained. The TEF method using the proposed technique can handle very

large ecale power systems sBo Ehét a better design of transmission
network may be obtained by modeling the network in more detail.

. The scope of this chapter can be summarized as follows:

37

1.

Currently; in the application of the'fTransient énersy Function
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({) Problem formulation. - .. T

(i1) A computerized élgorithm'to calculate the SEP and the UEP and heﬁce
. the energy margin. S N : ~N

. . L]

-

3.2 Syiten Equﬁtion-

In the analysi;{ all angles (bus vqltagé langléﬁ .and generator
intarhal.voitaga angles) are referred‘£b the cqntré of inertia or Centre
of Angle kCOA) frame of reference. The COA.‘denotéd'by. $51. a8 deactibed

in Chapter 2, is defined as [§3n34,35]=

‘ g :
b = » 21 My & | ' (3.1
. o & .
) “ - Ng , . .
where S A . (3.2)
g:l

Hg i1s the inertia constant of generator g, ¢

arigle of generator *g 1in the aynchronoue frame of reference, and Nx is

g is the internal voltage

the number of generators,.

In the COA frame of reference, we can write the system equationsa
>

as followa.(aee Appendix B):

»

N ) . . -

vy _}2{1 [ Vj Yeg coB (Ygy =g +93) ] = Py for. all & ) (3.3)
N :

Ve 521 [ vy YSJ_ cos ( Yoy ~ ég + ¢y ) J - PGy =P, for all g (3.4)




N.

..V'. z
J:l

e 4N

-V 3
8-J=1
B8 E

PG8
"8

where:
N is
Ng. is
Ng. is
L is
4 ie
Vi is
éi is
B8 ie
Yij is
YiJ is
P1 ia

i

‘ ' ~
{ VJ Y’-J ein (,YLJ - ¢!, + ¢j ) ] = Q!. for
. )
[VyTey oin Lvgymdg 4501 -
R \
2 - oa
By [ Eg Vgcom. (B - ¢, ) - Vo) = Q for
g V8 gin ( Bg - ¢g ) - PG8 = 0 for
V4
PG P P |
+1 . .
- g = e - -E$ii— for all
Mg Mg Mge1
N
g
I Hg 68 = 0
8-:1
{
the total number of buses ,

‘the number; of load buses,

the number of generator buaed..

an index for the load buses: 1.2,...,N£ .

an Index for the generator buses: l,?.....,N8 ,

the magnitude of bus voltage,
the angle of bus wvoltage {n COA4,

the angle of generator internal voltage in COA,

the magnitude of element 1ij of the bus admittance matrix,

the  angle of element 1]

the real load power injected at bus i,

all &

all g

all‘g '

g*N

of the bue admittance matrix,

9

(3.5)

© (3.6

(3.7)



" in six sets of variables. These sets of variables are by dgr Vg ¥

Q1 is the imaginary load power injected at bus 1,

i

PG8 is the generator electrical output ;zher-of generator g,

‘ng is the direct-axis transient reactance of ‘generator g,

By ia the reciprocal of: Xég. énd . : ' o '

P is the mechanical inpdt power of generator g.

-
' -
.

The previous equations represent six sets of nonlinear equations

gt
PG8 and eg. These sets of equations-are used to calculate the SEP and

the UEP wusing a Newton-Raphson {NR) approach. The details of how
a proper {ntial point is obtained will be described in gection 3.4. The

seEBof-equations can _be expressed in a general form as:

]

) = b - (3.10)

1)
X

L]

Equation (3.10) can be rewritten in the perturbed form as follows:

. ax* = aAbk (3.11)

. where JK ’ bk are the Jacobian matrix, and mismatch wvector at

iteration k. Figure 3.1 shows a tableaﬁfiﬁim of equation (3.11). Notice
that the uppper-left block of J 1isg almoat the Jacobian used In the
load flow calculation. This Jacobian ia very eﬁarse. Also the -I block

repregents a negative unity matrix, D; represents a diagonal matrix, B

-represents a bidiagbnal matrix, and m represents a row vector whoge

~ | . ‘]
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)
Fig. 3.1 A tableau form of equation (3.1l1).



T 42
. .
ith element is the moment of inertia of the ith generator. The elements

of the Jacobian'afe described in detail {n Appendix C.

‘ . -

\\ 3.3 Transiept Energy Margin

e ' :
The transient energy function, V(glm). fa formulated as [66,67]:

SN e M .
VO = I [ (Mg wg = (Pp - PGy - Peoa)) do
g=1! eg _ o
Ng ) -
Peoa = I (Pp - PGy ) (3.12)
g:l g '

- f
where 6% denotes the post-fault SEP, and w (for convenience, the """

used in Chapter 2, has been droped) is the rotor speed in COA.

Perform;ng the integratibn. we get the following expression for V:

N N
- g 2 o8 _ a8
v(e,w) = 0.5 [ Mg wg 7 ng( 6 — 8 )
g=1 g=1 .
*
N .8
+ Ig S & PG d 8 (3.13)
a 8 8 . ’

8:1 es .

Thie energy function is equivalent to that of equation (2.25) of Ehaptar
2. The three terms of equation (3.13) represent the .kinetlc energy,
positional " energy, and magnetic and dissipation energy of tha system
respectively. To calculate the energy margin, the previous equation will

be applied twice; once at clearing to get:
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Veg = v (e, Wt (3.14)

~

where cl denotea clearing values. QC1 and wSl can be calculated

usging either the atep—by;stap method - or directly, assuming constant
a .

acceleration. Then equation (3.13) is applied at the "unstable

equilibrium point to gét the critical transgient enérgy:

.

Ver = VvV (8Y,0) | (3.15)

where cr denotes critical values, and ©Y is the unstable equilibrium
point. Notice that the speeds at UEP are zero. The Energy Margin (EM)

Y

can be calculated using the following equation:

M = Ve - Ve (3:16)

, | A | .
- 3.3.1 Pr;ctical Con:ideﬁgiionl '

Ap described in section 2.5.3.3 of Chapter é. equation (3.16)}
needs to be corrected since the potential energy, the gsecond ’and the
third terme of equation (3.13), at clearing is calculated w.r.t. ;he
pre-faull SEP while that at the UEP {s calculated w.r.t. the post-fault
SEP. The correction term is the .potential energy from the pre-fault SEPd

to the post— fault SEP. To .reduce the required computations, the energy

margin can be calculated directly using the following expression:
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A ‘ N, O% .
Moo= — e col-ely + f s ¥R aoe,
g=l & g=1 egl _
) Ny . ) '
- 0.5 I My ( mgl ) 301 -
g=l . ' -

: .

Using the concept of Kinetic Enersy‘(KE) correction described in

[73,75], only that paf} of the transient KE which contributes to system
- / ’ -

separation,should be considered In determining transient stability, The

KE corresponding to one group of machines (advanced machines) separating

-

from the rest-ia‘given by:

KE = 0.5 Heq Yeq o {3.18)
Hadv . Hrest :
where M, = v Weq T Wadv T Yrest
Hadv + Hrest
Mgy = zlﬂi .,1 € C which containa all advanced machines,
i : ;
f
M =1 M ) ,1 € €’ which containg the remaining machines,
rest 1 i .
W ! ¥ M 1 € C
= ]
adv Hadv -y i i '
nd . 5 M 1 € C
a W, = [h] ' N
regt Hrast . i i

Now, the energy margin has the following final form;



-NS . u cl Ng Gﬁ)
EM = - [ P_(e¥Y-065*) + I [ °P6, de
g=! mg 8 1 . g=1 9§1 g - 8
- 0.5 M wi (319

The ‘intesral' term (tha"aecond term) will be evaluated assuming

~

a linear trajectdry between the clearing point and tha UEP. .The energy

margin can be normalized with respect to' the kinetic energy at clearing

to give a more meaningful index for system stability. =~ -

o ' NY
3.4 Algorithm .
In this. section, we. describe a satraightforward algorithm_ to

calculate the SEP, UEP and EM. The following steps are used:
. : ~

(1) Having the pre-fault load flow solution, calculate the generator

inte}nai emf using
E = v + Ig <] de (3.20)

where Es,ig and fg are the generator internal emf, bus voltage and bus

current phasors respectively.

.

(2) Calculate the COA using equation (3.1).

A
(3) Calculate the vo%tage and emf angles in the COA frame of reference

{({.e. subtract COA from those angles).

(4) Calculate the clearing angles and speeds using either a step-by-step

Fl

)



(5)

e

(6)

e (D

(ii)

(iii

(iv)
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method n(qgihs a suitable numerical integration technique 1like

mdaified'ﬁuler or Runge Kutta) or aséumins constant acceleration.
Afper modifying the bus admittance matrix to represent the post— -
fault conditions, ‘use equations (3.10) and (3.11) to calculate the
post—fault . SEP using' load flow solution and the emf 'énglee

calculated in step 2 as initial values.

Find the fnitial values x° for the UEP calculation using the -

following eteps:
Specify (or, otherwise, use other avé£1able computational
.algorithma 't; _detremine) éhe}/modé of instability, i.e. those .
machines tending‘ to seﬁarate fram the aystem- (the advanced
méchiness due to the sﬁecified fault. | ‘
Caléulate fhe "corner point;} describedrin Chapter 2 [70.71],‘at
whﬁch the angles of the advanced machines are set k n - g8 }. The
angles of the remaining ‘machines are set to their SEP values.

)_Calculate the so.called "corrected corner point‘ [11] at which the
corner point ie corrected to account for Lthe motion of ,the
inertial center from the SEP to tﬁé UEFP points.
Calculate the 8o called "ray point" [84) at which the potentiaf
energy of the post—fault pyétem reacheg {ts maximum value aiong
the ray between the SEP point and the cofrectad corner poiﬁt. Thie
is a Bimﬁle one-dimensional maximization as illustrated ln- [84].

The use of this ray point as inftial value for the UEP calculation

improves the overall efficiency of the procedure.

/ |

-



\ | 'Y

(V) The initia]l bus zoitagee'are obtained ' by ﬁolvihgu the"following .

~

sparse nodﬁlréquatibna_

Ybus d !bua = zbus ' : (3'21)‘

v

. ’ . ’ :
whare Ybus is the bus admittance matrix after adding | xdg to the

‘diagonal element corresponding to the gth 3enerator.‘éhﬂ Ebug is
a vector of zerolalemants for load busés and elemeﬁtq_ Eg P x;é
(domplef quantitieé) for generator bhuses . - ‘

‘(vi) Calculate the inifial guesbes “of the generator . output _poWerQ

using: -

PG = Re { E_ . I. } -~ : (3.22)

»

(7} Calculate the UEP by solving equations (3.10) and (3.11) using the
.modified Newton-Raphson technique [B5]. This technique has the
advantage of incorporating a cubic interpolation in each iteration

of Newton-Raphson to get an optimal step.

(8) Calculate the energy margin using equation (3.19). To evaluate

the integral term in equation (3.19), we use the following steps.

(i) Assuming a linear trajectory between 9C1

and 8Y in angle gpace,

divide the angle path between the end points into a number of

-

equidistant points.
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(il) 'Solve.tha network at qach.point to obtain the bus voltages and the '

generator output powers folldwing the procedures described in
step 6, . -

.

~

(iii) Evaluate the integral term ueing the trapezoidal rule.

u .

3.5 Conclusloh
A novel formulation of the TEF method fetaining the .original
sparse network structure has -been prqeented‘ and the assoclated

computerized algorithm has been desgcribed. The sparse TEF‘technique has
saveral adv;ntages over the conventional reduced 'petwork formulatioﬁ:
the time consuming ne&work reduction is avoided tompletely. All matrices
used in calculatiné the SEP and UEP are very sparse. .Therafore,_ the
computational time is‘*reduced Bis'ificantly as compared to the RNF
{Chapter 4). The -conventional 1load flow J;cobian matrix (;iready

formulated aﬁd available’from the load flow solution) is a major part of

the main Jacobian matrix used to calculate the SEP and UEP. The TEF

_gethod using the proposed technique can handle very large scale power

syatems, Bp that a better design of transmigsion networkq can be
obtained by modeling the network in more detail (Chapter 4). Moreover,
both constant impedance and constant power type loads can be handled
explicitly, so, accurate results (very close to the time domain regults)

can be obtained (Chapter 6).



CHAPTER 4
.

APPLICATIONS TO LARGE SCALE POWER SYSTEMS

(CONSTANT IHPED&NCE LOADS) .

4.1 Introduction

The Sparse Formulation. (SF) of the TEF method deacribed. in
Chapter 3 to assess the t}ansient Btabiiity leads to a seignificant
saving in the computational time as compared with the ;urrently uﬁed
| Reduced Netwopk Formulation (RNF) approach. It alsé allows ihe TEF to be

dbplied to very large scale power systems which are beyond the scope of

RNF approach. The SF technique enables an improved design meihodology

for transmission networks by including provision for modeling the"

network in more detail.‘ Mareover, the SF makes the implemenéation of
medium-size transient Btability atudiéa on microcomputers feasible. In
thié chapter, tH%‘technique is applied to four different practical
systems of up to.300 generators and 1724 buseﬁ [Bl]. Since the RNF is
applicable'nnly to systems with 1loads modélgd‘ as conetant jimpedance
loads, we devotelthis chapter to applications of ﬁhe‘ SF to constant
impedance load systems. Approprliate cofiparisons can then be madé“between
the two techniques. In all comparisons {n thia chapter, the program
version TEF15 Fﬁctobar 1986) of the RNF, developed Jjointly by Ontario
Hydro and Iowa Stat? University, is used. It ism importantlto note here
that both of this program and the- SF pr&gram have @8ince then _  been
modified_and upsradeé. The comparison results presented in this chapter

?
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_were-obtained prior to Fall 1986.

~ For each Byatem; the mos;' important indices = for tranaient
Btabiiity Faaeeement, namely Athe éritical clearing time and the
stability limit, are calculatédi The COmputationalfyime taken by_ bo;h
the SF ana RNF are shown. The detalled results, namely the élea;ing';
anglés and speeds, the SEP, DEP and the energy maréin. wilg_gg given for
the first-syatem'only for the‘purpose of demdns?ration. The calculations
have been performed on a VA*—?BS éomputer. At‘thebbnd.of the chapter, an

application on a microcomputer [82) using' a multi~stage TEF algorithm

(STEFP~1) is presented. '

-

4.2 Application to a 50—Genefator. 145-Bus System ~+ -

*

4.2.1 System Dascription

This sysatem répreaents a reduced 50-generator versgion of

a practical power utifity network. Table 4.1 shows the main data of thig ,_ -

system. A 3-phase fault is applied on bus 10)l. The fault ie cleared at
0.108 second by trippiﬁg out two linee connected to_the faulted bus. The
mode of instability is chosen such tﬁat:all station B machines ({(those
conneéted to buses 1771 and 1793) plus the macﬁina of station D (which

is connected to bus 1853) are the advanced machines. Figure 4.1 ghows

the sparsity pattern of the Jaccoblan matrix for SEP and UEP

calculations.



Déacription quber
Total pumber of geqeratof buses 50
Number ofvgenegators cut of service 0
) Number of genératora-inieérvice. - 80
Total number of load buéee .95
Total nuTbér of busga 45 °
1 fctal number of lines , 647
Number of transformers 63
Nﬁmber of phase ghifters\ - 0
Dimension of‘the {Y] matrix 145
Number of non-zero elemente of the {Y] matrix 985
Dimension of the [J] matrix 390
Number of non-zero elements of the [J] matrix 4390
Sparsity ratio 2,886 %

Table 4.1 The main data of the 50-generator system.
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The sparsity pattern
the Jacobian mairmz for
generator system

( matriz of order 390. ).

fig. 4.1
of
the 50—



4,2,2 fEf Reaulﬁé

| For this aysﬁam_ only, the detailed réhult; cor}ehponding to
different steps of the algorithm described in:Chapter 3 are pfasented.
Tablg 4.2 Bhéwsthedleé{ing angles and ‘;pegds in._the ?COA; fraye. of
référenca f&? the.féﬁlt conditions daatribed in the preuiou§ Bécpion,
The UEP and SEPV;re glven in table 4,3.; The rai point Ithe pdiﬁt of

maximum potential energy) has been used as ﬁha‘initial value for the
UEP. Tﬂe f1na1'r@8u1ts comprising the values of energy compoﬁents, the
energy margin and the normalized engrgy margin, are shown in  table 4{4.
For the system conditions simulated, the system iz stable with an‘energy
margin of 0.056691 per unit and normalized energy margin o% b.034892.
That is, the aystem is very close to instability or, in other worda, the
gystem ié critiéally stable. The EalEulation of the energy margin is

affected by the number of divigions used to evaluate the itegral term as

described in step 8 of the algorithm of section 3.4. Figure 4.2 shows

" the energy margin as a function of the number of divisions. As ghown,

the value of the energy margin\\Eaifrates after almogt 15 divisions.
Based on the experience gained ao far, it is found ¢that 20 divisions
give gatisfactor® resulte for all systems. Al! the results given in this

theais have been obtained using 20 divisions.

Since, all the network buses are explicitly modelad, the bus
voltages can b; monitored; Table 4.5 shows voltage magintudea at somé
bugses and Lthe corresponding angles in degrees (in CQA). Table 4.6
3i§es the detailed CPU times taken by the SF. technique and the

corresponding times taken by the RNF technique. It should be noted that
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N .
Bus No. - gel wel Bus No. gcl wcl
: ' py
187 13.117 ~0.01418 1856 -21.189 -0.01910
287 —24.390 ~0.03270 1863 -21.431 0.08801
1032 -14.022° 0.19633 . 2007 -3.457 -0.02235
103qm 11.502 0.08824 - 2016 —~9.4179 -0,02195
1262 -30.490 | -0.02002 2051 =12.762 -0.01479
1751 -20.386 —0.02340 2079 -11.870 -0.02059
1752 23.613 ~0.01995 2152 ~58.758 -0.02265
© 1754 ~25,654 -3.01792 2184 -29.622 ~0.02241]
1771 -11.431 -0.01410 2203 ~9.644 | -0.02214
1776 21.025 ~0.01911 2264 | —-16.656 -0.02090.
1777 48.921 -0.02180 2459 ~42.672 -0.02263
1780 -29.965 ~0.01975 2601 —-46.486 -0.02262
1782 -16.119 -0.01771 2609 -17.301 -0,02262
1783 -15.512 -0.01714 . 2616 -3.250 -0.02251
1793 10. 369 2.25010 2651 9. 441 -0.02263
1796 -19.363 -0.01915 2652 47,040 -0.02262
1806 -29.948 | -0.02211 2654 21.813 ~0.02262
1807 4,906 0.09129 2655 -49,.754 |--~0.02263
1815 -20.088 -0.02072 2666 10.908 =0.02262
1820 - |-25.781 .| -0.02532 | 2669 02263
1825 ~14.225 0.08837 2674 ~0.02261
1826 ~-14.,250 « 0.08783 2679 -0.02260
1831 -30.921 -0.02182 2699 -0.02243
1843 -33.481 ~0.02095 2719 -0.02262
& 1853 11.966 2.14627 2139 -0.02263
]
Table 4.2 The clearing angles and speeds in the COA frame

clearing time

of reference for the 50-generator system,

0.108 'second.
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Bus No. SEP UEP Bus. No. SEP UEP
187 14.684 19.440 1856 |-18.987 | -10.229
287 |-22.798 | ~16.379 1863 [-18.491 -B8.596

1032 [-11.099 -2.309 2007 ~3.812 ~4.634

1036 14,340 22.952 2016 -9.559 -9.023
1262 |-28.187 | -20.526 2051 {-12.590 | -10.732
1751 |[-16.879 | —-6.540 2079 |[-11.850 | -10.851
1752 25.456 31.073 2152 |-58.594 | ~57.844
1754 —23.1?6 -14.885 2184 |-28.461 | -24.224
1771 11.936 80.108 2203 -8.605 -4,366
1776 22.599 27.366 2264 |-15.212 ~9.359
1777 49,485 51.156 2459 |-42.323 | ~40.956
1780 |[-27.141 | -17.796 2601 [-46.522 | -46.458
1782 |-14.446 | 736907 | 2609 [-17.497 | -17.964
1783 |-11.642 -0.389 2616 -3.183 -2.574
1793 29.733 | 102.630 2651 B.766 6.423
1796 |-15.672 -4,837 2652 46.365 43.989
1806 |-27.076 | -17.520 2654 21.110 18.666
1807 5.389 8.806 2655 [-50.911 | -55.339
1815 |-16.456 ~5.772 2666 10.086 7.136
1820 |-23.294 | -14.300 2669 ~2.847 -6.358
1825 |-11.172 -0.893 2674 3.511 1.899
1826 |-11.212 -1.004 2679 -0.158 ~1.113
1831 [-29.106 | -22.951 2699 -2.387 ~2.442
1843 [-31.171 {-23.502 2719 2.149 1.068
1853 32.570 | 106.391 2739 41.312 38.607

Table 4.3 The SEP and UEP for the 50-generator aystem.

#
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Daescription Value {p.u.)

Corfecﬁed kinetic energy . 0.8796
ﬁ ) L

Magnetic and dissipation energy at UEP ' -B3.608
Positional energy at UEP 84.518 .
Total energy at UEP 0.9103
Energy margin with KE correction 0.0307
Normalized energy margin with KE correctien 0.0349

™

Table 4.4 The final results of the 50-generator system.
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of the 50—generator system,
clearing time = 0.7108 s.



at SEP at UEP
Bus No. |— {
v é v )
[ 4

11g 1.051 4.670 0.745 68.45
127 1.025 ~1.639 0.623 52.14
‘128 1.025 -1.630 0.623 52.13
129 1.025 -1.625 0.623 52.12
130 1,025 -1.634 0.623 52.13
131 1.024 —23.266 0.736 -8.16
1616 0.988 0.025 0.649 57.77
1628 1.048 4.318 .0.779 70.29
1870 0.950 " 11.021 0.788 79.10
1873 0.950 11.021 0.788 79.10

Table 4.5 Voltage magnitudes at some buses and the corresponding

angles in degreee for the the 50-generator ayetem.
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Description RNF ' Sparge

Reading of data 6.38 6.10
Formation and reduction

of the [Y] matrix’ 9.94 0.44 ‘

E , QCI and QCI calculatian —_— 1.20
SEP calculation, 1.63 5.00
Initial point (x®) calculation 6.70 1.32
UEP calculation | 1.59 2.34
Energy margin calculation - 0.40 . 0.59

Total CPU time 26.72 16.99

(100%) (63.59%)

=

Table 4.6 The CPU times (seconds) taken by the sparse formulation
~
and the corresponding times taken by the reduced network

formulation for the 50-generator system.
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that the E;U Efﬁa. corresponding to the ;learing anglés and ‘épeegs
. calculation, in both'téchniqueé,‘is based on‘the constant accélarétion
agsumption. As shown, the CPU time haa'éqan reduced to-63;59 x‘when. the
sparsa_formﬁlation is used. . In calculating tha UEP, we utilize the
fact that the*JécoHian has the same éparsity pattern as thaﬁ at the SEP.
This may gxplain why the calculatiéh\of. UEP takes less CPU " time than

tha& taken by the éEP, as shown in table 4.6.

4.2.3  Stability Indices

.The most imporpant indicés for the transient stability assaqémant
are the Critical Clearing Time (CCT) and the Transient SEability Limit
(TSL). The CCT is obtained by calculating the energy margin as the
. clearing time isg increaséd until a negative energy margin occurs. Then,
by linear interpolation between the last Ltwo values (positi#e and
negat;ve) of the energy margin, the CCT can be calculated (the time
corresponding to zero energy margiﬂ#g The energy margin is also affected
by the time ;tep used in calculating the clearing angles and speeds.
Heun’s algorithm which is also known as the modified Euler’s glgorithm
f83] is used to calculate the clearing angles and s8peedes. Figure 4.3
shows the energy margin as a function of the clearing time for different
,Eime steps. As éhown, for conatant acceleration, the CCT is 0.101 second

compared to 0.1095 gsecond if a time step of 0.0] second 1l steps) 1is

used. The relative error is 0.0085 second which represents B.416 %.

A
Similarly, the TSL can be obtained by calculating the energy

margin while increasing the generated output power of only one machine
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; of stétion B (where tﬁq'TSL.is required) tili we get " a nasgtivé. energy

. margin. Then by linear interpoiation betweén the last two values 6f the
energy maréin. the TSL-can be calculﬁted. Figure 4.4 shows the energy
margin - iﬁtérface flow characteristics for three differént timé séeps,

‘ . '

namely,.conatant acéﬁleration {1l step), 0.027 second .(4 steps) and
0.0135 seéond (8 atBPB{: The TSL‘s in the three cases a;a 1270.5, 127% .
and 1277 MW, respectively. The errd}s in this case _are. almost
“negligible, 'Compéomisiné bétweeh the accuracy required and the gPU‘tiﬁe
needed, it isg foundlthgt-the tiﬁe step of 0.01 seédnd is qgite guitable
for both the CCT and TSL calculations and it will be used for -all the

following apﬁlications.

4.3 Application to a 100-Generator, 1095-Bus System

4.3.1 System Description

Thisrsyatem repregents another version of the previous system.
The main data shown in table 4.7. A 3-phase fault is applied at bus lOl.b
The fault is cleared after 0.0gb sec. This system has the same mode of
instability ag the previous 50-generator system but with the machines of

station B connected to buses 1771 and 1855. The sparaity pattern of the

Jacobian is ghown In figure 4.5.

4.3.2 TEF Results and Stability Indices
To calculate the clearing angles and speaeds, Heun’s algorithm

with a time Qtep of 0.0l 'second is used.. For the fault conditions
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Description ) " Rumber
Total number of generator buses 100
Number of generaters out of service 2.
Number of genefatora in service ’ 98
Total number of load buges . 997 f =
Total number of buses 1095
Total number of lin;a e 2039
‘kumber of transformeré, 247
Number of Phaae:shiftera. S 2
Dimensgion of the [Y] matrixa, 1095.
Number of non-zero elemenete of the [Y] matrlx ;427?
Dimensién of the [J] matrix 2386
Number of non-zero elemenets of the [J] matrix 17
Sparsgity ratio 0.316 %2

- Table 4.7 The main data of the 100-generatoer system.



Ff1g. 4.5 The sparsity pattern
of the Jacobian matrix for
the 100—generator system
( matriz of order 2386 ).
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desgcribed above, the system is stable with an energy margin of 1.2166
per unit and a normalized ana}gy m;rgin of 1.7128, Tabla:é.B gives the
CPU times t;ken bj both SF and RNF techniques. Aslahown. the CPU time
.has been reduced to 46.07 % , i.e. the larger the system the bigger.tha'
CPU.reduction. The CCT and TSL are calculated following the procedure
described in section 4.2. The energy.-margin — clearing time character-
istic is shown in fiéure 4.6 which givés,a CCf of 0.1105 sec. Figure 4.7

i .
shows the energy margin - station B interface flow characteristic. ‘The‘

TSL is 1485.7 MW.

-
4.4 Application to a 156—Geherator, 1184~-Bus System o
"4.4.1 System Description //)

) The main data of this gystem are shown in table 4.9. A J-phase

o .

fault is applied on bus 17. The fault is cleared at 0.108 sec. The
chosen mode of instability is that 5 machines of station N will be
advanced, namely, those connected to buses 1819, 1820, 1821, 1656 and

1857. The asparsity pattern of the Jacobian of this” system ig quite

similar to that of the 100-generator system.

4.4.2 TEF Remults and Stability Indices

; For this fault, and using a time step of 0.01‘se;ond. the Bystem
iséf;stable with an energy margin of -1.7772 per unit and a normalized
energy margin of ~0.2248. Table 4.10 shows CPU times taken by bhoth

techniques. As shown, the CPU time hag been reduced to-38.66 2.

»



Description RNF Sparse

-~
Reading of data N 19.93 21.43

Formation and reduction

of the [Y] matrix _ 86.42 1.62 -
E , QCI and QCI calculation e 5.05
SEP calculation ' | 5.88 16.44
Initial point (x°) calculation 21.31 ] 5.49
UEP caiculation . 6.24 : 9.73
Energy margin calculation 1.59 2.61
Total CPU time . 135.37 62.37

(100%) (46 %07%)

.

l
{ s

"Table 4.8 The CPU times (seconds) taken by the sparse formulation

and the corregponding times taken by the reduced network

formulation for jijfTbO—generator gystem.
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Descrip§i0n4=i- Number
Total number of generétor buscse 156
Nuﬁber of generators out of servlc; 3
Number of generat;rs i; service 153
Total- number of.lcad buses 1031
Total number of buses I184:
Total number of lines 23i1h
Number of transformers 2&0
Number of phase shifters 2
Dimension of the [Y] mafrix . 1184
ﬁumber of non-zero elemenete of the [Y] ‘matrix 5026
Dimension of the [J] matrix . 2674
_ Number of non-zero elemenets of the [J] matrix. TT21481
Sparsity ratio

-*0.301 %

]

‘y/‘ Table 4.9 The main data of the 156-generator system,

~
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.11

”
.//,_
‘Description RNF Sparae
Reading of data i 24,30 24.56
Formation and_reduction
of the [Y] matrix 115.58 1.89
"E, 8% and ¢! calculation | =e——o 6.41
’ SEP calculation 20.20. 29.09 .
Initial point (x®) calculation 39.82 6.8&
UEP calculation - 29.59 18.21
“Energy margin calculation 3.44 3.03
qgotal , CPU ﬁime 232.93 90.06
. (100%) (38.66%)

Table 4.10 The CPU times (seconds) taken by the gparge formulation

and the corresponding times taken'by the reduced network

formulation for the 156-generator system.
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The energy margin - clearing time characteristic is shown in;
figure 4.8 while figure 4.9 shows the energy margin - gtation B output

. %
characteristic. The CCT is 0.09665 second and ‘the TSL is 3375.7 MW.

+

4.5 Application to a 300-Generator, 1724-Bus System

J)
4.5.1 System Deacription

This system represents a base .case  data. used for operations

- “ ) . N
planning studies. The main data is- given in table 4.11. The system has
exactly the same fault conditions and mode of instagility as those of

156-Generator system. Figure 4.10 shows the apgrﬁity pattern of the

A

-a8  the ‘power

cacobian matrix.  Table 4.11 illustrates the fagt?klhat.

s

system becomes larger the sparsity ratic becomes smaller.: v

f.5.2 TEF Results and Stability Indices

For this fault condition, the system 1is stable with an ené;gy
ﬁargin_of 1.4036 per unit and a normalized energy maréin of 0.172§.
Since the RNF technique‘19 not applicable to that size of systems
due to storage-related p;oblema. table 4.12 shows CPU times taken by the

SF technique only.

From figure 4.1]1, which sghows the energy margin - clearing time

characteristic, the CCT is 0.1146 second. Figure 4.12 shows the energy

" margin - station B output characteristic and the TSL is 3557.2 MW.:
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Description . Number =~ -
5

—- Total number of-generator_buses 300
Number gf generatorg out of aervice li
Number,of generatora in service 289
Total nﬁ@ber of‘lééd busea 1435 .
Total nﬁhber of buses 1724 |
Total.number of lines 3708
Numbe} of transformers 403.
Number of phase shifteres 10
Dimension of the [Y] matrix . 1724
Number of ﬁon—zerd elemenets of the [Y] matrix 8310
Dimengion of the [J] matrix . 4026
Number of non-zero elemeneks of the [J] matrix 35841
Sparsity ratio 0.221 %

Table 4.11

The main data of the 300-generator system.
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Fig. 4.10 The sparsity patie
of the Jacobian matrix for

the 300—generator system
( matrix of order 4026 ).
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formulation for the 300-generator system.

N

‘Descnipfion Sparse

Reading of data“ 3??67

Formation of the {Y)] matrix 3.07

E, g%l and QC1,ca1culation 13.85

SEP calculation 83.63

Initial polnt (x°) calculation 15.99

UEP calculation 58.20

Energy margin calculation 5.6b A
Total CPU time 218.01

Table 4;12 The CPU times (seconda) taken by the aparse
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4.6 Application. on a microcomputer
Anoiher main advantage of tﬁe SF'is that it can be rerformed on
microcomputers [82] using systems of moderate size like the 50-
generator, 145-Bus system. A Sﬁzti—etase algorithm (STEFP-1) to perform
traneient stability calculations, i.e. to calculate the SEP, the UEP and
the energy margin using a TI microcomputer (MS-DOS operating‘system) is
described in detail in Appendix D. An applicatidn to a 50—generator,
145-Bus system is lalao gliven. Thel STEFP-1 program 1B'wribben in
Standard Fortran 77 and caﬁ eagily be transferred to most of other
commercial microcomputers currently availablel.Further enhancements have
- been introduced to STEFP-1 since it has been described in [B82], and Athe
CPU times shown in Appandyx D  are much less than those previously shown
“in [82]). For this system, the total _(':PU time 924.1 second. Here, it is
important tec mention th&t the actual computational time is 420.7 second
while the rest (503.A Becond) has been consumed in I/0 operations, i.e.
in reading the daEﬁ for a certain stagg {the results produced by the
previous stage) aAd writing the results (the data required by the next
atage).’ It is expected, by the continuing developement of micfo—

computers with large memory, that the time consumed In I1/0 operations

will vanish {(except for the first reading of the initial data).

4.7 Conclueion
\The successful results of the aparse TEF development have made it
i

poeeible to perform transient stability asaessment with computation time

and computer storage comparable to those of the load flow solution (by
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Newton-Raphson method). The superiority of the . SF technique ova; RNF,
approach regarding the computational time haa been demonstrated. The SF
technique also 9llowa the TEF to be applied to very large scale power
systems which are beyond the scope’ of RNF approach. Congequently, it
enables an improved desi. methodology. for transmission networks' by
including proviaidn for modelin: the networ; in more detail. The SF
technique has been applied to four different utility saystems of up to
300 generators and 1724 buses. Moreover, the SF has made the implement—
ation of the transient stability studies on mf;rocomputers feasible.
A multi-stage algorithm (STEFP-1) for transient satbility ;pplicauona,

on microcomputers has been described and the output screens assocciated

with each stage of the algorithm have been displayed and discusged.
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CHAPTER 5

A ROBUST TECHNIQUE FOR LARGE SCALE ILL-CONDITIONED POWER SYSTEMS
. : )

»

5.1 Introduction

The gparse fotﬂplatiop of the TEF method will be cdnsidefed as
a powerful And useful tool only Iif it can be applied to pfactical power
systems which are, in most casges, stressed (11i—conditio;;d) or highly
otressed (very; ill-conditioned). In such cases, the sparse TEF

formulation should be équipped with a mathematically robust technique to

golve for the UEP.

In this chapter, a robust computerized technique 1is described fqr
ill-conditioned SEP and UEP sgolutions [86]. ?his techniquef'cgmbines
a direct method of Gaussian elimination [B7] and a ieast gquares
iterative method {88) to calculate the Newton step needed by the Newton~'
Raphson approach described in Chapter 3. The technique i3 applied to
a lOBTgenerator. 252-bus ill-conditioned system with loads modeled ae
constant impedance 1loads. The effect of choosing the modes of
instability on the UEP calculation ie .also discussed. The techniques

—
used in the BNF are described and a comparison is performed between the
SF results and those obtaiqed by the RNF method. In this comparison, the
program version TEF15 (October 1986) of the RNF ig used. The superiority
of the sparse formulation to handle large-scale ill-conditioned systems

is emphasgized.

82 T
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5.2 Physical Aspects

e
\

The analysis of streaggd nger B;Btem is often characterized by
1ll-conditioned computations. ,Streaeed gysteme are tLoee  of heavily
loaded weak transmissiont Numerical problems could aia; argge if
generators with va}y large inertias exist close to tﬁgrdisturbance..Such '
large {nertias may be created by equ}valencing técﬁniques. The. préLlem
of i1ll-conditioning is accentuated by the fact that the Potential Energy
ﬁoundary Surface (PEBS). around a UEP may be véfy steep “n certaiﬁ

b
directions and very shallow in other directions. This characteristic

makes convergence fo the dgﬂt?éd'UEP a formidable numerical task.
’/
Numerically, this’can be explained as follows. Recalling equation
(3.11) , after dropping "A"™ and "k" (the iteration number):

J x = b . ‘ (5.1)

which represents he system equations in the perturbed form, The
golution x of t@é equation (5.1) is not the reqﬁired UEP but rather it
repregents the Neéton gtep in a certain iteration to get the UEP. If‘the
gystem is 111—coﬁgitioned, i.e. if the Jacobian‘ is an {ll-conditioned

matrix, the solution 5 is very gensitive to any small chanée in efither
the elemengg_of ZJ or the elegents of E.‘ Congsequently, to get an
accurate solution, both J and B must be eyaluated to a very high
degree of accuracy. Depending upon the system and the computer, the

required degree of accuracy may not be attainable. J, in this case, is

sald to have a high condition number.

-
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o

The condition number (K) 18 defined as [89]:

K(J) taw L | [ J—— " 15.2)

where 1 * ¥ represents the Frobenius norm of the matrix and Apax and

hY

Amin are the maximum and minimum eigenﬁalues of J respectively. . To

examine the range of K for power -eystems, let ue consider the 11-
generator, 55-bus system which will be described In detail in Chapter 6.

The Jacobian matrix is of order 132, A and X

max min &re 17447.814453

and ‘0.057448, respectively and K ¥s 303715.44. This value of K is
reagonable an& the Jacobian matrix of thig system‘ is said to be well-
conditioned. In general, we expect higher conditién qﬁmbers (of. the
¢ - '
order of 10°% or higher) for i{ll-conditioned systems. Another property of
éhb i1ll-conditioned system 18 that tﬁe solution vector X _ (the Newton
atep) at each {teration is very large. This can be explaineq By the

tendency'vpf the s8mall elgenvalue(s) to pufl the solution towards '

infinity (the syatem, in thie case, 18 near singularity).

5.3 Techniques Used in the RNF for I11-Conditioned Systems

Because the RNF‘usea dense' (non-sparse) matrlcea,‘there are many
methode avalilable {n the litfature tc solve the ;roblem of the }11—
conditioning. Two methods are now in use in the practical applications,

- namely, the Davidon Fletcher Powel (DFP) method [90-92] and the

Corrected Gauss Newton (CGN) method [93].

Ay
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95.3.1 Th; Davidon életcher Powel Hethod
This method combines some of the more.deaira?;e features of the
aterest descgnt and.the Newton—Raphson method. It is an extenafon of
Davidon’s variable metric method [92]. The DFP method hga béeﬁ used
for systems of a small dimension and found to be reliable ana efficient.

. - * .
However, as the system size Increases, the method becomes computation-

ally inefficient and unreliable.

q

5.3.2 The Corrected Gauss Newton Method -

After a careful search of the various methods available to solve
the minimiiétion problem and in consideration of the practical system

pizés. the CGN method was selected as a guitable alternative to the DFP
ﬁatﬁod. Thia.is a mod;fication of the Gauss—-Newton method of solving the
nonlinear léast squares problem. 'The method avoids the deficlencies in
the Gggss—Newton method by improving, when necessary, the ;pproximation
of the Hesslan matrix (the second derivatives of the system equations)
by removing the gingularity of the Jacobian matrix wusing a singular

value decomposition'techn%gue. The CGN method is safeguarded, robust and

reliable. It will be used for comparisons with the proposed technique.

Co
"o

5.4 -The Proposed Tecnique ) . j

A robust {terative algorithm to solve the problem of 1{l1-

conditioning should :

(a) use a starting pqint'that 18 as close as possible to the desired

A

UEP, and

EIN
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{b) prevent-the solution, during iterations, from diverging.

L4

The fiqst point is of no concern because the ray point, described-

in section 3.4 of~Chapté} 3, can be used am a 3ooq otarting point which

. is close. enough to the UEP. In’ addition, the initial u;er—defined
candfdate for the'méde of instability should be chosen carefuli& to
-EHSUfBUthat the correct UEP 1is achieved. Inaccurate -choice of the
candidate advanced machines may also lead to extra computational time in

the UEP evaluation.

.\ _
For the second point, if a direct method of Gaussian elimination

such as the MA28 routine [B7] is used in each iteration to calculate the
Newton sgtep (for ill—conditiéged system), the salution will likely
diverge. Hence we need a more robust method to solve the system of
linear eqﬁations (5.1). The method.we chooge sghould be an iterative
method. It should regulate the Newton step to moderate values. One
technique te accomplish thie is by suppressing the effect of the small
eigenvalue(s). This will result in an approximate solution corres-
ponding to a number of subiterations specified by the user. Examples of

such methods are the following.

(a) The implicit deflation method based on an iterative refinement
procedure given by Stewart [94].

(b) The conjugate-gradient method for least squares systems given
by He;tenes and Stiefel [95].’

(c) Thé least squares methog based on the QR transformation given by

J- Paige and Saunders [96].
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The first method ie based on tpe idea of projecting the solution

Pl

vector X onto a space orthogona} to the right or left null vectors
corresponding to the smallest eigenvalues of the Jacobian matrix, J.
Thsse vectors can be obtained by a variant of the inverse power method
[9?]. Then, using some form of the {iterative refinement procedure
-[98,99], an approximate solution (callea the deflated solution) can be
calculated. This method has been implemented and aﬁplied te an 1{ll-
conditioged power aystem, but it 'did not work appropriately and
a divergence occurred. The reason (according to our discussion with the
author of [94]) is that this meéhod ié‘appiicable only to systems which
-have one singular value that is substantially smaller than the others.
It was found that the systeﬁ which has been tried had more than one
small singular value. Due to thia 1limitation, this method will not

be usged.

) The second and the third methdds are described as algorithms
"CGLS".and "LSQR"™ respectivley in [96]. They have similar qualitative
propertlies, but the latter is likely to obtain a more accurate golution
in fewer iterations if the matrix J of equation (5.1) is moderately or

severely i{ll-conditioned. Therefore, it will be adopted Iin the proposed

technique. ' -



- B8
5.4.1 The Least Squares Method )
The algorithm LSQR solves the following damped least squaree
problem:f—- =
J b
minimize - ~ - {5.3)
: 1r 1 /f 0

-

where M 1ig a damping factor, specified by the wuser, to prevent the
small singular valuee from swamping the solution and causing numerical
instability. Notice that if X 'is set to zgro,'the problem will lead to

the regular linear 1least .equares problem. . The algorithm can be

summarized in the following two main steps. .

{1) Reduce the matrix J to a lower bidiagonal matrix By of order
(k+1,k), where k is the number of subiterations specified by the
user, using the Golup and Kahan (GK) algorithm [100]. Then the kth

approximation to the solution 'x 18 defined as :

X = Vg Yx (5.4)

where V. is the transformation matrix used in the GK algorithm

and Yk gBolves the aquroblem:

Bk B e

minimize kK " (5.5)

1

Al

Y=
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- —

v

where 8 {8 the Euclidean norm of ‘b and e; {8 the 18t principle

~

unit vector. . : \ .

[

(2) Solve . the subprobleﬁ (5.5) for y usiﬁg the QR orthogonal

.

transformation. Then, solve for x using equatioﬁ (5.4).

The QR factorizatiop ie ‘an iterative process. Therefore, a termination
criterion la needed. The following termination criterion is formulated
in terms of three dimensionless quantities (ATOL, CONDLIM and ITERLINM)

gpeci{ied by the user.

1 J rk i
{(a) Stop if . _ £ ATOL {5.6)
‘ . nJ1 e B
, S

where Ek.represents the residual vector at subiteration k

(b) Stop 1if K{(J) > CONDLIM (5.7)

(c) Stop If No. of subliterations > ITERLIM (5.8)
Practical values for the previous parameters are: :

(a) ATOL = 10‘5, (b) CONDLIM = 10+  and (c) ITERLIH = n

where n represents the number of the system equations and 1s given by

n = 2 Ny + 4 N8 {5.9)
Although LSQR is a lengthy process and,_ may consume a considerable
computational time, it 1is a powerful algorithm for 1ill-conditioned

gystems. On the other hand, direct solution routines such as MAZB .are
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usually very fast but are not. puitable for ill-conditioned cases.
Therefore, an optimal technique can be obtained by uBiné both LSQR and

MA28  alternatively ire the - main iterations of the Newton-Raphson

procedure,

5.4.2 Fibonacci Search

After calcuiating the Newton (usin LSQR or MA28) and

mismatch is calculated using a onexdimension optimization méthod. The

is conditional on the

Newton step being calculated exactly, i.e. usi a direct method (like
4Zjled the Fibonaceci direct

the MAZ8 routine). Another effective metho

elimination method [101-103],. can be used with LSQR. The methbd is based

- ¢ (5.10) .

Ni = Ni_l + Ni“z 1 1=2|3,-..

Assume that we pbtalned an initial interval (xé. x;) which contains the
minimum mismatch (the rquired point). At the jth iteration of the
Fibonacci search using m function ‘evaluations ( m 3 2 gpecified by

the user) we have: N

1
x} = =y, x) . 9=1,2, ..., m-l (5.11)



. o
: . N\_‘
) = Rt RS ,oJ=l 2,00, =l (5.12)
s Nm+l—j ‘
where = 'xa - xf_ (5.1
js,the interval of-the uncertainty at the start of the jth iteration.

Obgerve that each subiteration except the first actually requires only

one'function evaluation (using ejther xg or xg) due to symmetry. The
interval of the uncertainty after j 1iterations is

- x& - xg . xg - xe (5.14)

Using equatione (5.11), (5.12), (5.13) and (5.14), we can show that the
total reduction ratic of the interval of the wuncertainty after m-l

iterations is equal to Nm. For example, for m=l1l , the reduction ratio

is equal to 144,

5.4.3 Algorithm

The proposed technique has the following steps.

-~

(1) Calaculate the starting point (the ray point described in section
3.4 of Chapter 3).

9

(2) Evaluate the initial miamatch F, wusing

n 2 T
1:0. = Efi (5.15)



where n 18 given by equation, (5.9) and £y represents the left hand

. ]
gide of equation { of the system equations.
{3) Calculate the Newton step.uaing LSQR , éalculate the.- optimal setep

uging the Fibonacci search technique: upqate the variables.

(4) Evaluate the mismatch F: check if F 18 less than the required
. 4

tolerance.

(5) Calculate the Newton step using MA28 , calculdte the optimal satep
using the Fibonacci search or the cubic interpolation and update the

.

variables.

(6) Evaluate the, miamateh F: check 1f F 1ia less thah the required

: N

tolerance.

-

(7) Using a parameter NILL (specified by the user according to the
severity of the system {ll-conditioning, e.g. for moder:tely {ill-
conditioned systeme specify MNill=5 and for severely ill-conditioned
systems specify Nill>10), check:

(1) 1f F‘ > Fo / NILL go to step 3.

(ii) if F o Fo / NILL go to step 5.

5.5 Application to a 108—Generator, 252-Bus Ill-Conditioned System

5.5.1 Syetem Deacription

4

This system represente another reducgd version of a practical,

highly stressed power network. Table 5.1 shows . the main data of this

#

system. A 3-phase fault is applied at bus 53. The fault is cleared at
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7

e

Deacription ‘Number
Total numbef of generator buses 108
Number of'generatora out of aervlée 0
Number of generators in Berviée 108
Total number of load buses 144
Total number of buses . 252
Total number of lines 1296
Numherypt transformers 0
Number of phase shifters 0
Dimenaion of the [Y] matrix -~ 252
Number of non-zero elemente of the [Y] matrix 2016
Dimension of the {J] matrix 120
Number of non—zero elementas of the [J] matrix 9036
Sparsity ratio 1.743 X

Table 5.1 The main data of the 108-generator ill-conditioned system.

93
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" 0.04 second by tripping one line connected to the faulted bus. The

estimated mode of instability is that 10 machines (those connected to

- .
buses 61, 88, 95, %96, 100, 217, 222, 223, 224 and 225) are the advanced

-

machines. -

5.5.2 TEF Results
For this system, the detailed fesu}ts,corresponding'to. diff}rent
steps of the algorithm described -in Chapter 3 are preseﬁied. Table 5.2

shows the clearing angles and speeds in the COA frame of reference for

the fault conditione described in the previous section. The ay point

(the point of maximum potential energy) is used ag an initial value for
the UEP. Then, the proposed aigorithm_is applied using the following

parametersg:

(a) ATOL = 10°°
(b) CONDLIM = 10*©

(o) ITERLIN = n o= 720
(d) NILL = 20

The UEP and SEP are given in table 5.3 and, as Bh;wn. the estimated mode
of instability glO machineg are advanced) haes led to the actual mode in
which 19 machines are advanced. This mode is called an Interarea mode
because the system is split into two subsystems (two areas) in each of
which machines are running together in synchronism. MNote that the modes
described in the different applications of Chapter 4 are called 1local

modes because only the machines near the disturbance are advanced.

v g
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Bus gcl wcl Bus gcl ~wfl | Bue gcl wCl
\_ ‘ .
1 |-66.459 | -0.1464 118 0.132 |-0.1095 177 11.413 |-0.0738
"2 1—-74.329 | -0.0837 122 -8.033 |-0.2586 178 17.671 |-0.0738
8 |-35.126 | -0.1224 124 ~3.579 |-0.1510 179 (-25.720 |-0.0738
9 |-43.228 |-0.1378 125 -1.187 |-0.0500 180 27.671 1-0.0738
11 5.983 0.0011 127 -8.652 |-0.3714 181 3.101 |-0.0737
12 10.584 0.0878 128 9.796 0.4473 | 182 9.970 |-0.0738
17 -8.064 |-0.0754 129 4.484 0.0551 187 21.267 0.0340
18 -8.915 {-0.0782 131 2.381 | 0.1630 188 22.331 0.0309
25 {-75.930 |-0.0921 132 |-12.603 |-0.3353-) 217 | 34.990 " 1.0441
" 26 |-76.376 |-0.0864 134 |-27.577 {-0.1195 222 43,759 0.7310
27 | —-3.776 |-0.0648 147 ~4,377 |-0.0661 223 34,359 0.4638
37 |-14.197 |-0.0833 148 |-58.584 |~-0.0793 324 24.504 1.6960
39 |-62.412 |-0.0845 149 |-60.738 |-0.0790 225 23.970 1.3694
. 40 |-56.257 1-0.0770 150 |-50.859 (-0.0752 227 6.793 |-0.0107.
*4] |-66.700 |-0.0779 151 |[-80.543 |-0.0930 229 (-96.413 |-0,00829
43 |-63.181 [-0.1074 153 [-29.986 {-0.0736 230 14.030 0.149¢6
44 |-47.595 (-0.0758 154 |-70.693 |-0.0744 231 |-31.301 [-0.1496
45 [-65,926 |-0.0789 155 |-48.460 [-0.0740 232 |-22.791 [-0.1045
46 (-63.279 |-0.0744 159 -5.028 |-0.0738 234 |-19.717 [-0.0801
47 |-46.723 |[~0.0743 160 12.917 |-0.0738 235 | -64.703 [-0.1685
58 30.396 1.4286 161 -6.497 {-0.0733 237 14,462 0.0185
61 46.739 0.6486 162 28.014 |-0.0738 238 | -48.419 |-0.1185
67 13.787 0.2378 163 35.647 |-0.0738 239 0.956 0.0394
78 14.787 0.2911 .| 164 57.384 |-0.0738 240 14,256 0.1032
82 12.671 0.4640 165 13.609 |-0.0738 24] 2.091 {-0.0727
a8 47.152 0.6194 166 ~4.068 1-0.0738 242 |-27.578 {-0.0737
95 22.1017 0.6104 167 -2.839 |-0.0738 243 3.673 [ -0.0589
96 35.892 1.0290 168 4.657 |-0.0704 244 28.339 | -0.0655
100 26.226 0.6120 169 4.741 |-0.0714 245 |-31.561 (-0.0747
102 25.756 1.6066 170 -3.128'1-0.0437 246 [-12.604 |--0.0736
105 32.570 1.1218 171 3.564 |-0.0732 247 5.157 0.0470
107 27.359 0.5543 172 7.353 [-0.0701 248 5.839 |-0.0116
108 10.895 0.3369 173 11.218 |-0.0640 249 20.144 0.0080
114 24.160 0.6066 174 30.132 |-0.0726 250 2.283 {-0.0627
115 25.861 0.4183 175 16.263 |-0.0735 251 1.734 | -0.0597
117 11.810 0.2796 176 4.063) 1-0.0733 252 [-16.,412 | -0.0503

-

Table 5.2 The clearing angles and speeds in COA frame

of reference for the 108-generator ill-conditioned syatem,

clearing time = 0.04 gecond:

/ [
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Bus SEP , UEP Buea SEP ' UEP Bue | SEP UEP
1 {-65.924 [-52.398 [ 118 1.391 40.538 177 11.157 | =1.762
2 |-73.96]1 |-64.062 i22 | -6.615 32.211 178 17.400 3.911
8 1-34.295 | -2.889 124 | -2.275 36.768 179 }-26.079 [-43.276
9 [-42.511 [-17.676 125 | -0.001 3g.882 180 27.410 14.353
11 6.599 32.506 127 | -7.101 31.870 181 2,947 | =5.635
12 11.351 46.300 128 10.432 49.774 182 9.7715 | -0.579
17 |1 -7.123 36.344 129 5.554 44,575 197 22.338 87.025.
18 | -7.976 | 34.897 131 3.323 42.152 188 23.442 | 92.595
25 |[-75.557 |-65.928 132 |-11.110 27.159 2117 35.013 19.015
26 |-75.999 |-65.934 134 |-26,1389 9.553 222 44.105 83.928
21 -2.836 41.531 147 -3.892 13.378 223 35.022 75.790
37 |-13.238 25.513 148 |-58.402 [|-54.657 224 23.742 | 64.179
39 1-61.883 [-44.688 149 1-60.%38 [-56.211 225 | '23.584 64,034
40 |-55.742 [-38.681 150 |-50.741 |-48.990 227 71.243 22.915
41 |-66.163 |-48.064 151 |-80.243 |-73.233 229 |-95.991 !-83.691
43 |-62.562 |~42.939 153 [-29.985 [-32.363 230 14,798 53,659
44 |-47.063 |-29.090 154 [-70.549 |-67.968 231 |-30.185 17.611
45 |-65,389 |-47.452 15&\ —48.348 |-46.773 232 |-21.8446 18.933
46 |-62.770 |-45.735 159 | ~5.234 [-16.043 234 [-18.570 35,619
47 }-46.208 [-28.868 160 12.638 | -1.208 235 1-63.989 |-43.141
58 29.894 69.188 161 -6.608 [-13.743 237 15.5996 76,151
619 47.184 | 87.046 162 |. 27.685 11.816 238 [ -47.774 |-26.959
i 14,174 38.010 163 35,324 19.697 239 2.035 59.833
78 15.426 53.016 164 57.032 40,248 240 15.054 51.548
B2 13,139 51.132 165 13.287 -2.299 241 2.146 1.965
88 47.634 B7.544 l66 | -4.392 |-20.102 242 [ -27.474 |-26.,084
95 22.583 62.806 167 -3.184 [|-19.768 243 3.855 9.707
96 35,923 76.963 168 4.658 2.313 244 28.534 35.303
100 26.731 15.149 169 4,732 1.952 245 | -31.422 (-28.819
102 25.124 68.871 170 | -2.986 0.636 246 | -12.5B3 |-14.200
105 32.503 16.481 171 3.450 | -3.729 | 247 5.536 21.171
107 27.921 69.558 172 7.303 2.860 248 6.073 14.320
108 11.698 53.232 173 11.201] 8.191 249 20.596 37.550
114 24.667 | 68.708 174 30.079 25.430 250 2.410 4.575
115 26,583 70.516 175 16.165 9.638 251 7.774 7.033
117 12.637 52.134 176 3.992 { -1.169 252 | -16.119 | -7.664

Table 5.3 The SEP and UER for the 108ggenerator

ill—éonditioned system.
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The final results including the values of different types of
eneréy, the energy margin and th; normalized energy margin, are Ehown in
table 5.4. Thé gygtem is unstabie with an energy ﬁarsin of -0.3374
perunit and normalized energy margin of -0.1768. Table 5.5 siv?s the
‘detailed CPU times taken by the SF technique and thejcorreaﬁonding'times
taken by the RNF technique (the cle;rins angles and speeds have beén
calculated, in both &echniques, using constant accelerations). As shown,
the CPU time has been reduced to 31.03 X of that taken b%/;hhe RNF

technique .

i
It has been found that (for this system) termination criteria (a)

and (b) were not used. Only the iterations limié‘given.by (c) was in
effect. Also, it has been éound that ITERLIM and hILL _have a strong
effect on the number of times that LSQR, whose computaticnal time |is
dominant, is wused, i.e. on the total CPU taken by the gparse
formulation. Table 5.6 shows the:.effect of chooming ITERLIM = 1000
and NILL=10 on the convergence behaviour of the UEP and consequently
on the total computational time taken. In this case, LSQR has been used
Just once and the total CPU time has been reduced further to 248.93

1 .

geconds. This repregsenta 23.84 3 of the time taken by the RNF.

i
.

5.5.3 The Effect of the Mode bf Imstability on the Speed of Calculation
.- 'Three different choices of the candidate advanced machines for
o |

determining the mode of instability are tried to show the effect of

the choice of these candidates on the speed of the calculation (the

number of iterations needed for the UEP calculation). These choices are
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Description

. Value {(p.u.)

The
The
The
The
The

The

corrected kinetic energy

magnetic and diaaipatloﬁ energy at UEF

positional energy at UEP
total energy at UEP
energy margin with K.E.

Normalized energy margin

correction

with K.E. correction

1.9087

-169.71

171.28

1.5712

—0.3374

-0.1768

—-’/’

Table 5.4 The final results of the l0B-generator

ill-condi

tioned gsystem.
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Description RNF Sparse
Reading of data ‘ ©11.60 i1.42
FormationLanH reduction. |

of TY] matrix 80.25 0.42 -

JE QC1 and QCI caléulatio; _— 2.88

’ SEP calculation 8.90 9.24

Initial point (x°) calclation 28.67 “3.17

UEP Calculation 912.65 294.81
Energy margin calculation 1.90 1.97 -
Total CPU time 1043.97 323.91

(100%) (31.03%)

Table 5.5 The CPU times (seconds) taken by the sparse formulation
and the corresponding times taken by the RNF for

the 108-generator ill-conditioned system.

“
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Tteration No.

-

ITERLIM=1000, NILL=10

ITERLIM=720, NILL=20

‘ e
0 1016.49 1016.49
1 77.653 LSQR 69.481 L5QR
2 5%.796 M428 60.664 MAZSB
3 53.490 MA28 30.291 LSQR
4 50.104 HMAZ2S8 24.088 MA28
5 48.171 MAZ28 20.707 MA28
6 44,299 MAZ8 17.717 MA28
7 37.107 MA28 13.158 MAZ8
8 20.890 MaZ28 6.7356 MA28
9 7.2936  MA28 3.1508 Mazs
10 1.7370 Ma28 0.7769  MAa28 -
11 0.0850 ' MA28 0.0715 HMA28
12 0.0004 MAZS8 0.0001 MAZB
CPU for UEP 219.83 294.81
(gec.)
Total CPU (sec.) 248.93 323.91
Total CPU 4 23.84 % .31.03 %

Table 5.6 The total .mismatch, the method used in each iteration and

total CPU time for different wvalues of ILITERLIM and NILL to calculate

the UEP for the l08-generator ill-conditioned system.
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.
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shown in table 5.7. For this purpose, we use ITERLIH54b00 _and NiLL:S.
Table 5.8 gives the number of fterations needed to calculate the UEP _An
each caaé. and the correspandiné computational time. It should be noted
that in all cases convergence was attained to the correct UEP. Itl i
clear that as the aéiimated mode of instability (the candidate advanced
-machines) comes closer to the correct mode, the number of iterations
needed to calculate‘tha Uéb decreases and more computational time can be
saved. It shoéld be noticed that the CPU time is not proportibnal to the
number of iterations in each case because all three cases useé LSQR (for
which the CPU is dominant) equal numbers of times (one time .in this
case)}. The saving in time occurred only for those iter;tioﬁb foF which

MAZ8 waé used. '

5.7 Conclusien

A very robust technique to compute the SEP and/or UEP for large-
P .

scale ill-conditioned power systems has been scribed. This techhique
combines the direct method of Ga&saian elimination and the least aquares
method. The technique has been applied to a 108-generator, 252-bus i11-
conditioned system with loads modeled as congtant impegance loade. The
effect of the proper choice of the mode of instabllity on the)
computational time taken in the UEP calculation has been demonstrated.
The various techniques used in the RNF have also been discussed. The '
comparison. between ‘the computational time taken by both the SF and RNF
has demonstrated the superiority of the sparse forghlation to handle

-

large—-scale jll-conditioned systems,
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. .
Mode 1 Mode 2 tMode 3
(11l machines) (16 machines) (19 machines)
Machine No. Machine No. Machine No:
58 58 58
61 S 61
as ‘ gs 88
95 95 : 95
96 96 ) 96
100 . ‘ 100 100
217 . 102 102
222 105 105
223 107 107
224 1% _ 114"
225 115 115

217 187
222 188 °
223 217
224 222
225 223

224

225

4
-~

Table 5.7 The three modes of instability used to calculate

the UEP for the 10B-generator ill-conditioned system.
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Mode 1

Mode 2

Iteration No. (13 iterations) (8 iterations) (6 isgﬁitiins)
) Fr , method FT , method FT , method
0 - 1016. 49 961.01 995. 34
1 77.653  LSQR 137.56  LSQR 108.37 LSQR
"2 59,796 MAZ8 B3.628 HA28 102.34  HAZ8
3 "53.490  MA2B 65.858 MA28 34,068 MA28
" 50.104  MA28 44.892 MA28 3.1627 MA28
5 48,171  MA28 8.4260 MA28 0.1131 HA28
6 44,299 MA28 1.1197  MAZ8 0.0002 HA28
7 37.107 MA28 0.0193 MAZ8
8 20.890  MA28 0.0000 MA2B
9 7.2936  MA28
. 10 1.7370  MA28 o
11 0.0850 MA28 ,
12 0.0004 -MA2B
CPU (sec.) 219.83 ' 210.69 206.23

Table 5.8 The total mismatch,

the method used in each ifteration

and CPU time consumed in the UEP calculation for different modes of

instability for the 108-generator ill-conditioned system.




CHAPTER 6

SPARSE TEF METHOD INCLUDING LOAD MODELS

6.1 Introduction-

Thia chaﬁter discusses the inclusion of load modeling ip the TEF,
which is the second main advantage of the Sparse Formulation (SF). To
apply the Reduced Network Formﬁlation (RNF} of the TEF, all system loads
are modeled in the conventional approaches as constant impedance Joads
fn order to be able to reduce the network to the internal nodes of the
gensrators. In practice, most industrial loads cohaiat of induction
motor type loads. They represent the:;ajority of system loads, in the
nature of conptant power type. Neglecting these types of load modeling
in transient stability analysis is a conservative feature of the RHNF.
In the SF, the loads can be represented more accurétely (constant
" impedance, constant power or.any combinati;ﬁ tBereof) [104]. This, as
will be shown in this chapter, gives correct and accurate results
(matching with those of the time domain solutions). The scope of this
chapter can be summarized as follows
(i) Applications to a ll-generator, 55-bus system which show 1
) {a} The effect §f load modeling on Ehe critical clearing time with

d comparison with that obtained by the time domain.
(b) The effect of load modeling onki?a enifgy margin.

(ii) Applications to a S50-generator, l145-bus system which show

(a) The effect of load modeling on the ‘stability limit with

104
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a comparison with that obtained by the time domain solutions.
6.2 Applications tﬁ a l1l-Generator, 55-Bus Sy:::;ru// -
"The SF is apgliqd through the'alébrithm described in Chaptér 3 to
a ll—géherator system (a reduéed Qersion of a practical system) using
different load models. In thie system, a three phase fault.occura at bus
number 226 (Station B) and the fault is cleared in 0.068 second by
tripping out four lines cdnnected to ‘the faulted bus. The mode of
.instability for this specified fault is that Station B macﬁines. those
which are connected to buee; 975, 991 and 1001, are the advanced
machines. Two important effeéta of leoad mo&eling are discussed in the
following sectfons.

-

\
6.2.1 The Effect of Load Modeling on the Critical Clearing Time

The critical clearing time is the clearing-time before - which if
the fault is cleared the system is stable and after whicg {f the fault
is cleared the system 1is unstable. The critical "clearing time |is
calculated using both time domain and the SF of the TEF method for three

¥main load models; 100% constant impedance, 50% constant impedance + 50X
constant power and 100% constant power load modele. This comparison will
be offered as a proof of the validity. of the SF for different load
moééfg appllcations. To calculate the clearing angles and epeeds needed
by the SF, the Heun’s algorithm [B82] 18 wused with time ‘step of 0.01

gsecond. This yields sufficient accuracy (as described in Chapter 4). For

100% constant impedance load models, figure 6.1 shows the rotor angles .
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Fig. 6.1 The rotor angles of.the advanced machines
in time domain-for 100 ® constant impedance load modelg
for the ll-generator system.
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of the advanced machines in the time domain for both critically stable

" and unatable cases, The clearing times are 0.0986 and 0.0988 second
: . . .

respectively, i.e. the criticgl c¢learing t}me is ,l070§87 sacond.
Figure 6.2 shows the energy margig versus ciearing time using the SF‘
for the same load model. As shown, the criticgl_clearing time (time
corresponding to zéro energy marg{n)lis>0.0956'secpnd wiih' a difference
.of 0.0031 second (3.14-3)5 For 50% .conetant impedance + 50% conatant
power load models, figure 6.3_9hows_the time domain results. from‘ which
the critical clearing. time - is 0.1417 second. From figure 6;4. the
critical clearing time using the SF is °0.1347 second with a differénce

of 0.0070 second.(4l94 %Y. For 1002 constant power load modelé, the
difference ig 0.0169 gecond (B.44 %). - Fiéures 6.5 and 6.6 show the
.results obtained from both methods. Figure 6.7 shows the critical
cleéring timess for other load models usiné‘both time domain and the SF
while figure 6.8 gives the percentage relative errors. As shown, the
-results of the SF match wiéh those of the time domain with acceptable
errors. From the previous results, we conclude that neglecting load

modeling may lead to a significant relative error {(more- than 45 % in

the previous case) in the critical clearing time calculation.

Now, we present some othe;\useful regults. Figures 6.9 .and 6.10
show the effect of changing the clearing time on‘the eneréy at the UEP
and the energy at clearing respectively for different load models{ As
the clearing time incfaases, the energi at .the UEP decreases while

that at clearing increases. This can be explained very simply using the

well known Equal Area Criterion (EAC)ifﬁl. Figure 6.11 showa the EAC
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of a a{gle generatof - infinite 'bus seystem for two valﬁes of the

clearing time. In each case, the area Al represents the anérsy at
‘clearing while the area A2 represents the energy at the ﬁEP. It is
clear\that as we increase the clearing time, i.e. as we increase the
clearing _angle, Al Nnereases and A2 decreases. It should also be
noticed thaty in figures 6.9 and §.10, the curves for different loag
models have the same shapé bﬁt fhey move to the right (the direction of
increasing the cleéring time) as the load models change. from cons?ant
impedance to éonstant powar loads. Noiice also that the éolid line
in each figure represents those.vaTUQE corresponding to the critical
clearing time in sach case of the'load modeling. Since it corresponds
to zero energy margin which 18 the difference between‘thg energy at
the UEP and the energy at clearing, the pointe of Iintersections of the
golfd 1line and the energy lines in each figure ‘should have the
Bame values. Figures 6.12 and 6.13 show the energy margin and
the normalized energy margin rgspectively for different clearing

timeé. The intersection of the ;energy margin " line of each case

with the Zero reference givea the critical clearing time of

that case.

6.2.2 The Effect of Load Modeling on the Energy Margin
The energy margin ,as described in Chapter 3, 1e the difference
between the energy at the UEP and the energy-at fault clearing. Figure

6.14 shows these two types of energlies and the energy margin as we

- change the models of all gystem 1loads from constant impedance to
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constant power loads. The clearing angles and speeds ‘are calaculated
assuming constant acceleration because the clearing time (0.068 second)
iz small enocugh. As shown in figure 6.14, as the loadas change from

constant impedance to tonstant power, the energy margin increases from

~

0.3042 p.u. to 1.2452 or by 409.34 %. Ih§ difference between these two
values ia 0.9410 p.u. , i.e. 94.10 MJ, a relaﬁively large value. The
relative robustness of the system can be evaluated by the normalizéa
eﬁergy margin as‘éhown in figure 6.15. The Vnﬁrmalized energy margin
increases from 0.9713 to 6.1355, an increase of"‘ 631.68 %. This.
percehtage shows that the system is actually much more robust if we
consider the loads as constant bower than constant impedance. This
means thaE neglgcting thé true 1load modeling may lead to a false
Judgement-oh the system stability. Recalling equétion 3.19, the energy
m;:gin depen;s ;n three terme as followas. The -fir;t term is the
positional energy. The second term is the magnetic_ and _diasipated
enetgy. They depend on the cléaring angles and the UEP. The third te;m
is the kinet{c enérgy at clearing. This term depends on the speeds at
clearing, i.e. the behaviour of the energy margin shown in figure 6.14

can be explained by investigating the values of the tlearing angles and

speeds and the UEP point as the load models are chapged.

6.2.2.1 The Effect of Load Modeling on the Clearing and UEP Points
-~
The most effective machines on the energy margin are the advanced
machines and what we call the reference machine. When a detailed large

scale power system is required to be reduced ‘to another version of,
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s%aller gize (keeping the‘lbad modelé as they are), usually that part of
interest of the large system is kept unchanged while the rest of the
syatem is reduced to an equivalent machine with some local ;saa. This
equivaleﬁt machine 1is called the reference machine because its
parameters (rotor angle and speed) are considered to be not affected
much by any fault which occurs some whar? else., Figure 6.16 shows the
firat two terms of the energy margin expreééion, the posgitional energy
and £he magnetic and diqsipaged energy for different 1load models; The
difference between theée two curves is the energy at the UEP shown in
f;gure 6.14, Figure 6.17 shows the UEP of the advanced machineé and the
-
refereﬁce machine as well for different load models. The UEP of the
advanced machines f9?5, 991 and 1001) decrease (by 5.76l1, 5.382 and
4.801 degrees).as the logﬁs are changed from constant impedance to
constant power loads while the UEP of the reference machine increasges
( just by 1.490 degrees). As shown in figure 6.18, the changes of the
clearing angles (—0.113.'—0.200. -0.52% and +0.0512 degrees) are very
am;ll. From the previoué valuas, we conclude that the integration éé@n
(the distance between the UEP and the clearing points in the ang}e
domain) is decre;;ing for both the advanced machines and the referencg
machine resulting int‘decreaaing energies as they shown in figure 6.16.
But because thefmechanical input powers of the advanced "machines a;e
1.0, 2.0 and 13.0 p.u. and that of {he reference machine is éélB.B p-U.

&
and because the electrical output powers are of the same ranges, the

-

reference machine is dominant and the signs of the calculated anergi@s

shown in figure 6.16 are different from those shown in equation 3.19;
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6.2.2.2 The Effacf]of Loaés'odeling on the Clearing Speed
Figure 6.19 shows the clearing speeds of the advanced machines as
waell as the speed of the reference machine for different 1load models.

.

The speeds of the advanced machines decrease by 0.0267, 0.0709 and
' 0.2381 rad/; while that of the reference machine incr;ases by 0.0227
rﬁd/s. The Bituat;on here is alightly more comﬁlex eince the kinetic
energy ls egual to the speed‘ square times the inertia congtant.
Theréfore. although the inertia cong?gnts of the adyanced. machines are
57.52; 115.04 and 105.79 p.u. while that 'of the reference ;§chine
is 9344.17 p.u., the advanced machines are dominant because the speed of
the reference machine is a small fraction. Here; it should be noted that
the "speed squ;re" term makes both the reference and advanced machines
causing the kinetic energ} to decrease as shown in figure 6.14. Since
the energy at the UEP }according_to the previous section) increases and

the kinetic energy at clearing decreases, the energy margin increases as

the load models change from constant impedance to constant power loads.

6.3 Applications to a SO-Generator, 145-Bue System

‘
The effect of load modeling on the stability limit is disscussed
™

through applications of the SF to the G50-generator,-145-bus system

described in Chapter 4. In this system, a three pﬁaae fault occure at

F

bus number 10! (Station B) and the fault is cleared in 0.068 aeuond.Ez{ﬂtﬁ
tripﬁing out two lines connected to the faulted bus. The mode of

instability for this specified fault is.that Station B machines, those

which are connected to buses 1771 and 1853, plus Station D machine,

‘ ¢
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which is connected to bus 1793, are the advanced machines.- A éomparison
between the SparseTEF results and those obtained using the time domain

is presented, which confirms the accuracy:.of the SF for different load
. ] :

models application.

6.3,1 The Effect of Load Modeling on the Stability Limit

The stability limit is calculated using first the time domain by
increasing the gross output of Station B (by increasing the generated
ouktput power og the machine connected to bus number 1853.and kaaping all
other outputs constant) while watching the rotor angles of the aqunced
_mécbines. Similar tolaection 6.2.1, the time do;ain results of the three
main lsad models| 100% constant impedance, 50% constant impedance + 50%
constant poﬁer. 100% constant power load models, are presented. Figure
6.20 shows the critically stable and unstable cases of fhe' first 1load
model, from which the stability limit is 1514 MW. Using the 'SF, the
stability limit is_the interface flow at zero energy'margin. Figure 6.21
glves a stability limit of 1423.5 MW for the same load model. The.
difference is 90.5 MW, representing 5.98%. Figures 6.22 to 6.25 show the
results of the second and third load models using both the time domain
and t?ﬁ SF of TEF methods. The result® are summarized in table 6.1. The
stability limits for some other load models are shown in figure 6.26
whil? the corressponding‘relative errorg are shown in figure 6.27. As
shown, the resulte of the SF of the TEF are éloae to those of the time
domain with acceptable errdrs. Figure 6.28 shows the effect of load

modeling on the energy margin - interface flow characteréstics. The
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Load model Time domain | Sparse TEF | Difference %
L)
100 % constant impedance 1514 ° 1426.5 .5.98
4
50 % constant impedance 1541 1462.5 5.19
+50 % ccnstant-ﬁgwer -
100 i constant’ power 1569 1502.0' 4,37

L]

Table 6.1 The stability limits ( MW ) of different load

r.r

S

models using time domain and sparse TEF methods \\

for the 50-generator system.

o
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normaiizad energy margins, which give good measure .of ;he pystem
robustness, are. shown iIn figure 6.29 for different load models. The
charaéteristics ghown in figures“6;28 and 6.29 are of great importance
because for a ce;tain Station B gross outpﬁt. which can be represented:
in both figurgs as a verticél line, we can astabiish the étatus of
5
the system for different 1load model. For example, for 1460 MW gross
outpuﬁ. the status of the system for different load models is shown in

‘ table 6.2. This sghows us how much important theé consideration of load

modeling in the transient stability analysis is.

6.4 Conclusion L
The capability to include load modeling which is one of the main
advantages of the SF has been demonstrated in this chapter. The strong
. effect-ouf load modeling on both the critical clearing time and the.
;tability limit has been emphésized and thé accuracy of the SF results
for d}fferent load models applicatioé has been proved by comparisone
with time domain soclutions. Most of the industrial loads, which
-represent tsﬂfmajority of system loads, are in the nature of constant
power type because they use large induction motora. Neglecting these
types of load modeling in transient stability analysis may lead to
significant erro;s in the critical clearing time calculation {(as in the
case of the l1l-generator system power). Also, in one of the applications
shown, the incorrect load modeling has resulted in wasting more'thén 10

MV in the stability 1imit calculation (the case of the 50-generator

gyastem). That 1s, the SF gives more accurate and correct results



142

?-0 14 1 I L} ‘_l L T ll L] i I 1 L] I T L) ! 1 T

o
wn

-
~
/
. /
/
ENER AT BT SRS EE NS B SO U SY W AT AT A

[}
T L] L LS I L L] Ll LS [ L] L] ¥ T I
-~
-~
-7
A ' ~
V.
.
A
- -~
e -
/ . -
-1
R
]
1 1 1 Ji

Normalized energy margin
(=)
[}

0.5 N O\
- - \ ]
: . N \ \ \\ \ -
..\h \\ \\ \\ AY \ :

AY -

N 4
-1.0 * A \ N \\ \\ ]
—_— . . . = z@ro values ]
L ———— == ===100% conat. Z. \ ]
L —t—— — —. a2 80 X conat. Z. ]
-, — =50 ¥ const. Z. ]
-1.5 ——-———— =40 X consal i 7]
i - —— e =220 % conal. Z. " N
5 —_————— a X conatl. Z. T

1 L l i 1 l ' 1 l L 1 1 Il L l 1 1 l 1 1

-2.0
1350.0 1380.0 1410.0 1440.0 1470.0 1500.0 1530.0 1560.0
Station B gross output [ MW ]

Fig. 6.29 The normalized energy margin
of the 50—generator versus
station B interface flow for

different load models ( different
% of constant impedance loads )



< —_—
‘ 143

.ra - Fa
i &__’__,_._ *
\

Load model . - EM norm. EM status
100% const. Z + 00% const. P | -0.3795 _©-0.8556 unstable
80% const. Z + 20% cqnst. P -0.2324 -0.5426 unstable

. 6 . y - ‘

60% const. Z + 40% conat. P | -0.0582 -0.1468 unstable
40% const. Z'+ 20% const. P 0.1064 0.2782 stable
20% const. 'Z + Q0% conat. P . 0.2869 0.7678 ' gtable
00% const. Z + 100% const. P | 0.4815 1.4083 | otable

Table 6.2 The effect of load modeling on the statuas
of the 50-generator system, Tcl = 0.068 s,

station B gross output = 1460 MW.



144

(compared with thoge_of the RNF) because it can represent the loads by

models realistically, as tﬁey occﬁr_in'practice.

-



 CHAPTER 7

CONCLUSION -

The TEF“'mathqd represents a pdweffui technique to analyze the
transient stgbility of large—scalq‘ power systemal In cu;rent
applicatibﬁa of the TEF method, the powér_ network is reduced by
eliminating all buses and retaining only the inteynal nodes of , the
generatora: ‘This Rédﬁced Network Fo;mulation (RNF) yields dense (non-
sparse) matrices ,in the computations and consumes significant

[N

computational time. This rebresepta a serious drawback of the RNF,
L]
especially in applications to large power networke. Also, all sgystem

loads are conventionally-modeied as‘ constant impedance loads In order
to be able to reduce the network to the Internal nodes of the
generators. Other types of loads ( e.é. constant power loads), which
represent a majority iIn all practical power Bystems, are approximated
as constant impg%ance type ‘based on the pre-fault conditions. Conse-
quently, accurate results may not be obtained. Moreover, the R;F of the
TEF is not applicable to wvery large-scale power saystems (e.g. 300-

generator system) due to computér storage-related problema ( e.g. file

paging ).

A novel formulation of the TEF method retaining the original
gtructure of the system network has been presented and the associated

computerized algorithm has been described. All the above-mentioned

145
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problem% have been solved using the proposed Sparse Formulation (SF) of

the TEF method.

1.1 Research contribution
The contribution of this research work can be summarized in the

following

-~

(1) The osparse f;rmulation avoids completely 'tpe network
reduction. A;l matrices used in the calculation of the SEP and _UEP, for
which the cﬁmputational'times are dominant in the calculation . process éf
the energy margin {the stabiliiy index), are very sparse; Th;s ie;ds to
o a Eiénfficant gaving in compuiational time as compared with the RNF
approach. This Béving increases with the size of the systeﬁ. ag it  has
beeth shown in chapter 4, and it may reach more than 60% as-in @he case
of the 15é-generator gsystem. The sparse.gormuiatlon téchnique has besen

\
applied to different (realistic) utility systems up to a 300-generator,

1724-bus system. Such a system ;géreaenta one of the base cases of
Ontario Hydro. A comparison with the results obtajned by the RNF
technique has baeh given in each case (except the base case) }egarding
the CPU timerand storage, and the superiority of the sparse formulation

v

has been emphasized.

a

(2) Either conatant impedance or constant power load models (or
any combination thereof) can be handled explicitly. Considering these
actual load models, the stability indices (the critical clearing time

and. the transient stability Yimit) can be calculatéd accuratély.
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Neglecting the true load models may lead to a critical 'error of  more

than 45% in the critical clearing time calculation (as in the case of

considening the load models of the ll-Generator qystem‘as_constant power
loads). '\1/3 : o \

-(3) The proposed technique can handle very large-scale power

systems which are beyond the scope of the RNF aﬁproach. Consequently,
it enables an improved design methéddlogy of - transmission networﬁf by

including provision for modeling the network in more detail.‘

{4) Using the sparse formulation, it is possible to perform

r

a transient stability analysis on a microcomputer. This will render

qOél—effective the use of such analysis. '
' ’

(5) A very powerful and robust numerical technique te deal with

j&l-conditi ed power s8ystems 1is described. Therfore, practical

powar systems can be handled, retaining the efficient sparse

formulation of the TEF method.
/,__/

We conclude that the sparse formulation has proved to be more

efficient, more accurate and more reliable ae compared, with the RNF
N\
technique. The author ¢laims that the research described in this thesis
« .
constitutes a wuseful contribution to the area of the transient

‘-f/ )
atability analysis of large-scale power systems.



”

- o 148

7.2 Recommandatiggp for furthér researah

| - This research has contributed tﬁ the effective remov;1 of ;eQe;af
major.difficultie; that have seriously limited tﬁe application of” the
TEF method to the power system transient stability"problem.'-Considering

the problems that have been faced during thé linveatigation of this

, research, the following areas of future research are recommended:

1. Using tiore enhanced mathematical algorithms to deal with the
ill-conditioned aystems, e.g.. the corrected Gauss Newton algorithm
-utilizing Bparse eigenvalues techniques. : 4

LY

2. Investigating the effect of relaxing the Lolerante in the SEP

and UEP calculations on the comﬁhtational timex

3. Enhancing existing techniques to reduce the computaticnal time
\
"such that it can be used in the area of transient security monitoring.

That is by using the updated commercial packages for solving syatemé of

linear equations (for SEP and UEP solutions).

[ LY

4. Further improvements and refinements are required for the direct
method to be able to handle tﬁe cases of multiswing instabllity b¥ 
including the effect of the post;fault network on the system transient
behgviour.

~

5. Implementation of the automatic determination of the mode of

~

inetability, currently used in the RNF, in the eparse formulation. Also,

further developments are needed to extend this implementation for the

applicationa-to stressed systems. S -
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6. Using a more complex model to represent the system generat#ng
units; to repreaent the ekciter and the“ governor (if possible). This
will make the direct method suitable for power eystem planning, or at

L . . . -
least it will complement the simulation method in planning studies by,

selecting those cases which require morevd 'TEE inveetisatioﬂ.

7. Modeling of aperial controls which include :
(i) 1load rejection, and

(11) generation rejection.
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. _ ,

STABILITY DEFINITIONS AND LYAPUNOV STABILITY THEOR

L4

<

¢

~Stabllity Definitions of Lyapupév {10] o

¥

-

consider a dynam{c system described by:
X o= £t ' SIRY

and assume that the system has a unique solution gtarting at a given

initial ?°“diti°“ ¥s. If we denote the solution by Q(t;x,,ty) then

-

Utoixg,ty) = x (A.2)

In the syetem of equations (A.l), a state xe I8 called an equilibrium

gtate If . ' :
L]
f(xg,t) = 0 for all t (A.3)
Now let S({)) conaiasts of all pgints that ) .
li Xa — X4 il te A ’ (A.4)
where | x Il is the Euclidean norm of x and let S{(e) congistae of all
points that
battixg k) - x, 1 ¢ e for all t ¢ t, (A.5)
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An equilibrium state x, le said to be stable in the sense of Lyapunov
if, corresponding to each S(c), there j4a an S(A) suech that the

trajectories starting in S(1). do not leave S(e) a8 t increases

indefinitely.

~

An equilibrium state X, is gaid to be aayﬁptotically gtable if it

ig stable in the senase of Lyapunov and if every solution starting,wibhih

"S()X) convergea, without 1leaving 5(e), to Xeo ag ¢ ‘increases

fndefinitely.

.

Jf the asymptotic stability holds for all states (all points in
the state space) from which the trajectories originate, .the equilibrium

state is said to be asymptotically stable in the large.

The second method of Lyapunov stability theory

Giveq a dynaﬁic system described:-by equation (A.l) with the origin @b
as an‘equilibrium ataté, then the equiiib;ium gstate at‘ the origin is
asymtoticallx stable if there exists a scalar function V(f.t) having
continuoué first j‘}tial derivatives apd gatisfying _tha follﬁwing

conditions:

(a) V(x,t) 1is positive definite

(b) V(x,t) 1is negative definite
The second criterion is relaxed "if V{(x,t) s negative sgemi-definite
instead of negative definite. If G(x.t} is zero, the system can remain
in a limit cycle and the equ}librium state at the origin is said toc be

Lyapunov stable.
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For néﬁ—linqar systems, the stability problem is a local problem
in the sense that the equilibrium state at the origin can be locally

asymtotically atable ﬁithout,being asymtoticél y atable in the large.

therefora. the concept of boﬁndary of stbility, or domain of attraction,

is of a great importance.

-

L}

r__‘-—f'



APPENDIX B.

- : DERIVATION OF SYSTEM EQUATIONS

Similar to the load flow analysis , we have the following

power equations in polar form:

?

(a) For a 1lcad bus (4)

)
- N . .
for all &
N
-V =
: Jix [ Vj ng Bip { ey - by +,¢l ) ] = Q _(B.Z)
e )
(b) For ~a generator bus (g}
N
Ve jil [ Vj Ygy com ( ygy - ég+d¢y) 1 - PG, =Py (B.3)
) for 8ll g
N -
Vg L LVyYgy sin Cygy-dg+¢5) ) -0Q6, =0 (B.4)

where QGS. gimilar to PG8 (as described in Chapter 3), is the Imaginary

output power generated at bus g. In the transient analysis, the

.

classical model for the generator is used (constant e.m.f. behind the

direct axis transient reactance) as eshown In figure B.l-

153
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Y 1
N
v .
. - g Vs["s
Ig N
- — . )
‘o5 1
_ 3 Xy
_. - g Generator
Es = Eg fes terminal bus ‘
Fig. B.1 Generator classical model. o
According to figure B.l, the generator output current is given by:
— _ — ﬁ'-" »
_ -3
then I8 = . [ ¢ Eg cos g ~ Vg cos 4 )
ng - '
+ 3 ( Eg sin Bg - Vg 8in ¢g ) ] (B.6)
or Ig = Bg, [ (Eg sin 8g - stsin ¢g )
— 3« E8 coB 8g - Vg cos ¢g ) ] for all g
(B.7)
where B = 1/ X for all g . (B.8)
2 dg
Then , the generator real power output i{e given by:
PG8 \ = Re { 58 3 | {B.9)
ey ox
PGg = Re { Bz . 1Ip } ] (B.10)
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PG& o= Re { [ Eg cos 6, + ) EQ sin 8, ] . Bg .

'l ( Eg sin 6, - Vg 8in 95 )
+ 3 (Eg com g - Vg cos g ) 1) - {B.11)

EGg = Bg [ Eg cos 8g ( Eg ein 85 — Vg ein ¢g )

- Eg sin 8, ( By ?oa 8g - Vg cos $5 ) )

(B.12)
PGS = Bg Eg Vg ( 8in 85 cos ¢, - coe 6 sin ¢; )
(B.13)
or By Eg Vg aln ( 85 — 45 ) - PGg = O for all g
» (B.l4)

Since the ‘armature resistance -13 neglected ,then Gthe generator
real power 18 the same as the real powar delivered to the
generator terminal bus. This 1s ' not the case with the imaginary
power; therefore the imaginary power delivéreg to the generator terminal

bus 1Is given by:

W, -~ = Im { Vv, . I, } (B.15)

7 |

ch Im { [ Vg cos ¢ + J Vg 8in ¢ ) . Bg .

[ ¢ E, 8in 8 — Vg 8in ¢; )

+ 3« ES cos By - Vg cos g ) 1) (B.16)
Q6 = Bg [ Vg 8in ¢g ( Eg 8in 05 - Vg uin ¢ )
+ VS c?a ¢g " ( By com 8 - Vg cos ¢ ) ] (B.17)
2 : .
QG g Bg [ - Vg + Eg Vg (ain 6, ain 4,

+ cCoB 88 coB ¢8 ) ] (B.18B)
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2
s ] for all g

or. Q6 = .Bs [ Eg Vy c?f (8g —9g) -V
(B.19)
Since we are not interested in QGE' then QGS can be aliminated using

equation (B.4) and we get the following equation:

N
Vg jzl [ VyYgy 8in Cygy—dg + 450 ) -
Bs[Egvscos(le—ﬂas)-—-Vé] = Q for all g

(B.20)

(c) Swing equation

The awing equation of an Ns generator geyastem can be written

in a synchronous frame of reference as:

. '

Mo W = P - PG for all g (B.21)

The previous equation can be regsged In the COA frame of

reference as discussed in chapter 2:

H . //hs P
g Wg = pmg - pcg - » COA for all g
° (B.22)
. Re
where Pcoa = I [ Py - PGy ] ’ (B.23)
g=1 4

Since our task {8 to calculate the SEP and UEP as steps

-

to calculate the energy margin , and . since the epeeds are =zero
]

at SEP and UEP, then ( by subtracting equation (B.22) of g=2 from

that of g=1 , . . . .‘and the equation of g=Ng from that of g=Ng-1 )
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equation (B.22) can be rewpitten 1in the form:
M N M N
P6g - —— % o, - p, - 5 i op, for all gN
g
. M {=1 g M- y=1 1
0 o
(B.24)
Dividing the gth equation of (B.24) by Hs and thén subtracting
the 2nd equation from- the 18t equation , the ard equation from
the 2nd equation , . . . . . , the Ngh equatlion from the (Hs--l)th
equation , ;e get the following new set of equatiohs:
& E
PG PG_, 3 p P :
g - gt = ___nL - _m3+_1_ for all BN
M M 1 M H+l 8
Equations (B.l1) ,(B.2) ,(B.3) ,(B.20) ,(B.l4) ,(B.25)
and (3.1) are the aystem equations.

1

L
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A/‘ . DERIVATION OF JACOBIAN ELEMENTS
./ | —
:,"’ . [ - . _“ .
Acco?ding to-figure 3.1, the jacobian elements of each block are
; -
formulated /ae followe. (the symbol fi will-denote the L.H.S5. of a given

/ -
'Bquation)#
/

;o
Elemen?a of J11 —-

Taking cthe ial derivative of the L.H.S. of equation

¢, we get

{3.3) ‘or (3.4) w
3fy
3 4y
£y N ,
= v I [ v, Y gin ( - dy + ¢ ) ] ~(C.2)
i k ik Yik
a ¢1 k=1 . k

T k#i

where 1 =1, ., .., N and J =1, ..., N

Elements of J;>2

Taking the partial derivative of the L.H.S. of equation

(3.3 or (3.4 w.r.t. V , we get

F——

a fi

= Vi ¥y cos ( Y;]'? $y + &5 ) ' 1%) (C.3)
dvy .
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a £y TN ;
= "1 [ Vk Yik coa ( Yik — ¢1 + ¢k ) ]
a Vi . k.‘—"l . i
k1 - 4

+ ¢ 2 Vi Yii cosg Yil (C-4)

where { =1, ... ,N and 3J=1, .. ., N

Elements of Jay

Taking the partial derivative of the L.H.S. of .equation.

(3.5) w.r.t. ¢, we get

)]
i

= - Vi Vj Yij coa ( YiJ - ¢i +_¢J ) . ,1*J (C.S)
3 ‘J .
af N
i
= Vi I [ Vk Yik cog Yik ~ ‘1 + ‘k ) ] L (C.6)
3 ¢y k=1
k¥t
where 1 =1, . . ., N!. and } =1, . 4 N

Elements of Ja,

Taking the partial derivative of the L.H.S. of equation

(3.5) w.r.t. V , we get

I fy

= - vi Yij gin ( Yy - ‘i + ‘j } e (C.7)
a vJ A -
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3 fy . N ‘ ,
= = I [V Yy ein (ygp = 44 + ¢ ) 1]
2 Vi . k:l‘,” .
k#i B *

- 2Vy Yy com g -, . (€.8)
’ - _
where 1 =1 , +++ N ond J=1,...,N
Elements of Jj; - )
Taking the part‘?I derivative of the L.H.S5. of equation
' (3.6) w.r.t. ¢ , we get o O
3 bV} . \._
- "
9 £y : o o »
« = - Vi VJ Yij coa YiJ - ¢1 + ‘j ) i*j (C.9)
_ 3 & iy
' 3 fi N ) L "
; ¢ = Vl ;:1 [ Vk Yik coa ( Yik - ‘i + ¢k ) ]
-J , k1 «
' - By E; vy ain ( 8y = 4y ) (C.10) ~
. . : - é
where | =17, . ., : , NS and =1, .. .73 N
C, — '
Ve *
(4
>
. Elements of Jj,
) ' ,-
s Taking ¢ partial \iirivative of the L.H.S5. of eguétion -
(3.6) w.r.t. , wa get o
3 fy ¥ .
) = - Vv Yij sin ( Yiy - ¢1*+ +J ) 1+ (C.11)
a Vv :
J kY -
: . f
. ) )
: . ’ b .
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3 fy N | . .
- = - I [ Vk Yik ain ( Yi{x ~— ¢i + ‘k ) ] ot
2 Vi k=1 .
k$l
- 2 Vi Yii gin Yii = Bi Ei cog ai - *1 )
+ 2 By Vg ©(c.12)

“"where { =1, ..., N, and j=1, ..., N
. < N

Elemente of D,

——

U _ .

This .blogk 13.13"&ia39né1 matrix for which the elements can be

~

obtained by taking' the - partial derivative of the L.H,S;
: ‘ < :

of equation (3.6) wrf.t. 8 as follows:

9 fy )
= Bi Ei Vi gin ( ei - ¢i ) o R (C.13)
3 Bi .
where i=1, ..., N8

Elements of Dy -«

L \
This block. i a diagonal matrix whose * elements can be

obtained by taking the partial derivative of the L.H.S.

1

of equation (3.?Q w.r.t. ¢ ag follows:

L) a f .
i .
——— = -. By E; Vi cos { 8) - ¢ ) ' (C.14)
3 &y .
[-]
where i=1, .., N



Elemente‘ of D,

s

This block is a diagonal matrix whoae elements
obtained by taking the partial derivative of the
of equation (3.7) w.r.t. V as follows:

F] fy »
‘ § By sin (85 - ¢ ) \
a Vv, .
whefa =1,....N8
Elements of D,

This block ia a diagonal matrix whose elements
obtained by taking the partfal derivative of the
of equation (3.7} w.r.t. 0 as follows:

) £y .
- x Biﬁivi COB(ei—Qi)
3 81
where 1 =1, .y Ns
Elements of B

This block {s a bidiagonal matrix whose elements
obtained by taking the partial derivative of the
of equation (3.8) wor.t. PG. The diagonal elements are

3 fq
= 1/
d PGi
LY -,

162

can be

L.H.S.

(C.15)

can be

L.H.S,

(6.16)

can be

L.H.S.

(C.17)
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The wupper-—diagonal slements are

af

—_— = -1/ H1+1 ' (C.18)
where 1=1, ..., “841 2

S -' | |
Elements of m *

This block i{s a vector whose elements can be Lg?tained

({/by taking the partial derivative of the L.H.S5. of equation'

[

(3.9 w.r.t. © as fbllows:

’

# A

3 fy
—E. = H, (C.19)
3 8y | \

where 1=1, ..., "8 J/#

As shown in figure 3.1 , we ‘have two blodke , each is

a negative unity matrix. The first one ( the upper on results

-

from taking the partial derivative of equation (3.4) w.r.t. PG,
and the second one results from taking the partial.der;vative of

It is ¢l ar that the Jacobian is very sparse ,and most of
f

equation (3.7) w.r.t. PG,

ite elements J11, . « 4y J3z ) have already been formulated ' a

a part he load flow solutlon.

w ™
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-
2D
4 A MULTI-STAGE ALGORITHM (STEFP-1) .,

1

The algorithm STEFP-1 consists of five stages. In each étage an
"output screen is displaygd which presents the results of that stage. The
sample results shown in this apbendix are for the 50-Generator, l45-bus

system described in section 4.2 with the same fault and claafing
) .

conditions. _ ' Co-

First Screen

_This ig an interactive dialogue in which the user inputs the
namee of load flow and dynamic data files and the name of the output
file whi;h contains the results (SEP, UEP and energy margin). Figuse
D.1 shows the first BETBBD. |

o l,
Stage 1 f .

& _
This is8 mainly to read the data, to calculate the generator

internal emf in COA frame of reference, and to Kalculate the clearing
' b .

angles and speeds. Figure D.2 shows the output scrken of stage 1. This

\
screen shows the summary of input data {(similar to those in table 4.1),

3 S

the CPU times consumed ig each step\as well as the total CPU in this

setage. \

164



165

] ] T =23

— | — U
Sparse Transient Energy Function Program

. -~

micro” computer wersion

Department of Electrical and ‘Co uter Engineering
cMaster Universify

Load flow data file name ? LFD.DAT 7
Dynamic data file nane 7 DYH.DAT E

Output resuits file name ? OUT.DAT

To start a session press RETURN

Fig. D.1 The first screen of STEFP—1.
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To read
and to calculate clearing angles and. speeds,

STRGE 1
load flow and dynamic data, to calculate

internal ENF's,

[aput Data

The
The
The
No,
No.
The
The

total no. of gemerator buses ... ...

total no. of Joad buses ... ..., ...

total no. of lines ... ... .. ...

of
of

no.
no.

“Details

transformers . .. . . . e e
phase ‘shifters .. ... ... .. ..
of N-Z elements of [Y] matrix
of N-Z2 elements of (J] matrix

of ~CPU 'times

CPU
CPU
CPU
CPY
(P
CPU
CPU

Total

in
in
in
in
in
in
in

CPJ in STAGE 1

reading load flow data = 131,
forming pre-fault [Y] = §,
calculating internal ENFs : .
reading dynamic data = 4,
calculating cl. angles and speeds = 29,
formina post-fault [Y]: : : .
writing input data for STAGE 2 - Zgé'é

el PR N S NP NS, B~

29
3

647

b3
L
985

- 433

SEC
SEC
Sec

Sec

Sec
SEC
Sec

sec

s

Fig. D.2 The. screen of stage 1 of STEFP—1.

To go to STRGE 2 press RETURN

N
3



. 167

Stage 2

.Thia is to cachlata the (post-fault) Stable Equilibrium Point
(SEP), . Figure D.3 ahowé the output screen of gtage 2. This screen shows
the number of iterations naede&. the total mgg;;tch and the number of
rejections (to ensure non—divergence) of each iteration. The-CPU times

congumed in each step and the total CPU time in this . stage are .also

shown.

-Stage 3

Using the procedure described in section 3.4, the initial value

fo needed to calculate the UEP is evaluated. This stage has an optional

output screen and can be displayed at the user’s request.

Stage 4

This stage calculates the Unstable Equilibrium Point (UEP} wusing

Qo

X" as initial value, Figure D.4 showa the output screen of stage 4.

Stagé 5 o

L4

This is to calculate the energy margin using the procedure

‘
degcribed in section 3.4. Figure D.5 shows the output screen of this

stage.
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To calculate SEP wusing ~ Ne
formulation, .

. STRGE 2
wton-Raphson -method in a sparse matrix

" The calculation of SEP :

$

[teration No. Mismatch No. of rejections

9 33.43542000 )

| . 70515520 0

2 00437439 - 9

3 .00000389 9
Details of CPU times :
CPU in reading data from STAGE 1 = 100.4  sec
CPU in calculating SEP = 167.8 sec
CPU in writing data for %QGE 3 = b sec
Total CPU in STAGE 2 = 275.8 sec

To go to STAGE 3 press RETURN

Fig. D.3 The screen of stage 2 of STEFP—1.
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STAGE_ 4
To calculate UEP using Newton-Raphs Raphson met had
formulation.

in a sparse matrix

. 4
The calculation of UEP
Iteration NMa. Mismatch No. of rejections !
0 379, 33860000 Y
P - 32.13735600 0
2 .26112929 Y
3 09018677 ) 3
Details_of CPU_times v
CPU in reading data from STAGE 3 = 10QF.8B sec
- CPU in calculating UEP = 167.3 sec
CPU in writing data for STAGE 5 = _ 4.8 sec
Total CPU in STARGE 4 = 280.9 Sec

To go to|STAGL- 5 press FRETURN

A

Ffig. D.4 The screen of stage 4 of STEFP-1.
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; STAGE 5 _
To calculate kinetic energy, poteatial energy, and energy margin,

‘Enerqy margin calculation

The Corrected. Kinetic Energy : . 399362

The Potential Energy at UEP z ‘.895539 -

The Energy Margin : 496275 -
The Normalized Emergy HMargin = 1.242669

Details of CPU times V
C(PU in reading data from STAGE 4 = 93.6 sec

CPY in calculating kinetic energy = A sec
(PU in calculating energy margin = 43,2 sec
Totai CPU- in STAGE S = 136.9 sec

- To quit press RETURN

!

Fig. D.5 The screen of stage 5 of STEFP-1.

1 =~ . e - L I " » & 8 . PR Y - '
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