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The Transient

\-.

Energy

'~

ABSTRACT'

Function (TEF) method represents

. .......

a ~owerf~l technique to analyze the ~~ansient stability of )arge-

scale power systems. Currently, in the applications .of.' the' TEF

"'::\' method, the power network is reduced by eliminatIng. all busli's and

retain~ng only the internal no~es of the genetators. This Reduced

-~
Network Formulation (RNF) yields dense :(non-sparse) matrices in the

. '" .
compu~ations and consumes sign \f icant computational.. ~i')lle. 'This

represents'& serious drawbac~ of the RNF, espec~ally in applications to
: .. "

large power networks" Also,. all system loads are modeled a9 cons.tant.,

impedance loads in order to use conventional techniques to reduce the
.

,netwo'rk to· the internal nodes of the generators, l1any loads in pract ical

;.

~ power systems can be repres~nted as constant power .. l.oads,
. "'11

Such loads

are .. conv~ntionallY approximated as constant impedance type based on the
~~' ...~.' ", ." ..../. I

p~~-fa~it conditions. Consequent ly, . accurate. resul ts may not ... be
..

obtained. l1oreover, the TEF is not applicable. to very large-scale power

systems due to the computer sto~age- related problems (e.g, file paging)

and excessive computational time.

"A novel formulation 'of the TEF method, retaining the original

structure of the system network, ,is presented and the associated

'.

~ .
. computerized algorithm is described. All the above mentioned problems

are solved using the proposed Sparse Formulation (SF).

iii
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--~The sparse formulation avoids network
,-

reduction' completely.
"

"'.

All'matrices used in the calculation of both the' Stable Equilibrium'

Point (SEP) and the Unstable Equilibrium Point (UEP), for which the

computational times a~e dominant in the calcul~fion prdcess of the

energy '~argin (the stability index), are very spars,e.· Th~s leads to

a significant saving in compu~ational time, i.e. the sparse formulation

is more efficient as compared with
"\

the RNF
4

approach.
.~,.. ..

{',,

,

The sparse formulation is applied to different (reali~tic)'

~tility 'systems of up to 300 generators and 1724 buses. The' results

prove the superiority of the sparse formulation in contrast-with oth~r

current methods •.
".....-

".,- ..
In addition, eithe~ constant impedance 0 'const

mod~ls, or any combi natioll... thereof, c~an ,be handled j" explicitly ...

Consid~ring these actual load

critical clearing time and the

calculated more accurateiy.

The proposed technique can

models, testability indices (the.,

J .". ~',

,ranrn , .'abllity limit) can be t
ha~dle very large scale ~Ow?~ systems'

J

which are beyond the scope of RNF! approach. Consquently, it enables
,~

an improved design methodology of transmiggion networks. by, including
~

provision for modeling the network in more detail. Using the spa~si
'.

formulation, it is possibl~ to perform a transient stability a~alysls

ana microcomputer. This will render coat-effecti va th14 us~ of sU,ch
•

Also, a very powerful and robustanalysis throughout the wO)ld.•

numerical technique tp deal with ill-conditioned..

iv

power '-systems
~

is
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described. Therfore, p~actical (stressed) power systems can . be.

handled, i.e. the sparse formulation 1s more reliable than

.~~ techniques such as RNF.
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. CHAPTER 1

INTRODUCTION

1.1 Statement of the Proble.

Successful operation of a power system depends largly on the
1l

engineer's abilit~ to provide reliable and uninterrupted service to the

loads. This means that both voltage and frequency,.at all loads, must be

held within acceptable tolerances so that the consumer's equipment will

operate satisfactorily! In order to achieve that two requirements are,
necessary; ~IY, the sys~em generators should run synchronously. ,(in

step) and with adequate capacity to meet the load demand. Secondly,·
J

the integrity of the power network should 'be maintained to ensure

continuity of service. Power systems occasionally suffer perturbations.

These perturbations may be small originating from random changes in

loads or they may be severe arising out of a fault on the network,

a sudden application of 8 major load, or loss of a line or a generating

unit. These perturbations may cause the power system to go from one

equilibrium state (operating condition) to another. Continued successful

operation of the system depends upon a staple transition to the
\

operatin~fconditi~n. The study of the behavior of the system in

transitio~ period is described as power system stability analysis.

new

the

1

The transient following the system perturbation is oscillatory

In nature. If the system is stable, these oscillations will be damped

toward either: (a) the original operating condition if there is no net

"'"




































































































































































































































































































































































