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X . ABSTRACT

~

1

In order to analyze supernova spectropolarimetry a radiative transfer technique is required that

can treat polarization and introduces polarizing effects. To do this a modified Sobolev method,

here ca!led the Sobolev-H method, was developed for axisymmetric atmospheres with large velocity

gradicnts. The method uses the Stokes ﬁarametem to treat the radiation field. It incorporates
Hamilton’s phase-matrix for resonance scattering by atomic transitions (1947), and thus allows for
the pol.arizing effect of resonance scattering.

The interest in supernova spectropolarimetry is to determine whether supernovae are spherically

symmetric or not; the net radiation flux from a spherically symmetric supernovae would not. be

polarized. A cbméut_er program written using the Sobolev-H method calculates the P-Cygni line

profiles emerging from homologously expanding atmospheres. A parameter survey of axisymmetric

prolate and oblate models has been performed using this program. The survey demonstrates that

there is considerable polarization structure associated with the P-Cyghi lines. The emission and

. absorption pol;i;ation features l}ave their position angle of polarization shifted from each other by

80° for both prolate and oblate models.

An analysis of the March 6-7 polarization data for Supernova 1987a has been performéd. Pro-
vided the polarization of 1987a's flux arises from oblate shape asymmetry, the analysis indicat;eg a
60 % asymmetry (£ = .5). A similar asymmetry would be required if 1987a ;vere prolate, Since
the polarization data indicates that an intrinsic continuum polarization exists, a method here called
the discretised continuous opu;ity or DCO method has been devised in order to calculate continuum
polariuf.ion'. ‘Calculations with the DCO method show that good qualitative agreement with tl?g

observed continuum polarization may be achievable.
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- Knowingly Plato said.

" In the Sky We've Sought

_ New thought incfeueq thought,

On the signs requiring tilted head,

For i_n the sky they’re sought, -

The gods these iignn wrought,

" - For the foretelling of each man’s thread,

Apportioning his lot.

Magi this lore taught,
The:Heaven is like a book where God is reud,
New thought increases thought.

An orb on a circle sped,
Perpetual perfect dazzling dot,

Long dark ages foughi,
While stars Ptolemaic dances lead,
Where in the sky they’re sought.

Copernicus was fraught
Of scorn until expiring, nearly dead,
Revealed his thought:

Th# sun moves not,
The earth and planeta around it tread.

New thought increases.thought.

Since that said —_—
Ever accumulating new thought,

"“New fact and theory wed.

" Far vistas caught, = ~

And the lens on radiations has fed,
Where in the aky they’re sought. -

It’s & long time to bed,
And all this labour this conclusion got:
The last word’s not been read.

The reading, a refreshment brought,
The thinking delays the bed,

" New thought increases thought,

For in the sky w{’ve sought.

McMaster University

14 July 1987
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Introduction

- Supernova exploiiona are usually considered as spherically symmetric events. They are strongly
Assuméd to arise from stars, and stars are quite spherically symmetric. There is little observational
aata. that is inconsistent witl.ra spherically symmetric explosion. Computationally, spherical sym-
metry is overwhelmingly the m_o_o;tmt'_r_qctable assumption, andlso nearly all theoretical supernova
calculations assume sl;herical symmetry. H'Bwever, there are some reasons to Quapect that there
could be asymmetric supei'novae. Supernova or core collnpse computations that include asymmatric -
effects such as rotation (Miiller and Hillebrandt 1981; Hillebrandt 1982; Bodenheimer and Woosley
1083), rotation and magnetic fields (LeBlanc and Wilson 1970; Symbatisty 1084; Symbalisty 1985),
and Rayleigh-Taylor instabilities (Chevalier and Klein 1978; Livio et al. 1980) do show significant
asymmetry in the resulting structures. Some of the variability in the observations of some classes of

'supernova may owe to asymmetry. ' o
Since the exploding supernova matter cannot be resolved, a direct observation of asymmetry
‘is not possible. However, an asymmetry may manifest‘iu:l_f in the polarization of the observed
supernova flux. Supernovng have scattering atmospheres. Scattering by either electrons or resonance
~ transitionsis a polaiizing process; thus the flux emitted by supernova should be polarized. Since only
net flux can be measured, only the x{et polarization can be measured. A source’that is circularly
'nymmetriq sbout the line of sight must by symmetry have zero net polgrizution no mattei_l!ow
polarized its resolved surface brightneia may be, Thus polarized supernova radiation wauld show
_ that some sort of asymmetry exists, ' »
) Unfortunately, the interstellar medium can also pola.riz.e radiation on its passage from supernova
'to Earth. This interstellar polarization (ISP) must be subtracted from the observed polarization
to obtain the intrinsic supernova polarization. The ISP value may not be easy to determine. The
_ ISP component from the Galaxy may be determined by observing stars near to the lipe of sight
to the supernova.’ The component due to the parent galaxy of the supernova may be determined
_from observing stuligbt’. from the region surrounding the supernova; such a determination would
often be very approximate. Thub the IS}; value to sﬁbtrut will often not be a well known quantity.

1
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Since the "ISP\ can be moul percent, it could be considerably larger than the infriiuic polarization.
Thus a simple detection of polsriution in supernova flux will not by itself yield even qualitative
informatlon about the supernova. Fortunately, the ISP is not strongly dependent on wavelength
(Serkowaki et al. 1075), and should not vary on the time scales of supernova evolution. Thus strong

wavelength or time variation would be the marks of intrinsic polmutnon.

After having a means of detecting intrinsic supernova polarization, the question of interpretation

s opcnéd. The inevitable procedure in studying utrophyaiqz\xl spectra is to construct a plausiBle,

though perhaps highly simplified, model of an observed’ object inpludipk m effects that give
rise to the features observed. From the model synthetic features are calculated and then the model
parameters are varied until a fit to the data is achieved. If the assumed physical model was realistic,
then the fitted p\mmeteu provide information about the observed obJect For supernova polanzw

tion the first works on interpretation by model calculation are by Shap:ro and Sutherland (1982),

‘and McCall (1984, 1985).

Shapiro and Sutherland considered éllipaoidal atmospheres emitting radiation with a continuum

'pqlal‘ization. They calcu\la.ted the intrinsic supernova polarization to be expected for a range of their

= Todel parameters, They hoped that an accurate deteufnihation of the ISP, or that the wavelength

or time variation of contmuum polamahon would pemnt intrinsic supernova polarization to be
dctectecl This intrinsic poluuatlonacould then be compared to their calculated polarizations to

determine the supernova parameters.

McCall, to obviate to some degree the ISP difficulty, considered the polnnutlon features
that would be associated with the P-Cygni line profiles. These profiles are prominent features
in the supernova spectra. They extend over wavelength intervals over which the ISP polarisation
varies alowly Since the P-Cygni lines owe at least i in part to resonance scattering, there should be

polmntmn features correlated with the ﬂux features. McCall considered a simple model consisting

of an ellipsoidal scattering atmosphere surrounding an ellipsoidal continuum emitting core~=ife~v—em

obtained expressions relating polarisation values directly to an asymmetry parameter. McCall’s
m'odgl_ was very simple; at most qualitative information can be extracted from it even assuming the
ISP is accurately known,

Tﬁue pioneerﬂag works on Supernova polarization inspired the development of the line polar-
isation calculating technique and ‘line polarization calculations presented in this thesis. The phys-

“



ical model used for the calculations was largely derived from the works of Branch (ﬁrmch'lDS();
Branch et al. 1981, 1982, 1983, 1985). However, following Shapiro and Sutherland, and McCall
ellipsoidal atmospheres were considered. Ot.her.sorts of asymmetry could have been considered.
The ta.diat_ivg_ transfer technique, the Sobolev method, used by Branch had to be mociiﬁ;d to treat
. pvblarizre‘d radiation and to introduce polarizing effects into the ncattoriné processThe modlﬁcution

: re_qnired the use :)f Hamilton’s phase-matrix for polarising resonance scattering (Hamilton 194?). 'To

: i‘ecognize the use of this phase-matrix the n-:odiﬁed Sobolev method has be§n enll;ed the Sobolev-H
- method. _ ,

The application of the analysis technique presented in this thesis requires spectropolarimetric
‘data. Before 1987 only two reports of supernova spectropolanmet.ry existed (McCall et al, 1084; Mc
Call 1985) The dlscovery on 1987 Feb. 24 of a supernova (Supernova 19875, henceforth SN 1987a) |
in the nearby galaxy the Larger Magellanic Cloud has provided a remarkable opportunity for apec-
tropolarimetry. Early reports:or analyses of spectropolarimetry have been made by Walsh et al.
(1987), Magalhaes and Velloso (1987), Schwarz and Mundt t1987), Jeffery (1087), Schwars (1087),
and Cropper et'al. (1987). The spectropolarimetric observations are of great potential value in

underst#ndiug SN-1987a and other supernovae as well. It is hoped that in the future that spectropo-

= larimetry will be performed on all well observed supcmovip.

The outline of this thesis is as follows. Chapter 1 provides an introduction to iu;;ernowu:.
gives a brief review of SN 1987a, and presents the case for asymmetric supernovae. ’Chupter 2
provides a derivation of the Sobolev and Sobolev-H methods. A dis.cuuion of physical vn.lidit.y, and
application tmsupen;ovaé of these methods is 5iveﬁ. Chapter 3 reviews thc; Shapiro and Sutherland,
and McCall supernova polarization calculations. Chapter 4 presents the poluiuiion profiles and
their' analysis for a parameter survey model of atmospheres. Chapter § presents an analysis of early
spectropolarimetry of SN 1987a. The Conclusion and four upp_ém‘iicu appear at-the end of the

- thesis.



_ Chapterl ' ‘ ——
Supernovu, Supernova 1987&, md Asymmetnc Supernovae

- - P

N b i . - - o

— —

' _a) Supernoﬁe |
‘ ) . _ . ‘ ‘ \
Supernovu are the catutrophlc exploaions of stars, Their Juminosity at ma.xxmum is greaur
than the net luminooity of some galmu The kinetic energy of the exploding matter is of order
10“ erg whlch is toughly the energy rn.dmted bya Sun-type star in a 10 billion year lifetime. Gaining
an und_erltandmg of the physu:s of these tremendous outbursts is a considerable challenge. In
 addition to learning about the nature of the explosion itself there are a host of related interests. The
‘expan.di-nt, cooling supernova m&tf.ex (a supe;tfova. reﬁmant or SNR) and-its interaction with the
' lnteutcllu matter (ISM) is a long-lived object for radio, X-ray, and optical astronomy. Supernovae,
a tbrough their remnants, are thought to contribute strongly to the universal abundances of carbon
md all heavier elements; thus they are very important to the chemical evolution of the galaxies,
not to mentjon of life. The ene'rgy they release may determine the dynamics and heating of the
interstellar medium. The remnants from one of the classes of supernova (type II) are predicted to
include the exotic compact ob_;ect.s neutron stars and pulsars.” The neutrmo ﬁux predicted (and
confirmed by observation of SN 1987a) for type II supernovae should provide msxght not only into
lupernc;v'ae, but into neutrino physics. The great ;aptical luminosity of supernovae makes them
useful as dht@t indicators; they may eventually help to determine accurately Hubble’s constant,

the distance scale of the universe.

The history of the study of supernovae began in the 1920’s and 1930’s when it was recognized
that novae in spiral nebulae would have to have been very bright if the spiraf nebulae were extra-
galactic star systems (for a historical review see Trimble 1982). Historically, a nova is a new and
temporary star; the name nova comes from latin for new. Novae have been observed and reported
throughout astronomical history. Most historical novae, now called classical novae, are theoretically
understood to be the thermonuclear explosion of a surface layer of hydrogen accreted onto a white

dwarf from a binary companion star. These objects suddenly brighten in absolute B magnitude

4.
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V f;om greater than 10 to less thqq\:? and then fade away in a period of tens of days.! Supernovae

~* .are now known to achieve absolute B magnitudes in the range from —16 to ~20; they are thus at

* least about 104 times brighter than novae. Theoretically, supernovae are entirely separated from the

. -

".classical novae events. :

It was eai-ly recogniied that there were two observationally distinct classes ol‘u;npernom: typel
4 ﬁd type IL. Type I supernovae have no detectable hydrogen. Type 11 sﬁpemovu have prominent
hydrogen lines. At least two subclasses have been distinguished for both main classes. Theoretical
understgnding of these two classes is quite different; therefore discussion of supernovae mult.‘ooon
become class specific. In section (b) of thi;chapt‘er th'e obnrvgti;nal data nnd.the thooretical model
of type I supernovae will be discussed. Section (c) does the same for type II supernovae.

Before going to the class specific discussion there are some general conventions and facts that

e = -

should be introduce:d.

A supernova is named by the year in which it is discovered with a letter appended that gives
the order of discovery by alphabetical ordering: e.g., the fourteenth supernov'a discovered’in 1083
is named SN 1983n, or often just 1983n. If only o.ne supernova is discovered in a year, then the
appended letter may be omitted. If a supernova has not yet received a formal deaignntion it may be
identified only by notlng the supernova's parent galaxy; e.g., SN 1981b was called a 1981 supernova
‘in NGC 4536 by Branch et al. (1982). Historic supernovae may have names given in honor of a
discoverer or famous observer: e.g., SN 1572 is sometimes called Tycho, and SN 1604 is sometimes
called Kepler.

The total electromagnetic luminosil.y of asupernova is not an observed quantity, though it can be
" inferred from extensive observations. Since the color tempcratu;c of the supernova during the period
for which observations are available irhplics that a Planck spectrum would be peaked in the visible,

theBand V magnit'udes are probably quite good indicators of the total luminosity. Since these color

1" Magnitudes are a logarithmic measure of radiation intensity. A magnitude is related to intensity
by
M = -2.5log(I)+ K,

where K is a constant. A color magnitude measures the weighted average of intensity over a wave-
length band. The B (blue) color measures the intensity at =s 4400A, and the V (visual) color
measures the intensity at ~ 5500 A. Apparent magnitude is what is measured for an object from
Earth. Absolute magnitude is what would be measured for an object by an observer located at
10pc from the object. Conventionally, the magnitude scales on graphs run from high numbers at
the bottom to low numbers at the top. Thus a low magnitude corresponding to a high intensity will
-be plotted high on a graph.



magnitudes are observables, they are the customary quantities to plot in lieu of the unobservable
t?rlmhinpeity. Supernova magnitudes plotted versus time (the time evolution of luminosity) are
]

cdlled light curves~-The maximum of the light curve (the magnitude minimum) is called maximum

light. Fig. 1.1 shows examples of mean supernova light curves for type Ia supernovae, and the two
common subclasses of type II supernovae. ' ‘ ‘

Since the discovery of supernovae as distinct events, over 500 supernovae hav:__been discovered.?
The rate of digoovery is roughly 10 per year. They are usually discovered on photographic plates well
after maximum light has passed. Usu;lly only very prominent supernovae that have been discovered
" near or especially before mn.ximﬁm light have merited extensive obserﬁtioq‘. Due to insufficient
| observational data moat supernovae are not even dn;igned a type classification.

Recently there have been two prbmilihg developments in supernova discovery procedure. Am-
ateur astronomer Rev. Robert Evans has demonstrated that visual discovel;y of supernovae is a
foasible and rewafding procedure (Evans 1986). Visual discovery involves the mminntio;—oi' a
galaxy by telescope and éye, and comparison to a photograph cwart of the galaxy in a catalogue.
This procedure clearly requires a dedicated .instrument and astronomer. However, visual discovery
has the important advantage that a discovered supernova can be reported without the dela; .involved
in photographic discovery. The delay in photographic discovery usually means that a discovery is
only'rcportcd after the supernova has waned which decreases the supernova’s observational value.
An additional advantage is that amatel;r; can devote attention to nearer galaxies which produce
the brightest supernovae. Through 1985, 13 supernovae had been discovered visually by amateurs
of which 11 were by Evans. Of these supernovae 5 were discovered before maximum light.

The second development is the use of automated systems for supernova search. In this procedure
a computer controlled telescope provides a galaxy image that is compared by computer to a reference
image; the supernovae are then picked out by an algorithm. Such a system promises to discover on
the order of 106 supernovae per year (Kare et al. 1982). The ai.tempt to develop such an automated
system has been going since at least 1968 (Colgate 1982). In 1986 an automated search system
discovered a supernova in M99 (Pennypacker et al. 1986; Piel et al. 1986). Unfortunately that

system has not, apparently, become fully operational. The high supernova discovery rate remains

" ‘an expectation. -

T By 1980, 474 supernovae had been discovered (Barbon 1980). The rate of discovery indicates
that more than 500 have been discovered by 1987. .
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Fig. 1.1. Mean blue light curves for supernovae taken from Doggett and Branch (1985). The
-.mean curves were drawn by eye through a compilation of supernova observations. The vertical .
scale is arbitrary; the curves are all normalized to their maximum light values, The observations
show some scatter about the mean curves; the scatter is partially observational, but to an uncertain
degree owes tfo intrinsic variation in supernovae. The type I curve is drawn through a collection of
data given by Barbon et al. (1973); presumably all these events were classic type Ia supernovae.
After 40 days the type I curve enters a slower phase of decline; after 100 days Doggett ;nd Branch
find that the decline becomes 0.017magday~!. On the basis of light curves Barbon et al. (1979)
divided type II supernovae in two subclasses: plateau (type II-P) and linear (type II-L). Doggett
and Branch find that the late time decline rate for type II-P is 0.0075 mag day~, and for type II-L
is 0.012mag day~". The similarity in the light curves of SNe type I and SNe type II-L lead Doggett
and Branch to suggest that these two classes may be related events.



._.b) Type I Supernovae - .

The type I class of luperﬁqu has in the 1980's become divided mbo two subclasses. ﬁoth
subclasses, of course, have the observ;!.tionnl type I distinction: an absenc;: of detectable hydrogen.
The classical type I supernovae for which most observation and theory exists are nov;v called type Ia -
or sometimes just type I. The new subclass is called type Ib. There are also a few peculiar supernovae
not confidently assigned to either subclass, '

A general observational fact about type Ia supernovae is that they are a remarkably homoge-
neous class of evel;ts. Authors Kowal (1968) Tammann (1978) and Elias et al. (1981) have noted
that well observed type I light curves are very similar. Recently Cadonau et al. (1985) have claimed
that there is “no'photometric evidence for light curve variations of SNe 17, and therefore the type Ia
class are excellent standard candles. Bra;lch (1982) :éiib?ts that type I optical spectra are also very
uniform at all phuea. Thus it may be that all type Ia data can be averaged together to obtain 'the
intrinsic type Ia properties. However, intrinsic type Ia variations may just be small or compara-
tively rare. Branch (1987a) reports that the photospheric velocity (see Chapter 2 section (¢)) near
maximum light of type I supernova SN 1984a was 35% higher than that of the well-observed and

_typical type I SN 1981b. This evidence indicates that there may be some intrinsic variation in.the
t&pe Ia class. .

The evolution of a type Ia supernova ligflt curve can be seen in Fig. 1.1 taken from Doggett and
Branch (1985). This mean curve was just drawn by eye through a set of old data points (Barbon et
al. 1973). This particular curve is presented as representative, not as the blest obtainable. From
Fig. 1.1 the rapid evolution toward maximum light can be seen. It is strongly assumed that there
is a sharp supernova ignition time which of course has never been observed. Pskevskii (1977), from
't; survey of data, determined the time from ignition to maximum light to be 15.5 & 1.5 days. More
recently Cadonau et al. (1985) report the rise time to be greater than 20 days. It should be notéd
that there are few observations for supernovae before maximum light, ma so there is statistically
low accuracy for the rise phase. . -

The average absolute B magnitude at maximum light has been determined to be
(MB'**) = -19.69 % .13 + 5log(Ho/50) (1.1)

- (Cadonau et al. 1985). The Ho is Hubble’s constant which sets the scale size of the universe. At

present Hp is not well determined; values between 40km s~! Mpc~! and 120km s~! Mpg™! have
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 been reported. Cadonau et al. find Ho = 4311%km s=! Mpc~!, but cautiously, like many othets,
prefer to report quantities that depend on Hp in terms of Hy. '

Following';na.ximum light the light curve decreases rapidly with a: slope ~ .1 magday~}. After
about J0 days there is a sharp change in the average decline and the slope becomes ~ .01 magday™=!.
From about 100 to 500 days the mean slope is found to be .017 magday=* by Cadonau et al, (1985}
and by Doggett and Branch (1985). This al;:pe correvponds to a luminosity half-life of

1172 = 44 days. (1.2)

.
-

Of course, for the 1ater light curve the number of data points become i'cwcr.‘since ohly the supernovae
with high apparent brightnesscan be observed so Int;. Thus the late-time light curve is increasingly
less certainly determined as time increases beyon{ ‘mnximum light.. .

As remm:ked above, the optical spectra of supernovae are remarkably alike at all phases that
are well-observed. Near maximum light‘the apectra are mainly mide u—p;f the P-Cygni lines (sec ‘
Chapter 2 section (b)) of singly jonized apecies such as Ca II, Si II, Mg II, and S II along with O [
- and perhaps He 1 (Bi'a.nch et al. 1982). In the near UV, Co II fentures have been identified near
maximum light (Branch et al. 1985; Harkness 1985, 1986). After maximum light many Fe II lines
begin to appear in the spectrum; by about 120 days after maximum light Fe II lines dor;l-lnate- the
spectrum. ' _ -

In the picture of a supernova atmosphere developed by Branch (1980) and Branch et al. (1081,
1982, 1983, 1985) the lines arise from resonance transition scattering of continuum radiation emitted
by a photogphere. The photosphere is a surface (assumed spherical by Branch et al. ) from which

a photon has approximately an even chance of escaping to infinity without interacting with any
| sources of continuous opacity. The photon interaction with the sources of line opacity above the
photosphere results in the line spectrum. The changes that oceur in the spectrum as time panses
_ must owe to ;1 large degree to the falling density of the expandingupernova mat.b_ef. Falling density
. causes the opacities to fall. The decreasing continuous opacity causes the photosphere to recede
into the supernova matter as time passes: i.e., the photosphere encloses a decreasing fraction of the

supernova mase.? Thus compositional variation with mass fraction may be changing the strengths

3 The radius of the photosphere actually increases for about 30 days after maximum light due
to the overall expansion of the supernova; thereafter the radius decreases with time (Branch et al.
1983). In terms of supernova mass fraction, the photosphere is always receding.
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of the Ll\ourm of line opacity. The increasing strength of Fe 1Llines in the spectra of type I supernovae
may indicate that their interiors are iron rich. Howéver, this is not necessarily the case. The recession

_ of the photosphere causes the line lc;ttering atmosphere to become geometrically exteénded. In such
extended atmospheres, local thermodynamic equilibrium (LTE) may not obtain; non-LTE effects
may chn.nge'the spectrum even if the composition is uniform (Feldt 1980, p. 32; Bra.nch et al. 1983).
The changing temperature of the expanding matter could also affect the line spectrum.

Type 1 supernovae oceur in galaxies of all morphological t.ypé though with varying rates (Tam-
mann 1082). Thpro in eviden'p\e from the chnracbe.rist.iu of the parent galaxies that type I progenitors
- are old low mass stars.* In spiral galaxies, type I supernovae are not confined to the spiral arms
(Maza and van den Bergh 1976). Spiral arms are density waves in spiral galaxies where there is a
: concentra'.i.ﬁin of stars and gas. The concentration of gas causes star formation in the spiral arms. '

However, beca_usu a apiral arm is a wave, stars formed in the spiral arm will be left behind in time
by the moving wave crest. Assuming the supernova progenitors are born in the spiral arms their
lack of confinement to the spiral arms indicates tﬁat the progenitor lifetimes must be greater than
"~ 107 years and the progenitor masses less tha.t; -~76 My (Biermann and Tinsley 1974). In elliptical
galaxies, the stars have ages ~ 10'%years, and therefore have masses that are <1Mg. Thus it is
plausible that-type I progenitors in elliptical galaxies have ages that are of the order of the universe’s
age. A contrary conjecture to old low mass progenitors has, however, been made by Oemler and

Tinsley (1979).

-
. —

The above is just a short and very incomplete review of type Ia observations. However, it should
sufficiently give the coﬁtext. for the current theoretical understanding of type Ia supernovae.

At present a standard model of type Ia supernovae exists. This model explains the spectra and
light curves very w:ll. Its difficulties are in finding a plausible scenario for evolution to explosion,
and in understanding the element abundances resulting from the type Ia supernova rate.

The model explosion begins with a carbon-oxygen white dwarf. White dwarfs are supported by
the pressure of a degenerate electron gas. Such a system has an absolute upper mass limit, called
the Chandrasekhar mass, of approximately 1.4 Mg; the exact value depends slightly on composition.

Above the Chandrasckhar mass the pressure of a degenerate clectron gas cannot support the system;

T In drawing inferences about type I progenitors, there is the complication of the existence of two
subclasses of type ] supernovae. The conjecture of old low mass progenitors applies to the type Ta
supernovae, since they are the most abundant subclass and since there is evidence that all type I
events seen in ellipticals are type Ia’s (Panagia 1985).
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heavier cold ob,]ccf.a must be neutron’ stars or black holes. The existence of such a rnther oact upper
bound on the mass of the progenitor helpa to explain the uniformity of type la events. A dwarf star
near thm mass hmnt. has such a high central density that it is close to the regime where pycnonuclear
cnrbon ignition can take place at or near the center. Pycnonuclear burning occurs due to high -

- \
density with only a slight temperature dependefi®s. ~ ' :

Ignition occurs when the rate of energy released due to burning exceeds the lossca due to ;wu-
trino cooling processes, and heat transport ‘due to conductior; or convection, The heat bulld up due
to the carbon burning cannot be dissipated by adia.bntiq expunu.ion. since the degencrate electron
gas pressure is only slightly affected by the increasing temperature. Thus there is a rapid increase ln‘
temperature in the central region of the dwarf, This temperature increase stimulates thermonuclear
burning of carbon and oxygen which in turn causes increasing temperature. A thermonuclear run-
away occﬁrs that takes all the central matter to the state of nuclear atatistical equilibrium (NSE).
The heat released by the burning lifts the degeneracy of the central riiatter and an over-pressure
develops that becomes an outgoing shock wave, The ahocllc wave-though it accelerates and expands
the dwarf matter is insufficiently strong to heat and compress the matter to the point of nuclear
burning, Rather the nuclear burning front moves outward at slower speed than the shock and is
propagated by convectiv; transport. This convectively driven burning front is usually called a de-
flagration or sometimes a flame. The energy released by the deflagration is sufficient to explode the

~white dwarf. The rapid adiabatic cooling ofl expansion causes the matter in NSE, at least in the

inner regions of the white dwarf, to freeze out of NSE as 36Ni.

The physics of the deflagration is one of the great uncertainties of the standard model. Con-
véction in these extreme conditions is not well understood. Convéction is inherently a 3-d (3 di-
mensicnal) process and 3-d hydrodynamic calculations are at present too computer intensive to be
undertaken. Miller and Arnett (1982) have done a 2-d hydrodynamical calculation, The:r_e'aulu
show angular inhomogeneity in the propagation of the deflagration, with the creation of large fingers
expanding out from a spherically burnt core. Such calculations are sensitive to the grid size used for
the difference-equations; a finer grid may well produce different results. Miiller and Arnett suggested

that a finer grid might cause the deflagration front to become more spherically symmetric again.

Most deflagration calculations (Nomoto et al. 1976; Nomoto 1980a,b, 1981; Jeffery 1983,
Nomoto et al. 1984; Woosley et al. 1984; Sutherland and Wheeler 1984; Jeffery and Sutherfand



.1986) have simulated convection with some modifled mixing-let!gtil theory that provides a subsonic
) veloclty for the dcﬂngrat.ioh propagation. Mixing-length theories have a free parameter that controls
the propagation speed. This parameter is adjusted in deflagration cnléulntlonp to give the y.'orrect
energy to the white dwarf matter. bburvatiom of supernova spectra de-termine the maximum‘light
pi:otoaphuir_veloclty to be ~ 12000kms™~! (Branch et al. 1082). Encrgies near 10%! érg must be "
reloased in the white dwarf to produce such velocitiel. If the deflagration velocity is too fast, too
much of the white dwarf is burnt relensing too much energy before the cooling due to expansion
turns off the burning; the resulting model explosion is movi/ng too fast. If the deflagration velocity

is too slow, burn!ng ] tumgd off before enough energy is released.

The nuclear bu_mln;, when the deflagration is turning off in the out.el: regions of the white dwar{ y
is incomplete and intermediate mase elements gych as Ca, Mg, and i are prodpced (Nomoto et al. |
1084). It is clear that the elenie;: in type Ileernovn spectra are produced in at least approximately [
the right regions by model cnlculntiom. Moreover, Branch et al. (1985) using the Nomoto ct‘a.'. 's
W7 deflagration model cr;nted synthetic spectra that were in good agreement with observed type IQ.

apectra.

More imp.ortant. than the spectra, deflagration models are successful in reproducing the type Ia
light :;urve. Most of the encrgy released by the deflagration burning is transformed into the kinetic
energy of the explosion. The electromagnetic radiation luminosity that is the whole of the observed
: lupe_l:n;va display can be giovided by the delayed energy released by the decay of the radicactive '

88Ni (Pankey 1962; Colgate and McKee 1969; Meyerott 1978; Afnett 1979; Colgate et al. 1980;
Axelrod 1980a,b). The °Ni, produced in the inner regions of the exploding whitedwarf, is beta
unstable and decays with a 6.1 day half-life to “Co the 88Co decays with a 78.76 day half-life to
-88Fe, The gamma rays and positrans released by the decnys reheat the supernova mattcr and power
the light.curve. Axelrod (1980a,b) has shown that the late-time spectra and hght curve can be
well accounted for by such a radnoactwe source. The luminosity requires that somethmg like .5 to
1 Mg of %8Nj be produced in the deflagration. Such amounts can be produced by adjustment of the

deflagration model parameters. \

As the supernova matter expands and its opacity falls some of the gamma rays should escape. ‘
Ambwani (1986), and Ambwani and Sutherland (1988) have calculated expected gamma ray spectra )

for deflagration models. Observations of such gamma ray spectra would be a strong confirmation of



. o ' : ' 1

the deflagration model. ' e S ‘

The successes of the utamrinrd model with 'regud to light curve and spectra are co'nliderlablo.
However, as noted above, there are di.ﬂicultla. The ambunt of iron produced per type Ia luﬁertuovn“
times the type I rate seems to over-produce the amount of fron oburved in the interstellar medium
(Woosley et al. 1986). Another diﬁiculty is undentmd_lﬁ;.the ‘e.volutlonuy scenario that brings the

white dwarf progenitor to carbon ignition.

The traditional evolutionary scenario waa that the whi:: dwarf accrejed mmﬁ from a binary
companicn. The accreted matter heated and compressed the white dwarf, dri;ring it t.o.i_gnitlon. This
scenario and other sugges.t.ed scenarios are all suquct. to theoretical objections; for a review of thess
objections see WBosley and Weaver (19§6). An alternative to the white dwarf progenltér. suggeated .
by WPeelef (1978), waa the R Cor Bor type star. These stars have helium envelopes surrounding a

* degencrate carbon-oxygen core; the core takes the place of the white dwarf in the standard model.
Glen (1985) iarg'ely ruled out this class of progenitor.- I!p\{evgr,'Glen {private communifation) has

recently retreated and finds that R Cor Bor stars may be viable progenitors after all.

Observationally and theoretically, considerably ]egl is known about the type Ib subclans of
Supernovae than is known about the type Ia subglass. .The prototypical type Ib supernovae are
SN 1983n and SN 19841; SN 10611 and SN 19641 are also e membera. of this llﬂécllll (Branch’
1986). The spectra of the type Ib supernovae, are superficially similar to type Ia :ul;clm, but are

~ different in detail. The type Ib spectra n—E. imum light resemble type Ia spectra from 2 months .
after maximum light. The tfpe Ib muimm_iu roughly one fourth as bright as the type Ia.
maximum light {(see the ret;iew. of Woosley .and Weaver 1986). Massive stars that ba:ve_loct their

°hyd,;ogén envelopes have been iuggeat;:d as type Ib progenitors (Wheeler and Levreault 1085), If
this. suggestion is correct, type Ib events may be;u' only a superficial rescmblalnce to type Ia events. '
ﬁbwever, Woosley and Weaver (1986) wnjectu;gaat the type Ib supernovae may b_Jonly vnriltfon'l

=
of the type Ia supernovae.

There are some type I events that do not fit well into either the a or b subclass. Some of

these supemo;a.e may mtuﬂly be type Ib supernovae. The iypg -lb subclass would then be lena
! i : _ | be
" homogeneous and more varied than at first supposed (Wheeler et al. 1987).

o~

Type la supernovae are not likely candidates f_oi' being asymmetric supernovas. Asymmetry

implies variability in observational characteristics; at present type Ia supernov#® show no suggestive
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observationa! vnriabilit;' Sinee little is etill known about type Ib and peculiar type I supernovae,

they must be considered as candidates for being asymmetric. In fact it is noteworthy that the

rotol-ypical type Ib SN 1983n did have an interesting polarization feature associated with a P-Cygni

line (McCall 1985 see also Chapter 5 section {a)). Such polnnzatlon features may be indicative of
lhaﬁe asymmetry as argued in the Introductlon : '

¢) Type II Supernovae and.Supernovn 1987a

”’(T-ype II supernovae are not as homogeneous a class as are type Ia supernovae. The maximum
8 . . Iight B magnitude for type I1 supernov;ae can be as bright as about -19, which isra.q bright as a type Ia

. (I‘Srmﬁll'ct‘ al, 1981). More commonly, maximum light B magnitudes are found between -16 and

- 18 (Tammann 1982) The Jight curve behawor varies conald‘erably between different events. These
_facts indicate that type II supernovae cannot. be explained by a uniquely characterized progenitor

a seems to be the case for type Ia supernovae.
r v

ﬁom a umple of 23 wéll-observed type 11 supernovae Barbon et al. (1978} have distinguished
type II evanta on the basis of llght cunre, into two suybtlasses calied type IIP and type IIL: the “pr .
stands for plateau “L” for lilfear The type 1 supernovae have a dmtmct. plat.eau region in
‘their hght curves subsequent to maximum light; thé type IIL hght curves lack this feature and bear
a rmmblmce to typa I supernovae light curves, Of the 23 supernovae in Barbon et al. 's sample 15
- were assigned to the IIP subclass (65 %), and 6 to the IIL subclass (26 %}; the remaining 2 supernovae
showed peculiar featurea and so0 were classed as peculiar. Even within the established subclasses
varmt:onl in behavior among eventa are noted. It may be that the subclasses are not distinct,
but repment average groupmgs from two ends of a continuous range of plateau sizes (Doggett and

Branch 1985) Fig 1.1 dmplaya the mean TIP and IIL curves given by Doggett and Branch (1985).

-

. . Asnoted pre\rlou_s‘ly, type II supernova are observationally dlstmgulshed from type I supernovae
by the presence of strong hydrogen Balmer lines in their spectra. Near maximum light the type II
spectra indicate roughly solar compbail.ion with helium lines accampanying the hydrogen lines. In

later evolution, lines of some intermediate mass elements and ie II appear (Branch et al. 1981).

r

The optical display of type II supernovae can be produced in calculations by initiating a cen-
tral point explbeion in a simplified model red ginn!‘ atmosphere (Imshennik and Nadézhin 1964;
Grmberg.et al. 1971; Falk and Arnett 1973, 1977; Arnett and Falk 1976; Chevalier 1976; Ar-

N
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nett 1980). Suitable models have an explosive energy of ~ 10%: erg with radius between 101 and
104 cm. Weaver And Woosley (1980) found excellent agreement between calculated quantities (light
curves, photospheric temperatures, photospheric velocities, and photoephel_-le radit) and correspond-
ing observational quantities for type IIP supernovae. ~In such model calculations the injection of the
explosion energy in the center of the ntmoephere initiates a shock wave that explodel and heats the
. atmosphere., Most of the injected energy (89 %) becomel kinetic energy of the expanding matter;

the energy mdlated is orily about 10%erg. At first the expandmg atmosphere has incroasing lumi-
‘ nosity due to the expapdmg photoaphere radius, However, soon the decreumg density and cooling
.starts the photosphere to contract in_mass fructien. When the temperature is too low to ionise
hydrogen, t.he. opaeity of the hydrogen falls and the matter becomes very t;raliupnrent. Thus the
optical depth to the photbabhere tends to'be fixed at the rndiue at which hydrogen recombination s
occurring. The recombination front and thus the photosplicre recede into the et.rnosphere mnss as

the atmosphere cools. Since hydrogen recqmbinea at about 6000K, the photospheric t.emf)e;n?.ure

remains relatively qonstant. Even though the photoephere is receding in mass fraction, the lpntlnl )

- radius of the photosphere is approxlmately comtant due to the expenulon of the atmosphere. With

_approximately constant radius and temperature at the photosphere, the supernova luminosity is

L =dxr3eT?, . ’ - (1.3)

approximately constant. Recall that a spherical black body has luminosity given by

where o is the Stefan-Boltzmann constant. The plateau region of the light curve is explained by this

recombination front effect. Eventually the photosphere recedes into slower moving non-hydrogenic

mattet, arnd the nature of the radiative emission changes, The later part of the light curve can be

expla.med by the presence in the supernova ejecta of 56Nj that prowdel a rnd:ou:twe source for the

luminesity Just as in the 5upernova type Ia case.

The type IIL supernovae have not been as extensively studied as t.he type lIP lu,pemovu The -

type IIL events may result from iassive stars that have lost much but not all, of their hydrogen
envelopes (Chevaher 1984). A]ternatwely the type IIL events could be more closely related to type Ia
events with their llghl. curve belng mostly. powered by the *Ni decay scenario (Iben md Renzini
*1983; Doggett and Branch 1985) ' ’ .

The current theorctlcal undcrstandmg of the energy source of the type I1 lupemovn is summa-

rized below The summary is brief and is given almost without references. A better ucount. {nlong

-
~—
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\rlrh references) is given In & review paper by Woosley and Weaver (1986).

The initial explosion: energy for type II supernovae is-thought to result from the collapse of

the degenerate core of. an old massive star. The late evolutionary (post-mmn sequence) history of
"WeTﬁre is rather complex. It is thought that stars less massive than ~ 8 Mg lose encugh mass
that they beeome stable white dwarf starl Above ~ 40 Mg it is thought that a star loses all of its

hydrogen. Sueh massive stars may explode, but because they have lost their hydrogen they would

. not be classed as type II uupernova. Since stars more massive than 40 My are rare, their rate of

explosion would be small.

)

For type II srlpernovae theoretical interest is focused on the stars with main sequence masses in
the range 8-40 Mg. The cores of these massive stars are the result of previous burning phases, and

can no longer burn exothermically. The overlying layers of the star continue to burn and accrele

., burnt matter onto the core. These overlying layers can be divided in mantle and etmosphere. The

mantle consista mpinly of helium in its outer part and of intermediate elementa in its inner part. The

etmoephere is mostly hydrogen and is much less dense than the mantle. The elements tend to be

stratifled, but are mixed to an uncertain degree b& convection. For atars mth mcaequence mass
greater than abolt 10 Mg the core is iron; for the 8-10 M range the core is oxygen and neon. When

the cojevdensity is sufficiently high there are two instabilities that tend to rok it of Piessure support:

affects dominates

electron capture by nuclel and photodisintegration of nuclei. Whlch of these
depends on tf:e main sequence mass of the star. The removal of pressure suppor xn:t:ates a collapse
that cannot be stopped until the density is of the order of nuclear density: i.e., p ~ 1014 gem=3.
The collapse occurs on a time scale of about a second. The collapse event is thought to be the origin -

of neut.rorr stara,

The large binding energy of a neutron star, ~ 10%3 erg, is released in a core collapse. Mot of this

" released binding encrgy escapes in the form of neutrinos. Only about 1% of the energy is required
»

to power the supernova explosion. Unfortunately, t.here has been considerable difficulty in coui:aling
a'small fraction of the released binding energy to the matter in the mantle and atmosphere of the
star. Without this coupling the outer matter would just collapse onto the neutron star, increase
ita rnm, and convert it into a black hole. Currently there are two favoured ‘scenarios for how the
aupernovaexplosion occurs, Both thése scenarios have been r.nede to yield marginally successful

explosions only within the last few years.
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In the first acenario, the equation of state of the collapsing core stiffens as the core matter
reaches npprox_imule]y nuclear density and the co‘l‘la.poe o,fj the inner core ia suddenly lto‘ppcd. The
- exact 'cbre. density at which the core is stopped _i_a_'_nc‘n.ﬁ.l'swhnt unédrtnin, since it depends on the
equation of state 6&' nuclear matter, As the col.lapn‘stt.‘;pu. an outgoing shock wave is initiated. The
Qtop‘ping of the core and the production of the ahbcl: is called the bounce. If the shock wave has
enough energy, the outer layers of matter will attain escape velocity and an explosion ensues, Moat
of the core remains behind as a neutron star. This scenario is called tha prompt explosion, since the

“exploding shock wave is formed by the bounce. -

_> The second mechanism is called the delayed explosion. In this sort of event t.he‘l.)ounce shock
.. wave is formed, but is insufliciently strong to cause an explosion: the shock &tl}lll. However, the
neutrino flux from the core re-heats the matter behind the shock and re-ut.a.rt.: the shock (Wilson
i985). The opacity of matter for neutrinoa is small, but the capture of < 6% of the neutrino flux of

10%3 ergs~! is sufficicnt to re-start the shock. The time scale for the re-starting Lo occur is hundreds

of nﬁllis?condg‘. The delayed shock mechan'u-m—-may explain the explosiodf of larger massive star,

On 1987 Feb. 24 a type Il supernova in the Larger Magellanic Cloud (LMC) was discovered by

Ian Shelt.o:t of the University of Toronto working at Las Ca‘mpanﬁ Observatory in Chile (iﬂ&?),q']‘he
LMC, a small irregu!ar galaxy, is the'nearest neighbor to the 'Cidgxy‘ The distance to the LMC i»

- \5.0i7kpc (Laney and Stobie 1986); this is roughly twice the diameter of tﬁe Ga.lnxy; It in clear that

" . an LMC supernova would have an apparent luminosity that was comparable to that of & Galactic

supernova. In fact, (fue to dust and gas in-the plane’af the Galactic disk some Galactic nupernova;"'f
would be poorer observational objects than an LMC supernova. No Galactic supernovae have been
observed since SN 1604 which was observed by i(epler and others {for a review of hit;torical Galactje
supernovae see Clark anci St,eph‘cnson (1982)). .'Ifhus the LMC supernova is the best oﬁuryntionnl
_opportunity ever for supernova research. Since the LMC supernova was the first supernova discovered

in 1987 it has been designated SN 1087a. '

-

SN 1987a has already proven an astonishing confirmation of and stimulus to type Il supernovae
research. Probably the most impressive and satisfying observation was the detection of a strong

" neutrino flux bn 1987 Feb. 23 in the Kamickande (Hirata et al. 1987) and IMB (Bio;lta et al. 1987)
neutrino observatories. This flux of neutrinos is naturally explained by the neutrino burst experted

when a core collapse oceurs. The neutrino flux thus confirms the hitherto purely theoretical picture
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of core collapse (Bahcall ot al. 1987; Burrows and Lattimer 1987). The neutrino flux also gives an

exact time for the ignition of the e.xploaion never before has the 1gmtton time of a supernova event

been determmcd

Another lmportunt feature of SN 1987a is that the progenitor has been identified as the pre-
viously observed star Sanduleak-69 202 (Gilmozzi et al. 1987; and others). Only for one other

| supernova has a supernova progenitor been identified; that supernova was the remarkable SN 1961v

B (m Doggett and Branch 1985). The SN 1987a progenitor star, contrary to expectations for type II

supernovae, was a blue supergiant rather than a red supergiant. Another, probably related, surprise

~ haa been the unusual light curve and rather dim maximum light of SN 1987a. These unexpected fea-
) tures of SN 1087a may'find their explanation in the low metallicity of the LMC. The low metallicity
- may cause a massive star to end its evolution as a blue rather than as a red star (Woosley 1987). It

. ~, . -
scems probable that SN 19874 will become the prototype of a new subclass of type II supernovae.

A startling discovery is that there is a companion sourcs close to SN 1987a. This discovery
was made using speckle imaging techniques by lé&rovuka et al. (1987) on Mar. 25 and Apr. 2. It
has subsequently been confirmed by Matcher et al. (1987). The companion source had a 8560 A
magnitude that was 2.7 4+ .2 dimmehhm the supernova (i.e., it was .085 = .015 times as bright)
and v;u b mag.nit.udcs_bright.er than any pre-SN 1987a source in the field (Nisenson et al, 1987).

The compahion source is clearly associated somehow with the SN 1987a outburst. It may be that

the companion is a large gas or dust cloud that is reflecting supernova radiation ‘as suggested by

Nisenson et al. They caution, however, that such a cloud would have to be so large that it ought to

have been resolved by observation; this was not the case. Another possibility is that the companion

is part of a jet emitted by the supernova explosion. The angular distance of the companion from

the supernova was .659 % .008arcseconds Using the distance to the'LMC, the angular sepal:ation
indicates that companion and supernova are separated by about 4x 10'® cm. If the companion source
was ciated with a jet, the jet velocity would be ~ ¢/2. There is no experimental evidence or
- theoretical reason (see Symbalisty 1984) for jets of such a high.velotity from a supernovd. Another
posaibility is that the companion source is not real; speckle imaging techniques are difficult and a

misinterpretation is possible. At present the companion source remains a mystery.

There have been and will be many other SN 1987a observations of great importance. Of

- particular relevance to this thesis are spectropolarimet:ric observations. Many spectropolarimetric
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observations havelalready been done (Walsh et al. 1987; Magalhaes and Velloso 1087; St;hwarl and
Mundt 1887; Cropber et al. ), and analyses of the data have already been given by Jeflery (1087)
and Cropper et al. (1987). In Chapter 5 a further analysis of some of the early data is given. The -
analysis indicates that SN 1987a has cc;nuide_rnble shape asymmetry.

In general type II supernovae are more likely candidates_for being asymmetric than type | au-
pernovae. The _vnrinbilit.y of type II events, though explainable in terms of the large mass differences

among the expected progenit.ora, may owe in part to uhape asymmetry. There are calculations and

"observatxons that indicate tha.t. asymmetry will be present. Section (d) bolow blicﬂy reviews some

of these ca]culatlons and obaervat:ons _ -

: d) Asymmetric Supernovae

-

In this section a brief survey of some of the asymmetric supernova calculations s given. None
of these calculations was a complete explosion calculation. Each calculnt.lon followed the axplonion
in only one of the following: core, mantle, or atmosphers. The ‘physical scale and the time scale
for important dynamic events are very different for each of these regimes. Formidable numerical
difficulties would need to be overcome to perform a unified calculation. In addition some discussion

4
is given of observational evidence from supernova remnants (SNRs) for asymmetric explosions,

Miiller and Hillebrandt (1981), and Hillebrandt (1982) reported 2-dimensional hydrodynumic

calculations of core collapses. Their primary interest was to see if the. difficulties in get.tlng core

collapse models to explode would be alleviated by the introduction of rotaticn. They gave the
cores (i.e. the inner 1.4 Mg) of their initial models rotational energies of order 104 erg. Rotationsl

energies of this order are are expected for newly formed pulsars, the presumed remnants of type 11

. supérnovac (Gunn and Ostriker 1969; see also Shapiro and Teukolsky 1983, p. 279). The core collapse
.was i;aitiated by-reducing the core entropies by 5%. For models with core rotational energy of about

* 5 x 10*8 erg the effects of rotation were modest. There was roughly a 5% oblate asymmetry in the

demi'i.ty contours at a few milliseconds after the core bounce when the calculation was haited. For
a model with rotational energy 6.2 x 10%? erg the contours showed 50 % oblate asymmetry about
7 milliseconds after the bounce when the calculation was halted. The flow patterns in this model were

rather complex and showed the formation of vortices. The reason for haltirig the calculations wis

that the rotational effect did not give these models sufficient additional kinetic energy to becoine
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supernova explosions, and also because such 2-dimensional calculations are computationally very

A

demanding.

Livio et al. (1080) considered a 2-dimensional model to study the effects of Rayleigh-Taylor
instabilities in core collapse. The Rayleigh-Taylor inntalbilif.y occurs in situations where the pressure
~ and density gradients have different signs. Such instabilities do obtain in the bouncing core collapse.
Livio et al hOped that the jnstabjlity would result in a massive overturn of the core that would

enhanca the releue of neutrinos; the neutrinos would then help to power an explosion. They found

that there was.2 large overturn of most of the core matter by the time they halted their calculation, -

L]

30 millisecondu after the bounce. The overturn took the form of a large vortex. Livio et al. expected -

that some enhancement of the neutrino flux would occur.

Symbalilty_ (1984,_ 1986) considered 2-dimensional rotating core collapse models with and with-

outl strong magnetic fields. He used models‘ with rotational energies comparable to those used by
. Miiller and Hillebrandt. kn Symbalisty's rotati;)n—only calculations he obtained flow patterns and
density contours not dissimilar to those of Miiller and Hillebrandst. Syfnba.liaty ran his models for
.about 20 milliscconds after the bounce, and the scale of his flow patterns was about 10 times larger
than the scale of Miiller and Hillebrandt’s flow patterns. He found no explosion for these models;
he did find, due to a vortex flow, that a small mass of 4 x lb“' Mg had oBtained escape velocity.

This mass was roughly directed along the polar axis of his model and he interpreted it as a jet,

To study magnetorotational effecta, Symbalisty consldered models with dipole magnetlc ﬁelda
. For the wea}ter fields there was no significant difference from the rotation-only modela. For a model
with a 1019 gauss field there was a strong polar jet with escape velocity and with a mass of 8.9 x
10-3 Mg. There was no overall explosion. (The jet result was discovered' earlier by LeBlanc and
Wilson (1970) using a now obsolete model.) The Symbalisty jet is impressive, but the magnetic feld
generated in the core was of orderklolﬁ gauss. This is roughly 1000 times stronger than the ~ 1013-
_l(]l_‘ra ga\llsa fields inferred for pulsars. Symbalisty concluded that the “magnetorotational explosion

does not seem likely”. -
The three core collapse calculations discussed above were done without the delayed explosion
mechanism discovered i)y Wilson (1985). How the asymmetry of the reported models would have

evolved with the inclusion of delayed explosion is an open (iluestion.

Bodenheimer and Woosley (1983) found that rotation of the mantle could cause an explosion
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even when the core shock had. atelleel To obtain a value for the total angular momentum of their
model mantle they considered the inner 8 Mg of a model O at.u' (M =30Mg and R = T5Rp).
Auummg rigid rotation and assigning a surface rotntlonal velocity ol‘ of 200 km s~! (typical for
O stars) gave the inner 8 M an angular momentum of 4.5 x 10%! erg-s. Bodenheimer and Wooaloy
used pare.meterized boundary conditions to simulate the core and atmosphere boundaries. The mode!
was run for 15s. A vortex flow pattern was set up thet lead to an equatorial explosion. In order to
achieve this exploalon there had to be an injection of energy from oxygen burning aa well as rotation.
The material j in the equatorial outburat was enriched with oxygen and oxygen burning products.
The outflowing m.et'ter' had velocities considerably smaller than those attributed to supernovne,
Bodenheimer e.nd Woosley eetﬁ{mted that the optical display of such an event would be leas luminous
than that of a typical supernova. Of course, if the delayed explosion mechanism had been included in -
their calculetion,_e more conventional supernova explosion might have been recovered, poelibly with.
an oblate asymmetry. Without the delayed explosion mechmi.em-the Bodenheimer and Woosley

model may describe a undiscovered, subluminous clasa of aupernovae. Bodenheimer and Woonley

cite some evidence from SNR observations that thig might be the case.

" Mot young galactic’SNR's have a rather spherical ahell.shape. It should be noted that a
spherical remnant does not necesearily indicate a ephe;icnllyl symmetric explosion. It has beer
ahc;wn that a uniform interatella.r meciium (ISM) may spherize an originally asymmetric remnant on
a time scale of thousands of years (anovety:-l(ognn and Blinnikov 1083). There are, however, some
remnants that resemble what might be expected from a Bodenheimer and Woosley type explosion,
Lasker (1980) reports that SNR. N132 D in the LMC has a toroidal nn’g of oxygm@ennched knots,
A similar ixiterpretatio:} can be Me for the galect'}c remnant G292.041.8 (Tuohy et al. 1980; Clatk
and Tuohy 1983), and perhaps for the famous galactic remnant .Cas A (‘Markert et al. 198]). The

the year 1667, but it was not observed This indicates thay'Cas A supernova may have been an

supernova that caused the Cas A 'remna.nt should have beegviaible to the eye sometime about .
subluminous event if that were so it could be coumt.ent with a Bodenheimer and Woosley type

explosion.

Cl;evalier and Klein (1978) examined the effect of Rayleigh-Taylor instabilities on the explosion
of a red supergiant type atmosphere in 2-dimensional calculations. Their models showed large clumps

containing 20~30% of the atmosphere mass form by 10 days after the explosion. The density ratio of
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clump to non-clump was ubout Jtol. Cheval:er and Klein concede that the discretization of their
models may not have been ﬂne enough to remove all discretization.effects. However, they concluded *
- ‘thnt the large scale clumping effect was real. They considered that the mass clumps observed in the
Cas A remnant may be evidence for the effect,

The above survey of 2-dimensional calculatlons shows that asymmetric effects may be relevant
m the coru, mnntlu and atmospheres of supernova explosions, A unified 2-d|menmonal supernova
' calcula.t.ion would be a mammoth undertaking, but would probably be necessary to understand the
net effect of these asymmetries. More observational evi{dence of aupernova asymmetry would be of
. considerable aid. Spectropolarimetry of nuperﬁova. may provide some of this evidence. A discussion
‘of n.\mllablq spectropolarimetry data is given in Chapter 6. As noted in the Introduction, this thesis

v&u_underta.keri to provide an interpretation technique for apectropolarimetry.

]



- Ghapter 7
| | "The Sobolev Method
And the Sobolev-H Method for Poluilir_lg-ﬂuonmca Scattering
¢ E
In section (a) of this .chapter s derivgtion of the Sobolev method is presented. Section (b)'din-
cusses t}le validity of the method in general, and section (c) ita application t—:; supernova calculations,
S;cfion (d) develops a version of the Sobolev method, called the Sobolev-H method, that includes
: the.‘.'pql'arizing effect of resonance scatiering. Section (e) discusses the validily of the Sobolev-1l
" method. Section (f) considers the application of the Sobolev-H mel.hod'to closely spaced lines and

-multiplets.

*8) The Sobolev Method 3 -

The Sobolev method or escape-probability method originated with Sobolev (1947) and has been
extended by others (Castor 1970; Rybicki 1970; Lucy 1971; Rybicki and Hummer 1978; Olson 1082;

Hummer and Rybicki 1985; Bartunov and Mozgovoi 1987). The method is used to calculate line

radiative transfer in moving atmospheres with large velocity gradients. Ir;'this presentation of Lhe
Sobolev method the discussion, derivation, and notation of Rybicki and Hummer .(1978) have been
followed. The general concepts and terr-ns of radiative transfer can be found in the book Stellur

Atmospheres by Mihalas (1978).

Consider an atmosphere in which the opacity is due o only one infinitely sharp ion transition
" line. If this atmoephere is at rest, then only incident radiation with frcquéncy equalling the tran-
" sition frequency would ;mf,eract with the scattering ions. The radiation at other frequencies would
pass through the atmospherd unimpeded. The calculation of the emergent radiation flux at the
transition frequency (a line tt@fer problem) requires the solution of a differential equation due
to the radiative coupling of all regions of the atmosphere. In systems more complicated than that
presently consider;:d the solution of the emergent radiation by differential equations can become
wmputationaliy very demanding. If the atmosphere has a velocity flow with velocity gradients,

then the ion transition frequency is no longer the rest-frame frequency and is not a constant. The

23
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gradients oﬁ@ velocity fleld cause s spatially varying Dopi)ler shift of the transition frequency of
the lons, Thus the transition frequency dtizﬁal both on-the location of -the ion in the flow and
on the direction of any incident phofops. The opacity of the atmosphere is no longer confined to

a single frequency; there is a globnl continuum opacity, since the velocities of the jons give rise to

a continuum of Doppler shifts. However, the opacity at a given freqﬁency for a given direction of .

incidence is localized. Provided the velocity gradient does not goto zero in the given direction, the
jons -providir:g this opacity lie on a surface called a velocity sutface. The velocity surfaces can also be
teferred to by the more general term resonance fegionl. The atmosphere can b; considered as being
made up of these velocity surfaces, -The p:oblqn.: of radiative transfer through such an atmosphere
becomu a problem of following radiation of a givén initial frequency through scatterings in, it is
hoped, a limited number of velocity surfaces. In simpl;.» ﬁow" cases only one velocity surface per
atomic transition need belcomidered for each frequency of the emergent flux. )

| There are two types of velocity surface that it is useful to considér: common-direction (CD)
. and common#i:oint (CP). CD sutfaces aze formed by the set of material points having a common
velocity in a given direction. ‘The defining equation for a CD yelocity surface that interacts with

photons of frequency » and contains ions with rest-frame trmitidh’héﬁucncy v i8

i T(F) = v, (2.1)
. . ,
- where 7 is 8 position vector that traccs out the surface, fi defines the common direction, and vy, =

e(v — m)/v is the magmtude of the velocity that Doppler shifts the transition frequency (a.ssummg

only the first order Doppler shift is required). The fi-direction is usually one to a distant observer.

~ Phbdtons scattered from such a.surface in the f-direction emerge with the common frequency » due

to the common Doppler shifted transition frequency. If the velocity flow is not monotonic in the
direction defined by A, or if multiple ion transitions are being considered, then multiple surfaces
satisflying equation (2.1) are poesible. Such surfaces are radiatively coupled and this coupling must-.,
of course, be considered }n solving for the emergent flux. A CP surface is formed by material points
that are radiatively coupled to a specified material point (the common point). The defining equation
is

=@ - ) = v, (22)

where 7 traces out the surface and 7 locates the common point. The surface and the common point

are radiatively coupled if v4, = 0, since there is no relative Doppler shift between the transition
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frequency of any point on the surface and the Lransition frequency of the common point If thero in
more then one ion transition, there will also be radiatively coupled CP surfaces for the vy, vnluen
that give Doppler ah:!'ts equal to the frequency differences between different transitions.

Real line tranlltlonu are not,:nﬁnltely sharp. Iom can absorb or emit photons. over somo

‘range of frequenc{u The probabilities ol' absorption or emiuion at any frequency are described by
" absoxption and emission probability dutribuhom called profiles. Mathematically, the profiles allow

8 tran'sitiini‘ at any frequency, but with vanishingly small probability outside of an interval centered

on' the frequency with the maximum transition probnbiiit.y. This interval of high probnlﬂlity in
made quantitative by deﬁhing it an'the full-width at_half maximum, or, if appropriate, the standard

- deviation of the prdﬂle. The interval is often called the line-width, ot simply the width of the line ‘

transition. The frequency of maximum probpbility is called the line center frequency, or simply the

line frequency.

The broadehing of the line transition frequency into a frequency line-width is due to several
effects: the intrinsic broadening due to the quantum nature of the .t;-un'sition, thermal Do:;plgr
broadening due to the thermal motion ‘of the ions.. Doppler broadening,from random turbulent flow

of fluid elements in the atmosphere, an isional broadening. The profiles arising from this mixture

of effects are not simple in general! In astrophysical systems the thermal b;oudening offect is often °

most important and this results in\a Gaussian prohle for absorption and emission. The effects of

turbulence broadening may also be important in the mass loas winds from early type stars, and

. possibly in supernovae.

A consequence of finite line-width is that the’ \'relocity surfaces are not sharp, but have finite

spatial width. To first order in%/c the Doppler shift of a line frequency is given by .

-

. ‘ v(l) = vo(l + v fc), ' ) | (2.-3):

where v, is the rest line frequency, I is a distance parameter measuring backward along a ray path
(see i_"ig. 2.1), and v; is the inacroscopic velo_city‘ of the ions in the direction of the ray inth. A
photon of frequency »(!) travelling along the ray 'pa.th. can interact’ with the ions at [, but due to
the finite line-width Av the photon can also intemr;t over a finité range Al of the l-parameter. The
symmetry betweeﬁ fréc-lu;ncy and spatial parameter can be seen if vy is expanded to firet order about

.'I: ' .. %

v =v(l+60) —u() = -"?"fd‘-;ia: =~ Qu (2.4a)



Fig. 2.1. Geometry of a ray path and the variables describing the path.
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where . - _ : - o ~
o S Qs%’-. - (2.40)

" It follows t_hnt.the spatial width of: the velocity surface (renomm;:e' regioh) corm;ondins to the -
frequency line-width is given byl .
T @

The Sobolev thethod exploits the functional relationship between spatinl coordinnte and fre-
iquency_ that is established by the"spatially varying Doppler shift. The upnual coordmnto-frcquency
relationship is assumed to be linear over disthnces the size of the spatial resonance width Al Thﬁl
it is assumed thni only the first order Doppler shift is required and that the velocity grndi.eﬁ!. isa
constant over Al. The Sobole:r method also assumes th?t the thermodynamic quantities that.de\;
termine the inteérated line opac:ity-(the integral of the menochromatic line opacity inlegratéd over

Jall frequency) and line source function (line emissivity divided by the monochromatic line opacity)
do not vary significantly over Al. The only quantitieamllowed to vary over Al are®Me line absorp-_
tion and emission profiles, which are functions of the spatisl coord‘inate since they are functions of
frequency, and velocity. A rough criterion for the vnlidit); of these assumptions can be given, If I,
is & characteristic distance OVer‘which the thermodynamic quantities vary and v, is the change in
velocity.over lch, then one can set |¢‘iu;/d1| 23 vepflen. The line-width assuming it owes to thermnl
Doppler broadening, is g:ven by Av = vy /e, where vy is the thermnl root mean square vnloclty

From (2.5) one obtains

Allen = ipven. ey

The Sobolev method demands Al < I3, and therefore requires thnt vip € vep. Thue the spatial
resonance regions will be relatwely sharp when the macroscopic vclocny gradient is relnl.wcly large
To derive the Sobolev expressions conmder the radiative t.ra.nnfer equation (see Mihalas 1978

p. 30) for the specific intensity directed along the ray path dep:ct.ed in Fig 2.1:

& VIFEA) =S = MWW -5, (27)

where I is the specific int‘ensity,:k(f'-') ‘the integrated line opacity, ¢ is the normalized line absorption
profile, S\wlhe line source func:tion, and ' = ¥(1 — i - 5(F)/c) is the frequency of the n-directed
radiation observed in the Jocal frame at 7. The assumption has béen made that i - #(F)|/c < 1

80 that only the first order Doppler shift formula is required. - The correction factor for stimulated

—
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emluion following the usual prectwe can be thought of as having been absorbed into the opac:ty k
(Mihalas 19?’8. p.80). - ‘
Note that . | \ . .

4

Vav(l-f.-f)=v(l~ u;_/c) =y = (v + v — mo)(vr/c)
= v = (1 +6)(ui/e),

where § = (v ~0)/vo. Subtracting g from each side gives

'

W -;;o =v -1l + 6)(w/c)‘ oe & =6 (14 8)(u/e), .

" where &' = (/ = vp)/vo. Re-arranging gives

= 61' f ((:://:)) w8 (6 + (u/e))(1 + (u/e))

r 8+ (u/c) + 8'(w/fc) + (mife),

where the assumption that {v1/c) € 1 has been used. For significant scattering |6'| < Av/vg, where
it is recalled that Aw is the line-width. ‘Usually Av/rg < 1, and thus for significant scattering
6] € 1. Therefore it follows that & < 1, and thus to first order in small quantities

V' =v—in(ufe). o '(2.8)

This expression for the Doppler ahlfted frequency wnll be employed in all the subsequent derivations.

" Equation (2.7) can now be written as

2= k(1)¢(u = wolu/e)UI() - S,

where the distance parameter [ is taken as the independent variable (see Fig. 2.1 for the’geometry

of the ray path being considered). The integrating factor for this differential equation is

! o :
u(l) = exp [—fo k(") (v = vo(vir [e))]

-~

— and thus the formnl‘sqlution is

. fi' .
I(F,‘ﬁ,v) =Il=0)= ]‘; dlu(l}e()e{v — wa(ufe))S(I)  + I.-,.,u(L),. (2.9)

-
L



~ .
. 0
y . :
N A ¢ '
where Jinc is the specific intensity of frequency » incident on the medium at the point label L on the
ray path. For the present it is assumed that the velocity along the ray path is ltr{ctly incrbasing or
decreasing so that there can be at most one resonance point per frequency. Thus bite integrand of

~ equation (2.9) will be significantly different from serdrgnly in a spatial resonance region of thickness
Al centered on a resonance point located at I,,,. The Sobolev’assumption s that the thermodynamie
quimt.itim should be approximataly constant over the resonance region. Therefore k({) and S(I) can

~ beset to k = k(ira,) and § = S(lres), and removed from the integrals! If the l'requuncy v is specified,

then the resonance point coordinate I, can be obtained by solving

W=v- un(u..../c), . , (2.10)

where vy, = vy,,,. Alternatively, if the resonance point coordinate is specified, equation (2.'10) can
be used to solve for the local resonance frequency v. Recalling the Sobolev assumption that the
velocity gradient does not vn;y significantly over the spatial resonance width, the velocity at i,,,

can be expanded in a Taylor’s series to first order:

V] = Yres + QU - ,ru)n | L (2.“)

where, recalling equation (2.4b), @ = (dv/dl). Using equation (2.11) the expression for th.e. specific

-

intensity at point 7, in direction fi, and with frequency  becomes

i

I(7,#,v) = ‘ .

kS fo ‘ dlg (u = (vo/e)(vees + QU = lres ))) exp {—k ]o ' dr'¢ (v - (vo/ri")"(vé-; +Q(' - t...)))]

L ‘
+ finc exp [—k j ‘ﬂ'ﬁ(u - (VO/C)(Vru + Q(l - ’ru)))] . (2-12)
0
The following transformation of the variables will be made:
—_ ‘QI’ — L - VO(”I'M/C) + Q(fu.)(l’o/g) 2.13
T (efvo)Ar T Al and £ Av (2.13)
where equation (2.5) for Al has been used. The following definition is also needed:

P(€) = Avg(EAY). . (214

&

ﬁoté that
' 1= [Tae)= [ deoern [ dete)
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where the last integration has been e'xtended to negnﬂve infinity, since the exter-uiol_x makes a negli-
gible contribution, Another required definition is '

Al ke -
ek T il (215)

i -where 7 is the Sobolev line optical depth of the resonance region. Using all thes¢ transformations

and definitions, equntldn (2.12) is rewritten as.
' o0 " 7 .
I(7,8,v) =St f dp(€ F A) exp [—r / dMp(€ F J\')] .
0 . ' 4]
. poo N =X isf .
+ Dineexp [—-r fo dAga(e;A)] - where { o g > g: (2.16)

and where it has 'beeu assumed that the point labeled by L i§ sufficiently far from the resonance

region that L can be replaced by infinity. The further transformation

b — vo(renc) — QUi - z...)i}zo/c))
, Av

. t:fq:k:(

leada to the expression -

I (F,ﬁ,lf) = 8r /‘ =|=m(-‘-}:dt) w(t) e.xp [—r -/E l(=|=4:H") p(l’)] +. ‘ Linzexp [—-r /t e (Fdt) qp(t)] .

(2.17)
Defining ‘
j dt' (') for @ > 0;
wo=1 -
/ dt' (') for @ <0,
£ .
where w(too) = 1 and w(¥Foo) = 0. Integrating equation (2.17) gives the result
I(7,A,v) = S(1 - exp[-Tw(§)]) + linc exp[-Tw(§)]. ~ - (2.18)

From equation (2.13) it can be seen that if v is fixed, then £ depends linearly on the distance /..,
from the point  to the resonance point for frequency v. In Jimiting cases of Ires equation (2.18)
becomea .

I(Fh,v) = {I‘M' res 7o e (219)

Iineexp[—7) + S(1 — exp[-7]), lres — 0.
The two cases correspond to the specific intensity before and after the resonance region. The first
/ and second terms in the [,,, — 00 case are called, respectively, the direct and diffuse contributions

to the specific intensity. ——



Equnhonn (2.18) and (2. 19) are only of use il the source function S can be lpeclﬁed In ohtninlng
Sa uacl'ul quantity is the integrated apecific intensity deﬂned by

17 8) = /; m_duqb(v - (uo(c)(a EN) I B,0). (2.20)

The ir;tegrated apecific intensity is Vproportional to the rate & which A-directed photons a.re scattered
- out of the beam by the line transition. The quantity & is energy per unit volume per unit time
| ncatt‘ez:ed out of the beam by the line transition. Using equations (2.13) and (2.14), and substituting
" from equation (5.18) gives ' |

IER= [ dep©)(S0 - xplorul) + msesplerut@), . 221

where the lower integration limit has been extended to negative infinity with negligible offect. It

" is assumed that the incident specific intensity I;no and the line source fdhction S do not vary

significantly over the {-range where (£) is significantly different from zero, It is important to note

that I, should be.avaluated at the local resonance frequency v which is obtained from the equation

vo = — (vo/)(h - 3(F)); (2.22)
thisfis the frequency where ¢(£) is a maximum. Performing the integeation gives

'(F‘)=S(1-———11"°’:_p["')+I;,.el"°’:_p"r. ' (2.23)

—

The first term gives the contribution to the integrated specific intensity from the photons that are
. created locally in the resonance region centered on ¥ by downward line transitions, The second term

is the contribution from the incident photons. The quantity defined by

fs E.l = exp[—r]' o (2.24)

T

is called the directional escape probability. The probabilistic interpretation of A4 is considered below.
A general expression for the source function for bound-bound transitions (Hummer 1969)

adapted to a moving atmosphere system is

-

(1-¢) - [dfY

S(F,#.v) = I CYRICIE )

jdu’R(u,nVn)I("") + G,
(2.25)
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‘ \_i‘hete £2 Is solid aﬁgle, fA gives the propagation direction, ¢ is the probability per scattering that a
photort leaves the line, ¢(v—(vo/c)(A-#(F))) is the normalized line emission profile, R is redistribution
'f.unctlon,- and G is the non-resonance source of line photons. The quantity ¢ is a measure of the
. coupling of the line transition to other tramlhona (including those to the continuum) and to the local
thermal condxtionn In the two-level atom approxzmahon (see Mihalu 1&78, p. 335) ¢is referred toas
the thermal couphng conntnnt since only the local thermal condltlons through collisional excitation
and de-excitation of the transitiof are allowed to couple to the line radiation field. In the two
‘level-atom npﬁroximntion‘ _ \ . :

- . G(7) = €B,,(T3), (2.26)

where B.,, is the thermodynamic equilibrium Planck upec:ﬁc intensity evaluated at the line rest

frequency and the local e]ectron temperature T,:

2hi3 1

S explhvo/kT,] -1 - em

- By, =

In this approximation ¢ is given by i . '

Co(1 — exp[hwo/kT,])
‘Ag + Co(l — exp[hio/kT.])’

¢= (2.28)

where Cy is the collisional de-excitation rate.from the upper level of the transition and Ag is the
spontansous emission rate. For multi-level atoms the ’simple expressions for G and ¢ do not obtain.
Ordinarily in the Sobolev method the redistribution of photons is assumed to be what is called
complete re@istribl‘:tion (sometimes abbrevialted to CRD) where the r.eQistribuzion function is given
by ‘ .
R(viii; o', i) = ¢(v — (Vu/‘t)(ﬁ - TFENSY = (vo/c)(R' - 5(7))). (2.29)
In this form of redistribution the in-cid;:nt and scattered photdn frequency are independent, the
absorption and emission profiles are the same, and the scattering is isotropic in the static atmosphere

case. Polarizing effects are not included. Substituting equation (2.29) into equation (2.25) gives
!
S#)=0-9 f T W - SENIERY) G @)

Thia expression satisfies the Sobolev condition on S of no strong dependence on v. This condition
was required in deriving equations {2.19) and (2.23). Assuming equation (2.30) is valid, equation
(2.23) can be substituted into equation (2.30) to give

S=(1-9[(1-8S+ 1] +G, (2.31)
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where

'f_ B dﬂ——-&["l ;34  @w)

and

d0 1~ exp[— o o
Iy= ——“f[—rlhm sy

The qua.ntlty B, ca.lled the escape probability, is discussed below. So!ving equation (2. 31) for S given

S(F) = W. , (2.84)

+ That an explicit solution for the source function can be obtained from the Sobolev method is very
useful in actual line calculations. In fact the Sobolev source function has boen found to be more
accurnt.e.' than the formal Sobolev solution giveh i:y equation (2.19) (Hamann 1981},

An important special case of equation (2.34) occurs when ¢ and G are rero (i.e., a case of pure
iwo-level atom resonance scattering), and the incident specific intensity. emerges from a spherical -

surface of radius r, and is independent of the angle of emergence. The source function is then |

5(r) = W(r)ine, ) (2.35) -
where “ ) _ |
- | L W= (- VTG, (2.30)

W(r) is called the dilution factor.
Equations (2.19) and {2.23) can readily be generalized to the case of non-monotonic velocity |
fields or the case of multiple ion transitions. In both cases multiple velocity surfaces must be

considered. The generalized expression for the emergent specific intensity for frequency v is

: i-1 -
I(V)emg = I(V)ine exp [ Z n] + E.S';(l - exp[—rg])cxp [— Z Tj] (2.37)

" where the CD velocity surfaces for frequency v are number 1 through N backwnrd along the rny
path of the specific intensity beam. The 7 and 5; are the velocity surface optical depths and source
functions for frequency v. The integrated specific intensity for a transition labelled A at some
common point ; is

I(f,n) = ( ine €XP [ Z"‘] + 25.(1 ~ exp|~ni}) exp [—ZTJ]) ( - cxp[-ﬂl)

!

+5, (1 - M) o (2.38)

71
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where the CP surfaces for common point Fy are numbered 2 through N backward along the ray

path of the specific intensity beam. Note that the CP velocity surfaces can be resonance regions for

" traiwitions different from transition A or for transition A itself if the velocity field is non-monotonic

along the ray path. Thus the indexing of the optical depths and source functions in equation (2.38)

is for geometrical purposes. The source function for transition A (i.e. source function S4) may

. correspond to several indices in equation (2.38). Substituting from equation (2.38) into equation
‘ -(2.30) givu an exptession for S4. This expression will, however, in general be an integral equation_

for SAIifﬁxe velocity fleld is non-monotonic. Solving for the source functions for a multiple transition

case with a non-monotonic velocity field thus involves solving coupled integral equations.

‘E'xplicit solutions for the source ful{ct.ionn are recovered if an atmosphere is in a state of general
expansion 8r genéral contraction., If only one transition ia.preoent. in the atmosphere then general
expansion or contraction is a sufficient and usually a necessary ;.ondition\for a single velocity surface
(and therefore explicit) solution to the radiative transfer of a given frequency (Rybicki 'and'Hummer
1978). A photon emitted by the transition that escapes the resénance region of emiz;sion cannot
interact with that transition sgain. The general expansion or contraction causes the transition

frequency along the ray path to be monotonically Doppler shifted away from the photon’s frequency.

'The photon must escape the atmosphere. However, if there are multiple transitions the photon

can interact with lower frequency transitions in the general expansion case and higher frequency

transitions in the general contraction case. Therefore the source function for each transition at

. every point in the general expansion case can be explicitly constructed using equation (2.30) from

the source functions of the higher frequency transitions (Olson 1982); in the general contraction case
the-source fuﬁction can be constructed from the lower frequency transitions. Supernova atmospheres
are in general expansion (see section (c) below), and so their source functions can be constructed in
this way. h

The Sobolev formalism can be given a probabilistic interpretation when applied to individual |
phbtona (Rybi'cki 1970; de Jong, Chu, and Dalgarno 1975). The differential loss from a specific -

intensity beam is given by

di(s,f,v) = —x(s, v)I(s,ﬁ,u)ds, (2.39)

where x(s,v) = k(s)é(v — wp(v,/c)) is the monochromatic line opacity and ds is a differential path
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* element. The solution to this equation is -

y I(Omans ) = I(O.ﬁ,U)e;P [- jo '"Pda' n(a’.v)]. @)

For a single photon of frequency v, the probability of travelling from 0 to &,,, along the path

without interacting with the line transition is

| P(sm..;ﬂ.v)=exp [— jo ™ N(":V)]- : (2_"‘_1\)

Consider a system where the Spbolev formalism applies, where & = 0 is taken to be a moﬁnnce
point and where only alaingle velocity surface solution is required. Setting amqq to inflnity and using

the previously given ttahsformationg and expressions, equation {2.41) becomes

P(c0,,v) = exp [~rw (§())]. ' (2.42)

In this case

€= v = vo(vras /) + Qlres )(v0/€) Y- Vo(trasfc)
Av Ay '

(2.4‘3)

' wher?.v is.being allowed to vary. (Note that the Q-cases of w(£) are interchanged from the-earlicr

derivation, since the present derivation has the specific intensity direction the same as the direction

in which the coordinate s increases.) Equation (2.42) gives the probability that a photon of frequency

v escapés_to infinity from the resonance point s = 0. By changing Q to —Q equation (2.42) also
éivea the probability that a photon of frequency v comes in from infinity to s = 0.

Assuming @he emission profile is the same as the absorption profile, then the average c\‘:npn

probability for a line photon emitted at the resonance point in direction 1 is

Plooi) = [ : dt pl©)P(oo,5,8) = [ : d€ p(E) exp [~rw(€))

l1—e""
-7

= Ba(#). ) (2.44)

. The reason for the earlier designation of 4 as the directional escape probability should now be clear.

The direction-a.verage escape probability is

‘- : a, .. [dR1-e" .
- ﬂ:ji-;ﬂd(ﬂ)—- 4—' pn ' (2441)
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- where the integration is over all solid angle. Usually, as mentioned above, ﬂTnjust called the eseape
probability. Note that B4 and S can range from 0 to 1. Note also that ki, .5 is the energy scattered

per unit volume per unit time at the resonance point from s specific intensity beam that is'incideht_

on the resonance region and that is constant over the frequency range where ¢(v) is significantly
different from zero. :

It is interesting to inveatigate the numbe.r of scatt.eringﬁ that a line-emitted photon undergoes
‘inside a resonance region before escaping to infinity. For this discussion pure two-level resonance
scattering will be assumed. Thus photons interact only with the line transition and any photon
absorbled in the line is re;-emitt.‘ed by tﬁe line, Since 3 is the probability that a line-emitted photon
escapes the resonance region without scattering again, it follows that (1 - B) is the probability that
the ﬁhoton is absorbed in the line again. The probability that a line-emitted photon is absorbed,
re-emitted, and escapes is clearly (1- B)B. It is easily seen that the probability distribution for the

number of scattering events a hne—em:ttcd phot.on undergoes before escaping to infinity is

P(n) = (1- A", | " (2.46)
where the Sobolev method uiumes t.h'a.t s is a constant. This distribution is quite easily understood.
If the escape probability ﬁ ia large (i.e. B w 1), then P(0) is large, and the P(n > 0) values are
small. Thus a line-emitted photon would escape the resonance region without being scattered in
almost all cases. The chance of scatteri:ig n times decreases rapidly as n increases. If # < 1, then
the probability of any patticular n-scattering event is small, and the distribution decreases rather
.llowly with n. In this situation there would be a large variation in the number of scatterings that
line-egnitted photons would undergo. . ‘

A formal analysis of the scattering probability distribution can be given. Note that

EP(n)—Z(l—ﬁ)"ﬂ- (1 =1, (2.47)
n=0 .

* and so the distribution is properly normnhzed. For convenience let

. - ~

v=1-4. (2.48)

The mean, or ﬁut moment of the distribution, is

<n>= ZnP(n) EuP(n) ﬁva -ﬂvZnu

o (£ e () oo () 252 o

n=1l

v
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" This axpreuion for the mean shows that mn the escape probability is large then < n > s small;
f when the' escape probubthty is small then < n > ir” The second moment. of the dlltrlbution in

| <n?>= Zn’P(n)

n-o
= Y In(n = 1)P(n) + nP(n)] = San-1P(m) + <n>
‘ n-o nm0
o= E n(n - 1)P(n) + <n> = ﬁv’ Z n(n ~-M"? 4+ <n>
n=l n=2
=ﬂu’£- iu“ 4+ <n> ;ﬂv’—( 1 —1-;v + <n>
dv? \ & TP dvi\l-v
: . 2(1 - B)? g - '
= pv ((1 ),) + <n> =JT,‘9L + <n>. O (2.60)
The standard deviation is |
o=vV<nl1>—<n>? ' _ :
1=-8 B *
PV tToE S |
A ' <>y fl+——. )ﬁ.ﬁl)/ﬁ
¥ <n>
For small 8, < n > is large, and'no- . ‘ ! -
eMcn >, (2.62)

The fact that the standard deviation is approximately equal to the mean in consistent with the
expectation that probability distribution is rather flat for amall 3.
A useful characteristic quantity of a scattering system is the effective optical depth 7,;. Con-

sider the Sobolev optical depth

.. _L xAve _ .
") S~ S @5

where « is the line center monochromatic opacity, and Ay is the line-width of the line profile. Now

as indicated by equation (2.5) the velocity width of a resonance region is
Av = (c/vg)Ay, (2.54)

and thus TN
xAv
. (r,h) &% —

T (2:55)
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If the line-width is a result of thermal or turbulence broadening, Av is a characteristic the?mal or
turbulence velocity. If a characteristic macroscopic velocity ves and a characteristic length /.5 can

be found for the scatiering atmospherﬁ, then the approximation

Veh ’ ’

-_— 2.
191 32 @)

a9
can be made. Thus
’ KAv

F . 2.57
r(F) = Ven/len (257)

where the i dependence of 7 as been effectively averaged away by using a crude approximation for

|@, but ¥ dependence still remains due to the x. Averaging () over the characteristic length gives

.y Teh | :
chf - Uch/A"' | (2.58)
where ‘ . ‘
{ ron = / dr k(7) ! (2.59)

is the static -atmoaphere line cc.:nter optical deﬁth along the characteristic length.

The effective optical depth can be scen to be a sort of average or characteristic Sobolev opacity
for the atmosphere. It ia certainly a rather crude qua.nt.ity since it incorporates little information
about the geometry or opacity distribution in an atmosphere. However, an estimate of the average
number of scatterings per scattered photdn for the whole atmosphere can be obtained from r,y;.
The global average ee;cape Probﬁbility can be approximated by

Boto s L EXPL=Tep ], (2.60)
Teft .

The global average scatterings per scattered photon is then

1 — -
<N >R T‘?& + 1, (2.61)
o .
» ‘ "‘/
where 1 has been added to the formula of equation (2.49) to account for the condition that the

—
photon has been scattered once at least in the resonance region. In the limits of small and large 7.y,
1+ %T-!! for repp € 1,

2.62
Teft for royy > 1, ( )

< B >yt {

where small and large  expansions for 83 have been used (see Appendix 1, section (a)). In section (b)

of this chapter 74;y and < n >,;, will be considered again.
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" It is interesting to recall that in a random walk process the ii\_lmber of scatterings nocossary

. to traverse some medium is .ﬁppmximnte!y proportional to the square of the optical depth of the

Fl

medium:

- . Rrandem walk f,a..aum- ' - . (2 03)
- ‘ -

e
In a random walk a photon is thought of as travelling a finite fixe ce (the mean h-eo path)
_ between scattering events; the photon cannot escape to infinity except wheh it is a mean free path -

from the surface. Also the random walking photon is free to move toward or nway from the ed;o

ol' the medlum A photon trapped in a spatial resonance region (a Sobolev type lituation) il s '

" contrasting case; the photon has a finite chance of escaping to infinity after each lcauerin; evant
The difference of the Sobolev case from the rnndom walk case leads to the linear dependencu on
~ optical depth when the optical depth is large of the average number of scattering events neodpd to
traverse & medium (see equation (2..62)). N

b) The Physical Validity of the Sobolev Method
To test the physical validity of the Sobolev method comparisons can b_e_r.h‘ade -t.o the results
of more exact radiative transfer calculations. In this section an examination will be made of the

calculations and conclusions of Hamann (1981), Natta and Beckwith (1988), and Beckwith and

o

Natta (1987). Hamann's paper directly confronted Sobolev calculation results with the results of
calculations done with the co-moving frame formaliam (Mihalas et al. 1975; Mihalas 1078, p. 490).

Natta q._nd Beckwith (hereafter referred to as NB) performed Monte-Carlo lcstteri.ni calcu]ntlom
- in éxpandir_lg atmospheres, and made comparisons to the Sobolev method. Hamann u;d NB's
. ‘calculations were done with mass flow in early type stars in mind. Such mass flows are rather

complicated in comparison to the homologous expansion of supernova atmocpherel

1 Recall equation (2.6)

- Alfley 2 Avfvin, - (204)

N

where

Av=19) Or tun (2.65)

N

The vy, quantity is the full-width of the Gayssian thermal boppler profile and i‘u given by,

,J—a‘- [T -
vy = V2kT/m = 12.85 mkmu 1 _ (2.66)

>
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where A is the atomic mass in amu. If smal scale turbulence (microturbulence) is present in the
ntmo.pheref then rnpdom motions by the turbulent elem.entl can cause a turbulent Doppler shift
profile that is usually presumed to be Gaussian. The turbulence velocity Vturd, that gives the full-
width of the profile, may be supersonic. Hamann reporta that v,y may be of order of 100s of
km ;" In early type -tar;. In this case turbulence would be the principal source of line broadening.

.In the Sobolev method a principle assumption is that the width of the resonance region, Al,
can be approximated as zero in comparison to the length scale I, over which quantities such as the

source function, and opacity vary significafitly. Thus the Sobolev method demands that
Alfle m Avfuey € 1. | . (2.87)

The question of how emall this rntit': has to be cannot be answered adequately by considering the
Sobolev method alone. Recourse must be made to more general methods .ol' radiative transfer. Hence
Hamann's use of the co-moving frame formalism. ' . ,_,_..

' The co-moving frame formalism'(herenfter CMF) is able to treat large and small velocity flows
unlike the Sobolev method. It can thus treat accurately systems with wide ranging velocity con--
ditions. CMF also has in principle formal and computational advantages: opacity, emissivity, and
redistribution functions recover their static ?orms; the calculations can be done with a great deal of ~ -
‘parallelism. The disadvantages of CMF are that it is computationally intensive, and that it would
become more so if extended to treat asymmetric systems. -

To understand the effects Hamann found in his study it is useful to see an example of the line
profile that emerges from an expanding atmosphere. Fig. 2.2 shows such profiles for a homologously
expanding utmosphere‘whcre there is only one line transition supplying opacity in the atmosphere.

In this case the line is artificial, and has a line center frequency of 5000 A. The profile is produced
by scatlering in a spherical atmoephere surrounding a spherical source of continuum radiation,
usually called the photosphere. Fig. 2.3 displays a schematic representation of such a\scauering '
atmosphere.. Radiation emitted with frequencies 'far from the li:;e center frequency cannot interact
with the atmosphere, because it‘ is never Doppler shifted into resonance with the local line frequencies
in the expanding atmosphere. Thus far from the line center a distant observer sees radiation with
the coatinuum distribution of the photosphere. _

- Radiation emitted by the photosphén and scattered through nearly 90° toward a distant ob-

server tends to be scattered from regions that have small velocity components along the line of

LY
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Fig. 2.2. Sample line profiles fot & s—pherically: syrﬁmetric. 'hon_lologounly'expandins atmasphere
calculated with the Sobolev method. A continuurh flux emerges from a photosphere of radius ry,
and is resonanily scattered in the duter atmosphere. The Sobolév optical depths are parameterized

~ .as inverse powers of the radius, and the value rg,(r,s) = 5. The profiles are typical of all expanding

atmospheres, and m.called P-Cygni profiles.

o”
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sight to the distant observer. Thus thia scattered emission as scen by the observer has only a small
Doppler shift from the line center frequency (assuming the net Doppler shift of the whole lylt:em
has been corrected for). The region of emission is rather near the plane perpendicular to the line of

sight thnt containa the center of the whole syatem. This region and its projection are usually called

the l:mb ;

Radiation emitted by the photosphere directly toward the observer near the line center frequency

‘is redshifted in the local frame of the expanding atmosphere through which it must _pm to reach the

. . observer. Such radiation therefore does not interact with the atmosphere, but streama frealy toward

the obsefver. In the terms of the Sobolev method one would say that the CD velocity surface for
. line center frequency emission is’behind the photosphere. Therefore f:hero is an excess emisslon over
the continuum near the line center frequency since there is both full continuum emission, and limb
scattered emission. This excess emission appears in Fig. 2.2. In fact the emission [eature maximum
can be redshifted from the line center. This effect is not obtamed with a pure Sobolev calculation

and so the profiles in Flg 2.2 have their maxima at the line center frequency.

Radiation emitted from the photosphere directly toward the cbserver with frequencies 'I.plg'lhur
than the line ceut.er l'requcncy can bexedshifted into resonance with the local line center frequencies
of the expnndmg atmosphere. Thus t%’e will be scattering out of the line of sight from l'requenciu
higher t.ha.n the line center frequency. Thls scattering is uncompensated for, and thun there is an

a.bsorpt.lon feature in the line profiles seen in Fig. 2.2. The combined blue shifted absorption, and

. near line centcr emission features are called P-Cygni proﬂleu '
Hamann did not examine homologoualy expanding mpheru, but qualitatively expanding

atmospheres always produce P-Cygni profiles. The argument given above indicates why this is
so. Hamann applied CMF to a set of models designed to encompass extreme cases of spherically
symmettic mass outflow from stars. He investigated the effect of varying Av/v., the effects of
varying opacity over orders of magnitude, and thé effect of varying the distribution of opacity and
velocity. The non-Sobolev cﬂ'ccf:a he obtained when Av/v,, was increased from .1 to .3 were: (1) a
redward shift of the emission feature maximum from the line ‘center wavelength, (2) that the blue
edge of the absorption feature was shifted blueward, and (3) that there was a general broadening and
_ softening of the line profile.-A éobolcv calculated profile gppeued as the Av/v.s = 0 profile in this
sequence; it was sharp edged and narrow compated to the CMF profiles. The effecta of increasing
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the opacity by orders of magnitude were qualitatively similar to the effects of increasing Av/ves by

* a factor of order 2. There is no need here to discuss the effects of the peculiar opacity and velocity
distributions Hamann considered.
The effects of increasing Av/v.y and opacity can be _pnc}):ratood fairly simply. The formal

solution for the flux of wavelength A that arises only from the source function is

g = [ ™ dnSEnY expl-n, C T @)

‘where monochromatic optical depth has been used as the dummy variable rather than spatial dis-

tance.! Earlier this function was simplified in the Sobolev limit. “

If 7 mos € 1, then the exponential factor in the integr_anddﬁ never-very different than 1,
and the integrand can be approximated by the source function, weighted by the line profile that is

_ absorbed in thé differential dr. If the profile is symmetric about the line center in the local frame

of the resonance, which is the usual case, then odd terms in an expansion for S about #.,, will not
contribute to the integral. Thus if the variation in S is n;) strt;ngg than linear in the‘ resonance
region the Sobolev method cc{nti;uu to be plausible, If the variation in S is stronger than linear
then the Sobolev method Ibegins-t.sa be inadequate, The flux contrit;ution to each wavelength no
longer ‘arises from a spatially localized region.

If n m.; > 1, then there is a strong tendency for the Iy to gqual S(F{r\ = 1)). This can bg'e

seen by expanding S to-first order in (1) — 1) about m =1:

S(n) = So + Si(n - 1), L ———{2:69)

where Sy = S(f(n = 1)). Setting e, = oo and solving the integral of equation (68) for the

emergent gpéciﬁc intensity with this limited expansion gives
Iimg = So, _ (2.70)

with the first order term giving no contribution. The spatial point where m = 1 is not likely in

* general to be coincident with the resonance point. If Al is wide then the two points could be very

different, and the Sobolev method which treats them as coincident would begin to fail.

T The monochromatic optical depth is defined by
| | . dn, = E(F)$()dl

(see equation (2.7)). The monochromatic optical depth is not the same as the Sobolev optical depth
‘which has been denoted by r throughout this thesis.

[

A
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"1 r; maes 2 2, thc:n the source function that contributes moet to the emergent intensity 7() lioa
nearer to the observer than the resonance point for A. Thus the flux at A is enhanced or dimlnlsl’yﬁd _
relative to the Sobolev case depending on whether the source function incroases or decreases in the
direction toward the observer. In the atmospheres that Hamann considored the source function
is o strong decreasing function .o!' :\ﬁe radius; this is the usual case. Since the atmospheres were
expanding the redder line scattered flux came from the imniisphere further from the obaerve;. and
the 'blﬁi:r flux from the nearer hemisphere, In the further hemisphere, moving toward the oboerver
decreases radius, and thus increases the source funchon 'I‘hun red flux is enhanced. In the nearer
hemlaphere. moving toward the observer increases the radiun, decressen the lou‘\:u functlon. and
thus decreases the blue flux. Therefore the redward shift of emission maximum in lamann's profiles

can be explained. , »

The bluewgrd shift of the edge ol"t.hé absorﬁi'on feature is also due to the broadening of the line
profile. There can be co_nuide;able scattering of radinﬁon of w;velcngth A< ho —at points of greater
radius than the radius of the A-resonance point.

The above discussion shows wchy increasing either Av/vcy or opacity can affect the profiles in
a similar way. However, the profiles are much more lémitivc to changing Av/v,,. Why this is so
can be seen by using the Sobolev npproximation.for the-exponential factor in equation (2.38). From

- equation {2.17)

( h _ exp[-n] =exp [—r j;(*dt')w(t’)] N . 7(2-71)

where the unsubscripted r is the Sobolev optical depth defined by equation (2.15), where

[}

. (o= QU= le)(ro/c) ‘3
1= ( A {2.72)

- (the v has been set to t:he local resonance frequency in the expression for t),'-a.nd where I,,,, the
distance from the resonance point to the observation point, is so large that £ — oo, Of course,
the Sobolev optical depth varies over the width of the resgnance region, but since the variation of
the line proﬁle is stronger, 7 can be approximated as a constant for an order of magnitude result.

As a.r?hﬁ above; the emergent intensity tends to equal the source function evaluated where ry = 1.
‘Thus setting .

-

127 [ Grayote) (273
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-y

wﬂl allow an order of magnitude determination of the dmpluement between Ir,, and I(1y = 1).

Betting : . .
) =9 (t-52). | (274)

where ¢ is ulumed to be the Gaussian function

¢(.) +J | e

changing the variable of integration in cquatlon (2.74) with

-

t=s+ %, | . (2.76)
and defining ‘ - .-
' v Q{1 — lres)
R ze= (c o) Av . - (2.97)
. gives ) ‘ .
=rf ds y(s), (2.78)

whero the fact has been used that qt-u ‘an even function of s to eliminate the < case distinetion. To
obtain an analytic result, 7 will be assumed to be large. The integral of the Gaussian must then be

aniall, and can be replaced by the fiest term of an uy}ptotic series to obtain

=1 (%) . . ‘ (279)

This replacement will cause x to be over-estimated by about 10% for 7 = 10 and is lncrensmgly

-t

accurate as 7 lncreues from 10 From equation (2.79) the iterative expression

o) | - ‘r =-\/1; (#) - In(z) : (2.80)

-

can be obtained. For r > 10, there is only a further over-estimate of at most 10% in using

zw 1/1:{(2—3;.). | ©(2.81)

¢

Using ,
Qs verficn and (e/ro)Av = Av, ‘ (2.82)
3

gimr' _ -

8.,y Av T .
Toa R Vo In (m) . (283)

”~
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for r > !.0. Here 6l,,, is the distance between the resonance point for a wavelength A and the point
where moet of the flux of wavelength A originates. The distance éi,,, incroases linearly with Av/vg,,
but as the square root of the logarithm of 7. It is now clear why Hamann's profiles were much more

sensitive to changes in Av/uc, than to changes in opacity.

If equation (2.83) is evaluated for the effective optical depth, a global diagnostic for the useful-

ness of the Sobolev method can be defined:

ae {w Bopralfin (), itnprzis g
s (Av/vey) il Togy 510, '
r“

. When R, is sufficiently small the Sobolev r;lethod si:ould be ;dcqunte, provided that I, is a chat-
acteristic distance for the source function and opacity variation as well as for the velocity variation,
The criterion for smallness, however, dependa strongly on the geometry,.velocity distribution, and
opacity distribution of the atmospht;re considered. Also, important regions g‘f the ntmoupheré may
have r's much _greater than 10 even though 7.y, is evaluated to be less than 10; diﬂ'ex.-gnt. definitions

of 7474 from that of section (a) may be more appropriate inQ{;h cases,"Given these considerations it

" .. is not surprising that evaluating R, for Hamann’s models, and comparing the relative quality of his

Sobolev models, leads to no general ériterion for the smallness of R,. However, Hamann's ﬁlodela
are not inconsistent with the notion that increasing Av/v.s and In(r) cause comparable decreases in

the accuracy of Sobolev method calculations. R, is probably most useful in analyzing a well defined

class of models.
Fad .t

Hamann only considered models where Av/ ve 2 .1. Except for the Iowuf: opacily cases the
'Sobélev profiles could only be considered qualitatively accurate. Ilowe\fcr, the limited nature of
his survey does not allow a general conclusion about a Av/v, criterion for the adequacy of the full
Sobolev method. Han?ann did find that the Sobolev source function \-va.u more accurate than the
" formal Sobolev solution, and used it as a first approximation in his CMF calculations. However, he
also found that the Sobolev source function for two blended lines was rather poor for the redwar]
line. Recall that the redward line in'an cxpanding atmosphere can interact with photons scattere:
by the blueward line. This conclusion must be discounted, since lamann used the older blending

rule of Castor and Lamers {1979). Olson’s prescription for line blending (1081) makes the Sobolev

" line blends as accurate as the single line Sobolev calculations.
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Fig. 2.4. Monte-Carlo global averages for number of scatterings per scattered photon from
the calculations of Natta and Beckwith (1986), and the global average function calculated from an
approximation of the Sobolev method. This figure reproduces Natta and Beckwith’s Fig. 15. Note
there is considerable clustering of the Monte-Carlo pointa about the Sobolev curve. The points tend
to fall below the Sobolev curve at large 77y due to diffusion of phaotons in a density gradient. The
Sobolev method does not include this diffusion effect.
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NB made Monte-Carlo calculations of line profiles from expanding spherical atmoapheres. They
concluded, as they imd expected to, that the Sobolev picture of rudiﬂtlvo transfor was qualiiatively
correct. They dmcovered non-Sobolev effects in their proﬂlea similar to thooe found by Hamann.
. However, their method nllowed them to keep track of the behavnor of lndlviduul photons. One
-qumht.y they computed was the average number of scatterings per scattered photon. This was
" compared to the global average number of scatterings per scattered photon calculated using the

Sobolev method, and 7,7y. Equation (2.62) gives the Sobolev prescription for the global average.
Fig. 2.4 reproduceu Fig. 16 of NB's paper 1. The pointa are the Monte—Curlo resulls, and the curve
is the Sobolev prescription. It can be seen that there s consldcrablo clustering of the Monte-Catlo
results about the Sobolev curve. It should be recalled that even in terms of the Scbolev madel the
prescription for the global average is approximate, and that since the points arise from a multi-
parameter class of t;lodeln, no c;ne parameter function could be expected to give them an exact fit,
It can be seen that for 744y 2 10.the Monte-Carlo points tend to fall bé.low the Sobolev cutve. NB
attribute this to the outward diffusion of photons due to decreasing density of scatierers with radius.
or course, the Sobolev method treats the resonance regions where the scattering occurs as uniform

in density.

A conservalive general conclusion that can be drawn from the resuits of Hlamann and NB is
that for Av/vcy £.1, and 7,7y £ 10 there is no reason to believe that the Sobolev. method is not
qualitatively accurate. Since the Sobolev mt;thod is computationally much lesa intensive than CMF,
or Monte Carlo methods, it is a-n.obvious method of first approach to problems in l.his.regime that
are not spherically symmetric, and are without complete redistribution of scattered photons.

~—

¢) The Application of the Sobolev Method to Supernova Calculations

-

The foremost exploiters of the Sobolev method for the calculation of line spectra for supernovae
have been David Branch and his collaborators (Branch 1980; Branch et al. 1981, 1982, 1983, 1985) ;
" In this section their procedure will be summarized, and then discussed in detail. Examples of the

results of their synthetic spectra calculation will also be discussed.

The primary interest in doing Sobolev calculations is to fit observed spectra from supernovae.
Thus a model of a supernova explosion and a fitting procedute are needed. Branch and collaborators
(1981, 1982, 1983) used a model and procedure summarized in the following statements.: (1) The
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exploded supernova matter ia in homologous expansion. (2) The Sobolev method (Sobolev 1947,
Castor 1070) in the generalized form of Rybicki and Hummer (1978), and Olson (1982) is employed to
. calculate the spectra, (3) There is a uphérically symmetric i)hotoephere surrounded by a spherically
symmetric a.t.moep;here. (4) T‘he photosphere is well diﬂned, and produces a black-body continuum.
The photospheric temperature is determined by fitting the observed supernova continuum to a
redd‘ened black-body curve. The reddening of the curve unts for the wavelength dependent
“effect of interstellar absorption. (5) ’i‘he opacity of the atmosphere is taken to be due only to line
tzansitions. The radiative transfer is treated as pure two-level atom resonance scattering. (6) The

Sobolev aptical depth for each transition as a function of radius is parameterized by the expression

(r) = ma(ren /7Y . (2.85)

where Tpa is the Sobolev opticall depth at the photosphere, and p is a parameter that is normally set
to 7. The Toh for the strongest line-arising from a given ion is tised as a fitting parameter. The Tpp's
_ ‘ft;f(f&\;;ther lfnu arising from the same ion are determined by assuming the occupation numbers
“of the lower levela of these lines are determined by the Boltzmann distribution (LTE distribution)

evaluated at the photospheric temperature, Note that

: ‘ i o ky o« ny, ~ (2.86)

-

where n; is the occupation number of the lower level ¢ of a transition. (7) Estimates of the element
abundances are obtained from the fitted 7,4's, and the photospheric temperature. (8) The velo_city
of the photosphere is determined from P-Cygni absorption minima of weak lines. (9) A selection
- of ion transitions for the model atmosphere is made by recognition or on the basis of reasonable
expectations about supernova element abundances. Fo'r instance, in the case of type Il supernovae
there is no doubt that the hydrogen Balmer ‘lines are present. The selected transitions can be verified
to some degree by the agreement of the synthetic spectra with observations.

By the time that supernovae have expanded to several |._imes.their initial size, the gravitational
and internal energy of the supernova matter has fallen to ncar zero relative to the kinetic energj
of the macroscopic motion. As a result) no strong inrces act on mass elements, and they are set

in uniform motion. This form of expansion is called homologous expansion. The position of mass

element ¢ as a function of time becomes

Fi(t) = Fit + Fi(initial). (2.87)

.
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The initial radii of type I nupernovao s pmumod white dwarf progenitorl are of order 10%m, The
_ initial mdu of type Il lupernovae s presumed red giant progenitors are of order 10%%m. The velocity
©of uupernova mass elements are known to be of order 10° cma—1, It is clear that long before maximum

light ri(initial) < r¢(2). Thus after early times

. - ri(t) m ut, : " (2.88)

where the vecior notation has been suppressed since the elements are approximately moving only

radially with ruped to the ignition point. The distance between mass clement i and j Is

= \ri+ ] = 2nry cosd, (2.80)

where 0 is the angle between the directions to the elemerits. Since tlicro are no forces, #isa contant.

.'The time t can be extracted {rom the square root of equation (2.89) to give

rig = vt . (‘2.90)
where vy; is t.ime-indepcl‘ndent. Thus .
Vig~Tigy, (2.01)

" where t-1 is the constant of pmportion;lity. This tondition defines the state of homologc;uu expan-
sion. The expanding universe models are, of course, another case of homologpuu expansion.

The homologous expansion of supernovae is the macroscopic velocity field needed for the Sobolev
method. It should be noted that the atoms have random thermal velocity, and there :imy be random
microturbulent motions superimposed on the homologous expansion, The macroscopic velocities of
supernovae are of order 107 cmll"'. This size scale can be deduced from the P-Cygni profiles of

- gupernovae with only a Sobolev picture of the atmosphere, and without a formal calculation. Sinee
the Sobolev picture is qualitatively well verified (see section (b) of this chapter) there is no reason
to doubt this eatlma.te The highest temperatures of supernova 5:!.; eut.i;natcd to be of order 10*K.
These estimates are based on fitting the continuum to a black-body spectrum. Since the continuuimn
source may not radiate like a black-body these estimates may be in error (Wagoner, 1981). However,
the estimgtu are not likely to be in error by orders of magnitude, and so equation (2.66) indicates
that

ua £ 10%eme”!. (2.92)
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If emisaion and absorption proflle widths of transitions are determined by the therma! velocity, then

Avfvy = v,;./v,h R~ _10". This ;atio is much smaller than the ratios for which Hamann (1081), and’

Natta and Beckwith (1988) found the Sobolev method to be qualitatively correct (see section (b)

Sobolev method. However, microturbulence velocity viurs may determine the transition pro: ea,.nnd

of this chapter). Thus supernova atmospheres may_‘be an exellent system for the applicati‘ of the
r

U;url may be greater than vis. The quality of the fits to supernova lines obtained by Branch et al.
(1981, 1982, 1983, 1085) indicate that Av/v. .< .1, whatever the origin of the width of transition
profiles. Branch et al. used the multi-line formulniion of the Sobolev method of Rybicki and Hummer
(1978). and Olson (1082) after 1982 this formulation is presented in sect:on {a) of this chapter
Before 1982 they used the older formulations of Sobolev (1960) and Ca.sbor (1970), and the less
accurate line blending prescription of Castor and Lamers (1979). _

Homologous expansion presents a very simple system for the application of the Sobolev method.
The CD velocity surface for frequency » is determined b_y the equation
A (F) = v, - C (2.99)

where i defines the direction, and vy, is the velocity required to Doppler shift the transition frequency
“to & from the rest atom frequency g (see section (a) of this chapter). In the homologous expansion
case this equation becomes ' '

A-FQ =gy, (2.94)

where Q = t~! for supernovae; thus Q is a constant for the whole atmosphere at a given time. Thus

——

A-F = Q vy = constant (2.95)

which is the equation of a plane. Therefore the CD surfaces for homologous expansion are just

planes. The CP surfaces are determined by

(F- ,’(E(r)—-?(r ) = vin, (298)

IF-
where 7 traces out the surface, i locales the common point, and vy, is the velocity difference needed

to shift the transition on the surface into resonance with the transition at the common point. In the

homologous expansion case this becomes

-

IF= )= Q s, (2977

[
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which is the equation of a sphere. Therefore the CP surfaces for homologoua expansion are spheres,
A further simplication of homologous expansion occurs for the expressions for the escape prob.
abilities. Recall that the Sobolev optical depth is defined by ' '
ke '
o —— 1.98
] ‘ - (3.98)
which in genera! depends on direction through the |Q| factor. The @ is independent of direction for
homologous expansion. Thus the escape probability given by
di1- exp|—r[ '
N r r . (200)

(see section (a) of this chapter) becomes simply

1 — exp[- ' :
B = —°’:"-[—’1. | (2.100)
. L\ . -

The assumption of Branch et al. that the photosphere and atmosphere are spherically lymmetric
may be valid in many cases. The question of supernova asymmetry is discussed in Chapter 1
section (d) The present thesis, of course, does not assume spherical symmatry.

The assumption that a well defined, black-body producing photosphere exists is somewhat

problematic. Neither for supernova type I or 11 is the continuum spectrum well fit by a bfack-body

‘curve at a single temperature. The UV (ultraviolet) continuum of type I supernova is well known

to be deficient compared to the optical continuum. The IR (infrared) continuum also appears to
be ‘deﬁcicnt. The UV and IR continuum of type I supernova SN 1981b near maximum light can
be fit by a black-body curve with temperature 9400K, whereas the optical continuum is At by a

- black-body curve with temperature 15800 K (Panagia 1985). These results indicate that the opacity

is much higher in the UV and IR tha.n in the optical. On t.he other hand, the well observed type 11
supéﬂrgva 1980k showed a UV excess at all times (Benvenuti et al. 1082), and IR excess (Dwek rt

- al. 1983). The UV excess may be due to the eflects of circumstellar matter (Fransson 1884), and

‘IR excess to extended atmosphere &%ccts. These results for particular supernovae may not hold fur

all mpcmovaé, but they do show that a single black-body continuum producing photosphere in not
tenable in general. . ~
~ There is another difficulty with the notion of a black-body continuum photosphere even with

the restriction to a limited part of the spectrum. Wagoner (1981) argues that type Il supernova
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stmospheres may be scattering dominated, and this changes the spectrum into a diluted'black-body
lpectmm. For such a spectrum, the color temperature obtained by trying to fit a black-body curve
" would be higher than the effective temperature. Wagoner's considerations may also apply to type |

superiovae as well,

At later times the supernovs matter becomes rarefied, and the photosphere must recede into

the expanding matter. At some point the "rhoie iupemovn will become optically thin, and a black-

| body radiation field may not exist at any depu"l‘.' Harkness (1988) suggests the possibility that the
radiation field ;n_ type 1 supernovae may mever be black-body at any depth at any time.

. The fact that Branch et al, (1981, 1983) can fit the P-Cygni line profiles quite well unti! late times
indicates that the assumption of'_a photosphere is probably quite good. For instance', N lﬁBlb'a

~ spectrum was ade(iuate]jr fitted by a synthetic spectrum 116 .days after maximum light (Branch et al.
1983). The fui_thnt the c;n}.inuum produced by the ph:')tonphere- may not be black-body does not
really effect the qullity of i.l!e fits. The problem with not.having a black-body continuum lies in the
interpretation of the fitted Tyh parameters in terms of abundances. With a black-body continuum it
is reasonable, at least at the photosphere, that the occupation numbers of the energy states of the
ions are determined by thermodynamie equilibrium. Without a black-body continuum, extracting

- -t

the abundances becomes more difficult.

The assumption of Branch and his collaborator§ that the scattering in the atmosphere is pure
two-level atom resonance scatlering is an admitted approximation. In a two-level atom resonance
scattering, a photon is absorbed by an ion causing a transition to an upper level. That ion subse
quently makes a transition {(spontancous or induced) to the original level emitting a photon with
nearly the same f_requency as the original photon. TI;erc are no collisional interactions, and no
radiative transitions involving other levels. Electron scattering, free-free transitions, and bound-free
transitions are also ignored. The proper treatment of radiative transfer in a non-LTE system in-
voiveq solving the equations of sfatistical equilibrium (or rate equations) in order to obtain correct
expressions for the source functions. Feldt (1980) undeftook the task of comparing rate equation
source functiona for supernovae atmospheres to those obtained assuming two-level atom resonance
s-cnttering. In moet of the cases he examined, the two-level atom resonance scattering source func-
tiona agl;eed to within a factor of 2 with the rate equation source functions. In view of the fact that

there is considerable uncertainty in the temperature, density, and abundance distributions for super-
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‘nova atmospheres an uncertainty of a factor of 2 in the source functions is acceptable for extracting

approximaie inforﬁntion about the atmosphere,

Along with the source function, the other import;nt quantity required by the Sobolev method |
is the Sobolev optical depth given by

e kc s N ‘ N

T — - 2'1
| : T @100
where k is the line‘ integrated opacity, u; is the line center frequency for transition i, and Q in the

derivative of velocity with respect to distance (see section (a) of this chapter).

The integrated line opacity is given by

xe? gin ' :
o k= -E'ftum (1 - ;u—’;) ' | {2.102)

where [ indicates the lower state of the transition, u thel upper state, f, is the oacillator ltrengtl.n

of the transition, ny is the density of ions in .ntaf.e { (occupation number), and b; is the degeneracy
or ltatil:icﬂ weight of state [ (see Mihalas, 1978, p. 80-84). Accurate values of k are oblained by

' lolving the rate equations. f!ranch and collaborators avoided solving the rate equations by making

~ some highly nmphfymg assumptiona,

First, the stimulated emission effect is neglected. The qua.nul.y (ginu/ g..n;) is the correctlon for

stimulated emission, and in thermodynmyc equilibrium equals exp[—hiy, /kT]. The exponenl. has

_ the value :
hu, 14390
T T T, _ (2.103)

where T is photospheric temperature in units of 10K, and A, is the transition wavclength in
microns. The temperatures estimated for supernova photospheres give T 53 near maximum light,
and cooler later (for type II supernova sce Kirshner and Kwan 1974; for type I see Branch et al. 1083).
For optical lines ), < .7. Thus the exponent will be larger th\a.n s .6 for these conditions, and the
.' correction term smallér than s e~ = 0.55. Since the temperature for- both typa\:)f supernovae falls
. below =z 10000 K about 20 days after maxixpum light, the corrcctién term drops below s =7 = ,135
for Iater times. If the th?rmodynamic equilibrium result is even approximately valid in supernovn
atmoepheres, stimulated emission should nof. be an overwhelming eﬂ'c;t after maximum light, and
not an important effect at allvafter a.bout 20 days. A
Branch and collaborators assumed that all the occupatlon numben were proportional to the
density:

ni(r) o p(r}. {2.104)
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Se\::r_nl factors could cause deviation from this simplee relation: tempéruture gradients in the atmo-
sphere, non-LTE efl«cts even if the electron temperaiure is & constant, and element stratification,
' The further a.uun;ption wai made. that

Cp(r) T, | (2.105)

“This density ciependen.ce for the outer atmosphere has .l.ome support in explosion calculations. Hy-

drodyﬁamic calculations by Colg:a;te and McKee (1069) showed that .

v(r) o F(r)=1/4, : (2.106)
whe{e S
N o :
) P(r) x f dv’ rp(r’)
. . . of " .
is the t‘nm;frut.io‘n above radius r. If it is assumed that
‘ : o )T, | Lo _ {2.107)
then | h
- ' F(r)ocr™?3, (2.108)
and then
' v(r) oc r(P=3/4, (2.109)

Equation (2.88) showa that at a given time

v(r)xr, ' (2.110)
and so consistency requires that ’

~

p=1. (2.111)

This result is often invoked to obtain an analytic expression for the density distribution. Some
numerical calculations of supernova explod;ans do offer partia! confirmation of this sort of density
dilﬁibtlh‘l:n. Nomoto et al. 's WT deflagration model (1984) for a type I supernova from a earbon-
. oxygen white dwarl progenitor, has a density profile that can be approximated by an inverse power

. 7 law (see Branch et al. 1985) Glen (1985, p. T7) showed thit degeneralt.e core models surrounded
by low density non-degenerate envelopes when exploded produceé outer density distributions that

were inverse power laws of between 6 and 10.
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With the inverse power 7 law, the assumption that occupation numbers are propottional to

‘density, and the neglect of stimulated emission, the parameterisation

-

r(r) = Trh("r{/ . ' -{3112)
is obtained for the Sobolev optical depths. The Ty of the ltronkut line of an ion was taken ay a
ﬁtting'pararneter..'l‘he assumption of LTE populationa at the photoapheric temperature gives the
occupation numbers, and hence optical depths for the other lines of the ion. The fitted rp's, agnin
assuming LTE, allow estimates of the relative. element densities nnd abundances to be made uning
equations (2.101), (2.102) and (2.105). If @ =1"! can be lpeuﬂed then absolute estimates can ho
made. Thq\tlma t im, of course, usually not known, but observations and hydrodynamic calculationns
allow it to be estimated if sufficient photometry is obtained for a supernova event. The pliotospheric.
radius can be estimated from rp, = v,p.t All these estimates are, of course, Mther uncertain. ‘

The photospheric velocity, u,;., can be rnl.her accurately determined provided the density geadi-
ent is rather steep; i.e., p 2 7 (Branch 1980). The CD veloclty plane tangent to the photosphere, and
perpendicular to the line of sight has an observer frame resonance wavelength that is Doppler shifted
by an arhount corresponding to the velocity of the photosphere toward the observer. For weak lines
the absorpti;il minima form at this tangent velocity surface, and thus an immediate determination
of the photoepheric velocity can be made. EB this context weak lines aro those with 510, A
demonstration of this feature of wen}: lines is given in Chapter 4 section (b).

The line transitions to include in a synthetic spectrum calculation can be determined partially
by recognition, and partially by theoretical expectation. In type II supernova spectra the Balmer
series can easily be recognized by their relative strength, and spacing. The assumption of solar
composition can be used to identify other lines in type II supernova.

Branch (1980) and Branch et al. (1981) produced synthetic spectra for type Il supernova
SN 1979c. Qualitative fits obtained with H I, -He I, Nal, Call, 'nnd Fe 11 lines give'reuonahlc
confidence in the identification. The discrepancy between the synthetic and.observed spectra was—
attributed to thermal emission. The Ha was notably discrepant ia that it lacked a P-Cygni absorp-
tion feature. Not all type 1I supernovae Ha lines lack the P-Cygni absorption, but it seems to be
cofnmon that there is more flux gained in the emission feature than is lost in the absorption festure;
for pure P-Cygni rescnance lines the reverse obtains (see Chapter 4 section (b)).

Type 1 supernovae show no evidence of Balmer lines, and are thus understood to be very
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hydrogen deficient. At maximum light the lines are attributed to intermediate mass species such as
8i I, Mg 11, Ca 11, and OI (Branch 1980; Branch et al. 1982; 1983). Before the work of Branch et
al. the identity of thess lines was quite uncertain. Deflagration calculations for carbon-oxygen white

dwarfs by Nomoto et al. (1984) show that such intermediate elements are produced.

A variation on the procedure outlined above was :;nda by Branch et aJ.TlQBS) by using the

. Abﬁpdauca and density profile of Nomoto et al. 's W7 model. By using model calculated quantities

lol'rie', of the freedom that parameters hayein the basic procedure was restricted. In this Sobolev

‘calculation synthetic spectra were produced that closely maiched the spectra of the prt;totypicnl

fypﬁ I SN 19815. lln order to obtain the best fits, the upper layers (t'natter moving with v >

8000 km 1) of the W7 model had to be complet;e]y mixed artificially. The physical origin of the

: mlxing was taken to be cﬁnvéction. The theoretical expectation that large amounts of ®®Ni should

be prociuéed in the ignltio'n of a type I supernova, suggests that ®®Ni decay products, 3°Co, and **Fe,

' may contribute lines, In the maximum ligi:t spectrum of SN 1981b a UV line has been attributed to

Coll by Branch et al. In model W7, the 5%Co matter is mostly below the photosphere; Branch et

al, determined the maximum light photospheric velocity to be 10000km s=! by line fitting. The

utiﬂciul_layer mixing was necessary to give a good fit to the Co Il line. Fe II lines appear in the

post-maximurm light spectra of 'SN 1981b. These lines may owe largely tp iron that existed before

_ 'the deﬂngl;ntion rather than to the iron expected from the 56Ni decay. However, Branch et al. found
that the mixing which dredged up some of the decay product iron improved the Fe II line fits, .

On the whole, the quality of fits of Sobolev calculated synthetic spectra“to observed s;;ectra
obtained by Branch and collaborators in quite good. This gives reasonable confidence in the identifi-
cation of lines. Obviously weak lines that are fit assuming LTE occupation numbers are less certain,
- and alternate identifications are po:dsible. Interpreting the fitted 7,5 's in terms of abundgnces is also

somewhat uncertain, though useful.

+
Improvements on the basic fitting procedure for creating synthetic spectra have been made. As

diacussed above, Branch et al. (1985) improved the method by using a model density and abundance
distribution rather than relying purely on simple atmosphere assumptions. Hempe (1985) used the
. - comoving frame formalism (CMF). Harkness (1985; 1986) used CMF with LTE populations, and
. included continuous absorption opacities. Harkness et al. (1987) present CMF models with a first

order correction for non-LTE effects. Improved calculational methods and models offer improved
, {

2
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l_mdemtlnding, but at the cost of*greater computational effort.

" For this thesia the procedure of Branch (1980) and Branch et al, (1981; 1982; 1963) has been
: adopt.ed with the modlﬁcnhonn that the assumption of spherical symmetry has been nply'odﬂ
axial symmetry, md the Sobolev methosl has been generalized to allow for the polarising effect of
resonance .mttermg (see section (d) below). The improvements on the procedure noted above would
. be even m;i'd-pbmputntionally demanding with these madifications. ‘For instance, generalining l'rom. .
_spherical symmaetry to axial symmetry in mode! calculations has l.he"‘raﬂ'ect of squaring the number
of oi:erntionu in a calculation. The thesis author is also not aware of any aspherical version of the
CMF formalism in the literature. Should any such verison appear it would probably be confined to
some simple asymmetries. The Sobolev methed, on the other hand, should be easily generalizable
to complicated asymmetric atmospheres. A Monte-Carlo method such as that used by Natta and
Beckwith {1986), and Beckwith and Natta (1987) is probably the superior alternative to the Sobolev

‘method for asymmetric atmospheres. Monte-Carlo calculations are, of course, also computationally

intensive.

d) The Scholev-F. Method for Polarising Resonance Scntt.ering

In this section the Sobolw method is genenllsed to mclude the polarising effect of resonance
acattering. This generalued Sobolev method, for reasons given below, has been called the Sobolevv
H method. The phya:cal vahdlty of the approximation used to introduce a polarizing effect will be

considered in section (e).

In order to describ ol ization, Chandruekhar s version of the Stokes parameters (1960, p. 24)
has been adopted. Th@@

eters are (1) I, the specific intensity of the radiation field component
~ along an axis labelled i, (2) I, the specific intensity of the radiation field component along an axin
labelled r which is 90° clockwise from axis I, (3) U, the differenc.e between the specific intensitien
of radiation field components along a system of axes rotated 45° clockwise from the I-r system, and
(4) V, which describes the circular polarization. The specific intensity I considered in section (a)

of this chapter is the total specific intensity and is given by
P

-,

I=h+1l. - ' (2.113)
Angle-dependent linear polarization is _dcﬁned as

P(8) = (I — Iayepa)/1, @
~ .
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| “for an ﬁbitruy choice of orthogonal axes along which Iy, and I +n/3 sremeasured. = IgNIyiusa -

is the total specific intensity and is independent of angle. Thé value of P(¢) varies with ¢ wnd so
the linear pdluization is defined as an extrgmum value of ¢_). From Chandrasekhar (1960, p. 34),

P(¢) = ((Ir = I} cos 24 + Usin2¢)/I, ' (2.115)

givea the ¢ dependence of P($) in terms the Stokes parameters measured with: sorne stan.dard axes
‘which have been label by I, and r as before. The angle ¢ is measured clockwise from axis /. From
equating the derivative of equatioa (2.115) to zero, the angle of the extremum, called the position

angle of polarization, is found &0 be given by

-
cod

. tan2¢ = U/(l; - 1) = U/Q, _(2.116)

where @ & It - I.. The extremum polarization, hereafter called.simply the polarization, is

-

P=x/B+ UL - (2,117)

_ If the projected image of a radiating system has symmetry about the [ axis, it follows for the total

-

-,

emérgent flux that the net U field is zero, and that

1

-

P=q/I, (2.118)

where P can be positive or negative.

“The net polarization of the total flux of a radiating system can be found by integrating the

Stokea parameters over a surface. It is often easiest to calculate the Stokes vector components for

a point on the surface in a convenient local coordinate eystem, but then the vectors need to be
transformed to general coordinates in order to integrat—e.
For radiation fields described by the Stokes parameters, the general expression for the source

function for bound-bound transitions, as adapted from equation (2.25), is

- {1-¢) +oa N
5(F.a,v) = TR Y ATES G(F)))f j dv R(u L) (R U7y + G(F),

(2.119)

" where the source function, the specific intensity, and the thermal source are now vectors whose

_—-'--__
components are the Stokes parameters, and the redistribution function is now, in general, a matrix.

O\
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: :_. . The Stokes vectors, have the form

N o S :l . G
sl o] =]
Sy V7. \o

where-G:' = Gt = G, since the thermal md;ce is assumed to be isotropic g.nd' nonpolarising, and
y . .
~where the total thermal source G = Gy + G, = 2G;. For complete redistribution (CRD) the
redistribution function is ' ' '

. .

RGBSR = g8, )+ (/)R TN ~ /- TEN),  (ad20)

where gy is the isotropic scattering phase-matrix;

g1(h, ') = i . (a121)

B | =
[— - N ]
'OOOO_‘
oCcoco

The isotropic scatteﬁng phase-matrix gr is assumed in the ordinary Sobolev method. Hamilton
(1947) has given a prucribtion for a non-isotropic, polarising acntferins pliue-niatrix i‘or resonatice
scattering. Réplulng the isotropic phase-matrix by the Hamilton phase-matrix in tl;a rodistribu-
tion function allows th; derivation of a polarizing version o'l: the Sobolev method. The polatising
Sobolev method has been called the Sobolev-H method, where the “H" is for Hamilton. The new
redistribution function has been called the hybrid redistribution (HRD) function. In section (e) of
this cha-pter the physica.l. applicability of the Hamilton phase-matrix, and validity of the Sobolev-H
method will be discuased.

The Hamilton phase-matrix, in Chandrasekhar's version (1960, p. 51), is

0

0s?® 0 0 1100
l o oary 3 0 1 0 0 l 1100 ’
0 0 0 (E3/E;1Ycos© 0 00 O

where © is the angle -belwccn' the incident beam and the scattered beam. The incidgnt and scattered
beams define the scattering planc; In order to use equation (2.122), the incident and scattered
radiation fields must be described by { and r axes that are parallel an‘d perpendicular to the scattering
plane, mpectivc];r. The first matrix in equation (2.122) is the Rayleigh phase-matrix which alsc
applies to Thomson scattering from electrons. The second matrix is the isotropic phase-matrix that

is.given in equation (2.121). The E;, E3,and E; are constant coefficients that depend on J, the total



mgulu momentum of the lower level of the transition, and J + AJ, the total angular momentum
of the upper lovel of the tnnnltion Ilunllton only considered allowed transtions and s0 AJ = 1
or 0, Table 2.1 gives the prescriptions for the toefficients. It can be deduced from the table that

. . ) .
Ey+Ey= this is a requirement for conservative scattering. For J = 0 and AJ = 1 the coeflicients

kN E =1, Ey=0, and Es=1,

| and the Hamilton phaso-matrix reduces to the Rayleigh phase-matrix. For J = 1 and AJ = -1 the

coefficients are

£ =0, E;=1. and  FE3=0,

| lnd the ilotropic phase-matrix is recovered. For reference Tane 2.2 dmplayu the Ey coefficients for
small total mgu!u momentum cases.

For use in scattering calculations, the Rayleigh phue-niatrix must be tfnnsl'ormed so that
the incident and acattered beams can be located with respect to a general orthogonal coordinate
: lyltem with the'scattering center at the origin. The isotropic phase-matrix is unchnnged by the
ltmnlformauon The scattered beam in the general Mdinate system is located by u = cos 9, where
¢ is the meridian mgla measured from the z-axisgfnd by ¢, the azimuthal angle measured from the

x-axis. The incident beam is located by pri i versions: ', and ¢'. The beam axes {, and r are
u.ngent. to the mendw,n, and to the azimu " respectively. Chandrasekhar’s version (1960, p. 42) of
the generalized Raylelgh phue-matnx ¥ .

-

P(Jw K .é’) =4 P‘“’(n B+ /1 —#’\/1 - "“P“’(.u é;u', ")

Y/
' + Pm(# éu'd )] ' (2.123q)
where
2(l-ﬂ’)(l—:ﬂ")+u’u” W 0o 0
Iy ' 1 0 0
0 o 0 o | (2.123%)
-0 0 0 pu
., [ el =9) 0 Jusin(¢'=4) 0 |
K1) vt Aty 9 0 0 0 0
(§! (u.élﬂ 9 ).— il sin(é' — ¢) 0 cou(é’ _ 0 y (2.123(:)
0 0 0 cos(¢’ — ¢)
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1027 + 1)
J1 = Ja

3(6J2 4 5J-1)

10J(J +1)

3(377+2) + 1)

Ey

Ey
Eyq

(27 +8)(J+2)
0T+ )27+ 1)
10J(J +1)
2J-3)(J~1
10727 + 1)
SOURCE: Chandrasekhar {1960, p. 52).

(2J-1)(2J +3)

plﬁ?e—matrix coefficients for small total angﬁlnr momentum cases,

_Ey

J—

¢

At
~1
Ji—= Ja.

TABLE 2.1.—Ptescriptions for the E;, E,, and E)y coefficients.

TABLE 2.2—The E,
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and
o . 1000
0100 -
, Q=100 20 ~ (2.123)
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With the genera! coordinate version of the Hamilton phase-matrix a derivation of the Sobolev-
'H formalism can proceed. Substituting the HRD redistribution function into equation (2.119), and

integrating over rfrequeni:y gives
S =(1-9 f maeNEH)  +  GE) (2124)

“where 1 is the integrated specific intensity Stokes vector; | T cotresponds to the result of equation
(2?’) for the integrated apecific intensity. The derivation and conditions of section (a) for the
formal Sobolev expreu:on for thesintegrated specific intensity (see equation (2.23)) can be repeated

without change for the integrated specific intensity Stokes vector. Thus

v e
. o _FA) = S(1= Ba} + LuaePa, . (2.125)

" where Sy is the directional escape probability of equation (2.24), and I,.(, 7} is the Stokes vector

_incident on the resonance region that owes to all sources external to the resonance region backward

along the ray defined by 1. An integral equation for the source function is thus obtained:
XNy

S(F, &) = (1 — OA[(1 = Ba)S{F, 7)) + (1 = ©)A[BuLes] + G(F), (2.126)
where the following integral operator has been defined
AIf(7)] = f %gﬂ(ﬁ, A(R). (2.127)

In principle equation (2.126) can be solved for S given L, and G. However, only a special sys-

tem with the following characteristics will be examined here. {1) The n';acroscopic flow of the system

"~ is considered to be homologous motion: either expansion or contraction. Recall from section (c) of

" this chapter that homologous expansion is a characteristic of supernova explosions. For homologous
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motion, the directional escape probability is independent of direction, and s0 8 = f; = (1—e=")/r,
(2) The system will be considered to be axially symmetric about an axis parallel to the s-axis of
the scatiering coordinate system, and the neg'athre x-axis of the scattering coprdlnate aystem will
chosen to intersect Ithe symmetry axis. (3).The incident V- Stokes field will be set to wero. Since the

"R.i?lélghphue:mnt;mdoes not couple the V' Stokes field to the other flelds thete ls no scattered
V field cither (see equat.ionf (2.128)). Thus the V field will always be sero for this system, In

consequence, only three-com]')oncnt Stokes vectora and a 8 x 3 phase-matrix need be considered. (4)

" Asa consequence of the axial Qymmetry of the system, the I; and 7T, fields must,h; even functions

of the azimuthal coordinate ¢, and the U/ field must be an odd function of ¢. Similarly, Sy and S,

must be even functions of ¢, and Sy an odd function of ¢.
L]
What can be called the direct contribution to the source function vector is given by

| D(F,4) = AlLuai]. (2.128)
»

" The symmetries of component fields of the I.,:. vector result in the {ollowing functional forma for

the direct contribution field components:

Dy =Dy + Dyp + Dsis/T— R conp+ Dapdcos2¢, . (2.120a)
% = Dg — Dy cos29; ‘ (2.1208)

» ) o |
Dy= Dm'/l—_p’.sinqi + 2D, isin 2¢, . - (2.129¢)

where the D; coefficients are obtained from the integrals

-

dqy’ :
D, =f'F (g(l“‘ﬂa)El“F%Eg)Il + 1e,1,], . {2.130a)
[y P

Dy = fE;f%—f:- [(4;1'\/1 ~pReosd’ )i+ (2¢/1 — g'%sin c#')_U] ,  (2.130¢)
- Dg=1E f % [(52cos2¢')y - (cos2¢'), + (u'sin24)V], (2.130d)
~and - "

e

Dy gf%- (GuPE 4+ LB + (RE+iE)L). (2.130¢)

C
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The Dy can be constructed fromi eight simple integrals:

dan’
dl _Il' '

dy = f ‘m'

. ‘da_frpﬂ!“

-
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(2.131a)

L (2.131)

(2.131¢)
(2.131d)
(2.131¢)
(2.131))

(2.131g)

(2.131%)

(2.132a)
(2.1325)
(2.132¢)
(2.132d)

d; = f—-—(p Vi- ”cocé’)f;,
ds= fi-; V1= p3eing')U, |
o _ .,
AL do—}(“_(n cos 24},
- v [dRY
dy = f <5 (cos 26)]r,
and -
v dg = f — (1’ 5in 2¢")U.
In general thie integrals of equations (2.131) must be solved numerically. The éxpressiona for the D;
3 .
become -
Dy = %(1+2El)d1 + é(l - E)d; - %E;d;,
Dy = iE[(—Qd] +d; +3d3),
Dy = 1E\(4d, -+ 2dy),
’
‘_Ba = 3B\ (ds - d7 + da),
and- | ' |

Dg = %(l - E1)d1 + é(l + éE])d: + %Elda.

where the fact that Ej = 1 = E; has been used. Note that
Dy, - Dy =!\‘%E;(2d1 —dy— 3d3),

and

Di4+D:=-Dg =0

'(2_.132.:)

(2.133)

(2.134)

" The diffuse contribution to the source function vector is given by an expression exactly analogc;us

to equation {2.128):
F = A[S).

(2.135)
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Since the components of the 8 vector have the same lymmeu"ia as those of the I,y vectar, the

expressions for S, S, and Sy must have the same functional forms as equations (2.120). Thus

Sy = i+ Sap + Saun/T— jif con b + Sp coa29,’ (2.136a)
S = Sy = Sycos24, 2£ - (a1

and .
. Sy = Ss\/T— ulsin ¢ + 24 sin2g. ' (2.136¢)

By subatituting the expressions for S;, S, and Sy into equaticn (2.135) the following cxpmﬂon for
the F; are obtained:

Fi=S31+E] + Sill+iE) + Sid1-Ey), _ (3.187a)
R=5-1E] + Si[-%E] + S(iE), - (2.1375)
Fy= S| LE), . , _ fa.137¢)
Fo=SEE), ' ‘ (2.137c)
and ‘
' Fe=51i01-4E] + Sil-%KE) + Si[1+iE) (2.137¢)

The direct contributions D, and the diffuse contributions F; can now be substituted into equation
(2.126), '

8(FA) = (1= (1 = BAISK, A + (1 = PAMLens] + G(F), (2.138)
where the fact tﬁllut B4 = B has been used. From equation {2.138),
— : 3'1 =(t- 8D, ' + (1-0(l-fF + G (2.139a)
i Sy=(1-9fD; + (1-o(1-H)Fs, (21300,
S=(-98Ds+(1-JA-AHES, a1t
So= (1= 8D +(1 = (1 - BYFH)ELSs, (21304
and - - -
Ss=(1-¢fDs + (1-0(1-H)Fs + G, (2.139¢)

Now - - {
’ 51 -Ss=(1-08(D; - Dg) + \

(1~ (1= ABES + LE:15: - 1E.5), (2.140)

.
»

/
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where it should be recalled that G; — G, = 0. Recalling equations (2.137b), (2.134), and (2.139b),

it follows that . : ——
Si#+85~-5=0

Substituting for 57 in equation (2.14b) from equation (2.141) gives
e o_(1-QD\-Dy ___  (1-08Ds~  _ o
S A gU-ARE 1= -0 -AHE
The expression for Sy + Sy is - \ “
a

Si+Sy=(1=-)f(D1+Ds) + G |
(1= )1~ BY(L+ §E0)S: + §(1+ 5 ENS (1 - E0)Se]
=(1-98(Di+Ds) + G, .
(1= (1= A(S: + ) + 01 - FEVS),

. where G = G + G,. Re-arranging and subatituting for Sg gives
11 - ..
Sy = 1 =53 + M
2 11—+
(1 - )B(Dy + Dy) G
+ -
l—vy . 11—+

where

- "y=(1-9(1-4).

Substituting for S3, and collecting powers of v gives

1-¢)f ;
sl T ey 0+ 47102+ 300 - fiBODs - B + Dy)]
4+ 4%
_ 1-7
" - The other S; are now simply found: ‘ L

_ (1-980
s’_l—v(%)E—z'. S

- (1-9)BDs
® =15 ~
. S, = (1 = )8D, :

- 1- 7( m)El '
] and, using equation (2.141),

" (2.141)

(2.142)

(2.143)

(2.144)

(2.145)

o

(2.1464a)

(2.1460)
(2.146¢)

(2.1484)

-\ﬁﬁy
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S 7)((11-:-),?,15)3 V] br[=Dy + 31 - §E)D: ~ HE(D + D.)]]
| 7 Tif_‘r "  (2.1400)

 Note from equations (2.1:—"2) that the D; are dependent on the phzno-matrix coeflicients Ey,

It is 1llummatmg to consider two special cages for the source function coemclentl Si. First, in
the case of extremlly weak scattering, whare the elcnpe probability # — 1 and .y — 0. expressionn

for‘the.nourcc function coefficients are

Si=(F 9Dy +46, (2.147a)

. s,-=(i-¢)n,, S . (2.1470)

' S3=(1~Ds, . | ‘ (2.147¢)
- s=(1-9D, . ' '_(2.147::!)

and

S5 = (1 - C)D| + %G. ) - & | : (2-1‘478)

These source function coefficienty’are just the direct contnbutlon depolarized by the effect of tho
thermal coupling constant ¢, and the thermal source G. The polarizing effect is strongest in this llmlt
since the photons scatter at most once and there is no depolarizing effect from mull.lple scattering.

The second case is that of extremely strong scattering, where § ~+ 0 and 4 — (1—¢). The expressions

_for the source function coefficients become

=G/(2), S$1=S=5.=0, and S =0/(2). " (2.148)

-

) { .
. With the escape probabililty # — 0 no photons enter or leave the the resonance region; they are

- all created and destroyed locally. The source function is coupled to the thermal oou.rce only, and is

- thus isotropic and unpolarized.

Source fm:ct‘)g expressions for the special case of a sphérically symmetric atmosphere are -
relegated 16 Appendiz-2. '
. The procedure to obtain the Sobolev-H source functions, the Sobolev;ll forma! solution for
thelanetgent ﬂux; and the net polarization of the emergent flux can now be presented. Rechll
that the following mqmption’.s have been made previously: the atmosphere is axisymmetric and in

homologolous motion. -
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[ Be'gall‘from the discuasion in section () that the case of general expansion (or contraction), of
which homologous motion is a special case, allows explicit source functions to be determined for all

_ the blueward (or redward) transitions of the transition under considerationl_Thus an expression (the
Stokes parameter gencralization of equation (2.37)) can be written down for:the specific intenaity

" vector incident on a resonance point 7 of a transition labelled 1:
S A

' N N i~1 S
K(F,#)ems = Linoexp [~ f‘] + 3 8i(1 = exp[—7)).exp [- 3. r,] . (2.149)

im3 a2 Jal

where the 8;, the source function vectors of the blueward (or redward) transitions, are already
_ known, and are evaluated on the CP (common point) velocity surfaces of point 7. Using equation
© (2.149) for I,qy, the integrals of equations (2:130) can be done t.c.> obtain the (D;); coeffients at

7. Equations (2.146) then give the (S)); coeffients at 7. Repeating the integrations at all points

F constructs the source function vector é; for the whole atmosphere. The procedure can theln be

'rep‘eeted for the construction of the source function vectors of all trangitions blueward (or redward)
. of ti-amit.ion 1.2

Hav:ng obtained the source function vectors for all transitions, the !'ormal Soholev solution can

be written down, again using using the Stokes parameter generalization of equation (2.37):

I(V)sn';.=l(V)mexp Zn.‘ +Z:S (1 - exp[-n])exp —Zr;] ' (2.150)

f=1 i=1

where the S; are evaluated on CD (common direction) surfaces in this case, The chocity. surfaces

of the transitions are ordered apatially by increasing distance from the observer from the reddest
_ (lowest wavelength transition) velocity surface to the bluest (highest wavelength transition) velocity
‘surface in the case of an expanding atmosphere; the ordering is reversed in the case of a contraéting
atmoaphere The components of f(u)gm, can be integrated over the velocity surfaces appropriate
for frequency v to obtain the net Stokes parameters. Applymg equations (2.117), or (2.118) then
slvu the net polarization.
P lt is clear from the above derivations that polarization of radiation emitted from any location
I,

Ty ln an l.tmocphere depends, An a complicated manner, on several factors. If the original source of

4 In order to ﬂmﬁlfy the derivation of the source function coeﬁicu:nts the coordinate system for
which they were. deﬁnod has its z-axis, from which the n.nglc ¢ is measured, passing through the
the symmetry axis. Thus for a system with an arbitrary x axis an angular transformation must be
npphed ‘when' evn.luatmg the S, S, and Sy Eomponents of the source function vector.



Tl
o  : '

- - unpolarised radiation subtends finite solid angle at a point , then the D; coefiicients, and thus
t;ha S, coefficients ovaluated at 7, will depend on this solid angle and on distance from the original
murcé. For large dintn.n'cel from the original source the coefficients will decrease as the inverse
square of the distance. This is o purely geometric dependence. The polarisation depends pn the
mglg. O(average scaiter) between the line of sight to a distant observer, and some sort of average-line
drawn to the original source. Polarization will tend to be large if [9(....,-.,. seatter) = 90°| is small,

since the polarization of scattered radiation for Rayleigh scattering is given by

P(©) = l—ngs : - ‘ (2,151)

' - where € is the angle between the incident, and scattered beams (see equation (2.1}_2)). The geon‘n_:trlc
shape of the atmosphere is an important comide:intlon; if the atmoaphere has circular symmetry
about the line of sight then the net polu-rizntion will be sero at all frequencies. The polarisation
depends on the oplical depth r'which may in turn depend on location in the atmosphere. The
polarization can also depend on multi-line (multi-velocity surface) effects. '_

"It is of interest to try to determil}zﬁl/ particular * value that maximises the absolute value

.of the polarization of the ra.dmtlon emitted toward a distant observer. The determination of the
‘ma:mmzmg T may l'or a spec:ﬁed system allow the detemunahon of the locnt:on from whlch the
most pola.nzed radiation is emitted. For a moving atmonr.lere thia location wnll help to determine

.the frequenclen of the ext.rema of the polmza.tmn spectrum. Only the Sobolev formn.him-tnﬁ' few
other assumptions are needed to obtain a quahta.twe detemunatlon The qualitative solution has

practical use in analyzing calculated model atmo-pheru.

‘The net polarization from a velocity surface of an axially symmetric atmosphere is given by

P LY Lt i
net = fdAI(v) '

where the mtegrahon is over the velocity surfm, and where smgle-velocuy surfaces have been

w (2.162)

mumed. The integration z axis is chosen parallel to the symmetry axis of the atmosphere so Lthat
.U;,,, = 0, and thus there is no need o consider the U field at all. The intcgra}d of the denominator

of edua.ti_on .(2.1_52) is given by-
(Se+S)(1=e7), if the beam path does not °
. intersect the original source;
I) = (St +S:)(1 = e~") 4+ I(v)ince™", if the beam path does intersect
vi= - the original source;

I(¢)ine, if the beam path intersects the original
source, but no velocity surface.

(2.153)
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Note for reasonable atmosphere models the integrand in the denominator will be either

N . IWhne o (St + S )1 =e"T)+ Linot™"

for some region on the veloclt;y surface. If S varies less strongly with position thar r, then at some

leirel of npproxlmation'

(Sl + Sf)(l - c-") :l' I"ngc-' ] I‘ng(l -— C-r) + I;n,e-' = I‘r;g- (2:154)
It will be assumed that equation (2.184) is valid, and thus it follows that the denominator of equation
© (2.152) will depend less strongly on the functional behaviour of r than numerator With this
'mumption maximizing the integrand of the numerator of equation (2.152) with respect to r will
give a crude result for the r value that maximizes the pélarintion. Using equations (2.136), and

(2.146), the integrand is

(S =5)(1-e") = (—Dz(l = 1%) + Dapr/T= 3 con ¢

(1—e)f(1 ~e=7)
== -B)%)Er)

The D; depend only on the original source since the velocity surfaces are assumed to be single. They

+ Dy(1 + %) cos 2¢) (2.155)

' ldepend on the solid angle subtended by the original source at the position where equation (2.155)
is evaluated. However, the mumpti;)n that the variation of the integrand in the denominator
of equation {2.152) is small, implies that the vuinti&%f the D; is a.lso’ﬁﬁmport.ant. All the 7
.. dependence in equation (2.155) is contained in the expression { -

(1-¢f(1-e"7)

= (=00~ P(HIEY g

To obtain & one parameter expression it will be assumed.that the thermal coupling constant ¢ is

0, and the phi.ue—mntrix coefficient £, is 1. Thus for a pure Rayleigh, pure resonance scattering
- ¢

atmosphere the  expression will defined to be II(r), a measure of the polarization:

8 e
AT —5 ) (2.156)

~ % For aapherical supernova atmosphere with a sharp photosphere and with a single pure resonance
transition, S(r) = W(r)inc, where W(r} = {1/2)[1 — \/1 = (rpa/r)3] (see equations (2.35) and
(2.36)). Recall from section (c) of this chapter that a useful approximation is r = 7,a(rps/r)7. Note
for v/ron = 1.5, S(r)/Linc = .1273; thus S(r) is decreased by only one order of magnitude below
" Line. Since /Line 02 (1/4)(rpa/r)? for r/rpa 2 1.5, it is clear that equation (2.154) is valid to
within two orders of magnitude over a large range of » where r varies much more strongly. Thus
the result for the polariggtion maximizing r obtaiged in this section should apply approximately to
supernova models of the sort discussed in section (c).

O(r)=




7
0.7 T T . T T T T 1
]
T
Fig. 2.6. The polarization measure II{7), and small and large  approximations for II(r).
=N
Recalling that § = (1 —£~7)/r for homologous motion, then for 7 < .5
13
- Oir)=r (l - 56?) . . (2.1657a)
- .
and forr > 1
101 71 '
n(r) = 21 (1 - E?) , | (2.157b)
. .The II(7) function has its maximum at 7me, = 1.922294 with a value of .6206712 (see Appendix 1).

Fig. 2.5 shows II(r) and the approximate II(r)'s for the interval (0, 10].

The phyncal picture that explains the H(r) function's dependence on 7 is, of couue, one of
scattering. Physically, small 7 means few polarizing scattering events, and thus low polarization.

As T increases there is moze-lcattering, and thus higher polarization.- However, further incresses in

-

) /.\ . - | ) .
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- optical depth in & resonance region teads to multiple lcutterings' before a photon escapes the region.
- The multiple lcnturinp tend to make the radiation field isotropic and depolunze the escaping
radiation. The Sobolev method approxiniates this physical picture by unmg escape probabilities,
and related quantities. The escape probability and relatedfquantities in turn give rise to the simple

expression for I(r). - /

The II(r) function's-dependence on 7 is not especially strong. However if, as has aiready been
assumed, 7 hes & strong position dependence, then II(r(F)) may be strongly peaked in a relatively
well defined region where (i) a4 2. In this case the region in the atmosphere of maximum polarized
emission nﬁy be relatﬂi\'rcly small, and _determinablc. Clearly, however, the other ft}ctors affecting
polarization will strongly affect the location of maximum polarized emission. Therefore it is not
possible in gencral‘to predict how closely the actual maximizing  will be to 2. The foregoing

discuseion is thus mainly of use in analyzing already calculated ﬁmdel results,

e) The Physical Validity of the Sobolev-H Method

In this section the physical validity of the Sobolev-H method will be discussed. This discussion
requires some explanation of partial redistribution functions. Partial redistribution (PRD), in con-
~ trast to complete redistribution, allows correlation between absorbed, and emitted photons in both

direction and frequency.

Hummer (1962; see also Mihalas 1978, p..411) has given four st.;ndard partial rcdi'atribution
functions correapondiﬁg to four different physical cases. In each of these cases there is an intrinsic
atomic redistribution in frequency, and angle. For the intrinsic redistribution the angular and fre-
quency dependenciea are dec:l)upled. The angular dependence appears as a phase-matrix coeflicient
to the frequency redistribution function. Since the discussion of this section will compare the Hum-

‘mer redistribution functions to the HRD redistribution function used by the Sobolev-H method, a
brief description of Hummer’s intrinsic atomic redistribution functions is uséful. (I) The first re-
distribution function i; for the ’cue of a trmit.ion between two perfectly sharp states. Thus the
absorbed and emitted photons have exactly the same well defined frequency. Since only a ground
state can be oonndered perfectly sharp, this case is an idealization. (TI) The second redistribution
function is l.'or the case of a transition with a broadened upper state, and a perfectly sharp lower

state. Since the upper state is broadened the transition has a Lorentzian absorption profile, and
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can absotb a range of frequencies. However, tl;ne emitted photon's frequency is the same as the ab-
sorbed photon frequency. (III) 'Thn ihird redistribution function is for the case of a perfectly sharp
lower state, and broadened upper state where the absorption and en‘xiuiqk\ profiles are indopenld_ent
Lorentsians. Thus there is no correlation between the absorbed and emitted photons' I‘reqﬁenclen;
this is complete redistribution in frequency. The physical pictﬁre usually assumed for thin case in
that collisions reshuffle the atom among the upper subatates of the trmsltion:und .lh\Il destroy any 7
correlation, If collisions are responsible for this redistribution function then the 'ap}:roprlnte phase-
matrix may be the isotropic phase-matrix; no polarising effect would then be present. ‘(IV) The
fourth redistribution function is for the case of a transition between a broadened upper state and
a broadened lower state. This sort of redistribution function appliea to tranaitions that are not to
ground atates. Since the redistribution function is rather complex, it is leldo-rh actually considered,

and simpler redistribution functions are used for the cases where it would apply.

* “The intrinsic redistributions need to be averaged over the thermal distribution of atoms to
obtain the laboratory frame redistribution. The four thermal averaged redistribution functions are
labeled Ry, Ryr, Rypr, and Ryv. The functions increase greatly in complexity with subscript index,

A physically appropriate phase-matrix can be included in the prescriptions for the R-functions.

"An effect of the thermal averaging on the redistribution functions is to introduce an angular
dependence into the frequency rediatii'butioh function, thereby ;:ohpling angle and frequency redis-
tribution. Also, the absorbed and emitted photon frequencies are coupled even in the case of Ry
whére there is complete frequen.cy tedistribution in the atom’s frame. Thus in none of the four cases
is complete redistribution obtained. Since complete redistribution in frequency, and angle (CRD) ix
the simplest and computationally the least demanding redistribution, it is fortunate that in mm‘y
calculations CRD is an adequatg approximati;qn to Hummer’s redistribution functions. In other
cases angle-avex:aged versions of Hummer’s redistzibution functions are adequate. For a discussion
of the adequacy of thm@proximntiom see Mihalas (1978, p. 411). Of course, if the polarization
of scattered radiation is the subject o.l' interest, then a non-isotropic scattering phue-mnt;ix munt

be used as a coefficient to the Hummer redistribution functions.

-

In principle, some i;nprovement. in calculating supernova spectra would be obtained if each
t#ansition were treated with the Hummer redistribution function that most adequately deseribes it.

However, the degree of potential improvement does not secm to tesearchers to have been adequat-
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'compemstlon for the much greater computation involved in using partial redistribution functions.
As indicated in section (c), the Sobolev method caleulations, which assume CRD, seem to produce
very adequate fite to observed spectra. Thus there may be nd need to go beyond CRD if on)y

flux specfra is of interest. Ilowever', to calculste polarization spectra some partial redigtribution

h s required. An expert opinion (Rybicki_ 1984, p. 23) is that it is unclear whether or not

acaple probability me.thodl, such as the Sobolev method, can be used to treat cases of partial

| redistribution in frequency. The derivation of the Sol;olev method presented in section (a) required

the complete frequency redistribution in a very ﬁmdnm'e'ntnl 'lr;nnncr. However, as the dérivatiox; of

- the Sobolev-H method demonstrated in section (d), it is poasible to include angular redistributian,
~ and a non-isotropic ﬁhm matrix, provided complete frequency redistribution is maintained. ‘

,‘. For the Sobolev-H method derivation the HRD mdhtrisqtion function introduced in section (d)

was used. Th'e HRD rediltribiltio;l function has a complete redistribution function for frequency

- ~ multiplied by the Hunilton scattering phnse-matrnt This gave a polarizing redistribution for the

photonl. For HRD to ba physically Jultlﬂed two quutlonn must be considered. (1) Is HRD an

' l.deguat.e gppmximation.to the Hummer's standard redistribution functions when these functions

include n_pbluising_phn_n—mntrix? (2) Do Hummer's redistributions and the Hamilton phase-matrix

adequitely represert the physics of transition scattering in supernova atmospherea?

In considering the first qhestion two extreme cases provide some evidence that the a;swer-is
ye;s: (1) the case of an optically thick atmosphere, and (2) the case of an atmosphere whel:e photons
acatter at most only once. , -

McKenna (1985) considered a static, semi-infinite, plane-parallel, isothermal atmosphere where
the deviation from LTE (local thermodynamic equilibrium), the ratio of continuous to integrated
line opacity, and 'tl.l.e'rntio r;'f the natural line width to thermal Doppler widtli were all held constant.

. 'The ratio of natural l_ip_g width to thkrmal .Doppler width is given by

L]

a = vy/v; (2.158)

aisa puamet;r of Ru._Ru;, and Ryy. McKenna set a = 10~3. McKenna calculated the emergent
specific intensity and poluilﬁtion profiles from his model atmosphere using a selection of redistribu-
tion functious. He used the full and angle-averaged Ry, Rir, and Ryry functions multiplied by the
Rhyleigh phase-matrix. Recall from section (d) of this chapter that the Rayleigh phase-matrix is

the most anisotropic limiting case of the Hamilton phase-matrix. What has been called the hybrid
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(HRD) redistribytion in this thesis was also used. The diﬂ‘ercncu between the results from the
full and angle-averaged versions for euch A-lunction were less than 5%/'1‘1111 in strong evidence
that the angle-nveraged versions of the R-!‘unctionl are adequato approximatlonl at loaat for the
sort of atmoephere McKenna considered. 'The emergent specific intensity profiles of the R-functions,
-a.nd the HRD function were all virtually identical. The polarization proﬂlu'for the four cases waro
qlualitatively quite similar. The three R-function polariution- profiles were very similar with the
HRD function profile being smaller by =s 50 % in some, but not all, parts of the profile. Thus the
HRD redistribution {unction can be considered to be a very good qualitative appraximation to the
R-functions for McKenna's atmosphere. It is also clear that the distinction between the Ry, Ry,
and Ryyy is not very great for these atmospheres. Apparently McKenna considered the Ryy function
difficult t.oo treat. ~
The atmoephere McKenna consldered is far removed from the homologously expanding, non-
homogeneous, aphcro:dal atmospherés of supernovae. The compuison ol' the HIRD functions, nml
the erunctlons for his atmosphere can therefore be considered an extreme case {rom the point of
view of supernovae. The other extreme is the case' where photons are only scattered once in o
supernova atmosphere before escaping. For this thesis numerical experiments have been performed
with a supernova atmosphere in which photons are artificially limited to scattering once only. With
only one ucattering ‘it. is fairly easy to implement the first two R-functions in equation (2.110) for
" the source function. Comparisons of the flux, a‘nd polarization profiles for a line with this sort of
'caict_llation showed that the HRD, Ry, and Ry redistributions gave virtually the same fux and
polarization profiles when the ratio a < .1. For a = .5 the Ry results devi_nted by as much as 30%
from the HRD flux profile, and by as much as 10% from the HRD polarization profile, It is worth
noting that the SN 1987a lines for which early 5pcctropoluimet';'ic data were available (Schwarz and
Mundt 1987), the hydrogen Balmer lines, and the Na D lines, have lifetithes of order 10-%s; thus
their vx's are of order 10%s~3. The thermal Doppler widths using equation (2.85) are given by

T s, (2.159)

) vin = 1285 x 101 x A7Hy [ oo

where X,, is the wavelength of the transition in micrometers. For reasonable supernova temperaturr,
-the observed lines should have a’s of order 10-3.
The fact that the two extreme cases show that the Ry and R;; functions are reasonably well

approximated by the HRD function allows some confidence that in genersl lines well represented by
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| ‘these two redistribution functions are well represented by the HRD function. McKenna's result also

glves some confldence that the I_im function is well represented by the HRD function. Urifortunately, .

" comparisons of the .HRD function to the Ry function are difficult to perform.

The second question in justifying HRD concerns its correctness as a phyni_éal description of the
transition scattering in supernova atmospheres. Coober, et al. (1982) have shown that the redis:ri-
bution part of an angle-averaged w_urée function for a multi-line atom can be expressed as linear
combinat.ic;ns'of Hummer’s redistribution functions Ryy and Ry, and of the complete redistribution

function. Since CRD functions are in many cases adequate approximations to the angle-averaged Rys ~

" and R];;. Cooper et al. 's result provides some confidence in the complete frequency redistribution

-

of HRD. In a more modern, and elaborate calculation than Hamilton (1947), Ballagh and Cooper
(1977) have shown that |catteri'ng_in transitions does polarigsiradiation. They also considered quan-
titaiivcly the effects of collisions in dest.royipg the polarizing effect by détroy-ing the alignment of
the atom; Hamilton considered collisions only qualitatively. ‘Lombardi and Kelleher (1985) using
the Ballagh and Cooper l:brmnlis_m calculaﬁ that right angle scatterink from He in the 2'P-3!D
transition by incident radiation polarized perpendicular to the plane of scattering gives scattered
radiation with .46 polarisation. This agrees with .4468 polarization that can be determined using
Hamilton's phue-mgtrix._'rheir calculated polarization for the Ha is .34, which disagrees with the
4430 calculated from the Ha.mil‘t.on phue-mgtrix using the equal occupation probability average £,
coeflicient ca.lculal\e'd in section (f) of this chapter. Lombardi and Kelleher performed measurements
that found agreement with their He and Ha predictions within experimental uncertainty. They also
measured, in agreement with quantitative expectations, the destruction of the‘ polarizing effect by

-

collisions.

The results of these recent authors indicate that-the Hamilton phase-matrix and HRD redis-

tribution offer qualitatively correct descriptions of the physics of resonance scattering. However,

~ since the polarizing effect can'be destroyed by collisions an investigation of the conditions needed to

allow the poluiliﬁg effect is warranted. Hamilton gave the following conditions for his prescription:

(1) there should be no transitions between the total angular momentum m;j-substates of the upper

‘level of the line transition, and (2) the states of the lower level of the line transition have equal

occupation probability. The first condition means that there must be no effect, such as collisions,

to reshuffle the excited ion among the upper states, Clearly ih practice there would still be some

-
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polnriligs effect provided the average time between collisions were not too much lmnller than the
radiative llt‘chme of the upper-level. Lombardi and Kelleher (1085) show the decrouing polarisation
of transition line emiu:on as a function of time l'rom » set of transitions excited simultaneously using
a laser pulse; the lon'ger lived upper levels have their alignment increasingly destrayed by collisions
as time paﬁu. Theaucénd-condition requires thnt_ there is & mhumlhg effect among the lower

states that destroys a'ny coherence between successive photon scatterings. If the second condition

" were violated, there would still presumably be a polariaing effect, but the Hamilton phase-matrix

would®not strictly apply.

Hamilton nlso mentions that the hyperfine precession of the atomic total angular momentuin
vector about the nuclear spin would tend to alt:;r the alignment of the excited atom. Rough estimates
of the ratio of lifetime to precession time of the states giving rise to the hydrogen Balmer lines
and the Na D lines indicate that this hyper'ﬂne-strﬁcture effect should not overwhelm the Hamilton

polnrizin.g effect. The hyperfine-atructure effect on the polarization of the Ha teansition is considered

" by Lombardi and Kelleher (1083).

r

A criterion-tan be established for when collisions will destrc;y-r the alignment of the upper lavels

mr transitions in hydrogen dominated atmospheres. In slich atmospheres the H+ ions are ,

mostly responsible for the alignment destroying collisions. Thus the density of I* jons Is the relevant
quantity for deciding whether or gt polarization is destroyed. For hydrogen dominated atmospherces

n(Ht) s n,, where n, is the free electron density. Pengelly and Seaton (1064) calculated the critical

electron densities for which the rate of nl — nl (I' = [ % 1) transitions in H atoms due to H*

collisions equalled the rate of radiative transition out of the levels of principal quantum number n.
They used first order time-dependent perturbation theory, and found that the collisiona! transition

rates depended on a sum of digf\le transition matrix elements

{nl'mi|F|nim;), - {2.160)

. ' ’
_where a selection rule forbids nlm — nim’ transitions (Baym 1978, 922_65). It is clear from the Pen-
. gelly and Seaton derivation that transitions among the states [lajm;) also involve dipole transition

matrix elements of the form 4

~
. (I'sj'mi |F|lajmy), ;I ! . (2.181)

where lsjm; — hj’m; transitions are likewise forbidden. Therefore, to first order in perturbation

't.heory, the atom cannot change its j-state or m;-substate without changing the I quantum numb-r.
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also. fThus the nl — nl’ collisional transition rates considered by Pengelly and Seaton are the
. relevant collisional rates for the destruction of the alignment that polarizes the scattered yadiation.
At Peligelly and Seaton’s critical density for principal quantum number n approximately half
the scattered photons are polarized. The other half are unpolarized, since the alignments of the
excited states from which they arise have been destroyed by collisions. At lower denslt.lea theru is
more polarization; at higher densities the polarization will be less. Pengelly nnd Seat.on s Fig. 4

- duplnyl the l-averaged critical electron densities for n > 3. Table 2 3 shows the critical densities for

?

‘n=4 thrbugh 8 . %
: ~
TABLE 2.3—The critical electzon densities for the destruction of the polarizing effect of the Balmer
D transitions in & hydrogen dominated atmosphere.
'I*’\;ﬁ’ition Rupper . e erit '
(em™3) 4
" Ha 3 -
-HB 4 4 x 108
Hy b 1x 108
Hé 8 2.5 x 107
He 7 8 x 10° .
- H¢- 8 2x 108 - .

rl

SOUII‘?.CE: The critical density values were measured from Fig. 4 of Pengelly and Seaton (1964).

, fo:_- many other important trméitions in a hydrogen dominated at.mosphe;e the critical density
. for destrdying the polariting effect should be somewhat higher than for the Balmer transitions.
Moet jon levels are not nearly as degenerate as are the levels giving rise to the Balmer transitions;
-~ therefore the collisions nfist be more energetic to cause transitions among the m; substates of a
level. For example, the eruation between the upper levels of the Na D lines is 6 A, whereas the
largest separation in wavelength between the levels of any n for the hydrogen.:.tom is .0053 A. The
* upper levels of the Na D lines are also = 3eV below the continuum, whereas the n = 3 level of the
H atom are only ss 1.5¢V below the continuum. The excited states of the-Na D linc transitions are
more tl;htly bound than the upper state of the Ha transition, and t.hus are more protcctcd from
collisional depolamatnon '
An estimate of the free electron dcnsit‘y in supernova atmospheres can be made. It will be

»

R
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assumed that the electron density obeys the same inverse power law as density. This a-ul;tptloh

is clearly valid sometimes. For type II supernovae nesr maximum light the tomperatures are of

" order 25000K; the hydrogen, which makes up the bulk of the matter, should be fully ionised and
' ‘thus ele2tron density should be proportional to atomic demitlu Feldt (1980, p. 35) provides some

. evidence that the powerlaw hol)!n for electron density in the atmospherce oI‘ type I supernovae, There

is reason to believe that the continuous opacity in uupernovn astmospherea il scattering dominated

(Wagoner, 1981). Here it is assumed that electron scattering: provides all of this continuous opacity.

- This assumption is very probably incorrect, since many thousands of weak lines llno. contribute a

significant continuous opacity in an expanding atmosphere due to Doppler enhancement tKup ot

al. 1977). The assumption that the continuou; opacity is entirely due to electron scattering will load
to an over-estimate of the eléctron density. The over-estimate should not be-worse than a factor of
order 2. Consider'ing the other uncertainties in the density estimate this is not a significant prc;blem.

With the above assumptions the continuum optical depth to the photosphere is then given by

[~ -]
Te = drn.(r)e
For , .
= Malrpn)orpn . (2.162)
p—-1 ' : - -

kY

where n,(r) is the electron density, p is the power parameter, and o is the Thomson cross-section:

\

4
o= %&7 = 6.65 x 10~?% emn?, S (2.163)
. # . o

The continuum optical depth to the phot.ocphere, Te, is & 1. This depth defines the .smallest
spherical shell (photosphere) from which a radially directed photon can emerge and pass through
the atmosphere with an average number 6f scatterings that is.less than 1. Thus the electron density’

is given by’ ’

l)r.

ny(r) = (r,u/ P | . (2.184a)

l)r.

 =174x 10“’(’ 2 (rpn /;-)P em™ (2.1645)

where equation (2.88) has been used, vp is the photospheric velocity\‘n units of 10° cm, and ¢4 is the
time in days since the supernova exploded. In section (d) of this chapter a erude estimate was made
of the Sobolev optical depth for a line that maximizes the polarization. Since it has been assumed

¢
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that the Sabolev optical depths vary as 7(r) = 1a{F;a/r)?, the radial region that is probably most -
important in pmducinj the poluint.iof: spectrum can be determined from

(rea/ry = Tomaa/Tn. . - / (2.165)

Thus th.ﬂ denaity ;:f the most polarising region of the supernova is approximately given by

-] .
Ny pot 7 1.74'% mm(—ij‘E(Tm“/T,h) cm-Z'

3, T i
. |

nepot %35 % 109821 (37 y 2. ) T (2.167)
o vg“ ' & N
ot pisset to 7, and v,y s set to .5 (a typical type II supernova value) then -
11 -3 ‘
Ny f.‘ ~ 4 x lDl ‘f”. [ 411 (2-168)

The time sinice the lupérnova explosion is usually not known. Observational .evidence inaicntes the
time to maximum light for type II supernovae is some tens of days (Doggett and Branch- 1985) For
type I supernovae the txme to maximum light is oburvat:onally estimated to be about 15 + 2days
(Pskovskii 1977). 'prlcnl luge Tya values from synthetic npectra are about 10 to 15 (Branch et al.
1981, 1982). Thus for times after maximum light, but before the photosphere has receded out of the
region of inverse power law density distribution,

3

. Ne pot < 10° cmjk(l (2.169)
N ‘This value is sufficiently small that given. the uncertainties™in its estimation a significant polarizing -

. |
effect due to scattering by Balmer lines in type II supernova atmospheres near maximum light and-

. thereafter cannot be ruled out. Other lines such as thd Na D lines are more likely to be polarizing.

It is also plausible to believe that there will be somelpllarizing effect due to line scattering in type I
superncva atmospheres. 7

Since polarization atructure associated with line structure in thJspcctra of supernovae may arise

- from several sources, it is important to have some means of estimating whether or nobﬁ»llmonal

effects~will destroy the polarizing effect of resonance scattering. The analysis, given above, gives
confidence that this polarising effect will not be totally destroyed. For specific cases a better analysis

can be done. In Chapter 5 a collisional depolarization analysis is done for the special case of SN 1987a.
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. 1) Closely Spaced ILinea and Multipleta \ o
. In this section some lpec?mcdpy terminology will be nesded. An atomic or ionic state is-
: Vs - specified by l‘our quahtum numbém L, S, J, nnd My, ot L, 'S, Mr, and M.;/A, trnmltion between
" states is cnlfed a line compenent. A level is & sot of stafes specified by L, S, and J, The sl of
transitions between levels il called a line. The set of levels specified by L and Sle culled a term,
' The set of transitions be‘tmn two terms ls called a maultiplet, Givins the n and | quantum numbera
for nll the electrons of the utoni specifies the atom's conﬂgu(ation The set of all transitions between

.- two c.onﬂguratxom in called a transition array. Tho set of states specified by the principal qumtum

: t . number n is called an energy Ievel ' ! .

- . Insome cases the lines of & multip!ut may be too clouly spaced in wavelength for the multi-llne
" Sobolev methoq to be appropnnte. The_ Sobolev mqt.hod treats line photons as if they were lcnl.te::d
from infinitely thin velocity -m;rfucu. However, the resonance reg.ion for a line actually has a finiie

* width as dincM in-sectior (). If lines are too closely spaced then their resonance regions.can
overlap. “There can in this case be a two-wny‘ flow of photons between the bluer and red&er line,
Recall for a generally ‘expanding or contracting atmosphere the ﬁu]ti-lina Sobolev metho/ AssuUmeA
only a one way flow of photons; from ihe bluer Yine to the redder linoffor the generally expanding
cnse, and vice versa for the generally contruting case. If the lines are very ‘closely spaced then they

| can slmply be treaice'h as a single line. This can be done without much difficulty by using an average
wavelength, and average oscillator ntrength and.average phuo-matnx coefficient if necesaary, If the

lines are sufficiently far apart then they can be referred to as Sobolev-leparated, and treated by the -
multi-line Sobolev method. A simple intermediate treatment for linu that cannot be treated as o
single, or as Sobolev-separated, may be rather hﬁd to t;bta.in, and may not often be needed.

The projlem of very closely spaced .line_s may not be too-import:tt_nt. Recall that the thermal

-velocity width of a resonance region ia :

v = /2kT/m = 1285 %‘kms-‘, (2.170)
and so the corresponding wavelength width would be /\- )

’ . [T '
AX= 4286(104) '1'64'7{]" (2.171)

where Ay isin Angstromu Since supernova atmosphere temperatures are no more thn.n afew 10K,

it is clear t:;nybptxcal lines separated by a few Anylroms should be Soboley separate if the thermal
f\. ] .

Y
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velocity width applies. If a microturbulence velocity width is greater than the thermal veloeity
widt{h then the corresponding wavelength width of a line could be larger, Sincé Sobolev-calculated
fits to supernova lines are often quite good, the microturbulence velocity is probably much less a
tenth of the expansion velocity which is of order 5000 to 10000km s~!. If tlie microturbulence
velocity was of order 100km s™!, then the {vaveléngtll widths of lines would be a few Angstroms.
Some importanﬁi;es, such as the Na D lines, may be verging on being non-Sobolev-separated if a
microturbulence velocity of this size obtains. ‘

The hydrogenic atom is one important case where the nearly degenerate states specified by the
principal quantum number n can be grouped tog;at.hcr: The largest wavelength separation i)elwccll
levels for a given n for the hydrogen atom s .0053 A between the 25 "'P* and 2 ‘;'P1§ levels. Thus all
the hydrogen transi.tions between conﬁg'urutiqr'm_ are strongly overlapping and need to be treated as
single lines. It is therefore important to be able to obtain average values for the oscillator strenlgth
and the phase-matrix E, coefficients. The method for getting these averages will be reviewed here.’

Consider a set of lower energy states labelled by the index ¢ and a set of upper states lahelled
by j. The transition probability between a state i and a state j is the oscillator strength fi;, aside

from some factor common to all the fi;'s. The probability of a photon inducing this transition is

pifis, | | -(2.172)

where p; is the probability of the atom being in state i. The average transition probability is

-

£=3 nif (2.173)
i _
If p; is a constant value for all the states i, then

g7t = pi, - . (2.174)

where g is the number of states i. The average probability is then

f=97'Y 5y (2.175)
R ) ‘;j . . .
If a subset of transitions labeled ki can be assigned an average oscillator strength, far =< fi; >,
then

f=9'd aefu, : (2.176)

k!
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where gy is the nmuber of lower states of the transition subset kI, The nct transition of the k! subset

can be interpreted as a line transition, and the net transition of the whole set of ij transitions as

a multiplet. Thus line dscillator strength times the number of lower states in the line transition
summed over all the lines in a multiplet equals the multiplet oscillator atrength times the number

of lower states of the multiplet:

gtfmune = Eglfﬂne- (2.177)
fine

The quantity g; is called the statistical weight of the term that gives rise to the multiplet, and g

i called the statistical weight of the level that gives rise to the line. The product gf is called the .

weighted oscillator strength. It should be apparent for the hydrogenic atom that if all the states
in an energy level had equal occupatibn probability (EQP), then the weighded osgillator strength of

the set of transitions between energy levels would be

]

‘Infener = Zlglfmull = Egtfum, (2.178)

mult fine

where g, is the statistical wcfght of the lower energy level.. The statistical weights are given by

a=2+1, (2,179a)

" g = (2L +1)(25+ 1), | (2.1795)
and |

" gn =202 ‘ b (2.179)

Since the weighted oscillator strengths are additive for combinations of transitions, they are conve-

nient quantities to work with and are often tabulated. )

The weighted oscillator strengths can be regarded as the unnormalized ‘probabiliti& of their
respective transitions, The sum of the wcighted oscillator strengths is the normalization constant of
the probability distribution. ‘Now t.h‘e Hamilton pr;r—i;t;;n assigns a set of £; coefficients to each
line transition. The average E; coefficients for a multiplet or an energy level transition can therefore

be obtained from

1
< Ei >muttfener= —Fp—————— ine{Ei)line- : 2.180
) tene (gf)mul'l[ener §(gf)! ( ), ( ' )

The crucia] assumption made in obtaining the expressions for the weighted oscillator strengths

and average E; coefficients was that the states of theycollection had equal occupation probability.
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For nearly degenerate states in thermodynamic equilibrium, the assumption is valid; thermodynatic
equilibrium guarantecing that the occupation probability of a state depends only on its energy.
' IIov:veirc‘l:,‘-in non-cquilibrium systems, such aa scattering dominated atmospheres, the assumption
may not hold. The average quantities must, in a rigoroura treatment, be obtained by solving for
the occupation numbers bf the all the levels using the rate cquations or c(iuations of statistical
equilibrium (for the method sce Mihalas p. 127). Such a calculation is computer intensive. A
first approach to the problem would be to assume an occupation probability. EQP is & natural first

assumption, but the characteristics of a particular case might indicate other occupation probabilitics

_ that should be investigated.

1

A case very relevant to the polarization spectrum of SN 1987a is that of t.'l!lc Balmer transitions.
The lq\\;cr energy leve] of the Balmer transitions has n = 2 and consists of two terms: 275, and
22P. Since the transition from the ground state td'thie 25 term is forbidden, it is easy to understand
that there may not be EQP f_o} the 2s and 2p states. To investigate the conscquences of uncquni
occupation three cases can be considered: (1) the 2s states have EQP and the 2p wtates have
zero occupation probability (the s-case), (2) the 2p states have TEQP, and the 2s statcﬁ have zcro
occupation probability (the p-case), and (3) there is EQP for all the states (the c-casé). The average
oscillator strengths, and E; coefficients for these three cases are given in Tu.blg 2.4 for the first six
- Balmer lines. The s-case results are just those for the 2S-ﬁ':’-‘ multiplet. The p-cases are designated
by Hayp, Hfg, etc. The e-cases are designated by Ha, HB, ete.

The oscillator strength varies between.the s-case and pxcase by = 40 % for the Ha transitions; by
=5 25 % for the HF transitions; and by rapidly diminisliing amounts for the higher order transitions.
The E), E3, and E3 vary by approximately 5%, 5%, 2.5%, and 10% respectively between the two
cases for all the lines examined. The conclusion can be drawn that EQP may not be an adequate
approximation for obtaining the oscillator strengths of the Ha, and Hf transitions. “For she E;
coefficients, EQP is probably always adequate, ) _ n

Table 2.4 also contains transition quantities for the Na D lines. Their multiplat average quar‘iti-'
ties are also displayed. However, as the Na D lines are separated by 2 7 A they are Sobolev-separated,

and ought to be treated as separate lines in any calculation.
-~
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TABLE 2.4—Transition quantities for lines, multiplets, and energy level transitions.

87

Desig-  A(A) of. g ! Mf TR E3
nation
Ho o
il es62. 0.2899 2 0.14495 0.09512 0.0000  1.0000 0.6667
i1 562, 0.5798 2 0.28990 0.19023  0.5000  0.5000 0.8333
15.2p 6562. 0.8697 2 0.43485 0.28535 0.3333  0.6667 0.7778
1.1 6562  0.0272 2 0.01358  0.00891  0.0000 . 1.0000 0.8667
14- 1 6562, 0.0543 4 0.01358  0.00891 0.0000  1.0000 0.1667
ip.3g 6562. 0.0815 6 0.01358 - 0.00891 0.0000  1.0000 0.3333
i14 562, 1.3916 2 0.69578  0.45657  0.5000  0.5000 0.8333 .
1411 6562,  0.2783 4 0.06958  0.04566  0.3200  0.6800 0.1333
1421 g562. 2.5048 4 0.62620 0.41092 0.2800  0.7200 0.7000
IpD 6562. 4.1747 6 0.69578  0.45657 0.3560  0.6440 0.7067
Hap - 6562. 4.2562 6 0.70937 0.46549 0.3492  0.6508 0.6995
Ha 6562. 5.1260 8 0.64075  0.42046  0.3465  0.6535 0.7128
. d
) Hg
11 5. 0.0685 2 0.03425. 0.00002 0.0000  1.0000 0.6667
111 5. 0.1370 2 0.06850  0.00003  0.5000  0.5000. 0.8333
s.2p 5. 0.2055 = 2 0.10275 0.00005 0.3333  0.6667 0.7778
. \

il 5. 0.0061 2 0.00305  0.00000 0.0000  1.0000 0.8667
4.4 5. 0.0122 4 0.00305 0.00000 0.0000  1.0000 0.1667
1p.3g 5. 0.0183 6 0.00305 0.00000 0.0000  1.0000 0.3333
111 5. 0.2436 0.12180 - 0.00006 0.5000  0.5000 0.8333
L 5 0.0487 0.01218  0.00001  0.3200  0.6800 0.1333
1121 0.10962  0.00005 0.2800  0.7200 0.7000

0.4385
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TABLE 2.4—Continued.

88

Desig:  AA)  of g ! W Ey E Es
nation :
p.3p L b, 07308 6 0.12180 0.00006 0.3560  0.6440 0.7067 .
HB, 5. 07491 6 0.12485 0.00006 0.3473  0.6527 0.6975
HA 5. 00546 - 8 011932 0.00006 0.3443  0.6557 0.7148
Hy
L1 4340. 00280 2 0.01398 0.00607 0.0000  1.0000 0.0667
L1l 4340. 00859 2 002797 001214  0.5000 05000 0.8333
19Ip 4340, 00839 2 004195 0.01821 0.3333  0.6667 0.7778°
c L1 4340, 00024 2 0.00122, 0.00053  0.0000 . _1.0000 0.6667
- L 43400 00049 4 000122 0.00053 0.0000  1.0000 0.1667 _
ip-7S 4340.  0.0073 6 0.00122 0.00053 0.0000  1.0000 0.3333
114 4340 00887 2 (.04437 _0.01926 0.5000  0.5000 0.8333
1413 4340, 00177 4 0.00444 0.00193 0.3200  0.6800 0.1333
1428 4340, 01597 4 0.03993 0.01733  0.2800  0.7200 0.7000
2P2D  4340. 02662 6 ~ 004437 0.01926 0.3560  0.6410 0.7067
Hy,  4340. 02735 6> 004558 0.01978 0.3465  0.6535~ 0.6967
Hy 4340. 03573 8 0.04466 0.01938 . 0.3435  0.6568 0.7159
Hs
11 4101 00144 2 0.00720 0.00205 0.0000  1.0000 0.8667
L1l 4101 00288 2 001440 0.00591 0.5000  0.5000 0.8333
25.2p 4101 0.0432 2 002160 0.00888 0.3333  0.6667 0.7778
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TABLE 2.4—Continued,

Desig-  MA) . gof f Auf Ey Ei, Es

nation

L1 4101,  o0.0012 0.00062 0.00025 0.0000  1.0000 0.6667
-1 4101, 0.0025° 0.00062  0.00025 0.0000  1.0000 0.1667
JPIS 4101, 0.0037 0.00062 0.00025 0.0000. 1.0000 0.3333

1l 4101, 0.0433 0.02163 0.00887 0.5000  0.5000 0.8333
1414 4101, 0.0087 0.00216770.00089  0.3200  0.6800 0.1333
1i2d 4101, 0.0779 0.01947 0.00798 0.2800  0.7200 0.7000
P-2D 4101, 0.1298 0.02163  0.00887 0.3560  0.6440 0.7067
16, 4101, 0.1335 0.02225 - 0.00912 0.3461  0.6539 0.6963

Hé 4101 0.1767 0.02209 0.00906 0.3430  0.6570 0.7162

- He

L1 3970.  0.0085 0.00425 0.00169 0.0000  1.0000- 0.6667

L1k 3970, 0.0170 0.00850  0.00337\  0.5000  0.5000 0.8333
ISP 3970. . 0.0255 0.01275.  0.00506 ) 0.3333  0.6667 0.7778

-4 3970.  0.0007 0.00037  0.00015 0.0000  1.0000 0.6667
14- 4 3970.  0.0015 0.00037  0.00015 0.0000  1.0000 0.1667
P38 3970.  0.0022 0.00037  0.00015 0.0000  1.0000 0.3333

L1l 3970, 0.0247 0.01233  0.00490  0.5000  0.5000 0.8333
14-13  3970.  0.0049 0.00123  0.00049 0.3200  0.6800 0.1333
1321 3970,  0.0444 0.01110  0.00441  0.2800  0.7200 0.7000
PID 3970.  0.0740 0.01233  0.00490 0.3560  0.6440 0.7067
Hep 3970.  0.0762 0.01270  0.00504 0.3457  0.6543  0.6959

He 3970.  0.1016 0.01270  0.00504 03430  0.6580 0.7171
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TABLE 2.4—Continued.

Desig- MA) gf g f At " Ey Ey Ey
nation .
iy

1.1 3809 00055 2 0.00273  0.00106  0.0000  1.0000. 0.6667
111 3880  0.0109 2 0.00547  0.00213  0.5000  0.5000 * 0.8333
5P 3889.  0.0164 2 0.00820 0.00319 * 0.3333  0.6667 0.7778
i1 3880,  0.0005 2 0.00023 0.00009 0.0000  1.0000 0.6667
13- 1 3889.  0.0009 4 0.00023 0.00009 0.0000  1.0000 0.1667
P25 3889.  0.0014 8 0.00023 0.00009 0.0000 10000 0.3333
111 3889, 0.0155 2 0.00776  0.00301 0.5000  0.5000  0.8333
1411 3889. - 0.0031 4 0.00078 0.00030 0.3200  0.6800 0.1333
14-21 3889.  0.0279 4 0.00698  0.00271  0.2800  0.7200 0.7000
P-2D  3889.  0.0465 6 0.00775  0.00301 0.3560  0.6440 0.7067
HGp 3889.  0.0479 6 0.00798 0.00310 0.3456  0.6544 0.6058
i (¢ 3889.  0.0643 8 0.00804 0.00313 -0.3425  0.6575 0.7167

Na D Lines
i1 5896,  0.6500 2 0.32500 * 0.19162  0.0000  1.0000  0,6667
111 5889  1.3100 2 0.65500 0.38573  0.5000  0.5000 0.8333
25.2P 5801  1.9600 2 0.98000 0.57735 0.3342  0.6658 0.7781

SOURCE: The weighted oscillator strengths for the multiplet, and energy level transitions were
taken from Allen p. ?;0, except the weighted oscillator strength of the Hy, 2P-2D multiplet which
was taken from Green (1957). The weighted oscillator strengths for the lines were obtained from the
multiplet oscillator strengths using tables that assumed LS coupling (Allen p. 61). The LS coupling
ap.proxirnation is very accurate for the hydrogen atom. )

NOTE: The designation indicates type of transition: (1) the J; — Jy designation indicales a

&

14



etween levely/ with total angular momentum J; and Jq, (2) the 35+17 _ 28"+1 s
designation indicat tiplet transition where the terms are specified by L and S, and (3) well
known designations are given for well known transitions, such as the Balmer series. For the Balmer
series the transition designations subscripted by p indicate the combined trangition that arises from

line transition

p terms. The quantities in the other columns have the meanings discussed in the text, The Auf
quanmy is used to calculate the Sobolev opt:cal depths, )

s



Chapter 3

Earlier Supernova Polarization Calculations

~
.

Shapiro and Sutherland (1982) and McCall (1985) have presented supernova polarization cal-
. culations. In section (a) of this chapter, the models and results of Shapiro and Sutherland are

discussed. McCall’s expression for supernova polarization is derived and discussed in section (b).

-« a} The Shapiro and Sutherland Polarization Calculation

Shapiro and Sutherland (1982; hereafter referred to as SS) calculated the continuum polarization
for asymmetric model supernova atmospheres. They considered axially symmetric atmospheres with

cllipsoidal shape asymmetry, and atmo:-iphercs with non-uniform surface flux,

SS adopted the plane-parallel, semi-infinite atmosphere solutions. of Cha..ndrasckhar {1960,
p- 248), and Harrington (1969). These solutions give the angular distribution of specific inten-
*sity that emerges from an al.mgsphere surface (i.e., the darkening law), anq the polarization of this
specific intensity. The solutions are given in tabulated form with the darkening law and polarization
given as functions of s = cos(, where ( is the angle measured from the normal to the plane. In the
solutions the specific intensity decreases’as ¢ increases. In the two Harrington solutions the decline is
steeper. The Stokes parameters of the emergent specific intensity are specified i.n a two dimensional
coordinate system attached to the beam with the axes labelled ! and r. The { axis is in a plane with
the beam and with the normal to the surface; the r axis is perpendicular to this plane. The Stokes
parameter Q/f = (I, —I)/1 is tabulated. The symmetry of the plant?-parallel systemn indicates that
the U parameter is zero, and so polarization is just P = Q/7. All the solutions have Q > 0, and
show P increasing monotonically from ze-ro at{ =0° toa maximum at { = 90°, The Chandrasekhar
polarization maximum is 11.7%, and the two Ilarringt;n maxima are 22.9% and 23.33%.

The Chandrasekhar solution is for the case of a pure continuocus scattering opacity atmosphere.
The scattering does not affect photon frequency and obeys the Rayleigh scattering law. An atmo-

sphere with only electron scattering is, of course, an example of such a system. A quasi-continuous

scattering opacity can also be provided in expanding atmosphgrea by the Doppler enhancement of
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thousands of weak lines (Karp et al. 1977). Such a quasi-continuous scattering would not obey the
Rayleigh phase-matrix, but rather the Hamilton phase-matrix with some sort of average Ey coef-
| ficient (see Chapter 2 section (d)). SS only consider solutions that use the Rayleigh phase-matrix

since these would be the solutions with the maximum polarizing effect.

Wagoner (1.981) suggested that the continuocus scattering ;)pacity of a type I supernova atmo-
sphere may be at least as great as the absorption opacity; this may also apply to type I supernova
atmospheres. If continuous scattering is important, then the thick scattering atmosphere required
by the Chandrasekhar and Harrington solutions may obtain. However,a substantial portion .of the
cbntinﬁoumscabtering opacity could owe to the quasi-continuous opacity provided by Doppler en-
hancement effect. If the Doppler enhancement effect is important, SS's results would tend to lead

to under-estimates of supernova asymmetry when used to analyze observed supernova polarization.

The Chandrasekhar solution was obtained for a static atmosphere, where the frequency of a )
photon was unchanged by scattering. Thus each frequency of radiation propagates through the
atmosphere independently. In a moving atmosphere, the directions of incidence, arfd acattering
affect the frequency of the photons due to the Doppler effect. However, since electron acattering is
frequency-independent, photons always encounter the same opacity' distribution as if the atmosphere "
were static. The effect on the frequency distribution of radiation is small if the continuum, which
is formed deep in the atmosphere, is fairly constant with frequency. A specific intensity beam
scattered through some angle has its frequency shifted from vo. Another beam of nearly equal
strength with the first is shifted to vy by scattering through the same angie,- Thus there is a
replacement effect. Therefore the Chandrasckhar solution can be taken as applying to a moving

v :
plane-parallel atmosphere. ‘

T!\%Q Harrington solutions are for plane-parallel atmospheres with continuous scattering, and
continuous wbsorption and emission. The continuous absorption could be provided by photoioniza-
tion, or by cﬁllisional de-excitp.t‘ion of a photo-excited bound state, and the emission by the reverse’
processes. These processes strengthen the coupling of the radiation to the local thermal state of the
atmosphere. The effect of thermal coupling would, as a first expectation, lead to a decrease in the
polarization of emergent radiation, since thermal emission is isot.roi:ic aud unpolarized. However,
Code (1950) showed that thermal coupling could enhance the polarization if there was increased -

anisotropy of the radiation field. This possible enhancement in polarization can be demonstrated
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by an atgument adapted from SS.

In the diffusion approximation (sec Mihalas 1978, p. 50), where the thermal coupling is assumed

s@.rong,

' dB
) !v(fu,ﬂ) = Bv(fv) + ﬂ.dry L]

where 7, is the continuum optical depth from the surface for radiation of frequency v, and B,

(a0

is the Planck function. Using the diffusion approximation result, a measure of the _rad‘intiou field

From equation (3.1}, it can be seen that p is specifically a measure of the outward peaking of the

anisotropy is

radiation field. Assuming radjative equilibrium and LTE (local thermodynamic equilib_rium),' then

the Eddington approximation (see Mihalas 1978, p. 61) gives \\—/\
T3 2
7“ = ZT:“’! (T+ 5) ' (3.3) .

where Ty, called the effective temperature, is determined by assuming that the net flux is radiated

by a black-body of temperature T¢s;. Using the Eddington approximation,

PET —z='=) G) (r»-li- 1y’ L)
where z = hv/(kT). For large z, p can become large indicating a large outward peaking of the
radiation field. This,argument for outward peaking has been developed for a strong thermal coupling
case (i.e., an LTE case). However, the argument should still have some validity even when the
coupling is not strong, i.e, when the effect of scattering is strong. The scattering of radiation at
angles near 90° is highly polarizing (see Chapter 2 section (d)). Thus the outward peaking of the
radiation field could enhance the polarization of radiation scattered at angles near 90° to the normal
to the surface, since the dilution by the unpolarj_g:_d, thermalized radiation field is lessened in tl_loge
directions.

Following Code, Harrington considered two illustrative solutions to the plam?-parallel atmo-
sphere with z = 20. In the first solution, the ratio of absorption opacity to total opacity ¢ was set

to 1/6. For this solution the ¢ = 90° polarization was 22.90%. The second solution used

T

€= m (35)
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This expreasion for ¢ is physically more plausible since increasing optical depth is expected to be ac-
companyed by increasing density in supernbva.e. The increasing density will usually cause increasing

¢ (i.e., increasing thermal coupling of radiation and matter). For the second solution the ¢ = 90°

polarization was 28.33%. .

) , . £
Since the Harrington solutions were only for€Tidte] atmospheres, and these were not expanding

supernova model atmospheres, their use for supernova modelling is heuristic. However, it is possible
that some degrée of Code's polarization enhancement effect will be present. A month after maximum

light supernovae have Topot0sphers &5 5000 K. For radiation with A a~ 5000 A, z~6;anz of this size

may cause some polarization enhancement for the optical radiation. It should also be noted that
continuous absorption is not frequency independent as is electron scattering; thus the velocity fields

in a supernova atmosphere are also a factor to consider.

By using scattering atmdsphere results SS assumed that the continuum optical depth to the
region wl;ere the continuum raéliation is thermalized is rather large: ie., Teontinuwum » 1. This
assumption is rather different from the assumption that Branch et al. (1982) made for the calculation
of supernova P-Cygni lines. Branch et al. 8EUME Teontinuum A 1 for the optical dept.h. toa black-bo'dy
radiation (thermalized radiation) producing photosphere. However, the uhde}'standing of supernova
atmospheres is still so rudimentary that the two pictures may be reconcilable (see' the discussion in

Chapter 2 section (c)).

Another assumption SS have made is that plane-parallel solutions are appropriate to describe

the extended atmospheres of supernova. This assumption requires that the spatial depth to the

~ thermalizing region be rather small compared to the radius of the supernova. The discussion in

Chapter 2 section (c¢) indicated that the continuous opacity of a spherical supernova atmosphere t.:an
be adequately approximated by a power 7 decay law. For such a decay law, the ratio of tangential to
radial optical depth from the photosphere to infinity is 4.35. Forfna.lly this ratio should be infinity
for a plane-parallel atmosphere. A ratio of 4.35 seems too small to be certain that tl;ie plane-parellel
solutions will be valid. Cassinelli and Hummer (1971; hereafter referred to as CH) showed that

plane-parallel solutions do not in general adequately describe spherical, scattering atmospheres.

CH congjdered a spherical, scattering atmosphere with a wavelength independent opacity given
by k(r) = r~7. { The unit of radial measure was chosen so that k(r=1)=1.) CH's model had a central

point source that produced an unpolarized continuum flux. Thus their model was all atmosphere
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for r > 0. They considered the polarization of the specific intensity emitted by the atmosphere as n

.

function of impact parameter. Impact parameter 'wu. defined as

T = | [ (30)

*

where y, and z are coordinates of a point in a plane perpendicular to the line of sight to a distant
observer. The point source was located at the origin of the coordinate syntcm CH demonstrated
that the polarization of the specnﬁc intensity as a function of & would rise to a plateau-value for. §
greater than some Sepiricat > 1. If the atmosphere extended to mﬁmty. the polanzatlon would;q;ay
at the plateau value as r — co. If the atmosphere had a cut-off radius R, therr the polarization
“would rise sharply from the plateau value to unity when § & R. The plaleau polarizution value is’
. « . ‘ .
given by - A

P(p)= X

= PT3 (3.7

i

where p is the power of the opacity decay law, and where Ithe polarization is aligned wi(h the
tangent line to the circle defined by &. Recall for supemova.e that p ~ 7 has been fouryl appropriate.
With p values of this size, the polarization given by equatmn (3.7) is much greater than the 11.7%
maximum polanzatlo‘n- éwen by the Chandrasekhar solution, and the 22.9% and 28.33% maximum
polarizations of the Harrington solutions. ‘
CH’s results make it clear that in general the plane-par;xllel solutions cannot account for all
the features of spherical atn-lospheres. However, CH did not consider scaf.t.eri‘ﬂg atmospheres with
finite central sources of unpolarized flux. Having a finite source rcducég the polarizing effect of a
scattering atmosphere. To illustrate this effect, consider a scattering point _in an ‘atmosphere and
consider two sources with equal source strength: a point soiirce and a finite source. For the point
source there are directions for which all the scattered Aux frorr; the scattering point is right-angle
scattered; for the finite source there are no such directions, since every scattered beam is the sum
of beams scat.t.erled out of a finite portion of solid angle. Since right-angle scatt.ering is most highly
polarizing (sec Chapter 2 section (d)), it seems probable that point source atmospheres wodld ten‘d
to produce flux of higher polarization than finite source atmospheres. Since supernovae are thought
to have finite sources for unpolarized flux (i.e. photospheres), it is not clear that the CH solution

is more appropriate for supernovip than the plane-parallel sotutions. This is question for further

investigation.

-
.
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55 considered axisymmetric ellipsoids for their shape asyminetrie models. They parameterized

the asymmetry with a parameter £ where

§pro = 1 —(a/c), a < c (prolate); . (3.8a)
&ort = 1 = (c/a), a>c (oblate), ‘ h (3.8b)
where ¢ is the semi-axis along the axis of symmetry of the éllipsoid, and a is the semi-axis perpen-
dicular to the axis of symmetry. For their surface flux asynimetry they considered a distribution of

the form

f(a) = fpoh(l - GSing a)p, (39)

where f is the astrophysical flux, # is the angle measured from thg symmetry axis of the ellipsoid,
o is a parametdr that can be varied from —oo to +1, and 3 is a parameter that can be varied from
0 to +oo.

Since supernova cannot be resolved, only the net quantities can be observed. Therefore to obtain
results that can be compared to observations, SS integrated the Chandrasekhar and Harrington
salutions over the projected area of their model atmospheres. The Stokea fields for these solutions
must, of course, be transformed\t.o a common coordinate system in order to be inte.grated. Some
ana.lyt.iceljdults required for this integration are presented in Appendix 3. The asymmetric mdﬂgls
will yield a net polarization. The edge of the projection of the ellipsoid is called the limb. Radiation
emitted from the limb-is highly polarized because it is emitted at a large angle { with respect
to the local surface uor'ma.l. From the central region of the projection the radiation is emitted
at smaller angles ¢, and so is less-p;la.rized.. A projection thatlig circularly symrﬁetric about the
line of sight yields zero net polarization. Asymmetry leads to net polarization due to incomplete
cancelation between t.:he polarized radiation from the long edge and the short edge of the limb. The
central region of the projection acts as a source of relatively unpk:olarized radiation which dilutes the
polarized radiation from the limb, and so reduces the net polarization. . N

The net polarization as a function of £ for the models with shape asymmetry, uniform surface -
flux, and # = 90°, are shown in Fig. 3.1. The oblate models ‘have negative polarizz;tion indicating
that their net polarization is aligned perpendicular to the symmetry axis of the ellipsoid. The

polarizations of prolate models are p'ositive indicating that the polarization is aligned with the

symmetry axis. Other alignmeklts of the polarization are precluded by the symmetry of the system:

T
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Figure 3.1. The net polarization as a function of the asymmetry £ for Shapiro and Suther-
land’s (1982) oblate, and prolate models. The Chandrasekhar solution models are labeled C. The
Harrington solution models are labeled H1 and H2. The oblate models have greater polarization -
magnitudes than the prolate models for the same asymmetry. The Harrington solution models have
greater polarization magnitudes than the Chandrasekhar solution models '
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Figure 3.2.' The net polarization as a function of the asymmetry £ for Shapiro and Sutherland’s
{1982) prolate models. Chandrasekhar solution models are labeled C. The Harrington solution
models are labeled H1 and H2. The Harrington solution models have greater polarization magnitudes

than the Chandrasekhar solution models.
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i.e., the net U Stokes field is zero. The Harrington solution models, as one could have expected, iave
greater polarization magnitudes than the Chandrasekhar solution models. For & given solution case,
the oblate model polarization magnitude is greater than the prblate model polarization magnitude
for all £. This difference in polarization m;sgnitude incremses with £, and becomes quite large in
the limit §£ — 1. This result can be understood by considering the dilution effect of the relatively
unpolarized radiation from the ccr;tral region of the projection of the ellipsoid. For oblate models as
&on increnses, the central region of the projection decreases relative to the limb region, and vanishes
in the limit that £ — 1. Also, the limb region in the limit that £ost — 1 becomes entirely polar.
Thus the limiting case of the oblate models is one of viewing a plane edge on. The polarization values
-of the plane-parallel solutions for { = 90° are thus recovered: 11.7% for the Chandrasekhar solution, -
22.90% for Harrington 1, and 22.83% for Ila..rrington 2. For the prolate models the increasing
asymmetry does not lead to a vanishing of the diluting central region of the projection relative to
the limb region‘; thus the dilution effect is present for all £, The prolate polarizalions_;ré plotted on
an expanded scale in Fig. 3.2. The limiting polarizations are .77% for the Chandrasekhar solution,

2.7% for Harrington 1, and 2.8% for Harrington 2.

-

The polarization results for the models with non-uniform surface flux will not be discussed at
length here, since the present thesis is concerned with shape asymmetry. It is sufficient to ﬁote, that
for what SS considered to be comparable degrees of asymmetry, that non-uniform flux asymmelry

gave substantially smaller polarizations than shape asymmetry.

SS also considered the effect of shape asymmetry on the determination of supernova luminosity.
Clearly, viewing an oblate supernova with uniform surface flux at a small inclination angle to the axis
of symmetry would lead to an over-estimate of total luminosity if sphericél symmetry is assumed.
With a large inclination angle the luminosity would be under-estimated. For prolate models the

polar view leads to an under-estimate, and the equatorial view to an over-estimate.

In their paper SS also consider the effects of intervening matter on polarization, and review the
supernova polarization measurements made up to 1982,

-

b) McCall’s Prescription for the Polarization for Asymmetric Supernovae

McCall (1984, 1985) considered a very simple model of a supernova atmosphere in order to

attempt to assess supernova asphericity from the flux and polarization profiles of supernova P-Cygn?

—
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lines. The reason for examining line polarization was, as for the present thesis‘, to obviate as far o5
. possible the need to consider the effects of iniérstellar pt.Jla.rization on radiation from supernovae.
The motivation of McCall’s study was to discover if supernova asphericity would eliminate the
' discrepancies between distance determinations to gal@xiea by the Baade-Wesselink method (Baade
1926; Wesselink 1949; Branch et al. 1981) using supernova as di_sta.ﬁi:eLin'dica!.ors, and distances

determined by other means.

McCall assumes a simple two-component model of the projection of a superno{ra atmosphere

onto the plane perpendicular to the line of sight. The model consists of an elliptically.syn;mctric.
polarizing limb region, and a similar elliptically symmetric, -non-polarizing central region. These
two regions will be referred to as the limb and photodisk, respectively throughout this thesis (sce
Fig. 3.3). The limb is the i)rojection of a scattering, aspherical atmosphere that surrounds the
aapherical'phoi.osphére. 'i‘he photosphere producgﬁ unpolarized continuum radiation. The photodisk
is the projection of the photosphere which is, of c;.mrse, covered by the scattering atmosphere, The ’
radiation froxp the limb i.s polarized since it has all been scattered in the direction of the line sight
- by continuous scattering by electrons or by resonance scatte}ihg by ions. The photodisk radiation is
taken to be entirely unpolarized since the atmosphere above the photosphere tends; mainly to scatter

radiation out of the line of sight. This assumption can at best be only partially true since there is

clearly some scattering in the direction of the line of sight from the photodisk.

The nature of the asphericity of the photosphere and atmosphere is not specified further than
by giving the ratio of the semi-minor to semi-major axes of their elliptical projections. This ratio

will be defined here to be ”

n=afe, (3.10)

'where ¢ is the semi-major axis and a is the semi-minor axis. The convention established for this
derivation is that elliptical proj'ection‘is centered in a coordinate system with orthogonal y and =
" axes. The z axis is along the line of sight. Without 1,6;;3 of any generality the semi-major axis of
the ellipse is taken to be along the r axis, and the semi-minor axis along the y axis. If p = 1, then
the net flux is unpolarized since the atmosphere is circularly symmetric about the line of sight. If

1 # 1, then there will be a net polarization.

The elliptical symmetry of a projected atmosphere model requires the polarization to be aligned

f

~F
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o

Photodisk

Figure 3.3. The elliptically symmetric projection of a hypothetical supernova atmosphere.
The atmosphere has two components: the limb from which polarized radiation emerges, and the

_ photodisk from which unpolarized radiation emerges. The parameter r, is a generalized radius

given by r; = /(y/a)? + (z/c)?. The polarization of the radiation emitted from a point on the limb
is aligned with the tangent to an ellipse of symmetry drawn through that point.
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either with the short or long axis of projection. The polarization of a specific intensity beam is

II"'Ir
I!+Ir'

P(Ay, z) = (3'1'1)

where I; and I, are specific intensities of the Stokes fields aligned with the z and y axes respectively.
! g |
The net polarization is found by integrating I; and I, over the whole elliptical projection to obtain

‘-
. —F = jda:dy!; and F, =/d::dy!.., (3.12)
and thus - ‘ . .
- Fj‘ - Fr
(A{_ FEF (3.13)

There i8 no circular polarizatiofn, since no source of circular polarization is included in the model.

Scattering by electrons is wavelength independent; Thus the flux from the atmosphere will
have a.wavelength independent continuum polarization. The scattering by resonant transitions of
jons in lthe homologously expanding supernova atmosphere createﬁﬁe P-Cygni profiles that are
superimposed on the supernova flux continuum. Resonance scattering is also polarizing, and so it is
expected that polarization features associated with the P-Cygni flux profile will be superimposed on
the continuum polarization. The additional scattered flux in the emission feature incteM the frac-
tion of polarized radiation emitted near the rest wavelength of the resonant transition. The resonant
- scattering out of the line of sight of unpolarized radiation in the photodisk forms the blue-shifted
P-Cygni absorption feature. Thus in the wavelength region of the absorption feature there is less
diluting unpolarized radiation, and so again the fraction of polarized radiation is increased. There
will also be some polarizing resonance scattering into'the line of sight of photons with wavelengths
in the absorption feature wavelength region. McCall’s model ignores this contribution by resonance
séattering, and assumes that it is continuum scattered radiati_on that is the source of polarization of
the absorption feature.

McCall's intention was not to calculate model results, but to obtain a simple analytic i)rescrip-
tion for the polarization of the emission maximum flux of a P-Cygni line, and a simple prescription
for n tn terms of measuiable quantities. To this end, he simply assumed that the plateau polar-
ization result obtained by CH (see section (a) of this chapter) applied to all the specific intensity
beams emitted from the limb. The CH result was obtained for spherical, scattering atmospheres

with central point sources of unpolarized flux. Having a finite central source of unpolarized flux

-

e
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ma.y reduce the polarization of the net flux scattered by the atmosphere. Furthermore, the platcnu
reault was obtamed only for some of the atmosphere scabtered flux; it is not clear that it should be
applied to a.ll limb-scattered flux even if it is appropriate for some of the llmb-scattcrcd flux. Tifus
McCall’s prescriptions wnll probably lead to over-cstimates of polanzatlon and under-estimates of
asymmetry. The CH result was derived for continuous acat.termg in a static atmosphere, Thus, it
should be applicable to continuous scattering due to electrons in moving atmospheres (see section (n)
of this chaptér).—l-ioﬁever, it is not clear that it adequately describes the polarization of resonance
scattering in moving atmosphere: where the scattering for each wavelength is confined to velocity
surfaces as described in Chapter 2 section (a). Nevertheless, to avoid complications McCall applied
the result to all the resonance sc;attered limb radiation with an additional depolari‘zation factor to
correct for the depolariza.t.ion effect, of resonafice scattering. . \

The McCall prescription for the polarization })f a specific intensity emitted by the limb of his
model is '

P = (223 ‘) D(EY), (3.14)

where the first factor is the CH plateau polarization result and where D(E)) is a depolatization
factor that depends on E,, the phase-matrix coefficient of the Hamilton scat.t.éring phase-matrix.

Using equation (2.122) of Chapter 2 section (d), the polarization of a beam scattered by a transition

obeying the Hamilton phase-matrix is

P(O) = 2E)(1 - cos? ©) =(1—cos’e)( $E\(1+cos? @) )
%E1(1+C0826)+2(1—E1} (1'+ cos? ©) \ 2E(1 + cos2 @) + 2(1 - E))

2E\(1 4 cos? ©)

1 +cos?0) +2(1 ~- E,)

= P(e)ﬂayhl'gh (gEl( ) (e)Ruylclgh D(Elle)i (315)

where the polarization is aligned perpendicular to the scattering plane. The second factor of equation
(3.15) is a depolarization correction for resonant scattering where the E, is determined by the
prescription given in Chapter 2 section {d). McCall set © = 90° to obtain the one parameter

depélarizatioh factor
3E4
4-E

D(E)) = (3.16)

This is probably the optimum choice for three reasons. First, right-angle scatteting ir_: the most
highly polarizing scattering, and is thus probably most important in establishing the CH polarization
plateau. Second, the ratio D(E))/D(E},®) can vary only between 0.5 and 1; thus D(E)) is never

wrong by more than 50%. Lastly, D(E;)/ID{E;,©) is monotonically increasing with £}, and thus is
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least it{ e;for for the most polarizing resonance transitions; lines resulting from the most polarizing
transilions are likely to be the best observational objects,

CH derived their polarization result for a epherically symmetric system. Their result has the
polarization of a specific .intensity be;am aliglied with the tangent to a circle of symmetry that’
passes through the‘point. from which the specific intensity beam ia emitted. Since McCall considered
elliptical symmetry, he assumed that the polarization alignment of a specific intensity beam at any
point in the limb is tangent to an ellipse of ;aymmetry that passes through the point from which the
specific intensity beam is emitted (see Fig. 3.3). In the untransformed local coordinate system the

-

Stokes parameters of the specific intensity beam from a point are { .

I=I0+P)/2, IL=I1-P)/2 and U'=0, (3.17)

whe&I is the total specific intensity from the point, and P; is the plateau polarization. The tangent

. ellipse can be defined by the equation

-

re = Vizley + W/a), (3.18)

where r, can be thought of as a generalized radius. The local system must be rotated clockwise by

an angie v with

r; —(y/a)?
(c/a)(y/a)

= (a/e(=/1) |

. ={afc)* cot ¥, ’ | (3.19a)

(c/a)*tand '

COBY = =t ——
b . 7 V1+(c/a) tan?d’

_ +1
" V1+(c/a)*tan?d’

tany =

(3.19%)
and

siny (3.19¢)

-

where § is the angle measured from the z axis to the vector (v, z). The transformation equations for

the Stokes parameters are

I = If cos? y + I'sin® v + (1/2)U" sin 2, (3.20a)
I, = Isin®y 4 I’ cos? v ~ (1/2)U"sin 27, (3.208)

and o
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U =~I/sin2y + I' sin 29 + U’ cos 2y | (3.20c)

(Chandrasekhar, 1960,. p. 34). McCall assumed that the primed Stokes parameters were constants

. over the elliptical limb region. Thus symmetry and the fact that I/’ = 0 reduces the necessary

integrands to

I = If cos® v + I sin? v, (3.21a)

I, = I sin® v + I’ cos? y, | ' ' (3.21)
and ‘

v=o. ' (3.21¢)

The required integrala are

f dy f dz cos’y  and f dy f dz sin? v, (3.22)

where the region of integration is the area of the elliptically symmetric limb. Using the transforma-
tions

y=argsiné and z =crycosé, (3.23)

the integrals become

acry(c/a)® tan? € /
d .
/ i ./ 1 +(c/a)? tan"'& - ./ dr L1+ (c/ a)’ tan’f (3.24)
where the symmetry requires that the £ integral be done only from 0 to x/2 and then a multiplication

by 4 for the final result, and where rg1 and ry; are the bounding generalized radii of the limb. The

1, integral can be done at once to yield the coefficient

2ac(ry; — rd)), . (3.25)
where the factor of 4 has been included. Using the transformation
£ =tan~s, (3.26)

the £ integrals become

= (5/q)2 oo 1
/; “aremaaTe fo T (3.27)
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Using partial fractions the integrals becoms

(=) (fom“"1+(£/rvn=)+(1—lln=) ([ temw) e

(=) ([ o )+ () [Comz) e

T 1 r n |
f() wa. (2) o

respectively. Thus the net\limb Stokes parameters are

and

The solutions are

ey r (L+ ) + (1 = )Pyl
 § ‘F; = -2-ac(r:, - :1) ( T+m , (3.31a)
; X a3 _a{(+nl+(n-1)P]
Fo= 2 ac(rys —rg1) ( a+n ' (3.318)
anfl
U=0. (3.31¢)
The polarization o‘f the limb flux is then
.. 1-9 -
Plimb) = [ —2) p,. .
(limb) (1+’I) ) {3.32)

p /_'\
A consequence of equation (3.32), that is independent of many "assumptions made by McCall, is that '
radiation originating on an elongated source and scattered at right angles toward a tiistant observer
will tend to have its net polarization aligned with the long axis of the source, '
McCall’s prescriptions for the polarization of the emission maximum flux of a P-Cygni line, and
for 1 can now be obtained. Definitions of quantities needed are listed for convenience in Table 3.1.

The observed continuum polarization is given by

F.(limb) P,
P = — :
(cont) F(net) (3.33)
The polarization of the emission maximum of the P-Cygni line is given by
N, .
P(emis) = Fe(limb) P, + Fi(limb) P, * (3.34)

Fe(net) + Fy(limb)

The assumption is being made that the effects of continuous and resonant line scattering are inde-

pendent. This assumption is really only valid when one or both of continuous and resonant scattering



TABLE 3.1.—Quantities appearing in McCall's prescriptions.
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Quantity

Deacription ’ -

Determination

P,

"Fo(limb)
-.Fe("‘t)
Fi(limb)

P(cont)

P(emis)

The polarization of the continuum
radiation emerging from the limb.,

The polarization of the resonantly
scattered radiation emerging
from the limb.

The net continuum flux from
the limb.

The net continuum flux from
the limb and photodisk.

The P-Cygni emission maximum
flux for a resonant line.

The continuum polarization.

The P-Cygni emission maximum
polarization.

Equations (3.17) and (3.35) with -
the Ey =1 for clectron scattering
and some appropriate average E;
for the quasi-continuous opacity due
to the Doppler enhancernent effect
see section (a) of this chapter).

Equations (3.17) and (3.35) with
the appropriate £, coefficient
for the resonance line under
consideration.

Solved for from

observed quantities.

-~

Observed

- Observed.

Qbserved.

m—

Observed.

N

effects are weak. If both effects are so weak that a photon passing through the atmosphere has only

a small chance of scattering even once by either mechanism, then clearly the effecta are additive. If

one effect is extremely weak compared to the other, then its contribution is sufficiently small that

it can be approximated crudely. When P. = 0, the polarization of the emission maximum is

Fi(limb) P,

P(emis) =

Fs(net) + Fi(limb)”

(3.35)

This preseription is used in Chapter 4 to obtain McCall emission polarizations that are compared

to the corresponding Sobolev values.
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Substituting for F,(limb) P, in equation (3.34) from equation (3.33) gives

P(emis) = 2(cont) + TP (""1"2 ; Ly (3.36)
where
f= P;(:::tb)) (3.37)
Thus
. P = P(emis)(1 + /) — P(cont) (3.38)
; -
Recalling equation (3.32),
_ Pof — Plemis)(1 + f) + P(cont)
= Pl T Plemis)(1 + f) — P(cont)
_ f[Po = P(emie)] — [P(emis) — P(cont)] (3:39)

T f[Ps 4 P(emis)] + [P(emis) — P(cont)]’

Thus using observable quantities and McCall’s depolarization corrected version of the CH result (see
equation (3.14)) an expression is obtained for the ratio of the semi-minor to semi-ma.joF axes of the
projection of a supernova atmosphere,

The prescription for n has the advantage of simplicity. However, the assumptions made in

obtaining it are not obviously justifiable. Three major weaknesses in the assumptions can be reca-

" pitulated here. (1) The applitation of the CH polarization plateau result to all the limb-scattered

radiation of a system with a finite central source of unpolarized radiation will probably lead to
over-estimates of the amount of polarized limb flux, and under-estimates of the asymmetry of the

supernova atmosphere. The over-estimates and under-estimates may be quite significant. (2) The

.CH result was derived for a spherical atmosphere. Its use for an asymmetric model is plausible, but

clearly an approximation of uncertain accuracy. {3) The CH result applies to a continuous scattering
atmosphere. It is not clear that it would be any more than order of magnitude correct for resonant
scattering in a moving atmosphere.

The weaknesses of McCall’é assumptions indicates that his expressions are probably not very
useful in estimating supernova asymmetry from observational data. In Chapter 4 results obtained

from Sobolev-H calculations are compared to values obtained from McCall expressions.



—_— . . Chapter 4
Polarizing Atmosphere Models
And a Parameter Survey

. o

Section (a) of this chapter discusses the model supernova atmospheres considered in this thesis.
"The results of flux and polarization line spectra calculations for a parameter survey of spherically
symmetric, prolate, and oblate moldela are given secti.ona (b), (c),.a.nd (d), respectively. Figures for
the spectra calculations are gathered at the ends of the ;pproplriate section. The gencr.al con;luaiona

for each section are given at the end of the section,

a} Discussion of the Model Supernova Atmospheres *

This thesis considers axially symmetric, expanding atmospheres as possible models of super-
novae. The asymmetry of a supernova can be detected 'fron: the polarization spectra of the supernova
lines. The calculation of polarization spectra for a parameter survey of models has been done, and
this chapter -reports and discusses the results. To calculate the polarization spectra a computer
program was written using the Sobolev-H formalism derived in Chapter 2. The prdgram can calcu-
late flux and polarization spectra for expanding, multi-line-resonance scattering atmospheres. The
remainder of this section discusses the features, parameters,'a;nd limit.at_.io:_m of the computer pro-
gram. The program is listed in Appendix 4. Some analytical results pertaining to axially syn'lmctric

ellipsoids that were used in the program are presented in Appendix 3. -

The discussion of asymmetric supernova calculations given in Chapter 1 section (d)} suggestg
that rotation may lead to oblate explosions, and that rotzLI.ion with magnetic fields may lead to
prolate explosions. 1t is plausible to assume that if an asymmetric core or mantle exists in a super-
nova explosion., then density ésymmetry along with kinetic energy yill be transferred to the outer
layers. - Therefore supernova atmospheres with oblate or prolate density distributions may oc\cur‘
The assumption can be made that the temperature and other thermodynamic distributions would

have the same asymmetry as that of the density distribution. It then follows tha® the photosphere

of a supernova would also tend to have the same asymimetry. In view of current ignorance of the

' 110
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behavior of asymmetric supernova explosions, all of the above assinmptions have been made in order

to have a simple model atmosphere for calculations. This kind of model atmosphere is used in all

the polarization spectra calculations for this thesis.

The exact specification of the models is given-iy_the following, The photosphere and the .

thermodynamic state of the models were considered to have regular axially symmetric cllipsoidal

:;ymmetry. Axisymmelric ellipsoidal ahai)t;s were congidered as they are relatively easy to implement

ina computer code, and as only a single parameter controls their shape variation. Following Shapiro

and Sutherland (1982) the ellipsoids are parameterized by an asymmetry parameter £:

r
.

§pro =1~ (afc), a<c (prolate); (4.1a)

§o1 =1=~(c/a), a>c (oblate), {4.28)
‘ .

. where ¢ and a are the lengths of the symmetry and perpendicular semiaxes, respectively. The same

* € is used for both photosphere and atmosphere, Since spherical supernova ‘models and pbct.ra fits

[

. (see Chapter 2 section (c)) indicate that a useful parameterization of the density distribution is a

power law decay with radius, a generalized versigh may be assymed for asymmetric supernovae:

\ Y =ty S 43)

.
where g,y is the photospheric density, p is the power index, and r; is a generalized radius parameter

given by

re = /(E/a) * (BJa)® ¥ (/o). (44)

2 )
When ry is held constant, equation (4.4) defines an axisymmetric cllipsoid. The power index p was
set to 7 in all but one of the model calculations. Spherically symmetric hydredynamic calculations

indicate that a power index of 7 gives a good representation of supernova atmospheres. {see Chapter 2

section (c)). For practical calculations a maximum generalized radius, Pgmes+ had to be implemented.
. .t

For all reported calculations'r,_,, was set' to dr,,., which is effectively at infinity for p = 7 models.

In th& model calculations the density is never used, rather the Sobolev optical depth is the
density-related quantity that appears.. In correspondence to the assumption of Branch and collab-
orators {see the discussion in Chapter 2 (c)), it has been assumed that the Sobolev optical depths

are proportional to the density and are given by the expression

T(ry) = T};A(T,’. [P, ) ‘ (4.9)
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where 7y, iy the Sobolev optical depth at the photosphere. Most of the models, considered 'R‘rc'
singie—line models. Strongly blended line models-would be more difficult to uniquely parameterize
and thus would give a less sure diagnostic of supernova chnrncteristi‘cs. Observers should, if possible,
do spectropolarimetry on strong isolated lines to allow the cleareat intcrprrcta_t.ion of data.

Again following Branch and collaborators, no continuous opacity has been included in the
calculations reported in this chapter. However, continuous opacity is thought of as establishing
the photoaphere at a continuum optical depth of ‘approximately 1. Continuous opacity can be
provided by clectron scatteting, ionizing transilions or the quasi-continuous opacity due to the
Doppler enhancement of thousands of weak lines (Karp et al. 1977). The inclusion of .continuous
opacity does not have a drastic effect on the morpholo@ of line profiles that emerge from a supernova
atmosphere (Harkness 1986); however, the model parameters needed to fit a spectrum may w;:ll
change when continuous opacity is included. Without continuous opacity there is no source of
continuum polarization in the calculations. Recall from Chapter 3 that the Shapiro and Sutherland

(1982) calculat:i_ohs gave net continuum polarizations on the order of a few percent fc:r £ ~ 5.
Anticipating the results of the present chapter, P-Cygni line polarizations can also be of the order
of a few percent for £ ~ .5. It might be conjectured that the line polarization features would simply
be superimposed on the continuum polarization. H.owcver, an experimental investigation of the
convolution of continuum and line polarization indicates that the net effect is more cot'n?licated

~ than simple superposition. This investigation is reported in Chapter 5 section (b). o

t The photosphere is considered to be a well deﬁnéd sur!'ace. It is the. original source of tlie

continuum radiation timt. is then scattered in the atmosphere. Two sorts of continuum have been
considered: ('l) an artificial continuum that is consta.ntl with wavelength, and (2) & Planck black-body
continuum that Eiepends on wavelength and photospheri¢ Temperature, Ton. The constant continuum
is used because it does not bias the-rodels wit.l; regard to the slope of the continuum which, for the
Planck continuum, depends on temperature. Wien's displacement law gives the ‘wavelength of the

-maximum of the Planck distribution: : -

[y

28978.
A'I'l‘lﬂl.’ - Jns A ]

(4.6)

,where Aqg; isin Angstroms, and T;; is the temperature in.unil..s of 103K. Since supernova pho-
tospheric temperatures range from x 30000K to = 5000K, it is clear that the maximum of the

Planck continuum can occur at any wavelength in the optical region, and therefore the slope of the

-—
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continuum may be positive or negative in the optical region. Thus it is preferable to examine models
with zero slope continuum, unless the effect of the continuum slope is itself being investigated. Most

of the models reported in this chapter have the zero slope, constant continuum.

The constant ¢, as explained in Chapter 2 section (a), gives the coupling of the resonance

trangition to the other transition processes. When ¢ = 0, pure two-level atom resonance scattering

obtains. For non-zero ¢ (and the Planck continuum), the calculations assume the two-level atom
approximation, and thus the non-resonance source of photons is collisional excitation by particles
obeying a Maxwell-Boltzmann distribution evaluated at the local electron temperature. This thermal
source ia given by the Planck function B, multiplied by ¢ (see Chapter 2 section (a)). The Planck
function is evaluated at the photospheric temperature -7, which is assumed to be équa! to the
electron temperature everywhere in the atmosphere. The thermal emission provided by non-zero
e only adds flux: it tends to fill in the P-Cygni absorption feature and it increases the emission
" feature. Since the parhcle collisions are rafidom, the thermal emission is isotropic and unpolarized.
" The effect of adding a thermal pource is simply to diminish polarization. No noit-zero (_r.ajculations

-are reported in this chapter.
i

~ The radiative transfer in the models was treated with the the Sobolev-H method derived in
éhapter 2'se'ction (d). The polarizing effect arises from the use of the phase-matrix.
Since this chapter is only .reporting a parameter survey, there is no nee& to comsider the validity
pf Hamilton scattering for the models. The E; coefficient of the Hamilton phase-matrix controls
the polarizing effect: Ey| = 0 gives isotropic non-polarizing scattering, and &) = 1 pure Rayleigh
scattering. The eflect on the flux profiles of varying E; is examined in the reported models. The
effect on the polarization profiles of decreasing E} from 1 is clearly to cause a decrease in polarization.
In fact, t.l;e polarization of the net flux of a supernova atmosphere tends to be linearly dependent
’:)n E). The only nonvanishing terms that occur in the numerator of the net polarization ratio are
those in which the S3, S3 and S; coefficients appear linearly in the integrands; recall from equation
(2141) that S - S; = £3. From equations (2.146) and (2.130), it can be seen that for the S, S
and Sy coefficients, the most iruportant E; dependence is linear. The denominator of the the net
polarization ratio has a larée contribution of flux that is unscattered and thus has no dependence

“on E). Thus the net polarization tends to be linearly dependent on E;. No reported polarization

calculations used E) .# 1, since the effect on polarization is faitly clear from the above argument.

.
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TABLE 4.1.—Descriptions of the model calculation parameters,

T
L

Continuumpy: This determines the nature of the continuum radiation emergent from the photo-
sphere. It can have two values: “Constant” for a wavelength independent continuum, and “Planck”
for a Planck distribution of temperature Tp,. ¢

E;: This is the phase-matrix coefficient discussed in Chapter 2 section (d). E; = 0 gives isotropic,
nonpolarizing scattering, and Ey = 1 gives pure Rayleigh scattering.

p: This is the power in the function that determines the optical depth as a function of r;: r(r;) =
'rph("y.a Irg). ;

’ . o
Pro/Oblate: This determines whether the model is prolate or ablate, '
P gman’ " This is the atmosphere’s limiting outer generalized ra.dlus in units of r, ,, the generalized
radius of the photosphere

Tpn: This is the photospheric temperature when a Planck continuum is specified. It is also the
temperature of the atmosphere when the thermal coupling parameter € is non-zero. -

vpa: This is the line of sight velocily toward a distant observer of that part of the photosphere
nearest the observer.

¢: This is the thermal coupling parameter in the two-level atom approximation. ¢ = 0 indicates
a pure resonance-scattering atmosphere, and ¢ = 1 indicates an atmosphere from which emitted
radiation owes Lo collisional excitations of the iona. :

Binet: \-This is the inclination angle between the axis of symmetry of the ellipsoidal atmosphere and

* the line of sight to a distant observer. §;n.; = 0° means that the projection of the atmosphere on a

plane perpendicular to the line of sight is circularly symimetric about the line of sight. i, = 90°
maximizes the asymmelry of the projection of the atmosphere.

Arest: This the rest wavelength of the ion transition that gives the resonance scattering.

§: Thisis the ellipsoid asymmetry parameter. £y, = 1—(a/c}for prolate models, and £t = 1—(¢/a)
for oblate models. E,,,,/,u = 0 gives a spherical atmosphere. £, = 1 gives an infinite cylindrical
atmosphere &om = 1 gives an infinite disk atmosphere.

7pn: This is the Sobolev optical dcpth at the photosphere See Chapter 2 sectlon (a) I'or the definition
of Sobolev 'optical depths.

~—
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In section (b) of this chapter, the effect of varying E; on the flux profile of P-Cygni line has been ©

investigated.

The inclination angle between the symmetry axis of the ellipsoid and the line of sight to the
observer has been labeled 8;,c1. For a given model the polarization is maximized for 6;,.; = 90° and

ia zero for Oyner = 0°. Calculations showing the effects of varying 6,1 are reported.

" For this parameter study artificial lines with rest wavelengths labeled by A..,¢ were consid-
. ered, For the constant continuum models the choice of a particular A,,,; has no significance. For

convenience, Apq,¢ was usually chosen to be 5000 A.

'I:he velocity along the line of sight to a distant observer of that part of the photosphere nearest
‘the observer is labeled vy, and is referred to as the photospheric velocity. Since supernova explo-
sions are in hotnologous expansion, the velocil.y between two mattér elements is proportional to the
distance between the elements {Chapter 2 section (c)). Thus thwomty gradient Q is a constant.
The Q value is obtained by dmdmg vpn by the distance along the line of sight from the point where
v =0 to the point where v = vps. The Doppler shift of specific intensity originating at any point in
the atmosphere is proportional to Q. Thusering vph OF @ causes a linea.:t.- variation in the horizon-
tal scale of ‘the flux and polarization profiles. The choice of a particular vp; has no'real significance
to the pa.rm.'neter survey. The photospheric velocity vpp has been set to 6 x 10° cms™=! for all models
of the survey. This velocity is represcntaltive of supernova velocities, and it conveniently corresponds

to a Doppler shift of 100 A for a rest wavelengthof 5000 A,

For convenience, Table 4.1 lists the model calculation parameters alphabetically and gives brief

descriptions of them.

b) Spherically Symmetric Models

Spherically symrx';etri' models have been examined in this survey in order to demonstrate and
expla‘in the flux profile behavior that is not dependent on asymmetry. The polarization _of the net
flux from spherically symmetric models is, of course, zero. For convenience the models are labeled
by their figure number. Thus the results of model 4.1 are displayed in Figures 4.1. Models 4.1, 4.2,
and 4.6 largely repeat work done by ﬁranch (1980). The parameters for all the spherical models

examined are given in Table 4.2. All the flux profiles displayed have been normalized to the flux

value at the lowest wavelength shown on the figures. The figures labeled “a” display the net flux -
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profiles. The figures labeled “b” display the limb component of the flux profiles, and those labeled

“cﬂ

the photodisk component of the flux profiles. (For the definition of limb and photot:!iuk sec
Chal-)ter 3 section (b).)

To explain the models, it ia useful to recall from Chapter 2 section (a) the formal Sobolev
solution for emergent specific intensity given by equation (2.19). This solution is appropriate for
systems where single velocity surfaces are adequate to describe the radiative transfer. Such a system
_is onein gencral‘expansion or contraction with isolated lines. The solution can be adapted for the
case where a distant observef views both Lhe projection of an al.moalgahere covering a photosphere,
and the projection of an atmosphere alone. The first projection has been called the photodisk of the

projected object, and the latter the limb. The emergent specific intensity is then

Sw)(1 —e~ ")+ I{(¥)pae™", for the photodisk;

. I(v)pn, for the photodisk when the
I{V)emg = velocity surface is below the (4.7)
the photosphere surface;
S(w)(1 -7, for the limb’’

The source function S(»), and the optical dept};s T are evaluated on the velocity surface corre-
spondin; to the frequency ». With homologous expansio? the CD velocity surfaces are planes
perpendicular to the line of sight. Taking z as the coordinate along the line of sight with the posi-
tive direction toward the observer and using the first order Doppler shift, the location of a velocity
surface corresponding to frequency v is

-

x(u) = (U/Vrest = 1)/(Qfc)
= Orant/A = 1)(Q/e), (48)

. where v,4,¢ i3 the rest fraﬁie frcquen_cy éf the line transition and Q is the velocity gradient. The
Q value is, of course, a constant for homologous é;tpansion. The net emergent flux at frequency v,
F(;/), is evaluated by integrating I(¥)em, over the whole velocity surface. A distant observer cannot
resolve the atmosphere, and so only measures the net flux. Thus it is important to interpret the
net flux profiles in terms of underlying physical parameters. In this survey the net flux 7proﬁles have
been calculated and are preseated in the figures.

It should be remembered that frequency (or wavelength), velocity, and position coordinates are

approximated as linearly related quantities for the model supernova atmospheres at any particular
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TABLE 4.2.—Parameters for the spherical models of section (b). - -

Model ' Continuumgy Pro/Oblate Uph Arest

(Figure) E, Tomes € £
p Ton Oinet ) Tph

4.1 Constant Spherical 8x10°cms=! 50004

. 0 dxr,., 0 0

7 . t : t *

42 Constant Spherical "6 x 10° cms™! 5000A
0 4xr,, t 0
» ‘ t SR B 5

4.3° Constant Spherical Bx10°cms~!  B5000A
0 4xr, 0 0 '
7 . 1 1 *

44 Constant  Spherical 6x10°cms=! 50004
* 4 % Top 0 0.
7 t t 10

4.5 Planck Spherical 6x10%ms~!- 50004
0 4% rg, 0 0
7 * { 10

4.6 Constant Spherical 6 x10%°cms™! *
0 4% 14, 0 0¥
7 . t ] ‘ 10

NOTE: The “»” indicates that the parameter is being varied for this model.’ The “1” indicates
that the parameter is irrelevant for this model.

®Model 4.3 has an artificially transparent photosphere.

. . ——
time. The use of one or other of these at any point in the discussion is a matter of convenience.

Recall for example that

Tph = Upal, (4.9)

where ¢ is the time since the supernova explosion.

The flux profile of a line from an expanding atmosphere with macroacopic velocities exceeding
thermal velocities has a typical shape called a P-Cygni profile (see also the discussion in Chapter 2
section (b)). The P-dygni profile consists of an emission feature céntered on the rest frequency and

a blue shifted absorption feature. The emission feature owes mainly to nearly right angle scattering
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from the limb region of the atmosphere. The ions in the limb have most of their velocity directed
* perpendicular td the line of sight, and so photons scattered into the line of sight from this region have
only small Doppler shifts. For axisymmetric atmospheres treated in the Sobolev approximation, the

flux profile component owing to the limb is a symmetric function about the rest frequency. The

absorption feature owes to scattering out of the line of sight of photons emitted by the photosphere . .

toward the distant observer. The scattering ions are moving toward the observer and have blue
shifted transition frequencies. Thus photons removed from the flux toward the observer are higher
frequency or bluer than the rest frequency, and thus the absorption feature is bluéshil't.ed from the
rest frequenc.y. The absorption feature mainly owes to the photodisk region. The flux components
from the photodisk, and limb’have been plotted scparately in the figures so that their separate effects
can be analyzed.

To ~gain a quantitative understanding of Sobolev-calculated P-Cygni profiles for the case of a
homologously expanding supernova atmosphere, the emission maximum and absorptlon minitmum
will be examined analytically for a mmple spherically symmetric system. The atmosphere is consld-
ered to be a pure resonance scattering atmosphere. The photosphere emits a'tonstant continuum.
The source function is then given by |

S(r) = W(r)Ip, {4.10)

where W(r} is the dilution factor and is given by

- W= % (1 —y/1- (r,,,./r)?) . (4.11)

L]
The emission maximum occurs for'v = vrc,q, where the velocity surface is defined by z(v =
Urest) = 0. For v < Vpeut, the photodisk flux component is clearly as large as it can be, since the

observer-facing hemisphere of the photosphere lies entirely above the velocity surface, and thus the

photodisk flux component has no flux lost due to scattering. The limb component is a maximum, -

since only for the velocity surface at £ = 0 does the limb region touch the photosphere where the

source function is a largest. The limb component is

L4

F(Vresttims = 27 ] T G rS(r)(1 - &), (4.12)

Toh
where for all the models considered

r = Toa(rpa/rY. (4.13)
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- This integral has no simple analytic solution. However, the upper limit is clearly ‘
' —
Fmes
Fimi = 2#/ © drrS(r). (4.14)
b ¢

The solution to the limiting integral is

Fumit = ®ln / ™ drr (1 1= /,-)a)

Tph

= Tl (r2/2)[1 = /1= Gl + /e (r (14 = Cenfe) )|
= wln(rd .. /2) [1 — (rpn/rmaz)? = /1 — (ron/rmaz)? .

-+ (rph/rmas)z ln(rmat/rph)

+ (rp;'.ltr'ma.e).2 In (l + 41~ (r,,;./rm,)i')]. (4.15)

For rpp [Pmaz € 1,

Flimir = 'Kr:h[pk(1/2) [In("muz-/rph) + ln(z) - % - %(rph/rma:)z] . (416)

The limiting emission maximum relative to the continuum flux is then

Faetiimit =1 + (1/'2) I0(rmaz/Tph) + In(2) — % — é(rph/,m“)ﬂ] ) (4.17)

Fcoﬂll'nuum

In the model calculations rmge = 4rps, and thus

r Fnct limit

y—— 1.78575 (4.18)
is the maximum relative flux that can be obtained in any calculation. It is clear that if Prnaz — 00,
Flimie diverges logarithmically. The correct limb flux integral, given by equation (4.12), will not
diverge due to the (1 — e™") factor. This factor behaves rather like a step function: for r > 1,

l—e ")as L, and for 7 <1, (1 —e™7) = 0. Thus there is an effective maximum radius given by
g

FMaxz ef fective & (Tph )(Up)rph- (419)

To obtain rarar ofsective > 4 with p=7, Tpn must be greater t.han\ 16384. Thus the maximum
relative flux given by equation (4.18) would be expected for model calculations with ph 2, 16000. If
TMax ef fective 18 Substituted into equation (4.17), thenfan expression is obtained for the maximum

relative flux as a function of 7,5 for 7,0 2P 1:

Fasttimi q
natl t "?‘.-1..1-{" h)'

4.20
Fcoﬂta’nuum 2? ( )
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Thus the relative flux grows as the loga.rit.hm of ‘r,p..

The location of the absorption minimum can be approximately determined by considering l,hc
specific intensity beam emltt.ed along the md:us colhnear_ wnth the line of sight through the cetter

of the spherical system:

, S(r(u))(l—e ")+I;.c"’, for r > rpa;
e { Ion, ’ forr< r:p., (4.21)

where r(v) = (¥/Veest — 1)/(Q/c). Note that since S(r) is always less than I,s, it follows that
I(r > rpn) < I(r < rpp). The strongest radial dependence of }(r) is in the exponential factors. The
source function term starts to fall rapidly and the direct term starts to rise rapidly when r a4 1.

Thus the radius giving the minimum emergent intensity is given approximately by

rmin %3 (758 ) MPrpy. (4.22)

A more exact result can be easily derived. Taking the derivative of equation (4.21) for r > rpy gives ‘

E‘L")

= (Ipn = S(r ))”—";";;L" Tes-en. (1.29)

 Setting the derivative to zero, re-arranging, and cancelling common factors gives

0= [2 T (moa/r) (1 -W(r))("—{’!/";_)—‘)’:&"-+1] ! (4.24)

If rmin 3 rpn and 7oy > 1, then (1 — W(r)) — 1 and (r/ry5)? can be approximated by (7ps)/?.
The resulting expression for ry;y, is

o : (fp) '
. Fmin = ( (r ) (i/p) (4.25)
(In(1 + 2(mpn)@/P)p)) /7 _ - -

Alternatively, for 7 € 1 the exponential in equation (4.24) can be expanded to first order, and after

some cancelation the equation

1= (‘/ L—(rpn/r)2+1- (r,p,/;')’) p(rfron)? | (4.26)

is obtained. The resulting for expression rp;, is

' 1+1/p
= | ——LE | ron, 4.27
Tmin ( T+ 2/p) ph ( )
where there is no dependence on 5. The actual minimum net flux in a line profile is the result of the

integration over the all the specific intensity beams from the photodisk kand limb. It seems unlikely
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that the r,,.;,.?f“the net flux should be very different from the 1:,,,;,, of the radial specific intensity,
The other beams froﬁ the photoclisk have a slower source function ;;:ay with the z coordinate as.
their beam paths along :.he line of sight are not radial; this compensates somewhat for the beam
paths emerging from the photosphete at z < rys. Furthermore, it is clear that the minimum cannot
occur for z £ rpa, since as z decreases from rp; more and more of the photosphere surface is above

the scattering velocity surface. The limb component of the flux has no minimum, and thus should

not sffect the above argument,

In model 4.1 flux profiles for'a large range of 7,5 values were calculated with p = 7. The other
parameters for the model can be found in Table 4.2. Fig. 4.1a displays the profiles, Fig. 4.1b, and
4.1c display the limb, and photodisk components of the proﬁlés, respectively. From Fig. 4,1a it can
be seen that the flux maximum incyeases in a roughly linear manner with the logarithm of Tpa until
Tpn = 105, The logarithmic growth with Tpa was predicted by equation (4.20).' When 73 = 108,
FMar effective %3 5.2rp, which exceeds Lh? Tmaz = 4rpn used in calculating the model. Further
increases of rp, would not change the profile any further unless r,,.,f, were increased. The ratio of

the s‘at.uratcd maximum flux to the continuum fux is = 1.78 which is in‘good agreement with the

value 1.78575 obtained analytically for rmaz = 4rps (see equation (4.18)).

The vpn parameter was chosen so thal the Dobpler shift associated with r,, would be 1004A.
It is clear from Fig. 4.1a that the flux minimum wavelengths for 7,5 = 1 and 7, = 10 are about
IIOUA below the rest wavelength of 5000 A. Thus rmi, = rpn. From equation (4.27) for small 74,
the predicted value is rmin = 1.00791r,5. The two yLlues are quite consistent. It is clear that fors.
low Toh \valua the flux minimum forms right at the photosphere. Thus unblended, weak supernova
lines should allow immediate determination of the photospheric velocity from a measurement of the
flux minimum wavelength (Branch 1980). It should be recalled, however, that the models assume

that a well defined photosphere exists.

As larger 1, values are applied to model 4.1, the wavelength difference between the rest wave-
length and the wavelength of the flux minimum increases slowly. In Table 4.3 a comparison is made
" of the model values for the flux minimum z coordinate, and the values obtained from minimizing the
radial specific intensity beam equation exactly and in the various approximations. The agreement

between the model™3: ‘and the analytic exact zm;q is quite good.

The results of model 4.2 are displayed in Fig. 4.2a, 4.2b, and 4.2¢c. This model has Toh = 9,
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TABLE 4.3.—Comparison of the £ values from minimizing the fadial specific iptensity equation, ‘

and the zpin values from model 4.1, _ y
\ ) (pn)1/P)
7 T,
p\h Ph [ln (Lt 2(r) (i_lp)p)](‘ ] Exact zmin Model 4.1 z,in
e : 10-4 0.268270 0.282471 . 1.00791 —_
' . 10-3 0.372759 0.368673 " 1.00795 —
: 10-2 0.517947 0.486096 1.00801 - -
10 0.719686 0.646854 1.00861 —
10° 1.00000 0.867345 1.01789 0.94
. 100 1.38950 1.16993 " 117359 1.02
107 1.93070 1.58530 © 154017 1.40
10° 2.68270 2.15570 2.00402 2.01
104 3.72759 2.93931 2.85211 2.80
\ 108 5.17947 4.01641 . 3.80877 3.56
108 7.19686 5.49770 5.34251 -

) NOTE: The 2min values are all expressed in units of r,,. The parameter p = 7,

and the power parameter p set towd, 7, and 12, The ;t: 4 case has an ‘extendcd blue wing to its
absorption feauture that is not observed for supernofa lines of moderate stre-r‘lglh, and so 4 may not
be an acceptable p value; the values of 7, and 12 have profiles that appear acceptable as supernova
line profiles (Branch 1980). The value p = 7 is used for all the other model calculations since 7 is
the favoured C‘alue in simple models of supernova atmospheres (see Chapter 2 section (c)).

The typical pure resonant scattering P-Cygni line loses more energy in-the absorption feature
than is added by the emission feature. In the physical picture assumed, this lost energy is due
to scattered photons striking the photosphere and being.thermalized there. These lost photons
contribute to setting the thermal contin}mm emitted by the photosphe:-e. Thus pure resonant ;cat-
tering lines can be called non-energy-conserving. The only photons scattered toward the observer
that strike the photoapl;ere are those that are emitted in that part of a!.mosphe.rc occulted by the
photosphere. Therefore making the photosphere ‘artificially transparent will make the P-Cygni line
energy-conserving. Fig. 4.3a ahowg the behavior of résonance line profiles when the photosphere is

made transparent to scattered radiation. Instead of having a relatively sharp flux maximum there

) flux plateau that extends from roughly A(z = 0) = 5000 A to roughly Mz = —zps) = 5100 A. The
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flux contribution of the atmosphere's source function is nearly constant when the velocity surface is
touching the photoophere The photospheric flux contribution is constant when the velocity surfaces
are enlirely bchmd the observcr-facmg hemisphere of the photosphere. ¥or the non-transparent pho-
touphere these contributions are never constant simultaneously, but for the transparent photosphere
they are for the wavelength range correspondmg to velocity surfaces between 2 = 0 and z = ~Zphs
whence the plateau. Due to t.he numerical integration the plateau in Fig. 4.3a has siall wiggles,
The model conserved energy to better than 5% for the four cases of Tpa that were examined,

Model 474 was calculated to study the effects on flux proﬁle/a_@sing the Hamilton phase-matrix:

Recall that with the phase-matrix coefficient E) set to 0 the phase-matrix reduces to isotropic non-

polarizing scattering, and that set to 1 the scattering is pure Rayleigh scattering Fig. 4.4a shows

t.hat. the proﬁlee are not greatly n.ll.ered when E‘; is varied from 0 to 1. There is a slight decrease
P

in the flux maximum as anisotropic scattering is increased, and a shght. increase in the absorption

minimum. These alterations can be understood from the Rayleigh phase function t.hat. describes .

the scattered total specific intensity as a function of the angle © between the incident and scattered

beams:

3 e
- pO) = E(l +cos? ©). (4.28)

This function shows that there is a 2-to-1 ratio in magnitude between forward and right angle sc‘;t-
tered beams. Thus forward scattering should be stronger for Rayleigh scattering than for isotropic
scattering. The absorption feature of a P-Cygni line, which owes in part to forward scattering (s
well as to unscattered flux), would th;arefore tend to be filled in as the scattering phase-matrix
became more Rayleigh-like. Furthermore, the emission feature, due more%o nearly right angle scat-
tering, would tend to be diminished when there is less right anﬁle écatterin;g. Howe‘ver, the effects of
increasing E; are not very dramatic as Figures 4.4 show. The lack of striking effects is partially due
to the fact that most of the scattering occura close to the photosphere where the source function is
rather isbtropic since it is an average Iof specific intensity beams over the large solid angle subtended
by the photosphere. Thé lack of striking effects is also partially due to the fact that the net flux is
_ the integral of all t-he specific intensity beanis emitted by a velocily surface; this tends to average
away the effects of anisotropic scattering. Since the effects of anisotropic scattering are so small for
flux profiles, they probably cannot be detected: Isotropic Sobolev calculatlons, such as those done
by Branch and collaborators (1980; Branch et al. 1982, 1983, 1985), and the anisotropic ca.lcu]atlons
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are equally adequate in describingsupernpva) flux spectra.

Fig. 4.5a displays'the results of a model with a Planck rather than a constant continuum. The
three Planck continua used for the model had photospheric temperature Ton set to T244 K, 5798 K,
and 4830 K. These temperatures were chosen so the wavelength of the maxima of the Planck continua

would be 4000 A, 50004, and 6000 A, respectively. Recall that all the profiles have been normalized

to their value at the lowest wavelength displayed in the figures. Without the normalization the

7244 K profile’s average height would be roughly 6 times greater than that of the 4830 K. It is clear
that introducing slopes to the photosphéfic continua of the mégnitudg‘ considered for thee€ profiles

has little qualitative affect on the profile shape or on the inte retation of the profile shape.

Fig. 4.6a displays the effect of blending two weak P-Cygni lines of equal strength. At aseparation |

of 400 A, the profiles are largely independerit. At a separation of 100 A, the lines are strongly blended.
In this case the minimum of the absorption feature of th&,‘ilOOA line falls exactly on t¥® location

of what would have been the emission flux maximum of the 5000 A line if no blending had been

s

present. The emission maximum of 5000 A line is largely suppressed. However, the absorption -

minima of the two lines are quite apparent. Absorption minima are probably of greater usefulness

than emission maxima in line identification (Branch 1980). At zero wavelength separation, the two

lines are fully blended, and give the appearance of a single line. The two lines are not, however,
b o

effectively one line of double strength, since the calculation continues to treat their resonance regions

as non-overlapping. (Closely spaced lines are discussed in Chapter 2 section (f).)

A summary of important conclusions that can be drawn from spherical model calculations will
now be giver_l. Most of these conclusiofd ‘were well known before this survey was done. (1) For
weak to moderate lines with 7, < 100The wavelength of the flux minimum is Doppler shifted from
the line rest wavelength by approiumately the photospheric velocity vps. This allows vy, to be
easily obtaiffed from spectra.l data provided a sharp photosphere is assumed. (2) The difference for
flux profiles between assuming isotropic nonpolarizing scattering or assuming Rayleigh scattering
is slight. (3) Flux profiles are not affected qualitatively by the slope of the continuum.’ (4) In
fitting supernova lines with Sobolev calcufations it is_probably best to give more wci_ght to fitting

the absorption features. The absorption features for pure resonance scattering are slightly more

prominent than the emission features, since more energy is lost in the absorption thah is gained

in the emission. Also, as indicated abo.ve, the absorption minima are less obscured when. lines are

* . ' . ' -

£
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Fig. 4.1a. Flux profiles for a spherical model with varied photospheric optical depth, 75. The
absorption minimum wavelength of 4900 A for the 75 < 10 cases is Ddppler shifted from the rest
wavelength by a velocity v,y. This shows for weaker lines that the absorption minimum wavelength
can be used to determine the photospheric velocity. For stronger lines (7, > 10) the absorption
minimum wavelength corresponds to velocities greater than vy,  ~ \
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Fig. 4.1b and ¢. The limb and photodisk components of the flux profiles of Fig. 4.1a. The small
wrinkles in the photodisk profiles near 5000 A are artifacts of the numerical integration for the flux.
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Fig. 4.2a. Flux profiles-for a spherical model with varied power' p,‘where the .optical depth

function is 7(r;) = mpa(ry,./ry)?. The extended blue wing of the absorption feature for the p = 4
casc is not observed for supernovae lines of moderate strength (Branch 1980).
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Fig. 4.2b and c. The limb (Fig. 4.2b), and photodisk (Fig. 4.2c) components of the flux profiles
of Fig. 4.28, The small wrinkles in Fig. 4.2c near 5000 A are artifacts of the numerical integration
for the flux.



130

| l [ | I- I [ |
1.4 - -
1.2 a
1.0 =
i
=
[
£ -08 -
-
H+8]
oo
0.6 i
1.0
0.4 50
~20.0
0.2 1000 _
] : ] | | ] | | |

4700 4800 4900 5000 5100 5200 5300 5400
Wavelength (Angstrom)

Fig. 4.3a. Flux profiles for a transparent-photosphere spherical model with varied photospheric
optical depth 7y .- Transparent-photosphere model is not physical, but is used to demonstrate energy

*  conservation; the integrated emission flux ought to equal the integrated flux lost to absorption. The

models shown in the figure conserved energy to better than 5%. The small wrinkles in the emission
" plateaus are artifacts of the numerical integration.
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Fig. 4.3b and ¢. The limb and photodisk components of the flux profiles of Fig. 4.3a.
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Fig. 4.5a. Flux profiles for a spherical model with a Planck continuum emitting photosphere
and varied photospheric temperature Tps. The profiles are each normalized to their values at smallest
wavelength shown on the figure.
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Fig.” 4.6a. Flux profiles for a spherical model with two lines and varied separation between
the lines. For AX = 400A the lines are nearly indépendent. For AA = 100 A the lines are strongly
blended, and the emission maximum of the 5000 A line is largely suppressed. For AA 0A the two
lines give the appearance of being a P-Cygni single line.
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¢) Prolate Ellipsoid Models

In this section the flux and polarization profiles of prolate ellipsoid models are presented and
discussed. For convenience the m{dcls are labeled by their figure number. Thus the results of model
4.7 are displayed in Figures 4.7. The parameters for all the prolate models examined are given

in Table 4.4. All the flux profiles displayed have been normalized to the flux value at the lowest

wavelength shown on the figures.

For convenience in the fo]low.ing discussion it is useful to set some conventions about the geom-
etry of the atmosphere and’photosphere. The symmetry axis of the ellipsoid is along th; z axis. The
z axis lies in the plane containing the z axis and the line of sight to a distant observer, The y axis
is peri;endicular to this plane. The z' axis is along the line of sight and the z' axis is perpendicular
to the z’ axi# and to the y axis. There is no need for a pnme y axis as all the inclinations arc.
rotations about the y axis, When t.he inclination angle is set to 907the primed axes are the same as
the unprimed axeés, When expressions “in front of the photoephere and “behind the photospherc
are used, what is meant are those points in the photodmk reglon'wn.h positive and negative z' co-
ordinates, respectively. The expression “beside the photoephcre refers to those points in the liimb
region that have |2'| < ¢/,.where ¢’ is the semi-major axis of the projection of the photosphere. The
expressions “above the photospl-xere" and “below the photosphere” refer to those points in the limb

region that have z’ 2 ¢/ and z' > — ¢/, respectively.

For each model eight figures h:_we been prepared. displaying different calculated features of the
modcl.. These eight figures are labeled ;Jphabetically. The a-figures display the net flux profiles.
The b-figures display the net polarization profiles. The ¢-, d-, e-, and f-figures display the limb flux
lcor_npouent, the limb polarization component, the photodisk flux component, and the photodisk po-
larization component, respectively. The g‘ﬁgurﬂiaplays the maxim IJI and minitmum polari.zation
of the Sobolev-H calculation as a function of a varied parameter. The emission maximum polariza-
tion calculated by McCall’s prescription (see Chapter 3 section (b)) is ulno displayc;d in the g-figures.

The g-figure for the model with varied asymmetry also plots the Shapiro and Sutherland results for
continuum polarization calculated using the C hnnd\a%ehr solution(see Chapter 3 section (a}). The
h-figures display the same results as those of the g-figures, but with the scale chooen_ to make the

Sobolev-H results more prominent.

Note that for ea& model not all of the eight figures are discussed, but only the figures that

-
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TABLE 4.4.—Parameters for the prolate inodels of section (c).

Model Continuumpy Pro/Oblate Uph . Arest
(Figure) E; Times ' £
P Ton Qinct Tph
4.7 Constant Prolate 6x10°cms™! 50004
1 ’ 4 x LI 0 . *
7 . t 00° .10
4.8 ‘ Constant Prolate 6 x 10°cms! 5000A
1 4xry, 0 5
7 K t v . 10
4.9 Constant Prolate 6 x 10° cms~? 5000 A
1 1xrg,, 0 D
7 1 - 90° *
4.10 Planck ~ Prolate 6 x10°cms=! 50007
] . 4xry, . 0 5
i - - . 90° 10
4,11 Constant Prolate 8 x 10°cms™! »
1 idxry,, 0 &)
7 t St - 90° 10
NOTE: The “s” indicates that the parameter is being varied for this model. The '“t" indicates
that the parameter is irrelevant for this model. -
L3 ,
" present features of interest. However, for reference all eight figures are presented. .

The convention used in plotting the polarization is that positive polarization means that the
radiation field component aligned with the 2’ axis is larger than the component aligned with the y

axis. Thus the quantity displayed in the b-figures is

Fi(net) ~ Fy(net)

P(net) = Flnet) . (4.29)
where 2’
F{net) = Fy(net) + F,(net). " (4.30)
The quantity displayed in the d-figures is
P(timb) = F,(limb) — F,(limb) (4.31)

F(net) !
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rather than
Fy(limb) — I, (limb)
F(iimb) . (4.32)

P(limb  alone} =

This choice was made to retain the same plotting scale for the b-figurcs and the d-figures since
clearly P(limb alone) » P(limb). Sir‘nilarly, the quantity displayed in f-figures is

Fy(photodisk) — F, (photodisk)

P(photodisk) = Flnet) ' {4.33)

The model 4.7 has a varied asymmetry parameter &;yo. The photospheric optical depth 7,4 = 10
and the inclination angle finot = 90°. The photospheric optical depth is typical of supernova lines
of moderate strength. The choice of fincr = 90° maximizes the asymmetry of the projection of the

atmosphere, and thus maximizes polarization. The other parameters are shown in Table 4.4. Recall
4

ro=1—(afe) for a<ec (prolate), _ . (4.34)

and
1 1]
(¢/fa) = e (4.35)

Thus the case with &, = 5 is a spheroid' with a 50% asymmetry. The case with £,,, = 998
is 500 times longer than it is wide. It is wrong, however, to think of the £, = .908 case as a

one dimensional object. Recall that an atmosphere with r,,,, = 4r,, is 4 times bigger than the

photosphere in ‘all dimensions. Thus the &, = .998 case has a long extended atmosphete above and *
>

below a long‘extended photosphere.

Fig. 4.7a displays the flux profiles for modlel 4.7. Qualitatively, the profiles are not greatly
affected by the asymmetry variation. However, the total increase in asymmetry causes the absorption
minimum to increase by =2 .05 in relative flux, and the emission maximum to decrease by & .075.
The two extrema vary in a roughly linear manner with £pro. These changes in the flux profiles do
not owe to the Rayleigh scattering, nor to the choice of r,;-._. The ratio of limb to photodisk area
does not change, and so that is not a factor, The variation in the extrema probably owes to the
changes in the relative amounts. of solid angle subtended at points in the limb and photodisk regions.

In Fig. 4.7b the net polarization proﬁlée are displayed. The polarization magnitude over most
of the wavelength interval appears to increase from zero in a roughly linear manner with increasing
asymmetry. The profile consisls of two distinct features: a positive emission polarization feature

and a negative absorption polarization feature. A comparison of the profiles of Fig. 4.7b to the

- -
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limb components in Fig. 4.7d and the photodisk components in Fig. 4.7f shows that the emission
feature owes almost entirely Lo the limb and the absorption feature to the photodisk. The profiles of
Fig. 4.7d show that the limb polarization is largely symmetric about the rest wavelength. The slight
asymmetry owes to F'(net) in the denominator of equation (4.31) for P(lil}:b); F(net) is asymmetric
;lue to occultation by the photosphere. The comparison of the flux and pola.rizatipn components
both for the limb and the photodisk show a strong correlation between the flux and polarization
features. This is not surprising since the flux features owe to scattering, and scattering is, of course,
- the origin of all the polarized radiation in these models.

The emission polarization feature owes to scattering from the sides, and above and below the
pho‘tosphe_-re. The scattering into the‘directibn of the line of sight tends to be right-angle scattering
which has a maximum polarizing effect. The alignment of polarized radiation from right-angle
scattering from an elongated source tends to be along the long axis of the source. To demonstrate
this consider an infinite cylindrically symmetric, unpolarized source emitting a constant specific
intensity. C'onsid‘_e_lilso a Rayleigh scattering point that could be either a resonance scattering
ion with E; = 1 in the weak scattering limit where equations (2.147) apply, or a free electron. A
coordinate system has its origin at the point, its z axis parallel to the axis of symmetry of the
source, and its x axis is a line of sight to an observer. The cylindrical source is centered at some
point (0, yept) in the z-y plane._ Using equations (2.129), radiation scattered from the point toward

the observer”has the polarization

_ D1 = Dg+ Dy
—_ m' (4-36)
where y1 = cosf = 0 and ¢ = 0. Using equations (2.130) gives
‘ P $dQ (1-3u? + (p'? — 1) cos 2¢")
T $dQY (3~ uf? — (p? — 1) cos 2¢)
2+4/3 .
_ B g conay _ _—{sin2gl22l2
18+ [T g condg 4D+ (1/2D)sin 2[5t a2
sin A
RRTTTY (437

where A is the ¢-angle subtended by the cylindrical source at the scattering point. For A = 7,
the scattered beam is unpolarized. For A < =, the scattered flux is polarized and the polarization
‘is positive (i.e., the polarization is aligned with the z axis). The maximum polarization is 1/3 for

A =0 (i.e. aline source). This simple demonstration shows why the polarization is aligned with the
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long axis of the prolate ellipsoid model. The calculated emission polarization feature never reaches
the 1/3 value for several reasons: (1) the photosphere is not a line source, (2) the model photosphere
is not an infinite cylindrical source, even when £,y — 00, since there is always some radiation with
cancelling polarization scattered from the short ends of the photosphere, {3) the scattering is not
extremely weak, and so there is the depolarization, effect of multiple scattering, and (4) there in
dilution of the polnrizea flux by the strong unpolatized flux from the photodisk.

) There is a large negative polarization feature associated with the flux absorption feature (see
Figures 4,7a and 4.7b). Note that most of the scattered ﬂux that forms the absorption feature is
scattered-from points that are in front of the photosphere. To explain the negative polarization
feature consider ;gain the infinite cylindrical aystem introduced above with the exception that the
cylindrical source is now centered at (z,1,0), where 2o < 0. Allowing for the change in the

-l
centering of the cylindrical source, equation (4.37) yicldé

—sinA - '
SRS (438)

The polarization of the radiation sc#t,tered from the scattering point is aligned perpendicular to the
symmetry axis of the cylindrica:l source; i.e. the polarization is negative by the convention established
in this chapter. The absolute valueof the polarization ha.i; a minimum of 0 for A = », and a maximum
of 1/5 for A =mf; simple riemonstr.ation shows why the absorption polarization féature in
Fig: 4.7b is negative: it owes to sca..ttering toward the observer from points in the gtmo.ephere that
iie roughly in front of the p'hot.oaph_efe. The reasons why the absorption polarization feature never
teaches the +1/5 value are similar to those given above in the discussion of the height of the emission
polarization feature, However, it should ‘be noted that the dilution effect of the unpolarized flux
frogp the photodisk is reduced, since much of the flux emitted by the photosphere is scattered out
of the line of sight. It is probably this reduction in diluti;n that causes the absolute value of the
absorption polarization'minima to be greater than the emission polarization maxima (see Fig. 4.7b).
The small negative wings of the limb polarization compoﬁent profile (see Fig. 4.7d) owe to the same
geomet.ricﬂ scattering effect that causes the negative absorption feature; however, the competing
“geometrical -t[q-} that leads to positive pola.nzahon makes these negative wings relatively small in
absolute value .

In Fig. 4.7e and 4.7f it ca.n be seen that the absorption polarization fealure’s minimum'is at a

slightly lower wavelength than the Aux minimuin. The offset would be an interesting characteristic
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to check for when analyzing supernova data,

_Fig. 4.7g and 4.7h display the Sobolev-H polarization extrema for the model ns a function of
the asymmetry &pr,. Tl.le emission polarization calculated from McCall's prescription ‘and the SS
pure scattering (Chandrasekhar solution) result for continuum polarization are also plotted on the
figures. The Sobolev-H polarization extrema incre@e monotonica]lf"\:vith épro, and are limited to the i
range of approximately -3% to 1.5%. The McCall prescription leads to much larger polarizations.
This is a consequence 'o_f mﬁming that the Cassinelli and Hummer (1971) polarization plateau result
applies to all the radiation scattered from tile limb‘. The SS continuum polarization results are of
the same order of magnitude as the Sobolev-H maxima polarizations. The close agreement between
the SS ;:.nd Sobolev-H maxima from £p,0 = 0 to &4, & .2 in accidental; the Sobolev-H maxima would

change if 7, were changed.

Model 4.8 has the inclination angle parameter varied from 90° to 0°. ‘The asymmetry param:
Jcter £pro = .5; this asymmetry was chosen because .5 seems a plausible large value for supernova
asymmetry (see the discussiontin Chapter 1 section (d)). The parameter 7,5 = 10, and the other

parameters can be found in Table 4.4.

Fig. 4.8a shows the variation in the flux profile as the-inclination angle is decreased. The
absolute values of the flux maximum and flux minimum at first decrease somewhat and then rise
Et.eeply. The ratio of photodisk area to limb area rema.ing the same as the inclination angle changes,
and so that cannot be the cause of the changes in the flux profiles. The difference between the 90°
case and the 0° case for the flux maximum is probably due'to changes in the solid angle subtended
by the photosphere at scattering points. Recall that the source function depends strongly on solid
angle. At & = 90° the maximum flux is produced by scattering points at the poles and equator of,
the ellipsoid. At # = 0° the maximum flux is produced only by the equatorial scattering points. At
a given r, equatorial points see more solid angle than the polar points, and thus the § = 0° case
would be expected to have a larger emission maximum flux. The other changes in the flux profile
are harder to explain. Probably, the explanation woul:l require an analysis that isolated the effects

of the various featurea of the model.

As inclination angle is decreased \the expectation is that the polarization at each wavelength
should, in general, be decreased: at 90° the polarization should be maximized, and at 0°, where the

‘projected atmosphere is circularly symmetric, the polarization should be zero everywhere. Fig. 4.8b
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shows that these expectations are confirmed by the model calculation, Note that the absolute value of
the emission polarizatiox; maximum is smaller than the ab:solute value of the absorption polarization
minimum for inclination angles greater than 60°, and that the reverse is true for inclination angles
less than 60°. This reversal may' allow some information about inclination to be deduced from

spectropolarimetric data. .

In Fig. 4.8b there is an interesting shift in the location of the polarization maximum as the
inclination decreases. This shift to higher wavelengths can be understood by examining the limb
and photodisk components of the polarization profiles. In Fig. 4.8d the limb component maximum
is seen to bifurcate into two maxima as inclination angle decreases. The bifurcation is caused by the—
forward and backward extension of the lobes of the ellipsoid for inclination angles other than 90° and
0°. These lobes cause the polarizing asymmetry to maximize at symmetric points about the 2/ = 0
coordinate. The higher wayéfagth limb polarization maximum is appatent in the net polarization
profiles. The lower wavelength maximum is suppressed due to the effect of the photodisk polariza-

. tion shown in Fig. 4.8f. The original photodisk polarization minimum decreases monotonically as
the inclination decreases, but ;a.second minimum appears that is formed oﬁ a velocity surface that
has Viursace % (1/2)upp. This second photodisk minimum is at approximately the same wavelength
as the lower wavelength limb maximum. These two componeﬁt extrema partially cancel each other
when combined to obtain the net polarization. This canceldlion causes there to be only the ‘ainglé
shifted polarization maximum in the net polarization profiles. The shift is possibly quite impor- '
tant as it may allow some distinction to be made between asymmetry and inclination effects in

spectropolarimetric data,

The net pola.rizatiofn extrema are plotted as a function of inclination angle in‘ Fig. 4.8g, and
4.8h. The figures show that the absolute value of the extrema increase monotonically with inclination
angle. The dependence of the polarization extrema on inclination angle can be approximated by two
lines: one line for the 9.:,“1 £30° and one for 8t 2, 30°. The polarizations for the emission feature
obtained from the McCall prescription are greater jn absolute value than the Sobolev-H results by

at least a factor of 4 or 5.

Model 4.9 has a varied photospheric optical depth 7,5. The asymmetry parameter £p,o = .5
and the inclination angle is 90°. The flux behavior as 7,5 changes (see Fig. 4.9a) is qualitatively the

same and quantitatively very similar to the flux behavior of the spherically symmetric model 4.1.
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The discussion of this behavior is given in section (b) of this chapter, and need not be repeated here.

The polarization profiles are given in Fig. 4.9b. As 7, increases the absorption polarizati;:n
feature shifts to lower wavelength and d;-gpens (for Tpa < 10%). This behavit:r"is readily explained.
Recall from Chapter 2 section (d) that the polarization maximizing r should be of order 2. Recall -
from section (b) of this chapter that the ﬂux minimum occurs for 7(z) a2 1. Tlus regions where the
flux minimum forms and where polarizing sca.tt.enng is maximized should be st.rongly/verlappmg
The dilution effect of unpolarized radiation ls'moet reduced at the ﬂux minimum, and thus a po-

. larization maximum at the same waveleg'gth is to be expected. As 7, increases, the region where
r w1 gets moved to larger x implying lower wavelengths for the resulting flux and polarization
fcat.ure#. Since the flux minimum deepens with increased 7,5, the dilution eflect is decreased, and a
deepening of the polarization minimum is to be expect;éd.

Table 4.5 shows the zp,; min coordinates that:correspond to t.hc wavelengths of the a.bsoi'p-’
tion polarization minima and shows the opt!cu.l depths 7(Zpot min). It is clear for Tpn < 10% that
T{Zpol min) i8 only approximately 2. The fact that r varies widely over the velocity surface defined

] by Zpot mia i8 probably the main cause of the lack of close agreement- with the predicted value of 2.

Some sort of average of 7(r) over the velocity surface specified by Zpot min May be a'more appropriate

test of the prediction for the polarization maximizing 7.

] .
TABLE 4.5.—The polarization minimizing r(z) values from the model 4.9.

Toh . Zpol min T(xpol rru'n) = Tph(zp'l/zpol mt’n)P o
' 10° 1.02 0.871 \_
101 1.09 - 547
10? ‘ 1.44 . : 7.79
108 2.01 7.54
104 2.75 b 8.41
= 108 3.35 21.1

NOTE: The z,0t min values are all expressed in units of rph. The paramet;r- p=1T.

. By comparing Fig. 4.9d for limb polarization, and Fig. 4.9f for photodisk polarization, it can

be seen that for larger r,s the limb contributes the most to the polarization minimum. This is

~
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because angles of scattering for observer-directed photodisk radiation in the Zpal min tegion become

small when Zpo; min becomes large. Recall that Rayleigh scaltc}ing is unpolarizing when the angle

'of_ scattering is 0°. Thus most.of the polarizing scattering on the vcloc-il.y surface that gives the

“polarization minimum is at the larger angles found in the limb.

.The second negative polarization feature that occurs at wavelengths higher than the rest wave-

length exhibits similar behavior as the absorption polarization feature. This similarity is due, of

course, to the fact that the limb radiation fields are symmetric about the rest wavelength. The

photodisk radiation for wavelengths higher than the rest wavélength is unscattered, undiminished
photosphere radiation. Dilution by this photodisk radiation reduces the size of the higher wavelength

negative polarization feature compared to the size of absorption polarization feature.

The behavior of the the emission polarization feature, for rpp < 10°, (see Fig. 4.9b) can also be
explained: The polarization increases strongly with Tpa for a while and has its maximum at the rest
wave.length. Then for 15 > 100, the polarization does not increase much, and .thc maximum of the
feature shifts to a lower wavelength. The reason for the polarization not increasing further with 4 is
probably that much of the increasing scattered flux comes from regions of high r, and thus is mostly
l;npolarize;:l. High r imblies that photons have multiple scalterings in resonance regions. Multiple
spattering makes’ the radiation field more isotropig and less polarized (see Chapter 2 section (d)).
This scattered unpolarized flux dilutes the polarized flux, and thus halts the increase in polarization
as Ty increases. Note that the absorption polarization feature is less affected by dilution of scattered

unpolarized radiation, since the polarized aborption feature radiation is Doppler decoupled from the

“scattered unpolarized radiation.

" The shift in the maximum of the emission polarization feaf.ure from 5000 A to about 4900 A

(see Fig. 4.9b) probably results from a decrease in cancelling negative polarized radiation from the

photodisk (see Fig. 4.7f) and the near photodisk region of the limb (see Fig. 4.9d) at 4900A. The

- amount of positively polarized limb flux is nearly as great at 4000 A as at 5000 A, but at 4900 A the

];oositively polarized limb flux is diluted by negatively polarized photodisk flux and at 5000 A the
diluting flux is unpolarized unscattered photosphere emission. When the increasing 7,5 moves the
region of negatively polarized radiation production to smaller wavelengths (see Fig- 4.9d and f) then
both the 4900 A and 5000 A positively polarized fluxes are being diluted by unpolarized flux. At

4900 A the diluting flux is diminished by scattering out of the line of sight, and so a higher ];oait'we'
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polarization can be expected at 4000 A.

There is a strong decrease in the absolute values of polarization of both the emission and
absorption features when 7, = 10°. This is due to the choice of Fimes = 475, For 1 2, 33000, the
optical depth T never falls to 2 for r <r, . = 4r,, when p = 7. Thus there ceases to be a highly
polarizing region in the atmosphere as 7,5 increases above 7, =5 33000. For large enough e there

would be no polarization at all.

Model 4.10 has a Planck continuum with varied photospheric temperature rather than a constant
continuum. The Sobolev optical depth 5, = 10, and the inclination angle is set to 90°, The
temperatures chosen for the variation are the same as fc;r the spherically symmetric model 4.5:
7244K, HT96K, and 4830 K. These temperatures- givefthe continuum maximum flux at 4000 A,

5000 A, and 6000 A, respectively. The flux profiles, which are displayed in Fig. 4.10a, are not changed
qualitatively by the variations in the alope'?f the continuum, The beh.avior of the flux profiles is

qualitatively the same as behavior of the flux profiles of the spherically symmetric inodel 4.5.

The polarization profiles displayed in Fig 4.10b show a slight increase in the emission polar-
ization feature as the slope of the continuum flux changes from negative to positive (i.e., as the
temperature decreases). This effect is entirely due to flux from the limb, since the limb polarization

\3hows the increase (see Fig. 4.10d), But the photodisk polarization is unchanged by the continuum
“slope variation (see Fig. 4.10f). The slight polarization increase arises from the prescription for the
continuum specific intensity. This specific intensity is integrated over th;e solid angle subtended by
the photosphere to obtain the D; coefficients. The Stokes source function fields, as shown in Chap-
ter 2 section (d), depend linearly on the D; coefficients. A specific intensity beam arises at some
Vpoil;t. on the photosphere, and travels a distance d along a beam path to some point 7 where the Dy -
coefficients are to be evaluated. A continuum specific intensity beam is evaluated at a wavelength
such that the Doppler-shifted wavelength it has when it reaches the point 7 is equal to the rest
wavelength of the transition Ao in thelocal frame at point 7, Since the atmospheres considered are
in homologous expansion, the D/oppler shift is a red shift, and is proportional % the distance d.
Therefore the continuum specific intensity beam must be evaluated at lower wavelengths than Ag.
The greater the path distance d the beam must travel, the lower the wavelength at which the specific
- intensity beam is evaluated. The cone of beams that arrive at point 7 from a convex photosphere are

therefore from lower wavelengths of the continuum near the edge of the cone than near the center of

L]
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the cone. Thus the slope of the photospheric continuum affects the relative contribution of edge and
center specific intensity beams: a negative slope increases the contribution of the cdge beams, and
a positive slope the contribution of the center beams. Recall that right-angle acnttering:iu the most.
polarizing scattering (see Chapter 2 section (d)). For the case where center benms scatter t.hrou"gg
angles closer to right-angles than the angles the edge beams scatter through, then a change in con-
tinuum slope from negative to positive will cause some increase in the polarization of the emitted
radiation, This case corresponds roughly to the situation that gives rise to the limb polarization, and
hence the slight increase in polariz-ation as the continuum slope is varied from negative to positive,
The photodisk polarization arises from a case where nearly right angle schttering of radiation is not
necessarily from center beams of the cone of specific intensity beams. Thus an increase polarization
could not be predicted. The resuits in Fig. 4.10f show that the photodisk polarization is not signif-

icantly affetted by the continuum variation at all. The effect of the variation is probably averaged

‘away in the integration over the photodisk to obtain the net photodisk polarization.

Fig. 4.10g and 4.10h show the variation in polarization extrema as temperature is varied.
.
The emission polarization increases slightly with decreasing temperature (increasing flux contin-

uum slope). The absorption polarization minimum shows an even slighter increase as temperature

_ is decreased. The McCall emission polarization shows no’significant variation with temperature.

This lack of variation in the McCall emission polarization is due to the lack in variation of the ratio
of emission flux to continuum flux at the rest wavelength. Recall that it is this ratio that is used in
McCall’s prescription (see Chapter 3 section (b)). The McCall polarization, as for all other models,

is much larger than the Sobolev-H polarization.

Model 4.11 has two identical sc‘atteri.ng transitions with varied wavelengt.. -paration tfetween
them. The separations correspond to wesakly blended, str;ngly blended, and exactly overlapping
lines. The flux profiles are given in Fig. 4.11a; they are qualitatively the same as the flux profiles
of the spherically symmetric model 4.6 (see section (b) of this chapter). The polarization profiles
are given in Fig. 4.11b, For the weakly blended case with AX = 400 A, the polarization profile
seems to be just that of two typical P-Cygni lines. Actually there is some blending effect, since
the polarization minimum and maximum of the 5400 A line are both sorﬁewhat lower than those
of the 5000A line. The strongly blended case with AX = 100 A has the polarization minima at

approximately the same wavelengths that they would have if the lines were independent, but the
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maxima are displaced. The polarization maximum of the independent 5000 A line is suppressed by
the overlapping minimum of the 5100 A . This effect is analogous to the suppression of the flux
maximum seen in Fig. 4.11a. The maximum of the independent 51004 line is .supprt_assecf and a ,
new maximum appears at an intermediate wavelength between 5000 A and 5100 A. This effect is not
analogous to the flux behavior where the 5100 A maximum is retained after blenciing. yThe case of
exactly overlapping lines givea a polarization profile that appears the same as that of a single line
with only slightly greater polarization features than either of the two lines that form it. The exactly
overlapping lines are not, however, the same as one line with twice the photospheric'Sobolev optical

~depth (sce the discussion in Chapter 2 section (f)).

Figures 4.11¢c ‘thrm;gh 4.11f show the behavior of the limb and photodisk components of the
flux and polarization profiles, Fig. 4.11g and 4.11h show that the polarization extrema do not vary
atronglg-' with wavelength separation. The McCall emission polarization is caleulated for a 5000 A
line. The N!:cCaH values again are much larger th@ the Sobolev results and also show more and non-
monotonic variation with the variation in separation. The non-monotonic behavior is a conseqﬁence
of the fact that the McCall prescription :’1045 not include anything to account for line-blending.
Recall fram Chapter 3 section (b) that the McCall prescription contains the factor F(limb)/F(net)
evaluated at the rest wavelength, Ao, of a line. Now F(net) = F(photodisk) + F(limb), and the
‘McCall picture supposes F(photodisk) = F(continuum) at Ag since the photodisk region of the
velocity surface of the line evaluated at the rest wavelength is entirely occulted by the photosphere.
However, when a velocity surface of a second line has (A = ) = Tpn then F(photodisk) <
F{continuum), since the second line’s velocity surface i in front of the photosphere scattering
photodisk flux out of the line of sight. This situation is precisely the case for the separation of
1004, where the 5100 A line’s 5000 A velocity surface is at zpy. In other words the 5100 A line’s
flux minimum is suppressing the maximum of the ﬁ5000A line. The McCall result in this situation

'l
is not very meaningful.

Several general conclusions can be drawn from this survey of prolate ellipsoid atmospheres,
(1) There is polarization structure associated with P-Cygni lines emitted by prolate asymmetric
atmospheres. (2) There is a change of aig'n in the polarization between the emission fea'turt; and
absorption feature. This change of sign was not predicted by McCall (1984, 1;)85)2 (3) The polar-

ization extrema increase monotonically with asymmetry £pr, and inclination angle 6;n.i. (4) The
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flux proﬁ]:a vary somewhat with asymmetry, and inclination. A procedure for fitting spectropo-
larimetric data would be to fit ;r,h values lo the flux data for a spherically aymmetric;model, then
fit the observed polarization profiles by adding asymmetry. ’_I‘he flux profiles would be somewhat
altered, but they could be re-fit for the asymmetric model. Then the asymmetry could be changed
to re-fit the polarization profiles, and so on until some convergencé is reached.. (5) The Sobolev-H
pola.rizatio;ls obtained nre not very large. They are of the order of a few per cent even in rather ex-
treme ca.ses ‘The McCall emission feature polarizations are larger than the Sobolev polarization by
-roughly an order of magnitude. This discrepancy undoubtedly owes to the simplicity of the McCall
prcécriptiqn for the polarization. A simple correction to the McCall prescription seems unlikely, since
several physical and geometrical features need to be included in the prescription. The simplicity of
Sobolev-H calculations probably obviates any need for an improved McCall prescription. (6) The
absorption polarization feature minimum is larger in absolute value than the emission polarization
feature maximum for lahinations and smaller for small inlination angles. This characteristic
may allow an approximate determination of inclination angle. {7) For inclination angles different
from 90° the emission polarization feature’s maximum is shifted to waveicngt.hs greater than the line
rest wavelength. The ﬁux maximum is also shifted to higher wavelengths. These shifts may allow
detection of the inclination angle from spectropolarimetric and flux data. (8) The eﬂ'ecu; of ling
blending on polarization profiles do not quite mimic the effects on the flux profiles. The blending
behavior may make it harder to obtain a unique fit to any data. Observers should thus concentrate

their eflorts on dbta.ining the spectra of pure, unblended P-Cygni lines.
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Fig. 4.7c and d. The limb components of the flux and polarization profiles of Fig. 4.7a and b.
The limb flux profiles have complete symmetry about the line center; this owes.to the symmetry of
the ellipsoid shape and to the lack of occultation for the limb contribution. The polarization profiles
lack the complete symmetry because they are calculated from (F, (limb) — F, (limb))/F(net), where
F(net} is not symmetric due to occultation. '
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for €pre X 5. The SS continuum polarization for the pure scattering case and the McCall emission
polarization maxima are also shown for comparison.
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Fig. 4.8a. The flux profiles for a typical prolate model with varied inclination angle 8;,¢ and

with {ro = .5. The flux profiles are all normalized with respect to_the continuum; in absolute

__ value the flux decreases by a factor of 2 as 6;nt goes from 90° to 0°. The flux profiles change

non-monotonically with ;.. There is also a shift in the lux maximum to wavelengths higher than
the rest wavelength for ;.1 not equal to 90° or 0°.
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The poj Fization emission feature maximum bifurcates into two maxima when the inclination angle
.is chaffged from 90°. N
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and b. The varied continuum slope has no significant affect on the photodisk polarization profiles.
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of the wavelength separation of the lines. The extrema are not greatly affected by the various degrees
qf blending. McCall emission polarization maxima are also shown for the 5000 A line. In this case the
McCall results are not very significant, since line blending is not includgd in the McCall prescription.

—
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d) Oblate Ellipsoid Models -
_In this section the flux and poiarizat.ion profiles of oblate models are presented m!d diacussed, ~—
The oblate models considered have exactly the same parameters as the prolate models of section (c)
of this chapter, except that the asymmetry is oblate asymmetry (i.e. £y ‘rat.hcr than £pro). These
paramelers are given in"':[‘a.blc 4.6. All the conventiona established for discussing prolate models in
section (c) are maintained for the discussion of oblate models.
-, Except for the cases of extreme asymmetry, oblate models tend to give regults that are similar
to the results given by prolate models. The reason is clearly that the pro'jections of both ()bla.t.c nnd.
prolate models are elli_ptica.l.' Both flux and polarization profiles depend strongl; on this cllipflical
symmetry. It is clear that much of the discussion given for the prolate models need not be repeated
for their counterpart oblate models. Therefore the discussion in this section will concentrate only
on those features of the oblate models that differ from those of the prolate models. Nonetheless all
eight figures for each.oblate model are presented for completeriess and reference.

The major distinction in appearance between the prolate and oblate polariza.t.ion profiles is an
inversion of their behavior about the zero polarization axis: positive and negative prolate features
become negative and positive oblate features, respectively. Recall that positive polarization means )
that the polarization is aligned with the symmetry axis, and negative polarization means that
Llle'polarization is aligned perpendicular to the symmetry axis. The inversion between the obiate
and prolate models arises because the semi-m;.jor axis of the projection of an.oblate model is
perpendicular to ihe symmetry axis of the model, whereas the reverse is true for a proiatc model:In
the discussion of the prc;la.t.e model 4.7 in section {c) of this chapter, it was shown how an clongated
objett could give rise to negative and positive polarization features; the same discussion applies to
oblate m'odels.

The model 4.12 has a varied asymmetry parameter £,3;. The 7, = 10 and the inclination
angle f;p = 90°. This photos;)-h—eric optical d-epti.n is typical of a moderate strength supernova line.

The choice of 8incr = 90° maximizes the asymmetry-of the projection of the atmosphere, and thus

maximizes polarization. The other parameters are shown in Table 4.6. Recall
Eott = 1 = (c/a), a>c oblate, U (4.39)

and .-

{c/a)=1—Eomr. (4.40)
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TABLE 4..6.—Para.meters for the oblate models of section (d).

Model - . Continuumpy Pro/Oblate - Vph
(Figure) - E L €
P Ton Oinci
- 4.12 | Constant Oblate B % 10°cms~?
‘ 1 4xry, 0
1 t 90°
4.13 ‘ Constant -Oblate .6 x 10°cms™!
1 1% 71, 0
. 7 £ . |
4.14 Constant Oblate 6x10°cms-!  5000A
1 4xry, 0 5 :
7 X 90° .
4.15 Planck - Oblate 6% 10°cms—! 5000 A
1 dxr,, 0 | 5
7 » 90° *10
4.16 Constant Oblate " 6x10°cma-! *
1 4xry, s 0. 5
7 t gg° 10

NOTE: The “+" indicates that the parameter is beirtg varied for this model. The “” indicates
that the parameter is irrelevant for this model. -

The flux profiles for modél 4.12 are shown in Fig. 74.12&. Varying the asymmetry has some affect -
on the profile, but the P-Cygni shape is maintained. Thé flux maximum increases as £,4; increases,
and the flux minimum decreases. The counterpart prolate model 4.7’s flux profiles have the opposite
behavior with increasing asymmetry. The oblate model behavior can be explained by the varying
amounts of solid angle the photosphere subtends at points in the atmosphere. Re;:al! the source
function depends strongly on solid angle. As the photosphere becomes more oblate the points above
and below the photosphere see more andrmoi'e solid angle. The poipts before, behind, and beside the
photosphere sece less and less solid angle. In the limit where {081 — 1 the photosphere becomes an
* infinite plane. All points above and below the photosphere then see 27 of solid angle, and the other
points see none. Since th'i. emission feature results mainly from points above, below, and beside

’

the photosphere it is clear that the emission flux should tend to increase with increasing oblateness.
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The absorpt.ic;n feature’s flux results mainly from scattering from points with x 2 x5, These points
see less solid ﬁngle with increasing asymrﬁet.ry, and thus the absorption feature becomes deeper.
Another feature of the oblate flux profiles in the limit of extreme asymmetry (e.g., £ = .996) is
that the there is a sharp corner of the piofile at the wavelength corresponding to x = —zpy. In the
limb componettt profiles, shown in Fig. 4.12c, there are sharp corners at z = %z,,. These corners are
also explainable from the solid angle argument~ The limb points before and behind the photosphere
have o little solid angle contributing to their source functions that there is a sharp decline to nearly
zero for scattered flux from velocity surfaces just before or behind the photosphere.

Model 4.12’s polarization profiles are shown in Fig. 4.12b. The profiles are similar to t.hdse 'ol' the
counterpart prolate-model 4.7’ profiles after allowing for the overall inversion in the zero pdlariz;ation
axis. However, th‘ere is some distinction at large asymmetries. This is understandable since the
prolate models tend to become quasi-1-dimensional line objects at large asymmetries, whereas the
<;blat.e models tend to become qua.éi-2—dimensional disk objects. The oblate model profiles have a
general increase in the absolute value of polarization as £, increases until about £,y; = .85, then the
profiles decrease rapidly (see Fig 4.12h). It should also be noted for the £, = .85 profile that the
emission feature minimutn has become bifurcated. Both these behaviors can be explained by the fact
that the atmosphete is approaching being plane-parallel as asymmetty increases. The polarizatioﬁ
of radiation emitted from a point 7 is directly proportional to the difference bet:veen the source
function ﬁel;ls S; () and S5,(F), providing that the Stokes U ficld need not be considered. From
equation (2.155)

r

S, — Sy & —D3(1 — p*) + Dap/1 = p3cos ¢ + Dy(1 + p?) cos 24, {(4.41)

where the D; are the direct contributions to the source function that are discussed in Chapter 2
seetion (d). For a point above a planar photosphere that emits a uniform, angle-independent,
unpolarized specific intensity the Dz, D3, and Dy coefficients are all zero (see equations (2.130)). '
Thus th;: radiation emitted from a plane-parallel atmosphere above such a photosphere- would be
unpolarized. This is precisely the situation that the model 4.12 is tending toward as asymmetry
increas;es. This depolarizing effect is first néticed for imb emission flux that is’ emitted from the
atmosphere above and below t}lle central region of the disk-like oblate photosphere. Thus near
the rest wavelength the emission feature of the polarization profile stops .growing so rapidly with

increasing asymmetry, and starts to decline for £, > .85. The polarization is becoming confined

\
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to the radiation emitted near the edge of the disk. However, with increasing asymmetry the flux
contribution from the edges declines relative to the flux contribution from above and below the
phot.os;ihere. For &4t 2 .85, the relative decrease in ‘polarized flux becomes a more important effect
than the pdlarizing effect of asymmetry. Polarization thus declines for all wavelengths when .E,u is
increased above approximately .85. When £ = .909, the polarization is nearly zero everywhere

compared to all the other non-zero asymmetry profiles.

-

The Figures 4.12¢, 4.12d, 4. 12e,.a.nd 4.12f display the flux and polarization profiles of the limb
and photodisk. Figures 4.12g and 4.12h show the polarization extrema as a function of asymmetry.
The McCall emission polarization and the SS (Shapiro and Sutherland, 1982) continuum pure scat-
tering polarization are also shown. The McCall values are an order of magnitude greater in absolute
‘value thar-the Sobolev-H results. This is the same as for prolate models. The SS results do not
seem to have any close relation to the Sobolev-H results. It is interesting to contrast the extreme
asymmetry limit for the Sobolev model and the SS model. In the Sobolev-H case, for the reasons
explained above, the polarization goes to zero. In the SS case the polarization Eow to 11.7% when
the atmosphere becomes a disk viewed edge on. The SS model uses Chandrasekhar’s plane-parallel
continuum scattering atmosphere result (19607 p. 248). The Chandrasekhar result for polarization
of radiation emitted at 90° to the normal of the symmetry plane is 11.7%. SS simply recovered this
result for their exm'smely oblate model. The difference between the Sobolev-H and the SS extreme
oblate results, of course, arises from the difference in the physical systéms. The Sobolev system
consists of velocity surfaces in which initially unpolarized radiation is scattered a few tirﬁes, and
then escapes to infinity. The Chandrasekhar system consists of an infinitely deep plane-parallel
atmosphere with frequency independent scatterers; only the radiationiemiited at the surface plane

escapes to infinity without being scattered again.
Pl

Model 4.13 has the inclination angle varied from 90° to 0°. The asymmetry parameter £, = .5.
This asymmetry was chosen because it seems a plausible large value for supernova asymmetry (see
the discussion in Chapter 1 section (d)). The optical depth at the photosphere 7,5 =10. This 7,

value produces a line of moderate strength. The other parameters are given in Table 4.6.

The flux profiles for model 4.13 are shown in Fig. 4.13a. The height of the emission maximum
and absorption minimum vary in a non-monotonic manner with decreasing inclination angle.‘At

0°, the absolute values of the emission maximum and absorption minimum are less than at 90°.
: N



Recalling that the strength of the source function at scattering points depends on the solid angle the
photosphere subtends at those points, the change in the height of the emission maximum between
the' 90° and the 0° cases can be accounted for. Points near the equator of the photosphére see less
solid angle than points that are nearer the poles. At 90° some of the velocity surface pointa that |
give rise to the emission flux are polar and some equatorial; at 0° all the points contributing to the
emission flux are equatorial. Thus it is not surprising that the emission flux is larger at 90° than at
0°. The other behavior of the flux profile as .inclin'a.t.ion angle varies is more difficult to explain; the

explanation probably requires an analysis that isolates the various eflects that give rise to the flux.

The polarization profiles _for model 4.13 are shown in Fig. 4.13b. The polarization declines to
zero everywhere as the inclination angle goes to zero. At 8 = 0° the projection of the atmosphere
has circular symmetry about the line of sight and hence the net polarization must be zero at all
wavelengths, The effect on the profiles of de'c;'easing the inclination is rather interesting. The
emission polarization minimum is shifted to a wavelength below the rest wavelength. The subsidiary
local maximum that is at A(—uvps) for 8,0 = 90° shifts to a lower wavelength. Also, a second
polarization minimum appears at a wavelength greater than that o} ‘L—he subsidiary maximum. These

effects might allow the determination of inclination angle from spe.ctropolarimet.ric data.”None of the _

effects is present for the counterpart prolate model 4.8, and so their presence in spectropolarimetric

—data may allow differentiation between prolate and oblate asymmetry.

The limb and photodisk component profi'«s in Figures 4.13d and 4.13f give some insight into how
the inclination effects on the profiles arise. Recall the limb and photodisk polarization components
combine to create the-features of the polarization profiles. The~liﬁb component polarization profile
{see Fig. 4.13d) becomes roughly inverted with respect to the zero polarization axis as the inclination
angle increases, afid the central polarization minimum bifurcates into two polarization maxima. The
new maximum with the higher waveleﬁgth gives rise to the shifted subsidiary maximum in the net
poldrization profile (see Fig. 4.13b). The bifurcating extremum is explained by the fact that the
ellipsoi({ atmosphere viewed at an oblique inclination angle has projecting and retreating lobes that
cause the polarizing asymmetry to maximize at symmetric ’ positions. This same bifurcation cE_ﬂ'E;:t,,
-but not th - profile inveraion, was noted for the limb po!arizé.tion of the obliquely viewed prolate
mode] 4.8 il} section (c). The inversion of the cblate model profile probably owes to the increasing

strength of scattering from the sides of the photosphere relative to scattering from above and below
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it. This increasing relative strength owes to the fact that the limb regions near the sides of the
photosphere stay closer to the photosphere than the limb regions above and below the photosphere
as inclinatiop angle is decreased. Recall from the prolate model 4.9 that for 7,5 < 100 most of th_‘e
polarizing scatiering occurs very near the photosphere. Thus it is the rapid decay of the Sobolev

optical depth with generalized radius rather than solid angle, which determines the behavior,

' The photodisk component of the source function (see Fig. 4.13{) shows a negative polarization
feature growing and then shrinking as inclination angle is decreased. This photodis}: negative polar-
ization'feature dominates the net polarization, causing the shifted net emis.;lion polarization feature
(see Fig. 4.13b). This negative feﬂa.&ure probably arises from the increasing area of velocity surfaces
near z(v = .5 x vpa). a8 inclination angle is decreased. The unocculted parts of these velocity sur-
faces are scattering surfaces that are elongated along the y axis. A main result of all the Sobolev-H
calculations and the expectation from the elliptical symmetry polarization calculation of Chapter 3
section (b) indicate that scattering from the sides of an elongated photospheric surface tend to po-
larize pm;a.llel to the direction of elongation. This is the effect that leads to the development of the

negative polarization feature of the photodisk polarization component.

Fig. 4.13g and 4.13h show the Sobolev-H polarization extrema as a function of asymmetry.
The maximum increases and the minimum decreases monotonically with £.3;. The McCall emission
polarization is also shown. The McCall results are roughly an order of magnitude greater in absolute

value than the Sobolev_H results; this is the same as for all the other models.

Model 4.14 has a varied photospheric optical depth 5. The flux profiles, given in Fig. 4.14a,
are qualitatively very similar to the counterpart prolate model 4.9 flux profiles (see the discussion in
section (c) of this chapter). A noticeable difference is that the redward side of the emission feature
is rather concave for the oblate model, and rather linear with wavelengtﬁ for the prolate model. The
spherical model with varied Tph (model 4.1) has an intermediate shape for the redward side of its
emission flux features. The polarization profiles for model 4.14 are given in Fig. 4.14b. Except, of
course, for the inversion of the profiles about the zero polarization axis the polarization profiles are
similar to the counterpart prolate model's profiles, and are similarly explained. There are, however,
two distinctions. (1) The oblate profiles are noticeably affected by the finite outer radius of the
atmosphere for 7,5 > 104, whereas the prolate profiles seemed unaffected for 7,5 = 10%, (2} The

N

oblate model’s polarization emission feature extremum does not develop the shift and the cusp-like
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appeatance that the prolate model’s emission feature extremum dc\r-clops 08 Tpp increases, The other

figures for model 4.14 are gimilar to the figures for the counterpart prolate model 1.9,
P

Model 4.15 has a Planck contiﬂuum with varied phol.osphcfic temperature T,5. The figures
4.15 display the results for ‘this model. These results are entirely t;.nalogoua to the results of the
counterpart prolate model 4.10. Therefore the discussion of model 4.10 given in aect.ion‘ () of this

chapter applies here without any alteration.

Model 4.16 has two identical scattering transitions with varied wavelength separation between
them. The figures 4.16 display the results for this model. These results are largely analogous to

the results of the counterpart prolate model'd.11, Therefore the discussion of model 4.11 given ih

Tsection (c) of this chapter applies here.

Several general conclusions can be drawn from this survey of oblate ellipsoid atmospheres. These
conclusions are mainly the same as for the prolate models, but there are some differences. (1) There
is polarization structure associated with P-Cygni lines emitted by oblate asymmetric atmoapimrea.
(2) There is a change in sign in polarization between the emission feature and absorption feature,
This change of sign was not predicted by McCall (1985). The absorption feature has polarization
aligned with the symmetry axis, and the emission feature has polarization aligned perpendicular
to the symmetry axis. These’ alignments are the reverse of those of the prolate models. In both
cases, however, the emission polarization, and the absorption polarization are aligned parallel, and
perpendicular, m;l;ectively, to the semi-major axis of the elliptical projection of the atmoap_he're.
(3) The absolute values of the polarization extrema grow monotonically with €5 until &4y = .95;
then they decline rapidly to zero as £, — 0. Thé absolute values of the polarization extrema
increase monotonically with increasing inclination angle 8;,.. The flux profiles also vary somewhat
with asymmetry and inclination. A procedure for ﬁtt.inlg spectropolarimetric data would be to fit
7pn values to the flux data for a spherically symmetric model, then fit the observed bolariza’tion ‘
profiles by adding asymmetry. The flux profiles would be somewhat altered, but, they could be
re-fit fo‘r the asymmetric model. Then the asymmetry could be changed to re-fit the polarization
profiles, and so on until some convergence is reache;l. (4) The Sobolev-H polarizations obtained are
not very large. They are of the order of a few per cent even in rather extreme cases. The McCall
emission feature polarizations are larger than the Sobolev-H polarizations by about an order of

magn%‘\de. This discrepancy undoubtedly owes Lo the simplicity of the McCall prescription for the

-
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polarization, A simple correction .to the Mcéall prescription seems unlikely, since several physical
and geometrical features need to be included in prescription. The simplicity of Sobolev-H calculations
probably obviates any need for an improved McCall prescription, (5) For inclination angles different
from 90° the emission polarization feature’s minimum is shifted to wavelengths less than 'th;:':line
rest wavelength. The subsidiary local polarization maximum is shifted to lower wavelengths and a
second polarization minimum appears. The flux maximum is shifted to higher wavelengths than the ‘
rest wavelength for inclination angles that are not 80° or 0°. Thc;sé changes may alléw detection
of the inclination angle from spectropo]arimet.ri‘c and flux data. (6) The effects of line blending on
polarization profiles do not quite mimic the effects on the flux proﬁles.;The blending behavior may
make it harder to obtain a unique fit to nn;_ciat.a. Observers sh;;j]d thus concentrate their efforts

on obtaining the spectra of pure, unblended P-Cygni lines.
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Fig. '4.12a. The flux profiles for a typical oblate model with varied asymmetry £,u1. The profiles
show some alteration with increasing asymmetry, but remain qualitatively the same.
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Fig. 4.12c and d. The limb components of the flux and polarization profiles of Fig. 4.12a and b.
The limb flux profiles have complete symmetry about the line center; this owes to the symmetry of
the ellipsoid shape and to the lack of occulgation for the limb contribution. The polarization profiles
lack the complete symmetry because they are calculated from (Fy{limb) — F, (limb))/ F(net), where
F{net) is not symmetric due to occultation.
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Fig. 4.13a. The flux profiles for a typical oblate model with varied inclination angle 8¢ and
with &5 = .5. The flux profiles are all normalized with respect to the continuum; in absolute
value the flux increases by a factor of 2 as 6, goes from 90° to 0°. The flux profiles change non-
monotonically with #;,.. There is also a shift in the flux maximum to wavelengths higher than the
rest wavelength for 0, not equal fo 90° or Q2. ;



196

‘
1.2 \ |
:c,lO"2 -
1.0 + -

o
(@]
|

Polarization
o
W
T

[

0.2 . -
02 F b O | i
, : N -
L1 1 1 r |
4700 4800 4900 5000 5100 5200 5300 5400

avelength’ (Angstrom)
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Fig. 4.14g. This shows the maximim and minimum polarizations for the profiles of Fig. 4.14b

as a function of ;5. The McCall emission polarization minima are also shown for comparison,
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Polarization

Fig. 4.14h. This is the same as Fig. 4.14g., but with a smaller vertical range in order to better
dispiay the Sobolev-H calculation results. Note that the absolute value of the extrema increase with
Tph until the the finite outer generalized radius of the atmosphere begins to affect the polarization_

profiles.
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Fig. 4.15¢ and f. The photodisk components of the flux and polarization profiles of Fig. 4.15a
and b. The varied continuum slope has no significant affect ‘on the photodisk polarization profiles.
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- shown for comparison. There is very little variation with temperature.
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Fig. 4.16a. Flux profiles for a model with two lines and varying wavelength separation between
the lines. The profiles appear completely independent for AA = 400 A. For AX = 100 A, the lines
are strongly perturbing each other. For Al = 0 A, the lines appear to be a single P-Cygni line. The
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Chapter 2 section ([)). -
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Fig. 4.16e and f. The photodiék components of the flux and polarization profiles of Fig. 4.16a

and b.
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of the wavelength separation of the two lines. The extrema are affected somewhat by the various
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case the McCall results are not very significant, since line blending is not included in the McCall*
prescription,
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- . Chalpter 5

Analysis of Supernova 1987a Spectropolarimetry
, .

In section (a) of this chapter a brief review is given of supernova pcﬁarintion data and analyses
¥

that antedate SN 1987a. Scction (b) presents an analysis of some of the carly SN 1087a spectropo-

-

larimetry.

a) Pre-1987a Supernova Polarization Data

Before SN 1987a there were few observations of supernova polarization. Some color and broad
band polarization measurements have been reported (Serkowski 1970; Shakhovskoi and Efimov 1978;
Wolstencroft and Kemp 1872; Shakhovskoi 1876). These meuure;nents are discussed in Sh;piro and
Sutherland (1982) along with an unpublished measurement by M. Breger. Shapiro and Sutherland

conuclude that in three of the five observations there is evidence for intrinsic supernova polarization.

As far.as the thf:‘is author is aware, théré have been only two pr;-19873 spectropolarimetric
observations of supernovae. McCall et al, (1984) obtained spectropolarimetry for tha type I SN 1983g
in NGC 4753 near maximum light. They found a mean polarization of about 2%; the uncertainty
in their data points was also about 2%. No estimate of the interstellar polarization was given.
McCall &t al. identiﬁe;i no significant correlation of the polarization structures with the P-Cygﬁi line
profiles. To the eye of the thesis author there is a suggestion of a correlation between the po].}rizntion
structures ncar 4850 A and 5500 A, and the absorption features of a'Si II line blend and S II line,
respectively. A re-analysis of this data using the Sobolev-H method might be of some interest, The

.

uncertainties in the data would, however, probably prohibit any strong conclusions,

McCall (1985) mentions that an interesting polarization feature was found in spect.'ropolnrimetry
of type 1b SN 1983n taken within one night of maximum light. The most prominent ﬂu;t' feature was a
blend of Fe II lines with an emission peak near 4600 A. Preliminary reductions of spectropolarimetry
showed a dip in polgrization from 1.4% to .8% at the Fe Il emission peak. No significant change
in the position angle of the polarization.was found in@icating that the intrinsic and interstellar

'polarization vectors were nearly orthogonal. Unfortunately the data from this observation have never

~
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been published nor fully l:educed (McCall, private communication). An analysis with the Sobolev-H
method would be of considerable interest especially as SN 1983n is the prototype for_the type Ib
subclass of supernovaa. ‘The type Ia supernovae (the classical type I even.ts) have.rema.rkably uniform
obscrvational characteristics (Cadonau et al. 1985), and so are unlikely candidates for asymmetric
supernovae. Much less is certain about the common characteristica of type Ib supernovae, since

only a few supernovae have been assigned to the type Ib subclass (see the discussion in Cha;;ter 1

section (b)). Thus the type Ib supernovae are potential tandidates for being asymmetric supernovae.

\-

b) Analysis of Supernova !1087a Spectropolarimetry

The discovery of SN 1987a in the LMC has provided an unprecedented opportumty for many
supcrnova observations including spcctropolanmet.ry Reports of spectropolarlmetry have become "
available (Walsh et al. 1987; Magalhaes and Velloso 1987; Schwarz and Mundt 1987; Cropper et al.
1087; Schwarz 1987).: Prelimin'ary analyses of the spectropolarimetry in terms of supernova shape
asymmetry have been provided by Jeffery (1987; hereafter Paper I) and Cropper et al. ( 1987). In
addition, color polarimetry\ data and an analysis in terms of shape gsymmetry have been given
by Méndez et al. (1987). In this section an analysis is gliven of the Schw;u-z and Mundt Mar. 6-7
observations (1987).! A set of synthetic flux and polarlzatmn spectra will be presented and
compared to the Mar. 6-7 observatlons Thqe synthetic spactra are superior to those presented
in Paper I, since a multi-line Sobolev-H computer program only became available subsequent to
the calculations of Paper 1. There. is also some didcussion and reference to the data and analysis of

Cropper et &l.

Before considering the spectropolarimetric data some of the conventions used for describing
the data should be mentioned. Recall that in Chapter 2 section (d) the Stokes parameters were
introduced. In this chapter thenormalized Stokes parameters are used without explicitly writing
the qualifier “normalized” all the time. The normalized Stokes parameters are given by dividing the
ordinary Stokes parameters by the total specific intensity. The Stokes parameters and the polar-

izations will usually be expressed as percentages except in the figures. Also recall from Chapter 2

~ ' The data from Sci:war'z and Mundt (1987) has been supplemented by H. E. Schwarz (private
communication) and from a preprint by Schwarz (1987). The Schwarz and Mundt data and the sup-
plementary data were partly based on observations collected at the European Southern Observatory.

[N

-
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y
bction (d) that the polarization and position angle are given by

. P=yvQr 4+ U, L | ~ (5.1a)

and
1
b= 3 arctan(U/Q), _ (6.1%)
respectively. It should be clear that
. - Q=Pcos2¢ and U= Psin2¢. (5.2)
—-— , - ‘ F/
The normalized Q para_.meér is given by \
- Q=(l- I,)/I, ’ § (5.3)

where the ! and » axes are along the celestial mendm%nnd celestial latitude, respectively. The U
parameter is also deteﬁnmed from f:quat.lon (5.3), bul in a coordinate system rotated 45° in the
clockW®ise direction (Chandrasekhar 1960, p. 34). It l'ollows that the position angle is measured from
clockwise from the celestial meridian. ‘

In order to analyze the spectropo.larimetry the interstellar polarization (ISP) must be considered.

This interstellar polarization arises from interstellar dust in the Galaxy and in the LMC. The dust

handl gra.ilis are a]igned by interstellar magnetic fields, and so ;:reat.e a polarizing medium. The effect

'y

~/

on a radiation beam of passing through the dust medlum can be described by a set of differential
cquatlona for the normalized Stokes pnrameters (Martm 1974) Solving the dlﬂ'erentml equations
ig not necessary if values can be obtained for t.l_'le Qrsp and Ursp Stokes parameters that initially
unpolarized radia.t.ion acquires in its passage from some specified location to Earth. These ISP
values are then simply subt:rhcted from the net Stokes parameters measured for an object at the

specified pcation to obtain the intrinsic Stokes parameters of the radiation field of the object:
Qint = Qnet — Qusp, {h.4a)
and -

Uint = Unet — Usse. (5.4},

Determining the ISP components can be difficult, showever. The contribution from the Galaxy

might be determined from the polai'izati.oh of starlight along the line of sight. The contribution from
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the parent galaxy of & super'novn may be harder to determine. It is this difficulty that ‘originally
motivated the consideration of spectropolaritnetry for supernova ratiler than broad band polarimetry
(McCall 1984). Interstellar polarization varies slowlir with wavele.ng'th cl‘:mpared to the po—larizﬁtion
structure expected to be associated with gupernova P-Cygni lines. Therefore intrinsic polarization
features should ‘be easily identifiable from spectropolarimetry. _ However, to'e tract quantitative
information about the supernova asymmetry from spectropolarimetry requires that the interstellar
polarization be known. Unfortunately the ISP value in the direction to SN 19875: is rather’;;rtain.
The ISP valuea suggested by several authors vary over a considerable range. Barrett (1987) gives
an ISP of .97% at 37, Cropper et al. (1987) estimate .7% at 26°, while conceding considerable
uncertainty. Méndez et al. (1987) give ISP values that range from .39% to .50% at abo'lit' 1;’ for
the UBVRI color wavelength bands. Schwarz (private communication) provides ISP values that
range from .90% to 1.09% at about 3° for the‘ the UBVRI ;:olor wavelength bands and for several
line waveleﬁgthn. For this thesis the ISP values given by Schwarz have been adopted. These are

given in Table 5.1 in the form of interstellar Q and U parameters.

Thé Mar. 6-7 spectropolarimetry taken by Schwaﬁ and Mundt (1987) along ;vith some data
provided by the courtesy of H. E. Schwarz (private communication) and some data from Schwarz
(1987) appear in Table 5.1. The values subscrip"ted by “ISP" are the estimates Schwari gives for the
interstellar polarization; those subscripted by “net” are his measured values. The values subscripted
by “int” for intrinsic are the supernova values corrected folr interstellar polarization. Since the
interstellar polarization values are uncertain, the gi\reh intrinsic values may have a large systematic

error.

The position angles of the intrinsic polarizations in Table 5.1 agree with each other within
estimated uncertainties. However, the uncertainties in the position an‘gle.s are large, and it is note-
worthy that there appears to be a systematic difference of about 20° between the emission feature's
position angle and the absorption feature's position angle. For axisytﬁmet.ric eimitting systems the
position angle should be; constant or have 90° shifts only. There is some evidence that SN 1987a has
a Qtrong axisymmetric component. Polarization position-angle measurements were performed with
high wavelength resultion by Cropper et al. on Mar. T(and from May into July. Their measurements
show complicated variation of net position angle with wavelength. Cropper et al. show, however,

that the position angles do cluster about a value 16.5° + 3°. While it is clear that the supernova
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TABLE 5.1.—Polarization data for SN 1987a for Mar. 6-7 1087.
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Feature QISP (%) Ursp (%) Qrul (%) Unet (%) Qin (%) Uine (%)
U - 0.09 .80 G.32+.07 - 0.754.07 0.234+.07  -0.154.07
B 0.11 1.03 0.22 0.67 0.11 -0.36
v 0.1 1.08 0.31. 0.64 0.20 -0.44
R 0.10 %.98 ©0.19 0.65 0.09 -0.33
I 0.09 : 0.90 0.28 0.57 0.19 ,-0.33
Hopeye 0.10 0.98 0.13 0.94 0.03 -0.04
Hage, 0.10 0.08 0.11 . (.61 0.01 _ =037
HBes 0.11 1.05 0.28 0.70 0.17 -0.35
HBas, 0.11 1.05 -0.31 -0.156 -0.42 -1.20
HYraat 0.11 . 1.03 0.26 0.70 0.15 -0.33
Hvaps 0.11 . 1.03 -0.08 0.45 -0.17 -0.58
Na Dy 0.10 1.00 0.48 -—0.66 0.38 -0.34
Na Dgs,’ ~0.10 1.00 -0.01 . 0.31 -0.11 -0.69
{OlI) - - 0.30 0.84 0.20 . -0.14
Feature '\ﬂ!ler |6’\ (A) - Paet (%) Bnee (o) Pine (%) Oint (o)
U 0.824.07 33.£15. 0.27+.07 -17.4£240.
B 0.71 . 36. (.38 -36.
A" 0.71 32. 0.48 -33.
R 0.68 . 37. 0.34 =31
1 0.64 32. 0.38 -30.
Hareat 656510 0.95 4]1. 0.05 - -27.
Hargss 6251|33 0.62 40. 0.37 -4d.
Hp, 0t 486734 . - 0.7V 34, 0.39 -3,
H{a, 4697|10 0.3 : 103. 1.27 -b5.
Heyreae 434028 0.75 - 35. 0.36 -33.
HeYase 4188)33 0.45 49. 0.60 53,
Na Dy.us 5897|56 0.82 27. 0.51 -21.
Na D, 5757|20 0.31 46. 0.70 <50,
(o111 0.89 35. 0.24 -18.

b

SOURCE: The Qrsp, Ursp, Qnat, and Une values were supplied by H. E. Schwarz (private
cémmunication). The Qin: and Uj,, were crlculated using the ISP am_l net values; the Q¢ and
Uins can also be found in Schwarz and Mundt (1987) or, in a more convenient form, in Schwarz
(1987). The Ajirrer |62 are the cenfral wavelengths and FWHM's of the filters used by Schwarz and
Mundt. The uncertainty estimates were also taken from Schwarz and Mundt,

-

NOTE: The Qsp, and Ursp values are estimates for the interstellar values toward SN 1087a.
The net values are the actual observed values for SN 1987a. The Qin: and Uin: are obtained by
subtracting the ISP values from the net values. The uncertainties assigned to the data are rather

approximate, and do not includéd the systematic error due to the uncertainty in the ISP va!hes. The

uncertainty in the ISP values may be quite large.
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cannot be purely axisymmetric, there is probably a strong axisymmetric component,

The symmetry axis fowwymmetnc models would be cither —40° or = B60° if Schwarz
and Mundt's intrinsic posll.lon angles are taken at face value. Cropper et al. 's data mdlca.t.e the
aymmetry axis should be & 15° or & —T75°. The companion source (see Chapter 1 section (c))
discovered by Karovska et al. (1987) using epeckle imaging techniques is located at a position angle
of 194° 4 2° relativ? to the supernova (Nisenson et al. 1987). It may be that this position angle is
also the angle of the symmetry axis of the supernova. This suggestion supports Cropper et aI 's
assignment of the symmetry axis, since 180° shiks in polarization position angle are of no physical
significance. The discrepancf between the two assignments of the -approximate symmetry axis may
owe to evolution of the supernova. Schwarz and Mundt’s data are from Mar. 6-7, and the blulk of

Cropper et al. 's data are from May 5 and later.

The speckle itnaging observations reported by Nisenson et al. (1987) for Mar. 25 and Apr. 2
reveal a possible shape asymmetry for the supernova. Their reconstructed images of the supernova
show an elongation. The reference star in;ages also show elongation, but not so much as the super-
nova images. Nisenson et al. suggest that the elongation of the supernova images .ma;' indicate an
intringic elongation of the supernova; the uncertainty in the data are too éreat to be sure. The axis
of the elongation of the 6560 A imz;ge is roughl? along the celestial latitude (position angle 90°).
The direction of clongation is thus roughly perpendicular to the position angle of the companion
source. The ratio of height to length for this image is =2 .8. The shape asymmetry suggested by
the speckle image offers some support to an interpretation of the polarization spectrum in terms of

shape asymmetry.

[
N

The companion source is probably not a major contributor to the polarization of the net flux of
the superno;fa and companijon. These P-Cygni profiles are major structures in the net flux spectrum
and are strongly dependent on the velocity distribution of the scattering regions. It seems unlikely
that the line flux profiles of the companion source would have the same P-Cygni shapes as the
supernova since the companion alpnost certainly has a different velocity distribution; the companion
may not have any significant macroscopic velocity at all. Since the companion source is a weaker
source by 2.7 magnitudes than (.08 as bright as) the supernova‘(Nisenson et al. 1987), its line flux
profiles can contribute only weakly to the net line flux épectrum. ‘1"hus the net flux profiles owe

mainly to the supernova, not the companion. The polarization and position angle data are strongly
]
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corrclated with these flux profiles (Cropper et al. ) indicating that the polarization is due mainly to

the supernova. This argument is taken from Cropper et al.

-
.

A series of models have been examined to try to fit the flux spectrum and the Schwarz and
Mundt polarization data for Mar, 6-7. The synthetic flux spectra have been fitted to an observed
spectrum using the procedure outlined in Chapter 2 section (c) and models of the type described
in Chapter 4 section (a). The asymmetry £, inclination angle to the axis of symmetry, and Sobolev
.photospheric optical de!)ths have been varied to try to fit the polarization data. The goodness
criterion for these fits is merely judgement by eye. Therefore the fits are nab.uniquely good, and
musl be considered as reasonable fit.s* rather than best fits. Following the convention established in
Chapter 4, the models are labelled by the same number as the figure th.nt. displays their spectra: e.g.,
Fig. 5.2 displays the spectra for model 5.2. All the figures are collcctcd‘ at the end of the chapter.

The first step in fitting the polarization data for Mar. 6-7 is to fit the flux spectrum for that
epoch. An observed flux spectrum for Mar. 6 from Blanco et al. (1987), provided l')y the courtesy
of J. Matthews (private communication), is displayed in Fig. 5.1, Spherically symmetric l;lodel 5.1
was used to calculate a synthetic spectrum to fit the observed speci.rum. The model parameters and

the reasoning behind their selection for model 5.1 are given in Table 5.2.
/

The fit to the observed spectrum is quite good in some wavelength regions. Below about 4500 A
it is probable that more lines are needed to fit the observed spectrum. There is in fact a considerable
deficiency relative to the black body curve in the UV region of the supernova spectrum after Feb, 26
(Danziger 1987). This deficiency may owe to the opacity of many t.h_(_)usands of weak lines as is
speculated for the UV deficiency of type "f’supernova (Harkness 1986). Above 6700 A the observed
curve fa!ls considerably below the synthetic reddened black body curve. For the V' band and longer
wavelengths the supernova spectrum is known to obey the black body curve quite well (Boucﬁet et

al. 1987); thus adding a few more strong lines above 6700 A would probably remedy the discrepancy.

The absorption and emission features of the synthetic 'I_Iar and HJ lines are not as extreme
as the observed features. Trying Lo strengthen these lines shifts unacceptably the location of their
absorption minima. It is possible that-some thermal emission accounts for the excess of the observed
Ha emission feature above the synthetic pure resonance scattering emission feature. The lack of a
synthetic HB emission feature is due to the Fe II 5018 A line. This line's absorption feature falls

on the H3's emission feature and destroys'it. The destruction of emission features by coincident
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TABLE 5.2.—Parameters for the model 5.1 which is used to calculate a synthetic flux spectrum for
SN 1087a for Mar. § (see Fig 5.1).

Purameter Value Comment or Source
Ep-v 20 This value for the color excess was adopted from the estimate
. . : Ep_v = .20/£ .05 given by Cropper et al. (1087) The reddening

[(extinction) curve was taken from Code et al. (1976).

Normalization The synthetic spettrum was normalized to a reddened
.- black body curve (T=5500 K) at 5900 A. The observed
spectrum was normalized by demanding the integrated flux
between 4600 Aand 8400 A be the same for observed

and synthetic épectra.

Tomen arg,, For p=17, a line with 7,5 = 600 has the nearly
.. ' . insignificant optical depth of = .04 at r, =4r,,.
Thus 4r,,, seems a reasonable cut off radius.

P 7 p is the power for the optical depth decay law. 7 is the
standard choice for p (see Chapter 2 section (c) and Chapter 4
section (a)).

symmetry spherical As an unprejudiced first choice for spectrum fitting a spherically
symmetric model is considered.

Tpn(Ha) 600 This optical depth provides reasonable fits to the observed
A =05624A : Balmer series lines, The optical depths for the other
Balmer lines are obtained using the procedure described
in Chapter 2 section (c). The first 6 Balmer lines are included in

the synthetic spectrum.
-3

Ton(Na D) 2.25 Only the Na D lines were included for Na 1. The other
A = 5890A *Na I limes made negligible contribution to the shape of
the synthetic spectrum.
Tpn(Fe 1I) 10 The 33 strongest Fe II between 4173 A and 6248 A
A =4233.16A were included in the synthetic spectrum.
Ton 55600K - This photospheric temperature was obtained by interpolating

from the temperatures of black body curve fits to SN 1987a
optical and IR data given by Bouchet et al. (1987). e

Uph 6000 Kms™! This photospheric velocity was determined by fitting the absorption
feature of the weak Na D lines (see Chapter 2 section (c) '
and Chapter 4 section (b)).

NOTE: The line wavelengths and energy levels were taken from Striganov and Sventitskii (1968,
p. 73, 231, 465). The weighted oscillator strengths for the Balmer and Na I lines were taken from
Allen (1976, p. 70). The weighted oscillator strengths for the Fe II lines were taken from Phillips
(1979).
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absorption features was discussed in Chapter 4 section (b). The Fe II 5018 A line is nccessa.ry to
create the emission feature near 5000 A. Trying to add a line strong enough to restore the em:ission
near 4900 A destroys the fit of the H3 aSertion feature, It may be that the observed feature neat
4900 A is a thermal emission feature also. '

It seems likely that some add'it.ional weak lines near 6000 A would reduce the synthetic Na D
line emission feature and improve the fit in that region. |

Having obtained 7,5 values for the Balmer series lines, a collisional depolarization analysiﬁ can
be done. In Chapter 2 section (e) an equation for the clectron density of the most polarizing rc;gion

i
in a supernova atmosphere was derived: :

|
wlp-1) -3 .
N pol & 3.5 % 10 _Usfd (1/1pa) em™2, (|5.5)

. |

where vy is the photospheric velocity in units of 10%ms~!, and t4 is the time in days since? the
supernova exploded. From the synthetic spectrum fit vy = .6. The Mar, 6-7 data was tnlcen‘; ap-
proximately 12 days after the neutrino burst that marked the supernova explosion. The p param!jeter
was set to 7 for the model. The Tph and n, 5, values are given in Table 5.3 along with the cgitiical
density values. Recall from Chapter 2 section (e) that if the n, 5o values greatly exceed the %rit-

ical density values, then the polarizing effect of scattering would be expected to be destroyed by

collisions.

TABLE 5.3—The critical electron densities for the destruction of the polarizing effect of the Balmer
transitions in a hydrogen dominated atmosphere and the n, p; values for SN 1087a on Mar. -7
1987,

Transition Nupper - Mg crit Teh Te pot
(cm™3) (em=?)
He 3 - 600. 5 x 107
Ha 4 4 % 108 83. 35x% 108
Hy 5 1 x 108 28. 1x10°
Hé 6 2.5 % 107 13. 2.2 % 10°
: He -- 7 8 x 108 7.2 4x10°
H¢ 8 2 x 108 45 8 x 10°

+

SOQ{CE: The critical density values were measured from Fig. 4 of Pengelly and Seaton (1964).



228

It is clear from Table 5.3 that the polarizing effect cannot be ruled out for either the Ha or Hp
lincs. Considering the equation (5.5) is rather apprt;ximate even the Hy line's polarizing effect may
survive collisional destruction. As argued in Chnpter.2 section (e) some other lines, such as the Na D
lines, are probably safer than the Ha line from collisional depolarization. These conclusions provide
confidence that the observed polarization structure associated with the line flux profiles does in fact
owe Lo resonance scattering.

To try to fit the polarization data the asymmetric models 5.2, 5.3, 5.4, 5.5 and 5.7 were consid-
ercd. These models, except as indicated, have the same parameters as model 5.1. Except for model
6.5 the Fe II lines were not included in these mo-dels in order to reduce the computational effort
while éxamining parameter space.

« For model 5.2, oblate asymmetry was introduced and varied between £, = .2 and Lot = 8.

Recall from Chapter 4 section (&) that

(c/a) = 1— £, (5.6)

where ¢ and a are the semiaxes parallel and perpendicular to the axis of symmetry, respectively.
Only oblate asymmetry was considered since oblateness seems the most plausible asymmetry for
supernova, Rotation of an exploding BUPEFNOVa core Or mantle is a plausible source of oblateness (see-
Chapter 1 section (d)). The oblateness is assumed to be communicated somehow to the atmosphere
-{sce the discussion in Chapter 4 section (a)). The inclination angle of the line of sight to the
symmetry axis of the model was set to 90°. The position angle of the model's symmetry axis on the
plane of the sky was taken to be either —40° or 50° as indicated by Schwarz and Mundt’s pesition
angles. | N
Except for the absence of Fe II lines, the synthetic flux spectrum for model 5.2 (see Fig 5.2a)
is not greatly changed from that of model 5.1. It is noteworthy that the absorption features of the
Ha and HZ lines are somewhat better fit by the oblate model curvce.’.; the &, = 4 to .6 curves fit
the absorption feature of the Ha best, and the extreme £o01 = .8 curve fits the absorption feature of
the HZ best. Remarkably the £,y = .8 curve improves the fit of the emis;ion feature of the He line.
The synthetic polarization spectra for model 5.2 are displayed in Fig. 5.2b al;ng with Schwarz
and Mundt’s spectropolarimetric data (corrected for ISP using Schwa;z’s ISP value). As mentioned
ab:l)ve, the data have shifts in postion angle between the absorption and emission polarizations that

are consistent, within uncertainty, with being 0°; however, there appears to be a systemat‘.'ic sh}ﬂ. of

/
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about 20°. An axisymmetric intcrprcl.at.ion_ of the data requires that the shifts be assumed to be
cither 0° or 90°. As mentioned above, Cropper et al. conclude that there is some evidence for an
approximate symmetry axis. Since only axisymmetric models have been considered for this thesis, it
is assumed that there is a symmetry axis. Therefore it scems best to regard the position angle shifts
found in the Schwarz and Mundt data as being 0°. Synthetic polarization spectra for resonance lines
show 80° shifts in position angle across the P-Cygni profile; the 90° shifts are expressed graphically as
changes in the sign of polarization (sce Chapter 4). Thus there is a considerable discrepancy between
the Sobolev-H calculated polarization spectra and the Schwarz and Mundt data. In Fig. 5.21;, this
discrepancy appears 8s a polarization difference between the baseline of the synthetic spectra (i.e.,
the zero axis) and the average polarization of the Schwarz and Mundt data. Some of the discrepancy
m:;y be remedieﬂ by a better estimate of the JSP. Also, intrinsic continuuum polatization could
provide a nor-zero baseline for the resonance polarization profiles. Intrinsic continuum polarization
" almost certainly exists for 1987a (see the discussion of Fig. 5.5b below-;'). Models 5.6 and 5.7 (aee'
below) are used to investigate the effects of continuum polarization. For the models 5.2 through 5.5
the discrepancy between the average polarization of the data points and the baseline of the synthetic
polarization profiles will not be considered further. Instead these models will be used to try to fit

the absorption-emission polarization differences of the data. For brevity these differences will-be

labelled by AP,

The observed AP and those obtained from the calculations for model 5.2 are given in Table 5.4.
Due Lo the large uncertainties, all the asymmetric models produce\AP values that are consistent with
~ the observed values for the Ha, Hy, and Na D lines; however the closest fit for these lines is given by
the £,5 = .4 model. For the H@ line, there are no fits within the estimated uncertainties; the model
AP are always too small. Note from Fig. 5.2b that the difference between the polarization maximum
and minimum of the HA line is about .5 % for £,31 = .4 and about 1.2% for £,51 = .6. The reason why
the HF line’s A P values are too small is that the wavelength where the absorption polarization datum
was measured is not the wavelen)th of the model maximum polarization. Since t‘h:a model absorption
polarization feature is rather narrow, a small offset in wavelength changes the AP value dramatically.
The positién of the polarization maximum is not very certain, since it depends sensitively on the
photospheric velocity and very probably on the actual supernova photosphere shape. Thus it seems

reasonable to suggest that since a model with £ur = .5 would produce a polarization difference

&
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of order .8% between the maximum (and minimum of the polarization profile, that asymmetry
of this size may explain the H polarization data. This difficulty with the HZ line data is not too
disappointing, since it is already understood from the lack of a constant position angle of polarization

that simple oblate models cannot completely explain the polarization data.

* Table 5.4. The observed AP and the AP taken from model 5.2.

Line APy, (%) A Prsodet (%)

EoN =.2 fo“ = .4 £t = .6 Eot1 = .8
Ha 24 .14 A7+.03 T.354 .03 49 .03 .45+ .03
HS . .88 .20 A2 .61 .50
Hy .24 1 .25 ) .35 32
Na D .19 .08 A7 .26 30

L4

NOTE:, The AP,;, are taken from Table 5.1. The A Pppo4et 8te taken from the calculations
for model 5.2. The wavelengths at which the polarization values were taken for the APnodet are
those given by Schwarz and Mundt (1987) for their filter central wavelengths. The uncertainties in
the APpnoger values are due to the numerical integrations and to truncation errors that occur when
subtracting flux components to get polarization and when subtracting polarization values to get the
AP values, ’ '

‘.%ince an asymmetry £, &5 .5 can explain the HB data, and since the polarization profiles of a
Eonl ; .5 model would give reasonably good fits to the ol_.her lwwe data, the asymmetry £,;; has been
set to .5 for the rest of the models investigated. The oblate asymmetries obtained by Miiller’and
Hillcbrandt (1981), and Bodenheimer and Woosley (1983) in their rolating supernova explosions
indicate that £, = .5 (or 50% asymmetry) is physically plausible (see Chapter 1 section {d)).

The inclination angle of the line of sight to the symmetry axis of model 5.2 was set to 90° degrees.
This choice of inclination angle maximizes the polarizing effect of the asymmetry. The inclination
angles of supernovae, however, should be randomly distributed between 0° and 90°. It is clear that
the effect of varying the inclination angle should be investigated. Model 5.3 was calculated with

inclination angles of 90°, 60°, and 15°. The 60° inclination was chosen since the mean of random

inclinations is nearly 60°:

‘ x/2 )
(Binet) = _/0 dffsiné = 1= 57.3°. (5.7)
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The 156° inclination was chosen to examine a low inclination case. The 90° inclination was for
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cor.npnriaqn. Model 5.3 had £, = .5.

The flux spectra for model 5.3 are shown in Fig. 5.3a. It is clear that decreasing the inclination

while holding the optical depths constant worsens the flux spectrum fit to the observations. Most of

the worsening occurs as the inclination angle is reduced from 90° to 60°. The polarization spectra

are shown in Fig. 5.3b, The fit to the polarization data for the H8 and Na D lines is lost when
inclination angle is decreased significantly below 90° ., The fit for all the lines i:qloat when inclination
angle is _decrca.aed t.c; 15°. The loss of fit to both flux and polarization data may be recovered either
by increasing the asymmetry (see Fig. 4.12a and 4.12b Chapter 4 section (d)) or by increa;.sing the
optical depths (see Fig. 4.14a and 4.14b ClJ;apter 4 section (d)). Since an asymmetry of £, = .5

sccms physically rather extreme, the option of increasing optical depths has been considered with

model 5.4. . .

Model 5.4 has £.3; = .5 and the inclination angle is set to 60°. ptical depths of t..he Balmer
lines are increased by factors of 10 and 50 over the values fitted Tor the ‘spherically symmetric modcl..
Fig. 5.4a shows that increasing the optical’depth does improve-the fit to the depth of the absorption
features and the height of the emission featuges. The locations of the absorption minima have been
shifted, but these can be recovered by reducing the photoephcrjg velocity. Increasing the Balmer
linc optical depths also recovers Balmer line polarization features of size comparable to the obsé;ved

+

fecatures (see Fig. 5.4b).

It is clear from the examination of models 5.3 and 5.4 that unique values for asymmetry,
. .
inclination, optical depths, and photospheric velocity might be very difficult to determine. Other

observational evidence or theoretical guidance may help to determine unique values,

Model 5.5 was created to examine the effects of introducing the Fe II lines into the spectrum of
an oblate model. The asymmetry 5 = .5, the inclination angle is set to 90°, and the optical depths
from the spherically symmetric model 5.1 are used. Fig. 5.5a shows that the m'odc‘:l 5.5 synthetic flux
spectrunﬁb{h/e observed spectl:um at least as well as the spectrum of the spherically symmetric

model 5.1. The AP 4.1 values are reasonable fits to the AP,, values (see Fig. 5.5b).

The effect on the synthetic polarization spectrum of introducing the Fe I lines is not very large
(s¢e Fig. 5.5b). The smallness of the polarizing effect of the Fe II lines owes in part to the smallness

of their optical depths: the strongest lines have optical depths of order 10, and most of the lines

-
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have optical depths of order 1. Howcver,_it is not only the weakneas of the Fe II lines, but also the
sni}llness of their E; coefficients that makes their polarizing effect weak: of the 33 Fe II lines included

in the synthetic spectrum, 18 lines have Ey < .1. The cumulative polarizing effect of the Fe Il lines

is not enough to account for the intrinsic continuum polarization that the Schwarz and Mundt data °

indicates exista, This experience with the Fe II lifes indicates that it may not be possible to build
up a continuum polarization from identifiable spectrum lines. It may be that thousands of weak
lines provide a quasi-continuous scattering opacity due to Doppler enhancement (Karp ;t al. 1977),
and these may contribute to a tontinuum polarization; however, nearly all of these lines would have
E) < .5 (see Table 2.2 in Chapter 2 section (d)). It is not clear that resonance lines can provide
much continuum polarization. However, intrinsic continuum polarization is almost certainly present
for SN 1987a. Cropper et al. observed a continuum polarization of .8% on Mar. 7 in the region of
the Ha line; by May 5 the continuum polarization had dtopped to about .5%. This time variation
is nat.gra]ly attributed to a variation in an intrinsic continuum polarization. 'i['he introduction of

coutinuous opacity would provide a source for this continuum polarization.

\

The Sobolev calculat‘ions of Branch (Bran.ch 1980; Branch et al. 1981, 198& 1083, 1985) and
Paper 1, and all the Sobolev calculations previously presented in this thesis ignote continuous op;acity.
Continuoug opacity is wavelengtl? independent, at least over wavelength intervals of interest to line
cnlculutio;l§ It has thus been assumed that it has little effect on the morphology of the line flux
profiles, The continuous opacity is merely thought of as establishing the photospheric radius at
optical depth of order 1 in the continuum. Co-moving frame calculations (Harkness 1986) with
coutinuous opacity, including electron scattering, show that the assumption that continuous opacity
has little eflfect on the morphology of line profiles is valid. ?‘hus the identification of lines, and order
of magmtude estimates of line strengths can probably be safely made while i ignoring continuous
opacity. However, the effects of combining 39:&& of continuum and line polarization are less certain.,

Some preliminary study of these effects ought to be made since they could clearly be important in

interpreting SN 1987a’s polarization spectra.
. ? ¥
N 1t seems most probable that the source of continuum polarization is Thomson scattering by free

i
electrons. Free electrons are a‘r’najor source of continuous opacity in supernovae (Wagoner 1981).
Electron scattering obeys a Rayleigh phase-matrix (a Hamilton phase-matrix with Ey=1),and so is

highly polarizing. Since electron scattering is wavelength-independent, velocity fields have little effect
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on radiative transfer involving electrons. This fact was invoked by Shapiro and Sutherland {1982)

and McCall (1984, 1985) so that they could use static atmosphere solutions for their polarization

-

calculations (see Chapter 3). Unfortunately, there seems to be no simple way to merge existing static

alinosphere, continuum solutions with moving atmoephere, line calculﬁions; McCall's method for

doing so was very qualitative. Instead of merging a static atmosphere, continuum solution, a simple
expedient is to discretize the continuous (and wavelength-independent) electron opacity into a series
of weak, closely spaced pseudo-lines. Here, this method is called the discretized continuous opacity
method or the DCO method. The DCO method is devcloped-belm;, nn::l some exploratory results

are presented for models 5.6 and 5.7.

The assumption is madé that all the continuous opacity owes to free electrons; this is probably
not valid (see Wagoner 1981). However, n; ‘a.rgued in the discussion of model 5.4, another source
of continuous opacity, Doppler enhancement of thousands of weak resonant lines, may not produce
much polarizing effect. ' Also the continuous opacity provided by ionization processes will not be
polarizing. Thus for an exploratory treatment the limitation to clectron continuous opacity seems

reasonable. ' —_

The discretization procedure requires a prescription for the Sobolev optical depths for the

pscudo-lines. The Sobolev optical is given by 4
! }

. g ke . kyc
' = — =, . 58
M T T volQ| Arent|Q| (58)

where Arg,e is the rest frame line center wavelength, and kj is the integral of the monochromatic

line opacity over all wavelength. For the electron pseudo-lines, let

%

wliere n, is the electron density, ¢ is the Thomson cross-section, an'd‘ A) is the discretization

“Lhy = n,0AN, (5.9)

increment in wavelength. Assuming the expression for n, from equation (2.164a) in Chapter 2
— <

sectiqw),gives" h
Tpreudo = B 1T BA s (5.10)
preudo rpthl Arent P ’ .

where 7, is the optical depth to the photosphere and A..,; is interpreted as the wavelength ofla

pscudo-line. The optical depth to the photosphere is usually taken to be 1. Recall from Chapter 2

section .(c),}hat. for supernova

Q| = t=! and Tpn 52 tpal, {5.11)
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where ¢ is the time since the explosion and vy is the photospheric velocity. Thus the equation for

"pscudo-line Sobolev optical depth is

- (p~ 1)er, AX

‘Tpsaudo = v—'\ ( ph/r)P = rpuudo(ph)(rph/r)p (512)
ph re

With this expression for the pseudo-line optical depths it is a simple matter to implement the
discretized continuous opacity in the multi-line Sobolev program. ’ _
It should be noted that-there is no need to think of the continucus electron opacity as discretized

in wévelcngth. Thehmacroacopic motion of the atmosphere implies that wavelength discretization is

cquivalent to spatial discretization of the opacity due to the Doppler eflect. Note that

AX = Aou(Avfc) = )«,....(lOlAl/c), (5.13)

where Al is a spatial discretization mcrement. for the continuous opacnty Subst.lt.utmg equation

(5.13) into equation (5.10) glves t.hc prescnphon

rp..u¢a=(p—l)r.( )(fpr./r)” : | (5.14)

for the optical depths to be used at the spatial discretization points. Since both line and continuous

opacily are being treated, it is most convenient to think in terms of wavelength discretization and

\ ,
to use equation (5.12) in computer calculations.

In order to form a continuum scattered flux and a continuum polarization, the pseudo—lmes have

to be sufﬁclently dense. One would expect that the individual flux and polarization features of the
pscudo-lines would have to be strongly overlapping. From models 4.1, 4.9 and 4.14 of Chapter 4,
it can be seen for weak and moderate lines (154 X,100) that the flux and polarization emission and
absorption features have widths of order Arest(tpafe). Thus to overlap the ['eat.ures? th-e separation
of the pseudo-line rest wa\‘relengths should be of order Arg\,(v,h /¢) or smaller. This condition is the
samc as requiring Lhe spatial discretization increment to be of order rps or smaller. Numerical exper-
iments show that for AX > 2;\",,(11,5/::), the line structure has not been suppressed in either flux or

polarization. For AX < L Arens(vpn/c) the line structure is largely suppressed and continuum-like flux

and polarization reglona are present; some small oscillations due to the lines remain superimposed

on the continua. As AA is reduced further the line structure is furth‘?r“fe/duced and the flux and
polarization continua become smoother. For A < Aresi(vpn/c) the average height and slope of the

continuum flux and polarization are roughly constant as A is decreased.

-
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It should be noted that Lhe pseudo-lines can only be introduced over a finite range of wave-
lcnglhs Thus spurious structure is to be expected near the low and high ends of the range; at thd
ends ol' the range there isa st.ep—funct.lon like change in scattering opacity. Therel‘oru the wavelengt.h
range must be made wide enough that the spurious structure is not important in the central rcglon-
of the range where the contfnuum effects are to be studied. The upunoua structure extends over a

fcw times A,.,.(v,p. /c) at the ends of the wavelength range.

L1

In order to test the physical validity of DCO & compatison fias been made between model
results calculated using DO and reésults obtgmed by Cassinelli and llumme?)ﬂ?l hereafter CH).
CH consldercd models that consisted of spheri¢al, electron scattering atmospheres wn.h central point
sources of unpolarized flux. The opacity of the CH models is given by k(r) = r-P; I.he. radiz} unit of
measure was chosen so that k(r=1)=1. The atmospher¢s have a cut-off radius R. CH plotted the

: polarization of specific intensity beams emitted from u}maphere as a function of the logarithm
of the impact parameter. The impact parameter is the distance on the project.led atmosphere (as .
scen by a distant: obse:;ver) measured from the center of the projection. The CH results, taken from
Cll's Fig. 6., for a caiculation with p = 3 and R = 10 are shown .in Fig. 5.8. The polarization
platcau region mentioned in Chapter 3 section () is not present; R must be greater tifan 10 for the
plateau region to be evident. The plateau region is bf:ginning to form bafore the inflection po%nt""
near log(impact parameter) = .6 cauges the polarization curve to rise rapidly to unity, A DCO
calculatign was done with a model that was the same as the CH model, except that a finite central

"source for unpolarized continuum flux was used. The agreement‘ between the CH and the DCO

.cun'e is good. This gives conﬁden_ce in using DCO for supernova models. Further comparisons m

‘DCO and CH results should be made to give additional confirmation of the DCO method.

The Dé-&) model used for .pra)ducing the curve in Fig. 5.0 required a finite central nourc.e of
unpolarized radiation for numerical rfasons. The central source had a radius r,pures = (1/3). The
pscudo-lines must have a spatial discretization increment of the same size as the radius of the
central source mkorder for their P-Cygni profiles to overlap. Thus for an atmoophere of diameter
2R = 20 = 60r,4urce, 60 pseucf(o-lmeu are required. A present, the practical upper limit on lines in
the existing Sobolev-H program (see Appendix 4) is about 60. Models with smaller central sources
and only 60 pseudo-lines gave poorer agreement to the CH curve. Smaller central sources with more

pseudo-lines would probably improve the agreement of the' DCO and CE curves.

4
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Before presenting results of supernova model calculations with DCO, it is useful to consider wh!'ﬂ.
resulis were e;:pecl.ed and qualitatively what was found. For resonance scattering the absorption
- and cmission polarizations are aligned perpendicular to enc'h other for both prolate and oblate
atiospheres. The absorption feut:lre has a higher absolute value of polarization in general than
the emission feature (see Chapter 4). However, the emission flux is more diluted by unscattered,
unpolarized radiation; thus the emission flux may include more polarized radiation in absolute
quantity than the absorption flux. Therefore it is not certain which polarization ahgnment would
domihate if the absorption and emission flux were summed. Continuum polarized fuxes from the
photodisk and limb regions of the atmosphere are not separated by wavelcngth as is the case for the
P-Cygni line fluxes. Thus what can be cilled emission and absorption continuum fluxes are summed
lo give the emergent continuum flux, Therefore there can only be one continuum polarization
alignment. McCall's treptment (19.84, 1985) of the scattered continuum flux using the CH co\r’ltinuum
polarization result indicates that continuum polarization should be aligned with the long axis of an
elongat?d scattering atmoaphere (see C}mpter 3 section (b)). Thus one expects that the continuum
* polarization should hive the same polarization alignment Lhat tie emission feature pol-arization ofa
resonance line has in the absence of continuocus opacity. With ‘the convention used in all the figures
oi' Chapter 4, the continuum polarization is expected to be positive for prolate atmospheres and
negative for oblate atmospheres. Numerical experiments for oblt';te atnllosph;:res with DCO confirm

. the expectation for oblate atmospheres. \

The effect of the DCO on the polarization profiles of the resonance lines turned out to.be
{.:onl.ra.ry to expectn"tions. It was expected that the profiles would bé superimposed on the continuum
bolaria;ation without very profound modifications. This was a supposition of Paper I. The result
of numerical experiments with oblate atmospheres was that the continuum polarization caused an
inversion of the profile; the positive absorption feature became a dip on the continuum polarization
spectrum and the negative emission feature became a hump. This inversion tj’éct is certainly valid
for a dense spectrum of lines. The good agreement between the DCO and CH calculation, discussed
above, indicates that the inversion eflect may well be ‘valid for the convolution of electron and
resonant line scattering. Further numerical experiments are needed to understand how the inversion

effect arises and how it varies with the model parameters.

If valid, the inversion effect explains a previously puzzling feature of the SN 1987a polarization
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datu: the fact that the absorption features were apparently humps on a continuum polarization.
The absorption hump is the oblate atmosphere absorption dip after a 90° shift of the conventional
position angle of polarization. With this interpretation the Schwarz and Mundt data would indicate
an oblate iupell'nova at.rnoeph;:re with its symmetry axis at a position angle between about 35° and
70°. If Cropper et al. 's correction for interstellar polarization is applied to the unc-c;rrected data of

Schwarz and Mundt, then the position angle of the symmetry axis would be between about —25°

and 20°.

Sup?mova model 5.7 was calculated using DCO. The model has £ = .5, inclination angle
90°, no Fe II lines, and all other parameters the same as model 5.1. The average pseudo-line
wavelength increment is given by Adgy, = 67.3A & .7 X Areat(vpa/c). This wavelength increment
was chosen since only about 50 pseudo-lines could be used for the wavelength range 3700-7200 A
duc to computational limitations. The wavelength increment gives an adequate scattered continuum
flux and polarization; however, these continua are less than ideal, hincc some pseudo-line structure
remains. The continuum optical depth to the photosphere 7, = 7. With 7, = T the Sobolev optical
depth of a pseudo-line 7, cudo(pa) = 27. Model 5.7 was used onlY for an exploratory calculation. The
calculated spectra were only intended to be rouéh fits to the data, not exact fits. More exploration

of parameter space is required for exact fits.

The synthetic flux spectrum for model 5.7 appears in Fig. 5.7a. It can be secit that the fit of
th; synthetic spectrum is considerably worsened by the introduction of DCO. Note that the Na D
lines in the synthetic spectrum are barely disguishable from the spurious pseudo-line structure. The
line fits could prob:;bly be i;nproved easily by ihcrea.sing the line Sobolev optical depths. The large
emission feature near 7200 A is spurious, and is due to there being no pseudo-lines beyond 7200 A.
The synthetic polarization spectrum in Fig. 5.7b is qualitatively a fit to the data. The polarization
features for wavelengths less than about 4000 A and greater than about 6700 A are probably spurious

results due to the ends of the range of the pseudo-lines.

To fit the av’erage height of the data points 7, had to be set to 7 rather than to the more usual
value of 1. Since some of the continuum polarization in the supernova data may still owe to ISP,
f._values that are less than 7 are plausible. However, it seems likely that r, > 1 will be required
to fit the continuum polarization data. This is not implausible. In an atmosphere in which true

absorption dominates the ropa.city, the optical depth to the region where the thermal continuum

-
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‘radiation is formed is of order 1. In general, however, the optical depth to the thermalization region
(the thermalization depth ) is ~ (~!/3, where ¢ is the ratio of absorption to total opacity (see
Mikulas 1978, p. 149). Since Wagoner (1981) argues that type II supernova atmsopheres may be
scaltcring dominated, { may be m)ch less than 1, and the thermalization depth much greater than
1. Recall that the photosphere is usually defined to be the optical depth from which outward moving
photons have equal probability of scattering again or of escaping the atmosphere without scatt;ring
again, If 7, = 7 is required, then all the quantities labelled photospheric (e.g. vps and ryy) ought to
be re-labelled to indicate tha‘t. they are quantities at the thermalization depth. Of course, it should

be noted that the region of thermalization may not have a sharp boundary.

The conclusiona_ of this exploratory investigation of the continuum polarization must be tenta-
tive. Continuupm polarization of the right order can be generated. The rough shape of the polar-
ization data can be approximated. Better fits to the flux and polarization data could undoubtedly
be achieved by varying the parameters. However, further study of the physical validity of the DCO
method ought to be done. Also more study is needed to understand how the continuum polarization

affects the P-Cygni line polarization.

-y

~ The conclusions of the analysis of Schwarz and Mlundt’s Mar. 6-7 data must also be tentative.
Assuming oblaté shape asymmetry is the origin of the polarization, then an asymmetry of about
50% (§on1 = .5) seems to be necessary to fit the polarization data's variations across the P-Cygni
line profiles. If SN 1987a were prolate, then a similar degree of asymmetry would be needed to fit
the data’s variations. A more definite analysis requires the following: (1) a confident value for the
interstellar polarization, (2) a better understanding of the effects of continuum polarizatioxll, and

(3) more sophisticated model atmospheres, : ~

Other investigators, as mentioned above, have attempted to interpret SN 1987a polarization
data in terms of shape u;rmmetry. Cropper et al. (1987), using the results of Shapir8 and Suther-
land (1982), find €&, = .23 (23%6 oblate asymmetry) or £y, = .29 (290 % prolate m;ymmet.ry). Using
‘McCall’s prescription (1984, 1985) for the axis ratio of the atmosphere, Cropper et al. find a;')prox—
imately a 10%. asymmetry. These asymmetry estimates are given tentatively, since Cropper et al.
conclude that the Shapiro and Sutherlarid, and McCall models of a supernova t_;t.mosphere are too
simple to explain all the behavior of the SN 1987a data. The limitations of the Shapiro and Suther-
_land, and McCall results are discussed in Chapter 3. In Chapter 4, it was found that the McCall
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prescription for resonance line -polarization gave polarization values that were about an order of
magnilude‘greatcr than the Sobolev-H polarization values. Thus it is to be expected that McCall’s
prescription for naymnictry would lead to smaller asymmetry estimates than the nsymmetry eati-
matces determined from Sobolev-H calculations.
Méndez et al. (1987), interpreting t.h;i;,color polarimetry, find for their most favoured supernova
., —nodels that the asymmetries required are lesa than 1 %. Méndez et al. rely on a polarization result
given by Brown and McLean (1977) for an optically thin, electron scattering nt,mosphere-wif.h a
central point source of unpolarized radiation. By optically thin it is meant that photons that are
scatlered more than once make ncgligiblé contribution to the emergent flux. Since multiple scattering
has a aepdlarizing effect on scattered radiation, the use of the Rrown and McLean result may lead to
an underestimate of the asymmetry required to reproduce the obscrved SN 1987a polarization data.
Additionally the [u( that the Brown and McLean ntmosphere has a point source would tend toward
- underestlma‘tmg the supermova asymmetry; a ﬁnite source causes a scattiering atmosphere model to
.:be less polarizing (see the discussion in Chapter 3 section (a)). The supernova has a finite central
'_ urce of unpolarized radiation. If the application of the Sobolev-H method to SN 1987a is correct,
ﬁcn the resu\lt.s pfesentqd in this chapter show that Ménd& et al. have severely under-estimated
the asyfametry of SN 1987a.
The analysis given in this chapler haa bcen:rcatricted to the Schwarz and Mundt polarization
_data from Mar. @7. Schwarz_ (private communication,‘IQBT) has continued to take polarization
data at intervals throughout the year 1987. ‘This-data should be available soon. Cropper et al.
(198'() have already reported an impressive collectioh of spectropolarimetric data for the period
from FFb. 27 through Juf)(\? 1987. By the courtesy of the authors (especially J. Bailey), and the
Ahg]o—Aqstralian Observatory this data has been supplied: to the thesis author. It is hoped that a
more sophisticated analysis will be done on all the SN 1987a spectropolarimetry in the near future.
Whatever the final interpretation, the spectropolarimetric data is likely to prove impo)"tnnt to the
understanding of SN 1887a. ‘ |
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Fig.” 5.6.. This figure shows the CH (Cassinelli and Hummer, 1971) and DCO (discretized
continuous opncxl.y) results for the polarization of specific intensity as a function of the logarithm
of the impact parameter. The CH model consisted of a sphetical, continuum scattering atmosphere
with a central point source of unpolarized flux. The opacity of the CH model is given by k{r) = r=?
with p=3; the radial unit of measure was chosen so that k(r=1)=1. The atmoephere has cut-off
radius R = 10. The DCO model is the same as the CH model, except for numerical reasons the
unpolarized flux producmg central source had a finite radius of (1/3). The results of the CH and
DCO calculations are in good agreement



P

-~

250

',06=¢ ‘[Ppowr 2)e[q0) e130ads Xn[j ©/QET NS OIPYIUAS pue parlasq) e)'¢ S1j

~ (woxysuy) YISus[eABM
"000L 0089 "0009 0059 "000¢ 005y "000v
_ _ _ T 1 _ 1

OH gH Ly

d ®N

] 1 | ]

wmIjoadg o139 IuAg

wmi3o3dg paAlesq() —

..G.wm@g '(,="1 ‘wmoisiBuy m.h@/.hm%,aqv £y1edo snonurjuod PazZ1jaIdsIp =173

¢0

¥0

90

80

0t

A

XN[ ] =AY



5 N 'L'g [opowt o]
umijoads aosmﬁaﬂ@ oneyuds pue ®IgEI NS 0] ®iEp monezue[og -qL¢ ‘B
(wons3uy) ﬁwn@ﬂw\,&?
"000L "00S9 "0009 0066 ‘000 - 00§ "000¥
_ _ _ T _ I T
i . PH deN .  fH ‘H o
; I
= ¢'0
) I 1 ! o5
: + T L p 3
O . e N
~ N T g
- . Q 90 &
o .. +. g
1 : :
~ : 8'0
- Y v o1
% S T 01X
- - e wmnIpoadg o11equsg . T ™
L . O
. ¢
/ | 1 I ! _ _ _ b1
: N



ey

Conclusion

The research reported in this thesis was unde}'tak;an to develop a technique for the analysis
of spcctropol}qimetry from supernovae. To do this a modified Sobolev method, here cplled the
Sobolev-II n—lethod, was developed for homologously expanding, axisymmetric atmospheres. The
Sobolev-l method incorporates Hamilton's pha'se-ma-t.rix' for resonance scattering by atomic transi-
tions (1947), and thus allows for the polarizing effect of resonance scattering.

A computer program has been w:':tten using the'Sobolev-H method that calculates {he pmergent
line flux and polanzatlon profiles. A parameter survey of spherical, and axlsymmetnc prolate and
oblate supernova atmosphere models has been performed using this program. The survey demon-
strates that there is considerable polamatlon structure assocnat.ed with the P-Cygni lines emergent
from the asymmetric models. The emxssnon and absorption polarization features have their position
angle of polnrlzatlon shifted from each other by 90° for both prolate and oblate models.

*”An analysis of the Mar. 6-7 polarization data for SN 19872 has been performed. Provided the
polarization of SN 1987a’s flux arises from oblate shape asymmetry, the analysis indicates a 50 %
asymmetry (o = .5). A similar asymmetry would be required if SN 1987a were prolate. Since the
polarization data indicates that an intrinsic continuum polarization exists, a method here called the
discretized c-ontinuous opacity or DCO method has been de\:it;ed in order to calculate synthetic con-
tinuu.m polarization, Calculations with the DCO method show that good qualitative agreement with
the oBserved continuum polarization may be ach-ievable. Improvements in the spectropolarimetry
analy:fn technique and an accurate value for the mterstellnr polarization in the direction of SN 1987a
should lead to-more conﬁdent conclusions. Only a small fraction of the existing SN 1987a spectropo-
I larimetry data has been analyzed in this thesis. Further analyses of the ¢kisting data should give
considerable insight into the SN 1987a event.

The improved techniques for spectropolarimetry analysis, developed in response to the challenge
of the SN 1_9873 data, should provide a foundation for the analysis of future supernova spectropo-
larimetry. Since astronomical observations are always increasing in quantity and quality, it.is to be

exbected that the improved.tedmiqués will bek necessary,
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Functional Behavior of Some Sobolev Quantitics

In section (a} some Sobolev quant.it,ies are expressed in the limiting cases of small and large r.
In section (b) the functional behavior of the polarization measure, II(7), is examined.
a) Small ar'nd Large T Behavior of Some Sobolev Quantities
Expressions for t-.he Sobolev directional escape probability, and related quantities in the small
. and large 7 limits, can be obtained. The expres.aions display the behavior in these limits, and can
be useful for preventing truncation error in computer calculations.

The quantity e=" has the small r expansion

o0
- ("-l.)k'l'h 1 2 1 1 4 l_
L 2 -_ - __1,3 —_—rt e 5.1.....
[ = |! =1 |'+21 6 +2 T l; T . (Al.l)

M
» -]
- (=1)-1s 1,1 1 4, 1 &
-_— L — e - - -——— — -—-u
1-e7"=3 E Tt nT Y T

mr(l—%r(l—%r(l—%r(l—%f)))), (A1.2)

where the last expression is an efficient expression for calculations as it has only 4 additions, and 8
multiplications.

The directional escape probability

(AL3)

# has the small T expansion

oD
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where the last expression is an efficient expression for calculations as it has only 4 additions, and 7
multiplications. When r 3 1

Ba m % . | (AL.5)

The quantity 1 — 84 has the small r expansion

(1)“*1 1, 14 1
== Z:(;v=+1)' 2"t Tt ot

. 'm %r (l--;-r (l—%r(l—%r))). ‘ _ (AL.6)

where the last expression is an efficient expression for calculations as it has oﬂ‘l‘y/ 3 additions, and 7
multiplications. When > 1

. . 1 A
l—-ﬁdﬁll—;. - . (AL.T) .

%) Functional Behavior of the Polarization Measure (r).

The polarization measure II(7) introduced in Chapter 2 section (d) is given by

_ B 1017 (1=e) S
Siomaept TS ar(1+§(1—c-f)/r)' )

where £ = B4 for this expression. For r < .5

Hmr(l—-i%r), {A1.9)
and r» 1 . .
101 71
The derivative of TI(7) is .
3+e=7(8 1 i 7
I _ yopt = emry{Z3+e76r 4 10) +e777(-T)) (AL11)
dr (3r+7(1-e-7))? -

Setting the derivative to zero, the expression
’ o ' 67+ 10 : .
is obtained. This expressibn can be solved iteratively for the r value that gives the maximum of

(7). With an initial value of 27 the iteration converges rapidly to give
TMar = 1922204,  and  ™M{rp..) = .6206712.

Fig. 2.5 in Chapter 2 section (d) shows a plot of II() for T between 0 and 10.



Appendix 2

The Sobolev-H Source Function Coefficients

For a Spherically Symmetric Atmosphere

The Sobolev-H source function coefficients for the homologously moving, axisymmetric atmo-

sphere, given in Chapter 2 section (d), can be easily specialized to the case of a spherically symmetric

atmosphere. For a spherically symmetric system any point can be considered to be on a symmetry

axis. Therefore in specializing to the spherically symmetric case, the axisymmetric case expressions

for the source function coefficients need only be considered for points on the symmetry axis. For

on-axis points the d; integrals (see equations (2.131)) that have integrands that depend linearly on

cosines and sines of the azimuthal coordinate ¢ vanish, since spherical aymmetry implies that the

Stokes parameter specific intensity components are independent of the azimuthal coordinate. The

" non-zero d; values are given by

d—ljld'l
1—2 . o5,

1 1
dy = 'ij_ldﬂ'fr;w
and )
. 1
. dy= 5[ dp' y1,.
-1

-

The non-zero D; are

Dy =31+2E)d, + 1(1-E)d;
D3 = 3E,(—2d; + da + 3ds),
and

Dy=31-E)dy + LNi+iE)d,

/
The non-zero source function coefficients are

L { -
S, = (1-98

- (=N (1-(HE)
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- "31E\d,,

+

1E,ds.

D+ %1’[0: + %(l - 1-7531)0: - ]%EI(D: + Ds)l]

{A2.1a)

(A2.18)

{A2.1¢)

(A2.2a)

(A‘Q.Qb)

(A2.2c)

/
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1 A
+ T‘-% (A2.3q)
1-¢)8D; ’ ,
§y = = ' A2.3b
= 15hE . e
and
Ss - (- ¢)ﬁl Ds + ’,--r[—Dz + %(l - -,%El)D: - -i%Ex(Dl + Du)]]
- (1-7) (1-7(10)EJ
i .
+ —3—-1 el - (A2.3¢)
where
r=(1-¢)(1=4). (A2.4)
_The expreuiohn for the source function components of the Stokea source function vector are
S5 =85 + Su.l, . (A2.5a)
and -
= S, =5, (A2.55)
4 ‘ . ,

cre Sy =0and Sy =0,and u = cosf. For the apherically symmetric case, # is intcrp'reted as
the angle between the radius vector to the point where the source vector is being evaluated and the
vector pointing in the direclion of the outgoing specific intensity beam.

A further speciali.ntion cal; be made to a system with the following characteristics. (1) There
is a spherical photosphere that emits a wnafaﬁt unpolarized specific intensity. (2) There is only one
transition, and thus this is qaing]e velocity surface system. This last characteristic implies that only
specific intensity beams emitted by the photosphere are incident on a resonance region. Given these
characteristics

h=1=1I=1./2,

wheze ) is the total specific intensity emitted by the photosphere. The lower u-integration limit
for the d; integrals is

Hpn = coafps = \f1 = (rpa/r)2, , (A2.6)
where r,a is thesphotospheric radius, and r is the radius of the point..\:'frhere the source function
vector ;being evaluated. The expressions for the d; become

1! 1 -
dy = 5[ dy' I = 5(1 ~ pon) e, (A2.7a)
. ﬂ '

»h



where the result S5 = §) + 53 has been used (see equation (2.141)).
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! 1
d; = dﬂf Iy = 5(1 - Pph)Ieu (A2.76)
Hah R
and '
v 1 1 3
dy= - dp' I = =(1 = 3 . (A2.7¢)
(1 6
The D; become
D, = [.!;(l ~ ppa) — S ppn(1 - #,’,p.)Exl L, (A2.8a)
Dy = %p,p.(l - p:h)El I, {A2.8b)
and .
Ds = (1 spn) + Supa(l = W20 ] L. (A2.8¢)
Note that
2 o1
Dy =Dy - EDQ and Dy =Dy + :-;-.Dz, (A2.9)
. where Dy = 1(1 — pipr)I.. Now
Dy + 39[Dy+ (1 = L E\)Da (- LE\(Dy + Ds)) N
=(1-15)E)Do — 4(1-7)D;
=[§(1 ~ upa)(1 = Y(T5)E1) = Lppn(1 = 3, )(1 - 7)E1] L. (A2.10)
»
Thus the S; coefficients are given by
' (1-98 [1 7 ]
= 1- - (L -1 -yl -
53 (l""l) (1_7(1%)E1) 3( !"'Pﬁ)(l 7(10)E1) 4”?"(1 pph)(l 7)E1 I,
g '
+ = - (A2.11a)
(l - ‘)(g)ﬁﬂph(l - l‘zh)EiIc
S = - E , A2.11%
: 1-1(%)E ( )
and
S = (1-95_ [g(l ~ g )1 = 7(Z)ED) + Lpp(1 = u2,)(1 ~ 7)Ex]
(1 =7 (1 =+(F)E)
36 A2.11
+ 1— _rr ( * C)
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’
For the case of pura two-level resonance scattering ¢ — 0, G — 0, and 7 = (1~ 8). The S;

coeflicients become

($)Bupn(1 - p2,)Ey
= | L{1 -~ X P
S = [,(1 Bph) 1= (1= B %) ]Ic; (A2.12a)
_ (DB = 2N,
§1= = A (A2.128)
and .
(3)8upn (1 = 2 E1 ]”
— |11 8 p
S3= [:(L Hpn) + 1_(1_[,,)(1%?& ] I (A2.12¢)
. The components of the Stokes source function vector are .
' (DBsr (1= B2)E (DB = 12)EL\ ]
=11/~ Y P 8 ? 1
) g(l FPI'I) 1 - (1 . IB)(II{]')EI ( 1— (l —ﬂ)(i‘%)El I, (A2.l(la)
- [ Bppa(l —ch)El
| = _é(l = Hpn) + (1 ) —ﬂ)(Pi%)El) (3 Palp) - é)] I, (A2.13b)
and .
_ [ (‘r‘i)ﬁl‘ph(l — 1) E) ‘
» Sr = -%(l —”Ph)-" 1- (l hﬁ)({;)El } Id.‘v '(A2.13c)

where Py(p) = (1/2)(3u® - 1) is the second Legendre polynomial. The total source function is

_ (3)Bupn(1 — p2,)E,
S= [é(l = #pa) + ( 1_(; -ﬂ)(%’)'f:; ) Pa(n)] Ioh, (A2.14)

where it should be recalled that I, = Ion /2. The angle-averaged total source function ia ¢
<S>=31—ppp)p = W(r)Is, (A2.15)

where W(r)'is the dilution factor. The expression for the angle-averaged total source function is
identical to the éxpression for total source function obtained using the ordinary Sobolev method
(see equation (2.36) in Chapter 2 section (a)). Recall the ordinary Sobolev method is unpolarizing
and has complete complete redistribution in scattering angle as well as complete redistribution in
frequency. ' "
The ne4 polarization from a spherically symmetric atmosphere is zero. Since only net po-
larization can be measured for supernovae, the Sobolev-H coefficients and Stokes source function
veclor components for a homologously moving, spherically symmetric atmosphere may not very use-

ful. ‘However, if a spherically symmetric supernova is partially occulted by something, then these

expressions may be of use.



Q ' . Appendix 3 5
Some Results Pertaining to Axisymmetric Ellipsoids
',
Section (a) of this appendix presents some of the expressions used by Shapiro and Sutherland
(1982) for integrations of plane-parallel atmoephere solutions (C.handrmkhar 1960, p. 248;. Har-
rington 1989) over axisymmetric ellipsoid surfaces. Presented in section (b) are the expressions for
the limits of integration over the solid angle subtended by an axisymmetric ellipsoid "at ah exter-
nal point. These expressions are useful for int.ggrnt‘i.ng the specific intensity convergent on a point
from an ellipsoidal photoephere: Such integrations are used to determine the source function at that
point. Presented in section (c) are some expressions for the extrema and projections of axiaymmeﬂ%
ellipsoids in coordinate systems rotated about an axis perpendicular to the symmetry axis. These
'

expressions are useful in integrating over planar velocity surfaces to obtain the emergent flux profiles

in the Sobolev method,

a) Plane-parallel Atmosphere Solutions and Ellipsoid Surfaces

The equation of an axisymmetric ellipsoid is

ry = Vz/a) + (u/a)t + (z/)°, | (A3.1)

¢+

where r, is a scale parameter introduce for generality, c is the semi-axis aligned with the axis of
symmetry, and a is the semi-axis perpendicular to the axis of symmetry. The notmal vector to the

ellipsoid at any point on its surface is obtained by evaluating and normalizing the gradient of r,:

(sin@cca, sinbsing, (a/f:)'2 coa 8)

f= (A3.2)
\/sin’_ 8+ (afc)tcon? 8
where
z=rainfcos ¢, ' , (A3.34)
v= r;inﬂsinqs. (A3.3b)
and ’
259
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v =rcosd (A3.3b)
have been used. Defining
e3 = 1-(afc)? (A3.4)
gives i . -
. _ (sinfcosg,” sinfsing, (1—ez)cosd
fi = . (A3.5)
V1~ ea(2—e3)cos?d ' T
Note that X » '
) - 2
POPSE 1—egco8?f (A3.6)

V1-ea(2—e3)co8?d
. The distance from the origin to any point on the ellipsoid is

r= VAT
= V(rd = (z/c)?)a? + 22

= /r2a? + 2%,. (A3.7)

i g = r.cosa. and solving for r gives

L L .
V1 —¢yconld - (438)

The differential surface area element of the ellipghid is

r(0) =

1 -

2 .
da=" Blfl 8(_10d¢
LR

_ ria?sin8y/1 — e2(2 — ¢3) cos? 0d8d¢- '

(1 — e2co8 )2 (43.9)
A distant observer is located in a direction given by | f
&' = (coaf,, 0, sind,), (A3.10)

where the primed coordinate system is rotated an angle 6, counterclockwise about the y-axis. D&
. - .
to ellipsoidal symmetry there is no loss of generality in restricting 6, to the interval [0,x/2]. The

projection in the y-z' plane of d4 is given by

dA, = dAJn - 2|
sin 0 cos ¢ cos f, + (1 — e3)cos fsin by
=dA =
P V1—e3(2-e3)cos? 8
_ r7a’ sin 8(sin § cos ¢ cos B, + (1 — e4) cos Osin 6,)d0dé
r4 - (1 —¢3c08%8)? '

-

(A3.11)
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"Only the observer-facing part of the ellipsoid surface can contribute to the integrated flux, The

limits of integration can be determined from -
!

0= || =sinfcbadcosd, + (1 —e3) coafsind,. {Ad.12)

This expression leads to

. dmas = arcCOR [_ ng;-;;)ac::oao:in 9;] = arccoa{—(1 - e5) cot # tan Bp) {A3.13)
Numerical integratit.m need only be done over the interval [0, $mae). The integration over the interval
[0, —~#mas] can be done using the azimuthal symmetry of the I; and I, fields, and the azimuthal
antisymmetry of the U field. The azimuthal aymrr:etrieu-nn antisymmetry follow from the axial
symmetry of the system. Note that if the argument of arce of equation (A3.13) is greater than 1,
then $mas should be set to zero; if the argument. is less thap -1, then the ¢,,,, should be set to .

If 8, = x/2, then equation (A3.lh) is indeterminant; in this case it should be clear that

' x for 0 2 i< ’
Pmas = {0 for£<o<m (43.14)
!
The p/alrallel-plane atmosphere solutions (Chandrasekhar 1960, p. 248; Harrington 1969) for the
emergent specific intensity and their polarization are tabulated as functions of

p = cos(, (A3.15)
where { is the angle bet.lwecn the normal to the plane and the direction emergence. For the distant
observer '

. ., _ sinfcosdcosy + (1 —e3)confsind,
S p=n-2 =
- . V1 —e3(2—e3)cos?f

Note that u is restricted to the interval [0,1). The Stokes parameters for the solutions are givel:

{A3.16)

in a system where the I axis is aligned with the meridian to the normal and the r axis is aligned
perpendicular to the méridian (see Chapter 2 section (d) for a discussion of the Stokes pnramct.crs).‘_‘
For integration the Stol\feq parameters have to transformed to a rotated system where the | axis is

aligned with the vector

# =(-sind,, 0, Ccos,). ) (A3AT)/™S

FL
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The parallel-plane nolutiﬁni have U = 0 and V = 0, and 80 a countcrclockwise-rotntion through

. angle ¢ gives the transformations ‘ S v

I =Ircon® y + I sin? ¢ © (A3.18a)

It = Lein? ¢ + I, coe? ¢ . (A3.185)

. ’
U'= (] - I)sin2¢ {A3.18¢)

-

{Chandrasckhar 1960, p, 34). By symmetry the integra'ted U’ field wi|Il be zero. The integrated I
Q' =1—-Ifieldis the only survivinmntity: ’

" Q' =(h=L)2cos® ¢y~ 1) = (I - I,) cos 2. . (A3.19)
A little ﬁlought shows that . _
_ i'x(r':xé’))
=2 () (4320
VNOW' ] '

fi x & o (sinfsingmind,, (7 x.2'),, —sindsincosd,), (A3.21)
# x (A x &) o (—(h x #')ysinb,, sinBsing, (hx &), cosb,), (A3.22)
wd ' ‘ |
I# x (5 x 2] V(3 x #)2 + sin? 93in? . (A3.23)
Thus |
. (h x &)

oa¥ = Vi x &y +ai:=o.in=¢' - (4529

where ' : -~
(A x2')y, = (1 —~es)cond coe’, —sinfcos gsinf,. (A3.25)

The integrals for the net flux and the net Q field are

" Fae= /, A, [1(-!’-‘—)] ‘f (4325

rurfece tabulated
[
lalul@

and

Q= [ 840 o028 (1]

surfase

tabulated [!—(fgl] (A3.27)
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Nofc f is the astrophysical flux and F is the conventional flux: f = x~! F. The tabulated quantitics,
as functions of y, are found in Chandrasekhar (1960), and Harrington (1969); they are also given
in Shaptro and Sutherland (1982). The expression for dA, is given in equation (Aafl) the limita
of mtegratlon by equn;non (A3.13), the value of cosy by equation (A3.24), and the value of i by
equation (AJ.16). Since the net U field ia zero by symmetry, the polarization measured by the

distant observer is

= f,: (A3.28)

(see Chapter 2 section (d)).
It is of some interest to consider two apecial cases: 0 = 0 and 6, = x/2. The ficst case (8, =

gives the distant observer an equntona.l view of the ellipsoidal atmosphere The 8 integration is done

over the interval [0, x]. The relevant quantities are

23in? @ cos ¢dfd¢

dA, = (l T eaco0t6) . {A3.204)
‘ ¢m¢r.= ";"i . (43.29”
sind cos ¢ '
= , 20¢
a V1—ea(2—e3)con?d .(Aa ‘)
and o
cmyp = 1 (A329d)

\/1 + (1 ~ e3)~7tan? 0 sin? ¢

In the second case (6, ='r/2) the observer has a polar view of the ellipsoidal atmosphere. The

@ integration is done over the interval [0, x/2]. The relevant quantities are

a sinB(1 — e3) con Adédd

dA, = = e 0] » (A3.30a)
bmar =T, - i - (A3.308)
' '
. pm iz ea)c0sd (A3.30c)
V1—e3(2 —e3) cos? 8
and

cosy = —cos ¢. (A3.30d)

Since u does not depend on ¢ and cos2y = cos2¢ for b = r/2z/1t follows' that the integral

of equation (A3.27) vanishes‘, provided f is 'indepcndent of ¢. This is not unexpected, since an

atmosphere circularly symmetric aboult the line of sight should produce an unpolarized net flux.
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b) Limits for Integration Over the Solid Angle Subtended by an Axisymmetric Ellipsoid

In obtaining the source function for the Sobolev method and the Sobolev-H method, integrations
must be done over the solid angle subtended bg:-the photosphere at the point where the source the
function is to be evaluated. This point is called the convergence point for this presentation. It
is actually more appropriate say that the inl;?grntior'n is over the solid angle obtained by the point
inversion through the convergence point of the ellipsoid solid angle. This is because the Sobolev
formaliam is develo_ped using the direction that the photons are going toward, and not the direction
they are coming from. The distinction bet\;'e‘en the two solid angles is important to remember when
doiqg calculations. &

The models uncdr in this thesis had axisymmetric ellipsoidal photospheres. “The limits of integrn- ,
tion for the integrals may bé determined numerically; this would be a more generalizable pfogedure.
However, for calculational efficiency analytical expressions for the limits were obtained. These.ana-
lytical expressions are trivial, but they are rather tedious to derive. Therefore a short non-rigorous
presentalion s given here for reference. These éxprusiom were implemented in the Sobolev-H
computer p;ogram listed in Appendix 4.

- The equation of an axisymmetric ellipsoid is

(='/aY +(/ fa)* + ('fc)* = r3, (A3.31)
—

where r, is a generalized radius-like parameter‘int.roduced for 5encrali't.y. Consider the convergence
point (e, 0, d) in the primed coordinate system. The integration that is to be performed is over the
solid angle that is the point inversion through (e, 0, d) of the solid angle subtended at {e, 0, d) by an
axisymmetric elliploid.nl photosphere. It is convenient to change to a unprimed coordinate system
centered on (e, 0, d). In this unprimed coordinate system, the intcgfation is over the u = coad and
¢ coordinates; 6 and ¢ are given their usual spherical coordinate system meanings. The u-limits of
integration .nre to be obtained as functions of ¢. -
In the unprimed codrdina.te s;rstem the equation of the ellipsoid becomes

(:+c)2+'(y/a)’+(z—§-‘!)2=r:. ' i (‘A3.32) (/

a »

A

!

.z, Consider the vector function of a ray passes through the origin and that is directed away from the

©e Tea - ellipaoid:

& =tn = t(sinfcos ¢, sinBsing, cos )
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= {(sin 0y, sin 85, cos §)
=t(V1=p? ¥, V1= 36, p)

= i(ny, na, ny), < (A3.33)

. ' - - . f
where the ¢ parameter gives the magnitude of the vector, ¥ = cos ¢, and § = sing. If the vector

function components are substituted into equation (A3.:f2), then the distance from the origin to a

. point on the ellipsoid can be found by solving for ~t for specified and ¢ values. Substituting and

collecting like terms gives ¥

t? [(n1/a)? + (n2a)? + (nafc)?)
+ [2(n1e/a?) + 2(n3d/c?)] r~

-« .
+[(e/a)* = 2 + (d/cf] = 0. : (A3.34)
The single-valued solutions to the quadratic equation (A3.34) are for the rays that trace out the edge

~ of the projection of the ellipsoid as seen from the origin. The discriminant for these solutions must

. ¢qual zero. Thus setting the discriminant to zero gives an equatjon from which can be obtained an

_expression for the yu-limit of integration as a function of ¢. ‘This equation is

-

[(m1€7a%) + (nad/c?)]” = [(n1/a)® + (nafa)? + (nafc)iHte/a)® — ) + (dfc)’] =0.  (A3.35)

’

Collecting like terms in n; gives .
’ ‘A
nIR+n3S+ni3T 4+ ninall =0, (A3.36)
. V m‘ ’
“where - -
R = {(e/a®)? - a_li , ' (A3.370)
* - 1\ h )
. | s=|-z9|. (A3.375)
T.= [(d/?)? - ;l,-Q , : (A3.37¢)
o | v=2[=2], ' . (A3.47d)
: alc?|’ .
and

Q = [(e/a)* — ] + (d/c)?]. = (A3.38)
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LY . 1
Substituting into equatior; (A3.38) for the n; from equation (A3.33) gives

A=W P+ =S+ T4+ p /1= 34U =0, . (A3.99)

-

where

P=R-8§=(/a?. ' (A3.40)

This expression is a quartic for u. Collecting like terms in u gives

WT-VYP+907 +u? 2TV -2V - 407 + V2 = 0, (A3.41)
wflcrc
V=9*P+8. : (A3.42)
The solutions for u are given by | -
. ) \
-B ,/' T
p= 1\/ * 23 ac (A3.43)
A
where
4l [(T —VP 49U, B=[2TV-2V1-47%, and C=V.  (A3.44)

’ [

Note that A > 0. From equation (A3.41), it is clear that B < 0. Note also that C = V 7’P+ S

can be either positive or negative. f—\

Unfortunately there are 4 solutions for the y-limit as function of ¢. In deciding which solution
applies, it is useful to find the value ¢ for which the discriminant of equatlon (A3 43) goes to zero.

This discriminant ia given by

- -

<

. Dis=[2TV - 2v? T-,’rﬂ]’, —4[(T-VY+20%V \

S [4T'V? +4V4 = 8TV? - 2720727V - 2V?) + 44U = [AT?V? — 8TV + 4V* + 44207V
= YU [Y'U? - ATV] = y'U? [-4ST + 4*(U? - 4TP)) ‘
= y'U? [-4ST + 9* (4(e/a?)’(1/c*)Q)] = {?U’ [—4ST + v? (—4(e/a)*(1/¢*)S)]
= MU (=4S/e) [~(e/a)? + 2 + 77 (e/a)] |
= YU =4S/ [r] - (e/a)*(1-77)]. - (A3.45)

&
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Thus the discriminant is zero for values of ¢ given by

$Divmo = 7, (A3.46a)

#Disz0 = arccod (:l:\/l - (a/c)"'r}) . (A3.46b)

Note that if ¢ < a, then (e/a)? < r}, and thus (a/e)?r] > 1. Therefore the equation (A3.46b) has

and

" 1o real value for regions where < a, and the only zero of the discriminant is given by (A3.46a). |
- The correct limits for p-integration and ¢-integration depend on the values of ¢ and d. Due to
symmetry, only the quadrant with 2/ > 0 and 2 > 0 of the z’-z' plane need be considered. The

following 7 cases have been worked out. . ' -

Case 1: e=0, d>¢

"In this case the convergence point is'gn the symmetry axis of the ‘ellipsoid. It is obvious that

-y

the upper limit of the u integration is 1 for all . Thua

-

A pa=1, (A3.47)

_ where u is for upper limit,

" . Rather than use equition (A3.43), it is simpler in this case to use to-equation {A3.39), since

".U = 0'when e = 0. Eq}lai.io_tl (63.39) becomes * . . ) s LA u
" e L ;#’)1;P+(i —:;1’)5+#’;" =0. . (A348)
l ‘The solution for p is then | ' . ‘
‘ ' péi,/;,-‘-},’{-;’—f?. . (A3.49)
Now P = (e/a?)? = 0 in this case, and so‘
| p==+ % {A3.50)

This expression has no dependence on ¢ as one would expect from symmetry. Since the solid angle

being cosidered is the point inversion of the solid angle stbtended by the ellipsoid, it is clear that

’

the positive solution gives the correct lower limit of the y integration. Thus

. ' / M
. . Hr = :Q——T (A351)
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?
It should be clear that there are glimits for all ¢, and that the ¢ integration is therefore done
on the interval ’
7). (A3.52)

For axisymmetric aystems, the integration over the i?t}ml (-, 0] can be done trivially by exploiting

symmetry.

Cuaso 2: e2a, d=0

In this case U = (ed/a%c?) = 0, and #hus equation (A3.49) applies. It should be obvio

and

. __.|_1TP+S
HENFPrs-T

The ¢ integration is done on the interval

()

us from

7P+ 8 | “
b=\ FPrs-T" : (4353)

(43.54)

(A3.55)

The negative square root solution for the upper ¢-limit gives ¢, > 1r/2 Thie solution is excluded

since the integration is over the solid angle subtended by rays d:rected away from the ellipsoid

surface.

Case 3:  (e/a)® + (d/b)? = r

!

In this case the convergence point is right on ellipsoid surface. Since ¢ £ a it is immediately

clear that the ¢ integration is done on the interval

[03 l’],

and that the upper u-limit is given by

-

By =1 for ‘¢ € [0, »].

(A3.56)

(A3.57)
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In this case § = 0, and the discriminant Dis given by equation (A3.45) Is_always zero, Thun

there are only two posaible solutions for mlnnd these are given by

. ~B .
| p=% 4 : | (A3.58)
For S=0 .
B = 291TP — 24*P7 _ 32, T (A359)

Thus it follows that there is a transition from the negative to the posi(ive salution for u; when

¢ = n /2. Therefore o
[-B : -
-\ 55 for05¢gr/2§
= (A3.60)

‘/lg-:i, forr/2$¢51'.-, : .
Note that the smaller 4 case is for the projection-defining rays with positive z-components.

Case 4: e<ea, d>c¢

Since ¢ < a, it is immediately clear that the ¢ integration is done on the interval

-

' [0, =), (A3.61)
+ :
that the ﬁpper p-limit is given by i_
pu=1 for €0, ] (A3.62)
‘and that the discriminant Dis = 0 only for $pi,=0 = »/2.
Since d > ¢, it follows fhat u > 0for all . Recall A >0 and B < 0 always. It should be clear
that the lower u-limit is given by
\/_B,_ £_4AC, for0<d<x/2;
B = _ (A3.63)
- VB —
\/ B+v3E 4AC, forx/2<¢<x .
2A
Note that the smaller u; case is for the projection-defining rays with positive z-components. /}p
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Case 5 e<a, d<c

'3

Since ¢ < a, it is immediately clear that the ¢ integration is done on the interval

(0, =, . (A3.64)
that the upper u-limit is given by E .
L] . ot . R '\a
C ' pu=1 for ¢€0, ] - (A3.65)

!

and that the discriminant Dis = 0 only for ¢p;,=0 = nf2.
Since d < ¢, there is some ¢ interval where p; < 0. Recalling that A > 0 and B < 0, it is clear
that the equation (A3.43) for u goes to zero (for non-zero B)onlywhen C=V =4?P4+S=10 and

the square root of the discriminant has the negative coeflicient. Thus the # solution goes to zero for

- | bu=0 = arcco-a (:1:\/% ' . | ] ' \ (A3.66)

equation (A3.43). Therefore it should be clear that the lower u-limit is given by

.
_\/—B-—-VB’—!!AC

24

) f0?0$¢$¢‘u=o;

’

T ‘/_B —VB?-44C (A3.67)

2.&1 1 for¢,=o$¢$x/2;

S \/—B+ BT 14C
_‘ y 24

'

, forxf2<o<x.

Cue-ﬁz e>a, d>¢
|
Since ¢ > g the ¢ integration is now limited to an interval with an upper limit that is less than
or equal to x/2. The upper and lower u-limits will both be pcsitive since d>ec.

It should be clear that the ¢ integral is done on the interval -

[0! VéDit:O]u (A368)



where from equation (A3.40b) Ve

< $otm0 = arceos (/1= (afeyird ).

In this case the upper p-limit is not 1. Instead

. __\/‘-B+\/1_"“‘B —IAC

24 for 0 < é < ¢D‘;I0'

The lower u-limit is given by

-B - VBT—4AC
= J on for 0<¢ < dptemo. -

TN )

Cu;s‘h e>a, d<c : .

This case is much the same as Case 8. The ¢ integral is done on the interval

[01 ¢Dil=0]|

where from equation (A3.46b)

o

4

$Dis=0 = Brccos (‘/1 - (a/c)’r';‘) .

The upper ji-limit is given by

e
pu=\/ B*“f; € ot 0< 6 < dpivmo.

-

B ]

71

 (A3.69)

(A3.70)

. (A3.71)

¥

(A3.72) .

(A3.73)

(A3.74)

The lower p-limit, however, is negative for the smallest ¢ region. The transition ¢ value between .

the negative and positive regions is again given by

-5
¢u=n = Brccos ( -P—

Therefore it should be clear that the lower p-limit is given by

_\/-B——\/B’—-dAC

24 ' for05¢s¢“=u;

H=

\FB — VBT —4AC
24 '

for ¢p=0 S ¢ S ¢Dl‘l=ﬂ .

{A3.75)

(A3.76).
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The 7 cases given above for the u-limits and ¢-limita are sufficient to construct the single-
. A
line source functions of the Sobolev method and Sobolev-H method for axisymmetric ellipsoidal

photospheres.

: e
-¢) Extrema and Projections of an Axisymmetric Ellipsoid
. There are some expressions that are useful in numerically eval‘unt'ing‘integmls over planar ve;
locity surfaces in a system with axisymmetric ellipsoidal symmetry. Thf:se expressions are trivial,
but for reference they are worked here.

The equation for an axisymmetric ellipsoid is
(2'/a)* + (/) + (' fc)? = r2, . (A3.77)

where r, is a generalized radius-like pammeter The planar veloclty surfaces WIll in general be
’_p::rpendxcular to a line in the z'-2’ plane. It is therefore convenient to rotate the axes so that the
symmetry axis of the ellipsoid is at an oblique angle with respect to’the normal to the velocity
surfaces. The primed coordinate system will therefore be considered to be rotated b)Ir xf2 -9
"clockwiae_ about the y-axis from an unprimed coordinate system. This rotatim; means that the &

symmetry axis of the ellipsoid, which is along the 2’ axis, will be a counterclockwise angle § from the

:-axﬁ; the normal to the velocity surfaces is taken as being directed along the z-axis. The primed

coordinates are given by _ ' '
2’ = rcos[—(x/2 - 8] + zsin{-(x/2-8)P== sinf@ — z coa §, (A3.78)
¢ = —zsin[~(x/2 - 6)] + zcos[—(x/2 ~ 0)] = z coe 8+ zsind. (A3.79)
For convenience lct: |
& a=cosd, and G =sind. o (A3.80)
Thus o _ -
=zf-za, and 7 =za+zf. (43.81)
In the unprimed coordinate system the equation of the ell';psoid becomes .
(”8: ""')2 : (v/a)* + (#)2 =,  (4382)
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Expanding the squares and collecting like terms gives

e

. 2 [(afa)® +(B/c)] - 2z2(af) [(1/a%) - (l)c’)] + 22 [(ﬁ/a)’ + (a/c)’] + (y/a)® = . (A3.83)

1
Let 3

Ci=(af) (/a2 < (1)), (A3.840)

o Cs = ((a/a)? + (8/c)?), (A3.848)

cg_= ((8/a)? + (afc)?), (A3.84c)
and - ,

Cy = C3C3 = C? = 1/(ac)?. . (A3.84d)
Note that =

Cy =0, for aspherical system;
{ Cy > 0, for a prolate system; (A3.85)
C1 <0, for an oblate system. )

With these definitions for the Ci equation (A3.83) becomes

L) -

£3Cy = 2:2C,  £°Cs + (yfa)? = 11, Fo | (43.80)

It is useful to have z as a function of y and z. Such an expression is used in deciding whether a

pointona ve13city surface is in the atmoaphere, beneath the photosphere, or outside the atmosphere.

The expressioﬁ is

Gy i~‘/~z’c4 +Cs (r2 - (y/a)?)

z= G . (A3.87)

The boundary equations of z-direction projections of ellipsoidal surfaces can be determined
by equeting the discriminant of ‘equation (A3.87) to zero. These boundary equations are ellipse

équations:

. ] 2 '
(y/a)? + (m) =r]. (A3.88)

Fora ﬁym value of r,, the extremal values of z and y for the projections are givey by the following:

2o = 21y /C3/Cy, for z=2r,Ci/\/CsCy and y=0; {A3.89)
and *

Veer =xrya, for z=0 and z=0. {A3.90)
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Having expreuioqs for the projections and the extremal values ia useful in setting the limits of
integration. The atmosphere cannot be extended to inﬂ'nity in & numerical calculation, and so
n"r,_“ must be set. The velocity surface integrations can then be done over the z direction
projected r,_, -¢llipse Boundcd tegion white exploiting the ellipti;al symmetr&. Since there is a large
discontinuity in the specific intensity emission between the limb md photodisk régions, it improves
nuierical accuracy to partition the integration into separate limb and photodisk integrations. (For
-
over the ry,,-ellipse bounded region; this region is the projected surface of the photasphere. The

limb integration is then done over the elliptical regLon bounded between the r, , -ellipse and the

r,_"-elhpoe : !

Only a finlte numbe?;-rvelocny surfaces can be integrated over. Therefore a selection of velocity
surfaces are chosen at discrete z coordinates with some reasonable increment between the velocity
surfaces. The limiting z coordjnates can be determined from equation (A3.83) by solving for z and

f
sctiing the discriminant to zero. z is given by

zCy & \/—22C4 + C; (r2 - (p/a)?) :
. r=— v z 2 . ‘ (A3.91)

r .
The z direction projections of the ellipsoids are bounded by ellipses gi\}en by

2
(_\/C:T_.d +(y/a)? = r'z. ’ i (A3.92)

The extremal z values are thus given by

’ Zeet'= £7,/C3/Cs, for y=0 and z=xr,C;/v/CiCs. (A3.93)

Due to occultation by the photosphere the velocity su‘rfacea need not be placed at x coordinates

as small as £y = —Tymee VC2/Cyq in all cases. What is needed is an expression for the minimum z
. 4

of the limb region. If the -z coordinates that give zma lie inside the photodisk’s ellipse boundary,

then the minimum z limb point must be the point with the smallest = coordinate where the outer

atmosphere aurl’nce, and the photodisk ellipse boundary mleracct let the coordinates of this inter-

" section point be subocnpted by occult" (e.g., :,m.") From symmetry it should be clear that the

minimum limb pomt should have ym..;. = 0 From equation (A3.89) it follows that

' “ Zoceult = Ty, \/C3/Cy, or —r,, \/ Cs/Cy.

= @

the dt;ﬂnitiona of limb and photodisk see Chapter 3 section (b).) The photodisk integration is done
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Substituting these values for yoeeun 8nd 2o0cun into eqﬁntion (AS.BT) and setting r, = r,_,, gives

. -~
| . :tr,"C;/s/C::h r}_" - rz’_ (A394)
/ oo r= . . : 9
‘ SClem’Iy then the z,c.un coordimate is given by. ‘ “
~r4u lC1 VT4 - \ Tmee = T3,
Toccult = . \/E; ! o . {A3.96)

. C§ .
If the p-z coordinates that give Zmin lie outside the photodisk’s ellipse boundary, then the minimum

z limb point must be the point with 2 = £pin. Thus the prescription for the minimum z coordinate

" of the limb rﬁgion is

o lCUVTI = Jrd.., — T3,

Tmin limb = \/C;‘ ' Izl'ulal = Irl-u-Cl/\/C;U“ <r 3 C‘:
-_rln_-. V C’/C4? i Iz'-n-I = lr’ﬂ,l C]/ml

A"

- (A3.96)
All the above expressions were used in implementing the Sobolev-H co}npgter code that is listed
« ., . B
in Appendix 4. , “ C
1 " i \
! a -
$
‘ -
el
. ~
s
' !
- ' £
" ~
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: ‘ A;;pendix 4
The Scbolev-H Multi-Line Program

. " For Axisymmetric Ellipscid=! Atmospheres

*123456780+123450769+123460789+123456780+1234b6780+123456789+123456789+12

» R
» . .

* The Sobolav-H Multi-line Program for Axisymmetric Ellipscjdal

* Atmospheres: The S7 Program

.

» VWritten by David J. Jeffery ' -

* HNcMaster University

* 1987 . T ‘ : -

*

#* Introduction

.

. The S7 program is designed to calculate flux and polarization

* spectra using the Sobolev-E method. The Sobolev method exploits -

* large velocity gradients to solve the radiative transfer problem

* in moving atmospheres. The velocity gradients cause a ‘macroscopic
* Doppler de-coupling of the atomic transitions in spatially separated

parts of such an atmosphere. It is thus possible to obtain local
sxpressions for source functions at least in the cases of general
expansion or general contraction of the atmosphere. The Sobolev-E
meathod is a modified version of the Sobolev method. The Sobolev-H
method treats the radiation field in terms of the Stokes parameters
(Chandrasekhar 1960, p. 24), and includes the polarizing effect
of resonance scattering (Hamilton 1947; Chandrasekhar 1960, p. 50).
L . '

A good reference for the multi-line Sobolev method is Rybicki and
Hummer (1078). For the Sobolav-H mathod smes Jeffery (1988, _
Chapter 2 section (d}). Note that hereafter Jeffery (1988) will be

-

refexred as J. ‘ +

The atmosphers model consists of & scattering atmosphere
surrounding a continudm pro@ucing photosphere. The scattaring is
limited to_pure two-laevel resonance scattering; a thermal source
for line photons can be.included. The atmospheric velocity field
is limited to homologous expansion. This is appropriate for 'supernmova
explosions., The basic atmosphers model was developed from the model
of Branch (1980). Jovever, the atmosphere is allowed to have prolate
and oblate asymmetries. For a description of the model see
J (Chapter 4 section (a)). :
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The references made in this program are listed here for convenience:

Branch, D. 1980, in "Supernova gpoctrl“. ed. R. Meyerott and
G.H. Gillespie (New York: American Institute of Physics), p.39.

v .

Cassinelli, J. P., and Hummer, D. G. 1871, K.N.R.A.5., 154, 0.

Chandrasekhar, S. 1960, "Radiative Transfex" {(New York: Dover
Publications, Inc.). /’ v

Code, 4., Davii;VJ.. Bless, R., and Brown, B. 1076, Ap. J., 203, 417.

Hamilton, R. 1947, Ap. J., 106, 467, L

Jaftery, D.J. }988, Phin. Tﬁnlil. McMaster University, Hamjlton
" Ontario.

Ve
KcCall, K. L. 1984, M.N.R.A.S., 210, 829.

_________ 1985, in ‘Supernovae as Distance Indicators’, ed. N. Bartel
{Berlin: Springer-Verlag), p. 48.

: I's
Rybicki, G.B., and Hummer, D.G. 1978, Ap. J., 219, 6854.

‘ -

Shapiro, P.R., and Suthorl‘gd. P.G. 1982, ip. J., 282, 902.

Running the S7 Program

The S7 program can be exscuted interactively by typing RUN 57
or can be batchjobbed by submitting the command procedure S7TM.COM.
The S7M.COX procedure is - '

! STM.COM;
RUN S7.EXE;

The 57 program is on file S57.FOR. It reads a model number from

a file called S7TM.DAT. S7M.DAT contains a single number that can
be between 00 and and 99: e.g., 36. Thé\program then reads NAMELIST
input-data from a file with a name that contains the model number::
e.g., ST36.DAT. As an example $736.DAT Is given below:

1

$PAR1

IDATA=0,IFREQ=0,ILATE=1,IL0G=0, IPUT<4,ISETYN=1,
INORM=1,WNORM=6800, , IRED=1,ERED=, 2

$END “‘

$PAR2 .
IANGL=1,ANGL=90., v 10%0.,
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o1
93
b4
9%

98
97
98
89

100
101
102
103
104
105
108
107
108
109
110
11
112

f}lilil*i*ﬁ*"-i**I"I-I.l'll’l}'l‘l'l'**"*ﬁff’l"ll‘ii"i'll-'l-i-l-l'l-'l{

IANIS=1,ANIS=640., 1540, , ,
IASPH=4,ASPH=,20,.40,.60, .80, -
IICAS=1,ICAS=2, 10+0,

IILIN=1, ILIN=7, L10#0, -

IPOWE=1,POWE=T., 1040, ,

IPRE=1 ,PRE=.5, : 10%0.,

IRGMA=1,RGMA=4, , 10+0. , .
ITAUP=1,TAUP=600.,750,1000.,1500.,2000.,

ITEMP=1,TEKP=8500., 100.,

ITHER=1,THER=.0, 10%0. , ‘
IVELP=1,VELP=,60E+9, 10+0., ,
IWLIN=1,WLIN=3970.,4101.,4340.,46861.,5889.,6896.,8562. ,
ZEMAX=1, : ‘

$END

$PAR3

IIFAN=1 ;

IFAN=1,2,

ITAUV=1,

TAUFAN=800.,2.25,10.,
TAUWAV=6562.,5880.0604,4233. 159
$END

‘.$PAR4-
$END

These input parameters are described below,

Another input are line files (FAK files). Each FAM file contains a
set of lines for some atom or ion. The file has the wavelength of the .
line and some other relevant line data. These line files are controlled
by the PAR3 parameters.. More information is given in the parameter ™
descriptions below.

The output from the program consists of a system listing that
contains the flux and polarization profiles. This listing also

_gives all the local extrema of theae praﬁiles. The source functions

can also be outputed. A simpack plot file called PLOTAPE.DAT is
also output., Finally, a file is created containing the flux and
polarization profiles for the whole atmoaphere, and for the limb and
photodisk regions separately. This file ia called S7//MODEL//.OUT;
an example file name is ST736.0UT.

The user must be warned that the 57 program is still in a
developmental stage. It is thus not very robust. Certain features
have naver been used and soc cannot be guaranteed to work. Alsc
there may be ranges of parameter values that will cause the program
to bomb.

-
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Input Parameter Descriptions

PAR1 parameters are mostly program controlling parameters 'of the
yes/no variety.

© IDATA:

IFORM:

IFREQ:

ILATE:

ILOG:

IPUT:

IISET:

ISETYN:

ITRANS:

Thia parameter just telle the plot preparing subroutine
OUTPUT whether or not to include the continuum polarization
data points from Shapirc and Sutherlahd (1882) in the simpack
plot tile PLOTAPE.DAT: O for no inclueion; 1 for inclusiom.
(default: IDATA=0)

This is a null parameter (default: IFORM=1)

’

{IFREQ=0) or the frequency distribubion ([FREQ=1) of
specific intensity and flux. 1In eit ase the calculated
quantity is plotted as a function of wavelength. Note
F(wnvelongth)'d(wavolangth) sF(frequency)+*d(frequency) and
therafore F(wavelengtﬁj_FTf}equancy)tCLIGHT/HAVELEHGTHt¢2
(default: IFREQ=0)

This parameter decides whether to cnlcul:te the wavelength

0 for spherical symmetry; 1 for oblate ellipsoid symmetry;
2 for prolate ellipsoid symmetry. Note that spherically
symmetric models are much less demanding in computer time.
For an asymmetric model the number of operations to perform
is roughly the squars of the number of operations required by

a spherically symmetric model. (default: ILATE=1)

0 for relative flux spectra; 1 for logarithmic flux
spectra. (default: ILOG=0) :

This parameter decides what information to output:

4 gives the apectra in the system listing and in a output
fils called S57//’MODEL’//.OUT (e.g., S$736.0UT) and a
simpack plot file named PLOTAPE.DAT; 2 gives the same

as 4, but includes the smourca functions coefficient

table in the system listing. (default: IPUT=4)

This parameter gives the number of transition lines

there are in each group of lines. The groups of lines are
are used in sequential spectra calculations. This featurse
is useful in seeing how the spectra vary as line wavelengths,
line optical depths, or line El-coefficients are varied.

0 for only one spactra calculation; 1 if a saquence of

spectra calculations are to be run (see the PAR2 descriptions

below). (default: 1)
. “*

This parameter decides whether or not the photosphere is

[
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208
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213
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216
v
218
219
220
221
222
223
224
225
226
227
228
219
230
231
232
233
24
235,
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237
238
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transparent; O for opaque; 1 for transparent. An
artificially transparent photosphere allows flux from the
occulted region of the photosphere to contribute to the
net flux, The transparent photosphere is useful for
testing enexrgy cqnservation; the areas of emission and
absorption features of a P-Cygni line should ba equal for
the transparent photosphere. (default: ITRANS=0)

INORM: O for no specified normalization wavelength; 1 for ;
specified normalization wavelength., {(default: INORM=0)

WEORM: This is normalization wavelength for the flux spectra.:
It is to be given in Angstroms. '
(default: WNORM=5000. Angstrom)

IFRAG: O for ordinary atmosphers projection; 1 for examining
the spectra for rectangular sections of the atmosphere
projection. It is sometimes useful in analyzing spectra
to ses what the various parts of the projected area of the
atmoaphere are contributing. Using IFRAG allows one to
restrict the output flux from the limb to an area satisfying
1Y <RG(Q)*ASENI#YMAX and |Z|<RG(0)+*BSEMI+*ZMAX. YMAX and

" ZMAX are input parameters specifically for use with IFRAG.

RG(0) is the photospheric generalized radius (J, Chapter &
saction (a)). ASEMI and BSENI are the parpendicular and
symmetry semi-axes of the ellipsoidal geometxy.
(default: IFRAG=0)

YHMAX and ZMAX: These parameters are used only in conjunction with
IFRAG. They are described in the IFRAG deacription
above. (default: YMAX=100 and ZMAX=100; the
defaults are numerical infinities)

ERED: This is the color excess value. This value detsrmines the
reddening to be applied to a flux spectrum according to
reddening law given by Code et al. (1978).

(default: ERED=0)

IRED: O for no reddening; 1-for reddening. (default: IRED=0)

PAR2 real parameters are, in most cases, real arrays each containing

a set of values for a phyasical variable. The values for sach physical
variable are used one at a time {except for line data values) in
calculating a sequence of spectra. Associated with each array
parameter is an integer parameter that equals the number of values

in the array and also determines the number of spectra in the
sequence. As an example IANGL equals the number of inclination

angles there are; ANGL is an array containing the IANGL

inclination angles. At present the upper limit on the number of

280
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values in an array is 11 (except for the line data arrays), but
this could be eaaily changed. The exception to the "one at a time"
rule are the values in the line data arrays. Tha lines can all
be included in one spectrum or can be separated into groups that

.ars put in sequential spectrum calculations. The IISET parameter

described above gives number of lines in a group. It should be

noted that this grouping feature does not apply to linea that are

input from line files (FAM files), but only to lines input by

the PAR2 namelist (the FAM file lines are controlled by the

PAR3 parameters). The reason for the line grouping feature is

to be able to study spectra as line variables are altered.

At present a total of 61 lines can be input. ‘

WARNING: The program was designed to run more than one sequence of

physical values in one job, but this feature has never been tested

and so probably does not work. Thus only cne physical variable

can be varied in one job with success expected.

IANGL and ANGL: The array ANGL contains the inclination angles.

These are the angles between the line of sight
to the observer and the symmetry axis of the
oellipsoid atmosphere. ANGL values are restricted
to the range [0, 90] degrees. (default: IANGL-=1
and ANGL(1)=90. degreas)

IANIS and ANIS: The line array ANIS contains the El-coefficients
(J, Chapter 2 sectipn (d)) for the PAR2 lines.
{default: IANIS=1 and ANIS(1)=0.)

IASPE and ASPH: This is an asymmetry parameter that can vary
betveen O and 1 (J, Chapter 3 section (a},
Chapter 4 section {(a)). (default: IASPH=1
and ASPH(1)=0.)

- 4

IICAS and ICAS: 1 for a vavelength independent continuum;
2 for a Planck black-body continuum.
(default: IICAS=1 and ICAS(1)=1)

IILIN and ILIN: This array parameter gives a crude ability to
vary the number of lines put into the spectrum:
e. g., it ILIN(1)=3, then the first three PAR2
lines are pnt in the first spectrum; if ILIN(2)=7,
then the first 7 lines are put in the second
spectrum; and so on. This hopefully will not
"conflict with the IISET parameter.
(defaults IILIN=1 and ILIN{1)=1)

IPOVE and POVE: This is the power for the optical depth. decay
law (J, Chapter 4 mection (a}). (default:
IPOWE=1 and POWE(1)=7.)
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IPRE and PRE:

roughly as the square of the PRE value;

unfortunately the CPU time required goss roughly

as one over the squaras of the PRE value.
. (detault: IPRE=1 and PRE(1)=.5)

This variable controls the numerical preciaion of
the calculation. PRE(1)a.6 gives a numerical -— -
uncertainty of about 5% at worst in the apactra;

this is usually acceptable, Eag\Pncertainty goes

% # F # ®F B &+ # % % F & F E & % F B & F F & F # ¥ &+ *H ® *

IRGMA and RGMA:

This variable sets the cuter gensralized radius
of the atmosphere (J, Chapter 4 section (a)).
(default: IRGMA=1 and RGMA(1)=3.)

RGMIN: This is a single variable, not_an array., It setsp the inner
generalized radius of the atmosphere (J, Chapter 4 section (a)).
Usually the defanlt inner generalized radius of 1 is used.
However, to make comparisons betwesn the DCO results
(J, Chapter 5 section (b)) and the electron scattering
atmosphers results of Cassinelli and Hummer (1871), it is
useful to'be able to shrink the inner generaliz?a_radiua.
{default: RGMIN=1.)

ITAUP and TAUP:

ITEMP and TEMP:

~~ITHER and THER:

The line array TAUP contains the Scbolav cptical

282

depths (J, Chapter 2 section (a)) for the PAR2 lines.

(default: ITAUP=1 and TAUP{1)=10.)

This is the photospheric temperature (J, Chapter 4
section (a)). These values are not used if the

ICAS valua is 1 (default: ITEMP=1 and
TEMP{1)=17000. K)

This is the thermal coupling parameter (J, Chapter 4
section (a)). (ITHER=1 and THER(1)=0.)

ITIK and TIM: This is the time since the ignition of the explosion.
The time can be-used to calculate the dimensions of the
atmosphere in absclute units, but no use is made of the
time variable in the curzent versiocn of the program,

(default: ITIM=1 and TIM=10.E+5 sec) .

IVELP and VELP:

_IWLIN and WLIN:

This is the photospheric velocity (J, Chapter 2
section (c), Chapter 4 section (a)).
{defauvlt: IVELP=1 and VELP(1)=1.E+9 cm/s)

The line array WLIX contains the line wavelengths
for the PAR2 lines. {default: IWLINE=1 and
WLIN(1)=5000. Angstrom)

ZEMAX: This is a single variable, not an array. It is the
angle of the vedge of atmosphere projection for which
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spectra is calculated. ZEKAX is given in units of pi ;
radians., For ZEMAX=1 the spectra are calculated for hnlt;
the projected atmosphere,~but due tc the axial symmetry
this i the same as for th:\xholo projection. (Ifi this

case the U Stokes parameter Tlux is set to zero since it is
zero for the whole projection integration.} For amaller
ZEMAX the spactra is calculated only for a wedge of the
projection. The ZEMAX parameter is mometimes useful in
analyzing the polarization spectra. (default: ZEMAX=1.)

PAR3 parameters are used for controlling the line information from
the line files; these files are called FAM files for line family.
The FAM files are FAM1.DAT (E I linea), FAM2.DAT (Na I lines),
FAM3.DAT (Fe II lines), and so on. Note there is no FAM10.DAT:

when 10 is specified for a the FAM number a discretized continucus
opacity (DCD) is implemented by the creation of a set of pseudo-lines
{see J, Chapter 6 section (b)). The PAR3 parameters are used almost
exclusively in the subroutine FAMILY.

IIFAM:

0 if ho FAM files are to be read. In this case the
PAR2 lines are used in the calculations. 1 if

FAM files are to be read and their data used in the
calculation. '

IFAM: This i an array that contains the FAM file numbers:
IFAN(19=1 causes the hydrogen lines to be read; but

IFAN(2)=0 causes no file to be open. The order of the

FAM file numbers in IFAN is unimportant. Note that
an IFAM value of 10 causes the discretized continuous
opacity (DCO) to be implemented. .

(default: all IFAM values are set to zero)

ITAUV:

TAUFAM:

This parameter is the IFAM index of a FAM file

number. Specifying ITAUV and ITAUP>1 (see PAR2) -

causes the controlling optical depth of the lines in
FAM//IFAM(ITAUV)//.DAT to be varied using the values
in array TAUP. (default: ITAUV=1)

This array contains the controlling optical depths for
linea in the FAM files. For example, the optical depth in
TAUFAM(4) is applied to the lines of FAM//IFAM(4)//.DAT
Thus the TAUFAM valuea must be entered in the right order.
A controlling optical depth is the Sobolev optical depth
of a particular line in a FAM file; this line has
vavalength specified in TAUWAV. The TAUWAV line is
usually chosen because it is a particularly strong line
in a spectrum that is being fit. The other lines in the
FAM file have their optical depths fixed by use of their
oacillator strengths and the Boltzmann distribution
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TAUWAV:

WAVEL and WAVEH: Sometimes it is desired that only the ~

ICOKT:

\&iEETAP:
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(see J, Chapter 2 section (c)). Note if the IFAM valua .
is 10 the pseudo-lines of the discretized continuocua opacity
are included in the spectrum. The optical depths of these
pseudo-lines are set using the'corresponding TAUFAN value

* (unless ICH=1 and then see below) and the prescription of

J (Chapter 5 section (b)). (default: all TAUFAN are set
to zero)

This array contains the wavelengths of the 11§%§“tor
vhich controlling optical depthe are set. For -example,
the wavelength in TAUFAM(4) is for a line in :
FAM//IFAM{4)//.DAT. 'Thia line is given the photospheric
optical depth in TAUFAM(4).

(defatlt: all the TAUWAV are.set to zero)

lines in reastricted wavelength region bae
included in the spectrum. WAVEL sets’the
_lower limit om this region, and WAVEE the
upper limit. (default: WAVEL=0, and
WAVEH=100000.)

This integer specifies the number of pseudo-~lines to be
included in the spectrum if the DCD method im implemanted.
The logarithms of the pseudo-lines are squally spaced
betyeen LOGLO(WAVEL) and LOG1O(WAVER). ’
(detault: ICONT=0)

This, parameter when set to 1 sets all the escape
probabilities of the pseudo-lines.to 1. This feature
might turn out to be useful in making the DCO method
better in reproducing continuum scattering results,
(default: IBETAP=0)

ICH: When ICH=1 the continuous opaci%y of the DCO method is set
to | at the generalized radius 1, This setting &llowa the
DCO results to be compared directly to the Cassinelli and
Hummer (1871) results for continuum scattering atmospheres;
Cassinelli and Hummer set continuous opacity to 1 at radius 1
in all their models. ({(default: ICH=0)

PAR4 parameters are used to investigate how the specific intensity.
and polarization vary as a function of impact parameter. The impact
parameter is the radial coordinate of a cylindrical coordinate systenm;
the cylindrical coordinate system z-axis is along the line-of-sight
to the distant observer. The specific intensity analyzed this way is
often called surface brightness. :

ISURF:

0 no surface brightness investigation; 1 apactri calculation
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and surface brightness investigation; 2 surface brightnass
investigation alone. (default: ISURF=0)
IPACT: This parameter gives the number of impact parametar values
for which the surface brightness and polarization are to
be calculated; actually there are IPACT+1 values since the
O impact parameter is used alao. The logarithms of the
impact parameters are equally spaced between LOG10(.1+RGMIN)
and LOG10(.995+RGMAX). (default: IPACT=7E)

]

SURFWA: This is the wavelength for which the surface brightness is
to be calculated. (default: SURFWA=6500. Angstrom)

SURFAN: This the angles of the cylindrical radius along which the”
surface brightnesses are calculated. The angle is
measured from the projection of the symmetry axis of
atmosphere. {(default: SURFAN=0 dogreen)

123456789+123456786+123466789+123456786+123456780+%123456780%123466780+12

The main program unit does very little: a few constants are calculated;
the  STHM.DAT file is read in; control is transferred to subroutine
READIE. ¥ote if an error on the read occurs the default model is
run. Also note that several model numbers can be read from S7M.DAT,
but this feature has never been used or tested. Note also that after
the main program unit, all the subroutines are in alphabetical order.
™~
PROGRAM S7
coMMoN/¢oNST/CLIGHT,CTA, IFREQ, P, PITWO, P12, PLAEC1, PLANC2, RADDEG
PARANETER (NLAM=125,HLINES= BI,ISET-ll) .
CHARACTER MODEL#*2 ' -
COMMON/SET/CCALL{RLINES) ,DLANM,
1 'FLUX(O:¥LAM,NSET,3) ,IDATA,IFORM, ILAM(NSET),
1 IISET,ILATE,ILOG,ITRANS, -
2 MODEL,IPUT,ISET,JSET,JSETS,KSET(NSET),POLAR(O: ILAH NSET,3),
3 SET(NSET) ,WLAM{O:NLAM,HNSET) ™
DATA BOLTZ,CTA,CLIGHT,PLANCK
1 /1.380662E-16,1.E+8,2.99762 468E+10,86. 32617 B86E-27/

PI=ACOS(-1.)

PITWO=2.+PI

PI2=P1/2. .

PLANC1=2.#PLANCK*CLIGHT C
PLANC2=PLANCK/BOLTZ .

RLDDEG=180./R;

INULL=1" .
OPEN(UNIT=1 ,FILE=*STK.DAT;’ ,STATUS="0OLD*)
REWIED1

110 CONTINUE
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* # & ¥ # & £ & #

READ(1,910,END=200,ERR=200) HODEL

910 FORMAT(AZ2)

INULL=0
CALL READIN .
GO TO 110

200 CONTINUE

GLOSE(UNIT=2)

IF(INULL .EQ. 1) TEEX
MODEL=7XX'* K
CALL READIN

END IF

END

ANISOT calculates for each line the coefficients tﬁat are needed tfor the

calculation of the direct contributions to the source function, and
the coefficients that can be used for calculating the source function
components themselves. ANISOT is called from READIN. ANISOT must
be called whenever the lines or the El-coefficients (J, Chapter 2
section (d)) are changed. ’
SUBROUTINE ANISOT -
PARAMETER (NLAM=125,¥LINES=61,NSET=11)
COMMON/ANISOT/AN1(NLINES) ,AN2{NLINES) ,ANDIR({14,ELINES),
1 AN17(NLINES),ANS(9,6NLINES)
COMMON/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PI2, PLANC1,PLANC2,RADDEG
COMMON/PARAM/ANGLE, ABRISO(KLINES) , ASEMI ,BSEMI,ICASE,

b ICOEF,ILINES,POVER,PREC, e
2 RGMAX ,RGMIN, TAUPH(NLINES), TENPH, THERM,
3 TIME,VELPH,WLINE(NLINES) ,ZEMAX

DO 310 I=1,ILINES
AN1(I)=ANISO(I)
AN2(I)=1.-AN1(I)

ANISD contains the Ei-coefficients (J, Chapter 2 section (d)). From
ANISO the ANDIR’s are calculated; the ANDIR’s are the coefficients of
the equations for the D_i’s (J, eguation (2.132)). The ANDIR'a are
the coefficients nesded to construct the direct contributions to the
source functions. They account for the fact that the integration is

over only 2+PI solid angle by dividing by 2+PI only instead of by 4+PI.

The ANDIR’s are used in subroutine GRALIL.

ANDIR(1,1)=,5+(1+2¢ANIS0{I))/PITWO
ANDIR(2,I)=.5+(1~- ANKISO(I})/PITNO
AFNDIR(3,I)=-1.6%AXIS0O({I)/PITNO
ANDIR(4,I)=.75%ANISO(I)*(-2.)/PITWO

286
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ANDIR(E,I)=,TE#ANISO(I)*(1.)/PITWO
ANDIR(E,I)=.76«ANISO(I)*(3.)/PITWO
ANDIR(7,1)=.75%ANISO(I}*(4.)/P1TWO

ANDIR(8,I)=, TE«ANISO(I)*(2.)/PITWD
ANDIR(9,I)=.75+ANISO(I)*(1.)/PITWO

ANDIR(10,I)=, 7TE+ANISO{I)*(~-1.)/PITWO
ANDIR(11,I)=.75+ANISO(I)*(1.)/PITHO

ANDIR{12,I)=.5%(1- ANISO(I))/PITNO
ANDIR(13,I)=.6%(1+,5#ANISO(I))/PITWO .
ANDIR(14,I)=,TE%ANISO{I)/PITWO

AE17 is a coefficient that comes from equation (2.146) of J.
This equation calculates the source functior companents from the
direct contributions. AN17 is used in subroutine SOURCZ2,

ANLT(I)=.7T#AN1(I)

ANS coefficients come from equation {2.138) of J. They are

used for a linear algebra solution for the source function components
from the direct contributions. Since the explicit solutions are
given equation (2.146) of J, those coefficients are redundant

except for testing purposes. The ANS values are used in subroutine
SOURC2. .

ANS(1,I)= ANL(I) +AN2(I)/2.
ANS(2,I}= AN1(I)/b. +AK2(I)/6.
ANS(3,I)= AN2(I)/2.
ANS(4,1)=-AK1(I)*.75 -
ANS(5E,I)=-AN1(1)/20.

ANS(68,I)= ANI1(I)*.75
ANS(7,1)= AN1(1)/4. +AN2(1)/2.
ANS(8,I)= AN2(I)*. 15+AN2(I)/8.
AXS(9,I)= AN1(I)*.76+AN2(I)/2.

410 CONTINUE

RETURN
END

*123456785%123456769+123456789+123466780+123456789+123456789+123456789%12

L ]

*
*
*

BETAFO is a test subroutine for the BETA and BETAl series expansions,
BETAFO is called from subroutine TEST.

SUBRQUTINE BETAFO(ITABLE)

ITABLE=ITABLE+1
PRINT®10,ITABLE
810 FORMAT(?1’,’TEST-TABLE ’,I2,%: A COMPARISON OF TEHE °’,
1 *INTRINSIC AND SERIES VALUES FOR BETA AND BETA1'//
2 ' ?,12X,'TAU’? ,13X,'BETA’,13X,12X,’BETAL*//
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3 7 7, 18X,2(6X, "INTRINSIC',9X, SERIES")}/)
920 FORMAT(' 'BE15.7)
DTAU=10.

DO 410 I=1,6

TAU=DTAU

DTAU=, 1eDTAU" ~

DO 420 J=1,10 - -
BETA=(1. -BXP(-TAU))/TAU

BETA1=1,-BETA il
BETA1S=(TAU/2.)%(1. - (TAU/3.)*(1., - (TAU/4.)
1 #(1. - (TAU/B.)*(1. - (TAU/E.) ))))

BETAS=1.-BETA1S '
PRINT®20,TAU,BETA,BETAS, BETAI .BETALS
TAU=TAU-DTAU _ T
420 CONTINUE
PRINT»,’ !
410 CONTINUE

RETURN
END
L]

*123466789%123456789%123456789+123456789+123456789+123456780+12345678912
*

BETAF1 produces BETA and BETA1=1-BETA, the homologous expansion
single-line escape and scatter probabilities, These quantities
discussaed in J (Chapter 2 section (a)). ¥ote that expansions

are used for small TAU’s (see J, Appendix 1 section (a)). BETAF1

is called by subroutine SOURC1.

- % % % # &

SUBROUTINE BETAF1(JLINE,RGGG,BETA,BETA1)

PARAMETER (NLAM=125,MLINES=61,NSET=11) -
COMMON/PARAM/ANGLE, ARISO(NLINES) ,ASEMI ,BSEMI,ICASE,
1 7 ICOEF,ILINES,POVER, PREC,
2 RGMAX ,RGMIN, TAUPH(XLIKES), TEMPH,THERK,
3 TIME,VELPH,WLINE(NLINES) ,ZEMAX

TAU= TAUPE(JLIIB)'(RGHII/RGGG}#*POHER
IF(TAU .GT. .1054) THEX .-
BETA=(1.-EXP(-TAU})/TAU
BETA1=1.-BETA
ELSE
BETAL=(TAU/2.) (1. - (TAU/3.)+(1. - (TAU/4.)
1 *(1. - (TAU/B.)*»(1, - (TAU/6.) })))
BETA=1.-BETA1 ‘
END IF . ‘ .

RETURN
END
»
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042 *
043 ¢+ ETAUF produces EXP(-TAU) and 1.-BXP(-TAU) (Bee J, Chapter 2 section(a)).
644 * These quantities are used to calculate the formal Sobolev molution for
645 # emergent specific intensity. The small TAU expanaion ars given in
640 * J (Appendix 1 section (a)). ETAUF is called from subroutines SPECT1 and
"~ 647 ¢ SURFBR. L ‘
848 » .
LIT SUBROUTINE ETAUF(JLIKE,RGGG,ETAU,ETAU1)
050 PARAMETER (MLAM=125,NLINES=61,KSET=11)
51 COMMON/PARAM/ANGLE , ANTSO(NLINES) ,ASEMI,BSEMI,ICASE,
gtz - 1 ICOEF,ILINES,POWER,PREC,
682 2 RGMAX ,RGMIN, TAUPH(NLINES) ,TEMPH, THERM,
684 3 TIME,VELPH,WLINE(NLINES) ,ZENAX -
085 * : . ' - —
650 TAU=TAUPH(JLIBE)» (RGMIN/RGGG)*+POWER
867 ETAU=EXP(-TAU)
ass IF(TAU .GT. .1054) THEX
659 ETAU1=1.-ETAU
660 ELSE : 7
'a#. ETAU1=TAU*(1.-(TAU/2.)*(1.-(TAU/3.)*(1.-(TAU/4.)*
sq:v’ 1- (1.-(TAU/B.) 1)) i}
s?a END IF
opa * A
665 RETURN -
466 END
o7 »

063 #123456789+123456789+123456789+123456780+123456789+123456789+123456789+12
6o * )
« FAMILY reads in the line data files: i. e., the FAM files. These files
* usually coﬁiain the line wavelengths in Angstroms, weighted oscillator
. strongths (or logarithms of the weighted oscillator strengths), the
* statistical weights of the lower levels of the lines, the energies in eV
* of the lower and upper lavels of the lines, and the total angular
* momenta of the lowver and upper levels of the lines., There are some-
*+ variation in the quantities in the FAM files and these variations are
677 * accounted for in the treatment of input data. These input data are used
* to calculate the El-cosfficients (J, Chapter 2 section {d)) and the
* photospheric Sobolev optical depths for the lines (J Chapter 2
* section (c¢)). The parameters controlling FAMILY are discussed in
* Input Parameter Descriptions (see the PAR3 namelist). FAMILY is called
#+ {from subroutine READIN. )
*®
L]

684

€85 - SUBROUTINE FAMILY

. 686 PARAMETER (NFAM=10)

687 COKMON/FAM/IIFAN, IFAM(NFAM) ,TAUFAK(XFAR) ,TAUWAV{NFAN),
655 1 WAVEL ,WAVEH,ICONT,IBETAP,ICH .

689 PARAMETER (NLAM=125,JLINES=61,NSET=11)

890 COMMOX/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PI2,PLANC1 ,PLANC2 ,RADDEG



o - T

601 COMMON/PARAM/ANGLE, ANISO(NLINES),ASEKI,BSEMI, ICASE,

692 1 ICOEF, ILINES,POWER,PREC, .
603 2 . RGMAX ,RGMIN, TAUPH(NLINES) ,TEMPH, THERN,

604 3 TIME,VELPH,WLINE(KLINES) ,ZEMAX

6985 COMMON/PSEUD/IPSEUD(NLINES)

696 . - DIMENSION EMPTY(NLINES) " .

607 CHARACTER FAMFIL(NFAM)#4 a e T
898 DATA FANFIL/'FAM1’,'FAM2’,'FAN3’ ,’FAM4’,'FAM5’, 'FANG’,

699 1 'FANT’,'FAM8' ,'FANO®,’ ¢/ o

700 DATA BOLTZ/8,61T35E-5/,EMPTY/NLINES+C./

701 ™ . .

702 ILINE=1 R : S
703 ° . DD 410 I=1,NFAM N _

704 ILINEB=ILINE o
705 * '

706 * . .- ] .
707 IF(IFAN(I) .GT. O .AND. IFAM(I) .LT. 10) THEN L
708 IFF=IFAM(I) ) < )

709 0PEI_(UIIT=4,FILE=FAHFIL(§FF)// ' DAT’ ,STATUS=’0LD") *

710 READ(4,+) IA,IB,IC . .

711 100 CONTINUE v : .

712 . READ{4,+*,ERR=100,END=110) WLINE(ILIXE),GF,ELOW,EHIG,XJLOW,XJHIG

713 IF(WLINE(ILINE) .LT. WAVEL-.1 .OR.

14 1 WLINE(ILINE) .GT. WAVEH+.1) GO TO 100 *

718 IF(IA .EQ. 1) THEN .

716 DELTAJ=XJHIG-XJLOW ro

nr CALL HAMILTON(XJLOW,DELTAJ,ANISO(ILINE))

718 ELSE IF(IA .EQ. 2) THEN

719 : ANISO(ILINE)=XIJHIG

720 END IF

721 IF(IB .EQ. 1) THEN . )

722 GGF=GF

723 ELSE IF(IB .EQ.- 2} THEN

724 GGF=GF

725 ELSE IF(IB .EQ. 3) THEN .

726 GGF={10.*»GF}

727 ELSE IF(IB .EQ. 4) THEN

728 GGF=GF

729 END IF ¢
730 IF(IC .EQ. 1) THEX

™ TAUPH(ILINE)=VLINE(ILINE)«GGF«EXP(-ELOW/(BOLTZ+TEMPH) )

732 ELSE IF(IC .EQ. 2) THENM ,

733  TAUPH(ILINE)=GGF

734 - ERD IF

738 IF(ABS{TAUWAV(I)-WLINE{ILINE)) .LE. .01) THEN

736 " TAUNOR=TAUFAK(I)/TAUPE(ILINE) '

737 END IF .

738 ILINE=ILINE+! o

739 G0 TO 100 ‘3 —

740 110 CONTINUE
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DO 420 J=ILINEB,ILIKE-1
TAUPH(J) =sTAUPH(J)*TAUNOR
IPSEUD(J)=0

420 CONTINUE
'CLOSE(UNIT=4)

ELSE IF(IFAM(I) .EQ. 10 .AND. ICONT .NE. O) THEN

DELWAV=(WAVEH-WAVEL) /REAL{ICOKT-1)
WAVMUL=10.#s{ LOG10(WAVEH/WAVEL)/REAL(ICONT-1) )
IF(ICH .EQ. O) THEN )

TAUESTAUFAN(I)

ELSE

TAUE=1./{ (POWER-1.)*RGNIN*+(POWER-1.) )
END IF
TAUPS=(POWER-1, )*TAUE+DELWAV#(CLIGHT/VELPH)
TAUPs=(PowEn-1.)-1AUE-(HAVHUL-1.)-(CLIGHT/VELPE)
WWW=WAVEL o
DO 425 J=ILINEB,ILINEB+ICONT-1
WLINE(ILINE)=WiW
ANISO(ILINE)=1,
TAUPA(ILIKE)=TAUPS/WWW
TAUPH{ILINE)=TAUPS
IPSEUD(ILINE)=IBETAP
NN =W WAVHUL ) .
WWW=WWW+DELWAV J
ILINE=ILINE+1

428 CORTINUE

END IF 4
410 CONTINJE

ILINES=ILINE-1

CALL SORT(MLINES,ILINES,WLINE,ANISO,TAUPH,ENPTY,IPSEUD)
1

DO 430 I=1,ILINES

PRINT#,I, WLINE(I),ANISO(I),TAUPH(I)},IPSEUD(I)

430 CONTINUE '
" RETURN
END

291

GRAL1 is a Simpson’s rule integration routine. It does a PHI integration
over the projected face of an ellipsoid (defined by z-axis=B and

x-axis=y-axias=A) as seen from a point (C,D) in the single line case,

"and the PHI integration from O to PI in the multi-line case.

The

r
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integrands are the Stokes parameter components of the radiation field.

The radiation emitted by the photosphere is taken as

unpolarized. The integrands are symmetric with regard to PHI=0 due
to the axial symmetry of the atmosphers model used (J, Chapter 4
section (a)). GRAL1 im called by subroutine SOURC2.

SUBROUTINE GRALI(ILIIE,A,B,C,D.D;RECT,PHIC)

PARAMETER (NLAM=126,NLINES=61,NSET=11)
CDHHDI/[IISOT/AII(ILIIES),AIQ(ILIIES).AlDIR(i%.HLINES).

1 ANIT(NLINES),ANS(®, SLINES)
CDHHOI/COISTXQ:IGHT,CTA,IFREQ.PI,PITUO,PI?,PLAICI,PLAIC2.RADDEG
COMMON/GRAL/RGRAL1 ,RGRAL2

COMMON/PARAM/ANGLE , ANISO(NLINES) ,ASENI,BSEMI, ICASE,

1 ICOEF,ILINES,POWER,PREC, '
2 RGMAX ,RGMIN,TAUPE(NLINES),TEMPH , THERM,
3 TIME,VELPE,WLINE(NLINES) ,ZEHAX

COMMON/SET/CCALL{NLINES) ,DLAN,
1 FLUX(0:NLAM,NSET,3),IDATA,IFORM, ILAM(NSET),
1 IISET,ILATE,ILOG,ITRANS,
2 MODEL,IPUT,ISET, JSET,JSETS,KSET(NSET),POLAR(O:KLAM, NSET,3),
3 SET{NSET),WLAM(O:NLAM,NSET) -
- DIKEESION DIRECT(5)},DIR(8,2),DIR1(8),DIR2(8)

CALL XMU1(A,B,C,D,PHIC)
IF(PHIC .LE. 0. .AND. ILINE .EQ. 1) THEX
) DO 405 I=1,5
DIRECT(I)=0.
405 CORTIRUE
GO TO 200
END IF

IF(ILATE .EQ. 0) THER
: CALL GRAL2(ILI¥E,C,D,0,1,DIR1)
DO 406 I=1,8
DIR(I,1)=PI*DIR1(I)
406 ~ CONTINUE
GO TO 180
EED IF

IF(ILINE .EQ. 1 .OR. PHIC .GE. PI) THEN
ISEC=1
ELSE
ISEC=2.
END IF
DO 407 ISOLID=1,ISEC
IF(ISOLID .EQ. 1) THEX
RPHI=RGRAL1#(PHIC/PITWO)
PHIA=0.
PHIB=PHIC
ELSE

292
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RPHI=RGRAL1#*(PI-PHIC)/PITWO
PHIA=PHIC
PRIB=PI
EKD IF
IPEI=INT(RPHI)
IF(REAL(IPHI) .LT. RPHI) IPHI=IPHI+1
IF(MOD(IPHI,2) .NE. 0) IPHI=IPHI+1
DPHI=(PHIB~PHIA)/REAL(IPHI)

CALL GRAL2(ILINE,C,D,PHIA,ISOLID,DIR1) ‘
PHI=PHIA+DPHI

CALL GRAL2(ILINE,C,D,PHI,ISOLID,DIR2) -

DO 410 I=1,8

DIR{I,ISOLID)=DIR1(I)}+4.*DIR2(I)

CONTINUE

DO 420 I=2,IPHI-2,2
PHI=PHI+DPHI .

CALL GRAL2(ILINE,C,D,PHI,ISOLID,DIR1) .
PHI=PRI+DPHI

CALL GRAL2(ILIFE,C,D,PHI,ISOLID,DIR2)

DO 430 J=1,8
DIR(J,ISOLID)=DIR{J,ISDLID)+2.¢DIR1{J)+4.+DIR2(J)
CONTINUE )

CONTINUE

CALL GRAL2(ILINE,C,D,PHIB,ISOLID,DIR1)
DPHI3=DPHI/3. .
DO 440 I=1,8 d
DIR(I,ISOLID)=DPHI3s(DIR(I,ISOLIDMDIR1(I))
CONTINUE

CONTIRUE

IF(ISEC .EQ. 2) THEN
DO 450 I=1,8
we—RIR(T,1)=DIR(T, 1)4DIR(I,2)
CONTIXUE
END IF T

CONTINUE

* DIRECT(1)=ANDIR(1,ILINE)*DIR(1,1)+ANDIR(2,ILINE)*DIR(2,1)

i +ANDIR(3,ILINE)*DIR(3,1)
DIRECT(2)=ANDIR(4,ILINE)*DIR(1,1)+ANDIR(5,ILINE}+DIR(2,1)
1 +ANDIR(6,ILINE)*DIR(3,1)

DIRECT(3)=ABDIR(7,ILINE)*DIR(4,1)+ANDIR(8, ILINE}*DIR(5,1)
DIRECT(4)=ANDIR(S,ILINE)*DIR(6,1)+ANDIR(10,ILINE)*DIR(7,1) —
1 +ANDIR(11,ILINE)}*DIR(8,1)
DIRECT(5)=ANDIR{12,ILINE)*DIR(1,1)+ANDIR(13,ILINE)*DIR(2,1)

203
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1 +ANDIR(14,ILINE)*DIR(3,1)

200 CONTINUE
RETURN
ERD
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GRAL2 is a integration routine. It does a XIMU integration

over the projected face of an ellipsoid (defined by z-axis=P and
x-axis=y-axis=A) as seen from a point (C,D) in the single-line case
and the XMU integration from -1 to i in the multi-line case. Note
that it

ICASE=1 and ILINE=1 : -the integration is analytic.
-the integrands are independant of XMU.
-the total specific intensity is
frequency-independent and is set to 1.

. else: -the integration is by Simpson’s rula.
-the apecific intensity is Planckian and exhibits
limb-darkening owing to the Doppler shift.

GRAL2 is called by GRALI,

SUBROUTINE GRAL2{ILINE,C,D,PHI,ISOL,GRAND)
COMMON/GRAL/RGRAL1, RGRAL2 .
PARAMETER (NLAM=125,KLINES=61,NSET=11)
COMMOE/PARAM/ANGLE, ANISO(NLINES) , ASEMI ,BSEMI,ICASE,
. ICOEF,ILIKES,POWER,PREC,

RGMAX , RGMIN, TAUPH(NLIKES) , TEMPH, THERN,
3 TIME,VELPH,WLINE(NLINES) ,ZEHAX
DIMENSION GRAND(8),GRAN1(B),GRAX2(8),GRAN3(8B)

[ SIS

DO 405 1=1,8
GRAND{I)=0.
405 CONTINUE
IF(ISOL .EQ. 1) THEN
CALL XMU2(PHI,XMUL,XMUE) .
PRINT#,*GRAL2 ’,C,D,PHI,XMUL,XMUH
XMUDIF=XMUE-XMUL
IF(XMUDIF .LE. ©. .AND. ILINE .EQ. 1) GO TO 200
END IF

It JCASE is 1 and ILINE is 1 then the integration is over

a bare unpolarized photosphers and analytic results are available
for the GRAKD constants which apart from coefficients are

the d_i’s of J} (equation (2.131)).

IF(ICASE .EQ. 1 .AND, ILINE .EQ. 1) THEN
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032

58] *
064
966
056
057
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860
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974
475
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977
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34
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939 *
950
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)

FI2=.5

GRAND(1)=FI2«( XMUH-XMUL )

CRANDT(2)=FI2+( XMUH-IMUL )

GRAND(3)=FI2¢( XMUHwe3-XMUL®#3 )/3,

GRAND(4)=FI2¢COS(PHI)*(- MAX(O., 1.-XMUL##2 )#«1.5 -
MAX{D., 1.-XMUHe*2 )}++i.6 )/3,

GRAND(B)=0,

GRAND (6)=GRAND(3)*C0OS(2. «PHI) ..

GRAND(7)=GRAND(2)«CDS(2.#PHI)

GRAND(8)=0, '

GO TO 200

END IF v

IF(ILINE .EQ. 1) TEEN
ISECA=2
ISECB=2 :
ELSE IF{ISOL .EQ. 1) THEW -
IF(XMUE .GE. 1) THEX
ISECA=1
ISECB=2 .

ELSE ) ,
ISECA=1 : .
ISECB=3 )

EKD IF
ELSE
ISECA=1
ISECB=1
XMUL=1.
END IF
DO 407 ISOLID=ISECA,ISECB
IF(ISOLID .EQ. 1) THEX
RXMU=RGRAL2#* (XMUL-(-1.))/2
. XMULL=-1. -
XMUEE=XMUL
ELSE IF(ISOLID .EQ. 2) THEN
RXMU=RGRAL2+ (XMUH~XNUL)/2.
XMULL=XNUL
INUHH=XMUH
ELSE
"RXMU=RGRAL2*{1.-XNUH}/2.
XMULL=XMUH
XNUBH=1.
EXD IF
IF(RXMU .EQ. 0.) GD TO 407
IXINU=INT(RINU)
IF(REAL(IXNU) .LT. RXNU) IXMU=IXMU+i
IF(MOD(IINU,2) .NE. 0) IXNU=IXINU+1 v
DIMU=(XMUHH-XMULL) /REAL ( IINU)

CALL GRAL3(ILINE,C,D,PHI,XNULL,ISOLID,GRAN1)
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200

XMU=XMULL+DXNU o
CALL GRAL3(ILINE,C,D,PHI,XMU,ISOLID,GRAN2)
DO 410 I=1,8
GRAN3(I)=GRAN1{I)+4.+GRAN2(I)
410 CONTINUE-

DO 420 I=2,IXMU-2,2
XMU=XMU+DXKU

* 7 CALL GRAL3{ILINE,C,D,PHI,XMU,ISOLID,GRAN1) C- -

IMU=XMU+DIMU
CALL GRAL3(ILINE,C,D,PHI,XMU,ISOLID,GRAN2)
DO 430 J=1,8
GRANA(J)=GRAN3(J)+2.*GRAN1(J)+4. +GRAN2(])
430 CONTINUE ' :
420 COETINUE

CALL GRAL3(ILINE,C,D,PHI,XMUEH,ISOLID,GRAN1)

DXMU3=DXNU/3.

DO 440 I=1,8

GRAN3(I)=DXMU3*(GRAN3(I}+GRAN1(I))
. GRAND(I)=GRAND(I)+GRAN3(I) '
440 CONTIXUE

407 CONTINUE

GRAND{4)=GRAND(4)*COS(PEI)
GRAND{5)=GRAND(5) «SIN(PRI)
GRAND(6)=GRAND(6)*C0OS(2.+PHI)
GRAND(7)=GRAND(7)+COS(2.*PHI)
GRAND (8)=GRAND(B) «SIN(2.+PHI)

200 CONTINUE
RETURN
ERD

*123456789%1234567689%1234567688+123456780+123466769+123466780%123468780+12

% # # % % F # ¥ ¥

GRAL3 prepares the integrand values for GRAL1 and GRAL2. It
provides the Stokes parameter specific intensity components that
convergs on the resonance point for which the source function is
being evaluated {see J, equation (2.149)). The direct and
diffuse contributions are calculated, and these are multiplied by
the appropriate factors from the the Rayleigh-phase matrix (J,
equation (2.131)). GRAL3 is called from GRAL2.

SUBROUTINE GRAL3(ILINE,C,D,PHI,XMU,ISOLID,GRAN)
PARAMETER (NLAM=125,NLINES=61,NSET=11)
COMMOX/PARAM/ANGLE , ANISO(XLINES) ,ASEMI ,BSEMI,ICASE,
17 ICCEF, ILINES,POWER, PREC,
2 RGMAX ,RGMIN,TAUPBE(NLIXES) ,TEMPH,THERNM,



1041
1042
1043
1044
1045
1046
1047
1018
1040
1050
1051
1052
1053
1054
1058
1056
1057
1088
1060
1060
1061
1062
1063
1064
1066
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

.1085
1086
1087
1088
1089
1090

-
3

1

2 XXLIKB,XXCORE,XXOCUL,XXCUT,QC,XTC

1

DIMENSION GBAI(Bl.SHElTS(S)

TIME,VELPH,WLINE(NLINES) ,ZEMAX
COMMOX/SOURC/ASQ,BSQ, THETA,ALP,ALPSQ,BET,BETSQ,
cQN1,CON2,CON3,CON4,BPRI,GMAXSQ,GMINSQ,

}
&9

XMUSQ=XMU2
SINE=SQRT(MAX(O., 1.-XNUSQ ))
XN1=SINE*COS(PHI)
XN2=SINE*SIN(PHI)
AAA=  XN1##2/ASQ+XN2+42/ASQ+INUSQ/BSQ
BBB=2.#(XN1+C/ASQ +  XMU*D/BSQ)
IF(ISOLID .EQ. 2) THER
cce= C**2/ASQ - GHKINSQ + D#»2/BSQ
XT=ABS( (-BBB+SQRT(MAX(O., BBB#+2-4.#AALsCCC)) )
/(2.%AAA) )
ELSE A "
¢cca Ce#2/ASQ - GMAXSQ + Dw#2/BSQ
XT=ABS( (-BBB-SQRT(MAX(O., BBB##2-4.sAAA*CCC)) )
/(2.%AAk) )
END IF
EXPTAU=1,
DLL=0,
DRR=0.
DUU=0,

DO 410 JLINE=ILINE-1,1,-1
XR=(1-WLINE(JLINE)/WLINE(ILINE) )/QC
IF(XR .GE. XT) GO TO 200 '
DELX=XReXN1
DELY=XR+XN2
DELZ=XR*XMU
X1=C-DELX
Y1=-DELY
Z1=D-DELZ
IMU1=XNU .
DELR=SQRT{DELX##2+DELY#*#2)
REO1=SQRT(X1*%2+Y1%42)
IF(DELR .EQ. 0.) THEN

PEI1=PHI

ELSE IF(REDL1 .XE. 0.) THEX

ARGUE=MAX(-1. ,MIN(1.,{X1#DELX+Y1+DELY)}/(DELR+#RHO1) ))

PHI1=ACOS(ARGUE)
ELSE
PHI1=0.
END IF

CALL SOURC3(JLINE,1,X1,Y1,21,XMU1, PEI1,SCOEF,SHENTS)
RGGG=SQRT(X1%#2/ASQ + Y1¢s2/ASQ + 21++2/BSQ)

CALL ETAUF(JLINE,RGGG,ETAU,ETAUL)
DLL=DLL+SMENTS(1)*ETAU1+EXPTAYV

-

207
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1099
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1107
1108
1109
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1114
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1118
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1122
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1124
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1126
1127
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1140

. .
*123456789*123456799‘123456789*123456789*123456789#123456789‘123456789'12

*»

&
*
*

*

410
200

DRR=DR

R+SHENTS (2) #*ETAU1+EXPTAU

DUU=DUU+SMENTS(3) *ETAU1+EXPTAU
EXPTAU=EXPTAU+ETAU

CONTINUE

CONTINUE

IF(ISOLID .EQ. 2) THEN

IF

{ICASE .EQ. 1) THEN
FI2=.b

ELSE -

CALL PLANCF(WLINE(ILINE),QC#XT,FI2)

END IF
DLL=DLL+FI2+EXPTAU
DRR=DRR+FI2#EXPTAU

END IF

PRINT
GRAK(1
GRAN(2
GRAN(3
GRAN(4
GRAX(5
GRAN{6
GRAX(7
GRAN(S

RETURN
END

*, 'GRAL3 ’ ,XT,DLL,DRR,DUU
)=D[J‘ .

)=DRR

)=XNMUSQ*DLL
)=XMU*SINE+DLL
)=SINE«DUU

)=XMUSQ+*DLL

)=DRR

)=XMU«DUV

HAMILTON calculates the.Ei-coérficieng of a line (see ], Table 2.1).
HAMILTON is called from FAMILY.

1

i

SUBRDUTIIE'HlHILTDl(XJLbH.DELTAJ,El)

IF(ABS
E

ELSE
E

ELSE
E

END IF

RETURN
END

(DELTAJ-1.) .LT. .1) THEN
1=(2.*XJLOW+5. )+ (XJLOW+2.)
£10./(XJLON+1.)/(2.XJLOW+1.) R
IF{ABS(DELTAJ) .LT. .1) THER ° : '
1=(2.+XJLOW-1.)*(2,+XJLOV+3.)

/10, /XILOV/(XILOV+1.)

1=(2.#XJLOV-3.)*(XJLO¥-1.)
/10./XJLON/(2.#XJLOW+1.)

208
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-

1141 ‘123456?39*123456789*12345878b‘123456739‘123458?89*123456789‘123458789*12
1142 *» - ' )

1143 #+ LIZ39Rakes an augmented 3%4 matrix and solves for the coefficients,
1141 * This routine is used to calculate the source function components from
1146 # equations (2.139) of J. Since explicit expressions are given for
1146 ¢ the source functions this routine is redundant and is used only for
1147 * testing purposes. LIN3 is called from SOURCZ.

1148

1149+ SUBROUTINE LIN3{XMAT,ACC,COEF) -
1160 DIMENSION X(3),XMAT(3,4),COZF(3)

1181 *

1152 X(1)=XMAT(1,1)*XMAT(2,2)-XMAT(1,2)+XMAT(2,1) .

1153 X(2)=XMAT(1,1)+XMAT(3,4)~XHAT(1,4)*XKAT(3,1) \

1154 X(3)=XMAT(1,1)#XNAT(2,4)-XMAT(1,4) *XMAT(2,1)

1165 X(4)=XMAT(1,1)*XMAT(3,2)-XMAT(1,2)«XMAT(3,1) )

1186 X(E)=XMAT(1,1)%XMAT(3,3)-XMAT(1,3)«XMAT(3,1)

1167 X(8)=XMAT(1,1)*XMAT(2,3)-XMAT(1,3)*XMAT(2,1)

1158 *

1150 COEF(3)=(X(1)*X(2)-X(3)*X(4))/(X(1)*X(E)-X(6)*X(4))

1160 COEF(2)=(X(3)-X{6)+COEF(3))/X(1)

1161 CDEF(1)=(1HAT(1,4)—IHAT(1.2)*COEF(2)—XHAT(1,3)¢COEF(3))/IHAT(1.1)
1162 * T .
1163 ACC=ABS( (COEF(1)*XMAT(3,1)+COEF(2)*XMAT(3,2)+

1164 + COEF (3)*XMAT(3,3)- XMAT(3,4))/XMAT(3,4) )
1166 * :

1166 RETURN

1167 END

1163 *

1169 +1234B6789+1234567089+123458780+123456789+123466789+123456789+123458780+12
1170 *

un * OUTPUT gives the system listing of the spectra and, if desired, the -
117 * source function component table. It also creates a S7//MODEL//.QUT
1173 + file containing the spectra data. A plot file called PLOTAPE.DAT is
1174 * also created. The IPUT parameter controls the cutput (see Input

1175 * Parameter Descriptions). OUTPUT is admittedly something of a mess
1176 * and needs some re-coding. OUTPUT is called from subroutines READIN
1177 *# and SOURC1.

1175 * ’

1170 SUBROUTINE OUTPUT(IPRINT)

1180 COMMON/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PI2,PLANC:,PLANC2, RADDEG
1181 PARAMETER (NLAM=125,NLINES=61,NSET=11)

11837 COMMON/PARAM/ANGLE, ANISO{NLINES) ,ASENI,BSEMI,ICASE,

1183 1 ICOEF,ILINES,POWER,PREC,

1184 2 RGMAX ,RGMIN,TAUPH(NLINES) ,TEMPH,THERN,

1188 3 TIME,VELPH,WLINE(NLINES),ZEMAX

1146 CEARACTER MODEL#2

1187 COMMON/SET/CCALL{XLINES) ,DLANX,

1188 1 FLUX(O:NLAM,NSET,3),IDATA,IFORN, ILAM{NSET),

1139 1 IISET,ILATE,ILOG,ITRANS,

1190 2 MODEL,IPUT,ISET,JSET,J)SETS,KSET{NSET),POLAR(O:¥LAM, NSET,3),



1ol 3 SET(NSET),WLAM(O:NLAM, NSET)

1192 PARAMETER (NCOEF=6,ZPREC=.10,NRGSINT(6./ZPREC)+1 ,
1193 1 NZETA=INT(4./ZPREC)+2)
1194 COMMON/SOURCE/DRGLOG,DZETA,IRG,IRG1,IZETA, IZETAL R :
1105 1 RG(0:NRG) ,RGH,RGL,SOURC(NCOEF,0:NRG ,O:NZETA,NLINES) ,ZETA{O:NZETA)
1196 DIMENSION THETA(O:NZETA),ZET(0Q:NZETA)
1197 PARAMETER (NSTAT=5+NLINES) ’
1198 DIMENSION FMAX(NSTAT,2) ,FMIN(NSTAT,2),PHAX(NSTAT,2),
1199 1 PMIN(NSTAT,2),WORK(1500}
1200 DIMENSION CALEXT(NSET),FXMAX(NSET) ,FXMIN(NSET),
1201 1 POLMAX(NSET),POLMIN{NSET), IEMPTY(XSET)
1202 DIMENSION DATX(11,2),DATY(11,2),IDAT(2)
1203 CHARACTER CHARAC(14)#%10,TITLE(3)e50
1204 DATA CHARAC/’ABGLE’,'ANISD’,’ASPH’,
1208 1 *ICASE’,'ILINES’, *POWER’, 'PREC’,
1206 2 'RGHMAX’, *TAUPH’ ,*TEMPR’ ,’THERM’, 'TINE’,
1207 3 *YELPH’, *WLINE'/
" 1208 DATA JTABLE/O/
1209 DATA IDAT/11,11/, -
1210 1 DATX/0.,.1,.2,.3,.4,.5,.6,.7,.8,.9,1.0,
1211 2 0.,.1,.2,.3,.4,.5,.68,.7,.8,.9,1.0/,
1212 3 DATY/0.,-.0016 ,-.0032 ,-.0040 ,-.0 065 ,—.0081 ,-,0120 ,-.017T7 ,
1213 4 -.,0268 ,-.0452 ,-.11T7 ,
1214 3 0.,.00098,.00196, .00277, .00375, .00465, .00654, .00638, ™~
1215 4 .00701,.0076 ,.0077/
1216 *  NAMELIST/PAR/ANGLE,ANISO +ASENI ,BSEMI, ICOEF,
117 1 ICASE,ILINES,POMER,PREC,
1218 2 RGMAX ,RGMIN,TAUPH , TEMPH , THERK,
1219 3 TIME,VELPH,WLINE ,ZEMAX
1220 *
1221 GO TO (110,120,130) ,IPRINT
1272 *
1223 110 CONTINUE *
1224 IF(ISET .GT. 0) THEX
1225 PRINTP10,JSET,CHARAC(ISET) .
1226 ELSE
1227 PRINT920,JSET
1228 END IF
1229 PRINT PAR

1220 910 FORMAT('1’,'PARAMETER(JSET=',I2,’)=?,A10/)
1231 920 FDRMAT('1’,’PARAMETER(JSET=',12,%)'/)

1232 JCOEF=MIN(ICOEF,8)

1233 DO 410 I=0,IZETA-1

1234 THETA(I)=RADDEG#ATAN( (ASENI/BSEMI)*TAN{ZETA(I)) )
1235 ZET({I)=RADDEG#*ZETA({I)

1238 410 COXTINUE

1237 THETA(IZETA)=860,

1238 ZET(12ETA)=00.

1230 #

1240 JTABLE=JTABLE+1



124t
1242
1243
1244
1245
1246
1347
1248
1249
1260
1251
1262
1253
1284

- 1365

1256
1367
1258
1259
1200
1261
1262
1263
1264
1263
1268
1267
1208
1269
1270
1271
1272
1373
1274
1278
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

L

*

930 FORMAT(//’ ',’TABLE ', I2,’.

940 FORMAT(//® ’,’FOR ILINE=’,I12,6X,°ZETA=’,F10.7,6X, THETA=",

PRINT930,JTABLE
1 'COEFFICIENTS’)

1 F10.7//* *,13X,'RG*,8(13X,12)/)

950 FORMAT(’ ',9E15.7)

440

DO 420 I=1,ILINES

DO 430 J=0,IZETA
PRINT940,1,ZET(J),THETA(J),(L,L=1, JCOEF)
DO 440 X=0,IRG

PRINT960,RG(X), (SOURC(L,K,J,I),L=1, JCOEF)
CONTINUE

430 CONTINUE

420 CONTINUE

- GO TO 200

120 CONTIRVE

960

IF(IPUT .GE. 3) THEN
IF(ISET .GT. 0) THEN
PRINTB10,JSET, CHARAC(ISET)
ELSE
PRINT920,JSET
END IF
PRINT PAR
END IF
JTABLE=JTABLE+1
PRINTO80, JTABLE

FORMAT(///' *,’TABLE ?,12,’. THE LOGARITEMIC FLUX SPECTRUM’,
1 ' AND POLARIZATICN SPECTRUM’,//
2 ' ?,4X,'I’,6X, ’WAVELENGTH’,6X, 'LOG(FLUX)’,3X, 'POLARIZATION’,

3 1X,'LOG(LIMB FLUX)*,EX,'LIMB POLAR’,
4 1X,’LOG{CORE FLUX)'’,EX,'CORE POLAR’/)

970 FORMAT(*- ’,I5,F15.2,6E15.7)

PRINT+,'THIS IS DLAM AND IT IS NOT ZERO ’,DLAM

DLAMA1=2.*DLAN
DLAMA2=DLAMA1+DLAM
IFMAX=0

IFMIN=0

IPMAX=0

IPMIN=0

DO 445 I=1,NSTAT
2

THE SOURCE FUNCTION *,

301
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446 COKTINUE
445 CONTINUE
FSUM=0,
DO 450 X=0,ILAM(JSET)
PRINT970,I,WLAN(I,JSET),FLUX(I,JSET,3),POLARCI, JSET,3), .
1 FLUX(I,JSET,2),POLAR(I,JSET,2),FLUK(I,JSET,1) ,POLAR(T,JSET,1)
IF(ILOG .EQ. 1) THEN .
FSUNeFSUM+SIMWT(0,I,ILAM(JISET))*10%eFLUX(X, JSET,3)
ELSE
FSUM=FSUM+SIMWT(0,I,ILAM{JSET))*RLUX(I,JSET,3)
END IF
IF(I .GE. 2) THEN
DELO1=FLUX(I-1,JSET,3)-FLUX(I-2, JSET,3)
DEL12aFLUX(I, JSET,3)-FLUX(I~-1,JSET,3)
IF(DELO1#DEL12 .LT, 0.) THEN )
A2a( FLUX(I-2,JSET,3)~2.#FLUX(I~1,JSET,3)+

1 FLUX(I,JSET,3) ) /DLAMA2
A1=(-3,#FLUX(I-2,JSET,3)+4.+FLUX(I-1,JSET,3)-
1 FLUX(I,JSET,3) ) /DLAMAL
IF(A2 .LT. 0.) THEN
IFMAX=IFHAX+1

FMAX(IFMAX,1)=-A1/(2.%42) + WLAM(I-2,JSET)
FMAX(IFNAX,2)=~.25%(A1%¢2) /A2+FLUX(I-2, JSET,3)
ELSE
IFMIN=IFMIN+1
FMIN(IFMIN,1)=-A1/(2.%A2) + WLAM{I-2,JSET)
FMIN(IFMIN,2)=-.26+Qgge*2) /A2+FLUX(1-2, ISET,3)
END IF
E¥D IF
DELO1=POLAR(I-1,JSET,3)-POLAR(I-2, JSET,3)
DEL12=POLAR(I,JSET,3)-POLAR(I-1,JSET,3)
IF(DELO1+DEL12 .LT. 0.) THEN
A2=(  POLAR(I-2,JSET,3)-2.#POLAR(I-1,JSET,3)+
1 POLAR(I,JSET,3) ) /DLANA2
li=(—3.tPDLA:f}GQTEEB({§)+4.-POLAR(I-I,JSET.S)-
1 POLAR(I,JSET,3) ) - /DLAMAL
IF(A2 .LT. 0.) THEN
IPMAX=IPMAX+1
PHAX(IPNAX,1)=-41/(2.#42) + VLAM(I-2,JSET)
\ PMAX(IPMAX,2)=-.26+(A1%+2)/A2+POLAR(I-2, JSET,3)
ELSE
IPMIN=IPNIN+1
PMINCIPMIN,1)=-A1/{2.#A2) + WLAM(I-2,IJSET)
PMIN(IPMIN,2)=-,25«(A1#+2)/A2+POLAR(I-2, JSET,3)
END IF .
END IF
END IF
450 CONTINUE
PRINT980
980 FORMAT(///’ *,'THE STATIONARY POINTS FOR FLUX AND POLMRIZATION'//
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1 7,4Xx,'I",6X, FLUX KINIMA', 14X,5%, 'FLUX MAXIKA’,14X,
2 BX, ’POLARIZATIDI MINIMA’,6X,5X, 'PDLARIZATIOI HAIIHA‘//
3 ’ *,5X,2(5X, 'WAVELENGTH’ ,4X, 'LOG10(FLUX) "),
4 2(6X, 'WAVELENGTH" , 3X, 'POLARIZATIDI’) )
900 FORMAT(’ ',I5,8E15.7)
FIHII(JSET)-NII( FLUX(C, JSET,3) ,FLUX(ILAK(JSET),JSET,3) )
FXMAX(JSET)=MAX( FLUX(0,JSET,3),FLUX(ILAM(JSET),JSET,3) )
POLMIN(JSET)=NIN( POLAR(O,JSET,3),POLAR(ILAM(ISET),JSET,3) )
POLMAX(JSET)=MAX( POLAR(O,JSET,3),POLAR(ILAM(JSET),JSET,3) y
DO 453 I=1 MAX(IFMIN,IFMAX,IPMIN,IPMAX) -
PRINTO9O0,I,FMIN(I, 1)} ,FNIN(I,2),FMAX{I, 1) ,FMAX(I,2),
1 PMIN(I,1),PMINCI,2),PHAX(CI,1),PMAX(T,2)

. FXMIN(JSET)=MIN(FXMIN(JSET) ,FNIN( MIR(I,IFMIN) ,2))
FXMAX(JSET)=MAX(FXMAX(JSET) ,FMAX( MXIN(I,IFMAX) ,2))
POLNIN(JSET)=MIN(POLMIN(JSET),PMIN( MIN(I,IPMIN) ,2))

POLMAX (JSET)=MAX(POLMAX (JSET) ,PHAX( MIN(I,IPMAX) ,2))
453 CONTINUE -

PRINTO92
992 FORMAT(///' ’,'THE McCALL POLARIZATION PEAXS'//
1 * 0 *TLINE’,EX, *WAVELERGTHE’,11X, 'PEAK'/)
993 FORMAT(’ *I5,2E15.7)
CALEXT(JSET)=0.
DO 454 I=1,ILINES
PRINTS93,I,WLINE(I),CCALL(I+ (JSET-1)+IISET )
IF(ASEMI ,LE. BSEMI) THEN
CALEBXT(JSET)=MAX (CALEXT(JSET),

1 CCALL(I+ (JSET-1)*IISET ) )
ELSE
CALEXT(JSET)=NIN(CALBXT(JSET),
1 CCALL(I+ (JSET-1)*IISET ) )
END IF - -

454 CONTINUE

PRINTe,’ ?
PRINT», 'THE MEAN FLUX IS ’,(DLAM/3.)*FSUN
1 /{ WLAM(ILAM(JSET),JSET)-WLAM(0,JSET) )

_-G0 TO 200

130 CONTINUE
IF(ISET .ME. 7) THEN
OPEN(UNIT=3,FILE='S7’//MODEL//’ .0UT;* ,STATUS=NEW?)
REVIND3
WRITE(3,*) IFORM,ILATE,ISET,JSETS
VRITE(3,998) NODEL
DO 458 JSET=1,JSETS
WRITE(3,594) ILAM(JSET),CALEXT(JSET),POLMAX(JSET), .
1 POLMIN({JSET),SET(JSET)
DO 467 I=0,ILAM(ISET) ° .
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1391 VRITE(3,995) I,NLAK(I,JSET),FLUX(I,JSET,3),FLUX(I,JSET,2), -
w02 - 1 FLUX(I,JSET,1),POLAR(I,JSET,3),POLAR{(I,JSET,2),POLAR(I,JSET,1)
1363 45T CONTINUE '

1304 456 CONTINUE ’

1305 994 FORMAT(® ',15,4E18.8)
1306 996 FORMAT(® *,15,7E{6.8)

1397 998 FORMAT(A2) "
1398 CLOSE(UNIT=3) .
1395 * EXD IF
1400 XMIN=FXMIN(1) ' .
-4\?: XMAX=FXMAX(1) \ - r
“14d2 YMIN=POLMIN(1) .
1401 YMAX=POLMAX(1) - '
1404 DO 4568 I=2,J)SETS
1408 XMIN=MIN(XMIN,FXMIN(I)) .
1406 XMAX=MAX(XMAX ,FXMAX(I))
1407 YMIN=NIN(YMIN,POLMINCI))
1408 YMAX=MAX(YMAX ,POLMAX(I))
1409 -458 CONTINUE
1410 XDIFF=.03»(XMAX-XMIK) .
1t XNIN=XNIN-XDIFF : ‘ . .
1412 XMAX=XMAX+XDIFF -
1413 YDIFF=.03%(YMAX-YMIK) ‘
1414 YMIN=YMIN-YDIFF ’
1418 " YMAX=YMAX+YDIFF .
1416 * ~
1417 CALL SIMSTART(.FALSE.,.FALSE.) Oy :
1418 * IF(JSETS .GT. 4 .AKD. 1ILDG .EQ. 1)} CALL SIMSAME(,TRUE.) “
1419 CALL NEWPEN(3) ) . v
1420 CALL ROTATE(1)
1421 CALL SIMTRAN(.25,.25) : P
1422 CALL SIMSIZE(4.75,7.5)
1423 * ) — -
1424 - IF(MODEL(1:1) NE. '0’) THER
1425 IN=1 : .
1426 ELSE ~»
1427 IM=2 '
1438 EXD IF
1420 * -
1430 IF(ILO0G .EQ. 1) THEN . .
1431 TITLE(1)='FIG. *//MODEL(IN:2)// .
1432 1 *Aiv  LOGARITHMIC CORE FLUX SPECTRUM’
1433 © TITLR(2)='FIG. '//MODEL(IM:2)//
M34 1 'Adi. “LOGARITEMIC LIMB FLUX SPECTRUM’
1435  TITLE(3)='FIG. '//MODEL(IN:2)// i
1436 1 . 'Aiii. LOGARITHMIC FLUX SPECTRUM’
1437 ELSE y~
1433 TITLE(1)='FIG. '//MODEL(IN:2)//'Ai. CORE FLUX SPECTRUM’
1439 TITLE(2)="FIG. '//MODEL(IN:2)//*Aii. LIMB.FLUX SPECTRUN’

1440 TITLE(3)='FIG. '//MODEL(IM:2)//'Aiii. FLUX SPECTRUM’ "
. . ! .



1441
1442
1443
1444
14456
14490
1447
1448
1440

1450

1481
1482
1484

£3 1484

- 771485

1456
1457
1458
1459
1460
1461

1462

1463
1464
1465
1466
1467
1465
1469
1470
1471

1472

1473 -

1474
1473
1476
1457
1478
1479
1480
1451
1481

1483

1484
1483
1486
1487
1468
1489
1490

401

END IF _

CALL SIMANN(.TRUE.)

XLOW=MIN(WLAM(O,1),VLAN(O, JSETS))
XHIGHE=MAX(WLAM(ILAK(1),1) , WLAM(ILAM(JSETS),JSETS) )
CALL SIMXRXG(XLOW,XHIGH) g

CALL SIMXRNG(WLAM(O,1),WLAM(ILAM(1),1D)

CALL SIMYRNG(XNIN,XMAX) ’
DO 469 I=1,3

CALL SIMKRNG(.TRUE.) :
CALL SIMPLOT(WLAM(0,1),FLUX(0,1,I),1+NLAN,1+ILAM(1),JSETS,WORK)
CALL SIMPLOT(WLAM(O,1),FLUX(0,1,I),1+ELAM,1+ILAM(1),1,WORK)
DO 461 JSET=2,JSETS
CALL SINCURV(WLAM(0,JSET),FLUX(O,JSET,1),
1 1+ILAM(JSET),WORK) '
CONTINUE
CALL SIMXLAB(’WAVELENGTH (ANGSTROM)')

- IF(ILOG .EQ. 1) THEX

459

" 484

468

CALL SIMYLAB(’LOG10(FLUX)') ' . { -
 ELSE .
CALL SIMYLAB('FLUX') -

EED IF,

CALL SIMTITL(TITLE(I))

CONTINUE o

= \ « .

TITLE(1)='FIG. *//MODEL(IK*2)//’Bi. CORE/POLARIZATION SPECTRUN’
TITLE(2)='FIG. '/{MODEL(IM:2)//°’Bii. LIMB POLARIZATION SPECTRUM’
TITLE(3)='FIG. '//MODEL(IM:2)//’Biii. POLARIZATION SRECTRUN'

IF(JSETS .GT. 4) CALL SIMSAME(.TRUE.)

CALL SIMANN(.TRUE.)

CALL SIMXRNG(WLAM(O,1),WLAM(ILAN(1),1))

CALL SIMXRNG(XLOW,XHIGH)

CALL SINYRNG(YMIN,YMAX)
DO 468 I=1,3

CALL SIMKRNG(.TRUE.)

CALL SINPLOT(WLAM(0,1),POLAR(O,1,I),1+NLAM,1+ILAM(1),JSETS,WORK)
CALL SIMPLOT(WLAM(O,1),POLAR(O,1,I),1+KLAM, 1+ILAM{1),1,WORK)

DO 484 JSET=2,JSETS ) .

CALL SINCURV(WLAM(O,JSET),POLAR(O,JSET,I),
1 1+ILAM(JSET),NORK)
-CONTINUE

CALL SINXLAB(’WAVELENGTH (ANGSTROM)®)

CALL SIMYLAB(’POLARIZATION®)

CALL SIMTITL{TITLE(I))

CONTINUE

e

IF(JSETS .LE. 3) GO TO 200 .
CALL SORT(NSET,JSETS,SET,POLMAX,POLMIN,CALEXT,IENPTY)
IF(ABS(SET(JSETS)-1.) .GE. .1) THEN -
SETL=SET(JSETS)
ELSE -
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1495
1496
1497
1498
1459
1500
1501
1502
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1505
1506
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1517
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1519
1520

1521
1522
1521
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1633
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*

* ®# & % = ®

300

SETL=1.
END IF
CALL SIMAXXN(.TRUE.)
CALL SIMXRRG(SET(1),SETL) P
CALL SIMYRKG(YKIN,YHAX)
CALL SIMPLOT(SET,POLMAX, ¥SET,JSETS,1,WORK)
CALL SIMDAT(SET,POLMAX, JSETS)
CALL SIMCURV(SET,POLMIN,JSETS,WORK)
CALL SIMDAT(SET,POLMIN,JSETS)
CALL SIMCURV(SET,CALEXT,JSETS,WORK)
CALL SIMDAT(SET,CALEXT,JSETS)
IF(IDATA .ECh 1) THEXW ™
CALL SIMCURV(DATX(1,1),DATY(1,1),IDA%(1),WORK)
CALL SIMCURV(DATX(1,2),DATY(1,2),IDAT(2),WORK)
EXD IF
CALL SIMXLAB(CHARAC(ISET))
CALL SIMYLAB('POLARIZATION’)
TITLE(1)="FIG. ’//MODEL(IN:2)//'C. POLARIZATION EXTREKA'
CALL SIMTITL(TITLE(1))
GALL SIMEND

CONTINUE {
RETURN . :
END /

1

*123456789+123466789+123456789+123456780+123456780+123456780%123456780+12

PLANCF calculates the Planck black-body specific intensity for a
given wavelength, and a given Doppler shift parametesr
DELTA=(velocity/CLIGHT). PLANCF is called by subroutines GRAL3,
SOURC1, SPECT1, and SURFBR.

-

SUBROUTINE PLAKCF(WAVELY,DELTA,FI2) ’
COMMOE/CONST/CLIGHT,CTA, IFREQ,PI,PITWO0,PI2,PLANC1,PLANC2, RADDEG
PARAMETER (NLAM=125,NLINES=61,KSET=11)’
COMMON/PARAM/ANGLE,ANISO(NLINES) ,ASEMI ,BSEMI,ICASE,

i . ICOEF,ILINES,POWER,PREC,

2 RGMAX ,RGMIN, TAUPE(NLINES) ,TEMPH, THERM,

3 TIME ,VELPH,WLINE(NLIRES),ZEMAX -
DELTA=0.

WEUSCLIGHT#CTA/( -WAVELN » (1.-DELTA)} )
PRINT*,WNU,CLIGHT,CTA,VWAVELY,DELTA
PRINT*,PLANC1,WNU/CLIGET,PLANC2,PLANC2+WEU/TENPH

FI2=.6+PLANC1#{{WNU/CLIGHT)#*3)/(EXP(PLANC2*«WNU/TEMPH) - 1.)

@ . IF(IFREQ .NE. 1) FIQ=FI2#(WNU*#*2/CLIGHT)

* RETURN
END



1641
1542
1643
1544
1845
1846
1547
1548
1640
1550
1551
1852
1583
1654
1688
1880
1657
1588
1569
1660

1561

1562

1663 ¢

1864

1565 -

1566
1567
- 1568
1560
1870
1571
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1874
1875
1376
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*123456789*123456789*123456739*123456789‘123456789‘123488789'123456789*12

.
* PRECIS sets out the gridding for the dismcretized source function, and
+ dacides the number of increments to be used in the GRAL1 and GRAL2
¢+ integrations. ’These choices are made according to a prescription
+ (sas private Sobolev notes of D.J. Jeffery p. 111), and using the
# PREC variable. The PREC variable is just equal to an element of
*+ the PRE input array (see Input Parameter Descriptions). PRECIS is
« called from subroutine READIN.
*
SUBROUTINE PRECIS
COMMON/CONST/CLIGHT,CTA,IFREQ,PX ,PITWO,PI2,PLANC1,PLANC2, RADDEG
COMMON/GRAL/RGRAL1, RGRAL2
PARAMETER (NLAM=125,NLIKES=61,XSET=11)
COMMON/PARAM/ANGLE , ANTSO{NLINES) ,ASEMI ,BSEMI, ICASE,
1 ICOEF,ILIKES,POWER,PREC,
2 RGMAX ,RGMIN,TAUPH(NLIKES), TEMPH, THERN,
3 TIME,VELPH ,WLINE(NLINES) ,ZEMAX
PARAMETER (NCOEF=5,ZPREC=.10,NRG=INT(8./ZPREC)+1,
1 NZETA=INT(4./ZPREC)+2} ’
COKMON/SQURCE/DRGLOG,DZETA, IRG,IRG1,IZETA, TZETAL, '
1 RG(O:NRG),RGH,RGL,SOURC(NCOEF,0:¥RG,0:NZETA,NLINES),ZETA(0: ¥ZETA)
- : .
RGRAL1=8. /PREC - v
RGRAL2=8./PREC
® Fl
RGFACT=1.+.2¢PREC
IMULT=MIN(NRG, INT(.8021/LOG10(RGFACT) )+1 ) *
L]
* .6021 is just the logarithm of 4; the ratio of (RGMAX/RGMIN)=4 as it
+ turned out had a sutt%ciently good discretization and so this
* discretization will be maintained for all RGMAX and RGMIN cases.
*

RGMULT=10.++( LOG1O(RGMAX/RGMIN)/IMULT )
s DRGLOG=LOG10(RGMULT)

ICQUNT=0 L.
RG{O)=RGMIX
110 CONTINUE

7 ICOUNT=ICOUNT+1

RG{ICOUNT)=RG{ICOUNT-1)%RGMULT
" PRINT#, 'From PRECIS ’,ICOUNT,RG(0), nc(xcuunr)
IF(RG{ICOUNT} .LT. RGMAX) GO T0 110
IF(ICOUNT .GT. 1) THEN
IRG=ICOUNT -
ELSE
IRG=2
RG(1)=.5+(RG(0)+RGMAX)
EKD IF . ——
IRG1=IRG-1
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-

* # # £ ¥ ® =

RG(IRG)=RGMAX
RGL=RG(0) /SQRT (RGNULT) Y
RGH=RGMAX*SQRT (RGMULT)

RZETA=4./PREC -
IZETA=INT(RZETA) ‘
IF(REAL(IZETA) .LT. RZETA) IZETA=IZETA+1
IF(MOD(IZETA,2) .NE. 0) IZETA=IZETA+1
IZETA1=I2ETA-1 X
DZETA=PI2/REAL(IZETA) i

ZETA(0)=0. .

DO 410 I=1,IZETAf’

ZETA(I)=ZETA(I~1)+DZETA

410 CONTINUE

‘ZETA(IZETA)=PI2

RETURN

END
e

*123456780+123456780+123466789%123456780%123456780+123456780+123468780+12

READIN reads from the 57//MODEL//.DAT input file the parametars for a
spectra calculation. Default parameters are provided. READIN also
calls the routines that generate and output the results. It handles all
the re-assignment of variables for calculating a sequence of spectra
using the parametera of PAR2 {see Input Parameter Descriptions).

READIN is called by the main program unit 57. . y

‘SUBROUTINE READIN
COMMOX/CONST/CLIGHT,CTA, IFREQ,PI,PITWO,PI2, PLAHCi PLANC2,RADDEG
PARAMETER (NFAM=10)"
CDHHOI/FAH/IIFAH.IFAH(IFAH),TAUFAH(IFAH).TAUUAV(iFAH).
1 WAVEL,WAVEH,ICONT,IBETAP,ICH
COMMON/XORM/INORM,WNORM, IFRAG, YMAX ,ZMAX
PARAMETER {NLAM=125,NLINES=61,NSET=11)
COMMON/PARAN/ANGLE,, ANISOCNLINES) , ASENI,BSEMI, ICASE,
1 ICOEF, ILTNES,POWER, PREC,
2 RGMAX ,RGMIN,TAUPH(NLINES) ,TEMPH, THERM,
3 TIME,VELPH,WLINE{(NLINES),ZEMAX
CHARACTER MODEL#*2 .
COMMON/RED/ERED, IRED o , )
COMMOX/SET/CCALL (NLINES) ,DLANM, : .
- 1 FLUX(O:NLAM,NSET,3),IDATA,IFORN, ILAM(NSET),
1 IISET,ILATE,ILOG,ITRANS,
2 MODEL,IPUT,ISET,JSET,JSETS,KSET(NSET),POLAR(C:NLAM,NSET,3),
3 SET(NSET),WLAM(C:NLAM, NSET)
COMMDX/SURF/ISURF, IPACT,SURFWA,SURFAX
DIMENSION ANGL{NSET),ANIS{NLINES),ASPH{NSET),ICAS(NSET),
1 ILIN(NSET),POVE(NSET),PRE(NSET) ,RGMA(NSET),TAUP(NLINES},
2 TEMP(NSET),TEER(NSET) ,TIK(NSET),VELP(XSET),VLIN(NLINES)

\
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1641 NAMELIST/PAR1/IDATA,IFORK, IFREQ, ILATE, ILOG, IPUT, IISET,
1642 1 ISETYN,ITRAXS, INORM,WNORM, IFRAG, YMAX ,ZMAX ,ERED, IRED
1643 DATA ICOEF/6/,IDATA/0/,IFORM/1/,IFREQ/0/,
1644 .1-ILATE/1/,ILDG/1/,
1645 1 IPUT/4/,11SET/1/,ISETYN/1/,
1646 1 ITRANS/0/
1647 DATA INORM/0/,WNORM/E000,/,IFRAG/0/,YMAX/100./,ZHAX/100/ .
1648 1 ERED/0./,IRED/0/
1640 NAMELIST/PAR2/IANGL,ANGL,IANIS,ANIS,IASFH,ASPH,
1650 1 IICAS,ICAS,IILIN,ILIN,IPOVE,POVE,
1651 2 IPRE ,PRE ,IRGMA,RGMA,RGMIN,ITAUP,TAUP,
1662 3 ITEMP,TEMP,ITEER, THER,ITIN ,TIM , -
16883 4 IVELP,VELP,IVLIN WLIN,6ZEMAX .
1684 DATA
1855 1 IANGL/1/,ANGL
1850 + "/ 0., 10+0./, _
1687 2 IANIS/1/,ANIS ) "
1658 + /ULINES#0./, .
1089 3 IASPH/1/,ASPH ~ y
1660 + /0.,.1,.2,.3,.4,.5,.68,.7,.8,.9,.909/;
1061 4 IICAS/1/1CAS ' \
1602 + /1, 10%0 /, .
1663 & IILIN/1/ILIN
1664 + /1, 1040 /,
1668 6 IPOWE/1/,POWE
1666 + /7., 10%0./, \
1687 T 1PRE/1/,PRE
1668 + / .5,.5,.25,.125, T%0. /, -
1669 © 8 IRGMA/1/,RGMA
1670 + ' /3., 10%0./, - : --
1671 + RCMIN/1./, :
1672 9 ITAUP/1/,TAUP
1673 + JALIKES*10./,
1674 A ITEMP/1/,TENP .
1675 + /17000., 10%0./,
1676 B ITHER/1/,THER
1677 + / 0., 10#0./, -
1678 C ITIM/1/,TINM .
1670 + / 10.E+5, 1040./, B
1650 D IVELP/1/,VELP .
1651 + /1.E+9, 10+0./,
1633 E IWLIN/1/,WLIX
1633 + /ELINES*5000./, K )
1684 + ZEMAX/1./ '
1685 IlHELIST/PlR?»/I]_:FlH JIFAN,ITAUY, TAUFAM , TAUWAV,
1836 1 WAVEL,WAVEH,ICONT,IBETAP,ICH
1687 DATA IISET/50/,IIFAN/O/,
1638 1 IFIH/IFM‘O[ LITAUV/1/ , TAUFAM/NFAM*0 ./.TAWAV/IFIH*O .z,
1889 - 2 WAVEL/0./,NAVEH/100000./,ICONT/0/,IBETAP/O/,ICE/0/

1690 MAMELIST/PAR4/ISURF,IPACT,SURFWA,SURFAN



Jio

A

1001 DATA ISURF/0/,IPACT/76/,SURFWA/8500./SURFAN/O./

1602 *

1663 IF(MODEL .NE. *XX') THEX

1604 : OPEN(UNIT=2, FILE=’ST7’//MUDEL//’ DAT; * ,STATUS=’0LD*)
1665 REWIND2

1606 READ(2,PAR1)

1657 READ(2,PAR2)

1408 READ(2,PAR3) . -
1890 READ(2,PAR4) )

1700 ‘ CLOSE(UNIT=2)

1701 END IF -

1702 PRINTO10, *MODEL S7°'//MODEL .

1703 910 FORMAT(’1',A10/) T
1704 PRIKT PAR1

1705 PRINT»,’ *

1708 PRINT PAR2

1707 PRINTs,’ *

1708 * PRINT PAR3

PRINT»,' '

JSET=1

JSETS=1

ABGLE=ANGL(1)

~  ASEMI=1.

IF(ILATE .EQ. 0) THEN
BSEMI=ASEMI

ELSE IF(ILATE .EQ. 1) THEN

BSEMI=ASEMIs(1.-ASPH(1))

ELSE
BSEMI=ASEMI/(1.-ASPH(1)) : .
END IF ‘ ' o
ICASE=ICAS(1) : :
ILINESSILIN(1)
POWER=POWE(1)
PREC=PRE(1)
RGMAX=RGMA(1)
1729. TEMPH=TEMP(1) _ )
1730 THERM=THER(1) . . -
1731 TIME=TIN(1) ' s T
17132 VELPH=VELP(1) o
- 1733 ZEMAX=ZEMAXsPI
A 1734 IF(IIFAN .EQ. 0) THER
1735 DO 400 I=1,ILINES
, 1736 ANISO(I)=ANIS(I}
1737 TAUPH(I)=TAUP(I}
1738 WLINE(I)=VLIN{I)
1739 400 CONTINUE

1740 ELSE
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410

422

CALL FAMILY
END IF
CALL ANISOT
CALL PRECIS
CALL TEST(1)
CALL TEST(2)
CALL SOURCI
CALL TEST(3)
IF(ISURF .GT. 0) OPEN{UNIT=5,
1 FILE=’S7'//MODEL//'B.OUT!,STATUS=’UNKROWN')
IF(ISURF .EQ. ©) THEX
CALL SPECT1
CALL OUTPUT(2)
ELSE IF(ISURF .EQ. 1) THEN
CALL SPECT1
CALL OUTPUT(R)
CALL SURFBR
ELSE IF(ISURF .EQ. 2) THEN
CALL SURFBR
END IF )
IF(ISETYN .EQ. O .AND. MNOD(IPUT,2) .EG. 0) THEN
CALL OUTPUT(3)
GO TO 200
EXD IF

IF(IANGL .GT. 1) THEN
ISET=1
JSETS=IANGL
SET(1)=ANGLE
DO 410 ISET=2,JSETS
ANGLE=ANGL(JSET)
SET(JSET)=ANGLE
IF(ICASE .EQ. 2) CALL SOURC1
CALL SPECT1
CALL OUTPUT(2)
CONTINUE
IF(MOD(IPUT,2) .EQ. 0} CALL OUTPUT(3) v
ANGLE=ANGL(1) ‘
END IF '

IF(IANIS .GT. 1) THEX
ISET=2
JSETS=IANIS
SET(1)=ANIS(1)
DD 420 JSET=2,JSETS
SET(JSET)=ABIS(1+ (JSET-1)*IISET )
DO 422 I=1,ILIEES
ARISO(I)=ANIS(I+ (JSET-1)*IISET )
CONTINUE
CALL ANISOT

a1 -



420

424

430

CALL SOURC1
CALL SPECT1
CALL OUTPUT(2)
CONTINUE

IF(MOD{IPUT,2) .EQ. 0) CALL OUTPbt(3)

DO 424 I=ILINES
ANISO(I)=ARIS(I)
CONTINUE

END IF

IF(IASPH .GT. 1) THEN
IF(ILATE .EQ. ©0) THEN
ITATEM=0
ILATE=1
ELSE
ILATEM=1
END IF
ISET=3
JSETS=IASPH
SET(1)=ASPH(1)
DO 430 JSET=2,JSETS
SET(JSET)=ASPH(JSET) .
IF(ILATE .EQ. 1) THEN

BSEMI=ASEMI*(1.-ASPH(JSET))

_ ELSE
BSEMI=ASEMI/(1.-ASPE(JSET))
END IF '
CALL SOURC1
CALL SPECT1
CALL OUTPUT(2)
COKTINUE

IF(MOD(IPUT,2) .EQ. 0) CALL QUTPUT(3)

IF(ILATEM .EQ. 0) ILATE=0
IF(ILATE .EQ. 0) THEN
BSEMT=ASEMI .
ELSE IF(ILATE .EQ. i) THEF
BSEMI=ASEMI#*(1.-ASPH(1))
ELSE
BSEMI=ASEMI/(1.-ASPH(1))
END IF
END IF

IF(IILIN .GT. 1) THEN
ISET=6
JSETS=IILIN
SET(1)=REAL(ILIN(1))
DO 4560 JSET=2, JSETS
SET(JSET)=REAL(ILIN(1))
ILINES=ILIN(JSET)
CALL ANISOT



*

CALL SOURC1 -
CALL TEST(3)
CALL SPECT1
CALL OUTPUT(2)

450 CONTINUE
IF(MOD(IPUT,2) .EQ. 0) CALL DUTPUT(3)
ILINES=ILIN{1)

END IF

~- _JF(IPOWE .GT. 1) THEN .
TISET=6

JSETS=IPONE
SET{1)=PONER
bD 480 ISET=2,JSETS
POWER=POWE(JSET)
SET(JSET)=FOWER
CALL SOURC1
CALL TEST(3) \
CALL SPECT1- -
CALL OUTPUT(2)

460 CONTINUE
IF(MOD(IPUT,2) .EQ. 0) CALL OUTPUT(3)
POWER=POWE(1)

END IF

IF(IPRE .GT. 1) THEN
ISET=7
JSETS=IPRE
SET(1)=PREC
DO 470 ISET=2,JSETS
PREC=PRE(JSET)
SET(JSET)=PREC
CALL PRECIS
CALL SOURC1

CALL TEST(3)
CALL SPECT1
CALL OUTPUT(2)

470 CONTINUE
IF(MOD(IPUT,2) .EQ. 0) CALL DUTPUT(3)
PREC*PRE(1)

END IF

IF(IRGMA .GT. 1) TEEN
ISET=8
JSETS=IRGMA
SET(1)=RGMAX
DO 480 JSET=2,JSETS
RGMAX=RGMA(JSET)
SET(JSET)=RGMAX
CALL PRECIS
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1802 #
1803”7
1804
1806
1808
1857
1808
1809
1900
1901
1002
1903
1504
1008
1006
1007 *
1908
1909
1910
1911
1912
1013
1014
1915
1916
1517
1918
1919
1920
1921
1922
1923
1924 *
1023
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938 *
1539
1940

480

492

490

494

CALL SOURCH

CALL TEST(3)

IF(ISURF .EQ. O) THEN
CALL SPECT1 ) '
CALL OUTPUT(2)

ELSE IF(ISURF .EQ. 1) THEN
CALL SPECT1 ' ;
CALL OUTPUT(R) J
CALL SURFBR

ELSE IF(ISURF .EQ. 2) THEN
CALL SURFBR

END IF

CONTINUE

IF(MOD(IPUT,2) .EQ. 0) CALL OUTPUT(3)
RGMAX=RGMA(1)

EXD IF

IF(ITAUP .GT. 1) THEKN

ISET=9
JSETS=ITAUP
SET(1)=TAUP(1)
DO 490 JSET=2,JSETS ]
IF(IIFAX .EQ. 0) THENX Y,
SET{JSET)=TAUP{1+ (JSET-1)«IISET } .
DO 492 I=1,ILINES
TAUPE(I)=TAUP(I+ (JSET-1)*IISET )
CONTINUE
ELSE
SET(JSET)=TAUP(JSET)
TAUFAM{ITAUV)=TAUP(JSET)
CALL FAMILY
EXD IF : '
CALL SDURC1 -
CALL TEST(3) '
CALL SPECT1
CALL OUTPUT(2)

CONTINUE (™
Ip(noncxagt,z) .EQ. 0) CALL OUTPUT(3)

- IF(IIFAM .EQ. 0) THEN

DD 494 I=1,ILINES
TAUPH(I}=TAUP(I)
CONTINUE

ELSE
TAUFAM(ITAUV)=TAUP(1)
CALL FAMILY

END IF

END IF

IF(ITEMP .GT. 1) THENR

ISET=10
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1944 JSETS=ITENP _ . .

1943 . SET(1)=TEMPR
1043 DO 500 JSET=2,J5ETS
1044 TEMPH=TEMP( JSET) .
1948 SET(JSET)=TENPH
1046 CALL SOURC1°
1047 * CALL TEST(3)
1948 ..  CALL SPECT1
1949 CALL OUTPUT(2) ~ ) - s
1950 600 CONTINUE ) ’
1081 " IF(MOD(IPUT,2) .EQ. 0) CALL QUTPUT(3)
' 1952 - TEMPH=TENP(1)
1953 EXD IF
1054
1035 IF(IWLIN ,GT. 1) THEN
1066 - ISET=14
1967 JSETS=IWLIX
1958 IF(ILINES .EQ. 1) THEN
1089 SET(1)=WLIN(1+ {JSET-1)+IISET )
1060 . ELSE
1964 SET(1)=WLIN{2+ (JSET-1)*IISET )
1963 1 _-- -WLIN(1+ (JSET-1)#IISET )
1963 EX F
1904 “DD 540 JSET=2, JSETS , -
1965 ' IF(ILINES .EQ. 1) THEN 7 .
1966 SET(JSET)=WLIN(1+ (JSET-1)*IISET )
P 1967 ELSE
1908 SET(JSET)=WLIN{2+ (JSET-1)*IISET )
1960 1 o -WLIN(1+ (JSET-1)*IISET ) ’
1970 END IF
1871 DO 542 I=1,ILINES
1972 WLINE(I)=WLIB{I+ (JSET-1)*IISET )
1973 542 CONTINUE J ] ‘ : R
1974 CALL SOURC1 .
1975 # > CALL TEST(3)
1676 cALL sPEcT!
1877 CALL OUTPUT(2) e
1978 540 CONTINUE .
1979 IF(MOD(IPUT,2) .EQ. 0) CALL QUTPUT(3)
1980 DO 544 I=1,ILINES
1981 WLINE(I)=WLIN(I+ (JSET-1)sIISET )
1982 544 CONTINUE : . : (
1933 END IF
1084 #
1988 200 CONTINUE
1986 CLOSE(UNIT=5)
19387 RETURN
1983 END
1989 ®
(v 1950 *1234567689+123456780+123456785+123456789+123456789+123456789+¢123466789*12
-
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1992
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1999
2000
2001
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- 3004
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2008
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2016
2017
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2020
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of
REDDEN calculstes a reddening factor for a given wavelength and a given
color excess (i.e., WAVELN and EXTRED). The reddening law table comes
from Code et al. (1976). A simple binary search is done to find the
right wavelength interval of the table for the given WAVELE. A lihear
.interpolation is then done to find absorption magnitude. Then the
reddening factor is’calculated. REDDEN is called from SPECT1.
\
FUNCTION RESBEI(UAVELI,EXTRED)
PARAMETER (NWAVE=48)
DIMENSION AE(NWAVE),WAVE(NWAVE)
'DATA WAVE/1100.,1200.,1300.,1400.,1500.,
| 1800.,1700.,1800.,1800, ,2000,,
1 ) 2100,,2160,,2200.,2300.,2400.,2500.,

+ & & & & & &+ &

., 2 2800.,2700.,2800,,2900.,3000.,
' 3300, ,3600.,3700.,3900. ,4100., )

2 4300.,4500.,4700,,4900,,5100,,6300.,
* -

3 5500.,56700.,6900.,6100,,6300

3 6500, ,6700.,60800.,7100.,7300.,

3 7600.,7700,,7900.,68100.,8300.,8600./,

[ %)

1 AE/11.70,10.20, 8,19, 8,54, 8,28,
1 8.03, 7.85, 7.90, 8.38, 9.05,
1 b.60,10.10, ©.85, 8.75, 7.92, 7.30,

2 6.82, 6.41, 6.10, 5.85, 5.65,.t
: .18, 4.92, 4.70, 4.51, 4.3, -
.14, 3.94, 3.76, 3.57, 3.40, 3.24,

NN
w o
n

w

.09, 2.96, 2.80, 2.65, 2.50,

.36, 2.26, 2.16, 2.06, 1.96, .- )
< 1.87, 1.76, 1.69, 1.682, 1,65, 1.49/

* +

DATA INNN/33/ ' e

W W w
»

IF(WAVELN .LE. WAVE(1)) THEN
IXN=1"
GO TO 200
ELSE IF(WAVELN .GE. WAVE(NWAVE)) TEEN
INN=NVAVE-1
GO TO 200
END IF -

IBOT=1

INN=1NNN

ITOP=RWAVE
110 CONTINUE

ff"szlIDLD=Ill

P B
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\ L

2041 IF{WAVELN .LT. WAVE(IXX)) THEN

2042 ITOP=INN
2043 INN=(IBOT+ITOP)/2
1044 ELSE . .
7045 IBOT=INN > -
246 INN=(IBOT+ITOP)/2
2047 EXD IF
2048 IF(INN .NE. INNOLD) GO TO 110
- 2049 ‘_
- 2080 200 CONTINUE
2081 AVAVE=( (AE(INN+1)-AE(INN))/
2082 1 (WAVE(INN+1)-WAVE(INN)) )e
20563 2 (WAVELN-WAVE(INN)) + ABCINN)
054 * (
2085 'REDDEX=10+#(~AWAVE*EXTRED/2.5) o
2006 * !
2067 RETURN
2058 EXD

2059 * . . 1,
2060 "123456789*123458789*123456789#123456789*123456789*123456789*123456789*12
2061 *

2062 * SINNT calculates the Simpson’s rule weight for a given term in the

2000 * Simpson’s rule sum. SIMWT is called by SPECTI.

2004 # , . ‘

2065 , FUNCTION SIMWT(IZERQ,I,ILAST)

2006 *

2067 ~ IF(I .EQ. IZERO) THEN

2068 SIMWT=]..

2069 ELSE IF(I .LT. ILAST-1) THEN . . ‘ >
2070 SIMWT=2.+2.+REAL( MOD(I-IZERO,2) ) s
2071 ELSE IF(I .EQ. ILAST-1) THEN '
2072 IF(MOD(ILAST-IZERO,2) .EQ. O) TEEN

2073 SINWT=4.

2074 ELSE

2078 ) : SIMNT=2.56

2078 . * END IF

2077 ELSE

2078 IF(MOD(ILAST~IZERD,2) .EQ. 0) THEN

2079 SINNT=1. )

2080 ELSE

2081 SINWT=1.6

2082 EXD IF .

2083 EXND IF

2084 * -

2083 RETURE . .

2056 END

2087 * /

2083 *123456780+123458780+123456789+123456780+123456785+123456780+123456789+12
2089 *
2090 * SOAT does a bubble sort on thg/’itus in the array GROUP; ' the items *



2001
2091
2003
2004
2095
2094
2097
2008
2000
2100
3101
2102
2103
‘2104
2108,
2106
2107
2108
2109
2110
2111
2112
2113
L4
2115
2118
2117 -
2118
2119
2120
2121
21122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

18

are ordersd from smal)est to}largolt. The items in GROUP1, GROUPZ2,
GRQUP3, and IGROUP4 with the same index as an item in GROUP form a
record along with the GROUP item, Thus the GROUP1, GROUP2, GROUP3,
and IGROUP4 items are sorted along with the GROUP ivems in order to
maintain the records, SORT is called by FAMILY and OUTPUT.

. % + 2 & &

SUBROUTINE SORT{NGROUP,IGROUP,GROUP,GROUP1,GROUP2,GROUP3, IGROUP4)
DIHENSIOX GROUP(MGROUP),GROUP1(MGROUP),GROUP2(NGROUP),
1 GROUP3(NGROUP),IGROUP4{NGROUP)

DO 410 I=IGROUP,2,~-1 v
DO 420 J=1,I-1
IF(GROUP(J) .GT. GROUP(J+1)) THENW -
‘TEMP=GROUP(J+1)} ‘
GROUP(J+1)=GROUP(J) . (- h
GROUP (J)=TEMP '
TEMP=GROUP1(J+1)
- GROUP1(J+1)=GROUP1(J) -
GROUP1(J)=TEKP o . C
TEMP=GROUP2(J+1)
GROUP2(J+1)=GROUP2{J)
GROUP2(J)<TEMP
" TEMP=GROUP3(J+1)
GROUP3(J+1)=GROUP3(J) ~
GROUP3(J)=TEMP : . ‘
ITENP=IGROUP4(J+1)
IGROUP4(J+1)=IGROUP4(J)
IGROUP4(J)=ITEMP . -
END IF -
420 CONTINUE e .
410 CONTINUE
L]
RETURN ' ) -
END
. ‘ \
$123456789+123456789+123456780%1234668789+123456789+123466780+123466780+12
L
* SOURCO tentq\&&g/interpolation routine SOURC3 by using it. to recreate
* the table of source function cocefficients. This table can be output
* by subroutine OUTPUT. SOURCO is called from subroutine TEST..
»
SUBROUTINE SOURCO{ITABLE) _
COMMON/CONST/CLIGET,CTA,IFREQ, PI,PITWO,PI2,PLARC],PLANC2, RADDEG
PARAMETER (NLAM=125,NLINES=61,NSET=11)
COMMON/PARAM/ANGLE , ANISO(NLINES) ,ASEXI , BSEMI JICASE, =~

—

1 ICOEF,ILINES,POWER,PREC,
2 RGMAX ,RGMIN,TAUPB(NLINES) ,TEMPH,THERN,
3 TIME,VELPH ,WLINE(NLINES) ,ZEMAX
PARAMETER (NCOEF=5,ZPREC=.10,NRG=INT(6./ZPREC)+1, A

1 NZETA=INT(4./ZPREC)+2) . T4



3141
3143
7143
2144
3148
7146
2147
2148
2140

7180
2181
2182
1183
2184
2185
2166
2187
2188
2169
2160

" 2181

2182

2163

2164

2168

2168

2167

1188

168

21170

2171

173

173

2174

2175

2176

2177

2178

2179

2180

2181

2183

2183

2154

2185

2186

2187

1188

2189

2190

L]

*123458789+123456780+123456789+123456780% 123456780+ 123456789+1234567809+12

*

*® ® & % &

s

COMMON/SOURCE/DRGLOG,DZETA, IRG,IRG1,IZETA, IZETA1

1 RG(0:WRG),RGH,RGL,SOURC(NCOEF,0:NRG,0;: NZETA ,NLINES) ,ZETA(O: NZETA)
DIMENSION RGG(O:2¢BRG),SCOBF{NCOEF),SMENTS(3),ZET(0:4)

DATA IZET/4/,ZET/ 0.0,22.5,46.0,67.5,90.0/

ITABLE=ITABLE+1
PRINT910,ITABLE

910 FORMAT(’1’,’TEST-TABLE ’,I2,’. THE SOURCE FUNCTION °,
1 ’COEFFICIENTS FROM THE INTERPOLATION TABLE’)

920 FORMAT(/’ ',15.5x,zzag;;;2f10.7//
2 ' ?,13X,’RG’',8(13X,I2 '
930 FORMAT(’ ?,9(E15.7))

RGG(0)}=RG (0)
DO 410 I=2,2¢IRG,2 :
RGG{I}=RG(I/2) (
RGG(I-1)=.5+(RGG(I-2)+RCG(T)) ,

410 CONTINUE

JCOEF=MIN(ICDEF,8)
DO 420 I=0,IZET
PRINT920,I,ZET(I),(J,J=1,JCOEF)
IF(ZET(I) .NE. 90.) THEN
ZE=ZET(I)/RADDEG
COSPRI=BSEMI*COS({ZE)
SINPRI=ASENI*SIN(ZE)
ELSE
COSPRI=0. N
' "SINPRI=ASEMI :
END IF
DO 430 J=0,2¢IRG
ZZ=RGG(J)*COSPRI
XX=RGG(J)*SINPRI
CALL SOURC3(0.,1X,0.,2Z,SCOEF,SMENTS)
PRINT®30,RGG(J), (SCOEF(K),K=1, JCOEF)
430 CONTINUE '
420 CONTINUE

RETURK
END

SOURC1 constructs the table of source function coefficienta (ses I,
equation (2,148)) using SOURC2 as an auxiliary subroutine. Some
expressions taken from Appendix 3 section (c) of J ares usasd to
obtain the XXCORE ,value. SOURC1 is called from READIN.

SUBROUTINE.SOURC1
COMMON/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PI2,PLANCY,PLANC2 ,RADDEG

319



2101
2102
it
2104
2195
21;0
2107
2198
2109
2200
2201
2202
1203
2104
2103
2208
2207
2208
2209
2210

2211

2217
2213
2214
21215
2216
Friys
ns

© 1219

2220
nn
2222
2223
2224
2225
2226

2207

2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240

20

PARAMETER (NLAM=125,NLINES=61,MSET=11)
COKMON/PARAM/ANGLE , ANISO(NLINES) ,ASENI,BSEMI, ICASE,

1 ICOEF,ILINES,POVER,PREC,
2 RGMAX,RGMIN ,TAUPH(NLINES),TEMPE, THERN,
3 ‘TIKE,VELPH,WLINE(NLINES) ,ZEMAX

COMMON/PSEUD/IPSEUD(NLINES)

CHARACTER MODELw*2

COMMON/SET/CCALL(NLINES) ,DLAM,

1 FLUX(C:XLAM,NSET,3),IDATA,IFORM, ILAM(NSET),

1 IISET,ILATE,ILOG,ITRAKS,
2 MODEL,IPUT,ISET,JSET,JSETS,KSET(NSET),POLARCO:NLAM,NSET,3),
3 SET(NSET),WLAM(O:NLAM,NSET)

PARAMETER {NCOEF=6,ZPREC=,10,NRG=INT(6./ZPREC)+1,

1 XZETA=INT(4./ZPREC)+2)

COMMON/SOURCE/DRGLOG ,DZETA, IRG, IRG1, IZETA,IZETAL,

1 RG(O:NRG) ,RGH,RGL, SOURC(NCOEF, 0:NRG,0: NZETA,NLINES), zera(o NZETA)
COMMON/SQURC/ASQ,BSQ, THETA, ALP, ALPSQ, BET, BETSQ,

1 CON1,CON2,CON3,CON4,BPRI,GMAXSQ,GNINSQ,

2 XXLIMB,XXCORE,XXOCUL,XXCUT,QC,XTC

DIMENSION DIRECT(NCOEF),SOUR(NCOEF)

DIMENSION COS1(0:¥ZETA),SIN1(0:NZETA)

ASQ=ASENI*#2 : '
BSQ=BSEMI*»2

THETA=ANGLE/RADDEG -

ALP=COS(THETA)

ALPSQ=ALP#*2 ‘ : _—r“’“‘L
BET=SIN(THETA) : "

BETSQ=BET**2

CON1=(1./ASQ-1./BSQ)*ALP*BET
CON2=ALPSQ/ASQ+BETSQ/BSQ
CON3=BETSQ/ASQ+ALPSQ/BSQ
COR4=1./(ASQeBSQ)

IF(ANGLE .EQ. 0. .OR. ANGLE .EQ. 180) THEN
BPRI=ASEMI )
ELSE IF(AXGLE .EQ. 90.) THEX
BPRI=BSEMI
ELSE !
BPRI-ASEHI*BSEHI#SQRT(COla)
END IF
GHAXSQ=RGMAX*+2
GMINSQ=RG(0)ws2

XXLIMB=RGMAX*SQRT{CON2/CON4)

LXCORE=RG(O) «SQRT(CON2/CON4Y

XXO0CUL=-( ABS(CON1i*RG(0))/SQRT(CON4) + N
1 SQRT(GMAXSQ-GMINSR) )
2 /¢ SQRT(CON3) )



FEET I

1242 IF(( (RGMAX/RG(0))*ABS{CON1)/SQRT{CON2%CON3) .LT. 1.)
2243 1 .AXD. XTRANS .EQ., O) THEN -

2244 IXCUT=XXOCUL

2248 ELSE ) :

224¢ XXCUT=-XXLIMB 1

2247 EXD IF

2248 QC=(VELPH/XXCORE)/CLIGHT .

2249 XTC=TIMESVELPR/XXCORE .

7260 A=RG(0)*ASENI

2251 BaRG(0)*BSEMI

2152 * . PRINT*, 'From SOURC! ’,A,B,QC,XXCORE,XXCUT,XXLIMB,XXOCUL

2283 *

2254 SIN1(0)=0,

2285 €0S1(0)=BSENI

2150 IF(ILATE .EQ. 0) THEN . . .
2257 IZETAL=0 .

2288 ELSE ' \_/
2250 IZETAL=IZETA e

2100 DO 410 I=1,IZETA1

2361 SIN1(I)=ASEMI*SIN(ZETA(I))

2762 COS1{I)=BSEMI*COS{ZETA(I))

2163 40— CGNTINUE .
2264 SIN1(IZETA)=ASENI ‘

2265 . COS1(IZETA)=0.

22660 END IF

2267 * ' . )

2268 DD 415 ILINE=1,ILINES i *
2165 * ' : ‘
1370 DD 420 I=0,IRG

2271 * ,

2272 IF(THERX .EQ. 0.) THER

2273 EPSILi=1.

1174 e . G1=0,

2175 G2=0.

. 2276 ELSE '

1177 . EPSILi=1.-THERM

2278 IF(ICASE .LT. 2) TEEX

2179 Gil=.56

2280 G2=.b6

2281 ELSE

2282 CALL PLANCF(WLIXE(ILINE),0.,Gl1) .

2782 G1=G1+THERM

2284 G2=G1

2285 END IF

3786 END IF g

2287 *

1238 IF(IPSEUD{ILINE} .EQ. 0) CALL BETAF1{ILINE,RG(I),BETA,BETA1l)
1289 * .

2290 DO 430 J=0,IZETAL

LY

-



2338
2339
2340

322
e

C=RG(I)*SIN1{J)
D=RG(I)*COS1(])

CALL SOURC2(A,B,C,D,BETA,BETA1,EPSIL1,G1,G2,ILINE,
+ ACC126,DIRECT,SOUR)

DO 440 K=1,ICOEF .
-SOURC{X,X,J,ILINE)=SOUR(K)
440 CONTINUE

430 CONTINUEB
420 CONTINUE
415 CONTINUE

IF(IPUT .LE. 2) CALL OUTPUT(1)
RETURN
END

*

*123458789*123456789*123456789*123456789*123453789*123458789‘123458789‘12

SOURC2 constructs the source function coefficients using the GRALI
routines to obtain the direct coefficients. The explicit expressions
Tor the source function coefficients come from equation (2.146) of J,
SOURC2 is called from SOURC1.

+ ® # # = =

SUBROUTINE SOURC2(A,B,C,D,BETA,BETA1,EPSIL1,G1,G2,ILINE,
+ ACC125,DIRECT,SOUR)
PARAMETER (NLAM=125,NLINES=81,XSET=11)
COMMON/ANISOT/AN1(KLINES),AN2(NLINES) ,fXDIR(14,NLINES),
* 1 ANLT(NLIBES),ANS(9,NLINES)

COMMON/PSEUD/IPSEUD(NLINES) ) =
DIMEESION DIRECT(5),SQUR(5) - i h
DIMENSION SA(3),SAMAT(3,4)

CALL GRAL1(ILINE,4,B,C,D,DIRECT,PHIC)
IF(PEIC .LE. 0) THEX
DO 410 I=1,ICOEF
DIRECT(I)=0. .
SOUR(1)=0. _ ‘
410 CORTINUE ' .
GO TO 200
END IF
IF(IPSEUD(ILINE) .EQ. 0) THEN .
COEF1=EPSIL1*BETA/(1.-EPSIL1#BETA1#AN17(ILINE))
COEF2=1./(1-EPSIL1sBETA1)
COEF3=COEF2+COEF1
COEF4=EPSIL1#BETA1

REST=DIRECT(2)*(1-AN1T({ILINE))/3.



2341
2343
2343
2344
2348
2346
2347
-2348
2349
2350
2351
2352

2353+

2354
2355
2366
2367
23568
2359
2360
2361
2362
2363
23G4
1363
2366
2367
2368

" 3360

2370

2371

2372
2373
2374
2375
1376
2377
2378
1379

* & F &

The
expr

1

~AN17(ILINE)+( DIRECT(1)+DIRECT(B) )
SOUR(1)=COEF3+(DIRECT(1) + .5¢COEF4+(DIRECT(2)+REST )) +COEF2+G1
SOUR(2)=COEF1+DIRECT(2)
SOUR{3)=COEF1¢DIRECT(3)
SDUR(4)=COEF1+DIRECT(4)
SOUR(6)=COEF3#(DIRECT(5) + ,5*COEF4#+(-DIRECT(2)+REST ))+CDEF2*G2

ELSE

SOUR(1)=EPSIL1i*DIRECT(1)+G1
SOUR(2)=EPSIL1#DIRECT(2)
SOUR{3)*EPSIL1*DIRECT(3)
SOUR(4)=EPSIL1sDIRECT(4)
SOUR(5)=EPSIL1*DIRECT(5)+G2
END IF ' '

following program particle was used for testing the explicit
essions for the source function coefficients.

IF(1 .NE. 2) GO TD 200
SAMAT(1,1)=EPSIL1¢BETA1+ANS(1,ILINE)-1.
SAMAT(1,2)=EPSIL1#BETA1*ANS(2,ILINE)
SAMAT(1,3)=EPSIL1+BETA1+ANS(3, ILINE)
SANAT(1,4)=—EPSIL1+BETA*DIRECT(1)-G1

SAMAT(2,1)=EPSIL1+BETA1+ARS(4,ILIXE)
SAMAT(2,2)=EPSIL1+BETA1%ANS(5,ILINE)-1.
SAMAT(2,3)=EPSIL1*BETA1*ANS(6,ILINE)
SAMAT(2,4)=-EPSIL1+BETA*DIRECT(2)

.

SAHAT(S,1)=EPSIL1*BETAI*AIS(7.ILEIE) ' e
SAMAT(3,2)=EPSIL1+BETA1+ANS(8,ILINE)
SAMAT(3,3)=EPSIL1+BETA1+ANS(9,ILINE}-1, a oy

SAMAT(3,4)=-EPSIL1*BETA*DIRECT{E)-G2

CALL LIN3(SAMAT,ACC125,54) N
IF(SOUR(1) .¥E. 0.) THEN )
CHECK1=ABS( (SA(1)-SOUR(1})/SOUR(1) )
IF(CBECX1 .GT. 1.E-3) THEN
PRINT+,’ CHECKi IS TOO LARGE ’,CHECK1

END IF
END IF ;Z
IF(SOUR(2) (NE. 0.) THEN
CHECK2=ABS( (SA(2)-SOUR(2))/SOUR(2) )
IF(CHECK2 .GT. 1.E-3 ,AND.
ABS(SOUR(2)/S0UR(1)) .GT. 1.E-3) THEN
PRINT*,* CHECK2 IS TOO LARGE *,CHECK2
END IF
END IF
IF{SOUR(5) .NE. 0.) THEN

323
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32303

T 2383

2304
2306
2306
2397
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2400
240)
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2408
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1o -

2411
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2413

S 2414
2413
2416
2417
2418
3419
2420
2421
2422
2423
2424
2420
2426
2427
2428
2429
2430
2431
2432
2433
2434
2433
2436
2437
2438
2439
2440

J24

CHECKB=ABS( (SA(3)-SQUR(E))/SOUR(E) )
IF(CHECKG .GT. 1.E-3) THEN
PRINT#,' CHECKS IS TOO LARGE ! ,CHECKG
END IF
END IF

200 CONTINUE
RETURN
END
.
*123456780+123456709%123456700+123458789+123456789+123466780+12345678p#12

SOURC3 evaluates the source function coefficients from the table
constructed by SOURC1, and calculates the source function Stokes
parameter fields. The coefficients are determined by quadratic
interpolation from the 2-dimensional table. SOURC3 is called from
GRAL3, SOURCO, SPECTi1, and SURFBR.

- % % % & & ¥

SUBROUTINE SOURC3(ILINE,IWHERE,X,Y,Z,XMU,PHI,SCOEF,SMEXTS)
COMMON/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PI2,PLANC1,PLANC2, RADDEG
PARAMETER (WLAM=125,NLINES=61,NSET=11)
COMMON/PARAM/ANGLE , ANISO(BLINES),ASEKI,BSENI,ICASE,

1 ICOEF,ILINES,POWER,PREC,
2 RGKAX ,RGMIK, TAUPH(NLINES) ,TEMPH, THERN,
3 TIME,VELPH,WLINE(NLINES),ZEMAX

COMMOK/SET/CCALL{KLIKES) ,DLAN,

1 FLUX{O:XLAM,NSET,3),IDATA,IFORK, ILAN(NSET),

1 IISET,ILATE,ILDG,ITRAKS,

2 MODEL,IPUT,ISET,JSET,JSETS,KSET(NSET),POLAR(O:NLAM,NSET,3),
3 SET({NSET) ,WLAM{O:NLAM,KKSET)

PARAMETER (NCOEF=5,ZPREC=.10,MRG=INT(6./ZPREC)+1,

1 NZETA=IKT(4./ZPREC)+2)

COMMON/SOURCE/DRGLOG,DZETA, IRG,IRG1,IZETA,IZETAL,

1 RG(0:¥RG),RGH,RGL,SOURC(NCOEF,0:NRG,0:¥ZETA ,NLIKES),ZETA(O;KZETA)
COMMON/SOURC/ASQ,BSQ, THETA, ALP, ALPSQ, BET,BETSQ,

1 CON1,CON2,CON3,CON4,BPRI,GMAXSQ,GMINSQ,

2 XXLIMB,XXCORE,XXOCUL,XXCUT,QC,XTC !
DIMENSION SMEXTS(3),SCOEF(NCOEF),SZETA(0:2)

IF(ILATE .NE. 0) GO TO 150

RXYZ=SQRT(X##2+Ys#2+Z%e2)
IF(IVHERE .EQ. 1) THEX
-TEETAZ=ACOS(MIN(1. ,MAX{-1.,XNU) ) )
TEETAR=ACOS(MIN(1. ,MAX{~-1.,Z/RXYZ) ) )
XMUP=COS(THETAZ+THETAR)
ELSE
DOTPRO=X+SQRT(MAX(O., 1.-IMU»#2))+Z#INU
) XMUP=DOTPRO/RXYZ
END IF



41
412
440
2444
2445

2446 *

447
2448
2440
2480
2451
2452
2463
2464
2455
7450 *
2467
2458
2459
2460
2461
24632
2462
2464
2465
2466
2467
2468
2469 *
2470
471
2472 *
2473
2474
2475
2476
2477 *
2473
2479
2480
2481
2482
2483 =
3484
2485 *
2486
2487
2488
2443
3490 *

401

402

403

XYGSQa(Xew2+Yes2)/ASQ
ZG=ABS(Z)/BSENI
RGGG=SQRT(XYGSQ+ZGw*2)
RGLOG=LOG10(RGGG/RGMIN)

IF(RGGG .LT. RGL .OR. RGGG .GT. RGH) THEN
DO 401 I=1,ICOEF
SCOEF(I)=0.
CONTINUE
DO 402 I=1,3
SMENTS(I)=0.
CONTINUE .
GO TO 200

END IF

JRG1ZMAX(1,MIN(IRG1, INT(RGLOG/DRGLOG) ))
JRGO=JRG1-1 .

JRG2=JRG1+1

DELR=RGGG-RG{JRGO)

DELRSQ=DELR##*2

DEL1=RG(JRG1)-RG{JRGO)

DEL1SQ=DEL1#%#2

DEL2=RG( JRG2)-RG (JRGO) L
DEL25Q=DEL2%#2 '
DELA=DEL1+DEL2 .
DELB=DELA+{DEL1-DEL2)

DELC=~(DEL1+DEL2)/DELA

DO 403 I=1,ICOEF
IF{I .EQ. 3 .OR. I .EQ. 4) GO TO 403

SZETA(0)=SOURC(I, JRGO,0,ILINE)
SZETA(1)=SOURC(I,JRG1,0,ILINE) :
SZETA(2)=SOURC(I, JRG2,0, ILINE) !

A1=SZETA(0)#DELC -

1 (SZETA(1)+DEL2SQ-SZETA{2)+DEL1SQ)/DELB
42=SZETA(0)/DELA +

1 (SZETA(1)#DEL2 -SZETA(2)+DEL1 )/DELB ’
SCOEF(I)=A2+DELRSQ + A1+DELR + SZETA(0Q)

CONTINUE

SMEXTS(1)=SCOEF(1) + SCOEF(2)*XMUP##2 ,
SMENTS(2)=SCOEF(5)

SMENTS(3)=0.

G0 TO 200 '



2401 ®kkb

2401 *
2193 *

2404 *4%

405 *
2406 *
2497
2408 *
2409
2800
501
602
2803
804
2508
2506
507
2508
2509
2510
511
2512

2515
2516
2817
2618 *
2519
2620
2521
2522
2523 *
2524
2525
2626
2827
2525 #
2520
530"
2531
2532
2533
2534
2535
2836
2537
2538 *
2539
2540

150

410

420

Above the spherically symmetric Stokes source fislds are

esvaluated.

Below the the full axisymmetric Stokes source fields are

evaluated.
COXTINUE

IF(IWHERE .EQ. 1) THEN
C0S1=C0S(PRT)
C0S2=C0S(2.#PHI)
SIN1=SIN(PHI)
SIN2=SIN(2.*PHI)

ELSE
RXY=SQRT(X**2+Y#e2)
IF(RXY .NE. 0.) THEN
C0S1=X/RXY
C0S2=2,#COS14#2-1,
SIN1=-Y/RXY
SIN2=2,+SIN1sC0S1
ELSE '
C051=0,
€052=0. \\\
SIN1=0, ‘
SIN2=0,
EXD IF
END IF

’

XKUP=XNU

IF(Z .LT. 0.) XNUP=-XIMUP
XNUPSQ=XMUP*»¢2 s
XMUP1=SQRT(MAX(0., 1.-XMUPSQ ))

XYGSQ=(Xe*2+Y++2)/ASQ
ZG=ABS(Z)/BSEMT
RGGG=SQRT(XYGSQ+ZGee2)
RGLOG=LOG10(RGGG/RGMIN)

IF(RGGG .LT. RGL .OR. RGGG .GT. RGH) THEN
DO 410 I=1,ICOEF i
SCOEF(I)=0,

CONTINUE

DO 420 I=1,3

SMENTS(I)=0.

CONTINUE

G0 TO 200
EWD IF

JRG1=MAX(1,MIN(IRG1, INT(RGLOG/DRGLOG) N
JRGO=JRG1-1

3%?



2841
2842
2643
2544
254156
2546
847
2848
2649
2560
551 *
1552
2853
2564
2358
i1l
2567
2868
2359
2800
28681

2562

1563
2564
IBGS
2866
2567
2568
2560
2570 *
71 %
572 %
2873 ]
1874
78
2576
asI7
25878
2575
2580
23881
2582
1583
2584 ¥
2583
1588
2887
2588
2389

2550 *

JRG2=JRG1+]
DELR=RGGG-RG(JRGO) ,
DELRSQ=DELR¢+2
DEL1#RG(JRG:)~RG(JRGO)
DEL1SQsDEL1%#2
DEL2=RG(JRG2)-RG(JRGO)
DEL25Q=DEL2v#+2
DELA=DEL1+*DEL2 .
DELB=DELA (DEL1-DEL?)
DELC=-(DEL1+DEL2) /DELA

-

IF(Z .ME. 0.) THEN
ZETAGG=ATAN{SQRT(XYGSQ)/ZG)
JZETA1=MAX(1,MIN(IZETA1, INT(ZETAGG/DZETA)

ELSE
ZETAGG=PI2
JZETA1=IZETA1 \

END 1F

JZETAO=JZETA1-1

JZETA2=JZETA1+1 -

DIFZ=ZETAGG-ZETA(JZETAQ)

DIFZSQ=DIFZ##2

DIF1=ZETA(JZETA1)-ZETA(JZETAO)

DIF1SQ=DIF1e#2 )

DIF2=ZETA(JZETA2)-ZETA(JZETAQ)

DIF2SQ=DIF2++2

DIFA=DIF1#DIF2

DIFB=DIFA*(DIF1-DIF2)

DIFC=-(DIF1+DIF2)/DIFA

DO 430 I=1,ICOEF

Do 440 J=0,2
A1=SOURC(I, JRGO+J, JZETAO, ILINE) #DIFC ~

1 (SOURC(I,JRGO+J,JZETA1,ILINE)#DIF2SQ -

2 SOURC(I,JRGO+J,JZETA2,ILINE)#DIF15Q)/DIFB
A2=SOURC(I, JRGO+J, JZETAO,ILINE)/DIFA +

1 (SOURC(I,JRGO+J,JZETA1,ILINE)#DIF2 -

2 SOURC(I,JRGO+J,JZETA2,ILIKE)#DIF1)/DIFB

327

)

o

SZETA(J)=A2+DIFZSQ+A1+DIFZ+SOURC{I, JRGO+], JZETAO, ILIRE)

440 CONTINUE :

A1=SZETA(O)*DELC -

1 (SZETA{1)+DEL2SQ-SZETA{2)*DEL15Q)/DELB
A2=SZETA(O)/DELA +

1 (SZETA(1)*DEL2 -SZETA(2)+DEL1 )/DELB
SCOEF(1)=A2¢DELRSQ + A1*DELR + SZET4(0)



2591
892
603
2504
695
25896
697

J28

430 CONTINUE ;

SMENTS(1)=SCOEF(1) + SCOEF(2)eXMUPSQ +

1 SCOEF{3)*XMUP*XNUP1+COS1 +

2 SCOEF(4)*XMUPSQ#C0S52

SMENTS(2)=SCOEF(5) - SCOEF(4)eC032
SMENTS(3)=SCOEF{3)«XHUP1¢SIN1+42, #SCOEF(4)*XNUP*SIN2

2598 * PRIIT-.S‘bEF(i).SCDEF(Q),SCOEF(S).SCOEF(i),SCOEF(S)
2600 * PRINT»,SHENTS(1) ,SMENTS(2),SMENTS(3)

2600 * .

2601 200 CONTINUE

2602 RETURN

2003 EEKD

1601
26056
2600

7607

2008
2609
2610
2611
2612
2613
26814
26135
2616
2617
2618
2619
2020
2621
2622
2623
2624
2625
2626
2627
2628
2829
2630
2631
2632
2633
2634
2635
2636
2837
2638
2639
2640

.
+123456789+123466789+123456760+123456780+12345067809+123456780+%123466789+12

SPECT1 calculates the flux and polarization spsctra., The expression
used to find the forma) Sobolev solution for the amergent specific
intensity im given by equation (2.180) of J. The specific intensity

is integrated over the projection of atmosphere using Simpson’'s rule.
SPECT1 also normalizes and reddens the flux spectra if these operations
are specified by the INCRM and IRED parametsrs of PAR1I. McCall's
prescription (1964, 1985) for the net polarization is evaluated for the
purpose of comparison to the Scbolev-H polarizations. Some expressions
for the extrema and projections of the atmosphere and photosphers are
faken from Appendix 3 section (c) of J. SPECT1 is called from READIN.

* # #* ¥ & F 4 F * R F B

SUBROUTINE SPECT1
COMMOX/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PI2,PLANCY,PLANC2,RADDEG
COMHON/NORM/INORM,VKORM, IFRAG, YMAX , ZHAX
PARAMETER (NLAM=125,NLINES=81,NSET=11)

COMMOX/PARAM/ANGLE , ANISO(NLINES) ,ASEMI,BSEMI,ICASE,

1 ICOEF, ILINES, POVER,PREC,

2 RGMAX,RGMIN, TAUPH(NLINES) ,TENPH, THERN,

3 TIME,VELPH,WLINE(NLINES) , ZEMAX
CHARACTER MODEL#2
COMMOK/RED/ERED , IRED
COMMOX/SET/CCALL{NLINES) ,DLAN, )

1 FLUX(O:NLAM, NSET,3),IDATA,IFORM, ILAM(NSET),

1 IISET,ILATE,ILOG,ITRANS,

2 MODEL,IPUT,ISET,JSET,JSETS,KSET(NSET),POLAR(O:NLAM WSET,3),

3 SET(XSET),WLAN(O:NLAM,¥SET)

PARAMETER (NCOEF=5,ZPREC=.10,NRG=INT(8./ZPREC)+1,

1 NZETA=INT(4./ZPREC)+2)
COMMOX/SOURCE/DRGLOG,DZETA, IRG, IRG1, IZETA, IZETAL,

-1 RG(0:WRG)},RGH,RGL,SOURC(NCOEF,0:NRG,0:NZETA,NLINES),ZETA(0:NZETA)
COMMON/SOURC/ASQ,BSQ, THETA, ALP,ALPSQ, BET,BETSQ,

1 CON1,CON2,CON3,CON4,BPRI,GMAXSQ,GHINSG,

2 IILIMB,XXCORE,XXOCUL,XXCUT,QC,XTC
PARAMETER (NGG=INT(12./ZPREC)+4,NZE=INT(4./ZPREC)+2)



641
1042
FLAK]
2844
2043
2048
1047
2044
2049
2050
2051
2052
2683
2684
2650
2056
2087
2088
2659
2660
2661
2662
2663
2G64
2665
2666
2667
2608
1669
2670
1671

872
2672

2675
2676
2877
2678
479
2650
2651
7652
26823
2684
2633
7686
7687
2688
2689
2690

DIMENSION GG(0:NGG),SMENTE(3),SCOEF(NCOEF),
1 YY(0:¥GG,0:NZE),ZZ(0:MGG,0:NZE)

DATA SMENTS/3#0./ &

XSURF(Y,Z,65Q)=( CON1sZ + ,
+ SQRT(MAX(Q., -CON4sZ#e2+CON3*{GSQ-Y#«2/ASQ) )) )/CON3
XSURFN(Y,Z,G5Q)=( CON1sZ -

+ SQRT(MAX(O., -CON4+Ze#2+CON3#(GSQ-Y*+2/ASQ) )) )/CON3

IF(ISET .BQ. 1 .AND. JSET .GT. 1 ,AND, ICASE .NE.|2) THEX
THETA=ANGLE/RADDEG ] co
ALP=COS (TBETA) ’
ALPSQaALP#*2
BET=SIN(THETA) -
BETSQ=BET*#2

CON1={1./ASQ-1./BSQ)*ALP*BET
CON2=ALPSQ/ASQ+BETSQ/BSQ N
CON3=BETSQ/ASQ+ALPSQ/BSQ
CON4=1,/{ASQ*BSQ)

IF(ANGLE .EQ. 0. :gh. ANGLE .EQ. 180) THEN
BPRI=ASEMI )
ELSE IF(ARGLE .EQ. 90.) THEX
BPRI=BSENI
ELSE
BPRI=ASEMI*BSEMI*SQRT(CON3)
END IF
GHMAXSQ=RGMAX**2

GMINSQ=RG(0)e»2 N—

XXLIMB=RGMAX*SQRT(CON2/CON4)

XXCORE=RG(0)*SQRT{CON2/CON4)

XX0CUL=-( ABS(CON1#RG(0))/SQRT{CON4) +
1 SQRT (GMAXSQ-GMINSQ) )

2 /C SQRT(cON3) )

" IF((  (RGMAX/RG(0))*ABS(CON1)/SQRT(CON2+CON3) .LT. 1.)
1 .AND. ITRANS .EQ. 0) THEX
XXCUT=XX0CUL
ELSE
XXCUT=-XXLIKB
END IF

$QC=(VELPR/XXCORE) /CLIGHT
XTC=TIME*VELPH/XXCORE =~
END IF

IF(IFRAG .NE. 0) THER
YMAXX=RG(O)*ASEXI*YMAX
ZMAXX=RG(Q)*BPRI*ZMAX

329



330

2091 END IF

2092 *

2000 * BLAM=WLINE(1)/(1.+QC*XXLIMB)

2604 * TLAM=WLINE(ILIXES)/(1.+QCeXXCUT)

3695 BLAMSWLINE(1)*(1.-GGeXXLINB)

2600 . TLAN=WLINE(ILINES)#*(1,-QCsXXCUT)

2007 PRINT* ,BLAX,TLAM,XXCORE, XXCORE*QC+CLIGHT

2608 * TLAM=WLINE(ILI¥ES)/(1.-QC*XXLIMB)

2669 * IF(PREC .GT. .1) THEN

2700 * XINCR=4p,

2701 * ELSE

2703 * XINCR=5D.

1701 EXD IF

2704 * DLAM=WLINE(1)s( (VELPR/CLIGHT)/(1.4VELPH/CLIGHT) )+SQRT(PREC/9.)
2705 DLAM=WLINE(1)+( (VELPE/CLIGHT)/(1.+VELPH/CLIGHT) )*(PREC/3.)

2708 IF(PREC .LE. 1125) THEX ,

2707 XINCR=124,

2708 DLAM=(TLAM-BLAM) /IINCR

2709 ELSE IF(PREC .LE. .25) THEX

2710 XINCR=80. ~

711 DLAM={TLAM-BLAM)/XINCR

2713 ELSE IF(PREC .LE. .5) THEN

2713 XINCR=T4,

2714 DLAN=(TLAM-BLAK)/XINCR : ..
2715 END IF . o
2716 * XINCR=09 ~ .

T . DLAMMN=(TLAK-BLAM)/XINCR

2718 * DLAM=NAX (DLAM,DLAMMNN)

2719 IBLAK=INT((WLINE(1)-BLAN)/DLAX)

2720 ITLAM=INT((TLAM-WLINE(1))/DLAN)+1

271 ILAM(JSET)=IBLAM+ITLAM+1 )
2722 WLAM(IBLAM+1,JSET)=WLIRE(1) ..
2723 DO 410 I=IBLAM,0,-1

2724 WLAM(I, JSET)=WLAM{I+1, JSET)-DLAM

2725 410 CONTINUE

2726 DD 420 I=IBLAK+2,ILAM(JSET)

727 WLAM(I,JSET)=WLAM{I~-1,JSET)+DLAN A

2728 \ 420 CONTINUE

2729 *

2730 IF(ILATE .EQ. 0) THEX

2731 IF(ABS(ZEMAX-PI) .LT. .0001) THEN -

L B \ DZE3=PI S~ '

2733 ELSE

2734 ‘ DZE3=ZEMAX

2738 END IF

3738 IZEL=0

7737 SLICE=1. .
2738 ". ELSE . ¢

2739’ ' IF( (ANGLE .EQ. 90. .OR. “ANGLE .EQ. 0.) .AKD.

2740 1 ABS(ZEMAX-PI) .LT. .0001 JTHEX
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2741 SLICE=2,
1742 ) ELSE
3743 SLICE={.
2744 END IF
1748 . ZESLICE=ZEMAX/SLICE
2746 DZE={ZEMAX/4.)PREC
2747 I2E=YNT(ZESLICE/DZE)
2748 IF(REAL(IZE) .LT. ZESLICE/DZE) IZE=YZRB+}
2749 IF(MOD(1ZE,2) .NE. 0) IZE=IZE+1
1780 IZEL=IZE
3761, DZE=ZESLICE/REAL(IZE)
2752 ) DZE3=DZE/3.
3783 END IF
2784 *
- 9788 4 DGCORE=(RG(0)/4.)*PREC

272 DGCOR=. 2*PREC .
179 ¢ .2 seens to vork pretty well; no other justification has been thought of.
3758 IGCORE=INT(RG{0)/DGCOR) ‘

2780 IF(REAL(IGCORE) .LT. RG(0)/DGCOR) IGCORE=IGCORE+1

1760 IF(MOD(IGCORE,2) .NE. 0) IGCORE=IGCORE+1

761 DGCORE=RG (0) /REAL(IGCORE)

" 2762 IGLIMB=MIN(RGG-2-IGCORE, INT( (RGMAX-RG(0))/DGCOR ) )

2763 IF(REAL(IGLINB} .LP. (RGMAX-RG(0))/DGCOR) IGLIMB= IGLIuan

4764 IF(MOD(IGLIMB,2) .NE. 0) IGLIMB=IGLIMB+1i [
2768 DGLINB={RGMAX-RG{0))/REAL{IGLIMB)

2706 IGTOT=IGCORE+IGLINB . 3
2767 * "

1763 * 6G(0)=0. .

2769 DD 430 I=1,IGTOT

2170 IF(I .LT. IGCORE) THEN

2771 GG(I)=GG(I-1)+DGCORE

2772 ELSE IF{I .EQ. IGCORE) THEN

2773 GG(I)=RG(0) )

2774 ELSE IF(I .LT. IGTOT) TEEX

7775 GG(I)=GG(I-1)+DGLIMB

776 ELSE

2777 GG(I)=RGMAX -

1778 END IF

2779 * PRINT*,I,GG(I) .

2750 430 CONTINUE , \
2781 * ‘ - .

37182 ZE=0. . -

2783 DD 440 I=0,IZEL

2784 YYCOEF=ASEMI*SIN{ZE) ,

2755 ZZCOEF=BPRICOS(ZE) .

2786 IF(I .LT. IZE) THEX .
787 ZE=ZE+DZE *
1788 ELSE

3789 ZE=ZESLICE

2790 END IF



*

%

DO 450 J=0,IGTOT
YY({J,I)=YYCOEF*GG({J)
2Z(J,I)=2ZCOEF*GG(J)
PRINT#+,’ ' ™ J,GG(J),22COEF,YY(J,1),22(3,1I)
450 CONTINUE
440 CONTINUE

DO 460 I=0,IGTOT

GG(I)=GC(I)*ASEMI*BPRI«SINNT(0,X,IGTOT)/3.
460 CONTINUE

GG(IGCORE)=GG(IGCORE)/2.

IF(INORM ,XE, O) THEX
IF(WNORM .LY. WLAN(O,JSET) .OR. ~

1 WNORM .GT. WLAM(ILAM(J3ET),JSET) ) THEN
. WNORM=,5¢{WLAK(O,JSET)+WLAN(ILAM(JSET),JSET) )
END IF
END IF
MLINE=1 )

DO 470 I=0,ILAM(JSET)
XX=(VLIME(ILINE)/VWLAM(I,JSET) - 1.)/QC
DXX=DLAM*(WLINE(ILINE)/WLAM(I,JSET)++2)/QC
.DDXX=0,*DXX

FCONT=0.

FLZE=0.

FRZE=0.

UZE=0.,

FLZEC=0,

FLZEL=0.

FRZEC=0. _

FRZEL=0.- :

UZEC=0. o

UZEL=0. -

DD 480 J=0,IZEL ’

DO 480 J=0,0 .
WEZE=SINWT(0,J,IZE)
FCONTGG=0. ‘
FLGG=0, T«
FRGG=0.

UGG=0,

DO 480 K=0,IGCORE
DO 490 K=0,-1
IXC=XSURF(YY(K,J),2Z(X, ) GHIISQ) ‘\k
XICHN=ISURFE(YY(K,J),2Z(K,J},GHINSQ)
XXS=XSURF(YY(K,J),ZZ(K,J),GMAXSQ)
IXSH=XSURFY(YY(K,J),2Z(K,]),GMAXSQ)
IF(ICASE .EQ. 1) THEN

Fl2=.5

'!"

[ ]

.
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1l ELSE
2844 CALL PLANCF(WLAM(I,JSET) .-QC*X_KC,FIQ)

2843 * ¢ The -QC#XXC is right hers, I think, because the distant cbserver
2844 * .sees B blueshifted part of the spectrum (i.e., from a redder part
2845 * of the continuum thap WLAM, but blueshifted to WLAM). This is
2840 explanation is just turned around if XXC<0. '

2647 EWD IF ' :

28448 * '

2849 FLG=0,

2850 FRG=0.

2881 * UG=0.

2852 . EXPTAU=1.

2653 EXPPHO=1. i

2854 DO 492 ILINESILINES,1,~-1 .

2855 * XX=(VLINE(ILINE)/VWLAK(I,JSET) - 1.)/0QC

2856 Xx=(1.-WLAM(I,JSET)/WLINE{ILINE))/QC

2887 IF(XX .LT. XXC ,AND. ITRANS .EQ. 0) GO TO 200

2888 IF(XX .LT. XXs®) GD TO 200

26859 IF( (XX .LT. XXS .AND. XX .GT. XXC)

2860 1 .0R. (XX .LT- XXCN- .AND. XX .GT. XXSN) ) THEN

2661 IPR=XX*BET-ZZ(K,J)*ALP . .

2862 ZPRaXX+ALP+ZZ(K, ) #BET o

2863 RGGG=SQRT( (XPR/ASEMI)**2+YY(K,J)*#2/ASQ+(ZPR/BSEMI ) *#2)

2864 CALL ETAUF{ILINE, RGGG,ETAU,ETAULY

2865 CALL SOURC3(ILINE,2,XPR,YY(K,J),ZPR,AL?,0,5COEF,SMENTS)

2866 FLG=FLG+SMENTS(1)*ETAU1+EXPTAU

2867 FRG=FRG+SMENTS(2)«ETAU1*EXPTAU .

2868 UG=UG+SMENTS(3) ETAUILEXPTAY "

2869 EXPTAUSEXPTAUSETAU ' »

2670 IF(XX .GT. XXC ) EXPPHO=EIPTAY , - .

871, END IF
2872 492 CONTINUE
2873 - 200 CONTINUE

2874 FLG=FLG+FI2¢EXPPHO \

2875, FRG=FRG+FI2*EXPPHD '

2876 * .

2877 FLGG=FLGG+GG (K)*FLG

2878 FRGG=FRGG+GG (K)*FRG '

1879 UGG =UGG +GG(K)«UG . . {

2850 FCONTGG=FCONTGG+GG(K) 2. +FI2

1851 *

2882 490 CONTINUE

2553 *

2854 . FLGGL=0. ’ ) ' +
2555 FRGGL=0. v

2886 UGGL=0, .

85T # "
2855 DO 600 K=IGCORE,IGTOT

2889 IF(IFRAG .NE. O) THEN

2850 IF(ABS(YY(X,J)) .GE. YMAXX) GO TO 500



2891
2892
2803
2604
28956
2596

2807

2808

2888 °

2600
2601
2002
2003
2004
2005
2906
2007
2908
2909
2910
2811
2012
2913
2914
915
2916
2917
2913
2919
2920
2921
2522
2923
2924
2925
2926
2927
2928
" 2929
2930
2931
2932
2933
2934
2935
2936
2937
12938
2939
2940

IF(ABS(ZZ(K,J)) .GE. ZMAXX) GO TO 500
END IF
XXS=XSURF(YY(K,J),2Z(K,J),GMAXSQ)
XXSN=XSURFN(YY(K,J),2Z(K,J),GMAXSQ)
FLG=0,
FRG=0.

- UG=0.

494
210

600

480

EXPTAU=1,

DO 494 ILINE=ILINES,1,-1

XX=(WLINE(ILINE)/WLAM(I, JSET) - 1,)/QC

XX=(1.-WLAM({I,JSET)/WLINE(ILINE))/QC

IF(XX .LT. XXS .AND. XX .GT. XXSN) THEN
XPR=XX#BET-ZZ(K,J)*ALP
ZPR=XXeALP+2Z(K,J)*BET
RGGG=SQRT((XPR/ASENMI) *#2+YY(K, J)¢¢2/ASQ+(ZPR/BSEHI)#¢2)
CALL ETAUF(ILIKE,RGGG,ETAU,ETAU1)
CALL SOURC3(ILINE,2,XPR,YY{K,J1),ZPR,ALP 0, SCOEF,SHENTS)
FLG=FLG+SMENTS(1)*ETAU1+EXPTAU
FRG=FRG+SMEETS(2)+ETAULSEXPTAU
UG=UG+SMENTS(3)*ETAUL{+EXPTAU

-~ EXPTAU=EXPTAUSETAU )

ELSE IF(XX .LE. XXSN) THEN -

GO TO 210

END IF .

CONTINUE

CONTINUE )

FLGGL=FLGGL+GG(K)*FLG

FRGGL=FRGGL+GG(K)*FRG

UGGL =UGGL +GG(K)*UG

CONTINUE .

FCORT=FCONT+WEZE#*DGCORE*FCOKTGG
FLZE=FLZE+WEZE#(DGCORE+FLGG+DGLINB*FLGGL)
FRZE=FRZE+VEZE+ (DGCORE*FRGG+DGLIMB#FRGGL)
UZE=UZE+WEZE+ (DGCORE*UGG+DGLIMB#UGGL)
FLZEC=FLZEC+VEZE*DGCORE#FLGG
FLZEL=FLZEL+WEZE*DOLINB*FLGGL
FRZEC=FRZEC+WEZE+DGCORE*FRGG
FRZEL=FRZEL+VEZE*DGLINB*FRGGL

UZEC= UZEC +WEZE$DGCQRESUGG

UZEL= UZEL +NEZE+DGLIMBUGGL

CONTINUE

FCONT=DZE3+FCONT

FLZE=DZE3FLZE

FRZE=DZE3+FRZE

UZE=DZE3+UZE

FLZEC=DZE3+FLZEC

FRZEC=DZE3#FRZEC

FLZEL=DZE3+FLZEL

FRZEL=DZE3#FRZEL .

r

'
A

134



. 1943
2042
2043
2044
2048
2046
2047
2048
2949
2050
2051
79532
1953
2064
2085
2084
2087
2958
205y
2960
2061
20612
2963
2064
2965
2966
21847
2908
2060
2970
2971
2973
2973\,
2574 \3
2975
2976
2977
2978
2979
2960
2981
2982 *

335

FTOT=FLZE+FRZE
FTOT1sFLZEC+FRZEC .
FTOT2sFLZEL+FRZEL .
IF(INORM .EQ. O) THEN
IF(I .EQ. 0) THEN
FNORM=FTOT . 3
INORN=0
END IF
ELSE .
IF(ABS(WNORM-WLAM(X,JSET)) .LE. .Bi«DLAN) THEX
FNORN=FCONT
JNORM=I
END IF
END IF
FLUX(I, JSET,3)=FTOT
FLUX(I,JSET,1)=FTOT1
IF(ICASE .EQ. 1) THEN
IF(I .EQ. 0) FCORE=FCONT
FLUX(I,JSET,2)=FTOT2+FCORE
ELSE .
FLUX(I, JSET,2)=FTOT2+FCONT
END IF
POLAR(I, JSET,3)=(FLZE-FRZE)/FTOT
POLAR(I,JSET,2)=(FLZEL-FRZEL)/FTOT
POLAR(I,JSET,1)=(FLZEC-FRZEC)/FTOT
IF(ABS(ZEMAX-PI) .GT. .0001) THEN
POLAR(T, JSET,3)=SQRT(POLAR(I, JSET, 3)#+2+(UZE/FTOT) ##2)
POLAR(I, JSET,2)=SQRT(POLAR(I, JSET,2)**2+(UZEL/FTOT)*+2)
POLAR(I,JSET,1)=SQRT{POLAR(I, JSET, 1) *#2+{UZEC/FTOT) *¢2)
ELSE IF(ILATE .EQ. 0) THEN
POLAR(I,JSET,3)=0.
POLAR(I,JSET,2)=0.
POLAR(I,JSET,1)=0.
EXD IF
IF(ABS(WLAM(I,JSET)-WVLINE(MLINE)) .LT. .51+DLAM) THEN
CCALL(MLINE+ (JSET-1)*IISET )=(FTOT2/FTOT)#

1 { (BPRI-ASEMI)/(BPRI+ASEKI) )=

2 ( (POVER+1)/(POVER+3))»

3 (3.#ANISO(MLINE))/(4.-ANISO(MLIKE))
_ MLINE=MIN(MLINE+1,ILINES)

END IF

2933 470 CONTINUE

1964 *
2983
2988
2987
2988 #
2989
2990

IF(ILOG .EQ. © .AND. IRED .XE. 0) THEN
FNORM=FNORM*REDDEN (WLAM({JNORNM, JSET) ,ERED)
END IF

‘DO 505 I=0,ILAM(JISET)
IF(IRED .NE. 0) THEN
e



2051
2003
2903
2004
2005
2066
2957
2008
2909

.- 3000

<3001
3002
3003
3004
3005
3006
3007
J008
2009
3010
3011
3012
3013
3014
30156
3016
017
3018
a0l
3020
3021
3022
3023
3024
3025
3026
3027
3023
3029
3030

. 3031
2032
3033

. 3034
3033
3036
3037
3038
3039
3040

*
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]

REDDER=REDDEN (WLAM(I,JSET),ERED)
ELSE )
REDDER=1,
END IF
DO 508 J=1,3
IF(ILDG .EQ. O) THEN
FLUX(I, JSET,J)=
1 FLUX(I,JSET,J)*REDDER/FNORM
ELSE
FLUX(I,JSET, J)=L0G10(2.*SLICE*
i FLUX(I,JSET, J)*REDDER )}
END IF
508 CONTINUE
505 CONTINUE ‘ e
910 FORMAT(///* *,4X,'I',11X, '"WAVELENGTH’/’ *,15,E20.7)
920 FORMAT(/' *,3(12X,'SMENTS ’,I1)/’ *,3E20.7)
930 FORMAT(/’ *,B(13X, ’'SCOEF ',I1)/’ ’,6E20.7) -
940 FDRMAT(/' ',16X,’FLZE’,16X, 'FRZE’ 17x.=uzz'/' ' ,3E20,7)
950 FORMAT(/? ',1BX,'FLZEC’,15X,'FRZEC’, 16X, 'POLC’,
1 16X, 'FLZEL’, 15X, 'FRZEL’, 16X, 'POLL'/
2 ' ?,6E20.7)

RETURN
ERD

*123456789*123456789*1234587?9‘12 6?89#123458%89'123456789‘123456789‘12

SURFBR calculates the surface brightness and polarization of the
atmosphere at a specified waveléngth. The expression used to find’
the- formal Sobolev solution for the emergent specific intensity is
given by egquation (2.150) of J. The PAR4 parameters control the
operation of this subroutine. Some expressions for the extrema and
projections of the atmosphere and photosphere are taken from
Appendix 3 section (c) of J. SURFBR is called from READIN.

SUBRDUTINE SURFBR
COMMON/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PIZ,PLARC1,PLAXC2,RADDEG
COMMON/NORM/INORM,WNORM, IFRAG, YMAX ,ZMAX

PARAMETER (NLAM=125,NLINES=61,NSET=11)

COMMON/PARANM/ANGLE , AKISO(NLINES) ,ASENI,BSENT, ICASE

1 . ICOEF,ILINES,POVER,PREC,
RGMAX ,RGMIN, TAUPE(NLINES) ,TEMPH, THERM,
3 TIME,VELPH,WLINE(NLINES) ,ZEMAX

CEARACTER MODELe2
COMMON/RED/ERED , TRED
COMMON/SET/CCALL (NLINES) ,DLAN,
1 FLUX(O:NLAM,NSET,3),IDATA,IFORM, ILAM(NSET),
. 1 IISET,ILATE,ILOG,ITRAXS,



3041
3041
3043
| 3044
3045
3048
3047
3048
3049
3080
J051
3052
3053
3054
3058
3056
3087
3068
a0s9
3060
3061
JoGa
J063
3064
3063
3066
3067
ao0cs
3060

3070

JoT1
2073
3073
3074
3075
3076
2077
3078
3079
3080
3081
3082
3083
3084
3085
086
3087
3088
3089
3090
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2 MODEL, IPUT,ISET,JSET,JSETS,KSET(NSET),POLAR(O:NLAM, NSET,3),
3 SET{NSET),WLAM{O:MLAM, NSET)
PARAMETER (NCOEF=5,ZPREC=.10,NRG=INT(8./ZPREC)+1,
1 NZETA=IBT(4./ZPREC)+2)
COMHON/SOURCE/DRGLOG,DZETA, IRG, IRG1,IZETA,IZETAL,
1 RG(0:¥RG),RGH,RGL,SOURC(NCOE¥,0:NRG,0: NZETA,NLINES) ,ZETA(O: NZETA)
COMMON/SOURC/ASQ,BSQ, THETA, ALP, ALPSQ, BET anrsq.
1 CON1,CON2,CON3,CON4,BPRI,GMAXSQ, GMINSQ,
2 XXLIMB,XXCORE,XXOCUL,XXCUT,QC,XTC
CUHﬁDI/SURF/ISURF.IPACT,SURFHA,SURFAI
DIMENSYON SMENTS(3),SCOEF(NCOEF)
DATA SMENTS/30./
XSURF(Y,Z,G5Q)=( CON1sZ +
+ SQRT(MAX(O0., -CON4*Z#*2+CON3*(GSQ-Y++2/ASQ) )) )/cox3
XSURFN(Y,Z,65Q)=( CON1sZ -
+ SQRT(MAX(0., -CON4¢Z#s2+COM3*(GSQ-Y++2/ASQ) )) )/CON3
. ) _
IF(ISET .EQ. 1 .AND. JSET .GT. 1 .AND. ICASE .ME. 2) THEK
THETA=ANGLE/RADDEG
ALP=COS{THETA)
ALPSQaALP##2
BET=SIK{THETA)
BETSQ=BET##2

coN1={1./ASQ-1./BSQ)*ALP*BET
CON2=ALP5Q/ASQ+BETSQ/BSQ ‘
CON3=BETSQ/ASQ+ALPSQ/BSQ
CON4=1./(ASQeBSQ) ™

IF(ANGLE .EQ. 0. .DR. ANGLE .EQ. 1B0) THEX B
BPRI=ASENMI ’
A ELSE IF(ANGLE .EQ. 90.) THEN
’ BPRI=BSEMI
ELSE
BPRI=ASEXI+BSEMI*SQRT{COX3)
END IF
GHAXSQ=RGMAXe*2
GHINSQ=RG(0)e*2

-

XXLIMB=RGMAX*SQRT(CON2/CON4)
XXCORE=RG (0) *SQRT(CON2/CON4)
XXOCUL=-{ ABS(CON1+RG(0))/SQRT{CON4) +
1 SQRT(GMAXSQ-GMINSQ) )
/( SQRT{(cOX3) )

IF({ (RGMAX/RG(Q))*ABS(CON1)/SQRT{CON2+CDN3) .LT. 1.)
1 LAND. ITRA¥S .EQ. 0) THEX
XXCUT=XI0CUL
ELSE
IXCUT=-XXLIMB



Jovl
3002
J003
J004
005
J0p6
3007
anos
3069
3100
310}
3102
3100
3104
3105
3100
3107
3108
aio9
3110
il
aiiz
a3
3114
3116
3116
3117
3118
3119
3120
3121
alzz
s
324
3125
3126
aw

3128°

3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140

END TIF

QC= (VELPH/XXCORE) /CLIGHT
XTC=TIME*VELPH/XXCORE
END IF

GGST=.1¢RG(0)
GGMULT=10.#+( LOG10(.995«RGKAX/GGST)/REAL(IPACT-1) )
GG=0,
SURFRA=SURFAN/RADDEG
WRITE(5,+) JSET,IPACT,SURFWA,SURFAR
* DO 410 I=0,IPACT
ZE=(BPRI/ASEMI)*TAN(SURFRA)
YY=ASENI+SIN(ZE)*GG
ZZ=BPRI*#COS(ZE)*GG
PACT=SQRT(YY##2+2Z+»2)

XXS=ISURF(YY,ZZ,GMAXSQ)
XXSN=XSURFN(YY,ZZ,GHMAXSQ)

FLG=0.
FRG=0.
UG=0.
EXPTAU=1.

IF(GG .LE. RG(0)) THEN

XXC=XSURF(YY,2Z,GHINSQ)

XXCK=XSURFN(YY,ZZ,GMINSQ)

EXPPHO=1,

DO 492 ILINE=ILINES,1,-1 -

XX=(1.-SURFWA/VLINE(ILINE)})/QC

IF(XX .LT. XXC .AND. ITRANS .EQ. 0} GO TO 200

IF(XX .LT. XXS)) GO TO 200

IF{ (XX .LT. XXS .AND. XX .GT. XXC)

1 .0R. (XX .LT. XXCN _.AND. XX .GT. XXSH) ) THEX
XPR=XX#BET-ZZ#ALP
ZPR=XX#ALP+ZZ+BET
RGGG=SQRT( (XPR/ASEMI) ##2+YY#92/ASQ+(ZPR/BSEMI)#2)
CALL ETAUF(ILINE,RGGG,ETAU,ETAUY)
BALL SOURC3(ILINE,2,XPR,YY,ZPR,ALP,0,SCOEF,SMERTS)
FLG=FLG+SMENTS(1)*ETAU1+EXPTAU
FRG=FRG+SMENTS(2)+ETAU1*EXPTAU
UG=UG+SMENTS (3) #ETAU1*EXPTAU
EXPTAU=EXPTAUSETAU
IF(XX .GT. XXC ) EXPPED=EXPTAU

EXD IF

492 CONTINUE
200 CONTINUE
IF(ICASE .EQ. 1) TEEN
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341
3143
3142
3144
3145
LYY
3147
3148
3149
3150
3181
3162
3153
3184
3166
3160
357
3168
3159
al16o0
3161
2163

3163

3104
3145
3166
2167
3163
3162
3170
3n
T2
17
3174
3173

+ & &+ &

76

3177
aira
a7
3180
a181
3182
3133
364
3183
3156
3ta7
3183
3189
3190

430
210

FIl=.E
ELSE
CALL PLANCF(SURFWA,-QCXXC,FI2)

The -QC#XXC is right here, I think, because the distant observer
sees a blueshifted part of the spectrum (i.e., from a redder part
of the continuum than SURFWA, but blueshifted to SURFWA).

is explanation is just turned mround it XXC<0,
END IF
FLG«FLG+FI2+EXPPHO
FRGaFRG+FI2*EXPPHO

ELSE

DO 430 ILINE=ILINES,1,-1
IX=(1.-SURFWA/WLINE(ILINE))/QC
IF(XX .GT. XXS) GO TO 430
IF(XX .LT. XXSN) GO TG 210
XPR=XX*BET~ZZ*ALP
ZPR=XX*ALP+ZZBET _
RGGG=SQRT( (XPR/ASEMI) *#2+YY9+2/ASQ+(ZPR/BSEMT ) ##2)
CALL ETAUF(ILINE,RGGG,ETAUV,ETAU1)
CALL SOURC3(ILINE,2,XPR,YY,ZPR,ALP,0,SCOEF,SMENTS)
FLG=FLG+SMENTS{1)+»ETAUL*EXPTAU
FRG=FRG+SMENTS(2)«ETAUL*EXPTAU
UG=UG+SMENTS (3) +ETAU1+EXPTAU
EXPTAU=EXPTAU*ETAU :
CONTINUR
CONTINUE

END IF

FLUXX=FLG+FRG
QG=FLG-FRG
IF(FLUXX .NE. 0.) THEN
POL=SQRT(QGe*2+UG++2) /FLUXX
ELSE
POL=-1,
END IF
IF(QG .NE. 0) THEN
CHI=ATAN(UG/QG)
ELSE
CHI=O.
EXD IF
POL1=QGeCOS(CHI)+UGeSIN(CEI)
POL2=QG*COS (CHI+PI)+UGeSIN(CHI+PI)
CHI=RADDEG*.5+CHI
IF(POL1 .LT. POL2) CHI=CHI+SO.
WRITE(5,*) I,PACT,FLUXX,POL,6CHI,QG,UG

IF(I .EQ. 0) THEX

This
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3101
J02
3103
3104
308
3196
3107

3108

aien
3200
az0i
3202
© 3203
3204
2208
3200
3207
3108
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3519
3220
3221
3222
3223
3224
3228
3226
3227
3128
32329
2230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
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GG=GGST
* ELSE IF(I .EQ. IPACT-1) THEN
b GG=RGMAX
ELSE
GG=GG»GGNULT
EXD IF

' 410 CONTINVE

RETURN
END
*

*123456789*123486789*123456789*123450789‘123458789*123456789*12345&789*12

TEST calls a number of subroutines that test various working subroutines
of the ST program. Tha test subroutines are identified by their
O-suffixes. These test subroutines were only used in the early
development of the S7 program and it is no longer certain that they

will perform properly. .However, they could be revived if nesded. TEST.
is called from READIN.

+

+ % & & & F ® ®

SUBROUTINE TEST(ITEST)

PARAMETER (NLAN=126,NLINES=61,XSET=11)
COMMON/PARAM/ANGLE, ANISO(NLINES) , ASEMT , BSENT , ICASE,
1 ICOEF, ILINES, POVER, PREC,

2 RGMAX,RGMIN, TAUPH(NLINES) , TEMPH, THERN,
3 . TIME,VELPH,WLINE(NLINES),ZEMAX
DATA ITABLE/0/

GO TO (110,120,130,140,150) ,ITEST

110 CONTINUE 7
CALL BETAFO(ITABLE) ' .
G0 TO 200 ’

120 CONTINVE®
"GO TO 200

130 CONTINUE
CALL SOURCO(ITABLE)
GO TO 200

- 140 CONTINUE
CALL XMUO(ITABLE,20,1)
GO TO 200

150 CONTINUE
CALL IMUOA

200 CONTINUR :
RETURX .



-

34t
22432
3243
aza4
3245
3246
3247
3348
3249
3360
3261
3262
9253
3754
32858
3256
a7t
3758
2259
3260
3261
3264
32483
3264
3205
3206
3267
\\\\\::os
269
3270
3771
3172
3173
2374
3175
3276
3117
3178
- 32719
31280
3281
3181
3283
3284
3285
3286
© 3387
3788
3289
3290

EXD
- B
+123456780«1234508780+%123456789+123466780+123450T80+123466780+123456789+12
L |
¢ XMUQO, and XMUOA are teating routines for the XMU1i, XMUZ, and XMU3
* subroutines. They are both called from subroutine TEST.
[ ]
SUBROUTINE IMUO(ITABLE,JPOINT, IOUT) >
PARAMETER (ICASS=8,IPOINT=50,ISPHRD=3) //
PARAMETER (INORK=KAX(4+«(IPOINT+1),800) )
COMMON/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,PI2,PLANC1,PLANC2, RADDEG
DINENSION A(ISPHRD) ,B{ISPHRD),CC(ICASS),
1 DD{ICASS),FX(0:IPOINT,2+ICASS),WORK(IWORK),X(0:IPDINT)
DATA IDONE/0/
DATA A/0.5,1.0,4.0/,

1 B/4.0,1.0,0.5/
DATA ¢C/0.0,1.5,0.5,0.5,0.5,1.6,1.6,0.0,1.0/,
1 DpD/1.5,0.0,0.0,1.5,0.0,1.5,0.5,1.0,0.0/

IF(IDONE .EQ. 0) PRINT905 -
IDONE=1

805 FORMAT(’1’,’TEST RESULTS FOR THE XMU- RUUTIIES')
KPOINT=MIN(JPOINT, IPOINT)
DD(3)=SQRT(1.-CC(3)#e2)
DD(E)=.6%( 1.+SQRT(1.-CC(E)w»2) )
DPHEI=PI/REAL(KPOINT)
x(0)=0.
DD 405 I=1,KPOINT-1
X(I)=X{I-1)+DPHI

405 CONTINUE
X(KPDINT)=PI

‘DO 410 I=1,ISPHAD
DO 420 J=1,ICASS

ITABLE=ITABLE+1
C=CC(J)ea(1)
D=DD(J)*B(I)
CALL XMU1(A(I},B{I),C,D,PRIC)
PRINT910,ITABLE,A(I),B(1),C,D,PHIC
10 FORMAT(///* ',’TEST-TABLE ’,12,’: XMUL(PHI) AND IMVH(PHI)'//
1 ?* ? 11X,6X,’4=",F6.2,6X,°B=* ,F6.2,/
N\ 2 ?* * 11X,5X,°C=’/F6.2,5X,'D=" F6.2,/
3+ ' ,11X,2X,'PRIC=" ,E14.7)
PRINT920 ’
920 FORMAT(///® ?,8X,'I',12X,'PHI’, 11X, °XMUL’, 11X, ' INUH!/)
930 FORMAT(’ ’,I10,3E15.7)
*»
IPEIC=-1
DO 430 K=0,XPOINT

341



342

3201 \—IF(I(K) .LE. PHIC) THEN
3202 CALL XMU2(X(K),FX(K,J),FX(X,J+ICASS))

3203 PRINT®30,K,X(X) ,FX(K,J),FX(K,J+ICASS)

3204 ELSE IF(IPRIC .LT. 0) THEN

308 CALL XNU2(PHIC,FX1,FX2)

3200 PRINTO30,K,PHIC,FX1,FX2

3207 IPHIC=]

3208 FX(K,J))=FX1

2260 FX(K,J+ICASS)=FX2

3300 ELSE

3301 FX(X,J)=FX1

3302 FI(K,J+ICASS)=FX2 .

3303 END IF : .
3304 430 CONTINUR N
3306 *

as06 420 CONTINUE

2307 IF(IOUT .GT. 1) THEN

3305 * CALL SINSTART(.TRUE.,.FALSE.)

3309 CALL STMANN(.TRUE.)

as1o CALL SIMXRNG(O.,PI)

s CALL SIMYRNG(-1.05,1.05)

3312 CALL SIMSAME(.TRUE.)

3313 CALL SIMINT(1)

1314 CALL SIMPLOT(X(0),FX(0,1) ,KPOINT+1,KPOINT+1 ,2¢KPOINT,WORK)
3315 CALL SIMILAB('PHI’)

3316 CALL SIMYLAB(’XMU®)

a7 CALL SIMTITL(’FIGURE : XNU BOUNDS’) i
2318 EXD IF *

a3io +

3azo 410 CONTINUE

3311 #+

3312 RETURN

333 END

3324 *

3325 *

3316 *

2317 *

3328 SUBROUTINE XNUOA ’ '

3329 COMMON/XMU/ICAS,PHIZ, XMUCDN, AA4,AA2,AAO,BB4,BB2,BB0,DIS4,DIS2,
3330 1 PMU,QMU,SNU _

3331 DATA A,B,C,D/.5,4.0,.75,6.0/ e

3332

3333 110 CONTINUE

3334 CALL XMU1(A,B,C,D,PBIC)

3333 " CALL XMU2(PHIC,XMUL,XMUE)

2336 -~ CALL XMU3(PHIC,CON1,CON2)

a3a7 GAMMA=COS (PHIC)

3338 GAMSQ=GAMMA»»2

3339 GAMQU=GANSQe»2

3o DIS=(DIS4*GANSQ+DIS2)«GANSQ



#123456780+123458780+123466789+123456780+1234667689+1234567689%123458780+12

[ ]

* & & & # # % &+ B = =

auxiliary to INU2.
are derived in Appendix 3 section (b} of J.
from GRAL1, XMUC, and XMUOQA.
XMU3 is called from XMUOA, and INUZ.

PRINT»,D,PHIC, XNUL,XMUH
PRINT+,D,GAMMA,CONL,CON2
PRINT»,D,0ANSQ,DIS2,DIS4,DIS

PRINT+,'GIVE A NEW D (D<O STOPS THE EXECUTION).®

READe,D
IF(D .GE, 0) GO TD 110

- RETURN

EXD

SUBROUTINE XMU1(A,B,C,D,PEIC)

COMMON/CONST/CLIGET,CTA,IFREQ,PI,PITWO,PI2,PLANC1,PLANC2, RADDEG .

XMU1, XMU2, and XMU3 find xmu limits of integration for integrating
over the projected face of an arisymmetric ellipsoid with x-y eemiaxes
A and z semiaris B, as seen from the point (x=C,z=D). XMU1 determines
the case and some constant values for a given point (C,D), XMU2
evaluates the xmu limits for for each PHI value, and XMU3 is an
The expressions used for the integration limits

IMU1 is called called

XNU2 is called in GRAL2, IMUQ, and XXUOA.

COMMON/XMU/ICAS,PHIZ,XMUCON,AA4,AA2,AA0,BB4,BB2,BBO,DIS4,DIS2,

" 1 PMU,QMU,SNU

_ASQ=A#*2

BSQ=Bes2
CASQ=(C/A)*#2
PHU=(C/ASQ) 2
SMU=(1.-CASQ-(D/B)we2)/ASQ
TKU=(1.-CASQ)/BSQ
UNU=2,%CeD/(ASQ*BSQ)
QMU=SNU-TMU

AA§=PMU#»2
AA2=UNU»#2+2+PNU*QNU &
ALO=QNU»»2

BB4=-2.%AA4

BB2=2. «PNUs{THU-2, aSHU)~UNU»+2
BBO=-2.+SHU»QNU
DISCOR=-4.*SHU+ (UNU/B)se2
DIS4=DISCON+CASQ
DIS2=DISCON*{1.-CASQ)

IF(C .LE. 0.) THEN
1CAS=1
PHIC=PI
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. daox
aans’

3304
kA
3306
3397
3308
3309
3400
3401
3402
3403

3404°

3408
3408
307
3408
3409
3410
3411
3412
3413
3414
3413
3416
3417
M8
419
3420
J421
3422
3423
3424
3425
3426
3427
34218
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3429
3440

*® * #+ #

XMUCON=SQRT(MAX(O.,

SHU/QNU )

ELSE IF(D .LE. 0.) THEN -

ICAS=2

PHIC=ACOS(SQRT(MAX(O., -SMU/PKU )))
ELSE IF(SMU .GE. 0.) THEN

ICAS=3
PHIC=PI

ELSE IF(C .LE. A .AND. D .GE. B) THEN

ICAS:4
PHIC=PI

ELSE IF(C .LE. i) THES

ICAS=b
PHIC=PI

PHIZ=ACOS(SQRT(MAX(O., -SMU/PNU )))
> ELSE IF(D .GE. B) THEN

ICAS=@

PHIC=ACOS(SQRT(MAX(O., 1.-1./cisq }D))

ELSE
ICAS=T

x

PHIC=ACOS(SQRT(MAX(0., 1.-1./CASQ )))
PHIZ=ACOS(SQRT{MAX(0., -~SHU/PXU )))

END IF

RETURN
END

—

SUBRQUTINE XMU2(PEI,XMUL,XMUR)

COMMON/CONST/CLIGHT,CTA,IFREQ,PI,PITWO,FI2,PLANC1,PLANC2, RADDEG
COMMON/XMU/ICAS ,PEIZ ,XNUCON,AA4,AA2,AA0,BB4,BB2,BBO,DIS4,DIS2,

1 PMU,QMU,SKU

GO TO (110,120,130,140,150,160,170),ICAS

110 CONTINUE"
XNMUH=1.
IXUL=XNUCON
GOTO 200
120 CONTINUE
IF(PHI .LT. PI2) TEENX

CON1=(COS(PHI)+#2) + KU}

IMUH=SQRT(MAX(O.,
ELSE
INUH=1.
END IF
INUL=-INKUH
GO TO 200
130 CONTINUE

{CON1+5MU)/ (CON1+QNU) ))

J44
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3441 XNUH=1,

3442 _ CALL XMU3(PHX,CON1,CON2)

3143, XNUL=SQRT(MAX(O., cON1 )) | e
3444 IF(PHI .LT. PI2) XMUL=-XNUL |

3443 GO TO 200 J

3446 140 CONTINUE .

447 XMUH=1, )

3414 CALL XMU3(PHI,CON1,CON2)

3449 IF(PEI .LT. PI2) THEN

3450 XNUL=SQRT(MAX(C., COXi1-cON2 ))

3431 ELSE y ’

3452 XMUL=SQRT(NAX{0., CONi+CON2 ))

3481 EXD IF

3484 GO TO 200

3456 150 CONTINUB

3430 XMUH=1, ‘
ME7 CALL XKU3(PHI,CON1,CON2) ’ . s

3458 IF(PEI .LT. PI2) THEN :

3480 XMUL=SQRT(MAX(Q., CON1-CONZ )) S .
3460 IF(PHI .LT. PHIZ) XMUL=-XMUL :

3461 ELSE :

3463 XMUL=SQRT(MAX(O., CON{+CON2 )) ’

3462 END IF

364 GO TO 200

465 160 CONTINUE

3466 CALL XKU3{PHI,K CON1i,CON2)

3467 IMUH=SQRT{MAX(0., CON1+CON2 1)) Tl ,
3468 XMUL=SQRT(MAX(Q.,, CON1-CON2 )) ' -
34609 GO TO 200

3470 170 CONTINUR

3471 CALL XMU3(FHI,CON1,COE2)

3472 XMUB=SQRT(MAX(0., CON1+CON2 ))

3473 XMUL=SQRT(MAX(O., CON1-CON2 }) .

2474 IF(PHI ,LT. PHIZ) INUL=~IMUL

J475 *

3476 200 CONTINUE

UTT KMUH=MIN(1. ,MAX(-1., XMUH ))

78 XNUL=MIN(1. MAX(-1., XMUL ))

3479 RETURN

3480 END .

3451 * . »

482 *

34533 * L0

3484

3485 SUBROUTINE IMU3I(PHI,CON1,CON2)

3486 COMMON/XNU/ICAS,PEIZ,XNUCON,AA4,AA2,AA0,BB4,BB2,BB0,DIS4,DIS2,
a7 1 PMU,QNXU,SMU ' -
MEa * '

3459 GAMSQ=COS(PHI)#e2

3490 AA=(AA4oGANSQ+AL2) »GANSQ+ARO



3401
S92
3400
3404
J405
- 340G
3497

BB=(BB4*GANSQ+BB2) *GANS]+BBO
DIS=(DIS4*GANSQ+DIS2) *GANSQ
CON1=<BB/(2,%AA)

CON2aSQRT(MAX(0., DIS ))/(2.%AA)

RETURN .

END

REL



REFERENCES
Allen, C. W, 19786, Astrophysicd.Quant'itics' (London: The Athlone Press),
_Ambwnni, K. 1086, M.Sc. Thesis, McMaster University, Hamilton Ontario.
Ambwani, K., ahd Sutherland, P. G 1088, Ap. J., in press.,
Armett, W. D, 1979, Ap. J. (Letters), 230, L37.
: . 1980, Ap. J., 237, b4l.
Arnett, W. D., and Falk, S. W, 1976, Ap. J., 210, 733.
Axclrod, T. S. 1980a, Ph.D. Thesis, University of California, Santa Cruz.

Axelrod, T. S. 1980b, in Proceedi.ngs of the 'I;cxas Workshop on Type I Supernovae, ed. J. C.
‘thelcr (Austin: University of Texas), p. 86.

Baade, W. 1928, Astr. Nachr., 228, 359. ’ . ~

Baheall, J. N., Piran, T., Press, W, Il and Spergel, D N. 1987, Nature 327, 682.

Ballagh, R. J., and Cooper, J. 1977, Ap. J., 213, 479. .

Barbon, R. 1980, in Proceedings of the Texas Workshop on Type I Super.nov#e, ed. J. C. Wheeler

 (Austin: University of Texas), p. 16. *

Barbon, R., Ciatti, F., and Rosino, L. 1973, Astron. Astrophys., 25, 241.

-Barbon, R., Ciatti, F., and Rosino, L. 1979, Astron. Astrophys., 72, 287.

Barrett, P. 1987, IAU Circ., No. 4337.

Bartunov, O. S., and Mozgovoi, A. L. 1987, Astrophysics, 26, 136.

Beckwith, S., and Natta, A. 1987, Astron. Astrophys., 181, 57.

Benvenuti, P., Sanz Fgrnandez de Cordoba, L., Wamsteker, W., Mac-chetto, F., Palumbo, G. C., and
Panagia, N. 1982, ESA SP-1046.

Biermann, P, and Tinsley B. M. 1974, Publ. Astron. Soc. Pac., 86, T91. J

Bionta, R. M., Blewitt, G., Bratton, C. B., Casper, C., Ciocio, A., Claus, R., Cortez B., Crouch, M.,
Dye, S. T., Errede, S., Foster, G. W., Gajewsik, W., Ganezer, K. S., Goldhaber, M., Haines, T.
J., Jones, T. W., Kielczewska, D., Kropp, W. R., Learned, J. G., LoSecco, J. M., Matthews, J., .
Millar, R., Mudan, M. S., Park, H. S., Price, L. R., Reines, F., Schultz, J., Seidel, 5., Shumard, E.,

347



348
~
Sinclair, I, Sobel, H, W, Stone, J. L., Sulak, L. R., Svoboda, R., Thornton, G., van der Velde,
J. C., and Wuest, C. 1987, Phys. Rev. Letters, 58, 1494.
Bisnovatyi-Kogan, G S., and Blinnikov, §. I. 1980, in Supernova Remnants and Their X-ray Emis- —
sion, ed. J Dnnziéer.and P. Gorenstein {Dordrecht: D. [bcid.cl Publishing Company), p. 125.
Blanco, V. M., Gregory, B., Hamﬁy. M., Heathcote, S. R., Phillips, M. M., Suntzeff, N. B., Terndrup;
D. M., Walker, A. R., Williams, R. E., Pastoriza, M. G., Storchi-Ber}gmnnn, T., and Matthews,
J. M. 1987, Ap. J, 320, 589. |

Bodenheimer, P., and Woosley, S. E. 1983, Ap, J., 269, 281.

Bouchet, R., St‘anga, R., Le Bertre, T, Epchtein, N., Hamann, W. R., Lorenzetti, D. 1087, Astron.
Astrophyss 177, L9.

Branch, D. 1980, in Supernova Specira, e R. Meyerott and G. II. Gillespie (New York: American
Institute of Physics), p. 39. -

. 1982, in Supernovae: A Survey of Current Research, ed. M, J. Rees and R. J. Stoneham
(Dordrecht: D. Reidel Publishing Company), p. 267.

. 1986, Ap. J. (Letters), 300, L51.

. 1987a, Ap. J. (Letters), 316, L8I.

. 1987b, Ap. J. (Letters), 320, L23.

Branch, D., Falk, 5. W., McCall, M. L., Rybski, P., Uomoto, A., and Wills, B. J. 1081, Ap. J.,
244, 780, ' |

Branch, D., Buta, R., Falk, S. W., McCall, M. L., Sutherland, P. G., Uomoto, A., Wheeler, J. C.,
and Wills, B. J. 1082, Ap. J. (Letters), 252, L61. '

Branch, D., Lacy, C H., McCall, M. L., Sutherland, P. G., Uomoto, A., Wheeler, J. C., and Wills,
B.J. 1983, Ap. J., 270, 123. )

B.m.nch, D., Doggett, J. B,, Nomoto, K., and Thielémann, F.-K. 1985, Ap. J., 294, 619.

Brown, J. C., and McLean, I. S. 1977, Astron. Astophys., 57, 141. . ) _

Burrows, A., and Lattimer, J. M. 1987, Ap. J. (Letlers), 318, L63. '[—

Cadonau, R., Sandage, A., and Tammann, G.‘ A. 1985, in Supernovae as pjalancc Im.
N. Bartel (Berlin: Spnnger-\’erlag), p- 48. ’ - ™

Cassinelli, J. P., and Hummer D.G. ﬁ?l MNRAS., 154, 9.

Castor, J. 1. 1970, M.N.R.A.S., 149, 111. |



349

Castor, J. K., and Lamers, I1.J.G.L.M. 1979, Ap. J. Suppl., 39, 481. A
Chandrasckhar, S, 1960, R.adintivc Transfer ’(New York: Dover Publications, Inc.).
Chevalier, R. A. 1976, Ap. J., 207, 872.

. 1984, Ann. NY Acad. Sci,, -122, 215.

Clievalier, R. A., and Klein, R. I.\978, Ap. J., 219, 994.

i

Clark, D. H., and Stephenson, F. R. 1982, in Supernovae: A Survey of Current Research, ed.
M. J. Rees and R. J. Stoncham (Dordrechi: D. Reidel Publishing Company), p. 356.

o

Clark, D. H., and Thghy, I. R, 1980, in Supernova Remnants and Their X-ray !.E.‘miasion, ed. J.
Danziger and P. Gorenstein (Dordrecht: D. Reidel Publishing Company), B, 163.

Cc;de, A. D. 1850, Ap. J., 112, 22,

Code, A, Davis, J., Bless, R., and Brown, 1. 1976, Ap. J., 203, 417.

Colgale, 5. A. 1982, in Supc.movae; A Survey of Current Research, ed. M. J. Rees and R. J. Stone-
ham (Dotdrecht: D. Reidel Publishing Company), p. 319. s

Colgate, S. A., and McKee, C. 1969, Ap. J., 157, 623.

Colgaté, S. A., Petachek, Ai"'G., and Kriese, J. T. 1980, Ap. J. (Letters), 237, L8l.

Cooper, 1., Ballagh, R.' J., Burnett, K., apd Humrﬁer, D. G. 1882., Ap. J., 260, 299,

Cropper, M., Bailey, J., McCowage, ., Cannon, R. D., Couch, W. J., Walsh, J. R., Straede, J. 0.,
and Freeman F. 1987, submitted to M.N.R.A.S. X

Danzigor, 1. J., Fosbury, R. A. E., Allein, D., Cristiani, S., Dachs, J., Gouiffes, C., Jarvis, B., and
Sahu, K. C. 1987, Astron. Astrophys., 177, L13.

de Jong, T., Chu, S-1., and Dalgarho, A. 1975, Ap. J., 199, 69.

Doggett, J. B., and Branch, D. 1985, Astron. J., 90, 2303.-

Dwek, E., A'llearn, M. F., Becklin, E. E., Bsown, R. H., Capps, R. W., Dine:rstcin, H. L., Gatley,
1., Morrison, D., Telesco, C. M., Togunaka, A. T., Werner, M. W., Wynn-Williams, C. G. 1983,
Ap. J, 274, 168.

Elias, . H., Frogel, J. A., Hackwell, J. A, and P:!rsson. S. E. 1981, Ap. J. (Letters), 251, L13.

Evans, R. 1986, in Highlights in Astronomy, Vol. 7, ed.- J.-P. Swings (Dordrecht: D. Reidei
Publishing Company), p. 579. il

Falk, S W., and Arnett, W. D. 1973, Ap. J. (Letters}), 180, L85,

Falk, S. W., and Arnett, W. D. 1977, Ap. J. Suppl., 33, 515. i



{ 350
Pransson, C. 1984, Physica Scripta, T7, 50.
Felde, A. N, 1980, Ph.D. Thesis, University of Oklahoma, Norman Oklahoma.

Grassberg, E. K., Imshennik, V. S., and Nadézhin, D. K. 1971, Astrophys. Space Sci., 10, 28.

Gilinozzi, R., Casaatelln,k.; Clavei, J., Franssoh, C., Gonzalez, R., Gry, C., l’anngin, N., Talavera,
A., and Wanwtel_(er, W. 198:?, Nature, 328, 318.

Glen, W. T. G, 1985, l”h.D. Thesis, McMaster University, Hamilton Ont.arig.

Guan, J. E., and Ostriker_, J. P. 1969, Nature, 221, 454, ‘

Haman, W.-R. 1081, Aston. Astrophys., 93, 353.

Hamilten, D, R. 1940, Phys. Rev., 58, 122, |

— . 1947, Ap. J., 106, 45T7.

llarkne:as, R. 1985, in Supernovae as Distance Indicators, ed. N. Bartel (Berlin: Springer-Verlag),
p. 183.

. 1986, inhRadiation Hydrodynamics in Stars and Compact Objects, ed. D. Mihalas and
K.-H. A. Winkler (Berlin: Springer-Verlag), p. 166.

Harkness, R. P., et al, 1987, Ap. J., in press.

Harrington, J. P. 1969, Ap. J. (Letters), 3, 185.

Hempe, K. 1985, in Supernovae as Distance Indicators, ed. N. Bartel (Berlin: Springer-Verlag),
p. 192.

Hillebtandt, W. 1982, in Supernovae: A Survey of Current Research, ed. M. J. Rees and R. J. Stone-
ham (Dordrecht: D. Reidel Publishing Company), p. 123.

Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., Oyama, Y., Sato, N., Suzuki, A., Takita, M.,
Totsuka, Y., Kifune, T., Suda, T., Takahashi, K., Tanimori, T., Miyano.‘ K., Yamada, M., Beier,
E. W., Feldscher, L }i.., Kim, S. B, Mann, A. K., Newcomer, F. M., Van Berg, R., Zhang, W.,
and.Cortez, B. G. 1987, Phys. Rev. Letters, 58, 1490,

Hummer, D. G. 1965. M.N.R.AS., 125, 21. .

. 1969, M.N.R.A.S., 145, 95. ,

Hummer, D. G., and Rybicki, G. ’B 1985, Ap. J., 293, 258.

iben, I. Jr., aqd Renzini, A. 1983, Ann. Rev. Asron. Astrophys., 21, 271.
Imshennik, V. S., and Nadezhin, D. K. 1964, Astron. Zh., 41, 829.
Jeffery, D. J. 1983, M.Sc. Thesis, McMaster University, Hamilton Ontario.

/—-ﬁ



451

. 1087, Nature, 329, 419,

Jeffery, D. 1., and Sutherland, P. G. 1985, Ap. Sp. Sci., 109, 277.

Kare, J. T., Pennypacker, C. R., Muller, R. A.', Mast, T, S., brnwford, F. S., and Burns, M. S. 1082,
iu Supernovae: A Survey of Current Resoarch, ed. M. J. Rees and R. J. Stoneham (Dordrecht:
D Reidel Publishing Company) p. 326.

. Kurovska, M., Nisenson, P., Noyea R., and Pnpnhohoe, C. 1987, IAU Circ., No. 4382,

Karp, A. IL., Lasher, G., Chnn, K. L., and Salpeter, E. E. 1977, Ap. J., 214, 161.

Kirshner, R. P., and i{wan, J. 1974, Ap. J., 163, 27,

Kowal, C. T. 1968, Astron. J., T3, 1021.

Laney, C. D., and Stobie, R. G. 1986, M.N.R.A.S., 222, 449,

Lasker, B. M. 1980, Ap. J., 237, 765.

LeBlanc, J. M., and Wilson, J. R. 1970, Ap. J., 161, 541.

Livio, M., Buchler, J. R., and Colgatf, S. A. 1980, Ap. J. (Letters), 238, L139.

Lombardi, G. G., and Kelleher, D. E. 1983, in Spectral line Shapes II, ed. K. Burnett (Berlin: De
Gruyter), p. 835.

Lombardi, G. G., and Kelleher, D. E. 1985, Ap. J., 288, 820.

Lucy, L.B. 1971, Ap. J., 163, 95.

Magalhaes, A. M., and Velloso, E. W. 1987, IAU Circ., No. 4361.

Markert, T. H., Canizares, C. R., Clark G. W., and Winkler, P. F. 1981, Bull. AAS, 12, 799.

Martin, P. G. 1974, Ap. J., 187, 461. .

Matcher, S. J., Meikle, P. S., and Morgan, B. L. 1987, JAU Cire., No. 4391.

Maza, J., van den Bergh, S. 1976, Ap. J., 204, 519. '

McCall, M. L. 1984, M.N.R.A.S., 210, 829. .

. 1985, in Superrnovae as Distance Indicators, ed. N. Bartel (Berlin: Springer-Verlag), p. 48.
McCall, M. L., Reid, N., Bessell, M. S., and Wickramasinghe, D. T. 1984, M.N.R.A.S., 210, 839.

McKenna, S. J. 1985, Astrophysics and Space Science, 108; 31.

Méndez, M., Clocchiatti, A., Benvenuto, O. G., Feinstein, C., and Marraco, H. G. 1987, submitted
to Ap. J.. '

Meyerott, R. E. 1978, Ap. J., 221, 975.

Mihalas, D. 1978, Stellar Atmosphereg (San Francisco: W. H. Freeman and Company). )



B LY

Milialas, D., Kunasz, P, B., and Hummer, D. G. 1975, Ap, J., 202, 466.

Miiller, E., and Hillebrandt, W. 1981, Astron. Astrophys., 103, 358.

Miiller, E., and Arnctt, W. D. 1082, Ap. J. (Letters), 261, L109.

Natta, A., and Beckwith, S, 1086, Astron. Astrophys., 158, 310. .

Niscuson, P., Papaliolios, C., Karovska, M., and Nhoyea, R. 1087, Ap. J. (Letters), 320, L15.
Nomoto, K. 19803,. in Type I Supernovae, ed. 1. C. Wheeler (Austin: Univ, Texas), p. 164.

. 1980b, Space Sci. Rev., 27, 563, '

. 1981,in Fundamental Problems in the Theory of Steilar Evolution, ed. D. Sugimoto, D.
Q. Lamb and D. N. Schramm (Dordrecht: Reidel), p. 295.

Nomoto, K., Sugimt;to, D., and Neo, S. 1976, Astrophysics and Space Science, 39, L37.

Nomoto, K., Thielemann, F.-K., and Yokoi, K. 1984, Ap. J., 268, 644.

QCemler, A., and Tinsley, B. M. 1979, Astron. J., 84, 985.

Olson, G. L. 1982, Ap. J., 255, 267. '

Panagip, N. 1985, in Supernovae as Distance Indicators, ed. N. Bartel (Berlin: Springer-Verlag),
p. 14.

Pankey, T. Jr. 1962, Ph.D. Thesis, Howard University, Washington, DC.

Pengelly, R. M., and Seaton, M. J. 1964, M.N.R.A.S., 127, 165.

Pennypacker, C., Burns, S., Crawford, F., Friedman, P., Muller, J., Perlutter, S., Smith, C., Treffers,
R., Williamson, A., Junkkarinen, V., Filippenko, A. V., McCarthy, P. J., and Rosino, L. 1986,
IAU Cire., No. 4219, '

Phillips, M. M. 1979, Ap. J. Suppl., 39, 377.

Piel, J. et al. , ed. 1986, Scientific American, Vol. 255 No. 2 (August), 65.

I
s
i

Pskovskii, Y. P. 1977, Sov. Astron., 21, 875. C ' ‘

Rybicki, G. B. 1970, in Spectrum Formation in Stars with Steady-State Extended Atmospheres, ed.
H. Groh and P. Wellrnan‘n. NBS Spec. Publ. No. 332 (Wuhingtlon: U.S. Government Printing
Office), p. 87. . '

—_—— 1984, in Methods in Radiative Transfer, ed. W. Kalkofen (Cambridge: Cambridge Uni-
versity Press), p. 1.

Rybicki, G. B., and Hummer, D. G. 1978, Ap. J., 219, 854.

Schwarz, H. E. 1987, preprint.



® o © 353
.<
Schwarz, 1. E., and Mundt, R. 1987, Astron, Astrophys., 177, 1A
Serkowski, K. 1970, Ap. J,, 160, 1083. ' -
Serkowski, K., Mathewson, D. S., and Ford, V. L. 1975, Ap. J., 106, 261. '
Shakhovskoi, N. M. 1976, Soviet Astr.-AJ (Letters), 2, 107.
Slaukllovakpi, N. M., and Efimov, Yu, S.' 1973, Soviet Astr.-AJ, 16, 7. | . '
Sh;ipird; P. R., and Sutherland, P. G, 1982, Ap. J., 263, 902. |
Shapiro, S. L., and Teukolsky, S. A. 1983, Black Holes, White Dt;ufs, and Neutron Stars: The
Physics of Compact Objects (New York: John Wiley & Sons, Inc:). I
" Shelton, 1. 1987, IAU Circ., No. 4316,
Sobolev, V. V. 1947, Moving Envelopes of Stars (Leningrad: Leningrad Stat;: University [in »
Russian)); English transl. S. Ga‘poschkin (Cambridge: Harvard University press, 1960). s
Striganov, A. R., and Sventitskii, N.S. 1968, Tables of Spectral Lines of Neutral anrd Ionized Atoms
(New York: IFI/Plenum Data Corporation).
Sutherland, P. G., and Wheeler, J. C. 1984, Ap. J., 280, 282
Symballal.y, E. M. D. 1984, Ap. J.,, 285, T29.
. 1985, in Numerical Astrophysics, ed. J. M. Centrella, J. M. LeBlanc and R. L. Bowers

(Boston: Jones and Bartlett Publishers, Inc.), p. 453.
Tammann, G. A. 1978, Mem. Soc. Astron. Italiana, 49, 315.
. 1082, in Supernovae: A Survey of Current Research, ed. M. J. Rees and R. J. Stoneham
{Dordrecht: D. Reidel Publishing Compaﬁy). p. 371, -
Trimble, V. L. 1982, in Su;crnovu: A Survey of Current Research, ed. M. J. Rees and R. J. Stone-
ham (Dordrecht: D. Reidel Publishing Company), p. xv.
Tuohy! J. R., Clark, D. H., and Burton, A. P. 1980, Space Sci. Rev., 27, L85.
Wagoner, R., V. 1981, Ap. J. (Letters), 250, L65.
Walsh, I. R., Bailey, J. A, and Ogura, K. 1987, IAU Circ., No. 4328.
Weaver, T. A., and Woosley, S. E. 1980, Ann. NY Acad. Sci., 336, 335.
Wesselink, A. J. 1949, B.A.N., 10, 91.
Wheeler, J. C. 1978, Ap. J., 225, 2i2.
Wheeler, J. C., and Levreault, R:1985, Ap. J. (Letters), 294, L17.
Wheeler,‘ J. C., Harkness, R. P..‘ Barker, E. S., Cochran, A. L., and Wills, D. 1987, Ap. J. {Letters),



154

313, L69.

Whelan, J. C., and Iben, L. Jr. 1973, Ap. J., 186, 1007. ‘ .

Wilson, J. ., 1985, in Numerical Astrophysics, ed. J. M. Centtella, J. M. LeBlane and R. L.
Bowers (Boston: Jones and Bartlett Publishers, Inc.), p. 422.

Wolstencroft, R. D, and Kemp, J. C. 1972, Nature, 238, 452,

Woosley, S. E. 1987, submitted to Ap. J.. ‘

Wouosley, S. E:, Axelrod, T. S., Weaver, T. A. 1984, in Stellar Nucleosynthesis, ed. C. Chiosi and
A.'Renzini (Dordrecht: Reidel) p. 263. '

Woosley, S. E., Taam, R. E., and Weaver, T. A. 1986, Ap. J., 301, 601. .

Woosley, S. E., and Weaver, T. A. 1986, Ann. Rev. Astron. and Ap., 24; 205, .

- *



