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ABSTRACT I
,./

N6',N9-0ctamethylenepurine cyclophane was

_synthesized to act as a IH ~ probe for the study of the 4

~iamagnetic anisotropy about the adenine system. The title

comp~und ~as formed from 6-chloropurine a1? c~clooctanone

using two variations of_the 'sam~ general approach. The I H

NMR studies resulted in the assignment and identification of
"

each proton ~esonance. As a method of confirming the assign-

ments, nuclear Overhauser enhancement studies as well as

conformational analysis using X-ray crystallog~aphywere

icompleted. Upon correlation, of.the proton magnetic resonance
l\ . ~ ~',' ... ' ,'t . ." .

s~ectrum with the struct~re of the title compound, an

'attempt wps made to use a model calculation to determine the

diamagnetic shielding anisotropy of adenine by ~omparison .

with the methylene proton chemical shifts. Finally, in an
,

effort to further characterize the diamagnetic shielding

anisotropy about aderiine, a homolog to the title co~~ound,
~

N6',N9-Nonamethylenepurine cyclophane, was synthesized.

)
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Chapter 1

Introduction

1.1 Theory

The nuclear magnetic resonance (NMR) phenomenon

arises from transitions between nuclear spin states of a
•

nucleus placed in an external magnetic field. The electro-

magnetic radiation required 'to induce these transitions

falls in the radiofrequency domain.

A nucleus under'study in an NMR expe~iment will have

a resonance frequency (or chemical shift) which is

indicative of the chemical environment of that nucleus. The
\

range of chemic~l shift values stems from variations in the

screenin~ of· different nuclei from the external magnetic

field (B ) by the valence electrons. As a result, the
, 0

~

effective magnetic field (B) experienced at the nucleus is

represented by

B=B(1-0 ).
,0 TOT

The value of the screening factor (0 ) for a
TOT .

nucleus may be assessed by aC90unting for the various

contributions to the local electronic shielding effects as

well as contributions from other more distant magnetic

1



effects. The expression for overall shielding may be written

(Harris, 1?83) as a sum of individual shielding ~erms:

o =0 +0 +0 +0 +0 +0.
TOT d p m e $ r

The term 0 is the local diamagnetic effect originating from
d

the electron motion around an 'atom induced by the external

2

magnetic field. The o term, representing the local
p.

paramagnetic effect, is aptly named since this contribution
(

opposes ~~~iamagnetic effect and thu~einforces the

apPlied_f~t:d Bor this term arises because of the mixing of

~ the molecular excited electronic states into the ground

state wave funct~n in the presence of B . contributions to
o' '

o
m

arise from long range ani~otropy effects due to local

Th~, relative contribution to 0
'TOT

magnetic fields generated by the bonds to neighbouring

atoms. The 0 term is the long range contribution influenced
e

by the presence of an electric field which' alters the

electron density and therefore the local terms.

Contributions ,due to solvent effects are contained in the 0
s

term.

from each
i

shielding component differs for each nucleus within a

molecule. For protons, these components may be

qualitatively assessed. The contribution from 0 may be
d

lowered if the electron density about the proton is reduced



(' ,
.-...J.

by the inductive effects of nearby electron withdrawi.ng

groups. Since 0 is linked to the ~ixing of electronic
p

excited states into the ground state wave functions, and
r.

since the energy ~iffere~ce between the 1s and 2p levels is

large, the 0 contribution for protons is minimal. The
p

contribution from.o m~y be significant, depending upon the
rn

. proximity of the l H nucleus to bonding electrons or lone
,'t .#

" .
electron "pa'irs to neighbouring groups such as acetylenic,

3

carbony~, nit;Qsyl orcarbon-carbontfingle
. ~ ... -. ;,'.' .

... . '.,".

U~ually 0 i~~~ot significant for protons;
e' ~., i

and double bonds.
~

however,

"

..

contributions'to this term increase as the distance to

strongly polar groups decreases: The effect of 0 depends

mainly upon the chem±cal environment of the individual

:protoris·.. Fo'r' example, polar solvents will generate an

.',

..: :. ,.r

":electric· field effect which could result in an augmentation
..

of the contribution by 0 • Also, solvents like benzene will'
, ~...

impart diamagnetic anisotropic shielding about the solute

molecule. Similarly, other solvents may produce a weak

complex with the solute molecules thus altering the electron

den?ity at the proton nucleus. While 0 and 0 may
d p

. contribute the most to the total absolute screening factor,

it is the net difference in screening factors between nuclei

which is generally studied. The variations in chemical shift

between chemically si~ilar nuclei usually reflects

contributions from the shielding terms such as o ;
r

therefore



4

differences in chemical shift can provide an estimate of the
~.

relative contribution of the minor shielding components.

I
The shielding component of interest in this thesis

is a , the shielding contribution caused by a !Iring current"
l"

generated by an aromatic system (Memory and Wilson~982) .

From a classical perspective, an externa~.magnetic field,
induces a ring current caused by the circulation of

delocali~ "-electrons in the aromatic system (Wabgh and

Fessenden, 1957 and Johnson and Bovey, 1957). When the

external magnetic field is normal to the plane of the

aromatic system, the electrons in the n system are induced

to move around the ring and thereby~produce a so-called

"ring current". This current intrinsically generat'es its own

local magnetic field as shown in Figure 1.1. This l06al

field acts so as to oppose the applied magnetic field~at the
•,

;
center of the ring and augment the external field at the,

periphery of the 'aromatic system.

The rin~current effect is a" major factor in the lH

NMR sprectra of many aromatic systems. For example, the 0
["

contribution ~as been-co~sidered l~rgely responsible for the
I •

excessive deshielding of aromatic protons in benzene (07.15)

as compared to the vinylic protons of l,3-cyclohexadiene

of an aromatic

"
system. Compared to typical methylene protons (eg. cyclo-

(05.86). Conversely, the o-methylene protons of [8]para

cyclophane are forced to 'lie above the center



."

~:::r::1====r:f

t
B

o

.
Figure 1.1 A Diagra~ Showing the Induced Magn~

Field Generated by Ring Current.

hexane, 01.38) these o-methylene protons are sUbstan~ially.

"
shielded and are observed at 00.19 (Kaneda et al., 1980);

t

this observation has also been attributed to the ring

current effect. It is ~mportant to note that ring current

effects are observed in heteroaromatic systems. as well. For
/ \

example, [7] (2,6)-pyridinophane (shown in Figure 1.2)

contains protons displaying l H NMR shifts at 00.16 (Fujita

and Nozaki,' 1971) while Nozaki·ec.al. (1969) reported

"-resonances at 00.40, 0.70, and -0.40 f~rthe· ompounds [8]-,

\. '
(2,S)-pyrrolophane, [8](2,5}-furanophan nd [8)(2,S)-

thiophenophane, respectively. Even the-system [10](3,5)

pyrazolophape (Parham and Dooley, 1967) indicates the range

of compounds exhibiting the ring current effect by

.~..

5



(CH )
2 n

[n)paracyclophane

)

. l

[7]{2,6)-pyridinophane

(

6

"

X-NH; [8] {2,5)-pyrrolophane

-0; [8] (2,5)-furanophane

./
-S; [8] (2. 5)-thiophenophane

[10] {3.5)-pyrazolophane
\

-
Figure 1.2 Some Previously Studied Cyclophane Molecules.
























































































































































































































































































































































