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US,. USe, and UTe form a series of rocksalt structure ferro-

- 1 ABSfRAcr

\

'"magnets which exhibit -unusual magnetic -properties. At high -temperatures
,

all three compounds are ,paramagnetic, and exhibit local-moment-like
o ~

behaviour. At low temperatures, however, only qT~ exhibits an excita-

tion spectrum'which is characteristic '6f a local moment system. In US a

broad continuum of magnetic response more akin to what is observed iri an
.
itinerant magnet is found. In this work,we focu& on the intermediate

member of the series, USe.

We'have .performed a detailed inelastic neutron scattering study
r'

of the excitations in the low temperature fer~omagnetic phase of USe. A

.magnetic excitation branch is observed which arises from an extremely...
large zone centre anis9tropy gap' (". 10 TIlz) and disperses quadratically.

~

at small q. The spectrum is unusual in a number of respects. At the

zone eentre, the.excitation appears as a well~defined peak in the in

elastic spectrum b~t dtth an intrinsic width (". 3 THz). At large~_ q,
(

the~sca~~ering weakens and broadens appreciably. Meas~rements on a

,single domain· sample have shown that the scattering is unpolarized,.- - ~.

i.e.' it contains (approximately) equal amounts of transverse and

longitudinal response.
•
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and quadrupolar interaction, and magnetoelastic coupling.

,

\

-'...-:'\."
"

We have.attempted to describe, as far as possibi~, i the behaviour'
.,. .

of the chalcogenides using a·localized electron model of the uranium

ion. The Hund's rule ground state of the uranium ion is ~urb~d by a

Hamiltonian which includes the' effect of a cubic crystal field, exchange

With this
)

model it is possible to reproduce a number of the magnetic and elastic

obse~vables in the UX compounds.

Finally, the ferromagnetic phase transition has been examined
\

using critical neutron scattering techniques. The temperature depen-.

dence of the inverse correlation length ~nd static susceptibility have. '

been investi~ted and found to exhibit the characteristic power law
j

behaviour of ~ critical phase transition. The critical exponents

extracted from this~easurement agree reasonably well with those of th~

three-dimensional Heisenberg model. Tqe order p~rameter, however,
., ,

varies in an unusual way: the onset of,longrange order occurs roughly

5 K abovp the critic~l temperature•.This behaviour may be linked to -the

presence of large quadrupolar and magnetpelastic effects in the system.

,".".
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C;:UAPTER 1: INTRODUCTION

1.1 General Introduction
~ ,

Uranium, and its4f equivalent cerium~ are the-first magnetic

members of the actinide and lanthanide series respectively. They have

(

provided a series of new and' fascinat,ing magnetic sys'tems, the
./

distinguishing feature of which seems to be th~t the f electrons, which

"the Fe~ energy (EF). Thi~ underlying structure in the

are responslble,for}heir magnetic character, reside iri narrow bands at,
~

or near,

magnetic
",

those of

- -
electron system might be described as intermediate.:stween

"I "
the' other well-known magnetic metal systems: the r re earths,

, ~

and th~ transitton metals. For the most part, the heavy rare-earths are

.
characterized as local moment systems: the magnetic 4f-electrons are

'well localized at each site, effectively screened from their

Jsurroundings by the outer d-electrdn shells. They form a highly
~

correlated spin state within each ion and interact only indirectly with

neig~bouring ions ,via an RKKY interaction through the conduction

electrons. This is usually ~ot true of cerium or uran~um systems: The

f-shell contains a small number of electrons, less tightly bound to the

atom·in the sense that their wavefunctions extend outside the central

core. The f-electron system is then extremely sensitive to its local

environment~ and is capable of interacting directly with neighbouririg

ions and conduction electrons. In the transition metals, where the

.,

1

.1 .
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.... . .~:i.

spatial extent 'of the magnetic electron orbitals is grell'ter stIll, this

inteiaction leads to the formation of broad 3d bands (several ~V wide),

and the.concept of itin~rC;\nt magnetism. In uranium and cerium systems,

however, on-site~spin correlations still play an important role and the

ensuing description of th~ f-electron state is in terms of narrQ~ bands

or a.t times,. extremely narrow resonance states.

There are examples of uranium systems in which the localized f-

electron picture seems a valid description: U02 and UPd3, for example .....

However,some of the more novel physical behaviour exhibited by uranium

systems,arises because the proximity of the f-electron level to the

Fermi leveli makes it possible for th~ f electrons to 'hop I on and off
.'.,'

the sit~, (or, equivalently, ,in and out ~f the conducti6n band). This
< ' •

is the simple physical picture of a so-called 'mixed valence' system of
~

which cerium Is a well-known 'example. A second and more subtle manlfes-

tat ion of the f-elect~n-conduction-electronInterac~ion occurs In the

heavy-fe~mion,systems. The term 'heavy fermion' arises from the

unusually

cient, y,

large value o~ the (linear) electronic specific hea~ coef(i

D.
which 'may be interpreted as a large conduction electroneffec~

'\':.'." .
',,, tive mass •. (In. UBe13, for example, the effective mass is ,approximately.

200 times' the. conventional electron mass (Ott et aI, f.983). Despite
•

their local-moment-like appearance at high temperatures, the heavy'

fermion systems do not condense into 'ord~ary' low temperature~magnetic

ground states. U2Znli, for example, exhibits a Curie-Weiss law suscep
i

tibility a~ high temperatures with an effective paramagnetic moment

(l-Leff) of about 3 ~B (Ott et aI, '1984); it' orders antiferromagneti-




























































































































































































































































































