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A

" A ABstracT s

t
»

US, USe, and UTe form a series of rocksalt structure ferro—

. ’ . °
magnets which exhibit unusual magnetic properties. At high temperatures
all threé compounds are paramagnetic, and exhibit local-moment-1ike

i ' - & %
behaviour. At low temperatures, however, only UTe exhibits an excita-

N

tion spectrum-which is characteristic 2} a local moment system., In US a

..

. broad continuum of magnetic reéponse more akin to what is observed in an

)

“ftinerant magnet is found. In this work, we focus on the intermediate
member of the series, USe.
We-have performed a detailed Inelastic neutron scattering study

P :
of the excitations in the low temperature ferromagnetic phase of USe. A

.magnetic excitation branch is observed which arises from an extremely

. large zone centre anisotropy gap‘(f’= 10 THz) and disperses quadraticaily.

at small q. The spectrum is unusual in a number of respects. At the
zone cedtre, the excitation appears as a well-defined peak_in.the in-
elastic spectrum bﬁt ﬁ{th an intrinsic width (~ 3 THz). At largep‘q,
thegscagyering weakens and broadeds appfeciably. Measure%ents on-a
.single domain‘eamp;g.have shown that the scatterfng is unpolarized,

i.e.- it contains (approximately) equal amounts of transverse and

longitudinal response. = -

- .
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» We have attempted to describe, as far as pdséibi@,‘the behaviour *
» ' .

: w - - .
of the chalcogenides using a localized electron model of the uranium
ion. The Hund's rule ground state of ‘the uranfium ion 1s ps{surbed by a

Hamiltonian which iricludes the effect of a cubiec crystal field, exchange

.

and quadrupolar interaction, and magnetoelastic coupling. With this
model it is possible to reproduce a number of the magnefic.and elastic

observables in the UX compounds. .

Finally, the ferromagnetic phase transition‘has been examined

. AN
using critical neutron scattering techniques. The temperature depen-—

dence of the inverse correlation length and static susceptibi}i;y have
been investigated and found to exhibit the characteristic power law

- 4
behaviour of a critical phase transition. The critical exponents

extraqtgd from ;hiS'm;asurement agree réaaonably Qell with those of the
three-dimensional Heisenberg model. The order pdrameter, however;
varies in an unusual way: the ohset bf 1ong range order occdis‘roughly
5 K abovz the briticél temperature. This behaviour may be linked to the

presence of large quadrupolar and magnetpelaséic‘effects in the system.

iv
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CHAPTER 1: 1INTRODUCTION

»

= : 3,
Uranium, and its 4f equivalent cerium, are the-first magnetic

1.1 General Introduction : , ~
members of the actinide and lanthanide series respectively. They have .
provided a series of new and fascinating magnetic systems, tEF
.distinguishing feature of which seems fo be that the f electrons, which
are responsible.for'}heir magnetic character, resiée in narrow bands at,
a . 5 - “»
or-near, the Fegg;\énergy (Ep). This, underlying structure in the
magpetic electroﬁ system might be described as 1nterﬁediage etween
those of the other we%l—known magneticlmetallgystems: the raz;);arthsz
and th® transition métals. F;r the mogt part, the heavy rare-earths are
characterized as local moment systems: the magnetic 4f-electrons are

-

well localized at each site, effectively screened from their

. 3

surrouﬁdings by the outer d{;lect{dﬁ shells. They form a highly
correlated spin state Qithih each ion and intergcﬁ only indirectly with
] neighbouring lons.via an RKKY interaction throughffhe conduction
electrons. This is usually not true of cerium or uranium systeﬁs: The
f-sﬁell contains a small numﬁer of electrons, léss tightly bound to the
atom in the sense that their wavefunctions extend outside the central
‘core. The f-electron system is then extreﬁely sénsiﬁivé to its iocal
environment; and is capable_of interacting directly with neighbourirg

-

ions and conduction electrons. In the transition metals, where the

e Y
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spatial extent of the magnetié electron orbitals is greater still, this
interaction leads to the formation of broad 3d bands (several ‘eV wide),
and the .concept of itingrant~magnétism. In uranium énd cerium sy;tems,'
however, on—siteﬂspin correlations still play an impor;ang role and the
ensuing description of thg f-electron state iIs in terms of narrow bands
or at times,.éktremely narrow resomnance statés.

There are exa@ples of uraﬁium systems in which the localized f-
electron plcture seems a valid description: UO2 and UPd3, for exqmple.
Howévery.sohe of the more novel physical behavfour exhibited by uranium
systgms,arises because the proximity of.the f-electron level to the
Fermi ievelimakes it possible for p@g f electrons to 'hop' on énd of f
the site, (or, équivalently,_in aﬁduoutAof the conduction band). Thisr
is the simple physicel plcture of a so-called 'mixed valence' system of
which cerium is a well-knﬁwq‘example.' A seéond and more suﬁcle manifes-
tation of the f-;lectréﬁ—condugtion—eleétron interaction occurs in the
heavy-fermion systenms. vThe term 'heavy fermion' arises fgom the
unusually larée value of the (1inear)re1ectroqic épecific heat coeffi-

&

cient, v, which'hay be interpreted as a large conduction electron effec~

., .

s, tive mas:}. (in.UBela, for example, the effective mass 1s,ap?roximafe1y
200 timeéithe,coﬁventional elégtron mass (Ott et al, T983)5. _Despite
theif local-momegt-like appearance at high temperatures, tﬁe heayy
fermion systems do not condense into ‘ordffiary’ low temperature,magnetic
ground states. U22n17; for ex;mplg, exﬁibits a Qurie-ﬂeisa law suscep;

= (. - ‘.‘
tibility at high temperatures with an effective paramagnetic moment

-~ -

(Megg) of about 3 pp (ott et al, "1984); it orders antiferromagneti-



cally at = IOiK but with a strongly supbressed moment of onlylH 0.8 "pp .
..(Co)..c et al, 1986). CeCug (hogp ~ 2.7) fails to order magnetically,
exhibitipg instead a large Pauli-like susceptibility at the lowest
_temperatures (Ste&art et al, 1984a; Pop et al, 1974).. The low tempera-
ture ground Bteﬁe of UPt3 (“eff ~ 2.6) is suﬁerconducting (Schneid%r

and Laubschat, 1981; Stewart et al, 1984b).

L

4
1.2 UX Compounds - T ' t

This work focusses on a séries of-magnetic uranium systems which

S

exhibit the characteristic duality of localized and non-localized
electron behaviour. The series consists of materials”of, the form UX v
where X is a member of the group 6 (chalcogenide) elements, specifically

S, Se, and Te. A second, parallel series of compounds is formed byﬁthg

grouﬁ‘s (pnictide) elemgnts; N, P, As, and- Sb. Thesge compounds have a

rock-salt structure: an fce lattice with a two atom basisvconsisﬁing of
° . LY
a uranium atom at (000) and an X atom at (1/2,1/2,1/2). "All are para-

magnetic at room temperature and magnetically ordered at low tempera-
tures: the chalcogenides order ferroﬁagnetically and the pnictides

antlferrbmagneticglly.

-

The phase transition in the chalcogenides w?s'first posiéed from

an anomaly In the specific heat measurements of USe) and US (Takaﬁashf,

s

1965,_and Westrum, 1968). The magnetic nature of the phase tﬁ%nsiqion

. —_——-

Eecame“apparent frém measureFents on a powder sample bY“Chechernikov et .
al (1968). ‘These measurements demonstrated an increase in the bulk
magneti;htioﬁ.consistent with the onset of ferromagnetism, and approxi-

hately Curie-Weiss law behaviour of the susceptibility in the para-

~

. . . .
| | | C;_
L - , . B
o R
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magnetic phase.
The.magnétization axils for the ferromagnetic nrd;rlnn s <111,
Single crystal measurements on US (Tillwick and du Plessis, 1976), USe
(Busch and élgt,-lQ?S) and UTe kVogf, 1980) show that an extreﬁély
”strong anisoﬁroﬁy;;onfines the spins te this -easy axis; The anisotropy.
is esti%t‘ze‘d ‘as 3000 koe in US (dw Plessis, 1986) and 1000 kOe in UTe,
| M%he ferromagnetic transition Is aégompanied by-a.lnrgg rhombohe-
.drql.dis;ortion'along the easy axis. Ultrasonic aqd s;rain measurements
(éu_Rié;sis and Tillwick, 1979, Nﬁeﬁschwander et alf'1986);show that és

the critical temperature (ic) is approacheh, there 1s a softening in
the bulk elastic constants. Below Tes Marples (1970) has measured.phé
magnitude 6; the distortion as a function of temperature 1nJUS and USe.
At 4K the distortion is iargést in US and smallest in ﬁTe.
1.3 Electronic Cround Staté

The electronic ground state of the uranium ion Iin most compounds’

is dnknown. Only in two cases, U0 (Frazer et g, 1969, Cowiey and

Dolling,;1968) and UPd3 (Buyers et al, 1980) is there evidence for a

. 5 .
specific ground state ‘cofifiguration (a localized Sf° state in both). In.

a simple lonic bonding picgure, the ground state electronic configura-
tion of.ﬁﬁ'would'result from the uranium atom donating electrons, as .
needed, to coﬁpléte'the valence‘shelliﬁf.the ligand X atom. A uréntum“
-1on qonfigurafion of‘5f3 is predicted in the pnictides, and 5f3 6dl in
the chalcogenides. Sincg the uranium ion wqﬁid be left Qith the same

electronic groﬁnd state in each of the chalcogenides (or pnictides), 1t.

might be expected that the magnetic behaviour of these compounds would 7

a

o »

1

&

b
W



be very similar, with differences-ascribed to changes in the *size of the
X .site. This is In fact observed. Table 1.1 summidrizes the static

magnetic properties of the UX?séries. The similarity-ampﬁé the chalco-~
| ‘

genides 1is apparent. The gltuation in the pnictides is more complicated
because of the different antlferromagnetic ordered structures. There 1is

a definite correlation, within each grqup, between the magnetic proper—

ties and the lattice constant. As the lattice constant increases, the
ordering temperature decreases In the chalcogenides and‘incréaseé in the

pnictides. Furthermore, the largest moments occur in the compounds with
A ‘ ‘
the largest X sites, and the smallest moments, in those with the

smallest X site.

: The suppfgssion of magnetic character with decreasing inter-

3

atomic distance 1s not unusual in cerium and uranium systems—It was
(4

first recognized by Hill (19?0) that there was a strong correlation

between the lattice parameter and the low temperature ground state of
uranium'systems: a largé U~U_separation 1ed to am gnetic ground state
andfbmgll U-u separgtion; to a metallic (Superconducéing) ground state.
An example of the’effeét of decreasing inter-atomic, distance on f- ‘
electron behaviour-can be found in cerium metal (Cogblin, 1971)} The
ﬁﬁﬁinal electronic ground state of cefiéﬁ‘is-4fl, corresponding to a
valence of 3%. At standard temperatﬁfe;and pressure, cerium 1s a para-
magnet with a moment of = 2—5“Bf”.At.” 7 kbar however, cerium under-
goe%.a first order transition from its'y-phﬁse to its a-phase in which

the structure remains fce but the lattice parameter decreases by = 6%.

a=cerjum is axPauli paramagnet‘with an 'intermediate' valence of = 3.5%,



Table 1.1 The stgtic magnetic propertles of the UX gompounds.

~

lattice _ ordered ordering paramagnetic ordered

Ux parameter structure temp " moment moment
(A) (K) (llB) . (“B)
us 5.49  F <11 180. 2.25 1.70
USe . 5.74 F <111> -172, 2.50 2.0
UTe 6.18 F <111> 102, " 2.60 2,25
UN 4.89 AF type I - 49.5 2.50 0.75
UAs 5.78 AF 2q 126. ©3.40 : 1.95

usb  6.18 AF 3q 217. 1.85 - 2.82



-]
At roughly 50 kbar, cerium undergoes another phase transition to the

hexaponal @'~phase which has a valence of 4+,‘(£.e.,h non-magnetic Afo
confiﬁurafion) with a low temperature superconducting gfound-state.
Cgrtain-features of the underlying.band strucﬁgre of]the Ux
compounds have emerged. Rudigief et al (1985) have"perfo?med low
tempé;ature gpecific heaf measurements on Single c%?gtal UX compounds

- '{P
and ohserved values of y which are approximately 4 to 10 times larger

th;; those obtained in the isostructural,lbut non—magnetic, LaX or ThX
coﬁpounds. This igkattributed to the presence of an f-electron density
of‘states at the Ferm! energy. The ;ystematic variation of ¥y éuggests
that the density of f-electron states at thg Fermi level decreases in
the chalcogenides_ané 1ncreases.in the pnicﬁides, with increasing

f'
lattice parameter. y ' g

For the most part, photoemission and optical measuremeﬁts seem
to suppert this result (see for example Bae;, 1980; Greuter et al, 1980;
Shoeues, 1980). Based on optical measurements Shoenes (1980) has |
proposed an electronic séructure of the UX compounds which consists of a
narrow (= 1 eV) f-elecfron density of states just aﬁbve Ep overlapped
by a much broader d-electron band {of width ~ 6 eV), and well-separated
from the ligand p;band (which is priharily responsible for bonding).
The f-d 1nte€$ction produces a dip in thé d—étnsigy of states in the
vicinity of the maximum in the f—density‘;f states glving rise to a peak
in the occupied d-electron density just below Ep. Between the

pnictides and the chaldogenides the main difference 1s in the position

of the p-bangd which is = 3 eV below Ep in the Pnictides and .= 4 eV

-



a

¥
o
2

below in the chalcogenides. Within each group, there is an overall <
narrowing of the band structure as the lattice constant Increases. This.
-p%nture 1s consistent‘wiph the photoemission measurements on US and UN

" L
(Erbudak and Kellery 1979; Norton et al, 1980) and with the calculations

" ]

of Brooks and Glotzel (1980) which specifically consider the effect of
N :

f-p hybridization on the f-electron bandwidth. However, the photo-

emlssion measurements of Riehl et'al (1982) suggest that there are

’

significant difference; between the pﬁictide_and chalcogenide band
;tructures around Ey. ﬁéasurements on UTe suggest that the 5f level
is 0.75 eV below the Fermi level, leading to a quasi-localized 3-6
f-electron state. © .,

Spin polarized phbtoem¥ssion megsurements indicate that in the
chalcogenides the d-electron moment opposes the f-electron moment
(Erbudak et.al, 1979), This is consistent with the observation .of
Wedgwood and Kuznie;z.(1972) that the ordered moment observed in magne-—
tization is always smallér than the (primarily) f-electron moment
observed in neutron scattering me;sufements.

1.4 UX Spin Dynamics ’

' Thg-spin dynamics In the loﬁ temperature ordered phase hqve heen
Investigated by inelastic neutron scattering. 'Conventlonal' spin wave
excitations, that is sharp resolution-limited peaks inlthe inelastic
spectrum, are only observed in the compoundé with the largest lattice
constants, UTe and USb, 1In US, UN, and.UAs, no well-defined peaks

appear, and only broad continuums of inelastic magnetic scattering

exist, even at temperatures well below the magnetic phase transition,



In US and UN, the response is centered at finite frednency, while in
UAS; the continuum is centered anuhd zero.frequency. *
Even in USb and UTe, the response 1s not entirély conventional.
In USh, a second 'oﬁtic' branch of magnetic qharacté£ is observed, in
which the cxditat;ons are bgoad and not well-defined in%\energy. Under-
lying the scatteding from these'two branches is again an extended conti-—
nuum of magnetic response. 1In UTe, the spin wave branch observed by
- Buyers et al (1980) shows a rather large zone centre anisotropy gap, and

quadratic dlspersion. The excit%tions howevef, are only visible at

small q and cannot be followed to the zone boundary. The search for

continuum scattering has not been carried out in UTe.

1.5 Outline of this Study . i

_This work 1s an investigation of the magnetic behaviour of USe,

the intermediatetmember of the chaldogenide series. In Chapters 4 aﬁd

-

5, 1Inelastic neutron scattering measurements on a #ingle crystal sample
in the low temperature ferromagnetic phase are presented. Measurements

performed on a multidemain sample establish the magnetic origin of the
» : ’ ' .
observed excitations dhd examine the wave-vector dependence. The

fl

polarization of the response ls determined in a second set of measure-

ments performed on a single dohain-sample.

‘e

.The low -temperature response is characterized as being

r

'intermediate’ between that of-US and UTe, in the sense that’ well-
defined, but not resolution-limited, peaks are observed, in the energy
spe%yrum'at small q. Well away from the zone centre, only a broad

continuum of wmgnetic scattering 1is ?Pserved. The single domain
. ’ . + ’ ) .
) ) | ) . &

1

ae
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10°
experiment shows that, at the zone centre at least, the.scattering is

unpolarized.

Although 1t is clear thatjthe dynamic resbonsé canﬁét be
described within a simple local moment picture, Jackman (1983) has had
. conslderable success in describing, quantitatively, the static magnetic
properties of the chalcogénide compounds within such a'model.‘ In
Chapter 6 Jackman‘;'calculation, whichAconsiders crystal field and .
exchange effects, is extended to include magnetoelastic and quadrupolar
1ntefagtions. With thngﬁpdel-it 1s possible to Feproduce the static
magnetic propertles as well as certain feaﬁure§ of éhe bulk elastic and
dynamic ﬁagnetié‘responsé. An electfonic'dampiﬁg model 1is discuséea in
connection with the broéaened responée.

Chaptef 7 1s a study of the magnetic phase tpansition in USe.
Critical neutron scattering techniques have been used to probe the
temperatﬁre dependence of the static susceptibility and the correlation
leﬁgth in the.critical regime. These are found to be consistent with
the power law fo;ps predicted by scaling. The behaviour of the order
parameter 1s fgﬁnd.to be unusual in tyat_the onset of loﬁg range order
occurs ébove th; apparent critical téﬁperature. Thg possible origin of

this effect is discussed.
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CHAPTER 2: NEUTRON SCATTERING \\\
Neutron scattering 1s a very powerful-technique for studying
R m—————a, . ’
condensed matter, and in particular, for studying magnetic properties.
Like X-rays, thermal neutrons have wavelengths comparable td interatomic
distances and so can be used‘Fo pr%be the structure of mafter on that
scale. Unlike X-rays, neutrons.are very penetrating'énd so can be used
to pamplé the bulk and not just the surface ‘propgrties of a material.

Furthermore, thermal neutron energies are comparable to lattice excita-

tion energies, and in the process of scattering, measurable amounts of
1y

'energy'can be exchanged between the neutron and the solid. Finally,

~

2 -
because a neutron has a magnetic momen{: it can Interact with magnetic

constituents of matter and provide Information about magnetic struc;ure
and excitatlons., It 1Is useful to begin with a brief discussion of the
principles involved in neutron scgttering from‘é single cfystal.
2.1 Triple-Axis Spectrometry |
A .neutron scattering event consists of a neutron with some wave

vector,'ﬁ, and energy, Eg, impinging on a sample, exchanging energy
and/or mohentum with the sample aﬁd as a result scatte;ing from the
crystal with a new wave vector, i', and energy, E'., Such an event is
chiaracterized, by two things: ¢

{1) The energy transfer to {or from) the sample, AE = Eg - E’

(2) The wave vector {(momentum} transfer, 6 = Q - E', |

Y11

— r



determined by the.wavelength and direction of incoming/outpgoling
neutron and the crystal orientatlon. | )
These can be determined egperimentally using a-neufron triple-axis
spectrometer.

A schematic of a triple-axis spectrometer is shown In Fig. 2.1.

The “"white" reactor beam. falls onto a monochromator (M), a crystal of
o .

known ‘lattice spacing (dy) and orientation (&), which Bfﬂgg ‘

.reflgcts neutrons of a specific wavelengﬁh, A = 2dysin@y, onto the \

sample. The sample (S) is‘mou?teq_on a roﬁating table witﬂ its orienta-

_tion in the Scattgriﬁg plane séecified by the angle Y. Neutfonﬁ scat-

tered from the saéple in a particular dirgction, $;~fall onto the.ané—

lyzer (A), a second monochromating crystal characterized by dp and, . .
8,, which Bragg reflects neutrons into the detector (D). It is simple
to show that a given configuration of the spectrometer (i.e. Oy,

t ey
GA,.¢, y) maps on to a particular scattering event (i.e. Eg, E', k, éfap -
. , .
k).

A systematic way of surveylng the energy and wave-vector depen-

: -+
dence of the scattering 1s the constant-Q scan. In such a sean, k and

> . > > . Y
k' are varied, but only in such a way that k - k' 1s not. This allows .

+

: 7 & o
the energy transfer, AE, to be varied, for a fixed wave vector, 0. This
v »

is most easily seen by considering the geometry of the constant-) scan
in the crystal's reciprocal-space.

When dealing with a cubic structure, it is convenient to erient

the crystal with a (110) vector perpendicular to ‘the scattering plane,
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since the scattering plane then contains the crystal's three axes of

highest symmetry ie. (100), (110), (111). Figure 2.2 shows this plane
# i

for an fcc real space lattice (relevant for tHe UX compounds). It can
o ¢ _ : .
L be seen that the zone centfrs lie on a face centered rectangular lattice

separated-by 4n/a in the (001) direction, and 72(4n/a) in the (hh0)

directlon. The zone boundary, as shown, is a hexagon, The scattering .

> . )
vector, Q, isrthe (111) zone boundary (2.5, 2.5, 3.5). The incident and

-

.o final neutron energies are determined by the lengths of X and k'

L4

e I d i "
respectively. The k and k' vectors shown correspond 'to AE > 0.

3

A two-axis spectrometerAis a somewhat simpler conflguration in

. o~
which the analyzer is removed (and the angle 28, set to zero}. I

this case, all neutrons scattered in the direction. ¢ are detecte ’

a ~‘ . \
. Independent of their scattered energy.
& : :
Counting is normally done relative to 'a 'monitor' count., The ¢

. r
'monitor! is'a low efficiency}fisSion counter situated between the mono-

A

chromatork?nd the sample. The sample coﬁnt 1s halted after a‘specified

. ‘ . ; . .
numb of counts at the monitor so as to normalize the counting time to
.ot

a's;tﬁgﬁm er of incident neutrons.

- The more technical aspects of neutron scatter{ng are discussed

in some detg11$by Bacon (1975).

2.2 Resolution Function h

-

, Expgrimentally; 6 and w aré neﬁe} perfectly well-defined.

Becausqlthe scattering elements have finite mosaic spreads and because

. Y ) ' . *>
collimation tolerates some angular divérgence in ﬁ and k’, the spectro-

S |
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Fig. 2.2 The réciprocal space of an fcc lattice in the (hhl) plane.
The zone centres lie on an fcc rectangular lattice. Shown
is a typical scattering geometry at a wave vector transfer,
Q, of (2.5, 2.5, 3.5). q is the reduced wave vector.

-
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meter will always be sensitive to some range of wave vector and enercgy
transfer around the mggy*probable values. The uncertainties in 6 and w
. are described by the spectrometer resolution function,
> > .
R(Q°+ 4aq, w + Aw), which measures the probability of the spectrometer
> : -
registering an event at (QO + Aa, W + Aw), when it is meant to
‘ F
measure an event at (Qo’ mo):
> ) . ' .
R(Q,w) is given by ) '
> > > > ‘ :
R(Q,w) = [ P(Q,w) dk dk' [2.1]
where P(a,M) 1s the probability of ﬁéasuring an event at (a,m)
“originating from a Qar;%pular'sec of K and K'. P(a,m) 1s obtalned by

n

assuming that the Eollimators and mosalc spreads produce Gaussian
&

distri?ptions of angular divergences. .(For example, the probability of

there eing a mosalc block at an angle a away from the central block

- (%H?
varies as e n

where 1 1g the mqsaiﬁ spiiead of the scattering

-

: > >
element) . %(Q,m) is then the sum over all paths (k,k') to the polint

Qw0

4
‘R(60+ AQ,uB+_Am) s functionally described T Tarms of a E(/
resolutiom ellipse. In general the resolution ellip ace,

>
in 4-dimensional Q-w space, which satisfles
.. . - fa - .
3 i, > : _ 1 - .
R(Qo+ 4Q,w_+ Aw) = 5 R_(Qo""o) (2.2]

that is, it is the set of (Aa,Am) r which the probability of an event

! {1s half the probébility of the most Mjkely event. For a two-axis

measurement, where there is no energy analysils on the scattered side,

the surfzce exists only in (-space.
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¥

The measured intensity of the scattering, I(ao’ub)’ is

determined by convoluting the intrinsic’ sample scattering functiomn,
: . - .

S(a,w), with the resolution function, 1i.e.
1(6 ;w ) = f da dw S(a + A6,w-+ Aw) R(a + Aa, m-+ Aw) [2.31.

'Notice that 1if S(Q w) is a 6- function, then the integration returns the
/

resolution function. In principle, a Br?gg ‘peak 1s a 6-funct on, and so

can be.used to divectly probe the resolution function in the )

neighbourhood'of a reciprocal lattice vector.

'

Detalled reviews of. the formalism required In calculating the

resolution function are given by Cooper and Nathans (1967) and Bjerrum

-

Moller and Wielsen (1970). ‘ '}



CHAPTER 3: NEUTRON SCATTERING CROSS SECTION

o’

There are a number of processes .that can cause a neutron to be
scattered.‘ Bragg“reflect;on is an example of ela%ﬁic scattering where
the scattered neutron has the same kinetic energy/;s_the incident
neutromn. Neﬁtrqns can also be scattered inélaétically, in the process -
of creating or annihilating qLanta of energy (such as a phonon) in the
scattering ‘system.” Because of its magnetic moment, a neutron cun_also
be scattered by nucleér and electronic magnetic moments; here the
inelgstic scattering Involves energy from magnetic excitations such as
_ spin waves. The primary concern of this thesls s the scattering of
magnet{c origin.

3.1 Magnetic Scattering Cross Seg}ion _ . |

Considér-a system of local moments, 3, on a Bravals latﬁfcé. 1‘55
The magnetic scattering cross sectlion for ;h event af wave vectér 6 and

energy fhw, Is given by

2 . 2 2 . ~ - :
: . 1.2 .2 -2W 1 + :
Lo - Be =) ol eA@e ™V xe - a0 £ 5@ 0 1)
dQdE" . omge : : af : .
where
- » 1l 1 “fwt B
s (Q,w) =% X 1 T g oY G% oy Py | [3.2)
< ap 2n - - 1 .
I -0 0 .
and Y = neutron gyromagnetic ratio
e = electron charge A
me = electron mass
‘ ¢ = speed of light
g = Lande splitting factor
. 18

p
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(Marghall and Lovesey, 1971, page 234). The Important term is the

scattering functlon SGB(Q,w). JE(t) Is the B component of the angular
i .

momentum at site I, at time t. The cross section is essentially the
space and time Fourier transform of the two—spinﬂgtzéflation function,

%0 Py>.
0 1 X .

-+ ’ ’
Qa 1s the component of Q/'Q' along the -axis a. (6aﬁ- QaQB)

is strictly a geometric factor which limits the eross section to
.examining the components of spin perpendicular to Q This term is
important in determininp the magnitude and polarization of the

scattering (Sec., 3.4)

| £2(Q) is the magnetic form factor. It is the Fourier transform
of the spatial distribution of the'magqetic electrons at the magnctic
site (normalized to unity at Q=0). A plot of fz(Q) versus Q for uranium
appears 1& Fig. 3.1. It can be seen that.the focm factor falls off

sharply with increasing Q so that the magnetic cross section is largest

at small 0, , “\
- ) ~ \
e-ZW(Q) 1s the -Debye~Waller factor. This factor accounts for

’
the fact that the scattering nueclei are not Fiﬁned‘to the lattice sites,
but vibrate around their equilibrium positions.{Ehis results 1in a
decrease of the coherent scattering Intensity. For a crystal with cubic
cymmetry, |
. 2W(Q) = Q <u ,> k [3.310.
where <u > 1s the mean square displacement of the atom. Thc.
displacement is tempercture dependent; its magnitude can be determined

’
experimentally from the intensity of nuclear Btggg peaks.

¢
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3.2 Magnetic Bragg Scattering
The cross sectlon for magnetlic Bragg scattering is obtained from

Fq. [3.1] by considering the time averaged correlation function, i.e.

-

=

%o Py B QP [3.4]

o % 6 %

.

Tﬁe temporal Fouriler traﬁsform reddges to a 6—function in w which can be

¢

climinated by integration over energy. In the case of a ferromagnet

with ordering direction z,

WS =<whHh =0
. | [3.5)
and . <J%> =% = <3% . :
0 - {
The elastic scattering cross section reduces to .

Vo242 o _ - 3 .
do N (1o )" gp? 2@ MY 1-h) o EE 1z e@ - D)

e . K | T (3%5]

>
where I' is a magnetiec reciprocal lattice vector. In a ferromagnet, the
.

majinetic reciprocal lattice coincides with the nuclear reciprocal

lattice, that 1is, both the nuclear and magnetic Bragg peaks occur at
2 -, .
»

q =°0.
Notice that owing to the geometric factorf magnetic Bragg

scattering cannot be observed at any point iy which is along the

~

. 7’

.'mtinetizatioﬁ'direction, z.

&

3 Inelastic Magnetic Scattering Cross Section
N :

In order_to examine the inelastic magnetic cross section, ¢
it 1s convenient to rewrite Eq. [3.1] in terms of the generalized

susceptibility, x(a,m). This generalized susceptibility gives the
* R 4
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response of the system to an applied magnetic field of spatial wave

vector a and frequency w. It is the quantity of physical importance in

the sys}em, with the real part .{x') giving'the in-phase response and the

imaglnary part (x™ gfving the out-of-phase response. x;B(E,uﬂ is

related to saB(E,w) by},

gi] 1

> 1 K

Syald,w) == = X o (q,w) [3.7]

w0 TE T e e |
Substituting into Eg. [3.1], the cross section becomes
2 2 2 i ° —_ ‘ L) .,
do Nk' , ve 1 2 =2u(Q) 1 “w

= ( ) £7°(Qle _ = (6 .- QQy x.(q,w)

didE k 2mec2 i (1-e Eﬁu5 af apf a*p aﬂ »

{3.8]
For a system ip which J? is conserved, (eg. Helsenberg ferromagnet)

only terms in which a = B survive, and, assuming that the transverse

components are equal, i.e. x;x = x;y, Eq. {3.4] can be rewritten as

2 . 2 2 ' o '
2méc nuB

(T:ggw—) (1~ ) ¢, @w '+ (1 + 0D ¢ @,w)]
Py |

3.4 Polarization Dependence of_EEs/Ségltering Cross Section

It is posstble, under some circumstances, to distinguish between
scéttering which arises from the longitudingl compornent of the dynamic

susceptibility, x;z, and thét which arises from the transverse - A

-

-

cdmponent, xxx' The'separatﬁoﬁ relies on the observation that the
‘ . .

susceptibilities are a function of reduced wave vector, q, whereas the

geometric factors in the cross section are a function of the wave vector

+> : > >
transfer, Q. Thus if two wave vectors, Q] and Q2, correspond to the

)
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‘ S :
same 3, the susceptibilities will be the-same at both wave vectors, . but

their relative weights in the éross section need not be,

Congider, for example, a sample with a single ferromagnetic

domain. (The d!!hetization axlis is taken to be z.} If Q is parallel to

the magnetization direction (Qz = 1), onlylthe transverse component

LY .
appears In the cross section, i.e..

~

[3.10]

a%o « 2Xx ('CT,w,)_.
dQdE" X,

1f 6 is perpendi;ular to the magnetization direction;(Qz = O)? both

transverse aﬁd lohgitudinal components will appear with equal weight,
- .

49 | x;z(a,w) + xx (2, : [3.11]

This type of polarization analysis i1s not possible In a
multidomain Bample where the magnetféatiot}a;is is not unique and the
Fo

cross section must be domain averaged.. the uranium chalcogenides,

with a <{111> easy axis, there are 4 equiﬁalént directions, and in the(;}

s

v L]

miltidomaln sample the cross section becomes

' %
2 .
ddﬁdg' ) % (_x;z(a’“’) +2 xxx(q,w)) . [3.12]

Notice that the weight of transverse to longitudigal résﬁﬁnse is ¥ixed

and depends on 3 féther than 6. ‘
. 4 . N

//2¢d3.5 Phonon Scattering. Cross Section : ’

Although the magnetic scattering is of primary interest in} this"

work, there are other processes, particularly one and two—phonon'

processes, which can contribute substantially t&wthe scattering. The

»
N

(/
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coherent scattering cross section for the creation of a phenon with

(reduced) wave vector E, from phonon branch j, is given by

»

. > T
424 Nk' |E P2 6-31(3,3) HTEy o0 2 K
- (deE')qj B B [CH 7 ' 2wqj'{1 * “cij}

: k\\_\M‘ x Sthu - 48) 83 - 3 - D) - [3.13]

ﬁuhj is the energy assosrﬁted with phonon Ej, and {1'+ nqj} is the .

populaéioﬁ factor.

-

The main body{of the e‘f

selenfum atom). mg Is its mass; ry it§ position, bl its i 4 o
L ' ‘+ > ‘ - .
- scaftering length and ei(q,j) the elgenvector for the phonon qj. T%f
wave vector transfer, a, appears dotted Into the elgenvector. ¥ is the

. > t > +>
. nearg;z(ieciprocal lattice vector to Q such that f - Q = q. As before,

> e is the Debye-Waller factor.

" It can be seen from Eq. [3.13] that a one-phonon event appears
I the cross sect@oh}as a S-function at energy ﬁhhj' In the neutron

data, hecause of the finite resolution, it _will appear as a peak

centered 9“ Wy o

-

a

It will be remembered that an important-part)of the Q-dependence
.+  1in the ma%itic cross section comes from fz(Q) {the\ magnetic form
factor) and this results In a rapid decrease Iin cross sectlion as |Q|
increases. It can be seen from Eq. [3,13] that the phonon cfoss ‘dection
essentially varies as Q2 so that the p onon cross section increases with

increasing lQI. This contrast in behaviour will be uséful later on when:

it becomes necesséry to separate nuclear from magnetic scattering.



_ Thé exact expression E;;iﬁultiphonon gcattering fs cumbersome.
{See, for example, Marshall and Lovesey, 1971, pag;\QQQQZItiS e#pectgd
that‘the multiphonon pontribution7ta£es the form of a continuum, broadlyl
peaked at zero energy transfer, and that since most of the events will\\‘ﬁr
be two-phonon (as opposed to less likely. three pr more phonon) events,

-

it wil{\}ave a Q-dependence which goes like Q .

3 e



- CHAPTER  4: . MAGNETIC EXCITATIONS IN THE ORDERED PHASE

4.1 Spin Dynamics of Ferromagnets . I

Magneti¢ excitations in ferremagnets have been well studied in

two limits. The first is the 11mlﬁ in which the electrons'responsiblé

for the magnetic behaviour are well localized at each magnetic site,
* &
. The other 1s the 1imiy{ where the magnetic electrons occupy bands with '
o 0

¢
'

- ‘ energy near the Ferm£ energy and so must be. consiq?red itinerant to some
’ - . . T
extent, : . ®

i

The prototype local moment system ls the spin-only lleisenberg -

ra

N ferrbmagnet. The paramagnetic grpund state of an lon with spin S 1is

(2$+1)—fold degenerate, But in the ferromagnetic ordered state, the
’ . kygegeneracy is b?oken'by the mean exchange fielﬁ. Thglex01Catiop spec- /r_/f“\_
trum results from (magnetic aipole) transiEions bgtween these me?n~
fie;d-sbliﬁ single ien levels. A‘Lollectiﬂﬁ exciéﬁﬁiod (2; spin.que)i
resﬁlts from the'coupling between the excitations: on adjacent Q;Ees.
Because these modes ofiginate from transitions between well-defined

.energy states, they‘ap;éar.in the susceptibility as a serles of delta \\\

functions in a and w, At small q the diéperston is qua&}atic:

E = Eg + qul fHere, Eg is the zone centre anisotropy gap and D is the
stiffness constant, proportiénal to the coupling between the spins.
| The simplest model of itlnerant magnetism considers a single. G
exchange split electron band which overlaps the Fermi surface. In this
‘modei there are, in.principle, two types of excftatipns.' At long wéﬁe-

\,

’ : Y
. ’ :\‘

26 ’ . K e B
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lengths and low energies, it is possible to have collective excitagions
such as those observed in the local moment systems (Izuyama, Kim and

Kubo, 1963). At shorter wavelengths this spin wave branch is expected

to-merge with-a broader %pectrum of single electron spin—flip;excita—

tions known as Stoner modes. Inelastic neutron scattering measuremenﬁé
of the exéitations in transition metal magnets such as Fe and Ni agree,
at least qﬁalitatively,‘wtth the prediétions of this modél: well-
defined spin wave exgitations near the zone centre decaj into an 1ﬁelas:
tic continuum of scattering ag’h increaseé (seg, for example, Mook 1967,
Cooke 1972). ' ~ - ~

In this chapter, neutron scattering measurements of t@e spiﬁ
dyﬁamicq in thellow teﬁperature ordered phase of USe are described.

f ese measurements, performed on a multidomain samplé{.espab}ishﬁthe
agnetic chafacter of the pbserved-e*citations and map out tﬁeir disper—
sion. Chapter 5 desefibés measurements made on a single domain sample
from which the:ﬁolarizatibn of_theAexcitations is determined.

4.2 Details.of,the Exp;riment_

The sample is a small single crystal of USe in the form of a w
plépg (roughly l‘cm 6n a side) with a total volume of about 0.3 cma._
(%or details of growth and characterization see du Plessis ei al, 1982).
Sample rocking curves at the reciprdcal lattice points (222) and (353)
are shown in Fig. 4.1._4Ca115ration of the spectrometer using an
aluminum powder suggesgg a crystal mosaic\of_less than 0.2°. Thé sample

was mounted.in a He cryostat and maintained at a temperature of 4 K

throughout these measurements. o A
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- This experiment was carried out on the C5 ktriple axis spectro-

meter at the NRU.reaccor, Chalk River, using a beryllium (002) monochro-—
mator and a pyrolytic graphite (002) analyzer. These had mosaics of

0.33° and 0.39° respectively. Collimation before and after the.sam%}e

-
»

gaﬁe.angular divergences of 0.70° and 0.67° respectively,
Data was colle;ted in the form of”constant—Q scans at a fixed
> gdattered-neutron energy of 10 THz. (1 THz = 4.0 mev).. %ﬂis permitted
~the use of a 'pyrolytic graﬁhite filter in front of the Fnalyser‘to
reduce higher order contamination.
A fast neutron béckgro?nd measurement was obtained at each point
- by ropatihg tﬂe analyzer (about 0.5°>'Sd that it was ngo longer Bragg
éca;teging neutroﬁé into ;heidétector. The scattering from the aluminum
: sample holder, cryostat,‘éte. ueretmeaSQred in a separate set of runs b&

mounting a blank (a_duplicate but empty sample holder) in place of the

ﬁ'ﬂl

&5

sample.

- Flgure 4.2 shows a typlcal data set together with its measured

((smﬁbthgd) fast neutron background including both blank and fast neutron

— . " cqmponents,uﬁrhg'scat;éiing from the blank is in the form of a weak péak

centred at about 5 THz;‘ﬁéd s more pronbunced at large Q. Its position

e 4

i1s consistent with the peak in the aluminum phonon density of states

(Gilat and Nicklow, 1966). The high energy 'tail' arises from the

-—

fncrease in the fast neutron background due to the long counting times
, .

and smaller scattering angles at large energy‘transfers.

¥

The measuremengg were concentrated in the (220) Brillouin zone.

- (The (111) or (002) zones might seem preferable since fz(Q) is larger

and the phonon contribution smaller; however, at these smaller wave’

.
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(smoothed) background including both the blank and fast
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neutron components.
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_vectors, the maximum attainabié energy transfer is.séverely 1 ted by
kinémaﬁic restrictions). The energy andlﬁave;vector dependence of the
" goAttering were measuped'in a series of constant-Q scans between the
(220) zone centre ank the zone bougdary'gt (2.5, 2.5, 2.3), up to energy
1transﬁers of 16J&Hz. ﬁeasurements were also made at the c0rrespondiég
wave vectors in the (440) Brillouin 2one-in order to diéting&ish 5e£ween
hagnetic and phonon contribﬁtions. l - -
4.3 Zone Centre Response - _ }
(: . . The'sampie écattering at the zone cgptres (220) and (440), cor-
rected for the background contribution, are showﬁ in Fig. 4.3. The peak
Ll : -
at 6.3 .THz, prominent in the (440) da;é, 1s identified as the zone
lceﬁtfgfz;:}i phonon: itshposition‘is consistent with previous phomon
measurements in USe (Jackman et al,:1986) aﬁd the ratio of iﬁs in;engity
between (440)‘and (220) is roughl& consistent with the Q2 depéndence
exbected for a coherent one-phonon process (Sec. 3.5). The broader
/
feature at 9 THz,'clearly visible only at (220), is magnetic in originm. .
Thqwmagnetic‘form factor reduces thé‘magheéic scattering contrlbution at
(440) by a factgF of about & compared with (220), completely obscuring
the magnetic ﬁeak at théglaréer wave vector.
| Assumlag that the scattéring, away from[qhe one—phonon peak, is
compfised'of only a-magnetic and a meltiphonon part, it is possible to
sepéraGe their contriﬁutions; Aé discussed in Sec. 3.5,,the dpminant
multiphonon process 1s exﬁected to have a Q“ dependgpce, whereas the
magnetic éontributionlvaries és fz(Q). AnalysiSQOf‘fhe data based on

this argument indicates that 98% of the intensity at (220) is magnetic

" in origin.
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100 |

Fig. 4.3

FREQUENCY (THz)
— - 7 ‘
Constant—Q scans of the zone centres (220) and (440) (with
background scattering subtracted). The peak at 6 THz is an

optic phonon; the broader feature at 9 THz is magnetic in
origin, - > '
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Qualitatively, the zone centre magné%ic gcattering is well
described as a broad peak centred at about 9.0 THz, and extending over a
very wide frequency range, up to at least 16 THz. 1In fact, the response
1s intrinsically broad: The instrumental linewidth (for‘a flat branch)
at the optic phonon frequency at (440) is 1.3 THz. bThis is entirely
consistent with the ooserveo width. The calculated resolution
brdadening a;‘the mégnetic peak position at (220) 1is 1.5'TH§ for a flat
branch, and 1.4 Tﬁz qu a branch‘oith dispersion. {The form of the dis-
persion will follow). The observed width is at least three times that.

This intrinsically broad response is‘perhaps noé unexpected, In
_Fig. 4.4, an example of the q = 0 response in each of the three com=-
poudﬂ§ is Bojyn&/ The US data is taken from Buyers (1985) and the UTe
result from Holden ano_Buyers (unpublished). (&otice that the energy
axi{s has been Bhiftod {in the UTe data.) In each case the.resolotioo of
the spectrometer is ﬁhowo by a horizontal*bér."‘ln‘UTé} the ﬁagnetic
oexcioaiioﬁ appears as a sharp, resolotion-limited peék ?n the spectruﬁ o
wheroas in US‘only'é broao contiquuﬁ‘of oagnetic sfattering, ouch wider
than the resolution, is observed. ' USe exhibits behaviour 1ntermediater

between US and UTe.
s _ .

The inelastic response at wave vectors away from the zone

4.4 Dispersion

centre, in the (111) direction, are shown in Figs. 4. 5 (a) and (b). The

optic phonon 1ntensi;y'increases across the zone 'in a maﬁﬁer consistent
. - A .

with the one-phonon cross section: the dashed lines are the calculated

intensities based on the elgenvectors obtained from a rigid-ion model
analysis of Jackman et al (1986). (The precise calibration procedure is

outlined in Sec; #4,.5.)



Fig. 4.4 :

Zone—centre response of the uranium chalcogenides. (The UTe data is ~

from Holden and Buyers (unpublished) and the US data from Jackman

1983). Horizontal bars indicate spectrometer resolution. In UTe, a

sharp, resolution-limited excitation 1s ohserved while in US only a
- broad Iinelastic continuum of scattering exists. USe exhibits Inter-

mediate behaviour. The right-hand scale shows the dynamic susceptibi-

lity in absolute units. .

——
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Fig. 4.5 (a), (b)

Wave-vector dependence of the inelastic response in USe. The measure—. .

ments were made in the (220) Brillouin zone along the ({{L) direction.
The dashed line shows the rigid-fon model calculation of the optic

" phonon intensity. The solid line is a fit of the magnetic intensity to

a damped harmonic oscillator function (Eq.[4.11]). The scale on the
right-hand side shows the dynamic susceptibility in absolute units.

E
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Apalin, data taken at cor;esponding wave vecéors in the (440)
Brillouin zone confirm that the scattering at epergies greater than 6
THz 1is magnetic, The solid.lines are fits to the magnetic intensity of
a damped harmonic woscillator function. (See Sgc. 4,6). At smail q, the
peak {n the magnetic uesponse is fairly well defined. The counting
statistics limit the interpretgtion, but as q increases the pea# energy
-increases while the peak broadeus and.ueakens in intensity. A plot of
péZk posfition against the wave—vecéof coordinate in -the (lil) direction
is shown in Flg. 4.6. The dashed line is a fit to a quadratic dispér-
sion law, where the stiffness constant, D, is estimated to be
7.0 + 2 THz-A%, :

it is evideut that the opséféed excltations in USe and US,cau
not be described by.either the strictly‘iocal or strictly itimerant
limits since even'at q = O the responsé_is'intrinsically broad. How-
ever in Chapter 6 it is spown that many of .the magnetic properties oi
the UX systems can be'describéd'by assigning to the U ion a locaiized £
electronle cpnfiguration. If this is the case, a model of a local
moment syéfiz in which the magnetic excltations are exte}nally damped
might be appropriate.
..14.5 Calibration |

A more qua;titative analysié céu be made b} convertiﬁg :he
scattering intensity "to a dynamic susceptibility in absolute units. iIn"

‘\
this section the calibration procedure is outlined. In the following

-

section, the measured dynamic susceptibility is used to estimate <M ),

“the square moment at a site, by the total moment sum rule.
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The cross section for inelastic maéhg:ic scattering (Eq.-[3.9])

may be written-as o .
2. . . | ' \\F _ -
b (ddgdg')-)-’ = 'N'llz_ F(Qrm) x"(E[’.,M) .‘ . - . [4.1] k

Qyw dn

@
where F{Q,w) contalins all of the known constants, togefher with the form'
factor, the Debye~-Waller factor and the detalled balance factdr. y" for
the multidomain configuration 1s given by

" * - = 1' it > L e »> i
X" (q,u) =3 (xzz(q,w') + 2 (q,w)) . : [4.2]
' l - z . - .
In order-te_put the measurements on an absolute scale it iIs pecessary to
define tﬁé relationship between T(a,w)y‘the intensity of the magnetic

scattering, and the cross section. Since T(aﬁuﬂ is the actual numbeF of

counted neutrons, it must depend of the iacident neutron f%ux, &, the

counting time, t, and the efficiency of the analyzer {which goes Yike
k'acdsBA), i.e. i
T(a w) = ¢tk'3 cosB, ( dzc yx ' [4.3]
¥ T L .
| ] A VAGdE Q,@ | ) éﬁ N N
Experimentally, ® and t are 1ncorpofated‘into the monitor count rate, Y
M. The fission detector has an effieiency for detecting .neutrons that
(goes like 1/k so that . |
| v« [4.4]
© 5 Qo
Substituting into Eq. [4.3], T(Q,w) becomes
T(s,w) « Mnk cosSA F(Q, w) x"(a,uD : '[&.54\\d



Notice that k, the wave vector of the incident neutron, no longer

pears.' The remaining coefficient 1s a constant since E' is fixed, 80

that . : ~
Tca,wy‘u CF(Q,w) X"(q,). . | [4.6]

. wﬁere C 1s a constant which must be determined experimentally.

C can be' estimated using one—phohon:data. To see this, consider

~

the one-phonon cross sectidn, Eq. {3.13], rewritten in the compact'form

(W%{w B p@uw * (4.7]
It is‘uo‘diffcrent in form than Eq. [4.1] for the magnetic scattering,
and 1t follows thgt Ika,w), the measured intensity of the cne—phonon ..
scattering, 1s related to P(ﬁ,m) by
13,0 = ce@ - - [4.8]
é . : whete Cis the same constant as in Eq. [4.6]). The important point here l
1s that C is the only unknown in Eq. [4.8]: é(a,w) can be calculated
uéing the elgenvectors obtained froﬁ rigid-ionlmodel calculations of
Jackman et al (1986), and I(a,d)_fé the (Lntegrated) lﬁtensitych the

phonon, determined directly from the experiment. ' <lq.=_,a*”

J
: Examples of the phonon groups used in thescalibration are shown in

Fig. 4.7, The solid line is a Gaussian fit to the peak using the line-
width determined by the re@olution function. The 1ntegrated intensi-
ties, tognther with their calculated cross sections are listed in

-

Table 4.1

~ ) ) : ‘ g
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'Fig. 4.7 Typical phonon groups used in the calibration of the

scattering intensity.
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Table 4.1. Phonon cross sections and intensities. The callbration
constant is the.ratié qf intensity to cross section.

bl

Calculated Integrated Callibration
Phonon Cross Section Intensity " Constant
Wave Vector barn(x107) ° Cts-THz Cts-THz=barn~
a3
% (x107)
(4.0 ,-4.0 , 0.0 ) 7.0 87+10 - 12.4%]1 /
(4.10, 4.10, 0.10) 8.0 129, ' 16.1
(4.25, 4.25, 0.25) 12.0, . 160 - 13.3
(4.30, 4.30, 0,30) 14.5 182 12.6
(4.35,.4.35, 0.35) 17.7 226%40 . 12.8+2
(4.0, 4.0, 1.0 ) 10.9 127 ' 11.7
(2.5, 2.5 , 0.50) 10.4

102 9.8

The average value of C is (12.7 * 2) x103 Cts-THz—baEﬁ"1 for the

monitar count 1E7.
The scale on the right hand s;de of Figs. 4.4 anqﬁﬁ.s give the

dynamic susceptibility (Eq. [4.2]) in units of ﬁBZITHz. Th;\\\

calibration for the US data was perfo}med by Jackman (198{??

2

4.6 Calculation of ¢I™)

It was shown by Buyers and Holden (1983) that the square moment

ES
at a magnetic sitey <H2>, is related to the scattering function, S(g,w),

' by _ (\ | 7 i

T dwIgls (3.0 (1+ e P1Y  [4.9]
5 ‘o g @ ac . .

q

where the sum over a extends over a Brillouin zone. Replacing S(a,w) by -

the dynamic susceptibility, x"(a,m), Eq. [4.9] becomes

_h .
2 31 1,.. .7 w fhiw
>=3 32 [J duz (X, @0 + 25 (3,0)) COTH(S) (4. 10]
N

(x" is an antisymmetric function and so must go to zero as w + 0. Thus

- ) .
despite the divergence in the COTH term at w = 0, the integrand 1is
4 {
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always finite). The sum rule is limited to local moment systems and

need not apply to systems in which the moment at a site 185 not conserved
' -~/

_(aa in valence fluctuators).

Because the avallable data covers only a finite frequency range
at discfete,values of q, %k is necessary to iﬁﬁ?xgplate the argument of
. . | ,
the integral. To facilitg;e_this, the magnetic contribftion to the

scattering was compared to a number of functional forms. The best fits

were achieved with a.damped harmonic oscillator function

Aw - i ‘
_ | : l4n11]
W-i3)? + (TG)> . p

X"(;. w) =

where A, wo and [ are functions of q. Jackman (1983) performed a

similar analysis on the. scattering in the low temperature ferromagnetic

ro-

phase of US and found that in order to achieve a good description of the
acétteping at low energles (<6 THz) a second quasi-elastic component to
the spectrum wad required. In USe the hagnetic scattefing in this
energy range 1s cbmp;etely obscured by'the one—phénoﬁ Scattefing: the
function (Eq. [h.il]) assumes that y* is (approxiﬁately)hlinear in
f:equegcy 1; this range. The fitted parameters A, wg and I are plotted -
as a ‘function of q in (the three lower paﬂels of) Fig. 4.8.

Apart froﬁ the COTH ‘term, which contributes only at small w, the:
integral over w can be performed analytically. (The cor;ection can be.
calculated numerically and is less than 1Z) The result of the energy -

ot

1ntegration at each q is shown in the top panel of Fig. 4.8. The ..

el

J/f _ - | . {/.

LT



}
“ . Flg. 4.8

Wave~vector dependence'of the damped harmonic oscillator parameters A,

wg, and T (Eq. [4.11]). The top panel shows the (energy) integrated
intensity of the d¥namic susceptibility.
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uncertalnties are estimated from the uncertalnties in the fitted
parameters, taking into account their correlatioms (for example,-at
fixed wp, AA/AF > 0). At q=0, the contribution to the integral from the
accessible energy range (ﬁp to 16 THz) is 85% of the total (that_is, 157
Qf the total comes from th; extrépolated region of.energies'greatef than
16 THz). At q =’(0.5,\Q.5: 0.5), ifwis 602."The solid iine 1s obtained
by assuming that A, wb and I' vary linearly with q (the solid lines in

the lower panels). @

The sum over the Brillouin zone is performed by assuming that
the scatteriné is isotropic in q. The sumhation 1s replaced by an
Integral and the upper limit of gq detgrmined by approximating the
Brillouin.zone'by a sphere of radius q,}, which has the same volume as
the Brillouin zone, i.e.

oy 92b
- . i

2 dqbnq2. : | [4.12]
E' {27 o -

where V is tﬁe volume of the primitive ﬁnit cell in real space (33/4)

and qz, 1s glven by

L. 3 - .
4 3 (81) | 1‘)
T S0 o (4.13]
3T Gy | | | .

Equation [4.10] becomes Yo o .

2 3 v Azp e 2
> =5 — [,70 da’q” x"(a) | | [4.14]

.
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The square moment estimated in this way is 2.3 % 0.3 uBZ;
(The largest numericai uncertalnty in the ca}pulation 1s in the value of
the calibration conétant whieh 1s of order 15%,) Taking inte account
the contribution of the ordered moment (%;auuB); we egtimate a square

]

moment/site of 6,3 % 0.3“u52. For comparison, <H2> is = 13 pBZ for
an f2 or fs local moment ground étate, and ~ 6 uBZ for an fl state.
In the local moment plcture, such a reduced moment could afise
even In an f2 or f3 electron configuration in the presence of a crystal
field splitting. (If only .the lowest crystal figld state were populated
3

in the temperature range of the measurements, then the entire f2 or £

moment would not be accessible. Such a model is discussed in Chapter 6.

-

TT;\\ . . : - " .



S

CHAPTER 5: . SPIN-WAVE POLARIZATION MEASUREMENT

A spin wave, in the classical Eénsg, is a transQefse exgitatioq.
However, in the most genefal case of a system with both spin and_orbitalr
angular momentum conﬁributioﬁé<in a crystalline énvironmgnt; it is pos-
sible to have ldngitudinal excitations as well. .In the antiferro-
magnetic pnicﬁiﬁde compound, UN, the polarization of the magnetic scat-
tering has beén mea;ﬁred and is known to be iongitudinal (Holden, 1984).

The experiment described in the previous chapter was carriéd out.
on a multidomain sample. As discussed in.Sec. 3.4, 1t 1s impossible to
detérmine #Me polarization of the magnetic excitatioﬁ from these obser-
vations. 1In this chapter, the results of measurements:made‘on a single
'ﬂomaiﬁ sample are presented.
5.1 Details of the Measurement .

(Z:::: The measurements were cafriea out on the N5 triple axls spectro-
meter at the, NRU reactor, Chalk River. The monochromator was beryllium '
(002}, mosalc spread of 0.33°, and the analyzer pyrolytic graphite
(002), mosaic spread of 0.35° The collimation before and after the
sample was 0.75° and 1.02° respectively.

The measurements were made in constant;Q mode with a fixed g

of 10 THz. The fast neutron background and the background from the

sample holder, cryostat, etc. were measured as described previously
(Sec. 4.2@ ‘ , —

47



A single ordered domain was produced by cooling the sample
through 1ts ferromagnetic ordering temperature In a magnetic field of 2T
with the fleld parallel te the <111> direction. Magnetic Bragg
scattering can net be oﬁserved at any Bragg point, ?, yhich is along the
ordering direet{on (See. 3.2).wAs a result the weak nuclear Bragg
reflections (111) and (111) could be Used to monitor the formatioh of
the magﬁetic dbmains: the‘maénetic scattering from a domain with
magnetization axis along <111> can be observed at (lli) but not (111).

Similarly, if a domain forms with an axis other thaﬁ <1117, magnetic

scattering will appear at (111). — ' :

. ' - A ’
Figure 5.1 shows th%gvariation in intensity of the (111} and

(111) Bragg peaks for the field-ceoled sample. The intensity at (111)
was virtually constant as the temperature was.lowered,’while the (111)
intensity increased by a factor of about 30 between 180 K and 4 K;. This
indicaﬁes the formation of a single domaie aligned along <111>. The

magnetic field was maintained at all times'during this part of the
_ —_— o
experiment and the reflections checked periodically to engure that the

[ »
sample had not depolarized.

Soie of the measurements @gﬂg in the single domain sample were

_ } e
repeated in a multidomain configuration obtained by cooling the sample

through the phase transition in the absence of an aligning field. 1In
N :

this case, there was no difference between the Bragg peak Intensities at
N 4

(111) and (111).
5.2 Polarization of the Magnetic Scattering
‘The strategy for the polarization measurement is shown in F&g.

5.2 The magnetizatjon axis of the single domain is parallel to the
: "
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" Fig. 5.1

20 40 60 80 100 120 KO 160 180 200

TEWRERATURE (K) -
Al _ A

Temperature -dependence of, the (111);and (111) Bragg peaks as the
sample is cooled through the ferromagnetic phase transition in an
aligning field. No change in intensity .is observed at (ll1)
indicating the formation of a single domain along <l11>.
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<111> directio%. Consider only the zone centres (222) and (222).
‘ P

(222)
1s parallel to the magnetization axis, while (222) is at an nnﬁae of
70.5°. As a result, a purely longitudinal excitation would appear at
~(225) but not at (222). A purely trénsﬁerse‘excitation would appear at
both zZone centres b;gnwith‘an 1ﬂiensity at (225).562 of that at (222).
~(Sec. 3.4)

-.Figure 5.3 shoﬁs the regsults of measurements méde at the zone
centre (220) in a multidomain configu;ation, togetﬁér with the mensured
(smoothed) background: The background inclqdes both the blank and faag
neutron componenﬁf. The peak i?/ffffbhqufound at+ahout 5 THz appenrs‘
in‘all of the 1nelastic-scans’I;depéngent of Q. ;Thfs is qualitatively
the same feature observed in the previous measurement3, Butiié mﬁcﬁ more
intenser.(It iz in fact prébably too intense to be attributed to simply
AL densfty of states scattering since thé.Al cross gection is almost

] ’

entirely coherent.)l . ’ q
’ - Y

Iq Fig 5.4 the yackground—subtracted data is shown together with
measurements made at the. same ﬁave vector in the previous expegiment
(where.th%‘baCkground contfibution to tﬂe scattering was not as signifi-
cant), The intensities have been‘normalized for this plot, The fesultﬂ
are qﬁite consistent. .

The data (with background subtracted) for :ie zone centres (222)
and (222) in the single domain samgle.ar%_shogn in Fig. 5.5. (The solid
lines are only guldes to the eye, and the same gulde 13 drawn chrougﬁ
both seggﬂof datal; The fact that the magnetic excitation appears a}
(222) means that its polarization is at least.partially transversgé, It
cannot be purely transverse, however, éince the intensity at (525) does

-7 | )

w
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Fig. 5.4 Comstant-Q scan at (220) with background subtracted (solid
' dots). This result is consistent with the measurement of
Chapter 4 (open circles).
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Fig. 5.5 Constant- Q scans at equivalent zone centres (222) and
(222) in the single domain sample. The solid line is
“\\\\ _a guide to the eye and the same guide is drawn through
both scans.
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not decrease to the value of 56% expected for transverse scattering
alone. The ratiof®f the measure{\iﬁitegrated) intensities at (222) to
(222) 'is 0.96 * 0.15 which leads to a-ratio of longitudinal to trans-

verse suscepti?}lities of 0.9! * 0.33, (See the table accompanying

' Fig. 5.2). Within the uncertainty of the measurement, the longitudinal

and t;ans#erse'suscept%bilities are equal,

éhig’conclusion is further confirmed by the abéence of any
significant differeﬁce between measurémgnts made on the single domain
;apple ané those made on the multidomain sample. Dgga taken 1n.the
multidomain configuration at (222) and (222) are shown in Fig. 5.6. The
solid curve is the same as that used for the singleAdomain resultg,

In UN the low temperature excitat{on gpectrum ;onsists of a broad
‘continuum of of 1nelg'tic scattering, which has been shown to be of
'longitudinal‘Polariéation (Holden, 1984). f-d flgctuations, in the
sense of a U ion emitting and reabsorblng a coﬁduction electron of ﬁhe-
same spin, could give rise to longitudinal scattering since the process
ii spin conserving. This valenéelfluctuétions type behaviour would also
account for the exceedingly small moment (=~ 0.8 _fp) observed ia UN.

It should be ﬁointed out that the measuremézzs do .not
unémbiguously define the polarization of the excitation.- Ratﬁer, they
define the polarization of the scattering. If‘the scattering were to‘
arise from transitions to a set of closely sﬁaced levels, some with
transverse, and some with longitudinal polarization, then thelscattering

may appear quolarized whereas the hnderlying-excitatlons have definite

+

o -
rd

polarizations. ' o

\'\f
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In Chapt, {\it is shown that a local moment model can give a
(roc’i description of the stat;ic magnetic properti;s as well‘ as predic£ —~
the energy scale of the excltations. However, it predicts only
exclitatlions wbith transvgfse polarization. To be a useful descriptlon,

such a model must be aug'mented%y a me&!_'lanism which produces -not only

broadening but “"depolarization” of the excitation. *
C
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CHAPTER 6: ANALYTIC DESCRIPTION OF THE UX COMPOUNDS

6.1 localized Model
o .

Jackmpn (1983) found that the static magnetic properties of the €%
uranium chalcopgenides could be well described 1f the uranium ion Gas
treated as a local moment syétem 1n the presence of a cubiec ecrystal
field. In both the f2 andrf3 Hund's rule ground“stateé it was possible
to ldentify crystal field and exchange parameters which réproduced the
observed paramagnetic susceptibility and the moment in the ordered

phase. llowever the low temperature dynamic response, in particular, the

large zone centre anisotropy gap could not be accounted for.

&

The ferromagnetic ordering in the chalcogenides is accompanied
by a large rhombohedral distortion of the cubic lattice. As such, it

@*»

might be expected that’cdoupling between magnetic. moments and bulk elas-—
tlc strain 1is an importang feature of these systems. In this ghapter
the local momant analyéis is extended to include maghetoelastic coupling
and quadrupqlaf intéractions. -The treatment given here 1is very similar
to that of Morin et al (1980) in their study of quadrupolar effects in
Tman
6.2 The Hamlltonian
“ Therg are Five separate c0ntriﬁutioés to-tﬁe model Hamiltoﬁian
and these are: briefly described below. The “spin“, s, refers-to tﬁe

total angular momentum and not simply the spin component.

(1) Hep is the cublc crystal field Hamiltonian. In the presence éﬂ[

- of the crystal field the (2S5 + 1)-fold diﬁenerécy of the Hund's rule
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ground state may be partly lifted, in a manner consistent with the site

“
i

symmetry of the ion. The detailed calculation of the cubic crystal

field potential is rev%gged by Hutchings (1964). In 1its "operator

equivalent” form (Stevens, 1952: Stevens and Bleaney, 1953); with respect
to a (001) axis, the crystal field Hamiltonian is

‘ 0 by 0 _ 0ypb '
Hop 34(94+504)+36(06 210,) [6.1]

where FGE_OE are combinations of the simple dipole operators, ST, S",.Sz

(For precise defipitions, see Hutchings, 1964).

Itlis convenient to }eplace By and Bg withgthe parameters x and W,

w"\
def v - . )

/B,F, =3 and B = w1~ |xp) . -1<x<1 . [6.2]

ahd Fe are éonstgnts whose magnitude depend on S). The parameter x
thé determines the configuration of the single-ion 1evelsf while W
determines the -energy scale of their splitting. The elgenvectors and
e;genvalues of the Hamiltonian were obtained b}-Lea, Leask and Wéif (1962)
for all values of S < 8, ;nd over all vélues of x.

(2) = Hgx is the Helsenberg exchange Hémiltqn;an given by ¥

. T > . :
H.=-2% J,8, *8 [6.3]

where §i is the spin of the ith atom and Jiizgs the exchange

constant., The exchange constant measures the stfength of the Iinteractlo

and determines its sense; if J>0, the Interaction is ferromagne;lc,'

whereas if J<0, the interaction 1is hﬁtiferromagnetic.
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T | )
(3) VHQ 1s the quadrupole-quadrupole fnteraction Hamiltonian.
It arises from an {nteraction which is biquadratic in the spin coupling
i.e. (Ei'gj)z. -The most genergg form of the quadrupole éxchange Hamil-

tonian in a cubic lattice is (Sivardiere, 1975)

Hy = - 1_1 fj K, (13) [og(i) Og(j) + 303(1).03(:])]-
. l | [6.4]
c+3lp ()R )+ R ) R R, (1) B, (9)]

where 02 and Pij are the quadrupole aperators (defined in Appendix A.2)
and the Kij are the quadrupole exchange energies.
(4) Hyg 1s the mggnefoelastic couq}ing. The rhombohedral distor- \ ,//'
tion. in the ferromagnetic phase changeé the site symmetry of the uranium
4

ion and requires the introduction of off-cubic crystal field terms. The,

general form of the coupling (for a strained cubic structnre) is

~

Y3 o 0, e 20 1
HME [ B3(8102 + 73 €202) 2 BS(exnyy + eszyz * eszzx)

' | : © [6.5]
whegre €49 and ejy are components of the strain teunsor (defined in
Appendix A.1).
(5) Egr, is the bulk elastic energy of a strained cubic 1§tticé,
which for a general strain is . s

c,, + 2¢ o -
1 11 12, 2 2 2 . 2 2 2
Epp =z (T3 ot ey mep)ef + ) + e (el vel tel ) o

' . - 7 [6.6]

where the i34 are the elastic constants. ) | . ¥

Fd

In order to carry out the calculation, the Hamiltonlan of the
system {s first reduced to a single-ion Hamiltonian in which the effects

of neighbouriﬁg‘spins and duadrupoles are treated in the mean field (é;)

[}
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appréximation. It 1s assumed that only ﬁearest-neighbour}infernctlons
are iméortant.’ The Hamiltonian is further simplified by 1né1uding only
;he strains that have the symmetry of the dist%rtion in the ordebeQ
phase. . For a z axis along the <111> direction, which {s both the
ordering direction and the axis of symmetry of the distortion,);ﬁe
Hamiltonian containé a single component of the strain tensor, €, and a

single quadrupole operator, Og. In its simplified form,

EZ
b4
[6.7]

Foo 2oz . .22 V3 1 0,0, 1, 0.2
g - Hop = 20<8%>8% 4 3™ - (5 Be + ¢ k<0D3)0) + 3 k<0 + 2¢

The details ofthe derivation canbe found in Appendix A.3.

The calculation consists of finﬁing Fhe set df'parameters
'(x,W,J,B,K)-ﬁhich best reproduce the observed behaviour in the paefl
magnetic and ordéred phases. Sections 6.3 and 6.4ldescribe the calcula-
" tion of the paramagnetic'and quadrupolar'sus;eptibilities respectively,
Section 6.5 considers the behaviour in the low temperature fe;romagnetic
pﬁase.-- - ‘

6.3 ;;L Magnetic Suséept}bility in the Pﬁramagnetic Phase
In ﬁhis section only the magnetic dipole paft of the mean~field

Hamiltonian 1s considered. 1In the presence of an external magnetic ‘¥

field, Hé, the rerélant Hamiltonian 1is

t

H = -20¢s%>s% + J5%>2 -—gu.BHeSz J6.8]
This 1s more conveniently written

H o= —gu(H, + NOS® + 2 A’ | | [6.9]
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(where M is the magnetiijyion, gup<s%>, and A = 2J/(guBJ§;l since
in this form it i{s evident that the effective fiela acting on each spin

iz the sum of the external applied field and the mean fleld of'tge other

spins. ~

The best singli ion approximation to the free energy is

o1 2 2, L ,,2
F=-3(gp)® x (H + ND" + 5 N [6.10]

where ¥, is the (static) single an‘susgeptibility, defined In Appeun-

dix B.2. The susceptibility of the interacting spin system 1s defined
. ' ‘ r
in the usual way
sz
X=- 7
dHe : _‘.$

[5.11} 

and 1s subject to the constraint that dF/dM = 0. This leads to the

familiar mean field expression for the susceptibility

2 xo

_ [6.12]
1 - 2Jx°

X = (guB)
i

For a set of degenerate sﬁates, the single fon susceptibility reduces to
a Curie law (i.e. x5 = 1/T) and the suscéptibility, Eq. [6.12], to .the
Curle-Weiss law.

Above the critical temperature (Tc); the uiPertqrbed

]

Hamiltonian contains only the crystal field. terms since //’///’
. L

<% = <Og> = £ = (, The single)ion levels are determined solely.by

diagonalizing Hgp; the susceptibility s then calculated according to

J
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Eq. [6.12]. The‘only relevant parameters are: x, W, and J, and thege

must be chosen so as to reproduce the measured- static susceptibility ag

a function of temperature .

6.4 The Quadrupolar Susceptibility in the Paramagnet{ic Phase _ “
In the previous section, the response of the system to an exter-

nal magnetic field was considered. A similar treatmént can be used to

obtain the response to an external strain field, In this caQE“—_pl& the

strain and quadrupole parts of the Hamiltonian contribute, l.e,

H=-(/2Be+—-K<O > o +—1—K<0'é> +2c442 L 16.13]

(The significance of the change in notation, 1.e. Cyy > cqq, will be
explained shortly). This expression 1s very similar to Eq. [6.9). 1In

this case the strain, e, plays the role of the external field, and the
) -
System regponds with alnet quadrupole moment, <0g>, 80 as to minimize

the free energy. Again, the single~ion approximation tg the free energy

has‘tne form

2
44°

where XQ is the single ion quadrupolar Susceptibility (defined in an

F= (—- Be + K<O >) +———-_1<<0 2 4 2c° [6.14]
'K

=

analogous way to the single fon magnetic susceptibility xo)

g L S Rl O fes)
m n

The interacting Susceptibility' {n this case, XgL» 1s defined by

2
_d°F . :
xEL = ———2 , - . [6-16’]
de
From Eq. [6.14]: _ \\
1-K _x. - KypX 7 )
- — 2.0 Q™Q E*Q

Ka¥q
&
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. 2 ' . .
where K = K‘and KH = ——E——. Notice that in the absence of quadrupoele
Q 6 E ¢ o -
48c44 .

effects (or at high temperatures), the free energy reduces to the strain
- energy alone, and Xgr, becoTsﬁ
Yor = 4 2 o : [6.18]
EL 44 -

o

cga in Eq. [6.13] is then interpreted as the high temperature value of
the elastic constant and Eq. [6.17] Gurttten as

L N
44 1l .- KQxQ ’ - Cs

" If the ground state is degenerafe, then xQ = C/T {(where C is a

L]

ey = c [6.19]

constant contalning the sum over the matrix elements) and Eq.'[6.19] can
be expressed in the familiar form

S |

gD = ey (— D [6.20]
‘ . - Q ‘
ok ' 1 s .
where TQ =g KCand T, = 5 —
" 44

The behaviourrngthe cyy elastic constant near Te h;s 5een'
ﬁeasu:gd 1p all three chalcogenides (in US, by du P1%§sis and Tillwick,
71?79: in USe and UTe, by Neunschwander et al, 1986); the cyy elastic ™
constant softens as the transition temperature is approached, in a

manner consistent with Eq. [6.20]. The lattice quadrupole parameters,

kil %

o : o
K, B and a4 (or alternatively, KQ’ KHE’ and cgﬁ)'QﬁSt be chosen so as .

to reproduce the observed softening of cyy(T). T
6.5 Low Temperature Ordere® Phase _ _ | “\ff
In the ordered phase,“<Sz>, <Og> and the strain, ¢, are

non-zero. By minimizing the energy with respect to the strain, the

&
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strain can be eliminated from the Hamiltonian, and replaced with

el B g0

(Appendix A

13); The Hamiltod}bn becomes - ’///
MF o zez .1 BY 0. 0
L H HCF - 2J{87>87 - (""4—'8— EZZ + re K) <02> 02 i6.22}

]

(where the constant terms have been dropped for clarity) Assuming that

at low temperatures the elastic constant, cqq, kﬁ"hpproximntely e,
~

MF _ ZooZ _ 00y o0 t
HY = Hep « 23¢8738 (KQ + Kyp) <0 0, - 16.23]

Because <s%> and <Og> appear in the Hamiltonian, the eigenvectors and

eigenvalues of the low temperature problem must be determinéd

self-condistently. - j

The parameters J, Kqg, and Kyg must produce a set of single~

-

ion levels consistent wiﬁh the ordered moment, guB<Sz>, with the
magnetic excitation spectrum (the calculatlon of which 1s described 1d

Appendix B), and the magnitude of the distoPtion in the ordered phase

(Appendix A. 4) . . , "y

*giﬁ £2 Ground State

The best description of the low temperature behaviour is obtained

3 , \
assuming an f configuration. The Hund's rule ground state of an f3

electronic configuration is 419/2. In the presence of a cubic crystal

field,, the ten~fold degenerate ground state is split into Pél) and Féz)

~
d

=Y 00> ‘ . - [E.sz/
_24 c 2 /—\{'
44
\-_._ ‘
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quartets and a I's doublet. The observed preparties of the UX compohnds

(2)
8

other multiplets by a lérge energy S§11tt1ng. .

el

" are best'reproduced for a I quartet ground state lsolated from the

‘The effect of appl}ing'mean exhange and quadrupolar fields (to

the relavant ng)quartet) i3 shown in TFigs. 6.1 and 6.2, using the (x,W)

. '
parameters appropriate:to USe. In the absence of quadrupolar inter-

actions, the mean éxchange field splits the quarﬁet as shown in
. -

Fig. 6.1. $heﬁmg3§ured paramagnetic response and ordered moment are
best fit for an %&cﬁange constant, J = 0.47,- (corresponding to the mean

field Hg). The low temperature excltation spectrum however is not

reprqdpcea. The d%gg&e‘transitipn operators and. transition matrix

o a
. A A

elements withinithe quartet are also shown on Fig. 6.1. The strongest
matrix element éoubles the ground and first excited states. At Hp,
their splitting, (which corresponds to the (111) zone boundary

excitation energy) is only of order 5 THz. ‘ : . —

t

Flgure 6.2 shous the change in the single lon levels (at x, W,
“and Hp) in response to a quadrupolar field. The ordered moment in the

ground_state,q’? well as the transition matrix elements are virtually

-

unaffected by the field. The/splitting can then, esssntially, be tun&d
to reprodqgg_;hﬁ,gap in the execitation spectrum. In USe, the mqpshred

spectrum is best fit_with‘the‘field, Qg, shown in Fig‘6.2..
Table 6.1 1lists the;obsgrved magnetic properties of all three
| chalcogenide compohnds as;ﬁell as theirlcélcplated valyes obtained from,‘

. . . [ E ) - ,
fitting the (x, W, J, KQ"KHE) parameter set to the observatioms.
theﬂ%;aéié_properties are

RIS

- In US and USe, the agréemedﬁ-is quite godd:

~
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Fig. 6.1 Energy splitting of Eﬁé I( quartet by the mean exchange

)
g field. The allowed tran ifions out of the ground state
(and the associated transition matrix elements) are shown.

—L . H_ 1is the value of the mean i¢ld which best reproduces
tﬁe.static properties of USe. -
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6.2

_+ MEAN QUADRUPO#ARYFIELD

Energy splitting of thegfmean-field-split) [&g) quartet

"by the mean quadrupolar field. Q@ _ 1is the value of the

mean quadrupolar field which bestoreproduces the observed -
anisotropy gap in YSe. : -

!
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Table 6.1

predicted by the f localized electron model.

weach fit are shown in the lower half of the table. K o1
. ' . o
gs USe UTe
, ‘
EXP MODEL - EXP MODEL EXP MODEL
T (K) 180.0%5.0 180.0 165.0%5,0 167.0 110.0#5.0  116.0
Vv + +
Porg (y) 2.25%0.1 2.1 r 2.5%0.1 2.4 2.6%0.2 ) 2.6
<> (ag) 1.70%0.03 1. 2.0%0.1 2,07  2.25%0!05 2,19
Ty (K 162.0%10.0 162.0 149.0+3.0 149.0 103.0%1.0  40.0
Ty (K) 2.0£1.0 3.0 1.440.3 1.5 1.040,1 1.0
b6o (mrad)  8.0%2.0 6.0 6.51310 4.0 5.0%1,0 3.0
Wmg (THZ) 10.0%1.0 10.0 9.4%0.3 9.4 3.5%0.1 3.54
] .
x ~0.526 -0.63 ~\ -0.66
N -10.4 -12.8 -50.0
I (THz) 0.67—\ . 0.47 0.29
Ky (THz) ojoza 0.013 0.003
Kyg (THz) .0.0003 0.00013 0.00008
. -~ )
c24 (THz/f.u.) 1075.0. 10@5.0 : AT08.0
S ~ |
]
»
3 £ e
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Comparison of the uranium chalcogenide observables to those

it

The model parameters for
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well reprbduced and the energy scale of the quadrupole interaction

(reflected in Tq) 1s consistent with the anisotropy energy needed to
account for the large zone ceﬁtre-gap in the magnetic excitation
spectrum. In UTé, however, ;ithough the magnetic properties can beLfit
quite well, the quadrupole interaction energy needed to describe the
zone centre anistropy of thqﬁdispersion ig conslderablysmaller than

what would be anticipated from the elastic constpdt measurement.

Table 6.1 also shows the model parameters responsible for ea;h
fit, As expected from the variatiég of the critical temperéiures, the -
exchange constant 1s largest in US and smallest in UTe. The quadrupolar
interaction parameter varfgs in the same way, consistent Qith the zone
c;ﬁtre anisotropies and magnitﬁde of the distortioq in the ordered /r\\\\\\\
phasge, : ~ | ‘
-The most unusual features of the USe excitation séectrum are
-£hat the excitations have intrinslc widths énd.are.unpolarized.' Neithér //
of these features can be expla¥ned within the’ local moment framework. %,

—

The former,_ at least, 1s to be expected; there 1is no inherent mechanism

3

Mn such q“quel for producing'a damped respoase, It-is possible,’ of
course, to intioduce ddmping from an ‘external' influence. A model
invoiving;coupiing,to the condqcti;n eiectrons is discussed in the péxt
éecfioﬁ, and is éhogx, at least qhalitatively,'gp descripetthe Qgta. .

”this simple model however, the uf{derlying polarization of the excitation
is unchangéd.' From Fig. 6.2, it is clear .that the f3 model presented

here predicts only transverse excitations.
~ . : , ’ r



6.7 f-d Hodel
In order to produce a damped response [0 the local moment

system, it is necessary to couple the sharp—excltations to a broader

LY

continuum of excitations, such as the continuum of conduction
3

o= .
electron-hole states. A simple model of conduction electron damping was
discussed by Buyers and Holden (1985). Withiy the approximations, the

model produces an analytic form for the résponse function which can be
L

directly cqmpéred with experiment.’
The model assumes that the single-ion response of hhe f-electron

system arisgg,from:transifions between the magnetic ground state and a

sipgle excited state, 4. Each ion Is coupled fo its neighbduﬁg via a

Heisenberg interaction and to the conduction d:glectron spin through -

v

- ‘
an interaction of the form S -+ 3. The model Hamiltonlan 1s then

s

. -+ + -;-l
H=Z E,ec.ec,  +LZIE f . f + J. L § -
> 3“3
v ror i ni "nini ff 14 i

+

ck and ck are conduction electron creation and
. + ‘

(respectively). The operator £, creates the

- site 1. Jgg-is the inter-ion éoupling'and Jaf

w

to :the conduction elec&g?n band. n

+ J

1 i & §1 . E& (6.24]
: i

annihilation operators
single ion state 'n) at

the on-site coupling

The f-response and the d—reSponse are desc?ibéd, respectively,

P
by the Green's -functions

&P o B,
o Esi(ﬁ)’ 55(0)

b

= 8(t) <

af _ ar a, v B
D, 8(t) <[ci(t), di(o)]>

s%).

S

..

where S° designates ne'combonent of the spin operator (1;e;, st, S",‘é}‘\\

It is possible to obtain the equations.of‘motion for G

N

et

4 L

[6.25]

af afd
15 and D1

.

(

&

H
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within the random phase approximation. The Fourier transformed results .

are . .
L+ ]
o = g% + 2w 1@ G0+ g% 1@ 2P w )
/ - " [6.26]
@0 = a®w 3y (@ Py

.
Y o -

gaB 15 the single-ion response functiofl, 1.e. the response function for
the f-electron system in the absence of coupling to the bther‘fons.

For this simple two level system, it iIs given by

2 u/ ™~ | . | N

i (0 LT A [6.27]

where Y 1ls the matrix element for the transition. daﬁ islthé'equivalent

N

conduction electron ‘function. It is,/assumed that the conduction

.celectrons will show some broad respanse in energy that can be described
b
y ‘ ~ -

WP et e  [6.28)

From Eqs. [6.26], it can be seen that the. effect of the-anteraction with
' the conduction electrons is to renormalize the f—qlﬁgirQﬁ'response such
) of ) M
that- . .

Y |
cab _ B =, é [6.29]

S - df P .

D(where tHF q and w indices have been omitted. for €onvenience). The

"~ imaginary part of ceP (i.e. the part which enters into the neutron ;)'

.\

LY
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scattering cross section) 1s then

4 2
-y de L
SR,
aB _ Y ‘ W -+ P [(.'
- 2.2 42 2.2 w 2
(w- 8, ¥ g F2J + Y )

w + T
where Aq = A+ YZJff. In calculating the response measured by ncu-

P
. g : '
tron scattering, it(is necessary to Iinclude the contributicns from both

G* and B%. The solid line in Fig. 6.3 is a fit of the model to
"\\\NQ‘

the USe zone centre response,. The fit parameters are inset.

From Eq. [6.30], it can be sken that the single-fon excitation

energy, A, is renormalized by both the f-f and the f-d exchange.
Although ‘there is no longer a &-function response. at 4, a sharp response

&

ia,poésible in the limit of weak conduction electron coupling, i.c.
Jaf € B4

bl
Y

As the f-d exéhange 1s increased, the peak near Aq.

- v

broadens and decays'into an apparent continuum of excitations. This is
shown 'and specifically co

mpared to the respouse in US by Buyers (1985).
The model then has the scope to describe the range of dynnmlé hehavionr

obsefved‘in the UX compounds; It provides a physically appealing

mechanism for the systematics\of the damping consistent with hand
structure results which suggests that the f-d interaction increases as
: . .

the lattice constant decreases. In UTe, uherelthe couplinﬁ 1s least,
the spin response is local-moment-like, whereas in US'the f—d eghhangc
is sufficiently large

at pronounced ddmping effects are observed.

A number of calculations have been done for cerfum systwms in

.30]

the limit of an almost localized 4f electron Interacting weakly with a

-
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Fig. 6.3 Fit of the f-d electronic damping model (Eq. [6.30]) to the

zone centre response in USe.
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conduction electron band. Maekawa (1985) has calculated the offect of |
such an interaction on the single-ion dynamic susccptigillty of Cej+ in
the context of the cubic’ Kondo system, Ce,Laj_,Alg. fThe f=-d mixing
renormalizeg the energies of the siﬁgle fon crystal field levels and
induces broadening. This leads to inelastic response in the dynamie
susceptibility which has an-intrinsic width.
. Coopef et al (see Cobper, 1985 and r:ﬁﬁkences therein) have

i .
tions in the cerium ant{ferromagnetics and shown

done extensive :c.r:xlt:u]a5

the weak hybridization

.

approach® to pa successful invdescribing thelr
static magnetic properties.i Most recently,sHu and Cooper (1958) have
calc&f&ted'tﬁg temperature depenﬁgﬂg 1nelasbié response in the low \\
temperature antiferromagnetic phase of CeBi and CeSh, using tﬁe hybgidi—
zation as thé damping mecbanism. They find a broadened response with
significant¢rénormalization of the ﬁndadged single ion lgvéls.

\ It'should be noted that Eq. [6.30] also give' rise.to a sharp
~response in the limit of a larg%‘d;electron handwldgh:'i.n.‘r >y
The fit of the USe zone centre .data givés a bandwidth of the order of a

B-.
few meV whereas a realistic bandwidth might be expected to be about an
- »n . »

-

eV. The model then requires some structure in the d-electron density of

states on the scale of the magnetic excitation energies. It was pointed

.

out by Buyers (1985) that it is possible for f-d hybridization to induce ™

~

structure on thiss scale ig_the case of v3 4nce fluctuating systems
{(Fedro, 1981). This is quite s different situatlon, however, than the
localized weak hybridiiation models discussed here,.

%W  _ ) -

£

~ “'



CIIAPTER 7:_ MAGNETIC CRITICAL SCATTERING IN Uée
7.1 C?itical Phase Transitions

Many magnetic phase transitions, 1nc1uding‘the paramagnetic to
ferromagnetic transition belong to the class of phase transitions known
as 'crizical' or 'continubus'. Much progress has been made 1in ;he last

20 years in unders nd describiﬁg the. physics of. the eritical

' 7 -
phase transition largely due to the advent of two: concepts — universa--

™
*

lity and scaling. Un1v§£§3}3ty asserts that the behaviour of a critical

’ -

system is independent of the details of the interaction qstween its

cémponentiﬂand is th¥ ééme for any gystems thEh\fhare # small number of
~ common features which delineate their !universality_claés'. Magnetic

systems have.bg;s played‘an 1mportant role in the gtudy of continuous

phése t;ansiﬁions: thg simple £orm of the_magnetic Hami;tpnian has lent
‘jgtself to theoretical 1nve§;igation while the wide variety of magnetic
systems available for étudy in different univergaltpy,élaéses Have
proven a valuable testing ground for theoretical pr;dictions.

A conti;uous phase transition is characterized, on « microscopic
level, by having large fluctuating regions of one phase imbedded in the
other at temperatures near to the critical temperature (Tc).

Consider, for example; a paramagngtic to ferromagnetic phase transition.

As the critical temperature 1s‘approached from above {T > To) the

S . B
1nteract139)energy between. the spins becomes more and more important.
76 \/)
[ . ) . . //
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The spins stop behaving independently and large fluctuatiag reglons of
Elghly correlated spins form witﬂin the paramagnetic phase. Similarly

as Tjﬁis approached from below, patches of disordéred‘apins begin to.

appear against the general background of long range ordér. In either f
L

case as T gets closer and closer to Tey the extent of the fluctuating
reglons increases, and at To diverges. -
On'a.macroscopic level, the phase transition is charac?erizéd by

large changes in certain thermodynamic observables. The specific heat

and susceptibilf?} diverge as T * T, and a net magnetization appears.

ally observed that these quantities exhié}; pdwér~law
variafions as a function of temperature in the critica regime.

The essential features;of the transition are described by
sca1ing theory. The mathematical foundation.of sg?ling was laid by
-Widom (1965) and by Domb and Hunter (1965) and a physical inferpretatton
was pro#ided later by Kadanoff (1966)L The esgence of aqaling is that
for a tempefature near T,, there 1s a sirfigle relevant léngth scale, ¢,
known as the correlatio; length.,The correlation length represents the
ﬁakimﬁm size of Qheufluctuating'regions of 'other' phase in the malin:

) pﬁase. (As_T + T, it is this qpanﬁgty which.diverges.) Because the
Femperature is characterizgd by“a éingié length scalé, a ghangé of *
length séale is qu}valent to a change of temperatd}e. In mathematical
terms, this means that the cofrelation 1éngth can be described in terms
of a class of functions known as generalized hpﬁbgeneous functions.
Widom and Domb and Huntef sugges£e4 that near Tb'zhelthermodynamic

potentials can all be described by functions of this foiq.
7 .
law

The scaling hypothesis predicts the observed powe

\ e
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behaviour in the bulk propérties'of a critical system. The relevant

obaergables In a magnetic system are the m?gnetigation (M), the static

susceptibility (xq;o), and the correlation length. Their temperatufé

dependence iﬁ the critical regime is defined in terms of the

" dimensionless reduced temperature, t, given by 3
T-T, 4 : ¢ o
Rt | . , [7.1] -
c

In standard notatlion, these power law functlons are written

' <0 - ' - ’
S L .
H { 0 t>0 ‘
Xomo e >0 (guB)2 S(S+1) (7.2]
A e [yt where x, =" :
(-t) t<o | 0 3kT
™ t>o0

“{ ()™ t <o

where the quantities B, ?, and v are known as critical exponents.

/‘ﬂ .

‘Q%gilng does not aciually Erediét the magnitude of the critical o

S

exponénts. It does, however, prédict certaln relationships between them

such that, within a univérsélity class, any two exponents are sufficlent
to determine all of the remaining exponents. Exponents*must be calcula-

ted from midrgscﬁ?ic theories. There are very few universality-classes

AN

%

for which exact solqtionszfor the critical exponents are available but

&

‘ ovw - . -
between these solutions, approximpte solutions, and experimental

measyrements, the éxponents associated with a variety of transitions are
- . B -~

- . - -
known. Measurements of eritical exponents thus lead to information

about the universality clasé}of the system under study.' N

-

/'(p ‘ ‘ \’ / . »

~
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. A more detailed discussion of scaling and universality can be

P
-

dfound in Appendix C, o <:‘-‘__;}_
7.2 Critical Behaviour of the UX Compounds . ‘ o

There has been some previous work on the critical behavlour of
the-ferromagnetic UX compounds, however ne clear picture of the trnnsl~*'
tion has emergid. The exponent ¥y haé.been measured in UTel(Aldvcd, P
1980) andlUS'(fillwick, 1976) and found to}ie‘ 1.3 in both mnterinlg.

. . . '
This is-in’ the range of the,scandardu3—q1mensionaf\mggg;sk(1.24 for the L\\///ff

Ising model and 1.38 for the Heisenberg model). The'exponeﬁt f} has been
measured in all three compoutids and is somewhat anomalous. The ﬁeUifonJ

scattering measurements of Aldred et al (1980) in UTe yleld a value of

2
= v

of about 0.29 which is somewhat smaller than the exponents of the"

standard. 3-dimensional models (f = 0.31-0.37). du Plessis et al (1982) -

. . o .
performed similar measurements on USe and obsérved a temperature depen-

dence of the magnetization consistent with a pow;r law varlation but
with an unusually smali,ekponeng of 0.24., Magnetization measusements on
US (Tillwick, 1976) gave an exponent of about 0.55. [owever it was

i ' . r

suggested by Aldred et al (1980), who attempted a similar measurgment on

UTe, thét this determination may be unreliable because %f the rapid -

variation of the magnetization with magnetic field at low f

-
r

Finally, Bjerrum Moller et 31,94979) investigated the spatial correiﬁ-
tions in UTe and found an unusually large value of v-at 0,84,

Phase
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the behaviour 8f a magnetic system near its critical point because it 1s
abge to probe both the length scale and time scale of the fluctuations
which charactefize;tﬁe critical.regime. It can provide a ﬂirect measure
of.many of the relevant oeservebles iecluding the magnetizatioﬁ, tha

(inverse) correlation length and the wave vector and frequency dependent

susceptibility In this.sgyﬁion a brief descrtption of the measurement
: e r
and 1its interpretation Is.given.

The observable 1in a neutron scattering .measurement 18 the

scattering function S(g,w). The simplest functional description of

jﬂ;ﬁﬁ,w) in the critical regime is the double Lorentzian form first

I » . B
\proposed by Van Hove (1954), which can be expregg;g\ps

. . 0 5 q) ™ | o
s(q,0) = (q Ja— Q. | 17.3]
Xg Kz +,q2 Pz(q) + w? '

1
It is ccnvenient to introduce the parameter Kis the inversge

correlation length (k; = 1/Z). The function I'(q) 1s known as the

dynamic widthy TI'(q) measures the energy scale of the spin fluctuations’

in the same way that K meeeures their (inverse) length scale. A more

o,

LR} ‘ . )
detailed di%cuseion of the origin‘of Eq. [7.3] can be found in Appendix
D.1. i L = é

In order to extract xq—O/XO and K1 from a neutron

measuremeﬁt it 1s not necessary to examine the full q and w dependence

of the scettering: Consider instead the energy integrated form
.-q:. S . ¢ - 4

S@ = f dw s, K [7.4]



-r

5

Equation [7.3]'reduces to

X _
S(3) = (K129 ,
. xO Kl + q

iy SN

[7.5]

Thus the critical scattering takes the  form of a Lorentzian centred ‘on

"

the ordering wave vector, q = 0 . According‘té scaling, as T + T,

N

b )
theAwidﬁb,ni\the'Lorentzian decreases as

K. =t .

whi%gﬁtfﬁ'coeff{cient diverges as

-

» In principle S(a) can be determined by

triple-axis- spectrometer and Integrating over

" [7.6]

. 17.7]

[}

-
measuring S{q,w) with a

all w. It is possible

R L B
however, to measure S(q) approximately, but more directly, in a two-axis

measurement. By removing the analyzer, scattered neutrons of all .

energles afe\?etected go that, in essence, the spectrometer performs the

energy 1ptegfation. ng,apﬁFgglmation involved 1s discussed more fylly
in Appendix D.2 but essentially amounts to the restriction that the-
énergy scale of the critical flzztuations must be small coﬁpared to the
neutron energy. The validity'of‘this appio;imation is discussed in
Sec. 7.11. ‘

7.4 Critical Behaviour in the Ordered Phase

: by
The critical .temperature is characterized by the onset of long



range magnebic order,‘and for temberatures below Tc, a magnetic Bragg

u‘ - .

' peak which reflects the ordered moment of the system appears. _As shoun

in Sec. 3.2 (Eq [3.61), the intensity of the magnetic Bragg reak Iya i

|

1s proportional to the square of the magnetization’and thus provides a

direct measure of Ede»critical exponent B, through
Iy M(-t) - _ L [78‘]

- %
-

/ ,% detailed study of the critical scat?ering in th& ordered phase
RN .

is extremely difficult and has not been. attempted here. For the purpose -

.ofl}nterpreting the measurements ﬁowever; it 1s necessary to potnt out‘
that below Tc, scaling again predicts power law benaviour “for the sus-
ceptibility and inverse correlation length (Eq. [7.2]). (In fact the

susceptibility in‘the ordered phase is more cBmplex because 1it- has two

distinct componen parallel (xz,) and perpendicular (Xxx) to the
magnetization direction. The power law refers to the-narellél~e6mpo- "
nient). Thus as T talls below T., the inverse correlation Jengthr}n-
creafes and the susceptibility decreases: the critical scattering
becnmes broader and weaker.
7.5 Detalls of the Experinent o ' )

The experiment was performed on the N5 triple axis spectrometer
at the NRU reactor,-Chalk River. Measurements of S(q) ¥s q were made in
.the two axis mode using_ a 81(331) monochromator at a fixed incident
energy of 15 THz. Collimation before and after the sample was 0,2° and

0.5° réspectively.

-



ot

The sample was mounted on 1 an aluminum base in a He cryoatat;, The
temperatute was controlled from-a SI dfode attached to the tail piece of -
the cryostat and measuréd from a second. diode attached to‘the sample
base, The best temperature stability which could be achieved was
'0.005 K but a more typical value is q;Oi K.

. The measutementa were concentrated around the zone centre (111)
which has the largest possible'naénetic form factor apd (because of the
near cancellation of the U and Se scattering lengtns) the ;eaﬁest
nuclea? scattering., Measurements were made in a number of directions
thEough q=0 as shown in Fig 7.1. {(In the remainder of the text the
contouns are designated by the following labels: .Zeta "(110)

Eta”(OOl) ’l‘ransverse”(lll), Perpendicular H(llz))

1

The background was measured in a series of scans "at low tempera-:
ture (100 K), sufficiently far from T, that there should be no eriti-
cal scattering'contribution to the 1ntensity'there. The background was
measured‘along the same trajectory and at the same statistics as the
S(q) vs q measurementa but over a range ?hat extended out to the zone

boundaries. A linear sloping Background_proved'an adeﬁuate description.

A second set of measurements at a temperature of about 172 K near the

-

zone boundaries (i.e. well away from the critical scattering) are

-

entirely consistent with the low temperature measurements. .

7.6 Resolution Correction

In order to extract the intrinsic scattering function from a

-

measurement, it is necessary to cor#ect for the Instrumental resolution.
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" until the best fit to the data is ;chieved.
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'
’

The 1n-plane'Q resolution was measured at (111) in a serles of scans

LY

thro&gh_tﬁe nuclear Bragg peak. (The measurements were made at a

. . e .
temperature .of 250 K where .the signal;iS'freé from magnetic critical
'écattepihg). Thé measurgd resolugion ellipse, defined as the half-
ﬁeight contgur of the Bragg peak, 1sfshown in Fig 7.2.- fhe resolution
function Is calcﬁlated from the known angular divergences and qonochro~
mator mosalc assuming zero sample mosalc. Thi latter is then treated as
an adjustable parameter which 1s varied in ﬁrder to reptodﬁce the measu~-
red contour. A mosaic of = 0.13° is required to produce-the‘solid
curve, )

The“dimensions of the resolution ellipse are .
0.003‘£ 0.03 x 0.08 A%}a The largest axis of the ellipse is the‘verti;'
cal (i.e. oht—bf-ﬁlane)_component and must be obtained from the calcula-
ted resoiuﬁion fdn;;ion. In the_scaﬁtering plane, the ellipse is
orienﬁed such‘éhat its longer axis is roughly parallel to 6.

The convolution was performed by. summing S(Q;w)-R(Q,m) across a

grid extending out to 3 (Gaussian) standard deviations in each directioﬁ

\ of the ellipse. The size of the~grid was chosen such that increasing

Ehe number of steps further produced no appreciable change in the convo-~-
' lutéd_result. A typical integration grid was 12 x 24 x 60 steps.
Thé\scattering funetion, S(q) (Eé;‘[7.5]), is obtained
iteratively. A best guess at S(q) is made,‘convgluted with the
resolution function, and tﬁéh compared to the measurement, Ihel

parameters describiﬁg S(q) are then refined and the procedure reg;ated

o
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7.7 Determination of 7 ' v - .
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5

-

+  Filgure 7 3 BhOWS the variation in intensity of the (111) Bragg
N

peak as a function of temperature in the eritical regime. The intensity

“

has been correqtéd“for the contribution of the critical scattering, and

reflects only the Intensity of the resolutipn limited component of the
" scattering. The weak temperature independent contribution from the

nuclear Bragg peak 1s shown. The inset expands the temperature range

around 176 K where the -magnetic component to the scattering appears.

Figure 7 4 shows, 1in the same temperature range, ‘the 1n€tnsity

of the critical scattering.at two polnts slightly offset from q-O.

.

{Because of the presence and finite extent of the Bragg peak, it is
<.
impossible to observe directly the intensity, of the critical scattering

at that point), The measurement points to a critical temperature. in the

range 169-172 K. . .

.,
] ]

1t is:ciéar from Figs. 7.3 and 7.4 that the onset 6f long range
magnetic order occurs before the critical tempe;%ture is reagped; These
observations are inconsistent witﬂ_fhe sﬁaﬁdard’theory of a critical
phase transition which sees a maximum in khe susceptibilit} and the
cnset of long raqgévordér slmultaneouély at T.. In fact, the beha-
viour' of the order parameter is unusual: in order to describe the

~

initial temperature variation with a power law, the‘exponen; 5] must be

greater than 1. Furthermore, there seems to be a discontinuity in the

slope around 170 K, in Ehe'temperature range where the critical scat-

-



temperature in the critical regime.

the contribution of the nuclear Bragg peak. "The inset
shows in more detail the ons

order.
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Fig. 7.3 The intensity of the (111) Brégg peak as a function of

The dashed line is
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et of the long range magnetic
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order to avoid the scattering from the Bragg peak.
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_the.transition. Rather than fitting to a power law over the'entire

“anisotropy.

> - s

terfﬁg peaks. .és will discusaed in Sec. 7.12, ft is possibfe thét

the initial temperature dependence Jof the magnetization is a result of

magnetostrictive effects. In.t this case, 1t might be argued that only
R
the lower teﬁberature points accurately reflect the order _parameter of =

*
E

L

temperature range, the solid line shows a fit to only the 1owest

3,

temperature points (<171 K). The fit ylelds T, = 170.9 =
B = 0.28 * 0.05.. %
_ .

' . : ‘ ( - ©, ’ g 1"
7.8 JXsotropic Nature of the Scatteriang '

Figure 7.5 shows S(q), measured in four different directions
through the zone centre (111) at a temperature of 179.6 K. The static

susceptibility and inﬁerse'correlation length which best describe each
o , A

data‘set individually &re given 1n table Z.l. Within the-ungértainty on
the fitted‘parameters, thé correlation length is isotropié. Similar
fits at temperatures both higher and 1ower than 179.6 K confirm that
there 135 no systematic_variation of k) with direcqion, and that .even -

. {
at the highest temperature (=¢195‘K), there 13 no significant . -

-

- The solid line through the data points is the best fit line

obtained by fitting all of the data together (TZEP) The dashed'linés

»

are the measured bapkground. L]

’ .

-

.
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Table 7.1. Statdlc susaeptibility and inverse correlation length
parameters which best describe the measurements at 179.6 K (see -

fig. 7.5). .The "TZEP" parameters resui,_ﬁrom a simultgheous fit to all
four data sets,

L

.
. : ) Xq=0/x0 n K] h . _xz
Tl Ross 0.0646 * 0.002 " o.gg :
E 31.6 % 3 0.0656 % 0.002. -+ 1,
£ z 33.4 £ 4 0X617 + 0.003  0.90
P 3L0*4 020665 * 0.003 1.12 % S
TZEP 32.3 £ 2 0.0641 * 0.002 1;@5 ‘ o

7.9 Temperature bebendence of the Critical Scattering '

, . ) . ‘ '
The evolution of the critical scattering as a function of

: ]
“temperature ‘is .shown in figures 7.6(a) and (b). These correspond to

measurements alongq(111)§. {1t should oe-noted that there is & factor

of two difference in ghe\ﬁntensity axis scale between figures (a) and

“{b). It can be seen that as the temperature dé%reases towards the phase

“ry
transition, the scattering becomes more strongly peaked around q = 0.

The solid Iines are the best fits obtained by using. ell of the

~data available at a given temperature. The extracted inverse correla-
tion length and static susteptibi ity are piotted as a funétion of

. \ .
temgerature in Fig 7.7. The inverse correlation ie\g}h is plotted in -

dimensionless units as ap; K1, vhere a, is the\neirgggﬁneigﬁtour

Y

u-u separation ) The closed circlegvﬁbrrespond to data te en

round the

grou
zone centre (111) and’ the open circfes to data.taken at the equivalent

point\(lll). - ' fr P

The resolution correction at 190 K is negligible (that is, the

observed width {s the intrinsic width). As K1 decreasesl the

. resolution correction becomes quite'substantislz at 173'k,-the observed

.



Fig. 7.6 (a), (b) : ’ v
Evolution of the critical scattering as a functlon of temperature, The
solid lines are the best fits_to:S{q) convoluted with the spectrometer
resolution. Note that there is a factor of two difference in the

intensity ‘m'%s' scale between {a) and (b). /
T . 1%
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"7.10 Critical Exponents o -

96
width is approximately 1.8 times the intrinmsic width. The relatively
iarger uncertainties at gmall t reflect the difficulty in resolving the

Bragg peak from the criticallsﬁattering'there.

The critical exponents are determined by fitting the inverse

'corrélation iengtﬁ and statlic susceptibility to the power law functions,

Eqns. [7.2). The simplest approach ks to allow both T, and the

exponent to vary In the fit. The Inverse correlation length data alone
' hYS e !

ylelds

(Y

T: = 170.5 * 0.9 v=0.73 £ 0.07

while the static sﬁsceptibility alone yields

T! = 169.5 * 1.0 ¥ =1.57 % 0.2
In fact, there can be only oﬂe'cripical temperature. There is a strong
éorrelation between fipte& critical temperature and exponent so that in

order to obtain a consistent description of the measurements, both

exponents must be calculated for the same Té. For example, at fixed

critical temperatures of T: and TZ, the fitted exponents are:

" 5
Tg = 170.5 v = 0.73 * 0.02 ¥ = 1.37 % 0.03
TV = 169.5 v.= 0,81 *0.03 Y = 1.57 % 0.03
" Figures 7.8 and 7.9 are the standard log-log displays of inverse .

correlation length and static susceptibilité as a function of reduced
temperature for T: and TZ. The s0lid lines are calculated from the
fitted exponents.

4

From Fig. 7.4 the critical temperature must be in the range

~170.5 £ 1.5 K. The lower™panel of ¥ig. 7.10 shows the exponents V, Y
. ) ‘ _

Al

Y
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“and P calculated at fixed T. over the entire vange. ('A' and 'B' are

two different calculations of the cprnent f. 'A' is caleulated as In
Sec. 7.7, using only the measurements below 171 K: 'B' assumes -a

distribution 6f critical temperatures centred on a max!mum, Te. Thls

Ao .
~

‘caiculation'is discussed more fully in Sec, 7.15). At a given eritical

temperature the uncertainty on the fitted exponents is quite small
(typically 0.02 in v, 0.04 in v, and 0.02 in B). Over the range how—
ever, the exponents vary apprbximately linearly with T.. In the interf

val T, = 170.2 + 0.9, over which the behaviour of the three .observa-

" bles are best described by the power law forms, the eritical exponcnts.

.

are V.= 0.75 * 0.07 and Y = 1.43 £ 0,20, B = 0.22 % 0.08. For compari-
son, the critical exponents of the standard 3-dimeusional Helsenberg
moael (Bd—H) and Ehe 3—dimensional Esing model (3d~I} are shown in Fig.
7.10.‘ The fitted exponents arelconsistent (wi;hin two ;tandard errors)
Qith the Heisenberg model at a critical temperature of 170.6, very near
to the critical teﬁpérature dédﬁced fro% the inverse corre]ntién Tenpth
fit. _The exponént B is significantly smallér than the Heisenberg value,
Eut this Is in agreement wifh-the measﬁrement ;f‘du Plessis (£982).. fhe

3d-I model exponents are more consistent with a critical temperature of

171.3 K. This 1s a less likely solution because the susceptibility

-deviates from a-power law description at the higher temperatures. It is

clear, howevef, that withouﬁﬁa better defined critical temperature, a

unique determination of theJéxponents is not possible,

-

The top panel of Fig. 7.10 is a comparison to the scaling ;au

Y+ 28-dv=0 - [7.91



Fig 7410 ‘

Critical exponents v, Yy, and B as a function of critical temperature.
(The B curves, 'A' and 'B', are calculated in two different ways. See
the text for details.) The critical tempegatuﬁestbta ned from fitting
each data set independently are shown as T, T', and T". The exponents
of the standard three-dimensional Ising and thfee-dimefisional Heisénberg
models are shown by the horizontal lines. The top panel is a comparison
to the scaling law y+2p-3v=0,
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where d is the real space dimensionality of the system, assumed to be
d = 3. The measured exponents would satisfy this condition only at the
upper limit of the temperature range. The scaling laws which include

o
Y

the syétem dimensionality are known to fail in certain systems for
example, VCla (Kadowaki et al, 1987); in this case, as well,
Y+ 28 -3v<0.
7.11 The Quasi-Elastic Approximation
In order to estimate the ineiasticity of the scattering, a

number of coarse triple axisvmeasurementé of S(q,w) in the paramagnetic
phase (T = 182 K) were pérformed. A seriés of ;onstant—Q measurements
away from the zone centre (111) along the (111) direction are showﬁ in
Fig. 7.11. The 'solid lines are fits to a Lorentzlan function convoluted
~ with the triple-axis spectrometer resolution function. The horizontal
_bars are the calculated intrinsic widths of S(q,w). |

) Parameté}izing the q dependence of the dynamic‘width by a
function of the form, Aq , 1t 1is a simple matter to numerically compare
the energy integral at constant q to the energy integr;l at’ constant ¢
The correction factor at any q\%s never greater than 3%. Because the
correction 1s so small, no attempﬁ was made to include it in the °
analysis. . | —
7.12 O:der'Paraneter;HA

As polnted out In Sec. 7.7, the behaviour of the order parameter

néar the phése transition is unusual. It muét be emphasizeq that in
- Fig. 7.3 only the resolution-limited comporient of the scatterirg is

plotted. That there i{s a definite increase in that component around . -

S 177 K cée be seen quite clearly from Fig. 7.12 which shows two (111)}P

~
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Fig. 7.11 Wave-vector dependence of the inelastic scatterirg in the
paramagnetic phase (T = 182 K). The measurements were made .
in the (l111) direction away from the (l111) zone centré¥y The
solid lines are fits to the scattering function convoluted
with the spectrometer resolutigh Pynction. The horizontal
bars are the determined ¥neladtic widths.
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o
scané af tempéghtdres o\ 178 and 176 K. These are fine scans over a
very narrcow rangé of q centred on q = Q. At fhese temperaturgs it {9
relatively easy to separate the Bragg component (so1id line) from th;
Lorentzian critical scéitering 'backgroung’ (dasﬂégczine).’ The differ-
ence in intensity at. q = 0 can only be described by an'additlénal Bragg
(or at leasf resolu?ioﬁ—limitgdj component to'thé scattering.

The -magnetic phase transition in the ¢halcogenides is
accompanied by a Qtructuralldistqrtfbn suggesting that there are large
aﬁuadrupolar and magnetoelastic effecﬁs at work. There are systemé in
which magnetic phase traﬁsitioné are affectéd1by‘cqyﬁling to strains.
Anlgxtreme example 1s the phase transition In Cr where completely
different transitions are found inqstraiﬂed and unstrained samEE%%.
(See, for example, the review by/?awcett, 1588). ﬂore recentl;,.wolf
and Huan (1988) haQe considered the effect of strains.on the AF phase
.transition in DyélG, and have shown tha; significant or@er can be
genergted inlthe 'péramagnetic' phase'ﬁy poﬁplingato internal straiﬁs.

‘ , S
A static strain in the sample, might act like an external field, pinning

»

- . o
' the moments and resulting in long range magnetic order before the onset’

of the critical phase transition. 1In a naive modely as the critical

temperature 1s approached from below, the order parameter falls in a.

- 7

manner consistent with some exponent B. Near T, however, the

magnetization deviates form the order parameter curve, held up by the
% . . .

coupling to the strain fields. 7 _ L~
Similar behaviour has also recently been observed in CeAs (Halg,

z

1987). CeAs 1s a cuble (fee rocksalt) compound with a low temperature
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v ;-—\':E:—
type-1 antiferromagnetic ordered phase. Neutron scattering measurements
. \ ~ “
in the critical repime reveal the onset of long range order at a

\
temperature of 8.5 K. However, the short range critical fluctuations-

persist below this temperature and show a maximum at = 7.8 K.—‘This is

thought to arise from a competition between the crystal field effects

L}

which Favour aniéﬁtiferromagnetié»ﬁg}ple—q structure with a <111> easy

axls, nnd'the;qpadrupolar interaction, which favours a single-q

<

structure with a <001> easy-ﬂgié. The single-q structure is marginally ™

™

favourbdl,ﬁut the resulting anisoﬁropy'gap_is extremely'SMall.~In the

critical regime this 1eags to non-linear short-range critical
fluqtudfions away from the <001> ordering direction which suppress the
develquent of the order parameter. ) ‘ F ) hd

;A pbssibility which is éextremely difftcult to eliminate is that

rathér than having a single-wal;defineg transition, there is_a :

.

distribution of critical temperatures witgf? the bulk of ,the sample due
_,’ . F’ B

to stoichiometric changes. 1If there Is a 'distribution of samples’ with
‘varying T., the contribution to the order paramgter at some 7 .

temperature, T, is a sum over the contribution of each sample whose

critical temperature is greater than T. (This can be written as e
. T -T | ' |
wery = [7ar (S——F (1) : [7.10]
c<' T c .
T c .
where f(T,) 1s the sample distribution function. . N
In order to calculate the temperature variatiéﬁ of , the order ! .

parameter, 1t is necessary to assume some form for the distribution
function. We take-for our simple model, a Gaussian distribution of half X

width O centred on a temperature Tg which represents the critical



106

tempéra;ure‘of the largest fraction of the sample. The measured Bragg
peak 1ntensity can then be fiﬁted to Eq. [7.10] by varying T » ¢ and B.

$ SN
An example of a fit fPr a fixed B 1s shown in Fig. 7.13. The '

parameters Tg and o are 1nset. . The exponent f which best reproduces

the brder parameter f L a given T° is plotted in Fig. 7.10 (the 'B’
| eter £ . | -

line). B is certdi9iy less than one over the entire range,‘and more

conslstent with tyﬁical three-dimensional models. However this analysis

should not be taken as a quantitative determination of B. The form of

the distribution function is unkﬁown.and B and ™ somewhat sensitive
- o La

to it. Even for the Gaussian function used here, B and 'I‘c arg not

very well defined: a reasonable fit to thé measured points.c&g be

produced over the range 3? Te - Furthermore, 1t woull be difficult to

. . -
Interpret T as the critical temperature observed in the critical

scattering since the width of the distribution function at T of

!
e

170.5 K 1s.% 5 K. . ' .
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CHAPTER 8: SUMMARY . :
8.1 ,Exéitations in the Ferromagnetic Phase . .Q“

Inélastic neutron scattering measurements in the low temperaturé
ferromagnetic phase of UE& reveal an unusual magnetic excitation spec-
trum. Spin-wave-like featurés are'observed ég&small q, arlsing from a
large zone centre anisotropy gap 6f‘9,4 THz. Even at temperatures well

below the ferromagnetic critical temperature, the response isﬁintrihéi—

«cally broad: at the zome céntre, the intrinsic width is estimated to be

about 4 THz.

Measurements of the wave-vegctor dependence of the scattering in
Qie (111) direction show that at small g, the excitations disperse
quadratically with a stiffness constant D of 7. THz-Az. However as q
increades beyond a reduced wave vector of about (0.3’0.3,0.3), tge'

- Lo
relatively well-de}ined excitation peak observed at small q, broadens

into an apparent continuum of scattering. A significant fraction of the

sl \

spectral weight appears to qové to energles >16mTHz.
The polarization of the magnetic scattering was measureq‘usfng a
Singie;domain sample. A single domaln was created by field—cooling the

L I .
sample through its ferromagnetic transition temperature. By observing -

¥ : ‘
the excitation at equivalent zone centres parallel and {roughly) perpen—

;dicular to the magnetization directionm, it was determined that there are

\ .
both longitudinal and transverse compineuts to the scattering. Within

the uncertainty of the measurement, the scattering is unpolarized: the
. . .

108 -
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measured ratio of x",, to X xx 18 vefy‘qearly I:1.
8.2 Local Moment Model
The logal moment model of Jackﬁan (1983), which considered the
~effect of crystal field and exchange interactions on the ground state of
the uranium fon, has been extended to includexboth quadfupola% and
] magnetoelastic effeets. This model is attrac£ive in a numpérlof
respects. It provides a simple explanation of the observed reduced
moments in that only the momen?'éf the lowest crystal field multiplet {is
accesslible, Tt 1ncorporates?the interaction between the moments and the
lattfce, manifested 1in fhe softenlng of the cyy elastic constanﬁ and the
rhombohedral distortion at the onset of ferromagnetic order. At the
sahe time, the large quadrupolar.interaction provideé a mechanism for
‘producing the 1a;ge ahisotropy gap observed in the low tempgratdre |
magnetic exczlation spectrum,
| A good description of the UX‘comboundé‘is“obtained,assuming a
localized £’ electronic configuré;ign»(Alglz Hund's rule ground
state) for the .uranium ion in the presence of a cuBic crystal fileld, a
mean exchange field and é mean quadéupolgr field. For the Péz) quartet
' y % - lowest and well separated in enéfgy from the excited states, this model
v//// i; capable of reproducing the following magnetic and bulk elastic.obsérf
- . vables: the Curie-Weiss susceptibility iﬁ the paramagnetic éhase, the
~eordered moment, the spin wave anisotropy gap, the behaviour of t;; CLy
elastic constant, and the distortion in the ordered phase; The single

inconsistency~in~the model i{s in the magnitude of the quadrupolar’

interaction in UTe: the interaction energy measured in the bulk elastic

-
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4

response predicts a gap in the excitatioen speétrum which is
] appfoximately a factor of two larger than_measured. |

The most obvious inadequacy of iggocal moment model .15 in the
description of the excitations in the ferromagnetic phase. Such‘n model
can only produce magnetic excitations in the classical sénse; well-
defiﬁed spin waves corresponding to transitions between single-lon’
levelé as modifiéﬁ by inter—ion exchange., In.order to describe thel
intrinsic widths observed in US and USe, it is ﬁecessary to Introduce
some damping mechanism. A simple model of electfonic damping resulting |
from the coupling of the locai f-moment to the broader conduction elec~-
tron response, provides a reaspﬁable description of the observations. It
suggests that the progression from well-defined spin wa&es in UTe to the
broad continyum response of US is asséciéted with the broadening and

1

overlap of the electron bands with decreasiﬁg U-U separation. It

requires, howéven, an effective bandwidth for the Interacting qonduction'

electrons on the scale of the magﬁétic excitation energies.

The model also fails to predict correctly the polarization of

the excitation: in USe, at least, the scattering Is found to 4y un-

.

polaf;i:j wherea's the model predicts only transverse excitatfons..

3.3 . tical Scattering

The ferromagnetiimphase transition in USe has been studied using

neutron scattering techniques. Of the chaléogenides, USe 1s the most
favourable system for a measurement of this type: U and Se have almost
‘the same scattering lengths so that at tre (h+k+l) odd Bragg peak

"

positions, the nuclear scatteE}ng 1s extremely weak.
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The magnetic critical scattering in the paramagnétic phase has
been measured over a decade of reduced teméerature. The inverse correla-
tion length and static susceptibility at each temperature have been
extracted by fitting S(a).(convoluted with the spectrometer resolution
function) to the standard Lorentzian form. It has proved difficult te
extract critical exponents, becdause of the large uncertainty iﬁ th;
criéical temperature. The ﬁest estimate of T, is 170.2 + 0.9: the
critical temperatures deduced independently fronkﬁhe corgelation length,
.sﬁatic susceptlbility, and order parameter data are withiﬁ a standa;d
deqiapivﬁ. The criticaileyponents are’ estimated as v = 0:75 * 0.07,
¥ = 1,43 £ 0.2, and B = 0.22 £ 0.08. Of the standard models the
3-dimensional Helsenberg model provides the bgst description: the
exponents VvV and y are within a standard deviation of the Heisenberg \
predictioné and are approximitely\consistent with a critiga} temperature
of 170;5 K. The exponent B, however, is significantly‘lower than the
Heisénberg prédiction. A preyious ﬁeasurement by du Plessis (1982) also

¢
showed_an anomolousiy low value of B in USe. |
An uﬁusual feature of the phase transiiion 1s the apparent onset
of long range magnetic order approximately 5 degrees above tﬁé critical
temperature deduced from the criticél écatiering. The iuitial ﬁehpera-
ture variation of the magneti;ation is such that, if it were to be des-
cribed in terms of a power law, the exponent would be greater than one.

. F 4 . . .
A possible interpretation of this behaviour is that it is strain-induced

ordering, brought about by the moment-quadrupole coupling.

TN
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* APPENDIX A: HAMILTONIAN OF THE LOCALIZED MODEL"
-VA.I Elastic Fner;y | | _
This discussion io only intendeo<to establish the notation/used
in tne text. Complete tré tmeg;ﬁ/;f the elastic response can be found"
in ﬁye (1985) or Kittel (i956>. S '
The effect of applying a strain is to move_ a point in the

cr)}\‘}}rl from a position r.to a position £, r is related to r:\N through

. . . ®
»  the strain matrix, E, by . . : v

r' = Er : [A.1]
e = € £
xx Xy XZ

where ° E = € e € ' [A.2

- / yx yy ye [ ]

" Eax _' Ezy ) ezz
% The components of the strain tensor are most easily interpreted by
AN\ '
1 -considering the effect of the strain on the cubic basis vectors

__‘ ’ ~ ~ . .
2{;» /2{:, Y, z}. In the strained matrix . \/)-

fx, v,'zb » & oy oz} .
where the primed vector§ are defined By Eq. [A.1]. The strained vector’

o

- .
x', for example, is given by

7; where to flrst order

> > + ‘ : ‘ [A 4]
X' *y' =g € .
' 7 Sy T fyx |

~

. : 1
.For the symmetrized strain, exy Vi (Exy+€yx)’ this simply reduces to

ey = % X' ';' o [A.5]
- 117

)

L N LT N ‘ 7 ~ -~ A ,. '
'z
/ x {1+ exx) x + Exy y + € s S | [A.3] _
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It 1s convenient to define the strain components
! Y
S T e tey ey, : .
€l = 2, - e eYy ' - [A.6] ‘
€2 = e - eyy ' ‘ . K ' _
. . ® &

With these ?gfinitions, the elastic strain energy—1s ‘given by
. . E" . 1 s :

+2c12 ‘, . AN S

c
e = _1 f1 N S 2 . 2 . 2
o Bt (T g h Ry e h ) vk (el e be, D)
/ | | - £ - AT

‘where €110 c12’ and Chy BTE the elastic stiffness constants defined in

. S TN
the usual way . (see, for example, Kittel 1966)

PR

-

A.2 Quédrupole Operators

Y4 The convention of Morin et al (1977) has been used in défining .

-

the quadrupole operatorso With respect to a 001) z axis:

2‘ 2(s 92 - (592 - (s)? -
o - (s)?2 . O (aug]
v - 3 j #é :
K P (S $3 + slsty where 1,} = x,y,z. .

A.3 The Reduced Hamiitonian

” > The most generdl form of the Hamiltonian is.
_ | H = Hop + Hpy + HQ + Hyp + Egp - ' . [a.9] .
where the individual contributions are described in Sec. 6.2. In this :

‘appendix, the simplifying approximationé which lead to the reduced form,

[6.7], are deécribed.
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(1) Mean Fleld Approximation' - ¢
The Helsenberg Hamiltonlan can be rewritten in the form
e=-2 3,3-¢) G < racd 2 -aEN? a10]
1371 h| i i
13 g 1 i
-+ ’ -
where <5> 1s the average value of the spin and
J=1 J [A.41]
1y 4

where only nearest nelghbour interactions are assumed. The first
term, which {nvolves fluctuations away from the average value of <§>

~ f
1s neglected In the mean fleld treatment so that the single~ion

] . L
Hamiltonian becomes
ugi = 205>+ § - k2 . [A.12]

The mean field quadrupolar interaction Hamiltonian is obtained 1in the

L}
same way.

(11) Rhombohedral Strain
The ﬂamiitonian fs much simplified 1f only the strains that have
the symmetrﬁ‘of the disto:tion in the ordered phase afe included. The

symmetry of a rhombohedral strain is such that

. T -
e, = g, =
1.2 [£.13]
®xy T ®yz T Cax’ - S

When a stress is applied, the system can lower its free .energy

by distorting. The response of the‘s}stem is determined by minimfzing

the free energy withfrespect to each component of the strain. It can be

shown that only certain of the quadrupole operators enter the

[y
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Hamiltonian for a strain of the required symmétry. For the Hamlltonian,’
H, "wi.th eigenveétors m> and elgenvalues E;, the -free energy is glven
by

F = - kT LN(2) ' (A.14]

~

where Z is the partition-fuqction Z =1 e_BEm. The only terms in the

: m
Hamiltonian which contain strains are Hyg and Egy, and for
simplicity these are written 5 '
= L B,g,0
e = 5 P1%50s
. [A.15]
E. =L ¢ 52
' EL i3]
- 3
where €5 1s % straln, Bi:and Cj are the corresponding magneto-
elastic and elastic coefficlents (including relevant numerical N
e .

constggizéfgnd 0y is the associated quadrupole operator.

Taking the derivative of F with respect to a particular'atrain

~

component, &,

dF R e |
&£ = 2ce - B<o> | ) . | [A.16]

F is minimized when

t/":} 0> = 2 : (A7)
= i.e. the éxpectation value of the quadrupolé operator 1s proportional to

its aséﬁciated stra{t:' Then, froL\Eq. [A.13] ' ‘

L 00 a2y o )
. <Q2) <02> 0 o, -
o [A.18]

> 5 <P_ > ' :
. ¥ ’
ing’ the terms in'<025‘and <O§>, replacing <P1j> with <P>

‘and eij with e, the terms HHE’ HQ and EEL are reduced to |
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B5 '
HME = - '—2 e (ny + Pyz + sz)
HMF I & [2<P> (p +P +P )~ 3<P>2} i ) [A.19]
Qe 4 Xy yz  zZX _ o .
2 .
Egp, = 86440
(111) Rotation to <111> Axis 4 oV

. A further simplifiiétion can be made by changing eoordinate
frames. The distortionlis qymmetric about the (i;l) direction, and it
is the easy axis for the magnetization.' It is then*écﬁvenient to rede-
fine <111 as the z~axis: Be?ghse the exchange Eamiitog&gn is not tied
‘to the laZtiaE,.it 16 invariant under the rotation. The remaining

terms;tiowever, must all be transformed. The necessary transformations v

,

are: N e 2@ o
Py ¥ Byp ¥ By og;.g_
<P>.ﬁ+%<og"> | ' - [a.20)

where bfimes'deﬁo;qéopérétors (and strain compoments) in the <111>

frame.
Finall}, the cuble crystal field Hamiltonian for a 3-fold z-axis
is given by Hutchings (1964) as | . . N
2 0 3, , 16 ,,0, 35 3,77 6
Hop = B4(0, - 2072 0,) + =5 (0g + =7 0p + 25 0)) [A.21]
: r
The complete Hamiltonian has the form
BT o Hop = 20¢s%>8% + Ks5?
j e . [a.22]
_ 73 y L1 0, \n0, 1 0,02 o o o p o 432
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In tﬁe text, the primed notation 1is dropped and all operators are under-

stood to be wf%h-geSpect to the <111> direction. For convenlence, the

1
e
T

parameteii Bs, Ky and €] will be referred to és B, K and e;

[
A.4 Distortion in the Ordered Phase

. The cubic structure is naturally defined in terms of the basis

~ A A -

vectors {x,y,z } paralleL to the cube edges. The rhombohedral structure

in the ordered phase is more conveniently described by a set of

-~ -~ ~

oEfﬁgsonal vectors { x',y',z' “which havé z along the threefold symmetric

(111) axis. With respect to the cuble basis, these are

x'=73_(1', 1, 2) ' o« .
A =7;—_- (1, 1, 0) . [A.23}

The primitive vectors of a general rhombohedron (with respect to

-~ ~ -~

{x',y',2'} are then given by ¢ .

>
a;=a(-p, 0, q) .

P

3 . ' ’

zp’ Q) l' | ‘[AOZA] -

: witg’the constraint that p +q 2 . 1. In a cubic structure q2 - 2/3 and’

>
a

= P
2 ao( !

the primitive vectors correspond to the face centres.



. 123
/
The magnitude of the rhombohedral distortion in the ordered
R
phase 1is commonly expressed In terms of the angles Agp or A50 In a
N
cubic c¢rystal, the angle beLueeﬂ/Ehe basls vectors is 90° and the angle
between adjacent face centres, 60°. The angles Agg and Agp are the
corrections to the cubic angles which result from the distortion.
. The angle 4Agp 1is defined by
{: cos{60 + AGO) =a, ° aj '; , [A.25]
, In the 1limit of Ago small, this reduces to
1 ~ny 2 . '
A60- -3 (2= 3¢°) _ [4.26]
Thetangleqifu is defined by
‘ ~ -~ \ .
COS{90 + 9.0) = Ai'Aj - {A.27]
' where the vectors A1 would coifespond to {x,y, } In the cubic frame
(eg. A= al + az -a3) In the limit of Agg small, this reduces to
/ 73 T3 ;
A m— A =l [A.28]
Vs B | 90 4-3q2 60 ; 2 760 . . .
(taking q2 = 2/3).
The transverse strain component, eij_(i # 3), is defined as
(Eq. [A.5])
' e =La va { - [A.29]
i3 2% 3 - RO : *
/" From Eqs. [A.27] and [A.28] .
. h ] ) /3 .
/‘/ %1y Y77 %0 . (A.30]
The strain in the orde;ed phase, € (ei in Eq. [A.20]), 1is then
ee-3 a4 o - [A.31]<
“ 4 60 ' . )

From Eq. [A.17], € is related to the quadrupole moment <Og> by
-, . ) , RRC T .

<ot



Replacing € by 860 and B by Kyg (as defined in Sec. 6.5)

2 ME
A, =%
60 3 ¢y
r \\mf

K

~

)
<0,>

[
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[A.32]

, [A.33)
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APPENDIX B: MAGNETIC EXCITATIONS IN THE LOCALIZED MODEL
B.1 Spim Waves {n the Ordered Phase

A general formalism for calﬁulating the spin wave excitation
spectfum.of a system with both crystal fie%d and exchange interactions

. J
wasg developedﬁby Buyers, Holden and Perrault (1975). The Hamiltonian

> - ]

H = HCF + Z Jij Si . Sj - ‘ [B.1]

1] ‘\ - )
can be divided into two parts: single-icon part
z z - ‘ . ;
HSI HCF + 2 I (L Jij 87 Si - [B.2]
. i 1 .
and an inter—ion part
1 Z,.Z oz

Hy =5 fj J j(S j + S s ) + fj Ji:l Si(s__i 2 <8™>) ‘ [B.3]

The single-ion Hamilponiaq, diagonalized in the ground state S-
multiplet, produces a new set of basis states,, |m>, consistent with
the symmétiy of the crystal ff%ld, andlthéfﬁresence of a mean exchange
field. (In the calculation in Chapter 6 there is also a con;ribution to
Hgy from the quadrupolar field). The excitation spéctfum consists of
fluctuations between these gasis states. - 7-/“\\

The dynamic suséeptibiliﬁf s obtained by finding the equation
of motion, goverped by - the inter;ion Hamiltonian, of the relevant

response'functioﬁs, in this cefe

sfo1> | . [B.4)

The details of the derivation can be found in Buyers (1975) the

(t) = - 168(t) <{s (t).

Fourier transformed result i{s simply quoted here b
. > + . =B, +

G0 = 8P + g™ 33 PG w 5T 33 P

i + 2875w 3 P -

125

[B.5]
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where JE is the Fourler transform of the exchange constant

L T
1 iq'(ri-rj
J; =g £J e | ) [B.6]

and gaB(uD is the single—ion susceptibility
| ©Of - f

g™P(w) = ﬁn <m|s“|n> <n|SB'm> — (“hﬁ“h) - ~[B.7)

where f; 1s the Boltzmann population factor of the stﬁfe m> with
energy Wp. ‘In cubic symmetry, only certain of the matrix elements are
non-zero, specifically g+-, g7+, and g%%. The transverse and longitu-

dinal parts of the response are then decoupled in Eq. [B.5] yielding

+- : -+
¢ @ - —E& ¢ (g0 ~ —E (W [5.8]
1 -3z (w) ' 1=-Jrg (w
q - q
and .
Gzz(a,w) = gzz(m)

_ {B.9]
1 - 25 g”7 (w) X .

The dynamic response.is‘obtained in the usual way, by letting
w > w+ 17 (where 7 is an 1nfihitesimél quantity), ﬁnd solving for the -
imaginary part of the responsé function. 1In the absence of inter-ion
exchange (i.ei J = 0) the response,funciion'reduces to g(w), and the
solutions are a se;ies of 8-functions at ;nergies Eofrespondiné t§

transitions between single-ion levels., The effecé)of the exchange

coupling is to renormalize th? excitation energles: the solutions

" correspond to the poles of Gta,wq rather than g(w). The spin wave

'energieé.ar ;given by ‘ . 3




A

1-32g"(w) =0

1- 3 g (w =0

- 1- 21 g7%(w) =0
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[B.10]

s

In an fce lattice, assuming nearest neighbour\interactions only,

the wave-vector dependent exchange constant for 3 = (L,5,0) 1

-

Ja = 6J(1 + cos 2uL)

[B.11]

- :
" At the zone boundary (Z = 0.5) Ja = (., The spin wave excitation

energles are the transition energles among the sipngle-ion levels.

B.2 Static Susceptibility
)

-

The static susceptibility is obtained from the longitudinal

response function Gzz(a,w) (Eq. [B.9]) in the limit of ¢ + 0 and w + 0,

i.e.

22 A4
G*?% = E

zz
1 _ 2Jog

where, in this case,

o , £ - f
g% = % '(mlsz|n>| h_u
W - W

m ! m T m

[B.12]

[B.13]

In the text, gzz is referred to as the single~lon susceptibility, X0-



APPENDIX ‘C: SCALING AND UNIVERSALITY
L.l Generalized Homogeneous Functions and the Scaling Hypothesis

The static scaling hypothesis, first formulated by Widom (1965)

and Domb and Hunter (1965), is that the thermodynamic potentials can be

described by géneralized homogeneous functions near the critiecal

~temperature. The term generalized homogéneousfﬁfction is applied to

any function, f(x), which satisfies the condition
g(al/2y = AE(x) I  [e.1]
for any values of the constants A and a. A thorough review of the
prbperties of homogeneous functions is given by Stanley (1971). TFor the
purpose of this discussion, It will suffice to point out the following /’/

feature: since the condition, Eq. [C.1], s true for all A and a, then

¥

it must be true, in partagplar,'for ‘ ) <
/a _ 1 -
oy ME =g . | [c.2]

In this case, Eq. [C.1] can be rewritten as

£(x) = x 2£(1) . [e.3]

1.e. f(x) varies as a power law in x.
The extension of the definition to a gener?lized homogeneous
function of more than one variable is straightforward:

£03%, %) = Af(x,y) | 1¢.4]
for all values of A, a, and b o ' o
The usefulness of. this hypothesis is that it immediately legds
' 2 #
to predictions about the behaviour of the observables, such as the 7

magnetization, the susceptibility‘énd the specific heat,

128
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- near the critical temperature. To see this, we wrife the free energy,
G, as a function of the relevant external vgiiablep; the temperature
/RAwhich will be defined here in terms of the reduced temperature, t) and

the applied magnetic field, H. From Eq. [C.4], G(t,H) satisfies -

‘% .
< 6(A%t, APH) = AG(t,H) [c.5]

Now, for example, the magnetization, M, is defined by ;
M = Lim dG

- . : [c.6]
H*0 dH , »

. L -
Taking the derivative and applying the limit to Eq. [c.6], meang\that
M(?&BO) = Pue, 0 - ‘ [c.7]

i.e. M is a homogeneous function. Applying the argument used to obtain

Eq. [C.3], Mkt,o) can be expressed as

: . 1-b : ‘ _
M(t,0) = (-t) ®  M(-1,0) . . \‘Wc,g'l e
The magnetization can be described by a power law, with an.exponent, B,
given by
L
p = >

. 8
In fact similar arguments can be applied to any thermodynamic
variable derived from G(t,H). It 1srimporpant to realize that all of
the exponenté that come out of this formaiism are defined in terms.pf
only two parameters, a #nd b../ The significance of this is that thé
. 3

critical exponents:can not #11 be independent: any two exponénts are

sufficient to define all tHe rest. This fact leads to relationships

e
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) i ' #
among the exponents known as the scaling laws. An example is the well
- %

known equation relating the exponents of the specific heat (a)
-

magnetization (B) and susceptibility (y).

_ ‘cz.+- 2B+ y =2 . [c.10]
. : -
Although it has no rigorous justification, in practice the

4

scaling pyﬁofhesis seems to hold. Thg formulation oF’scaling due to
Kadanoff (1966), though again not a rigoroﬁs proof, provides a physical
sense of what is embodied‘in the mathematical form of the  scaling hypo-
thesis. 4 |

C.2 Scaling

. 1
-~

It w11£ be recalled thagggf the eritical ;:gime, there are 1aiéé
fluctuitingrregions and that the extent of these reglons 1s characteri-~
zed By the corfelation length, £. The correlation length may belexpresw
sed in dimensionless dnits by referencing it to some fundamental length

scale, r, in the physical system. r might be, for example, some intef-

-

-atomie spacing, =. The'dimensionless correlation length is then {/r, or

in this case [/a.

Suppose now that the system length scale 1is redefined by taking

y . ‘ ,
r = 2a.. The correlation length in absolute units 1s, of course,

unaffected. 1In terms of the'dimenéionleas quantity however, the

iZfrelafion length has apparently been reduced by a factor of two, or™

stated another way;.the tempq;aturé 't' haé'apparently increased. Thus

redefining the length scale is equivalent to changing the temperature.
o , N

e
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[y

' In order to make a mathematical statement of the argument,

associate with the length scale, r = a, a reduced temperature, t, and

with the length scala, r = 2a, a reduced temperature t. Then

. 1 - ~ .
- 5 &(t) = L(e) . fc.11]

1

More generally, if the tuﬂ%% scale {s changed by some factor, X,
1 C®) =8 . [¢.12]

In order to carry the arguﬁent any further, it is necessary.te define a

relationship between t and t. The simplest possible assumption is that

-~

t and t are related linéarlysf'lt 1s also reasonable, since the change
in temperatiire results from a change in scale, that .the coefficient in

the transformation is a function of £, i.e.

£ = £( Dt - | [c.13]

particular, if the coefficlent has the form b

£(2) = 27 ‘ | [Cc.14)

‘where y.1s & constant, then the correlation length is a homogeneous
function, according to the definition of Eq. [C. 1}, i.e.

- g C(t) - ic(t)

C(x‘YE) - £C(€) . | -  [c.15]

7

- The resulg is that' the. function € can be described by a power law with
~eritical exponent y (Eq. [C 31) 1.e. .
e(e) = o | | o lc.16]
The basic premise of the scaling formulation is that the |

thermodynamic varlables such as the free energy, G ,can be described in
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"

terms of generilized hohog;heous functions. The argument proceeds in
.much the same way as it does for the correlation length., Let the *

raference leng;h fo: the physical system be some iq;eratomic distance,
r = a, and associate with a ce#ll, of volume a3, the free energy Go- -

L] .
‘Mow 1if the reference scale is changed, from a to Xa, the volume of the

~

cell 1s increased by a factor of 23. Because the free energy is

b}

extrinsic, the free energy of the renormalized cell, G,, scales with

the volume, i.e. K 2

G, = 23Gc ' o . {c.17) /
_ ) _
As before, the change in scale can be associated with a change 1in

temperature. Let t be the temperature describing the orginal system,

and t, the temperature of the renormalized.syst:;% Equation® [C.17]
becomes | _ ' ' ’ e

o(6) = 26ty | ) | - [c.18]"
and by Ehe arguments used previously, G(t) is a generalized homogeneoua
function. _ ) -

In'facf,\the entire scaling arghment is'someqhat more suptlg 1ﬁ
this case because it félies on the aséumption that G, and G, -have
the same functional/ﬁbrm. The implications of this can be understood by

_considéring a magnetié systéh on a %1croscop1c level, Ultimately the

form of G.is determined by the Hamiltoniap_oﬁ the micrOBC6pic spin

FaT S -,

Ssystem, for exafiple ‘ -t

:'/ ' !

neyz 3 -2 o ) . Le.19]
oLt |

where 51 is the sbin on site 1 and J.is the interaction between

Th
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-

spins on different sites. Whether the form of G can be retiad{ned under a

scale transformation will depend on how the Hamiltonlan renormalizes. K;

" Suppose that when the cell size is renormalized frém aa, whid] ontains

- ¥ [

a single site with spin S (for example), to a size (13)3, which contains

many sites, the Hamiltonian can be rewritten in terms of and effective.

© ' -~

'spin S of the new cell, and and effective exchange J between the new

cells, In this way the parameters are renormalized but the form of the

Hamiltonian 1is retained,'ie; oo

~ ~
I , ,

- H+J§j§i°§ . , [C.20]

C.3 Universality - o ' ,ﬁ/f//

Although the scaling formulation ylelds relationships among the
N

critical exponents, it does not glve uny information about the magnituﬁg/*‘\)
) . _

‘des of the exponents. fThese must be obtained from direct calculations

on model systems. The acrual technlques applied to these proﬁlems are

" beyond the scope of this discussion. (Reviews can E§~found in Phaseﬁi

1

Transitions and Critical Phenomena Volumes 3 and &, and Fisher, 1982) v
There are, in fact, very few models which can be solved exactly and it

1s for this reason that the concept of univer§ality'is important.

Universality is another hypothesis which states that the critical

_behaviour (in particular the critical exponeﬁ%§) of a system depends

only on three things:
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A
(1) the real space dimensionality of the system
(11) the dimensionality of the order parameter (in the .

-case of a magnetic system, the magnetization) -
(111) the rhnge of the Interactions
These define a system's 'universality class'.r If the critical exponents

can be determined for any member of the universality class then they are

determined for all members of that class.

V- | ~

S
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APPENDIX D: CRIEICAL NEUTRON SCATTERING
D.1 The Scattering Function

The scattering function, S(a,m), is given by

> 1 -h ‘ 2 1 w s
s(q,w) = — — 2 (1l - Q) ~ —fRe Xa (q, w} [D.1]
. (g“B)' * /- e ) ’
oln the paramagnetic phése where tp re 1s no distinction between
. ' r
transverse and longitudinal susceptibilfty, this reduces to
K 1
> 2 wr? .

‘Near T,, it is expected that the inelastic spectrum will consist of

low energy fluctuatiops which satlsfy hw € kT. In this 1limit the
detailed balance factor can be expanded in hw/kT, and to first erder

. N . ’ + - *
1 kT %x"(q,w)

S(3,0) = 2 —1
(8hg) oW

[0.3]

In a'two-axis neutron scattering measurement the relevant function 1is

S(;) where

+> e .
-5(q) = [ dw s(q,w) | [D:4]
According to the Kramers-Kronig relation which relates the real and

imaginary parts of the susceptibilicy
s
- 1 " t
X =3 [ do X{L0 [D.5]
!
so that S(;) may be rewritten as

S = —Z kT 2@

(giy) . | % [D.6]

135
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It is convenient to rewrite S(q) in the form L
: . 7
. (a) )
$(q) =% s(s + 1) X492, P - [D.7)
3 X ]
. - ‘ -~ /
where %o is the susceptibility of the non-interacting system, defined by
. . ”» ! .
(gu)? s(s + 1) o g -
B : § ’
. X = ~3KT .., [b.3]
< . ’ - ‘ “ . ’

Tﬁe foq$ of x(;) In the critical regime was first formuigted, in
the-cogtext of magnetic scattering, by Van Hove (1954). He adoptéd‘the~
Ornstein-Zernike description of the real ;pace cgprelations, assuming
that near the critical tempefathre, the (real space) statlc spin

correlation function decays over some'characteristic (inverse) length

scale x;, as

] : . - 3
-K.T . . -
- . +> e 1 -
<SO Sl‘.'> « - [D.Q]
4
He further assumed that the equa&}gﬁlgoverﬁing the decay of the time
correlation of the magnetization could be treated by diffusion theory,
leading to a form for the dynamié correlation function ) -
-<§q(0 -_Eq(t)> = o Tlalt ' [D.10]

-

The exponential variation of the correlation functfon in real space and
time lead to Loren%zian dependences in the Fourler transformed function
and thus to the Van Hove form of S(a,uﬂ where S 'is the spin of the ion,

and r} is the temperature dependent range parameter which, .

@
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[
from Eq. [D.7], can be defined by
X . : ‘
=() 1
qx YT 2 [D.12]
0 - ry Ky
®

The functiqggf(a) is the wave-vector dépendent dynamic width which for a

Helsenberg ferromagnet, varies as

I(q) = Aq> | ' (D.13]

where A 1s the (temperature dependent) diffusion constant.

D.2 The Quasil Elastic Approximation ’ . . - &

"

The two-axis technique measures S(E) only approximately. The

difficulty is that,'in the two-axls geometry, 3 and w cannot be S

.

determined indebendently. If the nominal wave vector of the measurement

M

R A
is qp, then a neutron scattered elastically, (w=0), will have wave
> A . .
vector qp. However a scattered neutron with finite energy, Aw, has a
) > > . > ->
wave vector qg + Agq. Rather than integrating S{q,w) at comstant q, the
L ’ > >
two-axls measurement performs the Integration along some path in q.and w

at constant scattering angle, ¢.

4 Strictly épeaking, S(E) = 5{¢) only in the limit where the

scattering 1s completely elastic. However, it is clear that 1f the

q

sgattering’is quasi-elastic with some very small energy. width, then Aw
1s never far from w=0, and‘q nefer far from 30. 5(¢) is Ehan a good

‘measure of S?;) if this quasi-elastic approximation is valid. This is

eipéctéd to be the case near to a phase transition because of critical

A ~
slowing dowms

It is trivial to show that the spread in the scattered

i - g -
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neutron energy, AE', is related to the spread in {(the magnltude of) the
scattered neutron wave vector, Ak', by

Ak = fl{ /%AE,‘ o _ [D.14]

E' 1s determined by the energy scale of the flﬁttuhtlons near the phase
transition but the spread in wave vector can be restricted by chooesling -
E' > AE’. X

If the energy'dependeﬁce of the scattering function is kiown, ft

is possiblé to Include a correction for'the ipelasticity. 'The

. + ' .
correction factor, C(q), Ls defined as the ratio of of the enersy

> : >
integral of S(q,w) at constant, ¢, to the ener integral at constant g,

i.eﬂ

., i,‘dw S(3,0)
Clq,) = —
S(q,)

[D.15]

The measured intenéity at 30: I(Eg), is than given by

1{q,) = ¢(d) s(@) “\\ | . Ip.te]



