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ABSTRACT

In the major part of this thesis, two-compartment and four-compartment models in the
form of systems of linear differential equations, associated with human in vivo cadmium data,
have been constructed to describe a particular biological phenomenon of cadmium metabolism
in the human body. The two-compartment model constitutes the preliminary work, and the
complete analysis and discussions are finally achieved through the four- compartment model.

Since it was expensive to technically perform the in vivo measurements and also
difficult to collect the data over a period of a decade, the data set analyzed in this thesis
are quite precious and one of very few such existing data sets in the area of cadmium
research. Cadmium researchers are very much interested in drawing as much information
as possible from these data. A method is developed for deriving the expectation functions
and analyzing this special data set. The parameter estimation for the compartment models
developed is based on two parameter estimation methods based on classical and Bayesian
approaches. It is the first time a whole system of the human body has been analyzed
simultaneously without any additional assumptions on the derivation of the compartment
models. This contrasts with the approach of discussing each compartment separately with
a large number of assumptions from different sources as in Kjellstrom’s model. The results

obtained from these statistical approaches based on simpler and more direct mathematical

il



models are not only interpreted very reasonably in terms of the biological phenomenon, but
they also show great consistency with previous studies, even though the data are sparse and
noisy which poses a special difficulty in this study.

This thesis also considers the application of segmented models to examine the
relationship between renal dysfunction and blood or urine cadmium, and to locate abrupt

change points as kidneys become abnormal.
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CHAPTER 1

INTRODUCTION

1.1 Scope of the Thesis

There are four chapters in this thesis. Chapter 1 gives the background to cadmium
and its use in both general and working environments. It also describes toxic effects of
exposure to cadmium and cadmium metabolism that is, a system of absorption, transport,
distribution, accumulation and excretion in the human body. Then, it introduces several
measurements used in the data of this thesis. Lastly, Kjellstrom's model™ is introduced
briefly.

Chapter 2 investigates a relationship between renal dysfunction and blood or urine
cadmium in the human body, and locates points where the abrupt change might occur in blood
or urine cadmium as the kidneys become abnormal. The discussions are based on the models
for cross-sectional studies on populations occupationally exposed to cadmium. In addition to
that, effectiveness of blood and urine cadmium for biological monitoring of cadmium in the
workplace is studied in this chapter. In the last part of Chapter 2, a brief discussion is provided

about the effectiveness of kidney and liver cadmium for monitoring cadmium.



(29

Chapters 3 and 4 form the major part of this thesis. These chapters focus on two-
compartment and four-compartment models in the form of systems of linear differential
equations. Since it was expensive to technically perform the in vivo measurements and also
difficult to collect these cadmium data over a period of a decade, the data set analyzed in
this thesis is quitc precious and one of very few such exisiing data sets in the area of
cadmium research. Cadmium researchers are very much interested in drawing as much
information as possible from these data. The two-compartment model in Chapter 3 is the
prelude to the four-compartment model, and constitutes the preliminary work. Going a step
further, the complete analysis and discussions are finally achieved by the four-compartment
model in Chapter 4.

Chapter 4 is composed of five sections. In Section 4.1, the four-compartment model in
the form of a linear non-homogeneous system of ordinary differential equations, is given, both
analytically and graphically. The four compartments are cadmium in blood, cadmium in urine,
cadmium in kidney, and cadmium in liver. Moreover, the expectation functions of the four-
compartment model are derived analytically in terms of eigenvalues and corresponding
eigenvectors of a matrix of transfer rates. In Section 4.2, blood cadmium and the total body
burden are discussed briefly. In Section 4.3, the discussion is on obtaining starting values for
fitting the unknown parameters based on two methods, namely, graphical analysis and grid
search. In the last two sections, the discussions and conclusions are focused on the estimation

of parameters by classical and Bayesian approaches. Two numerical methods, namely, Gauss-



Newton and Newton-Raphson methods, are presented specifically, for the optimization
involved. I then made a comparison between the model developed in this thesis and
Kjellstrom’s Model by pointing out the similarity and differences. The sophisticated mode!
derived by Kjellstrdm™ in 1977 is based on many assumptions, since it involves 21
coetficients. These parameters must be fixed through prior knowledge. In contrast, this
thesis presents parameter estimation, based on two statistical methods, using classical and
Bayesian approaches, directly from the human data, and constructs a model to describe a
particular biological phenomenon of cadmium metabolism in the human body. This has never
been done before.

It is first time a whole system of the human body has been analyzed
simultaneously without any additional assumptions on the compartment models. Previous

works discussed each compartment separately and involved a large number of assumptions

from different sources such as Kjellstrom's model™.

1.2 Background to Cadmium

Cadmium is a rare metallic element of silver-white appearance which falls in Group
IIB of the Periodic Classification, between zinc and mercury, with atomic weight 112.4,

atomic number 48, density 8.6, melting point 321 C°, and boiling point 765 C°*'.



Cadmium is obtained as a by-product from the refining of zinc and other metais,
particularly, copper and lead. It displays chemical similarity to zinc.

Unlike other metals, cadmium has been recognized only for a reiatively short time.
It was first identified as an element in 1817 by Friedrich Stromeyer and did not come into
even limited use until some 60-70 years ago. Large consumption dates only trom the

1940s™ and dispersion into environment by human activity is relatively recent.

1.3 Industrial Usage of Cadmium

Cadmium has been used in a wide range of industrial applications, even though its
toxic effects have been acknowledged for decades.

There are several metals that are frequently electroplated with cadmium to protect
them from rusting. Cadmium plating is applied on automobiles, aircraft, and is also used
on marine and textile equipment, as well as goods such as nuts and bolts, locks, hinges and
SCrews.

Cadmium sulfide and cadmium sulfoselenide are commonly used as red, orange
and yellow pigments in plastics and various types of paint. More than 70% of cadmium

pigments are used in plastics with others being used to color rubber and industrial and car

paints.



Cadmium stearate is used as a stabilizer in plastics to inhibit the process in which
plastics darken, harden or become fragile under the effect of heat or light.

Because of the ability of cadmium to stiffen copper and increase its mechanical
resistance at increased temperatures, cadmium is used in copper-cadmium alloys for
clectrical cables. Cadmium serves as an electrode component in nickelV/cudmium batteries.
Cadmium is also used in welding electrodes and ‘“silver’ solders for joining metals like
domestic pipe work and refrigerators as well as other heat exchangers such as car
radiators.

In application such as pigments and plating, cadmium can be replaced by other less
toxic materials, and its use has therefore been restricted by law in some countries.
However, it is more difficult to replace cadmium for some other uses of cadmium in
products (e.g., electric batteries and electronic components).

The data sets analyzed in Chapter 2 are by Prescote", Prayon and Balen™. The
Prescot data were collected from industrially exposed male workers in 1983 in a copper
alloy factory in the United Kingdom, for manufacturing overhead electrical cable with
cadmium being used in the alloy to strengthen the copper”’. The Balen and Prayon data
were gathered from workers volunteering to participate in a study in two zinc-cadmium-
producing plants in Belgium™. The data sets of Prescot, Prayon and Balen were included
in the author’s Master’s Project for different statistical analyses. The Jaguar data analyzed

in Chapters 3 and 4 were collected from the British Leyland Jaguar workers, engaged in



brazing and silver soldering. The siiver solder contained cadmium and the resulting fumes

constituted the exposure™. The Jaguar data set is given in Table 4.1 in Chapter 4.

1.4 Cadmium in the Environment

1.4.1 General environment

Water, air, cigarettes, soil, and food are main sources for uptake of cadmium in the
general environment. There are two routes of entry to the human body, which are the
respiratory route by inhalation and the gastrointestinal route by ingestion. Between 10 and
50% of inhaled cadmium is absorbed, while 5% of ingested cadmium is absorbed in the
human body*'. In the respiratory route, absorption is greater for small particles and fumes
than for large particle dust. The gastrointestinal absorption increases with a low intake of
calcium and iron.

In natural water, cadmium is found mainly in bottom sediments and suspended
particles. The concentration of cadmium in water is low. Contamination of drinking water
may occur as a result of cadmium impurities in the zinc of galvanized pipes or cadmium-
containing solders in fittings, water heaters, water coolers, and taps. Leaching of cadmium
to ground water from dumped cadmium oxide sludge has also been observed. Sea water
contains between 0.04 and 0.3 pg/l of cadmium. Regular drinking water usually does not

have concentrations of cadmium exceeding 5 pg/I*'.



Cadmium in air occurs in particulate form and can be inhaled. The levels of inhaled
cadmium are the highest around certain cadmium-emitting industries. Average cadmium
concentrations are lower in rural areas than in urban areas. It was reported that levels are
10 to 1000 times lower in remote areas than in urban areas'" '*. Smoking increases the
level of nhaled cadmium. Since each cigarette contains from | to 2 pg cadmium, smoking
one cigarette results in the inhalation of 0.1-0.2 pg cadmium, assuming 10% of cadmium
to be inhaled".

Both waterborne and airborne cadmium can cause increased concentrations in soil.
Soil contamination may arise from cadmium-polluted irrigation water, well water aciditied
pipes, by acid precipitation, or fertilizers formed by cadmium-containing sewage sludge
and superphosphate in agriculture. The cadmium concentration in soil is usually less than |
mg /kg in non-polluted areas, but higher in contaminated soil in certain polluted arcas™.

Food is the main source of cadmium uptake in humans. Rice, wheat and certain
vegetables may contain raised cadmium concentrations, since plants and crops absorb
cadmium contained in soil. Most foods in uncontaminated areas of several countries have
cadmium from the range of 0.005-0.1 mg/kg''. Certain foods (e.g., oysters, liver and
kidney) may contain much higher concentrations since the bodies of animals and shellfish
accumulate cadmium contained in plants and grass or from sewage sludge at river

estuaries. Elinder reported that the average daily intake in an uncontaminated area is



usually in the range of 10 to 60 pg for a 70-kg person. There is tendency for cadmium

average daily intake to be lower in Europe and North America than in Japan®'.

1.4.2 Working environment

Most exposure to cadmium in the working environment 1s via inhalation, although
exposure via ingestion through contaminated food, drink or cigarettes consumed at work
may also be of significance. Skin exposure is minor because of the low absorption through
skin.

High inhalation exposures may occur among workers from welding and soldering
fumes. Smokers in a cadmium-exposed workplace may contaminate their cigarettes or
pipes with cadmium and increase their cadmium level even turther.

Long-term excessive exposure to cadmium via both food and air may lead to
kidney damage in the human body. Long-term exposure to low air levels may lead to
chronic obstructive lung disease and possibly lung cancer, while short-term exposure with
high cadmium concentrations in the air is extremely dangerous and may occasionally result
in death.

In the past, exposure levels to cadmium in some cadmium-product factories have
been quite high. With the development of modern industrial technology, it has gradually
been reduced over time in some factories, and it is possible to lessen the occupational air

cadmium concentrations to below 10-20 g /m’ in cadmium-product manufacturing™'.



Since cadmium exposure continues in industry, it is desirable in cadmium research
to design the simple measurements that can be used to determine when to remove a
worker from exposure that is discussed in Chapter 2. Furthermore, it is motivated to
improve understanding of long term human cadmium metabolism in order to regulate

current exposure Lo present future damage that is discussed in Chapter 3 and 4.

1.5 Cadmium Metabolism in the Human Body

The objective of this thesis is to construct mathematical models which are in
accordance with observations describing a particular biological phenomena of cadmium
metabolism in the human body. This section gives detailed description about absorption,
transportation, distribution, accumulation and excretion of cadmium, in order to understand the

metabolism of cadmium inside the human body.

1.5.1 Absorption by inhalation and ingestion

Exposure to cadmium occurs mainly through the pulmonary or gastrointestinal
route. Cadmium exposure through skin is negligible.

Cadmium exposure via inhalation is in the form of an aerosol. Cadmium

compounds are deposited in the nasopharyngeal, the tracheobronchial, and/or the
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pulmonary (alveolar) parts of respiratory tract in different proportions, depending on
particle size and an individual’s respiratory characteristics.

Larger particles with a mass median aerodynamic diameter (MMAD) of 5 um
might be deposited mainly 75% in the nasopharyngeal part, 20% in alveolar and 5% in
tracheobronchial part. While smaller particles with @ MMAD of 0.05 pwm might be
deposited 10% in the nasopharyngeal part, 55% in alveolar and nothing in
tracheobronchial part, the remaining 35% being exhaled™.

After inhalat‘ion of cadmium, between 10-50% of inhaled cadmium is absorbed™'.
Larger particles with high MMAD and low solubility is probably in the lower part of this
range, while smaller particles with low MMAD and high solubility account for the upper
part’’,

Cadmium exposure via ingestion originates in food or drink. After ingestion,
cadmium passes into the gastrointestinal GI tract. The larger proportion of ingested
cadmium is excreted via feces, while a small proportion is either absorbed in the mucosal
cells or cleared to blood. Approximately 5% of ingested cadmium is absorbed. A low
intake of calcium, lack of iron or protein may considerably increase the absorption of

cadmium. The gastrointestinal absorption rate may be as high as 20% in individuals with

. . a3
iron deficiency™.
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1.5.2 Transport and distribution

After absorption from the lungs or the intestines. cadmium is transported via blood
to other parts of the body where it is stored, but some of it might return to the blood for
redistribution.

Whole blood is composed of 55% plasma and 45% red blood cells with a sniall
fraction (less than 1) of white blood cells.

Cadmium in the blood is mainly found in the blood cells where it is bound to a high
molecular-weight fraction and a low molecular-weight fraction™™ ' similar to
metallothionein, a protein which also binds cadmium in plasma.

Cadmium in blood plasma is bound to both low molecular-weight proteins and
high molecular-weight proteins. The main part of plasma cadmium being bound to high
molecular-weight proteins, particularly albumin, is transported to the liver, while the
smaller part of plasma cadmium, bound to the low molecular-weight protein,
metallothionein, is taken up by the kidneys™".

The molecular weight for metallothionein is about 6000-7000 daltons. Up to 11%
of its weight can consist of cadmium and other bivalent metals such as zinc, copper and

mercury. Metallothionein plays an important role in the transport of cadmium to the

kidneys in humans.



1.5.3 Accumulation

Cadmium is transported by blood to several organs where it is accumulated.
Binding of cadmium to proteins causes the accumulation. Distribution of cadmium among
the organs is largely dependent on the duration of exposure, the exposed person’s age, and
the bonding of cadmium to metallothionein.

A large proportion of cadmium is accumulated in the liver, kidneys and muscles.
Two major cadmium accumulation sites are the liver and kidneys, which account for
approximately 16% and 53% of the total body burden, respectively®.

The decrease in tubular reabsorptive capacity which can result from chronic
cadmium exposure may result from a decrease in the total number of tubular cells. A loss
of tubular cells might cause an increase in the transport of cadmium from kidney tubules to

blood and increased excretion of cadmium from tubules to urine.

1.5.4 Excretion

The major cadmium excretion routes are via feces and urine. Total daily excretion
rate is about 0.01-0.02% of the total body burden of cadmium in human beings™'. The
fecal cadmium level mainly reflects the unabsorbed part of ingested cadmium. The average
urine cadmium level correlates well with the average kidney cadmium level in current
exposure. Urine cadmium level will be expected to increase rapidly both after the high

inhaled exposure and after damage to the kidneys.
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1.6 Toxic Effects of Cadmium Exposure

About 50 years ago, Friberg drew attention to the toxicity of cadmium™. Toxic
effects of cadmium become visible if some significant biological mechanism is stimulated
peyond a certain level. Those effects depend on many factors like uptake, elimmation
process and binding to proteins. Since those body conditions differ from individual to
individual or even from one kind of cell to another, the toxicological response will vary

widely.

1.6.1 Acute poisoning

Acute cadmium poisoning normally occurs only in cadmium processing industries
like plating or welding, nickel/cadmium battery manufacturing plants or zinc or cadmium
producing plants.

Ingestion of highly contaminated food or beverages results in acute gastrointestinal
etfects. Symptoms caused by ingestion of cadmium-containing food or drink are vomiting,
abdominal cramps, headache and nausea. In more severe cases, diarrhea and shock may
develop. The beginning of symptoms is usually within minutes after ingestion of
contaminated food or drink by cadmium. The minimum concentration of cadmium in

water to induce vomiting is about 15 mg/l. The minimum concentration in protein-

containing food that causes vomiting might be larger*.
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Occupational exposure to airborne cadmium under conditions of poor ventilation
leads to inhalation of cadmium fume, particularly in cadmium oxide form. The
predominant symptoms are fever, general weakness, and shortness of breath. In severe
cases, there can be respiratory insufficiency with shock and death. Approximately | mg/m’
inhaled cadmium aver a period of 8 hours might give rise to clinically evident symptems.

The lethal level of cadmium exposure is approximately S mg/m* over the same period'.
p PP p

1.6.2 Chronic poisoning

Chronic poisoning may occur after an acute or chronic occupational exposure
and/or in cadmium polluted areas. The most typical feature of chronic cadmium
intoxication is kidney damage. The Kidney is one of the major accumulation organs in
cadmium exposure by both inhalation and ingestion and is sometimes termed as the
“critical” organ for chronic intoxication. It would be helpful to outline the kidney function
in detail before discussing the toxic effects of cadmium in the kidneys.

The basic structural and functional unit of the kidney is the nephron, in which
blood is filtered and urine is elaberated. Two kidneys possess about 2 million nephrons.

The nephrons are packed closely together in the kidneys in such way that the
adjacent structures tend to influence each other’s function'®. A nephron consists of a
glomerulus and a urine tubule divided into several segments, the proximal convoluted

tubule, descending and ascending limbs of the loop of Henle, the distal convoluted tubule,
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and the collecting tubule of Bellini*’. The glomerulus, proximal convoluted tubule and
distal convoluted tubule, and part of the loops of Henle are in the cortex of the kidney,
and the deepest part of the loops of Henle and collecting tubules are in the medulla of the
kidney.

The glomcerulus, a rounded structurc, is formed by the opening out of a capillary
tuft between two arterioles, afferent and efferent. It is responsible for filtering the blood
plasma. The glomerular membrane, one of the layers of glomerulus, acts as a sieve almost
totally excluding from filtration proteins with molecular weights greater than 63000
daltons. A diagram of the nephron is presented in Figure 1.1. In order to maintain the
body's metabolic process, the proximal tubules reabsorb necessary proteins, salts, sugars
and amino acids from the filtrate. 60-80% of the glomerlar filtrate, including several
proteins, is reabsorbed in the proximal convoluted tubules, which is made up of cells,
particularly the proximal tubular epithelial cells. Low molecular weight proteins, like B-
microglobulin and retinol binding protein (RBP), are nearly 99.9% absorbed normally,
thus allowing little or none to pass into urine.

This process has a maximum reabsorption rate and appears to require energy from
cells, even though only minimal amounts of the proteins pass into urine along with the
other waste products.

Cadmium is transported in plasma bound to metallothionein, then is quickly and

easily filtered through the renal glomerulus and reabsorbed into the proximal tubule
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epithelial cells. In particular, metallothionein moves to the cell interior and fuses with the
lysosomes, which contains enzymes to digest and break down the cadmium-
metallothionein into the amino acids, peptides and free cadmium irons. These smaller
complexes can be reused by the cell or expelled.

The unbeound cadmium enters the intracellular fluid. This cadmium will stimulate
new intracellular metallothionein production which binds the cadmium in the renal tubular
cells. If the amount of cadmium is excessive and the capacity for metallothionein
production is reached, a rapid increase of free cadmium will cause damage to the cell
function.

Friberg discovered that the first and most common sign of intoxication is usually a
relatively large increase in excretion of low molecular-weight proteins, known as tubular
proteinuria::. The kidney damage induced by cadmium is permanent and may even
progress after exposure ceases. The tubular proteinuria may increase even after exposure
ceases mainly due to the transport protein metallothionein. Tubule damage might also
affect the accumulation of cadmium in the kidneys. A decrease in reabsorptive capacity
induced by excessive amount of free cadmium may decrease the kidney cadmium.

Some experimental studies have shown that blocking the renal tubular reabsorption
increases the urinary albumin by about forty times, but the excretion of (;-microglobulin

and retinol binding protein (RBP) more than thousandfold™ *'.
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Liver is another major accumulation organ for cadmium. However, changes in
hepatic function in cadmium workers are generally slight compared to those in renal
function.

Cadmium damage to the lung can develop either some time after acute intoxication
or by chronic inhalation of low cadmium levels. Tmpairments are usually mild but might
induce respiratory disorders and chronic lung disease like emphysema and bronchitis™.
Several studies appear to indicate that long-term occupational exposure to cadmium may
increase prevalence of cancer of the prostate and the lung®'. However, there have not been

sufficient analyses to show conclusive evidence of causal link between cadmium exposure

and cancer.

1.7 Measurements Related to the Data

1.7.1 Measurements on blood, urine and [3;-microglobulin

In order to measure blood and urine cadmium concentrations, S ml of venous
blood can be gathered from each worker as blood sample, along with a urine sample.
Occasionally, 35 ml of venous blood were obtained as blood sample from each person as
in the Prescot data. Urine “time” samples, called ‘time’ sample, can be collected by
complete bladder emptying at the beginning of collection and collecting all urine, including

the final bladder emptying at the end of collection. The period lasts about 3 hours. A urine
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‘spot’ sample is only collected once. The blood and urine cadmium concentrations were
measured by graphite-furnace atomic absorption spectrometry'* ',

p2-microglobulin has already been mentioned several times in earlier sections of
this chapter. It is low molecular weight protein of 11600 daltons. Tubule and/or
glomerular damage in the kidneys occurs and can be noticed by an enhanced excretion of
proteins. As a consequence of renal damage, B.-microglobulin can serve as an indicator,
but it suffers from degradation at urine PH values less than 5.5. Hence, the measurement
of Ba-microglobulin in urine with PH values less than 5.5 is not stable and gives a value

lower than the real one,

1.7.2. Measurements on liver and kidney

As mentioned above, cadmium accumulation occurs in the liver, kidneys, and other
tissues of the human body. In particular, the liver and kidneys are principal storage organs.
Previously, the data on the body burden of cadmium in man has been derived primarily
from autopsy studies. In vivo measurement techniques, however, have made it possible to
evaluate the status of the active workers'”. In vivo measurements of liver and kidney
cadmium can be performed by prompt-gamma neutron activation analysis (PGNAA).

The use of PGNAA for the measurement of cadmium was suggested initially by
Ettinger, Biggin, Chen and other researchers in 1971°* and some preliminary results were

published in 1974 by the same people” *’. Applications of the technique were subsequently
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reported in 1979 by Thomas and Harvey as well as some other researchers®’. The
measurement techniques have been applied and successfully redesigned at Birmingham
University, where Chettle studied and worked, as reviewed by Scott'® and Chettle'®.

There are two measurement systems, which use either the Nuffield cyclotron in
operation at Birmingham University or sealed isotopic sources o produce neutrons, 1o
measure cadmium concentration in the liver and the left kidney. Initially, the Nuffield
cyclotron was used and later changed to the use of sealed isotopic neutron sources. Both
systems can be used to produce a fast neutron beam.

Although the cyclotron system is very sensitive for measuring. there are some
disadvantages. The cyclotron system can not be transported easily, and the neutron beam
must be aimed vertically towards the subject while the subject is lying down. In this
posture, a person’s kidneys are relatively mobile, moving through 3-4 cm during normal
respiration. The system using sealed isotopic neutron sources, on the other hand. can be
dismantled and transported easily, and the neutron beam is aimed horizontally towards the
subject so that the subject is sitting, n which case kidney movement is only slight. The use
of the transportable system results in a slight of loss precision but the gain from the
transportability of the system outweighs the disadvantages' *> **. In the cadmium data
analyzed in this thesis, kidney and liver cadmium were measured by transportable systems

using sealed isotopic neutron sources.
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During the measurements, the neutrons are collimated to irradiate the measured
organ, the position and depth of which is found by ultrasound, and then slowed mainly by
elastic collisions with hydrogen in the body. Cadmium present in the subject can undergo
neutron capture. The low energy neutrons produce an excited state of '"Cd through
undergoing capture by the stable isotope of cadmium ('''Cd). The de-excitation of '"*Cd is
accomplished by the emission of ¥ rays, the most prominent of which has an energy of
559 keV*™.

A high resolution detector is used externally to the body to identify the 559 keV ¥
rays from photons with neighboring energies. The resulting y ray spectrum is accumulated
on a multi-channel analyzer (MCA) and the data are collected on a computer; thus, the
amount of cadmium can be quantified by means of the most prominent of the prompt ¥
Tays.

For calibration purposes, two sets of liver and kidney phantoms were used. Each
phantom is the approximate shape and size of either human liver or kidney. Phantoms
were made to contain several fixed concentrations of cadmium solution, carrying the range
expected in the in vivo measurements. The net peak area of the 559keV y-rays arising
from cadmium is obtained respectively cadmium counts is obtained respectively for the
different phantom distances from the collimator front, and then the calibration curve can

be generated for either liver or kidney system after the cadmium counts versus cadmium



concentration. By using the in vivo cadmium counts obtained from the subject and the
calibration lines, final cadmium concentration for subjects can be calculated.

The units for measuring cadmium in the liver and kidney are different. The levels
of cadmium in the liver are expressed as parts per million (ppm), for the cross-sectional
area of the neutron beam is less than the cross-sectional area of liver. As the kidney fits
within the dimensions of the neutron beam, the total amount of cadmium in milligrams
(mg) is obtained.

There are uncertainties in the in vivo measurement techniques. The Poisson-
distribution counts in the cadmium y ray peak and in the underlying background
continuum set a limit to the precision of measurement. Additional variance arises because
the cadmium counts in the net area for fixed cadmium concentration change as the depth
of the subject changes, ultrasonic scanning records the subject’s organ depth imprecisely;
the organ moves during the measurement; etc. The uncertainties in the in vivo
measurement techniques have been reduced but still occur to an extent that leads to
difficulties in the statistical analysis based on the measured data, although the efforts have
been made to decrease the influence of these factors. Table 1.1 below shows the notations

which are abbreviations of the measurements. These notations are used throughout this

thesis.
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TABLE 1.1 Notations of abbreviations of measurements

Cd_u measurements of urine cadmium
Cd_b measurements of blood cadmium
Cd_l measurements of liver cadmium
Cd_k measurements of kidney cadmium
u_p- measurements of urinary B,-microglobulin

1.8 Kjellstrom’s Model

Figure 1.2 shows a flow scheme of the kinetic model of cadmium metabolism used

as a basis for the modeling, as established by Tord Kjellstrom and Gunnar F Nordberg in

1977%. The eight-compartment kinetic model with 21 distribution coefficients contains

compartments of liver, kidney, feces, urine, other tissues, blood 1, blood 2, and blood 3

cadmium. Blood 1 contributes to accumulation of cadmium in liver and other tissues,

while blood 3 contributes to accumulation of cadmium in kidneys. Blood 2 between blood

1 and blood 3 contains the accumulation of cadmium bound to cells and molecules. The

following are the brief description for symbols used in Figure 1.2.

A — pulmonary route

G — gastrointestinal route

C1 — from pulmonary route to gastrointestinal route intake



C2 — from pulmonary route to lung

C3 —from lung to daily uptake

C4 —from lung to gastrointestinal route intake

C5 —from gastrointestinal route intake to intestine wall
C6 — from intestine wall to daily uptake

C7 —from daily uplake to blood 3

C8 —maximum amount of C7 x daily intake

C9 —from blood | to other tissues

C10 —trom other tissues to blood |

Cl11 — from blood | to feces

C12 —from blood 1 to liver

C13 —from liver to blood |

C14 —from liver to blood 3

C15 —from liver to feces

C16 —from blood 1 to blood 2

C17 —from blood 3 to kidney

C18 —from kidney to blood 1

C19 —from kidney to urine

Cx —1-(C9+C11+C12)

C20 —modified coefficient for blood | and blood 3

C21—modified coefficient for C19 with age

Background information for the Kjellstrom’s model had been obtained partly from
animal experiments and partly from observations on the human beings in industrial and
general environmental exposure situations. Generally accepted principles for intake and

absorption of cadmium constituted part of the flow scheme in Kjellstrom's model. The



24

ranges of Cl, C2 and C3 were determined according to principles described by Task
Group on lung Dynamics and/or Task Group on Metal Accumulation™, depending on
particle size and respiratory characteristics. The principles state that particles with MMAD
of 5 um were estimated to be deposited mainly in the nasopharyngeal compartment 75%
and iess, in the aiveolar 20%, and tracheobroncihnal compartment S%, whereas smalier
particles with MMAD of 0.05 pm are deposited in the alveolar compartment 55%, with
10% in tracheobronchial compartment, and nothing in the nasopharyngeal compartment,
which are sources for two cases of Cl, C2 and C3. The first case (cadmium in cigarette
smoke) was assumed to be in the form of cadmium oxide fumes with very small MMAD.
The second case (cadmium oxide dust in factory), on the other hand, had a larger MMAD
but was still mainly less than 5 pm. C4, C5 and C6 were based on some assumptions and
some observed animal data™.

The distribution was designed to involve blood compartments, giving rise to tissue
accumulation in three body compartments of liver, kidney, and tissues and excretion by
urinary and fecal routes. The transport of cadmium between the compartments was
assumed to follow first-order exponential functions. Since about 34% of body burden is in
the kidneys, 16%, in liver and 50% in tissues, C7, C9 and CI2 were assumed in
accordance with the corresponding body burden®. C8 represents a maximum amount of
C7xdaily intake in micrograms per day, which was only an assumption since there were no

data available for it. C13, Cl4 and C15 were estimated by Tsuchiya in 1972 according to
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the estimation of half-life time in liver of 4 to 19 years. C18 and C19 were derived from
the estimation of a half-life time in kidneys of 6 to 38 years™. Since a half-life time in
muscles was estimated to be much longer than in liver and kidneys™, C10 was assumed to
be corresponding to a half-life time of 9 to 47 years. Biologically, there is no accumulation
in blood | and turnover is very rapid from biood 1 to uissues and liver, and summation of
C9, C!1 and C12 were assumed very lurgew. For the same reason in blood 3 as in blood |,
C17 was assumed to be large, which is close to 1*°. Cx is just the difference between |
and the summation of C9, C11 and C12.

The model, with a series of assumptions, is very sophisticated, and provides
particular biological explanation and general reference for the metabolism of cadmium in
the human body. In this thesis, the simpler and more direct mathematical models has been

developed from statistical approaches. The comparison between these two models is

discussed in the last section of Chapter 4.



Figure 1.1 Diagram of a nephron: 1. glomerulus; 2. proximal convoluted;

3. descending limb of the loop of Henle; 4. ascending limb of the
loop of Henle; 5. distal convoluted tubule; 6. collecting tubule

AN




Figure 1.2. Flow scheme of Kjellstrsm’ model of cadmium metabolism
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CHAPTER TWO

SEGMENTED MODELS

2.1 Segmented Models

2.1.1 Introduction

Three data sets (Prescot, Prayon, and Balen), selected from populations occupationally
exposed to cadmium, were used for the analysis in this chapter. These three data sets had each been
previously studied and reported for different purposes™ ™. In this chapter, the relationship between
renal function and blood cadmium along with the relationship between renal function and urine
cadmium are examined initially among the three sets of data. The analysis is based on segmented
models.

General segmented models are defined by different functions on different intervals.
Typically the end points of intervals, called change points, are unknown and need to be estimated.

Regression models, with a pair of straight lines and a structural change point between two lines,

were applied here.
The segmented model is expressed™ as follows:
v, =B, +Bx +B(x,~x))a+e,, i=l...,n, (2.1

where a is a indicator variable such that

28



i=1,...,n; and x, denotes as the change point.

0 ifx~x,<0
a= )
1 otherwise,

The model above is the same as

B +Bx +¢ if X < x,
YELB R B~ e, i x 2.

In the segmented models considered in this chapter, the dependent variable v; (i= 1, ..., n)
is always the logarithm of urinary B>-microglobulin which describes renal function status, while the
independent variable x, is the logarithm of either urine or blood cadmium. The aim of using the
segmented models here is to locate where the abrupt changes occur in either blood cadmium or
urine cadmium for each data set. Furthermore, it is of interest to investigate how sensitively both
blood cadmium and urine cadmium can be used as monitoring parameters to define renal
dysfunction for a subject, since a sumple of urine and blood cadmium is not technologically
sophisticated enough to be collected compared to the in vivo measurements.

There are two steps taken to find the change points. In the first step, even though the change
point o is an unknown point, it can be treated as a known value through Model (2.1). When the
change point is assumed to be known, the problem becomes an ordinary linear problem. By fixing
the change point and hence dividing the points between the first and second lines, the remaining
parameters can be estimated in Model (2.1) by least-squares, and the residual sum of squares could
be evaluated for each division separately. After calculation, the division and set of estimates which
give rise to the smallest residual sum of squares could be picked out, and the corresponding change
point could be chosen as the starting value of unknown parameter x, for the second step. In the

second step, the change point can be estimated directly through Model (2.2), which is given by
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sign(x, —x, )X[(1-sign(x, ~x;)]+2 ‘e
2 "

P4

-vl =B0 +ﬂx|+ﬁl(xl —XO)

i=1,...n, (2.2)

where sign(x; - x;) is a sign function defined as

J 1 ifx-x,>0
sign(c —x =3 =1 if v —x, <0 i=1....n and

0 ifx-x,=0

_ {sign(x, = x )x[(I=sign(x, = x, )]} +2
o ‘) A

a

i=1...,n.

The starting values for the change points in the second step were obtained from the first
step. Model (2.1) does not differ from Model (2.2) essentially, since ¢ implicitly depends on the
change point xy in Model (2.1), « is expressed as a function of the sign(x,-x) functions in Model

(2.2). The three data sets, Prescot, Prayon and Balen, were analyzed as described below.

2.1.2 Prescot

The Prescot data were collected from industrially exposed male workers in 1983 in a
copper alloy factory in the United Kingdom, which was manufacturing overhead electrical cable
with cadmium being used in the alloy in order to strengthen the copper. The manufacturing
process first involves melting copper (melting point 1083°C) in furnaces, then adding cadmium
(boiling point 765°C), mixing the moiten alloy, and finally casting as soon as mixing is
complete. Yellow brown fumes of cadmium from the boiling process could be inhaled or
ingested by the workers. The exposure in that factory was related to both cadmium fume and dust.

The measurements from 180 male workers are the basis of the Prescot data. Of those measured, 77
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of the 180 workers had had at least one year’s exposure to cadmium, whereas 103 selected from the
same factory had not been occupationally exposed to cadmium™.

Besides variables of blood and urine cadmium, 14 biochemical variables including total
protein, albumin, urinary B.-microglobulin, retinol binding protein, alkaline phosphatase, lactate
dehydrogenase, N-acetyl glucosaminidase, y-glutamyl transferuse, urale  ciearance, amyiase
clearance, phosphate clearance, creatinine clearance, serum B>-microglobulin and serum urea, which
all relate to renal function, were also used for the analysis. Those 14 parameters can be combined to
produce a single best estimate of whether an individual has normal or abnormal renal function™.
Three different ways of combining the information from all 14 parameters were used to identify
those subjects with renal dysfunction. These were: firstly, to count the number of parameters in
which a subject recorded an abnormal test result; secondly, the z value was computed for each
parameter for each subject by comparison with the mean and standard deviation of a derived normal
population and then these z scores were then summed; lastly, a multivariate distance measure,
Mahalanobis” D*, was determined for each subject from the distribution of normal subjects. The
three approaches showed a considerable degree of agreement in identifying subjects with renal
dysfunction™. The results from these three methods were then used to identify renal status on
individuals in the Prescot data analyzed in this chapter.

The scatter plot of In(u_f3:) against In(Cd_b) and the plot of In(u_f3;) against In(Cd_u)
clearly indicate a particular linear relation in some range of either In(Cd_b) and In(Cd_u) and a
different linear relation elsewhere. Hence, it is reasonable to apply the segmented regression model

to describe the relationship between In(u_f:) and In(Cd_u), and the relationship between In(u_S3:)
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and In(Cd_b), respectively.

First, the possible change point was chosen from 30 nmol/l to 90 nmol/l of Cd_b with an
interval of 5 nmol/l. By applying Model (2.1), 13 sets of estimates were obtained. It was found that
the residual sum of squares was smallest when Cd_b was around 40 nmol/l.

Additionally, the possible change point of Cd_b was selected consecutively in the range of
30 nmol/1 and 50 nmol/1 with increment of 1 nmol/l, and Model (2.1) was applied again for another
21 sets, respectively.

Finally, Cd_b=44 nmol/l was selected as the starting value of change point, since the
residual sum of squares is smallest and R” is largest at this point. The corresponding model is as
follows:

InCu_pB,)=-18575-001941In(Cd _b) +2.1547(In(Cd _b)-3784)a +E.

Since the coefficient of In(Cd_b) is not statistically significant, this model, by eliminating

In(Cd_b), was reduced to:

In(u_B,)=—=19107+2.1204(In(Cd _h)-3784)a+€.

Therefore, the slope of In(Cd_b) is not significantly different from zero when Cd_p is equal
to or less than 44 n mol/l, whereas the slope of In(Cd_b) is 2.1204 when Cd_b is greater than 44 n
mol/l.

A similar procedure was applied for urine cadmium as well. After selecting the range from
1 ug/g creat to 10 pg/g creat with interval | pg/g creat, the possible change point for Cd_u was

found at 4 pug/g creat in the first step, at which the residual sum of squares was smallest. The

corresponding model is:
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In(u_p, )=-18755-02498In(Cd _u) +14476(In(Cd _u)-13863)a+¢.

The coefficient of In(Cd_u) was not highly significant. If the term In(Cd_u) was removed,

the model turns out to be
In(u_pB, )=-18434+19056(In(Cd _u)-1.3863)a+¢.
The slope of In(Cd_n) is not <ignificantly different from zero when Ce/_u is equal to or less

than 4 11g/g creat, whereas the slope of In(Cd_u) is 1.9056 when Cd_u is larger than 4 pg/g creat.

2.1.3 Prayon

The Prayon data were collected in 1978 from 129 male workers in Belgian zinc-cadmium
plant. The Prayon data set contains measurements of blood cadmium, urine cadmium, total protein,
albumin and urinary [3;-microglobulin. For the combined parameters, discriminatory levels of 250
mg/g creatinine for total protein and |2 mg/g creatinine for albumin were used, along with 0.2 mg/g
creatinine for Ba-microglobulin. A person was considered to have abnormal renal function if one or
more of these parameters was above the appropriate discriminatory level. This criterion was used
previously by Roels™.

Like the Prescot data, ecither the scatter plot of In(t_f:) against In(Cd_b) or the plot of
In(u_p:) against In(Cd_u) indicates a particular linear relation in some range of either In(Cd_b) or
In(Cd_u) and a different linear relation elsewhere. After a similar procedure was adopted as above, it
was finally found for the Prayon data that Cd_u = 7 ug/g creat and Cd_b = 71 n moll are possible
change points. The corresponding models are:

In(u_pB,)=-31368+0.7875(In(Cd _b)~-4263)a+¢€ ,
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In(u_p,)=-31841+08208(In(Cd_u)~-19459)a+¢.

The slope of In(Cd_u) is not significantly different from zero when Cd_u is equal to or less
than 7 pg/g creat, whereas the slope of In(Cd_u) is 0.8208 when Cd_u is larger than 7 pg/g creat.
The slope of In(Cd_b) is not significantly different from zero when Cd_b is equal to or less than 71

nmol/l, whereas the slope of In(Cd_b) is 0.7875 when Cd_b is larger than 71 nimol/l.

2.1.4 Balen

The sample size of the Balen data is 184, also collected in 1978 from male workers exposed
to cadmium in nonheﬁ Belgium. The measurements and the discriminatory levels of renal function
were the same as in the Prayon data. The difference in urinary ,-microglobulin discriminatory level
between the Prescot data and the Prayon or the Balen data relates to the fact that the Prescot data set
had a significantly higher age distribution than in the Prayon and the Balen data.

In the Balen data, the change point of Cd_u is not very clear. The possible change point was
assumed to be Cd_u = 7 pg/g creat, which is the same as that in the Prayon data, since both scatter
plots looked similar. A possible change point of Cd_b was found to be 56 n mol in the Balen data.
The corresponding models for the Balen data are:

In(u_pB,)=-28568+1.6595(In(Cd _b)-4025)u +¢ ,

In(u_pB,)=-29556+2.6763(In(Cd _u)-19459)a+¢.

The slope of In(Cd_u) is not significantly different from zero when Cd_u is equal to or less
than 7 ug/g creat, whereas the slope of In(Cd_u) is 2.6763 when Cd_u is larger than 7 pg/g creat.

The slope of In(Cd_b) is not significantly different from zero when Cd_b is equal to or less than 56
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nmol/l, whereas the slope of In(Cd_b) is 1.6595 nmol/1 when Cd_b is larger than 56 nmol/l.

All three data sets show a similar pattern although the change points are not very close
among these data sets. Prior to the change point, the slope of the renal function parameter against the
independent variable was close to zero or, at most only marginally significant statistically at 95%
level. After the change point, the renal function parameter increased rapidly with increasing values of
blood or urine cadmium. By applying Model (2.2), finishing values of urine cadmium and blood
cadmium as the change points were obtained, shown in Table 2.1 for each data set. It can be seen
from Table 2.1 that the starting and finishing values look fairly close in most of them except urine
cadmium in the Balen data. The plots of In(xe_f3:) against In(Cd_t) and In(u_f:) against In(Cd_b)
based on the Prescot data with fitted segmented models are presented in Figure 2.1 and Figure 2.2,

respectively.
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TABLE 2.1 Estimated change points of urine cadmium and blood cadmium in the three data sets

Data Unine Cadmium Blood Cadmium
Sources (ng/g creatinine) (n mol/)
Starting Finishing Siarting Finishing
Values Values Values Values
Prescot 4 4.2010.33 44 44.4310.21
Prayon 7 7.4310.31 71 71.02142
Balen 7 10.14+0.20 56 56.04+0.44
2.2 Diagnostic Test

2.2.1 Classification

The change points shown in Table 2.1 could then be applied as reference values for a
quantitative diagnostic test, such that a value above a reference value was coded as raised and one
below the reference value was taken to be not raised. In total, five sets of reference values were
examined; three are given in Table 2.1 as appropriate population specific reference values; the other
two are 90 n mol/ | for blood cadmium together with 10 pg/g creatinine for urinary cadmium and 50
n mol/l for blood cadmium with 5 pg/g creatinine for urine cadmium as none population specific
reference values. The first of these two is based on guidelines used in the United Kindom™, and the
second represents a more conservative approach, each one selected between the highest derived and

lowest derived change point as suggested by Chettle. The renal status for each subject was assessed
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by the combination of several parameters appropriate to that data set.

The diagnostic multiple tests were constructed in which these five sets of reference values
were used to predict renal function in these three data sets, respectively. That is, the two reference
values that are not population-specific were applied to each data set, together with the appropriate
population specific reference values from Table 2.1 The data sets were classified into subgroups for
the multiple test in two ways as follows:

I way: high Cd_u and high Cd_b as positive test result,
low Cd_u or low Cd_b as negative test result.

2" way: high Cd_u or high Cd_b as positive test result,
low Cd_u and low Cd_b as negative test result.

Tables 2.2 - 2.4 show how each of the three data sets was subdivided for the tests.
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TABLE 2.2 Classifications of test groups in the Prescot data based on Cd_u and Cd_b (unit

of ug/g creatinine for Cd_u and unit of n mol/l for Cd_b)

Renal function

Reference values Test type Abnormal Normal

Positive test (1™ 16 9

Cd_u=10 Negative test (1Y) 23 132
Cd_b=90 Positive test (2") 24 17

Negative test (2") 15 124

Positive test (1) 28 19

Cd_u=5 Negative test (1) [ 122
Cd_b=50 Positive test (2™) 30 29

Negative test (2™) 9 112

Positive test (1™ 28 22

Cd_u=4 Negative test (1%) il 119
Cd_b=44 Positive test (2™) 31 35

Negative test (2" 8 106
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TABLE 2.3 Classifications of test groups in the Prayon data based on Cd_u and Cd_b (unit

of ug/g creatinine for Cd_u and unit of n mol/l for Cd_b)

Renal function
Reference values Test type Abnormal Normal

Pusitive test (1) i0 35

Cd_u=10 Negative test (1) 1 73
Cd_b=90 Positive test (2") 1 48
Negative test (2™) 10 60

Positive test (1*) 13 51

Cd_u=5 Negative test (1™ 8 57
Cd_b=50 Positive test (2" 15 70
Negative test (2™) 6 38

Positive test (17) 12 45

Cd_u=1 Negative test (1™) 9 63
Cd_b=T1 Positive test (2™) 13 58
Negative test (2™) 8 50
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TABLE 2.4 Classifications of test group in the Balen data based on Cd_u and Cd_b (unit of

ug/g creatinine for Cd_u and unit of n mol/l for Cd_b)

Renal function

Reference values Test type Abnormal Normal
Positive test (1%) 1t 5
Cd_u=10 Negative test (1%) 47 121
Cd_b=90 Positive test (2) 16 1l
Negative test (2™) 42 115
Positive test (1%) 16 10
Cd_u=5 Negative test (1%) 42 116
Cd_b=50 Positive test (2") 26 31
Negative test (2") 32 95
Positive test (1*) [4 8
Cd_u=10 Negative test (1) 44 118
Cd_b=56 Positive test (2™ 2 19
Negative test (2") 37 107
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2.2.2 Multiple test
The test performance characteristics such as Sensifivity, Specificity, Positive predictive

value, Negative predictive value, False positive rate, False negative rate and Accuracy are defined

as follows:
Sensitivi Number of subjects with abnormal renal function and positive test result
ensitiviry = - - , ,
’ Total number of subjects with ubnormal renal function
L Number of subjects with normal renal function and negative test result
Specificity =

Total number of subjects with normal renal function

Number of subjects with abnormal renal function and positive test result
PVt =

]

Total number of subjects with positive test result

Py~ Number of subjects with normal renal function and negative test result

Total number of subjects with negative test result

False negative rate = | - Sensitivity,

False positive rate = |- Specificitv,

Total mamber of correctly assigned subjects

’

Accuracy =

Total mumber of subjects in study
where Positive predictive value and Negative predictive value are denoted as PV * and PV,
respectively.
The results of diagnostic multiple tests based on urine and blood cadmium are given in
Tables 2.5 - 2.10. By comparing the results in Tables 2.5 and 2.8, it can be seen that Sensitiviry

is low but Specificity is high in the first way; and Sensitivity is high but Specificiry is low in the
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second way. The results from Tables 2.6 and 2.9 and from Tables 2.7 and 2.10 show a similar
pattern as those from Tables 2.5 and 2.8. It is recommended to use the second way to
subdivide the subjects since a False positive rate result is far less deleterious than a Fulse

negative rate result in detecting the cadmium level in the human body.

TABLE 2.5 Frequency with common change points (90 nmol/l for Cd_b and

10 pg/g creatinine for Cd_u) and combined parameters in the 1st way

Data set Sensitivity Specificity PV’ PV Accuracy
Prescot 41 94 .64 85 82
Prayon 48 68 22 87 64
Balen 19 96 .69 12 T2
All sets 31 87 43 .80 74

TABLE 2.6 Frequency with common change points (50 nmol/l for Cd_b and

5 pug/g creatinine for Cd_u) and combined parameters in the [st way

Data set Sensitivity Specificiry PV* PV Accuracy
Prescot 12 .87 .60 92 .83
Prayon 62 53 .20 88 54
Balen 28 92 .62 713 712
All sets 48 .19 42 .83 71




TABLE 2.7 Frequency with derived change points shown in Table 2.1 for each data

set and combined parameters in the 1st way

Data set

Sensitivity Specificity PV’ PV Accuracy
Prescot 72 83 56 92 .82
Prayon 57 58 21 .88 S8
Balen 24 94 67 13 12
All sets 46 .80 42 .82 12

TABLE 2.8 Frequency with common change points (90 nmol/l for Cd_b and 10 ug/g

creatinine for Cd_u) and combined parameters in the 2nd way

Data set Sensitivity Specificiry PV’ PV Accuracy
Prescot 61 88 59 .89 .82
Prayon 52 56 19 .86 55
Balen 28 91 .59 73 71
All sets 43 .30 40 .82 71

TABLE 2.9 Frequency with common change points (50 nmol/l for Cd_b and

5 ug/g creatinine for Cd_u) and combined parameters in the 2nd way

Data set

Sensitivity Specificity PV’ PV Accuracy
Prescot 17 19 51 93 79
Prayon T1 .35 A8 .86 41
Balen 45 5 46 75 .66
All sets .60 .65 35 .84 .64
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TABLE 2.10 Frequency with derived change points shown in Table 2.1 for each data

set and combined parameters in the 2nd way

Data set Sensitivity Specificity PV’ PV Accuracy
Prescot 79 75 47 93 76
Prayon 62 46 A8 .86 49
Balen 30 .85 53 T4 70
All sets S5 .70 37 .83 67

By taking a close look at the results in Tables 2.8, 2.9, and 2.10, the following points

may be observed:
(1) Sensitiviry values are quite low but Specificity values are quite high if the reference values
are based on the U.K. guidelines.

(2) Sensitivity in Balen values are low and Specificity in Prayon values are low. Even if we use

derived reference values from the same data, the results can not be improved significantly.

(3) Derived reference values generated from each data set performs better than guideline
reference values. As expected, Sensitiviry values and PV are improved at the cost of
Specificity values and PV", and there is a marginal drop compared to guideline reference

values in overall Accuracy.

(4) More conservative reference values of 50 n mol/l for blood cadmium and 5 pg/g creatinine
for urine cadmium produce slightly different results from derived reference vaiues. By
comparing the results from Tables 2.9 and 2.10, Sensitivity value in Prescot decreases

marginally while Sensitivity values in Prayon and Balen increase in the more conservative
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approach. In addition, Specificiry value increases slightly in Prescot but decreases in either
Prayon or Balen. PV are similar between Tables 2.9 and 2.10. In all sets, Sensirivity of
60% and Specificity of 65% classified by the conservative approach indicate that the
conservative approach gives more effective performance since Sensitiviry gains without

losing much Specificity, compared with those in Table 210,

The discussion about the effectiveness of both liver and kidney cadmium for
monitoring the cadmium level is made now. Table 2.11 indicates the classifications of test
groups based on reference values of kidney cadmium and liver cadmium as criteria. These
reference values were chosen to be 20 mg for kidney cadmium and 30 ppm for liver cadmium
for all three data sets, based on previous studies™ ™. A value of kidney cadmium equal or
greater than 20 mg or a value of liver cadmium equal or greater than 30 ppm was considered
as a positive test result. The value of kidney cadmium less than 20 mg and a value of liver
cadmium less than 30 ppm, on the other hand, was considered as a negative test result.
Discriminatory levels of 250 mg/g creatinine for total protein and 12 mg/g creatinine for albumin
were used, along with 0.2 mg/g creatinine for B.-microglobulin for the Prayon and Balen data sets,
which were the same in the discussion of urine and blood cadmium. If one or more of these
parameters were above the appropriate discriminatory level, the kidney status was assumed
abnormal. For the Prescot data set, the same procedure as in the discussion of urine and blood
cadmium was also adapted.

Table 2.12 gives the results of diagnostic test based on the levels of liver and kidney

cadmium as criteria. Comparing the results of Table 2.12 to previous resuits from Tables 2.5 to
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2.10, we observe with interest the following points:

(1) Sensitiviry values are lower or the same in Table 2.12 compared with those in Tables 2.6,
2.7, 2.8, 2.9 and 2.10, except for the Balen data in Table 2.7 and for the Prayon data in
Tables 2.7 and 2.8, but are higher than those in Table 2.5;

(2) Specificiry values are higher or the same in Table 2,12 compared with those in Tables 2.6,
2.7, 2.8, 2.9 and 2.10, except for the Balen data in Tables 2.6 and 2.7 and for the Prayon
data in Table 2.8, but are lower than those in Table 2.5:

(3) PV* values are higher or the same in Table 2.12 compared with in Tables 2.5, 2.6, 2.7, 2.8,
2.9 and 2.10, except for the Balen data in Tables 2.5, 2.6 and 2.7 and for the Prescot data
in Table 2.5;

(4) PV values are higher compared with those in Table 2.5, but lower or the same compared
with those for the Balen data in Tables 2.6, 2.7, 2.8, 2.9 and 2.10;

(5) Accuracy values are higher or the same in Table 2.12 compared with in Tables 2.5. 2.6,
2.7, 2.8, 2.9 and 2.10, except for the Balen data in Tables 2.5, 2.6 and 2.7 and for the

Prayon data in Table 2.5: Accuracy value on all data sets in Table 2.12 is highest.
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TABLE 2.11 Classifications of test groups based on Cd_!l and Cd_k (unit of ppm for Cd_! and
unit of mg for Cd_k)

Reference values Renal function
(Cd_I=30 & Cd_k=20) Test type Abnormal Normal
Balen Positive test 16 i
Negative test 42 115
Prayon Positive test 13 44
Negative test 8 64
Prescot Positive test 22 4
Negative test 17 127

TABLE 2.12 Frequency with common change points (30 ppm for Cd_{ and 20 mg for

Cd_k)
Data set Sensitiviry Specificity PV’ PV Accuracy
Prescot 56 90 61 .38 .83
Prayon 61 59 23 .89 .60
Balen 28 91 .59 13 71
All sets 43 81 43 .82 76

The foregoing analysis underlines the difficulty of using blood and urine cadmium data
alone to provide effective biological monitoring for cadmium in workplace, which agrees with

the results from previous studies.
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It has been implicitly assumed that the more recent, highly technical and expensive
tests involving the in vivo analysis of cadmium in the liver and kidney, are more powerful
biological monitors of cadmium exposure than blood or urine measurements. However, the
results from Table 2.12 show only slight improvement, based on liver and kidney cadmium as
monitoring for cadmium. Among all Accuracy tests, Accuracy of all sets based on liver and
kidney cadmium is marginally the best but does not give a clear answer. By looking at the
Prescot data closely, if a reference group of 77 subjects was only considered, none of the tests
is higher than 80%, since Sensitivity is 69%; Specificiry is 70%; PV" is 61%; PV is 76% and
Accuracy is 69%. All of these might imply a simple test is not good enough to describe
cadmium in the human body thoroughly.

In order to get a complete understanding of cadmium, the compartment models,
involving measurements of urine and blood cadmium as well as kidney and liver cadmium, are

constructed in next two chapters to describe cadmium metabolism in the human body.
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CHAPTER THREE

TWO-COMPARTMENT MODEL

3.1 Compartmental Analysis

3.1.1 Basic concepts

In this chapter and the next, the analysis of metabolic system of cadmium in the
human body will be discussed by means of compartmental modeling.

The use of compartment models is fairly recent. In 1948, Hevesy demonstrated
applications of tracer study with some of his work. In his book, he discussed how tracers
could be used to determine the distribution and excretion of material in the body. In 1966,
Rescigno and Segre wrote a book, which covers many specific cases of compartmental
modeling. Sheppard in 196! addressed the development of more complex compartment
models and started to considered general theories’. After Atkins published his work in

1969, Jacquez27 wrote the book entitled Compartmental Analysis in Biology and

Medicine. Jacquez’s book contains the basic details of linear and nonlinear compartmental
systems, radioactive tracers, and related theorems. His book has now become the standard

reference on compartmental analysis. The application of this type of modeling is quite

51
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broad; its use is not only in studies of metabolic systems, but also in ecosystems, chemical
reactions and drug kinetics in pharmacology.

The fundamental approach of compartmental modeling is to analyze a system by
separating it into a finite number of component parts, called compartments or states,
which interact through the exchange of material. In biological systems, kinetics is the
branch of dynamics that pertains to the turnover of specific particles. A compartment is an
amount of material that acts kinetically in a homogeneous, distinct, and well-mixed way”’.
The compartment to which a particle belongs characterizes both its physical-chemical
properties and its environment. The particles of each compartment transfer from one
compartment to another. Since all particles in a particular compartment are considered
indistinguishable, they have the same probability of transition by the system.

The compartments in a compartmental system are interconnected in the way that
there is exchange of material among them. Diffusion, radioactive decay, chemical reactions
and temperature, etc., cause material exchange among interacting compartments. The
compartmental system is primarily modeled in a continuous deterministic manner by a
system of several ordinary differential equations. Each ordinary differential equation
describes the time rate of change of amount of material in a particular compartment.

There are two types of compartmental systems, open and closed, since there may
be inputs from the environment into one or more compartments and may be outputs from

one or more compartments into the environment. If there is no exchange of material to the
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outside environment, the compartmental system is referred to as a closed system,

otherwise it is called an open system. When some material is excreted during analysis, it is

obvious that the system is open.

3.1.2 Two-compartment model

The two-compartment model discussed in this chapter is the prelude to the four-
compartment model, and constitutes the preliminary work. The complete analysis and
discussions are finally achieved by the four compartment model, which will be the subject
matter of the next chapter.

Basically, a general compartment model describes the tflow and accumulation of
cadmium in the human body. A system of equations is formulated to model the rates of
absorption, accumulation and elimination with respect to each compartment.

The description for the dynamics of the exchange of cadmium with respect to a
particular compartment is based on the mass balance function. Suppose there are n

compartments in the system, the mass balance function associated the ith compartment is

as follows:

d :
A rate of inflow - rate of outflow, i=12 ..,n

dr

where gi(#) is greater or equal to zero, which is the quantity of cadmium in compartment i

at time 1.
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In the Jaguar data set analyzed in Chapters 3 and 4, the subjects are 14 male
workers selected from the workers in British Leyland Jaguar, engaged in brazing and silver
soldering. The silver solder contained cadmium and it was the resulting fumes which
constituted the exposure™. The duration of cadmium exposure ranged from 2 to 34 years.
The level of exposure for each subject varied throughout the exposure time according to the
work undertaken. The exposure for all but one subject {(number 3) was at or above the current
U.K. occupational limit for cadmium in air, 0.05 mg/m’, for at least part of the time.

Longitudinal measurements including biochemical and in vivo measurements were
made for these 14 male workers. Biochemical measurements consisting of urinary cadmium,
blood cadmium and urinary B,-microglobulin had been made at approximately six monthly to
yearly intervals from 1983 to 1990. In addition to the biochemical measurements, all subjects
had in vivo measurements of liver and kidney cadmium made in December 1983, and cight
subjects (number 1, 2, 3, 4, 5, 10, 11, 13) had additional in vivo measurements made in
March/April 1990. These organ levels were measured by prompt y-ray neutron activation
analysis, using different measurement systems on each occasion. The possibility of significant
differences arising solely from the different measurement systems is thought to be negligible’.

The data set is incomplete or otherwise inconsistent, as shown in Table 4.1. There
are some missing points because some subjects had failed to appear for one monitoring
session. However, the challenge here is to make the best possible use of the data which are

available. The duration of cadmium exposure, the first measurement and last one of P.-
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microglobulin as an indicator of kidney status, the history of smoking and age for each subject

are listed in Table 3.1.

FIGURE 3.1 Diagram for the two-compartment model (Cb_u and Cd_k)

Kidneys

Urine




TABLE 3.1 Duration of exposure, age and indicator of kidney status

Subject Cadmium Year of B,-microglobulin Smoking Habit
Number Exposure Birth (mg/g creat.)
(years)
1 2 1964 257/NA Not Smoking
2 31 1937 90/57 Not Smoking
3 13 1945 58/135 Not smoking
4 33 1930 86/238 Smoking
(1948-)
5 20 1928 688/88 Not Smoking
6 9 1923 344/NA NA
7 3 1961 [9/NA NA
8 2 1925 59/NA NA
9 24 1928 1667/NA NA
10 34 1921 3077/84600 Smoking
(1939-1958)
11 16 1920 158000/154100 Smoking
(1938-1962)
12 22 1927 13400/155800 NA
13 22 1925 1067/NA Smoking
(1941-1975)
14 24 1924 37000/102500 NA

In the “B.-microglobulin” column, the left side of backslash is for the first measurement

and the right side is for the second one.

“NA" is that the information is not available.
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In this chapter, only urine and kidney cadmium as two compartments are
considered since urine and kidney cadmium are directly related. The major cadmium
excretion routes are via feces and urine. Total daily excretion rate is about 0.01-0.02% of
the total body burden of cadmium in humans®. The average urine cadmium level
correlates well with the average kidney cadmium level in current cxposure. Urine cadmium
level will be expected to increase rapidly both after the high inhaled exposure and after
damage to the kidneys.

In previous work of examination of these data, prior to the second set of in vivo
measurements, the decrease in urinary cadmium excretion followed an exponential
function which implied the elimination from kidneys’. When the monitoring period was
extended further and the second set of in vivo measurements were also added into the
data, the simple relationships began to break down and it appeared necessary at least to
account for continuing input from food or other general environmental sources.

The rate of change of expected kidney cadmium n,(r) at time ¢ can be represented
by

dan,(t)
—d*t—= -AN(D)+R,,

where A, is the cadmium elimination rate constant from kidney to urine, and R, is the

monthly cadmium input rate. If kidney cadmium at time r=0 is 1,(0), then the solution of

the above equation is
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R
m, (1) =f(l-exP(—)-. 1))+ 1.(0)exp(-4, 1),

and

M (1) =1, (0)exp(=4, 1)
1-exp(=A, 1)

R =4

Since A¢n is the urinary output rate and the monthly amount of urine cadmium is linearly
related to kidney cadmium, the model for urine cadmium can be simply written as

dn (¢
n{;t( ). R, (1-exp(=4, 1))+ A n (0)exp(-4 1)

where 1, is the expected response of urine cadmium.

The diagram of the two-compartment model is illustrated in Figure 3.1. The
estimation of parameters will be discussed in the next two sections of this chapter. The
classical approach of parameter estimation will be discussed in Section 2, while the

-y

Bayesian approach will be presented in Section 3.
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3.2 Classical Approach

3.2.1 Least-squares estimation

A nonlinear ordinary least-squares model for two responses can be written as

ynm = nnm + Enm M

2 N
MOY= D, (Yo = o)

m=] n=|
where the expectation functionn ,, =f, (x,.8),n=1...,N.m=1,2; N is the number of
measurements; x, is the independent variable which is time r for case n, ranging from a
minimum of -10 to a maximum of most up to 100 on monthly basis, 0 corresponds to
December, 1983; v.. represents the mth response for case n, n.. represents the
expectation function of the mth response for case n, and 8is a 2x1 vector of the unknown
parameters, which is (A4, Ro)", k=1, ..., N. During the parameter estimation process, the
measurement of kidney cadmium at time O, which is 12/1983, is added to be treated as an
unknown parameter. The unit of monthly urine cadmium is the value of ug Cd/g creatine
multiplied by 53 on the assumption that a daily output of creatine is of 1.75g.

The following assumptions are now made for the model:
(1) All variances are known,

(2) All variances are assumed equal;
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(3) There is no correlation between y,, and v, i #j, i,j=1,2and u=1,..N.

Table 3.2 shows the results from nonlinear least-squares estimation. The range of
estimate of A, from 0.0047 to 0.0537 per month appears to be reasonable, which might
imply that it is essential to include the input rate into the model. The range of estimate of
Ry is from 13.44 to 1059.4 pg/month except for subject 10 with a negative estimate of Rx
that is not realistic. Table 3.2 indicates that standard deviations of most subjects are quite
large, although the estimate of kidney cadmium at time O and the prediction of kidney
cadmium at time 76 are rather close to the measured values. Observed values of kidney
cadmium are dominant on the data so that the second assumption of least-squares criterion

is violated and weights were considered in the criterion.

3.2.2 Sensitivity of weights
To check the sensitivity of the weights applied to the model, four different ways of
implementing weights in the model were used. Tables 3.3, 3.4, 3.5 and 3.6 show the

results based on weights 1, 2, 3 and 4, respectively. The different weights were applied to

the model are as follows.
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Weight 1
Approximately, the measurement error of kidney cadmium can be assumed as 2.5
mg for single kidney, whereas the measurement error of urine cadmium can be assumed to

be roughly 0.5 pg/g creatine. These assumptions form the basis of weight 1.

Weight 2
Weight 2 for kidney cadmium is based on the fact that the measurement error of

kidney cadmium can be approximately as 6 mg, closing up bound of the measurement

error, whereas the weight 2 for urine cadmium 1s the same as the one in weight 1.

Weight 3
Weight 3 for kidney cadmium varies according to previous recording of
measurement error from 2 mg to 8 mg, and weight 3 for urine cadmium is the same as

previous weights.

Weight 4
Weight 4 for kidney cadmium is selected as 6 mg which is the same one as given in

weight 2, whereas weight 4 for urine cadmium varies from individual to individual

according to variation of urine cadmium.
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Tables 3.3, 3.4 3.5 and 3.6 show that, after adding weights, the weighted residual
sum of squares are dramatically reduced. The range of estimates of A is from 0.0047 to
0.034 with weight 1, from 0.0047 to 0.0486 with weight 2, from 0.0046 to 0.0402 with
weight 3 and from 0.0048 to 0.0495 in weight 4. Among the four different weights, it is
interesting to see that the estimate of A, 1s not really sensitive to the weights. Largest
estimates of A, are centralized either in subject 11 or 12 among the different weights. In
subject 7, the estimate of A, is smallest for each weight. In most of the cases, the estimate
of Ry varies significantly from weight to weight. One of the reasons may be that the input
rate is not directly related to urine cadmium but connected directly to blood cadmium so
that the variation of Ry is rather large. Both the estimates of R, in subject 13 based on
weight 3 and in subject 10 un-weighted are unrealistic.

Since the results based on weight 4 are quite close to the others and derivation of
weight 4 is biologically reasonable, the results based on weight 4 were used for the
calculation of the half-life time of kidney cadmium at this preliminary stage.
Approximately, the half-life time of kidney cadmium based on weight 4 for each subject is
estimated as: 99 months for subject 1, 42 months for subject 2, 46 months for subject 3,
100 months for subject 4, 56 months for subject 5, 50 months for subject 6, 144 months
for subject 7, 60 months for subject 8, 32 months for subject 9, 53 months for subject 10,
26 months for subject 11, 14 months for subject 12, 46 months for subject 13, and 29

months for subject 14. So the longest half-life time of kidney cadmium is estimated as 144
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months in subject 7, the shortest half-life time of kidney cadmium, on the other hand, is
estimated as 26 months in subject 11. R; for the four workers known to be non-smoking is

numerically lower than for the four workers known to be smoking.



64

TABLE 3.2 Results of nonlinear least-squares for the two-compartment model (Cd_k &

Cd_u)
Subject ):K Ry Cd_Ak(O) Cd _k(0) Cd_;<(76) Cd _k(76) OFV
month”* | g/month pe (5) HE (B.)
ng Hg

l 0.007 | 18.44 | 249995 | 2500 4023.9 4000 1872 46
2 0.017 | 277.00 | 21000.2 | 21000 23356 24000 140083
3 0.015 | 358.80 | 12002.1 12000 23947 24000 934158
4 0.0068 | 291.50 | 14000.6 14000 34001 34000 41787.7
5 0.0117 | 197.80 | 2501.21 2500 12014 120G0 33491.0
6 0.0140 | 345.71 | 21000.0 | 21000 30666 1572482
7 0.0047 | 95.41 2500.00 2500 9595.6 916.95
8 0.0116 | 204.29 | 15000.0 15000 22742 6539.89
9 0.0223 | 429.61 | 15000.1 15000 21236 24409.3
10 0.0112 | -833.53 | 77996.2 78000 23942 24000 5.30
11 0.027 1054.4 | 31001.8 | 31000 42001 42000 77725
12 0.0537 | 684.80 | 10002.5 10000 12875 279763
13 0.0119 | 1059.4 | 16018.6 16000 65959 66000 3.3492
14 0.0236 | 629.84 | 23999.8 | 24000 30234 136677

S. refers to single.

B. refers to both.

OFYV refers to the objective function value.
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TABLE 3.3 Results of nonlinear least-squares for the two-compartment model (Cd_k &

Cd_u) based on weight 1

Subject

/{k R, Cd_Ak(O) Cd _k(0) Cd_;<(76) Cdfk(76) OFV
month” | Hg/month He (5 HE (B)
HE Heg
1 0.0075 | 32.68 2271.33 2500 4473 4000 246
2 0.019 | 271.86 | 19054.8 | 21000 19925 24000 189.66
3 0.015 | 230.72 | 142294 12000 19564 24000 79.64
4 0.0069 | 193.93 | 15836.9 14000 30218 34000 47.11
5 0.0126 y 12697 | 3981.23 2500 9265 12000 32.00
6 0.014 | 343.37 | 21216.2 | 21000 30705 220.12
7 0.0047 | 95.56 2505.9 2500 9613 1.28
8 0.0116 | 204.23 | 15006.2 15000 22744 9.16
9 0.0214 | 421.67 | 15650.3 15000 21984 33.88
10 0.0160 | 1238.7 | 53185.3 | 78000 86000 24000 1312.63
11 0.034 1013.7 | 24928.9 | 31000 31327 42000 1008.55
12 0.032 | 59437 | 172914 10000 19981 302.23
13 0.022 165.16 | 23366.6 16000 14877 66000 826.33
14 0.02 635.29 | 23439.0 | 24000 35070 191.13

S. refers to single.

B. refers to both.

OFYV refers to the objective function value.
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TABLE 3.4 Results of nonlinear least-squares for the two-compartment model (Cd_k &

Cd_u) based on weight 2

Subject A R, Cd_Ak(O) Cd_k(0) Cd_;c(76) Cd _k(76) OFV
month”! | Hg/month HE (5 Hg (B.)
ng Hg

| 0.0078 { 39.13 21249 2500 4592.8 4000 2.39
2 0.0459 | 386.55 7698 .4 21000 8634.7 24000 155.63
3 0.0131 | 196.07 16550 12000 21667 24000 73.41
4 0.0071 | 146.14 16487 14000 27807 34000 4i.84
5 0.0129 | 113.58 4093.9 2500 8573.2 12000 29.72
6 0.0133 | 333.06 22159 21000 32057 221.57
7 0.0047 | 94.77 24923 2500 9544.0 1.293
8 0.0115| 203.98 15036 15000 22884 9.22
9 0.0188 | 394.83 17867 15000 24531 33.14
10 0.0168 | 1423.8 48938 78000 88411 24000 402.27
11 0.0486 [ 1064.3 17339 31000 22217 42000 932.97
12 0.0226 | 498.83 25138 10000 27135 250.02
13 0.0199 | 22.70 26750 16000 12680 66000 427.48
14 0.0258 | 649.33 21937 24000 27801 191.88

S. refers to single.

B. refers to both.

OFYV refers to the objective function value.
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TABLE 3.5 Results of nonlinear least-squares for the two-compartment model (Cd_k &
Cd_u) based on weight 3

Subject 1 . R, Cd_Ak(O) Cd _k(0) Cd_;<(76) Cd_k(76) OFV
month” | Hg/month HE (5.) g (B.)
HE HE

1 0.0085 | 37.25 1964.73 2500 4145 4000 242
2 0.0220} 311.18 [ 16031.7 | 21000 17511 24000 187.95
3 0.0132} 209.19 | 16283.5 12000 21979 24000 77.16
4 0.0064 | 178.44 | 17420.4 14000 32160 34000 45.63
5 0.010 119.67 | 5219.44 2500 11252 12000 30.57
6 0.0133 § 333.01 | 221654 | 21000 32059 221.52
7 0.0046 | 96.02 2523.70 2500 9717 1.29
8 0.0116 § 204.14 | 15016.0 15000 22747 9.22
9 0.0203 | 411.22 | 16518.6 15000 22989 33.73
10 0.0278 | 1431.0 | 29801.8 | 78000 52458.5 24000 996.31
11 0.0402 | 1048.0 | 211550 1 31000 26835 42000 993.8
12 0.0301 | 577.27 | 18708.9 10000 21030 291.70
13 0.0109 | -174.59 | 46355.3 16000 31469 66000 970.89
14 0.0257 | 649.53 [ 21921.3 | 24000 27907 191.83

S. refers to single.

B. refers to both.

OFV refers to the objective function value.
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TABLE 3.6 Results of nonlinear least-squares for the two-compartment model (Cd_k &
Cd_u) based on weight 4

Subject ,{K R, Cd_Ak(O) Cd _k(0) Cd_;<(76) Cd _k(76) OFV
month” | ng/month HE (S Hg (B)
HE HE

] 0.007 40.09 23039 2500 5069.61 4000 6.933
2 0.0167 | 262.34 | 209658 | 21000 23079 24000 3.761
3 0.015 | 25441 13795.7 12000 20360.6 24000 5.454
4 0.0069 | 193.22 | 158469 14000 30187.6 34000 8.449
5 0.0124 1 141.13 3786.7 2500 9897.49 12000 10.743
6 0.014 | 3455 | 21041.6 | 21000 | 30684.4 5.506
7 0.0048 | 94.26 24723 2500 9435.7 4.679
8 0.0116 | 204.19 | 150129 15000 227473 3.230
9 0.0220 | 426.65 | 15253.9 15000 21481.3 2.206
{0 0.0130 | 286.69 | 68846.2 | 78000 65108 24000 119.27
11 0.0271 | 1028.3 | 31154.9 | 31000 41051.3 42000 3.339
12 |0.0495| 6758 | 10966.0 | 10000 | 13844.9 3.417
13 0.0150 [ 681.9 24928.9 16000 46866.5 66000 53.046
14 0.0236 | 630.5 23958.0 | 24000 302429 2.258

S. refers to single.

B. refers to both.

OFYV refers to the objective function value.
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3.3 Bayesian Approach

3.3.1 Thomas Bayes
The Reverend Thomas Bayes was a Presbyterian minister and mathematician
who lived in England in the 1700s (died in 1761). His friend, Richard Price who was

interested in Bayes's research, submitted Bayes’ manuscript An Essay Toward Solving

problem in the Doctrine of Chances. to the professional journal, Philosophical
Transactions of the Royal Society, which initially published Bayes’paper posthumously
in 1763". Bayes's paper was published again in Biometrika in 1958*, and has been
reprinted at least four times in this century™*.

Bayes's essay has been described as one of the most difficult works to read in
the history of statistics**. Common interpretation today about Bayes' paper’” is that his
paper proposed a method for making probability inferences about the parameter of
binomial distribution conditional on some observations from that distribution. Common
belief"” is that Bayes assumed that the parameter had a uniform distribution on the unit
interval. His proposed method for making inferences about the binomial parameter is
now called Bayes’ theorem and has been generalized 1o be applicable beyond the
binomial distribution, to any sampling distribution. 50 years after Bayes died, Laplace, a
mathematician who lived in France, stated the theorem on inverse probability in general

form. Stigler pointed out*' that Laplace probably never saw Bayes' essay and
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discovered the theorem independently. Jeffreys rediscovered Laplace’s work in 1939

and made his great contribution t> Bayes' theorem™.

3.3.2 Bayes’ theorem
Suppose that Y = (M, ..., ¥a) 18 a vector of n observations whose probability
distribution depends on the values of k parameters & = (6, ..., 8, and 6 itself has a

probability distribution p(6). Given the observed data Y, the conditional distribution of

0 1s

61Y)= p(9.Y)= p(Y18)p(6)
P p(Y) peyY)
where

p(Y)= JP(Y|9)P(9)119 if 8 continuous
L p(Y16)p(6) if 6 (discrete

The statement above is usually referred to as Bayes’ Theorem. In this
statement, p(8) is called the prior distribution of 6, since it only tells us what is known
about 8 without knowledge of the data. Correspondingly, p(81Y) is called the posterior
distribution of 8 given Y, since it tells us what is known about 8 given knowledge of
the data.

Given data Y, p(YI6) in the Bayes’ formula above may be regarded as a

function not of Y but of 6, and can be called likelihood function of @ for given Y'”. The
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expression of likelihood function is usually denoted as /(6 1Y). Bayes’ formula can thus
be written as

pB1Y) = (B1Y)p(H).

The likelihood function plays a very important rule in Bayes’ formula.

3.3.3 Jeffreys’ rule

Generally speaking, locally uniform prior means that a prior is dominated by the
likelihood, and does not change very much within the appreciable region of the
likelihood and not have large values outside of the corresponding region. A locally
uniform prior can be regarded as non-informative about parameters in the sense that
only little prior knowledge is provided by an experiment.

In some dispute of Bayes’ postulate, it has been argued that, if the distribution
of a continuous parameter 8 were taken to be locally uniform, then the distribution of
1/6, logB or some other transformation would not be locally uniform. Therefore, the
application of Bayes' postulate to different transformations of 6 would lead to
inconsistent posterior distributions from the same data.

Jeffreys™ solved the problem mentioned above on the basis of invariance under
parameter transformations. The rule named as Jeffreys’ rule for the choice of a
noninformative prior distribution was first given by Jeffreys. In the single-parameter

model, his rule states that the prior distribution for a single parameter 6 is
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approximately non-informative if it is taken to be proportional to the square root of
Fisher's information measure.
Jeffreys’ rule for muiti-parameter problems is that the prior distribution for a set

of parameters is taken to be proportional to the square root of the determinant of the
information matrix so that

172

p(8) <|l(8)
where [(6) is the information matrix of 6.

To show that, let Inp be the logarithm of the likelihood function with k

parameters

Since
T T T

()lnp\ dinp do

36 ) \ ae J\ae

( T

dlinp dlinp L
a8 a6

[(8)=Eq

\

T T

ao dlnp dlinp a9

a0 o ) de¢ 20

_6_?2 E dlnp dlinp éz

a6 a¢ de Jd6




13

J0 90
= = || =
96 96

where

T
dln (
(__l_)_\\ ={ ALY , onp d1n p\ is a vector with dimension of kx1, and
\ae} 96 96, " 38,

99 _9(4......9,)
a6 d(6,6,,....6,)

is a matrix with dimension of kxk.

It directly follows that

d6

[16)| = |1y |x2 70|

172 =‘I(6) }l/: X

do [
3-9_’ or ‘l(d))

Hence. if the parameter vector ¢ can be chosen such that

Jd6

de

~1/2
’

=[16)|

then lI(¢)| will be constant independent of ¢ and the likelihood will be approximately
data translated in terms of ¢.

The determinant of the information matrix is a nonnegative value. In addition to

that, the expression for the determinant matrices mentioned above satisfies the

transformation formula

- 90
p(¢)—p(6)‘99.
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Therefore, the square root of the information matrix can be selected to be proportional

to the density function p(8). The non-informative prior for 6 should be chosen locally

as,

p®) «<[18)|", or  p(8) %—g‘

It is obviously inapplicable when the information measure does not exist.

Further more, when more than one parameter in involved, careful consideration must

be given to transformation implications and to knowledge of prior independence.

3.3.4 Multivariate analysis
Assumption

In the Bayesian approach, consider m output responses which is m-variate
observation _\'Tm, = (Vulr oo Vats oo Yam). =12, ..., n, obtained at the u™ time. There
would be m expectation functions E(viu)) = N = (Muts --- Num) at each time, where

E(van) = Nur = i, 61),

E(_Vm) = 77m = nl(éuu 91)'

ELVum) = r’um = r’m(éum: em)v
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where &, would contain p;, elements (&, ... &), 6 would contain k,, elements (6,
...+ Biy) and the number of unknown parameters is p. A given output would invoive
certain inputs and certain parameters which might or might not be shared by other
outputs, depending on what the real problem is. Furthermore, the expectation function
1. might be linear or nonlinear both in the parameters 6, and inputs &,;.

Assume that the error function €., = (€., ... ,Eum) = Yy - Nos w=1,2, ... n,
for given @ and Z, distributed as the m-variate Normal N (0, ). The error terms in
different responses but in the same measurements may not identical and may correlated

to each other.

By using matrix notation, Y, H and E can be expressed respectively as

Moo ¥Yyooos Vim Yo
— \ . \ —_ R , , - T
Y= v, cooVu oo Vum | S0y, 1= v, b
¥ L M ‘r
L.\nl"' -"’ll ve .\nm . L.‘lni_
- . -y 1
r}ll r’h °° nlm ntl)

H=\n,..n, ... . |=[0s.con,con,1=1n,, |»and

nnl o T’ni tee nnm _n(rn)_



76

i 1 T ]

£, .- &, ... &, £

_ _ | T
E=|¢g, ...&, ... &, |=1&.....6.....6, 1= | &,
~ T
LE"' .. €y ...chJ Lg""J

Likelihood Function of (8, ¥)

The joint distribution of the n vectors of errors E can be expressed as

p(E1Z.6 )=II p(¢g,,I1Z.6)
u=1

2 b l n
= (2r )‘"’""IZI"‘"exp(—;

- U=

(u)

el 7.,
!
- < g, < oo, i=l...om u=l,...n,
where £ = {g,} is the mxm covariance matrix, £' = {@"} is the inverse matrix of I,
and @ refers to the full set of all parameters 6, ..., O, With k = k) + ks + ... + km

elements.
By using Theorem 3.1 in the Appendix, the exponent in the joint function above

can be given as
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n n
T -l _ T -l
E'le(u)z g(u)—’r[z-le(u)z €., ]

I
M=

T -1
tr[s(u)z 6‘(u) ]

£
1]

il
™M=

tr[ Z_IEWI 8(71-1) ]

£
[

= (I3 g, 6l)]
=r[27'5(6)],

where tr B refers to the trace of the matrix B, and $(6) = (S, (8., 6)} with dimension

mxm, and

S.,6.6)=X¢,¢6 =X[v,-n(&. . 0]y, -n(&, . 6)]=¢€"e,. j=l...m

u=) u=

Then, the likelihood function, given observations Y, can be expressed as
18, Z1Y)e<p(EIZ,0)

/ l -
<IZ1™ exp[~=1rZ75(8)].

Prior Distribution of (6, X)

In particular, it is usually appropriate to take location parameters to be
distributed independently of scale parameters. This is because any prior idea one might
have about the location parameters 6 of a distribution would usually not be much
influenced by one's idea about the scale parameters I of distribution. Thus p(8 | L) =
p(6). Assume that 6 and X are approximately independent, so that the prior distribution

of the parameters (6, X) can be written as
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p6, L)=p(8)p(L).
It is appropriate to take 6 as locally uniform such that p(8) o constant. For the
prior distribution of X, Jeffreys’ principle leads to non-informative reference prior as

p(E) | ()",

where 'I(Z)l is the determinant of the information matrix of Z. Derivation of the prior
distribution of I is as follows.

First, consider the expression of the information matrix of . By using Theorem

3.3 in the Appendikx, it directly follows that

ERARER N
oz "ot
Hence

dx"
p>

loz|
EBR

)| =1z "|x

‘2 =z ) |x

where

92| 190,60 ,....0,)]
0z |9 o ....a™)

is the Jacobian of the transformation from the elements g;; of £ to the elements of ¢’ of

.
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Next, consider the expression of the determinant of the information matrix of T

It can be shown that ‘I(Z - )I oc as follows. The density of the m-dimensional

Jdz
Jxr”!

normal distribution mentioned above is

p(g, 1 Z,6)=2m)™"

1
- 2 l - r
)) l’”'exp[—;fr}: lg(u)£<u))]v—°°<€l“’<°°'
where
Euy = (Euty -v  Eum) = Ny = N = (Vut = Mutvee Num - Nut), w=1,2,..n

Assume Z={g,} and £'=({d"} (i, j = 1.2, ..., m) and that they both consist of m(1+m)/2

distinct elements. Taking logarithms of the density function, it follows that

—

1 !
ogp= —% log(2m )+; lOg\Z’l !—‘; rz” £m,£r(u).

Differentiating log p with respectto ¢” (i, j=1.2, ..., m, i 2)),

J 1 1 1 dj%"

Since
DIRUTIUND I U
{o,)=2==")"= l?:l_'| >::",u U0 P

where Z",,- is a cofactorof ¢; (i, j= 1, ..., m).
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The derivatives of the determinant of £ with respect to o, can be given as

<9| Z-l‘-a(gl c'L)

_s-l |-l o i .
357 = P =X .,—‘Z ‘O'/,. Lj=l..m, 2],
and the first derivatives are
d lo I 1 ; . Lo
adg,/”:—;m\z lo,~(v =m0, -0 ) LjElam Q2

Thus, the second derivatives are

d*logp 2_130',, Lj=l.... m,o Q2]
do ' do" 200! k= m, k2l)

.....

Therefore, the determinant of the information matrix ' is proportional to
E d *logp JdX
dao''do" '

Jxr
Finally, consider the Jacobian of the transformation from the elements o, of £ to

lzhHl=

m+|

the elements of ¢’ of £''. It can be shown that

z
882 ~ Iz | z as follows.

We can write: I=XXI'L.

Since ' is symmetric and it consists of m(m+1)/2 distinct random variables, then the
y

Jd z
0z

m+1

=|z

result that l

follows directly from Theorem 3.6g provided in the Appendix.
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It is straight forward to combine the three steps mentioned above in order to get
the non-informative reference prior as

172

p(I) <|I(Z)

o< |

X

a3

R a Z -2
RERA
m#l)—lll

=(z
=| ) | —tm«li/l‘

Consequently, the prior distribution of (6, X) is

p6, £)=p(@ ) p(L)e|x| ™,

Posterior Distribution of (6, &)

The joint posterior distribution of the parameters (6, Z), which can be expressed as

p6, TiY)e p(6, £)1(6, I)

-(n+m+1)/2

°<|z

exp[—%tr):"S(G)], —0<f <o, T>0,

where -oo < @ < e means that each element of 6 can vary from -es to e, and T > 0 means

that matrix X is positive definite.
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Jd X
, and l—o_)—z——,\zi):

m+}

o ED)
p(o, T lY)—p(G,ZIY)‘aZ_,

it follows that the joint posterior distribution of the parameters (6, ') is
pg, L71Y) o | X" ""exp[—;tr 786, —o<f <o, ¥L>0

Marginal Distribution of 8

The Wishart distribution can be used for deriving the marginal distribution of 8. In
1928, Wishart proposed the Wishart distribution as multivariate generalization of the x’
distribution*!. By using Wy(B™, ¢) as notation of the Wishart distribution, Z is distributed

as Wishart with ¢ degrees of freedom and parameter matrix B™', which can be given as

W,(B".q)=p(Z)=k|Z

s |
”““’"’exp(—;”ZB)v Z2>0,

where Z is a mxm positive definite symmetric random matrix which consists of m(1+m)/2

distinct random variables z, (i,j = 1.2, ....m; i 2j), ¢ >0, and B is a mxm positive definite

symmetric matrix with elements of fixed constants. Since

J |Z |llzq—lexp (_T)I_IrZB)dZ-_—I B \—I/Z(qom_l) 5 V2o rm(q+,2n_| .
>0 -

where I'm(qg+m+1/2) is the generalized gamma function defined as

L i2pon T- a-p p-1
L,(6) = (P T Teb+=—55), b>——,
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The right side of the integral equation above is a constant as reciprocal coefficient (1/k)
for the Wishart distribution.

Comparing the Wishart distribution to the posterior distribution of (6, £'), S(6) in
the posterior distribution of the (8, ') corresponds to B in the Wishart distribution
with elements of the fixed constants, whereas £ * in the posterior distribution of (¢, £) 1s
corresponding to Z in the Wishart distribution. Furthermore, the degrees of freedom for
the posterior distribution of the (6, 'Y is n-m+1. The posterior distribution of (6. T can
be denoted as W(S(9), (n-m+1)).

By integrating out " in the posterior distribution of (6, '), we can be simply
obtain®

pB 1Y)=|S@)

-ns2
B

~n/2 - }ZT Z

—o0<f <oo, provided n2m.

The marginal distribution of 6, p( 81 Y ), plays a very important rule in the following
analysis. The parameter estimates are to be chosen so as to minimize the Bayesian

determinant d( 8 ) which is given by
) = |z"z|.
The Bayesian determinant criterion involves constraints on the number of observations,

N, the number of responses, M, and the number of parameters, P. We need to have N>P and

N2M in order to carry out the necessary computation’.
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3.3.5 Bayesian approach

In the cadmium data, the number of responses M is 2 for the two-compartment model
and 4 for the four-compartment model, while the number of the unknown parameters P is 3 for
the two-compartment model and 6 for the four-compartment model. Furthermore, the number
of observations N varies fromY to 12.

The third assumption in the least-squares model is that there is no correlation between
Vg and vy, i #jand i, j = 1,...M and 1« = 1....N. Since the monthly amount of urine cadmium is
linearly related to kidney cadmium®, the third assumption might be violated. Multivariate
analysis in the Bayesian approach might be more appropriate to apply to cadmium analysis.

An effort is made below to demonstrate the Bayesian approach to the model, although
the incomplete cadmium data pose some difficulty in the application. Tabie 3.7 shows the
results of the Bayesian approach based on a combination of simulated and real data.

[t is reasonable to believe that the measurement errors are normally distributed. The
generated variable of kidney cadmium at time ¢ is provided by
Cd_k(t)y= no + E(Cd_k(t)),
where n was generated so that it is normally distributed with mean zero and standard deviation
one; the initial time # is set at 0 and the unit of time is one month; y is the prediction of kidney
cadmium at time ¢, derived from the measurements of kidney cadmium at time r=0 and 1=76;
and ois the standard deviation of measurement error in kidney cadmium, which is assumed as

6000 pg. Therefore, the simulation is based on the measurements of kidney cadmium at time O
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and 76, standard normal variables n, the standard deviation of measurement error in kidney
cadmium ¢, and the prediction of kidney cadmium y. After the variable of kidney cadmium is
simulated, the second way in the Bayesian approach described earlier is ready to be applied.

Working on this simulated and real data, it was failed to estimate the parameters with
only onc measurcment of kidney cadmium, but the method is more stabie to obtain the resulls
during the convergence procedure. Table 3.7 presents the results of the two-compartment
model from the Bayesian approach with the combination of simulated and real data. The
estimated A for each subject seems to fall in a reasonable range, which is not much different
from the nonlinear least-squares results. The half-life time of kidney cadmium based on the
Bayesian method for each subject is estimated as 116 months for subject 1, 39 months for
subject 2, 36 months for subject 3, 87 months for subject 4, 46 months for subject 5, 58
months for subject 10, 26 months for subject 11 and 25 months for subject 13.

Highest posterior density (HPD) regions of content 1-a is defined by Box and Tiao” as
a region R in the parameter space such that Pr{BeR} = I-a and, for B,€R and B.gR. the

density p(Bi 1'y) 2 p(B21y)*. The general form of HPD in this case can be written as either

272

AT A

z z\/P

. <F(P,N-P.at)
s

or

In{p(® 1V)1-In(p(8 1Y) <3 1 *(Pict),
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AT

where s is Z 2|/ (N = P) and ¥’ (P; ) is the upper 0. percentile of the ¥ distribution with P

degrees of freedom.

In order to display the results graphically, three dimensional plots and the contour plots
of logarithm of the ohiective function of (R, A:) from simulation results were generated for
eight subjects, shown in Figures 3.2-3.17, where in Figures 3.2 and 3.3 are for subject 1,
Figures 3.4 and 3.5 for subject 2 and Figures 3.6 and 3.7 for subject 3, Figures 3.8 and 3.9 for
subject 4, Figures 3.10 and 3.11 for subject 5, Figures 3.12 and 3.13 for subject 10, Figures
3.14 and 3.15 for subject 11, Figures 3.16 and 3.17 for subject 13. Figures 3.2, 3.4, 3.6, 3.8,
3.10, 3.12, 3.14 and 3.16 are contour plots of logarithm of the objective function of (R, A).
while Figures 3.3, 3.5, 3.7, 3.9, 3.11, 3.13, 3.15 and 3.17 are three dimensional plots of
logarithm of the objective function of (R, As).

The contour plots follow patterns in the way that the largest value refers to 95% HPD
and the second largest value refers to 90% HPD, while the smallest value refers to 505 HPD
and the second smallest value refers to 75% HPD in each plot. The different values of HPD
come from the different number of measurements among these 8 subjects and the minimum in
the optimization.

In contour plots, 50%, 75%., 90% and 95% HPD are 3.28, 3.48, 3.7t and 3.89 for
subject 1, 3.86, 4.00, 4.18 and 4.31 for subject 2, 4.41, 4.59, 4.80 and 4.96 for subject 3, 4.53,

4.71, 4.92 and 5.08 for subject 4, 5.85, 6.01, 6.21 and 6.35 for subject 5, 8.18, 8.35, 8.57 and
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8.72 for subject 10, 3.33, 3.52, 3.76 and 3.93 for subject 11 and 6.47, 6.74, 6.83 and 6.97 for
subject 13.

From the contour plots and three dimensional plots, the shape of the objective function
and wide range of values for the parameter R can be seen for each subject. It should be
pointed that the large measuremient error for kidney cadmium distorted the interpretation of
true relationship between kidney and urine cadmium. Moreover, thers might be some linear
relationship between urine cadmium and kidney cadmium. Some other factors might influence
their relationship. One of those factors might be the saturation of cadmium in kidney. The
relationship might depend on the conditions of kidneys in the possible situation damaged and
saturated, neither damaged nor saturated, and not damaged but saturated.

The results for R in the subgroup with normal kidney status are close for the two
estimation methods, but not so in the group with abnormal kidney status. The plots clearly
display a wide range of Ry for each subject. It might imply the indirect relationship between the
input rate and urine cadmium, and suggest that the blood cadmium which is connected much
more directly with the input rate from outside should be included into the model.

It is noted among the results from the two estimation methods, least-squares and
Bayesian approach, that the estimated R¢ with low B,-microglobulin is lower than that with
high B.-microglobulin except for subject 13. These consistent results provide possible regions
for initial values for some unknown parameters, at the next step of estimation in the four-

compartment model. Furthermore, incorporating blood cadmium into the model is of
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importance due to the fact that the input rate from outside the human body is not directly

related to urine cadmium but connected directly to blood cadmium.

TABLE 3.7 Results of the two-compartment model from the Bayesian approach with the

combination of simulated and real data

Subject | i, R. cd 10y | C4=FOl o4 %76)| C4-kT6)|  OFV
month™' | Hg/month Hg (59 Hg (B.)
HE HE
1 0.006 54.50 2759.63 2500 6824.4 4000 20.49
2 0.018 |- 276.50 19169 21000 21211 24000 38.82
3 0.019 | 235.82 11520 12000 14920 24000 65.22
4 0.008 170.22 14754 14000 25759 34000 77.76
5 0.015 | 105.64 36780 2500 28316 12000 280.93
10 0.012 | 516.62 71838 78000 83474 24000 2009.22
11 0.027 | 990.71 31958 31000 40191 42000 21.4776
13 0.027 | 275.53 19518 16000 13909 66000 525.02

OFYV refers to the objective function value.
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Figure 3.2 3-D plot of logarithm of the objective function for subject 1 based on A, and

compartment model by Bayesian criterion
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Figure 3.3 Contour plot of logarithm of the objective function for subject 1 based on Ay

and Ry in the two-compartment model by Bayesian criterion
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Figure 3.4 3-D plot of logarithm of the objective function for subject 2 based on A, and

Ry in the two-compartment model by Bayesian criterion
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Figure 3.5 Contour plot of logarithm of the objective function for subject 2 based on A,

and Ry in the two-compartment model by Bayesian criterion
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Figure 3.6 3-D plot of logarithm of the objective function for subject 3 based on Ay and

Ry in the two-compartment model by Bayesian criterion

Figure 3.7 Contour plot of logarithm of the objective function for subject 3 based on A,
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Figure 3.8 3-D plot of logarithm of the objective function for subject 4 based on A and
Ry in the two-compartment model by Bayesian criterion
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Figure 3.10 3-D plot of logarithm of the objective function for subject 5 based on Ak and
Ry in the two-compartment model by Bayesian criterion
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Figure 3.12 3-D plot of logarithm of the objective function for subject 10 based on Ay

-compartment model by Bayesian criterion
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Figure 3.13 Contour plot of logarithm of the objective function for subject 10 based on

A« and Ry in the two-compartment model by Bayesian criterion
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Figure 3.14 3-D plot of logarithm of the objective function for subject 11 based on Ak

and Ry in the two-compartment model by Bayesian criterion
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Figure 3.15 Contour plot of logarithm of the objective function for subject 11 based on

A¢ and Ry in the two-compartment model by Bayesian criterion
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CHAPTER FOUR

FOUR-COMPARTMENT MODEL

4.1 Expectation Functions

This chapter is composed of five sections. In Section 4.1, a four-compartment model,
in the form of a linear non-homogeneous system of ordinary differential equations, is given,
both analytically and graphically. Four compartments are cadmium in blood, cadmium in urine,
cadmium in kidney, and cadmium in liver. Moreover, the expectation functions of four-
compartment model are derived analytically in term of eigenvalues and corresponding
eigenvectors of a matrix of transfer rates.

In Section 4.2, blood cadmium and the total body burden defined as total amount of
cadmium in the body as the additional preliminary work are discussed briefly.

In Section 4.3, the discussion is about obtaining the starting values of the unknown
parameters in two ways, based on graphical search and grid search.

In Section 4.4, the discussions and conclusions are about the estimation of parameters,

by classical and Bayesian approaches. Two numerical methods, namely, Gauss-Newton and

97
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Newton-Raphson methods, are described specifically, for the optimization problem required for

the estimation methods.

In the last section, the comparison between the mode! developed and Kjellstrom's

model has been made and discussed .

4.1.1 Four-compartment model

In this section, derivation of the solution of the four-compartment model, in the form of
a linear system of ordinary differential equations, is discussed, in which the four compartments
are cadmium in blood, cadmium in urine, cadmium in kidney, and cadmium in liver. It is
assumed that the rates of flow of cadmium follow the first order kinetics, in which the mass
balance equations are required for the description of dynamics of the exchange of cadmium
among the compartments. The transfer coefficient is assumed to be a constant with respect to

time. The model can then be described analytically in the form of linear system of ordinary

differential equations as follows:

{H

(—= AH+B (20)
dt
H(0)=H,

where
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M —(Chl+Cbk) Cu, Cu, 0 R
C -C, 0 0 0
H= n . A= bi ] . B=
N, Co 0 —(C,+C,) O 0
n. 0 0 C. 0 0

where the five parameters Cw, Cp, Cii, Ci» and Ci, in matrix A denote the transfer rates of
cadmium from blood to liver, from liver to blood, from biood to kidney, from kidney to blood,
and from Kidney to urine, respectively; R in vector B stands for monthly intake of cadmium
absorbed into the blood from the environment; the elements of H such as n,, n, M and n, are
the expected responses of cadmium in blood, liver, kidney and urine, respectively; ¢ is time in
monthly unit; and H, denotes the initial value of H at time 0.

The compartment system can also be represented graphically, in which the boxes
represent compartments and where the arrows labeled with transfer coefficients represent

transfers of material into or out of compartments. The compartment diagram for the model

described above is shown below in Figure 4.1,



Figure 4.1 Diagram for the four-compartment model (Cd_b, Cd_l, Cd_k and Cd_u)
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Since the measurements of the amount of cadmium in the urine per month are available

and urine cadmium has little feedback to the kidney, the dimension can be reduced to take the

first three ordinary differential equations into consideration at the initial stage of deriving

equations for the expected responses. For simplicity in computation, we shall rewrite the model

as
[ dH
d—t‘=A,H,+Bl (12 0)
W Hl(O)zH‘o
an,
[ Tar ~Culle

where
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My "(Cm +Chk) Cu. CLh R
H=(n1| A= Cy -C, 0 . B =|0].
N Chk 0 - (th + Cku) 0

In the cadmium data, the number of measurements for each subject is at most 12 which
is not large and the data structure is irregular with some missing values, which poses some
difficulty in the analysis. The data set for the analysis is presented in Table 4.1.

The common approach for constructing the expectation functions is to establish the
weighted sums-of-exponential model in which the expected responses can be expressed as
combinations of weighted-sums-of-exponentials and constants due to the special form of the
ordinary differential equations, without solving them.

From this approach, one can not directly estimate the parameters in the generating
system since the number of exponential parameters may exceed the number of system
parameters.

If there are only a few missing values in the data and the number of measurements are
reasonably large, these missing data can be estimated as the unknown parameters and the
weighted sums-of-exponentials model can be applied. However, it is certainly not the case that
we have in this thesis. The number of observations is at most 12, but the number of the
unknown parameters in the weighted sums-of-exponentials turns out to be 15. It is, therefore,

not practical to use this approach for setting the functions of expected responses.
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The way we approach this problem is a combination of an analytical approach and an
exponential matrix approach. With this approach, the expectation functions for the blood, liver
and kidney cadmium can be expressed by elements in A|, the elements in By, the eigenvalues of
A, and elements of the corresponding eigenvectors.

Before the expectation functions are derived, we present a brief introduction to

eigenvalues and eigenvectors relating to a linear system of ordinary differential equations.

4.1.2 Eigenvalues and eigenvectors
The general form of a linear system with a constant matrix of n ordinary differential
equations can be written as

X()=CX)+D (LN)
X()=CX(1) (LH)

where C is a constant matrix and D is a constant vector; LA denotes a linear homogeneous
system while LN denotes a linear non-homogeneous system.

If d(1) is any fundamental matrix of a linear homogencous system and ~¢) is any
solution of a corresponding linear non-homogeneous system, then the general solution of the

linear non-homogeneous system can be given as

d()S + 1),

where § is an arbitrary constant vector, fundamental matrix is defined as a set of n lincarly

independent solutions of a linear homogeneous system.
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Theorem 4.4, proved in the appendix, states that the vector function of r(t) is as

follows:
r(t)y=(n) [ ()" D dn.
0

where d(1) is a fundamental matrix.

The general form of a linear non-homogeneous system with an initial value problem,

denoted by LNH with IVP, can be written as

X()=CX(1)+D, 120
X0)=X, (LNH with IVP)

where exp(Cr) is a principal matrix for a linear homogeneous system with initial value problem
and can be written as
exp(Cr)= i C—‘Lk— .
o k!

It can also be shown™ that for some nonsigular matrix Q. if A and Q are similar, then
the following equation holds:
exp(Cr)=Qexp(J1)Q™",
where matrices A and Q are similar, meaning that there is a nonsingular matrix P such that
A=P'QP;

J is a Jordan canonical form given by
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J, 0 .. 0
0 J, i
/= SR
0 0 J

elements of the Jordan Canonical Form, Ji, k = 1.2,..., n, are block diagonal submatrices given

oy

A, 1 0 O
0 A, 1 0
Jo=1 . . :
: : o]
0 .. 0 4,.]

A is a general eigenvalue of the matrix C. In the special case, the general eigenvalue simply
becomes an eigenvalue when the grade is 1. Furthermore, the columns corresponding to the
first column of each of the Jordan block Ji are the eigenvectors of matrix C corresponding to

the eigenvalues A.

Therefore, the unique solution of a linear non-homogeneous system with initial value

problem is given by

X(1) = (1) X, + () [ @™ (n)Ddn
0

=exp(CH X, +exp(Ct)_[exp"(Cn)an
0

= Qexp(JQ ' X, +Qexp(JNQ (I - Qexp(~=J1)Q™)C™'D (4.1)
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4.1.3 Expectation functions

In order to find all the eigenvalues of A, and the corresponding eigenvectors of A,
consider the characteristic polynomial of A, given by
p(A)=det(A -A1,),
where det (A;-A/;) denotes determinant ot matrix ot A,-Aly and /5 denotes a 3x3 identity matrix
and A is a scalar.

The characteristic polynomial can be simplified as
A em A+ mA+m =0
where

m, =C,+C,+C,,+C,,+C,,
m,=C, C, +C, C,+C,C,+C,C,+C,C,+C,C,
l"’( = C!I) CM Clu .

To solve the equations easily, we make the change A= x - m,/3. It then turns out that

M+ fix+ f,=0,
where
2
i m;
it =—-—3 +m,
f 2 5, mm,
=—m; - =+ m,.
2 27 1 3 3

By applying Cardan's formula™, the discriminant A for the equation is given by

| )
A= gfﬁ + Zfz
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There are four types of eigenvalues of A, depending on what the discriminant A is.
Type 1:
If A is greater than zero, only one eigenvalue is real and the other two are complex

conjugate values. The expressions of eigenvalues in this case are given by

[iti
/1] = a+ﬂ-?'.
1 \/5 m
A, = -5(a+[3)+71(a-ﬁ)-?.
| \/3 n
A = -5(a+ﬁ)-71(a-ﬁ)-?,
a = {}-%+«/K: B = {}IT\/S

If A is equal to zero, one of the possibilities is that fi = f»= 0. All eigenvalues are the

same and real in this case. They are given by

If A is equal to zero, another possibility is that f;*/9 = -2*/4. In this case, two

eigenvalues are the same and all of them are real. They are given by
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m

A,=a+B-3,

_{a+ B) om
=A==
Type 4:

If A is less than zero, the eigenvalues are all distinct. These eigenvalues and the

corresponding eigenvectors in expectaticn equation functions are given by

L4 T 27 5. m, N
A, =2 -?COS[SCOS (- -}7)+—/7f]-?. i=12.3
-~ 1

1 1 l
Jl+ni+pl Jl+ni+pl 40+ p
U= n___ L .
\/l+nl'+pl' \/1+11:’+p1' \/l+n;+p;
b, P, by
Ji+ni+pt Jleni+pl Jl+ni+p
where
Ch/ Chk
=, =, =123
" A+C, P A +C,, +C, I

Biologically, it will not be meaningful in the first type since it will not be meaningful for
the eigenvalues, associated with the half-life time of cadmium in blood, kidney and liver, to be
complex values. We can rule out the second type as well, since it is not realistic that all three

eigenvalues are the same because the half-life time of blood cadmium can not be the same as
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the half-life time of either liver cadmium or kidney cadmium. There is a diminutive possibility of
having type 3 due to the uncertainty in the parameter estimation and the possible similarity
between the half-life time of kidney cadmium and that of liver cadmium. Therefore, it is most
likely to be of the 4th type for all subjects since the three eigenvalues derived from matrix 4,
are all distinct.

The solutions of linear systems of ordinary differential equations with initial values exist
in the defined region and can be formed in terms of the matrix exponential as mentioned

above. The matrix exponential can be written as

exp(A N =Uexp(J)U ™,

where A, (i=1,...n) are the eigenvalues of A,; U is non-singular and the columns of U are the
corresponding eigenvectors of A: and exp(Jr) is a diag{exp(A,0).....exp(Aw)} matrix.
It is assumed that the three eigenvalues A, (i=1,2,3) of A, are dissimilar in each

subject. According to (4.1), the solutions of the compartment model as the expectation

functions can then be derived as
H, =Uexp(J1)U'(H,, + A]'B)) - A]'B,.
where

t (120

- At =
exp(Ji)=| 0 e 0,, t {O (1<0)
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The columns of U are the corresponding eigenvectors of A,. The eigenvalues of A,, A,
(i=1,2,3), and the corresponding eigenvectors in the expectation functions which have been
presented corresponding to Type 4.

If the situation in Type 3 takes place, the matrix diag{exp(Aif),....exp(Aqt)} should be
replaced by a general form, nankely, the Jordan canonical form. The  corresponding
eigenvectors should be the generalized eigenvectors. This situation will not be discussed here.

Comparing the expectation functions to ordinary difterential equations, it can be seen
that the expectation functions have been modified when the time is less than 0. There are two
possible reasons for this modification of the model:

(1) Since the cadmium exposure to the workers ceased at time f, and the first
measurement was made when there was still some cadmium exposure, the level of
cadmium in the blood was not a dramatic change from the first measurement to time 0
and it would decrease right after the exposure stopped until it reached another steady state.

(2) There is no direct relationship between the intake of cadmium and liver cadmium, or
kidney cadmium. The intake of cadmium has direct contact with blood cadmium

through the respiratory system and blood circulation system.
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4.2 Additional Preliminary Work

In addition to the discussions in Chapter 3 about the kidney and urine cadmium in the
two-compartment model as preliminary work, the following discussions about blood cadmium

and the body burden are needed to form the addwional preliminary work tor the tour-

compartment model.

4.2.1 Blood model

To reduce the dimensions of the parameters and the responses, only the level of blood
cadmium of each subject after one hundred months has been examined. Table 4.2 shows the
results of an exponential model for blood cadmium with the parameter R, of cadmium intake,
while Table 4.3 shows the corresponding results without the parameter R, of monthly cadmium
intake. In both models, A, is a decay rate which is related to the half-life time of blood cadmium
and R, stands for the monthly intake from environment.

The model with the intake parameter R, is more general and seems to be more suitable
since estimates of R, for some subjects are significantly different from zero. Under both
models, the initial values of blood cadmium for all subjects were treated as unknown
parameters. The estimated initial values of the blood cadmium under both models are not
significantly different for all subjects except 8 and 10. Although the estimated half-life time of

blood cadmium in the model with the intake parameter R, seems a little shorter than the one
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without the intake parameter Rs, the results from both models reveal that the levels of blood
cadmium fall oft very slowly and reach a steady-state in a few months after the exposure
ceased. This agrees with previous studies in that the level of blood cadmium reflects recent
exposure more than the body burden’. The estimates of R are quite small and have unexpected

signs. which suggests that more compartments need to be incorporated into the model.

4.2.2 The total body burden

The relationship of urine cadmium with the total body burden of cadmium was
examined. Since the accumulation of liver cadmium is approximately 16% of the total body
burden and that of kidney cadmium is about 53% of the body burden, the body burden can be
expressed as

1.8Cd_I + 2Cd _k
Total Body burden = mg .

0.16 + .53

The results of an exponential model with observations of urine cadmium and the body
burden of cadmium are shown in Table 4.4 where in A indicates the monthly rate from urine
cadmium to the total body burden, and R... indicates the cadmium intake.

It should be observed that the rates A... are not significantly different from zero for all
subjects, which might suggest that the influence of blood cadmium be incorporated into the

model. Negative values of estimates implies once again that more compartments are needed to

describe the metabolism of cadmium in the human body.



TABLE 4.2 Results of eponential model for blood cadmium with 13,,
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R, x, cd_b(0)

Subject 1 -5 -.0015 35.53
Subject 2 1.5263 0592 35.66
Subject 3 .0076 0102 28.88
Subject 4 7449 0335 25.5748
Subject 5 2187 .0404 19.69
Subject 6 0980 0127 40.01
Subject 7 0989 .029 27.6107
Subject 8 -4.3715 -.1258 34.05
Subject 9 5294 0188 48.55
Subject 10 22,9448 2652 81.3828
Subject 11 17.14 18 98.9613
Subject 12 1.0500 .0270 56.38
Subject 13 2.5751 035 51.0677
Subject 14 2.7946 0551 51.0677




TABLE 4.3 Results of exponential model for blood cadmium without R,

A

X, Cd_ b(0)
Subject 1 0219 33.9256
Subject 2 0044 35.0410
Subject 3 .0099 28.8690
Subject 4 0012 25.3109
Subject 5 0203 20.2263
Subject 6 .0099 40.0524
Subject 7 0229 27.7909
Subject § .0176 32.9852
Subject 9 .0062 48.5424
Subject 10 -.0042 66.2756
Subject 11 0012 97.7855
Subject 12 0042 55.8213
Subject 13 .0008 51.5645
Supject 14 .0059 74.0414
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TABLE 4.4 Results of the model with total body burden and urinary cadmium

A

A

A R
Subject 1 .0003 -729.2054
Subject 2 005 345.03
Subject 3 0041 -458.827
Subject 4 .002 29.1473
Subject 5 0011 -1213.54
Subject 6 0050 -52.56
Subject 7 0002 1505.17
Subject 8 0030 -170.95
Subject 9 006 -77.46
Subject 10 0074 3284.80
Subject 11 0075 2615.14
Subject 12 0099 97.58
Subject 13 0045 1588.62
Subject 14 0098 319.93
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4.3 Starting Values

The optimization required to be performed is very complicated in the four-
compartment model, since the number of responses and the number of unknown
parameters are rather large. One of the most important things to ensure a successful
nonlinear analysis is to obtain good starting values for the unknown parameters. before
implementing the estimation procedure.

There are two techniques used here for determining the starting values of this four-

compartment model.

4.3.1 Graphical analysis

Since all the parameters in the expectation functions are meaningful to cadmium
researchers, this meaning can be interpreted graphically to describe the behavior of the
expectation functions in terms of the parameters. There are four sources for interpreting
the unknown parameters, namely, the elements of the vector, (Ch, Cip Chi, Cin, i R)'. in
the model. First, the assumptions of 6 to 38 year half-life time with kidney cadmium and 4 to
19 year half life time with liver cadmium® were used as reference for selecting starting values
of Ci» and Cis; next, the starting values of Cy and Ci were chosen much larger than those of
Cw and Ci since it is assumed that blood compartment has a rapid turmover without

accumulation; next, the portions of body burden of kidney cadmium and liver cadmium were
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selected as a reference for starting values of C and Ch; finally, the estimates of excretion rate

and cadmium intake from urine and kidney cadmium model, in the two-compartment model.

were adopted as reference for starting values of Ci, and R.

This method of estimating starting values of the unknown parameters is a
graphical analysis. The required steps are then as foilows:

(1) solve the expectation functions numerically after fixing the parameters within
reasonable ranges based on the meaning of the parameters just mentioned above, for
which the Matlab software package was used for obtaining the numerical solutions. using
the Runge-Kutta-Fehlberg iteration method;

(2) draw the sketches of both fitted values derived from numerical solution and observed
values of blood cadmium against time, liver cadmium against time, kidney cadmium
against time, and urine cadmium against time, simultaneously, and visualize them:

(3) change the values of fixed parameters and repeat steps (1), (2), and (3) until the fitted
and observed values of blood cadmium, liver cadmium, kidney cadmium and urine

cadmium are reasonably close.

4.3.2 Grid search
The second method of estimating starting values of the unknown parameters is a
grid search. A combination of results of several resources, for example, from which of the

two-compartment model in Chapter 3, the graphical analysis mentioned above, and some
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previous results, were used as references for setting the range of starting values of
parameters.

In attempting to find proper starting values in a grid search, there are many steps
involved. At the beginning, the increments are quite large for a rough search, then the
increment becomes smaller and smaller for a finer search each time. The program written
in C is not intended to give the final results automatically but to provide intermediate
results step by step. During the search, it can be visualized on a screen in order to get an
idea which part of the range is most likely to be selected. Furthermore, the program can be
paused at any time in the middle of searching if it is necessary, in order to adjust the
increments or even change the range of parameters.

The results of the grid search for estimating starting values of the parameters are
shown in Table 4.5. Although this type of search is very time consuming, it provides a
general idea about where the location of a local minimum might be obtained within a
reasonable range of the parameters. Furthermore, it certainly accelerates the convergence

of the solution of the nonlinear optimization problem.
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TABLE 4.5 Results of the starting values of parameters from grid search for the four-

compartment model

Co | Co | Cw | Cuo | Cu| R OFV
Subject | 22 002 7 017 .007 414 305
Subject 2 7.8 0033 | 13.1 0043 17 330 17.83
Subject 3 17 043 184 | .0092 | .018 141 25
Subject 4 13 0001 12 .0038 | .008 | 5125 19.96
Subject 5 0.2 0019 | 142 | .0001 | .O105| 121.1 36.6327
Subject 10 17 007 1.8 .0004 | .0116| 530 154.81
Subject 11 9.6 0059 | 19.2 015 027 1265 9.3449
Subject 13 8.4 0013 | 11.2 | .0035 .03 840.7 100.9133

OFYV refers to the objective function value.

4.4 Classical and Bayesian Approach

4.4.1 Classical approach

In the two-compartment model, there are only the three unknown parameters
involved in the expectations so that the optimization was not so difficult to carry out.
Even though the starting values of the unknown parameters are sometimes selected not

near the real optimized values, there is no difficuity in reaching the real optimized values

ultimately.
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Heowever, the optimization becomes complicated in the four-compartment model
as the number of compartments increases to four and the number of the unknown
parameters becomes Six.

Two common methods for nonlinear least-squares parameter estimation are the
Guuss-Newton method and the Newton-Raphson method. The difference between them is
in expanding the expectation functions or objective functions for the linear approximation.
Compared to Gauss-Newton approach, Newton-Raphson is a more general approach.
Under certain conditions, they are equivalent.

In a linear least-squares problem, an important characteristic of a linear model is
that the sum of squares function is quadratic. Because of this, contours of constant sums
of squares are well-behaved regular surfaces, and all quantities related to the minimum
values can be determined analytically.

For the nonlinear model, the sum of squares function is not regular, and so it is
difficult to obtain the optimized values exactly. Linear approximations of the expectation
functions are used to determine increments while seeking the estimates, and to determine
approximate inference regions when convergence has been achieved. The linear
approximation to expectation function based on the starting values of the unknown
parameters, produces a linear approximation to the sum of squares function. The Gauss-

Newton method is then as follows:

H(O) = HB*)+V°(6-86°),



_9H

VO"— 0
ae 'e

and

(Y~-H(8))(Y-H(6))
= (Y ~(H(©O°)-V°(0-6°)]"[Y-(H(B°)-V°(6-8°))]
=[(Y—(HB DW=V (B-8)[(Y-(HB n-V'"(8~-8")]

The location of the minimum at the first iteration is

ol

6'=6°+(V" V)V (¥ —H(6"))
which gives the Gauss-Newton increment & = 6, - 6,. The approximation is updated at
each iteration to improve the estimates until the final results are obtained.

In Newton-Raphson method. the local quadratic approximation is used to the

objective function, instead of the expectation functions. Assume the objective function s

the nonlinear sum of squares, S(6), then approximated S(8) by

i}

Q
S(8)=S0°)+w" (8 -6°)+(8 -8°) —(6 -6"),

where
d S6
w’ = 8(8 ) ‘9‘, is the gradient of §(6) with dimension of px| evaluated at g
and
s 9°S0), . : L :
Q = W o 15 the Hessian of S(@)with dimension of pxp evaluated at ¢.

When



@°+Q°" (8-6°) =0,

the approximating sum of squares function will have a stationary point. If Q is positive
definite this point will be a minimum, and the Newton-Raphson step is

8 =0 -68°)=-Q"'0°.

Since the gradient of the objective function S5(0) is

w’=-2VT(Y -H)

)
2}

and the Hessian of the objective function S(6) is

Q":vv’v—ﬁ‘)vr
- " 08"

(¥ ~H)|

a!l Al
the Newton-Raphson step is given as

oV’
VO o —o
d6

8= -8")=-Q" '’ =— (v Y —H(G,) vy - H(6,)))

The Gauss-Newton increment is therefore equivalent to the Newton-Raphson
Vr

20"

increment with the second derivative term .o set to zero. If the weight matrix W is

considered, W can be simply inserted into the increment right after V.

A condition that can cause erratic behavior of the Gauss-Newton iterations is the
singularity of the derivative matrix caused by collinearity of the columns. This is possible
in the cadmium analysis, since there is a relationship between urine and kidney cadmium.

When the derivative matrix is near-singular, the inverse of the Hessian matrix becomes
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very large and then the Gauss-Newton increment can also be very large, causing the
parameters to go into undesirable regions of the parameter space. The general method for
dealing with near-singularity is to modify the Gauss-Newton increment to

6'=6°+(V VO + k1) "'V (¥ ~H(6°))

as suggested in Levenberg, or to

0'=6°+ (VY VO +kD)'V (Y ~H(8°))

as suggested in Marquardt, where K is a conditioning factor and D is the diagonal matrix
with entries equal to the diagonal elements of V7V,

During the optimization procedure, it is very helpful to check the contour plots and
3-dimensional plots of two parameters with other parameters fixed, in order to observe the
convergence and the location of optima. According to values of urinary J.-
microglobumin, subjects can be divided into two subgroups, one with normal kidney
condition and the other one with abnormal condition. Subjects 1, 2, 3, 4, and S belong to
the subgroup with normal kidney condition, whereas subjects 10. [ and 13 belong to the
subgroup with abnormal kidney condition. Subject 2 was selected as an example from
subgroup with normal kidney condition, while subject 11 was selected as an example from
subgroup with abnormal kidney condition. The contour plots or 3-dimensional plots of
two parameters with other parameters fixed are given from Figures 4-i0 to 4-24 for

subject 2, whereas the contour plots or 3-dimensional plots of two parameters with other

parameters fixed are given in Figures 4-25 to 4-39 for subject 11.
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Table 4.6 shows the results of the four-compartment model based on nonlinear
least-squares estimation. Estimates of Cy, Cs, Cw and Cy in Table 4.6 provide some
information about blood distribution of cadmium to liver and kidney and the cadmium
elimination rate from blood either to liver or kidney, which the two-compartment model
considered earlier in Chapter 2 was unoble to provide. By comparing the estimate of G, in
Table 4.6 and the estimate of A in the tables presented in Chapter 3, it can be noticed that the
results from the two-compartment model to the four-compartment model remain close.
However, the estimate of R in Table 4.6 differ from the estimate of Ry in the tables presented in
Chapter 3 greatly. The convergence procedure here for obtaining the optimization values goes
smoothly due to the fact that the grid search provides good starting values of the unknown
parameters. The results of subjects [, 4, 10 and 13 in Table 4.6 are rather close to the

starting values obtained from the grid search and presented in Table 4.5,
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TABLE 4.6 Results of the four-compartment model by nonlinear least-squares estimation

Subject Col Cu Cox Cib Ciu R OFV
1 21.98 { .00001 | 6.993 | .0164 | .0067 | 414.0 27.7
2 8.68 | .0039 | 21321 .013 |.0169| 325.03 16.7581
3 1430 | .0568 | 15.70 | .0037 | .0177} 141.00 24.20
4 13.39 {.00001 | 12.24 | .0038 |.0079 | 510.09 19.86
5 6.74 | .0705 | 10.82 | .0001 |.0107| 62.10 12.0684
{0 17251 .0075 | 1.15 | .0002 |.0I16]| 530.0 154.11
11 1202 008 {1798 | .013 |.0273 12599 9.22
13 9.15 | 0021 [ 11.55 | .0045 | .0304 | 837.21 100.82

OFV refers to the objective function value.

4.4.2 Bayesian approach

As it was mentioned earlier in Chapter 3 for the two-compartment model, the

assumptions leading to the classical approach may also be not realistic for the four-

compartment model. It might be reasonable to assume that the variances for different

measurements on the same response are constant, but certainly not that variances for

different

measurements are equal.

Furthermore, the assumption of independent

disturbances for different measurements at the same time may not be justified. In real
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situations, blood, liver and kidney cadmium may be correlated, and kidney and urine
cadmium may also be correlated.

In the optimization procedure, the Gauss-Newton method can be generalized for
the objective function 122} once two key factors, the gradient and the Hessian matrix of

the objective function, are determined’.

ERVANA

;
=|z"Z| trl:(ZTZ)" _a(_z_zl} .

36,
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Therefore, the generalized Gauss-Newton increment for determining the objective

function is
§"'=6-0%=-Q'w.

In contrast to the generalized nonlinear least-squares criterion, the Bayesian approach
is more general because it takes the dependence of different responses into account in the same
case, and also because variances are seldom known in applications. Although the incomplete
cadmium data restrains us from illustrating the merit and beauty of the Bayesian approach in
the estimation of parameters, it can still be demonstrated as a good method through statistical
analysis in this thesis.

The expression”®

-nf2

p(B 1Y)e<|S(H )

-ni2 ____IZTZ

—o<f <o, providedn2m
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makes it possible to compute the posterior density for the parameters, assuming
observations are available on some or all of the responses.

Since blood cadmium is connected with liver cadmium, kidney cadmium and the
outside environment directly, the statistical analysis based on blood cadmium can provide
useful information for cadmium metaboiism in the human body. Because a blood cudmium
sample can be more economically and conveniently collected and a Bayesian approach
makes the analysis based on limited responses, it will be of interest to discuss the
estimation of all the parameters using only the blood cadmium response.

The following expression represents a vector of the expectation functions for

blood cadmium, liver cadmium and kidney cadmium derived in the first section of this

chapter:
H, =Uexp(J)U™'(H, + A['B,) - A]'B,,
where
¥ o0
; eo w oo o uzO
explJr)= ¢ * 0w <oy
0 0 oM

The first element of a vector H, as the expectation function of blood cadmium can

be selected for the use of calculation. Consider the posterior distribution of 8 = (Cy, Cip,

Chi» Ci» and Ci,)" given by



-n/2
511(9) Slz(e) S”(B)
PO 1Y) [S©O)]| =5 (8) $5,06) S,@0) . —oo<b <o,
§,,0) 323(6 ) 5,0

which yields p(8 |Cd_b)e< [SH(G )] " when blood cadmium is the only response and

-n/2

when urine and blood cadmium as two

Si8) Sih)

| &Cd_b)e
pOICd_u&Cd_bi=\c 0y su0)

responses that can be measured.

Table 4.7 shows the results of the four-compartiment model from the Bayesian
approach based on simulated and observed data. The steps of generating the simulated data are
similar to those described for the two-compartment model. Whenever the multi-response
cadmium data is available, the approach is more appropriate to the analysis. Table 4.8 gives
the results of the four-compartment model from the Bayesian analysis based on blood
cadmium observations alone. It should be noticed that the results derived for blood
cadmium alone are based on good starting values provided by the graphical analysis and
grid search, and the method of obtaining good starting values by the graphical analysis and
grid search is based on all responses. It is noticed that estimates of Cw, Ci and R are
rather close to the results in Table 4.6 except the estimate of Cy for subject 11, the
estimate of Cp for subject 2, and the estimate R for subject 10. Since using only one
response (blood cadmium) from the four-compartment model might cause more variation

and that the estimates of Cj» and Ci are very small, the results of Ci», and Ci» can be used
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as reference but should be treated with caution because they may not be very reliable.

Furthermore, it is not suggested to estimate Ci, by using blood cadmium alone because

there is more direct relationship from kidney and urine cadmium. Table 4.9 shows the

results of the four-compartment model from the Bayesian approach based on blood and urine

cadmium cbserved data. The convergent precess for obtaining the results in Table 4.9 is

smoother than in Table 4.8. Furthermore, the results based on urine and blood cadmium are

much reliable than based on blood only. Some unrealistic estimates in Table 4.8 were changed

to meaningful values in Table 4.9. Ci», for subject 10 is one of these values.

TABLE 4.7 Results of the four-compartment model from the Bayesian approach based on

simulated and observed data

Subject éh: &”’ ém é‘h &m R OFV
2 10.33 0054 19.67 0.0116 0.0171 294.82 | 3216.74
4 14.05 [ 0.000004 | 11.89 0.0033 0.0078 5235 5668.0
11 [1.46 | 0.0085 18.54 0.0166 0.0253 1174.09 79.44

OFV refers to the objective function value.
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TABLE 4.8 Results of the four-compartment model from the Bayesian approach based on

blood cadmium observations only

Subject 6‘,,, &,M é‘u é'u, &.ku k OFV
1 22.0 | .000003 7.00 0177 0071 414.0 4.24
2 7.8 .0039 13.10 0070 0531 330.0 6.29
3 14.3 052 15.70 0064 0375 140.99 7.48
4 14.0 | .000006 12.00 0054 0105 500 2.04
5 6.70 0704 11.00 .0002 000008 60 1.19
10 16.98 .006 1.79 0 007 739 6.88
1 9.40 013 16.79 00001 816 1265.0 1.77
13 8.40 | .000004 1.2 .0051 018 840.70 9.93

OFV refers to the objective function value.
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TABLE 4.9 Results of the four-compartment model from the Bayesian approach based on

blood and urine cadmium observations

Subject &M ém &.hk é'u, é.ku R OFV
1 252 .00031 4.8 0031 .0061 4139 22,57
2 G.42 0034 20.5 0131 0169 345.7 23.87
3 10.8 0544 19.1 0062 0181 138.7 6.16
4 14.6 00044 1.7 0052 .0084 499.8 54.6
5 6.54 0694 10.61 .0001 0106 59.9 8.89
10 16.8 0064 211 00025 0113 530.0 3414
[ 12.3 .0072 17.7 0156 0279 1265.1 9.18
13 9.27 0017 10.6 .0058 0336 840.7 85.9

OFYV refers to the objective function value.

The probability plots for subject 2 and 11 were represented in this thesis. Figure

4.40 and 4. 42 illustrate the confidence region with 75%, 90% and 95% between C,;, and

Ch as the other parameters fixed, respectively. In addition to that, Figure 4.41 and 4.43

illustrate the confidence region with 75%, 90% and 95% between Cj, and Cys as the other

parameters fixed, respectively. Comparing the plot for subject 2 and the corresponding

one for subject 11, the distinction is not visible between them. It might imply that the

difference in the system of the body between two subjects, from different kidney status, is

not obvious. It is also possible the real difference is hidden because of the measurement
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error and insufficient data. However, the cadmium input from outside appears to be
distinct based on the results.

The programs for the grid search and the optimization of the four-compartment
model are presented in this thesis. At the beginning of each program, there is a short

description about the program.

4.4.3 Discussions

Figures 4.2-49 show the diagrams of observed data with the fitted four-
compartment model for each subject, illustrating the fitted data from the present model
agree reasonably well with the observed data for each subject except subject 13. B.-
microglobulin for subject 13 is very high, which indicates that the kidney function for this
subject was damaged. Some irregular and unpredicted pattern could have taken place in subject
13.

Large estimate of Cu and estimate of Cu reflect that there is no cadmium
accumulation in blood with rapid turnover of cadmium.

A combination of Ci, and Cu, reflects the half-life time in the kidney. Absence of
feces cadmium variable might cause the estimate of the half-life time in kidney to be too

small. It is probable that missing observations of feces cadmium leads C,, have been

overestimated.
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It is noticed from the results that estimates of Ci», Cpi, Cot, Cru and R might be affected
by the absence of observations of tissue cadmium and feces cadmium. The estimate of Ci
indicates that the half-life time in liver. Some estimates of Cj, seem mall, which might be
influenced by the lack of a tissue cadmium variable in the model. It might affect the
cstimate of Cj» that cadmium may be transported back from tissue to liver via the blood,
and missing observations of tissue cadmium might lead both Cy and Ci to be overestimated
and C, to be underestimated. Unfortunately, there is no non-invasive method to measure tissue
cadmium yet. Therefore, when each half-life time of blood, liver and kidney cadmium is derived
from each of these estimates, the influence of absent tissue cadmium shouid be taken into
account.

For a further model, since the tissue cadmium is assumed to be about 31% of the total
body burden, it should be included in the model, despite the unavailable observation on tissue
cadmium. When the number of measurements of blood cadmium and others increases to a
certain extent, the variable of tissue cadmium can be involved in the model, and the half-life
time of tissue cadmium and the relationship with the other compartments can be estimated
through blood (or blood and urine) cadmium and other observations without tissue cadmium,
based on the Bayesian approach, in a similar way as shown in Table 4.8 (or 4.9).

The estimate of R is quite reasonable. It is found from the estimation results, that the
subjects with high B,-microglobulin have higher estimate of intake cadmium, R, than those with

low B.-microglobulin of the four-compartment model. The interpretation could be that the
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environment is not the only sources for cadmium intake, and the cadmium released from the
other tissues might contribute to the intake of cadmium as well.

From Table 4.6, the estimate of R for the four workers (subjects 1, 2, 3 & S) is 236t
162ug/month; for the four workers (subjects 4, 10, 11 & 13) the estimates of R is higher at
7841351 ug/month. The difference 15 5482193ug/month. These iy reasonable since tobacco
contains some cadmium. Also, the estimates of the rate constant for the transfer of cadmium
from kidney to urine are somewhat higher in these subjects with raised [ microglobulin
(subjects 10, 11 & 13) than those with normal kidney function (subjects 1, 2, 3, 4 & 5). This is
reasonable since cadmium induced kidney damage is known to give rise to increased excretion
of cadmium in urine. In this case, raised 8: microglobulin is associated with a fall in kidney half
life to 30 months from a normal value of 58 months.

The differences in other estimates such as those of Ci, Ciny Cii, Cir and Ci, between
the two subgroups are not obvious. It is not conclusive because of the small and insufficient
data set and the uncertainty in observations, and perhaps implies that the distribution of
cadmium in the body depends on the absorption and the metabolism of cadmium in the body
which varies from individual to individual, but is not statistically different between a worker

with an abnormal kidney condition and one with a normal kidney condition.
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4.4.4. Conclusions

When appropriate data are available, it may be possible to investigate the cadmium
metabolism in the human body in stratified subgroups with kidney conditions. Furthermore,
there might be several statistical analyses needed based on different time intervals. The
model should be formulated on the data with shorter time intervals at first, and then
designed for the data with longer and longer time intervals.

In order to formulate further refined models and prepare more powerful statistical
analyses of these models, as the cadmium research progresses, there are two suggestions which
could be made.

First and importantly, the number of subjects and the number of measurements
should be increased for appropriate statistical analyses, which was mentioned several times
in this thesis even though the difficulty of conducting the in vivo measurements is present.

Secondly, since blood and urine cadmium samples are more economic to collect
from workers exposed to cadmium than liver and kidney cadmium in vivo measurements,
blood and urine samples should be gathered more often if the cost and difficulty do not
allow the in vivo measurements to be collected as frequently as blood and urine cadmium.
A series of blood variables can be used for rough estimation of Cu, Ci and R by the four-
compartment model. Even though the other three parameters, Cis, Ci» and Ci, can also be
estimated through blood cadmium, the estimation might be poor due to Ci» and Ci» being

very small values and Ci, with no direct connection to blood cadmium. The estimation of
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Chi, Cok, Crw and R might have large variation, but can still be a reference for researchers.
In the meantime, a series of urine cadmium variables and a few kidney cadmium variables
can be used to estimate R and Ci, by the two-compartment model. Besides these, the
tissue cadmium variable can also be incorporated into the model in order to estimate some
tates relating to tissue cadimium. Further more, the combinaiion of urine and bloud
cadmium should provide more stable estimates than blood cadmium along. After the
completion of the in vivo measurements, the entire analysis can be done by the four-
compartment model developed in this thesis using the Bayesian approach. It is strongly
recommended that the Bayesian determinant minimization technique be used for the cadmium
analysis whenever appropriate sets of multi-response data are available.

In order to analyze the metabolism of cadmium in the human body, both
Kjellstrom's model and the four-compartment model developed in this thesis are applied in
an attempt to adhere to physiological mechanisms for absorption, distribution and
excretion of cadmium.

Since it was expensive to perform the in vivo measurements and difficult to collect
the data over a period of decade, the data used in Chapters 3 and 4 are quite precious and
one of a very few such data sets existing in the cadmium research area, even though they
are noisy and sparse. The cadmium researchers are very much interested in drawing as
much information as possible from these data to describe the dynamics of cadmium in the

human body. However, the difficulties in fitting Kjellstrom's model based on the present
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human data are assisted with insufficient times of measurements, deficient number of
observations, and the complication in Kjellstrom’s model itself.

In Kjellstrom’s model, the unknown parameters are fixed by means of prior
experience and knowledge based on different sources and different animal and autopsy
data sets obtained earlier. To examine the choice of parameters, the mode! is run with
some parameters fixed while others are changed so that the sensitivity of the ranges of
parameters can be checked. During the analysis, the numerical solution of only one
compartment of the model can be derived when unknown parameters are fixed. Thus, the
reiationship between one compartment and time is established. Then the average values of
this compartment at different age based on the different sources are calculated. It confirms
a right choice made from fixed parameters if the values derived from the numerical
solution and the observed mean values are in close agreement.

In contrasting Kjellstrom's model with the four-compartment model developed in
this thesis, it 1s noticeable there are two major differences as follows.

(1) The four-compartment model is used for analyzing a whole system simultaneously
instead of discussing each compartment separately.

(2) Unlike Kjellstrom’s model with a large number of assumptions about unknown
parameters, there is no additional assumptions made about the unknown parameters in

the four-compartment model. All the parameters are estimated from the observed

human data.
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Moreover, the four-compartment models are simpler and more direct to use in
order to explain the biological phenomenon. Although some measurements of
compartments are not available in the data, the major part of the system such as the
measurements of the liver, kidney, blood and urine cadmium are present.

Aithrough there is a limitation of application of Kjeilstrom’s model in the present
human data, Kjellstrom’s model provides a biological basis for the four-compartment
model since some ranges of starting values in four compartments were derived based
sources from coefficients in Kjellstrom’s model. The four-compartment model achieves
the parameter estimation mathematically in an inverse way, compared with Kjellstrom's
model. The results from the four-compartment mode! discussed in this thesis show a great

consistency with Kjellstrom’s model.
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FIGURE 4.44 Diagram for further compartment model (Cd_b, Cd_I, Cd_k, Cd_t and Cd_t)

\J Cd
Blood
r N N
Tissues Liver Kidneys
l
Urine

Cd_t refers to tissue cadmium.
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Figure 4.10 3-D Plot of a(1) and a(2) with other parameters fixed for subject 2
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Figure 4.11 Contour Plot of a(1) and a(3) with other parameters fixed for subject 2
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Figure 4.12 Contour Plot of a(1) and a(4) with other parameters fixed for subject 2
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Figure 4.14 Contour Plot of a(1) and a(6) with other parameters fixed for subject 2
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Figure 4.15 Contour Plot of a(2) and a(3) with other parameters fixed for subject 2
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Figure 4.16 Contour Plot of a(2) and a(4) with other parameters fixed for subject 2
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Figure 4.17 Contour Plot of a(2) and a(5) with other parameters fixed for subject 2
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Figure 4.18 Contour Plot of a(2) and a(6) with other parameters fixed for subject 2
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Figure 4.19 3-D Plot of a(3) and a(4) with other parameters fixed for subject 2
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Figure 4.20 Contour Plot of a(3) and a(5) with other parameters fixed for subject 2
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Figure 4.24 Contour Plot of a(5) and a(6) with other parameters fixed for subject 2
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Figure 4.25 3-D Plot of a(1) and a(2) with other parameters fixed for subject 11
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Figure 4.26 Plot of a(1) and a(3) with other parameters fixed for subject 11 37

Figure 4.27 Contou of a(1) and a(4) with other parame d for subjec
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Figure 4.28 Contour Plot of a(1) and a(5) with other parameters fixed for subject 11

0.04

0.035

(5)

]
0.025H

0.02

0015\\

A

0.03H

1400

1350

1300

{6)

-
1250

1200

1150




Figure 4.30 Contour Plot of a(2) and a(3) with other parameters fixed for subject 11
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Figure 4.32 Contour Plot of a(2) and a(5) with other parameters fixed for subject 11
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Figure 4.34  3-D Plot of a(3) and a(4) with other parameters fixed for subject 11
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Figure 4.35. Contour Plot of a(3) and a(5) with other parameters fixed for subject 11
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Figure 4.37 Contour Plot of a(4) and a(5) with other parameters fixed for subject 11
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Figure 4.38 Contour Plot of a(4) and a(6) with other parameters fixed for subject 11
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Figure 4.39 Contour Plot of a(5) and a(6) with other parameters fixed for subject 11
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Figure 4.40 Probability Plot of a(1) and a(3) with other parameters fixed for subject 2
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Figure 4.41 Probability Plot of a(2) and a(4) with other parameters fixed for subject 2
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Figure 4.42 Probability Plot of a(1) and a(3) with other parameters fixed for subject 11
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/*********************************************************************/

* This program was written in C as a grid search for examining the starting */

/*  values of parameters in Nonlinear Least Squares with weights for Person 3. */

r* There are many steps to search the parameters at different ranges in order ~ */
/*  to find proper starting values, which closely satisfy the minimum sum of */
/*  square of the functions. Both rough and fine steps of scarch were applicd. */
r* The results of the grid search for person 3 are as follows: */
/* a[l]=2 a[2]=0.0002 a[3]=22.4 a[4]=0.0119 a[5]=0.018 a[6]=270.7 */

/* Cd_lb=a[l] Cd_bl=a[2] Cd_kb=a[3] Cd_bk=a[4] Cd_ku=a[5] R=a[6] */

/**********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>

#definena 7 /* a[0] was not used */
#define nt 10 /* The number of observations */
#definenu 4 /* The number of responses  */

double el, €2, e3;
double pi=3.14159265358979;
int t{nt]=(0, 2, 7, 15, 27, 54, 64, 76, 100, -9}
double u[nu][nt]=
{28.88,27.04, 31.72, 28.08, 16.64, 19.76, 8.84, 18.2, 10.4, 29.64,
11900, 0, O, 0, 0, O, 0,13600, 0, O,
24000, O, 0O, O, 0O, 0O, 0,24000, 0, o0,
431.43,537.98,372.86,474.06,420.80,372.86,266.33,223.72,229.04,330.25};
float w{nu]={4, 4000, 6000, 72};
double am,an,af,ak,all,al2,al3,ap,g,h1,h2,h3,r1,r2,r3,s1,52,53,t1,12,t3;
double v1,v2,v3,v4,v5,v6,v7,v8,v9, aml, am2, am3,g1,g2,83,84,25,26,0;
double f[nu][nt], ah[nu][nt];
int iy}, jO,jl, j2, j3, j4, j5, tm;
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double a[nal={0, 0,0, 0, 0, 0, 0};
double y1=28.88, y2=11900, y3=24000;
void savefiles(void);

main() {
a[l]=.1; a[2]=.0001; a[3]=20.2; a[4]=0.0114; a[5]=0.015; a[6]=195.4;

for 5=0; )5 < 5, j5++) {

afl]=a[l}+.1;
a[2]=0.0001;

for (j4=0; j4 < 10; j4++) {
a[2]=a[2]+0.0001,
a[3]=20.2;

for (j3=0; j3 < 5:j3++) {
af[3]=a[3]+.1;
a[4]=0.0114;

for (j2=0; )2 < 10; j2++) {
a[4]=a[4]+0.0001;
a[5]=0.015;

for (j1=0; j1 < 10; j1++) {
a[5]=a[5]+0.001;
a[6]=1954;

for (j0=0; jO < 10; jO++) {
af6]=a[6]+.1;

am=a[l]+a[2]+a[3]+a[4]+a[5];
an=a[l]*a[4]+a[1]*a[5]+a[2]*a[4]+a(2])*a[S]+a[3]*a[2]+a[3]*a[5];
ap=a[3}*a[2]*a[5]:

af=-am*am/3.+an;

g=ap-am*an/3.4+2./27 *am*am*am,;
ak=acos(-g/2.*sqrt(-(3./af)*(3.7af)*(3./af)));
h1=2.*sqrt(-af/3.)*cos((ak+2.*pi)/3.);

h2=2 *sqrt(-af/3.)*cos((ak+4.*pi1)/3.);
h3=2.*sqrt(-af/3.)*cos((ak+6.*pi)/3.);
all=hl-am/3.;

al2=h2-anmv/3.;

al3=h3-am/3.;
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ri = a[l)/(a[2]+all);

r2 = a{1)/(a[2]+al2);

r3 = a[l}/(a[2]+al3);

sl = a[3])/(a[4]+a[5]+all);

s2 = a[3)/(a[4]+a[5]+al2);

s3 = a[3)/(a[4]+a[S5]+al3);

th =sqrt(l.+r1*rl+sl*sl);
t2 = sqrt(l.+r2*r2+s2*s2);
t3 = sqrt(1.+r3*r3+s3*s3);

vi=14al, v2=1./2; v3=1/3;
vd=rl/t];, v5=r2/t2; v6=r3/13;
v7 =sl/tl; v8=s2/12; v9 =s3/13;

for(i=0; i < nt; i++) {

aml = all*t{i]; am2 = al2*t[i]; am3 = al3*t[i];
el =expl(aml); if(t(i]<0) el=1;
e2 = expl(am2); 3 =expl(am3);

gl=yl*vIi*el*v5*vO-y [ *v]*e | *vO*vE-y | *v2*e2*vd*vO+y | *v2*ed*vo*vT+
yl*v3*e3*vd*vB-y [¥v3*e3*v5*vT-y2* v *e | *vI*vO+yd*v| ¥e | *v3*v8+
y2*v2*e2*vI*vO-y2*v2¥ed*v3*vT-y2*¥v3*ed*y [ *v84yd*vI*e3*v2* T4+
y3*vi*el *v2*vh-y3*vI*e [ *vI*vS-y3*v2*ed*v | *vH+
y3*v2*e2*v3*vd4y3*vi*ed*v | *v5-y3*vI*ed*v2*vd,

gd=a[2]*a[3]*v3*e3*v2*v4+a[1]*v3*e3*vI*v8*a[5]-a[ | |*v3*e3*v2*
vT*a[4]-a[1]*v3*e3*v2*vT*a[5]-a[2]*a[3]*vI*e | *v2*v6+
af2}*a[3]*vI*el*v3*v5+a[2]*a[3]*v2*e2*v]*v6-a[2]*a[3]*v2*
e2*v3*v4-a[2]*a[3]*v3*e3*vI*vS-a[l]*viI*e]| *v3*v8*a[4]-
a[l]*vI*el*v3*v8*a[5];

/* f[0](i] is an expectation function of Cd_b at t[i] */

flO][i]=gl/(v1*v5*VvI-vI*v6*v8-v4*v2*vO+v4*v3*y84+vT*v2*vE-
v7*v3*v5)+(gd+all]*vI*el*v2*vO*a[4]+a[1]*v] *e 1 *v2*v9*4[5]-
a[l]*v2*e2*vI*v9*a[4]-a[1]*v2*e2*v]*vO*a[5]+a[1]*v2*e2*v3*
v7*a[4]+a[1]*v2*e2*v3*vT7*a[5]+a[1]*v3*e3*v]1*v8*a[4]-
a[2]*v3*e3*v4*v8*a[S]+a[2]*v3*e3*v5*vT*a[4]+a[2]*v3*e3*vS*vT*
a[5]-a(2]*v3*e3*v4*vB*a[4]+a[2]*v2*e2*v4d*vO*a[4]+a[2]*v2*e2*
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v4*v9*a[S]-a[2]*v2*e2*v6*vT*a[4]-a[2]*v2*e2*v6*vT*a[S5]-
af2]*vi*el*v5*vo*a[4]-a[2]*vI*e 1 *v5*vO*q[5]+a[2]*v I *e | *v6*v8*
a[4]+a[2]*vI*el*vo*v8*a[S]-a[2]*va*v2*vO*a[5]+a[2]*v4*v3*v8*
af4]+af2]*v4*v3*v8*¥a[5]+a[2]*vT*v2*v6*a[4]+a[2]*vT*v2*v6*a[5]-
a[2]*vT*v3*v5*a[4]-a[2]*vT*v3*v5*a[S]+a[2]*vI*v5*vO*a[4]+
a[2]*v1*v5*v9*a[5]-a[2]*vI*v6*v8*a[4]-a[2]*v | *v6*v8*a[S]-
a[2]*¥v4*v2*vo*a[4])/(vI*v5*vO-v] *vE*v8-vad*y2*vO+vd*vI*v8+4
VTRV *vB-vT*e ¥y SY/a[2)/a[3)/a[S)*alé);

g2=-y 1 ¥v4*e | *v5*vO+y | *vd*e | *vO*vB+y | *vS*ed*va*v9-y | ¥vS*e2*v6*
v7-y 1*¥v6*e3*va*vB+y 1 *v6*e3* v5*vT+y2*e | *v4*v2*vO-y2*e | *v4*v3*
vB-y2*v5*e2* v *vO+y2*v5*e2*vI*vT+y2*vE*e3* v *v8-y2*vh*e3*v2*
v7-y3*vd¥el*v2*ve+y3*vd* e | ¥v3*vS+y3*vS*ed *v | ¥vO-y3*vS*ed*v3*
v4-y3*ve*e3*v]*vS+y3*vh*ed*v2*v4,

gS=a[2]*vd*e[*v5*vO*a[4]+a[2]*vd*e | *v5*vO*a[5]-a[2]*vd*el *vO*
v8*a[4]-a[2]*v4*el*v6*v8*a[S]-a[2])*v5*e2*vd*vI*a[4]-
a[2]*v5*e2*v4*vO*a[S]+a[2]*vS*e2*vo*vT*a[4]+a[2]*vS*e2*vH*
v7*a[5]+a[2]*v6*e3*vd*vB*a[d]+a[2]*v6*e3*vd*v8*a[S]-
a[2]*v6*e3*v5*v7*a[4];

/* f{1][i] is an expectation function of Cd_l at t(i] */

fI1][1]=-g2/(v1*v5*vO-v I *vO*v8-vad*vI*vO4vd *y3*y84+vT*v2*v6-
vT*v3*v5)-(gS-a[2]*v6o*e3*vS*vT*a[5]-a[1]*el *vd*v2*vO*3[4]-
a[1]*el*va*v2*vo*a[S]+a[l]*e I *v4*v3*v8*a[d]+a[]l]*el *v4*v3*
v8*a[S]+a[l]*vS*e2*vI*vO*a[4]+a[l]*vS5*e2*vI*v9*a[5]-
af1]*vS*e2*v3*vT7*a[d]-a[1]*vS*e2*v3*vT*a[5]-a[1]*vo*e3*v]*
v8*a[4]-a[I]*v6*e3*vI*vB*q[S]+a[l]*vo*e3*v2*vT*a[4]+a[l]*
ve*e3*v2*vT*a[S]+a[2]*a[3]*vd*e 1 *v2*v6-a[2]*a[3]*va*e | *v3*
v5-a[2]*a[3]*v5*e2*vI*vO+a[2]*a[3]*v5*e2*vI*v4+a[2]*a(3]*
vo*e3*vi*v5-a[2]*a[3]*v6*e3*v2rvd+a[1]*vT*v3*v5*a[4]+a[l]*
v7*v3*v5*a[S]-a[1]*vI*v5*vO*a[4]-a[ 1 J*vI*v5*vO*a[S]+a[1]*
vi*v6*v8*a[4]+a[l]*vI*v6e*v8*a[5]+a[1]*v4*v2*vO*a[4]+a[]]*
v4*v2*vO*a[5]-a[1]*v4*v3*v8*a[4]-a[1]*v4*v3*v8*a[5]-a[1]*
v7*v2*v6*a[4]-a[1]*vT*v2*v6*a[S])/(VI*v5*vI-v] *v6*v8-v4*
v2*vO+v4*v3*vB+vT*v2*v6-vT*v3*v5)/a[2)/a[3)/a[5]*a[6];

g3=y 1*v7*e 1 *v5*vO-y 1 *v7*e [ *v6*v8-y | *vB*e2*v4*vO+y | *v8*e2*v6*vT +
y1*vO*e3*v4*vB-y | *vO*e3*v5*v7-y2*v7*e | *v2*vO+y2*vT*e | *v3*v8+
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y2*v8*e2*v]*vo-y2*vB*e2*v3*vT-y2*vO*e3*v | *v8+y2*vy*e3*v2*yT+
y3*el*vT*v2*vh-yI*e 1 *v7*v3*v5-y3*v8*e2*v] *vOo+y3*v8*ed*v3*vd+
y3*v9*e3*v|*v5-y3*v9*e3*y2*v4,

go=-a[2)*a[3]*vO*e3*v2*v4+a[2]*a[3]*vI*v6*v8+a[2]*a[3]*vd*v2*vI-
a[2]*a[3]*v4*v3*vB-a[2]*a[3]*vT*v2*v6-a[2]*a[3]*v ] *v5*vO+
a[2]*a[3]*v7*v3*vS+a[2]*v8*e2*vE*vT*a[4]+a[2]*vB*e2*vOo*vT*
a[5]-a[2]*v8*e2*v4*vO*a[4];

/* f[2](1] is an expectation function of Cd_k at t[i] */

fI2][1]=g3/(vI*vS*VO-v 1 *v6*vB-vd*v2*vO4+vd*y3*yB4vT*v2 *v6-
vT7*v3*v5)-(g6-a[2]*v8*e2*vd*vo*a[S]-a[2]*vT*e | *v6*v8*a[4]-
a[2]*vT*e l*ve*vB*a[S]+a[2])*vT*e 1 *v5*vO*a[d]+a[2]|*vT*e | *v5*
vO*a[5]-a[2]*vO*e3*vS*vT*u[5]-a[2]*v9*e3*v5*vT*a[4]+a[2]*
vO*e3*vad*v8*a[4]+a[2]*vo*e3*va*v8*a[5]+a[ 1 |*vO*e3*v2*vT*
a[4]+a[1]*vO*e3*v2*vT7*a[5]-a[1]*vO*e3*v ] *v8*a[5]-a[ | ]*vo*
e3*vI*v8*a[4]-a[1]*v8*e2*v3*vT*a[S]+a[1]*v8*e2*v]*v9*u[5]-
a[1]*v8*e2*v3*vT*a[d]+a[ 1 ]*vT*e 1 *v3*v8*a[S]+a[ 1 |*v8*e2*v]*
vO*a[d4]+a[l]*v7*e 1 *v3*v8*a[4]-a[ | ]*vT*el *v2*vO=a[d]-a[1]*
v7*el*v2*v9*a[5]-a[2]*a[3]*v8*e2*vI*v6+a[2]*a[3]*v8*e2*v3*
vd+a[2]*a[3]*vO*e3*vI*v5-a{2]*a[3]*e | *vT*v3*vS5+a[2]*a[3]*
e L*VTEV2XVO)(VI*VS*VO-v [ *vO*v8-vd *vI*vO4vd ¥ vI*v84vT*
v2*v6-vT*v3*v5)/a[2)/a[3)/a[S]*a[6];

/* t{3][i] is an expectation function of Cd_u at t[i] */

f3](i=al51*f(2])(i);
}

o=0; /* setinitial iteration zero */

for(i=0; i<nu; i++) {
for(j=0; j<nt; j++) {
if(u[i](j]<0.0001)
f[i]01 = uliljL
ah(i]j] = €CLIGI-ulIGD*CEGIGI-u G/ Wil w(i);
o = o+ah(i][j];
}
}
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if(0<27.28) {
printf("%5.2f %6.4f %5.2f %6.4f %6.4f %5.2f

%7.4f\n",a[1],a{2],a[3],a[4],a[5],a[6].0);
savefiles();

}
}
)
!
}
)

}

return(0);

}

void savefiles(void)

{
FILE *outdata;

if((outdata=fopen("pson03.dat","a")) '= NULL)
{ fprintf(outdata,"%5.2f %6.4f %5.2f %6.4f %6.4f 9%5.2f %7.4f\n",
al1]),a[2],af3],a[4].a[5],a[6],0);
fclose(outdata);
}

return;

}



% This program was written in MATLAB for generating contour plots to verify the
% convergence of the results from the non-linear equations

function o=expect(a)
% This is for PERSON ALL
% c_bl=a(1), c_lb=a(2), c_bk=a(3), c_kb=a(4), c_ku=a(5), R=a(6), Ck=a(7);

%o [-((atD+a3n a2y ady ]
% A=( a(l)  -a(2) 0 ]
% a(3) 0 -(a(d)+a(5))]
% [a(6)]
% B=[ 0]
% [ 0]

% F(4,))=a(5).*F3.:) F4,)=a(7).*F(3,:)
% V is a 3x3 eigen vector matrix;

% Vlis inverse of V;

% E is an eigen value matrix;

% YO is an initial value vector for observations:

% S 1s vector of solutions of a system of differential equations:;

y1=38; y2=37400; y3=42000;
% yl, y2 and y3 are initial values

nt=12;
% nt is numbers of observations

a(1)=8.725; a(2)=0.00388; a(3)=21.725;
a(4)=0.012945; a(5)=0.01686; a(6)=325.026;

forki=1:32
a(5)=0.0136+0.0002*k1;
for k2=1:32
a(6)=290+2.5*k2;

w = [8; 4000; 6000; 128];
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t=1{0; 2; 7; 15; 27; 40, 54; 64; 76, 100; -4; -9];

u=[yl 45.24 37.44 14.04 22.88 25.48 32.76 24.44 29.12 26.041.6 39.9:
y2 0 0 0 O O O 0 44200 0 0 O

y3 0O 0 0 O O O 0 24000 0 0 O

696.56 686.66 548.26 601.49 484.39 212.92 479.06 511 314.05 479.06
819.73 851.67};

A=[-(a(D+a(3).a(2).a(4)a(1).-a(2).0:a(3).0.-(ad) +a(5NH):
B=[a(6):0;0];

m=a(l)+a(2)+a(3)+a(4)+a(s);
n=a(l).*a(4)+a(1).*a(5)+a(2).*a(d)+a(2).*a(5)+a(3).*a(2)+a(3).*a(5);
p=a(3).*a(2).*a(5); f=-m"2./3+n;

g=p-m.*n./3+2./27.¥*m"3;

k=acos(-g./2.*sqrt(-(3./)"3)):

hi1=2.*sqrt(-f./3).*cos((k+2.*pi)./3);

h2=2 *sqrt(-f./3).*cos((k+4.*pi)./3);
h3=2.*sqrt(-f./3).*cos((k+6.*pi)./3);

11=hi-m./3; 12=h2-m./3; {3=h3-m./3;

delta=(g./2)A2+(f./3)73,

ri=a(1)./(a(2)+11); sl=a3)./(a(4)+a(S)+11); tl=sqri(1+r1r2+s142);
r2=a(1)./(a(2)+12). s2=a(3)./(a(4)+a(5)+12); 2=sqrt(1+r2°2+s212);
r3=a(1)./(a(2)+13); s3=a(3)./(a(4)+a(S)+13); 3=sqrt(1+r322+s342);
V=[1./t1,1./2,1.3;r L/t1.r2.42,03./t3:s 1./t 82./12,83./t3];
Vi=inv(V);

for j=1:nt

if t(j) >0

el=exp(l1.*t());

else

el=1;

end

e2=exp(I2.*t(j)); e3=exp(13.*t(j));
E=[el,0,0;0,e2,0;0,0,e3];
YO0=[yl;y2;y3]; I=eye(3); Al=inv(A);
S=V*E*VI*YO+(V*E*VI-)*AI*B;
F(1,)=S(1);

F(2,))=S(2);

F(3.j)=S(3)

F(4.,j)=a(5).*S(3);



end
0=0;

fori=1:4

for j=1:nt
if u(i,j) < 0.00001
u(i,))=F(iy);

end

0=0+((F(i,j)-u(ij)/w(i)"2;

end
end

d2(k2)=a(6);
pl(kl,k2)=log(o);
end

dl(k=a(s);
end

p!l

%mesh(d1,d2,pl)
contour(dl,d2,p1,20)

xlabel(‘a(5)"),ylabel('a(6)")title (P2 Plot")
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% The program was written in MATLAB for generating the fitted data for person 3
% The values of parameters are form the results of nonlinear optimization

function o=expt03(a)

a(D=.0075: a(2)=.00001: a(3)=29.9925; a(4)=.0257; a(5)=.018S; a(6)=164.5246:
y1=28.88; y2=11900; y3=24000; /* Initial values */

nt=229; /*Total fitted points */

fori=1:nt

t(1)=0.5.*%(i-1)-9;

end

m=a( 1 )+a(2)+a(3)+a(d)+a(5);
n=a(l).*a(4)+a(l).*a(5)+a(2).*a(d)+a(2).*a(5)+a(3).*a2)+a(3).*a(5);
p=a(3).*a(2).*a(s); f=-m"2./3+n;
g=p-m.*n./3+2./27 *m"3;
k=acos(-g./2.*sqrt(-(3./H)*3));
h1=2.*sqrt(-f./3).*cos((k+2.*pi)./3);
h2=2.*sqrt(-f./3).*cos((k+4.*pi)./3);
h3=2.*sqrt(-f./3).*cos((k+6.*pi)./3);
[1=hl-m./3; 12=h2-m./3; 13=h3-m./3:

rl=a(l)./(a2)+11); sl=a3)./(a(d)+a(S)+l1); tl=sqri(l+r1r2+s112);
r2=a(1)./(a(2)+12); s2=a(3)./(a(d)+a(5)+12); 2=sqrt(1+r272+s212);
r3=a(1)./(a(2)+13); s3=a(3)./(a(d)+a(5)+13); 3=sqrt(1+r372+s5312);

vi=1./tl; v2=1./t2; v3=1./13;
vd=rl./tl; v5=r2./t2; v6=r3 /1t3;
vi=sl./t]; v8=s2./t2; vO=s3./t3;

V=1, 142, 1.43;r 1.t r2./t2,03./t3;51 ./t ,52./t2,83./13];
Vi=inv(V);

for i=1:nt
ift(i) <=0
el=l;
else
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el=exp(l1.*t(i));
end

e2=exp(l2.*t(i)); e3=exp(13.*t(i));

E=[e1,0,0;0,e2,0,0,0,e3};
YO0=[yl;y2;y3]); I=eye(3); Al=inv(A);
S=V*E*VI*Y0+(V*E*VI-I)*AI*B;
F(1,j)=S8(1);

F(2)=5Q2).

F(3.))=S(3);

F(4,))=a(5).*S(3);

end

f1=fopen('pson03.dat’,'w").
for i=1:nt
fprintf(f1,'%5.1f %10.3f %10.3f %10.3f %10.30\n"ui), F(1.i), F(2.0). B(3.0), F(4.i)):
end
fclose(f1);
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title 'Nonlinear Optimization for Person 3",

/**********************************************************************/

* This program was written in SAS/IML for obtaining optimization results */
* from either nonlinear least-squares or bayesian determinant minimization */
/* nipnra is subroutine of Newton-Raphson Method */
/* */

/**********************************************************************/

proc iml;

/*********************************************************************/

/* func module represents objective function for nonlinear optimization */
* nles is an objective function for nonlinear least-squares estimation */
/* dbet is an objective function for nonlinear least-squares estimation */

/*********************************************************************/

/* Ais atransfer coefficient matrix
B is an input vector
YO is a vector for initial values of responses
obs is a matrix of observations */

start func(a) global(t, obs, pi. YO, w);
m = a(l}+a[2]+a[3]+a[4]+a[5];
n =a[l]*a[4]+a[1]*a(5]+a[2]*a[4]+a[2]*a[5]+a[3]*a[2]+a[3]*a[S];
p = a[3]*a[2]*a[5]; f=-(m**2)/3+n;
g =p-m*n/3.42./27.*m**3;
k = arcos(-g/2.*sqrt(-(3./f)**3));
hl =2*sqrt(-f/3)*cos((k+2*pi)/3);
h2 = 2*sqrt(-f/3)*cos((k+4*pi)/3);
h3 = 2*sqrt(-f/3)*cos((k+6*pi)/3);
11 =hl-m/3; 12=h2-nv/3; 13=h3-m/3;
rl =a[1)/(a[2]+11); sl=a[3])/(a[4]+a[S5]+11); ttl=sqrt(1+r1**245]**2).
r2 = a[1}/(a[2]+12); s2=a[3)/(a[4]+a[5]+12); t2=sqrt(1+r2**2452%*2):
r3 = a[1)/(a[2]+13); s3=a[3])/(a[4]+a[5]+]3); tt3=sqrt(1+r3**2453**2):
v=( 1/tel it 1/ee2 IV 13 ) //
(riatl dl r2/2 11 r3/tt3) //
(sl/ttl 1l s2/tt2 1l s3/tt3);



AMTRIX= ( -(a[1]+a[3) I a[2]1l a[dD //
( a[1] It -a[2] Il 0) //
( a[3] 1l 01l -(a[4)+a[5)));

B =a[6]/01//0;

I=1(3); VI=inv(V); Al=inv(AMTRIX);
nt=10;

free z1 22 z3 z4 25;

doj=1tont;

if t{j] > O then el=exp(11*t[j]);

else el=1;

e2=exp(12*t[j]): e3=exp(I13*t[j]);
E=el1OH0)/(Olle2ll0)//(0O1I0Ne3);
fl=V*E*VI*YO0 + (V*E*VI-[)*AI*B;

zi =z IIfl;
end;

z2 = (a[5]*z1(3.));

z3=1z11//122;
doi=1to4;
doj=1tont

if abs(obs(i.j]) < 1.e-5 then z3[i,j] = 0;
end,
end;

24 = (23 - obs)/w;
75 = z4*%24";
nles = trace(z5);

return(nles);

/* bdet = det(z5);
return(dbet);
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finish func;

/* Initial values, time, weights, and observations */

YO = {28.88, 11900, 24000}
pi = 3.14159265358979;
t={027152754 6476100 -9};
w={ 4 4 4 4 4 4 4 4 4 4,
4000 4000 4000 4000 4000 4000 4000 4000 4000 4000,
6000 6000 6000 6000 6000 6000 6000 6000 6000 6000,
72 72 72 72 72 72 72 72 72 72);

obs = {28.88 27.04 31.72 28.08 16.64 19.76 8.84 18.210.4 2964,
11960 0 0 O 0 O O 13600 0 O,
24000 0 0 O O O O 24000 0 O,
431.43 537.98 372.86 474.06 420.8 372.86 266.33 223.72 229.04 330.25};

/* obs = {28.88 27.04 31.72 28.08 16.64 19.76 8.84 18.2 10.4 29.64,
11900 16848.74 17213.94 4913.306 15521.89 8039.733 14954.28 13600

19039.68 13132.03,
24000 21573.3528795.43 22477.62 23131.6 25365.74 22007.19 24000

26519.72 30688.41,
431.43 537.98 372.86 474.06 420.8 372.86 266.33 223.72 229.04 330.25); */

/* *a’ is a vector of starting values for unknown parameters
optn is a vector of printout options
con is a matrix for parameter constraints
tc is a vector of the termination criteria */

a={17.043 18.4 .0092 .018 141};
optn = {0 4};
con={0.0.00.0 0 ..
30.1.30. 1. 1.2000. . .,
1. . ... .-130}
tc={500100001.e-4000000000};

call nlpnra(rc, xres, "func"”, a) opt=optn blc=con tc=tc;
aaa=xres; nles=func(aaa);
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call nlpfdd (crit, grad, hess, "func”, aaa);

/**********************************************************************/
* Confidence Inteval or HPD region */
/* */

/**********************************************************************/

resms = nles/(24-6);
esd = sqrt(resms);
thess=inv(hess);
dihess=vecdiag(ihess);
t=1.734;

aub=j(1, 6, 0);
alb=j(1, 6, 0);

doi=1106;
aub(i]) = aaa[i]+t*esd*sqrt(2*dihess(i]);
alb{i] = aaa[i]-t*esd*sqrt(2*dihess[i]);
end;

print "confidence Inteval™;
print aub a aib;

quit;



181

APPENDIX

Notations:

A symmetric matrix of elements of a;;

AT transpose matrix of A

tr(A) trace of matrix A

1Al determinant of matrix A
Ig—; I Jacobian of transformation, la&_((:r:_:,’:))l

o< proportional to

= approximately equal to

L[X] a linear operator of X such that L[X]=X"-A(t)X

(LH) a linear homogenous system

(LN) a linear non-homogenous system

Theorem 3.1 If A 1s a matrix with dimension mxn and B is with nxm, then

tr (AB) =tr (BA)"%.

Proof. tr (AB) = iiaubl, = z’l:ibual, =tr (BA).

=l =l 1=l =1

Theorem 3.2 An elementary transformation on a matrix B is equivalent to

E,...E:BE,.i...En, where some E's are of type of a diagonal matrix D
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with a constant a in the ith position and 1's elsewhere, and the remaining
E’ are of the type of a matrix E containing 1’s in diagonal and a constant
a in the ith row and the jth column and 0’s elsewhere. If B is a square and
non-singular matrix, then B can be expressed as

B=E,'" . .EEn'Ent"' = TuTm1... Ty,

where T's are of type of D or E.

aJY Y
Theorem 3.3 |——I=l/l—|, ifla—I;tO.

dY a X dX

Theorem 3.4 If X =F (A)and Y = F3(B) are transformations from variables X and Y to

. i d(X,Y) d X dY
new variables A and B, then Jacobtan | | =1

J(A,B) 3AIXI8 BI'

Y laA dB JdY

T 35 | | = IxI| |
heorem X 8Xx8AXI88

|, where A and B are any functions of X and

Y such that none of the terms on the right-hand side vanish.

Theorem 3.6a The Jacobian of the linear transformation Y = aX (Y, X: pxq ), where a is

d
non-zero constant scalar, is | —— | = a™.

aX
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Proof. y; = ax;j, dy;/dx; = a and dy,/dyi = 0 (i # k). Therefore the scheme of coefficients

is diagonal with pq a’s in the main diagonal.

Theorem 3.6b  The Jacobian of the linear transformation Y = aX (Y,X: pxp ),

where a is non-zero constant scalar, is !

S
>~

This result is directly obtained from Theorem 3.6a.

Theorem 3.6c  The Jacobian of the linear transformation Y = AX (Y, X: px1; A: pxp ) is

W
-4

= IAL

r oY
Proof. v, =) a, x, and dy/ox, = a,, therefore Iﬁ-l = Al
k=1

Theorem 3.6d  The Jacobian of the linear transformation Y = AX (Y,X: pxq; A: pxp ) is

Ia—Y—I—IAI“
axX

Proof. This follows Theorems 3.6d and 3.4, since the transformation of each column of Y

is independent of the others and there are q such columns of Y, the J of each column

transformation being 1Al

Theorem 3.6e  The Jacobian of the linear transformation Y = XA (Y, X; pxq; A: qxq )} is
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Y,
laxl—lAl.

Proof. Write Y = A" X and the result follows directly from Theorem 3.6d.

Theorem 3.6f  The Jacobian of the transformation Y = AXB (Y, X; pxq; A: pxp: B:

Y
qxq) is I-b—)z-l = |A*XIBI.

07 aY ,
Proof. Let Z= AX and Y = ZB. Then, lﬁl = IAI" and |8—i| = IAIP. Using Theorem 3.4,

the result follows.

Theorem 3.6g The Jacobian of the transformation Y =BXB (Y ,B.X: pXp)is

S
~

| = IBI”*! (3-9).

>l

d

Proof. Assume B is a non-singular matrix. Using Theorem 3.2, write B = T,Tr.... T2 T

Then ¥ = ToTwt.. T2 TIX T\ T2 .Tmi Ta. Let Y =TY_T (i=l...m),

- = - = Y JY, dY, Y
Y,=X,and Y, =Y. Then, by Theorem 3.4,|a <=3 YlIXla ?: Ix...xlj?'" |

m-1}
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Let A be any of the T's with form of D mentioned in Theorem 3.2. It is obvious that |Al =
a. The transformation Y, =AY, A implies y, = a’x.; y,, = ax;; (i # j); yx = X (jk # 1), and

2
E

[-<|

Sl =a™' = AP
i-1

hence

~l

Let P be any of the T's with form of E mentioned in Theorem 3.2. It is obvious that [Pl =

I. The transformation Y, =PY,_ P implies y; = X, + 2ax, + X} Yiu = Y = Xy + aXuik#i),

0Y Y
Y = Xx (j, k # i), and hence 'a V,i, I =1=IP"" Since |a 7.11 l=IT/ (=1...m),

W
~|

|

therefore it follows that | = IT ™ %, .. xIT, ™ = IBIP.

U
I

Theorem 4.1 If d(t) is a fundamental matrix of (LH) and if S is a any non-singular
constant matrix with dimension nxn, then ®(t)S is also a fundamental
matrix of (LH).

Proof. Since &(t) is a fundamental matrix, d()'=A(t) ®(1),

then (D(1)S)” =(t)" S+dV)S'=(A(1) D(1))S, and det(D(t)S)=detd(t)det(S)=0,

hence ®(t)S is also a fundamental matrix.
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Theorem 4.2 If ®(t) is a fundamental matrix of (LH), for any fundamental matrix of 6
(LH), 3 a constant nonsingular matrix P with dimension nxn, such that 6(t)
=P(t)P.
Proof. Let 6=(8,, 8-, ...8,), then 6, i1s a solution;
hence, 8, = ()P, i=1,..., n, P=(P,, P,, ...P,).

-8 =d(()P.

Theorem 4.3 Let r(t) be any solution of L[x]=g; then a general solution of L{x] = g is
8(t) =d(t) S + r(t), where d(t) is any fundamental matrix of L[x]=0 and S
is an arbitrary constant vector.

Proof. Let 8(t) be a solution of (LN).

Since r is any solution of (LN),

L[8-r]=L[8]-L[r}=g-g=0.

s (B-r)(t) is a solution of (LH).

Since d(t) is any fundamental matrix, from Theorem 4.2,

(8-r)(t)= P(1)S, for some a constant vector S.

Therefore,

0(t)= DO()S+r(t).
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!

Theorem 4.4 The vector function () =<D'(t)J‘<D"(S)g(S)dS is a solution of L[X]=g(t),

Iy

where ®(t) is any fundamental matrix of (LH).

Proof. Since d(t) is a fundamental matrix, then @’ (t)=A(t) ().

. . 1 a !
() =0 (0] ©71($)2(5)dS + D) -] &7 (5)g($)dS]

= A(z)[d)(r)jd>"(5)g(5)d51+<b(z)<b"(:)g(z)

i

= AP [ ©7(S)g(SHdS T+ g(1):

Iy

hence, the vector function of r(t) =<D'(I)J‘<D"(S)g(5)dS is a solution of L[X]=g(t).

Ll
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