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Abstract

Oscillatory zoning in rocks can be explained by a kinetic mathematical model
of crystal growth. In this model. zoning is an autonomously occurring phe-
nomenon resulting from the interaction of crystal growth dynamics and diffu-
sion of solutes within the solution. Here the rates of crystal formation have a
positive feedback dependency such that these rates depend on the composition
of the crystal surface.

A moving free boundary problem is presented describing the growth of
two essential crystal end-members that are formed from two solutes on a solid-
solute interface. The simplest possible case is presented in which there are two
first order crystal formation reactions, and all the variation of concentration
is confined to one solute. Bifurcation analysis is used as a criteria for the
local existence of oscillatory zoning. Under certain physical conditions, we
can show, using rigourous analysis, that planar constant composition front
solutions lose their stability to oscillatory solutions through a Hopf bifurcation
when important parameter values exceed some critical value. The analysis is
very sensitive to the precise stoichiometry of the crystal formation reactions

and to the initial conditions of the state.
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Chapter 1

Introduction

Oscillatory zoning is observed in many naturally occurring crystals. With no
externally imposed periodicities on the state. this zoning can be explained
as an autonomously occurring phenomenon resulting from the interaction of
crystal growth dynamics and diffusion of solutes within the melt [22]. For ex-
ample. naturally occurring plagioclase feldspar frequently exhibits oscillatory
zoning between two end-member crystals: anorthite, CaAl;S1,05g. and albite,
NaAlSi;Og. In particular, quantitative results have already been obtained on
certain parameters that control the oscillatory behaviour in plagioclase feldspar
[16].

Any mathematical model describing crystal growth from melts should
incorporate the following qualitative ideas from [22]. First, for oscillation to
occur we require a potential feedback loop in the chemical kinetics of crystal
growth, i.e.. a surface rich in. say, crystal A, should favour construction of A-
member units over the construction of any other unit due to steric or energetic
considerations. This will be achieved, as we shall see in Chapter 2, by requiring
the reaction rates for the formation of crystals (which are determined by the

stoichiometry of the crystal reactions) to depend on, not only the concentration



of solutes, but also on the composition of the crystal surface. Secondly, any
oscillation patterns should result without the intervention of any externally
imposed periodicities on the state (e.g. pressure or temperature). Zoning
should be explained by the diffusion of solutes from the melts along with
the associated chemical kinetics involved in the formation of crystals on the
interface.

With the above ideas in mind. the simplest possible mathematical
model that allows for the possibility of oscillatory zoning will be presented.
We shall show analytically that zoning is achieved under certain reasonable
physical conditions. In this thesis we present a moving free boundary problem
describing the growth of two crystalline end-members. ¢4 and cg, that are
formed from two solutes. ¢; and c¢;. on a solid-solute interface. Qur analysis
is very sensitive to the stoichiometry of the crystal formation reactions. We
shall consider the simplest mathematical stoichiometry for the formation of

two crystals which are represented by the two following first order reactions

ka
G > C4

o 2B cp
We assume that we are far from chemical equilibrium (irreversible reactions)
since we are interested in the initial growth of the crystal. To simplify the
analysis, all the variation in concentration will be confined to the solute ¢;.
This may be achieved by choosing the diffusion constant of the other species c,
to be much larger then that of species ¢; (D, 3> D;). Also, the rate constant of
the solute with the large diffusion constant is chosen to be a constant, i.e., kg =
constant. With these simplifications, the qualitative ideas above for oscillation
still carry through. Lastly, the simplest form for the rate constant k4 will be
chosen to incorporate the positive feedback dependency on the crystal growth.

One must note that in real applications, there are multi-melt species and



multi-crystal end-member species present. The stoichiometry is much more
complicated and the correct rate laws must be determined experimentally.
However we start with the simpler case above, and show analytically that.
even here, oscillation does indeed occur under certain physical conditions.
The thesis outline is as follows. In Chapter 2 the mathematical model
is presented along with the relevant physical description for zoning. Two
models will be presented based on a parameter . which represents the order
of the thickness of the “rough™ solid-solute interface. With a sharp interface
(¢ = 0) we have the noncquilibrium fractionation surface model. and with a
rough interface (¢ > 0) we have the dynamic fractionation surface model [22).
Throughout the rest of the thesis we shall concentrate only on the second model
above (the stability result of Chapter 4 and the Hopf bifurcation of Chapter 5
are proven for the dynamic fractionation surface model). However. Chapter 6
will include numerical simulations for both models. At the end of Chapter 2.
planar constant composition {ront solutions will be explicitly computed (this
is possible from the choice D, >» D). These special solutions correspond to
homogeneous rocks with no zoning. These shall serve as our basis solutions for
linearization in Chapter 4. In Chapter 3, we prove the existence of a classical
solution with the desired positivity of the concentration. In Chapter 4, the
question of stability of the constant composition front solutions is examined.
The problem is posed as a bifurcation problem in an abstract evolution space.
The necessary condition for a Hopf bifurcation is obtained, namely, that the
spectrum of the linearized operator contains a pair of complex eigenvalues that
cross the imaginary axis as an important parameter value exceeds some critical
value while the rest of the spectrum has negative real values. The principle of
linearized stability will be proved in this chapter. Below the critical value of the

bifurcation value, the stability of the linearized solution will imply the stability



of the full nonlinear system if the initial conditions are chosen sufficiently
close to the constant composition solution. In Chapter 5, the existence of a
Hopf bifurcation shall be proved: the ideas of Crandall and Rabinowitz [3)
and Frankel and Roytburd (7] will be emploved. In Chapter 6. numerical
simulations are presented which suggest that the resulting periodic orbits are
stable above the critical bifurcation valne. In Chapter 7, we conclude with
a discussion of the results. Appendix A contains the modified van der Pol’s
equation which motivates the choice of the specific point about which to do our
linearization and also serves to suggest a bifurcation parameter. Even though
our problem is fundamentally different since we have time delays introduced
through diffusion. the moditied van der Pol's equation. nevertheless, serves as a
guide for our local analysis. Appendix B contains definitions and basic results
for the norms involving fractional powers of the linearized operator of Chapter
4. These norms are required to obtain the desired Sobolev estimates for the
stability proof in Chapter 4 (Theorem 4.9). Finally, Appendix C contains

regularity results for the linearized problem.



Chapter 2

The Model

In this chapter we describe more fully the growth of a rock consisting of two
crystal end-members from a diffusion-kinetic process involving two solutes.
These rocks are formed from the cooling of molten lava. As the lava solidifies,
the solutes react chemically on a solid-solute interface to form dark and light
crystals. It is the relative periodic distribution of these crystals that gives rise
to the characteristic oscillatory zoning observed in rocks such as plagioclase
feldspar. For this two species diffusion-kinetic model, we first state the basic
equations that are involved using conservation and chemical kinetic principles.
Then we present two surface models that involve the thickness of the attach-
ment interface. Both of these models involve a positive feedback mechanism
in the growth of the crystals. In Figure 2.1, the interface grows to the right
at geological rates leaving the trace pattern observed in this typical cross sec-
tion of plagioclase feldspar. Zoning occurs between two end-member crystals,
anorthite, CaAl,Si,0g and albite, NaAlSizOg. Planar growth, which initially
started at the left (the core of the rock) and grew into the melt, is observed.
Each z-position represents a point in the history of the growth of this rock,

where at one time, a crystal surface interface seperated the rock from the melt.



The end result depicts growth from the core to the rim of the plagioclase grain.

Figure 2.1 : Cross section of a sample of plagioclase feldspar.

2.1 Preliminary Analysis of the Diffusion-
Kinetic Model

We model cryvstal growth as a moving free boundary problem with a planar
front moving in the r direction. At the front, the two crystals are forming and
are attaching to the solid. Let ¢;(r.t) and cy(r.t) be the concentrations of
the relevant solutes. Denote the position of the moving planar boundary by
R(t). We seek solutions of ¢|(r,t), ca(z.t). and R(t) subject to the following

diffusion equation along with the following nonlinear boundary conditions

(')C.' 82C,‘ R p f
5? = D‘—a—l‘? 1= 1..).. Ir > R(t) (2'1)
dR .
fi—t = v(c) r = R(t) (2.2)
D2 = L(e) - vlele z = R(1) (2:3)

G — Cio T — o0 (2.4)
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where

c represents both ¢, and c¢,,

D; is the diffusion constant of species .

v(c) is the velocity of the front,

c,~ is the ambient concentration of species i far from the front. and

[i(c) is the incorporation rate of species .

The term on the left hand side of Equation (2.3) represents the flux,
which describes the net transport of material by diffusion. The flux is defined
to be the net amount of solute that diffuses through the planar front per unit
area. per unit time in the r-direction. Empirically, one finds that the flux is

directly proportional to the concentration gradient. This is known as Fick's
first law,

de

dr’

Note the sign convention, positive flux corresponds to solute diffusing into the

flux = +D

planar front from the right side of &+ = R(t). Let us examine Equation (2.3)

more closely. Rewriting this equation we have

The incorporation rate [;(c) of a solute is simply the rate at which this solute
enters into the interface. With a stationary front (v(c) = 0), the incorporation
rate is simply the flux. If there is no concentration gradient (dc/dz = 0), the
incorporation rate is the rate at which the solute is transversed by the moving
front. Thus, there are two ways the solute enters the interface; one is a diffusion
process represented by Fick’s law, the other simply by the movement of the
planar front.

From chemical kinetics we can get an explicit form for [;(c). We may

also think of the incorporation rate, [;(c), as the rate at which the solute ¢; is



consumed in the formation of crystals on the solid-solute interface. One may

write a generalized reaction for this as

. 7 k

acy + bea = ¢4

- h ko4

acy + bC2 — Cy4 ) =
: ) n (2.3)
acy +ec; —> (B

H . k_p

(1(‘1 +ec; — «c¢p

where k4. kp. k_4. and k_p are rate “constants” that depend on the mole
fractions of c4 and cg. Typically. these terms only depend on the temperature.
However, as we shall discuss later in this chapter. their dependency on the mole
fraction (i.e.. the slight affinity of a crystal to attach to a like member) is what
allows for the possibility of oscillatory zoning. The positive integers a. b, d.
and é determine the stoichiometry of the chemical reactions. The stability
analysis is very sensitive to the stoichiometry of (2.5): in particular. different
stoichiometry will give different dispersion relations. We assume that we are
far from equilibrium. i.e.. k_ 4 and k_g are negligible. This corresponds to the
amount of ¢4 and cg present to he small compared to ¢, and ¢, a situation
encountered during the initial growth of the rock. Thus. consider the following
reactions
ac, + Z)Cz -k—4> Ca

s -k
dey + écy -2 cp.

Mathematically, the simplest proposed mechanism for the formation of c4 and

cp is

[=ad)

ka .
g = ¢4 (a=1.6=0)
b ] (2.6)
2 2 cg (d=1.é6=0).
A proposed mechanism is simply a combination of elementary reaction steps.

An elementary reaction step is the single step in a chemical reaction which



describes the actual event. Now we are interested in writing down reaction
rates for the solutes and crystals. From chemical kinetics, one empirically
finds that the reaction rate of a species is proportional to the product of the
concentration of the reactants involved from the proposed mechanism. For
instance, if the reaction
mX +nY =5 P

is an elementary reaction. the reaction rate for P is k[.X]™[}]* (square brackets
denote concentration). Similarly, for X it is mk[X]™[}Y]". Obviously, the later
rate is m times faster since for everv P that is formed, m X's are consumed.

So. for (2.6) the incorporation rates for ¢; and c¢; are
Li(c) = kac (Ii(c) = &k,,c‘;‘cé + (ikgc‘fcg
[)(c) = kgey,  (I3(c) = i)k,qc‘;‘cg + ékgc‘lic.‘;).

Also we may write down reaction rates for ¢4 and cg as

A=k (A= k,tc‘;‘cg)
B = kgc; (B = kgc‘{cg)
where A and B are reaction rates for ¢4 and cg. Thus, A = [{(¢) and B = [3(¢)

for the simplest of all mechanisms (2.6).

2.2 The Nonequilibrium and Dynamic Frac-

tionation Surface Models

As described by Ortoleva 22|, an explanation for zoning results from a po-
tential feedback loop in the chemical kinetics of crystal growth. We give a
brief description below. First we may assume that v(c) > 0 since we are far

from chemical equilibrium. Hence, at any given time we may express the mole
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fraction of the crystals as a ratio of reaction rates. Thus, we may write the

mole fraction of ¢4 as

A
A4+ B

f= on r = R(t). (

o
~1

We refer to this as the nonequilibrium fractionation relation. The mole
fraction of cg is simply then (1 — f). Now if we assume that the right hand side
of Equation (2.7) depends not only on ¢, and ¢, but also on the mole fraction
f of ca, it can give a nonlinear relation in f. This can allow for multiple
solutions of f for a given value of ¢, and ¢,. To see this analytically, substitute

A=kq(f)ey and B = kg(f)cy into (2.7) vielding
ka(fle N(f)2

2

T katNer tkpfle; . K(NE+1

where K'(f) = k4(f)/kg{f) is the ratio of the reaction rate constants. Solving

for ¢y/c; gives

a__ [ 9
o RONL=7) (=8)

When f = 0. ¢; = 0 and as f approaches 1. ¢;/c; approaches infinity. For
multiple solutions, we require that a local maximum and minimum must be

present (i.e.,d—(—%j&l = 0). Differentiating (2.8) with respect to f gives

d (e _ K(f)=K'(f)f(1=f) .
E('c«?)" K= (29)

For the numerator to equal zero, we require that A’(f) > 0 (i.e. A'(f) must

be an increasing function of f). Since N(f) = ka(f)/ks(f), this equivalently
means that k,(f) is an increasing function of the mole fraction f of ¢4 and
that kg(f) is an increasing function of the mole fraction (1- f) of cg. Thus, for
any hope of oscillatory zoning, there must be a positive feedback dependency
of the rate constants on the composition of the crystal surface. A possible plot

for (2.8) is shown in Figure 2.2. This plot allows for multiple values of f for a
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given c;/c;. Inverting this plot gives Figure 2.3. Here there are two branches

present, the lower branch is rich in ¢cg whereas the upper branch is rich in c4.

|

) £

Figure 2.2 : Possible plot of ¢|/c; vs. f.

£

Figure 2.3 : Possible plot of f vs. ¢;/c3.

Now we give a physical argument for the requirement of the positive
dependency of A'(f) on f. Consider the solid-solute interface where c4 and cg
are forming and attaching to the crystal surface. In this interface, ¢y, ¢;, c4,
and cp are present. When the surface is rich in one crystal, there are steric

factors that will favour further formation of this crystal over the other. Thus



c4 growth is favoured by c4-rich surfaces and similarly for cg. These physical
considerations are captured by the positive dependency of k4( f) and kg(f) on
the composition of the surface. Suppose the crystal surface is initially rich in
ca. Since k4(f) is an increasing function of f. one expects that c4 will attach
to the surface first over cg since its formation is favoured, i.e., the rich c4
surface has an affinity for itself. This corresponds to the top branch of Figure
2.3. However. ¢, is consumed at a faster rate than the rate it enters this
interface. Thus, as the rock grows. ¢, decreases in the interface and the mole
fraction f decreases. During this time, ¢; will begin to build up as the interface
advances through the solute. As ¢;/c; drops below Y. the mole fraction f then
drops down to the lower branch. Now we are in a rich ¢, environment. and cp
starts to attach to the surface. Since Ag(f) is an increasing function of (1 — f)
(the mole fraction of cg). cg starts to attach to the surface and similarly has
an affinity for itself. Similarly. more ¢; is used up in the formation of ¢g than
enters the interface. Thus. the mole fraction of cg decreases ( f increases) as
depicted on the lower branch of Figure 2.3. Now ¢, begins to build up and as
we pass Z. most of the ¢, is depleted and the mole fraction will jump up to
the rich ¢4 upper branch completing one cycle.

Now we shall attempt to determine the mathematical form for A'(f)
which captures the ideas above. Since A(f) is an increasing function of f, we

may start with the simple function
K(fy=a+bf

where a and b are constants. The term a means that there is always some
attachment site on the crystal surface. This term is important because no
matter how rich the surface is in one crystal, there are still attachment sites

for the other crystal. Note, in our physical argument this idea is needed as
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the system jumps between branches from the nonequilibrium fractionation
equation. The power of f corresponds to the number of enhancement sites; c4
will attach more readily if a single crystal of A is alreday present. The above
function does not allow for multiple values of f. Substituting this expression

into (2.9) and setting it equal to zero gives the complex values f = %iy/a/b

which are inadmissible. Next we try
K(fy=a+bf?

where we have two enhancement sites: ¢y will attach more readily provided
two crystals of A are already present. This form will give us multiple values
for f. Depending on the ratio b/a of the ratio of the reaction-rate constants
K(f). we can have two possible plots (see Figure 2.4). Substituting A'(f)
into (2.9) we can find a critical value. (b/a),. where the local minimum and
local maximum begin to appear. Below this critical value, there are no local
extrema. whereas above this critical value there is a local minimum and local

maximumn (see Figure 2.4).

" " i
Q 01 02 o3 04 05 s ar 08 [} 1

Figure 2.4a : Plot of ¢;/c; vs. f for b/a < (b/a)o.
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Figure 2.4b : Plotof ¢;/c; vs. f forb/a > (b/a)e.

£

T

x=R

Figure 2.5 : Zoning profiles.

In analogy to the modified van der Pol’s equation (see Appendix A). we shall
carry out all our local stability analysis near the inflection point. Our bifur-
cation parameter will be b/a and we speculate that a Hopf bifurcation will
occur in the vicinity of the critical value. It will be displaced from (b/a), by
the interaction of this oscillatory mechanism with the time delays introduced
by diffusion (from Equation (2.1)).

Equation (2.7) results in discontinuous oscillatory zoning profiles since

there is an abrupt change in f between branches in the plot of ¢;/c; vs. f;



see Figure 2.5, a plot of f vs. R(t) representing zoning profiles. To smooth
out these discontinuities an improved model is introduced by the following

expression for f on the front.

[

df__ A
R(t)dt I+ 3TF

Here ¢ is the statistical coherence length and it represents the order of the
surface roughness amplitude. Its length is much smaller than the characteristic
length associated with macroscopic zoning, vet it is large enough to capture
all the microscopic rough interface where ¢4 and cg are forming and attaching
to the crystal surface. For a derivation of this equation above see Ortoleva
[22]. When ¢ = 0 we obtain our original expression for the mole fraction of
c4. We shall refer to this = = 0 model as the nonequilibrium fractionation
surface model (nonequilibrium since we are far from chemical equilibrium).
When ¢ > 0 we refer to this as the dynamic fractionation model. Note the
correct sign of ¢ is positive: in the graph of ¢;/¢; vs. f. the flow must move in
horizontally inward to the curve f = A/(A + B) in order to get a limit cycle
(this is in analogy to the modified van der Pol’s equation (see Figure A.1)).

Finally, for Equation (2.2) we impose the boundary condition
pv(c)= A+ B. r=R(t)

where p is the density of the rock. This is a mass balance equation. The total
number of crystals deposited on the surface of the interface per area, per unit

time is pR(t). This is balanced by the rate of production of both crystals
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which is simply 4 + B. Thus, in summary, our model is

dci dc; :
Y e = )
ot D= =12 z>R() W
dR
de, .
D:E); = AII(C) - R(t)cl I = R(:) L (210)
< df A
Rdt _f+.{+B r = R(t)
G 7 G Ir—=noc |
where
[1 = A = kA(f)Cl
b = B = kslfle
' ka(f) .
K(f) = = aabr

System (2.10) describes the growth of a rock consisting of two crystals that are
formed from two solutes. The analysis is very sensitive to the stoichiometry of
the crystal formation reactions. Our explicit expressions for [, [,. 4. and B
above represent the simplest case. which is a set of first order reactions. Our
form for A'(f) is the simplest that will allow for the possibility of oscillatory
zoning since it allows for two branches to be present in the graph of f vs.
c1/c;. Note, there are no externally imposed periodicities on this system:
zoning is explained as an autonomous phenomenon through the interaction of
the diffusion process in the melt with the chemical kinetics associated with
the crystal formation reactions on the interface. To simplify the analysis even
further a rescaled version will be used that encompasses the essential features

above. First, assume that D; > D,. From the first and third equations of

System (2.10) we obtain, formally,

1 Dy—x
Cazz = prCa — 0
2
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1 - OC
car = —=[lc) = v(c)e)] Dizge .
D,

Thus, c;(z.t) approaches a constant in this asymptotic limit. Physically, this
means that c;(r.t) diffuses into the solid-solute interface at a much faster
rate than ¢(r.t) and this corresponds to c,(r.t) being constant throughout
the solute. With ¢p(r.1) = 00, the partiai differential equation is identicaily

satisfled. Another simplification is to take kg(f) to be a constant.
kg(f) = ks.

This. with our previous assumption (D, > D;). will still capture all the
essential features required for oscillatory zoning as described earlier in this
chapter. We may replace ¢;/cy by ¢, /ey~ in Figures 2.2 and 2.3 since D; > D,.
Since kg is a constant. cg no longer has an affinitv for itself. All the variation
is within ¢, if we let k4(f) = a, + b, f%. Species A still has an affinity for itself
on the crystal surface and this can allow for oscillatory behaviour. To simplify
further, take D; = 1 by rescaling distance with some typical length scale L
and time with L2/D,. Finally. ;o may be scaled out by introducing the new
variables: & = ¢1/Cox. €x = C1oc/Conc. p = plein. A = ka(f)E B=ky f=7.

After dropping the tildes, the rescaled version is

de J*
% a.ﬁz r > R(t) W
p(ii—itz = hlN(f)e+ ks r = R(t)
,;di = kbl\'(f)c—R(t)c r = R(t) L (2.11)
ar
cdf Kfle _
rY -f+ Ker1 r = R(t)
C = Co =00 |
where
I\(f):kA(f)=a+bf2




2.3 The Planar Constant Composition Front

In this section we look for constant composition front solutions (i.e., solutions
where the mole fraction f is a constant on the planar front). Physically. this
corresponds to a homogeneous grev rock with no zoning. A preliminary anal-
ysis of tiie dispersion reiation has aiready been done in the author’s Master's
dissertation {28]. In a suitable parameter space. there exist a pair of complex
conjugate eigenvalues that cross the imaginary axis as b/a increases past a
critical value (b/a).,. This suggests the presence of a Hopf bifurcation. In
Chapter 4, the stability of the constant composition front is examined using
bifurcation theory. We shall see that below the critical value, b/a < (b/a)..
these solutions are stable, whereas above the critical value they are unsta-
ble. In Chapter 5. we shall prove that a Hopf{ bifurcation does indeed take
place. Chapter 6 indicates that these constant composition front solutions

lose stability to periodic orbits.

The constant composition front solution is obtained by substituting

travelling wave solutions of the form
clr.t) = élr—rot)
v(t) = o
into System (2.11) where ¢ represents the constant velocity of the front. This

yields the constant composition front solution,

Er—0t) = co + Ae0E
_ e
F= =
where
C
A = - -co
K(f)

K(f) = a+bf%
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These nontrivial solutions are present if and only if
p=cCx + L.

We remark that choosing D; > D, in the previous section has allowed
us to explicitly compute a unique travelling wave solution. Otherwise. an
infinite number of travelling wave solutions would exist if D, and D, are of

the same order of magnitude.



Chapter 3

Classical Results

In this chapter we establish the existence of a classical solution to the free
boundary problem. A maximum principle argument is then used to show that
these solutions are positive. We follow the ideas of Friedman [10], where an
equivalent integral representation is formulated involving Green's functions
for the heat equation. These integrals are evaluated on the unknown free
boundary R(t). Our case is similar to Frankel and Roytburd (8], where the
integral equation is written in terms of the Dirichlet condition, whereas. in
Friedman’s case. an integral equation involving the Neumann condition was

formulated.

(onsider the free boundary problem (2.11)

¢t = Cgr r> R(t), t>0 (3.1)
R = %(1\'(f)c+ 1) r=R(t), t>0  (3.2)
¢ = Blef) c=R(t), t>0  (3.3)

= ZIfRUer DRI s=RO >0 (34
where

B(c, f) = ks K'(f)c = Re

20



along with initial data

e(r.0) = colr)
[0y = fo

We require that

Al. co(x) is continuously differentiable with lim, . co(z) = coo > 0.

A2. The following compatibility condition is satisfied

k )
v(0) = ;b(l\(fo)c‘o(o) +1)

where v(t) = R(t).
The condition A2 will ensure that c(r.t) is a continuous solution at ¢ = 0.
This will allow us to employ the maximum principle in the proof of Theorem
3.3 to show that c(x.t) is positive.

We begin by pointing out some preliminary properties of the boundary
conditions (3.2)-(3.3). There is a linear relation between v(¢t)and A'(f)c(R(¢).t):
the graph of v versus h'c is a line with slope ky/p and intercept ky/p (see Fig-
ure 3.1). For positive solutions ¢ we shall require that v > k,/p. Recall from
Section 2.2, that the rate constant for crystal B was taken to be a constant,
kg(f) = ky. Thus crystal B will attach at a constant rate, and consequently
there will be a minimum velocity for crystal growth as long as the concentra-
tion ¢ is positive. The second boundary condition, (3.3), may be written in

terms of f and v,

_ Py L _
R0 = ~ ot + (g ) 0 b

For a fixed time t, this is a parabola opening downward with roots ky K'(f) and

ky/p (see Figure 3.2). Figures 3.1-3.2 will be used in the proof of Theorem 3.3
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presented in Section 3.3. The case A'(f) < 1/p is more desirable since complex
eigenvalues were found in this range for the linearized stability analysis in the
author’s Master's dissertation {28]. The scaled density and rate constant are
p =14 Cioo/Cooo and A (f) = kal(f)/ke = (a, + b1 f?)/ks respectively. They
imply that A" < 1. or alternatively that the travelling wave velocity ky is
sufficiently large. With a higher velocity there will be a build up of solute on

the moving front and this may allow for the possibility of oscillatory zoning.

e

slope =k, /p

v

L
p
Ke
Figure 3.1 : Plot of v vs. Ke.
C:!
| ///\
/ \ v
&y

Figure 3.2 : Plot of ¢ vs. v. The roots are ky/p and koK (f).



The functions c(r.t). f(t). R(t) form a classical solution to the Equa-
tions (3.1)-(3.4), with the above prescribed initial data. if for all t < o
(0 <o <)

(1) czz. ¢t are continuous for r > R(t).0 <t < 0.

{il} ¢.cp are continuous for £ > N{¢).0 <t < 0.

(ii1) c is continuous for 0 < ¢t < 0.

(iv) R(t). f(t) are continuously differentiable for 0 < ¢ < o.

(v) Equations (3.1)-(3.4) are satisfied.

3.1 The Integral Representation
The fundamental solution to the heat equation is

G(r.t.€.1)=

l { (r = 5)2}
——————eXp{ — :
AT = 71) At =)
Suppose c(r.t), R(t), f(t)is a classical solution. then integrating Green's iden-

tity
(Geg = Geee = (c(r). =0
over the domain R(7) < £ < >,0 < 1 < { gives
o(r.t) = —/0' Glz.t: R(r).7) [B(r) + R(r)e(R(r).7)] dr
+/0' Gelz.t: R(r).T)e(R(7). 7) dr (3.5)
+ [7 Gla.tig.0)aole) de.

where

Since we assume that we have a classical solution, we may choose time ¢, suf-

ficiently small such that R(t) satisfies a Lipschitz condition. Thus we assume



the a priori estimate |G¢(R(t).t: R(t).7)| < C|t — 7|~"/%. Passing to the limit
r — R(t)* in Equation (3.3) and using the boundary conditions gives the

following integral equation

S(R(t).t) = —/(:G'(R(t).t:R(T).T)kb[\'(f(r))c(R(r).r)dT
+/:G5(R(t).t:R(T).r)c( Ri7).7)dr (3.6)
+ [T GURI € 0o ) de.
This is a coupled system along with
flty = f(0 l‘b/[ FIR(f)e+ 1)+ K(f)e] dr (3.7)
R(t) = R(0)+l‘p" (K(f)e+1) dr. (3.8)

These two equations are obtained from integrating Equations (3.1) and {3.2)
with respect to time. Thus if c(x.t), R(¢t). f(t) is a classical solution to the free
boundary problem then c¢( R(¢).t). f(1) solves the integral equations (3.6)-(3.7)
respectively, where R(t) is given by (3.8).

Suppose conversely. for some ¢ > 0 (0 < t < o) that c(R(t).t). f(1)
is a continuous solution of (3.6)-(3.7) with R(¢) defined by (3.8). Now we
shall establish the equivalence of these integral equations to the original free
boundary problem. The integral equation (3.5) defines a solution to the heat
s R(Y*

equation. Equation (3.4) is trivially satisfied. Also c(r,t)

c(R(t),t)
since ¢(R(t),t) is a solution to the integral equation (3.6) which was defined

by this limit. We need to verify Equation (3.3),

lim ca(z.t) = B(c(R(t).1). f(t)) = B(t).

r—-R(t)*

Integrating Green's identity and subtracting (3.5) yields

/G.ttR 7)[ce(R(T),7) = B(7)] dr = 0.
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Differentiating with respect to r and using the following jump condition from

Friedman {10].

Lemma 3.1 Let p(t) (0 < t < o) be any continuous function and let R(t)

(0 < t < o) satisfy a Lipschitz condition. Then for any t € (0, 0]

Jd
lim

r—R(t)* E;;

/UT p(T)G(r .t R(T). 7)dT = 3p(t)

t
+/0 p(r)[Cir(r.t:R(T)~T)]r=R(z) dr

E[cl.(R(t).t) - B(t)] + /0' GR().ER(T).7) e (R(T).7) = B(r)] dT = 0.

The bound |G, (R(t).t: R(T).7)| < C|t=7|"Y/? implies that the above equation

is a contraction mapping for sufficiently small t. Thus
c(R(t).t) = B(t) =0,

and the equivalence between the free houndary problem (3.1)-(3.4) and the

integral equations (3.3)-(3.8) is complete.

3.2 Local Existence and Uniqueness

In this section we prove that a unique solution exists for the integral represen-
tation for small times 0 < ¢t < o, i.e., where ¢ is sufficiently small. This will
involve showing that the integral equations are contraction mappings on a suit-
able Banach space. Let (', denote the Banach space of continuous functions
v(t) defined on 0 £t < o with the uniform norm

lJoll = sup Jv(t)].
0<t<o



Let the ball of radius M be defined by
Corr ={veC,:|v]| <M}

Consider the following nonlinear transformation defined on the cartesian prod-

uct,

T:Cort xConr = Co xCy

e | _( Tien
f Ty(c. f)
where T\(c. f) and T,(c. f) are the right hand sides of Equations (3.6)-(3.7)

respectively. Clearly C, x (', is a Banach space with
¢
f

(1) T : Copr x Coar = Coar x Copr. and

= [lell + /1] -

We need to show that

(2) T is a contraction mapping.

Then the Banach contraction principle gives the existence of a unique point

(c*, f*) € Cyar x Cyar such that

)

(1) T: Cont X Copr = Copt x Cong

Note that
lG(I t'f TH < ————C
[RAR ] |t _ Tll/z.

The Lipschitz condition for the position of the free boundary, locally in time

ke [t .
IR0~ R = = [ (et 1) de

ks
p

FAN

[(a+bM)M +1) |t = 7| = M*|t — 7|
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gives the estimate

|Ge(R(t).t: R(T).7)| < C M

aRTRE)
Let Ty(c. f) = Iy + [, + I3 where [, denotes the three integrals of the right

hand side of Equation (3.6). then we have
t ) ‘ t
0l < kil [ GRedr < ¢ [lasortym)| [ Gl
0 4]
< Cilla+bMHM)VE
t R(t) —
L) < §|/ L:——?(—T—)chﬂ < CMMVI
; .
L] < iC'/'x col )t ™M 2RO ge| < gl
) :
where ||-||, denotes the L> norm. Hence,
173 (e NS C [+ bAA)M| VE + CLMM*VE + jcoll., -

The estimate for Ty(c. f) is

1Ty (e S

Hf(()) + ;ii/t[—f(l\'c%- 1)+ K] dr\
| p Jo |

< ol + 5 [(a+ MM + 14 (a + b)) o

< fol + f;\[;\l'a + %‘_}M(a + bM?)o.

Thus. if we take o < 1.

( C )
f
l ”COIIoo I ‘fOl

Take M = ||co|l, + |fo| + L. then if,

< [Cila+bMHM + CyMM*

+ LMM" + 2 M(a +bMY)] /G

1
<
Vo < Cila +bMOM + CoMM= + %MM' + %M(a + bM?)




we have

<AL

()

Thus T maps Cy.ar x Coar into itself.

(2) T is a contraction mapping.

Let o = Ty(c. f) and o' = Ty(c'. f'). then

O - O*‘—-/[I\C N+ (f =Y+ (R f'd = Kfc)] dr
Using the triangle inequality we have the following bound

lef =< fl = lef =cf' +cff = f)

< M|f =+ Mie={1
Similarly.
lef2 = f2) < 2MEf = fl + M2 ||e = ||
llef3 = fB) < 3MS = [l + M3 le =
Thus

ITa(c. ) =Ta(d S < Avlle=clt+ Al = fIl.

Letting ¢ = Ty(c. f). ¥ = Ti(c. f') we obtain
@ =y = kb{ /G .TYRcdr
+/0 G(R(t).t: R(r). 7)R"e dr}
+ {/Ot Ge(R(t).t; R(T),7)cdT - /t Ge(R'(t), t; R(7). 1) d-r}

+{/0°°G(R ), t;€.0)co(€) dE — /G ),t:€,0)co (E)dE}
= B, + B; + Bs.



For the estimates B,, we follow Frankel and Rovtburd [8]. Using the mean

value theorem twice, we obtain the following identity

|AG| IG(R(t).t: R(T).T) — G(R'(t). t: R'(7).7)|

= |G(R(t) = R(T).t = 7:0.0) = G(R'(t) = R'(T).t = 7:0.0)]

= |G (Rt =7:0.0)[|R(t) = R(r) = (R'(t) - R'(7))]

_ |RG(R.t = 1:0.0)
- 2t —-1)

AU = By = (R0 = R

i

t—T1

Rk - r;0.0)|lR(“ — R(r) - (R'(t) - R'(7))

dR(7) dR(F)| - -
Mﬂ—(RhmeRJ—ﬂ&W

1
20 dt d!

where 7 < 7 < t and R is strictly between R(t)— R(7) and R'(t)— R'(7). Since

il

dR(7) _ dR'(T)
dt di

k
d |Ae— K'd||
p

< Lffe=dl+1f=F1D

and

IR < max{|R(t) = R(7)|.|R'(t) = R'(7)|} < M"|t - 7|
we have

AG] € 3L(le=€ll+1f = P MY = 7=

< Ki(lle=cli+|If = FIN e =72

Similarly

IA%—g = |Ge(R(t). t; R(T),7) = Ge(R'(t), t; R'(7).7)|

< Ka(fle=cll+1f = fID 1t = 7|~
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Now we can make the following estimates for B, and Bj:

| By ks

/' AGKedr — /' G(R'(t).t: R(r).7) [K'¢ = K¢] dr
o] 0

< Ks(lle=<ll+11f = 1IN+ Kallle = | + 11 = fl) /2

< (Rt 4+ Kt ) (le =+ 1f = £1D)
¢ 9G COGT
|B,| = /O_X—a?cdr—- ) o€ (¢" = c)dr

< Ks(lle~cli+1f = FINE2 + Ko lle — ¢l 72,
For the last estimate Bj, we define
8G = G(R(H).6E.0) - G(R'(t).t:£.0)
= G(R(t) = £.£:0.0) = G(R'(t) — £.1:0.0).

We now subdivide the spatial coordinate. suppose 0 < R'(t) < R(t). Then

R(1)

R'(1) x
B = [ SGae)de+ [ sGae)de + [ , 8Geol€)de

R'(t)

B3y + B3y, + Bas.

By the mean value theorem

§G = G (R-£.1:0,0)[R(t) - R(1)]

- _ﬂ%ﬁl_@_(ﬁ_g)(;(ﬁ —£,1:0,0),

where R'(t) < R(t.€) < R(t). For the first and last integral, we use the estimate
(R—6)G(R—-€.4;0,0) = (4mt)"V}(R - £)e~(R-07/a1
= ey B s e
V8rt

< CG(R - €,2t:0,0)t1/2.



For the first integral we have 0 < £ < R' < R < R. thus
G(R — £.2t:0.0) < G(R'(t) - £€.2t:0.0).
Sirnilarly. for the third integral we use

G(R — £.26:0.0) < G(R(t) — £.2t:0.0).

Thus
B s‘wﬁw;lﬁg“”'xGm—ammﬂWMowf
t R(t)
< Clle=d+ 01 = SN lcoll o
and

1Bai] S Clle= I+ 1S = FID 2 leoll,. -

The second estimate is

|Bza| < 2[R(t) = R'(t)]sup G fleo|

IA

Cllle =+ 11f = F1D et leoll

C(lle = cF+11f = fD llcoll. £72.

IN

The above three estimates give

|Bal < Kz (lle =+ 11f = F1D Heoll o 72,

Note that this estimate holds also for R'(¢) < 0 < R(t) and R'(t) < R(¢t) < 0.

Combining all the estimates above yields

() (7)
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= Ti(e. /) = T (. S + T2 (e, f) = T2 (¢, f)]



< {3t 4 (K + K5 + Ko + Kz [leoll,.) 1/}

X (le =<l +11f = 1)

+ Aifle=dllit+ A - ft
< (W02 + Koo'l + Ko (lle =l +11f = £}
< (Ks+ Ko+ K)o P lle =l +11f = f1)

provided o < 1. Now if we also choose ¢ such that
(1\.3 -+ 1\’9 + 1\‘10) 0'1/;2 < 1.
then T is a contraction mapping on B,y x Baas.

Theorem 3.2 There erists a ¢ > 0 such that the free boundary problem (3.1)-
(3.4) with continuously differentiable data co(r) satisfying A1 and the compat-

ibility condition A2, has a unique classical solution for 0 <t < o.

Proof: This follows from the results of Sections 3.1 and 3.2. Note that any
solution, regardless if it is bounded by M or not. must coincide with the above

solution to the integral equation in their common interval of existence. See

Friedman [10] for more details. ]

3.3 Positive Solutions

In this section we prove that the concentration and mole fraction are positive.
Recall that for positive concentration solutions, there will be a minimum free
boundary velocity, ky/p, corresponding to the constant rate of attachment of
crystal B (see Chapter 2). The following argument is similar to Roytburd and

Frankel’s [8]; we shall comment on the differences at the end of the proof.
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Theorem 3.3 Suppose there erists a classical solution c(r.t). f(t). R(t) for
0 €t < ¢ and that the initial data co(r) and fo € (0.1) are nonnegative with

co(r) > 0. Suppose that 1/p < Kipin =a or Kpax = a +b < 1/p. If (Al) and
(A2) hold then

Moreover, if K(f) < 1/p then c.(R(t).t) < 0. If we assume, in addition to A1
and A2,

A3 cor(0) = Blco(0). fo)
then

cx(r.t) < maxfeoz(r). co(R(t).1)].

Proof: By the continuity of ¢ and since ¢4(0) > 0. we have c( R(t).t) > 0 for
sufficiently small times. From Equation (3.2), we have
v(t) > -2 o ¢(R(t).t) > 0.
p

Define .
T* =sup{t:v(t) > 7;1 for0 <t <o} and

Dre={(z.t): 2> R(t).0< t < T"}.
By the maximum principle. ¢(r,t) > 0 in Dr.. Now we prove that o cannot be
larger than T~. Let T* < o, then v(T") = ky/p and ¢(R(T*),T*) = 6. We need
to use the boundary condition involving ¢, in order to get a contradiction. As

suggested by Figure 3.2, this boundary condition has roots at

v(t) = %,v(t) =kyK'(f).
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In the interval [0, T*]. f(¢) is bounded in {0. 1) (see the end of the proof). Sup-
pose Nmax = a+b < 1/p. Then N(f(T*)) < i/p. Att =T c.(R(T*).T*) =0,

and so we choose a time arbitrarily smaller,
T =T"-4§

such that A'(f(T")) < l/p. i.e.. K(f) < i/p fort & [T".T*]. In the interval

[0.T'].v > ky/p and ¢ will attain a positive minimum at some time T & [0.77.

e(RITH. T

2

0.

We can always choose ¢ sufficiently small such that the minimum of ¢ is on

the boundary r = R(t) as opposed on t = 0 since ¢y(xr) > 0. But from the

boundary condition (3.3)

c(R(T").T")

(AR (f)~1)e

< 0.

This gives a contradiction. thus ¢ must be positive. Similarly, if A, =
a > 1/p then K(f(T*)) > 1/p. We choose a time arbitrarily larger than
T*.T" = T* + 6, to obtain a contradiction. In this case, we assume that
c attains negative values in [T*,T']. Thus there exists a time T" € [T*.T’

where c attains a negative minimum,

e(R(T"), T") > 0.



Again from the boundary condition (3.3)

’ " "

o(R(T).T) = (bK(f)-v)ec

= (v =k (f})|c]

/1 \
< ks kf—’ — [\'(f)) |

< 0

we obtain the desired contradiction.

Note that ¢ > 0 implies that f > 0. From the differential equation
involving f. the horizontal component of the vector field of the phase plane
(f(t).c(R(1).t)) points towards the nullclinef = 0. This nullcline is given
by the curve f = K'¢/(Kc+ 1) = (v — ky/p)/v. which has positive f values
in [0.1] for positive c(R(t).t). Since c(R(t).t) > 0, fy > 0. the trajectories of
(f(t).c(R(t). 1)) will lie in the positive quadrant.

The estimate for ¢, follows iminediately from the maximum principle
and condition A3. Note that u = ¢, satisfies the heat equation with the
boundary condition u(R(t).t) = c.(R(t).t). We also have u(r.t) it cor(T)
for t > 0 and at r = 0 by A3. Thus u is continuous at ¢t = 0 and r = R(¢).
and then by the maximum principle we obtain the desired estimate. Note
that ¢.(R(t).t) has a maximum value since A'(f) is bounded between A, =
K(0) = a and A pax = A'(1) = a + b (see Figure 3.2). a
This proof differs from Frankel and Roytburd (8] in the following way; in our
case we had not only ¢(R(T"),T") = 0 but also ¢,(R(T"),T*) = 0. Thus it

was necessary to obtain a contradiction at a time close to T*.

Remark 3.4 The condition K'(f) < 1/p gives c.(R(t),t) < 0. This is a condi-
tion that we required in order to obtain oscillatory solutions for the linearized

problem. The linearized stability analysis was performed about the constant
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composition front (the travelling wave solution). Selecting a suitabie parame-
ter space, the spectrum of the linearized problem consists of a pair of compler
conjugate rools that cross the imaginary azis as the parameter is varied. Phys-
ically, the condition K'(f) < 1/p. means that the concentration at the boundary
is greater than the surrounding medium. Here the traveliing wave velocity ky

was sufficiently large to allow the solute to accumulate on the moving boundary.

Since f is bounded between 0 and 1, the solution curve (c(R(t).t).v(t))
must lie between the lines given in Figure 3.3. The bottom line has slope
ky K'min/p whereas the upper line has slope kyAmax/p, where Kpin = K{0) =
a, Kmax = A(1) = a + b. Similarly, for the case ky/p > kyAmax. the graph
of c(R(t).t) versus v must lie in the region v > ky/p and between the two

parabolas of Figure 3.4. The other cases may be similarly plotted.

<

Figure 3.3 : Plot of v vs. ¢. The trajectory (c(R(t),t), v(t)) must lie

between these two lines.
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Figure 3.4 : Plot of ¢, vs. v when ky A pax < ky/p. In this case

(v.ex(R(t).t)) lies in the region between the parabolas and v > ky/p.

3.4 Comments on Global Existence

From Equation (3.8). the position R(t) may be written in two parts.
p

where the first part has a Lipschitz constant of ky/p while the second part

R(t) - R(r) (t—r7)+ %/t K(f(s))c(R(s).s)ds =Ti + T,

contains an integrand depending on f and ¢(R(t).t). For each individual term
there are methods to establish global existence. For the Lipschitz term by
itself (T, = 0), one may use the procedure used to prove (3.6), integrating
time from g — 4 to ¢ instead of from 0 to ¢t. See Friedman {10] for more details.
For similar terms of the second type, Baillon, Bertsch, Chadam, Ortoleva, and
Peletier (2] have proven global existence for small initial conditions.

For both terms, the two methods above cannot be used simultaneously.
However, in Chapter 4, a global result is established for small initial data
and for a certain parameter space (see Theorem 4.9). The drawback here, as
opposed to the methods above, is that the parameter space must lie in the

stable range, i.e., where the planar constant composition front is stable.



Chapter 4

Bifurcation Methods

In this chapter we shall formulate our original problem as a bifurcation prob-
lem. We shall examine the stability of the steady state solution obtained in
Section 2.3 as a bifurcation parameter is varied. Note that in Chapter 3 we
have the existence of a general classical solution provided that the initial data
is sufficiently smooth.. However. this does not provide any information about
the stability of our base solution as the parameter space varies. and conse-
quently, we address this issue through the modern approach of bifurcation
theory. The partial differential equation along with the ordinary differential
equation involving the mole fraction can be written as an abstract nonlinear
evolution system (the precise correspondence will be detailed in Sections 4.1.2
and 4.2),

u ) u . N(u, f.u)

f f n(u, f,p)

38



39

where

p is the bifurcation parameter.
L(p) is the linearized operator about the steady state solution,
u is the perturbation from the concentration base solution.
f 1s the perturbation from the mole fraction base solution, and
N and n are the nonlinear operators such that
N(0.0.p) = N,(0.0.p) = Ng(0.0.p) = 0
n(0.0.p¢) = n,(0.0.g) = ny0.0.p) = 0.
The nonstandard feature here is the coupling of the ordinary equation with
the partial differential equation. Such systems. even where u and f can be

decoupled may have a subtle effect on the spectrum: i.e.. if

L) = Lypw) 0
lL(p)
one may have o(L) # (L) where ¢ denotes the spectrum of a given linear
operator (see Appendix B).
[n this formulation our partial differential equation appears as an ordi-

nary differential equation in a suitable Banach space. B. which will be specified

in the next section. We are interested in the following initial value problem

N(u. f.
S TR I I (u. fop)
. f n(u, f,p)
U(O) _ Ug
f(0) fo

where we identify u(-) = u(-,t) as an element of the Banach space, and f(-) as
an element of the (non-negative) real line R where both of these variables are
parameterized by time t. The initial data (ug, fo) is an element of the carte-

sian product B x R. The linearized problem will be solved using semigroup
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theory. We shall follow the philosophy of Henry [18]. and Hale and Meyer
[14]. where methods from ordinary differential equations are generalized. First
the state space will be decomposed into subspaces invariant with respect to
linearization, and then exponential bounds will be established for the solution
to the linearized equation. These bounds will be used in the nonlinear analy-
sis. A generalization of the variation of constants formula is then required to
tackle the full nonlinear problem. Stability will be established for small initial

data and for u below some critical value by emploving a contraction mapping

principle.

4.1 Linearized Problem

In Chapter 2. a constant composition front solution was found. Linearizing
about this solution will give us the necessary conditions for a Hopf bifurcation
(see [28]). We now perform some preliminary transformations. The following

change of coordinates will translate the moving interface to the origin.
r = r—R()

1

t = L
Now we make the following perturbations about the planar solutions,
clr,t) = cy(x.t)+c(z),

fly = fult)+ f,
v(t) = u(t)+0.

Dropping the primes and the subscripts. the transformed system is
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¢ = Crp+ (0(1)+ hy)er — kyAv(t)e R r>0 )
k

o(t) = —/f(k(f)(am—cm) r=0

c. = kik(fMe+c)—=vitMe+e)—hkice—hkee =0 (-+.1)
- ky 1 - ] - 1

f = ;;[—f—f+k(f)(c+c)(l-f-f)J r=0

¢c = 0 I =X |

where
k(f)=a+bf*+2bff+bf2 (4.2)

The travelling wave solution is now (c.v. f) = (0.0.0). Note that the boundary
conditions are evaluated at r = 0 as opposed to the moving boundary. This
is done at the expense of boundary terms appearing in the partial differential

equation. Linearizing the system about (0,0.0) gives

o = cer+ kyer = Ky Av(t)e=toT r>0
o(t) = %@my+umq) r=0
¢ = ho(k(0)~1)c+ hh'(0)ef ~cvr r=0
| ) i \ (4.3)
f= Sllerk@ea-p)s  2=0

+ K(0)(1 = fie]

c — 0 T — oo.

7

Next we consider the parameter space (¢, cx, ks, a,b). The value of the
density shall henceforth be fixed at p = 14co. (Recall that this is the condition
for nontrivial travelling wave solutions). From our discussion in Chapter 2, we
choose u = b/a as our bifurcation parameter. Recall that this quantity is a

measure of the affinity of like crystals to attach to the moving interface. The



other quantities, ¢,c». ks, and a will be held constant as y is varied. Under
certain values of the parameter space (specific values will be given in Chapter

6) one can show that the spectrum o (L) of the linearized problem lies within

the region

(Im{A))* < —kfRe(}) (A€ C)

along with a pair of eigenvalues that cross the imaginary axis as p varies. These
calculations have been done in the author's Masters dissertation [28]. This is
the standard formulation of the Hopf bifurcation except for the addition of
zero to the spectrum. This latter problem, as we shall see, is easily remedied
by employing Sattinger’s idea {25]: the continuous spectrum may be shifted by
the introduction of weights. We shall now summarize in the next subsection

the results in terms of an eigenvaiue problem.

4.1.1 The Linearized Eigenvalue Problem and its Spec-

trum

We shall now set up our evolution equation for the linearized operator along

with the appropriate evolution phase space. Substituting

c(r,t) = eMe(r)
flty = eYf(0)
into our linearized system
c c
=L
S f
t
yields the eigenvalue problem
T) c(x
L ( - (z) (4.4)
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where L is the linearized operator obtained from the first and fourth equations

of System (4.3) with domain
D(L) = {(c.f) € H*((0.20)) x R:c; = ky (k(0) = 1) ¢ + kok'(0)ef —Ev} ,

The space H*((0.x)) is the Sobolev space of functions which together with
their first and second distributional derivatives are elements of L*((0.2c)).
The definition of L incorporates the above Neumann condition. whereas. the

Dirichlet boundary condition

ky

0it) = = (KOl + K (01ef)

serves as our definition of the velocity. Thus ¢ and f are regarded as the un-

knowns. The underlying evolution space is the Banach space B = L2((0.2c)) x

)

where ||-|| on the right hand side denotes the L? norm. Qur space is a Hilbert

R with norm

= [lell + 1/1

space with the inner product

Cy Cy xc _.
<(fl).(fz)>=A C](’_)d.l'+f1f2.

The eigenvalue problem (4.4) can then be explicitly written as

Oez + b0z = A =524k (0)ee k7 \ [ c(2)
0 ar = A £(0)

, (45)
( —Eﬁik(O)e‘kb‘ )
+ ? c0) =0
Qg
where L
a = ;:;(—p+k'(0)c(1—f'))
@ = Zro)i-])
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The resulting differential equation is easily solved. giving the following

solution

o) = A0 focl VIS L e VERR)E )

kA _
~ 2 M(N)er R,

A
flo) = fo

where fy is an arbitrary constant. The ordinary differential equation involving

f. and the remaining boundary conditions. reduce to

where
H()\) = A;“‘
A+ k
M) = 1—fb
V(A) = A(k(0)p = p = cx) + k(0)ksp = ki(p + cx) + kok (0)E(1 = )
‘ k(0)(1 — f)
AN(N) = KEAM(X) = RN (AH() + ks AM()))
1.(\) =

AM/KE+4A
ky A

A< = HQ)+ =S=M0) = 440

R(\) = %(—kb—\/k§+4/\).

A is given in Section 2.3 and k( f) is given by Equation (4.2). The dependency
on the bifurcation parameter u appears explicitly only in these two terms. For
A = 0 and A = —k?/4 there are slight modifications to the terms A,()) and

A_(A) (due to division by zero) which we shall omit.
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The first two terms of Equation (4.6) are linearly independent solutions
while the third term is the particular solution to the eigenvalue equation.

These two linearly independent solutions are

~kyt S kE+4N] 2
ot(.r)zc( ’ b )
Bounded solutions involving linear combinations of these two solutions corre-
spond to the continuous spectrum oc(L) of the linear operator in L%((0,oc)) x
R,

~k2Re()) > (Im(A)*.

Actually this condition comes from nonzero A, (A) (i.e.. when o4 (x) is present).

The solution ¢_(.r) is always a decaying solution

o-(r) =3 0
A pair of eigenvalues A; is determined by imposing the boundary conditions
on this decaying solution. i.e., set A, (A) = 0. As discussed in the previous
section, in the appropriate parameter space. these eigenvalues will cross the
imaginary axis as the bifurcation value p increases over a suitable interval [

containing the critical value y... i.e.,

As(p) = al(p)xi3(p) where J(u) #0for p el
’\t(ﬂcr) = :tld(llcr)

d

—Re A(p) > 0
dy

K=tcr

The eigenvectors associated with the eigenvalues Ay are
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where

ky A
ve(z) = A_(Mi)o_(r. ,\i)—;—t\[(/\ Je ko

- A_(I\i)e—%hre—r(.\*): _k_\b_'_{_/‘” )-kbr

Nt
r(A) = \'/%é--*-/\.

Remark 4.1 Looking at Lquation (4.5) one might expect that A = oy belongs
to the spectrum. This is only so if a; < 0. since the boundary conditions
dictate that X must lie within the parabolic region —kiRe(X) > (Im(A\))?. This

case corresponds to the initial concentration c(r) satisfying c(0) = 0.

A regular Hopf bifurcation cannot take place, since 0 € a(L). Using
Sattinger’s idea [23]. we introduce the weight W (r) = exp(kyr/2). We now
consider the linear operator L as a transformation on the weighted Banach
space

By = {(c.f): Wee L2((0. x) ). f€R}.
Now we shall assume that the initial data decays exponentially and that the

linearized solution decays exponentially.
c(r.0 co(r)
) _ | ool ¢ By
f(0) Jo
c(-.t
) € Bw-.
fo

There is an isomorphism between By and B. We make the following trans-

formation
k
u(z,t) = e'?hrc(.r. t).
This will shift the continuous spectrum; the parabola enclosing the region

—kZRe()) > (Im(A))? collapses to the ray

k?
{/\ : Im(A) = 0,Re(N) < —T} .
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In this weighted space the first component of the eigenfunctions still belongs
to L2,
ko3 yry € L%*(0.00)) or

since Re(r(Ay)) > 0. With the above transformation we may again consider

the space B = L? x R. With this transformation our full system becomes

k .
u, = uu+vu,—T”(‘lv—%k,,)u—-k,,Avf"‘” r>0
k
voo= b R(f)(¢c+ u)—cy) r=90
p
Bl ) ke
ur = kbk(f)(c+u)—v(c+u)—kbc,x-7u r=20
. ke o - _
f o= Sl -r+kNerwi-7-n)  x=0
u — 0 I = oc

along with the linearized system

k} :
Uy = u::“TU—'kb’lve ko3 r>0
vo= Ab(k( 0)u + ~'(0 f) r=0
p
ky _ _
ur = (kdc(O)——) u + kok (0)ef — év r=90

fo= 2lsoN- - (p-KOa1-D)s] =0

u — 0 I — 0.

As before, we write the linearized system as

)l
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D(L) = {(c.f) € H*((0,)) x R: u, = (kbk(O) - ]‘—)") u+ kok' (0)Ef — év}.

-

The Dirichlet condition continues to serve as our definition for the velocity v.
Finally. in order to simplify D(L). we shall perferm one more transfor-
mation. The mole fraction f(t) can be eliminated from the Neumann condition

through the substitution

w(r. ) = u(r.t) + Qe £ (1)

where
k'(0)é
0=
k(0)
Our nonlinear system becomes
wy = Wrr+ 0Wr — A—; (20 + hy) w r>0 1
+ Qf'tlkr(f + ke f) - kb:lve'tznr
ky i
v = —)(k(f)(c+w—Qf)-—C,x) r=0
{
wy = kh(f)é+w—=0f)—v(e+w-Qf) r=0 (4.7)
k
- kbc,,o - -EbLL‘
: ky . ) N
fo= (I -I+kNE+w-N01-f= D) =0
w — 0 I — 00 |

and our linearized system becomes



w,

wy

w

where
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We write the above system as

w

f

)

where

B\(z)

By (z)

,2 s k
Wry — éiw +Qfe 7" — kb:lve"?h” r>0
é‘—glc(O)w r=290
p
auw r=20
k
o2 k(01 = fhu = o] r=0
0 I = oC
a = kyh{0) - 5:1 — -klc,x. (4.8)
2 p
w
L
f
w w
Lo +Lg )
f f
A-8 0\ [ w By(z) Bi(z) \ [ w(0)
+
0 by f bs 0 f

{(w. f) € H*}((0.00)) x R : w; = aw}

82
T ¥
kyk'(0)e x LT
= (kbk’z(o)é - kbzk(O)A) C—ERhI = Bze-%kr
pe p
ky



The linear system above is subdivided into two parts, the second term contains
all the coupled terms along with the boundary term w(0.¢) while the first term

nas no coupled terms. We define the principal pari of L by

A0
0 b

Lp =

The operator Lo differs from Lp only by the presence of the term A}/4. Both
these operators contain the highest order spatial derivative of w. When devel-
oping the L? bounds of Section 1.1.3 and the regularity results of Appendix
C. we shall follow the theme below. First the desired result will be obtained
for Lp. and then proved for all of L via the variation of parameters formula.
Along with the variation of parameters formula, the results of Appendix B will
also serve in deriving the L* estimates. In this appendix. equivalent Sobolev
norms involving fractional powers between Lp and L are developed.

Note that the eigenvectors corresponding to the linear operator L above

are \ .
€Uy (r) + Qe™ 37 )
€ B=L((0,0)) x R.
1

We close this section with a proposition that summarizes the results of this

section.

Proposition 4.2 The linear operator L defined by (4.9), considered as an
evolution operator defined on B = L*((0.00)) x R has the following spectrum
o(L):

1. A continuous spectrum oc(L) = (—oc, —=2].



2. A pair of compler eigenvalues op(L) = {Ag(p)}. that cross the imaginary

aris as u varies over a suitable interval [. The associated eigenfunctions are

where
K(0)e  kyA
= SUREILI — =M\
Pe(r)y = A_(Ag)e + (k(O) " ( :t))
and
2
r(A) = k—;+/\

4.1.2 Linearized Stability

Now we shall establish existence and uniqueness to the Cauchy problem for
the linear evolution operator and then state a stability result. The abstract

Cauchy problem for L with initial conditions (wo. fo) consists of solving the

initial value problem

w(0) _ ( Wwo )
f(0) fo

(wo, fo) € D(L) C L* xR,

where

such that (w(t), f(¢)) are continuous functions for ¢ > 0, continuously differ-
entiable for t > 0, and (w(t), f(t)) € D(L) for t > 0. A standard theorem
from semigroup theory ([18],{23].[30]) will be employed. In order to use this

theorem we must look at projections off the eigenmanifold. First we state this

standard theorem,
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Theorem 4.3 Assume
(i) A is a closed densely defined linear operator on a Banach space B.

(11) The resolvent of A, p(A), contains the sector
S(woo)={Xd:larg(A —w)| < T —0o. A #w}

for some real w and o € (0. 7).
(111) For some C > 0.

“(AI -4 < (l-/\(-‘:—j Jor all X € S(w. o).

Then A is the infinitesimal generator of an analytic semigroup T(t). Moreover.

w(t) = T(t)wo is a solution to the Cauchy problem where wy € D(A).

For our system L is obviously densely defined since functions in H*((0.>c))
with the flux condition w,(0) = aw(0) are dense in L*((0.2)). Since 0 € p(L)
then L~' is continuous. This implies that L~' is closed and consequently L
is closed. Part (ii) is satisfied for any © € (0.3) and w € (—%i.O) except
for the pair of eigenvalues (see Figure 14.1). We thus must exclude the imagi-

nary eigenvalues by projection operators. Part (iii) will follow from estimates

involving one-sided Green's functions.

ImA
o
—
S
<
op
—_—

Figure 4.1 : The Spectrum of L and the sector S(w, ¢).



Theorem 4.4 The linear operator L defined in (4.9) is
(1) closed and densely defined, and

(2) the resolvent operator of L satisfies the estimate

N Clw.o) || [ w
A= L) ( . ) < ‘
( ) f A=W f
I N 1 s Il

for any w € (0.x).0 € (0. 3) in the sector S(w. o).

Thus L is the infinitesimal generator of an analytic semigroup e** and

w L wy
f fo
is the solution to the Cauchy problem with initial data (wy, fo) € D(L).

Proof: Part (1) was proven above. For the asymptotic estimate we shall look

at the resolvent equation away from the poles. The resolvent equation is

uw Fl
(L= Al =
f F,
where (F|. Fy) € L* x R. From System (-.9). this equation is explicitly

ki )
Wer — —:-w + e (Bif + Byw(0)] = A = F

bif + bow(0) — Af F,

where the second component is easily solved,

F) - bgw(O)
bh—A

Note that b, = —k,/¢ so that b; € o¢(L) if < is small enough. Thus we do not

f=

have division by zero for f since A € p(L). The first component will involve
boundary valued Green's functions. The homogeneous solution of the above

equation (with F| = 0} is

wi(z) = wee "M + (6‘521’ - e"“)z) (Blf +,\ng(0))




where

12
A)=1[= + A

r(A) 3 +
The Green's function associated with the boundary condition w(0) = w(ec) =

0is

1
[ mf-r(.\)r (C—r(.\)s _ fr(,\)s‘ 0<s<ur
( 2riA) : /
I.S) =
J b) 1 6_r(.\), (C—r(.\).r _tr(,\).r) r<s <
r(A)

giving the solution to the inhomogeneous problem
w(r) = wy(r) +/ glr.s)Fy(s)ds.
0

To determine w(0) we impose the boundary condition w.(0) = aw(0). This

1 k}) b]Q}'«z x
1 - - /\ _— —— P _+_ - r(\)’F s s
o d[(r( ) 2)/\(/\—61) _/u ‘ 3 )d]

2r(A) — ky [bga/\ k;;’Ak(O)}

gives

where

d=—-a—-r(A)+

2 A—=b p
One may verify that d = 0 precisely at the poles Ay. For any w € (0.o¢),0 €
(0. 3). the sector S(w. o) avoids the poles. Thus there exists a positive ¢ such

that |[d|~! < 7! for A € S(w.9). The integral operator defined by
Gk(z) = /m glr,s)k(s)ds
0

satisfies the L? estimate

C ikl

IGKI < oy

for A € S(w. @).

This result is due to Naimark [21). Using this estimate along with the estimate

o] = s
2Rer(}) T Ir(A)Iz




(1]
n

gives the desired estimate away from the poles, namely,

I w curl+1R) . ¢ | A
“l P | A e i oVl | WS
B ()
A=\ R
Note that Rer(A) > 0 for A € S(w.0). O

This establishes that the linearized problem has as its solution an analytic
semigroup.

Our next result is a stability theorem for the linearized operator. This is
obtained through invariant subspaces and exponential bounds from semigroup

theory. First some preliminary definitions are given.

Definition 4.5 Let L be a linear operator defined on a Banach space B, with
range also in B. Denote the spectrum of L by a(L). A subset & of the extended
spectrum o.(L) = o(L)U {x} is a spectral set if & and o.(L)\ o are both
closed in the ertended compler plane CU {oc}.

Definition 4.6 The linear operator S in a Banach space B is a sectorial
operator if it is a closed densely defined operator such that:

1) the resolvent set p(S) contains the sector

Soo={A:0o<arg(A —w)| <7, A Fw}

T

for some ¢ € (0, %) and some real w, and

2) satisfies the following estimate
a1 - $ < M for all A€ T, .
1A - w| '

Note that according to this definition the operator —L is sectorial.



Theorem 4.7 Let o, be the bounded spectral set corresponding to the eigen-
values Ay. Let a3 = o(L)\ oy (i.e., 0y = op(L). 02 = o¢c(L)). Let E, and
E, be the continuous projections associated with these spectral sets. and let
B, = Ei(B)i=1,2. Then
!. B = B,%B,, the subspaces B, are invariant under L. If L, is the restriction
of L to B,, then

L,: B, = By is bounded and o(L,) = g,

—L, is sectorial with D(L,)= D(LYN By and o(L;) = o,.

2. The following estimates erist

2

S (.-'(w')e-w‘ .2
for al 0 < w < f\i
s |

7AN

(w(w‘)t-lt—wl

3. For a given value of the bifurcation parameter p.
He""“ < (e’ where 3= ReAs(p).
Thus when p < pe we have stability for the solution operator €™,
e < cen

Proof: For the proof of part 1. see Dunford and Schwartz [6] or Taylor {29].
This involves an operational calculus, where Cauchy integrals are used to define
continuous projection operators associated with the spectral sets. Parts 2 and
3 follow from Theorem 1.5.3 from Henry [18]. For completeness we state
this proof. The operator 4 = —L is sectorial. Let &, = {-A:+} and 7, =
o(A)\ &, = {[k?/4,00)}. By part 1, we have the projection operators A
(t = 1,2) on the invariant subspaces X; = A;(B). Suppose r € X,, ||z|| < 1,
and A ¢ o(A), then (A = A2)~'z| = |(AM = )7 2] < CIA™ for A > R
and for |argA| > ¢ for some R > 0 and o € (0,7). Since Reo(A;) > w
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(W) ]

2
for w € (0.%‘1), then H(/\I —.42)_1“ < CX = | for larg(A — w)| > ¢ for
some ¢' € (0,%). Thus the operator A, is sectorial, and the estimates for
e~42t = el2! follow since the real part of the spectrum of A, is strictly positive.

The estimate for eX! follows since L, is a bounded operator (see [18].[23]). O

4.1.3 L* Bounds for the Linearized Operator

First L? bounds for the principal linear system are developed and then we pass
to the full linear system by the variation of parameters formula. These esti-
mates are required when we pass to the nonlinear system of the next section.
By the variation of parameters formula, there will be convolution terms in-
volving nonlinear terms and the analytic semigroup generated by L. We follow
Frankel and Roytburd's 7] treatment. The first proposition follows imimedi-
ately from their work since for the principal linear system Lp, w and f are a

decoupled set of differential equations.

Proposition 4.8 Suppose (w(t). f(t)) is the linearized solution with initial
conditions wy € H'((0.2c)). fo € (0.1). Then (w(t). f(t)) is continuous for
>0, t>0. If u < per then

R R [ R |
|f| fo
“wl'” S C Wo 6—6!
|w(0.t)] fo J,
where
Wo
= {|woll g + fol = llwoll + {{wozl + | fol.
0

1

Proof: By Sobolev’s lemma, we may identify wp with a continuous function.

Continuity then follows from the proof of Theorem C.1. The solution to the



principal linear solution is (see Appendix C)

aF(z.t)+ F.(r.t) a>0
~2ad(—c?)e* e 4+ aF(z.t) + Fo(z.t) a<0

flt) = foe™!

where F(r.t) is the solution to the heat equation on the line with odd data

. F >
Folr) = { ole) 20
- Fo(—=1r1) r<0

and where

Fo(r) = /Ur e (s) ds.

Recall that a is given by Equation (4.8). As in Appendix C, the initial data

is decomposed as follows. If a < 0 let

ug(r) = =2a®(—a?)e* + Uy(r).

For a > 0 we shall identify [y with wy. thus we write

where for a < 0

/mUo(x)e‘"d:r = 0.
0

Now we shall give the L? estimates. Let e** be the solution operator to
the full linearized problem. If u < ., then by Theorem 4.7

IR R

< CC—&




where § > 0 is determined from the linearization. The estimate for w, is more

involved and consists of two parts. We need to fix T > 0 and establish L?

estimates for the principal linear system in the fixed time interval 0 <t < T.

By the ordinary Fourier transform. we obtain for a < 0. the following estimate

IA

<

2

‘l“-/ c-"‘f--"('o(s,(zo;'l
—/Ixe""”") /% Co(p)e™ dpds

. 2
/ (O(p) 61;11’ dp
-x .+ 1Ip

~ I 2 2
/ MO(I)H) dp
-x |a +1p)?

1 o
— 1))
=

2

C ol

One can show that the same estimate also holds for a« > 0. Thus

[®(~a?)| < Cllwdl

£l

10 = eFoll < C fjw| -

The L? estimates of w, follow from the L? estimates of F and F,. For a fixed

time interval 0 < ¢t < T. the first term of w(r.t) and its spatial derivative are

bounded by C ||we]| for a < 0. We require estimates for the term

w(zr.t) = aF(z.t)+ F(z.1)

= ol (F)+ iF(Fo)
Jr

= [(afo+ FY)

where [ is the solution operator of the heat equation on the line. Note that

lall = |C(afo + K

IN

€ (Jafu] +£5]) -
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For wo € H',

llw:l < € flwoll,

since w, involves £, and F. This same estimate holds for the full linearized
problem via the variation of parameters formula. For t > T the proof is based
on scmigroup theery. The estimates below use the norms that were developed
in Appendix B: they involve fractional powers of the operators Lp and L. The

estimate for w,; is

Nweel] = |[=Auw|| £C “wH'z,__\ = Cl(=d 4+ m)uwl|
(—A+m 0 )(u) (w)‘
< C =Ci(-Lp+m)
0 by +m f f
< C (—L+d)(w
f
w w
< (L +Cd
( / ) ( f “

< (C\\Lett o + Ce™ 8t o

fo fo

S (CT—16-51+C6-61)

()

)

Ce—&r

IN
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The estimate for w;, is
2 o 2 ¢ o
w, wel® dr = wewl]) - wepwdr
0 0 0

= —Q ‘10(0)|2 - (—_\w. lL‘)

!

< al ||w||§'__\ + [|Aw|| |lw]]  (by Sobolev’s ineq.)
2
< C‘e—'lét wo
fo

Combining this last estimate with the estimate for 0 < ¢ < T gives the desired

result. Finally, the estimate for w(0.¢) follows from Sobolev's inequality. O

4.2 The Nonlinear Problem

The main result of this section is the existence and uniqueness of a solution
to the full nonlinear problem. The principle of linearized stability holds here.
where linearized stability implies nonlinear stability. In particular. we shall see
that for sufficiently small initial data. the solution to the nonlinear problem
is stable below the threshold bifurcation value y... First we formally write an
integral representation of the nonlinear system via the variation of parameters
formula. Then we prove that this is a contraction mapping. and hence that a
unique solution exists. The L? estimates for the linearized system developed
from the previous section are crucial for our analysis.

The nonlinear system (4.7) may be transformed such that the mole frac-
tion f may be eliminated from the Neumann condition just as in the linearized

system (4.9). This may be done by the substitution

u(z,t) = w(z,t) — Uy(z) [we(0,t) — aw(0,t)]

where



Our system is then in the form

| u A’V o J
) =Q(u)( = L(u) u)+ (ufﬂ))
!, f f n(u, f.p)

where N and n contain all the nonlinear terms of u and f, and p is the

bifurcation parameter. | he domain of () becomes
D(Q) = {(u.f) € H' xR : u(0) = au(0)} .

With this transformation the operator L remains the same: it is the same as
in System (4.9). As in our linear analysis, we subdivide the operator L. as
a sum consisting of a decoupled operator Ly. along with a coupled operator

Lpg. By the variation of parameters formula, we obtain. formally, the following

integral equation

u) ~ Lot Uy -{-/tel“’("’)[,;; u(s) ds
f fo v f(s)

(-1.10)

where

we [ eFa6m o H(t) 0
et = = .
0 et 0 &b

The operator (i(t) solves the heat equation for r > 0 with the boundary

condition u (0) = au(0).

We shall write Equation (4.10) explicitly in terms of our old system

(4.7) where the boundary conditions are of the form

v

V(f(t),u(0,1))
we = W(f(t),u(0,t))
fe F(f(t).u(0,1))
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with V, W, F the corresponding right hand sides of System (4.7). We denote
the linearized terms by V7. W, Fy (i.e., the associated linear boundary terms
of System (4.9)). Note that W, = ou(0,t). The nonlinear terms that appear

on the boundary. are of the form

V—Vr o fAO S ful fiu
W =W, o 2L fud fPu, fu f2E
F—F, o f2f 0 fu ffu. fu.

The integral equation is explicitly,
; ky
u(t) = H(t)uo +/(; H(t —s)e” 37 B f(s) + Byu(0.s)] ds

k
+ H *vu, — ‘—)bH * rUu

k'(0)
k(0)

eH s ¥ (F = Fp) + kyef]

— kAH s e RV — 1) (4.11)
+ 1wy (0)[W = au) — uy(t) [Wo ~ aug] = (1), * W — au]

+ouyx e[ = aul + g+ [W = aul

t t
f(t) - foeblt+b2/ eb‘“")u(O,s)ds-*-/ 6b\(t—s) [F_ ﬂL](s)d.s
0 0

Hx«f

I
'c\_-‘
=
—_—
L 8
|
.
—_
-
—
7/
—_—
[~
»

u(t.z) = H()U,

wlt,z) = H(t) (0 -%0))

us(t.x) = H(t) <U1 -%z'Ul)-
Integration by parts was used on the term H « U\[W — au];.

The nonlinear stability theorem for the above problem can be stated as

follows.



Theorem 4.9 If p < e, then there erists an ¢ > 0, such that for any

(]

the integral equation has an unique solution with the following bound

()]

Proof: We consider the Banach space

= |luollgs + 1fol = lluoll + lluocl + [fol <<

1

< Ce™*,

X ={(u.f):ueC((0.2). L) N C((0.%), H'). f € C{[o. <))}

with the norm

u
“( ) = flullx + |flx
f X
where
luilx = St:pllu(ut)llle“«m
fix = SL:Plf(t)l<f‘s'<:>o.

We denote the right hand sides of (4.11) by A (u. f) and A(u. f). so
| ou Ky (u. f)
I = .
f Ka(u. f)
The operator A, maps X into X, i.e.,
K:X->X.
This follows from the continuity of the linearized solution. Now let

)

<r (r<l),

X

6



this implies ||ul|, < re™® and |f(t)| < re™®.
In order to show that A" is a contraction mapping we begin by summa-
rizing a series of estimates. First we give some preliminary estimates that are

obtained from Proposition 4.8 and Sobolev's inequality,

UL =Gl

u@.)] < Clull, < Cre=%

IN

Vel < Cre™®
V=i < Cf] (ltt(0-1)|+|f||u(0-t)l+|f|+|f12)S("r‘ze'”'.

The first nonlinear term of Ay is H = vu,.. We begin with the following

estimate: for any € L?((0,2)) we have

[H()all, < NH(Ga]| + | H ()i

| . | .
< ce )| “ s cl=L+ et | ™
f f
| @
< Cre?® 4 Cllet (=L +d)*
. f
< Cre ¥t 4 (Ct-i°

()

which is true for all ¢ > 0. With : =1/4, and ¢t > 1, we obtain

| H(all, = |H(t = DH(L)a||, < Ce D H(1)a), < Ce¥173 l

Wi
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Thus.

t—-1

|H * vuz||, H(t — s)vu,ds

IN

t
+” H(t —s)vurds
0 1 t=-1

: of f

-t . t-1 L3,
C'/ S0 2= g 4 C'/ (t —s) 1 rfe 250 ds
0 0

1

PN

IN

t
ds+C‘/ (t —s)”
t-1

IN

< (CrfeTd
Similarly. the estimate for the second nonlinear term is
| H = vull, < Cre™®,
From Proposition (4.8). we have
fudl, € Ce™® fori=1.2.3
since [’y € H'. Now we outline the estimates that involve u,:
lur (Wo = auo)ll, < Clluy|), e < Crie™®,

la(O)[W = cw]]], < Crie™®,

fluz* v [W —au]l|, =

t
/ ur(zr. bt = s)e (W = au] ds
0

1

IN

t
/ lug(z t = s)||, rie™ ¥ ds
0

t -
/ Cf-&(t—a)rle—&h ds
0

IN

t
< Crse"‘”/ e ¥ ds
0

< Crie™d,

and similarly,

llus * [W = aul|l, < Crie”®.
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Note that ||uy,]|, < C't=3/4. This estimate follows from the representation of u,
involving Fy(r) of Proposition C.1. The norm lu1e]|, involves the L* integral

of 8. This gives the following estimate

t—-1 ]
[(uy), * (W = au)|l, < H/o (ur), (t =)W —au](s)ds

1

+ ”/lil (uy), (t = $)[W = au| (s)ds

1

IN

! 2 _-2s 4. ¢ 2 288 .
C/O ”(ul)‘le ¢ ‘ db+C_/;_1”(ul)t”1r2€ 2 ds

. [t . . t _3 .
< C'r'/ At b R CrZ/ (t—s)"Te 50 ds
0 t

-1

< (Criet,

The remaining nonlinear terms of A’ involve the estimates

3
< r<e 2!5l~

(F = Fp) + kyv f]
V=1

which vield

”H we"F((F - Fp) +kbvf]Hl

< ('red,

Hxem ey = m“
i

Finally, we estimate the operator A;(u. f). The largest nonlinear term

that appears in the integrand is r?¢~%*. Thus

t
Ba(u /) S Ce™ 4 [t |F = By (s)ds

t
< Ce ¥4 C'r2/ e (t=2)p=28s
0

< Ce™® 4 Crie .



Thus we have

Ik, < | ] e+ ore
fo
1
IR el | B | I e
I\ fo /1,

Now let r = (u, f). so that ||Kz||, < C|lzoll, % + Cre™*, or equivalently.

HI\’I”_\' <C ”I0“1 + ()

|I||.\'-

We shall show that A" is a contraction mapping using the estimates developed

above. We have
|Ke = KT < Camax {||zfly . |ITl 5} |x — |l ¢ -

Using a standard iteration argument. we can find a fixed point if the data is

chosen sufficiently small. Define

P =0
™ = Rr*lin> .

We need to show that {z"} is a Cauchy sequence. From the estimate
[Az" — Kz™y < Camax {|[z™Ix . [la™ I }lz" = 27| x .

we need to show C'3||x™||, is less than one for all n. This will require the

following estimate
Kzl — K% < [IKz" = K29 < Calle™lx el
. 2 -
IKz™ly < Callz"llx +I1Kz%

< Callz"llx + Ci fizoll, -
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Now we shall show that C3]|z"||yx is bounded by } if we choose our initial

condition sufficiently small such that C,Cy||zoll, < 3. We give the first two

estimates,
Cslle'lly < GlIN 2Oy £ CCallaoll, < §
Cllatlly = IRy € CoCalle I + Gy ol
< (Calletllg)* + CiCallzall,
< (GGllxoll)” + CiCs ol

2

< ()41

One can show inductively that

A n
(.‘} “I ”J\ < d,
where
1
a) = -‘
Qny1 = ai+a, forn>1.

This is a monotonically increasing sequence with limit % and so consequently.,

we have

“[\'l‘n _ [\’Im“,\’ < %”J‘" —rm y = %“[\’In—l _ [\'Inl-—l“x

+1
< (%)m |e"™ — 2%, (for n > m)
I\
< () &

This Cauchy sequence gives the existence of a unique fixed point, i.e.,

Kr=1r.



Chapter 5

The Hopf Bifurcation

To rigorously prove the existence of a Hopf bifurcation we shall use the ap-
proach of Crandall and Rabinowitz [5]. Our system. written as an abstract
evolution equation. 1s

SR IO AU B R T A )

f f n(u. f,u)

t
where L(u) is the parameter dependent linearized operator. As shown earlier.
the operator L has the necessary conditions for a Hopf bifurcation. At the
bifurcation value y = e, L has two purely imaginary eigenvalues while the
rest of the spectrum has negative real part. The formulation in Crandall and

Rabinowitz's work [5] is slightly different, namely, their evolution equation is
uy = Lou + R(p. u)

where Lg is the linearized operator evaluated at the bifurcation value p =
fer. Otherwise our procedure is the same as theirs. We write (5.1) as an
equivalent integral equation via the variation of parameters formula. This

integral equation is considered on a space of periodic functions. The implicit
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function theorem is used to prove that periodic solutions exist. We shall show
that a one parameter family of solutions exists for the concentration. mole

fraction, bifurcation parameter, and the period.

First we shall review the idea of a bifurcation in a Banach space (see,

for example Smoller [27]). Consider the function

f:Rx B, = By
flp.r) =0

where B, are Banach spaces. In particular, f could represent a system of

differential or integral equations. The solution set is
S7H0) = {(p.r) € R x B, : f(u.x) = 0}.

Without loss of generality, suppose we have the solution set r = 0 for y in

some interval [, i.e..

flu.0) =0 for ju — pol < 6.

We shall denote this solution set by T,

= {(p.x(n)): pel.z=0}.

Now let (ug,0) be an interior point of the curve I'. We are interested when
a neighbourhood of this interior point contains solutions of Equation (5.2)
which do not lie on ' (see Figure 5.1). When this occurs, we say that (p0,0)
is a bifurcation point with respect to ['. Solutions not lying on [' are called
bifurcating solutions. In particular, we are interested in the existence of a
continuous branch, I, emerging from (uo,0). Obviously the Banach space
version of the implicit function theorem fails at this point. In order to prove

existence we need to first modify Equation (5.2) in order to use the implicit
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function theorem. This is done by dividing out the zero solution: the implicit
function theorem may then be used on a certain quotient space of B,.

B,

Figure 5.1 : Bifurcation diagram.

There is also a relation between the solution f~!'(0) near a bifurcation point
and the spectrum of the linearized operator. This becomes apparent when

we Taylor expand the function f. If f € C*([".Y") for some neighbourhoods

" C B,.Y C B; then

flpou) = Lou+ (pt — po)Lyu + r(p. u) (5.3)

where
Lo = D;f(po.0)
Ly = D\Dyf(po.0)
r(p.0) = 0
Dar(po.0) = DyDar(pe,0) = 0.
The operators D, f above are Frechet derivatives with respect to the i-th vari-

able of the function f.



5.1 Periodic Solutions

The linearized period at g = . is py = '\(2::,). Following the procedure of

Crandall and Rabinowitz {5], we introduce the nondimensional period

Po_ptim
Po Po

p:

where p is the perturbation from the linearized period at bifurcation. Note
that p = 1 gives the linearized period at bifurcation. We also make the substi-

tution 7 = ¢/p. so that the integral equation corresponding to Equation (5.1)

becomes

y (1) = ePTh) to +p/75p(,--£)uu) N(u(§). f(€). p) &,
f Jo 0 n(u(§). f(§). )

We seek pg periodic solutions to this equation. This corresponds to nontrivial
periodic solutions of Equation (5.1) of period p' since t = pr. Define the

integral operator

U(pp (e ) = | (r)—emm(“")
f fo

_p/reptr-z)um N(u(€). f(€). p) &
’ n(u(€), f(€). )

Consider the following spaces

Co = {u € C([0.po]. H') : u(0) = u(po)}
cx = {f € C([0.po]) : f(0) = f(po)}
Co = {u € C([0,po], H') : u(0) = 0}
co = {f € C([0, po}) : f(0) =0}.
U is then a mapping of a subset of R x R x C' x ¢, for which the mapping makes

sense, into Cy xcg. That this mapping is as regular as (N, n) is a theorem due to



Henry [18]. Now we take linear combinations of the eigenvectors corresponding
to the purely imaginary eigenvalues A4 (g, ) from Proposition 4.2 to obtain two

real linearly independent solutions. ¥ € L? x R. Define
e ()= 6TL(un)€+

where e7L{#<1) is the infinitesimal generator of the linear operator L at u =

(see Theorem 4.7). We define the two dimensional nullspace of [ — el(keripo,

as My = N(I — eblsedroy with basis {€7.€7}. Let M be the following two

dimensional subspace of ', x ¢,

u L
M=<(uf)eCyxce: ( (1) = ety x e My ).
f

and let Z = ('; x ¢, — M, be the complementary subspace of M. Now define

the following map

U(p . s(er +v))

s#0
Y(s.popv) = 3

VUw(p.p.0)(es +v) s=0
where Wy (p.p,0) is the Frechet derivative of the map (w. f) = ¥(p. u. (w. f))
at the point (p.pt.v) = (L, e 0). Y is a continuous mapping of one degree
less than W, from a neighbourhood of (0.1, u..0) € R?® x Z into Cy x ¢g. The

Frechet derivative of the map (p.u.v) — Y (s.p.u.v) at the point (0,1, . 0)

is
dY (p.a.v) =Y, v+ Y,p+ Y, 4, (5.4)

where

Yo¥(r) = V(1) - eTkeg(0)

Yo(r)p = —rL(pa)ete, (0)p

5 0 it 0
Yur)p = — g—e™* e+(0)q.
o

H=Hcr
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We may explicitly write out these Frechet differentials in terms of u

and f. [f welet ¥ = (¥,,¥,;), e; = (€41,€42).V = (v1.v2). then the Frechet

derivative is

where

(Y1) 01

P

o {(mp 0, OV, m;ﬁ} 2

(a), (V) (), M), | oo bW

U2

_ {(y;)p m)u] (ﬁ ) . [(mul (Y1), } ( a,)
(v, (1), |\ 7 (o, (), |\ &

Bi(r) — H(7)8(0) - /U H(r = €)Bage™ 75,(0.€) de
= ["H(r - 1BoeFhe) de

_bm/o’ P =65, (0, £) dE

Ta(T) — €7 5,(0)

T k
~lTH(r)é%p — 13/0 H(t — s)[Bioes+2(s) + Bage4 (0. s)) L

— ;3/0’(1' — ) H(T — s)[Bioes2(s) + Bage1(0, s)) 6-‘-‘.}: ds

ﬁ/T H(r - s) dBme+2(5) + dBme+1(0~$) e~ 3= ds
0 du dy

~bi7e"" e42(0)f — baop /0 (14 by{7 = 5)) " De, (0. ) ds

dboo . (7
2",1/ e 7=%e_ (0. ) ds
0

dp
A - k2 /A,

Note that B;, B;, and b, from System (4.9) depend upon p; Bg B3, and by

denote their values at u = pu. The second matrix above is precisely Y, V. The



first matrix also agrees with the previous representation. The first represen-
tation (5.4) will be used in the following analysis.

Now we would like to use the implicit function theorem to establish the
existence of a branch of solutions (p(s). u(s). u(s). f(s)) where |s| < § for some

§ > 0. Note that
Y (0. Lo pter 0)(7) = W (L. ter. ey (1) = ey (1) — e e (0) = 0.

Once dY is shown to be an isomorphism we may use the implicit function
theorem to obtain solutions (s.p(s).u(s).v(s)) of ¥ = 0 near (0.1, p. 0).

Setting

gives the solution curve (s.p(s). p(s). (u(s). f(s))) to ¥ = 0. Thus establishing

that d} is an isomorphism gives the existence of periodic solutions:

Theorem 5.1 There erists a § > 0 and continuous functions (p(s). pu(s). (u(s). f(3))) €
(R.R,C, x ¢,) such that

W (p(s).pu(s) (u(s). f(s))) =0 for |s| <6

with (p(0). 1(0). (u(0). f(0))) = (1. per (0.0)) and u(s) # 0,f(s) # 0 if 0 <
|s| < 4.

The theorem above will follow from the following Lemma. Part (1) follows

from Crandall and Rabinowitz [5] while parts (3) and (4) follow from Frankel
and Roytburd [7].

Lemma 5.2 Let [T = Y, (1., ucr,0) be the mapping from C, x ¢, tnto Cy X cq
and let N(II) and R(Il) denote the nullspace and range of the operator II,
respectively. Then



(1) w € R(IT) if and only if w(po) € R([ — ePollser)y,

2) N(IT) = M, so that dim N(II} = 2.

(3) R(I1) is a closed subspace of Cy X cg with codim R(I1) = 2.

(4) Y, and Y, span a two dimensional space which is complementary to R(I1),
le.,

if Y, (r)p+Y.(r)p € R(IT), then p=p=0.

Proof: (1) Suppose w € R(IT) then w(r) = v(r) — e t)y(0) for some
v € Cr x ¢s. Then w(po) = ([ = ePolli))yv(0). For the converse. suppose
w(pg) = ([ — el yuy. One can verify that u(r) = w(r)—e tuerlyg satisfies
u(r) — eLluedy(0) = w(r) and that u € ', x ¢,. Thus w € R(II). Part
(2) is obvious. (3) The operator [ — e?oL(r) is invertible when restricted to
(I — P)(H' x R). where P is the projector on the subspace spanned by the

eigenvectors £*. Note by Theorem 4.7 we have

2
‘ < C(8)e™ for § € (0. %).

L,
€ 2

Hc_«'[d(l‘cr)([ — p)” -

We also have by Proposition 4.8 for u € (I — P)(H' x R)

e’[‘(““)u“l < HL;/2CT'L(M<I)U!‘ < CeST lujl,

where |ju|, = ||(u;,u2)ll, = {|ur|lg + |uz|. Using the Neumann series for the

operator ([ — ePolluer))=t

“z (epoL(uﬂ))" = “Z enpoLlncr)
1

we see that ([ — ePol(#r))=! is bounded and thus that R(] —ePot{#er)) is closed.

C
<

1~ ] =e-fp’

Suppose W belongs to the closure of R(IT), then by (1) W € R(I — ePoltscr)),
Since R([—erolluer))is closed, W(po) € R(I—ePellser)) again by (1), w € R(II).
(4) By (1), this is equivalent to showing that

if  Yy(po)P+ Yu(po)ii € R(J — et)) then p=j=0.
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We have
}p(PU) — —POL(Hcr)epOL(“”)e*-(O) = —'POL(ﬂcr)e+(O) = _’])O/\+(#cr)e+(0)
= -—27”{+
and
) () - TN -
}u(pO) = —_’(ﬁ [e""l““’]uzuuﬁkkﬂcr)
- —b—;; [6p0 “E ('u)]u=ucr e a [f (#) T pher
d oAy (1) g+ 0L {ser) 9 *
= g ) et g lew]

J J
—_ Mg (er) + _ oPoNilucr) +
= = e Al € ) = P e )]

dp

d ad
= o Pl €7 i) = 52 (6% ()]

W=ler

+ ePoL(ucx)% [E-r (#)]

H=(cr )

To show that p = 1 = 0 we need to look at the adjoint operator L*. Let &3
denote the adjoint eigenvectors with corresponding eigenvalues Ay(pe). We
also have

(epoL‘(uu) - 1) £ =0

The following inner product gives

(Yolpo)d+ Yulpo)€5) = (=271 — oz el e, ) (67,65
= 0.
The coeflicient for i contains a nonzero real term while the coefficient for
p is purely imaginary. Thus the term is zero only if p = 4 = 0. Using
similar reasoning as above, one can show that the span of Y, and Y, with

real coeflicients contains both £+ and i£* and hence is a two dimensional real

space. |



Chapter 6

Numerics

6.1 Numerical Algorithm

The numerical algorithm that is used for the free boundary problem is a mod-
ified version of that used by Frankel. Roytturd. and Sivashinsky [9]. Their
procedure is closely followed, the difference in our case being the addition of
the ordinary differential equation involving the mole fraction to the bound-
ary conditions. To obtain zero boundary conditions we take System (4.1) and

make the following substitution
w(r.t) = u(x.t)— e T [(1 + z)u(0.t) + zu, (0.t)].

This was done in order to reduce the roundoff error. The transformed system

is then
wy = wtr+(U+kb)w1‘+F(‘r'v~fvi'vj)
w(0,¢) = 0
0(0,t) = 0 L (6.1)
w(oo,t) = 0
¢ ky +v P (v + k) — ks
f== (f“ p(v+kb)),
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where
F = —kyAve ks —¢* [(1 + r)u(0.t) + ru,(0.1)

—(x=1=x(v+hk))u(0.t) = (r =2+ (1 —r)(v + k))u(0,1)]
The algorithm is applied to a finite domain 0 < r < L, with decay at infinity
replaced by w(L.t) = 0. Suppose the concentration w’. velocity v*. and mole
fraction f¥ are known at the k-th time step. The subscript j denotes the
spatial discretization of the concentration. Now we need to evaluate these

three quantities at the next time step k + 1. This is done as follows:

1. A guess for the velocity. (¢¥*!). is made.

8]

The mole fraction { f¥*!)y is computed using (v**')y via an explicit

scheme from the fifth equation from System (6.1).

3. By steps 1 and 2 we now have an overdetermined system. For the mo-
ment we shall neglect the Neumann condition and solve for (u.'f+l Jo us-
ing the Dirichlet condition (the second equation of (6.1)). The Crank-

Nicolson method is used to solve the heat equation.

4. An integrated version of the Neumann condition (the third equation of

(6.1)) is computed and then used as a test for the solution.

5. If the desired precision is met. we simply repeat steps 1-4 for the next A+2
time step. Otherwise. a new guess for the velocity (v**!); is computed

using Newton's method for the integrated Neumann condition.

This procedure is identical to Frankel, Roytburd, and Sivashinsky [9]
except for step 2, which includes the coupling of the ordinary differential equa-
tion to our system. If ¢ = 0 then f is given explicitly; if not, then a discretiza-

tion of f is required. As in Frankel, Roytburd, and Sivashinsky’s paper [9],



the Neumann condition w;(0.¢) = 0. is replaced by an equivalent condition
derived as follows. First we integrate the first equation of System (6.1) with

respect to r from 0 to infinity,

d < A x L
—/ wdr = w; g+ + ke |y +/ Flr.v, f.0 f)dr
dt Jo o 0
= f Firoeofoo fydr
0
Integrating over one time step from ¢, to x4 yields.
~ t=ty4 9% ~ .
[/ wdr] =/ [/ F(r.v.f.i'.f)dr] dt
0 t=ty tk 0
The integrated version of the Neumann condition is defined to be

< 1=ty
R(o*+!, fo41, ok fh) = [/ de] +
0

t=ty

—/ UU\ Fir.v.f. iuf)dr] dt (6.2)

i
= 0
Since f**! is a function of ¢v**! and f* by step 2, we may consider R as a

function of v**1,

Rl 0% 5y = 0.

The integrated version (6.2) is used as our check for the guess (v**!),. If
the desired precision is not met, a new velocity (v**!'); is computed from
R(v**') = 0. via Newton's method.

In order to ensure that L was chosen large enough to simulate decay at
infinity. and that the spatial and temporal discretizations Az, At, were chosen
sufficiently small, the above algorithm was first used to numerically solve the
linearized problem and compare it to the exact solution. In Figures 6.1-6.2
the same set of parameters were used except for the length L. For the first
figure where L = 10, the numerical and exact solutions begin to diverge as

time increases. For the second figure where L = 100, the numerical and exact



solutions agree well. For all the figures that follow. the values of L, Az, and
At used for the nonlinear system were first tested for the linearized system in

order to achieve agreement of the exact and numerical solutions.

)

05 1 15 2 23 3

Figure 6.2 : Plot of v vs. t for L = 100; (ks, oo, @, b,€) = (5, 1,.1/5,.5/5,0).



6.2 Numerical Results

The linearization was done about a specific point which was motivated by a
modified version of van der Pol's equation (see Appendix A). In this section
we shall examine the nonlinear problem as the bifurcation parameter y =
b/a exceeds some critical value. We expect to see stable limit cycles above
the threshold value. Note that in some of the cases we shall examine, the
critical value of the bifurcation parameter appears before a local maximum
and minimum appear for the nullcline / = 0 in the graph of the phase portrait
of the boundary concentration ¢(0.t) vs. the mole fraction f(t). This seems
reasonable in light of the discussion in Appendix A. Introducing time delays to
the modified van der Pol's equation had the effect of decreasing the threshold
bifurcation value. In our problem there are time delays present from diffusion.

We shall also examine the effects of varying the parameter c. Recall
that : = 0 is the nonequilibrium fractionation model, while ¢ > 0 corresponds
to the dvnamic fractionation model discussed in Chapter 2. All the thresh-
old bifurcation values have been determined from earlier work ([28]). In the
following figures, we shall vary ¢ and b/a while the other parameters are held
fixed. We set p = 2, ky = 3, a = 1/50, L = 100. and choose exponentially
decaying initial conditions. No noticeable changes are observed in decreasing
the spatial and temporal discretizations below Ar = .0125 and At = .001. In
Figure 6.3 finite amplitude periodic solutions appear above the threshold bifur-
cation value. Below the critical value the zero solution is stable (this solution
corresponds to the constant composition front). Similar behaviour appears
for ¢ = 0.01 and ¢ = 0.1 in Figures 6.4-6.5. For nonzero ¢ we also plot the

phase portrait of the boundary concentration ¢(0,t) vs. the mole fraction f(t).
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Figure 6.3a : Plot of v vs. t;: = = 0.b/a = 5.
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Figure 6.3b : Plotof f vs. t: ¢ =0,b/a=5.
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Figure 6.3c : Plotof v vs. t; ¢ =0,b/a=6.
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Figure 6.3d : Plotof fvs. t:c=10.b/a = 6.

I

1

S

|
|
|

——
PR

|

0

—
o1f [\
¢
\
!
01 \

" " "
llllllllllll

Figure 6.4b : Plot of f vs. t; ¢ =0.01,b/a = 5.
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Figure 6.5d : Plot of f vs. t: ¢ =0.1,b/a=6.
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Figure 6.5e : Plotofcvs. f; ¢ =0.1.b/a=6.

Now we shall further increase the bifurcation parameter such that mul-
tiple branches appear in the phase portrait of ¢(0,t) vs. f(t) for the nullcline
f = 0. In Figures 6.6-6.7, the amplitude of the periodic solutions increase as
b/a is increased. However, for the case ¢ = 0.1, as the bifurcation value is fur-
ther increased, the periodic orbit loses stability to the zero solution (see Figure

6.8). From the linearization one can verify that the real part of the eigenvalues

will decrease and once more become negative. One must be careful here with
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this observation. This behaviour does not seem to be physically sound. Recall

that ¢ should be small; it represents the microscopic level where the crystals

N

are forming and attaching to the moving front. If ¢ is too large we are no
longer adequately modelling this phenomenon. Thus ¢ = 0.1 is not sufficiently
small to model the attachment front while = = 0.01 is consistent. As b/a in-
creases. the local maximum and local minimum of the nullcline f = 0 begin
to separate. The horizontal component of the vector field for the differential
equation of f is of the order =7': this is not large enough in magnitude to
maintain an oscillatory solution. The trajectory of (f(t),c(0,t)) gets trapped
between the local extrema. and decays to zero in an oscillatory fashion (see
Figure 6.8). For ¢ = 0.01 this never occurs since the horizontal component of

the vector field is sufficiently large in magnitude.
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Figure 6.6 : Plot of c vs. fi ¢ =0.01,8/a = 50.
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Figure 6.7 : Plot of c vs. f; £ =0.01,b/a = 60.
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Figure 6.8 : Plotof cvs. fic=10.1,b/a = 60.

Now we examine the effect of initial conditions. In the following anal-
ysis, we shall choose initial conditions outside the stable limit cycle of ¢(0, )
vs. f(t). In Figures 6.9-6.10, the trajectories tend to the limit cycle. Thus the

numerics suggest that the periodic orbits are stable in this parameter range.
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Figure 6.9 : Plotof cvs. fi¢=0.01,b/a=6.
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Figure 6.10 : Plotof cvs. fi¢ =0.1,b/a = 6.

Again we stress that all numerical simulations above were first tested on
the linearized system where the analytical solution is known. There were other
parameter values where there was a discrepancy between the numerical and
exact linear solutions. In these cases, even with very small Az and At values,
the iteration scheme for the velocity at the next time step failed to converge to
a specific value (see step 5 in Section 6.1). Fundamentally, Newton's method

failed to converge; the initial guess at the k + 1 time step (v**!)y, was not



k-H:l,k)

close enough to the exact root of R(v = 0. Thus for future work. a

more robust code will be needed for certain choices of the parameter space.



Chapter 7

Summary and Discussion

In this thesis a free moving boundary model was developed describing the
growth of a rock consisting of two crystal end-members. Without any exter-
nally imposed periodicities on the state. oscillatory zoning of the solid can be
qualitatively explained by the diffusion of solutes in the melt along with the
associated chemical kinetics involved for the formation of crystals in the inter-
face. In particular. the dependency of the rate constants on the composition
of the advancing crystal surface is essential for oscillatory zoning in the model.

The problem we considered was the simplest possible for this crystal
growth free moving boundary model. First we assumed the simplest possible
stoichtometry, a set of first order reactions for the formation of crystals on the
interface. Next, the simplest possible ratio for the rate constants was chosen
that would allow for the possibility of zoning. Also the diffusion constant of
one of the solute species was chosen much larger than the other, such that
explicit constant composition front solutions could be computed. Lastly, the
rate constant of the solute with the large diffusion constant was chosen to be a
constant. This allowed all the variation in concentration to be confined to one

solute. All these conditions above still allowed for the possibility of oscillatory
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zoning in our physical arguments. One must remember that the above is a
simplistic model describing crystal growth. In real applications, the correct
stoichiometry and rate constants must be determined. Nevertheless, the above
model may serve as a starting point for more complicated systems.
Linearization was carried out about the constant composition planar
solution. A parameter space was found that gave the necessary conditions for
a Hopf bifurcation (a pair of complex conjugate eigenvalues crossing the imag-
inary axis as the bifurcation value varied). The ratio of the coefficients. b/a
of the rate constant A'(f) = a« + bf* was chosen as the bifurcation parameter.
The term b/a is a measure of the affinity of like crystals to attach to the moving
interface. For small b/a. diffusion should dominate and one would expect the
constant composition solution (grey homogeneous rock) to be stable. This was
indeed found to be true (see Theorem 4.9). To date. complex eigenvalues were
found when c;(R(0).0) < 0. i.e.. the concentration of solute slightly ahead
of the moving front was less. This physically corresponds to an initial build
up of solute on the moving front. The condition ¢; < 0. was satisfied when
ky, the velocity of the constant composition front. was sufficiently large. By
picking k, large enough solute is allowed to accumulate on the interface. Now
we were able to vary b/a to obtain complex eigenvalues crossing the imaginary
axis. Similar initial conditions have been used in other parabolic systems (i.e.,
solid combustion problems [7]). With the dynamic fractionation surface model
(i.e., the model corresponding to a small finite thickness of the interface), an
analogy was considered with a modified version of van der Pol’s oscillator.
This served to suggest a point about which to do our linearized stability anal-
ysis. As mentioned above the necessary conditions for a Hopf bifurcation were
observed for large velocities of the planar front as the parameter b/a was in-

creased. This bifurcation did not occur precisely at b/a = (b/a)q, the value
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where a local minimum and local maximum appear for the nullcline f=0.as
predicted by the modified van der Pol’s equation, but in the vicinity of this
value since there were time delays introduced by the diffusion equation.

The results of Chapter 4 and Chapter 5 apply to the dynamic fraction-
ation surface model. In Chapter 4. the principle of linearized stability was
proven. Linearized stability implied nonlinear stability for b/a < (b/a)e and
small initial conditions. In this same theorem, global existence in time was
also proven for b/a < (b/a).. Note that a solution to the integral equation
of Theorem 4.9 is in fact a weak type of a solution; the Banach space under
consideration contained only one spatial derivative (as opposed to two). Since
we have the existence of a unique classical solution. this integral solution must
coincide with the classical solution if the initial data are smooth and satisfv
the appropriate compatibility conditions (see Chapter 3). The Hopf bifurca-
tion was proven via the Banach space version of the implicit function theorem
in the context of an integral equation which was set up in the appropriate
periodic spaces (cf. [5].[7]). In Chapter 6, the numerics suggest that the pe-
riodic orbits that were proven to exist in the previous chapter. were stable
above the critical bifurcation value. The numerical algorithm used was that
of [9]. Before analyzing the full nonlinear problem, all simulations were first
tested for the linearized system in order to achieve agreement of the numerical
solution and the exact solution, which is available here. The parameter space
under consideration in this chapter was chosen to meet this criteria. Numerical
simulations of the mole fraction and boundary concentration, ( f(t), c( R(t),t)),
tended to a limit cycle when picking initial conditions close to the constant
composition front. If initial conditions were chosen outside the limit cycle the
numerical trajectories converged to the limit cycle. This suggests that there

was a region of attraction surrounding the limit cycle.



Appendix A

Modified van der Pol’s Equation

In this Appendix a modified version of van der Pol's equation is examined.
In this autonomous dynamical system a bifurcation parameter is present such
that as its value increases past a critical value. a stable limit cycle appears.
If we linearize about a certain point. we find that this point will lose stability
to a limit cycle through a Hopf bifurcation. This appendix serves to suggest
a specific point about which to do our linearized stability analysis. It also
suggests that our bifurcation parameter should be the ratio b/a of the rate
constant. A'(f) = a+ bf% Also, essential criteria to develop a finite dimen-
sional approximation to the full partial differential equation shall be stated.

A finite dimensional dynamical system may be obtained through a spatial

discretization of the free boundary problem.

Consider van der Pol’s equation

I-

™ | —

(l-zY)i+zr=0 £>0

or equivalently, consider the following system of first order ordinary differential
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equations

Yy = -r.
Now suppose ¢ is small. Substituting y' = sy and then dropping the primes

in the above equations gives

- 1-(5-9)

Yy = -—=r.

For small <. the change in y is negligible when we are not close to the
curve y = 1°/3—r. The family of horizontal lines. y = constant. approximates
the flow of the above system away from the curve. When |y — (r3/3 - 1) |~
O(z?). both r and y are of the same order, and the flow will {ollow the curve
y = r’/3—r except at the critical points (£1,F2/3) where the solutions leave
the curve and follow a horizontal line onto another point on the curve. Figure
A.l illustrates these ideas and a stable limit cycle is present (see Guckenheimer

and Holmes [11] for more details).

Figure A.l : Relaxation oscillations.
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In our model (see, for example. Equations (3.4) and (3.6)) we have
. K(f)ec
‘| =
H)< f+1\'(f)c+l)
¢ = Gle. fYy+I(t)

ef

where 1°(#) is the velocity of the moving front, [{#) represents initial conditions,
and G(c. f) is an integral representation containing Green's functions of the
diffusion equation. There are terms in this integral involving the position of
the planar front R(t). which is an unknown. Rescaling time with t = /zt'.

and then substituting in the above system after dropping the primes gives

. v K{f)c
frnd _— — —— f\.
/ \/s< f+[\'(f)c+l) (A1)
¢ = Ve(Gle. fy+ I(1). (A.2)

Our model is similar to the following modified version of van der Pol's equation

f = - (2-m) "

y = =—<r (A4)

where A is a constant. Let (b/a)o denote the value of b/a when a local maximum
and local minimum appear for the nullcline f = 0. Note the similarity between
i and f; the horizontal components of both of these vector fields move towards
the nullclines # = 0 and f = 0 respectively. In both cases local extrema appear
when A > 0 and when b/a > (b/a)o.

Now we shall examine the stability of the critical point (0.0) for the

modified van der Pol equation (A.3)-(A.4). Linearizing about (0.0) gives the

following eigenvalues:
At VA — 4e?

2e

For ¢ fixed (¢ > 0), a Hopf bifurcation occurs at the critical value Ay = 0.

When A > 0, multiple branches appear for the nulicline £ = 0 (i.e., one local



99

maximum and one local minimum appears). As soon as these branches appear,
the critical point (0, 0) loses its stability to a limit cycle. Time delays (through
diffusion in our model (A.1)-(A.2)) and the shape of the “vertical” nullcline
(see Figure 2.4 or 6.7 with the vertical nullcline included like Figure A.2) can
alter the location of the critical point for Hopf bifurcations.

Let us examine Equations (A.3)-(A.4) in more detail for the effects of

time delays and the shape of the “vertical” nullcline. If we replace Equation

(A4) by
y=-—cr(t-T) (A.5)
where T represents a discrete time delay. the characteristic equation corre-

sponding to Equations (A.3) and (A.5) is then

EL 1/\:+e':T=0.

If we substitute = = r + is into the characteristic equation and set r = 0 to

obtain purely imaginary roots, then

s = cossT

\ = sinsT
If we denote the solution to s = cos sT by so(T') for 0 < sy < 77+ then
sinso(T)T
so(T)

is our critical bifurcation value. Using a result from Hale [13] (Lemma 6.1,

Ao(T) = —

(L1

Theorem 6.1), the system above has a Hopf bifurcation at A = A\o(T), and
moreover, a nonconstant periodic solution exists for A > Ag(T'). Thus, a
discrete time delay has the effect of decreasing the original bifurcation value
Mo = 0, i.e., a stable periodic orbit appears before the appearance of multiple

branches. [f one takes a continuous delay of the form

g = -5/0' 2(T)G(t = 7)dr
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where the delay kernel is exponential, G(u) = e™** (a > 0), one may obtain
necessary conditions for a Hopf bifurcation. With this particular choice of the
kernel, complex roots of the characteristic equation will cross the real axis at

a negative critical value Ag < 0.

Now we shall examine the effect of the particular shape of the nullcline

y = 0. If we replace Equation (A.4) by

y=—-:z(r+y).

the nullcline y = 0 is the curve y = —r. The associated eigenvalues are

A=t et = A) Has2(A - 1)
5 .

(LN

A Hopf bifurcation will occur at the value A\ = % if ¢ < 1. This has the
opposite effect of a time delay. The critical bifurcation value will be increased
from zero. i.e.. for small values of A. the equilibrium point (0. 0) is still stable in
the presence of multiple branches. In this case. initial points will decay to the
origin in an oscillatory fashion (this is due to the eigenvalues above possessing
nonzero complex parts).

By analogy with the above analysis for the modified van der Pol’s equa-
tion. we may develop some intuition about what might happen for our model
(A.1)-(A.2). In order to get relaxation oscillations we would require the fol-
lowing to hold:

1. The horizontal component of the vector field should be much greater in

magnitude than the vertical component.

o

The point of linearization should lie somewhere between the extrema.
3. The intersection of the nullcline ¢ = 0 should not have slope close to zero
and it should not lie in the boundary layer of f=o.

4. The direction of the vector fields must be like Figure A.2.
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Ch

f
Figure A.2 : Nullclines ¢, = 0,f = 0, and possible directions of the vector ficlds.

For the full system. fine spatial and temporal discretizations were used
(see Chapter 6). As one might expect from the discussion above. oscillations
may occur before the appearance of multiple branches due to delavs from
diffusion (e.g.. see Figure 6.5e in Chapter 6). In the presence of multiple
branches. the point of linearization was chosen to lie between the extrema
(e.g., see Figure 6.7). In this case we obtain a similar result to Figure A.2

where the nullclines intersect between the extrema.



Appendix B

Equivalent Sobolev Norms

In this Appendix we shall provide details about equivalent norms that are
more convenient in obtaining the L? estimate for the first component of our
linear system. In particular we shall show that Sobolev norms are equivalent
to norms that are defined in terms of fractional powers of operators involved
in our analysis. We follow the treatment of Roytburd and Frankel [7] with
modifications due to the presence of the mole fraction differential equation.

We begin with some well known facts. First consider the following

initial-boundary value problem

uf = u.l‘l' Ir > 0. t > 0
us(0.¢) = Gu(0.t) t>0 (B.1)
u(r.0) = wup(r) r>0.

We define the following linear operator

a'l

" 8z

A
with domain
D = {u e L*(0.00)) : u" € L*, u'(0) = fu(0)}.
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This operator is self adjoint with a continuous and point spectrum. o(A) =
{X < 0}U{A = 6?}. Consider the following generalization of the Fourier cosine
transform and its inversion formula:

for 8 > 0.

e
>
il

/ f(r) lcosrxﬁ\-{- \/Xsmrv/\} dr

e ‘ 0 . 1 VA
f(z) = ;/0 ¢(A)[cou\/i+-\7-xsmrﬁ}mdx

and for 8 < 0.

/%f(r)[cosr\/X+ -—0/—_sinr\/X] dr A>0
0 VA

®) = [T fa)e dr o
0

L ’ A0 N# —0?

fla) = =200(-0%)e™ + :.1;/0& ®(A) {LOSI\/—+ \/—blnr\/_} )\\-+/-_02

For a derivation of these formulas see Akheizer and Glazman [1| or Naimark
[21]. Note that the generalized Fourier transform of F(—-J)f(x)is F(A)®(A)
where F{(—A) is an operator function of —A.

Now consider the principal linear system
u A0 u
Lp =
f 0 b f

Ds={(u.f):u€eD, feR}

with domain

defined in the Hilbert space L? & R with inner product

<(l}’ )(;2 )>=/0°°u1a2dz+f1f2.
1 2
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This is a decoupled set of differential equations, and thus, the spectral theory
of Lp follows from A with minor modifications. Note that in general () #
o(Lp), since we have the addition of the eigenvalue b; with the corresponding
eigenvector

0

1
If by < 0. then it is embedded in the continuous spectrum. In particular, the
continuous spectrum, in this case, is then oc(Lp) = (—oc.by) U (by.0].

Now we shall define norms involving {ractional powers of linear oper-

ators (see Henry [18]. Pazy [23]. or Yosida [30]). If A is a sectorial operator

(see Definition 4.6) with Reo(-) > 0. we define the negative fractional power

of A,
1

o~
= — to-te=tdt  for any a > 0.

[(a) Jo

-

Since .1 is sectorial, — A is the infinitesimal generator of an analytic semigroup
e~ Y. With Rea(4) > 0. the operator A~ is a bounded operator which is also

I-1. This allows us to define the positive fractional powers in terms of A,
-1
AT = (A7)
If Rea(A) > 8§ > 0 we have the following useful estimates
“.—1%"‘“ “ < Mt fora>0and t > 0.
For the linear system (B.1). define
lull, A = “(—A +m)} u” where m > 62,

With this choice of m, the spectrum of —A + m has positive real values. Since

this operator is sectorial the above fractional powers are well defined. Using the
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transforms above along with Plancheral’s theorem gives the following Sobolev

type inequalities

1
sup [u™N(z)| < Cllull,_y fs>k+ 5 and u € D.

Now we examine the full linear svstem (4.9) along with the principal
linear system. First we choose m > max{6?, b} so that —~Lp + m has positive
spectrum. Similarly, we can find a positive d such that g(—L + d) has positive
real values. Recall that o(—L) consists of {A > 5}} along with a pair of

eigenvalues {—A4(u)} that vary with p. In analogy to the norms |||}, _, we

define .
G = ()

” f s—Lp /

G e ()

f s,-L f !

= (= +m)? u“ +(m—by)i|f]
where both —Lp + m and —L + d have the same domain Ds = D % R. Now

we state our main result,

Proposition B.1 The Sobolev scales defined above in terms of fractional pou-

L=l
LA

ers are equivalent;
u
f

sup |u*(z)| € C max

Cy < <y

for 0 <s <2

s,—Lp a-~L s,-Lp

Thus,

Y

1
ﬁw'k+-3<<s:§2.

s,—Lp s,-L
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Proof: This theorem follows directly from Theorem 1.4.8 from Henry [18].
We state his theorem: Let A, and A, be sectorial operators with the same
domain such that their spectra have positive real part, Reo(A;) > 0.1 =1.2.

Assume (4, — A3) A7” is a bounded operator for some a < 1. Then the norms
el = “4;’1‘“ J=12

are equivalent for 0 < J < 1.

Now for our problem. we let 4, = —Lp+m, A, = —L + d. and set

)= ()

The proposition follows from the estimate

(A, = Ay) AT® ( ”)
I

= [(m-d-4)w+ Biterg - Balriuio)]

+|(m — d)g + oy w(0)]

< Jm=d =% el + Cle(@)] +Clgl

IN

Cllwll + Cllwllza,-a + Clgl

= Cllull +C (=2 +m¥ u] +Clg

IN

C (Jlwll + lgl) + C (=2 + m)* wl|

)
)

+ C (b +m)” |g|
e u
C A7 H\Kf)

(u\
f

IN

+C

IN
D

+C
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In the second inequality we use Sobolev's inequality with & = 0 and s = 2a.

We choose a € (% 1) in order to use both Sobolev's inequality and Henry's
theorem. In the fifth inequality.
e\l
el + 19l = <||4;
g

;)

-A+m 0 ) (=X +m)” 0

and the relation

0 by + m 0 (by + m)”

were used. The sixth inequality follows from semigroup theory. namely, neg-
ative fractional powers of sectorial operators with positive real spectra are

bounded. a



Appendix C

Regularity of the Linearized

Solution

Now we turn to the soiution of (B.1). A solution to (B.1) may be found using
the spectral decomposition of the operator —A. If § < 0 the initial data may

be decomposed as follows (see Appendix B)
up(r) = =200(—0%)e% + Lo(r).

For § > 0 we shall identify Uy with ug. thus we write
Uo(r) 0>0
uo(r) =
—200(—0%)e* + Lg(z) 60<0
where for § < 0

®(—6?)

il

/w wo(z)e® dz
0

/m Ug(r)e®*dr = 0.
4]
The solution is
OF(z,t)+ Fr(z,t) 6>0

u(z,t) =
—200(—0%)ef*e®*t 4+ OF (z,t) + Fe(z,t) 6<0

108



109

where

1 o s—£)2 462
Flat) = == [7 e - S R e

Fo(r) = /Or e =00 () ds.
We assume that the initial data ug(r) has uniformly bounded derivatives up
Lo order two and that wo € (0. x)). The [unction F is obtained by Green's
functions on the half axis r > 0 with zero Dirichlet boundary conditions.
See Frankel and Rovtburd [7] for a derivation of these results. Thus, for the

principal linear system Lp. the solution is simply

OF(r.t)+ Fo(r.t) >0

u(r.t) =
! —200(—0%)e¥ e L YF(r.t) + Fe(z.t)  0<0 (C.1)
flt)y = foeh.

From Chapter 3 we have the existence of a classical solution. With
smooth initial conditions. this classical solution coincides with the solution
generated by the semigroup %' from Chapter 4. Now we shall state a regularity
theorem for the linearized system. The proof is basically that of Frankel and

Roytburd [7] with slight modifications which we highlight.

Proposition C.1 Let (w(r.t). f(t)) be a solution to the full linearized system
with initial condition fo € (0.1) and wy € C§([0.00)) (wo is bounded along

with its derivatives). Then

1. w(x,t) is continuous forx > 0. t > 0.

2. wy, W, wy are continuous forr >0, ¢ >0, (z,t) # (0.0).
3. ‘
lw,| < C
< £ !
lwez| < Zif £20,0<t<T, (2.1)#(0.0).
C
< =
lwtl — \/'t' )
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4. f e CY[0.50))N C?(0.20)).

Proof: These estimates are first proved for the solution to the principal linear
system (C.1) and then for the full linear system by the variation of parameters
formula. It is desirable to work first with Lp since u and f satisfv a decoupled

set of differential equations. The initial data Fy(r) has the odd extension

- 13 0
Fory = { o) i

—Fo(—r) <0,
so that F(r.t) can also be written equivalently as

1 cg)?

\/4—71’2 '/-Z FO(E)C- 4 d&.

Thus F(z,t) is the restriction on the half axis r > 0, to the solution of the

F(r.t)=

initial value problem

U, = U, reR.t>0
['(r.0)

Fo(r) r€R.

If Fo has uniformly bounded derivatives of order up to s then F(z,t) is of
class C'* for t > 0 and all z (see F. John [19}). Note that since uy € ('3,
Foe C3((—oc.oc)) except at r = 0. By (C.1) the estimates for u follow from
that of F'(r,t)and its derivatives, but the behaviour of these derivatives follow
from the initial data Fy. Thus the solution u will depend on the continuity of
F, and Fé At z = 0 both of these functions are continuous, and thus u is
continuous for £ > 0 and t > 0. For u, the terms F’(; and F'(;’ appear. The
function FY has a jump at z = 0, and initial conditions in the form of Heaviside
functions have bounded solutions. For u,, and u,, the term F?” gives an initial
condition in the form of a delta function, and the corresponding solution will

be bounded by Ct~'/?  i.e., there will be a term in the solution of uz; and u,
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containing the term

1 e _t=g? C
\/4—7”/_%5(6)6 &< =

Finally, f € C>®([0.oc)) and |f| < C since the solution is f = foeb! with
b1 < 0.

The full linear problem (4.9) is
we = wr— thfw 4+ e (B\f + Byw(0.1)]
fe

w:(0.t) = aw(0.t).

i

by f + baw(0,¢t)

We may subdivide the linear system into two parts, where the second part

contains all the coupled terms along with the boundary term w(0.¢),

A~ %‘i 0 w Bge‘izh" Blc’izk’ w(0)
+
0 b1 f b') 0 f

The first term differs from the principal linear operator Lp only by the presence

N
—~ =
SN——
I 1
~

o

D

~ 7

SN ———

+

h

o]

N

~ £

S

of the term k}/4. The change of variables

(7)-+ ()

will eliminate this term and allow us to use the previous results from Lp. The

solution operator of Lp is then

Lt _ Gty 0
0 it



where G(t) is the solution operator to (B.1). Thus the solution to
w w
/), ;
k] / \
L _ [ TG 0 | [ HEO 0
0 e 0 vt )

For the full linearized system. the variation of constants formula gives

wir.t) = pg(r.t)+/u,Jl(x.t—s)[ng(O.s)-.l-Blf(s)] ds  (C.2)
f(t)

i

t
0

foebll + bg/ eb‘('_s)lL‘(O.s)ds (C-B)

where
polr.t) = H(t)ug
k
sl t) = H(t)e 7=,
The solution operators o and ; are continuous by the results from the prin-

cipal linear system. Formally substituting f into w and changing the limits of

integration gives
t
w(r.t) = polz.t) +/ sr(rt =) [B-_yw(O. T) + Blfoeb"] dr
0
t rt
+ Blb'z/ </ Pr(z bt —r)ehT dr) e'b”w(O,s)ds.
0 3
Formally, we let = 0, and obtain the following integral equation
t
w(0.) = vol0.t)+ [ 21(0.t = 7)Byfoct dr

t
+/ w(o,r)[BM(o,t-r)
0 t
+Bybye~tr7 </ #1(0,t = s)eb"ds)] dr.

It can be shown that this a Volterra equation and thus a unique solution

exists, w(0,t) € C([0,T]). We define w(z,t) by Equation (C.2) and f given
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by Equation (C.3) is well defined since w is continuous. Since the limit

lim w(z.t) = w(0.t)

r—0+

exists, we see that w(r.t) from (C.2) solves the integral equation and is con-

tinuous for r > 0 and t > 0.

Now we shall examine the regularity of the derivatives of w(r.t). with

dgo
we = +\,9| I, 0 [Blf +ng(0.t)]

ot
£ Op
at(.l‘t—.s[Bf ) + Baw(0, s)] ds.
Note that
8,:,v C
i) <
Y (r.t)| < 7

l.e.. we have an integrable singularity at t = 0 and the regularity of w, is

determined from (pg),. thus

w < —_—
il € 7
The spatial derivatives are
_ deo 9y, )
wy = o + . ——(zr.t =) [Bif(s) + Baw(0,s)] ds
9%50 ! ()2»91
Wrr 81‘2 0 d 2 [B f + BQLU(O,S)] do‘.

The bounds for w; and w;. follow from the bounds of (pg); and (g)zz

Finally, the second term of f contains w(0,t) in its integrand. Thus

f € C¥(0,00)) N C([0,0c)) since wy is not continuous at (0, 0). 0
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