INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bieedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UM!I a complete manuscript and
there are missing pages, these will be noted. Aliso, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6* x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

»n

800-521-0600

NOTE TO USERS

This reproduction is the best copy available

UMI

OPEN ARCHITECTURE CONTROL
FOR

INTELLIGENT MACHINING SYSTEMS

By

RICHARD W. TELTZ

A Thesis Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University

© Copyright by Richard W. Teltz, April 1998

OPEN ARCHITECTURE CONTROL
FOR

INTELLIGENT MACHINING SYSTEMS

DOCTORATE OF PHILOSOPHY (1998) McMASTER UNIVERSITY
(Mechanical Engineering) HAMILTON, ONTARIO

CANADA, L8S4L7

TITLE: OPEN ARCHITECTURE CONTROL FOR INTELLIGENT
MACHINING SYSTEMS
AUTHOR: RICHARD W. TELTZ

B.Eng, M.Eng, (Mech. Eng) McMASTER UNIVERSITY

HAMILTON, ONTARIO,

CANADA

SUPERVISOR: Dr. M. A. Elbestawi

NUMBER OF PAGES: xii, 168

ii

ACKNOWLEDGEMENTS

I would to acknowledge my most sincere gratitude to Dr. Elbestawi for his
leadership, expertise, and unending support. I am proud and grateful to have the good

fortune of his mentorship and friendship.

I would also like to thank my supervisory committee, Dr. Bone, Dr. Capson, and

Dr. Poehlman, for their advice and guidance throughout the course of this work.

Special appreciation is extended to the Mechanical Engineering Department staff
for their assistance and encouragement over the years. My colleagues at the IMMRC,

both past and present, have made all of our endeavors here memorable and irreplaceable.

Thank you Mary, Stephanie and Emily for always being behind me and for the
inspiration to complete this work. For my parents Margaret and Wolfgang and all of my
family, thank you for the endless support and encouragement over the many years of my

career as a student.

ii1

ABSTRACT

The purpose of this study is to examine the role that Open Architecture Control
concepts have in the application of Intelligent Machining Systems. Open Architecture
Control is a relatively new field whose original intent was based on the use of “Open
System” computer science concepts in the development of integrated manufacturing
systems. Various manifestations of Open Architecture Control systems has been
published in the open literature however, in many ways the original intent of the idea has
been often obfuscated by the sometimes dissimilar interests of the engineering, computer
science, academic and commercial realms involved.

Intelligent Machining Systems refers to application of sensing, monitoring and

control technologies to machining processes with the intent of:

. improving the economic performance of machining systems,

. controlling the processes involved in a comprehensive manner.

Consequently, such systems represent an integration of technologies which individually
address only a limited part of the overall potential for economic gain. The use of “higher
level” information and control functions is a common element in Intelligent Machining
Systems. These may include components of Artificial Intelligence, process planning, and
supervisory control technologies.

The need for a high level of integration in Intelligent Machining Systems (IMS)

v

has presented a difficulty for their practical application. Open Architecture Control
(OAC) addresses the integration problem directly and, if the proper Open Systems issues
are weli considered, can enable IMS technology for commercial use.

The OAC system developed in this work does address Open Systems concepts,
and has been designed with consideration for the needs of IMS’s. This has been achieved
through the formulation and implementaticn of an IMS on the designed OAC.
Technologies such as process sensing, monitoring and control, in addition to planning,
simulation and supervisory control have been tested and verified with the OAC for an

application to turning a CNC turret lathe.

TABLE OF CONTENTS

PAGE
1 INTRODUCTION 1
2 LITERATURE SURVEY 5
2.1 Open Architecture Machine Tool Control 5
2.2 Intelligent Machining Systems 26
3 DESIGN BASIS AND IMPLEMENTATION OF AN
OPEN ARCHITECTURE MACHINE TOOL CONTROLLER 40
3.1 Functional model 41
3.2 Hardware Topology 44
3.3 Applications Interface and Communications 45
3.4 Examples of Open Systems 47
3.5 OAC Design 49
3.5.1 Functional Model 49
3.5.2 Hardware Topology 50
3.5.3 Application Interface and Communications 50
3.6 Machine Server Design 54
3.6.1 Software Architecture 54
3.6.2 Service Model 57

3.7 Performance Results 64

vi

4 DEVELOPMENT OF AN INTELLIGENT MACHINING
TEST BED
4.1 Machine Tool
4.2 Cutting Force Sensing System
4.3 Vibration Sensing for Machining Chatter
4.4 Tool Wear Measurement System
4.4.1 Camera and Lighting System
4.4.2 Machine Vision Algorithms
4.5 Surface Roughness Measurement System
4.5.1 Ultrasonic Transducer and Electronics
4.5.2 Signal Processing Algorithms
4.6 Implementation of an Operator Interface on the OAC
5 INTELLIGENT MACHINING SYSTEM
5.1 System Structure
5.2 In Pass Control
5.2.1 Tool Breakage Monitoring
5.2.2 Chatter Control
5.2.3 Force Regulation
5.3 Per Pass Control
5.3.1 Cutting Force Modeling

5.3.2 Surface Finish Modeling

vii

67

67

68

68

70

70

72

82

82

84

90

96

96

99

99

101

107

109

I

114

5.3.3 Feed Planning Solution
5.3.4 Implementation of the Per Pass Control Module
5.4 Multi Pass Control
5.4.1 Coordination of Control Tasks
5.4.2 Control of Long Term Process Variability
5.3.3 Implementation of the Multi Pass Control Module
5.4.4 Overall Implementation of the Intelligent
Machining System
6 CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK
6.1 Contributions of the Research
6.2 Directions for Future Work

REFERENCES

APPENDIX 1 OAC CLIENT DEVELOPMENT
APPENDIX 2 OAC COMMUNICATIONS TIMING RESULTS
APPENDIX 3 SURFACE ROUGHNESS TESTS

APPENDIX 4 TOOL WEAR TESTING

viii

119

123

124

125

126

130

131

134

135

137

139

148

155

160

164

FIGURE NO.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14.

LIST OF FIGURES

DESCRIPTION
Next Generation Controller system. (NCMS, 1990)
Hierarchical model of the manufacturing process
(Pritchow, 1990).
OSACA cube model of the machine controller
(Pritchow, 1990).
"Decision Making" Strategy for Machining Process Control
Proposed by Chryssolouris et al. (1989).
A Decomposition of Machine Controller functions.
IMMRC Open Architecture Controller Hardware Topology.
The OAC Machine Server and its Relationship to Other
System Modules.
The OAC Machine Server.
Program Services Program Buffer Model.
Typical results of OAC Communications Performance.
Instrumented LeBlond knight 20 Machine Tool.
Cutting Force Dynamometer Designed for Turret Lathe.
Machine vision system for tool wear measurement.

Examples of raw and processed flank wear images.

ix

PAGE

10

14

I5

37

42

51

55

56

60

66

67

69

71

73

Figure 15.

Figure 16.
Figure 17.

Figure 18.

Figure 19.

Figure 20.
Figure 21.

Figure 22.

Figure 23.

Figure 24.
Figure 25.
Figure 26.
Figure 27.

Figure 28.

Figure 29.

Comparison of Maximum Flank Wear Measurements Obtained from

a Tool Maker’s Microscope and the Implemented Vision System.
Examples of Raw and Processed Tool Profile Images.

Examples of Raw and Processed Crater Wear Images.
Comparison of Crater Depth Measurements Obtained from a
Surface Profilometer and the Implemented Vision System.
Surface Roughness Measurement using an Ultrasonic Transducer
Mounted on the Radial Axis Table.

Surface Scan of Workpiece with Sections Cut at Different Feeds.
Example Plot of Raw Surface Data.

Processed Surface Data, with Solid Line Showing the Calculated
Average Surface Roughness, R,.

Comparison of Surface Roughness Measurement with Ultrasonic
System vs Conventional Stylus Type Device.

Implementation of the OAC System.

LeBlond Lathe OAC Operator Interface Application.

Example of Operator Interface OAC client.

Example Adaptive Control OAC Client.

Factors affecting typical production machining systems and

their time frames.

The proposed Intelligent Machining System.

76

78

79

81

83

84

85

88

89

90

91

93

94

96

98

Figure 30.

Figure 31.

Figure 32.

Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Figure 43.

Operation of the cutting force based tool breakage
monitoring system.
Chatter Suppression through On Line Depth of Cut Reduction.
Test Result for Chatter Suppression System using Depth of

Cut Modification.
Chatter Suppression System Responding to Multiple Alarms.
Operation of Proportional-Integral (PI) cutting force controller.
Test Results for the Calibrated Cutting Force Model.

Generation of "theoretical” Surface Finish in Machining.

Example Calibration Curves used for Surface Roughness model.

Feed Scheduling Results for Linear Interpolated Motion.
Feed Scheduling Results for Circular Interpolated Motion.
Implementation of the feed planning system.

Example Tool Wear Curves used for Control of Wear Rate.

Example Plots of Wear for Different Durations of Cut.

Overview of Information Flow among Modules of the Intelligent

Machining System.

xi

102

103

105

106

110

115

116

118

121

124

128

129

133

TABLE

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

LIST OF TABLES
DESCRIPTION
Summary of machine service commands.
Program Service Commands
Data Service Commands.
Override Service Commands.

System Service Commands

Xi1

PAGE

59

61

62

63

Chapter 1

INTRODUCTION

Over the past two decades, computer technology has had a profound influence on
all manufacturing industries. In particular, advances in automation have contributed in

areas such as:

. material handling,

. qliality inspection and monitoring,
. motion and logic control,

. resource planning,

. process control.

Machining operations in discrete parts manufacturing have experienced benefits
from all except the last of the above listed technologies. This is in contrast to industries
such as chemical processing in which process control is in many cases a fundamental
requirement.

It has been argued that automation applied to production machining operations

2

has reached a point at which no further benefits can be achieved from those technologies
commonly applied (ie: material handling, etc). Thus, from an economic point of view,
process control represents the only automation related option left for achieving a
competitive advantage in machining operations.

Considerable academic research has been established on monitoring, adaptive and
optimization control of the machining process. However, few of these systems have
involved the control of more than one [process] variable (Koren, 1983). Limited work
has pursued the development of intelligent’ machining systems, ie: systems that control
or optimize multiple aspects of the machining process. While such systems do address
the fact that industrial applications require the consideration of many process aspects, the
definition of a general framework for Intelligent Machining Systems (IMS) has been an
elusive goal.

Industrial implementation of machining process control has also been impeded by
the practical limitations of the equipment used to realize these processes. In particular,
commercial machine tool controllers are not designed to be integrated into the larger
process control system. They are typically of a ‘closed’ nature in that no mechanisms are
provided with which the controller’s internal command and data resources can be
accessed and integrated with external control system components. Open architecture
control (OAC) for machine tools is an area of current academic and commercial research

that aims to create machine controller systems that support integration with end user

systems.

3

This thesis describes the design and development of an Open Architecture
machine tool controller for Intelligent Machining Systems. Using established, industry
standard open systems design concepts, the controller is developed to demonstrate
capabilities required for integration with established machining process technologies such
as real time monitoring and control, process and model based planning, and supervisory
control.

The intelligent machining system is based on a turning application. The
comprehensive control of multiple part production is formulated according to activities
occurring while cutting (in pass), between individual cuts (per pass), and over multiple
cuts or discrete parts. The functional components of the system are developed and
demonstrated and moreover, are used to guide the design and implementation of the open
architecture controller (OAC).

The thesis is organized into 6 chapters. Chapter 2 is a survey of related research
in both Open Architecture Control and Intelligent Machining Systems. Chapter 3
describes the design basis and implementation of the open architecture machine tool
controller system. In this chapter an open systems controller is defined in terms of its
functional model, hardware topology, and its applications interface and communications.
The Machine Server component of the open systems controller is described in detail
regarding its service model, interaction with client applications, and specific support for
client timing and data requirements for process and machine control.

The machining test bed developed for the Intelligent Machining application is

4

detailed in chapter 4. The application is for a CNC turret lathe. The implemented sensing

sub systems described in this chapter address the key machining process variables:

. cutting forces,

. machine vibration,
. surface roughness,
. tool wear.

Chapter 5 describes the formulation and implementation of the Intelligent
Machining System. Control activities are defined according to three time frames: in
pass, per pass, and multi pass. Individual control sub systems at each frame are

described, and include established technologies for process:

J monitoring and control,
. planning and simulation,
. supervisory control.

Experimental evaluations of these sub systems with the Open Architecture Controller are
performed to evaluate the controller design, in particular with regards to time,
performance, and integration criteria. -

Chapter 6 concludes the thesis, with summarizing commentary on possible

directions for further research.

Chapter 2

LITERATURE SURVEY

2.1 Open Architecture Machine Tool Control

Open architecture machine tool control has been identified as an ‘enabling’
technology for the application of advanced controls in manufacturing. The desire for such
systems has been in response to the frustration experienced by practitioners and
researchers alike when advanced control techniques were attempted on current closed’
architecture controllers. The term ‘open’ originates from the PC and workstation industry,
where ‘open systems’ technologies have greatly enhanced the use and development of
complex computer systems.

Several commercial and acaderilic programs that have focused on realizing some
form of open architecture for machine tool controllers, and manufacturing automation
systems in general. Fundamentally, each approach has been concerned with one or more

of the following:

6

1) the integration of physical hardware devices,

2) communication interfaces between devices,

3) models of interaction between computing resources and motion control
and I/O devices.

These items provide a useful point of reference with which the different OAC systems

can be compared. The following survey outlines the major accomplishments in this area.

Manufacturing Automation Protocol (MAP)

The MAP program represented the first rebellion’ against the closed architecture
of proprietary manufacturing systems, being motivated by "...the need for compatibility of
communications to integrate factory floor devices" (North American MAP/TOP Users
Group, 1988). In order to standardize such an effort, an abstracted model of the typical
manufacturing device was required. The result (MAP v3.0) was a uniform application
interface to data exchange, file system access and remote program invocation between
peer entities referred to as Virtual Manufacturing Devices (VMD’s). The VMD
abstraction was derived explicitly from the requirements of numerical control, robot
control, PLC’s, and process control systems. MAP was developed compliant with the
Open Systems Integration standard (ISO-OSI).

Although MAP is a specification for communications (ie: not machine control), it

does relate strongly to the OAC effort. Firstly, MAP represents a large scale

7

standardization program directed at manufacturing devices. Secondly, the success of
MAP as envisioned required compliance on the part of the end point devices to the openly
specified interface, including the concept of the VMD. In this context, the MAP effort

can be viewed as an early relative of the current development of OAC.

Machine tool Open System Architecture for Intelligent Control (MOSAIC)

Perhaps the most established research related to open architecture machine tool
control centers around the MOSIAC system developed at New York University
(Greenfeld and Wright, 1989). The Machine Open Systems Architecture for Intelligent
Control was originally developed to facilitate research related to expert planning systems
and quality related sensor data. Conventional controllers at that time were unable to
support the information flow required for these tasks. The MOSAIC architecture was
based on a memory mapped backplane architecture (VMEDbus) with specialized hardware
for axis control, machine input / output, and a general purpose processor running a real
time POSIX compliant operating system. Access to the controller functions was
provided by a library of C language routines. These routines formed part of a larger
‘machine’ operating system that, being POSIX compliant, was able to freely exchange
information with workstation based software for expert system based process planning
and part probing.

Later work related to the MOSAIC system focused on the development of these

higher level functions. Several published works have included a wide range of

8

applications including adaptive control strategies (Wright et al, 1991), and an Internet
based machining center (Hansen et al, 1993).

The MOSAIC system has also been considered in an “agent based” formulation of
machining system architecture (Dornfeld and Wright, 1995). In this paper the authors
described an Integrated Manufacturing and Design Environment (IMADE) in which a
group of planning agents for tooling, fixturing, and process planning communicated with
the MOSAIC system (a fabrication agent) using a simple scripting language. The main
idea was that the planning agents would provide the “global” knowledge required for part
realization, while the MOSAIC system would provide the “local” knowledge through its
use of sensors for process evaluation. Over the production of multiple parts, it was
proposed that the global scripts could be modified (or “validated™) by the locally
generated information. The concept of the IMADE approach was demonstrated for the
problem of burr formation in face milling.

In a recent summary paper (Wright, 1995) on the history of the MOSAIC system

the author stated the principles of open architecture manufacturing as:

1) the use of open architecture hardware platforms at all levels of the machine and

factory,

2) the use of a common operating system at all levels of the machine and factory,

3) the use of a standardized, object oriented format for information and ktiowledge

exchange.

9
Next Generation Machine / Workstation Controller NGC)

The Next Generation Machine/Workstation Controller (NGC) program was
initiated by the U.S. government with the goal of restructuring and revitalizing of the US
machine tool industry through the enabling of technologies in the areas of computer
hardware and software, and process controls. Extensive consultation with industry
experts resulted in a specification of 175 requirements for the NGC. These requirements
addressed a wide range of issues including hardware and software architectures,
networking capabilities, and provisions for task planning, process control, fault
management, and sensor interfaces.

The proposed controller system consisted of separate ‘workstation’ and real time’
computing facilities (NCMS, 1990). Figure 1 depicts the envisioned system.

As a modular architecture, the NGC was intended to provide well defined
interfaces and guidelines to direct scaleability and third party product development.
While hardware interfaces were to be chosen from existing standards, software interfaces
were to be built around a syntax referred to as the Neutral Manufacturing Language

(NML). The purpose of NML, being similar to the MAP VMD concept, was to provide a

10

Workstation Strategic
Platform Adaptive

Control

| Real Time Tactical
Platform Adaptive

Control

Manufacturing
System

Figure 1 Next Generation Controller NGC)
architecture.

standardized software interface to the services of the virtual machine through which end
users could expand and enhance the software base of their systems

Regarding process control, the NGC requirements specified provision for tactical’
adaptive control (real time), and ’strategic’ adaptive control (non real time). The tactical
control element was aimed at providing on line compensation for volumetric and surface

finish errors, to monitor for tool breakage and chatter, and to allow for the

Il

implementation of optimization strategies. Technologies such as neural networks, multi-
variate statistical process control, adaptive control, and sensor fusion were identified.
The strategic control element was aimed at providing "...the future strategic approach to
the manufacturing process..." (NCMS, 1990) through longer term analysis of the
processed results of sensor data. Technologies such as rule based and knowledge based
decision making systems, and process modeling and planning systems were identified.

The NGC specification is relatively comprehensive in comparison to previous
efforts such as MAP. Consequently, due to the broad range of ‘enabling technologies’ it
addresses, it arguably lacks the focus of the MAP effort. Within its broad scope however,
the NGC specification does contain conceivably all that OAC can and will be. In this
respect, NGC can be considered to be a goal definition for OAC development efforts.

Later work reported by the NCMS involved a "low end controller” (LEC)
implementation of the NGC paradigm. In this case, the term "low end" referred to that
part of the proposed NGC system without the higher end functions such as process
planning.

The LEC system proposed a further definition of the original NGC architecture
into non real time, real time, and hard real time components. It is suspected that this
further divisicn was intended to recognize the fact that motion control activities, being the
most time critical, are almost exclusively implemented in commercial systems using
dedicated processing and input / output hardware.

Outside of this definition, the LEC system advocated no specific hardware

12

implementation of these three elements. It was proposed that the logical decomposition
of controller functions could be formulated and realized using an agent based paradigm.
In this form, processing modules (agents) were defined for such components as command
interpretation, trajectory generation, user interface, and machine drives control. Each
"agent” represented "... a collection of software organized for a specific purpose and
either encapsulating or capable of obtaining all the data and functionality required to fufil
its responsibility” (NCMS, 1994).

Key to the realization of the agent based approach was something referred to as
the Common Execution Enviroment (CEE). The CEE was described as the "glue that

held the whole project together”. It was envisioned as an application programming

interface specifying:
. message semantics and syntax,
. timing services for real time operation.

The researchers stated that "the technology for CEE is today a missing building block"

(NCMS, 1994).

Open Systems Architecture for Controls within Automation Systems (OSACA)
Prompted by similar concems experienced by their North American counterparts,

the European manufacturing community has embarked on research initiatives geared

13

towards the definition and development of OAC systems (Pritchow, 1990). This research
has involved a detailed ‘open system’ definition of the entire manufacturing process, using
a seven layer, hierarchical model adopted from the OSI-ISO communications standard.
Figure 2 shows a reprint of this model of the manufacturing process. Layer E4, the Cell
Function Layer, corresponds to the machine to machine communication layer occupied by
communications standards such as MAP. Layers E3 to E1 represent the functionality
concerned with machine control, and hence OAC. In light of this breakdown of OAC
functionality, and the existing standards for communications protocol definitions,
Pritchow presented a ‘cube model’ for the OAC system. Figure 3 is a reprint of this cube
model. Viewed in this perspective, the realization of OAC involved the provision of
standardized ordering of functionality, similar to the OSI communications standard, at the
machine controls level.

More specifically, the objective would be to provide layered protocols and
functional decomposition for the program processing, coordination, and drives level of
the machine control. It is worth noting that recent European standards such as SERCOS
(described later in this survey) - satisfies in principle this concept for the lowest layer of

the machine control (E1).

14

Hierarchical control concept E1-E3.

Figure 2. Hierarchical model of the manufacturing
process (Pritchow, 1990).

15

functional unit n

nit

read_object0, write_object() ..Z

B— '%ects" :
OO/—C{)" [message] [message e

[message] [messagel:

server y client

zsend_message() receive message(:
: A :

mailbox | memory i LAN

if. interface LAN Local Area Network

Figure 3. Reprint of OSACA Cube Model (Pritchow et al., 1993)

16

A later publication (Pritchow et al., 1993), presented an alternative, more
functionally oriented view of OAC, addressing specifically the needs of numerical control
(NC). An application program interface (API) provided the configuration abilities that
allow the system designer to arbitrarily combine functional units (FU’s) - such as part
program processing or monitoring functions - with database and user interface
functionalities. An additional, lower layer provided uniform communications services
through which FU’s could interact transparently with the operating system and hardware
levels of the machine control. As a standard interface to the machine and between FU’s of
a given implementation, the API and communication levels of this model of OAC are
similar in concept to the MAP VMD. In fact, Pritchow et al noted that "although the
MMS [ie: the MAP programming interface which utilizes the VMD concept] fulfills this
[concept], it is too complex and does not offer all of the features needed for
communication within a control.”

More recent descriptions of the OSACA project (Pritchow and Junghans, 1994)
reiterated these design paradigms, in particular emphasizing the formulation of open
communication / messaging services within the OAC. The proposed system was
designed based on the Open Systems Interconnection (OSI) reference model. A message
transport system (MTS) was proposed to implement the first four layers of the OSI model
(ie: the Physical, Data Link, Network and Transport layers). The MTS acted as an
adaption layer in that it was itself intended to be built upon a wide \ variety of existing

communications protocols and media including:

17
. shared memory,
. POSIX Inter Processor Communication (IPC),
. Internet Protocol,
. Controller Area Network, Profibus,

. Integrated Services Digital Network.

It is in this manner that the OSACA systems addresses interconnection with devices and
sub systems that use existing commercial and de facto standards.

The remaining four OSI layers were to be provided by an application services system.
This level of communications supported client / server type transactions, flow control,
and other tasks normally associated with these levels of the OSI model.

At this level in the system description, the OSACA architecture provided only for
an OSI compliant communications system. Issues related to machine control were not
explicitly addressed by these layers. However, on top of the application layer (top level
of the OSI model), the OSACA system proposed an elaborate object oriented interface to
model the interactions and provide the services of low level devices to end user
"architecture objects”. This interface was to be based on an object manager and a set of

object oriented information models describing internal data and functionality related to:

e program execution,

. operator station management,

18

. synchronization and event management,
J access to internal data,
. file system management.

It was proposed that the association of data objects describing machine attributes could

be used to create a software configured machine control. This would in turn facilitate the

enhancement, replacement or reuse / reconfiguration of standard controller sub systems.
At the top level of the OSACA model were architecture objects that used these

information models to implement actual high end functions such as:

. human / machine control,
. logic control,

. motion control,

. axis control,

. process control.

Architecture objects represented the system components that would most likely be
implemented by third party vendors. Programming libraries providing the templates of
the underlying object oriented information models would be used by the developers of
architecture objects. Seen from this perspective, the goal of the entire OSACA

architecture was to provide these architecture objects with the faithful ability to control

19

the low level functions of the machine with no knowledge required of the actual
hardware used, the communications medium, or the overall hardware topology.
Sperling and Lutz, 1997, presented the most recent devélopments regarding the
OSACA project. In their paper they reiterated this OSACA design approach and
documented an example of integrating a human / machine interface (HMI) architecture
object with OSACA infrastructure. In their example, Internet Protocol communications

were used to link the hardware platforms for the HMI and motion control sub systems.

National Institute for Standards and Technology (NIST)

Researchers at the U.S. National Institute for Standards and Technology (NIST)
have a long established reference model for intelligent machine systems (Albus, 1989).
This model, originally developed for robotic systems, has been applied to machine tool
and manufacturing controllers. This detailed formulation (Albus, 1994) identifies the

elements of machine intelligence as:

. Task Decomposition,
. World Modeling,
. Sensory Processing,

. Value Judgement.

20

The program for machine tool controllers evaluated several architectures using
various commercial motion control and discrete event control sub systems. Software
running on a workstation platform - the host machine executive - provided various

application programming interfaces that tied the different systems together.

University of Michigan Open Architecture Controller (UMOAC)
Birla et al (1995) described an open architecture test bed developed at the

University of Michigan (UMOAC) using a variety of platforms:

. PC based
. VME bus (backplane)

. CANBbus (distributed)

Custom software libraries allowed the development of control and monitoring systems
within the environment of a real time operating system. An elaborate software hierarchy
provided an object oriented application interface with abstractions of the machine
functions.

The authors proposed a supervisory control / process control structure for the test
bed in which adaptive control and monitoring functions developed on the platform were
able to integrate directly with low level motion and input/ output functions. The

supervisory level was also given the responsibility to "integrate and coordinate the

21

control modules to complete the operation” (Birla et al, 1995).

Later work (Koren et al, 1996) related to the UMOAC test bed examined
distributed control architectures and compared their requirements to that of more
traditional control architectures. These systems connect a collection of self controlled
drive units using a digital network. A central processor interpolates motion. The
author’s research focused on quantifying the real time requirements for the distributed
and conventional architectures. They conclude that such systems are flexible and
promote user enhancement, but must be designed carefully with respect to effective

network bandwidth if real time requirements are to be satisfied.

Serial Realtime Communication System (SERCOS)

It is worth at this point mentioning developments aimed at providing open
architecture interfaces at the device level. Machine control systems based on such
distributed architectures are becoming increasingly used and have been declared official
“requirements” for installations in major automotive manufacturers like General Motors.

There are several vendor specific protocols that support discrete input / output and
motion control systems. The former application has been adopted by industry for some
time as “field busses” have the obvious advantages of greatly reducing the amount of
wiring for Programmable Logic applications such as transfer lines.

Perhaps more challenging is the use of distributed open architectures for motion

control systems. Generally, it has been at the level of motion control that most

22

commercial systems have proven to be “closed”. This is perhaps understandable, due to
the time - and part precision - critical nature of motion control activities. However, the
increasing use of embedded micro controllers at the machine drives level and the
improvements in the bandwidth of digital data links have allowed the technology and

practical benefits of distributed open architecture systems to be realized. These benefits

include:
. the construction of the CNC system from a heterogenous mix of drive sub
systems (eg: AC, DC, stepper, etc),
. minimized wiring between sub systems,
. improved noise immunity for low level command signals between
interpolation and loop closure processors,
. the ability to scale system configuration.

The Serial Realtime Communication System (SERCOS) standardization effort
(German Machine Tool Manuf., 1988) in Europe was one of the first “field bus”
approaches to CNC system construction. The standard outlined the protocols and
physical specifications of a communication network for interconnection of servo drive
sub systems and other processor components.

The physical layer of the SERCOS system is a 2 Mbits/sec fibre optic link. A ring

topology transfers data packets with a 32 bit data field and an 8 bit addressing field, for a

23

total allowable number of 255 “slave” drive units. Each slave may service one or more
actual drive units. A master computer on the ring is intended to perform interpolation and
other CNC duties such as user program processing. The original standard, at 2 Mbits/sec,
allows for 8 slaves to updated at a rate of 500 Hz. The SERCOS standard was created by
a consortium of supporting vendors including Bosch, Siemens, and Indramat - all major

European automation controls vendors.

Hierarchical Open Architecture Multiprocessor Computer Numerical Controller
(HOAM-CNC) Controller

Altintas et al (1993) presented a hierarchical, open architecture multi processor
computer numerical controller (HOAM-CNC) based on multiple processors on a PC bus.
Individual axis control processors performed loop closure while a master processor
executed functions for axis interpolation, adaptive control, and \ process monitoring. A
job manager on the master processor coordinated task scheduling in a time sliced manner.

More recent publications (Erol and Altintas, 1997), described a new formulation
of the HOAM-CNC system in which the job manager functions were extended to an
Open Real Time Operating System (ORTS). The ORTS executes on both the main
master processor (PC motherboard), and on the single board processors of the PC's ISA
bus. The described system includes the host processor and two single board computers

for motion control and process monitoring and control. The latter item is referred to as an

Intelligent Machining Module (IMM), and is designed to interface to commercial

24

"semi-open” controller systems or with the HOAM-CNC system. A script like language
allows the master processor (PC) to control the execution of activities on the IMM, such
as adaptive force control and tool breakage monitoring. The IMM used a special form of
the ORTS that allowed a collection of processor modules tc be serially connected to form
a signal processing network. In this case, special ORTS functions were required to

support the interactions between modules.

University of British Columbia Open Architecture Controller

Yellowley and Pottier (1994) presented an OAC system based on a modular
backplane architecture. A combination of processing modules was used to implement
axis control, trajectory generation, and process monitoring and control. An interpreted,
FORTH based programming interface allowed high level macros to be called from each
motion program line. In this manner it was proposed that monitoring and control
functions to be called from within the motion program, thus associating the process and

geometry with the machine control.

A novel hardware signaling method allowed the custom programmed servo cards
to have feed rate override from multiple sources. The technique involved a ’state line’
which when asserted caused the servo processors skip a control cycle. When asserted
periodically and with a controlled rate, it allowed other system processors to effectively
reduce feed rate. The state line logically OR’s the assertions and as a result the feed rate

at any given time becomes the lowest of those being commanded by any collection of

25

other processors. The idea was that the actual feed rate is always that of the worst case
constraint source. The system was demonstrated for milling aluminum with constant

cutting force control.

GM/FORD / CHRYSLER Survey of the Requirements of Open Modular
Architecture Controllers

Balio et al (1994) summarized the requirements of Open, Modular Architecture
Controllers (OMAC) for the automotive industry. Identified needs were addressed such
as safety, cost, flexibility, etc. A loose decription of an example architecture was given in

which the overall functionality was decomposed into modules for:

. human interface,

. motion control,

. sensing interface,

) discrete event control,
. information base,

. network connection.

The needs of each of these modules were discussed in detail. Issues such as the
use of standards, access to low level motion control functions and the the ability to scale

systems was addressed. More significantly perhaps was a discussion of the possible

26

difficulties in having open architecture systems accepted in automotive industry. It was
suggested that a change in business practices may be required regarding retraining,
inventories, and maintenance. Moreover, it was clearly stated that "using OMACs also
requires users to be more involved in system integration and assume responsibilities for
keeping systems operational. Users cannot rely on technology providers to take care of

all of their problems anymore.” (Balio et al, 1994).

2.2 Intelligent Machining Systems

The principal elements of Intelligent Machining Systems (IMS) are:

. sensing,
. monitoring,
. control.

Common throughout the literature, discussions of IMS often further define the last

element - control - as consisting of:

1) "traditional” feedback control, based on classical control theory,

2) "supervisory"” type control, often based on Artificial Intelligence (AI)

technologies.

27

In this regard, the second attribute of control in IMS relates to the larger, emerging
discipline of Intelligent Control, whose own definition describes it as being "task
oriented”, and applied specifically to physical systems whose "... dependancies are
generally too complex to admit an analytical representation” (Zadeh, 1996).

In the case of machining systems such complexities can include controlling the
multiple constraints and process variables involved, and managing operation in the event
of contingencies such as tool over load or breakage. Advanced interpretations include
accommodations for other elements of the overall production process such as planning
and design. The following survey examines the development of research in Intelligent

Machining.

Machining Process Sensing and Monitoring

The subject of machining process sensing and modeling is an extensive one, and a
comprehensive overview of the techniques and principles involved is beyond the scope of
this survey. This section is included here for completeness in the discussion of Intelligent
Machining Systems.

Excellent reviews have been given by Micheletti et al. (1976), Tlusty and
Andrews (1983), Tonshoff et al. (1988), Dan and Matthews (1990) and Dornfeld (1992).
Suffice it to sutnmarize here that the principal sensing and monitoring issues in

machining involve:

28

. process constraints: cutting forces and temperatures,
. tool condition: wear and failure,
. part: dimension and surface quality.

There are obvious difficulties measuring some of these quantities, and accordingly
indirect methods are used in which alternate variables are sensed and signal processing
and / or process models are used to infer the value of the desired information. It is in this

manner that sensing and monitoring issues are closely related.

Machining Process Control

Traditional approaches to optimization of machining processes have concentrated
on systems referred to as "Adaptive control optimization" (ACO) and "Adaptive Control
of Constraint" (ACC).

ACO systems formulate the manipulation one or more process variables in order
to maximize a predefined performance criterion. This criterion is usually economically
motivated, and is manifested in terms of indices related to cost, maximum productivity,
etc. Wu and Ermer (1966) describes a typical approach to the ACO philosophy, being

based on the following techniques:

29
1) formulation of equations for machining unit cost,
2) the use of empirical or semi empirical relationships to describe tool life and
cutting power in 1),
3) constraint descriptions of the operational variables (feed, speed, depth of cut),

4) solution for the operational variables at points of minima in 1) subject to 3).

While this approach is both rigorous and comprehensive it has not proven to be
effective in practice due to the inadequacy of the models for tool life, the inability to
measure the required variables to give an accurate indication of performance.

Modified approaches to ACO have attempted to address these problems directly.
For example, Onetsu et al. (1978) used on line estimation of tool wear and tool life
equation parameters in the cost formulation (Onetsu et al., 1978). Carlsson and Strand
(1992) used stochastic models of variability in tool wear predictions to address these
limitations. In both cases however, limited success was achieved and / or no
experimental verification was presented.

Yen and Wright (1983) suggested an alternate interpretation of the ACO
approach. As opposed to concentrating on performance indices, they suggested that
optimum process cost could be achieved by choosing an operating point having
maximum metal removal rate from within the process parameter space bounded by the

multiple constraints of the dominant tool failure mechanisms. The mechanisms

considered included:

30

. edge breakage,
. plastic deformation,
. adhesion / oxidation.

The key to the solution of this operating point involved the mapping of the constraints to
the parameter space of the operational variables. The authors demonstrated the concept
using classical mechanistic and semi empirical modeling of cutting process temperatures
and stresses, and tool failure mechanisms. In this regard however, the approach was still
subject to the inadequacies of these models and as such did not avoid the problems that
indices based ACO systems had encountered.

In ACC systems a performance index is not directly evaluated. Instead, one or
more of the process conditions are maximized within known constraints. These
constraints are typically related to the physical limitations of the system. Applications to
machining most often involve the manipulation of tool feed to achieve cutting force
regulation at the constraint level of tool breakage. The majority of adaptive control
applications in machining systems are of the ACC type.

The first ACC systems in machining were simply feedback control systems (Stute
and Kapajiotidis, 1965). However, as static cutting force is dependant on operational
variables - in particular feed and depth of cut - the fixed parameter controller approach
would only provide stable and effective behavior for a limited range of these variables.

Later contributions applied ACC as true "adaptive” control systems; as a

31

controller whose parameters adapt to changing process behavior. Koren and Masory
(1981) presented an ACC system for turning on a CNC lathe with constant force
constraint. Their observations from earlier work with fixed gain controllers was that as
the feed forward gain of the control loop varied due to changes in the depth of cut or
spindle speed, the controller performance became either too sluggish (small gain) or
unstable (large gain). They concluded and demonstrated successfully that universal
stability could only be achieved if the open loop gain was kept constant by continuously
estimating the process gain and recalculating of the controller parameters accordingly.

A comprehensive study of several ACC strategies in milling was presented by
Elbestawi et al (1991). The parameter adaptive technique was applied to milling and
evaluated for several controller systems. Robust operation of the AC system was found
to be enhanced by disabling the parameter estimation algorithms once the estimates
converged. This was done to avoid unpredictable controller behavior due to parameter
‘drifting’ during periods of low signal excitation. It was found that the system reaction
time to sudden increases in cutting force could be significantly reduced by resetting the
covariance matrix recursive least squares estimation algorithm to its starting valve of
identity. The evaluation concluded that a dead beat controller of increased order,
combined with the estimation disable / reset functions, was found to result in the best
overall response.

Lundholm et al (1992) described an optimization system that employed three

Tevels’ of control: monitoring, ACC, and ACO. The proposed system consisted of

32

monitoring and ACC levels to act on line for the monitoring of tool breakage, collision,
and chatter, and to regulate cutting force and suppress chatter. The ACO level acted
between passes to select cutting conditions based on an economic optimization of the
process with consideration of cutting force and tool wear. Intermittent tool wear
measurements were to be provided by a vision system.

Several researchers have emphasized the role that computer aided process
planning (CAPP) can play in cutting process optimization. Van Houten and Tiemersma
(1989) proposed an integrated system involving off line CAPP, and on line monitoring
modules. The CAPP system was intended to select optimal cutting conditions and
acceptable levels of cutting force expected during cutting. On line monitoring used the
error between measured and predicted cutting forces to detect breakage or collision
conditions. This system was referred to as Model Based Monitoring”. The system
proposed to use the data acquired in pass to re- calibrate the models used in the CAPP.
An additional learning control’ loop was proposed to monitor even longer term variations
in behavior. The system was not demonstrated experimentally.

Yamazaki et al (1991) developed an integrated CAM / monitoring system for
three dimensional sculptured surface machining. The proposed system attempted to
perform tool path and feed planning in real-time. A CAM system was developed using
surface modeling techniques and implemented as a real-time tool-path generator. A
dynamic machining simulator was used to simulate the geometrical interaction between

the workpiece and the tool and to evaluate the performance of the machining process in

33

terms of material removal. A final module, designed as a type of off line model
reference adaptive controller, performed simulation of the cutting process for the
generated tool path from 1) and at incremental steps along the path determined material
removal for different feed values. The applied feed was selected to represent a safe and
productive level of cutting load.

Takata (1993) proposed a model based CAM / monitoring system. The proposed

system, although similar in concept to Yamazaki’s work, had the following additional

characteristics:
. explicit models for cutting forces, torques, machining error,
. the use of sensory feedback data to verify the planned operation,
. the use of solid modeling for tool / work piece intersection geometries.

Solid models of the tool and work piece were used to generate simulated cutting force to
infer machining torque and surface errors. This "machining scenario” is a record of a

simulation run for a particular operation and consists of:

. process plan data (tool positions, NC commands, tool types, etc),
o machining conditions (feeds and speeds),
. geometric data (tool-workpiece contact faces)

. physical data (expected cutting force, torque, and machining error)

34

Takata proposed two uses of the machining scenario: control of the machining
process, and monitoring and diagnosis of a machining process. The control application
of the machining scenario is divided into pre-process scheduling of feed rates etc., and
on-line adaptive control. The monitoring and diagnosis application uses the generated
process parameters as reference data to compare with sensory feedback, diagnose the

cutting performance, and initiate the required corrective actions..

Intelligent Machining Systems

At this point it is clear that the concept of a comprehensive control strategy for
machining processes requires a complex collection of activities, information, and actions.
During the 1980, artificial intelligence research had reached a level of maturity that
made it an almost obvious - and fascinating - approach to the problem of machining
process control and optimization.

Chryssolouris et al. (1988) presented a "decision making" approach to the
optimization of metal cutting processes. In a similar manner to ACO systems the
proposed controller also used semi empirical tool life and cutting force models.

However, the basic operation of the controller involved, at each control interval:

. a rule based evaluation of both process models and real time sensory data

to generate a set of performance indices,

35

. the selection of control actions by mapping the calculated indices into a
"decision matrix",

. the application of control actions.

Figure 4 shows reprint from the paper depicting the decision making approach.

The approach demonstrated several significant benefits related to the use of
artificial intelligence techniques such as the ability to handle virtually any number of
constraints, process models, and sensory inputs, and the ability to include heuristic type
reasoning into the overall control solution. While the work was a novel alternative to
previous ACO approaches, it also introduced the idea of using "machine intelligence” as a
control strategy for machining processes. Simulation studies of the decision system
indicated that the technique performed better than the traditional ACO methods.

O’hare (1990) suggested that ideas from the field of distributed Al had direct
applications in manufacturing systems. In particular, the use of an agent based paradigm
for the decomposition of computer integrated manufacturing systems. Under this
approach, individual agents maintained certain “responsibilities” and interacted with other
agents to achieve an overall goal. For the machining application the author suggested

agents for:

36

. planning and scheduling,

. computer aided design,

. material handling systems,
. machining systems.

In the paper the individual agents were each modeled as a rule based system however, it
was noted that this was not a necessity for the concept.

Teltz and Elbestawi (1993) presented a hierarchical, knowledge based controller
for turning. The system consisted of three distinct sub systems, implemented as

independent tasks in a multi threaded application:

J a parameter adaptive force controlier,
. a chatter detection and control system,
. a knowledge based supervisory system.

The latter of these elements coordinated overall operation, monitored and controlled the
performance of the parameter adaptive algorithms, and sequenced the systems actions to
suppress chatter in an event driven strategy to sub divide the cutting depth. The
knowledge based and numerical algorithms were implemented in object oriented C in a
multi threaded operating system. The knowledge based supervisory system coordinated

the monitoring and control sub systems through calls to the operating system task

37

rule-based system
for determining

criteria
deciscion matrix
alternatives| criteria
R
rule-bcsedr CR1|CR2|CR3
system for Al1 atl}a12|a13| |decision bfst
determini making |} alternative }—
0“:,',,0',;:,?; Al2 a21| a22|a23] [rulels selected
Al3 a3l| a32|a33 decusaon
AlL | cét|aL2]|as3 quality
evaluation
intelligent
machining
SYStem process models
|] 1
m&t\lfhg par t Sensors
data base information I
workstation

Figure 4. Decision Making Approach to Machining Process Control

(Chryssolouris, 1988).

38
scheduler.

Hatamura et al (1995) detailed a design process for Intelligent Manufacturing
Systems. In their application, the objective was to minimize geometric error in milling.
The authors proposed a fundamental structure for IMS in which modeling and control
elements were implemented as knowledge based systems. The application was
interesting in that they used thermal and load actuators to apply control actions to the
body of the machine tool to counter distortion due to cutting loads. The authors

summarized six design principals for IMS:

1) all phenomena in a manufacturing system emit information,

2) the relationship between the phenomena and the information is
predetermined and gives rise to models,

3) using 1) and 2) control can be achieved,

4) Intelligent Machining control represents an active approach to process
improvement (as opposed to passive control from the machine design),

5) the main elements of IMS are: sensors, knowledge, and actuators,

6) the ability of the system to “conceptualize” (ie: reason over time, consider

heuristics) is a key element of the IMS.

While the majority of reported applications of Al used in machining control are

rule based systems (also referred to as “knowledge based”, “production” or “expert

39

systems”), there has been application of other AI techniques such as fuzzy, neural
network, and combined neural network and fuzzy logic. For example, Tarng et al. (1993)
created an adaptive fuzzy controller which basically replaced the control block in a
classical PID control loop. A gain on the control action from the fuzzy controller was
adaptively modified according to measured process behavior.

Chiang et al. (1995) presented a neural network control strategy for end milling.

The approach used two back propagation neural networks:

. a process model (observer),

. a controller.

The process neural network model was trained using simulated data from semi empirical
models of cutting forces, power and surface roughness. The controller neural network
was trained from data generated by a traditional optimization strategy (ACO) for
maximum metal removal. The ACO system was based on the same models for process
neural network training. The on line system was found to execute very fast, allowing the
addition of other constraints and process variables without a significant effect on

computational load.

Chapter 3
DESIGN BASIS AND IMPLEMENTATION OF
AN OPEN ARCHITECTURE MACHINE TOOL

CONTROLLER

There are generally four aspects of machine control systems that are considered in

discussions of OAC:

1) physical hardware, electrical interfaces,
2) motion control and I/O sequence control,
3) operator interface and system management,

4) factory interface (or 'enterprise’ level).

It is generally agreed that existing standards satisfy the requirements for 1) (eg:
Controller Area Network, SERCOS, Interbus-S). These approaches however, only
support user interests for new or newly rebuilt machines. Most systems in industry today

are not based on the technology required to supported distributed ‘open’ hardware

40

41

solutions (eg: ‘smart’ servo drives). It must be assumed then, that from the perspective
of the majority of machine tool users, items 2), 3), and 4) above represent the areas most
in need of open interfaces. The following discusses the technical alternatives for these

areas.

3.1 Functional Model

The functional model describes a decomposition of the overall activities of the
machine controller into elements, and the interactions between these elements.
Figure 5 depicts a functional break down of a typical CNC machine tool controller.

There are two predominant functional models that have been advocated in

published OAC designs:

1) master / slave,

2) peer to peer.

Master / slave type systems are characterized by the dependance of system

components on some central administrative entity. Examples of such approaches

Servo
Program\ \ Control PLC
Control Contro

MACHINE CONTROLLER

ELEMENTS
Process 1/0
Control Sensor Human Interfacs
Interface Interfac

lonlsessfrrzsd | | | |

GO1 X1287.03 Y23.09¢ F12.09
X1220.53 Y 20.008 F12.76
G96 S2000

OO |anera
O O X500.494 Y100.0 F45.0
oR e

a0
o0
OO
00
00
a0

Figure 5. A decomposition of machine controller functions.

43

include (Altintas, 1994), and (I"ark etal, 1996). In theory, such systems are prone to
performance problems if high demands are placed on the master. This may be
manifested as a limit on system scaleability (ie: the master as a performance bottleneck’),
or on a reliance of the entire system integrity on the master. Note that for the machine
control application, this last point may be argued as being desirable.

Peer to peer type systems are very much the opposite of master / slave type
systems. In this case, system modules are considered as independent ‘agents’, and are
driven by individual responsibilities’. Peer modules can act as both service providers or
consumers. Examples of such approaches include (Haynes, 1994), and (Pritchow and
Junghans, 1994). In fact, the peer to peer concept is the predominant model used in
established open computing systems.

While the peer to peer approach promotes system scaleability by removing
dependance on a master, it places a greater emphasis on mechanisms for communication
and interaction among modules. Alternatively, master / slave type systems can simplify
the communication issue by insulating system modules from each other’s hardware
specifics. This does however, only concentrate hardware dependancies within the overall

system.

3.2 Hardware Topology

There are three basic topologies under which OAC system modules are

integrated:

1) within a processor (or an operating system),
2) between processors on a backplane,

3) between processors on a network (or similar).

Most discussions regarding hardware topology in OAC systems are based on time
requirements for different machine control modules. This was the basis of the real time /
non real time topology proposed by the Next Generation Controller project (NCMS,
1990).

However, due largely to advances in computer technology, it can be argued that
definitions of OAC hardware topology should be discouraged. For example, the widely
advocated NGC "Workstation / Controller’ topology has since been replaced by single PC
systems.

While it is clear that different topology options should be made available to the
user of OAC systems, in order to guarantee the scalability and inter-operability of
existing systems, the mechanisms through which OAC modules are integrated must be

topology independent. In order to address the timing requirements of machine control,

45

methods should be available through which system modules can evaluate timing

capabilities.

3.3 Application Interface and Communications

The application interface is a particularly important aspect of any system that
claims to be 'open’. It can ultimately decide how well third party or user developers can
integrate their applications with the base system. A poorly designed or overly complex
application interface can arguably decide the viability of any standardization effort.

Application interfaces that have been reported in the literature for OAC systems

tend to be based on:

. application programming libraries,

. message passing techniques.

The former of the approaches includes, for example, traditional C language
function libraries (Wright et al, 1991), and object oriented programming (OOP) libraries
(Park et al, 1996). Message passing schemes have been reported by the NGC (Haynes,
1994 and NCMS, 1990) and by the OSACA project (Pritchow and Junghans, 1994). In
the case of the OSACA project, the message passing approach is used as the underlying

mechanism for an OOP interface.

46

Application libraries in most cases have a performance advantage over message
passing techniques. This is due to their closer association with underlying hardware, and
the additional overhead required by most message passing schemes. However, due to
similar reasons, application libraries are less portable, and cannot readily adapt to
changes in hardware topology.

Messaging techniques are usually able to avoid these limitations as they are based
on mechanisms that are independent of the application. These mechanisms simply
support the communication of messages between modules and, if they are chosen from
existing standards, can be expected to be available for a variety of hardware platforms.
Apart from the communication software, no specialized software is required to realize the
message based interface.

There are several communications techniques reported for use between OAC

system modules, including:

. shared memory,
. bus communications (eg: device ports),
. standard communications protocols.

The method used has typically been associated with the topology of the
communicating modules; the choice in any given situation largely due to the time

requirements of the particular modules involved.

47

In the case of shared memory and bus based communications, modules wishing to
interface with other modules must use hardware addresses. These addresses are typically
hard coded’ into module source code, and if modified due to changes in hardware
configuration, require at best minor source code modifications and re compilation.

Alternatively, most standard communications protocols use soft’ addressing
schemes. In this case, the underlying system resolves communication addresses at run
time. Changes to hardware configuration require only modifications to addressing data

bases. Application code remains unchanged.

3.4 Examples of Open Systems Concepts

The UNIX operating system generalizes all device I/O as file /O. (SUN
Microsystemns, 1988). Operating system services map the low level drivers for a device
to a generic file descriptor’ handle that is used to reference the device via a programming

interface. This allows applications to be developed without dependancies on:

. the hardware configuration (eg: local or network),
. the actual type of the device (eg: disks, tape drives and the

console are treated the same).

48

The Network File System (NFS) (SUN Microsystems, 1988) allows the collective
file resources of a network to appear as a single directory structure. This is achieved by
‘client’ and server’ processes running on the application computer and the computer
having the disk resource, respectively. These processes intercept and manage disk
accesses in a manner that is transparent to the application.

The X Windows graphics system was originally designed to allow mainframe
computers to support multiple graphics terminals of different types. The system is based
on the X server™ a program running on the displaying computer (terminal) that controls
it’s particular graphics hardware. A client application (mainframe) wanting to draw to a
terminal does so by sending service requests to the terminal’s X server. The service
requests are defined in a generic sense; the receiving X server translates the generic
requests into the specific actions for the graphics device. The X server and the client
application may reside on the same computer or on different computers across a network.

User code developed for the X window system can be used with no modification
among dissimilar graphics devices, thus enhancing the user base and the long term
viability of developed software. Moreover, as the application is independent of the
hardware topology the user can modify the topology without affecting developed
software.

The X Windows system is an excellent model of open systems technology that can
be applied to open architecture machine control. It demonstrates the concepts of a

hardware independent software interface for both the device and the system topology.

49

3.5 OAC Design

3.5.1 Functional Model
The IMMRC OAC is based on a distributed, peer to peer functional model of the

entire machine controller system. Currently developed modules address:

. machine motion and I/O,

. operator interface,

. tool inspection,

. tool breakage monitoring,
. adaptive control.

. CAD based feed planning,
. supervisory control.

The last five of these modules are part of the Intelligent Machining System, and are the
subject of Chapter 5. The operator interface is described in Chapter 4.

Machine motion and I/O functionality is provided by a module referred to as the
‘Machine Server’. This module provides a generalized set of services that support client’
applications. Command, data and timing mechanisms are provided to facilitate control of
the machine’s resources. The machine server is described in section 3.6.

Practically, the OAC design presented here defines:

50

1) the mechanism through which system modules communicate,

2) the services provided by the Machine Server module.

The design does not define (or restrict) the development of other system modules.

3.5.2 Hardware Topology

The hardware topology chosen for the current implementation of the IMMRC
OAC is shown in figure 6. Note that the topology presented here is only one example of
many possible implementations. The design explicitly does not define or put limitations

on hardware topology.

3.5.3 Application Interface and Communications

Applications access and control the machine device through a message based
interface that defines the set of services that model motion and discrete I/O functions.
These services emulate industry standard approaches to machine control; for example,
the program interface is based on G codes and a DNC type ‘drip feed’ mechanism.
Particular effort was made to present these services in as simple a manner as possible.

Modules in the OAC present commands to the machine server in the form of text
messages. Machine server responses, if applicable, are also text based. While this may
not be the most efficient method of transferring data, text has the advantages of being

processor independent and an international standard. Note that only the Machine Server

51

A

Non Real Time
Platforms

Real Time
Platform

Sl |&
S|E| |5
83|29 &|
ngg‘
Qomug
m"lt [
HEEHE
cEQE>

Figure 6. IMMRC OAC Hardware Topology.

52

is limited to text based commands. There are no restrictions on the format of data
exchange between other modules in the OAC.
Internet Protocol (IP) is used as the communications mechanism between

modules in the IMMRC OAC. This protocol was chosen because it:

i) is a widely accepted standard (IEEE 802.3),
i) is supported by the UNIX (POSIX) I/O system,

ii1) is supported between modules under all three possible topologies:

. within an operating system (OS),
. across a backplane,
. across a network.

While reasons i) and ii) recognize the potential value of including current
standards and open systems technology in the OAC design, the last reason addresses the
practical requirements of system designers for a comprehensive range of module
coupling options. In many ways, this approach satisfies the concept of a "Common
Execution Environment” (CEE), as envisioned by the NCMS LEC project (Haynes,
1994).

The Internet protocol (IP) is not deterministic in time. That is to say that the time

taken for a messége to be sent over an IP link cannot be strictly guaranteed. This does

53

influence the real time aspects of a system designed using this protocol however, the

following comments can be made:

1) no deterministic protocol currently exists that supports the three

reasons listed above for the choice of IP,

2) mechanisms can be built into the application level software to monitor
transmission times and manage error conditions (refer for example to Castellote

and Schnieder, 1994),

3) in most applications, modules requiring real time’ response from the Machine
Server will not be using a high traffic connection (ie: most likely within an OS,

across a backplane, or at worst within a small, dedicated sub network).

Regarding the last point, it should be noted that the design proposed here does not
constrain the user from applying poor judgement in the design of their application. This
lack of constraint is accepted in order to avoid the definition of hardware configuration

and to promote a more ‘open’ system.

54

3.6 Machine Server Design

The Machine Server’s main function is to isolate other modules in the overall
controller system from the hardware dependant aspects of the machine tool “device” - ie:

motion and input / output hardware. It achieves this through:

. a defined model of machine “services”, ie: actuation and configuration of
motion and input / output functions,

. a common interface method (standard communications).

Figure 7 depicts this relationship between the Machine Server and other system modules.
The Machine Server encapsulates both the most performance critical and the most
hardware specific aspects of the controller system. In this respect it is the focal point of

the designed and implemented system.

3.6.1 Software Architecture

The Machine Server is a collection of software processes that provide the various
'services' of the machine device:

. actuation: motion and discrete outputs,

. configuration and state data.

Figure 8 depicts the Machine Server and its various processes.

55

APPLICATION

COMMUNICATION
LAYER
MACHINE
SERVER

OTION AND I/G

Machine Server
Module

Figure 7. The OAC Machine Server and its Relationship to
Other System Modules.

56

Main
Command
Interface

synchronous,

connection
asynchronous,

connectionless

synchronou.

Interface)
rfe asynchronous, connection

Figure 8. OAC Machine Server.

57

Primary communication with the Machine Server occurs through it’s command
interface. The IP address (or name) of the command interface is all that the client
application requires to use the Machine Server.

All service requests are issued through the command interface. The command

interface is:
. connectionless: able to respond to multiple clients arbitrarily,
. asynchronous: able to respond asynchronously to client requests.

Certain machine services characteristically require dedicated access by the
requesting client (eg: motion control). In these cases, the service is initially requested
through the command interface, and the Machine Server starts a service specific process
dedicated to that client. Once established, the client will communicate directly with the
dedicated server process in which some form of data is exchanged. The processes for
program control and data reporting address synchronous client / server interactions. The

details of these services are outlined in the following section.

3.6.2 Service Model
The functionality of the machine device is presented through the Machine Server

as a set of service requests. The service requests are divided into five service classes:

58
1) Machine: basic machine device operations
2) Program: RS274 (G code) based program control
3) Data: machine device configuration and data access
4) Override: machine device override control

5) System: OAC system commands

These services attempt to present the machine functionality in a manner that is

comprehensive, yet as simple and concise as possible.

Machine Services

Machine services are related to the basic operation of the machine. This includes

services related to manual control of motion and discrete I/O. Table 1 below summarizes

the machine service commands.

Program Services

Program services involve:

] transfer and execution of G code based motion program data,

. client synchronization to motion execution.

59

COMMAND FUNCTION
machine powerup turn on all machine power systems
machine powerdown turn off all machine power systems

machine status

report status information

machine home AXIS_ID

home specified axis

machine move abs AXIS_ID VALUE

move axis to absolute location

machine move inc AXIS_ID VALUE

move axis by incremental amount

machine jog AXIS_ID DIR

Jjog axis in specified direction (+/-)

machine hold AXIS_ID

hold motion for specified axis

machine io test IO_NUM STATE

test the state of a discrete I/O point

machine io set IO_NUM STATE

set the state of a discrete output

Table 1. Machine Service commands.

Currently, the Machine Server supports only one motion ‘device’ (ie: program
coordinated set of axes). Clients wishing to gain program control issue a ‘program open’

request to the server. The server will, if program control is not in use, start a dedicated

process and communication channel for client / server program data transfer.

This dedicated process, referred to as the DNC interface’, accepts client program
data and buffers it internally for execution. Figure 9 depicts the program buffer model.
During execution of the program data, the DNC interface will monitor execution and

signal the client to allow continuous program execution. Additional server commands are

provided for client control of program execution (start, stop, and reset).

60

Program Command Buffer
CLIENT PROGRAM
/ DATA
[/
/
!
|
|
'
NI70 XL.8 Y6.0 F10.0 <— Last Entered
NI60XL.7 ¥5.9 F10.0
NI50XL6 ¥5.8 F10.0
NI40XLS5 Y57 F10.0
NI30X1.4 Y5.6 F10.0 =~ Request Point
NI20XL3 ¥5.5 F10.0 (signal host for more dats)
NII0XL2 Y5.4 F10.0
NI00 GOI XL1YS3FI00 | ~—— Execution Point

Figure 9. OAC Program Service Program
Buffer Model.

There are several instances in which client applications may want to be
synchronized with the motion program or the motion itself. For example, the acquisition
of monitoring or inspection data, or the use of adaptive control may only be required for
certain features of a part being produced. The Machine Server provides a ‘program sync’
service, specified for either a program line or axes position, that will internally monitor
the motion as it proceeds and signal the client application when that line or position is

reached. Table 2 below summarizes the program service commands.

61

COMMAND FUNCTION
program open open the DNC program interface
program close close the DNC program interface
program status report status of the program interface
program start begin program execution
program stop stop program execution
program reset stop execution / clear program buffer
program sync position ... set a ‘sync’ to specified position
program sync line ... set a ‘sync’ to specified program line

Table 2. Program Service Commands.

Data Services

The OAC maintains an internal database consisting of motion and /O data for
configuration and current state. All system data is referred to by logical name (eg:
position_x, velocity_y, etc). Services are provide for reading and writing of data.

A data reporting service is provided to regularly send clients data updates. Upon
receiving a ‘data report’ service request, the Machine Server starts a dedicated process
and communication channel to send the data item(s) to the client at the specified rate.
The rate has a resolution of milliseconds, and can be used by the client to update
displays, record sensor data, or time external feedback loops. Table 3 below summarizes

the program service commands.

62

COMMAND FUNCTION
data get NAME, ... get value(s) of specified data items
data set NAME VALUE set value(s) of specified data items
data report RATE NAME, ... start data report at specified rate
data cancel ID cancel data report

Table 3. Data Service Commands.

Override Services
Client applications are able to override motion at any time using the override

services. The following variables can be affected:

. feed (vector velocity),
. spindle speed,
. axes position.

Note that override can apply even when not running a motion program. In the case of
position override, a ‘dynamic’ offset is superimposed on the program generated
trajectory.

Override values have a resolution of unsigned 16 bit. This implies for example, a
resolution for feed commands of one thousandths of an in per revolution for a

programmed maximum (100%) feed of 65 inches per minute.

63

When an ‘open override’ request is received by the Machine Server, the server
starts a dedicated override process and communication channel for the requesting client.
Client override data is then sent through this channel using a simple data oriented format
(eg: F 123.45, feed percent override).

Override services gpply to the single motion device (ie: set of axes). Multiple
clients may request and receive access to device override simultaneously. Currently no
priority mechanism is implemented to resolve conflicting client override commands,

although this may be implemented at a future date.

COMMAND FUNCTION
override open open an override interface
override close close an override interface
override status report override status and settings

Table 4. Override Service Commands.

System Services
System services are used for basic maintenance of the OAC system Currently only
two services are supported; one for system shutdown, and one for client / server

communications testing. The latter of these can be used by client applications to test

request transmission timing.

COMMAND FUNCTION
system shutdown disable Machine Server software
system ping return communications acknowledge

Table 5. System Service Commands.

3.7 Performance Results

Several tests were performed to evaluate the communication performance of the
machine server with client OAC modules. The time required for a client application to
send a command and receive an acknowledgment from the machine server was measured
under different conditions. The test data represent communication timing only. The
results obtained are shown in the following figures as histograms summarizing 160 tests
of 1000 send / receive cycles each. Datagram (UDP) packets were used to send and
receive short text strings typical of the machine server commands.

Tests were performed for different cases of loading on the server (in the form of
active data report tasks), and for different client / server topologies. Network based tests
were done on a lab sub network (10 Mbits/sec Ethernet) during normal daytime loading.
Figure 10 shows a sample result of the testing. Other test results can be found in the
appendices of this report.

The results indicate that the server response under reasonable loading is adequate

65

to support client applications requiring data / override at a rate of 50-100 cycles per
second or less. This will readily support feedback based process control and monitoring
of low bandwidth process variables (eg: spindle power). Higher bandwidth monitoring
data, such as that used for tool breakage and chatter, must be achieved using more direct
interfaces to signal sources (eg: memory mapped) as opposed to using the OAC server
interface (IP based) This does not however, alter the functional view of the OAC system
as a whole consisting of loosely coupled, heterogenous processing agents. It simply treats
such monitoring systems as having independent signal sources.

From a systems concern, the key factor for any monitoring activities remains the
latency between detect and react times, in which the machine server must be commanded
to alter its actions (usually motion). In this context however, the communication
capabilities of the OAC appear to be adequate for both tool breakage and chatter
monitoring in which the reaction time is still one or two orders of magnitude less than the
time constants of the machine drives involved.

It is interesting to note that the communications performance under the topology
in which the client and server are on the same CPU is worse than that of the case in
which they are separated over the network. It is suspected that this behavior results from
the fact that the implementation of the communication protocol for network media is
hardware based (Ethernet ‘chip’), while the backplane and intra-CPU configurations are
software based. Performance for these latter cases will consequently depend on processor

speed and loading - a result that appears to be evident in for those test cases.

Number of QOccurrances

66

Frequency Distribution of OAC Communication Times

18

T

16

14

12

10

t 1 ¥ i L]

4 smuitaneous clients,
subnet connection.

Total of 160 tests at
1000 pings per test.

8 85 9 95 10
fime per ping (seconds)

Figure 10. Typical results of OAC communications tests.

x10

105

Chapter 4

DEVELOPMENT OF AN INTELLIGENT

MACHINING TEST BED

4.1 Machine Tool

The machine tool is a LeBlond Knight turret lathe. The spindle has a 20
horsepower drive with continuously variable speed to 2200 rpm. Figure 11 shows the

machine.

Figure 11. Instrumented LeBlond knight 20 Machine Tool.
67

68

4.2 Cutting Force Sensing System

A three axis plate dynamometer was designed and installed on the turret lathe.
The dynamometer is mounted between the four station turret and the lathe carriage as
shown in figure 12.

The dynamometer uses four piezo electric load cells, each measuring three axes of
load. The charge current produced under loading by the piezo electric elements is
summed between load cells for each of the directional components. This results in a
cancellation of induced moments under load, and correspondingly negligible cross
sensitivity between measurement axes.

The charge signals are routed to appropriate signal conditioning hardware and
then connected to the OAC analog input terminals. Software configuration of the OAC
machine server database allows client applications to access this data through requests to
the machine server (data services). Other analog signals, such as that from

accelerometers mounted on the turret, are handled in a similar manner.

4.3 Vibration Sensing for Machining Chatter

In turning, the distinction between stable and unstable cutting is rather clear.
Vibration signals measured at the tool post during stable cutting are essentially Gaussian
noise. When chatter occurs, the same signal will exhibit string sinusoidal behavior, with

a dominant frequency in the range of 100 to 600 Hz.

69

24
L 1 ;
Hdibe it Tomrsthead
; @-;g— i ‘/
K 208 e
T — —— Load cell
- crrg —_—
* L
dih T 21
Lathe carriage
= o
FRONT VIEW

Figure 12. Cutting Force Dynamometer Designed for Turret
Lathe.

70

In this system, an algorithm is used that counts the vibration signal mean crossing
rate to detect the transition from random to sinusoidal behavior. The analog signal is
band pass filtered from 50 - S00 Hz to 1) remove rotational frequencies, and 2) to prevent
aliasing during digitization at 2 kHz. Every ten samples the algorithm updates the rate
calculation which, if it remains within a narrow band for a specified period of time, will

trigger a chatter alarm.

4.4 Tool Wear Measurement

4.4.1 Camera and Lighting System

Automated tool wear measurement is realized using a machine vision system
(Sexton et al, 1996). Figure 13 depicts the camera and lighting setup, illustrating the
location of the system in the turret lathe application. A vertical camera provides
measurement of flank wear, while a second, inclined camera provides measurement of
crater and nose wear, and tool edge profile. Both cameras use fixed focus magnifying
lenses.

Two high intensity light emitting diodes (LED’s) are used to illuminate the flank
surface and tool profile. A miniature red laser with a diffracting head is used to project
light stripes on the rake face. The crater depth can be estimated from the distortion of the

stripes as they lie across the crater. This is discussed more in the following sections.

71

| _ camera for crater wear,
tool profile, and nose wear

1 <1 Striping laser
inner lighting enclosure

\

AAVAAAA MY

E JI N right angle mirror

. < camera for flank wear

1 =— outer protective enclosure
SIDE VIEW

VAN

@ «— ool enters camera box
through hole in front face

Qlees .

tool wear camera system
TOP VIEW

Figure 13. Machine vision system for tool wear
measurement.

72

4.4.2 Machine Vision Algorithms

Flank Wear

The width of the wear land is calculated at several points along the cutting edge,
providing maximum (VB,,,,) and average values (VB,,.). Figure 14 shows an example of

an original and processed image.

Flank wear estimation relies on the difference in reflectiveness of worn and
unworn regions on the tool insert. Repeatable lighting conditions are critical for accurate
estimation from the acquired image. This is largely provided for by the camera system
enclosure and the highly repeatable positioning of the lathes CNC system.

The image processing algorithm performs the following steps to generate the wear

land estimate:

1 separate the worn region from all other image data,

2) rotate the worn region to align the cutting tool edge perpendicular to the
image pixel columns,

3) at multiple points across the wear land, search vertically to find bottom
and top coordinates of the edges of the worn region (for width),

4) calculate maximum and average value, calibrate to distance units.

73

Figure 14. Examples of raw and processed flank
wear images.

74

Separatior is performed by applying a threshold on the image data resulting in a
binary image consisting of a contiguous white worn region and black everywhere else.
The threshold level is calculated from a fixed fraction of the average pixel intensity. The
operation of calculating and applying this threshold is repeated for sub sections of the
entire image. This localized approach increases the overall robustness of the separation
in so far as allowing for low frequency variations in contrast across the image.

The geometric center of the worn region is calculated and the womn region is
translated to the center of the image data array. This step is done to avoid losing image
data during rotation (as results when the worn region is close to an edge of the image and
the corresponding data gets rotated ‘off* the image). Starting at the top of the image, the
pixel columns are searched downwards to find points at the top edge (cutting edge) of the
worn region. Several of these points are used to fit a least squares estimate of the
equation of a straight line to the top edge of the worn region. The calculated slope is
used to determine the rotation angle required to align the top edge of the worn region
perpendicular to the direction of image pixel columns. The image is then rotated about
its geometric center, resulting in the ability to search along pixel columns to measure the
width of the worn region perpendicular to the cutting edge. The rotation is performed
only if the calculated slope is greater than two degrees (back rake for carbide turning
tools is typically + / - 6 degrees).

To calibrate the flank wear measurement a precision gauge block is used an

artifact and positioned by the CNC system at the tool measurement location. The

75

calibration factor of pixels per millimeter is taken from the acquired image. This value is
then used to scale width values from the processed image. Using a toolmaker’s
microscope, actual tools from wear tests were compared with the data from the vision
system. It was found that the values compared very well, particularly for the maximum
wear land values. It should be noted that average flank measurement using the
microscope is somewhat inconsistent as the “average” is based on a much coarser
approximation than the vision based system (by an order of magnitude in the number of
data points used). Figure 15 below shows a comparison plot of maximum flank wear

measurements from a toolmaker’s microscope and the implemented vision system.

Tool Profile and Nose Wear
The tool profile image is captured by the same camera used to measure crater
wear. In this case, a small light source over the tool is used to illuminate the tool face.

The overall image is divided into three regions:

1) the tool nose radius,
2) the tool leading edge,

3) the tool trailing edge.

76

0 Comparison of Maximum Flank Wear Measurements
.8 T T T T ¥ T 3

0.7 4

o
o
T
1

o
o
T
L

++

Vision System Measurements (mm)
2 & %
1 1

o
N
]
\
[l

01 d]

0 0.1 0.2 03 04 (1) 0.6 07 0.8
Microscope Measurements (mm)

Figure 15. Comparison of Maximum Flank Wear Measurements Obtained from a
Tool Maker’s Microscope and the Implemented Vision System.

The coordinates of these regions are determined beforehand, and remain valid for a given
tool positioned with the CNC

The profile image is thresholded in a manner similar to that described for the
flank wear measurement. Points along the leading and trailing edges are used to
determine line equations describing their orientation. Points taken about the tool nose
radius are used to estimate tool form in this region by comparison with a predefined circle

describing the manufacturer specified sharp tool nose radius. For each point taken,

77

the distance between that point and the nose radius center is calculated. The difference
between this value and the original nose radius gives an estimate of the tool nose wear.
Gross values of this or the leading and trailing edge line descriptions can also be used to

identify a broken tool. Figure 16 shows raw and processed tool profile images.

Crater Wear

Crater wear is most typically quantified by the maximum crater depth (Kt), and
the distance of the maximum depth to the cutting edge (Kr). In order to measure the
depth from the two dimensional picture, a technique used by Giusti et al (1987) is
employed. A diffraction pattern is projected onto the rake face of the tool, and the
camera views the image at an angle approximately 35 degrees from the perpendicular.
Portions of the laser stripe entering the crater will show up on the resulting image as a
deviation from the otherwise straight line. For a fixed tool geometry the deviation is
calibrated to crater depth. Similarly, a discrete outline of the perimeter of the crater can
be determined, and consequently, an estimate of the parameter Kr. Figure 17 shows a
typical picture of a crater worn tool with the stripe laser projected on it and the illustrated
results of the processing algorithm.

The region of the image about the tool tip is thresholded in a similar manner to

that described for flank wear measurement. A search along the top pixel row in this

78

Figure 16. Examples of Raw and Processed Tool
Profile Images.

79

e e i 4.+ Y M P ISP

AR SR R4 1 1134 £4 0 X vol soze e

e N Al 14911 4 SRR

S e im0

1 3:1:40-3 (RGN .r.wd\gq%ﬂhnwﬁnnf‘.« o . rﬂuﬂ

MRS I

. YYwi
L PR |
rTNee] sy

Figure 17. Examples of Raw and Processed

Crater Wear Images.

80

region determines the coordinates of points on the individual laser stripes. Within a sub
region about each stripe, the center line of the stripe ‘tracked’ by performing a medial
axis transformation (MAT) row by row down the sub region. The processed image in
figure 17 shows the located positions marked by ‘+’ symbols. The maximum deviation
of the tracked stripe from its straight line value found in the upper portion of the rake face
provides the measurand for maximum crater depth (K,). An equation describing the
cutting edge in the pixel coordinate system is determined from the tool profile
measurement in a manner similar to that described in the flank wear section. The value

of K,, measured perpendicular to cutting edge, is determined by:

1) finding the equation of a line passing through the pixel coordinates of the
location of maximum crater depth,

2) finding the intersection of the line found in 1) with the line describing the
cutting edge,

3) calculating the distance in pixels between the point found in 2) and the

point of maximum crater depth, and calibrating the value to distance units.

To calibrate the depth measurements a Mitutoya surface profilometer was used.
This device uses a mechanical stylus to measure surface profiles. By scanning over the

crater region of a tool, the maximum displacement of the stylus provides the K,

81

measurement. Similar to the flank wear measurement, a calibration factor between the
measured straight line deviation and the actual crater depth is determined in units of
pixels per mm. Figure 18 shows a comparison between K obtained with the vision
systems and with the surface profilometer. Note that the calibration is only valid for a

fixed value of tool back or side rake.

Comparison of Crater Depth Measurements
035 T T T T T T

(o]

o o Y

N N 3
T T I
i i, i

Vision System Measurements (mm)
o
1

0.05-

o] 1 1. 1 1

0 0.05 0.1 0.15 0.2 0.25 03 035
Profilometer Measurements (mm)

Figure 18. Comparison of Crater Depth Measurements Obtained from a Surface
Profilometer and the Implemented Vision System.

82

4.5 Surface Roughness Measurement System

4.5.1 Ultrasonic Transducer and Electronics

An ultrasonic system is used to measure surface roughness between part cycles. A
highly focused, non contact transducer is used as an ultrasonic transmitter and receiver.
Sensor to part surface displacement is estimated from the measured pulse / echo time of
flight. The focused ultrasonic wave is scanned along the workpiece in the feed direction,
resulting in a stream of data representing the surface topography.

The ultrasonic wave, being highly attenuated in air, is coupled to the part surface
using a stream of cutting fluid from a specially designed nozzle that houses the transducer
element. The sensor is mounted on the far end of the cross slide of the lathe, and moved
under the part to scan along the part length. The 33 MHz ultrasonic signal is coupled to
the part using cutting fluid with a 'dribbler’ end. Figure 19 depicts the setup. While this
arrangement is limited to a fixed part diameter, it is suitable for multiple parts
production, in which only the final pass of each part is measured. Figure 20 shows a
typical scan from a turned workpiece in which several patches have been cut with
different feeds. The peaks at the end of each patch are the results of cusps left on the

work surface from the tool’s radial motion programmed between cuts.

83

Section View of the Focused Transducer
in the ’Dribbler’ Nozzle

Cutting

" Element

Ultrasonic transducein
'~ ’dribbler’ mounted
on carriage

B o
r—
|

Figure 19. Surface Roughness Measurement using an Ultrasonic Transducer
Mounted on the Radial Axis Table.

84

Distance Measurement vs Position Along Work (V = 275 mvmin)
6.4 1 4 13 13 L] 13

6391 Feed in mmfrev: .
0.41 0.36 0.31 0.25 0.20

o o
S 8
¥ T

Sensor to Work Distance (mm)
[
3
J

635 4
634 4
633 4
632 1 1 'l L 4 1
-230 -220 =210 -200 -190 -180 -170 -160
Longitudinal Position (mm)

Figure 20. Surface Scan of Workpiece with Sections cut at different feeds.

4.5.2 Signal Processing
Figure 21 show a sample plot of the raw surface data from a machined mild steel

part. The raw surface data is processed to:

. remove gross drift in the mean level due to spindle or part holding error,

. filter outliers from the data due to phase inversion of the ultrasonic signal.

85

Raw Surface Measurement, feed 0.25mmvrev, speed 275 m/min
‘0.008 L4 1) ¥ 1] L3 1]

~0.01F -

-0.012

-0.014]

-0.016 .

Part surface Height (mm)

-0.018

—0.02 L 1 1
-25 -24.5 -24 -23.5 -3 225 -2 =215
X axis position (mm)

Figure 21. Example Plot of Raw Surface Data.

The first of these operations is achieved by performing a recursive estimation of

the signal mean level, and subtracting this mean from the signal at each sample:

86

m@) = m(i-1) + K@-1)*(s() - m@-1)) (1)

K(@i-1)?

—— 2
A + K(@i-1) @

KG) = 'JIC(K(i_l) -

5@ =s@ -m@ 3

where,
i - data sample indices,
s - part surface to sensor distance (raw data),
m - estimated mean value,
S - processed part surface data,
A - ‘forgetting factor’ for recursive calculations,

K - the recursive gain,

This is in effect a low pass filtering operation that specifies the amount of filtering by an

effective window size, W in the mean level calculation:

87

The geometric average surface roughness, Ra, is calculated by numerical integration:

1 N
R = — S %* 5
a o X 1501 =dx)

where,
N - total number of data samples

dx - distance between sampled points

Filtering for outlier data is performed by simply checking the data serially for
large shifts in value and removing the detected shift. The highly focused ultrasonic wave
is sensitive to sharp changes in the surface topography that resuit in an inversion of phase
in the returning pulse. The effect of the phase inversion is a shift in the detected return
time of the transmitted pulse. Because this shift physically occurs between ‘samples’ of
the time data, it is easily identified as it is the largest shift seen between any two adjacent
samples (ie: all other valid data represents lower frequency changes in the surface
topography that will occur over several samples).

Figure 22 shows the processed data from figure 21. The ultrasonic pulser/
receiver / timing system is connected to the OAC through a serial link. The OAC data

base is configured to perform acquisition cycles on client request.

88

5 x 10~ Processed Surface Measurement, feed 0.25mmvrev, speed 275 m/min
¥ L] ¥ 1 * i

n fA KAA’A/\

——-7“::

Part surface Height (mm)
(=]

_5 1 A 1 1l 1
-25 -24.5 -24 -235 -2 -22.5 -22 -21.5
X axis position (mm)

Figure 22. Processed Data, with Solid Line Showing the Calculated Average
Surface Roughness, R,.

Figure 23 shows a calibration plot of the ultrasonic surface roughness
measurement system. The reference measurement is taken using a stylus type Mitutoya
211 “Surftest” profilometer. The results show good agreement over the tested range, with
overall fit improving for higher values of roughness. This observation is consistent with
the known behavior of the ultrasonic system in which the averaging effect of the non

contact measurement (ie: the effect of a finite “spot size” of the ultrasonic beam).

89

Comparison of Estimated Surface Roughness (V = 213 m/min)

8 L1 1] 13 + 1 T

4

N
¥

e |

(3,
T

Ultrasonic Gystem Ra (micron)
»
1)

w
T
Ht

1 2 3 4 5 6 7 8
Mitutoya 211 Profilometer Ra (micron)

Figure 23. Comparison of Surface Roughness Measurement with Ultrasonic System
vs Conventional Stylus Type Device.

4.6 OAC Implementation

The lathe application of the OAC is shown in figure 24.

Figure 24. Implementation of the OAC System.

91

The OAC machine server is run on a general purpose CPU on the real time
platform. A real time operating system (VxWorks) hosts the server software and supports
Internet Protocol communications for clients across network, backplane, and interprocess
interfaces. The server software controls motion and input / output hardware through
memory mapped interfaces.

As an example client application, an operator interface has been developed for the

lathe. Figure 25 shows the interface screen.

Figure 25. LeBlond Lathe OAC Operator Interface Application.

92

Each window of the interface is implemented as an independent client application, having

it’s own communication interface. In this manner operator interface components can be:

. distributed among multiple computers,
. run simultaneously from multiple sites,
. run remotely from the machine.

The interface consists of typical manual machine control elements: coordinate displays,
manual axes and spindle controls, program processing control, feed and speed override,
and tool data base. Other applications have been developed to demonstrate remote access
to ‘on line’ machine data; for example a process interface that logs and displays
engineering data from the running machine: spindle power, cutting force, metal removal
rate, tool state, etc.

The operator interface application has demonstrated many of the features of the
OAC design, and in particular the design of the OAC Machine Server. Figure 26 depicts
how a typical component of the interface is implemented using the server.

Figure 27 depicts how an adaptive control module is implemented with the
Machine Server. In this case, the data report facility supplies data over the
communication interface at a rate specified by the client application (with a resolution of

milliseconds). The client application can, for example, use the incoming data as an event

93

Machine Server

Figure 26. Example of Operator Interface OAC client.

94

override

m ®
achine commands

commands

Main
Command
Interface

Machine Server

Figure 27. Example Adaptive Control OAC Client.

95

source to provide timing for a digital control loop. Calculations performed on the data -
PID control for example - result in a desired control action that is applied through a
Machine Server override interface. In this scenario, the client requires no timing
mechanism, and no knowledge of the hardware interfaces required to realize the
acquisition of sensor data and actuation of control actions. The example illustrates the

high degree to which the Machine Server facilitates realizing the client application.

Chapter 5§

INTELLIGENT MACHINING SYSTEM

5.1 System Structure

Multi pass or discrete parts machining processes have many conditions that affect

their output. These conditions can include both short term and long term process

behavior. Figure 28 depicts several of these factors and the approximate time frames

assoctiated with them.

msec sec minutes hours days months years

- ow pard

 tool 1 | ‘ change i
brgakage p::t batch
ool ey | ew s
dollision el family
- chang new tools
 chatter tool | | | batch 1
F piogress' e i
00l wea

de

Figure 28. Factors affecting typical production machining
systems and their time frames.

96

97

Accordingly, it is considered here that an ‘intelligent’ machining system would

address the control of:

1) multiple aspects of the machining process,

2) behavior that occurs over various time intervals.

Figure 29 depicts the proposed Intelligent Machining System. Three feedback
loops each address different time frames for the multi pass control problem.

In pass control ensures the safety and integrity of the current pass by addressing
activities associated with time critical events: tool breakage, chatter, and cutting force
control.

Per pass control combines knowledge of the current part geometry and tool state
with a detailed process simulation to provide a process plan for the next pass. The
process plan is generated to provide an optimized feed based on either a constant force
constraint (roughing passes) or a constant surface roughness constraint (finishing passes).

Multi pass control provides a supervisory level of control for:

) coordinating lower level control tasks,

. controlling long term process behavior.

98

FEED, SPEED,

TOOL PATH
FORCE,
-Force Regulation IVIBRATIO
| ~Tool Condition Monitoring JEAS.
-Chatter Monitoring &
|_Control
IN PASS CONTROL
-Vision Wear Measuremet'tT oalfg,\WE.Aﬁ1
-Process Simulation &
Planning
PER PASS CONTROL
~Trend model coefficients Mgg&?}'sm
-Recalibrate models fe-
-Initiate monitoring
-Trend performance

MULTI PASS CONTROL

Figure 29. The proposed Intelligent Machining System

99

Coordination duties will involve selecting active control and monitoring tasks,
managing their interactions, and defining the values of regulated process constraints.
Long term control will address tool wear rate regulation and process model adaptation
over slow changes in material and tool characteristics.

Each of these control levels and their associated subsystems are further described

in the following sections.
5.2 In Pass Control

In pass control manages real time contingencies such as tool breakage, chatter

detection and suppression, and force regulation.

5.2.1 Tool Breakage Monitoring

Téol breakage monitoring employs a technique that detects the transient in cutting
force associated with breakage. The approach relies on detecting the excursion of the
force signal from an envelope that represents the range of signal variation under normal
cutting conditions. The technique has been reported in the literature in several forms
(refer for example to Jemielniak, 1992) however, the approach used here is unique in that

the envelope width is calculated recursively from the incoming force data as the 95%

100

confidence interval on the assumed Gaussian force variation:

F@® = Fa-1) + KF@® - Fa-1)) (6)
a1 = 8(t-1)* + K(F@t) - Fa-1))* - a(t-1)®

K(t-1)?

8
A + K(t-1) ®

1
K@® = —(K(@-1) -
® (K(t-1)

and hence the envelope values are:

£ £ 2807 (9)

-

where,
t - time step,
F(t) - is the measured force at time t,
F(t) - is the estimated mean value of the force,
&” - is the estimated variance of the force signal,
K(t) - is the recursive gain of the estimation,
A - is the 'forgetting factor’ of the recursive calculations,

€(t),, - are the calculated envelopes about the force signal.

@)

101

This approach is particularly appealing in that no a priori specification of force
levels, envelope widths or cutting conditions is required. The only parameters required
are a recursive forgetting factor, which is related to the effective time window length of
the recursive calculations, and the time duration that the algorithm allows the excursion
of the signal from its envelope before breakage is considered to have occurred. The latter
of these acts as a single parameter determining the sensitivity of the algorithm. Figure 30

shows the operation of this algorithm.

5.2.2 Chatter Control

The phenomena of chatter in machining involves complex, nonlinear mechanisms
that are difficult to model in most practical situations. This is due to the inherent
dependance of chatter on the dynamics of the machining system, which in turning is
effected by many factors that are practically difficult to control; for example work
clamping forces. Consequently, many of the chatter suppression systems proposed in the
literature are event driven (Teltz and Elbestawi, 1993, Hoshi et al., 1977, Smith and
Delio, 1989).

If it can be éss’umed that the primary goal of a chatter suppression system is to
allow the safe completion of an otherwise unstable process, it can be argued that the

optimal strategy will be that which allows the current pass to complete safely in minimal

102

Thrust Force and Monitoring
Envelope vs Time

420
- breakage detected
> adaptive
>~ 1 force envelope
D -
O 380 l
| . .
o
Jud
"
D 340
N - i
L~
30 Lf T T ~T T T
0 0.2 0.4 0.6

time (seconds)

Figure 30. Operation of the Cutting Force Based
Tool Breakage Algorithm.

time. It is then assumed that the process inputs are adjusted such that the input having
the worst effect on machining time is modified off line. In either case, once the current
pass is complete, the tool path plan is regenerated for following passes to ensure chatter

free operation by planning a lower depth of cut.

For the implementation here, depth of cut is used as the primary variable to

103

suppress chatter once it is detected. This variable is chosen because it:

. has the greatest influence on the occurrence of chatter,

. leads directly to identifying the stable level of depth for subsequent passes.

This latter point arises from the case where multiple chatter alarms lead to multiple
reductions in depth of cut before the pass proceeds. In this manner, the approach can be

related to “Automatic Cut Distribution” techniques (Weck et al, 1975). Figure 31 depicts

11,' o &,
= A PR\ 'I,,’
Le ’ -
.
- ’I‘\‘\"l,\\g "1,’ =
£ 3 = < -
sy, Wy - - -
P =
= 'y = < bt
= L
= = = z -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
= - - - =
=4 = - - -
b= =
- - - - -
= - - = pd
pd b = pud =
- - - - -
- - - - -
- s =
< 4 = = =
- - - - -
= - - - =
- = = h=d b=d
= = = b4 -
= b4 = - =
- = = = =
= - = -
= - - - =
= s - = =
=, -
- 7,
-’, - s,
=, - ., b4
=%, - ', b
- ”,
= ‘s, < ’,
‘. - ‘e, - ’, =
‘s - ‘s - /,
” pd ’,
'’ ’ ‘ 4
0 - ”
s ”,
', - ’ \\
‘v, BY Uy . R
) NS
7,)
LT EN T] 1 W 1. a4 .4.0 1.4 .4.0 "

Figure 31. The Use of Depth of Cut Modification to Suppress Chatter.

104

The chatter control strategy was examined in a series of tests where slender work
pieces were machined. Typical slenderness ratios of the work pieces used was 12:1
(length to diameter). Figure 32 shows a typical test result for a mild steel work piece with
cutting conditions of speed SO m/min and feed 0.17 mm/rev. Depth of cut reduction for
this test was 50%, with an initial depth of cut of 2.5 mm. The tests demonstrated that
reducing the depth of cut effectively suppressed the chatter. The test case shown in figure
32 resulted in a reduction of overall vibration level of greater than 75%.

Figure 33 shows the system responding to multiple chatter detections. Depth of
cut reduction of the single pass was set for 25% of the initial depth of cut. Test
conditions were similar to that shown in figure 32, with the depths of cut being 2.5 mm
initially, 1.9 mm and 1.3 mm for the final stable cut.

In some cases it was observed that, at very low depths of cut, chatter occurred
under conditions identical to those where chatter had not occurred at a significantly higher
depth of cut. This behavior was attributed to the effects of the tool nose radius; at low
depths of cut the chip load is distributed over the nose of the tool instead of the cutting
edge. This can reorient the resultant cutting force in the direction of the weak structural
mode of the work piece (ie: radially), thus stimulating the regenerative chatter. In
practice however, the chatter suppression system will be applied to roughing cuts in

which the depth of cut will generally be significantly higher than the tool nose radius.

105

.Tangenﬁal Force vs Time
450

- Chatter
400 < interrupt . -

350 4
300 4
2s0
200 -

150 4

tangentiat tool force (N)

100 -

o 2 4 6 8 10
. Time (s)

Toolpost Vibration Signal vs Time
0.25

0.2 -
0.15 -
014 .

0.05" i

! 1 |

.7[.'111‘1 I | LA l‘ﬂl“
: R TR TR A

o |I'” lll glll [IT’!\] ‘ll.’ 'A 8,
-0.05 ||l oL

acceleration signat (V)

-0.1
|
<0.15 4

-0.2 -

-0.25

o 2 4 & &8 7 10
Time (s)
Figure 32. Chatter Suppression via On Line Reduction in Depth of Cut.

tangentiat tool force (N)

acceleration signai (V)

Figure 33. Chatter Suppression via Multiple Reductions in the Depth of Cut.

106
Tangential Force vs Time

6§00
- flest -
400 interrupt
r vy second
300 - Interrupt
200 4
100 -
o L3 L 4 L9 L] L LS L1 L1 L 4] L 9 k 4
o 4 8 12 16 20 24

Time (s)

Toolpost Vibration Signal vs Time

03

-0.3 4

=04

il 8
: IRl
'L.i N

]
l Lln A1
ey

! :‘1'3['r.:
i

LS L 4 LS L4 L3 LS T ¥ L ¥ 1]

4 8 12 16 20 24
Time (s)

107
5.2.3 Force Regulation
Force regulation used at the in pass control level is only applied selectively to
correct the planned feed for excessive modeling error. As such, the force control system
can be considered to act as a supervising monitor for the planned feed, being applied only
in situations where the measured force resulting from the planned feed sequence differs
from the target force by a predefined margin. For this purpose, a digital low gain integral

controller is used:

[(K (z-D+K2)
F, (2 (z-1)

(10)

where,
Ferr - target force error; tangential force, (N),
fc - is the feed command (mm per revolution),
K, - is the proportional gain,
K; - is the integral gain,

z - is the Z transform operator.

108

The cutting process dynamics are modeled as a first order system:

F(s) _ Kb
£ l1+ts

(1)

where,
F - tangential cutting force, (N),
K - specific cutting force (N/mm?),
b - is the chip width (mm),
< - first order time constant,

s - Laplace transform operator.

For cutting mild steel with P40 grade carbide tools over a range of feeds and speeds of 1.0
- 4.0 mm and 300 - 450 m/min respectively, Ks was found to vary from 1.2 - 1.8
MN/mm2. Choosing Kp and Ki corresponding to roughly the middle of this range of Ks
resulted in a robust, non aggressive control.

Figure 34 depicts the operation of such a controller. It is important to note that

force regulation, at this level of control, does not attempt to regulate cutting force during

109

abrupt changes in part geometry. Regulation of cutting force in these conditions results
from a change in the feed schedule, as planned by the per pass control level. The limited
use of continuous on line force regulation in the system proposed here is made in
recognition that such systems cannot adequately deal with the fast transients in force that
arise due to abrupt changes in part geometry. The cut entry depicted in figure 34
illustrates this problem. The use of parameter adaptive systems, even in the best
conditions, do not eliminate such transients, which are clearly unacceptable from a
breakage perspective. Limited, on line feedback control is used here to address slow
transients associated with, for example, part material variation. Off line planning of the
feed sequences for constant force cutting addresses the fast transients that threaten the

integrity of the tool and the machining system.

5.3 Per Pass Control

The per pass level of control is concerned with providing an optimized plan of
cutting feed for the upcoming pass, with consideration given to the current tool state and
cut geometry. The plan consists of a schedule of feeds required to realize either a
constant cutting force (roughing passes), or constant surface roughness (finishing passes).

Calculated feed plan data is associated to the coordinate space of the machine tool for

110

Tangential Cutting Force vs Time
Pl force control tests

force (N)
- FEF IR

2 4 6 8 10
time (seconds)

Feed and Depth of Cut vs Time
Pl force control tests

0.45

command 3.89 E
g 0.36 T62 g
£ 6.35 ‘é
E 035 d‘cpth of cut 508 %
&
2 o015 g
254

0.05 N 1’.2?

2 4 6 8 10
time (seconds)

Figure 34. Operation of Proportional-Integral cutting
force controller.

111
direct use as CNC command data.

Planning is realized through the use of process constraint models and
measurements of the actual tool state. The cutting force model incorporate tool wear
measurements taken by the machine vision based measurement system. The surface
roughness predictions are verified by an on-line measurement system. The models are
used in a simulation of the cutting pass that is solved to determine the feed required to
satisfy a specified constraint value. The following describes each of these steps in more

detail.

5.3.1 Cutting Force Modeling

There are several well established techniques for cutting force modeling. Semi
empirical approaches have proven to be the best suited for industrial application. Such
models are easily calibrated over a wide range of cutting conditions, and can be used to
account for complex tool and work geometries.

For sharp tools, the three dimensional oblique cutting process is viewed in terms
of an equivalent two-dimensional cutting force system in the plane normal to the rake
face. The cutting forces are treated as being proportional to the area of tool / work

intersection (the chip load’ area). The tangential and normal cutting force components

are given by the equations,

112

Fr
Fy

KT *Ac

K, -4 (11)

[

where A_ is the chip load area. K, and K| are semi empirical, being dependant on tool
geometry, cutting conditions and tool / work material combination. They are accordingly

modeled as:

InkK =C0+C[lntc+C2 InVv (12)

where, t_ is he effective chip thickness and V is the cutting velocity. C, ... C, are
determined by multi variate linear regression using force measurements. The longitudinal
and radial force components F; and Fy are determined by resolving the normal force

component Fy using the effective lead angle la, as follows,

F, = Fycosla,
F, F, sinla,

(13)

"

where, the effective lead angle is used to compensate for the effect of the tool nose radius

on the nominal lead angle.

The chip load is taken as the projection of the chip cross-sectional area on the

113

plane normal to the cutting velocity. Itis calculated using a geometric model of tool /
workpiece intersection. Section 5.3.4 describes the implementation of these calculations.
It is well understood that tool flank wear can significantly increase cutting forces.

It has been shown that the worn tool cutting force Fw can be well predicted as:

F, = F, +KV, (14)

w

where, Fs is the sharp tool cutting force and K is an empirical constant, (Koren, 1973,
1978). This model has also been used for wear estimation under varying cutting
conditions (Koren et al., 1991).

In the application here, the flank wear estimates are obtained intermittently from
the machine vision measurement system, and are used to improve the overall cutting force
prediction. The cutting force / flank wear relationship has been calibrated for a range of
average flank wear lands using tangential cutting force measurements.

Figure 35 depicts test results for the calibrated model, shown here for a step
change in depth of cut. The model has been calibrated for cutting mild steel with P20
grade carbide tools; ;wer a range of feeds, depths of cut and speeds of 0.127 - 0.508
mm/rev, 2.5 - 4.8 mm and 91 - 137 m/min, respectively. Results for worn tools

correspond to flank wear lands over the range of 0.2 mm < VB, < 0.45 mm.

114

5.3.2 Surface Finish Modeling

Models for surface finish in machining generally fall into two categories. The first
is concerned entirely with tool / work intersection geometry. Sometimes referred to as
“theoretical surface roughness”, these models consider the generation of surface on the
work due to the secondary cutting edge of the tool. In this case the nose radius, effective
lead angle, and feed per revolution play the largest roles in the generation of “feed
marks”. Figure 36 depicts the concept.
Determining theoretical surface finish involves the evaluation of a set of cases which
define the particular class of geometric calculations used (Samaranayake, 1996). More
sophisticated approaches use solid modeling techniques to handle the geometric
calculations and can include the contributions of tool / workpiece vibration and complex
tool and work geometries (eg: Imani, 1997).

The second type of modeling approach recognizes that practically the theoretical
predictions for surface roughness are rarely achieved in practice. This recognizes the

presence of various other aspects that can influence surface finish in machining, such as:

. work material fracture,
. material side flow,

e tool wear.

Predicted vs Measured

115

Tangential Cutting Force

V = 122 m/min, f = 0.5 mm/rev, depth of cut =3 mm

average flank wear Vb = 0.15 mm

S S

20
time (seconds)

40

average flank wear Vb = 0.30 mm

— T
<
37
—
ig
e .
s ®
g3
D=+
e
i} .
0
4
—
2 .
L~
]
£g °
SE |
T8
- g
£ 0
[= -
D
S - H
3

Figure 35. Test Results for the Calibrated Cutting Force Model.

—_——

20
time (seconds)

i

—

tool / work generated work
intersection surface

uncut work
surface

advancing
tool profile

Tool / Work Geometry for
Feed Scheduling

Figure 36. Generation of "theoretical’ Surface Finish in Machining.

In this case, semi empirical models are predominantly used because of the inherent
difficulty in quantifying a mechanistic representation of these phenomenon. Most

commonly, a feature of the surface topography (eg: average or peak value) is

117

characterized as a function of the cutting conditions. For example, for a sharp tool with a

fixed geometry, the following relationship has been used by many authors:

R, = K, ~f*=VP* (15)

a

where,
R, - geometric average surface roughness,
f, V - machining feed and speed,

K,, a,b,c - are exponents, determined experimentally.

For the purpose of planning finishing feed in the Intelligent Machining System,
the latter modeling approach is used. A series of cutting tests are performed for mild steel
work pieces using P40 carbide tools over a range of cutting conditions: feed: 0.2 mm/rev
< f < 0.45 mm/rev, speed: 210 m/min < V <350 m/min. Sharp tool conditions were
considered. The results of these tests are used to form a data base, in the form of a set of
empirical equations, that are used by the planning system to selected the feed and speed
required to generate a specified surface roughness. Figure 37 depicts typical test curves

used for the prediction model. Appendix 3 contains the test results used for these models.

118

Swrface Roughness vs Feed
8
[-
/
T depth = 1.27 mm /
/
‘0" - speed = 213 mvmin /

5 ‘+" - speed = 335 m/min //
Z /
£S5
E
]
T
24
2
g
3
5
@9

1

o 1] L L ! -

02 025 03 035 04 045 05

feed (mmfrev)

Figure 37. Example calibration curves for surface roughness model.

Samaranayake (1996) has found that the theoretical surface roughness does
provide a more accurate prediction for coated tooling than for uncoated tools. It is
proposed here that for such cases in which theoretical roughness applies, the empirical
models may be substituted for calculated theoretical roughness values generated by a
geometric simulation of the pass. Feed planning for roughing constraint will, as a by
product of the chip load calculation, automatically generate such geometric surface data.

In such cases the same planning software can be used for both roughing and finishing.

119
5.3.3 Feed Planning Solution

The objective of feed planning is to pre-determine the feed sequences required to
maintain a constant value of a process constraint during cutting. Tool motion at nominal
feed is specified by input G code commands. Geometric models of the part and the tool
are used to determine intersection areas. Feed planning effectively replaces the input G
code block with one or more output blocks having the feed adjusted to satisfy the process
constraint.

For a surface roughness constraint, the calibrated surface roughness model is used
to select the feed required to satisfy a specified value of average roughness R,. This feed
is held constant for the current pass.

For cutting force constraint, the feed planning solution is somewhat more
complex, requiring a time scheduled solution. The feed solution is determined iteratively
by simulating the cutting force (tangential component) for a set of input conditions and
adjusting the feed until the predicted force matches the desired force. This iterative
solution is required due to the non linearity of the cutting force model: the chip area is a
non-linear function of the feed, and the specific cutting resistance Kt is a function of feed
and cutting speed as described by equations 11, 12, 13. A simple secant method search is
used.

For a G code block in which the depth of cut and velocity are constant (ie: bar
turning), a single G code is produced with the adjusted feed. However, during

contouring operations in which depth of cut and velocity are changing continuously, the

120

initial block must be subdivided into smaller blocks within which the depth of cut and
velocity can be approximated as being constant. The feed solution is performed for each
of these ‘sub blocks’, and a series of G codes blocks result. The selection of sub block
size is determined from the geometric description of the cut such that the variation in
depth of cut within the sub block is less than five percent of the total width of cut.

Figures 38 and 39 demonstrate the results obtained with feed scheduling
for linear and circular interpolated cutting, at a cutting speed of 350 m/min. The results
indicate that the feed schedules produced are reliable within the accuracy of the cutting
force model (within approximately 10%). Other factors that influence the performance of

the feed scheduling systems include:

. the accuracy of the workpiece geometric model,

. the amount of variation in feed between scheduled ‘sub blocks’.

The impact of the latter factor will depend on the motion control system’s ability to
change vector feed rate between commanded motion blocks. This in turn is a
manifestation of the acceleration abilities of the drive system and the axes configuration

during the move in question (ie: during contoured motion).

121

Tangential Cutting Force vs Time

- 2
i -
[] u:-—'=- ——
-
[-]
[
g 18
(1}
e 12
E
-
[J
8 i
° « 8 2w B w8 aw
time (seconds)
Command Feedrate vs Time
00
190
T 10 | scheduled feed
) 3
- 120] -
J u
4 [o
- f I Bl
g%] depth of cut (¥ 3
5": - 18
LR
< - &6

J A S S U T S S S TS S T U W N N | I 1
4 8 2 ¥ 2 M 3 2 9

time (seconds)

Figure 38. Feed Scheduling Results for Linearly
varying Depth of Cut.

tangential cutting force (kN)
R S S S I~ I S

command feed (mm/min)

122

Tangential Cutting Force vs Time

Command Feedrate vs Time

128

100

scheduled feed

:“
:“
T
- 25
depth of cut -
L :1.!
ke e - 08
4] 12 16 2 o
time (seconds)

depth of cut (mm)

Figure 39. Feed Scheduling Results for Circular

Variation in Depth of Cut.

123

5.3.4 Implementation of the Per Pass Control Module

The feed planning system used for the Per Pass control is implemented as an
application on a UNIX workstation. The software consists of C language algorithms for
the numerical constraint model (cutting force and surface roughness), and geometric
modeling algorithms for the chip load area calculations. The latter of these is supplied by
commercial solid modeling libraries (ACIS, by Spatial Technology Inc.). The software is
implemented using X Windows for the user interface. Figure 40 shows the user interface.

The Per Pass control module includes code that implements a “server” interface
using IP. This allows other applications to drive the feed planning system by sending

commands to the planning system specifying:

. part, tool, and constraint data files,
. active constraints (ie: force or surface roughness),
. motion code blocks to process.

The output of the planning system consists of modified G code text that is sent directly to
the OAC Machine Server for execution. The integration of the feed planning module in

the overall Intelligent Machining System is described in more detail in section 5.4.4.

124

Figure 40. Implementation of the
Feed Planning System.

5.4 Multi Pass Control
Multiple pass control addresses two objectives:

o coordination of control tasks,

. modeling and control of long term processes.

125

To achieve these, the controller must be able to assess and react to the state of the system
as a whole. Numerical data and logical data must be processed to determine actions. The
proposed approach is to implement the multi pass controller as a rule based system with

integrated numerical processing.

5.4.1 Coordination of Control Tasks

Activities occurring at the per pass and in pass levels of the proposed system

involve:
. tool wear and surface roughness measurement cycles,
. feed planning calculations,
. monitoring and control tasks,
. tool breakage or chatter detection events.

These activities can strongly interact, depending on the particular circumstances
under which they occur. In addition, the selection of active constraints and related
controls and monitoring tasks will depend on the particular operations being performed at
the time (ie: roughing or finishing). Coordinating the potential interactions of this
collection of subsystems can become relatively complex. |

As an example, consider a part requiring one roughing pass and one finishing

pass. For the roughing pass, the corresponding tool is selected and it’s wear land

126

measured. The active feed constraint will be cutting force, and the feed plan is
performed accordingly, with consideration for the latest tool wear measurement. During
cutting, tool breakage, chatter and cutting force monitoring will be activated. If for
example, the maximum allowable cutting force is exceeded during operation, the feed
plan is suspended and force regulation is enabled to complete the pass.

The multi pass controller requires a mechanism to regularly acquire system data,
evaluate system state and apply corrective actions. System data will include sensor data,
monitoring status data, tool motion and machine state data. Data may require numerical
processing to allow it to be expressed logically to the rule based system. At each interval,
the system re evaluates its rule base against the new data. Corrective actions are encoded
in rule structures and are applied to the machine control, planning, and monitoring tasks

of the Intelligent Machining System.

5.4.2 Control of Long Term Process Variability

Multi pass control also attempts to maintain the long term validity of process
models used at the lower levels of control, and to control relatively slow processes such
as tool wear rate. These tasks both require long term trending of process and tool
performance, and the inference of actions from such data.

The process models used by the per pass control level for feed planning have
several empirical constants. These constants will be dependant on the tool / workpiece

material and may vary significantly between material batches.

127

Over long term operation the process model predictions can be expected to
degrade. The detection of such conditions can be used to initiate the re calibration of
these empirical constants using data collected during the operation of the system. For this
purpose a general least squares parameter estimation can be applied to the model
equations for cutting force and surface finish models used in the Per Pass control system.

For surface roughness, equation 15 can be rewritten in a linear form as:

In(R) = In(K,) + a*In(p) + b*In(V) (16)

In many cutting operations noticeable changes in tool wear will occur only after
several cutting passes. The rate of wear is primarily affected by the cutting speeds. Using
models describing the behavior of tool wear, the Multi Pass controller can select speed to
achieve a desired tool wear rate. For a fixed tool and work combination, empirical curves
such as those shown in figure 41 can be used. Accurate measurements of current tool
wear state are supplied on demand by the vision system. They are used with the empirical
models to predict the incremental wear expected under each of the cutting speeds the
model data was collected under. The cutting speed having the most desired incremental

wear amount is chosen and implemented (for example to achieve a specified tool life).

128

Tool Wear vs Cutting Time, feed = 0.6 mm/rev, depth of cut = 2mm
0.5 +

+

045 - V=18 mmin o

[
o
1

‘0" = V=123 m/min o]

o
“_ 8

average flank wear (mm)
o
Y

S0 100 150 200 250 300 350
cutting time (seconds)

Figure 41. Example Tool Wear Curves used for Control of Wear Rate.

To practically achieve such a strategy, an extensive data base of tool wear data is

required. Simple, semi empirical Taylor equations are employed of the form:

VB,, = K+Vxf® 17

129

where K, a, b are empirical constants. A series of these equations are generated for
various operational conditions that are known to affect tool wear. Such data was
generated in a series of cutting tests for mild steel with P40 carbide tooling. Over a range
of feeds and speeds, the empirical equations were generated for different durations of cut.
Figure 42 shows an example of wear plots for the case of 10 second and 5 second
duration cuts. In this case, the differences in wear rate described by this data can be used
to estimate the increase in wear expected for a given length of cut under specified cutting

conditions.

Tool Wear vs Cutting Time, feed = 0.4 mmrev, depth of cut = 2mm speed = 183 mymin

o-s 1] ¥ ¥ K/‘:" T
045+ ‘0" — time in cut = 10 seconds 1
= ~time in cut = 5 seconds

o
»
¥

.

o
w
Y

average flank wear (mm)
o
o B
T ¥

0.15

0.1

0.0

0 §0 100 150 200 250 300
cutting time (seconds)

Figure 42. Example Plots of Wear for Different Durations of Cut.

130

5.4.3 Implementation of the Multi Pass Control Module

The Multi Pass control module is implemented using the CLIPS expert system
(Giarratano, 1993). The C language based implementation allows for user written code to
be added to the existing functionality of the rule based processing engine. The following

functionality was added to the standard program distribution:

1) IP communication to other Intelligent Machining Systemn modules,
2) a background update function of the CLIPS fact data base,

3) numerical algorithms to implement statistical and model functions.

The first of these items is described in the following section. The second item addresses
the Multi Pass control’s ability to react to changes in overall system state. A Machine
Server data report function regularly sends data to an IP interface added to the CLIPS
executable code. This handler for this input decodes and resets “fact” data in the CLIPS
system, and triggers a re evaluation of the programmed rule base. The “firing” of
programmed rules can call other user added functions that send commands over the IP
interface to other Intelligent Machining System modules, or perform numerical
processing of data. The latter of these allows for example, statistical features of data to be

tracked by the rule based system.

131

5.4.4 Overall Implementation of the Intelligent Machining System

The Intelligent Machining System software is implemented as follows.

The Multi Pass and Per Pass control software exist as two applications running on a
UNIX workstation. The workstation is connected by a network line the CPU on the real
time platform. The OAC Machine Server software executes on this CPU, in addition to
modules for monitoring and control applications (tool breakage. force and chatter
control), and measurement tasks (tool wear vision).

All modules communicate with one another using the IP interface. Figure 43
shows an overview of the information flow. The Multi pass controller receives data from
and sends commands to the Machine Server. It enables and disables monitoring tasks and
initiates measurement cycles. The Multi Pass controller sends commands to the Per Pass
controller specifying tool, part, and constraint data, and the motion segments to be
scheduled. The Per Pass controller feeds the Machine Server’s DNC interface with the

feed scheduled motion code. OAC Machine Server functions are used as follows:

) data report for the Multi Pass control module at 2 Hz,

. data report for force control task at 40 Hz,

. override interface for force control,

. DNC interface for Per Pass control feed schedule G code.

. main command interface for general machine control.

132
Monitoring and measurement tasks acquire data from memory mapped devices.

The implementation of the Intelligent Machining System illustrates some of the
advantages of the OAC design. Firstly, it is clear that the provision of timing and
synchronization mechanisms by the Machine Server reduces the facilitates required by
clients for implementing control functions. This allows for example, a generic
workstation or PC computer to be used for control applications without any additional
hardware.

Secondly, from the perspective of any individual module, the interface to all other
modules is identical and is hardware neutral. This provides maximum flexibility for
adding new modules to the system. In addition, the distribution of processing hardware
used to create the system can be altered without affecting the functionality of the system.
For example, the Multi Pass and Per Pass applications could be run on individual
workstations, and the monitoring, control or measurement modules could be executed on
multiple PC computers. Module source code would remain the same as it is currently and
moreover, the un altered modules would not be influenced by the change. This allows
enhancement of existing systems without compromising existing development efforts. It
also directly addresses the problem of integrating new computing hardware with older

controller systems.

133

MULTI PASS

Tool and Part Data,
Active Constraints,
G code blocks
PER PASS
Enable and e Machine and
Disable Process
Commands, State Data,
Monitoring Machine
State Data Commands
* Feed REAL TIME PLATFORM
Scheduled
IN PASS
Control and
Monitoring

Figure 43. Overview of Information Flow among Modules of the Intelligent
Machining System.

Chapter 6

CONCLUSIONS AND DIRECTIONS FOR

FUTURE WORK

The research addressed the design and development a machine tool controller
with the goal of facilitating the realization of Intelligent Machining Systems. As a
fundamental component of achieving this goal, the use of open architecture design
concepts was formulated, applied, and tested with a proposed Intelligent Machining
System structure. The proposed Intelligent Machining System represented a
comprehensive application of existing manufacturing technologies.

The Open Architecture Control design satisfied the requirements of the Intelligent
Machining System. Moreover, its design is in no way specific to the application, and thus
it will support a virtually limitless combination of system components. Its design and

implementation is the main tangible outcome of this research.

134

135

6.1 Contributions of the Research

This research addressed the development and definition of a general framework
for automated, technologically optimized machining systems. The formulation of an
open architecture machine controller is the fundamental contribution towards realizing
this goal.

Previous research and commercial implementations of open architecture machine

tool control has lacked focus in two particular areas:

1) the use of open systems concepts,
2) the application of these concepts, in a general sense, to the needs of advanced

machining and manufacturing systems.

The approach taken in this research has attempted to unify these two concemns in a
manner not demonstrated yet by either of industry or academia. The work developed has
in the authors opinion, achieved this goal and moreover provided the clearest
demonstration of the enabling potential of Open Architecture Machine Tool Control
technology.

Another major contribution of the research is the formulation of the Intelligent
Machining System. The system proposed demonstrates the integration of key elements of

advanced manufacturing sciences:

136

. process monitoring and control,
. process simulation and planning,
. supervisory control.

These elements were used in a framework for automated control of multiple aspects of the

machining process. The structure of this framework considered several critical issues

including:
. economic improvement of roughing and finishing metal cutting processes,
. the relative impact of different process factors,
. the time frames and variability of different process factors,
] available measurement technologies.

The research demonstrated and confirmed the ability to realize such a system.
Furthermore, by exploring the interactions and requirements for realization in a combined
form, the design requirements of the OAC system were better defined.

The OAC system proposed by this research is unique in that it constructs the
manufacturing control system using a relatively loosely coupled model. It is in this
manner that a high degree of hardware independence - and hence "openness" - is
achieved. Previous researchers (for example Altintas, 1994) have demonstrated

Intelligent Machining technologies using “Open Architecture” Controllers. These have

137

generally been more tightly coupled systems, based on a particular hardware and / or
operating system platform.. The research described in this thesis makes a significant
contribution by realizing and examining the combination of a loosely coupled, highly
open system and a process control system in which performance is critical. The results
demonstrate that the demands of Intelligent Machining applications can be satisfied under
the more open system formulation. This important result, along with continuing
evolution of computing and Internet technologies, confirms that true “Information

Revolution” benefits can be achieved in the manufacturing realm.

6.2 Direction for Further Work

There are several areas of further research that can follow from this work. Firstly,
regarding the OAC design it is apparent that the communications system used in his work
has limitations in overall bandwidth and moreover, it’s suitability for real time
applications. This issue is recognized as the key technological aspect of OAC systems
requiring attention at this time. Research currently underway in Europe (OSACA) has
focused a great deal of effort on developing a deterministic communications interface for
OAC modules that incorporates the multitude of existing de facto standards used in
factory systems integration.

Another fundamental issue requiring research is the definition of a uniform - and

widely accepted- interface to machine motion and input / output devices. This issue is

138
important because it is these aspects of the overall manufacturing system the represent the
most closed (or hardware / vendor specific) areas.
In the research presented here, the Machine Server module defined this interface through
its "service model”. The definition of a service model in a general, yet concise manner
for a wide range of machining systems remains a difficult task. Ultimately, the adoption
of any such description by hardware and software vendors will determine its overall
impact in industry.

There are also issues related to security that require some resolution with the
existing OAC system. Some form of access control and fault tolerance mechanisms will
be required for practical implementations of the OAC. These are largely development -
and not research - problems.

Regarding the Intelligent Machining System, there are many possibilities for
application development in other machining and / or manufacturing systems: milling,
robotics, flexible manufacturing applications. It is expected that for most of these
applications, the majority of work will involve the selection of proper process models,
measurement technologies, and knowledge formulation for the task at hand. The
framework presented here for intelligent control may not apply readily to non machining
systems. It is expected however, that the proposed OAC system will support a broader

range of applications, not defined by the proposed intelligent system structure.

REFERENCES

Albus, J. , H.G. McCain, R. Lumia, 1989, "NASA / NBS Standard
Reference Model for Telerobot Control System Architecture (NASREM),
Technical Report 1235, National Bureau of Standards, Gaithersburg, MD, USA.

Albus, 1994, "A Reference Model Architecture for Intelligent Machine
Systems", Proceedings of the International Workshop on Open Architecture
Controllers for Automation, Ann Arbor MI, April, 12, 1994, pp 115-132.

Altintas, Y., N. Newel, M. Ito, 1993, "A Hierarchical Open Architecture
Multi-Processor CNC System for Motion and Process Control”, ASME
International Mechanical Engineering Congress, PED-Vol 64, pp 195-201.

Altintas, Y., W K. Munasinghe, "A Hierarchical Open Architecture CNC
System for Machine Tools", (1994), Annals of the CIRP, Vol.43., No.1, pp
349-354.

Balio, C., G. Alderson, J. Yen, 1994, "Requirements of Open, Modular
Architecture Controllers for Applications in the Automotive Industry, revision
1.1", General Motors Corporation, Presented at the International Workshop on

Open Architecture Controllers for Automation, Ann Arbor M1, April, 12, 1994.

139

140

Birla, S., J. Park, Z. Pasek, A.G. Ulsoy, Y. Shan, Y. Koren, "An Open
Architecture Testbed for Real Time Monitoring and Control of Machining
Processes”, 1995, Proceedings of the American Control Conference, Seattle
Washington, June 1996, pp 200-204.

| Carlsson, T.E., Strand, F., 1992, "A Statistical Model for Tool Life as a
Basis for Economic Optimization”, Annals of the CIRP, Vol.41, No.1, pp 79-82.

Catellote, G.P., S. Schnieder, 1994, “The Network Data Delivery System:
A Real Time Connectivity System”, Proceedings of the IEEE International
Conference on Robotics and Automation, IEEE Press, pp 342-355.

Chiang, S.T., D.I. Liu, A.C. lee, W.H. Chang, 1995, “Adaptive Control
Optimization in End Milling using Neural Networks”, International Journal of
Machine Tools and Manufacturing, Vol 35, No 4, pp 637-660.

Chryssolouris G., Guillot, M., Domroese, M., 1988, "A Decision Making
Approach to Machine Control”, Trans. ASME Journal of Eng. for Ind., Vol 110,
No 4, pp 397-398.

Dan, L., J. Matthews, 1990, “Tool Wear and Failure Monitoring
Techniques for Turning - A Review”, International Journal of Manufacturing
Systems, Vol 30, No 4, pp 579-598.

Dornfeld, D.A., 1992, “Monitoring of Machining Processes - Literature

Review”, presented at the CIRP STC “C” meeting, Paris, January, 1992.

141

Dornfeld, D.A., P.K. Wright, 1995, “Intelligent Machining: Global
Models, Local Scripts and Validations™, Transactions of the north American
Manufacturing Research Institution of the SME, Vol. XXIII, 351-356.

Elbestawi, M.A., Y. Mohammed, M. Lui, 1991, "Application of Some
Adaptive Control Algorithms in Machining”, J. Dyn. Sys. Meas. and Control,
Trans. ASME, Vol 112, pp 611-617.

German Machine Tool Manufacturers (VDW), 1991, "SERCOS Interface:
Digital Interface for Communication Between Control and Drives for NC
Machinery".

Giarratano, J, 1993, “CLIPS 6.0 Programming Manual”, NASA Software
Technology Branch.

Greenfeld, I, P.K. Wright, 1989, “A Generic User-Level Specification for
Open System Machine Controllers”, ASME Winter Annual Meeting, PED-Vol 37,
pp 63-76.

Greenfeld I., Hansen F., Fehlinger J., Pavlakos E., 1989, "MOSAIC,
System Description, Specification and Planning”, Technical Report No.201, New
York University, Dept. of Computer Science, Courrant Inst. of Mathematical
Sciences.

Hansen, F., E. Pavlakos, E. Haffman, T. Kanade, R. Reddy, P. Wright,
1993, “PARES: A Prototyping and Reverse Engineering System for Mechanical

Parts on Demand on the National Networks”, Journal of Manufacturing systems,

142
Vol 12, No 4, pp 269-281.

Hatamura, Y., T. Nagao, M. Mitsuishi, M. Nakao, 1995, “Actual Concept
Design Process for Intelligent Machining Centers”, Annals of the CIRP, Vol 44,
No 1, pp 123-128.

Haynes, T., (1994), "The NCMS Low End Controller Project", Proc. of the
International Workshop on Open Architecture Controllers for Automation, Univ.
of Michigan, pp 143-160.

Imani, B.M., 1997, “Model Based Die Cavity Machining Simulation
Methodology”, PhD Dissertation, Department of Mechanical Engineering,
McMaster University.

Jemielniak, K., 1992, “Detection of Cutting Edge Breakage in Turning”,
Annals of the CIRP, Vol 41, No 1, 1992, pp 97-100.

Koren, Y., Z. Pasek, A.G. Ulsoy, P.K. Wright, 1996, "Timing and
Performance of Real Time Open Architecture Controllers”, ASME International
Mechanical Engineering Congress, DSC-Vol 58, pp 283-290.

Koren, Y., and Masory, O., 1981, "Adaptive Control with Process
Estimation", Annals of the CIRP, Vol.30, No.1, pp 373-376.

Koren, Y., Ko, T., Ulsoy, G., Danai, K., 1991, "Flank Wear Estimation
Under Varying Cutting Conditions", Trans. of the ASME Journal of Eng. for Ind.,
Vol.113, No.2, pp 300-307.

Lundholm, T., Bergstrom, D.E., Harder, L., Lindstrom, M.N., Nilsson, B.,

143

1992, "New Techniques Applied to Adaptive Controlled Machining”, Robotics
and CIM, Vol.9, No.4/5, pp 383- 389.

Micheletti, G.F., W. Konig, H.R. Victor, 1976, “In Process Tool Wear
Sensors for Cutting Operations”, Annals of the CIRP, Vol 25, No 1, pp 483-496.

National Centre for Manufacturing Sciences, 1990, "Next Generation
Workstation / Machine Controller NGC) Requirements Definition Document”,
NCMS.

North American MAP/TOP Users Group, 1988, "Manufacturing
Automation Protocol (MAP) Specification v3.0", Ann Arbor ML

O’hare, G.M., 1990, ‘“Distributed Artificial Intelligence: An Invaluable
Technique for Development of Intelligent Manufacturing Systems”, Annals of the
CIRP, Vol 39, No 1, pp 485-488.

Onetsu, S., Inasaki, L., Kijima, T., 1978, "Optimisation of Turning
Operations”, Proc. of the Sixth NAMRC, pp 17-23.

Park, J., S. Birla, K.G.Shin, Z.J. Pasek, G. Ulsoy, Y. Koren, (1996), "An
open architecture testbed for real time monitoring and control of machining
processes”, Proc. of the American Control Conference, pp 200-204.

Pritchow, G., 1990, "Automation Technology - On the way to an Open
System Architecture”, Robotics and CIM, Vol 7, No.1-2, pp 103-111.

Pritchow G., Daniel Ch., Junghans G., Sperling W., 1993, "Open System

Controllers - A Challenge for the Future of the Machine Tool Industry”, Annals of

144
the CIRP.

Pritchow, G., G. Junghans, "General Overview of the OSACA Project and
The OSACA Architecture”, Proceedings of the International Workshop on Open
Architecture Controllers for Automation, Ann Arbor MI, April, 12, 1994, pp
15-70.

Rossol, L., "NOMAD Open Architecture Motion Control Software”, 1993,
Proc. Int. Robots and Vision Automation Show and Conf., pp 11-13.

Samaranayake, P., 1996, Phd. Dissertation, University of Melbourne,
Austrailia.

Sexton, D., D. Capson, R. Teltz, 1996, “Automatic Tool Wear Monitoring
Using Machine Vision”, Proceedings of the 13" Symposium on Engineering
Applications of Mechanics, Manufacturing Science, and Engineering, Canadian
Society of Mechanical Engineering, McMaster University, May 1996, pp 161-167.

Shawky, A., M.A.Elbestawi, (1996), “Model -Based Predictive Control of
Workpiece Accuracy in Bar Tuming”, ASME Journal of Manufacturing Science
and Engineering, Vol 120, No 1, pp 57-67.

Sperling, W., and P. Lutz, 1997, "Designing Applications for an OSACA
Control", ASME International Mechanical Engineering Congress, MED Vol 6-1,
pp 91-95.

‘ Stute, G., N. Kapajiotidis, 1965, “Integration of Adaptive Control

Constraint (ACC) into CNC”, Annals of the CIRP, Vol 24, No 1, pp 411-415.

145

SUN Microsystems, (1988), "Sun Microsystems Network Programming
Manual”, rev.A.

Takata, S., 1993, "Generation of a Machining Scenario and its
Applications to Intelligent Machining”, Annals of the CIRP, Vol.42, No.1, 3]
531-534.

Tarng, Y.S., Y.S.Wang, 1993, “An Adaptive Fuzzy Controller for Turning
Operations”, International Journal of Machine Tools and Manufacturing, Vol 33,
No 6, pp 761-772.

Teltz, R., and Elbestawi, M.A., 1993, "Hierarchical, Knowledge Based
Control in Turning", Trans. ASME Journal of Dyn. Sys. Meas. Control, Vol.122,
pp 122-131.

Tlusty, J., G. Andrews, 1983, “A Critical Review of Sensors for
Unmanned Machining”, Annals of the CIRP, Vol 32, No 2, pp 563-573.

Tonshoff, H.K, J.P. Wulfsberg, H.J. Kals, W. Konig, 1998,
“Developments and Trends in Monitoring and Controls of Machining Processes”,
Annals of the CIRP, Vol 37, No 2, pp 611-621.

Tsai, S.M., Eman, K.F., Wu, §.M., 1984, “Chatter Suppression in
Tumning”, Proc. of the 12th NAMRC, pp 399-402.

Van Houten, F.J., and Tiemersma, J.J., 1989, "An Adaptive Control
Module for Round - Improvement of Cutting Force Modelling by the use of

Process Monitoring Data", Manuf. Systems, Vol.18, No.1, pp 53-66.

146

Weck, M, E. Verhaag, M. Gather, 1975, “Adaptive Control for Face
Milling with Strategies for Avoiding Chatter Vibrations and for Automatic Cut
Distribution”, Annals of the CIRP, Vol 24, No 1, pp 405-409.

Wright, P.K., E. Pavlakos, F. Hansen, (1991), "Controlling the Physics of
Machining on a New Open Architecture Manufacturing System", ASME
PED-Vol.53, pp 93-100.

Wright, P.K., 1995, “Principles of Open Architecture Manufacturing”,
Journal of Manufacturing Systems, Vol 14, No 3, pp 187-202.

Wu, S.M., D.S. Ermer, 1966, “Maximum profit as the Criterion in the
Determination of Optimum Cutting Conditions”, ASME Journal of Engineering
for Industry, Vol 88, No 4, pp 234-244.

Yamazaki, K., Kojima, N., Sakamoto, C., Saito, T., 1991, "Real Time
Model Reference Adaptive Control of 3D Sculptured Surface Machining”, Annals
of the CIRP, pp 479-482.

Yellowley, L P. Pottier, 1994, "The Integration of Process and Geometry
Within an Open Architecture Machine Tool Control System", International
Journal of Machine Tools and Manufacture, Vol 34, No 2, pp 277-293.

Yen, D.W., Wright, P.K., 1983, "Adaptive Control in Machining - A New
Approach to Based on the Physical Constraints of Tool Wear", Trans. ASME

Joumnal of Eng. for Ind., Vol 105, pp 31- 38.

147

Zadeh, L., 1996, In "Intelligent Control Systems, Theory and

Applications”, edited by M.M. Gupta and N K. Sinha, IEEE Press, New York, PP

XiX-XX.

148

APPENDIX 1
OAC CLIENT DEVELOPMENT

149

INTRODUCTION

Developing client applications for the IMMRC Open Architecture Controller

requires the following:

. a computing platform with support for TCP/IP communication protocols,
. a suitable compiler with TCP/IP sockets libraries,
. physical connection between the client computing platform and the OAC

Machine Server (via Ethernet network cable, backplane interface, or inter

processor).

The widespread use of Internet Protocol has resulted in almost guaranteed support for this
protocol on any platform. Certainly, these requirements are commonly present for UNIX
systems. VxWorks, a real time operating system for embedded platforms, supports the
TCP/IP interface for network computers for targets integrated on standard backplane
systems (eg: VMEbus, MULTI-Bus, PCI bus, etc). Several other real time operating
system vendors have similar TCP/IP support.

On personal computers (PC’s) running Microsoft Operating Systems, the network
components are widely available, and the Microsoft WIN32 application programming

interface supports Berkley TCP/IP sockets under the WinSock libraries.

150

SOCKET PROGRAMMING

The OAC uses sockets to pass data between programs representing the various
modules of the overall controller system. The Machine Server is one of these modules.
As a module, the Machine Server can be thought of as a "wrapper" that presents the
"services” of the machine tool hardware to other modules in a soft manner. Most likely,
as a programmer interested in doing something with the machine tool, your primary
interest will be concerned with creating and using one or more sockets for communication
between your program(s) and the Machine Server.

A complete discussion of socket programming is beyond the scope of this
document, but excellent discussions on the subject can be found in several books such as
"UNIX Network Programming”, by W.R. Stevens, (Prentice Hall, 1990), and "Visual
C++ 4.0 Unleashed”, by V. Toth, (SAMS, 1996). A study of the various UNIX on line
manual pages for commands such as socket, select, sendto, recvfrom will of course yield
first hand knowledge for real programming issues.

In socket communications, two programs communicate across a virtual line in
which each end of the line is a socket. The socket is referred to as an end point of
communication, "belonging"” to one of the communicating programs. A socket interface
is defined by two pieces of information:

1) a machine IP address (or name),

2) a port number.

To set up a socket, the user program defines this information by encoding the fields of a

151

data structure of type struct sockaddr_in. The exact form of this data structure is defined
in a C include file socket.h. The first item is the standard Internet address of the form
such as 130.113.217.074. Most computer systems support a naming system which will
map this number into a machine name, such as immrcl. The routine gethostbyname()
will perform this conversion for you.

The Machine Server uses IP Datagram packets. This form of IP communications
is, as the name says, based on packets of information and is a connectionless protocol.
Typical packets used to communicate with the Machine Server are text commands such
as machine powerup (machine services), or text strings of data sent from the Machine
Server to your program.

The Machine Server is assigned a fixed port number. For the VxWorks
implementation (described in this thesis), the port number is 2000. To set up
communication between your program and the OAC Machine Server perform the steps
listed in the following section (described in the C programming language).

More complex applications may want to modify blocking behavior on sockets, or
maintain multiple sockets between the application and different Machine Server entities
(such as data reporting, override, and program interfaces). They may also involve socket
connections t other OAC modules such as CAD / CAM systems, process control

modules, etc.

152
EXAMPLE OF SIMPLE INTERFACE TO OAC MACHINE SERVER

1) Create and initialize a sockaddr_in structure for the Machine Server:
struct sockaddr_in msAddr;

struct hostent *hostaddr;

hostaddr = gethostbyname("immrc08");

msAddr.sin_family = AF_INET:;

msAddr.sin_port = htons(2000);

msAddr.sin_addr.s_addr = hostaddr->h_addr;

2) Create a local socket:
int mySock;

mySock = socket(AF_INET, SOCK_DGRAM, 0);

3) Send a message:
char msg[32];
strcpy(msg, "data get position x");

sendto(mySock, msg, strlen(msg)+1, 0, &msAddr, sizeof(struct sockaddr_in));

153
4) Receive a message:
char buffer(32];
int aSize = sizeof(struct sockaddr_in);

recvfrom(mySock, &buffer, 32, 0, &msAddr, &aSize);

Note that the recvfrom call will normally block until data is available. This means that
the operating system will effectively put your program to sleep until the data arrives.
There are several ways to avoid this if required. To remove blocking altogether for the
socket use the ioctl() call in UNIX. Using Microsoft WinSock libraries, special functions
are provided to control blocking. To block, but be able to respond to several sockets (or
file descriptor in UNIX), use the select() call.

The following is a complete program listing encapsulating the steps described above

#include<stdio.h>
#include<string.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netdb.h>
#include<netinet/in.h>

main()
{
char msg[32];
char buffer[32];
struct sockaddr_in msAddr;
struct hostent *hostaddr;
int mySock;
int aSize = sizeof(struct sockaddr_in);

154

/* get the host IP address by name (OAC machine server is immrc08) */
hostaddr = gethostbyname("immrc08");

/* sockaddr_in fields for OAC machine server address */
msAddr.sin_family = AF_INET;

msAddr.sin_port = htons(2000);
msAddr.sin_addr.s_addr = hostaddr->h_addr;

mySock = socket(AF_INET, SOCK_DGRAM, 0);

/* create a command string for the OAC machine server */
strcpy(msg, "data get position x");
sendto(mySock, msg, strlen(msg)+1, 0, &msAddr, sizeof(struct sockaddr_in));

/* wait for response (this will BLOCK) */
recvfrom(mySock, &buffer, 32, 0, &msAddr, &aSize);

/* print the data */
printf("machine X position is %s\n", buffer);

/* close the socket */
close(mySock);
} /* end of main */

155

APPENDIX 2
OAC COMMUNICATIONS TIMING RESULTS

156

OAC Communications Performance

The following graphs are the results of an evaluation of the OAC Machine Server

performance under different loading conditions. The tests were performed to evaluate the

communications response only.

Each histogram shown involve 160 tests of a 1000 send / receive cycles each. The

different load cases involve the Machine Server "servicing" different clients requiring

data reporting functions. Six cases are shown:

D
2)
3)
4)
5)

6)

1 client connected over the network, no server loading,

4 clients connected over the network, no server loading,

1 client connected over the network, 4 data reports being serviced,

1 client connected within the local CPU (interprocess comm),

4 clients connected within the local CPU (interprocess comm),

1 client connected within the local CPU (interprocess comm), one data report

being serviced

16

14

12

[

Number of Occurrances
[+ 2

157

Frequency Distribution of CAC Communication Times

T T T T

Case: 1 dient, subnet connection.

Total of 160 tests at
1000 pings per test.

4 J
2 .
0 L
24 26 28 3 3.2 34 3.6 38 4
time per ping (seconds) x10~2
Frequency Distribution of OAC Communicetion Times
18 T T T T T
16} Case: 4 simultanecus dients, 1
subnet connection.
14+ g
Total of 160 tests at
12+ 1000 pings per test. E
:
g 10 g
% 8 -
EPS 4
4 4
2 -
o 2
75 8 85 9 95 10 10.5
time per ping (seconds) x10”

Number of Occurances

i58

Frequency Distribution of OAC Communication Times

12

10+

T T

Case: 1 diant, 4 data reports
of rate 50, subnet connection.

Total of 160 tasts at
1000 pings per test.

time per ping (seconds)

24 25 26 27 28 29
time per ping (seconds) x107°
50 Frequency Distribution of OAC Communication Times
T ¥ 1 13 L3 L3 L} L3 v
Casae: 1 dient, locsi CPU connection.
50 Totai of 160 tests at b
1000 pings per test.
2 M L |
4 42 44 46 48 5 52 54 56 58 6

x10

Number of Occurances

Number of Oocurrances

159

Frequency Distribution of OAC Communication Times

0.017

T T

Case: 4 simultansous dients,
local CPU connection.

Total of 160 tests at
1000 pings per test.

0.018 0.018

ime per ping (seconds)

Fraquency Diswibution of OACG Communication Times

0.021

B T L T T L]
b o Case: 1 client, one data report E
of rate 50, iocal CPU conn.
6 Total of 80 tests at E
1000 pings per test.

S

W

0
475 476 477 478

479 48 481 482
time per ping (seconds)

160

APPENDIX 3
SURFACE ROUGHNESS TESTS

161

Surface Roughness Test Data

The following plots summarize the results of machining tests under the following

conditions:

1) speed =213 m/min, feed = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 mm/rev
2) speed =275 m/min, feed = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 mm/rev

3) speed = 335 m/min, feed = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 mm/rev

The tests were performed on mild steel using P40 carbide inserts.

Each plot shown has two traces, each representing samples taken 180 degrees

apart on the work piece circumference. Each individual scan involved a traversed

distance of approximately 5 mm, with 6000 samples acquired within that distance.

162

Average Surface Roughness Ra, speed 213 m/min

025

7+

©0 ") - [%)
(-301 X UnL) uy ssauyBnoy cowjing ebesery

0S5

0.45

04

035
feed (mmirev)

03

Average Surface Roughness Ra, speed 275 mvmin

[l 1 I i [

© [- (2] o~
(£-304 x unw) vy sseuybnoy eowpng obvIoAY

05

045

04

035
feed (Mmirev)

03

0.25

163

Average Surface Roughness Ra, speed 335 m/min

0S5

035
feed (Mm/rev)

© ~

o w L 2 (4] N
(e-301 x wuw) vy sseuybnol eowjing ebwiery

164

APPENDIX 4
TOOL WEAR TESTING

165

work material: AISI 1045 hot-rolled steel, as rolled
150 mm, 60 cm long

cutting tool: material - P40 tungsten carbide
geometry - triangular insert
0.8 mm nose radius
+6° rake angle
0° lead angle

cutting conditions: depth of cut - 2 mm

Series 1 -
tool5-7

feed rate - 0.4 mm/rev
cutting speed - 183 m/min
time of cut - 10 s

S_eries 2
tool 8, 10, 11

feed rate - 0.6 mm/rev
cutting speed - 123 m/min
time of cut - 10 s

~ Series 3
tool 12, 13, 17

feed rate - 0.4 mm/rev
cutting speed - 183 m/min
time of cut-5s

Series 4
tool 14 - 16

feed rate - 0.6 mm/rev
cutting speed - 123 m/min
timeofcut-Ss

Cutting Series 1: Flank Wear

166

Tool S Tool & Todl7 Average of 5,6, 7
Maimum Average Modnum Average Madmum Average Maximum Average
otalct Fank Flank | totalcut Flank Flank | Wtllat Fank Flank | tolalet Flank Frank
ime Weer Wear fime Wear Wear fime Wear Wear ime Weer Wear
saconds) () mm) seoonds nm| mm)_ | (seconds) {owm) {mm) (seconds) {mm) {men)
0. 0.00 0.00] 0.00 0.00 (] 0.00 0.00 0 0.00 0.00
20 012 009 20 0.09 0.08 2 0.09 0.08 20 a.10 0.08
40 015 012 40 009 0.08 “© 012 a.10 40 012 0.10
60 0.18 015] 0.16 014 60 014 013 0 a16 0.14
P 020 017 80 a16 ai1s (] o.18 015 20 a.18 0.16
100 o2 a9 100 a2t o7 100 _ 020 017 100 02t [Reg
120 028 021 120 o 020 120 022 018 120 023 020
140 0.30 o 140 025 022 140 02 023 140 027 (4]
160 33 025 160 029 024 160 Y4 02¢ | 160 030 024
180 040 02 180 031 025 180 031 027 160 034 027
200 040 .30 200 036 028 200 034 029 200 0y 029
220 042 033 220 035 032 20 03 031 220 038 032
20 0. [} ¢ 240 0.%9 02 240 039 o3 240 040 0.3
260 048 a3 260 04 036 260 043 o3s 260 045 037
2% 049 0.3 280 045 037 280 048 040 200 (714 039
300 049 0.40 300 043 041 300 049 0.40 300 049 0.40
Cutting Series 2: Flank Wear
Tool 8 Tool 10 Tool 11 Average of 8, 10, 11
Madnum Average Madnum Average Mpdmum Average Madmum Average
ottt Flank Flank | Gisfot Flank Fank | otlet Flank Fink | ot Flank Flank
time Weer Wear | @me Wear Wear fime Wear Wear e Weer Wear
{seconds) _(mm) {mm) seconds) mm) mm) | (seconds) (mm) (mm) seconds mm| nem
0 0) .0 0.00 0.00 0 0.00 0.00 (] o 0
20 008 0.04 20 0.08 005 20 007 0.05 20 0.08 005
40 007 007 40 0.08 006 40 0.12 0.09 L] Q.09 0.07
60 0.09 007 6o Q.10 0.09 60 013 .11 60 011 0.09
80 o1 a1 80 0.12 0.11 80 017 0.14 [] 0.13 0.12
100 012 010 100 a4 0.12 100 0.7 0.14 100 0.14 0.12
120 012 011 120 0.14 0.12 120 o.19 0.14 120 o1s 0.12
140 0.14 012 140 016 0.14 140 020 0.16 140 017 0.14
160 0.15 a1 160 021 0.16 160 02 017 160 019 0.15
180 0.15 0.14 100 o2 018 180 025 018 180 021 0.17
200 (X1g 015 200 025 o.19 200 032 on 200° 02¢ 0.1
20 0.18 0.15 0 026 021 20 0y 028 0 027 020
240 019 017 240 043 029 240 0.4 02 20 0% 025
260 o2 0.18 260 0.51 03t 260 0.80 0.3 260 044 028
280 024 021 280 0.64 040 2% 0.50 0% 280 049 033
300 026 021 300 e 040 300 0.64 041 300 053 0.34
120 028 o2 320 on 04s 320 065 045 320 055 037
340 029 o 340 o7 oSt 40 (114 047 340 058 0.40
60 030 024 360 0.81 052 360 071 _ 049 360 061 042
380 o 026 380 0.es os? 380 011 0.50 3% (1<) 0.44
400 0.3 028 400 0.87 058 400 on 0.51 400 064 045
420 036 028 420 087 058 40 0.72 0.52 420 085 046

Cutting Series 3: Flank Wear

167

Tool12 = Tool 13 Tool 17 Aversgeof 12, 13, 17
Madmum Average Mudmum Aversge Madmum Average Madmum Average
ot Flank Flank | Wtlot Fank Fankc | totaleut Flank Flork | oot Pk Flank
time Wear Wesr ime Wear Wear me Wear Wear e Weer Weer
{seconds) (mm) {mm) seconds)) () {seconds) {mm) {mm) (m: fmm) {mm)
o 0.00 0.00 (] 0.00 0.00] 0.00 0.00 (] 0.00 0.00
10 o1 000 1 0.08 0056 10 009 oo7 10 0 Y4
20 a12 a10 2 Q.11 0.10 20 0.09 0.08 2 0.11 009
0 015 012 0 0.13 o011 30 012 0.10 0 013 Q.11
40 ([R1g 014 40 .15 012 - 40 0.1 a1 L] a1s 0.12
50 020 0.1 [] o.18 0.18 50 0.1 0.12 50 0.18 0.14
60 028 020 (] (3] [X14 60 0.18 014 60 02 047
70 0.3 o024 0 026 020 70 0.19 ate 0 026 020
80 0.3 025 80 029 021 0 026 o018 80 030 02
90 038 o7] [5 -] 03 90 027 020 0 032 023
100 0.3 029 100 036 02 100 029 021 100 03S 025
110 041 030 110 0.3 0.3 110 0.30 022 110 037 028
120 - X &} o2 120 0.4 0.2 120 oM 025 120 a.40 029
130 04S 034 130 0 [> 130 0.3¢ 028 130 041 0.32
140 04 038 140 049 03¢ 140 040 0.30 140 04S 034
150 047 037 150 049 0.40 150 . 0Q 0.31 150 048 0.3
160 049 039 100 053 0.4 160 0.44 0.3 160 049 03s
170 0s2 041 170 oss 045 170 046 _035 1w oSt 040
180 0.5 a4 180 »0;58 o047 180 a49 039 180 053 043
190 056 o4 1% 080 0.50 190 051 041 1%0 0ss 04s
200 . 0.60 047 200 081 0.52 200 0.54 044 200 0.58 0.48
210 a8 0.50 210 083 0SS 210 055 048 210 060 050

168

Cutting Series 4: Flank Wear

Tool 14 Todl 1S © Toolt8 Average of 14, 15, 16
- Muadmum Average Muimum Average Madmum Aversge Modmum Average
toisfct Flank Fank | it Flak Funk | ot Fank Fank | Wllad Fank Flank
" Wear Wewr Eme Wer Wer | ime Wewr Wear fme Wear Waar
(seconds) __(mm) f{men) | (Saconds) (mm) (mm)] (soconds) _ (mem) mm) seconds [en mm
) .00 0.00 [.00 0.00 ° 0.00 Q.00 o 0.00 0.00
10 005 005 0 007 a0s 10 o007 a0s 10 0.08 00s
20 008 0.08 2 0.08 005 2 008 0.08 2 0.08 0.06
20 0.00 0.08 % 0.08 007 || 30 o.10 0.00 2 009 0.08
] 0.10 0.00 © 0.08 000 4 _ 009 oor) o.10 008
50 Q12 Q.10 50 11 0.0 S0 . om 008] o1 0.09
60 012 0.10 60 011 009 60 o1 0.10] 011 0.10
70 0 012 70 012 011 0 012 011 L] 013 0.11
o0 015 012] 012 Q11 80 o1s 012] 0.14 0.12
0 014 012 90 0.15 012] 015 0.12] 014 0.12
100 o.16 0.14 100 017 0.13 100 018 0.14 100 0.16 0.14
110 018 015 10 021 ots 10 018 0.1s 110 0.19 0.15
120 0.19 o.16 120 o2 018 120 0.19 o.16 120 020 0.16
130 021 0.17 10 o o7 130 020 016 10 021 0.17
140 o 0.19 140 02¢ (X4 140 o o7 1“0 023 0.18
150 024 o.19 150 oz X 150 o3 o.18 150 02s c.19
160 025 020 160 0zs 019 160 025 o.19 100 026 020
170 026 021 170 0% 020 170 02 020 10 027 020
180 028 021 180 03 021 180 028 02 10 029 022
190 02 023 190 033 oz 190 031 024 190 0.31 023
200 03 025 200 03s 02¢ 200 032 024 200 033 0.2¢
210 0.6 027 210 039 026 210 033 025 210 036 026
220 039 028 20 041 028 20 036 02 0 038 027
2% 0.40 0.30 0 04s 0 20 036 028 20 040 029
240 042 031 20 043 031 %0 0% 0.3 240 043 0.31
250 046 033 250 0.50 03 250 043 031 250 045 032
260 0.50 038 260 0.54 035 260 04s o2 200 0.50 0.34
270 0.5¢ 038 b2 os7 0y 270 047 ox n 0s3 0.36
280 0.58 0.% 200 0.0 0% 280 o.s1 03 280 056 038
290 058 040 200 082 041 290 04 039 .]. 200 0ss 040
300 0.80 0.41 300 0.6 042 300 0.54 0.40 300 059 041
310 0.61 042 310 0es 045 310 0ss 041 310 050 043
20 0.62 0 20 066 045 320 0ss 043 320 051 0.44
30 063 04~ 0 085 047 30 0ss 0 0 082 045
340 063 048 340 065 047 M0 0% 04S ~340 082 046

