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—_ . - "ABSTRACT

A
. : -
‘

Flow phedomena associated with the injection mold filling process ha\'re a

--\‘_, 4

. sxgmﬁcant unpact on the mxcrostructure development and hence on the final propertxes of
molded articles. The present work is concerned with the mathematical modelmg and

numerical simulation of the mold filling brocess. The aim is to provide in-depth
understanding of the flow phenbmena involved and investigate their impact on the

-~

microstructure of the molded polymer article.

_ The mold filling process takes place as a rolling-type advancement of the flow front

over the mold walls. The flow field behind the advancing flow front is known as fountain ﬂow,'

and it is the salient feature of mold filling. The fountain flow phenoménon is examined

extensively with finite element techniques, both in the steady-state and in the time domain. -

_ The u-v-p-h-§ formulation described in the present work is a powerful numerical technique for
the simulation of free surfacg flows, and deterfnines simultaneously the flow field and the free
surface shape. Steady-state and transient simulations with Newtonian and shear-thinning
fluids in planar and axisymmetric geometries are presented. Various features of fountain
flow are described with the aid of velocity vector, pressure, {ree surfice shape, and streamline

plots. The general problem of fountain and reverse fountain flow (immiscible liﬁuid
displacement) and the collision of two flow fronts to form a weldline are also investigated.

<

The deformation history experienced by the fluid due ta fountain flow is examined

on the basis of the numerically computed flow field, b)" tracking material elements as they

move through the flow domain. [t is found that material elements from the centerline

migrate towards the mold walls, extend in ‘the flow direction and form characteristic V-

shapes, fully in agreement with available visualization experiments.

>




A viscoelastic constitptive equation (multi-mode Leonov model) is introduced in
order to investiéaté the effect of fountain flow on the molecular orientation of injectior{

molded parts, as reflected in available birefringence measurements. A finite element

.~

algorithm for the numerical simulation of viscoelastic free surface flows is described.
- \' B

Fountain flow simulations are performed for material properties and processing conditions

corresponding to available experiments. Finite element solutions are obtained at high levels
of ﬂuici élastieity and they converge w;th mesh refinement, provided that a §lip boundary
« = . ~
condition is applied at the wall to alleviate the stress singularities. The finite element results
are combined with a simple theory to predict frozen-in s.:tress and birefrir.lgence distributions.
Computational results are compared tc;, and agree favorably with, available experimental .

data. It is demonstrated quantitatively that fountain flow is responsihle for the molecular

orientation pattern of the surface layer of injection molded parts.

iv @
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CHAPTER1
INTRODUCTION
-
1. The Injection Molding Process

Injection molciing is a major polymer processing operation for producing identical
articles from a hollow mold. It is an intermittent cyclic process with the following steps:
) ﬁliing stage: a polymer melt is injected into the cold-walled cavity where it spreads under

the action of high pressures and fills the mold; (ii) packing stage: high back pressures are

maintained after the mt{ld_ is filled, and additional melt flows into the mold to compensate for
density changes (shrinkage) during cooling and ensute accurate reproduction of the mold
shape; and (iii) coo'ling stage: the melt is cooled, gind the shaped article is ejected. Further
background material on the overall iru'ectiorrmolding process is provided in sl_:andard‘texts
(Middleman, 1977; Tadmor & Gogos, 1979; Pearson, 1985).
The filling stage is the most.important and compiex step of the injection molding
cycle. A simple rectangular mold is shown in Figure 11 The top view or spreading plane is
given in Figure 1.1a. Fluid is injected from the gate and fills the mold advancing to the right.
The contours indicate successive flow front positions in the §preadi_ng plane. The flow in the
transverse plane is shown in Figure 1.1b. As is usually the case, the thickness is much

" smaller than the other dimenslons of the mold. Commercial molds may be highly complex

geometrically and involve multiple gates. However, single-gated rectangular and circular

molds h»ve been used in both experimental and theoretical work for analytical convenience.

The hot melt solidifies as it touches the cold walls forming a "frozen skin". Under severe

conditions the frozen polymer may block the flow and the mold will not be filled {short shot). -

Gate design, among other factors, is crucial for preventihg short shots.

"8
&
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Schematic representation of single-gated rectangular cavity:
(a) topview (spreading plane);
(b)  side view (transverse plane)
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As the melt spreads in the mold cavxty, air is displaced through the vents. Vents
should be placed in positions reached last by the melt, and this requires knowledge aboqt the
prag’ression of the flow front. .The spreading' pattern is also required for the predicf.ion of

weidlme location. Weldhnes also known as knit lmes, result from the meetmg of multiple
ﬂows injected through separate gates and/or from the recombination of a single flow d1v1ded
by passage around an insert, for example. In general, both the surface appearance and
mechanical properties of the molded aréicles are affected ‘By the knit_ting process. The
dominant factor affecting lthe physical,mechanical and optical properties of the article is the
microstructhré development in the; final part (morpholog';r for semicrystalline and molecular
orientation for amorphous polymers), Injection molded articles exhibit anisotropic prbpert'ies
associated with their a‘nisotropic mic':'osl';ructure and which originatt; .in the widely ciifferent
thermal and deformation history experienced by each material particle at different locat._ions
of the mold. Recent reviews of microstructure developm_ent. in'semicrystalline and amorphous

polymers are offered by Katti & Schultz (1982) and Isayev (1983) respectively:

A comprehens'ive mathematical model combining (i) mold design and molding

conditions, (i) rheological and physical properties of the polymer melt, (iii) conservation

equations for m’ﬁi’ss, momentum and energy, and (iv) a theory of microstructure development,
must be able, in principle, to give a complete picture of the injection molding process. The
pre;:iictive objective of the mathematical modeling procedure can be conveniently classified
irico two'cabegories: (i) large scale phenomena: overall quantit.ie:; tl;at comprise the rﬁinimum
amount of information necessat:y to provide a gross design factor (e.g., fill time, pressure drop,
cooling requirements); (ii) small scale bhenomena: this includes weldline location and
molecuiar orientation distribution and requires detailed information about the spreading

-

pattern, tn'mpemt'ure, velocity and stress fields.
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» The present work concentrates on small scale phenomena; The aim is to provide in-

r

’ . -

depth understandi.né ‘Qf the ﬂt;w -phenomena associated \-vith the ‘_rno‘ld filling proc‘e_ss, and
investigate their interaction witn the microstructure develngment'in the ffnal'pnt;t. -
. 1.2 | Objectives - | . ' | - - . )

The purpose of this thesis; lis to develop the mathematical and compufér t'oc.als-that .
will enabie the numerical simulatiqn of rnold filling. The objective iék to obtain fun ental
understanding of the flow phenome.na associated with mold filling and their impact on -the
microstructure dgvelopment. of injection molded parts. ‘ ‘

The ﬂui’dl mechanics of the advancing flow front, known as "fountain flow", is -
identiﬁecli as the salit‘ent‘ feature of .the mold filling process. Efficient finite element techniques
are Eresented that allow simulation of two-dimensiona! flows of Newtonian, -shea-r-thinning
and viscoelastic fluids with a free front, both in the steady-state and in the tin-lq domain.
Numerical tracking of fluid elements illustrates the deformation experienced by the fluid due
to fountain flow. Predictions of frpzen-in flow birefringence quantify the impact of mold
filling on the molecular orienta‘f.ion of injection molded parts and provide insight into the

interreldtionship of processing conditions and anisotropic microstructure of injection

moldings.

L3 Thesis Outline
Chapter 2: This chapter describes the implications gnhd the problems related to the mathe-*
matical modeling of mold filling. It also contains a critical literature survey of the available

mathematical and computer-aided techniques for modeling and analysis of mold filling.

Chapter 3: A finite element technique is described for the numerical simulation of viscous

free surface flows. The numerical technique is applied to study the fluid mechanics of the
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advancing flow front (fountam flow) in the steady state. Newtonianand shear-thmnmg ﬂmds '
"are considered in planar and axxsymmetnc geometnes Numerical trackmg of matenal
.elements is employed to mvesl;lgate the deformatmn expenenced by the fluid. The general

“case of two 1mm1sc1ble ﬂmds dxsplacmg each other ms:de a capillary is also exammed

» -
Chapter 4: In t.hls chapter-we investigate the transient free surface ﬂows encountered in ”
. \\ - .
injection mold filling. A finite,element technique suitable for thxs class of problems is
presented and is applied to study’ the start-up flowofa ﬂund with a free front, and the collision

of two flow fronts to form a weldline. ' ‘ .

I

Chapter 5: In this chapter \ee inve'siigate tne .i‘mpact of fountain flow on the molecular
orientation of injection molded parts. The viscoelasticity of the polymer melt is accounted for '
with the multi-mode Leonov model. A finite element technigue for viscoelastic free surface
flowsis deeeloped and is 'applied on the fountain flow _proBlem. The finite ele'meni; ;'eeults are
combined with a simple theory to predict frozen-in flow birefringence in molded parts.
Computational results are compared to available experimental measurements. The effect of

fountain flow is ¢learly demonstrated.

Chapter 6: This chapter summarizes the main results of this thesis and offers some
s

recommendations for future work.
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CHAPTER 2 |
. REVIEW OF MATHEMATICAL MODELING

OF INJECTION MOLD FILLING

2.1 Introduction

The fluid mechanics and heat transfer of the injection mold filling stage can be

' described by the general conservation equation for mass, momentum and energy:

ia_‘l.;.v.(pv) =0 _ (2.1

& : .

av © \
p(E+V-VV) = ~VP+V-t+pg 4(2-2)
- far
pcP(E:+V-VT) = V.-kVT) +0:VV (2.3)

The convective terms in the momentum equation, eq. (2.2), are negligible for polymer melt
fiows (creeping flow). Compressibility eﬂ-'et_:ts may be present due to the large pressure
variations involved in injection molding. However, it is beIie\Ced (Tadmpr & Gogos, 1979) that
the incompressibility assumption rintroduces.negligible erro.r. A

After substituting the appropriate constitutive equation for the deviatoric stress
tensor t, and imposing the boundary conditions, we have a transient, non-isothermal, three-
dimensional problem with an advancing flow front. sVarious complicating features of physical

and mathematical nature arise in the above problem:

(i) Constitutive Equation: the system is not closed until the approbriate constitutive

equation relating stress to the rate-of-strain is introduced. Polymer melcs are

shear thinning viscoelastic ﬂuids, and the development of constitutive equations




(i)

(iii)

-
.

4

for this class of fluids is still an active area of research. . Recent advances in thix - -

area are reviewed in Huilgol & Phan-Thien (1986) The numerical problems

- associated with ..the simulation of viscoelastic flows are discussed bj Keunings

(1987)._ '

~

=

Non-iéotherfnal flow and freezing at the wall: the mbld walls are held at a tlem-._

perature below the solidification temperature of lﬂ:he polymer. Hot polymier
solidifies upon touching the mold w-alls forminga "froien skin". This introduces an
additional unknown mterface (hot meit-solidified polymer) in t.he ﬂow domam
Unsteady flow, geometmc complexity and moving ﬂow front the ﬂow fropt (free
boundary) locatlon is.unknown a priori and must be determmed along w1th the
field variables as a solutlon to the govemmg nonlinear partial d).fferentlal equa-
tions. The flow front advances in complex three-dxmensmnal regions whe::e
splitting and knitting of flow fronts may take place. The physicslof. fluid/gas
interfaces moving over solid boundaries is poorly undex;stood. Modeling the fluid as
a continuum along with the no-slip condition at the wa'll brealks down in the
vicinity of the contact line, i.e. the ﬂuid!g?.slsolid intersection (Huh & Seriven,
1971; Dussan, 1979).

It is readily seen that the most general formulation of injection mold filling results

in a very large and complex mathematical problem. All the mathematical models that have

appeafe& thus far either focus on a specific subset of the general problem or invoive major

simplifications related to the complicating features discussed above. These models are

reviewed in the next section.



2.2 Survey of Mathematical Models -
221 Early studies - Unidirectional Models

- The first systemauc studles on injection molding were mtroduced by Spencer and

Gilmore (lemore & Spencer, 1950 Spencer & Gilmore, 195%11more & Spencer, 1951; _

Spencer & Gilmore, 1951) and were concerned with flow visualization of mold filling,

modeling of the fluid mechanics of the p.roces,s, pressure and temperature ({ariatiodé during

* the molding cycle, and orientation and residual stresses in mblded parts. In their mold filling

studies they considered a simple one-dimensional mode! and fitted a power-law-type eq,uatioh

. T .-
relating filling time to the applied pressure drop.

! -

A second generation of studies were presented by Ballman and co-workers

(Ballman et al, 1959a,b,c; Ballman & Shusman, 1959; Ballman & Toeor, 1960; Toor et al, 1960)

including the first non-isothermal modeling of mold filling in thin rectangular cavities and
the first coﬂpgtieifpglication for predictive calculations. They 3156 repolrted experimental
measurements and a theory of molecular orientation de\‘relopment in injection molded parts.
The effect 8f mold design and process conditions on the resulting orientation distribution and
the effects of orientation on the physical properties ;Jf injection moldings were studied.

‘ Pearson (1966) presented a non-isothermal model and proposed a finite-difference
solution for the mold filling of a center-gated circular disk. Further computer simulations
and experiment;; studies were presented later by Kamal & Kenig (1972a,b), SBerger & Gogos
(1973), Wu et al (1974), Williams & Lord (1975), and Lord & Williarns (1975). A similar
model for rectangular thin cavities was considered in the studies of Harry & Parrott (1970)
and Thienel & Menges (1978). Isayev & Hieber (1953) studied an idealized mold filling

problem with a viscoelastic constitutive equation. ~

PRI



2.2.2 Two-dimensional models ‘

2221 Spreadmg Plane. Hele-Shaw Appronmatmn .

Richardson (1972) suggested t;hat HeIe-Shaw flow theory (Schhchtmg, 1960) may -

¢

be applied in many mold cavities with Iarge- aspect ratios. .Thxs apprommauon reduces the
ongmal set of equatmns considerably, and it has been the’basm of the twe-dimensional models
B ‘that appeared in the Iast decade for modelmg the flow in the SWL

forraulation given below follows that of Hieber & Shen (1980) and Shen (1984).

Consxder the non-lsothermal flow of an melastxc generalmed Newtonian fluid in a

ding plane. The '

thin gap of arbltrary planar form. The gap thickness 2H in the y-direction i is much smaller

than the other dimensions, and symmetry is a;ssumed on the center plane. With the Hele-

Shaw approximation the mass and momentum.equations reduce to:

Lru, )+ 2(uw, )= 2.4
ax\ evg) T g \" Vavg
__..a_(pa_“ ) _® - (2.5a)
Ty \ly T
=i(p"_‘_". ) _® o (2.5b)
y\'ey /& -

where uavg and wyyg denote the gapwise-average velocities in the-x- and z-directions
respectively (cf. Figure 1.1). For a generalized Newtonian fluid the viscosity is:

b= WD) . (2.6)

E

NOEOIN

Applying the no-slip condition at the wall and symmetry at the centerplane (y=H and y=0
~

where

respectively), egs. (2.5a,b) give:



510
rH_,. , oL -
aP " Y TR
ax F y p- :
Y o r ] "
P [y’ , - ~{2.8b)
wiy) = —— y dy’
- &y n
‘and the average velocities are: '
H g ‘ |
1 aP “u. -
" __] ady= 22 (2.92)
avg Hlg ax H -
- - FI P 4" (2.9b)
—— w e —m T— — .
avg 0 y az H
where
' L CH 2 ,
S = l Y ay ) (2.9¢)
LT I
Substituting eqgs. (2.9a,b) into eq. (2.4): .
P d aP
.?.(S a_)+_(5 -—) =0 {2.10)
x\ Bax/) &\ Fa :
This equation is solved along with the simplified energy equation:
‘far ar  Jqr\_af ol : o
pc(—+u—+w—)=—(k—-)+1.n1r2 (2.11
P\ at ax a gy \ oy

The boundary conditions for eq. (2.10) require that at the inflow boundaries the pressure or
the normal pressure gradient must be specified. At solid walls the condition of zerc normal
velocity requires the normal pressure gradient to be zero. At the flow front the pressure must

be constant (set to zero as the pressure level) and also:

: ax
nu +nw _ =n-— (2.12)
* wg T 5% at | Fs,
which is the kinematic condition at the flow front expressing the requirement of no-flow
through the free surface.
Equations (2.10) and (2.11) with the above boundary conditions represent the most

advanced of the models based on the Hele-Shaw approximation.
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| This model was efnployed by the Cor;aell Injectior; Mglding -Grou[‘: _(Wa_ng et -al.,'
-1977,1985) and it was solved numerically,with a finite elemenuxﬁnit,e difference formulatinn, ] 3 :
(Hiéher _&'Sheﬁ. 1980) and a boundary element formulation (Shen, 1984). Good agreement’
was found between the prediqtioﬁs‘ and th; niea_sure:ﬁents ;onéerning the shape of the |
advancing flow front, the location of weldlines, ;md'the temporal preséuie trace at various
7 _ pb_sitions in the cavity (Hi\eber etal.,1983).

It is of interest to examine eq. (2.10). Dgnoting by Vi the two-dimensional .
gradient operator eq (2 10) takes the form: . ... . N

sv2p+v S,- VP =0 (2.13)

If it is assumed that the v1sc051ty variation in x- and z-directions (spreading dlrectlons) is
negligible as compared to the variation in the y-direction (transverse or thickness Elirectioh),

then the second term in eq. (2.13) vanishes, and eq. (2.13) reduces to:
VPP =0 . (2.14)
=
i.e., the Laplace equation in two dimensions, which means that analytical solutions exist for
some geometric ;:onﬁgurations. This result was pointed out and discussed by White (1975).
. Kamal et al (1975) and Kuo & Kamal (1976) considered the Laplace equation for pressure
coupled with the energy equation and presented analytical solutions for rectangular cavities.
Comparison with experiments showed good agreement for pressure.variation and flow front
position. The same problem was studied by Ryan & Chung(1980} with a conformal mapping
technique.
Broyer et al (1975) developed a rm;del based on the thin cavity approximation and
employed the Flow Analysis Network method (Tadmor et al, 1974) for the simulations. Flow

front pr agression, temperature and fill time determined experimentally (Krueger & Tadmgr,

1980) con'pared well with the model predictions.



Recently, Couniot & Crochet ( 1986) presented a front ti-:zi;:liing' algorithm using
finite elements for calculatingVHele-Shaw flows in thin molds of arbitrary shape. '

It must be pointed out that the computer models of this category are extremely slow

and require large computer memory. This is due to the ri:dving- boundary which'is not only .

unknown in space but also evolves in time. Elliot & Janovsky (1979,1981) and Elliot (1980)

proposed an mterestmg method to overcome this problem Assummg validity of the Laplace

equation, eq. (2.14), they introduced the transformation (Duvaut, 1973): /
] . . _ ‘
O(x,z,t) = [ P(x,z thdt" (2.15)
Then the transformed problem in terms of @ is:
" v2o=1 ' (2.16)-
. Iz
with boundary conditions:
Inflow:
\
. t )
o= [ Pdt', whenP isspecified (2.17a)
1] .
or
A P
3_‘2 = [ — dt', when — isspecified (2.17b)
an o on dn
Solid Walls:
i’i =0 (2.17¢)
an
Flow Front: D) S
' a0
® =0 and — =0 2.17d)
an :

The advantage of this approach is that it transforms a moving boundary problem to a free

boundary problem where time enters as a parameter and the solution can be determined for a
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 given t.:me An example problem, orlgmally solved by Elliot. & Janovsky (1979) is shown in
:Flgure 2.1, concermhg the ﬂow between the two. semicircles AB and CD (Mavndls et aI
1986¢). Ffuid is i_nject.ed across the line AC so that.ithe pressure is kept constant at the
constant value 1 “The rc.gults dep'icted in Figure 2.1 are obtained througﬁ a finifeleleme.nt
formulatxon of eqs. (2. 16-17) where the transformed vanable ¢ and the flow front locatmn are
determmed simultaneously. 'The deformed finite element gnd is shown in Figure 2 la at |
t=10, and the ﬂow front position at three times is shown in Figure 2. lb It can be observed
that the flow front is normal to the walls. This is an unrealxstnc prediction and is associated

with the Iimxtatmns of the Hele—Shaw theory.

2.2.2;2 Transverse Plane: Fou;:taifl Effect

While models basfed on th;a Hele-Shaw (or thin cdvity) approximation have been
effective in predicting quantities such as pressure, fill time, and weldline ,pbsition, their
limitations must be realized. <

| For cavities with high aspect ratios the Hele-Shaw approximation holds up to
distances of the or-der of the gapwidth, O(H), from the boundaries (Richardson, 1972).
However, it is the phenomena. that take place within distances of order O(H) behind the flow
front that have a profound effect on the properties of the molded part and must be taken into
account.

These phenomena involve the flow kinematics in the transition region between the
unidirectional shear flow and the flow front. Fluid elements near the centerline move faster '
so that they decelerate as they approach the slower moving front. Mass continuity resultsina
transverse velocity c'omponent which drives the fluid elements outward, towards the walls.

This motion when viewed from a frame of reference moving with the flow front gives a

fountain-like picture (Rose, 1961). The implications of fountain flow in injection molding are

~




~

-

obvious: hot melt from the cénﬁ;al core feaches tl;e cold walls passing through a'ct;mplex
sheazl and eiongational ﬂowi_ At the wall the me‘lt solidifies crea‘t’;ing a highly'oriented "skin”.
The presént w;)rk, to be described in detail in the sgbsequfnt chapteis, is the first systematic
eﬁ;ort to stud;r the fluid mechanics of fountain flow and _how it affects the microstructuré

developmerﬁn injection molded parts (see also Mavridis et 51,19863,5, 1987, 1988a,b).

223 Network Models

In this approach the aim is to overcome the mathematicﬁl difficulties associated
with a rigorous madeling of mold filling. The actual mold is decom;;osed'into a network of
basic units of simple geometry (e.g., circular pipe, disk, rectangular channel). In practice eac.h'
unit is characterized by one spatial dimension. Simplified analytiéal solutions or macr(l)scopic
balances for the quantity of interest (m;;ss, moméntum, energy) are derived over each unit.
Coupling is‘deterﬁiined by requiting continuity at the nodes, i.e., the connections between the
units. With this technique a tree structure is obtained that allows prediction of fill times,
pressure drop, temperatures, and forces developed in the mold network, within reasonable
e;lgineering tolerances.

The devélopment of CAD/CAM technology, interactive work stations, versatile
cgmputer graphics, and the methodological simplicity of the network concept made this
approach very popular. Various models and commerecially available computer packages have
appeared thus far (Bernhardt, 1983; Richardson et al., 1980; Bangert & Menges, 1981;

=5

L}
Hieber,1982 ; Schacht et al., 1985; Atkinson, 1986).

2.3\ Concluding Remarks
!

"The complicating features of a general mathematical modeling of injection mold

filling have bzen discussed. The modeling objectives are classified into large and small scale
' :




phenomena. 'Small scale phenomena include v-.rlgldlinps and microstructure developrhent and
must be captured if product properties are to be predicted. "Models based on the network

gppm'a_cl;and the more rigérous models based on the Hele-Shaw approximation predict large

-,

scale phenomena (pressure drop, fill time, cooling reﬁuirements) and weldline location. -

Studies on the transverse plane explain the effect of fountain flow on the microstructure of the

final molded part.
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CHAPTER 3

STEADY-STATE ANALYSIS OF FOﬂNTAIN FLOW

‘This chapter contains the steady-state finite element studies on the fountain-flow
problem. It begins with backé?ound information and a literature survey on the fountain flow
phenomenon. A finite element algorithm is presented for the num_e.r_.‘i_cal simulation of free.

surface flows. The method is employed to study the fountain flow of Newtonian and shear-

. thinning fluids in planar and axisymmetric geometries. Using the numerically computed

-

flow field an investigation is performed on the effect of fountain flow kinematics on the
deformation experienced by the fluid. Computational results are 'con}pared to avéilablé
experimental photographs. Finally, the general problem of fountain and reverse. fountain
flow is considered. A double-node finite element method appropriate for this problem is

proposed and is applied to simulate the immiscible displacement of two different fluids in a
f

capillary tube.

3.1 Introduction

The term "fountain effect” was coined and d.is-cusset‘:l by Rose (1961), to describe the
fiow field ne~r a fluid/fluid interface advancing inside a capillary when a moving fluid is
displacing another immiscible fluid. A conceptualization of ‘the flow field is shown in Figure
3.1, for the‘case of steady moti;)n and a frame of reference at rest with rgspect to the advancing
interface, i.e., for an observer riding with the flow front. Rose (1961) introduced the
designation "fountain effect” as a term ha\;ing phenomenological ﬁnerit, to describe how the

advancing fluid particles from the central core space decelerate as they appgoach the slower

17
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moving interface region, and acquiré an outward component of velocity as they sp':i'{l towards ',

. P - : . o -
the wall region vacated by the ad\fancing‘ interface. Correspondingly, a "reverse fountain

",

effect” is seen in the receding fluid ahead of thevitnterfa.ce, as fluid is displaced from the wall

region and moves tq\;vard$ the centerline. L : o

. Fountain flc!ﬁr is associated with the flow reai'r:cmgement behind a flow front
advancing between solid b'oﬁndarieg and i;.s present in many afeas.of theoretical and
ipdustrial. significance: wetting hydrodynainic's, mold filling opergtio.rtls {injection and

v ]

reaction injection molding ) and flow through porous media. Earlier observations on this typg

of flow have been reported by 2 number of people; West (1911), Yarnold {(1938) and Schwartz *

et al (1964). Ballman and Toor (1960) were also aware of the importance of this phcnome.non

in injection molding.

Schmidt (1974) found‘with injection melding visualizati(-m 'éxperiments that
colored peilets introciuced along the centerline come out at the surface in contact with the
mold walls in reverse order and deformed into characteristic V-shapes. Tadmor (1974) did a
semiquantitative study of fountain flow by assuming steady elongational flow near the
advancing front and made calculations of some orientation parameters.

The first theoretical attempt to determine the flow field was apparently made by
Bhattacharji & Savic (1965). These authors assuned the flow front to be flat and
perpendicular to the solid walls and derived analytically a solution for the streamfunction, for

: ! : .
the case of a Newtonian fluid in planar and axisymmetric geometries. The solution of

\

Bhattacharii & Savic (1965) was later used by Castro & Macosko (1982) in their model of the .

reaction injection meld filling process.

The primary and most formidable difficulty in solving the fountain flow problem is

associated with the flow front shape which is unknown a priori and must be determined along .

with the flow field as part of the solution (free boundary or free surfacesproblem ). The



¥
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unknown free surfac’e shat:e rééulté in a nonline:tar p'roblerh. tltat isrvery intractable
analytu:ally Blgg (1975) attempted a’ numerxcal solutmn utxlmng the Marker-and-Cell
(MAC) method. The same numencal’t::hmque was employed in the studies of Huang (1978) '
Huang etal (1986) and Kamal et al (1985). Prehmmary attempts to sxmulate the flow w:th a .
finite element'methoc! were reported by “_fang et- al (1978). Givler et _al-(1983) obtained a

finite element solution for a Newtonian fluid in their studies of fiber 6rieptation in dilute

suspensions.

Detailed finite element simulations with Newtonfan and shear-thinning fluids in-
¥ - ‘ »

planar and axisymmetric geometries were reported in an earlier publication bas:ad on the
present work (Mavridis et al, 1986a). The effectﬁf fountain flow kiriematics~on the
deformation experienced by the fluid ;vas examined .in Mavridis et al (1986b);.it was shown
. - . .
that fluid elements from thle centerline stretch as.they move towards the walls and form
characteristic V-shapes, fullyhin agreement with Schmidt's (1974) visualization ‘experiments.
Similar results were'later found by Coyle et al (1987) and Kamal et al. (1988). Behrens et al
(1987) studied both theoretically and experimentally the transi?nt free surface flow in a tube.

In all the above studies the receding fluid was considered to be a gas, which to a

good approximation is inviscid and inertialess and therefore the geverse fountain flow pattern

‘does not appear. However, it is of interest to examine the general case of two immiscible

viscous fluids displacing each other at constant speed. This is the configuration discusséd by
Rose (1561). Referring to Figure 3.1, it is shown that near the interface the materiai particleé
on the advancing liquid side have an outward directed velocity while the material particles on
the receding fluid side have an inward dit;gcted velocity. Based on this observatiop Rose
(1961) arguecf that co;tinuity of the twol.,vélo-c'ity fields at the interface requires that no

tangential motion occur along the interface. It can be shown that if the above argument holds

then the interface has a constant curvature throughout, or equivalently it is a segment of a

)
D



sphere. However, Rose's (1961) argument does nof. hold. It is based on the crucial assumption
1 P

. that the streamhnes very near the’ mterface follow t.he same pattern as those depicted in

-

.F1gure 3.1. Dussan (1977) showed thh vmual:zatmn expenment.s that a'recirculating flow

. occurs adjacent to_ ‘the interface and ms1de the less viscous fluid. The double- node finite

element technique described in Section 3.4 gwes for the first time a complete solution to the

general fountain and reverse fountain flo® problem. The results, reported earlier in Mavridis

etal (1987), demonstrate clearly the existence of the vortex adjacent to the interface, ﬁﬂly in’

agreement with Dussan's (1977) experimental observations.

32 - Fountain flow simulations

£

3.2.1 Mathematical Modelirng
Consider an incompressible, isothermal, viscous ﬂuid with a free front advancing
at constant speed U between parallel plates or i.n a capfilary tube. Such a flow wauld appear |
1 .
to be unsteady for a stationary observer (Figure 3.2a). However, for an observer moving at
the same speed in the flow d.irection the walls would appear to move backwards ar;d the flow
would be steady (Figure 3.2b). Therefore in this moving frame of reference the problem can be

analyzed in the steady-state.

The govermng equations include the mass and momentum conservation equations:

(3.2)
ReV-YV=V.a+8" g
Variables are made dlmensmnless as follows: length with the halfl gapwidth H {or
tube radius R), velocity with the average velocity of the fluid U, viscosity with a reference

viscosity pg and stress with poU/H. Re=pUH/po is the Reynolds -ﬁumber-and

@E pgH2/2oU is the inverse Stokes number, where p is the density and g'is the gravitational

LY




Figure 3.2

(a) “Advancing flow front and stationary walls
(b) Stationary flow front and moving walls



acceleration. ‘Under typical mold filling conﬂitioxis both Re and S-1 are very s.rnall (ie.,

~ convective and gravitational ‘efi‘ects are negligible compared to viscﬁus effects). b
In eqs.(3.1)-and (3.2) V is the velocity vector and o is the total stress tensor,
= —PI +1, wlhere P is the pressure and ¢ is the devi;atoric (or bext_rz‘l) stress tensor. For )
viscous fluids t=p(VV + VV'f). - | ‘
| Referring to Figure 3.3, for the planar geometry we' have the followiqg boundary‘
conditions: | . -
On AD: fully developed velocity pro-ﬁle -
u=fy), v=0 N 3.3.0)
On AB: symmétry conditions |
Ty =0, v=0 . | (3.3.2)
On CD: no-slip at the wall
wU=~1, v=0 . (3.3.3)
On BC: free surface boundary conditions
. Kip;amatic condition: n-V=0 ' ‘ (3.3.4)
Dynatﬁiécondition : n-g=—-~Pn+ = (i- + ‘l )n (3.3.5)
a Ca R, R2

'Ifim kinematic condition, eq.(3.3.4) expresses the requirement, that no {luid particle
crosses the free surface \:hich is a streamline. The dynamic condition, eq.(3.3.5) expresses the
. bala‘nce of viscous, pressure and surface tension forces. The capillary number, Ca =pUIy‘is a
. dimensionle.ss group that measures the relative importance-of viscous over surface tension
forces, and y is the surface tension. Polymer melts are very viscous and Ca is typically very
large (i.e., negligible surface tension effects). P, is the ambient pressure, usually set to.zero as
the.p'ressure datum. n is the unit vector normai to the free surface and Ry,R9 are thelprinc_ipal

radii of curvature of the free surface. For a two-dimensional surface 1/Ry=0and
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Figure 3.3 Definition sketch for the fountain flow problem



1 - dt ' S
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. R, n=n-- _

where £ is the arc length along the free surface and t is the unit tangent vector in the direction

of increasing €.
By inspection of the boundary conditions, eqs.(3.3) it is seen that at known portions

of the flow domain there exist only two sc;alar boundar} conditions while at the free surface

the available Boundary conditions are'thfee (two scalar'bdundaryconditions resulting from

the dynamic condition, eq.(3.3.5) and the kinematic condition, eq.(3.3.4) ). This is the very

characteristic of free surface flows and :-;u'ises due to the unknown free surface shape.. The

associated nonlinearity of the problem is apﬁarent from eqs.(3.3.4), (3.3.5); the unknown unit

vector n results in nonlinear tefms in the boundary conditions, even if the goverriing
equations are linear (e.g. creeping Newtonian flow). A finite element technique suitable for

—

this clfase.‘ c-)f flows is considered in the next section.
3.2.2 Finite element formulation

The Finite Element Method belongs to the general class of weighted residual
metheds (Finlayson, 1972) and is a powerful technique for solving partial differential
equations. Strang & Fix (1973) present the mathematical foundations of the method while
further backgro.und and applications oriented ‘material is proyided in st.z_mdarci texts
(Zienkiewicz, 1977; Huebner &-. Thornton, 1982; Crochet et al, 1984). The followiné déscribes
the basics of the finite element method as applied to free surface flow problems.

The finite element method begins-by expanding the primitive variables (velocity
components and pressure) in a suitable set of basis functions: ' S - |

V=2 Vi¢'&m, P= 3 PlaEn) - @)
i i . 3

4

.
-

'
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where Vi, Pi are nodal variables, $i(§,n), ni(§,n) are the associated basis functions and §,n are

the 1369,1 coordinates in _Ehg element. Elements used in this work are the 9-node qﬁadrilateral :
and 6-node trigngular isoparametric elements with C0—P2 approximation for velocity and.

Co—P!far pfessuye {see apmnd&_A).
The finite element approximationé, eqs.(3.5)‘, are inserted into the governing

equations, eq.(3.1) and {3.2). In general, the finite element approxi:ﬁatidns do not saEisfy the
M . . . »

gq;rerning equations exactly and there will be a momentum and continuity residual. The
. > s - . )
resulting momentum residuals are weiglited with the velocity basis functions and the

$a Ll

- continuity residuals are weighted with the pressure basis functions. The weighted residuals

are integrated over the solution domain Q and s:ef: to zero (Galerkin formulation):
_ A _

'R:“=I [ReV-VV-—-V-o-S‘-lg $'dQ =0

Q { :

~ . @8

< -

. Ri='I vV-Vad2 =0 . (3.7)
14 [ a :
The stress term in eq.(3.6) is integrated by parté (i.e., applying the 'divergcnce

J
3.

theorem):

i
R= |

where 3Q is the boundary curve enclosing the solution domain Q and £ is the atc length along

%

' ReV-VV+ Voo —¢‘S"g}¢‘d9_ J

n-od'df=0 (3.8)

LI

a0

v . _ . .
3Q. Note that in the above formulation, eq.(3.8), the dynamie: (stress) boundary conditions

-
hRY

arise naturally as boundary integrals in the momentum residuals.
¢

Eq. (3.7) and (3.8) when applied at the nodes of the discretized flow domain along

-

with the appropriate boundary conditions provide as many algébraic-equations as there are

’

unknown velocity and pressure nodai degrees of freedom.

" The complicating feature of free surface flows is that part of the flow boundary aQ is

unknown (free bou‘ndz_u'y) and must be determined as part of the solution. The earliest



apphcatmn of the finite element method t.o free surface flows was that of Nxckell etal (1974)
in wh:ch the determmatlon of the free surface and the flow field were decoupled through a
Plcard-hke 1terat.mn. A s1m11ar method has been used by many worke:s (Reddy & Tanner,
| 1978, Crochet & Keuningé, 198,0; Mitsoulis & Vlachopbﬁlqs_, 1985) and'in the early étages of
this work (Maﬁ&s et al, 1986a, 1987). Hotwever, the decoupling technique exhibi'ts slow
-'Eonvergen;:e and does not, con\;erge af all over certain parameter ranges (Silliman & Seriven,;
1980; Mavridis et al, 1987) The technique adopted in this work is a version of the so-called u—.
v-p-h formulatlon (Klstler & Scnven 1983). The u-v~p-h-8 formulation descnhed below is a
fast and robust method for free surface flows and is easily extended to transient flows
 (Mavridis et al, 1988a and Chapter 4) and viscoelastic flows (Maivridis et al, _;988b and
Chapter 5). | .
1In the u-v-p-h-5 formulation the free surface is represented by piecewise quadratic
line segments eac;ﬁ of which forms one side (=1 = £ < 1, n=1) of an isoparametric 9-node
quadrilateral element, as shown in Figure 3.4. A free surface segment is defined 'uniquely by
the coordinated of three nodal points, two end points and the midside point. Every free
- surface node xpi.moves along a spine, a straight line which is characterized by a base point xg!
and a unit vector ei=e,cosdi+ eysindi, where cosbi and sinSi are the direction cosines of ei .

The position of xgi is determined as the distance along the spine (cf. Figure 3.4):

; . .. (3.9)
i i i
Xp = Xg +he
If xpi-1, xpi, xpi+! are the three nodes that define a free surface segment, the free
L
surface is represented as:
S i (3.10)
x=Zx’F¢](E.q=1) A

i-1

In general there are two.position parameters corresponding to every free surface
node xpi; hi that is associated with distance and §i that is associated with orientation. The &i

: parameters corresponding to free surface segment end-points are fixed (input data) while

L
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those corresponding to midside nodes enter the set of unknowns. The latter 5 are detefmineé =

on the. requirement that the midside node be located at the midpoint of the free surface arc.

" The variable midside spine direction is esi:ecinlly useful in transient flows (see Chapter 4).

The mathematical expression of the above expression isa followé: assume that free surface

segment is mapped onthe~1=s§=<1,n=1 sxde of the st.andard E, n square. The corner and

.midside nodes areat §= —1, 1 and 0 respectively. The d1ﬁ'erent1al arclengthd€is

. ' 12 N '
. d'f:(x +y ) dg \/ (3.11

n=1
and the condition that the midside node is located at the midpoint of the arc is:
€20 =1 - .
I =\ - de = ] deé (3.123)
E=—1 £E= 0
or * .
° 2 2\® Y2, \7 | (3.12b)
[_, ("a’”’a)‘ de= L, (2 *’.”E)| 4% : K
n=1 n=1 : ’

" The hi unknowns are linked with the kinematic residuals at the free sﬁrface, ie.

Rj(:l n-Vo' (,n=1de¢=0 , (3.13)
- F.S.

»

[n summary, the unknowns and the corresponding weighted residuals in the u-v-p-

h-8 formulat‘ibn for free surface flows are

ViR = G ReV-VV+ V.0 -5 gle'd2— | n-a¢'de=0 (3.14)
m Q an
P: R = ¥v-Va'dQ =0 : (3.15)
0 ,
h': Ry = n-Vo'E,n=1de=0 (3.16)
F.S. ’
o 0 . R 2 1 ) . 2 '. (3.17)
1 - = .
.Rﬁ~ {_I(x&+y£)i dE Jo (xE+y£)l d=0
q:l q:]_
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Organizing the unl{nownsiﬁto”the vector X - woooT y :
. N . *,

\ X P 0 (3.18)

S XT = {vT, PT.h", 87 | . @

and the weighted residuals into the vector R ' o L. o

: T _ pT T 5T Ty I @1
" . R - [?m: Rcl Rk’RE] . . ::I ) ‘ ( $
the system of algebraic equations to be solved is _ _— S .
: - RO = ¢ 3 (3.20)
" This ;ysterﬁ is solved w1th Newton—dehson iteration, i.e.
l,' ; . . | . .

Jim gom g ' L L (3.22)

where J=4dR/3X is the Jacobian matrix of the algebraic system, eq.(3.20). Tyﬁical]y, the

.

o

Newton-Raphson iteration exhibits quadratic convergencesas shown in Figure 3.5.

e

Theoretically, the Newton-Raphson scheme exhibits quadratic convergence near regulér

A points of the solution and for SGfficiently good initial solution estimate (Isaacson & Keller,

4

1966). For the problems examined in this chapter three to five iterations were sufficient to
reduce the maximum relative update in eq.(3.21) below 10-4. It must be noted that the

correct evaluation of the Jacobian matrix in eq.(3.22) is crucial for the successful application

' A
of the Newton-Raphson scheme. In fact, imposing a strict convergence criterion and insisting

)
on quadratic convergence proved to be a goad test of the correctness of the Jacobian matrix,

which is particularly complicated due to the presence of the free surface derivatives. Detailed

derivations of the finite element equations and the J acobian matrix are given in appendix A.

+

Once a converged solution is obtained the flow field can be visualized with velocity

vector and various contour plots. A useful contour plot is the streamfunction contour plot
- . 4

(3.23)

which provides the streamlines. The streamfunction y is defined as:

\ <
‘ u = ayfdy, v = —aop/dx _
The streamfunction can be determined a pos}eriori by solving the Poisson equation:

LA
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i + A =u —v | (3.24) -
2 2 Ty 'x . o
ox dy

The above equauon is solved on the same ﬁ'mte element gnd by expandmg the R
'7 streamfunchon in'the followmg set of basis functlons _ o

oTuden e
and the nodal streamfunctmn val;xes wi are determmed by solvmg the followmg lmear

system, wh.u:h results from the Galerkmlfuute element dr.scretlzatxon of eq (3.24):

Aij g = 13i ’ - . (3.26)
_ i R TN .
Ay= ln (cpx¢lx+¢y¢; )dQ : . (3.27
B.;I (v.—u)otde ' '(3.28)
i o x v

3.2.3 Newtonian Fluids
3.2.3.1 Planar Geometry

The probl.em of fountain flow of a N.ewtonian fluid in planar geometry was
considered first. A fully developed velocity p.roﬁle was imposed at the i'nﬂow plape {AD in

Figure 3.3):

WU = 2-[1 - /D =1 ) (3.29)
and the finité element method of Section 3.2.2 was applied ;,o obtain the flow field and the fiow
front shape. - '

Three successively refined finite element ﬁeshes were used in the calculations.
These meshes are plotted in Figure 3.6 and their characteristics are listed in Table 3.1.

Computations with the three meshes showed close agreement of the results. The results with

MESH 2 and MESH 3 agreed within three to four significant'figures away from the contaét
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lme i.e. the free surface/wall mtersectmn Asan assessment of the accuracy of the results at

thls level of mesh refinement consider the folIowmg measure of the relatwe difference’ of the

Al

solutions with MESH 2 and' MESH 3 along the free surface:

< - N, ; 2w :
v 1 3 2) ' -
-&—[Z(‘ ()] = 0.021 °
~ uw o i=1 (3) ' . ’
| 1 Nv VVi ;vi 2 12
@~ Yo R
12 (52)| = osiss
< vii=t b Y )
1 & /o —p 2
@~ P
w2 (22)] = o
pi=l Py
~ i . m
h,., —h
1
ﬁ'[ B : (m) ] - 0.00053

where N, Ny, Ny, Ny, are the number of x-veloecity, y-velocity, bressure and free surface
- unknowns respectively at the free surface. The comparison indicates that a sufficient
accuracy has been reached at this level of mesh refinement. MESH 2 was selected as the basis

finite element grid for all subsequent calculations.

%

. Table 3.1 Finite element meshes for Newtonian fountain flow

-
Efemeints Nodes Unknowns * CPU secfiteration -
(VAX 8600)
MESH 1 _ 92 402 856 11.7
MESH 2 156 659 1437 23.7
MESH 3 264 1106 2418 48.6




Thé- velocity vei:fors ﬁ':;r a moviné-frame of.referent:e are _shoﬁ -in Fig't':re 3.7. This
fipure shb&s cléarly that an observelr tx;aveling.\#ii:h the average vélocit.y’ of the fluid w{ll seiz
the fluid partu:les approachmg the flow front to decelerate gpill over and g0 backwards The
strean:lines are plotted in Fxgure 3. 8 111ustrat1ng the charactenstm fountam ﬂow pa.tt.ern

with the streamlines resembling a series of nested loops.-

The mstantaneOus velocity vectors, for a fixed frame of reference are plotted in

F:gure 3.9. These are constructed from the velocxty vectors of F1gure 3.7 by addmg the

. average velocity of the fluid to the x—compone.nt of velocxty The veloc:t.y proﬁle is parabohc in

the fully developed flow region (upstream).  Near the flow f:I‘OI_lt the deceleration of fluid )
particles results in _'t.he zdgvelopment of a transverse velocity component and the velocity
vectors a¥e directed outward towards the walls. This is better illustrated in Figuré 3..‘10,-
which shows the streamlines in the fixed frame of réference. Thé s&eamlines of Figure 3.10is
the pictuz;e that‘woulgl be seen-\_vith a ﬁx?d camera in a visualization experi_ment. It is shown |,
that upstream the streamlines are paralle! to the wall while at the flow front they bend
towards the walls correspond—{ng to the outward motion of the fiuid partic{ﬁl_gs in that region.
Both Figures 3.9 and 3.10 demonstrate clearly that for a fixed frame of réferenc;, ie. in a
physical flow experiment the fluid particles nevér tﬁrn back, but they merf:ly move outward
entering regions of lower velocity and thus appearing to move backwards for an observer
traveling with the (greatex:) average velocity of the fluid.

The variation of velocity along the centerline is given in Figure 3.11. It can be
observed that the region over which the deceleration takes place extends' only a small
distance behind the flow front. At x/H= -;0.815 the velocity is WU =0.495 (99% of
Umax/U=0.5) and upstream of this position the flow can be considered as fully developed

pressure driven flow. Contours of total fluid velocity (i.e. (u2+v2)172) given in Figure 3.12
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Figure 3.7 - Velocity vectors in the mov{ng frame of reference
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shov.i"the velocity variation over the flow domain and the stagnation flow region in the
xmmedlate v1c.1mty of the front tip.

The pressure vanatmn along the centerline and along the wall and free surface is

given in Figui’eg 3.13a and 3.13b respect.ively. The pressure'drops linearly in the upstream

region and is‘smooth glong the centeriine, ivhile it exhibits an a-nomdlous beha.vior near' the:

contact line, duetoa smgulanty in that regmn In fact, all stress components are smgular at

the contact line. It is well known (Huh & Scrnren 1971; Dussan, 1979) that the contmuum

approach along with the no-slip condition breaks down in the v1c1mty of contact lines giving,
rise to singul-z;u' stresses. Singtﬁar stresses can be tolerated, however, as long as tiiey a;'e
integrable, ie. the total drag exerted on the wall remains finite. In the present case the
contact angle is 180° and the stress singularity is integrable (Pismen & Nir, 1982). It 1 is
possible to alleviate the stress smgulanty with a shp boundary cond1t1on This remedy is
investigated in the next section.

It is of interest to note the extra pressure drop due to the fountain flow. We define:
B = AP (-L) = 8P (=L (3.30)
where AP(—L) is the calculated pressure drop over a length L behind the contact line and
APg(—L) is the pressure drop that would be observed in P.oiSSeuilIe flow over the same length.
It was found that APoxes = 0.6 in units of yoU/H. This amounts to 10% of the pressure drop
over a unit gapwidth and is too small to be significant in the actual mold filling process.
Global quantities as the pressure drop are little affected by fountain flow whose main effect is

on small scale phenomena (flow induced deformation of the material) as it will be shown in

subsequent sections.
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3232 Effect of slip boundary condition

The use of a shp boundary condition has been Suggested by sevoral researchers ,
. {Huh & Scnven 1971; Huh & Mason 197'7 Dussan 1979; lehman & Scnven 1980) to
allevmte the stress singularity at the contact line. The slip boundary condmon isa kmd of an
‘interfacial constit.utive equation that relates the magnitude of the slip velocity us to the

_.applied wall stress t“;. Q’;e simplest approach is the Navier boundary condition:
' ‘ ' ' (3.31)

u = B,
where B is the slip coefficient in units of m/Pa-s. The product Bp., where p is the viscosity of
the fluid deﬁnes a length scale that measures extent of wall surface over which slip is
significant. The ratm B=pwH, where H is the length scale of the flow problem (here the ha!f-
gapwidth) is a dlmensmnless measure of slip, which is typically a small number below unity.
For example, Ramamurthy (1986) measured slip velocities in the order of ug == 1073 m/s for

‘wall stress v, = 105 Pa._ Based on th.ese measurements, the Navier boundary condition,
eq.(3.31), gives, a slip coefficient f=10"8 m/Pa's. For a typical melt visoosity_of p=103 .
Pa-s and a half-gapwidth of H=10"3 m,.the dimonsionless slip group is B=pwH=0.01.

Other options for the slip boundary condition, usually power-lz;w madifications of
eq:(3.31) empirically fitted to experimental data, are also a:ailable (Chauffoureaux et al,l
1979; Lau & Schoo:alter, 1986). Recently, the subject of slip at the wall oeceived special
attention due to its rele¥ance in polymer flow instabilities iRamamurthy, 1986; Kolika &
Denn ,1987) and the breakdown of viscoelastic computations (Lipscomt; et al, 1387).

tn the present work the linear form of the slip bouodary condition, eq.{3.31), was .
used. The power-law version can easily be implemented by treating the slip coefficient f as a

"

nonlinea: parameter instead of a constant. The dimensionless form of the slip condition as
r

applied to t.ie fountain flow problem is:

- 1
=1)= - —- 32
- {yH=1) B u+1 (3.32)
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.’
This condition is tmplementea in the finite element algonthm as follows. The x-

momentum residual is (from eq.3. 14):

i i ' i | i
R.. = Ll [q: Re(uu_+ vuy);-!- (-P+2pu)d_+ lhl(uy +v) be
_ . (3.33)
- -¢.57'g ]dQ J Ty d'de=0
an -
When the no-slip cond1t1on is applxed this residual is deleted a.nd the u-veloc:ty is

fixed with an essentxal boundary condltlon When the shp boundary condition is applied the

u-velocxty at the wall is unknown. The tzy term in eq.(3. 33) is subst:tuted from eq.(3.32):

mx

R =[. [(bRe(uu +vu)+( P+2pu)<b +p.(u +v)<p
tH]
'. (3.34)
1-. ;
—Q—S“lg]dﬂ-i-J —(u+1)cp‘d€=0 L :
Q .
The above provides as many algebraic equatlons as there-are nodal points along the

e

wall, for the determination of the nodal slip velocities. .

The appropriate velocity profile to be specified at the inlet bon‘mdéry is:

B 1
= =1 — (y/H)*] =1 B (3.35)
woWU = 27 1+3132[ G/HY]

It can be seen from eq.(3.35) that the limit B — 0 recovers the well-known

Poiseuille proﬁ{e {no-slip) while the limit B +» ® gives a plug velocity profile (perfect slip).
Finite element calculations were performed with MESH 2 (Figure 3.6) and the

parameter B was varied in the range 10~4 — 1071, A representative plot of the behavior of

the computed solution with B is given in Figure 3.14. This figure shows the effect of slidp on } )

the calculated pressure value at the contact line and on the -calcﬁlated {ront tip position (i.e.,
the flow front / éenterline intersection). Up to B=0.005 the results are unaffected by tl'fe slip
condition. Increasing further the amount of slip decreases the pressure peak at the coptact
line, alleviating the stress singularity and also flattens the flow front shape (decreasing front

tip position). Par’ucularly important is the result that for a reasonable amount of slip {e.g. B

-4




/
~

i

" ~P(x=0,y/H=1)’

Figure 3.14

NWw e O,

Q
| | I
091 .
1090 ©°
v S
. R
X
- | 10.89
. 1 ! |
10° 10° o

Effect of slip on the calculated pressure ai the contact line, and on the front
tip position



' < 0 01 ) mcorporatxon of a slxp boundary cond1t1on doos not affect the results thus .

’

e elmunatmg the need to account fgr an addxtlonal (and unoertam) parameter as the shp

a.

coefﬁclent Consequently, all further computatmns were performed w‘ith the no-\shp

! ) L N

condition. ’ : : S e

P

. 8233 : AxiSyminetric Geometry | g \ .
Fountain flow simulations were also pert'ormed’for axisjrhmetric thbe flow. A fully
" developed velocxty proﬁle was nnposed at the inflow plane (AD in Fxguré 3. 3)

wWU=20l-@R-1 -~ -
‘and the finite element method of Section 3.2.2, properly modified for an axisymmetric

coordmate system, was applied to obtain the flow field and the free surface shape.

The results were‘i'inalitatively the same as those for planar flow. The deformed
finite element \grid and the streamlines are given in Figure 3.15. The‘.ﬂow' becomes fully .
detfeloped (i.e. the velocity at the centerline attaing 99% of the upstream value) at zZR=0.786
lgehind the contact line. The calculated shapes of'the flow front for the planar and
axisymmetric geometry are compared to a c:rcular shape in F:gure 3.16. Table 3.2 lists the
coordmates of the nodal points defining the ﬂow front shape

A characteristic measure of the flow front shape is the axial distance between the
contact line and the front.tip. Table 3.3 lists the values calculated by various investigators. .
The reported: values show some variation from each other, probataly due to the different
meshes employed and the iterative techniques for free surface determination. The present
results have been verified with mesh refinement and both u-v-p-h-§ (present work) and u-v-p
(Mavridis et al, 1986a) formulations. It is noted that for the axlsymmetnc case there is good

#

agreement with the experimental results of Behrens et al (1987).

(3;36) Lo
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Figure 3.16
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Flow front shabe in planar and axisymmetric geometry (Newtonian fluid}



;l‘abie 3.2 .Po!ar édofdinates. of the flow fron_t-fo'r planar and axisymmetric fountain

&

Angle, degrees

10 |
15
20
25°
30
35
40
45
50
55
60
65 -
70
75
80
85

90

flow (Newtonian fluid, MESH 2 of Fig. 3.6)

Planar

0.90516

0.90357

0.89870
0.90281
0.90271

0.90821

0.91047

0.91736

0.92152

0.92970

0.93540

0.94465

0.95159

0.96150

0.96899

0.97909 -

0.98675 .

0.99378

1.0

’ Poiaf _Radius

Axisymmetric ...

0.83762
0.83700 *
0.83508
0.84103
0.84361.
0.85229
0.85791

© 0.86903 .
0.87734
0.89059
0.90104
0.91594
0.92799
0.94352
0.95576
0.97086
0.98237
0.99210

1.0
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Table 3.3 Axial (Front Tip - Contact Line) distance for plan

Investigator

K4
. Present Work

Mavridis et al,1986a

Behrens et al, 1987

--Givleretal, 1983

Wanget al, 1978
Wang et al 1979

Present Work

| Mavridis et al,1986a

Behrens et al, 1987 '

Behrens et al, 1987

geometries.
Geometry | Method -. |
- Planar FEM, u-v-p-h-§
Planar FEI}/-[,Au-v-p
. Planar FEM, u-v-p
Planar FEM, u-v-p
Planar FEM, u;v-p
Planar FEM, u-v-p
Axisymm. FEM, u-v-p-h-§
Axisymm. FEM, ﬁ-v-p
Axisymm. FEM, u-v-p
Axisymm. Experiment

and axisymmetric

(XFT-XCL)IH or .

(Zpr-Zo )R

0.905
0.90 -
0,94
0.96
1.04
| \0.84
" 8.837
0.83
0.82

0.83 % 0.04

Behrens et al (1987) used the results of their finite element calcuiations to evaluate

Tadmor's (1974) stagnation—gow model behind the flow front. Tadmor (1974), in his

semiquantitative study of the effect of fountain flow on molecular orientation, was interested

in obtaining an estimate of the elongational deformation in the deceleration region behind

the Gow front. In that region the velocity along the. centerline drops smoothly from its

maximum value upstream to its average value at the front tip (Figure 3.17). Tadmor (1974)

suggested modeling this flow region as stagnation flow over some distance Lstag behind the

flow front." In this approximation the velocity drops linearly from its maximum value at

I
4)’-
Fa

" xFT—Latag to its average vAue at xpr, as shown schematically in Figure 3.17. Then, the

IR
Lo
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Figure 3.17 Definition sketch for stagnation flow model
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. elongational defqrinatior)m§:11=du!dxis: . -
B=E_m5=_:_u Co e ¥
n- T T e
Lstag- e st o

. . L {2 - - . . . ) . - )
Tadmor (1974) assﬁmed Lsms to be equal to the gapwidth 2H (ng= 2R, 'the tube

o dxameter in the axisymmetric case) Then fora Newtoman fluid (Umu =1, SU for planar and

Umax /— =2U for axxsymmetnc’ﬂow) eq (3 37} is sunply
© Planar \ geo'me&y s . e1=025UH . o (3382
| Axxsymm geometry P 1!'0.50 UR - _ (3.38b).
- Behrens et al (1987) compared eq‘s.(3.38) with their ﬁnite. element predictiong ;md
found that eqs.l(3.38}‘“profdde a reasonable abproximation aﬂ;er_‘some adjustment (;f the
gur_nerical coefﬁ‘cients. The adiustment is based on thé computed velocity field and front tip
positibr‘L Referring to Figure 3.1'7, and with the vélt;city curvé known, the only adjust.acl')le
parameter of the stagnation flow model is the extent of the stdénation flow region Lgag. This
can be determined by equating the areas under the two velocity curves in Figure 3.17. Based
on the results of the present work this calculation gives:
Planar Geometry :  Lstag = 1.322H
Axisymm. ,Geometry : Lg,, = 1.302R

and the adjusted form of eq.(3.38) is:

Planar Geometry  : &y = 0.378 U/H ; (3.39a)
Axisymm. Geometry ¢ g1 =0.768 UR {3.39h)
' &



_V@ld’city or Deformation Rétel .

Velocity or Deformation Rate

1w

0.5 -

e
Velocity

0.3} 1_: FEM Solition |

(a) plamu-\l (b) axisymmetric geometry

-

02} 2 :+Eq339. 2/
01k R I
/
- 0.0 + -
. Def. Rate
| : 1 | [ -
-2.0 -1.0 0.0 1.0
- x/H a
1 i | I
Velocit :
joL y (b) |
7
]
08 - \ i
0.6 8 1 : FEM Solution -
0.4 2: Eq.339 9 -
0.2.F L -
¢ /
0.0 —
Def. Rate _
1 1 | |
-2.0 -1.0 0.0 1.0
z/R
Figure 3.18 Evaluation of stagnation flow model:



- The adJusted numencal cueﬁ'ic:ents 0. 378 and 0.768 in eqs (3 39) compare very .

. well with those reported by Behrens et al (1987} 0.38 and 0. 75 respectwely A graphical

companson of the caleulated proﬁles (finite element meghod, present_work) and the .

s—tag'nation ﬂoiv,approxim:sltiorfs (eqs.3.39) is shown in Figures 3.18a-and 3.18b, fo;‘ planar é.nd

) axisymm‘etr'ic flow re;ﬁ_ectively. "It ¢an be seen that while the velocity is reasonably well

'apprqxix_'hated by stagnation flow, the deformation rate predicted by eqs.(3.39) prbvidés only

an average estimate of'!'lr comﬁlexdeformktion rate profile. The strength of the present finite

element alﬁproac.l}' is that it can provide deia_iléd information about both the kinematics and
the dynamics o'f the- ﬂﬁ\é\with no need to resort to simplifying appt:oximations. This will be
demonstrated fnore cieé.rly m Section 3.3 when inves_tigatiﬁg the deformation experienced by
the fluid and furthei' in Chapter 5, where the impact of fountain flow on molecular orientation
is examined.
N
3.24 Shear-Thinning Fl}:ids
Fountain flow simulations were also performed with a shear-rate dependent

viscosity to investigate the effect of shear thinning. The Carreau viscosity model (Bird et al,

1977) was used:

(n—1)2
p/p [1 + () ] (3.40)

with the material constants;
| p, =9500 Pa—s

A=1148s (3.41)

n=0.5
The viscosity function eq.(3.40) with the constants of eq.(3.41)'describes the

behavior of a typical polymer.melt (polystyrene, Dow Styron 878U, at 180°C) over four

decades of shear rates (Mitsoulis, 1984). The viscosity curve is plotted in Figure 3.19. The

o
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material is Newtonian at low shear rates and exhibits a power-law behavior at high™Shear

.

-

- R

rates. Asmootl}f trané.ition is observed at y = 15_.‘1.- v e

| Finif:e element ca{culal-tidns with tﬁe Carreau viscosi@y function 'we:je f:erformed_on
MESH 2 (Fig,ire 3.6) for wall shear rates in the raﬁéé fw = 10-2-103s-L Up _t'.o 'q;: 1
-l (transiti;n region of the viscosity function) the results were indistfnguishable fror;{ the'
‘Newtonian solution. Observable diﬁ'e‘rences were noted only for high shear rates.v‘(i'n_ the
power—iaw‘region). Figure 3.20 shows the deformed finite element grid and the streamlines
for a wz}ll shear rate of 'irw = 100 s-1, The same qualitative' 'ﬁ‘aatures of fountain flow as;for
Ne\ét_onian fluids were observe-d over the whole rarllge-o[' shear rates. Figure 3.21 .shows a
'comparison of the ﬂoQ front shape for a Newtonian and a sﬁear'thinning fluid (Carreau

model, \'[.w=100 s=~1). The shape for the shear thinning fluid is very close to a circle (the

maximum deviation is 2%) as suggested by Tadmor (1974).

3.3 Deformation and Orientation of Fluid Elements Behind an Advancing Flow
Front
3.3.1 Introduction

Extensive\injection mold {illing visualization experiments were reported by
Schmidt (1974,1977,1981). He de‘veloped a special mold and tracer technique (Schmidt, 1974)
that allowed on-line monitoring of the injection mold filling process. Schmidt applied this
technique (Schmidt, 1977,1981) to invéstiga'te the flow patterns and the velocity and
defofmat.iop of fluid elements in the mold cavity. The experimental apparatus consisted of a
recta;ngular mold with glass walls attached to the reservoir of an Instron Capillary
Rheometer. A cylindrical polymeric rod with color tracers inserted at specific locations along

its centerline was loaded into the reservoir and injected into the mold. A schematic diagram

of the experimental configuration and the mold geometry used by Schmidt is shown in Figure
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L.R. SCHMIDT
GE R&D _

Figure 3.23 Cross section of molded plaque illustrating V-shaped color tracers. Flow was
from left to right (Courtesy of L.R. Schmidt)



3.22. Typ:cal results of the visualization expenments of Schmidt (1974) are shown in Fxgure -
3.23, whxch is an expenmental photograph of the cross—sectmn of the molded plaque'

(thxckness dlrectmn) The phot;ograph shows that the color tracers, ongmally plnced along

' -the centerline, are split symmetrically and found at: the outer surfaces of the mold deformed -

- into charactens@nc'V-shaﬁJes, with-the tip of the V-mark point_ing towards the gate. -
‘ S:;hmidt .(1974) acknowiédged the‘ import'anc'e of fountain flow on the observed
deformatlon of the color tracers. The N‘arker-and-Cell simuldtions of Euang (1978) and
‘Huang et al (1986) captured the fluid element deformatmn but attnbuted the V-shape
formation to freezing at the cold wall. The numerical tracking investigations of the present
work shp‘\;ved for the filrst time (Mavridis et al, 1986b} that fo;mtain flow is reSpohsible for the
observed_tracer deformation: the V-shape formati;n is primhry and the free‘zin'g at the wall
that immobilizes‘ i-:hg tracers is secondary. The numerical traﬁking of fluid elements is‘

considered helow.

3.3.2  Numerical Tracking of Fluid Elements

The finite element solut;on oi; the fountain flow problem provides the detailed
velocity field in terms of velocity con'lp-onents at the nodes of the discretized flow dpmain.
Tracicing_of a material point, or a material element in general, as it moves through the flow
fieldris a simple post-processing operation based on the computed velocity field.

Consider a material point P which at time t=0 is at position (xpg,ypo). The
coordinates (x,y) refer to the moving frame of reference. The trajectory of the material point,

in the moving frame of reference, can be described mathematically by the initial value

i(")=(“) ‘ (3.42)
dt \ y v ‘ :

problem:




where u,v are the x- and y-components of veIoclty in the movmg frame of reference The

the following procedure:

-,

. : x ) ) .- "X . '_7 o . . ) ’ . - - R
S P P - . - -
. ( )=( _u)att='-0 o R (3.43)
. ‘ YP YP R .

tragectory of the matenal pomt P inthe ﬁxed frame of reference can be obtamed from :

x (t)—x (t) + Ut (3.4 :

i . , . yﬂ,(t) =y (t)
To obtam the trajectory of pomt P the system of eqs (3 42) must be mtegrated

numencally in tu-ne The mtegratxon can be performed thh any l1brary routme for ordmary

-~

dlﬁ'erentml equatmns The only complxcatxon is that the veloc:tles m‘eqs.(3.42) are not known

as contmuous functmns of posxtmn but as discrete values at the nodal pomts For a given

v

point (xp(t),yp{t)) at time I; the velocity components u(xp ¥p), v(xp,yp) are evalueted through

(i) ¥ Alcopismadeoverall elements in order to identify tfle finite element the contains

the given point '(xp,yp). For this elerﬂent the coordinates of the nodal points {xi,yi)

m

and the corresponding velocity components (ui,vi},i=1 N, (where N, is the number
[ 3
of nodes in the currert element) are retrieved from the global list of nodal values.

s

(i) The local coordinates (Ep,np) of point P are found by solving:

N
_ xp= 2 @' ngx =0
i=1

(3.45)

N
~ 2 )y =0

i=1

(ii1) The velocities at (xp,yp) are computed from:



L Ne o o .
.u(x;,’yp)=-z ‘pi(gp.qp')ul
. i=1 - : s

N Ne :
. V(XP,YP) = Z ¢I (gp’rlp)vl
iR . i=1 X

For a fluid element the complete deformation history can be obtained by.applying -
: KR

eqs.(3.42) for 2 large number of material pomts along the surface enclosing the element.

-

333 . Res}xlts and Dilscuss.ion

Regﬁits are shown in.E“ig'ure 3.24 for a moving frame of ;eférénce. il‘.he half-
gapwidth H is used a the length scale and H/U is us;ed f;ts the time scale, whexr'e Uis the ~
average velocity of the fluid. Figui'e 3.24 shows two syn;metrically lov:.:ated fluid él_ements '
- {with respect to the centerline) which become .distorted and stretched as they move towards; .
l;he-wall, fully in agreement with Tadmor’s (1974) sketch for a mpving framig of 'referencé.
This figure z‘llgé‘shows the t;haracteristic si)litting pattern of a fluid element along the .
centerline as it approaches the flow front. Material particles near the'centerline'decelera‘te as

L

they approach the slower moving front. Mass continuity results in the development of a |

transverse (outward directed) velocity component that splits the fluid element and drives the
symmetric parts away from the centerline. The deformed ﬂuiﬂr elements move towards the
wall following the flow .front shape in & curved path. When they reach the walls they are
extremely stretched and or‘iented in the flow direction, while the trailing edge forms the
characteristic V-shapes observed in the experiments of Schmidt (1974).

The exact time and location for V-shape formation depend§ on the original size and
position of the tracer element. Results for smaller fluid elements are shown in Figure 3.25,

for a fixed frame of refererice. The fluid eleme?ﬁts deform as they approach the front (t=0 to

t=8). The maferial point that was closer to the centerline moves faster, so it reaches first the
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ﬂow front and then it moves bowards the wa'(l (t 8 to t=11) where it becomes nearly
statxonary At time t=12 the ﬂmd element has completed half a tum and is mamly aﬂ'ected :
by shear flow since the ﬂow front has moved forward Under the effect of the shear flow the
trailing edge moves forward formmg a"V" (t=14.5-t=34. 5) through a ro]lxng-type motmn
';he fact that such a motion can cccur far behind the front is not su‘rprising; fountain flow
hehind tﬁe s:dvancing front is only responsible for the outward motion and the turning o‘veo
for :his particular element, while.the subsequent forfnation of g-shapos is due to the shear
" flow in the fully developed roéion. The ﬂuid elements efentually becoxoe_ nea}-ly parallel to
the wall (t=39.5). These predictions are fully in agreement with Schmidt's (1974)
obsorvotiohs. In fact, the present ros:xlts show that the formation of V-shapes occurs in
is;othermal flow. The formation of a frozen layer on the mold wall may also inﬂueoce the
appearance of the V-shapes according to Huang (1978) and Huang et al (1986).

Figure 3.26a is a photograph fromblSchmi'dt's (1977,1981) visualization
experiments. The V-shaped tracer is shown on the uppgr part of the photograph and closoly
tesembles the shape shown in Figure'3.26b, which is a magnification of the fluid element

. ' &
shape at time t=29.5 in Figure 3.25. .The striking similarity suggests that fountain flow is
responsible for this peculiar deformatigri of fluid elements. While it is possiblo that the non-

Newtonian and non-isothermal characteristics of flow in:Schmidt's experiments may
4

influence the defcrmation mechanism, it appears that fountain flow is the main cause of this

behavior.

Another important experimental finding of Schmidt (1974) was that the first tracer
to enter the mold appears nearest to the gate when it reaches t.ho'mold v:'all, while the last
tracer is found at the greatest distance from the gate. This is clearly illustrated in Figure 3.27 - '

that shows the deformation of three tracer elements and how the sequence of the tracers is

reversed when they reach the mold walls. As explained earlier, a material element moves’
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Figure 3.27 Fountain flow reverses tracer order
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away from the centerlme and eventually reaches the mold walls due to fountam flow behmd’
the advancing front, the very esse:;:e of wh.lch is the existence of an outward directed :
transverse veloclgy component Since the fountain flow reglon extends less than one
gapvndth behmd the front tip (see Sectlon 3.2.3.1, ﬂl.ud elements behind this region will be

unaffected by fountain flow and contmue to move parallel to the cenﬁerhne The later a Ezfcer‘
enters the mold the later it enters the foun[:am ﬂow regmn and therefore the: greater the

distance it will have travelled when it reaches the mc_rtd wall. . !

Recéntly. Coyle et al {(1987) report;ed fountain flow visualization experiments and _
finite element calculations similar to these of the present work. The tracer eleme‘nt in the
experiments of Coyle et al (1987) was & matenal hne spanning the entire mold gapw:dth A
sunulatmn of their experiments based on the finite element solution of the presﬁt work is
shov.:n in Figure 3.28. The tracer line dev@ps initially into a parabolic shape. When it
reaches the flow front it is deformed ix_1to 5. mushroom-like shape and sdbseciuently forms t..he

' V-_shape.f: near the wall.

Tihle pattern of V-shape formation shown i'n Figure 3.28 appears different from that
shown in Figure 3.25. However, this is only because the initial shape and size of the tracer
element is different; in Figure 3:25 the tracer is a small material element near the centerline

*{corresponding to the color tracers of Schmidt,1974 which had a size of 20% of the mold
gapwidth) \;.rhile in Figure 3.28 the tracer is a matgrial line spanning the entire gapwidth. It

is important to note that V-shapes will always appear, i;or any size of tracer element. Also,
the V-sl:a[‘Je formation is independent of the nature of fluid and nonisothermal conditions, as
shown by Beris (1987) whose arguments are copsidert‘ati below.

The velocity profile in the moving frame of reference and at some cross-section P

upstream is shown in Figu-e 3.29a. Beris's (1987) arguments are based on the mild

assumptions of steady-state, centerline symmetry and unidirectional flow conditions at the




Figure 3.28

4

Deformation of a material line due to fountain flow. Time interval between
successive shapes is 2, in units of H/U

e



¥ ’ : o

.. cross- sec‘hon P The velocxty proﬁle will have the general shape shown in Flgure 3.29a,

/

t*
decreasing monotomcally from (Umu—U“g) at the centerlme to -Uavg at the wall.

. Therefore there mll be a pomt at the cross-section where the velocity is zero. '[‘l'us is mdmated_

by pomt Bin Fxgure 3.29a, A material particle that was at point B at t 0 w:ll stay at B for all
AN
>0, Let AB be a matenal line at time t= 0 Due to centerline symmetry point A i is

-

constrained to move along the centerline and approach slowly the flow front, since the front

tip (f;}aw frontfcenterlme mtersect:mn) is a stagnation point. Therefore the endpomts of the
L

material l”-“? AB will néver move to the left of the original posx}tmn in Figure 3.29a, However,

because of eontinuity.of mass at least one of the intermediate points C has to cross cross-

sectioq P to the left, at some distance yc> yp and after some finite'time tg=V0/Q0, where V0 is .
N : .

lume between the cross-section P and the flow front and QU is the entering

. flowrate, Q0= fo'sudy. Let C"be the p-ﬂsition‘ef the most advanced (to the left of the cross-

section P) material pointof line AB at time t; >ty, which started at C at t=0. Let elso A'be .
the position at time t; of the material particle located at point A at t=0. Then the materi&}‘ |
line moved from ACB at t=0to A'C'B at time t;, form'ing the characteristic V-shape, with the
tip of the V-mark pRinting upstream (towards the gate).

The above arguments due to Beris (1987) prove that a material line spanning the
whole gapwidth will always deform into a V-shape due t.o fountain flow. However, this
arguteent can readily be extended to prove that a material element near the centerline @
finite size will also deform into a V-§?ape. Referring to Figere 3.29b, consider only the part
AC of the madterial line ACB of Figure 3.29a and a material particle‘ which at t=0,is located at
some intermediate position D. At time t; when the materia} line AC deforms into A'C’ the
meteri_al particle that was at D moves at D', and yp:>yc, i.e. point D' is closer to the wall.
Since D' is closer to thé wall than point C' it moves faster in the negat.ive x-direction and at

some time tp >t it is at position D" overtaking C", and forming itself the tip of the V-mark, as

o+
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Figure 3.29 - Definition sketches for explaining V-Shape formation

L 3



shown by A"D"C" in Figure 3.29b. Therefore a material line of size AC will also fofm aV-
shape, only at a greater time. By sumlar arg'uments we can show that the matenal line AD
will also form a V-shape, and by mductmn any material line with ﬁmte size close to the
centerlme w1ll form a V-shape near the wall; the smaller the size of the matenal line'the

greater the time required for V-shape formation.

34 Fountain and Reverse Fountaiﬁ Flow .
3.4.1 Introduction ‘ i ' ' h

. Aswas mentioned in Section 3.1, Rose (1961) in his discussion of the fountain effect

was interested in the general case of two viscous fluids displacing each other inside 2

capillary. In mold’ﬁ'lling the displaced fluid is a gas and fountain flow in the advancing fluid
is the only phenomenon under consideration. However, in the general case of a viscous

- receding fluid a reverse fountain flow occurs amd interesting flow phenomena take place in

the vicinity of the interface. It is the purpose of this section to eh_lploy the ﬁnité.element.

L]
b

method and analyze the fountain and reverse fountain flow pl;bblem. '. i .7)\» ,

The immiscible displacemenﬁ of two viscous liquids is a stratified multiphase flow
problem. This. class of problems peses adciitional complexities over the conventional free
surface flows due to a pressq\re discont.inuity‘ and ‘-riscous stress jumps at the interface. The
discontinuity arises due to the step chahg‘e-of the fluid properties at the interface and is
discussed below. |

Consider the flow of-t.wo immiscible fluids denoted by’l and 11 in Figure 3.30. The
two flow fields are governed by the mass and momentgm conservation equations in each
phase and.are coupled through the boundary conditions at the interface. Referring to a local

coordinate system (tangential t and normal n to the interface) the interface boundary

conditions can be expressed as
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Figure 3.30 Diagram of a fluid-fluid interface



Kinematic condition: - - .
Tangential stress condition: -

L Vu , Yy (Y Vo
. —_lfl_an*-'at ‘_“ﬂ'an*"at-
Normal stress condition: '

s ey T av
. nl _ oIl 2H
“Prrn ot = Byt 2yt

where 2H is the mean surface curvature and Py, Py1 are the pressure of fluids [ and II at the

interface. Eq.(3.48) implies the absence of tangential surface tension gradients, which could -

be caused by temperature gradients or surfactants.

~

(3.47)

> (3.48)

(3.49)

* Tha

A pressure discontinuity arises under certain conditions at the interface. For

incompressible fluids the continuity equation may be written as:

av v

at an
t

av av
L 1L S

ot an

The continuity of velocity at the interface, eq.(3.47) gives:

at & at y

m  én am &t

Then, using eq.(3.52) the normal stress condition, eq.(3.49) can be written as:

- th 2H
P, -P)= 2(}1l—]1")“'5t"‘ + Ca

By inspection of eq.(3.53) we conclude that there will be a pressure discontinuity:

1. Whenever there a‘re non-negligible surface tension effects

(2H/Ca=0)

{3.50a)

(3.50b)

(3.51)

(3.52)

(3.53)




2 In the absence of surface tenswn effect.s (2HICa 0) but w1th v1scosnt1es of the two fluids

- bemg (hfferent (p[— pu=0). In this case the pressure dxscontmuuty will be proportxonal to the
tengentxal velocxty gradxent (aVJat).

Tﬁe-pressure discontinuity invalidates the continuous ap;eroxil;aatie'n o-f the ﬁniie

element method of Section 3.2.2 and requires a specxal treatment. Th:s is accomphshed with

the double-node ﬁmte element techmque of the next section. The techruque allows the finite

i/ . o

element grid xtself to be discontinuous at the mterface by havmg two values for ths pr1m1t1ve ‘

variables (velocmes and pressure) on two different _nodal points at the same spatial locatmn. '

Primii.ive variables that are continuous are specified as such, interface conditions are appliéd
directly and the finite jump in.the discontinuous variables is determined from 'the solution of
the global system. ) .
_ This double-node finit¢ element method has long been_used as a standard techeique
to.he‘ndle discontinuities in other areas of computational mechanics; in fracture reechanics for
crack problems (erza & Olson, 1978; me et al, 1984), and especlhlly in aerodynamms for
mv1sc1d flow over airfoils (Baskharone & Hamed 1981; Cox et aI 19825 It has also been
apphed to incompressible viscous flow, namely two-layer curtain coating, by Kistler (1984).
Recently, Dheur & Crochet (1988) proposed a dil'l'er:ent method to handle the pressure

discontinuity by employing'a C~! pressure approximation (i.e., discontinuous pressure at

" interelement boundaries). .

3.4.2 Double-Node Finite Element Technique
. In this technique the finite element grid is constructed with double nodes at the

interface as shown in Figure 3.31. This figure also shows a fictitious pressure distribution

(vertical axis) and how the interface double nodes are used to capture this discontinuity.
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DOUBLE NODES
AT THE INTERFACE

Figux.-e 3.31 Diagram of a discontinuous grid with double nodes aiong the interface
_illustrating the pressure discontinuity (vertical axis) . \ .

/




Consider again the interface of Figure 3.30 separating the two immiscible fluids I
and II and a pair of double nodes at the same spatial location at the mterface The ﬁmte

element equatlons of Section 3.2.2, eqs.(3. 6-3.7), apply in the two flow domams Q; and Qy,

while the mterface boundary condxtmns in full vector- form are: o '*.
‘Kinematic V=V, =V, n-V=0 - - - @54
I{ I ' . N
' 2H
Dynamic n_ -0, +n_-g,_ = —n (3.55)

T % T g

-

where nj and ny; are the outward unit vectors normal to the interface and ny= —nyj.

The momentum residuals at the double nodes will be:

o i . l. _ ia—1 _ . iip_ i
Rm,x-LI[«b Re,V,: ¥V, + Vo' 0, - ¢'S; g]dQ L‘S.nl o¢'de=0 " (356a)

) f
i iRe i iq-1 i 1o _
R, = In [cp Rey V- VV,+Vo'-0, —¢'S] gldQ— LS n, o, ¢4de=0

' i (3.56b)

¢~ Combination of the momentum residuals, eqs.(3.56), at the double nodes and use of the

" dynamic condition, eq.(3.55), gives:

R =R  + RL‘M=IQI[¢iRelv[.v V.+Y¢‘-c[~¢isl‘1g]

i i ig-1 (3.57)
+IQ [4’ Rey Vi V¥ + V¢ -0, - ¢ Sy g]
I

ZH

- —n ¢ dé=
[ Fs. Ca ¢

The pressure involved in the total stress tensor o is discontinuous at the interface.

Since the pressure is a Lagrange multiplier introduced to satisfy the incompressibility

constraint, the contiﬁuity residuals must be weighted separately with the pressure basis

functions on either side of the interface, i.e.,
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R =] v-v.ade=0 . .- (3.58)
el | q L,

i —_— ’ . “ i = -

RCJI-JQ-V V,n'dQ =0 (3.59)

il .
’ ) ‘The twbd scalar equatioﬁ$ resulting from the vector momentum equation, eq.(3.57),
and eqs.(é.SB) and (3.59) provide f(;ur equations corresponding to the four variables at the
interface double nodes {two velocity components and two pressur.e. variables). Although
;seﬁarabe noda:l variables (velocities and pressure) are éeﬁned at both the double nodes, the

imposition of the kinematic condition for continuity of the we:locity field at the interface

-
of

eliminates the second velocity degree of freedom (i.e., only the pressure is double-valued at
the interface nodes). With this technique the system is closed, interface boundary conditions
are used to match the two flow fields, and the pressure discontinuity is determiﬁed from the

> solution of the global system.

3.4.3 . Immiscible Displacementin a Capillary Tube

When two immiscible fluids displace each other inside a capillary a toroidal-like
flow occurs adjacent to the moving interfaca;. The resulting flow field is schematically shown
in Figure 3.32, where a viscous fluid (lower fluid) advances upwatd, displacing a less viscous
fluid at constant speed. The frame of reference is at rest with respect to the moving interface
so that the walls appear to move downward with the velocity of the advancing interface. The
- advancing fluid undergoes fountain flow, the receding fluid undergoes reverse fountain flow,
and a bolus forms inside the less viscous fluid so as to meet the requirements of mass

continuity and gompatibility between the two flow fields. The existence of the bolus was first

observed and documented experimentally by Dussan (1977), who injected dye on the interface



t

' o

!

% LTRSS SN SSSSSSTSNRNNANANNAN
o

V///r(r LTSS SSUEN TSN NRNNN SN SN AN ///\w

(&) . m

i

h{r

)

——

—(H

////////////.////,///////// ATTTTTITT1TH1LTHLTITL L LA LR AR R AL R A R R Y

Definition sket:cthr immiscible liquid displacement in a tube

Figure 3.32

-
|



and noticed that a portion of it was trapped and recifculatin'g next to the interface inside the
less viscous fluid. -

This phenomenon is of interest for oil recovery by im.misc_ible_.mqisplacem.ent through
porous media. Itis co:lz_:.i‘non practice to introduce surfactant-s in ord’e’r to reduce the surface
tension and enhance oil rebov;ex:y. Therefore, it is important whether the surfactant‘.ts rem;lin

| onthe iriterface orare pushed off and forced away from it (Dussan, 1977). -

Areviewof thé relevant literature can be found in Kafka & Dussan (1979), wil;h an
analytical solution for the limiting case of a flat interface, and a detailed discussion of the
phenomena near the contact line. Also, Huh & Scriven (1971) solved the problem of a flat
inferfgce moving over & solid plane and obtained analytically the characteristic streamline

"pattern in the wcmlty of the contact line. |

" The immiscible liquid displacement problem was simulated numerically with the
double-node finite element method of the previous section. The wetting fluid was tile less
viscous fluid (fluid II) and 'the viscosity ratio pr/p; was 0.1. The capillary number Ca was
varied in the range 0.001-0.1. For Ca > 0 the contact angle 6, needs to be specified. This
angle was fixed to 80°. ‘ .

Consider a typical case, for Ca=0.01. The finite element grid used is shown in
Figure 3.33. The computed flow field is shown in Figure 3.34, where the more viscous fluid is
on the lower part and ac.lv‘ances upward. The velocity vectors are plotted on the right half and
the streamlines on the symmetric left half. This figure clearly shows the fountain flow in the
advancing fluid, reverse fountain flow in the receding fluid, and the characteristic vortex next
to the interface inside the less viscous fluid, fully in agreement with the work of Dussan

-
(1977) and Kafka & Dussan {1979).
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problem
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 3.35. AsCais mcreased that is, as the eﬁ'qct of the viscous terms is mcqeased the mterface
deviates more from the limiting static case, becommg more convex.

A stagnation pﬂini: aﬁpears at the intersection of the -iriterfa;:e.-witl;'. the ct;ﬁterlin‘e.
As a result of the v‘ortex formation a second staénation point ﬁp};ears on the centerline, inside
the less viscous fluid. The riormalized distance Ze between the two stagnation points is a
measure of the size of the vortex, while the ‘relativé rate of fluid recirculating in the vortex gy
is a measure of its intensity. The dependence of Z4 and yy on Ca is given in Table 3.4, It is
shown that the vortex becomes smalle;' in size and weaker in intensity as Ca is increased.

The discontinuity of the pressure at: the interface thal: necessitated the use of a
specxal finite element techmque is shown i in FlgureF 36;-which is a plot of the pressure along
the centerline. The pressure undergoes a large step change at the interface due to surface
tension effects. ‘Having two pressure variables at the. interface double nodes enabled the

finite element technique to resolve this discontinuity.

.!.:‘. o

The effect of the caplllary number Ca on the mterface shape is shown in Fxg‘ure '

Table 3.4 Results for the immiscible liquid displacement problem

Ca h(c/R=1)R
0.001 0.0884
0.0035 0.0987
0.01 0.1250
0.03 0.2028
0.06 0.3177
0.1 0.5040

The double-node finite element method of this section made possible the simulation

of the general fountain and reverse fountain flow problem. The method can be readily applied

zg/R

0.1767

0.1711

0.1573

0.1162
S

0.0697

0.0169

Yy

0.0614
0.0596
0.054(;
0.0436
0.0296

0.0129
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to study other stratified multiphase flows. Some applications to coextrusion were reported in
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Mavridis et al (1987). -
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3.5 - lConcl_u.ding Remarks " - .

’ The fluid mechanics behind an advancing flow ﬁégnt was examined in tIr.le steady-
state. A comprehensive finite element algorithm was descri'bed (Sectian 3.2.2) that allows
simulgtian-of free surface flows. The technique determines silmultaneously the f'low. field and

the free surfz;ce sh'a.pe. and employg a Newton-Raphson iterative scheme, whose superior
convergence properties teduce the computational cost considerably.

Detaileci fountain flow calguleltions with a Newtonian fluid in planar and
axisxmmetric geometries were described in_Section-3.2.3. The effect of a slip boundary
condition was also investigated (Section 3.2.3.2). Si‘mulat.iqns with shear-thinning fluids
showed the same qualitative features of fountain flow as for N ewtonién ﬂuids‘(SectiorI 3.2.4).

"E‘he effect of !'oun.tain flow kinematics on the deformation experienced by the fluid
was examined in Section 3.3. It was shown that {luid elements from the centerline are found
at the walls, extended in the flow direction and; !'orn:ing characteristic V-shapes, fully in
agreement with the experimental photographs of Schmidt (1974).

Finally, the general fountain and reverse fountain flow problem was addressed in
Section 3.4. A double-node finite element technique suitable for stratified multiphase flows .
was described and it was applied to simulate the immiscible displacement in a capillary tube,
The computational results clearly show the existence of a recirculating vortex adjacent to the

interface and inside the less viscous fluid, in full agreement with Dussan's (1977)

experimental observations.



CHAPTER 4
' . .
TRANSIENT FREE-SURFACE FLOWS

IN INJECTION MOLD FILLING

This chapter contains the numerical studies on the transient free surface flows
involved in the injection mold ﬁll;mg process. A m:zmerical technique for the simulation of
t!us class of problér_ns is présented. Tixe technique mmhines & Galerkin/Finite Element
discret;iza.tioq of the gdveming equations with t; predictor-corrector s‘che'me for integration in
time, and is capable of handling deforming flow domains with mﬁﬁng contact lines. The -
method is applied on the sta;'t-up flow of a fluid with afree frd;lt (tyansient fountain flow) and

the collisio_n of two fronts to form a weldline.

4.1 Intreduction

The finite element appréach fa.dopted in Ch'a'pt.er 3 enabled the detailed
investigation of the fountain effect in the steady state. A question that remained unanswered
is how the associated flow phenomena change under truly transient conditions. In order to
study the time dependent motion of the advancing front.the finite element methodology of the
previous chaptgr must be extended appropriately for transient free surface flows.

Transient free surface flows encountered in injection mold filling include
advancing and colliding flow fronts and involve the complicating .feat.ure of the ‘moving'
contact line (fluid/gas/wall intersection); depending or.: local conditions (to be discussed in
Section 4.2.1) the contact line may remain pinned to the wall or it may roll over the solid

surface. In the present work conditions for the contact line motion are derived amil/‘
4
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implemented in a very efficient finite element algorithm that can handle transient flows with *

defbrgning flow domains. The numérical technique is employed to simulate the start-up flow .

L)

of a fluid with a free front an‘dii:é collision of two flow fronts to form a weldline.

4.2 Numerical Simulation of Transient Free-Surface Flows
4.2.1 Mathematical Modeling
.We consider the time-dependent, isothermal flow of a incom;;ressible fluid. The

governing equations include the mass and momentum conservation equations:

V.-Vv=0

\ , Dv (4.2)

— =V-0+8"!
Dt g

where all symbols have their usual meahing (Section 3.2.1) and D/Dt denotes the material (or

(4.1)

substantial) time derivative.

Appropriate boundary conditions require the specification of two scalar boundary
conditions on every portion of the flow boundary. A velocity field satisfying_eq.(tl.l) an@ the
initial shape of the free surface must also be specified as initial conditions. )

In fully developed flow regions, symmetry linges and the wall, the boundary

conditions are: fully developed velocity profile, symmetry conditions and no-slip respectively.

At the free surface a force balance provides the following boundary condition®” 7"

' 1 /1 1
N +—— + — (4.3a)
n-o P.n (Rl R2 )n

where n is the outward unit vector normal to the free surface, R; and Rg_arel the brincipalA
radii of curvature and P, is the ambient pressure (set to zero-as the pressure datum). Ca is the
Capillary number defined as the ratio of viscous to.surface tension forces, Ca=pU/\r.- In
injection molding of molten polymers the Capilla;y number is large and eq.(4.3a) reduces to

. the no-traction condition:



T . . » *

mazo. T . (4.3b)

Anoﬁher condition amses at the free surface from mass conservat;on conmderatxons

a free surface is'a material surface and no fluid particle crosses it. For a point % a.t _ﬂhe" free

surface this condition is expressed as:  ~ . B
n-\{zn-(—)J _ ; (4.4) .
- % /ps, . A .
The contact line, where the free surface intersects a solid wall, poses al'special problem and is
" discussed below. ) > .
s . . ,.

-

Contact Line Motion Complications arise at the contact line: when the no-slip condition is

appli-ed at the wall up to the coqt.act line, & stress singularity results (s'tresses increasIe
without bound as the contact line is approached). Singular st;esses. although aphysical, can .
be tolegated as they !ong a5 they are 'i‘nte.grable. ie., t_‘}‘le total drag exerted on the wall
remains finite. When the contact line does not move_(static contact line) th'e singularity‘{s
integrable (Michael, 1358). For a moving contact line the smgulanty is no\mtegrable when
the. contact angle is less than 180° (Huh & Scriven, 1971 ; Dussan, 1979). Pismen & Nir
(1982) who obtained a perturbation solution in the vicinity of the contact line, for the case of a
Jiquid advancing into & igviscid'med.ium, reported an integrable singularity for a'180° contact
angle. In this work only viscc.ms effects are taken into account and the contact .angle is
require;i to be 180° ; therefore the singularity is irltegrable and there is o need to remedy the
situation, for exampie with a slip-boundary condition. ‘
There remsains a difficulty in treating the apparent motion.of the ccn—t'aét;..line‘ o
Consider the start-up flow problem, where the initial freé surface is perpendiculaf to the wall
(ABCD at time tg in Figure 4.1). As the flow begins the free surface deforms and the conl;a_t':t.

- angle increasés (time t;). In the numerical algorithm (to be described in the next section) the

position of the contact line is fixed up to the time that the contact‘arf'gle becomes 180°. At this
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Figure 4.1

Contact line motion over a solid surfate
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time the tondition of a fixed contact line positien is replaced by a 180° contact angle condition

. and the c_ontactiine is allowed to move. The mechanism implied by these conditions is that of

a rolling-type motion of the rﬂuid over the solid surface. It should be noted that the contact

line motion is apparent, i.e., there is no slip. A different material particle occupies the contact

\. ' C ..
line position at every-instant, and the contact line appears to move as new material reaches

the wall from the free surface as indicated in Figure 4:1.
The above requirements for the contact-line motion provide the necessary condition
for the determination of the contact line positien. Other workers (Behrens, 1983 and Behrens '

et al, 1987 for transient flows and Viriyayuthakorn & Deboo, 1983 for steady flows) do not

impose explicitly a condition at the contact line but determine its position implicitly ; the

“kinematic condition, eq.(4.4), is imposed at the free suMnd the contact line position is

determined as the intersection of the extrapolated free surface with the wall. This implicit
scheme.is equivalent to that used in the present work, i.e., combination of the kinematic
condition with no-slip at the contact line directly yields the present scheme, as it will be
.
shown below.
. Consider for example, a fluid displacing a gas over a flat solid surface, parallel to

the x-direction as shown in Figure 4.2. If we parametrize the free surface as y=h(x), the

outward unit vector normal to the surface is:

[ ( oh )21' (ah ) (4.5)
n=|1+| - —e | — |+e
ax I\ ox y
and the kinematic condition, eq.(4.4), can be written as:
sh “fah\ax oh '
_(—)u+v=_(—)—+— (4.68)
ax ax / at ot

At the contact line u=v=0 (no slip} and dh/3t =0 (straight wall). Then eq.(4.6a) becomes:

(E)(T&)zo | | (4.6b)
ax ‘ at

From eq.(4.6b} we notice that:
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Figure 4.2 Schematic of a solid/fluid/gas contact line
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164 when the coﬁtact angle is less than 180° (8her/ax = 0) then the cont;act'lixlxe does not
mave (aic{ja@. = 0). | | - _ |
“(ii) " for the contact line to ﬁove (3xcL/8t = 0) the contact ai‘:gle must be 180".
(Ghe/éx = 0). . . ‘ \ .

The above conditions result from purely kinematic considerations at the contact

line combined with the no-slip hypothesis. They are appropriate when surface éension effects ,\\

.are insignificant, which is the case for the problems examined in this work.

4.22 . Finite Element Formulation
The Galerkin/Finite Element formulation of the time-dependénh equations
proceeds in exactly the same way as for steady flows in Section 3.2.2 (u-v-p-h-5 formulation). .

The weighted residual equations are’:

R, =J [‘biReE +V¢,i—a_¢‘s—‘g] dQ—J ‘n-gpide=0 ~ Y
" oiq Dt . 4 :
R = J _V-VnldQ =0 (4.8)
€ g
Ri:[ [n.v_ n.a_xlq,f(g,q:nde:o' o (4.9
FS. at '
0 2 1 vz ‘
i_ .xz_'_yz) _ dg_l (x2+y2) dE =0 (4.10
nl ) n=] . .
.The material derivative D/Dt in eq.(3.7) is written as: ‘
oy _ EY.+(V_"_").VV (4.11)
Dt 4t at:

to account for the nodal motion (3x/3t) in the deforming finite elément grid (Lynch, 1982 ;

Khesghi & Scriven, 1984 ; Keunings, 1986a).
A
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The time derivative of the nodal position vector (ax/dt) is expressed in terms of time |
* derivativesof free surface patameters:

-

ox_ ax\ h  ax &

L=+
3 oh at -3 at

4.12)
'Eqgs. (4.7-4.10) lead to a cou#& system of algebraic and first-order ordinary differential

equations of the form:

-

R(V.P,h,8, V; 1, §) =0 413
where the dot denotes differentiation with respect to time. The time derivatives are

approximated with finite differences as explained in the next section.

The conditions for the contact line motion are implemented as follows. The contact

angle 8 is computed from:
: ’ (4.14)
cL’ nw) .
where ny is the unit vector normal to the wall (ny =-ey in the present case) and ncy, is unit

0= cos™ 1(ﬂ

vector normal to the free surface at the corner of the element adjacent to the contact line:

£ey

Bol™ 112
(s3+37)

When 8<180° the hi variable corresponding to the contact line position is fixed with an

_yEe:+x (4.1@ .

E=-1n=1

essential boundary condition. When 8 becomes 180° the contact line is allowed to move and
the corresponding hi is determined on the requirement of a2 180° contact angle condition,

which is imposed by adding the equation
n,-n, = cns(lBQ")

' CL
in the algebraic system to be solved. . _//L

4.2.3 Predictor-Corrector Scheme for integration in time

(4.16)

The Galerkin/Finite Element formulation reduced the original set of partial

differential equations into a coupled set of algebraic equations and first-order ordinary



differential equations with respect to time (i.e., o;'lly the épatial de'rivatives were discretized).
'i‘o integrate the equations in time we employ a predi.ctor-b-orréctor scheme, originally
introduced by Gresho et al (1979) an'd‘further developed By Khesghi & _Scri\-ren (1984). The
integratioq techni.que is séhond-order-accurate 'andl consists of an explicit Adams-Bashforth
formt;la (predictor) and.the implicit trapezoid rule (corfector), combined to yield a stable
integration scheme in which the time step-size is varied automatically, based solely on
temporal accuracy requirements, by obtaining a-good estimate of the local (single step) time
'trun.cation error,

To illustrate the method consider the system:
£y, =0 @1

yt=0=y (4.18)
and let yi-t be the solution at time ti-!. The solution at time ti=ti-l +Ati-! is obtained through

the following procedure:

(1) Predictor
The variable-step, second-order Adams-Bashforth (AB) formula gives; ‘
-1 j—1 j—1 i
At (2_*_&" )Sri_l—m‘ 5;-2 (4.19
2 A2 ag=2

Note that two history vectors of time derivatives are required ( yi-! and yi-2 at time ti-! and ti-2

v=yte

respectively). These are obtained simply and recursively from the corrector step described

below. Also, note that the AB formula can only be applied from the third step onward.

(it) Corrector —
The trapezoid rule (TR} formula is:

ati—!
2

yjczyi-l+ (f—-l_'_y_;) | (4.20a)
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Selving for yi: - '
R A | (4.20b)
R el
. . _At'

Eq.(4.20b)is substituted in 2q.(4.17) to yield: _ .
g - :
(t, y, gt T y- ) (4.21)

ad—! :

Eqg.(4.21) is a system of algebraic equations for yJ. This system is solved with Newton-
o

Raphson iteration, with the initial guess provided by the predictor y,i.

1
N

(1ii) Local truncation error control and time step-size selection
An estimate of the local time truncation error can be obtained with a Taylor series
expansion of both the Adams-Bashforth and trapezoid rule formulals, eqs.(4.19) and (4.20a).
The result is (Gresho et al, 1979):
K ¥y
AQY” syl -y = ———"— 40

S(HF)

An appropriate tactic (Khesghi & Scriven, 1984) is to keep approximately constant the ratio

(4.22)

of the norm of the error, eq.(4.22), to the like norm of the time derivatives, i.e..:

_ - (4.23)
| AGH] < xel 31 | :

where ¢ is the tolerance (usually set to 10-3 or less) and y is the ratio of the maximum allowed

relative time discretization error to the preferred value ¢, usually set to 1.5 (Khesghi &

3 Scriven, 1984).

J . .
At the completion of the jtth step with step-size Ati-1, the truncation error is

estimated from eq.(4.22). If it vm‘q’tc: the error criterion, eq.(4.23),.then the step-size is
. N .
deemed unacceptably large. The step-size Ati—1 is reduced (usually by a-factor 0.8) and the

cycle is repeated (from the predictor, step (i) ). j
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Figure 4.3 Floﬁchart of predictor-corrector scheme
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If the criterion of eq.(4.23) is satisfied the solution at 8 with Ati~1is accepted ~

4

" (yi=yd) and a new step-size 'Afj for the next step (j;+ 1) is computed from (Gresho et al, 1979 ;
Khesghi & Scriven, 1984); . ‘
. | _ " _ . :
| , L ; : 4.24
\ At = min[ZAt"_I, At’“[a w } | | “.24
- : ; F A

The above scheme can only be applied from the third step onward, since it requires

two history vectors.  The first steps at the outset of the integration are performe& with a first-

order-acturate forward difference predictor-backward difference corrector:

Forward difference predictor:
N . . . . 4.25
yi=yi~l+ ad=1 ! (429
Backward difference corrector:
* (4.26)

g o=yt adt g
Khesghi & Scriven (1984) suggested performing four steps at the outset with the

forward difference predictor-backward difference corrector in order to suppress any unwanted
transient induced by initial data. These steps are performed with a constant step size. From
the fifth step onward, the integration scheme switches to Adams-Basforth predictor -
trapezoid rule corrector, and @e step-size is controlled automatically thereafter. Figure 4.3
éhow’s the flowchart of the complete integration scheme as applied in the present work.

The above predictor-corrector scheme was employed’in the present work to
integrate in time the coup.led system of‘algebraic and ordinary differential equations,
eq.(4.13). The integration scheme essentially offers a discrete approximation of the time"
derivatives in eq.(4.13), thereby reducing the problem to the solution of a nonlinear algebraic
set of equations at every time step. The Newton—Rgphson iterative method was z_lgain
employed to solve the nonlinear algebraic set. Typically, the Newton-Raphson iteration
approached quadratic convergence as shown in Figure 4.4. This figure shows that after one

iteration the Euclidean norm of the residuals has been reduced below 10 74. Gresho et al
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(i979). and Khesghi & Scriven (1984) have taken advantage of this behavior of Newton-
Raphson and allowed only‘ one iteration per ‘step. In this work 2-3 iterations were required to
reduce the maximum relative update below 10—4. This cbnservative convergence c¢riterion
was imposed in order to ensure'a high aécuracy in the determin‘ation of the free surface shape,

_ which is of main interest for the problems studied.

4.3 Start-ué Flow of a Fluid with a Free-Front

We étudy the start-up flow of a fluid wifh a free-front initially at rest, in both
planar and axisymmetric geometries. A schemati;: diagram of the problem is gi.iren_in Figure
4.5. Gravity and surface tension gfi‘ects are neglected, so that‘ the fluid-gas interface is
'mitiﬁlly flat and perpendicﬁla_‘r to the walls (90° corlltact angle}). These conditions correspond
to the experiments of Behrens (1983). | ‘

For a typical simulation the finite element grid consists of 45 elements and 199
nodes. The total number of unknowns (u-v-p-h-8) is 412 and each time step requires 30'CPU
secoends on.a VAX 8600. The usefulness of having a variable midside ;pine direction (B-
vari.;lbles) is shown in Figure 4.6,.which is a plot of the evolution of the free surface segment
near the wall. It is shown that the corner node moves al.ong the constant-direction spine
(straight trajectory) while the midside spine direction changes (curved trajectory) so that the
midside node remains always at the mid-point of the free surface arc and the element is well-
shaped. ‘

. e .
Figure 4.7 shows the evolution of the contact angle, front tip and contact line
positions for transient flow in a tube. Up to the time that the contact angle becomes 180° the
contact line does not move (its position is specified as an essential boundary conditir.;n). This

time is predicted to be 0.2272 {in RU units) and the front tip position Zpr=10.3736 (0.26 and

0.3508 respectively for the planar case). Behrenset al {1987} report an experirriental Zer=0.4



when the contact line begins to move. Thxs is % hxgher than the present result, but this
dlﬂ'erence is not mgmﬁcant in view of the very slow initigl motlon of the’contact line (Z¢, is
predicted to be 0 0085 when Zpt becomes 0.4). When' the contact ankle becomes 180°, the
contact line is allowed to move, and the boundary cond:tlon at the contact line is changed to
that of a 180" contact angle. Therefore the contact angle remains at 180° for all subscquent_
times. The contact line starts moving slowly and its veloc:ty approaches asymptotxcally the -
average velocity of the fluid. At t=2.055 R'U (Zrr=2.34) the (Zpp—Zcy) difference reaches
99% of thc steady-state ‘value, and after this time the flow can be considered steady' for a
moving frame of refc_tence. | | |

Similar results were fonnd for flow in a'planar geometry. Figurc‘?lTB‘: shoxos the
evolution of the free surface _shape. A steady-state is reached at t=2.72 H/U (i.e., at this time
the (xpr—xcL) difference reé:c'hes ;!9% of the steady-state value. At thio time xnzé.92).
After this time the flow field remains invariant with respect to a frame of refe;'ence moving
with the average velocity of the fluid and the problem can be a:nalyzed in the steady-state
(Chapter 3).

Behrens (1983) performed experiments with Newtonian fluids in tubes. Data were
reported (see also Behrens et al, 1987) in the form of the (Zgr—Zcy) difference versus front
travel (Zpy). Comparison of the present simulations with Behrens' experimental data is given
in Fiﬁre 4.9. The data symbols correspond to different experiments with polybutene, and the
scatter does not correlate with process variables but merely reflects experimental error. The
agreement of simulation with experiment is remarkably good. Behrens (1983) and Behrens et
al (1987) also presented simulations with a finite element method, where the free surface and
the flow field were decoupled. Good agre:ment with the experiments was found. The

predicted motion of the contact line showed slight oscillations which do not appear with the

present algorithm. The major advantage of the present approach is the free surface
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parametrizat.ion stratégy'and the coupled technique for determihing simultaneodsly the free
surface and the flow field. Couplmg allows the use if the Newton-Raphson 1teratwe scheme
for the solution of the global nonlmear system of algebra:c equatmns The quadratic
_ convet"gence of f.he Newton-Raphson scherne reduces consuierably the computational cost. :
The evolutién of the finite ele/mént gric;, for the axisymmetric ¢ase, is shown in thg
upper part of the plots in Figure 4.10. This figure illustrates how the grid deforms and -
expands, adjusting automatically to the chang'ihg free surface shapés The area of the flow
domam increases mth tlme since there is no outflow region. T}us increase was accommodated
by expandmg the size of the upstream elements only. The grid density in the front region,
where the flow rjearrangement cceurs, remained ne:?rly independent of time, thus avoiding a
degradation of accuracy at large times. | |
Tixe mechanism of floy frohit advancement can be better understood by i:.-acking
material elements, i.e. in the Lagrangian frame. We begin with rectangular material
ele:;xents at zero timt;, as shown {in figure 4.10. The deformation history was followed by
. tracking numerically a large number of material pl'oints along the pe;irhetler of .the fluid
' element, as described in Section 3.3. Consider first t.he fluid element adjacent to the flow front
-
; the evolution of its shape, shown in the lower part of the plﬁts in Figure 4.10, iIlustra;‘es
clearly the rolling motion of the fluid over the solid surface, and how material from the flow_
front is deposited on the wall giving‘rise to the apparent motic;n of the con;:act line,
The evolution of the shape of the second element in Figure 4.10 is chargcteristic of
the deformation experienced by the fluid due to fountain flow. The faster moviné material
. near the centerline enters the flow front region where it decelerates spilling outward toward'

the walls. The fluid element is stretched and deformed into a mushroom-like shape (t=2.27),

forming characteristic V-shapes near the wall (t=4.15).
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Figure 4.6 Evolution of corner free surface segment
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44 Colliding Flow Fronts

We study the fluid mechanics of two mllidmg flow fronts to form & weldiine. This
situation arises frequently in commercial molds due to injection through multiple -gates or

recombination of two flow fronts divided after passage around an insert. During the

impingement phase, polymer molecules are stretched and oriented parallel to the polymer-'

polymer interface. Depending on the local thermal cbnditions, this orientation mﬁy be frozen-
in resulting in inéomplete bonding and reduction in the strength of the weldline. Sang-Gook
& Suh (1986) offer a recent review and analysis of the problem.

Consider the symmetrical impingement of two flow fronts in a parallel plate

2

'geometry, as shown in Figure 4.11. Creeping Newtonian flow and constant flowrate

co;xditions are assumed in the simulations. The problem is solved in a quaft.er of the flow
domain taking into account symmetry considerations. .

At t=0 the flow fronts meet at the centerline. The shape of the free surface,
required as an initial condition, is taken from the steady-state solution of the fountain flow
prob;em {Section 3.2).: The present transient algorithm is then applied to obtain iﬁe solution
in time. The time required to fill the vacant space can be estimated a priori by dividing the
area of the vacant space with the constang flowraté pe: unit width. This time is estimated to
be 0.212 in H/U units (where H is the half-gapwidth and U is the average velocity). At this
time no more flow can occur (incompressible fluid} and the algebraic system of equations is
singular. The numerical algorithm stopped at t=0.21, leaving a'small vacant area at the
surface (Figure 4.12). This area is the last to be filled, and in practice the air trapped in it
may cause an optically visible defect in the shape of a notch at the surface (Hagerman, 1973 ;
Sang-Gook & Suh, 1986).

The evolution of the flow field is shown as the series of instantaneous streamlines

in the upper part of the plots in Figure 4.12. At zero time the curvature of the streamlines
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_ reflects the outward motion of t.he,ﬂuid' due to fountain flow. As tt;e ;;'éldline formé at the
centerline and develops towards the wall, the elongational component ;)f the (ief_ormation
increases and the streamlines bend parallel to the weldline. At the end the ﬂ.ow resémbles
planar stagnation flow. In fact, the planar shagnahon flow model of Tadmor (1974) has
frequently been used to explain the flow induced onent.auon parallel to the weldhne

The impact of weldline formation on the defo:jmatlon of the Ar’natgngj_ was
investigated by .tracking numerically a gridded band of material behind the flow front. This
material is already stretched due to fountain flow but wé, examine-here the stretching induced
durixig the impingc;ment phase. The evolution of the fluid element shapes is shown.in the
lower part of the plots in Figure 4.12. The material elements become stretched and oriented
parallel to the weldline, and st.retchmg is more pronounced near the centerline, while near
the wall shearing orients the matenal parallel to the wall. This is better illustrated in Figure
4.13, wluch is a magnification of the band of matenal immediatelx adjacent to the flow front.
;I‘his material has already experienced the fountain flow induced deformation before the
collision of the two fronts. Comparison of the fluid element shapes in Figures 4.13 and 4.10
shows that stretching due to fountain flow is much larger (see .also Section 3.3). While some
orientation of the ‘material is introduced during the collision phase, it appears from the
present results that fountain flow is mostly responsible for the aniso)ropy alt. weldl.ines of
injection molded parts.

It is interesting to note the actual length and time scales involved in weldline
formation. For a\'tjpi_éz;l case, with an average velocity U=0.1 m/s and a half-gapwidth
H=0.001 m the weldline forms in 0.21 H/U= 2.1 milliseconds: Experiments are dii'_ﬁcult‘to
perform and their analysis is a laborious off-line procedure. Numerical simulations can be of

invaluable assisMnceLproviding insight into the process at time and length scales that are

difficult to capture or reproduce experime}:tally.
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4.5 Concludiﬁg ﬁemarks :

A comprehiensive algorithm hes been described for the ﬁumerical simulation (.)f )

. transient frge surface flows encountered in iﬁjection mold ﬁlling. The algorithm combiqeg the

Galerkin/Finite Element discreltizatipn of the governing eduatioqs'with a pl:edictgr-corrgctor
schemg for temﬁoi’al irlxteg;ation;' It de.termines simultaneously the flow-field and the free
surface shape at every tirr;e step and can handle deforming flow domains with moving contact
lines. |

The numerical technique was employed to study the start-up flow of ;a f"luid with a
free front, in planar and axisymmetric geometries. It is fm-md'.that the flow development is
completed in & short distance (2.92 half-gapwidths for the planar and 2.34 tube radii for the
axisymmetric case). Numerical tracking of material elements illustrate the rolling-type
advancement of the fluid ove;r the solid surface, and the V~'shape formation, and show the
same features of flow as those observed in the steady-state analysis. Computational results
are compared to, and agree favoral;ly with available experimental measurements.

The problem of two symmetrically colliding flow fronts was also examined
(weldline formation in the gapwise direction). Tracking of material elements was employed
to investigate the deformation e:ipérienced bsr the fluid. It was found that the material is
stretched and oriented parallel to the weldline. However, the deformation induced during the

collision phase is small when compared to that due to fountain flow. [t appears that fountain

flow is mostly responsible for the anisotropy near weldlines of injection molded parts.

(



| 'CHAPTER 5
THE EFFECT OF FOUNTAIN FLOW ON THE MOLECULAR

ORIENTAi‘ION' OF'INJECTION MOLDED PARTS

In this chapter we investigaté the impact of the fluid mechanies of mt-ald ﬁiifng on
Ehe mﬁlecular orientation of the final part, as reflected in ava_élable birefringence measure- -
ments: A quantitative evaluation of the flow-induced molecular orientation requires
adequate description of the dynamics of the flow. The viscoelasticity of the polymer melt is of
primary importance for this purpose and is accounted for with the muIti-mode Leonov model-.
A finite element algorithm for the numerical simulatior: of viscoelastic free surface flows is *
presented and is applied on the four.:tain flow problem.' Converged solutions are obtained for
processing conditions corresponding to avail.able experiments. The finite element results are
combined with a simplified theory to predict frozen-in birefringence distributions. Computa-
tional results are compared to, and agree favorably with, available birefringence measure-
ments. The effect of fountain flow on the molecular orientation of injection molded parﬁs is
clearly demonstrated. | |

\

5.1 Introduction

Injection molded articles of amorphous poiymers exhibit an anisotropy in the
optical and mechanical properties. due to frozen-in orientation of the polymer chai'ns. To a
large extent this orientation is created during the nonisothermal mold filling stage; polymer
molecules tend to orient while flowing under the action of the prevailing stpess ﬁeld. If the -
molten polymer is cooled rapidly to a temperature below its glass transition tempgl‘-ature (T

*

the polymer 1aolecules will not have sufficient time to relax their orientation and return to a

114
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_ rendom conﬁguratlon This is parttcularly the case in commercial molds whlch are held at
) temperatures below Ty and a SOlldlﬁed layer in the order of 10% of the mold thickness is
already built-up at the outer surfaces of the'part by the end of the filling stage. Smce polymer
molecules at dlﬂ‘erent locations of the finkl molded part have generally experienced different
deformation histories prior to their solidi.ﬁcatiox;,‘they will be eriented in varying degrees and
therefore complex distributions Vof molecular orientation are to be expected. |

A second source oli‘ orientation is due-to the continued cooling of the molded part
after the completien' of the filling process. During this eooling non-equilibrium density or
shrinkage changes occur that result in thermal stresses. In fact, high back preesures are
maintained after mold filling (packing stage) and additional melt ﬂows.into the moldl to
compensat;e for density changes and ensure accurete reproduction of the mold shape.

rThe final anisotropy of the molded par-t is a composite effect due to both flow- and
thermally-induced orientatio;i. However, from experimental investigations with bire-
fringence measurements on molded and quenched strips (Isayev, 1983), it appears that
thermally induced orientation is an order of qﬁ'agnitude smaller than flow-induced
orientation. It is believed (Janeschitz-Kriegl, 1983) that flow-induced orientatien accounts
for most of the composite birefringence pattern of injection molded parts.

Two experimental techniques for investigating orientation in injection molding
are: birefringence measurements and shrinkage at elevated temperatures of microtomed
sam;;les cut from ti_le product. Experimental and theoretical considerations for the
birefringence and shrinkage techniques are previded in Isayev, 1983; Janeschitz-Kriegl,
1983; Wales 1972, 1976; Fleissner, 1973; Bakerdjian & Kamal, 1977 Kamal et al., 1977;
Dietz et al., 1978; Dietz & White, 1978; White & Dietz, 1979 Kamal & Tan, 1979; Isayev &
Hieber, 1980 and Bakerdjian & Kamal, 1977; Kamal et al.; 11977; Menges & Wibken, 1973;
Menges & Thienel, 1975; Menges et ali, 1976 respectively. Birefringence is ;:he most widely

3
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 used techmque In addxtmn to bemg an 1mportant. property in’itself {e.g. for optical lenses,

compact disks) what makes bu‘efnngence partmularly attractive, from a. rheologlcal pomt of
view, is the stress optical rule This rule states that the refractive mdex and. stress ellipsoids ‘

.a' coa:ual and the bu'efrmgence (d:.fference in magmtude of the prmclpal values of the

refractive index tensor) is proportio_nal to the correspondmg difference in prmclpal stresses

(Wales, 1976),ie. - : o - . : -

n—%tr(n)l=C(a—ltr(a) 1) N CR)
where n,0,I are the refractive mdex,stress and unit tensors respectwely and C is the stress- -
optical coefﬁcxent whigh for most polymer melts isa constant (Wales, 1976). I{nowledge of
the stress field and the stress-optical coefficient allows, with the aid of eq. (5.1, direct evalua-
tion of the birefringence and mﬁ:pa;ison with experime‘ntal measurements. R
Experimental investigations on birefringence of injection molded parts are usually
performed on molded strips. The conﬁé’uration and the notation to be followed are shown in
Figure 5.1: x-is the flow direction, y- is the thickness direction (direction of the velocity
gradient) and z- is the width (neutral) direction. Birefringence measurements a:-'e-performed
on slices cut from the part, and results are l;sually reported in the form of variations ot: An
with y, for various positions X from the gate. From eq. (5.1), &n is related to the stresseé
with: . |
An = C[('cn— tw)2 + ‘In:";:y]u‘2 (5.2)
A typical distribution of An in the thickness direction is shown in Figure 5.2. The
data points represent experimental measurements of Kamal & Tan (1979). The solid line is
the birefringence that would be measured in an isothermal shear flow of the material at the
same shear rate and at the injection temperature. Itis plotted only for compalrison and for the _

sake of the discussion to follow.




Figure 5.1

Schematic diagram of rectangular mold geometry
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. Figure 5.2 . Gapwise distribution of birefringence: experimental measurements of
: Kamal & Tan (1979) (symbols) and theoretical prediction in isothermal flow
(solid line) :
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Assume, in a hypéthétical éxpeﬁ;::ent, a‘,constanh flow rate, isothermal flow in a
.slit.‘ Thé birefriﬂgehce An will be the solid'fipe in Figure 5.2.. Now let us assume that the
walls are brought -instant.anegus}y to a temperature T\, below the glass transition tempe'ra—":
ture of the polyn';;r. Then a solid layer wiil begin to grow fron; the walls towards the center.

Consequently, the stress levels will begin to rise with a maximgm near the melt-solid

' i_ntel;faée (stresses developed in the surface layer after sglidiikicatf‘m do not contribute to the

frozen-in birefrihggnc-e, Janeschitz-Kriegl (1983)). The polymer nearest the wall is frozen at

earlier times than the inner layers and therefore at lower stress levels. Thus we expect a

~ birefringence profile similar to the BCD part of the experimental curve in Figure 5.2.

However, the AB part of the curve is not explained by considering only shear flow and

~ solidificatiqn at the walls. In fact, in the above hypothetical experiment the CB part of the

.curve should continue dgcreasing monotonically l;p to the wall, with poinlt. A having the mini-
mum birefringence. The experirhentally shown trend with the birefringence increasing near
the wall (part BA) indicates the presence of a highly oriented skin layer. The skin-core
structure is tyr.;ical of injection molded parts and its origin must be sought in the fluid.
mechanical details of the iru'ectiox-l mold filling process. —

The salient feature of mold filling is the fountain flow behind the advancing flow
front. Tadmor (1974) was the first to pos.tulate f'ounta'in flow as responsible for the highly
or‘ien?.ed surface Ie.lyer; the front advances in A kind of a r;lling-@ype motion whereby fluid

elements from the centerline reach the wgll passing througﬁ a complex shear and elonga-
~tional flow in the front region. rI'ladmor' neglected the shear contribution and assumed that
the e@ngational deformation at the frbnt causes t.he high orientation gf the surface layer. H'e
employed the bcéad-;md-s_pring macromolecular theory and developed a semiquantitative

model that was able to explain the molecular orientation distribution of molded parts as

determined by the shrinkage measurements of Menges and Wiibken {1973).
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The visualization experiments o{chHé';iidt {1974) s‘hed further light into‘thé
kinematics of injectio_n mold ﬁlling.-As discussed m detail‘in Chapter 3, in SEhmidt's experi-
- ments -.colo.r tr;icers introduced af t.hé centerline were found at the surface of the final par_f
deformed in‘ty:o.V-shapes. The color t.ra:ers were highly stretched and oriented in the flow
direction. Both the m.iération of the color tracers towards the wall and their or_iéhhation'
support the hypothesis that four_ltain flow plays. a dominant role on the molecular_orié;itatiqn
development of the suri;ace layers of injection molded parts.

Various attempts.to approach theoretically the development of molecular orienta-
tion in injectioﬁ ;nolding have so far involved major simplifications and focused on a subset of
the general problem. This is not surprising in view of the egormous compiexity of the original
problem in its full generality (transient, three dimensional, nonisothermal, free surface flow
of a viscoelastic fluid, followéd by nonisothermal stress relaxation after cessatim;x of flow).
Whit;eAand co-worke.rs (Dietz et al., 1978; Dietz & White, 1978; White & Dietzl, 1979) have
cons;dered unidirectional nonisothermal shear flow a;nd employed Tadmor's (1974) mog;el to
account for the effect of fountain flow. Isayev and Hiebger (1980) developed a theory along
similar lines, using the Leor;ov viscqelastic model but neglecting the fountain effect. Kimand
Suh (1987) stu_died the nonisother.r;t;.l stress relaxation in low thermal inertia molding using’
the Wagner viscoelastic model. J aneschit;-l{riegl (1977,1979) and Van Wijngaarden et al
(1982) have examined the heat transfer problem and the formation of a solidified layer during
mold filling.

A quantitative evaluation of the effect of fountain flow on the molecular orienta-
tion of injection molded parts req{xires a detailed description of the flow field in the front
region. The viscoelasticity of the polymer melt is of primary importance for this purpbse and

must be accounted for with an appropriate constitutive equation. For a frame of reference

moving with the average velocity of the fluid arid assuming isothermal conditions the

AN
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" problem can be solved in the steady-state (Chapter 3). Even though the isothermality |

condition is a sin lification, it appears a reasonable approximation in the flow front region

-where the fluid has the minimum contact time with the cold wall and temperature variations

are not expected to be large enough to disturb the flow appreciably. The Leonov viscoelastic
model {Leonov, 1976) as apphed by Upadhyay & Isayev (1986) was used in this work. A
recent discussion of this model and further references are given by Leonov (1987).

{X finite element algorithm is presented for the numerical simulation of the

fountain flow problem with the Leonov viscoelastic model. Converged solutions are obtained

_at high levels of elasticity and are checked with mesh refinement. Frozen-in stresses and

birefringence distributions are calculated with a modification of the theory developed by
Isayev & Hieber (15%80). Computational results are compared to, ahd agree favorably with,

various sets of experiments available in the literature.

5.2 . Fqnn@ Flow of a Viscoelastic Fluid
5.2.1 The Leonov Viscoelastic Model .

The constitutive equation relating stress to the rate-of-strain according to the
multi-mode Leonov model is (Upadhyay & Isayev, 1986):

0=—PI+sqo(VV+VV)+Z —c (5.3)
k=1

where o is the total stress tensor, P is the pressure, V is the veloc1ty vector, ni and By are the
shear viscosity and relaxation time in the k-th mode of the Leonov model, s is a rheological
parameter lying between zero and one, and n, is the zero shear viscosity:

N .
= > /-9 (5.4)
k=1

f * i
where N is the number of modes in the Leonov model. Cy is the elastic strain tensor of the k-

th mode in the Leonov model and is given by:




v. 1
Ck + E
. - k .
- where ( v ) signifies the upper-convected derivative:

(€,-C,-D=0 | (5.5)

v a * . L] T . )
€= C,+ V-¥C,—VVI.C -G TV | - (5.6)

The pre(iictive capabilities of the Léonov model have been testea in valrious flow

| situations:; one-dimensiohal steady.(Upadh&ay et al., 1981) and oscillatory (Isayév &.Hiebgr,
1982) flow, multistep sshear= deformation (Upadliyay et al., 1983), uniaxial elonéational ﬂéwT '

{(Upadhyay & Iséyev, 1983) and non-isothermal elongational ﬂ;)w (Upadhyay & Igaygv, 1984),

two-dimensional chgnnel flow in éorlwerging and diverging geometries (fsayev & Upadhyay,
1985), injection molding (Isayev & Hieber, 1980) and bubble growth in foam injectioﬁ molding‘;.

(Upadhyay, 1986). o y '
- It is instructive to note the Leonov medel predictions in two-dimensional shear flc;w

between paralle] plates (Poiseuille-type flow):

Viscosity: ' , !
< N o
< k (5.7
p=sn + )
° k=1 1 +Qk
First-normal stress difference:
N
- N-n Q-1
N =g —t = V2 _x __k_E (5.8)
k=1 9 (1 +Q,)
Second-normal stress difference:
N - ' :
Ty V2
Ny -y, = > & —— _1] - 5.9)
: k=1 ok - (1+Q))
where
Q =01+ 49i \;2]?2_' _ | " (5.10)

and y is the shear rate.




"fl'llle_i.eonov model parameters for a typical polymer..melf. ‘(polystyrene STYﬁON
678U Dow Chemical) are given in Table 5.1, along with other properties of this material. The
Leonov model parameters Qere ﬁttied by isayev & Hieber (1980) using the datﬁ of Wales
(1976). Two modes were sufficient to fit the data up to a shear rate c;f i03s—1lata temperature
of190°C. .- | |

© . Lo ’ . -

""" For this material, the variation of viscosity and normal stress differences with
shear rate are shown in Figures 5.3a and 5.3b respectively. It can be observed that the model
predicf.s a shear-thinning viscosity, a positive first normal stress difference and a negative
secon;i normal stress;diﬁ'erex:ce No in .the range 5%-20% of Nj. It is remarkable thgt this
model can model real polym;:ric behavior while retaining a simple form (obser¥®4n egs. (5.3)
to (5.6) that the only nonlinearity of the model is the bilinear cc;nvective terms in eq. (5.6))

a

which makes it very attractive computationally.

<

* N ‘ ) \‘
Table 5.1 Properties of polystyrene STYRON 678U (Isayev & Hieber, 1980)

— Leonov model parameters at Tg= 190°C
N=2, s5=0,009, " n;=544%X103Pas,  6,;=0.8
' ' n2=1.50X103Pas, 82=0.027s

-~ Parameters in WLF equation
C1=2.3X8.86,C2=101.6°C, Ter=134"C

— Glass transition temperature Ty = 100°C
— Stress-optical coefficient, C= - 4.8 X10~9Pa~-1

- Thermal diffusivity, a=6.2X 10~8 m2/s
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Leonov model predictions for (a) viscosity, and (b) normal stress differences
(parameters of Table 5.1, T=190°C) ' )



522  Determination of fully-developed profilesin shear flow _
The fﬁllydeireiOped' _ve_Iociiy and elastic strain tensor profiles in pressure-driven
shear flow between para[léi plé.teé cannoﬁ be obtained analytically frpml the Leonov model.
| However, these profiles are n;acessary to be ;xmpésed as boundary éondiﬁons in the finite )
element algoritl?m of the next section. Therefore, they :;\re obtained numerically as described
below. - . ' > Co ‘ _ - : .
~ Consider the pressure-driven shear flow of a fluid with average velocity U bet;veen

parallel plates with half-gapwidth H. The governing equations are:

- H
. Continuity: I wdy = UH (5.11)
0
) ‘ _ S dP 4 (5.12)
x-momentum: 0 = —— + —(pu)
dx dy ¥

where pis given in eq. (5.7). The boundary conditions are:
aty=0: u, = 0 T (5.13a)

aty = H: u=—pfpuy (5.13b)

where uy =du/dy =y and f is the slip coefficient {§ =0 for no-slip at the wali). Equations(5.11)

and (5.12) can be modified to yield: .
H
{ vyydy + UH +Bpu =0 (5.14)
0 . Ylyg=n
dP
-yo- =0 (5.15)
#h=Y dx

The boundary conditions, eqs. (5.13), have been absorbed in eqs. (5.14) and (5.15).
Equation (5.15) is a differential equation for the shear rate profile y(y) and eq. (5.14) is an
algebraic constraint associated with the pressure gradient. These equations are salved as

follows:



i

() The half-gapwidtl;t OSySH is di'schetized,into‘ M'qne—'dimensiohal 3-no.de lir!e."
) elemc.enu';._ This gives (2M+1)-nodal pomts A shear rate degree of freedom’ i:vs
aséigned to each nedal point. ; ) . ' .
(i) - There are (2M+ 1) shear rate degrees of freedom and the ﬁressure é’radient {(Z2M+2
unknowns). 2M+1 equations afe provideld by applying eq. (5.15j ’tb every nodal
i éoint, while eq. (5.14) pro'vides‘the (ZM +2)-th equation. This is a nonlinear system
of algebraic equatic;ns which is solved iterati‘velj (Newtc;’n-Raphson) to obtain the ‘
shear r;ate at the nodal points and the pressure grﬁdient

Once the shear rate profile is known the velocities and elastic strain tensor

comi)onents at the nodal points are computed as follows:

(i Velocity: the velocity at the wall (y=H) is computed from:
uy=H) = —pujy=H) (5.16) .
and the velocity at the interior points is computed from: o
| Y2 5.17
u@2)=u(yl)+J fdy . (5.1
yl i

?

The integration in eq. (5.17) is performed with Simpson's rule which is exact in the present
3 .
case, since the shear rate is approximated as piecewise quadratic,

-~

(ii) Elastic strain tensor components: the elastic strain tensor components for the k--
mode in the Leonov model are computed from (Isayev & Hieber, 1980):
c = V2 Qk _ V2 C B 281: u, (5.18)

where Qy is given in eq. (5.10).
For the rheological parameters of Table 5.1, typical velocity and shear rate profiles

as predicted by the Leonov model are given in Figures 5.4a and 5.4b respectively.
~
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Figure 5.4 Predictions of the Leonov model for (a) velocity, and (b) shear rate, in shear

flow (parameters as in Fig. 5.3)
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5.2.3 Finit; Eiement Formulation : : : :

| ' "'We consider steady and isothermal flow of an in;:ompfess'.ibllg'ﬂuid,whose rheos

‘logicarl behavior is described by the Leonov model. The govefniﬁg_equgtions are (neglecting -

inertia and gravitational effects):

A

V.V = 0
= - .

Vo = 0

| S

. ‘ . IN nk .
. = : wyT —_— ,
‘e = -PléspVV+¥VD+ > —C, -
k=1 "k
y 1 . _ . ‘
C, + #2Bk(cié‘ck ~-D=0 -

The explicit form of the above equations for two-dimensional planar flow is:

dau av
S+= =0
ax dy
‘ P a?a at
= = 4+ =0
ax  ax  ay
ap at
R,y
ay ay ox
where ,
N
My
‘l:n=r|°52—'+z é_C“J‘
k=1 "k
N
av k .
— _+ J—
\ Yy :ﬁoszay zl 8, Crx
{ N
au  av Ty
T.x;=llo —+—)+Z é—ka
ay ox k=1 'k
qu F
zz_= 'y
k=1"k

and

ot

. (5.19)

(5200

(5.21)

(5.23)

(5.24a)

(5.24b)

(5.25a)
(5.25b) -
(5.25¢)

(5.25d)

(5.22) - -

n/
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@k Tk fdu 3, 9u ) 2 2 : (5.262)

+ =2{+—C_ 4+ — +—(C —-1).= :

Yy 'Yay.-'z(axc“-‘_‘-k ay_C!:Y-k ze(n.ﬁclfn g S

"“ : “ .l ', ' ~ -
i . L e ' g (5.26b) -
: yy.k yy.X EV_- ?_V_ ) T 2 . '

T T Ty ‘__—2(aycﬂ-"+. axcj‘-"-“ +29 o ka D=0

w . N m T . e - ' - : . . .
k wk 8 du ) 2 S . (5.260)

u—= +v . l-(axcmka-aycm 29 € Crcc +ny,k)"»° (62

The boundary conditions associated with the above equations for the fountain flow
S
problem were described in Section 3.2.1 for viscous flows. In the present viscoelastic case the -
‘ componerits of the elastic strain tensor Ck must also be specified at a portion of the flow

boundary érossed by the streamlines (AD in Fxgure 3.3).
The above system of equations is solved numencally thh a muced Finite Element

formulation to obtain the velocity and stress fizlds and the free surface shape. Recent reviews

-

for the numerical simulation of viscoelastic flows can be fot:md in Crochet et al (1984) and
8 . [ \

Keunings (1987).

The finite element approximation to the velocity, pressure and elastic strain tensor

V= Z Ve ), P=> PoEn, C, = > cieien (5.27)
I i i
where Vi, Pi and Ciy are nodal variables and ¢i(€,n), ni(€,n) are the associated basis functions.

Elements used in this work are the 9-node quadrilateral and 6-node triangular isoparametric

elements (seejappendix A) with C'ﬂ-f’2 approx‘mation for velocity and elastic strain tensor and
CO-P! for pressure. | ’

The Galerkin principle is invoked to obtain the weak form of the governing
equations. Following standard procedures within the Galerkin Finite Element framework we

arrive at the following form of momenturm, continuity, constitutive equation and free durface

/esiduals associated with velocity, pressure, elastic strain and free surface unknowns



N

‘ respectiveiy: -
R = J V- adQ I n-ocp'de =0 . ' .(5.28a)
L m n aq S L :
- . . [~}
. 2 )
R‘:IVVndQ 0 (5.280) .
€
- f
. i v . | ) -
Reg = 0 C, s (C -C.-D $'da =0 . (5.28¢)
R =[ n- Ve n=14¢ = 0 - (5.284)
FS. :

Ris (5.28e)

o ‘
2, 212 =
J _ (xE-i-yE) df - l (x -i-yE)' d§=0

Iq:l n=1

The above formulatxon egs. (5.28ae) is s;mllar to the u-v—p—h-& formulatlon of
Sectxc;n 3.2.2 (also appendxx A), except for the presence of the elastic strain unknowns
associated with the viscoelasticity of the fluid. The momentum, continuity and free surface -
equations are-treated in exactly the same way. The expﬁ@cit form of the weighted residual
equations ‘and Jacabian entries for the viscoelastic case ca_n' easily be d‘cj:rived by following the
procedure outlined in appendix A for the viscous case. Note the anreased. number :)f
unknowns in the viscoelastic case. For every mode in the Leonov model there are three elastic
strain components (Cyy i, C,-.x‘.k, Cyy.x) and typically two modes are required (N=2) to describe
rheologically a given polymer melt. For the 9-node quadrilateral element and t;or:a 2-mode
Leonov model the degrees of freedom .at the element Ievgl are: |
| 9 x-velocit;v corﬁpor{ent.s
9  y-velocity components
4  pressure variables (at nodes 1,3,5,7)

3 ' h-variables (at nodes 5,6,7)



%

1. §-variable (at node 6) . ' - | X .
9x2=18  Cyy variables
9x2=18 Cyv.k yariables

'9x2=18 Cryk vaﬁableé_
Tp_tal = 80 variables per §-z_10de elemqnt

Hence: at the element level we have 80 variables, am:i an 80x80 element Jacobian
matrix, as compared to 26 variables and an 26 X 26 element J acobiaﬁ for the viscous case. Itis
obvious that the computational cost increases by an order of magnitude in the viscoelastic
c'gse. Note also that the increased nonlinearity and intricacy of the viscoelastic problem
requires special iteration and continuation procedures These are discussed below.

. When the resxduals eqs. (9.28), are applied at the nodes of the discretized flow
domain along with the appropriate boundary condxtmqs they provide as many algebraic
equations as there are nodal unknowns. Let X be the vector of unknowns and R be the vector
of residuals. For given rheological properties and for the present problem, there is only one

independent parameter. A convenient choice is the shear rate at the wall or equivalently the

U/H ratio (1/3'of the apparent shear rate). Let p denote the U/H ratio:

p=U/H (5.29)
Fora gwen value of p the algebraic system to be solved is:
RX;p) = (5.30)
We distinguish the following cases: ] .

Case 1: there is no available solution in the neighborhood of p. Typically, this represents the
first attempt to obtain a solution on a giv-e'n mesh, In this case a preliminary iteration is
performed to obtain t;.he.Newt.onian velocity and pressure fields (the elastic strain and free

surface unknowns are held fixed). On the basis of the Newbonian'velocity-field an initial

approximation to the elastic strain tensor is given by (Upadhyay & Isayev, 1986):



-

c _1+ak(vv+vv") - | (5.31)

A few: addltmnal start-up iterations (usually 2 or 3) are performed to 1mprove the uutlal
solutmn ee:txmate (free surface vanabies are stﬂl ﬁxed) With an adequate uutml solutmn'
eshmate tow available, a full Newton-Raphson iteration thh Ime searches (Engelman et al

“1981; Karagiannis et al, 1988) is perfo'rmﬁd on GQ-'(S.SD):"'

L g g - (5.32a)

XD oyl o am) . S {5.32b)

where J = 3R/3X, is the Jacobian of the global system. The purameter a is used bo-modify the

step length in eq. (5.32b) with a line search, to minimize the sum of residuals along the search

direction d(m), if necessary (Karagiannis et al.,1§88); For a=1 we recover the ofdinary

Newtbn-Raphson‘algor_ithm'. The line search increases considerably the radius of
convergence of the original Newton-Raphson scheme.

Case 2: there are N available solutions X; at parameter values (p;, j= 1,Np) in the

neighborhood of p (usually 2 or 3). Then an initial estimate X(0) at p is obtained by

continuation using Lagrangian polynomials, ie.

(5.33)
x? = Z &)X,
i=t
where
‘ NP .
C(p) - l—[ N (5.34)
i= 1P P
i=j

WIth X provxdmg the mmal estimate, the Newton-Raphson iteration, eqs. (5.32), is then
employec to obtain the solution. Equations (5.33) and (5.34) offer a computationally cheap

method of continuation in the parameter p.. For Np=2 we have the discrete analog of first,




a
.

-_'orcller continueticn (Brown et eli .1980)- while‘for Np>:2 we'- obtain‘hi'gher order (apd :po.re. ’
eﬁiclent) contmuatmn Itis possxble to employ an adaptwe continuation scheme in whlch the
, mcrements in the parameter p are determmed by means smular to the tune step-s:ze control
of Sectlon 4.2.3 (Khesgh:. et al,1983). However, such an approach was not necessary for the
problems studxed , .

. In both Cases 1& 2 the sc;lutmn at the guren parameter value is determmed thh
the .Newton-Raphson 1beratmn In addltlon to the fast convergence that characterizes this
iterative techntque avaxlablhty of the d acobum brmgs other benefits in identifying u'regular
pomts that are sometxmes encountered in the simulation of v1scoelast1c flows; at an irregular
point of the parameter space (here the one-dimensional space of the parameter p= UIH) where
the solution family either varies infinitely rapidly, terminates abri:ptly, bifurcates, or turns
on itself, the hneanzatmn eq (5.32a), of eq. (5.30) fails and the Jacobian matrix is singular.
This gives us the means to detect irregular points unambxg‘uously by momtormg changes of

sign of the determinant of the Jacobian matrix as we compute the solution family (the

determinant is simply the product of pivots computed during the Gaussian elimination).

'5.2.4 Fountain Flow Simulations
The previously described algorithm was employed to investigate the steady,
isothermal fountain flow of a commercial polyetyrene STYRON 678 U (Dt»w Chemical). The
Leonov model parameters for this material are given in ’I“able 5.1,
.The WLF temperature-shift factor (Ferry, 1970) was used to evaluate ng, 6y at

other‘temperatures, ie. Q



‘ ‘_u- l N ~ . tl --“l. -‘- . ) - ) . . . .__ .-‘ r . - .
llk'(Ti‘= qu('l‘b):a:[/a_r -, _e_k(T)m=ek('["o) a Tla'r oo . (5.35)
- ST e o _ o - .
8y ifT= Tg
g ‘ L

. a'r= { . '- 5 CI(T-Tﬂ-.'.f) o o - (5 36.)

f"‘P[*"'""""‘“"""".‘]'. ifT>T e - .
: Cp+T-T 1 8. .

" Two representative sets of processing conditions were selected from the literature

Ee B

and are given in Table 5.2. The material paramieters were evaluated at the injection |

temperature for each set and the corresponding Leonov model prédicfions:foy unidirectional

-

shear flow are listed in Table 5.3. Two cbmm&nly used measures of elasticity are the stress -

ratio evaluated at the wall: ' , : .' ‘

S m =W : (5.37)
- .
e[ lwan
and the Weissenberg number:
Ws= 6§, (5.38)
where
_ i L g o= | (5.39)
= . =
e k=1 T, v dy lvan

The values of Sg and W give.n in Table 5.3 indicate a highly'elastic fluid. Table 5.-3
shows the effect of 2 slip boundary condition on the flow characteristics at the dimensionless
slip number of B=10—2.(B=qo[3fH, see Section 3.2.3.2). At this level of slip the gapwise
velocity and stress profiles, as predicted by the Leonov model, are affected by less than 1%.
Howéver, application of the slip boundary condition is crucial for the success of the finite
elempnt algorithm. |

Three successively r_gﬁned meshes were used in the fountain flow studies. The

‘three meshes are plotted in Figuré 5.5 and their characteristics are listed in Table 5.4. For

clarity only part of each mesh is plotted (up to x/H = —5). The actual mesh extends up to
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Table 5.2 Processing Conditions and Mold Dimensions

_SetNo. U(s) Ti(C) Tw(C) H(mm) -L(m) W(m)  Reference
1 . 036 224 40 . 1905 0456 00762  Isayev(1983)
- 2.~ - 014r 218 35 .09 0127 00635 Kamal&Tan (1979)

LY

Table 5.3 Flow Characteristics of cases studied

SetNo. Ti(C) = fjuw(s~P  ty(kPa) Sr Ws

1 224  ° 927.70 -57.74 2.095 56.55
| NoSlip,B=0

2 218 810.85° 6091 2.284 70.09

. . 1 224 922.13 57.65  2.080 56.20
o ' ' With Slip,B=0.01

2 218 806.62 60.83 2.279 69.72

-

Table 5.4 Ch‘aracferistics of finite element meshes

Elements Nodes Unknowns CPU sec/iteration
VAX 8600 CRAY X-MP/22

Mesh 1 60 © 261 2126 . 195 -
* Mesh 2 120 519 4229 325 25

Mesh 3 296 1242 10162 - 90
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= _10 for Mesh 1 and xH=-20 for Mesh 2 and Mesh 3 where xIH 0is the contact line

.posmon Le. the flow front Iwall mtersectlon

For every mesh the Newtoman solutmn was obtamed ﬁrst Then the vxscoelastxc'

solution at thé desu'ed shear rate was obl‘.a.med by successwely mcrementmg the shear rate.

'The Newton—Raphson 1terat1ve scheme was employed to solve the ﬁmte element set of
' equationsat évery mtermedxate shear rate, as descnbe@ in the.previous section. Three to four
shear rate increments were Suﬂicient for t;he conditions of Table 5.3. A,Cpnvergence was
reached in 4-5 Newton-Raphson iterations (convergence criterion: maximum residual and
maximum'relafive'update below 10-8. The strict termination eriterion for Newton-Raphson
iteration was imposed in order to achieve quadratic convergenee which oceurs asymptot,i‘cally
near regular points of the sohition.

The mesh refinement study, with and without the slip boundary conciition, was
undertaken in anticipation of the "High Weissenberg Number Problem™ (HWNP, Keunings,
1986b). This problem arises in the numerical simulation of viscoelastic flows in compfex
geometries and manifests itself as an inability to obtain a solution beyond some critical level
of elasticity. When there is a stress singularity for the corresponding Newtonian flow
problem (in the fountain flow problem stresses are singular at the contact line), viscoelastic
computations always exhibit a limit point (limiting level of elasticity) beyond which con-
vergence is lost, and this limit point decreases with mesh refinement. As a possible remedy to
the HWNP, within the context of continuum theory, Lipscomb et al (1987) suggested relaxing
the no-slip condition to alleviate the stress singularities. The results of the present work lend.
further support to this suggestion. |

Computations with Mesh 1 and the no-slip condition (B=0) allowed the high
elast‘icity levels of Table 5.3 to be reached with no di:ﬁ'x.culty. When using the denser Mesh 2,

problems arose at &’stress ratio value of about 2.2. Despite 2ll efforts (small shear rate
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r \ h
increments, higher order epntinuetion} the Newton-Raphson iterative scheme was unable to

cc;'nverge:_" the sign of the deternﬁnant of the Jacobian n‘mtﬁx fés_eillat_ed_during the B

unsaccessful 1teratlons indicating the presence of an irregular pomt

The slip boundary condxtlon was then. used ‘and calculatmns were repeated wtth

LS

B=10-2. For this level of slip the Newton- Raphson :teratwe scheme converged quadraucally

.

| for t.he condxtmns of Table 5.3 and for all three meshes Companson of the converged

soluuons for Mesh 1 with and w1thout slip(B=0 and B=10-2 showed that the results were
practxca!ly unchanged. This mdlcates that the main effect of slip is locallzed in the contact
line region, where it removes the singular stresses that become more pronounced with mesh
refinement and cause loss of convergence of the algorithm, . ) 1

A representative plo't for the eehavior of the computed velocity, stress and free
surface degrees of freedom with mesh reﬁeemenfis given in Figure 5.6, which shows the axial
velocity along the centerline (Figure 5.6a), the gapwise profile of the first normal stress

difference at x/H =0 (Figure 5.6b) and the flow front shape (Figure 5.6¢c). The close agreement

of the results with the three meshes shows that a sufficient accuracy has been reached at this

level of mesh refinement. Due to the high cost involvéd in the computations, and in view of

-

the present results no further numerical eests were undertaken with denser meshes or higher
levels c;f élasticity. .

The streamlines for the conditions of set 2 in Table 5.3 are shown in the lower half
of Figure 5.7. The effect of ['oum':ain flow On the deformation experienced by the fluid is shown
as the series of fluid element Shapes in the upper half of Figure 5.7. These shapes were

obtained by tracking a large number of material points along the surface of an initially rect-

angular element, as described in Chapter 3. It is shown that as the fluid element decelerates

near the flow front it is stretched initially in the transverse direction. The element continues

to deform as it moves away from the centerline towards the wail following the flow front
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Figure 5.6
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Results obtained with the three meshes (parameters of set 2 in Table 5.3, .

B=0.01):

(a) velocity variation along the centerline

(b) profile of first normal stress difference behind the flow front (x/H=0)

(¢) flow front shape
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Figure 5.8
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0.0 0.2 0.4 0.6 0.8 1.0
y/H

Comparison of first normal stress difference profiles behind the flow front
(x/H=0, curve 1) and in+the fully developed flow region (x/H= —20, curve 2).
Parameters as in Figure 5.7



' shape in a curved path When the ﬂuxd e{ement reaches the wail itis extremely stretched and"
‘onented in the flow du-ectmn while 1ts traxlmg edge forms a V-shape. The deformation
-pattern is the same as that obtamed in Section 3.3 mth a Newtonmn\constltuuve equatmn..'_ _
. There were no essentml dxﬂ'erenees between the ﬂmd element shapes determmed with the
Newtonmn and the vmcoelastlc velocrty ﬁeld Thisi is because the kinematics of fountam flow

‘ is not.affected quahtatlvely by the vxscoelastxc character of the ﬂuxd However, it would be -
expected that the dynamies of the flow is different i m t.he v1scoela_st1e case. Shown in Figure
5.8isa comparisorr of the gapwise profiles of l;he ﬁrst rmrmal stress difference behind the ﬂew .
front (x/H= 6, curve 1) and in the fully developed flow region (x/H=~20, clurlve 2). For curve

* B 4
1, it is noteg that the first normal stress difference is negative near the centerline-

correspondir:g to th; irli_tial compression of the fluid element in Figure 5.7, and very large an;i
positive near the wall eorresieondirxg to the extreme’ éxten.eion of the fluid elements in this
region as illustrated in Figure 5.7. These extended fluid elements form the solidified surface
layer in injection moiding. The deformation of the elements in Figure 5.7 or equivalently the
high stress levels of curve 1 in Figure 5.8 can explain the increasing biret'ringence of the

surface layer in injection molded articles (part BA in Figure 5.2).- A quantitative description

of this phenomenon is considered below.

\ 5.3 Prediction of ﬂow-irxduced frozen-in stresses - w
5.3.1 A simplified theory ' : —
Rigorous predict.ien of frozen-in stresses in injection molded parts requires the solu-
tiolhf of t.he fully two-dimensional, transient and non-isotherinal mold filling and tt:e subse-
quent stress rela.xation_. Although this problem does not involve new principles and can be
solved with'(_:errently available numerieal techniques, it wou-ld require enormoas computer

resources. It appears, however, that reasonable approximations can be made that Simpliﬁr
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the numerlcal prbblem cons:derably The first approxlmatxon is. related to the quxd
. 'mechamcs of mold ﬁllmg Clearly, it is- not practlcal to consvier the full two—dxmensmnal ’

problem in both the ﬂow and thxckness d:rectwns Smce the asoect ratm of the molds is
usually very‘hlgh (HIL<<1) and the fountain ﬂow regmn extends only a small dlstancez
behmd the advancmg front (see Chapter 3), the flow can be modelled as a locaIly )
umdu'ectxonal shear ﬂow for the ma;onty of the mold (lubrication-like approxxmatxon)

‘The second approximation is related to the heat transfer of the process. 'I‘he heat
transfer pmblem has been discussed extenswely by J aneschltz-Krlegl (1977,1979,1983). The
dommant heat transfer mechamsms are convection in the ﬂow direction and conductmn in
the thlckness dxrectlon Heat convection -prevails near the gate while heat conductmn is
dommant behind the ﬂow front (Janesclntz-Khegl 1983). .Since we are mamly interested in
the development of the sohdlﬁed layer behind the advancing flow front we neglect heat -
convection in the flow direction. Then the problem reduces to transient heat conduction in the
thickness direction.

Isaye}.v & Hieber (1980) devetOped a theory with the above assumptions for the

prediction of frozen-in stresses in injection molding. The mathematical model involves the

equations describing transient nonisothermal shear flow, i.e. .

Momentum: = E + -(i- (t )= or T = d_I: (5.48)
‘ dx dy y dx
.. H H
Continuity: I udy=UH or I yydy +UH =0 (5.41}
oo o ]
Energy: , T _ a ai'E . . ' (5.42)
. & 2 _

Constitutive model:
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y 0 N g | ok ayk (5.4 '
symth, - T, symm 0 symm 1
. e = (5:44a)
_ Coeg Cppc ~ Copac =1 S
ac | | -
o ok .. 1 e 2 o (5.44b) 1
- _2ch+29k(cﬁ‘y+cw =0 . BB
dc . ~ .
e 1 _ (5.440)
Fr Y.,ny.k + 20, Cry.k(gv;k + ny.k) =0

° where y=du/dy is the shear rate, a is the therinal diffusivity and qo,rik,ek are temperature

dependent (eq.. (5.35)). The ;bove system of algebraic and parabolic differential equnt.ioné
describes the p_ressﬁre g-lladie-rlt (di’!dx) and the gapwise profﬂ:s.;:f terﬁpefa'turé (T), shéar rate
(Y) and the 'cott;ponents of the elast.icj' strain tensor (C,':;k,ny,k,ng.k). The initial and .
boundary conditions for the te;nﬁeraf.uré are:
t=0: T=T;, 0sysH’ ' | (5.45a)- '
t>0: a’I‘Iay=0laty=0_ ~ and ' T=T, aty=H (5.45bi
Initial conditions mus;'.'alsco'be specified for the components of the elastic :;train
ten;oi-. Isayev & Hie'ber (1980) used the st;eadjr-state s'olution of eq. (5.44) (given in eq. (5.18)),
therefore neglecting any effect of fountain flow.
The above equations were solved as follows:
03] The half-gapwidth 0<y<H: is discretized into M one-dimensional 3-node line
elements. There are 2M + 1 nodal points. ¥i, 1=0,.yam+1=H. |
(i) Thegdegrees of {reedom at the nodal points are: temperature'iT), shear rate (y), and

the components of the elastic strain tensor {6 components in the presenE caseof a 2-

<+




(iii)

(iv)
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mode Leonov fluid). Finally, thereisa préssure gradient (dPldx)‘degree of freedom.

* Thus, the total number of unknowns is 8(2M + 1)+ 1.

. A Galerkin/Finite Element formulation reduces the enérgy partial differential

equation, eq. (5.42‘), into a first order ordinary differeﬁtial ,equati_dn (QDE) with
respe‘ct. to tir;ie. Applying this to eve}y.noﬁal point:. gives (2M+1) _ODE':';‘:f‘br the
temperature. Aﬁplying eq. (5.40) and eqs. (5.44) at the nodal pqinté. provides as
many algebt.'aic and ordiﬁary différeﬁtia! equations as there are nodal shear rate
and elastic strain\unkﬁﬁwns. Finally, the continuity equation, eq. (5.41), providesl
an additional algebraic equation associated with the pressure gradient.

We have now a coupled system of algebraic and first order ordinary differential

.equations. This is integrated in time using the p'redictor-correﬁtor scheme of

Section 4.2.3. : 2

~ For a given set of processing conditions, the algorithm to predict the flow-induced

frozen-in stresses and birefringence at a location X from the gate of a mold with length L, is as

follows:

@

(i)

mold filling phasg: the system of eqs. (5.40-5.44) is integrated up to time

tay = (L-XWYU. .

stress relaxation pha‘sg at t=tg the flow is assumed to stop abruptly. The shear

rate is set to zero“and integration is continued until the maximum temperature (at
the centerline) drops below the glass transition temperature Ty

At every instant the stresses are calculated from eq. (5.43) and the birefringence

An from eq. (5.2).
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5.3.2 Resultsandmscussmn IR 6 e

Typical predlctmns of the theory of [sayev & H1nber (1980) are shown in Fxgures 59

and 5.10, for the condltmns of set lin Table 52, and ata dxstance X 0.057 m from the gate.

Figure 5.9 corresponds to the predlctmns ofegs. (5. 40 5.44) durmg the mold f'ilhng phase The

initial temperature is T; 224°C while the wall is at Tw= 40°C and the sohdlﬁcatmn (glass

transition) tem_pe:ature is Tg= 100°C. Consequently, a solxdlﬁed layer begms growing from

t

the wall towards-thc_z center, as can be obsev..'ved in Figulje 5.§d by ﬁbt'mg the y/H posit.im_’i‘ at _
which T-f 100"0.56: the var‘ious i;émpér'ature curves. Associated with tl;esé'de.ve'lopments are
the ch;anges in the velocity and shear rate proﬁles shown in Figures_S.Qb and 5.9¢
respectively. The velocity decre;ses‘w1th time in the vicinity of the cold wall. Accordingly,
the flow rate increases in the hot region in order to mamt.am a constant flow rate. The
velocity proﬁlg isa bell-shaped curve charactenst:c of this type of non-isothermal flow (with a
temperature dependent-viscosity) and the shear ;'ate profile exhibits a maximum ((iorre-
sponding to the inflection point of the velocity curve) which shifts inward as time increases.

The shear stress profiles age plotted in Figure 5.9d and show a lipear variation,
which follows from a well-known balance of forces. The shear stress continues to increase into
the solidified layer and up to the wall. Hc;wever, it must be pointed out the stress that
develops into the solidified layer (i.e. after the temperature has dropped below Tg=100°C)
does not t.:untribute to the final flow birefringence, i.e. it is not frozen-in.

The profiles of tﬁe first normal stress difference are.shown in Figure 5.9e. The
normal stress is frozen near the wa.ll and displays an intermediate maximum which increasels
and shifts mwa"a‘w:.t.h time, due tﬂ the growth of the solidified layer. Comparison of the

normal stress and shear stress lew}els in Figures 5.9d and 5. 9e shows that the normal stress is

targer and therefore. forms the dominant term to the flow birefringence (see eq.(5.2)). .

- H




Figure 5.9
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Evolution of the profiles of (a) temperature, (b) velocity, (c) shear rate, (d)
shear stress, (e) first normal stress difference, and (f) birefringence, during
the mold filling phase. Parameters of set 1 in Table 5.2, X=0.057 m from
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Correspondingly, the An profile shown in Figure 5.9f‘follow_s the shape of the normal stress

‘proﬁle.__J - .

At tan=(L-X)}U =1.108 seconds the flow front covers the distance from the =

posmon Xtoend the mold L, travellmg with average velocxty U. The flow is assumed ta stop

'abruptly at t tan, and the stress relaxatlon phase begms T Me pred1ct10ns f'or temperature,
shear stress, first normal stress dxﬂ.'erence and birefringence ie shown in Figure 5. 10a Ja,ed.
| When the temperature at a particular point drops below Tg= 100°C the stress is frozen in and
no further relaxation can take place, At the end of relaxatxon'(x.e.‘when T<Ty throughout the l
gap), the profiles are depicted.bvy curve 4 in E;i'gures 5.10, and show that complete relaxation
has taken place in the region 0= y/H < 065

The pretlictive capabilities of the above theory (notably the neglect of thermal

stresses, packing pressure and fountain flow) have been discussed by Isayev & Hieber (1980)
and Isayev (1983) We will cons:der here the effects of fountain ﬂow

As was discussed earlier the main effect of fountain flow _is on the deformation of
fluid elements as they pass through the flow frogt region directed towards the walls (Figure
5.7). The extreme extension of fluid elemeuts near tl‘:e v;rall in Figure 5.7 manifests itsell .
dynamically as a large stress in that region. This is clearly shown by the first normal stress
difference profile in Figure 5.8. These observations lead to an approximate way of
incorporating the dynamics of fountain flow into the- model for frozen-in stress prediction,
eq. (5.40-5.44): instead of using as tnit.ial vall;es, at t=0, for the components\of the elastic
strain tensor in eq. (5.44), the fully-developed profiles given in eq. (5.18) (and which imply a
prehistory of unidirectional shear flow), we assign as initial values the profiles computed
numerically by the finite element’solution of the t'ountain flow problem at ¥H=0, 0=y<H
(i.e., the profiles at the plane passing through the contact line). The theory of Isaye"v & Hieber

(1980) was developed by idealizing the mold filling process as an isothermal shear flow at the

&
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Figure 5.11 Corr;parison of frozen-in birefringence profiles with (curve 2) and wit;hout:i

(curve 1) fountain flow taken into account (parameters as in Figure 5.9)
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injection ferpperatu;‘e at t<0, followed at t=0 by a sudden decréase of the wall temperal%ure

rfror'n Ti' to Ty. The present modification can be viewed as an analogous idealization l_aut..u-rith a
prehi;toiy of isothermal fountain flow at t <0, which only servés to offer the profiles of the
elas’i}i(': strain tensor components, t.o be’ used as initial conditions for the transient non-
isothermal flow, egs. (5.40-44) at £>0. _ |

with the above modification calculations for the con;iitions of Figures 5..9 & 5.10
were ‘repeated and are p:jesented in Figure 5.11, which shows the profiles of the frozen-in flow
bi.refﬁngence v;rith {curve 2) and \;vithout (curve 1) fountain flow tiken into account. It is
shown that by inco_tﬂorat.ing the effect of fountain flow the th_eory does prgdict the an
m_inimum near the wall and the high birefring-epce a;t thé surface,

Further comparison with published experiments is shown in Figure 5.12. The
predictions follow correctly the trend depicted byf the ex.per;mental data, although they
generally underestimate the data. For the data of lsa‘yev {1983) in Figure 5.12a it is shown
that the position of the An maximum in the subsurface layer is well predicted but not its level.
This' is prot‘;ably due to the n&:glect; of the effect of packing pressure which was found (Isayev &
Hariharan, 1985) to increase the height of the An maximum. but not affec-t. its position. For
the data of Kamal & Tan (1979) in Figures 5.12b,c the predictions agree better with the
experiments at the larger distance from the gate (X=0.875 m, F‘igl:re 5.12¢). This is
associated with the heat transfer model which is valid at large d{stances from the gate; t'he
closer to the gate the more it overpredicts the fro.zen layer thickness and consequently
um.ierpredicts the y/H poéition of the An maximum as shown in Figure 5.12c.

[n all cases of Figure 5.12 the predictions and the experimental data show a An
minimum near the su:;'{'ace and an increasing birefringence between the position of the mini-

mum and the wall. This minimum is created as follows: initially, the fountain flow results in .

a birefringence profile increasing near the wall (observe tLe first normal stress difference in
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Figure 5.12 Comparison of experimental (symbols) and predicted (solid line) frozen-in
birefringence profiles at the indicated distance X from the gate. Parameters
of set 1 (Isayev, 1983) for (a), and set 2 (Kamal & Tan, 1979) for (b) and (¢)
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the wall region in Figure 5.8) while the su'beequen.t devel_opine'nt ofa solidi_fied Ieyer and the

associatedstress build-up causes a decreasing birefringence in the same region (Figure 5.100).

The composlte effect is a bu-efrmgence proﬁle that passes through a maximum and mcreases

' agam near the surface. Thus the An minimum is established by the heat transfer behind the
flow front and will therefore ap'pear at the same y/H position for any distance X &folrh the gate,
as long asrthe heat transfer mechgnism remains the same and there is sufﬁcient time
'availeble for the solidified layer te evelop. Kamal & Tan (1979) noted in their e;perimelnts
that the .-positi.on 6‘r the An minimum was nearly constant for all axial positions. For the
conditions of set 2 in Table 5.2 the experimentally found position was y/H=0.92-0.95. The
predicted position in the present work (Figure 5.12b,c) was y/H = 0.94, in good agreement with
the above experimental findings.

It is evident from the ab:)ve simulations and experimental observatiens that the
effect of fountain flow consists in the development of a highly oriented suri'ace layer (part BA
in Figur:e 5.2). The present ca'lculatiqns show that thisi layer. extends from y/H=0.94 to
y/H =1.0 for the conditions studied. It is interesting to note the.actual dimensions of this
layer: for the conditio.ns of set 2 in Table 5.2 (H=0.9 mm) the thickness of this layer is 54
microns (54X 10-6 m). This is se small that sometimes it escapes the attention of
experimentalists. . Wales and co-workers did observe in their t:,irefringence experiments a
high orientation at the surface layer (see the discussion in Janeschitz-Kriegl (1979) and a
photograph from Wales’ experiments in Han {(1976)) but they decided to neglect it, apparently

as an artifact of the experimental technique, and did not report or mention it in Wales et al

(1972). lsayev (1983) reported experimental birefringence profiles for thin and thick strips.

For the thin strip (with thickness 2H =2.54mm) the birefringence profile does not show the -

-

An minimum and the increasing birefringence at the surface (the profile for the thick strip is

shown in Figure 5.12a). However, [sayev (1983) noted that "within a distance =7x10-%

——



- - H
. . .
v

meters from the surface, difficulties arose in th2 birefringence An n;zeasu_r_ement caused by.

v - .

problems’ in‘dfstinguishing- isochromatic pat_zems. Apparently, a surface layer is present in the

thfn'strip‘which has even a higher orientation than the thick strfp" find cited the fountain effect

. as a possible cause. The preéeni calculations show that the t_'ount.ain effect is indeed the origin '
_of the orientation of this 1ayer. The layer of 1 = 7X10~5m in 'Isafrev_'s (1983) &periments

 corresponds to y/H = (H—1/H = 0.945. This is the position of the An minimum predicted in

the i:résen]; work, in full agreement with the experimental evidence.

5.4 . Concluding Remarks

The contribution of frozen-in ﬂpvi-induced stresses to the molecular orientation of
injection molded parts has been examined. A finite element- algorithm is ﬁreéented for the
solution of the [‘ou'ntain flow problem with the [;eonov vis;oelagtic mode.!. Finite eIemer’lt
solutions are obtained at high levels of elasticity and they converge with fnesh reﬁnernlent.,
provided a slip boundary condition is employed to aIleviat’e the stress singularity at the '
contact line. Calculation of stress profiles behind the advancing flow front and ngmerical
tracking of material elements illustrate the effeét of fountain flow on the deformation
experienced by the fluid. Birefringence distributions ate predicted and compare well with

available experimental results. It is demonstrated quantitatively that fountain flow is
A .

responsible for the orientation pattern of the surface layer of injection molded parts.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS o
Flo-w phenomena assocm@ thh the mold ﬁllmg process have a s1gmﬁcanl: impact
on the f'mal properties of mjectlon molded parts In the present the51s we employed finite
eIement‘techmques and analyzed the fluid mechamcs ofmold filling end the effect of the flow
conchtwns on the mxcrostructure development in the molded part. / - ' '
The mold ﬁlhng process takes place as a rolling-type advancement of the flow front
over the mold walls. The flow ﬁeld behmd the advancing flow front is known as fountain flow,
and is the sahent feature of mold filling.. The foun&m flow phenomenon was examined
extenswely with a finite element method in the steady—state The u-jr-p-h-ﬁ formulation
presented in Chapter 3 (also appenduc A) is a powerful numerical technique for the simulation

of free surface flows and deteﬁnine‘s simultaneously the flow field Svelocities and pressure,
u-v-p) and the free surfaee shape (h-§ parameters). Simulations with Newtonian and shear
thinning fluids in planar and axisymmetric geometries werc presented. Yario_us features of
the flow were described with the aid of velocity vector, pressure, free surface shape, and
streamline plots. The effect of slip at the solid wall was also investigated.

The deformation experienced by the fluid due to fountain flow was examined by
tracking material elements as they move through the ﬁow domain. [t was found that
material elements from the centerline migrate towards the walls, extended in the flo\#
.direction and forming characteristic V-shapes,‘ fully in agreement with the :'olor tracer
expe{iments of Schmidt (1974),

The general problem of two immiscible fluids displacing each other inside a

capillary, i.e. fountain and reverse fountain flow, was also examined. A double-node finite
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' element method suitable for stratified mu‘l‘txphase ﬂows was descnbed S1mulatlons Wl.th this -
technique showed thata recu‘culatmg vortex appears adjacent to the :nterface and msxde the-
less vmcous ﬂuld as observed in the expenments of Dussan (1977)

An extensmn of the ﬁmte eIement. techmque for transient flows was presented in
Chapter 4. -Conditions for the contact lme motion were derwed al\d their ﬁmte element

implementation was described. The techmque was applied on the start-up Tlow of-a _ﬂuid with

a free front, in pl_acﬁar and axisymrﬁetrié geometries. Good agreement was found with avail- .
able experimental results for the axisymmetric case (Beﬁrees, 1983). The computational T~
resuits show that for perel_y viscous fluids the flow developme.nt is co;‘npleted within a short
distance, and the same features of steady fountaiﬁ flow are present, thus providi:;g further
support to the results of the steady-state analysis. '. o -

The transient finite element a!gori.thm was also employed to investigate the -

1 .

collision of two flow fronts to form a weldline. It was found that during the colh'sio:phase the
'material elemer!ts arestretched and orieni.é_d in the transverse direction and oriented parallel -
te the weldline. However, this stretching is superimposed on a much larger deformation due
to fountain flow that preceded the collision. Thus, it appears that fountain flow is mostly o

LR

: resﬁonsib[e for the observed anisotropy near weldlines of injection molded parts,

A quantitative evalu;tion of the effect of fountain flow on the rx:xolecular orienta-
tion of injection molded parts was undertaken in Chapter 5. The viscoelastic nature of the
polymer melt is of primary impertence for this purpose and must be accounted for with an
Aappr'opriate constitutive equation. The multi-mode Leonov viscoelastic model was selected;
this model describes well the rheological behavior of polymer melts and yet it hes an
attractively simple form. A finite element technique for viscoelas.tic free-surface flows with ,
the Lecnov viscoelastic mode!l was described. Four;t,ain flow simulations were performed for
TMaterial prope;'ties and processing conditions corresponding to availeﬁie experiments. Finite

-
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element solutions were obtained at high levels of olasticity and they converged with -mesh
reﬁnemodt, provided-a. slip boundory condition was applied at the wall to alleviate the stress

singularity at the contact line. ’I"he calculated s'treSs field was co mbined with a simple theory

" to prediet frozen-m flow b:.refrmgence Predu:txons were compared to, and showed good agree- '

ment thh pubhshed expenmental bxrefnngence measurements lt was demonstrated that
fountam ﬂow IS responsible for the molecular onentat.xon pattern of the surface layer of
The finite element methedology adopted m the present work proved to be an

extremely powerful tool in analyzmg small scale ﬂmd mechamcal details assoc:ated with

4.2
-mold filling, and tl‘gnr 1mpaot:on the molecu_lar orientation of injection molded parls.' Further

work with this technique is recommended in the following areas:

@ Rel‘moment of the model for predicting frozen-in flow birefringence. This calls for a

fully l‘;rzinsient and non-isothermal modeling of mold filling, as ogposed ‘to the

decoupled approach adopted in Chapter 5. The computdtional cost is expected to be

very large, and it m'a_lr necessitate furthaer improvement.of the numerical technlqde

itself, e.g. with the use of adaptive ﬁlaite _element.s in order to minimize the required

grid density for a given accuracy. '

(ii) Weldline formation. Application of the refined model to predict weldline strongth.
There is also the need for planned experiments on weldline formation anda better
under_stanc‘l'ﬁ';g of the physics of bonding of polymer-po]ymer interfacos: |

. L’ .-
(iii) Inclusion of compressibifity effects. This requires the use of an appropriate
. ) o

equatﬁn of state, and a viscoelastic model for compreésiblo fluids, ‘!(nd will enable .
thae investigation of the packing stage and the effect of packing pressure on the.

frozen-in (l})irefringenee.. Aénot.able area of application. is the manufacture of-

=3

o
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compact disks for which a 'coorlflinated attack by theory and ,expezjime'nt is highly = - -
desirable.

Considerations of morphology in semicrystalline polymers, thtee'dimensiohal

effect and complicated mold shapes.

e
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... APPENDIX A,

. The Finite Eléiﬁent Equations for u-v-p-h-8

-

Formulation of Free-Surface Flow - R

r
~

The Galerkin weighted residual equations for u-v;p-h-ﬁ formulation of free -surface

flow derived in Section 3.2.2 (eqs3.14-17) are:’ _
| (AD

RL':I {cpiRév-vv+vq»i-o-cbis"lg}dQ?[ n-o¢'de=0
Q an
o : . (A.2)
R = ] V.Vro' dQ =0
Q
. R =I n'VelEn=1)dé=0 . A3
. F.S.

i ¢ 2, e ' o o (A.4)
% = J_l(xﬁ+y§)ln=1dg— L, O+ Yelp=1 45 =0 o

The finite element basis functions $i(E,n) and ni(§,n) are defined in terms of the
local coordinates £-n over the parent element onto which the deformed elemént is mapped

isoparametrically. The 9-node quadrilateral and 6-node triangular elements used in this

work and their isoparametric transformations are shown in Figure A.1. The explicit form of

the finite element basis functions is given in Table A.1.
] The (x,y)«—(£,n) isoparametric transformation is (Strang & Fix, 1973;-

Zienkiewicz, 197T): |
N N

e, e (A5)
x=> Jd¢Em,  y=2 y¢den
j=1-. =t .

where xi,yi are the coordinates of the nodal points and N, is the number of nodes per element.

' ' 171



L

Figure A.1 9-node quadrilateral and 6-node triangulas finite elements and .their
' isoparametric transformations '
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‘Table Al Basis functions for 8-node and 6-nodz elements

9-node quadrilateral

4+

ol= j}(ﬁ;§2)_(ﬁ—n?1' cml= %_(1_9(1_,1)
@P= —Ii- (1-—5.2)'(r1—-'q.‘2) o = l—p +s:)u-q)i

cpl3 == % ;§+F,2)(r1—r12) .ns = ;}Tnad;m

¢4=-%(§+§2)(1—r12). -n"l= ';1{(1-5)(1 .

¢ = %(§+Ez)(r1,+l'?3
¢;= %(1—&2)(n+q2)
cpT = - l—‘(a— A +0?)
o' = - % €-£ha _1;2')

= 1-501-1)

ey

6-node triangular

¢'=1-36-3q +28 + 4fn+2n?
oP =4~k 2

P =28-¢
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" The evalpation of the integrals in the residuals and the cor::espoy&iing Jacobian
ent!;ies.is perform?ad with Gaussian quadrature over the parent element. "Area and line
_ integrals over the physical (x,y) domain are transformed—t;e'integrals in the computational

&) domam mth the aid of the follomng relatmns resultlng from the isoparametric map:

~ do= dx_dy | dE,dn (A.6)

* .

= &F+y; |r.=1ds ‘ A

where |J | =Xg¥n—Xgyg is the determmant ofth Jacobmn of the (x,y)<—>(E, n) transformation.

-

The limits of integration of the Ierkm weighted resxdunl equatlons are freed

from any dependence on free surface locatmn with eqs. (A.6), (A.7). Any such dependence of

derivatives in the ihtegrands can also be removed with:
_!’ .

a 1 ( a3 ) ‘
— = . (A.8)
x Wi\ ie .
: o a 1 ( 3 3 ) ) ’ (A.9)
- -- -y B\ThE Tey :

The isoparametriec map also offers convenient evaluation ofrthe unit normal and

tangential vectors to the free surface:

e (A.10)
. o2 + yH2
| 3R S
¢ = :t:‘iex+:,r§esy
- (A.1D)

The explicit expressions of the Galerkin weighted resid_uel equations and the
corres;;onding Jacobian entries are listed in Table A.2. These expressions were implemented
into a computer program that utilizes the frontal teéimique (Taylor & Hughes, 1981) to
assemble and solve the equations. 'The code consists of approximately 3500 FORTRAN lines.

Typical problem sizes and run times are given in Table 3.1 of Section 3.2.3.1.
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The Newton-Raphsoen iterative scheme was employed for the solution of the i

Lo
-

nonlinear algebraic set of equations. The frontal solver calls sequentially an element routine ) \

which evaluates the contributions of this element to the global Jacobian matrix and vector of !
‘residuals. The correctness of the Jacobian matrix is crucial for the Newton-Raphson scheme. i

A particularly useful way to check for the correctness of the Jacobian and identify possible

differentiation or implementation mistakes is to compare an element Jacobian matrix with

its finite difference analog. The element Jacobian J/1s:

)

‘ i yax) A.12)
(Je)ij = aReIaX.em ‘ (-

+r

iy

where Re and X, are the vectors of residuals and unknowns respectively at the element level,

- The Jacobian entries (d)j; are listed in Table A.2. The central finite difference analog of |

L

eq. (A.12) is: ' -

ieyi i ey i
Re(}(e + A){e)—l:le(}{'E - 4axX)

’,
(J). = — -
)

For a small perturbation AX, (e.g. AX.=0.001 X,) eq. (A.13) provides an accurate

{A.13)

approximation to the exact Jacobian. Comparison of (Je)ij and (J");; will then identify any

incorrect entries.
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Table'A.2 (continued) | : T |

x-Momentum Equation

1 1 : .
- - R - N - - - ._.l' .
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~"

3R 1 ¢l . : _ _ |
N || weslelraiah ety olrt, +o o) +Ree! gl +udrvel)

\ Wldgdn

R’ 1 (1 . . o |
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y-Momentum Equation

1 1 : =
i i (= L
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] i i
2o ] el naipiee, e
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e ~&' mhJ|ded
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. Cc;h.tinuitir Equation }A _ ( o
L] ) ! ) R l\ 1 . . . “
. i ;
T R - R = J-i I;I{u:-{-vy}n plldﬁdn"
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Kinematic Equation
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- Table A.2 (continued)
A ) ;
Free Surface Derivatives (w.r.t. 'hi. Similarly w.r.t. 8i.)
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