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DISSERTATION ABSTRACT

The quasi-steady gtate optimization of a single tubular
fixed~bed reéctor with a slowly decaying catalyst is considered.

A single irreversible reaction is considered with a rate
expressible as a product of separate functions of temperature, con-
version and catalyst activity. The rate of catalyst decay is also a
product of separafe functions of temperature, activity and conversion.

The boundary control variables are the inlet temperature, the
inlet fluid flow rate and the 1n1f1a1 catalyst activity distribution.
The temperature inside the reactor is considered either uniform along
the reactor axis or adiabatic. Upper and lower bounds are placed on
}hgﬁggundqry controls. The objective function which {s to be maximized
measu;gg?the total amount of reaction over a fixed operating period.

Theoretical characterization of optimal control policies is-
obtained primarily by using a weak form of the maximum princjp1e for
boundary control. ‘ ‘ B

Numerical results are presented to 1llustrate the optimal
policies for problems where no theoretical properties were fouﬁh.

The validity of a strong_form of the maximum principle for
boundary control of hyperbolic distributed parameter systems is
critically examined.
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CHAPTER 1
INTRODUCTION

A catalytic fixed-bed tubular reactor is one of the most common
types of continuous reactors used in the chemical.and petrochemical
process industry. One of the problems which is often encountered in
these heterogeneous reaction systems is that of catalyst deactivation.

For such processes, the relative cata)}st activity decreases
in chronological time to such a level that it either must be regenerated
or replaced by fresh catalyst.

This deactivation of the catalyst can be caused by many factors
such as the influence of reactants, products and by-products, impuri;ies
in the fluid stream and the reactor operating conditions. Although the
phenomenon of catalyst decay is a very complex one, it is usually possible
to express the rate of decay as a simple function of catalyst activity,
temperature and degree of cpnversion at any point inside the reactor.

Since the operating variables affect both the rate of reaction
and the catalyst deactivation rate, there has been much recent interest
in the optimal control of such processes.

Most work published to date has considered the optimization of
reactors with both uniform and non-uniform temperature policies varying
in time for which a profit function was maximized. A selection of some

of the publications which led up to our present study are discussed in

’ 1
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Chapter 2.

In most of the previods work however, the reaction-deactivation
system was described by sets of ordinary differential equations. Such
systems are referred to as lumped paramete} problems and the commonly
used mathematical tools in the study of these optimal control problems
are the classical calculus of variations and the maximum principle of
Pontryagin et al. (1962).

In case the system is described by a set of simultaneous part-
ial differential equations, the study of optimal control problems
becomes much more difficult. It is only for certain forms of the
system equations and for control variables which are functions of both
time and position in the reactor, that a maximum principle technique,
similar to Pontryagin's maximum principle, can be used.

In many physical systems however, control action can often only

be taken through the natural boundaries of the space x time domail. For

¢ @ catalytic reactor system for instance, such control could involve

the inlet conditions into the reactor as a function of time or the
composition of the catalyst bed at initial time.

For the boundary control of distributed parameter systems,
several researchers have also formulated various forms of a maximum
principle for optimality of the boundary control policies. Whereas
for certain optimization problems a weak formulation of the maximum
principle, which can also be derived from a first-order perturbation
analysis of the objective function, has been stated in the literature,

some authors also have stated a strong maximum principle for boundary
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control of distributed parameter systems. The validity of such a

strong maximum principle, which states necessary conditions for optimal-

ity similar to those of the strong maximum principle of Pontryagin and
to those which have been proven for certain problems with distributed
control, 1s critically examined in Chapter 4.

Up to date very 1ittle work has been reported for reaction-
deactivation systems where the deacti&atfon rate 1s dependent upon con-
version. To our knowledge, no sfgnificant analytical properties of the

optimal control policies have been published for such problems.

In the present study, the optimal choice of certain boundary
control policies for a reaction-deactivation, where the Tatalyst decay

is a function of conversion, has been examined. The boundary control

~ variables which have been considered are the inlet temperature into the

reactor, the inlet fluid-flow rate and the initial catalyst activity
distribution along the axis of the reactor.

-

Basically by means of a weak maximum principle formulation for

boundary control,. analytical properties of the optimal control policies

are derived. Numerical results are presented to illustrate features

of the optimal boundary control policies of problems for which no

analytical proofs were found.

Iﬁ Chapter 5, we discuss in detail the problems to be considered
and the quasi-steady state equations are derived.

The optimal inlet temperature policy is treated in Chapter'G
and special attention is given to the constant exit conversion property.

Chapter 7 deals with the optimal distribution of the initial
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catalyst activity, both for problems with conversion independent and
conversion dependent decay rates.
In Chapter 8, the simultaneous choice of the optimal inlet
temperature and the optimal inlet fluid flow rate is studied.
Finally, Chapter 9 summarizes the results and conclusions

obtained throughout the thesis.




CHAPTER 2

LITERATURE SURVEY

2.1 Optimal Control Theory

It is well known that for processes whose dynamic behaviour can
be adequately described by a set of ordinary differential equations, the
maximum principle of Pontryagin et al. (1962) can be profitably employed
as a mathematical tool in optimization studies. The major advantage of
using the maximum principle of Pontryagin in these lumped parameter
systems is that many characternistics of the optimal control policies and
optimal trajectories may be determined without solving the entire optimal
control problem. Although it may not always bé possible to fully charac-
terize the optimal control policy as an explicit function of the dependent
and independent variables, the results thus obtainedbcan often be employed
to reduce the dimensionality of the problem at hand and helg dev}se
simpler and more efficient algorithms to calculate a complete solution
of the problem.

Examples of optimization studies, dealing with chemical reactors
suffering catalyst decay, where these advantagés were successfully
explored can be found in the works by Ogunye and Ray (1968), Crowe (1970),
Lee and Crowe (1970}, and Crowe and Lee (1971).

»



2.1.1 Distributed -Parameter Systems

A large number of optimization and optimal control problems in

engineering processes, and in particular chemical processes, can adequately

be described only by systems of partial differential equations. For
such optimal control problems also called distributed parameter systems,
the maximum principle of Pontryagin ca; no longer be applied.

In the last decade, a considerable amourt of work has been done
on the various aspects of distributed parame;er control problems such
as determination of necessary and sufficient ;onditions for optimality,
observability and controllability, existence of optimal solutions and
computational methods. References to these and other topics can be
found in the survey papers by Butkovskii, Egorov and Lurie (1968),
Robinson (1971) and Gabasov and Kirillova (1972).

Early theoretical derivations of necessary conditions were done
by Butkovskii (1961a,b) for distributed systems expressed in gategral
equation form. An account of Butkovskii's work in this field‘can be
fqund in his book (Butkovskii (1969)).

The Mayer-Bolza problem for distributed systems was formulated
by Lyrie (1963a,b) anq necessary conditions were derived by variational
techniques. Similar results were obtained by Egorov (1964, 1965a,b)
for second-order hyperbolic processes and parabolic processes. Q/f nc-.
tional analysis approach was used by Katz (1964) to formulate a general
maximum principle which could be applied to first-order hyperbolic,
parabolic and even lumped parameter systems. In a sqbstantia] work on
the theory of distributed problems, in which the concepts of controll-

ability and observability were introduced, a general formulation of the
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maximum principle was also obtained by Wang (1964). The necessary
conditions obtained by Wang (1964), based on dynamic programming, are
similar to those of Katz (1964).

This general approach however, has not been adopted widely in
the engineering fields, mainly because of the difficulties encountered
in the implementation of their general results for specific control
problems.

Very recently, the functional analysis approach has regained
some popularity and both analytical (Yang (1972)) and computational (Chang
(1970)) efforts have been reported in the literature.

The results obtained by Katz and Wang were later also extended
for the case of boundary control by Brogan (1968) buf only for linear
systems.

Sirazetdinov (1964), studied the optimal control of processes
described by a quasilinear’first-order partial differential equation
with several independent variables but only one dependent variable. The

necessary conditions for optimality are derived in the form of a maxi-

mum principle both for distributed controls and control variables which

are a function of ong independent variable only. It is also shown that

+

this maximum principle is a sufficient condition for optimality in

linear systems. t/////'/’
A system of two first-order partial differential equations was

studied by Jackson (1966a,b). Although a more general form of the
integral to be extremized was used and only an unconstrained, unbounded

control vector was considered, a maximum principle formulation of
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the necessary conditions was derived by variational techniques.
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Volin and Ostrovskii (1964, 1965a,b) also derived necessary
conditions for optimality, based on the calculus of variations, for
uniform and distributed temperatdre control of fixed-bed tubular
reactors with decaying catalyst, but no bounds were placed on the
permitted temperature.

The most significant attempts to formulate a general maximum

principle and which are pertinent to the formulation of a maximum

.
RO

principle for the type of distributed problems we will study here, are

due to Chang (1967), Degtyarev and Sirazetdinov (1967) and Tarassov

(1968). In these works, a maximum principle, similar to Pontryagin's

a7
aomtran e o

maximum principle for lumped parameter systems, is formulated for

distributed systems governed by a set of simultaneous first-order

E partial differential equations and where the control is distributed

in both the time and space domains. Although these authors have used

slightly different formulations of thé system equations, their results

are comparable since their theoretical work is an extension of the

results obtained earlier by Sirazetdinov (1964). The necessary condi-

tions are also shown to be su;?icient conditions for optimality when

the system consists of simultaneous linear partial differential equations.
.In the case of boundary contro]vhoweVer, there is a discrepancy

in the resultg of these three authors. Whereas Chang and Tarassov claim

a maximum principle for boundary control, similar to the one obtained

for distributed control, Degtyarev and Sirazetdinov only derive necessary

g . conditions which result in a weak maximum principle. Whereas a strong
‘ -

-4
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form of the maximum principle requires a hamiltonian function to reach
an absolute maximum with respect to the control at the optimum, a

weak maximum principle only requires stationarity of the hamiltonian
function whenever the optimal control is unconstrained and specifies a
tocal maximum of the hamiltonian when the control is on one of its con-
straints. Degtyarev and Sirazetdinov further show that for the special
case where both the objective function and the state equations are
linear, this weak maximum principle becomes a strong one.

Ogunye énd Ray (1971a,b), following Jackson's (1966) methods,
also derived a generalized weak maximum principle which applies to both
distributed and boundary control problems.

A great number of other workers have derived necessary conditions
for systems of interest, either with theoretical analysis in mind or in
order to calculate the optimal control policies numerically. Varia- ’
tional techniques have been used to examine problems defined either by
general operators in function space or in more restricted specific
forms. A selection of papers of interest are: Denn (1966), Denn, Gray
and Ferron (1966), Jackson (1965, 19@7) Sage and Chaudhuri (1967),
Egorov (1967), Seinfeld and Lapidds’(1968) Paynter (1969), Chang and
Bankoff (1969), Volin et al. (1972), Holliday and  Storey (1973), Johnson
and Athans (1974), Bykov et al. (1973, 1924a).

2.2 Optimal Operation of Reactors with Decaying Catalyst

The optimal control of chemical reactors in which the catalyst

activity decays with time has been given quite some attention in recent
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years. A large number of papers have then also been published dealing
with various aspects of reaction-deactivation systems. A selected
review of the relevant literature up to 1970 can be found in the thesis
by Therien (1971). Ray (1970) also reviewed the reported optimization
work in this area up to 1970.

Therien (1971) studied the optimal distributed temperature

control in a fixed-bed tubular reactor for a single irreversible reaction.

Analytical properties of the optimal control policies were determined
from the maximum principle formulation of Degtyarev and Sirazetdinov
(1967). Results of this study have been published recently: Therien
and Crowe (1974) and Crowe and Therien (1974).

The optimal control of the temperature as a fupction of time.
ohly for a single irreversible reaction and for both fixed and free
final time problems has also been studied by Dalcorso and Bankoff (1972).
The optimal temperature policy for reversible reactions with deactivation
was numerically investigated by Haas et al. (1974) for an enzyme reactor
in\batch operation.

For optimization problems where control action is taken on the
catalyst, we mention the work of Miertschin and Jackson (1970, 1971)
wio studied the optimal catalyst life and optimal catalyst replacement
policies for both single and multiple bed tubular reactors. The‘;roblem

of choosing optimal initial catalyst activity distribution profiles has

also been studied by Ogunye and Ray (197%1a,b) and by Nishida et al. (1972).

Although in the above mentioned works, a wide variety of reaction

systems such as reversible and irreversible reactions, isothermal and

- -



- mta ———

11

non-isothermal batch and continuous reactors, were studied both as
lumped or distributed parameter systems, the catalyst decay rate
expression takes on a similar form in nearly all of these studies.
Follqwing the work by Szepe (1966), the rate expression for the catalyst
decay is chosen as a product of separate functions of one dependent
variable only. For the most general case, these independent variables
are: temperature, concentration or degree of conversion and catalyst
activity. The justification of using such a decay rate expression will
be dealt with in more detail in Chapter 5 of this thesis.

In most of the previous work cited however, the concentration
or conversion dependent factor in the decay rate expression has been
omitted. Indeed, very few results have been published to date for
reaction-deactivation systems where the rate of decay is conversion-
dependent. 5 {/’

Ajinkya and Ray (1973) used a weak form of the maximum principle
to study numerically the inlet temperature control of an adiabatic
axially dispersed packed bed reactor. The conversion dependency of
the catalyst decay is introduced in the decay rate expression through
the relationship between temperature and conversion for a single
irreversible reaction in an adiabatic reactor.

A preliminary study for the optimal inlet temperature control
of fixed-bed tubular reactors with decay rate expressions dependent on
conversion has been done by Jutan (1973).

In a numerical study dealing with the optimal operation of

fixed-bed tubular reactors where the control action consists of inducing
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propagating reaction zones both concurrent and countercurrent to the
fluid flow, Earp and Kerschenbaum (1975) considered in one of their
problems a catalyst decay rate expression which contained a conversion
dependent factor.

Bykov et al. (1973, 11974a,b), who formulated a strong maximum
principle for distributed parameter systems with distributed and/or
boundary control, also report some numerical results for reaction systems
with conversion-dependent decay rate expressions.

Employing variational methods, Pommersheim and Chandra (1974,
1975) also calculated numerically temperature policies for batch
reactors with conversion-dependent decay.

In a recent paper by Noda et al. (1975) a weak form of the
maximum principle for boundary control is used to calculate optimal
uniform temperature policies for a reaction deactivation system with
complex reaction kinetics. Calculated results are also compared to
experimental results for the dehydrogenation of isopentane where the’
chromia-alumina catalyst decays due to coke deposition.

Analytical results have recently been obtained by Crowe {1975)
who proved the constant exit-conversion proper%y to be optimal for a
reaction-deactivation system with separable kinetics and where the
decay rate is conversion dependent. These ré;;lts, which are an extens-
ion of the earlier work by Szepe (1966) and Crowe (1970) have only been

proven for the case of distri?uted temperature control.

\



CHAPTER 3

OPTIMAL CONTROL THEORY

3.1 Formulation of an Optimization Problem

We consider a process described by a set of simultaneous first-

order partial differential equatfons:

aXey * bix,, = fi(z,t,x,u) i=1,2,...n (3-1)
where x is an n dimensional state vector

x = {x;(z2,t), x,(z,t), % (2,8)) (3-2)

The subscripts t and z denote partial derivatives with respect to the indepen-
dent variables t and z. The coefficients a; and bi’ i=1,2,...n, are con-
sidered to be real constants. The vector function f = {f]’fZ""’fn} is
defined on the rectangle [to,tf] p [zo,zf] = I x E and is assumed to be at
least fwice continuously differentiable with respect to its arguments.
The vector u = {u](z,t), u2(z,t), ...,um(z,t)} is a bounded piecewise ~
continuous control on I x E.

In addition to (3-1), the associated initial and boundary conditions

for x are given by two vector-valued functions:

\

1

x(z,t)) = a(2) 5 x(z,,t) = 8(t) "(33)

13
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_wuhere “i(z) and Si(t); i=1,...,n, are piecewise continuous functions
of z and t and have piecewise continuous first derivatives with respect
to z and t along their respective boundaries of I x E. The components

of the vectors a(z) and 8(t) can either be specified or enter the problem

as boundary controls.

We introduce an objective function:

- \ TN / 5
Z¢ (b / ~ ’ A
J = [ J G[x(z,t), ulz,t)]dtdz ~

Z, to
tf

+J 6,[x(z,,t), 8(t)1dt
to
Zf

+[ 6,[x(2,t.), a(2)ldz (3-4)
%o

where G, G] and 62 are twice continuously differentiable functions with

respect to their arguments.

The optimization problem is then to dgxermine u, a and 8 in the
domain I x E such that the objective function J is maximized. The controls

will be constrained by upper and lower bounds:
Uy SUSU* ;qcaga*; B, ¢B g B* (3-5)

A1l controls u, a« and 8, satisfying the above conditions will be called

admissible controls.
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3.2 An Optimization Technique

We introduce the scalar Hamiltonian function H as:

LU w o T ]

H(z,t,x,u) = G(x,u) +

. xi(z,t) fi(z,t,x,u) (3-6)
i

1

The adjoint variables x = {Ai(z,t), Az(z,t)..., x (z,t)} must be deter-

n
mined from the solution of the following set of equations:

I ‘- }
3 * DAL, T - % i=1,...,n (3-7)

with the associated terminal and boundary conditions:

26, [x(z,t.), alz)]

N ajxj(z,tf) = axj(z,tff j=1,...,n (3-8)
and
o 6 [x(zpt), 80 3
J-;\j Zf’t) = v@ axj(zf’ﬂ J = ly...4N ( "9)

Sincedwe will consider problems where either aj or bj is equal to zero, the
boundary conditiqn (3-8) or (3-9) only applies when a; or bj is nonzero
respectively.

In a way éimilar to the maximum principle of Pontryagin et al. (1962),
the state and adjoint equations {3-1}, (3-3), (3-7)-(3-9) together with
the Hamiltonian function (3-6) allow us to formulate necessary conditions

for optimality.

e e

"



16

3.3 The Maximum Principle

From the work of Degtyarev and Sirazetdinov (1967), Chang (1967),
Tarassov (1968), Butkovskii (1969), Ogunye and Ray (1971a,b) and Therien
(1971), we summarize the necessary conditions for optimality as they apply

for our control problem (3-1)-(3-4).

3.3.1 Distributed Control

In order for an admissible control vector u+(z,t) to be optimal
(i.e., to maximize J given in (3-4))and subject to the constraints (3-1),
(3-3) and (3-5), it is necessary that the Hamiltonian, defined by (3-6),
reach an absolute maximum with respect to all admissible control vectors
u(z,t) almost everywhere in the domain I x E.

This strong form of the maximum principle can be expressed as:

v
i

iz, it 1%t 5 iz, ] o) (3-10)

S

where u is an admissible control and x+ and A+ are the solutions of the
state and adjoint equations using the control vector u+. The requirement

that (3-10) be satisfied almost everywhere (a.e.) on I x E means that at

any {z,t)el x E, the function H attains .its maximum value except possibly
on the set of (z,t)el x E whose measure is zero.

Similar to the necessary condifions of Pontryagin‘s maximum principle,
there is also a weak maximum principle for the distributed control problem.
This weak formulation gjveslrise to the following necessary conditions: in
order for an admissible control uk+(z,t) (k = 1,...,m), to be optimal, it

is necessary that




17

%
x
n
o

|

(3-11)
\

Q

Yy

at u: whenever the control is unconstrained, and that H reach a local
maximum with respect to the control whenever uk+ is on the boundary of

the admissible control region given by (3-5).

3.3.2 Boundary Control

A first type of boundary control in dist}ibutéd parameter systems
occurs when some of %he 9Qntro variables up which appear in the state
equations (3-1), are oq/a Tower dimensionality than the state variables,
i.e., uk(z) or uk(t). This type of boundary control is often referred
ta as "uniform control”.

A weak form of the maximum principle for boundary control requires

that for an admissible control uk+(z) to be optimal, it is necessary that

L
l Mgt -0 (3-12)

t

whenever uk+(z) is ynconstrained and that j fHdt reach a local maximum
with respect to the control whenever the control is constrained.

The above condition needs to be satisfied almost everywhere on
[Zo’zf] = E.

Similarly for uk+(t) to be optimal, the conditions

¢

—a'a-‘:dz =0 - (3—]3)

Z
0
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Zz

for unconstrained uk+(t) and r fHdz reaching a local maximum whenever

the control is constrained musioho1d almost everywhere on [to,tf] 2 1.

The second type of boundary control occurs when the control
variables appear in the initial and boundary conditions of the state
variables. For control variables of this type (a(z) and g(t) in (3-3)),
the necessary conditions from the weak maximum principle for boundary
control become:

for the boundary control °i+(z) to be optimal, it is necessary

that

aH,
_a_(_!_i s 0 (3-14)

for unconstrained ai+ and that

Hy = 6, + Ai(z,to) ai(z) (3-15)
reach a local maximum for constrained ui+(2).
Similarly for 8i+(t) to be optimal, it is necessary that
QH]
55" 0 (3-16)
i
' +
for unconstrained 8; and that
Hy = 6y + x4(z ,t) 85(t) (3-17)

reach a local maximum whenever Bi+(t) is constrained. .

The weak maximum principle for boundary control leads to necessary
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conditions which are similar to those derived from the weak maximum
principle for distributed control. Whereas for the case of distributed
control, the Hamiltonian function (3-6) is used, a boundary hamiltonian
needs to be defined for the boundary control problem. For the case of
“uniform confro]" where the control U is a function of z only: uk(z),

a boundary hamiltonian H is defined as:

te |
H = [ Hdt (3-18)

t
]

where H is the Hamiltonian function defined by (3-6). Similarly for the

case where the control is a function of t only: uk(t), the boundary

-

hamittonian H is given by: /
Z; :
H=1| Hdz (3-19)
2
0

Although the formulatidn of a boundary hamiltonian seems rather
arbitrarily chosen, Equations (3-15), (3-17), (3-18) and (3-19), it can
easily be shown that the necessary conditions for optimality formulated
by the weak maximum principle are identical to those obtained by consider-
ing a first-order perturbation analysis of the objective function. An -
illustrative example of a first-order perturbation analysis for a bound-
ary control problem is given in Appendix B.

The term "boundary control" will be used here to describe both
types of boundary control introduced above. Although we can see a
distinct difference in the form of the boundary hamiltonians given by

(3-15), (3-17) and (3-18), (3-19), there is no real difference between
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both types of control problems. Indeed, the first type of problems,

often c&lled "uniform control" problems, merely defiﬁes a proper subset

“of boundary control problems of the second type.

Consider a uniform control variable uk(t) which appears in the
set of state equations (3-1). By introducing a dummy state variable

X, ,4(z,t) we can eliminate uk(t) from (3-1) by replacing uk(t) with the

n+l
dummy state variable wherever uk(t) appears in the state equations. The
new state variable xn+](z,t) can then be interpreted as the solution of
the following partial differential equation:

axn+](z,t) _

57 0 (3-20)

with the associated boundary condition:

With 8n+](t) identical to uk(t), the "uniform" control problem has been
transformed into a boundary control problem where the control variable

appears in the boundary conditions to the state equations. An analogous

'procedure can be used to eliminate also the uniform control variables

uk(z) from the state equations.

Although such a transformation technique would allow us to deal
with one type of boundary control problems only, there are two major
disadvantages associated with it.

Whereas the solution of the added state equations, which deter-
mine the dummy state variables, is trivial, the addittonal adjoint
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equations which are required for the application of the maximum principle,
will in general be nonlinear and coupled with the set of n simultaneous
equations given by (3-7). For the example given above with the added
state equation (3-20) and after replacing uk(t) by xn+](z,t) in the
Hamiltonian fungtion (3-6), the (n+1)St adjoint equation will take the

form:

axn+1(z,t) . _ _oH ‘
3z

3Xn+]

with An+](zf,t) = Q.

In case the optimal uniform control policy uk+(t) is unconstrained
over a finite time interval (t],tz)c[to,tf], important characteristics
about the optihal control on this time interval can often be determined
from the necessary condition (3-13), un!ess the control appears linearly
in the Hamiltonian function. If the first partial derivative of the
boundary hamiltonian with respect to the control variable, does not
contain this control wariable, and vanishes over a finite time interval,
the control problem is said to be singular. The occurrence of singular
controls often leads to serious difficulties due to the fact that the
application of the maximum principle loses most of its attractiveness.
Because of this, many researchers have been studying the problem of
singular controls and necessary conditions for optim&fity of such
control policies have been developed. Most of this work however, was
done for lumped parameter problems where the state equations are ordi-
nary differential equations. A survey paper on singular problems in

optimal control has recently been published by Bell (1975). A detailed
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study on higher-order necessary conditions far optimality of controls
which satisfy Pontryagin‘s maximum principle has been published in a
three part review on singular controls by Gabasov (1971a,b,c).

For the problem described above where the uniform control variable

uk(t) has been eliminated from the state équatibns, the boundary hamilton-

ian for the transformed problem becomes:

Hy = Gy + a4 (z0st) 844 (t) (3-23)

Al

where Bn+](t) is the boundary control variable. Applying the necessary

condition (3-16) to this problem leads to the following control char-

< acteristics:
. + _ ¥
(i) Ay (Zgot) > 0=, (t) = 8 ()
s +
(i) An+](§Q,t) < 0=>g,.,(t) = 82+1(t) (3-24)

N

3 *
Bn+1 (t) < Bn+] (t)

»

(iii) An+](z°,t) = 04%;>82+](t)
.
Optimal controls consisting of parts (i) and (ii{’of (3-24) are called
“bang-bang" controls. Since the control is then &ete;mfned from the
sign of An+1(zo,t), the function An+1(zo,t) is called the switching
function. A total or partly singular control (iii) can exist whenever

An+](zo,t) vanishes on all or part of the time domain [to,tf].
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3.4 Existenceof-Optimal Control Policies

After dn optimal control problem has been formulated in terms
of the state equations with associated initial and boundary conditions,
we are often tempted to go right ahead and use the necessary conditions
of the maximum principle technique to calculate or determine properties
of the optimal policies. This route of action could be a very dangerous
one. The maximum principle technique provides us with the necessary
conditions which will indeed be satisfied by the optimal control policy,
but it gives no information about the existence of an optimal control
policy. Hence it is quite feasible that for a problem which does not
have an optimal solution among all possible admissible control functions,
there exist one or more admissible control policies which do satisfy
the necessary conditions of the maximum principle.

As practical engineers we are mostly interested in finding
the optimal control policy of a problem and we hardly ever investigate
the problem of existence of an optimal control in the given class of
admissible control functions. Since we. have formulated a "reasonable"
control problem, we often believe that it is then also “reasonable" to
expect that the problem has a sofution. Whether or not we agree with
statements as:"...it makes no sense to study a problem unless a solution
can be shown to exist." or "...it makes no sense to assume the existence
of a solution in a problem where there is none." (L.C. Young (1973)),
the fact remains that there are problems which, although they seem to
be reasonably formulated, do not permit an optimal solution in the given

set of admissible control functions (see L.C. Young (1969)). An example

- s, g B 1
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of an optimal control problem, where the subject of exisigpce plays a
very importaﬁt role, will be treated in detail in the next chapter.

It would of course be ideal to have a set of simple rules from
which existence of an optimal control for a given problem could be deter-
mined. Reality, however, is different and nearly all questions regarding
existence are complicated. In studies dealing with distributed para-
meter systems, one often will find that none of the presen;{y available
existence theorems are suitable for a particular control problem. More-
over, since we are interested in “practical® solutions (usually piece-
Wwise continuous contrq]s), we will frequently encounter problems where
existence of an optimal control can only be proven in a class of functions
which is larger than the class of piecewise continuous functions (e.g.,
measurable functions, relaxed or chattering controls). In order to prove
existence of an optimal controller, one often needs to place the problem
in a setting provided by the theory of generalized curves. A basic intro-
duction to the concept of a "generalized curve" can be found in the book
by its inventor, L.C. Young (1969). Existence theorems which make use
of the theory of generalized curves for lumped parameter problems have
been proven by Warga (1962; 1972); McShane (1967a,b); Lee and Markus
(1967); Cesari (1965); Halkin (1965); Rubio (1975). Most of the studies
done on existence,deal with linear systéms and very few have succeeded
in developing existence theorems for optimal controls which are in the
class of piecewise continuous functions (Halkin (1965)). It should also
be mentioned here that when we have a problem for which existence of an

optimal control has been proven in a class of functions which contain
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the admissible controls as a subset, we sometimes can employ some proper-
i ties of the optimal control to establish that the optimal-control function
is indeed a member of the admissible contrdl set. A particular case

where this technique has been successful is shown in the next chapter.

Y e

Since distributed parameter problems involve sets of partial
differential equations, the development of existence theorems in this
field has begun only recently. The most relevant results were first
obtained by Lions (1968) and his coworkers and by Cesari (1968). Since
then the field of existence studies for distributed control problems
has become more and more popular and very recently a total issue of a
journal has been devoted to this subject (see Cesari (1975)). The major

disadvantage is the complexity of these theorems which for most of the

results available to date use measure theory (Halmos (1965)) and the

concept of measurable functions in their derivations'(see for example,

Baum (1972); Cesari and Cowlest (1972)).

For all practical problems we will have to content aurselves
with finding the best policy which satisfies the necessary conditions
for optimality, keeping in mind that all properties derived from this

will only be valid when an optimal control indeed exists in the set of

; admissible control functions.
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3.4.1 Partial Differential Equations

One question which has not yet been discussed deals with the
existence and uniqueness of a solution to the set of first-order partial
differential equations defined in (3-1). In order to make certain that
the optimal solution to a control problem does indeed apply to the
physical system for which the state equations have been derived, the
mathematical formulation itself needs to meet certain requirements. This
is most commonly referred to in terms as: "The problem is well posed
in the sense of Hadamard". This means that for a g{ven set of initial
and boundary conditions (3-3) and a specified vector of admissible
control functions u, the set of simultaneous partial differential Equa-
tions (3-1) admits a solution for thé state vector x which is unique and
which depends continuoule on the data for each point (z,t)e I x E. The
set of state equations (3-1) is hyperbolic and is characterized by a set
of n characteristic lines passing through each point (z,t) in the domain
I x E. When all n characteristic lines are distinct in the whole of the

domain I x E, the system is called totally hyperbolic. A sufficient condi-

tion now for a problem to be well posed in the sense of Hadamard is that
it be totally hyperbolic (Courant and Hilbert (1962)).

Although we mainly will deal with problems which are totally
hyperbolic, we will encounter some problems where not all of the character-
istic directions are distinct. For these problems then we will make the

assumption that they are still well posed.




CHAPTER 4 a

THE STRONG MAXIMUM PRINCIPLE FOR BOUNDARY CONTROL :
T K_COUNTER EXAMPLE

4.1 The Maximum Principle for Boundary Control Problems

The strong form of the Maximum Priﬁcip]e of Pontryagin has been
successfully extended to similar necessary conditions for optimality of
distributed controls in a class of problems which are described by a set
of hyperbolic partial differential equations (Degtyarev and Sirazetdinov
(1967); €hang (1967); Tarassov (1968)). For the case of boundary control,
whegg the control variable enters in the boqndary conditions to the
partial differential equations or where the control is a function of
one variable only, Degtyarev and Sirazetdinov obtained a weaker form of
the necessary conditions. Whereas the hamiltonian must reach an absolute
maximum with respect to all admissible distributed controls, the boundary
hamiltonian only needs to remain stationary with respect to the control

in the interior of the admissible control region and must reach a local

maximum when the boundary control is constrained. A similar result for

the boundary control problem was also obtained by Ogunye and Ray (1971a,b),

but the authors express some doubt that the strong form of the maximum-
principle is a necessary condition for the boundary control case. A
weak maximum principle for smooth first-order distributed systems has
also been found by Johnson and Athans (1974) but they did not succeed
in fully developing second-order necessary conditions. N
y f
27

P s = & = o, B



28

A strong form of the maximum principle for boundary control
has been stated from time to time in the literature. The requirement
of a strong maximum principle to be a necessary condition for optimality
of boundary controls in hyperbolic distributed parameter systems has been
claimed by Chang and Bankoff (1969); Tarassov, Perlis and Davidson (1969);
Loviand (1972); Holliday and Storey (1973); Bykov, et al. (1973, 1974a).

The proofs given by Chang (1967) and by Tarassov (1968) for the
boundary control case are bath based by analogy on those for the distri-
buted control problem.

In the derivation given by Holliday (1972), the author comes to
the conclusion of a strong maximum principle, for both distributed and
boundary control of parabolic and hyperbolic systems, through a first-
order perturbation analysis.

For those boundary controls which appear in the state equations
as functions of one independent variable only, Lovland (1972), derived
a strong maximum principle for hyperbolic systems based on elementary
calculus only. For boundary controls which enter in the boundary céndi-
tions of the partial differential equations, the author only derived a
weak form of the maximum principle.

The strong form of the maximum principle for boundary control
has also been stated by Butkovskii (1969), Nishida et al. (1972) and by
Davis and Perkins (1972).

Out of all the authors mentioned above, Chang is the only one
who states in his dgrivations of the maximum principle, both for dis-
tributed and boundary control, the requirement that the directions of

the characteristics of the partial differential eahatigps should not
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coincide With those of the coordinate axes of the system. The question

! whether this condition is absolutely necessary for the derivation of his

proofs has not been resolved as yet. From the work done by Therien
(1971), we know that this condition does not have any effect on the
validity of the strong max imum principle for distributed control problems.
\ Since the proof for the boundary control problem, as given by Chang (1967),
is totally based by analogy on his proof'for the distributed control
problem, we have reason to question the necessity of the constraints
imposed on the directions of the characteristic lines. In conjunction
with the formulation of a strong maximum principle for boundary control,
several authors have indeed treated boundary control problems where some

or all of the characteristic iines were parallel to a coordinate axis

(Butkovskii (1969), Nishida et al. (1972) and Bykov et al. (1973, 1974a,b).

4.2 A Boundary Control Problem

We consider a specific problem described by

€.X, + xé K(k)(Y-x) (4-1)

17t

by + epu, = - k(1-x)"y (4-2)

where x(z,t) and w(z,t) are the disgributed state variables and k(t) is

a boundary control. The independent variables z and t are normalized:

o z €[o,1], t €[o,1].

' L a The functional K(k) is given by

K = AKP (4-3)

SR
]
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where A and p are positive parameters. The particular form of the state
Equations (4-1,2) relates to the optimal inlet temperature control of a
tubular fixed-bed chemical reactor with slowly decaying catalyst. It will
be shown in the next chapter that fquation (4-1) represents the rate of
change in conversion x for a first order irreversible reaction A » B.

The temperature dependence is represented by the Arrhenius function K.

The independent variable z relates to the akial distance inside the
tubular reactor whereas t relates to the real time on stream.

The parameter e is defined as the ratio of the mean space time
over the total operating time. Since € is very small for reactors with
slowly decaying catalyst, the quasi-steady state approximation can often
be used and the first term in (4-1) can be eliminated by letting & = 0.

For e, = 0, Equation (4-2) can be recognized as a rate expression
for the decay of the relative catalyst activity y. In order to formulate
a problem where the characteristic lines do not have tQ? same direction
as one of the coordinate axes, the term with € has beeﬁ introduced in
Eguation (4-2). Physically this would imply that the catalyst moves with
a veloci}y ) along the axis of the reactor. .

Although the physical significance of the symbols used in the
Equations (4-1,2) is irrelevant in the discussion of a counter-example
to the strong maximum principle for boundary control, it is {nteresting
to note that there are distributed parameter problems whose state equa-
tions are of this type.

From the problem described by the state equations (4-1,2) we

will now study in detail two particular cases:
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0. We will further refer to this problem as

Problem o

.

u
]

2° €

1T
4.3 Problem —T_IQ

e > 0. This case will be referred to as Problem

-

By iettiég € =€ = 0 in (4-1) and (4-2), the state equations

simplify to
&
K(k)(1-xDv

P
n

- k(1-x)"y

Yt

Initial and boundary conditions to (4-4,5) are specified as
x(0,t) = x_(t) 5 w(z,0) = v, (2)

where xo(t) and wo(z) are piecewise continuous functions and
0 < xo(t) <130« wo(z) < =

The admissible control region is defined as

U=tk < k(t) < K

§-4)

(4-5)

(4-6)

(4-7)

(4-8)
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The optimal control problem is then to find a piecewise continuous control
k(t)eU which maximizes the objective function P over all admissible

controls, where P is defined by

1
P = [ [x(1,t) - xo(t)]dt (4-9)

0

4.3.1 Application of the Maximum Principle for Boundary Control
For the boundary control problem (4-4) - (4-9), we define a

hamiltonian function H as
H=a K(K)(-x)e - u k(1-x)"y (4-10)

where the adjoint variables A(z,t) and p(z,t) are given by:

A, = - gg- = K(k)y - u kr(l—x)r']¢ (4-11)
ut=—%-=—xﬁﬂﬂm)+uﬂhﬂr (8-12)

with terminal and boundary conditions

A(1,t) =15 u(z,1) =0 (4-13)

The boundary hamiltonian H is defined as in (3-19) by

1
H= } Hdz (4-14)
0

It is possible t6 prove analytically (Appendix C) that for all

e e——
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values of the parameter p greater than 1, the boundary hamiltonian H

is a strictly con&ex function of k. Hence since H is a continuous func-
tion of k, H can only ;ttain its absolute maximum with respect to k
either at k, or K If an optimal admissible control k+(t) exists in

the class of piecewise continuous functions, the strong maximum principle
for boundary control then requires that the optimal control be piece-
wise continuous and constrained almost everywhere on the time domain

t efo,1]. -

4.3.2 quilalent Lumped Parameter System

By introducing a new state variable ¢(t) defined as

]
o (t) = l ¥(z,t)dz (4-15)

0

and letting xo(t) = 0 for convenience, the problem (4-4) - (4-9) can
be written as E?

1 .
max P = max [ f(e,k)dt (4-16)
k(t)eU k(t)eU o _
8 = g(4.k) . (4-17)

with the initial condition
T (

o(o) = ¢ _= J ¥ _(z))dz (4-18)
ood

The functions f and g in (4-16) and (4-17) will be called the "velocities"

s 1y et ¢ gt Pl v A AT b
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and are given by

f($,k) = 1 - exp(-K(k)¢) (4-19)

- b
9(4,K) = gy (1 = exp(-rK(K)9)) (4-20)

Equations (4-19) and (4-20) are obtained by substituting the explicit
solution for x from (4-4) into (4-5) and integrating (4-5) over the z-
domain.

In order to deal with the subject of existence of an optimal
controller, we introduce’ the concept of the extended velocity set as
used by Lee and Markus (1967). For our problem (4-16)(4-17), the

extended velocity set V(¢) is defined as
o %
V(o) = {f(s,k), glo.k)[ke s k sk} (4-21)

The set of parameters which will be used in the further develop-

A

ment has been chosen as

p=1.5

r=0.2

ke = 0.0 (4-22)
K" = 2.5265

A = .573364

% = 1.0

For the given set of parameters the extended velocity set 9(¢)

has been calculated for various values of ¢ and a graph representing the

et A i s
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]
points (f, -g) is shown in Figure 4-1. For a given value of ¢, the

velocity line has a sigmoid shape but loses its inflectiqn point as ¢
decreases. The point (0,0) in Figure 4-1 corresponds to k = k, where-

*
as point A corresponds to k = kK for ¢ = 1.

4.3.3 Existence of an Optimal Controller

Since V(4) is not a convex set with regard to the admissible
control values k, we introduce the concept of a relaxed or chattering
control. A relaxed controller, which can be seen as the 1imit of very
fast switching between two or more admissible control policies, has been
treated extensively in the literature (Warga (1962), McShane (1967a,b),
Lee and Markus (1967), Horn and Bailey (1968), Young (1969), Bai1;y (1974),
Fjeld (1974)).

Whereas a classical control policy k(t)eU allows us to reach any
point (f,g) in the velocity set V(¢), the main importance of a relaxed
controller in our problem is that the set of reachability can be extended-
to all points (f,q) in ‘the convex hull of the set Vis).

Since V(¢) in our problem consists of two velocity function, we
need two classical admissible control functions,k](t) and kz(t) in order
to obtain a relaxed controller. Suppose that for ¢ = 1 the points of
the extended velocity set which correspond to the values of k] and k2

are given by (f],g]) and (fz,gz). As illustrated in Figure 4-2, any

_point on the line connecting (f].—g]) and (fz,—gz) in the graph for

¢ = 1, can then be reached by using a relaxed control which is the limit

of very fast switching between ki(t) and kz(t). In a mathematical formula-

"

tion this means that for relaxed controllers the functions f and g in




-

*

—

S s b b S it e

36

AJ

0 .4 .8 1.2 1.6 2. -g

Figure 4-1: Graph of the extended velocity set V(s) plotted as f vs. - g.
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Figure 4-2: Graphs of the convex hull of V(¢ﬂ¢ -y and the set L of
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(4-16) and (4-17) can be replaced by

g(4,k)

respectively with 0 ¢ «(t) s 1. The functions a(t), k](t) and kz(t) are
then all parts of the relaxed control policy k(t). Since for k](t) and
kz(t) we can choose any admissible regular control policy, all points of
the convex hull of G(¢) are reachable by a relaxed controller.

Since the relaxed controllers include the classical control
policies k(t)eU as a subsét, we will denote the controls which correspond
to points (f,q) e §(¢) as classical controllers and thos:qcorresponding
to points (f,q)e coV(¢) but ¢ 9(¢) as pure relaxed controllers. If k](t)
= kz(t) = k(t), the relaxed controller k(t) is identical to the classical
controller k(t) and T and g can Ee replaced by f and g.

By appeal to a proof given by Lee and Markus (1967 ; Theorem 5,

pp 271-273) the existence of an optimal relaxed controller for our prob-

tem can then be\Bsserted.

4.3.4 Application of Pontryagin's Maximum Principle

A hamiltonian function Hp for the lumped parameter system (4-16)
to (4-20) is defined as

HL = -ff + YST (4"25)

with the adjoint variable y given by
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H i

-9

gif - 5;.5. (4-26)

and '
v(1) = 0 (4-27)

An optimal relaxed control policy E'+(t) then satisfies the maximum
principle for lumped parameter systems (Pontryagin et al. (1962), McShane
(1967b)) and the corresponding value of the hamiltonian H£+ remains con-

stant almost everywhere on the time domain. Using (4-27), H£+ is given bj

He' = K| = Fle(), KT (4-28)

Since f is a strictly monotonic increasing function of k, the maximum

*
k . Equation (4-28) can then be re-

principle requires that k )

written as -
+ *
Hp' = F(e(1), k) (4-29)

and since ¢(1) > 0 for all problems with finite final time, H£+ is
strictly positive.

By rearranging (4-25) as follows:
= Hy+ v(-g) (4-30)

the value of the hamiltonian H, {s given in the graph T vs. (-g) in
Figure 4-3 by the intercept of the f axis with a hamiltonian line going
through a point (¥,-g) with slope y. For an optimal control policy, it is

___-._.,...,,,
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necessary, in order to maximize Ht’ that for any given value of ¢,
the point {or points) of support (f,-g) in the graph which are lying on
the hamiltonian line, correspond either to the uppermost extreme point
(where k = k*) and/or the point (or points) of tangency of a hamiltonian
line with s]ogg,y, which is tangent from above to the set of points
(f,-g) in the gra;h. Furthermore, all hamiltonian lines, corresponding
to different values of ¢, have the point H£+ on the f axis in common for
the optimal control policy E*(t) (Figure 4-3).

Since HZ+ > 0 and through the gegmetry of the set of points
(f,-g) in the graph, the point of support (f,-g) at the optimum and for
any given value of ¢ is unique and belongs to the graph of points corres-
ponding to the velocity set §(¢) itself. The corresppnding o;timal
controller is therefore a classical controller. Since both f and g are
continuous functions of ¢ and k, for k(t)eU, the optimal controller
k+(t) will also be a continuous function and hence belongs to the class

of piecewise continuous controllers.

4.3.5 Properties of the Optimal Control

Property 1: An admissible control policy k(t) which consists of k(t) = k,

over a finite time interval cannot be optimal.

Proof:
, o

Since y(t) is the solution of the ordinary differential equation
(4-26) with terminal condition (4-27), y(t) i5 continuous, non-negative
and finite for all t e[o,1]. Because of the choice of k, = 0 (corres-

ponding to (f,-g) = (0,0) in Figure 4-3), the value of the hamiltonian Hy
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becomes zero whenever k(t) = k,. Since HZ+ > 0, k(t) = k, for a finite

time interval cannot form part of the optimal .control policy k+(t).

Property 2: The value of the function f remains constant over any

finite time interval where the optimal control is unconstrained.

This property has been proven for any value of the parameters p(p#1)
and r in the given problem (4-16) to (4-20). The assumption xo(t) =0,
which was used in 4.3.2 to simplify the expressions in the lumped para-
meter problem, can also be relaxed to xo(t) = constant. The singular
case where p = 1 has been omitted since it is of no direct importance

in this study. This property has also been proven earltier for a more

general class of problems with r = 0 by Crowe (1970). The proof of

4

N

Property 2 for r # 0 and p # 1 is given in Appendix D. AN

Property 3: The value of the hamiltonian HE at the optimum is a strictly

monotonic decreasing function of the final time tf of the problem.

Proof:

Let H1+(H2+) denote the value of the hamiltonian Ht at the
optimum for the problem with final time to(tc,) and lets* > H)'
(Figure 4-4).

A. Assume to, 3 te. (4-31)

Since H1+ > H2+, any optimal hamiltonian line originating from
H]+ has a point of support (f1+,-g]+) which is to the right of the point
*
of support (f2+,—gz+) whenever k2+(t) < k and coincides with (f2+,-gz+)
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*
when k2+(t) = k (Figure 4-4). This implies that
g9 <9, ‘ (4-32)
for all t e[o,thJ. From (4-17),(4-31) ana the fact that g+ < 0 (since

k'(t) > 0 for any problem with finite final time) (4-32) implies

From H]+ > H2+, y(tf) = 0 and the geomefry of the graph of the extended
velocity set 9(¢) it follows that

o)) > olte,) (4-34)

(see Figure 4-4 and Figure 4-1). Hence a contradiction which means that

(4-31) is impossible and we get
+ +
By > Hy = to <t (4-35)

B. Using identical arguments it is easy to establish that

+

.
This property also implies that for a fixed final time tf, the corresponding
value of the hamiltonian H£+ is unique and determines a unique Pontryagin
o~
policy k+(t). Although the Maximum Principle only provides us with necess-
ary conditions, the uniqueness of a Pontryagin policy for a problem with

any fixed final time makes these conditions also sufficient ones.
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Figure 4-4: Hamiltonian lines at the optimum for problems with different
final times.
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Property 4: There exists a critical final time tfc such that for any prob-
lem with a final time tf > tfc’ the optimal control policy is unconstrained

for a finite time interval.

Proof:

The hamiltShian Tine which is tangent to the graph of the velocity
set for % at the extreme point ﬁf,-g) corresponding to k*, determines
a value of th, (Figure 4-4), which is the optimal hamiltonian value

for tﬁé problem with tf = tf .

+ +
c Any value of H£ < Htc corresponds to

a problem with t; > tee (Property 3). The point of support of the optimal
hamiltoﬁT&n 1ine through H£+ with the velocity set at b is then to the
left of the uppermost extreme point and hence corresponds to a value of
k< k*. Property 4 follows then from the continuity of k+(t).

For our problem with'the given set of parameters (4-22) and

¢ =1, the value of tf can easily be calculated and was found to be

0
tfc = 0.68. Since from 4.3.1, the maximum principle for boundary control
required the optimal control policy for Problem]"]; to be constrained
almost everywhere on the time damain [o.th, any such problem with a final
time te which is larger than tfc constitutes a counter example for this

maximum principle.

4.3.6 Numerical Results

The optimal policy kH(t) for Prob]em]"Ts with the set bf para-
meters given by (4-22) and a final time te = 1.0 was indeed found to

contain an unconstrafned part over a finite time interval (Figure 4-5)..

c e ry sy # -
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2.0

Figure 4-5: Optimal control k' (t) and £7(t) for Prob]em]—];
with tf = 1,




| The value of f+ was also found to remain constant up to 5 decimals
accuracy (f+ = 0.82021) over the region where the control is unconstrained.
N The value of the objective function at the optimum was calculated as

p* = 0.543675 whereas for the best totally constrained policy k(t) = k*

i for all t e[o0,1], we obtained P* = 0.543037. The optimal policy was

first calculated from the lumped formulation of the problem by hill-

) climbing on the hamiltonian Ht using the following procedure:

1°: Choose a control policy ko(t).

2°: Integrate the state equation (4-17) forwards over the

time domain.

by 3°: Evaluate f (4-13) and the value of the objective function
P (4-16).

4°: Integrate the adjoint equation (4-26) backwards over the

time domain.

5°: Using the calculated solutions for the state and adjoin;/_\__\\v

variables, evaluate the hamiltonian Hz and the derivafive

al,/ak.

R 6°: Calculate

aH
k(t) = k() +ngd U= 12,00 v (8-37)

. where n is a positive parameter. Set ki(t) = k*(k*) whenever (4-37)
results in k1(t) > k*(< Ke). Return to point 2°. This iterative

procedure can be halted when either the increment fn the valua of the

hlca s



g

I

ey
e ——
- .

-

L 4
Fal

48

Figure 4-6: Characteristic 1ines for Problem] ..
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objective function becomes very small or the new policy ki(t) is
sufficiently close to the previous one k; ,(t). A third-order Runge-
Kutta method was used in the integration of the ordinary differential
equations. The value of the objective function P was calculated from
(4-16) by using the trapezium-rule. The time domain [o0,1] was divided
into 40, 80 and 100 equal intervals and the accuracy of the results
increased with the number of intervals.

At the optimum, the value of tha hamiltonian was‘constant up
to 5 decimals (Ht'+ = ,20914) and tha first derivative of Hz with respect
to k over the unconstrained region was of the order 1079 t0 10719, The
calculated policy k+(t) corresponded to a maximum of the hamiltonian H,
since tha second derivative of "L with respect to k was negative and
varied from -.25 to ~.17 over tha unconstrained region.

The sama control policy k*(t) was also obtained indepandently,
with thg samoe accuracy, by hill-climbing on the bound&ny hamiltonian H
in the distributed version of tha problem. For-the integration of tha
partial differential Equations (4-4), (4-5), (4-11) and (4-12), wo make
use of tha moethod of characteristics. Since‘ypa characteristic lines 5
and So for Problem]‘]; are orthogonal and parallel to the coordinate
axes (Figure 4-6), tha state and adjoint cquations can be integrated as
ordinary diffareﬁi§a1 cquations in tha z and t directions. The calcula-
tions are done in a sequence similar to the procedure dascribed above,
for tha lumped case. Since tha state and the adjoint equations are
coupled, an i{terative tcchnique has to ba used in order to calculate

tha state and adjoint variables at cach grid point. Tha z x t domain

- e R e
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Table 4-1: Calculated values of the objective fuﬁZtion in the lumped
and the distributed case for the optimal policy k+(t) and
the constrained policy k(t) = k*.' The parameter n equals
the number of intervals in which the time domain was
divided in the lumped case and the grid size (n x n) in
the distributed case.’

n Policy Lumped System Distributed System
40 K (t) .5436726 5436696
K" 5430358 .5430361
80 k() 5436749 .5436743
K 5430371 5430373
100 k' (¢) 5436751 .5436748
K" 5430371 5430374
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Figure 4-7: Optimal control k*(t) and fﬁ(t) for Problemﬂo with

te = 2.
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was divided into grids of 40 x 40 , 80 x 80 and 100 x 100 equal squares.
The accuracy of the results again increased with the number of grids.
For the smallest grid size (100 x 100), the calculated values of x+(1.t)
were indistinguishable from those of f+(t) in the lumped case.

For the optimal policy k" (t), the boundary hamiltonian H
remained constant (up to 5 decimals accuracy) over the unconstrained
reglon (¥ = -.20371) and the first derivative of H with respect to k
was of the order of 10", The boundary hamiltontan however, reached a
minimum at k+(t) and the value of the second derivative ranged from .07
to .05 over the unconstrained region.

The bast totally constrained policy k(t) = K for all t e[o,1]
also violated the strong maximum principle for bdundary control in that
all/ak was definftely negative for a finite time .interval. For instance
at t = 0, 3l/ak was equal to -.05 for the totally constrained policy
and was 1.107° for the optimal policy k+(t).

Table 4-1 gives a summary of the calculated valuas of the object-
ive function for both the lumped and tha distributed case with the varidzs
number of intervals used in the integration.

For the same problem, but with tha final time tf = 2.0, a similar
optimal control policy was found (Figure 4-7) and the difference jn the
values of the objective function was larger: pt - 0.3146026 ; P* -
0.3110862.
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\
4.3.7 Pseudo Relaxed Control

In the discussion under 4.3.3, we have seen that by introducing
relaxed controllers in the lumped parameter problem, the velocity fuﬁh—
tipns f and g can be replaced by “effective velocities". These "effective
velocity functions™ are defined as a convex combfnation of velocities
which can be reached by classical controllers. .

The congept of a relaxed controller can now be extended to
distributed paramater problems both for distributed and boundary controls.
Restricting ourselves io the study of boundary control problems, a -
relaxed boundary control can again be defined as the limit of very fast
switching between two or more admissible classical boundary control
policies. For the boundary control. problem with state equations (4-1)
and (4-2), we can define the right hand sides of these partial differen-
tial equations as “velocities'. For a relaxed boundary controt, ERQ&Q
valocity functions can then pe replaced by "effective velocities". For'
example, tha state equations (4-1), (4-2) for a relaxed boundary control

bacome:
optg + x,, = a(t)Kliky)(1-x)y + (1-a(t))klky) (1400 (4-38)

by + 00, = = Lalt)ky (1=x)y + (1-a(t))ky(1-x)"4] o (4=9)
\ , (
whereAbl(t) and kp(t) are admissible boundary controls and a(t) ft\a
plecewise continuous function of t with 0 ¢ a(t) g 1.
Since K(k) and k appcar 1incarly in tha state equations (4-1)-

(4-2), wo can rearrange (4-38) and (4-39) as follows:
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Figure 4-8: Graph of the control set W(k) and co W(k) with parameters
given by Equation (4-22).
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opxg + %y = (alEIK(ky) + (-alt))K(ky)) (1) (4-40)

by * 0ug = = (a(thky + (1-a(t))k,)(1-x)"% (4-41)

%

The relaxed control can ba denoted by (K,k) where

R = a(t)iky) + (1-a(t))K(ky) | (4-42)

K= alt)k, + (1-u(tf)k2 (4-43)

By defining tha control set W(k) as

4

W(k) = (R(K)ok | Ky 6 K < & (4-44)

it follows from (4-42) and (4-43) that any relaxed control (K,k) belongs
to the convex hull of W(k), (Figure 4-8).

Since the state equations of Prob1em]‘]; (4-4) and (4-5) are
derived from (4-1) and (4-2) by letting 0 "o, " 0, 1t would secm

reasonable, at least at first sight, to define a relaxed boundary con-

troller for Problem]"Tb.' Howaver, as wo will show, this relaxed bound-
ary control for PEBbchT'B is not feasible.

Let us first consider the state cquation (4-5). S¥nce the chara-
cteristic lines S, for this partial differeﬁtia[ cquation are parallel
to the t-axis (Figure 4-6), tha rate of change of ¢ along tha t-direction
{s {dentical to tha rate of change of y along tha charpcteristic direc-
tion s,. (Note that this is not the case for tho ganeral equation (4-2)
whan o, # 0). W will refor to the right-hand side expression of (4-5)
as thﬁ "valocity of v along t". Let k;(t) and ky(t) bo two admissible

classical boundary contrei functions which are defincd over a finite
y

R
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. open time interval (t,,t,) c[o,1]. A particular relaxed boundary control
172

can then be constructed on (t].tz) in the following manner:

1°: Divide the open interval (t1.t2) into an even number of

equal open sub-intervals Ati, 1=1,2,....n.
2°: Defina a control fungction ko(t) as
{
k](t) on at, for all odd values of 1 < n

kolt) =S

» ] v
« Lka(t) on aty for all even values of 1 ¢ n

Over tho time {nterval (t)s%,)s the control ky(t) 1s at Ky (£)(kp(£)) for

a finite time interval Ati and thon switches instantaneously to the

other control kz(t)(k](t)) Accordingly the velocity of y along t is

characterized by tha same number of switches batwcen - k (I-x)r¢ and

- kz(l—x) v on (t],ta) Ko now repcat the procedura 1° and 2° for

cach open time intorval At‘. {=1,2,....n. By rcpoating this for cach

newly croated set of opon time intervals, a sequence of control functions

ko(t) is obtaited. Tha number of switchas batween kg (t) and ko (t)

increases and tho time spent on ofthar control lovel before a switch

occurs, decreases as tha sequance of controds kn(t).is formed. Similarly

the velocity of ¢ along t switches back and forth batween the Qﬁ& )

‘*A velocity levols at an ever increasing rate. In the }imit. tha frequency
of switching becomas 1nfinite_3nd tha scquence of cantrols k (t) converges

. “to a ralaxed boundary control K(t) as defined by (4-43). The value of

: .. . - - v ug v - s,
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the function a(t) depends on the way the intervals were divided in
step 1° and on the type of deffnition given for ko(t) in step 2°.
The velocity of y along t then also switches infinitely fast between

- k;(l-x)rw and - kz(l-x)rw ov;i\khe open time interval (t].tz). Hence
the effective velocity of v along t bacomes - K(1-x)"v over that time
interval.

The influence of a relaxed controller on the velocity term in
Equation (4-4) is different however. Indeed, since the characteristic
1ines sy for this partial differential equation are parallel to the 2z-
axis, the right-hand side of (4-4) expresses the velocity of x along z.

This means that the frequency of switching in the sequence of controls

ko(t) does not have any effect on this velocity term since the value

'of the control remains constant over the whole z-domatin [o,1]. For the

general Equation (4-1) with 8 # 0, the velocity term includes a rate .
of change of x in the t-direction and‘switching of this velocity term
would occur since the characteristic linas for this state equation would
indeed be cut by the lines along which the control is discontinuous. A
relaxed controller thch resalts in effective velocity functions as given
{n (4-40) and (4-41) is tharefore not feasible in Problen| [ .
Neverthaless, wa will investigate the influence of a relaxed
boundary controller on the performance index P in'ProbiemT—Ig anyway.
Although this might seem to ba absurd, the tmportance 6f th{s will
become relevant in the disdusston of the ralaxed controllers for Problem
Tl which will be dealt with balow. Since for Problem| [,v the relaxed

controller {s not realizable, wo will cail it & psoudo-relaxed controller.
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Since the boundary hamiltonian for Problem]~]; is a strictly
convex function of k, we will consider a pseudo-relaxed control which
chatters between the upper and lower constraints k* and K,. “With
ke = 0.0, the pseudo-relaxed control (4-42) (4-43) can be written as
K = a(t)K(k ) s k= a(t)k . Substituting-these iAto the equations
for the Tumped parameter system (4-16) to (4-20) gives

f(a¢,k:3 2 1 - exp(= aK(k)¢) . (4-45)
* _k* *

ad .k ) = 1 - expl-raK 4-46

glag,k ) ;"EZI‘)‘ exp(- r a Kk )¢) | (4-46)

where a(t) is now the control variable with 0 ¢ a(t) ¢ 1. The xglocity
set Vﬁ defined as

X

Va(#) = (£ as k"), glag,k™)[0 ¢ a € 1) (4-47)
s then for all values of ¢(0 ¢ ¢ ¢ 1), a subset of the set L of end-
points corresponding to k = K" of the extended velocity set ¥(¢) given
by (4-21). As {llustrated tn Figure (4-2) for ¢ = I(VR(¢)1¢,] 3 L),
the pseudo-relaxed contrqllers are infeasible since tha only points of
the graph of VR(¢) which are contatned in the graph of the convex hull -
of V(4) are those corresponding to o« = 0 and o = 1.

Applying Pontryagin's makimun principle to éhe pscudo-rolaxed
control problem, assuming that an~opt1m$1 pseudo-rataxed -control policy
exists. allows us to establish the following property of tho optimal
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a+(t) ¢*(t) = constant on any finite time interval

(tysty) c[0,1] where 0 < a'(t) < 1. (r#1).

: Proof:
| From the expression of the hamiltonian Hp
| * k* *
o Hp = (1 - exp(~ a K(k )¢) = =L (1 - exp(- r a K(k )¢) (4-48)
. r Kk )
iy
with
v d * * * *
qr - o Kk) exp( - o K(k )¢) + v k aexpl-r a Kk )¢) (4-49)

and y(1) = 0, we obtain

“ %g-a K(k*)¢ exp(- a K(k*)¢ - y(* ¢ exp(-r a K(k*)¢)= 0 . (4-50)

on (t,.tz). ,
Making use of (4-49) and (4-50), wo also get <i\;

S @)« RN expl= o k(K ) Lt = 0 (4-51)

on (t].ta). Honce it follows that for r # 1 the praduct a¢ = constant
at the optimum. Q.E.D. —
From the definftion of f {n (4-45) wa also have that the value of
" f romains constant ovaf tha tima interval where the optimal cantroi '
- policy u+(t) s unconstrainad. '
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at(t) (1)

.64 L. 6

q t ]
Figure 4-9: Optimal pseudo-relaxed control @;J(t) and
' corresponding £hie) for pmb!cm]‘]‘o.
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The optimal policy a+(t) has been calculated for the pseudo-
rglaxed problem with the same paramoters (4-22) and with ¢ ™ 1.0,
tf = 1.0 (Figure 4-9). The corresponding value of the objective function
PR+ was found to be considerib]y larger than the optimum for Probleﬁ[’TQ:
PR+ = 5593447 compared to P‘ = 5436751 from Table 4-1.

mapmm%T;

For éhe problem with state equations
ex, + X, * K(k)(1=x)v (4-52) .
N byt ey, - k(1-x)"p ‘ (4-53)

the characteristic lines s, and s, are straight lines in the 2z x t domain
which for small values of e form angles of tha ordar of e radians with
rospact to thé coordinate axes (Figure 4-10). Wo assume e < §. The set
of ordinary differontial equations which dascribes the systemQQTung the

characterisggc Yinas ara thon

%%3 - K(K)(1-0)y o o es)
d . | .
R - (s

and’ appear to ba. idontical to those for Pﬁoblem]‘];. Tha major differ-
cnce howover 1s that tha control k doos not rcmatin constant along the
charactaristic linas sy, since thay ara no longor parallel to the z-axis.
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1
As a raesult of this, Prob\em]~1; cannot be transformed into a lumped

paramoter problem and the existence of an optimal boundary control in

the class of piecewise continuous functions cannot be establishad by

lumping the problem.

In order to simplify the computational algorithms and the
theoretical analysts in the study of this problem, the initial and bound]
ary conditions to (4-52) and (4-53) are defined as:

xo(t) for t elo,1-8]

x(o,t) =
1 for t e(l-a,1]

A

2y
MY

x(z,0) = 1 for ia[o.l] ‘ (4-56)

. wlo,t) = 0 for t e[0,1]
] ¥(2) for 2 efo,1~e] ¢

v(z,0) =
0 for 2 e(1+«0,1]

whera xo(t) and wo(z) are piecewise.continuous functions and

0s xo(t) €1i0¢ wo(z) o : (4+87)

Stnca any discontinuity in tha state variables {s carried through along
the characteristic lines, the advantage of this choice of‘jntt1a! §nd
boundary conditions is that tha only regfon of interast in tha whole z x ¢t
domatn 1s enclosed by tho characteristic 1tnes s, and 8, going through tho
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SR -
points (0,0) and (1,1). This domain of interest will be donoted as the
§y X sp domain where 5 varies from 0 to S1f and Sy varties from 0 to
Sa¢ (Figure 4-10). In the remainder of the whole z x t domain, the right-
hand side expressions of (4-52) and (4-83) are identically zero, The
initial and boundary conditions which have been spocified along the co-
ordinato axes can therefore be carried over without changa along their
appropriate characteristic directions to form the‘initial and boundary
conditions for the S X 8, domain, |

The admissible control region is again defined as
, *
P U= (k| ke's k(t) ¢ k) (4-58)

- Tha eptimal control problem is thon to find a piecewise continuous control
k(t)eU which maximizes tha objoctive functign P over all admissible

controls, whare P ts dafined by

‘ .
P I [x(1,t) = x{o,t))dt (4-59)
-Q

4.4.1 ’Appjication of the quimum Principle for Boyndary Control
‘The. boundary hamiTtontan for Problen] [, 1s dofinad as

t

9 . |
e I Kz S (4-60)
0

- whare
:

B KOOk = ukQ=x)e) - (4-61)

T o AT -
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Although some authors use different formulations for the hamilton-
1an function (Chang (1967), Tarassov (1968), Butkovskii (1969), Lovland
(1972)), the definition of the hamiltonian as given in (4-61) is equiva-
lent to the other forms with the exception of terms which are not explicit
functions of the control. <

The adjoint equations are

aA + A, ") Klk)p - ukr(1—x)r"w (4-62)

ugt @ uy = = A K (1-X) + uk(1=x)" (4-63)
with terminal and boundary conditions

A1t =1 s a(z )= 0
. {4-64)
u(l,t) = 04 u(z,1) = 0 .

Since the characteristic linas for (4-62), (4-63) coincide with those
for the state equations {4-52), (4-53), the adjoint equations can also be

written as )
i
¢
g%\. o 3 KK = ke (1=x)"™ Ty - (4-65) '
dp \ r
; = < & K(k)(1=x) + uk{1=x) [ (4-66)

e

Bacause of tha definition of tha {nit{al and boundary conditionﬁ (4-56),
the adjoint varfables A and u do not undorge any change outside the 8y X
89 domain and hence tho‘termiﬁa] and boundary condi%iqps (4-64) can be
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carried along their appropriate characteristic linas to form terminal
and boundary conditions to (4-65) and (4-66) of the 5 X s, domatn.
Since the 51 X sy domain {s tha only region of interest, it is aiso more
convenient to formulate the objective function P between the initial and
final points A and B of tho characteristic line sp At sy¢ (Figure 4-10):

B )
P = X . - 4-67
[ (SH: 52) xo(Sz)adsz ( )
A A
N 4
Ne must realize of course that in the s, x s, domain, the boundary control

k(t) becomes a function of both S and S since the linas along which k
remains constant are no longer parallel to the s, characteristics. Any
given policy k(sl's2) needs then also to bo specified along tho two
‘boundary 1inas of the Sy XSy domain where s = 0 and S5 ™ Spg rospect-
{valy. Whareas the hamiltonian function (4-61) remains unchanged, the
boundary hamiltonian H noods to be evaluated as the integral of H along
the lines where the control rcmains constant.

.+, As- was tha case for Problen] [, 1t s sti11 possible to prove
analytically that, for the case p > 1, H {s a strictly convex function
of tho bound&ry contral k (Append1§ E). In case an optimal piecowise
continuous control exists for Problem]"];. the strong maximum principle
thon again requires the optimal control to be tgtally constrainad almost
averywhere. A
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4.4.2 Numerical Results

For the integratfon of the state and adjoint equations, a grid,
formed by intersecting characteristic lines 5 and 52, s constructed in
;he Sy X S, domain. Since for a given boundary control policy, the
control k(s‘.sz) can be calculated at each point of the grid, the inte-
gration of the Equations (4-54), (4-55), (4-65), and (4-66) can be carried
out in the same way as 1n)Prob1emI-];.

. . w

For different values of e, the value of the objective function P
corresponding to the totally constrained control k* was compared to the
value of P obtatned from an arbitrari]y‘ghosen partly unconstrained
control k(t). The set of parameters usod was the sama as for ProblcmT'];
with xo(t) = 0, wo(z) « 1 and te = 2.0, The partly unconstrained policy
k(t) was chosan as tha optimal poficy k+(t) for the sama problem with e = 0.
The results aro tabulated in Table 4-2. |

From the valuos'of‘P* and P in Table 4-2 follows:

3°: The totally constratned policy k* is not optimal since
there exists at least one partly-unconstrained policy

for which the objectivae function 13 larger than P*.

2°: For a given admisstble control policy and decreasing values
of o, tha value of tho objoctive function convorges smoothly
to the valua of P corrasponding to the samo control policy
in Problem]'];. This could also be oxpected from the fact
that tho state oquations along tho characteristics for
Problen] [, ara fdentical to those for Problcm]']; and by
noticing that the $1 X 89 domain convergas smoothly to the
2 x t domatn as e = 0,

P

R e amh s
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Table 4-2: Values of the objective functions P* and P for the
totally constrained policy k* and the partly uncon-
strainod policy k+(t)|e_o as a function of e.
0
0 p* p
.150 2813123 . 2827461
128 2856542 2872087
100 . 2900707 . 2919824
075 2948736 2970871
" .060 ", 2999754 3025444
@0 T 3042804 3071797
.020 . 30656097 3095913
Q010 . 3087916 3120667
0.0 3110862 3146026
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From these numarical results it follows that, for the case where
tho charactoristics are’not parallel to the 1ines along which the control

would remain uniform, ProblmnI*]; would constitute a counter-example for

the strong maximum principle for boundary control 1f both of the following ,

statoments could be made:

1°: Thora exists an optimal plecowise continuous control
k}cwu. ‘ .

5?: k(t) = k* {s tho best totally constrained policy.

With regard to this second roquiremont, we can show rathof%oasily that a
totally constrained control where k(t) = k, » 0 over a finito time interval
(t)1ty) c(041] with t, - ty > @/(1+0) cannot bo optimal. Indoad, from
(4-54) and tho goomotry of the characteristic 1ines fn Figure 4-11, this
would imply that over the finite tima interval at © (t] + a/(e+1), t2).
tho contribution to the objective function {s zero. The value of the
objective function then could be 1ncroaso§ by latting k(t) » k* on at.
Howaver fn case ¢, = t) < o/ (1+0), the characteristic 1ines 3, which

cross this timo interval insido the 5) X 8 domatn bécoma only partly
fnactiva and the contribution to the objoctiva function romaing positive
(Figure 4-11}. flance the case whora a totally constrained control remains

. L]
zorq over a tima intorval by =t € o/(1+e) noeds further {nvestigation,

)

'Fui1ura to realiza this carlier resulted in an error {n the d1scusiion
of the problem with nonorthogonal characteristics in our paper (Gruyaert
and Crowa (1974)).

R P e = T Q\%‘*ﬁwﬂ;{"‘l‘ e - o - .
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Figuro 4-)1! Partly fnactive characteristics and rogion of total

thactivity for k(t) = 0 ovor a finite ttma/ tntarval
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4.4.3 Relaxed Boundary Controls

L3 Since for Probleml']; tha charactoristic lines 5y are not para;
11el to tho lines along which the control varfable remains constant, it
follows from the discussion undor 4.3.7 that a relaxed boﬁhdury control
(R,K) as definad by (4-42) and (4-43) bocomos a feasible controller.

Since tha boundary hamiltontan for Problch_Tg was shown to be strictly

convex with respact to k, wo will consider a relaxed controller which

chatters botwoon the constraints k* and k*

Consider now a particular type of bang<bang control policy which

«is constructed as follows:
1) Define
. * . P
K(t) e ¢ | '

LY

2) Lot '
( - tg) » (‘a = ttl

/‘ 3) St-wttng at t‘ . 0, ropaat 1) over N consocuttvo timo
tatervals [t,,&a)« Cﬂf l@(‘ts-tl-).)h.. .
4) Daﬂno‘ | ‘ i | “
k(t) « K for t eth;a t .13 /‘\F
" A sequence of such bang-tiang cenml golims, dattnad on [0,1] for

&\_dncmasmg valuos of (ta t,) and mi:rcasing valuas of N then cenvmcs

'l’ *

J ' N ¢
v /. .
s
A 1 ' .

PP

[ NP U
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to 2 relaxed controller in the limit as (t, - ty) > 0and N+ o,
For the given Problmn]‘]; with &, = 2.0, calculations have beon
done for a sequence of bang-bang control poticies of this type. In order
to obtain tha best accuracy in the nuhcricgl integration, a grid is con-
structed in the sy x s, domain by dividing tha s, characteristic into n
pqual parts and dividing the total time interval [o0,1] into m equal time
intorvals at. It is most convaniént to choose m as a multiple of n:
m=n x q where q is an integer and to choose @ such that q(e/1+e) = 1.
Thts has the advantngo that all points of 1ntorseétion of s, and So
characteristics lie on lines parallel to thé z-axis and that all sections
of the 51 ¥ sp. domatn enclosed by the Sa characteristics afd thu horizontal
1ines threugh two consecutivo grid points of tha t-axts are *dontical
‘This grid structure for n = 4 and q -,10_(3 = 1/9) 1s illu;trated tn
F?ghra 4-12. By choostng then the timo interval (t, = &), over which
_thq_bang h&ng cgatro\ potjéy ramatng at one of theféonstraints. equal to &
a nultiple of A@; tha tptngrgtion‘of tho state equations can ba carried
out for consocutiva hortzontal sections. For cach section &% whare
k(t) = k, mtegrauon pmceeds 1n tha novimal fashion glong tha chavacter-
tsttcs "‘l and sa. For the sccttens At whm*q k(t) = k, = 0, the values of
the statn variables x and ¢ aro carried a atr apgmpriate tcharact.er-
tstics mthout chm\ga. R - - . |
calnulmens have beeh dene far tha casq \mn o 1!9 emd tho grid
’sgmctum negand e 20 stm ‘fran 4.4, a. 2 eantvomr ehara (t, ~ ty) »
,\em*a) cannot ba uptim!. amy easos wtth (ta - t‘) ¢ 0,1 will bo cons tdar-
cd. Tho numarical rosutts are. Msted i Tatgl,n 43, In ordor to moke ay
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Table 4-3: Valuo of the objoctive function for a soquence of bang-

bang control policies with e = 1/9,

Grid size (t, = t) N p
n . .

ry 8 | 4 2886567
gl P
1 'SWSK%‘
075 5 . 3034842
3 . 3136044
t 1 . 3029543
T | i
2 ‘.'3‘6‘3%’8\‘
0375 10 . 3003995
? - . 3160409

4 ,
=T | e
3 * 3082089
0125 S 3116633
© .28 ‘3160260,
10 . (3113008

- donttoucd

N




Table 4-3: Valua of tho objective function for a sequence of bang-
' bang control polictes with ¢ = 1/9 (conttnued).

Grid size (tz - tl) N e P
n - :
20 .01 30 .3176499
25 3189801
. 005 20 .3143378
_ 60 317102
50 . 3189874
49 3189929
4 ‘.'ﬁT%’W)
40 . 3178496

Y



N

76

conclusions hased on the differance in tha valuas obtatined by using a smaller
grid stze (n = 20 compared with n = 8), the valua of p" where k(t) = K"
for all t e[o,1] was calculated using both grid structures and showed a
vary high accuracy of tha results: P*(n « §) « 2880106 P*(n « 20) =
. 2879893, Linear 1ntorpolat16n batwoan tho values of P* in Yable 4«2
gives for o = 19 : P* w 200063,

‘ The valua of P avaluated for the control k*(t). which was bptimaI
for ¢ = 0, was catculatcd for this case also with grid si:o ne8and
gave: P « ,2898396 (Yinear {nterpolaton {n Table 4-2 gives .2890607).

Tha following observations can now be made:

1% For a given tima interval (£2 - ty) the valua of the
objectiva function shows a ma&ihum with raspect to N.

2%t As (g - ty) decreases, tho valug of this maxfmun
Prax(ta = t) and N (%g = t,? Fra.stv¥ct\y ono=
tonic tnercasing. S

31 The Tongth of the tino fntarval over which the contro?
awttchos botwoon K" and k*'nt Fmax'secma_for any valua of
(8 = ;) to reratn constant. This ting intorval ts given
by ey Nnax ) (ta - t,),and Hes in the natghbourhced of

4% The saquance of valuas af P, a**hs'{\funatton~of (t = )
convarges asyﬁgtettealty o rdt 8 valug By wirieh wauld
‘careQapend €0 £ « ty 0 o S
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59 fﬁe valuas of Pax® ven for larga tima {ntervals (t2 - t,).
ara considarably largar than P* or P(k(t) = k*(t) for e = 0),

From the numarical rasults in Tables 4-2 and 4-3, 1t scems unlikely
that thore would exist a piocewise continuous cgntrol. not totally con-
stratned, which would giva a valua of tho objective function larger than
Pro It is also thtarosting to mantion that all atteﬁpts to find a
stationary ptecowise co;ttnuous policy for this problem have fatled. By
using a gradient method to'hill-citmb on the boundary hamiltonian, and
using diffarent starting policies, the numorical search techniqua naver
converged to any solutton, ’ '

One mora potnt to constder {s that the relaxed controller which
{s the 1imit of tho soquénce of bang-bang controllers used in our ca1cu- '
lations, 13 not necessarily tho best ona for this prohlcmk Indead, by
constructing a sequonce of bang-=bang controllows of a differant type,
tt {s quite Itkcly'that the corregponding values of Pmawaould converge
to a differant value of PR in tha limit since tha sequonce would con-

'verga to a difforent rolaxed contvol1er.

Y

4.4.4 gglgmg S ,
. From tho nararical rosults obtatned. for this pavttaular Prablen
1'1;. "a formurate tha fo\lewtng hypothases: -
For the<purt1eula% Probfcn]']; doftnad hy (éaaa) - (4-59) and

~ with the set of pqranct@rs givon hy (4-22):

1 Thoro axtsty an optjmal raiaxcd euntroilorg far any
0> o. whteh daas m tmcnq ta tha qlau ot mqae«uo N

-
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continuous functions.

&) Tha sequence of optimal ralaxed controllors for decreasing
values of e, convergos smoothly to the .infeasible optimal
psoudo-roléxod controllor for the -corresponding Prob1£m1-];.
as ¢ » 0, - ,

3) Tha sequence of §a1uas of the objectiva function at the
optimum for decreastng ¢, convarges smoothly to the value
of P correvbondtng to the éptimal pscudo-relaxed controller

for Rrobtcm]'1;. as o » 0,

This implios of course, that thi¥ particutar ProblcmT']; doas fiot con«
gtitute a counteraxample for tha strong maximum princtple for koundary
control stnce tha problem ‘doos not allow an optimal a&misﬁtble control’
to oxist {n the class of plecewtse continuous functions.

Stnca fn the proof of tha atrong maximum principle for boundary
control, Chang required expltcitly the prasence of all partial darfvate
xvgs of the st&tc variables with regpect to tha indopendant variables . .

_in tha state equations, and since tho bodg@ary‘éontro1 he used was a

"untform control® typg.:our Prablcn iq,wouldlindogd not fit tn this

~ fornutation, Tho ndximuﬂ'prtnctpie as formutated by Chang doas tmaly
"that tho 1tees along wiitch the boundary. Gontral rcmatns untforn aro not
| pAratlat fo any of thq chavaatovtstia lnos of thy atate aquattons. The
; maxinam.grinutptg furmu1ctﬁbnz atvan by Taraasnv (19@&). Cutkovakit (1959)

and Loviand (tﬁ?i} are quita ttnti&v f the eﬁo uand by Chang (1937). but
hong of tha&a authera expliettlx ncnt{en any raquircants on tha prasegee

- of all parttal- durwm\eea m tﬁa ttm qquatmm. Butke\eckif even

it

[
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discussos an example {n his book whore tha control remains uniformlalong
one of the stato charactertstics (Butkovsktt (1969, p60)).

- In the work by Bykov et al. (1973, 1974a), howaver, tha strong
maximgm principle for boundary control is formulated foF problems whare
the state characteristics aro also tho linas along which the control
rcmaing untform, Thoy even wont further and formulated also a strong
maximum principle for tha trua boundary control problem whare the control
enters in tha boundary conditions of the sta;o_eguntieas; =~

Nishidavet al. (1972) also state Fhéwitrong form of th? maxtmum
principle, both for uniform and truc boundary control, for distyributed
paramatar problams where the characteristic Vinas cofncide with pha 1inas

'along whigh tha control romaina congtant. -

Bocause of the axfstence of a counter examplc in Pro%Ienﬂ"E
these forms of the maximum principle, which apply to pioblems whére
tho control rematns uniform along ona of tha characteristics, are fh-

'corrcct.

A counter example for tha stvong paximum princtple for boundary
control whare tha characteristics do not coincidae with 1tnes along which .
the control ramatns uniform has not boen found up to date.. - o

*
[SPRNSI W ¥




CHAPTER &

CATALYTIC REACTOR SYSTEM

6.1 - Tubular Fixed-Bed Catalytic Reactors

In tha chemical and petrochemical tndustry, catalytic reactors
are most commonly used bacause of tha selective properties of a catalyst.
Sinco in the chemicat process industry, the reactants often consist of a
mixture of many compounds which give rise to many side reactions, the select-
fve propaerty of a catalyst is yaod to changa the rate of certain roacttons,
oftgp A single roaction, leaving tho rasi unaffected. Catalytic roactors
arg thén algo'widoly used in many industrtal procagses. In this study,
wa will only consider soljd catalyst and tubular fixed-bad reactors.

In.order to deseriba a process, carried out tn a tubular fixed-
bed catalytic reactor, sevaral mathemaégcn1 models can bo used. ifromant
(1970) has given an extenstve raview and clasaification of soma of the
most commonly used models. Thase &od&]s_qan ba grouped tnto two classes,

a first class of " paeudo-homogencous models" which do not account éip11g
citly for tha prosence of the gitalyit at & sépavate ptiase, and a second
class of "hatorogencous models” whare separate equattans ara formulated
for tho flutd and soli{d phqaci? Qoth c\a&;ui further contain 6ne and
two dimansinnal radals, 1neécul1;q {n complexity and taking more effocts
{nto accoynt. | ' ‘ i

Although the usa of a ‘fp’mdenhcmagonc’aoua"}* modal- teads to a
gtmp\gé set of cquationd, the correspondence of tha veal syptam and the

O
X

0
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model depands upon how dompleta1y tha effects of tho solid phasa can be
included fn the homogeneous equations (Potarsen {1966)). For fixed-bed
roactors whare the hoat and mass transfor batween the flutid phase and the
catalyst particles s very raptd and when tho size of the catalyst part-
fcles 1s small in comparison to the dimensions of tha reactor, a "pseudo-
homogenecous" model {s reasonably justifiable.
~ The bastc assumpilons wiich wo w{11 use ara:
- At any point inside the roactor, both tha solid and flutid
phase are considered to bo at equivalent 6Quf1tbr1um’atagas.
This moans that there ara no effaective temparature and cons
centration gradients betwoen tho fluld and tha catalyst part-
tclas at any potnt {n the roaetor.
- Bulk flow s along thé axis of tho reactor anly (z-dtrcction)
. Ax1a1 ditfuston and radtal concantratton gradtents are
negligtble. '
If wa furthar assuma that the danstty of the fluid phase can ba takan as
constant for the ranga of operatfng condition:. the continﬂity uquation
in terms of molar unitu fov a camponent { {n soma raaetor elomant nay be’

written as: . - : B
. y . ( ‘ ‘5
Toae B¢ : . L
- ‘-¥-+v—4--af', : L e
s . .‘ N » .

whare c<‘1s tho molar coneentrntion of |pacie| 1. ;\31 the nalav averaga
valoctity along the axis of.the reacccv. and Ry 18 tha molar rate of formas
tion of spoctes 1. The tndepandont vartables are t ) tha chrcnotoqieul -
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tima since start-up of the reactor: t| c[o,tf] where ty is total oparat-
'
ing timo, and 2 , tho distance along tho axis of tha tubular reacton: |
3 ofo,L] whore L 1s tho total length of tho catalyst bed.
For a single chomical roaction, the rate of'roagtion Ry can be
oxpressed as a function of temperature T, chemical conversion x and
ralative catalyst activity y:

Ry = afTix vl ’ (6-2)

»

Since the mochanfsms of catalytic reactions are complex phenomona, the
rate expross(ons which can ba derived from theorat1ca1 considarations

are usually very cemplicated. Morcover, this type of approach often leads

to a large number of possibilitfes and it ts not always casy to choose a
partigulaf rdto expreaston. An example with 23 posstble rate expressions
for thB ammonfa synthests reaction 1t'g1von in a paper by Ferraris ot al.
(1974). | |

_ Rather than trying to doscribe exactly the mechanism of thh reac-
tlon wo can make use of a ptnudo-hemqaanaoua rate of reaction which s
of a much simpler form. [t hes baen shown {A the Titarature (see Pvahqr
and Lago (1986)) that in terms of tho centact,tima or space tima, mast

- catalytic converston data can ha‘f+#:gg;§i:?uately by simple tirst~ or

hth—ordo% rate exprassions, Holler (19856351974) has also Qhewn that
roaction rate oxprassfons dertved fn this manner aro cempatible with much
mova complex forms and that 1n soma cases, thoy ara cven batter roprescnta-

“tions.

In the courde of this study, tho pseudo-homogoncous rate of

- :‘ e
;o
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Whare Kj-and R are constants and £ {s the reaction activation enargy.
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reaction of an trreversible reaction A + B will bd expressed ag a

product of soparate functtons each depanding on only ane of tho state

or.deci{siaon VQrfab1osa \
alToo s KTCTY L FIxD .o ; (8-3)
In terms of the conversion x..(ﬂ-l) can thon ba rewrf{tten as :
v E : ;
Mo vy B« kipry L FExJ CV (5-4)
N Bt '} I

The function K'[T] s agsumed to be of the Arrhenius form and then
fs a posttive continuous strictly mbn&%bntc inereasing and differenti-
able function of the temparature T(z‘.t')x

KTTD o Ky axpl= Ep/R/T) | - (8-8)
, | E‘

The funct;on r{x] ts ccncidarod a.continuous menotonic dacreasing
tunctfon of thc convaraian x(x t ).or 8 ¢onstant. such that

0¢ x(:'(ej).c 1 o . ' (6«6)

‘ _1mpiios

N A
B S P

0erer . o ()

Furtharmara F{x] ts assumad te ba twice continyously differentiable with

i

raspoct to fta arglmont, - . 4 .
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The effectiveness of the catalyst is expressed in terms of the

L t
relative catalyst activity y(z ,t ) and 1s defined as

rate of reaction using catalyst in a given

oty o= condition
Wzt ) e s Tig Fresh catalyst or catalyst 1n a (6-8)

reference state

Defining the relative effectiveness of the catalyst fn this manner elimi-
nates the necessity of considering the combifed effects of operating con-
ditions; structure of the catalyst, contacting mechanisms aml the kinetics
(Anderson (1968)).- |

The initial and boundary conditions ‘for Equation {5:4) are

x(o,t ) = x(t) (5-9)

and

x(z',o) = xo(z|) | , (5-10)

-

where xo(t') and xo(z') are given and may in general be piecewise con-
tinuous functions of t' and z' and ﬁave piecewise continuous first deriva-
tives with respect to t' and z' along their respective boundaries of the
domain [o,tf]x[o,L].

In most of the tubular fixed-bed reactors, the spacgﬁtfme (time
required for a fluid element to pass throuﬁh the reactor) is small (seconds
or minutes) in comparison with the total operating time of the reactor
(hours or days). Under most circumstances, the change in relative catalyst
activity over a time interval equal to the space time is nearly.negligible.
If this {s the case and if
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2. PP ). § (5-11)
at 3z

at any point in the domain of definition (Therien (1971, Appendix F)), the
quasi-steady state approximation can be used and Equation (5-4) can be

written as

v 2= kT FIxD v . (5-12)
9Z

with the natural boundary condition (5-9).

5.2 Catalyst Deactivation

The loss of catalyst activity during a reaction is a very cgmplicated

phenomenon, mainly due to the fact that there can be many causes for the

deactivation. Some of the many forms of decay which are commonly encounter-

ed are sintering of the catalyst, deposition.of poisons or reaction-residues
on active-sites and pore pluggfng by pofsons or reaction-residues in the
feed- or product stream.

In order to model the deactivatfon process, two main directions
can be followed, A first approach is to characterize the state of the
catalyst at each point\inside the reactor. An example of this has been
given by Froment and Bischoff (1961,1962) who tried to formulate a model
relating the activity to the coke-on-catalyst. The major disadvantage of
éich an approach is of course, the difficulty of taking quantative measure-
ments during the course of an experimental run. A second type of decay
model has been derived from the Time On Stream Theory as developed by

Wojciechowski (1968). This approach is based on integral measures of the
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state of the catalyst in the reactor only and leads to a model for
deactivation of the catalyst as a function of time, but averaged over the
whole reactors The time on stream theory has recently been shown to be
efficient in modelling the catalyst decay for cracking regct1oés (John, -
Pachovsky and Wojciechowski (1974)). In this paper, the author also
points out the discrepancy between his approach and the models derived

by relating the activity to coke-on-catalyst. A Zomprehensive review of

the Time On Stregm Theory was recently published by Wojciechowski (1974).
The catalyst deactivation model which will be used in this study

-1s the one proposed by Szepe (1966). The simple but theoretically accept-

able form for the rate of deactivation is similar to the rate expression
for a chemical reaction and is defined as the prdducﬁ of sepératg funetions

of the operating and catalyst condition,
rate of deactivation =/‘/K§[T] . fx] . glv] (5-13)

with glv] of the power form

[

glv] = ¢" (5-14)
and kf[T] is of the Arrhenius form:
K'[TD = & exp(- E_/R/T) (5-15)

where k0 and R are constants and EC is the activation energy for decay.
The parameter m in (5-14) is called the order of deactivation. The func-

tion f[x] expresses the conversion dependence of the catalyst decay rate.
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" Szepe (1966) also showed the 1inear, exponential and hyperbolic
forms of decay models, obtained on the basis of experiments, all to be
special cases of (5-13) with_g[v] given by (5-14). Further support for
this model form can be found in the work by Szepe and Levenspiel (1968a,b),
Khang (1971), Levenspiel (1972), Dougharty (1970), Blaum (1974). A
review of this type of catalyst decay models has been given by Butt (1972).

This however does not exclude the occurrence of more complex
deactivation processes for which (5-13) 1s no longer an adequate repre-
sentation (Wheeler and Robell (1969), Bakshi and Gavalas (1973)). Never-
theless, the rate expression {5-13) can often be used as a first approxi-
mation to many such complex deactivation processeéf'

For the purpose of this study, we will use the following rate

expression for the catalyst decay

RS YURi A (5-16)
at
which expresses the rate of change of-the relative catalyst activity
w(z',t') as a function of temperature, conversién and relative catalyst
activity at each point (z',t‘) of the domain of definition [o,tf]x[o,L].
The function f[x] 1s assumed to be a non-negative continuou§ function of
+ its argument, or a conéf&nt, and 1s considered to be twice continuously
differézzihble with respect to x.

In addition to (5-16) we define the natural boundary condition as

b(z ,0) = v (z ) (5-17)

e e e e wehe
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where wo(z ) 1s a p1ecew1§e continuous functfon with piecewise continuous

t
first derivatives with respect to z along this boundary of the domain.

5.3 Formulation of the Optimization Problem

By defining the following transformations

t

z=12/L

t=1t /’cf

KITD = t, K'[T]

and

KTD = t, k'(T]

(5-18)

(5-19)

(5-20)

(5-21)

R

the variables z e[o,1], t e[o,1], K[T] and k[T] are all made dimensionless.

With t9 = L/v, the unsteady state catalytic reactor system méy

then by written as

Y
Cxy t ({;0 x, = K[T] F[x] v

and the quasi-steady state system,

Ri
() x, = KIT] FIx] v ]

0

with the equation for the deactivation:

by = - K] FIx] 4"

(5-22)

(5-23)

(5-24)
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. The corresponding init{al and boundary conditions to these partial

differential equations are:

x(o,t) = xo(t) . (5-25)
x(z,0) = xo(z) (5-26)
¥(z,0) = v (2) ‘ (5-27)

Because of the equivalence in the state equations between most
adiabatic reactors and a reactor where the temperature is uniform
(Appendix A), we will only consider problems where fhe temperature T
is a function of t only. This means that the temperature T(t) rema1n§
constant along the axis of the reactor for a uniform temperature reactor
where T(z,t) = T(t) and refers to the inlet temperature into the reactor
at z = 0, To(t), for an adiabatic reactor.

Since by assumption K[T] and k[T] are both of Arrhenius form,
it follows form (5-5),(5-15), (5-20) and (5-21) that

. ' ‘ 0 .

KIT] = A (KLT])P (5-28) ™

with

A=ty . K/(te . ko)P (5-29)

_where p {s the ratio of the activation energy for reaction ER to the

deactivation energy EC:

p= ER/Ec ' (5-30)

e e o
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The performance of tHe catalytic reactor system will be measured as

the amolint of reaction which was obtained over the total operating

period and is given by:

1

P = | [x(1,t) - x,(t)]dt | ~(5-31)
. |

5.3.1 Boundary Control Alternatives

For the quasi-steady state problem (5-23), (5-24) with inft{al
and boundary conditions (5-25), (5-27), an optimization problem can then
be defined as: "Maximize the objective functioh P over all admissible
control policfes”.

Since we deal with boundary controls only, possibie control

yariables for this reactor system are:

- Intet temperature of the fluid into the reactor as a
L

function of time.

”~

- Composition of the féed stream into the reactor as a
function of -time.

- Distribution of the relative catalyst activity along
the reactor axis at inftial time.

- Velocity 9f'the fluid stream through the reactor as a

e

function of time. B I

-

*

Although the} are not real boundary controls as defined in this study,
the length of the catalyst bed and the total operating time can also
be defined as control variables.

»
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From physical cons{derations, the control variables will
usually be required to 1ie in an admissible control region.
For the given optimization problem, the following boundary

controls and combinations of these will now be further investigated:

p - Inlet temperature T(t).

- Inftial relative catalyst actfvity distribution wo(z).
- Fluid flow rate v(t).
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CHAPTER 6

INLET TEMPERATURE CONTROL

6.1 Problem Formulation

By dividing both sides of the partial differential equatfon (5-23)
by the factor (tf/te) and absorbing this factor into the proportionality
constant A (Equation 5-28), the quasi-steady state expressions for an

irreversible catalytic reaction can more conveniently be written as

X, = KITIFIxJo | (6-1.
The equation expressing the rate of the catalyst decay is

vy = - K[TIf[xJglv] ' (6-2)

Where the function g[¢] will usually take on the form g[y] = wm. Initial
and boundary conditions to (6-1) and (6-2) are

x{o,t) = x,(t) ot elo,1] | (5135

f
i
It

1

f
¥(z,0) = 9 (z) 1 elo,1] (6-4)

The boundary control variable T(t), which is the inlet temperature into ‘\

the tubular reactor, will be required to 1ie between an upper and lower \ :

constraint : \

92
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T, ¢ T(t) ¢ T~ all t elo,1] (6-5)

where T, and T" will be considered constant.*

Since K[T] 1s proportional to (k[T])P and sfnce k[T] is a strictly
monotonic increasing function of T, the function k[T] can be treated
as the control variable k(t). The congtraints k, and k* for k(t) can

—

be calculated from (6-5) as

K[T,] = k, ¢ k(t) 2 k" = k[T'] . (6-6)

kl

The optimal boundary control problem for the system (6-1)-{6-4)
then becomes: Choose a piecewise continuous function k+(t) which satis-

fies (6-6) such that the objective function P,

0

1
P = [ [x,(t) - x,{t)]dt (6-7)

reaches an absolute maximum with respect to all admissible piecewise

continuous controls k(t).

6.2 Application of the Maximum Principle for Boundary Control

For the given optimal control-problem, the hamiltonian function

*
In adfabatic reactors, where upper and lower constraints are placed on

the temperature fnside the reactor: Tmin

*
T, and T on the inlet temperature To(t) will become functions of t

s T(z,t) s Tmax’ the constraints

through the state variables and can be calculated from Tmin and Tmax.
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can be defined as

. H=2KF ¢ - ukfg (6-8)

where the adjoint variables A and p are the solutions of

1 1}
=~ A KFyp +yukfg (6-9)

>
t

=% KF + ukfg ‘ (6-10)

Ht
A
with terminal and boundary condiéLons:
A(1,6) =1 all tvefo,1] © (6-11)

u(z,1) =0 all z efo,1] (6-12)

I 1 ] ‘
The functions F , f and g 1n (6-9) and (6-10) denote the first deriva-
tives of F, f and g yith respect to their respective dependent variables
T
The boundary hamiltonian H is given by /

1
H= | Hdz (6-13)
0
Application of the weak maxifum principle for boundary control then leads
to the following necessary conditions for optimality.

In order for an admissible control k' (t) to be optimal it

is necessary that:
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%g l + = 0 whenever k, < k+(t) < k* (6-14)
k™ (t)

i | » 0 when k*(t) = k° (6-15)

ak et (t)

A | by ¢ O e K (t) = &, (6-16)
k' (t

. The necessary conditions .(6-14)-(6~16) can also be derived from a first

order perturbation analysis of the objective function P (Appendix B).
The optimal control policies corresponding to (6-14), (6-15) and (6-16)
will be denoted as S, C* and C, policies respectively,

6.3 Properties of the Optimal Control (f(x) # constant) ™

Although any piecewise continuous control ‘Function can be con-
structed from a é;mbination of S, C* and C, policies, tt'has been shown
that for the conversion independent decay problem, the optimal inlet
temperature policy can only consist of certain combinations of the three
types of policies {(Crowe (1970)). Similar results were also obtained
by Therien (1971) for the conversion independent decay problem with
distributed temperature controll\ In both these studies, 1t was shown
that the value of the parameter p, defined in (5-30), plays a decisive
role in determining the admissibil{ity of certain control policies to
be the optimal control policy. In the conversion independent decay

problems studied by Crowe and Therien, it.also could be shown that, under

certain conditions, any optimal controy policy which contained a sub-policy
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S needed also to be continuous. In the present§study where we consider
the catalyst decay to be conversion dependent, two major complications
arise. ]

A first difficulgy arfses from the fnfluence of the conversion
dependent factor f(x) in the decay rate expression (6-2) on the nature
of the optfmal control policy. Indeed, since for values of p < 1, the
rate constant for decay k[T] increases faster than the reaction rate
constant K[T], it would not always seem Zesfrab]e to work at the highest
possible temperature T*. Because of this, 1t was possible to prove that,
for the case where f(x) = constant, an admissible control policy which
contains a stationary sub-policy S 1s a feasible policy for optimality.
If now however, f(x) # constant and 1f f(x) fs a decreasing function of
x, the greater rate at which the catalyst decays at higher temperatures
can possibly be offset by a decrease in f(x) which in turn is due to
the higher attained conversion at higher temperatures. Therefore, we
can see intuitively that there can exist problems where a sub-policy
S can never be part of the optimal policy for p < 1 provided f' < 0.
Simflarly, 1t could be proven that for problems with p > 1 and‘f(x) =
constant, except under certain special circumstances, (Crowe (1970)),
the sub-policy S never could be part of 'the optimal control policy.
Although for p 3 1, the reactfon rate constant increases faster with
temperature than the rate constant for decay, the catalyst still could
be made to decay faster under the influence of increased conversion ‘
through f(x). Hence, even for p > 1, an optimal pol¥cy which contained

a sub-policy S could indeed become feasible.
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A second complication, and a much more drastic one, is the
fact that for the given quasi-steady state problem under consideration,
a strong maximum principle has been proven not to exist (see Chapter 4).
Since in the derivations of the optimal control properties for problems
with conversion independent decay, extensive use could be made of a
strong maximum principle formulation, these proofs cannot in general
be extended to prove similar properties of the optimal control for -
our problem.

Some of the properties which still can be proven for the problem
with f(x) # constant will now be summarized. Trivial situations where
the initial catalyst activity distribution wo(z), z €[o,1] is identically
zero or where the inlet conversion xo(t), t €[o,1] is the maximum attain-
able conversion in the reactor will be ignored. We also will consider
only problems where the relétive catalyst activity at the end of the
operation w](z),'z e[0,1], still has a positive value. The case where
p = 1 and which leads to the study of singular controls has not been
treated in this work. We also recall that in 5.1, we assumed F(x} to
be a monotonic decreasing function of x, which means that autocatalytic
reactions(F'> 0) are excluded. S

We wish to reiterate that all properties discussed below which
apply to the optimal poiicy apply to a given coptrol problem only, when

an optimal control policy does exist for that problem.
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Property 1:
kKF(t) = K for t e(l - st,1]
Proof:
From (6-9), (6-11) and (6-12) follows
A(z,1) > 0 all z eo,1] (6-17)
Since
1
gg = J (P lé Fy - pfg)dz (6-18)
0
-
it follows from (6-12) and (GKli) that with »(z,1) > 0,
_ . i
o | >0 for all k efk, k'] (6-19)
t=1. ‘

Hence the only value of the control which can satisfy the necessary condi-
tions\(§—14)-(6-16) at t £ 1 is k*. From (6-2) and (6-10) follows that

¥ and y are continuous functions of t. Since 3aH/ak is a continuous func-
tion of its arguments and since xo(t) and k(t) are piecewise continuous,
(6-19) implies that there exists a finite time interval &t > 0 such that
aH/ak remains positive for all values of k e[k*,k*] over the time interval

(1 - 6t,1]. Hence the only control which can satisfy (6-14)-(6-16) is
K'(t) = & for t €(1 - 6t,1]. Q.E.D.
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Property 2:
f < 0 implies A(z,t) > 0 for all z e[0,1]
all t efo,1]
Proof:

{

For the proof of this property, the same arguments can be used
as in Appendix E. The only difference for this problem is that the

characteristic lines are orthogonal and coincide with the coordinate axes.

Remark:

Although in all our numerical work we never encountered a problem
where 1 became nonpositive, the same procedure cannot be used to prove

that ) remains positive over the whole domain when f > 0.

Property 3:

H is strictly concave for f <0 and 0 < p < 1

and is strictly convex for f < 0 and p > 1.

Proof:

Since the second derivative of H with respect to k is given by

! 1
2
= | p(p-1) A—-%E—-ﬂdz (6-20)
k

i

3
ak

|

O

0

this property follows directly from Property 2. Q.E.D.
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Property 4:
t
For f < 0, a stationary control policy S
is an admissible control sub-policy to the
optimal control policy.
Proof:

Since 32ﬁ73k2 is strictly negative for 0 < p < 1 and strictly
positive for p > 1, it is clear that H can exhibit a stationary point
*
for some k e(k,,k ). This is a sufficient condition for a control which
—~—

is unconstrained over a finite time interval to be an admissible control

for optimality. Because of Property 1, a totally unconstrained policy S

however, cannot be optimal. Q.E.D.

Property 5: 7

For f <0and 0 < p <1, any control policy

which satisfies the necessary conditions of
the maximum principle for boundary control is

uniquely determined at each t e[o,1].

Proof:

From Property 3, we have that for f <O and 0 < p < 1, H is
*
strictly concave with respect to k e[k.,,k ]J. As illustrated in Figure 6-1,
only three types of functions H vs. k are possible at each t e¢[0,1]. The

property follows then from the fact that for each of the three possibilities,

Y i s e ——

-
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Figure 6-1: Typical curves of the function H vs. k,

k e[k,,k*], for f <O0and 0 <p < 1.
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there is only one value of k for which one of the necessary conditions

(6-14) - (6-16) can be satisfied. Q.E.D.

Remark 1:

Note that although H is strictly convex with respect to k for
f' < 0and p > 1, no specific properties of the optimal control can be
derived in this case.

Indeed since we cannot use any strong fdrm of the maximum principle,
there are three values of k for which the necessary conditions (6-14) -

(6-16) can be satisfied whenever H has a minimum inside the admissible

control region.

Remark 2:

Although most properties could be derived for the case where

f' <0and 0 < p <1, we have not been able to prove that an optimal
control policy which containshan unconstrained sub-leicy S also needs
to be continuous. Indeed, the fact that f(x) # constant does not seem
to make it possible to contradict the conditions which must Be satisfied

whenever a finite jump in the control values occurs.

6.3.1 The Constant Exit Conversion Property

The constant exit conversion property which states that: “"The
exit conversion x1(t) remains constant over any finite time interval where
the optimal control policy k+(t) is unconstrained, provided xo(t) remains

constant over that time interval", has first been proven by Szepe (1966)
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for conversion independent decay problems (f = 0).
A similar property has also been proven for the problem with con-

version dependent decay (f # 0), but with distributed temperature

~control k(z,t), by Crowe (1975). Although up to this date we have not

been able to prove this property for the given boundary control problem
with general kinetics and fl # 0, the constant exit conversion property
was proven to be valid for the class of problems where F = 1 - x, f =
(1 -x)" and g = v. This class of problems was encountered in the discuss-
ion of Prob]em]_16 in Chapter 4. The constant exit conversion was dis-
cussed there as Property 2 and the proof for all values of r (r # 0),
p# 1) is given in Appendix D. Since in the study of the counter example
in Chapter 4, a more general notation form was used, the variable f which
appears in the lumped version of Prob]em]_]; and also in Appendix D
corresponds with the exit convefsion x1(t) in the present fgrmulation of
the problem.

The constant exit conversion property has also been proven for
the class of problems: F = (1 - x)2, f=( -x)", g=1y for all values
of r (r#0, p# 1), and for the class of problems where % =1-x, f=x,
g =y. Tﬁe proofs for this latter two c]asse§ of problems will not be
given here, but they follow essentially the same pattern as the proof
in Appendix D. The boundary coptrol problems are first transformed
into a lumped parameter problem. The maximum principle of Pontryagin is
then applied to this lumped problem and an expression similar to (D-9) is
obtained. Although the terms in this expression vary for the different

classes of problems, the common characteristics remain the same. Either
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dx1/dt is zero or a function which multiplies this time derivative has

to vanish over that time interval where the optimal control is unconstrained.

This then is used to establish that dx]/dt = Qon S is the only possibil-
ity at the optimum provided of course that dxo/dt = 0 on S and that the
control is continuous over that time interval.

The connmanactor in these three classes of conversion dependent
decay problems is of course that all of them are first-order decay rate
problems (g = y). Another observation which was made in these proofs
was that the expression (D-8), which was extremely useful in the proof
in Appendix D, reappeared in exactly the same form in the proofs for
the other classes of problems, notwithstandihg the fact that the lumped
system equations were totally different in each c]as: of problems. It
is primarily this last observation which led us to the following proof
of the constant exit conversion property for first-order\ﬁecay rate

problems with otherwise quite general kinetics.

Property 6:

Given Ehe following conditions:

(i) g =4

(i1) O<p<lorp>1 //////

(iii) F is a continuous function of x and nonzero for all

—

X e[xo,x]]
(iv) f is a continuous function of x

(v) k+(t) is unconstrained and continuous over a finite

time interval (t1,t2)c[o,l]

S

B n



(vi) xo(t) is constant for t e(tl,tz)

o (i 0 for all t e(t],tz)
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Comment:

The condition that F # 0 is not a very severe one.

complete conversion is reached.

It mainly
excludes autocatalytic reactors where xo(t) = 0 and reactors where

Since we have been unable to prove that

no finite switches in the unconstrained optimal control policy cat occur,

+
we have to assume continuity of k (t) on S.

Proof: v
Since F # 0, we can write (6-1) as
dx _
F——Kildz

and

since 1/F 1is integrable

X z ™ '
[ 9%~ = K [ ydz z ¢e[o,1]

Xo 0

Defining

(6-21)

(6-22)

(6-23)
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we can write (6-22) as

fﬁ(xo,x) = K¢' (6-24)

where F] is a continuously differentiable function of X4 and x. Defining

¢ = ¢ at z =1 we get

(6-25)
Since

N (6-26)
we can apply the implicit function theorem and (6-24) can be written as

x = Flx, ke ) " (6-27)

where F is continuously differentiable with respect to Xo and K¢: Since

xo(t) is assumed constant on S, we will not consider X, as a dependent
variable, hence

(6-28)

and

X] = F(K¢ ) (6"29)

Substituting (6-28) into (6-2) and integrating over z gives:

W ek Ly g et

ol
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1 ]
l bdz = - k [91(K¢l)wdz (6-30)
(0] o

where
g;(k') = FIF(ke )] (6-31)

is a continuous function of K¢ .

[ N
From the definition of ¢ (6-23), Equation (6-30) can be written

as " }@

S—% - -% gq (ks Jdks | (6-32)
0

Since g, is continuous, the integral in (6-32) exists and we get

%% = - & g(x) (6-33)
where
K¢ t t )
g(Ks) = ] g, (Ko )dKs (6-34)
0

is a continuously differentiable function of K¢. The initial condition

to (6-33) is given by

1
b, = (o) = {wo(Z)dz . (6-35)
0
The optimization problem is then
1
max P = max F(Kg)dt (6-36)
*

ke < k(t) s K Ky < k(t) 5 K
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with the state equation given by (6-33) and initial condition (6-35).

We now can apply the maximum principle of Pontryagin to this lumped

problem.

The Tumped hamiltonian function Hz is defined as:

He = k) - 1F g(Ks)

with
d aH,
&
and
y(1) = 0

The necessary conditions for optimality can then be written as

dH
Efé = 0 for all t €o,1] f

3H£
ks‘k—-‘-'o on S

With HK given by (6-37) these conditions can be expressed as:

HT_:(F _IEQ')%-gﬂ%l:O for t e[o,1]
and

aH ' '
k;}=pr¢ -’—E((l—p)g+ng¢)=OonS

(6-37)

(6-38)

(6-39)

(6-40)

(6-41)

(6-42)

(6-43)

where F and g denote the partial derivatives of F and ¢ with respect to
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K¢ respectively.

Since ¢ # 0 (9 = 0 would imply k = 0 or 4 = 0 and these can be

excluded), Equation (6-42) can be written as

dlakrk) . E 'h;/")ﬂ K antelo,n) (6-44)
Since vy is a solution of (6-38) with terminal condition (6-39), v is a

continuous function of t for all t e[o,1]. The factor which multiplies

(yk/K) in (6-43) then cannot become zero on S since from (6-43) this

would imply that FI = 0. (the possibilities of k = O or 4 = 0 are

excluded). However, from (6-29) and (6-21), F = 0 would imply that

F(x]) is zero and this has been excluded.

Hence from (6-43) we obtain

k. FpKy on S (6-45)
(1 - plg + g pks ‘

Substituting (6-45) into (6-44) gives::

d(YZ{K) - FQ-p) g? on S (6-46)
(1 - plg + g pKsé
or with (6-45)
9115%51 = IE-(l—ﬁ—EJ %; g%i onS.— (6-47)

and this gives after integrating

K () 1P gy s (6-48)
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Substituting (6-48) into (6-37) gives from (6-40) the following necess-

ary condition on S:
H(Ke) - F - alke)TPVPg _c =0 ons

where C is a positive constant.

We now have the following possibilities for K¢ on S:
dKky .
1) Fra 0 for allt e(t],tz)

2) 270 for te(t,t)c(t; L))

From (6-29) we have

dx
1. ¢ d
g F k) G

and hence since f = 0 can be excluded, (6-50) implies

1 _
T =0 ons

Lo

in which case the constant exit conversion property holds. Since

(6-49)

(6-50)

(6-51)

(6-52)

(6-53)

from

(6-33) and (6-35) it follows that ¢ is a continuous function of t, and

since we assumed the optimal control to be continuous on S, K¢ is also a

continuous function of t on S. Equation (6-51) then implies that K¢

attains all values

Ko e(Ke,Kp)

(6-54)
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on the open time interval Q}a,tb), where

K¢

min[KMtha stet] (6-55)

and

K

max[Ke (t)|t, < t < t\bJ\ LY ; (6-56)
/ -

with K¢ > Ko.  This further implies that for all K¢ e(k¢,Ks) on (t,.ty),

the necessary condition (6-49) needs to be satisfied. However, since

F and g are differentiable with respect to K¢, the function H(Ks) is

analytic and hence has only isolated roots. Therefore, since Ko > K¢,

it is impossible to satisfy (6-49) for all values of K¢ €(K¢,K$). This

means that condition (6-51) can never occur. Q.E.D.

Since for g = o witﬁ m# 1, the system equations (6-1), (6-2) cannot be
Tumped for f(x) # constant, the same proof cannot be applied to these
problems. The most important equations for dx]/dt which could be derived

for this case are given in the following prqperty:

Property 7:

If the optimal control policy k+(t) contains an uncons-

trained sub-policy S which is continuous, then

1
T - %Y' ( p x KF ypdz on S (6-57)
0

and
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dx
1.1-p dH -
dt = p a o S (6-58)
Proof:
It has been shown by Crowe (1972) that at the optimum:
dx] d 1
& (ukfg)dz  for all t e[o,1]° (6-59)
0
Since from (6-14)
- ] >
k %% = [ (px KF g - pkfg)dz=0 onS (6-60)
0
substituting (6-59) into (6-60) gives (6-57).
Similarly since Egom (6-13)
i 1
%f = gf ( (» K F ¢ -yukfg)dz (6-61)
o

Equation (6-58) follows directly by substituting (6-57) and (6-59) into
(6-61). Q.E.D.

6.4 Numerical Results

In order to investigate the properties of the optimal inlet
temperature policy for reactors where the catalyst decay is not a first-

order reaction, a hypothetical reactor whose state equations are given
by (6-1) and (6-2) with
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Fx) = (1 - x)"

f(x) = (0 -x)"
and

gly) = ¢"

withm # 1, has been studied for various parameter settings.
A selection of problems with various combinations of the pa
meters p, n, r apd m is given in Table 6-1. Different forms of the

function f(x) have also been considered and are shown in Table 6-1.
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(6-62)

(6-63)

(6-64)

ra-

The common parameters used in problems A1-A10 (unless otherwise

mentioned in Table 6-1) were chosen as follows:
i) xo(t) =0 for all t efo,1]
ii) The catalyst deactivation energy

EC/R = 15000°K
iii) The average space time for the reactor

te = | sec

iv) The total operating time
25 days in casem > 1 -

12.5 days in case m < 1

(6-65)

(6-66)

(6-67)

(6-68)
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v) Upper and lower bounds on the admissible inlet

temperature:
*
T = QOOOK (6'69)
T, = 700°K

vi) The pre-exponential constant in the Arrhenius expression

for k[T]

k0 = 20.2447 te (6-70)

except for problems A2 and A10 where k0 = 20.24 tf.

vii) The pre-exponential factor Ko in the Arrhenius expression

for K[T] was calculated in such a way that:

1) for the given parameter settings of the problem

2) x_ =0

0
3) w(z) =1 for all z elo,1]
HT=T

the exit conversion out of the reactor was Xy = 0.9. The
only exception to this problem A10 where K0 was deter-

mined as Ky = - 1n(0.1)/exp(-8750/1090).

The initial relative catalyst activity distribution wo(z) for

the problems Al, A2, A7, A9 and Al0 was

wo(z) =1 for all z e[o,1] (6-71)

However, since some of these calculations were done in conjunc-

tion with the numerical work which will be discussed in the next chapter, -
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the reactor system set-up was slightly different for problems A3-A6

and A8. For these problems, we considered two batches of catalyst, both
of the same type but with different initial activity: ¥10 and Yoo
respectively. The catalyst load which was put in the reactor at initial

time was considered to be a uniform mixture of equal amounts of the two

catalysts. The only difference between this set-up and a reactor with
only one catalyst uniformly distributed along the axis of the reactor

at time zero and with an initial relative activity Vo © (w]O + wzo)/Z,
is that for a decay rate of order m # 1, the average relative catalyst

activity in the reactor at time t ; 0 <t ¢ 1, would be different for

both cases.

Although this system will be dealt with more in detail in the

next chapter, it is clear that we now need to describe the catalyst

N

decay by two expressions:

bip = -k flx)aly;) =12 (6-72)

one for each of the two catalysts. Both expressions are similar but the

initial conditions to each of them are respectively:

w](o,z) Y10 for all z elo,1]

(6-73)

wz(o,z) Yoo for all z efo,1]

The variable ¢ in Equation (6-1) then simply can be replaced by (w] + wz)/Z.
The values which were used for w]o_and Yag in the caﬁculations are given

in Table 6-1. It is clear that Y10 = Yoo = 1 refers to an initial uniform
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catalyst activity distribution as given in (6-71).

Whereas in problems A1-A9, the temperature inside the reactor
was considered uniform, problem A10 represents a reactor under adia-
batic operating conditions.

The parameter Jl given in Table 6-1 is defined in Equation A-9
in Appendix A. The conversion dependent functions F(x) and f(x), defined
in Appendix A by (A-13) and (A-15) respectively, can for the given para-

meter settings of problem A10 be written as:

F(x) = (1 - x) exp(7 x/6.48) " ' (6-74)

and

f(x)

(1 + x) exp(7 x/3.24) (6-75)

We must mention however, thét for the problem A10, the upper
inlet temperature constraint has been kept constant, and therefore does
not really correspond to a realistic adiabatic reactor. The upper con-
straint should in fact be determined by the highest temperature in the
reactor and the reason why this has not been done is that we wanted to
compare our results for this case with those obtained earlier by Jutan

(1973) for the same problem.

6.4.1 Numerical Procedure and Results

Since for the quasi-steady state equations (6-1) and (6-2), the
characteristic 1ines for the partial differential equations are orthogonal

and parallel to the coordinate axes, the numerical procedure which was
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used to calculate the optimal inlet temperature profile for each problem
is identical to the procedure which has been described in Chapter 4 for
the study of Prob]em]_Té.

The optimal inlet temperature policies and the corresponding
exit conversion profiles which have been calculated for the prob]em§
A1-A10 are shown in Figures (6-2)-(6-11).

The relative improvements in the objective function for the
calculated optimal inlet temperature policies over the best calculated

constant inlet temperature performance for problems A1-A10 are summarized

in Table 6-2.

6.4.2 Discussion

It is obvious from the Figures (6-2)-(6-11) that only those
problems.whose optimal control policy is partly unconstrained have been
selected for this study. For many different combinations of the para-
meters, the optimal control pelicy was found to be totally constrained:
k+(t) = k* for all t e[o,1]. Althouyh an optimal bang-bang control type
policy is feasible in this type of optimal control problems, none has
been encountered during the numerical work of this study and no attempt
has been made to find a problem of this type where the optimal control
would be bang-bang.

From Table 6-1 we a'lso notice that the value of the parameter
p in the problems A1-A10 was chosen to be 1gss than 1. Although it
was shown in Property 4 that a partly unconstrained policy is a feasible

control for optimality, problems which exhibit an optimal control which
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Figure 6-2: Optimal control policy T+(t) and exit conversion x1+(t)
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for Problem Al.
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Figure 6-5: Optimal control policy T+(t) and exit conversion x]+(t)

for Problem A4.
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for Problem A6.
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for Problem A7.
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Table 6-2: Relative improvement of the best boundary control policy
T+(t) over the best constant inlet temperature policy for
problems Al1-A10.

Problem Optimal policy Constant inlet b PI
ot temperature F— X 100%
PI I
LY .7746935 .7710396 + .474
A2 .8032328 .7883687 +1.885
A3 .8064748 .8059995 + ,059
A4 .7683645 .7678952 + .061
AS .6522725 .6344318 +2.812
A6 . 6631000 .6591395 + .601
A7 .8597998 ..8578639 + .226
A8 . 7677564 .7667384 +.133
A9 .7174310 .7089652 +1.194
A10 .5193415 .4789061 +8.443




P2 X
Z

130

is partly unconstrained for p > 1 are not very common. Such cases have

been found, however,.for certain combinations of the parameters and an

examp]e'of such a problem was encountered as Prob1em-r1; in Chapter 4.
Since in Table 6-1, usually more than one parameter has a differ-

ent setting in any two problems, no conclusions will be drawn from these

cases as to the effect of any of the parameters on the properties of

the optimal control policy. Because of the fact that the constant exit

conversion property has only been proven for conversion dependent decay
problems where the order of decay m is equal to 1, the main motivation
for the study of problems A1-A10, where m # 1, was to investigate the

properties of the optimal exit conversion profile over the time interval

where the optimal control was unconstrained.

The main conclusion which upon observation of the optimal exit
conversion profiles in Figures (6-2) - (6-11) can be drawn is of. course
that the exit conversion at the optimum has been found to be constant

over the time interval where the control is unconstrained in any one of
the problems A1-A10.

Although many more calculations havé been done for similar problems

with different values of the parameters and m # 1, up to this date, no

example has been found where the constant .exit conversion property did not

seem to hold. In the work done earlier by Jutan (1973), it was also found

that for many problems of the type studied here, the optimal inlet tempera-

ture policy gave rise to/the constant exit conversion property. Although

the author also reported|some calculated optimal policies which did not

exhibit this property, 1t is believed that for those problems, the
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computations were halted before convergence towards the optimal policy was

achieved. Most of the problems where this was the case, have

been recalculated and we found that besides the fact that we could increase
the values of the objective functions found earlier, the corresponding

optimal policies also all resulted in a constant exit conversion over the
time interval where the optimal control was unconstrained.

Our problems
Al and. A10 are examples of this.

The main importance of a constant exit conversion property is that

the optimal control policy can be determined from a one dimensional search

on the inlet temperature at time zero. Once T(o) has been specified, the

L

total control policy T(t) can then be calculated by calculating T(t ) for
all t > 0 such that x;(t) = x; (o) for all t efo,t ]. If at some point in

*
time ty T(t]) reaches the upper constraint T , the control is then kept

on that constraint until the end of the operation. The optimal control

policy can be found as the one for which the objective function reaches

a maximum with respect to T{o). Remark that in this class of problems

the optimal control could also consist of an jnitial finite time interval
[o,t])c[o,l] where the control is at its lower bound. In this case, the

point in time t] where the control leaves the lower constraint, then
determines the total policy.

This for instance would happen whenever
T, > T (o).

The constant exit conversion property is also important from
the viewpoint of practical control implementation in that the value of

the optimal constant exit conversion could be used as a setpoint.

The slight oscillation which is shown in the profiles for problem
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A10 is due to the fact that the computer program was halted before total
convergence to the stationary policy was reached. The gradient method
which was used in updating the control policies usually éonverged in

less than 10 iterations to a sq}ution for which no further improvement in
the value of the objective function was noticeable. The value of the
partial derivative of the boundary hamiltonian with respect to the control
over the unconstrained region was of the order of 10’5 at the optimum.

The convergence for problem A10 however, was slower and the calculated

profiles could still be improved. A conjugate gradient method for instance,

could give better results in this case. -

6.5 Unsteady State vs. Quasi-Steady State Formulation

The main difference in using the unsteady state éxpression (5-22)
rather than the quasi-steady state equation (5-23) in the formulation of
the optimal control problem is that the conversion characteristic in the
unsteady state formulation is no longer parallel to the control character-
{stic, but forms, for small values of (te/tf), an angle of order (te/tf)
radians with the 1ines along which the control remains uniform.

As has been shown in Chapter 4, this coJ]d possibly have the effect
that although an optimal piecewise continuous controller exists for the
quasi-steady state problem, there does not exist an optimal controller
in this class of admissible control functions for the unsteady state
problem.

Since an optimal pure relaxed controller is not physically realiz-

able, sub-optimal control policies will have to be considered for practical

i
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implementation. A sub-policy to the optimal relaxed control policy which
chatters between two admissible control policies can for instance be
chosen as a piecewise continuous control policy which switchgs a finite
number of times between these two admissible policies. The frequency of
switchﬁnz then has an upper bound which can be determined from the physical
Timitations of such a control technique. This procedure also could be
used in case the control characteristics are considered to have a steeper
slope than the conversion characteristics. Since in a tubular fixed-bed
reactor, the rate at which a change in temperature is carried through the
reactor is smaller than the flowrate of the fluid stream, this latter
representation of the control characteristics would be more realistic.
Other types of sub-optimal control policies which could be con-
sidered are the admissible control policy which was found to be optimal
in the quasi-steady state system, or an admissible control policy which
results in certain properties for the unsteady-state system which were
found to be optimal in the quasi—steaqy state formulation, e.g., a control
policy which gives a constant exit conversion out of the unsteady state
reactor as long as the control variable is unconstrained.

A practical controller can then be chosen from among these sub-

optimal policies.

A



LY

- §.

Ve o

— A A

s

CHAPTER 7

INITIAL CATALYST ACTIVITY DISTRIBUTION

7.1 Formulation of the Optimization Problem

For the boundary control problem where the distribution of the
relative catalyst activity in the fixed-bed reactor at initial time is
the control, the state equations for the reaction-deactivation system

can be defined, similar to (6-1) and (6-2), as

P
n

, = KOTD FIxDy (7-1)

and

- K[T] fIxJyp " (7-2)

"

Yy
with the boundary condition
x(0,t) = x (t) (7-3)

Since the inlet temperature is not a control variable, we specify the

inlet temperature policy as

T(£) = T (t) (7-4)

where To(t) is a piecewise continuous function of t.
The boundary control variable is then the initial condition for

the partial differential Equation (7-2)

134
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v(z,0) = v (2) (7-5)

where wo(z) will be sought in the class of piecewise continuous functions

and is constrained by:
*
cv (2) cw for all z efo0,1] (7-6)

In addition to the constraint (7-6) we also will require that
the average relative catalyst activity which is put in the reactor at
time zero is constant:

1
wo(z)dz =c (7-7)
0

The optimal control problem can then be written as

1
max P max [x](t) - xo(t)]dt (7-8)

*
b (z) cu v ew(2) < v .

subject to (7-1) - (7-4) and the constraint (7-7).

7.2 First-Order Deactivation Reaction: m = 1

As we have seen in Chapter 6, Section 6.3.1, when the order of
deactiviation m is equal to 1, the state equations (7-1) and (7-2) can

be formally integrated to give

X (t) = Fix,(t),k) (7-9)
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with

(t),Ke) (7-10)

where

s(t) = | v(z,t)dz (7-11)

With the inlet conversion and inlet temperature specified by
(7-3) and (7-4), the exit conversion x](t) given by (7-9) is for any
t e[o,1] solely a function of the total integrated relative catalyst,
activity ¢ at that time.

From (7-10) it follows that with the inlet conditions specified,
the integrated activity ¢ at any given time t e[o,1] can be calculated
from the initial conditions of ¢ at time zero. However, since

4y = 0(0) = | v (2)dz (7-12)

0

it follows from (7-7) that for any admissible initial distribution wo(z),
the value of ¢; remains constant. This means that at any time t e[o,1]

the value of ¢(t) and hence xl(t) is totally determined from the inlet
conditions (7-3), (7-4) and the value of -9, Hence for any initial distri-
bution wo(z) which satisfies the constraint (7-7), the performance of the
reactor will remain‘unchanged and therefore wo(z) cannot be considered

as a boundary control variable.



5 g - o

Fad
t

137

7.3 Conversion Independent Decay and m # 1

By letting f = 1 in (7-2), the relative catalyst activity at a

point (z°,t°) in the z x t domain, for m # 1, can be written as:
_ te ‘
w(z°,t°) = [y (2°)3 - q [ k(t)de]'/9 (7-13)

where q = 1 - m.

For a uniform temperature reactor with T(t) specified by (7-4),

we have
q k(t)dt = A(t°) (7-14)
F
where A{t) is then a known function of t.
Substituting (7-13) and (7-14) in (7-1) and formally integrating
gives

1
X (£°) = Flx (£°), K(t°) f vy (227 - Ae)1"/%z¢) (7-15)

o
)

Since for m # 1 and t° €(0,1], the function A(t°)~given by (7-14) is non-
zero, Equation (7-15) shows that x](t°) cannot be expressed as a function
of f wo(z)dz. This would suggest of course that the exit conversion
x](t?, and hence the value of the objective function, depends upon the
distribution of the relative catalyst activity at initial time. From
Equation (7-13) however, we see that for a uniform temperature reactor
with f = 1, the relative catalyst activity at a point (z°,t°) in the

z x t domain is totally determined by the initial activity wo(z°) at



g

'\ o e Srm

PR W

138

that point in the reactor and the temperature policy k(t) for t e[o,t°].
This implies that for a given initial catalyst load with an initial
catalyst activity distribution given by wo'(z), the performance of the
reactor would be the same as for the case where the same initial catalyst
Toad is distributed differently along the axis of the reactor to give an
initial distributton wo"(z). Indeed, since the same catalyst is used to -
form both initial activity distributions, we would have that for any

] 1]

z] e[o,1] there exists a 22 e[o0,1] such that Y, (z') = (22). From

(7-13) follows then that w'(z]) = w"(zz) and hence the integrated relative
activity ¢(t) would be the same for both initial distributions for all
t e[o,1]. This would mean then that unless wo+(z) = constant, the bound-
ary control problem, in its present formulation, would give rise to an

H
infinite number of solutions.

.

Since however, from (7-15) it follows that the exit conversion is
not independent of the initial catalyst activity distribution, the optimal
boundary control problem can be properly formulated as follows:

"What is the optimal composition of a cata]}st mixture placed

in the reactor at initial time and which satisfies the
constraint (7-7)7"

Rather than referring to the distribution of the catalyst along
the axis of the reactor, this formulation allows us to consider problems
where for instance a certain number of catalyst batches is available,
all with different relative activities, but all of the same type. This

situation can certainly be encountered in industrial processes where

often besides fresh catalyst, batches of regenerated catalyst with lower

L
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relative act1v1t1e§‘are available. The optimization problem would then
become one of choosing either a catalyst load which consists of one batch
of catalyst with uniform activity or a catalyst load which is composed
of two or more batches of catalyst, each with different activity, but
such that the total integrated relative activity of the initial load
remains the same.

For the reaction-deactivation problem with m # 1 and the deactiva-

tion not dependent upon the conversion, certain characteristics of the

choice of catalyst activities can now be derived.’

Property 1:
For 0 <m < 1, the performance of the reactor with specified
total initial catalyst activity is better for an 1n1t1a;\\\
catalyst load which is composed of two catalyst activities
V100 Yoo (¥yg 7 Vop), than for an initial load of catalyst
with uniform activity Yuo ]

For given inlet conditions xo(t) and T](t). it follows from (7-9)
that the exit conversion at any time t' e[0,1] is only a function of the
integrated relative activity ¢ at that time t‘. Hence in order to prove
the property it is sufficient to prove that for a mixture of catalyst Q
activities, the integrated activity at any time t' e(0,1] s always

larger than that obtained from an initial uniform activity load.

Let us consider a mixture of equal amounts of two batches of
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catalyst with initial activity 2 e 0 and Vo0 > 0 respectively. Since
the total initial activity is specified, we have to consider a catalyst
load with uniform activity Yuo given by .

wUD = (‘L']o + '1’20)/2 (7“]6)

If two equal amounts of Y10 and Voq are not used, the property still
holds but the equations in the proof become more complicated.
Consider a point in time t° e(o0,1].
At t°, the catalysts with initial activities ¥10° Y20 and Yoo

have decayed to wll, wz‘ and ¥y respectively and from (7-13) we can

write
b = Doyt - il (7-17)
by = Dagd - A'11/0 (7-18)
b, = Lot - A1V (7-19)

where q =1 - m
and

to
A =g { k(t)dt
0

Since 0 <m < 1, we have 0 < q<1 and A> 0. We also assume that the
t

total operating time is such that the catalyst activities remain positive
at the final time.

Hence we now need to prove that for any t° > 0

P—
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() + 9y )23 0, (7-20)

or from (7-17)-< (7-19) and (7-16)

)<

for all 0 < q <1 and all A' > 0.

Although the proof can be totally constructed in an analytical
fashion, it is easier and more {llustrative to make use of geometrical
arguments.

In Figure (7-1); a graph of the function v3 vs. v has been repres-

ented. Since 0 < q < 1, the curve {s concave. The points representing

t
w'l ] ‘1’2
to the Equations (7-17)-(7-19).

[}
and Yy have been constructed from Y10 ¥20 and Yuo according

Through the relationship of o3 vs v, it is possible to eliminate

Vog and ¥, from the equations as follows:
o = igg + 1"/ (7-22)
by = [loy )9+ a7'/9 (7-23)
We now define the following function:

L= (B2 (w: + d)]/q)q 3 + §$q + d) (7;24)

The function L represents a line segment in the graph in Figure (7-1)
bounded between the curve representing v9 and a chord to this turve,

]
The segments Lo and L corresponding to Y10 and wll are 1l1lustrated in

T i i MR R oot i s M
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Figure 7-1:

Graphical construction for proof of Property 1 with

q B .5, ‘b‘o = 36 ’ ‘4’20 b 096 s A = .41.
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Figure (7-1).
In order now to prove the inequality (7-20) it can be seen
from the graph in Figure (7-1) that it {s sufficient to prove that
L‘ > L". From the geometry of the construction in the graph however,
it is clear that L" = LO and hence all we need to prove is that Ll > Lo.

This now can easily be done from (7-24) as follows:

1/q

q Q-1 - - -
L.getlrd )70 o8 99,370 _q @1 (r-2s)

Since we assumed ¢ > 0, this can be rearranged as follows:

] a1 19, y g =g i
TR AT (NAR S NIRRT, - (1-26)

V= (9 a)/e (7-27)

Now since 0 < 1 - q% 1 for0<q<1, it follows from the concavity of
the function w]'q that for ¢ > 0 and Y > O the expression in the square
brackets in Equation (7-26) is negative.

Thus:

al
T 0 . (7-28)

R ] .
and since V1 < ¥y this implies that L‘ > L0 in Figure (7-\). Q.E.D.

The proof of (7-20) for tha case whaere V1o * 0 s much simpler and
follows directly by substituting (7-16), (7-18) and (7-19) into (7-20)

»
B
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noting that v,, = 0 implies ¢, = 0. This latter case where p,, = 0
10 1 10

corresponds to diluting the catalyst with an inert material.

Property 2:

For m > 1, the performance of the reactor with specified
total initial catalyst activity is better for an initial
catalyst load which has a uniform relative activity Yuo

than for a mixture of two catalysts with initial act-

ivities Y10 and Va0 (w]o # wzo).

Proof.
The proof of this property follows the same steps as in the proof
of Property 1, but since the function wq is convex forq=1-m < 0,

the opposite conclusion 1s reached.

7.4 Conversion Dependent Dacgy,and my¢

Although for this problem the distribution of the initial
catalyst activity becomes a control variable, we will limit the analysis
of this problem to the case where we have two catalysts of the same
type, but with different initial activities, available. This is indeed
a ﬁore realistic problem than trying to find the optimal control policy
in terms of wo(z)‘ ‘ |

We will consider a mixture of equal amounts of catalyst with
initial activities Y10 and Vog raspectively. The control variable then

becomas the concentration of both catalysts in the mixture which {s put

o w— e = =

o it g S Ao A

A gt -
e [P



i 145

into the reactor. By defining this control variable as a(z), we have

.

the effective relative catalyst activity at a point z° e[o0,1] in the

reactor at a time t° e[0,1] then given by

~

by (258°) = a(2°) 4 (8°) + (1 = a(2°)) w,(t°) (7-29)

where w](t°) and wz(t°) are the activities of the respective catalysts
at time t°.

. -
s o o A A L T

Since the catalyst at each point z° e[0,1] inside the reactor
1s a mixture of two catalysts with different activities, we need a
decay rate expression for each of the two catalysts. Substituting

(7-29) for y in (7-1), the state equation then can be written as

x, = K F(aw] + (1-a) wz) (7-30)
Vg = - kfg] (7-31)
Voy = - kfg, (7-32)

m
where 9y = ¥y » i=1,2.

The initial and boundary conditions for (7-30) - (7-32) are

Kout) = % (t) | (1-33)
T(o,t) = Ty(t) , | (7-34)
b1(2,0) = ¥yg  for all z efo,1] ' (7-35)

wz(z.o) = ¥y forall z efo,1] ) (7-36)

. g -
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The control variable a(z) is constrained by

0 < alz) ¢ (7-37)

and the total initial catalyst activity is specified as
1
[ [a(z) ¥y + (1-a(2)) vygldz = ¢ (7-38)
)

or since it is specified that equal amounts of both catalysts are used,

Equation (7-38) can be written as

1
[ a(z)dz = 0.5 (7-39)
)

The optimal control problem then can be written as

]
max P = max [ [x1(t) - xo(t)]dt (7-40)
0ca(Z) 1 O0g¢a(z)s1l’o

where a(z) is sought in the class of piecewise continuous controls and

has to satisfy the constraint (7~39).

7.4.1 Necessary Conditions for Optimality

Application of the maximum principle technique for boundary

control then {feads to the hamiltonian
H = A K F(aw‘ + (]"a) wz) - u]kfg] - uakfgz (7"4])

where the adjoint variables i, M and u, are solutions of
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A = -4 ~ (7-42)
oH )
Myy = - = (7-43)
1t Sw]
oH
b, = - A . (7-44)
Zt‘ awz
with
A(h,t) =1 for all t efo,1] (7-45)
) u](z,l) = uz(z,1) =0 for all z e[o,1] ' (7-46)

Since the control a(z) is a function of z only and since any admissible
control policy also has to satisfy the constraint (7-39), the boundary
hamiltonian H is defined as /

1 1
H = J Hdt - K([ a(z)dz - .5) (7-47)

0 0

where ¢ {s a constant Lagrange multiplier. This boundary hamiltonian is
different from the forms discussed in Chapter 3 in that it contains an
additional term which takes care of the constraint (7-39). This form
of the boundary hamiltonian can also be derived from a first-order pertg:z}
bation analysis of the objective function.

The weak maximum principle for boundary control then requires
the optimal control policy a+(z) to satisfy the following necessary

conditions:

B s R PR PR
> -
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(
20 fora'(z) =1 (7-48)
H ! +
o _ i } - 7-49
i J A K F(w] wz)dt xk ¢ <0 fora(z)=20 ( )
0
=0 for0<a'(z) <1 (7-50)

Since 3H/2a is not an explicit function of the control variable
a(z), the application of the maximum principle does not lend itself to
determine any particular properties of the optimal control policy. A
further difficulty is caused by the fact that the constant Lagrange
multiplier x 1is unknown. Although in general we can expect the optimal
control to be bang-bang as determined by (7-48) and (7-49), we cannot
exclude the possibility of having a singular control sub-policy, deter-
mined by (7-50) over all or part of the z-domain. )

7.4.2 Numerical Procedure

Under the quasi-steady state assumptions, the state and adjoint
equations (7-30) - (7-32) and (7-42) - (7-44) can again be integrated as
ordinary differential equations along lines which are parallel to the

coordinate axes.

For a given control policy a(z), the integral

o
18

1
s [ A K F(w] - wz)df (7-51)
o f

can be evaluated at each grid point along the z-axis.



-

149

If the chosen control a(z) does not satisfy the necessary condi-

et
PURPIPRPRIVS Sl s
“,WWM: adacd
. e e T
\
A

tions (7-48) - (7-49), a new control policy can be determined as a(z) +

§ a(z) where § a(z) can be chosen as

X 1

?_ s a(z) = n'(I x K F(w] - wz)dt - x) - (7-52)
i 0

z with n a small positive parameter.

i

!

The new control policy has to satisfy the constraints (7-37), (7-39):

0 ¢a(z)+6alz) ¢

(7-53)
and 1
l la(z) + & a(z)]dz = 0.5 (7-54)
0
From (7-54) and (7-39) this last condition becomes:
] +,
[ § a(z)dz = 0 N~ (7-55)
)

| Since the conditions (7-48) - (7-50) apply for the optimal control policy,

the value of « is totally unknown as long as we do not know the optimal

policy. Hence in order to calculate § a(z) from (7-52), we have to make

use of an approximation K for the value of

Although it is easy to adjust a new control policy such that

the constraints of (7-53) are satisfied, the condition (7-55) is a much

more difficult one to comply with. Indeed, it is no longer sufficient to

set a(z) = 1 (o) whenever a(z) + & a(z) > 1 (<o) since fla(z)dz would no

longer remain constant. This difficulty can be resolved by using appro-

priate values of € and n in the updating procedure.
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Let us consider the z-axis divided into N equal intervals Az

and let us denote the discrete points along the z-axis in ascending

order from 0 to N. We will consider the control to vary linearly

between two adjacent grid points.

a(z) are now possiﬁ]e.

1)

2)

The control a(z) is totally unconstrained.

In this case we calculate 3 as. follows:

N
} (D4 + Dy)
AL R

K

1 2N

where D, is the value df the integral (7-51) at the ith
grid point along the z-axis. This value of Ky is then
substituted for x in (7-52). The value of n which is used
in (7-52) is then chosen such that the constraint (7-53)

is not violated. A\\\\

Y

e

-

The control a(z) .is partly constrained.

Although several possibilities can occur here, we will
illustrate the updating technique for two basic control
adjustments. Consider for instance, a control policy
a(z) which is initially constrained at a(z) = 1 and then

remains unconstrained for the remainder part in the reac-

tor. Let\] denote the last discrete point where the control

is constrained. (Figure 7-2a).

Several possibilities for the control

] _ (7-56)

e v ot ¢ P o W e e A b g
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Case A: Di {s a decreasing function of {1 for i = j,...,N.

In this case the control a(z) is updated to a(z) + & a(z)

only over the region where a(z) is unconstrained. By calculat-

ing <) from the following equation:

N
+D az D, , +D,) %2 = (N - 3a 7-57
(g * Dgag) Tt Ly L0y 0y T = g (N - ez (7-57)
we get
1 )
D, + D, , +D,)
. j+]- i=J+2 1‘] i (7-58)
1 2(N -3 - .5)

The derivation of Equation (7-57) can easily be seen from Figure
7-2b . By substituting x, for x in (7-52), the control can
then be updated at the points j+1 to N and it can easily be
verified that by choosing xy from (7-58), condition (7-55) will
not be violated. The value chosen forn has to be such that also

(7-53) is not violated.

Case B: D1 is an increasing function of 1 for i = j,...,N. In
this case we allow the control a(z) to become unconstrained at
the point j but keep the control at the constraint for the

point § - 1. From Figure 7-2c we can derive the relationship

N

(e + D) 22+
K] J—Z 1=j+]

(Dyq + D) 55 = k(N = (3-1))az (7-59)

'3
and hence
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By updating the control now at the discrete points j to N,

we can again verify that by substituting «, from (7-60) into

(7-52), the condition (7-55) {s satisfied, The value of n

again has to be choseﬁvsuch that (7-53) is not violated.
A similar technique is used for the calculation of K1 when the control
is at its 10Qer constraint. For the more complex case where the control
{s on oneaof its constraints over more than one segment of the z-axis,
the appropriate value of’x1 can still be calculated in the same manner
provided the same adjustments, as {llustrated in Figure 7-2, are made
whenaver an unconstrained segment joins a constrained one. Although
this method of adjusting the control could fajl when D‘ does not vary
monotonically with respact to 1, wa have not encountered any such diffi-
culties 1n our calculations. One of the possibilities which has to be
taken into account for the numorical work is that the control a'(z) can
be discoatinuous. Using the updat!ng tachnique descrtbed above, a dis-
continuous optimal control.policy would be indicatod by/the %act that
éhe rogton over which the control {s uriconstrained, becomas smaller and
smaller during the {terations. Since hoyever, discontinuities in the
control a(z) are carricd through along the 1{nes which are Q§§?“°’ to
the t-axis, this situation doas not lead to serious difficulties in

tha integration, and can easily be incorporated in the algorithm.

o v
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7.4.3 Numorical Results and Discus$ion

_ The optimal initial distribution of a mixture of'equal amounts
of two cata1ystsklong the axis of the reactor has been calculated for
a number of problems with m ¥ 1 and fl ¥ 0.

The results which are presented here have been calculated for
the problems with F = 1 - x and all possible combinations of .f = x,
f=1-x,m=.5and m= 2 The common paramaters in those problems
wore identical to those discussed in Chapter 6, Section 6.4. The value

i)
of p was chosen as 0.5 and tho inlet temperature éoliey was specified

as:
To(t) » 900°K  for all t e[o0,1] ° (7-61)
The initial catalyst activities for the two catalysts was

_ chosen as

/
W]O = 1,24 ‘3‘20 - .8 (7-52)

The resufting opdimal po\iciesAfor tha four combinations of the
functions f and the values of m are tabulated in Table 7-1.

The values of the objective function pt corrasponding to the
optimal ‘control palicy a'(z) have baon compared with those of Pue
corrosfonding to a uniform mixture of the two catalyst (afz) = .6 for
all z g[o.l]). and to the valuos of Pyps corrasponding to the same
reactor system but with an {nitial uniform catalyst activity:

Vo * (¥yg * ¥pg)/2 ® 1. Tha valuos of P*.‘Puﬂ and P, for problens
; T-IV'and the rolative differences botwaon P* and Pyy and batwaon p*

\
. \

ot e o g
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Table 7-1:

Optimal control policies a*(z) for Problems I-IV.

155

Problem f Optimal Control Policy

(T 2 8{0,.5]

1 X 2 (z) = ¢
. 0z e(.5,1)
= (0 2 e[o0,.5]

1 X 5 at(z) = ¢
’ |V ze(.5,]
(0 2z 0[0,.5)

111 1-x at(z) = ¢
" ) z 6(.5,1]
(1 2 e[o,.5)

Iv 1-x 5 at(z) = ¢
0 2z e(.5,1]
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and PUA are tabulated in Table 7-2, ‘

From the observation of the resu!tstin Tables 7-1 and 7-2, the

following conclusions can boe drawn:

1)

2)

3)

The optimal control 1s a bang-bang type control. Although

a singular conttp1 policy is a feasible control for optimal-
{ty, none has been encountered in our calculations.

The type of optimal bang-bang policy {s determined by the
sign of the product (m - l)f‘. If this sign is positive,
tha catalyst with the highest relative activity 1s placed

in tho first half of the reactor. If the sign is negative,
tho best catalyst is placed at tho end. This would suggest
that for industrial roactors where frosh catalyst-is added
to regeneratod cvatalyst which has a lower relative activity{
it would be advantagoous to koop both catalysts sepafate

in the reactor whanéver tho catalyst decay is convarsion
depandent and the decay rate is not of first-arder.

A uniform mixture of two catalysts with different activi-

ties gives rise to a valuo of tha objective funckion which

/
\js larger (smaller) than the one obtatned from a reactor

With a uniform catalyst activity, with the total iritograted
in gl\qpt+?1ty cqual in both cases, whan the order of
doactivatfon(m is smaller (groater) than 1. This has boen

proven in 7.3 for the case with conversion indopendent decay.

‘Although tha optimal distribution of tha two catalysts for
" probloms I and III tn Table 7-2 {s st{ll better than an

- .-




T T -

157

initial catalyst load with uniform activity, we do not
expect this always to be trua for any of the parameter
settings or for different functions F and f in the case of

m> 1,
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Table 7-2: Values of the objective function corresponding to the

optimal control, a uniform catalyst mixture and a catalyst

with uniform activity fop problems I-IV.

Problem Pt Pum Pua fj;-”—“-x 100% E;-“-p—‘—“ix 1008
m uA
I 7638118 | .7607095 | .7620920| + .408 + .07
11 7904205 | .7860636 | .7851064 | + .55 + 677
11 7727507 | 7678952 | 7710396 |  + .633 +.223
v 8114842 | 8059995 | 8049568 |  + .680 + .80
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CHAPTER 8

INLET TEMPERATURE AND FLOW RATE CONTROL

8.1 Formulation of the Problem

In this section we will consider an optimal control problem with
two boundary control vartablaes: the inlet temperature and the inlet
flow rate into the reactor. Assuming that there is no volumetric expan-
ston inside the tubular reactor, the unsteady state reaction equation
(5-23) with t, " Lgv can be written as

Xy *+ v(tf/L)xz = KFy (8-17

whare v is the Tincar flow rate, tf tha total opérating time and L the
1ength'of‘the reactor bed.

Unless v(t) or k(t) vary too rapidly, the quasi-steady state
approximation .can often pe uscd and (8-1) thon can bo written as

Xy ® (LIL)K F w/v (a-a)

Vs
-

Since ;hu‘value of (L/ty) ts canstant for a prob%cm,witﬁ givan. final time,
this factor can ba abosfbcd_into tha rate conétant K. HNote, howaver

that by doing so, K 1s no longer dimansionless but has the units (ength/-
tima). Since the lincar flow rate v(t) has tha sama units..tho ratio

K/v in the equation | ' \

169
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Xz‘

K
m Fy (8—3)
is dimensionless.' For the furthar discussion however, it is more con-
venient to work with dimensionless control variables. A dimensionless

control variable for the 1tnear flow rate can be obtained from:

w(t) = withy,, (8-4)
| ‘ .
where w(t) is the control variable and Vav is the time average linear

flow rate (i.e., Vay (f v(t )dt )/tf) since v,, will be kept con-

stant, we can also absorb it in the rate constant K and we obtain

1

(8-5)

R4
where now K and w are both made dimensionless. The catalyst deactiva-

\

tion cquation remains unchanged and is given by
by = = kfg ' ’ | - (8-6)
}nit{S! and boundary conditions to (8;5) and (8-6) are ;hecifigd as .
x(ost) = % (t) -3 w(z.o) . v.:o.(:.) | o (8-7)

Since the flow rato of the reactants can now vary with tima, the
total performance of the reactor can’ ba moasurcd - by:

1 ,
Py ® J [xy (£) = xo(£)] w(b)dt - S (s-8)

°
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i ¢
The boundary control variables k(t) and w(t) will be callled
admissible 1f they satisfy tha following constraints:

ky € k(t) ¢ k" (8-9)
Wy ¢ W(E) € W (8-10)

ar\d ] . ’ 4 .
[w(t)d‘c 1 ' (8-11)
0 - ‘

This tast constraint (8-11) t{mplies from (8-4) that for a given total
operating time, the total volumo of reactants which has to be processed
is fixed.

The optimal boundary control problem then consists of finding
the piecewise conttnuous control functions k' (t) and w (t) which satisfy
the constraints (8-9) -~ (8~11) and for which Py ts maximized over all

-admissible controls.

% .
8.1.1 Application of the Maximum Princ{ple

Although this particutar form of the objective function (8-8)
1s not contained fn the genaral objectiva function as givon by (3-4), we
still can cmploy tha Equations (3-6) - (3-9) to defina tha hamiltonian
function Has

H-L&f—-"—-ﬁkﬁ : - l . {(8-12)

with the adjoint oquations
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and

A1) = w(t) s u(z1) = 0

From the first order perturbation analysis of the objective

\
. M. _AKF )
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(8-13)

(8-14)

(8-15)

function Py, as defined by (8-8), it is shown in Appendix B, that by

using the Equatfons (8-12) - (8-15) the appropriate formulation of a

boundary hamiltonian H then bocomes

0

1

1 ‘
He [ Hdz + [xq(t) - x ()] w(t) - x[,{ w(t)dt - 1]

0

(8-16)

where x s a constant Lagrange multiplier aasociated with the control

constraint (8-11).
The nacessary conditions for optimaltty which corraspond to

a weak form of tho maximum principle and which are identical to those

derived from a first order porturbation analysis of P,(Appandix B) are

then:

]

'2% - | (P A—'é-‘;’—F—ﬂ - ufg)d.z <

0

and

L

"0 on 31

3 0 wﬁan k+(t) ) k*

‘¢ 0 when k¥ (t) = Ke

(8-17)
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=0ons,
1
o A KF He) =W (8-
Lol ._;z__i dz + [xy(t) = x(t)] -« ¢ » 0 whenw (t) = w (8-18)
0

¢ 0 when W' (t) = w,

where S] and 32 correspond to these parts of the optimal control policies

where k+(t) and w+(t) respactively are unconstrained.

8.2 Properties of the Optimal Control

From (8-13) and (8-5) it follows that

R ukf'gF  for all z al0,1] i t elo0,1] ' (8-19)

Assuming F ¥ 0 for all x e[xg.xll. Equation (8-19) can also be written as

] N
ukf g = } ﬁ-g-}-ﬁ ' (8-20)

Considaring (8-6), (8-14) and (8-20) we also have

©oakfe L A KE gy e g P AL B ~ (8-21)

By substituting

A KF AKF oy, AF3 Ky, AFydK _
LEE g e - AR R IR e R (8-22)

into (8-21), noting that
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2. ok % o2

and integrating (8-21) over the z-domain gives

1 1 1
y x K
& Iukfgdz-I A 2Kyg, o g jQ—T—in - ufg)dz
0 0

0
1 1
d A F ax
0 ¢

The last term in (8-24) can be integrated by parts to give:

1 T
2 ]
1 2 A A F ax dx|’ 1 3% F ax ax
[r 57 3t ¢ ‘*EK‘ ‘[”(rm“;zn“ﬁ’ (8-25)
0 0 ) :

Using (8-5), (8-15) and taking dxo(t)/dt'- 0, Equatfon (8-25) bocomas:

] ] N ]

dx .

PR [ e bt e o
RN

0 0 o

Substituting (8-26) and (8-«17) into (8-24) and not1n9 that %% 3‘%

at tha opt%mum for all- t efo,1] wa got

1 : 1 ) ‘
dx :
%’E Jukfgdz-wa-t-l-i-lz-g% [U(Fwdz . (8-27)
0 : 0

E

for all t efo,1]. .
Lot D 1 (ty,ty) c[0,1] ba tha timo interval over which both
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optimal control policies k+(t) and w+(t) are unconstrained simultane-

ously.
Property 1:
Provided:
dx »
(i) a-EQ'O
(11) P ¢
(111) D is non-empty
then
w(x, - Xy - k) = constant on D
<
Proof:

Substituting 3f/aw = 0 on Sy from (8-18) inte (8-27) gives:

1 .
dx
%f [ ukfgdz = w 3?% + (x1 - Xy - K) %% on 52
0 .

From (8-18) we also can wriil;

LI .
g’t’ [ ART Y KWF dz = g'f {w(x] - Xq - k)] on Sy
0

1

From (8-17) we get

«,' 1
1 .
%(kg%-g‘-[ P-’S-T'ja@dz-g-‘—fukfgdz-o on s,

0 0

(8-28)

(8-29)

(8-30)
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Hence from (8-28), (8-29) and (8-30), using dx,/dt = 0, 1t follows that
(p -1) %E.[w(x1 - Xy - k)] -0 onD (8-31)
which for p ¥ 1 implies

w(xl - X = x) = constant on D . (8-32)

0

8.2,1 Conversion Independent Docay: fl w (

t
For the spectal case whore f = 0, Equation (8-19) bocomes

¥

3 AN {
i 0 : (8-33)

which from (8-15) gives us
AF =y F, N (8-34)

We now can proceod to prove tha following proparty:
(

Proparty 2:
Prov1dadzd ‘
X
W geo
(11) pyl

(111) £ wOandF 4 0
(tv} D 1s non=cmpty
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J
then
v qg 0 onb
eaa oo i /-
Progf:
. - From Property 1 ahd Equation (8-29) wo have
1 | '
«
g—E [xF%‘“dz-o on.D | ) . (8+35)
. la .
Using (8-34) this can also be written as
d ! & ‘ vodx , &
a*i' XFWGIG(WF]A +Flgﬁ) dz
0 . \q
3- +WF1§€ l‘ 5=-dx-0 0n.0 o (-8-36_)

$¥nce we aasumad tha% F doos not b@corﬁ@ zero for any x etxo.xﬁ. Equauon
(8<8) can_be mtegratqd as fmoﬁu

x‘ g ‘ . . " . : - |

Diffmntimng both ndqs of (8-37) um\e L@ibnm‘s ru\e gwca us fev '
dx/dtno - ‘ ."' . P

.* ¥ %*%ef%*ﬂ . T e

L] T ¢
. . .
* A i A *+
s . v .. e . .
. H : ‘1{ > A LA o
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<® Substituting (8-38) into (8-36) gives
! v dx d ! Ko dx
(] FyRvda) gt SF, | Bazvwgdeo oo (8-39)
Q- 0
I Ve

Howaver, from.(8-34) and (8-18) wo also have

1 ! . : '
F1[ i'éﬂidzvf %ﬂdz-x‘rxo-ﬁ on S, (8-40) -
0 . -~ . .

Q

Substituting (8-40) into (8-39) and ustig the ragult of Property 1,
Equation (8-39) bocomas ' X .

h} ..
dx 3 . . .
_ ‘(Ft' K J pdz) a'E'L' 0 ?n ] : ‘ . (8«41)
Hance, unless F,‘ = 0, (‘&;-4i) 1mpm_t .
dx ) ' . *
Fes 0 oD L o (g2}

/“Rram Proparty 1 «d.aleo have. |

LY T

=g kb heugghe o, oo

¢

(Qw43).

which from (8-42) Ampifes o
o Ty -
\" Uyt e Peo o o T ()
- o The ;tgf‘m (*&1': X -s'fn)wmnot\f"bc zoro since *f&éﬁ\ (8-‘40”\}\1! C

t
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would {mply that F1 = 0 and this has been. excluded.
Tharefore ' )

%-‘%- 0 onbD (8-45)

“ QIEIDO

Rgmarig i

Since for Proparty 1 and Proporty 2 wo assumed the set D to bo
non=cmpty, wa cannat employ thesa rodults effictontly in tha calculation
of tho optimal control policies as wo do not know in advance 1f thare
will oxist a non-cipty. sot D for the givon problem. Tha main valua of

_ those proparttex howwar. 1es 1n the fakt that for the problems whero
thoy are applicable, they provjd@ us with an additional check en the
caiculatod1optimai contral p911cid: {0 case both k*(t) and w*(t)'arotb
unconstrdined sinul tancousty over A fin1to‘tiha fntorval,

N Numopiegl proccdure . - s
Far tho ‘gtven baundary e nml m&'lcm (8-8) = (8-11), the state
and adamf. nqkamm can agam k‘ﬁﬁaﬁtcd as ordinary differcntial
oquatiens mne Hth x«mcu ard. pmlm with tho eoordinau axos.

" The optiral. et tomparature control KME) e caloulated
{torativaly by hi11=clinbing on tha \baundary hamt 1tontan ¥, Tha proce-.
dura to update tho cantrot k{t) at cach {teration ta 1danttul to, tho ano
uwd tn chapw § for 1nm t@m@ar&tzm contret onw‘

L)
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Since wo have to calculate two boundary control policies, the
control varfable w(t) can also be adjusted at cach {teration step.
By also using the gradient method, tha control w(t) can be updated
to w(t) + ¢ w(t) where & w(t) {s given by

; ! . :
§ w(t) = n([ - A;f@£~£ dz + [xy = x;] = «) (8-46)
0

2
with n a small positive paramater.

The new control poltcy still has to satisfy the control con-
stratnts (8<10) and (8-11}, hance & w(t) has to ba such that -

We g W(E) * S W(E) E W | (8-47)
“and | . |
1 : - i
I 8 w(t)dt = @ . . (e«4)
0 .

J

|
\ ‘ f

since the Lagrange multiptier « 1s not known, wa have £o use an approxi-
mate value gy, Tho Equations (8-46) ~ (8-48) are similar fn form to _
tha Equations (7-62) (7-83) and(r-ss) which wa encountered tn chapter
7 for updating the cantrol alz), In ordar to. eaieume a control - -
cdiu;tmant 8 wit) which smmu (8+46) = (8~48) wh can use a pmqe-
dure Which s sinilar to ‘tha one desertbcd in Chapter 7 for updating
h thia control a(z). ' B L S

e 4
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- for ditforant valugs of tG. o nuda cartatn thut tnall qﬁaes‘an cqual

/’s - 1N

8.3.1 Numorical Rasults and Discussion

Calculatians have Baun done for two types of problems y1th

conversion dopondent catalyst decay rates.

Examplo 1t
The boundary control problcm (8e8) < {8<11) has the fo1low1ng

functions and parameter sot: ¥
Felax
felax _
gu 8 S L
’ , p “'015 ' : . ‘ . ’ ’ * (a-4g)
3 Xt} = 04 by (2) =1
K" = KLT"] w K(900] 1 ky = K[TyJ-= k[700] .
Tha péa-eprnantid1 constants for the rate constants K and_k_&ra tdentical
to tha anas used in the two proviauJ chaptors. Tha valug of L in '

_ Equation (3-2) was takon as untty. Optimal eontral poltcies hava bacn

ca1cu1atcd for tha problen w1th thi: sdt of pavamatar: nnd dtfforent

. valuas of the tgta! oparating eime-tf. Tha dtfferant va\uca of tes
- glven as fractions of a 28 dqy eﬁbrntion. ard tf . .ra, .so. 87 8,

'162 aﬂd 0600 N i v » x ‘ B : . - .
In order to compara tha apttmai vatuax oc tha obdeaiivo fuaction ‘

q

amount of_raactaqt; h@g.praeangcd, This waa aeqcmptt(hcd by ehaasing

«
e ¥
;
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the valuo of Vay 0

. ., ¢

(for 1nstnncn; Vav ® 2..for te » (5),

Wa also can dofina identical uppar and lowor constraints on the flow
~ rate for tho problems with diffarent t, by weiting (8-10) and (8-11)
as follows:

Qg wit) ¢ 2t (8-81),
and | | | '
1 - .
I w(t)dt = 1 ‘ (8-82)
0 . v '
S \

Tha best calculated boundary control policies add plotted as
™(t) and v (t)(v (6) = vy W *(t)) tn F1gura e-1 for dtffurant valuas
ot , | ,
A typfcal exit converston profila x,*(t) éorraapondtng to the
‘bcst calcu\atcd boundary control, po\tcies is, 111uatrnted in thure 0-2
for tho Gase with ty = .87, . o
’ Although tho ditforance tn tha valunsggf tha obacctivo function

Plk.lqvquatcd at tha ustﬂnﬁm and Py corraiponding tho bast congtant
: boundany control polietos, can ba siqnificnnt for a givan vajuc of tf
(for {nstance P‘ ‘956327 and PIU . 9200498 with tew 7}, tE 18
More raaldstic to campara the porfornancea of the raactor for different
vatuos of ty on the basis of preduattéh par tira un{t. Ha ypnroforu. '
dnfina thu objcctive funetion 92 a: , :'.fiﬁx

s . x
e PR
o N > ’ N
.oy - s .
> " v o, e . -/ ?

N
i 4
Fo -

8
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+ : *
Py Py v/ (te + ) (8-53)

whare P‘+ is tha Qqua of Pyy definad in(8-8), avaluated at the optimal
poltctas k*(t) and w'(t) and whero tp accounts for the down-tima of the re-
actor, The calculated values of P, for tha different values of te and
with t, = 0,-.5, .6 and .7 aro tabulated {n Table 8-1.

From the numorical rosults obtainoad for Exampla 1, tho following
observations can now ba made:

] For suffictontly large valuas of t;, the optimal control

rasu!l of Property 1.
3) At ough onparty 2 only has baen provan for f x Q, the
rasults of this PFroporty havo‘shown to bo valid also for
- this problem. |
4} 1f v redctor downetbing 18 taken fnto constdoration, the
maxtmwn productton par ttma unit {& obtatned for eho cao
’ whm wh(t) 1 totally upper constvatned (.0, tha flow
. " rate of the flutd straan u kopt as Mqh at pambln)
8) From Table 8<1, wo sca thut in order to obtain 3 maximum
~of Py for which'w (t) 18 noe totatly cenﬂmncd. wa noed
© to constden A down-&imﬁ tn kateh 1« tavgar than tha' total |
' aporating tio te.  Honce, for all raaltstic mu&ttnns. the
N optinum. of this problei-wit} eceur ut (t) wy' fev anl
‘,t ﬂ{ﬁ.\l o .‘“ Ll
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6

4

T(t) = 800°K 3 w(t) = )
2 (6 ™) & wit) = w'(e)

-

¥4

0 ot | o,
Figure 8-2: Example of the axit conversion palicy x,(t) for optima)
. and uniforn control polictes fn Exemple ¥ with e = .67

R
[y
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Table 8«1: Valuos of tha objective function P2 for difforent valuas

of terand t; in Example 1.

tg Polty = 0) | Pylty = .5) Pty = .6) Polty = .7)
72 | 834457 492466 455158 423106
60 | 927970 506165 463985 428294
57 | o887 508913 465416 428769
.54 | .o84808 1611284 466389 L4877
.52 | 1.004770 612236 466500 420263
.60 | 1.024708 LB12382 465774 426960

W



Exampla 2: \
The Pﬁnctjons F, f and g in this oxample are
Fa(- x)2
~, -
fo (1 x5 (8-54)
"9'432

Tha sot of parameters is chosen fdentical to this of Example 1 oxcept

for the constraint (8-51) which s now taken as

0 ¢ wlt) ¢ ty | _ (8-86)

The optimal policles k*(t) and w*(t) have baen calculated for values of
~ty oqual to 1.32, 1.29, 1,26, 1.20, 1.16, 1.08, 1.04 and 1.

A selectton of soma of the best calculated policies, platted
as T*(t)land Ve (e) « Va w*(t) } 18 gtven in Figure 8-3. A typtcal
optimal extt converston pol1cy xl*(t) s shown tn Figura 8 4 “for the
case with to = 1.20. Tha values of Py, dofined by (8-53). are tabulated
in Table 8-2 for tho dtffevent valuos of t, and with tD e 0, 3, 9. 4.0 -
and 5.0, \

- From Figura 8«3 wa obsarva that evon for ra1at$vuly largo
valyes of. t,. wo did not cncounter an tntarval D over which both optimﬂ
contralx are simultancousty unconstratned.

" This example s mo exenptional tn tha sonsn that as t, becomos
lm‘gar. the region S, ovor which k' (t) is uncqnstvamcd diminishos. Note

'hc'*:ovor. that afnee the tina scale m Figure 8-3 s normalized, the

. qQraphs of_ (g (t) in Figure 8=3 show an entmgd vicw of this efftct, On

o
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the real timo axis however, this effect is still substantial. For
{ngtance for t, = 1 (25 dhys). wo found a value of S, corresponding to
14 days, whoreas for t, = 1.29 (32.25 days) we obtainod a time intorval
of 11.6 days for 5y

| From Table 8-2, wa notice that {n order to have an optima®
policy w () which {s not totally constratnod, tha down-tima tp has
"to bo extremaly large. Therofore, as was tha case in Example 1, tho
optimal flow rate of the fluid stroam will have to bo as larga as
possible for all practical sttuations.

~
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900°K
T(t)
890 -
880 . .6
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870 . .4
AR
Tl V.29 .
860 2 | 1.16 1.2
b ’.3 1108 -
L 4 |1, .
850 - | ( L0
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Figura 8-3: Optimal control poticies T (t) and v (t) 1n Example 2

forr different.vaiuat of tf.

o 4 ap—— o M —— i & o mutetme o o oottt 5
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9

"#r T(t) . ed%°K ¢ wit) =1
4 e T(e) « T 3 w(e) ()

J

. R

Figuro 0-4: Example of the oxit 4co‘6vemon polfcy xy(t) for
optimal and uniform control polictes {n Example 2

With te = 1,20,

T
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Table 8-2:" Values of the objective function P2 for different values
of tf'and t in Example 2.‘0

2,
te Pz(tD = 0) Pz(tD = 3,9) Pz(to = 4) Pz(tD = 5)
1,32 | .566027 ,143133 .740443 118221
1.29 | .577797 .143614 140899 .118499
.26 | .590162 .144109 .141370 .118787
1.20 | .616371 . 145028 . 142239 .119298
1,16 | .634455 , 145448 .142629 .119475
1.08 | .674147 .146201 .143323 .119750
1,04 .69§g§ . 146409 . 143504 119745
1. 717431 .146414 . 143486 119572
o



CHAPTER 9

SUMMARY AND CONCLUSIONS

A maximum principle formulation has been used in the study
of optimal boundary control of chemical fixed-bed tubular reactors with
slowly decaying catalyst. One of the most important findings fn this
study 1s that we have been able to prove that a strong form of the
maximum principle fo} boundary control of hyperbolic distributed para-
‘meter systems cannot be applfed for boundary control problems where the
direction of the 1ines glong which the control variable remains un-,
changed coincides with dne.of the characteristic directions of the
system. ‘

It 13 shown 1n Chapter 4"that for a particularly chosen bound-
ary control problem, denoted Prob1em'r16, the optimal piecewise- -

* continuous control policy, whose existence and uniqueness has beeh

proven, does not satisfy the necessary conditions formulated by a

" maximum principle formulatfon which requires iﬁe boundary hami}ton1gn
function to reach an absolute maximum with respect to the boundary
control at the optimum, ,

For the Problem| [, which is similar to Problem] [, but where
the control characteristic does not coincide with any of the state
éharacterfstfcs, ft 1s indicated by numerical results that there does
not seem to exist an optimal boundary control policy which belongs to

e
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the class of plecewise continuous functions. The numerical results
indeed suggest that the optimal boundary control polfcy for this part-
fcular prob]em is a relaxed contﬁ61 which chatters infinitely fast

between two piecewise continuous controls,

For the quasi-steady state gftalyt1c reaction-deactivation
system where a single irreversible reaction occurs, the problems of
choosing: the optimal inlet température policy, the initial relative
catalyst abtiv?ty profile and the inlet fluid flow rate into the reactor

"have been studfed. The integrated average {nitfal catalyst actiJity

and the total amount of fluid to be processed were fixed and the control
variables were constrained by upper and lower Ifm{ts. The rate of o
reactfon and the rate of catalyst deactivation were both consfdered to
be expressible as a product of separate functions of temperature,
relative catalyst ﬁc;gyfty and conversion. The temperature inside

the reactor was takéﬁlefther as adfabatic or as being uniform along

the axis of the reactor.

A weak form of -the maximum principle, which requires the bound-

ary hamiitonfan to be stationary when the optimal control is unconstrained_

and to reach a local maximim with respect to the control when the opti-
mal control is on one of its constraints, has been used in formulating
necessary conditfons for optimality of the boundary control po!icie;,
From these necessary condftfons, certain prope?tfes of the optimal
control policies have been derived. ‘

In Chapter 6 wa have proven that the "constant exit conversion

JU



e et e mom % e

184

property", which had been proven earlier for conversion {ndependent
decay, rematns valid for the optimal {nlet temperature policy of problems
with conve:;{?nfdependent decay rate expressions and for which the decay

rate 1s of (first order ({.e., m = 1), Tha numarical results howaver,

"show the constant ex{t conversion property sti11 to hold for all prob-

Tems which have been investigated and for which the decay rate was not
first-order. An analytical proof of this property for general orders
of decay has not been found.

In the study of the opzimal initial catalyst activity d{stribu-
tfon, 1t 1s proven in Chapter 7 that for first order decpy rate express-
fons (f.e., m=1), the pegformance of the reactor is not affected by
tﬁe fnitfal relative.catalyst qctfv%ty distribution provided the fnte-
grated average activity s speciffed.

For conversfon independent decay, it is shown that for m > 1
(m < 1), an initfal catalyst Toad with uniform activity is better {worse)
than a_mfxfur -of two batches of catalyst, both of the same type but
with 37{{gré;f;1n1t1a1 acti%1ffes;1n&ependenf1y of how any such mixture
1s put into the reactor at time zero. ‘

Nuierical calculations for problems with conversion-dependent

decay and decay rate expressfons which are not of first order show that

*. the optimal composition of the inftfal catalyst load, which consists of

equalhﬁmounts of two batches of catalyst with different activities, is
of a bang-bang nature. We also found that the sfgn,of the product
(m - l)fl determines which catalyst fs loaded first into the reactor.

For instance, in the cases which have been studied, 1t was found that

~
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i

whenever (m - l)fl was posftfve (negatfve), the catalyst with the high-
est (Towost) relative activity should be placed in the first half of
the reactor.

In Chapter 8 we have considered the problem of s1@u1tancous1y
choosing the optimal fnlet temperature policy and the optimal inlet
fluid-flow rate for problems with fixed total operating time and a
fixed amount of fluid to be processed. For conversfon indepandent
decay, 1t has been proven that whenever both optimal controls are
simultaneously unconstrained over a finite t{me interval, the fluid flow
rate and the exit conversion then remain constant over that time interval
provided the inlet conversion x,(t) remains constant and the reaction
does not go to completfon. - . ’

It 1s shown numerically.that for a particular problem with
conversion dependent décay, this property sti1] remains valid.

1f, however, the performance of the reactor {s measured‘ps pro-
duction per time unit, we found that for those problems which have been
fnvestigated, the best performance was obtafned by cﬁoosing the total
operating time such that the fnlet flow rate was always kept at 1;5
uppef constraint. The totally constrained flow rate policy ceased to
be optimal only wien unreasonably large values of the reactor downtime
were used in the calculatfon of the reactor performance.

'

9.1 Recommendations for Future -Work

Although this reaction-deactivatfon process lends ftself easily

to the formulation of a larée variety of optimal control studfes, we

N
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A

feal that 1n vfaw;of the prosent study, a further systematic investiga-

tion 1s required to efthor prove or contradict the following two

conjoctures:

éonjecture 1:

Conjecture

Tha strong form of the maximum principle for
boundary control of hyperbolic distributed
pdraméter systems 1s also {nvalid for problems

whare the control characteristics do not coin~

cide withdny of tho state characteristics of
the system, 3

or the given reaction-deactivation process,

the optimal constant exit conversion property
remains valid for convers15n depengent decay

rate express{ons where the order of docay is

not equal to 1.

e o e T g v

T G
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LIST OF SYMBOLS
L ay real constay; co?fffc{ont in system (3-1)
a(z)  boundary control variable for catalyst.distributfon
‘ in Chapter 7 ;
A constant defined by (5-29)’
A(t)  functfon defined by (7-1?)
st real constant coefffcfent jn system (3-1)
¢ positive constant in (7-7)
cy molar concentration of specfes 1 in a chemical reaction
Cp mean heat capacfty
c positive constant in (6-49)
C* constra1ned\control policy characteriied by condition (6-15)
. N | constrafned control bolfcy characterized by condition (6-16)
? d - . constant in (7-22) - §
| , D function defined by (7-51) ;
Dy value of D at 1th grid point along~th9 z-axis %
D regfon where both k' (t) and w'(t) are unconstrafned (Chapter 8) |
E closed domain along the z-axis [zo,zf]
Eq reactfon activatfon onergy ;
- E, catalyst deactfvatfon energy i '

ff(z t,x,u) function in systcm (3-1)
f(s,k) velocity function (4-19)

f(s,K) velocity functfon corresponding to the relaxed control policy
k(t)



2

188

f(a¢.kﬁ) pseudq~rclaxcd velocity function (4-45)

f,f[x} conversion dopendent function in decay rate oxpressfon

F Fx] conversion depondont function on reactfon rate expressfon
F',fL first dorivatives of F and f with rospect to x

FIQJ,?[x] conversion depandont functions for an adiabatic reactor
(A-13) and (A-15)

FioFyx %) function dofinad 1n (6-24)

F(Ks) F(x K¢ Yfunction definad in (6-29)

F first derfvative of F(Ks) with .respect to K¢
g,9lv] act{vity dopendont functfon in decay rate expression
g' first derivative of g with rospect to ¢
g(s,k) velocity function (4-20)
. 9(8,k) “veloeity function correspondfng to the relaxed controf
policy k(t)
gé¢,kﬁ) " pseudo-relaxed velocity function (4746)
G,Gl,ﬁz integrands in the ochciivc functfﬁn J (3-4)
gy (Ks) functién deffnad 1n (6-31)
g(K¢),g(xo,K¢) function deffped in (6-34)
g‘ first derivative of g(Ké) with respect to K¢
HH(z,t,x,2,u) * scalar hamiltonfan functfon (3-6)
‘ Hy My boundary hamiltontans (3-15), (3-17) )
A boundary hamiltonfan -
Hy Tumped hami1tonfan function (4-25)
ch value of HL correspond1pg to tfc

H(Ks) " functfon deffnad in (6-49)

o e
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k,k(t)
E,k(t)
kelt)

kf(t)
K,K[T]

KT
Ks K8

N

N

defined in (A-3)
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closed time domain [t ,t.]
objective function (3-4)

defined in (A-9)

catalyst deactivation rate constant also taken as control
varfabTe (5-21)
boundary control policy
relaxed control policy
1t controt poticy in algorithm (4-37)
pre-exponentfial factor‘1n (5-15f

deactivation rate constant of Arrhenfus form (5-15)
reaction rate constant in dimensionless form (5-20)
pre-exponential factor in (5-5)

reaction rate constant of Arrhenfus form (5-5)
maximum and minimum values of K¢ defined by (6-55)
and (6-56)

Tength of catalyst bed

set of endpoints defincd in Figure 4-2

function defined by (7-24)

order of deactivation

order of a single {rreversible reactfon

numbaor of dfscrete time intervals along.thc z-axis,
Section 7.4.2 |

half the numbor of switchos in a bang-bang policy,
Sectfon 4.4.3
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ratio of ER/Ec

performance index (5-31)

performance index (8-8)

performance fndex (8-51)

definod as q » 1 - m 1n (7-13)

exponeﬁt of (1 - x) 1n decay rate expression

unfversal gas constant ‘ ,
molar rate of.formitfon of spacies 1 in a chemfcal
reaction . : | .
characteristic directfons associated with tho state »
variables x and ¢ \

unconstrained control policy assocfated with conditfon
(6-14) /

unconstrained control policies associated with conditfons
(8-17) and (8-18)

independent time variable in system (3-1)

dimensfonless time t e[o,1]

real time since start-up ¢ e[o,th

speciffed tnitfal or starting time-

specified final tima
critical final time

mean space timo te = L/v
temporature in degrees Kelvin

maximum and minimum allowable temperature in an adfabatic

reactor
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u control vector in system (3-1)

; u kz,t) distributed control varfable

é\ uk(z) uniform or boundary control variable
uk(t) “uniform or boundary control var{able
u admissible control region
v,v(t) molar flutd flow rate

3 Vay - timo ayerageo:{near flufd flow rate
V(s) extended velodity set (4-21)

» . Vals) pseudo-relaxed velocity sat (4-47)
w(t) dimensionless flufd flow rate and boundary control
\\\ygrfabIe;(s-A)

W(k) control set (4-44)
x,x(z,t) state varfable, conversion of a single irreversible

chemical reagtfion

xo(z) conversfon along the axis of the reactor at inftial time
xa(t) inlet conversion into the reactor .

' k(l,t),x,(t) exft conversfon out of the reactor L /

. X state varfable in system (3-1)

Y function defined by (7-27)
p _ 1independent varfablie fn system (3-1)
z dimensionless axial dfstance in the reactor z efo,1]
z real distance aTong th? axis of the reactor z. efo,L]
z, starting point of the z-domain, inlet to the reactor bed

z endpoint of the z-domain, end of the catalyst bed
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e Siaidasl .

gy

a(2)

a(t)

e(t)
vy (t)
st

sk

oW
sw(t)
sa(z)
P,

%
dx](tl
17
AHR
At

¥4
€,81,8,
S

Ao (z,t)
wou(z,t)
V1)

K

1

cothant fn (6-48)

initial con&itioq for x in system (3-1)

elemont of the ra\axod control policy k(t) (4-23),
(4-24) -

boundary condition for x in system (3-1)

lumped adjoint var{able (4-26)

finite interval in time

small admissible control variation in k(t)

small admissfble control varfatfon in w(t)
admissible control varfatfon 1n w(t)
admissible control variation in a(z)
varfation in the objective function (B-6)
varfation 1n.the converslon X

varfation in the exit conversion x,(t)
varfation in the catalyst activity v

heat of reaction

finite interval in time

finfite interval in distance

non-negative constant parameters

adjoint varfable in system (3-6)

adjoint variable to the conversion x
adjoint varfable to the catalyst activity ¢
dimensfonless velocities (A-1),(A-2)
constant Lagrange multiptier (7-47), (8-16)

estimated valu 'of «
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wfo(z)
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Superscripts
+

»

Subscripts
z

t
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‘small positive paramotor .
. average intograted catalyst activity {ngico the reactor

(4-15)

average intograted activity botweon z = 0 and

z olo,1] ) ~ ’
value of ¢ at initial time

state varfable, &elative catalyst activity 'Qb

inftial relative catalyst activity distribution
relative catalyst activity for catalyst 1

1n1t191 relative catalyst activity for catalyst {
fnitfal uniform catalyst activity

rate of reaction [5-2)

refers to values corresﬁond1ng to-optimal policies
refers to values corresponding to control policies which

are at their uppor constraint

]
refers to partial derivation with respect to z
refers to partial derivation with respoct to t
refers to values corresponding to control polcies which

are at thefr lowor constraint
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APPENDIX A

ADIABATIC vs. UNIFORM TEMPERATURE REACTOR

The mass balance Equatfon (5-22) for a tubular fixed-bed reactor

where a single {irreversible reaction A » B takes place fs given by

xt + ‘)1xz = Q(T,X,&) = K[TJ F[XJIP (A"1)

where x {is the conversion, o the rate of reaction and vy, the dimens-
fonless velocity factor. We consider Vi to remain constant.

The corresponding energy equatfon in molar unfts can then.be

written as
Tt + vy TZ =JdQ (A-2)

where vy fs the velocity factor for the temperature T(z,t) and

st
) =R (A-3)
p )\ ‘

where AHR is the heat of reaction and c_ 1s the mean heat capacity. MWe

p
also consider vz‘to be constant.

In general the velocity factor v will be larger than vy
Unless a large varfation of the injet conversion x (t) or the
inlet temperature To(t) occurs over a small time interval, the quasi-

steaq§ state approximation is often vali /for'reactor systems with
L /!
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slowly decaying catalyst. The Equatfons (A-1) and(A-2) under quasi-

steady state assumptfons then become:
vy X, = q | (A-4)

vy T.=3dnq (A-5)

a7 _ , V1
= J = P (A-6)
2
f &
As the heat of reactfon AHR and the heat capafcty cp are both

functions of T, their ratio is often nearly constant over the tempera-
ture range inside the reactor. In case J can be considered constant

N

(A-6) leads to

v
- 1
T - To = J 5, (x - xo) (A-7)

In case J/T 1s sufficiently constant over the operating condi-

tions, a more practical form can be derived from (A-6) as

= J‘(x - xo) . (A-8)

'—il—‘

1 -
T o

where J = - J v]/(ToT vz). (A-9)
The 'temperature dependent factor in the rate expression g

becomes then in Arrhenius form:

| e e v v s et -
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KIT) = K, exp(-Eg/RT) = K exp(~Eg/RT.) exp(-Eq I (x-x,)/R)  (A-10)

where Ko 1s the pre-exponential constant and ER is the reactifon activa-
tion energy.

Since AHR is negative for exothermic reactfons, J 1s positive

(and hence J 1s negative) for exothermic reactions.

Substituting (A-10) into the rate expression n as given in
(A-1) gfves

alTox,0) = KT ] exp(-Eq J (x-x,)/R) FLx]y

(A-11)
and this can be written as

(T x4 = KIT,] FIxDy a2)
with

FIx] = FIx] exp(-Ep 3 (x=x,)/R) (A-13)

This rate expression (A-12) then gives the rate of reaction as a product

of functions of the inlet temperature, the conversion and the relative

catalyst activity, each of one variable onty. For a uniform temperature

" reactor, F[x] {s replaced by F[x].

In a similar way, the rate expression for the catalyst activity

decay (5-24) can be written for an adiabatic reactor as follows:

(w d

4y = - KT,] TIx] glv] (A8

where

o s i gt e e IR
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fIx] = f[x] exp(- €, J (x=x,)/R) (A-15)

This rate expression (A-14) {s again similar to the one for a uniform

temperature reactor where f[x] {s replaced by f[x].

—m
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APPENDIX B

FIRST ORDER PERTURBATION ANALYSIS

We recall the state equations (8-5) and (8-6) with inftfal and

boundary condtions (8-7):

_KF
A (8-1)
%% = - kfg (B-2)
x(o,t) = x (t) 5 w(z,0) = y,(2) (B-3)

and thgrobjective function given by (8-8):

]
P, = I [xy(t) - x,(t)] w(t)dt : (B-4)
0

By letting w(t) = 1 for a1l t e[o,1] in (B-1) and (B-4), we obtain the

Equations (6-1) - (6-4) and (6-7) for the problem with {nlet temperature
control only. -
In case, however, w(t) 1s a control varfable, the constraint

(8-11):

1
w(t)dt = 1 (B-5) <\

206
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We now consider small variatfons & k(t) and & w(t) of the
' control function k(t) and w(t) respectively.

The corresponding varifa-

tion in the objective function P1 then can be expressed as:

1 ,
5P = [ 6{[x](t) - xo(t)] w(t))dts

0

1 1
[

0’0

1A
+ [ [ u[s(- kfg) - gig%lﬂdzdt

0

1
- K J & w(t)dt

0

lier,

(8-6)

where A and p are adjoint varfables and « is a constant Lagrange multip-

We assume the varfations 6k and éw to be small enough such that

-a

in the following Taylor expansfons, the second order terms can be neglected.
We then can write:

8(0x, () - x,(£)] w(t)) = [ox(t) - 6 x,(£)] wit)

+ [xq(t) - x,(t)] s w(t) (8-7)

r
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5(w) Pkw sk + - S + S 6y wz W (B-8)
and
5(- kfg) = - fgsk - kf gsx - kfg &y (8-9)

A\ . - ;
~

and gl are the fifst order derivativds of F, f and g with

where F , f
respect to their dependent variables.
Since a variation in the controls does not affect the initial

and boundary conditions (B-3) we have

§ xo(t) =0; 6 wo(z) =0 (B~10)

We then also can derive the following expressions:

1 1
B I A a(8x) dz = - 2A(1,t) &6 x,(t) + I sx 22 dz (8-11)
3z ] 3z
0 0
and
1 1
- Iu —aé%@ dt = - u(z,1) sv(z,1) t’-’[ 5 ¥ dt (B-12)
0 0

Substituting (B-7) - (B-12) into (B-6) and rearranging gives:

1
5P = [ [w(t) - A(1,8)] & x(t)dt
. 0

1
- [ u(z,1) s9(z,1)dz
o



B

ot e o

L

- e "

e o e i bt

PSS, S

1 (1 ‘
+ [ [ 6 x[ Ay A—ELéfjl- - ukflg]dzdt

1A
+[ {M[%%N—é—i-ukfg]dzdt

+

1
( l (p LEES - ypgldzyskdt

(| - 2EE g v [ (2) - % (2)] - xiowdt
W
0

0

We now define

QA_:.' -,X_.K_E—-g.}ukf'g

Z W

u » KF

at w T ukfg

A(1,t) = w(t)

u(Z,]) =0

H:LEWF_!- _pkfg
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(B-13)

(B-14)

(B-15)

(B-16)

(8-17)

(-18)

We see that (B-14) - (B-18) correspond to the adjoint equations,

their terminal and boundary conditions and the definition of the hamiltonian

as given by the Equations (8-12) - (8-15). Similarly, for inlet temp-

erature control only and letting w(t) = 1, we recover the Equations (6-8) -

(6-12).

\
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From (B-14) - (B-18), Equation (B-13) can now bé written as

] 1
(
5Py = | [ %E Hdz]skdt

‘o 0
ﬂ ] .

+ {%W [ Hdz + [x](t) - xo(t)] - k}éwdt (B-19)
‘o

0

Since in order for P] to reach a maximum at the optimum where

k(t) = k+(t) and w(t) = w+(t), a necessary condition for optimality is:

5P <0 (B-20)
for all admissible control variations sk and é&w.
A) Inlet temperature control only (fi.e., w(t) = 1 and sw(t) = 0).
In this case (B-20) becomes from (B-19)
: H
o Cl -
5 Py -[ akk+5kdt‘° (B-21)
o

where the boupdary hamiltonian H is defined as in Equation (6-13) by

: .
H = ‘ Hdz (B-22)
0

The condition (B-21) then implies



L
N

211

0 whenever k, < k+(t)< k*

0 when k+(t)

u
~

(B-23)

b

+

/\
W

0 when k+(t)

IA

Ke
\

The conditions of (B-23) are identical to those defined by (6-14) -
(6-16).

B) Inlet~temperature and inlet flow rate control.

In this case (B-20) can be written as

] 1

+_| oH o

§ P] = l 3% k+ skdt + J W w+ swdt < O (8—24)
] ‘ 0 ¢ .

where the boundary hamiltonian H now can be defined as in Equation (8-16)

by

1 1
H-= [ Hdz + [x(t) - x (t)] w(t) - «[ [ w(t)dt - 1] (B-25)

0 0

The necessary condition for optimality (B-24) then implies:

.
= 0 when k, < k'(t) < K*
aH
ak]  + < 3 0when K'(t) = K (B-26)
+ -
< 0 when k (t) = k,

and
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r + *

= Owhenw, <w (t) <w

B, 1 soumenw’(t) = (B-27)
W
4

< 0 when w (t) = w,

L

The conditions (B-26) and (B-27) are identical to those given by (8-17)
and (8-18).
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APPENDIX C

CONVEXITY OF H WITH RESPECT TO k IN PROBLEM T T,

From Equations (4-4) and (4-11) follows:

251%551 = - ukr(1-x)"y (c-1)

Assumning continuity of xo(t), k(t) and wo(z) guarantees the smoothness

of u(z,t) for z efo,1], t e[o0,1] and ffgm,(4r4), (4-12) and (C-1)
follows then:

3 .3 } W\ _
57 (rg) = 3¢ () = w,k(-x) (c-2)
For piecewise continuous control and initial conditions, the smoothness

property oftu(z,t) remains valid on a finite number of subsets in the

Z x t domain. Since the adjoint variables are continuous over the whole

domain, the proof can be constructed by the same reasoning on each sub-
set.

From (C-2) and (4-13) follows:

p, =0 for all t e[o;i]
z (c-3)
for all z efo,1]

Hence
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and from this follows that u(z,t) is strictly positive for all t e[o,1)
and zero at t = 1, uﬁlesg x(1,t) = 1. Since x(1,t) =1 requires xo(t) =
1 from (4-4), this possibility can be excluded.

From (4-11) and (4-13) follows then also that A remains strictly
positive over the whole z x t domain.

The second derivative of H with respect to k is given by:

o
2
- pip-1) 2 KL (10 @2 (c-5)
3

0

and since all factors in the integrand are positive for k > 0, p > 1

and xo(t) L 1, the integral will be strictly positive for all t e[o,1].

/

Q.E.D.

T
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APPENDIX D

PROOF OF PROPERTY 2 OF PROBLEM] |/

Assume p £ 1, r # 0.

Applying Pontryagin's maximum principle to the lumped parameter
system (4-16) to (4-20), (4-26) and (4-27), with the hamiltonian Hl
defined by Equation (4-25), leads to the following necessary conditions

for optimality:

QHZ
=0 ons (p-1)
de
T -0 for all t elo,1] (D-2)
and
aH ,
G ks2=0" ons : (-3)

where S is the region over which.the optimal control is unconstrained.
It is clear that all derfvatives are evaluated at a Pontryagin policy.
THe derivation of the proof is then achieved in the following steps:

5
2
f}"

1. From (4-20), (4-25) and (D-2) fol]ows;

g{.= %E'(%% (1 - exp(-rKks)))  for all t efo,1] (p-4)

215
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2. Substituting (D-4) into (D-3)gives:

p ‘aj; (ke exp(-Ks)) + (p-1) 5% - P g-t- (%5 K exp(-rks)) = 0

A Y

on S (D-5)

Before working out the time derivatives of the terms in (D-5),

we first derive the following expressions:

a) From (4-19) we obtain

g{_ = exp(-—l@) g{—é for all t 8[0,]] (0-6)

b) Since K = AkP we have
d ky _ -1 k1 d d
FW -5 kg @ -k (-7}

From (D-7), (4-17), (4-26) and (D-1) it follows that

'

ng%=—E%lx%%%? on S (p-8)

Z"n N7

3. Using (D-6) and (D-8), the expression (D-5) becomes

[2p - 1 - pks + XK exp((1-r)ke)(prkp-1)] 9F

=0 on S (D-9)

4. Either df/dt or the bracketed term in (D-9) equals zero.
If df/dt = 0, the property holds.

o amaes we g
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If df/dt # 0 we must have:

[2p - 1 - pks + X exp((1-r)ka)(prks-1)1 =0 onS  (D-10)

and all time derivatives of the bracketed term are also zero.

Multiplying (D-10) with exp(-Ks) and adding the expression for
oH
L .
kr e results in

(2p - 1 - (1-r)pks) exp(-Ks) - (p-1) L (exp(-rks) 1)

- Iﬁ-exp(—rk¢) =0 onS (D-11)

Since then also the time derivative of (D-11) remains zero on S, we

obtain by using (D-4) and (D-6):
df _d_yk
(-3p+ 1+ 2rp - r + (0-rlpks) g = gp (Fg exp(-rks)) on's  (D-12)

This expression (D-12) is the crucial one in eliminating terms involving
y in the time derivatives of (D-10). Using (D-4), (D-6) and (D-12),
the first time derivative of (D-10), after first multiplying with

'Y

exp(-K¢), becomes:
[-3p + 1 +pKs - (1-prke)(-3p + T + 2rp - r + (1-r)pKs)
tpr 1% exp((1-r)Ke)] g{-= 0 ons (D-13)

Since we assumed that df/dt # 0, we can divide (D-13) by df/dt,

and after multiplying the equation by exp(-K¢), the next time derivative
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becomes after rearranging

[pzr(r—ﬂ(i%)2 + (pzr(ﬁr—G) + pr(2r-1))Ks

- pPr(4r-6) + pr(2r-5) + r1E=0  on's (D-14)

Dividing again by df/dt leaves us with a polynomial in K¢ which through

further differentiation implies

%?: =0 ons (D-15)

From (D—6)(we see that (D-15) also implies
N ; 1
gF-0 ons (p-16) :

Q.E.D.

»
"



APPENDIX E

CONVEXITY OF H WITH RESPECT TO k IN PROBLEMI—];

We assume e < 1,

Since the S} X S, domain is the only region of interest, we

consider the adjoint equations as given by (4-65) and (4-66) with terminal

and boundary conditions:

)(Slf’SZ) =15 v(S]’SZf) =0

(E-1)
From (4-65), (4-6€) and (E-1) it follows that x(s],sz) and
u(s],sz) are continuous and
X(S]’Szf) >0 ’ U(Slf‘s2) 2 0 (E'Z)

Because of the continuity of x» it follows from (E-1) that when

A is negative at a point A inside the 51X S, domain (Figure E-1), then
there exists a point B, on the 51 characteristic thrgfgﬂ*ijbhhere
x(s]B,sZA) = 0 with S1A < S1g < S1¢

In order to prove that A(s],sz) is strictly positive for all

S e[o,slf),'s2 e[o,szf], it is sufficient to prove that A cannot become
Zero inside the S1 X S, domain.

The proof then praceeds in the following steps

1°) Supposing that ) becomes zero at some point inside the

219




Figure E-1: Characteristic domain for ProblemrTe,
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S1 XS, domain, then there exists a point C(s sZC)(not necessarily

. 1’
*
unique) which lies closest to the S, characteristic at S+ n From

(4-65) and (E-1) it follows then that Sic 7 Sif

2”) u(s]C,SZC) = 0.

Indeed, U(S1C’52C) > 0 would imply from (4-65) that x becomes
negatfve in the open interval (SIC’SIf) on the Sy characteristic through
C. Hence there would exist a point M(S]M’Szc) with S1M” S1¢ where
A(S]M,Szc) = 0 and this would contradict 1°).

Similarly ”(51C’SZC) < 0 would imply from (4-66) and (E-1) that
there exists a point N(Slc’SZN) where X(S]C,SZN) < 0 with Son > S In
fact » would need to remain negative over a finite interval on the 5o
characteristic through C in order for u to reach zero at (S}C’ SZf)‘
This however, would mean that there is a point K(S]K,SzN) with S1k > S1c

’.
where 2(Sy.,5,,) = 0 and this again would contradict 1°).
1K’ 72N

3°) On the S» characteristic through C, let D be the point
closest to the terminal Sy characteristic where X(SlD’SZD) =

0. From (E-2) follows S,n < S,e.

20 2f

4°) From (4-65), (4-66), (E-1), (E-2), 1°), 2°) and 3°) it
follows by contradiction that either A(s,D,sz) = ”(510’52) =0 or
A(s]D,sz) > 0 and ”(510'52) > 0 for all Sy G[O'SZD) ; ‘(510’52)’ 0 and
”(510’52) > 0 for all S, e(szn,szf].

5°) From 4°) it is obvious that along the 5o characteristic

— )
It is most convenient to measure distances along the characteristic

Tines.

w(s1pr5p) =

A A aman he o oA

R I St
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. S

through D, thé functions \ and y reach a local minimum with respect to
s, at D.

6°) The control k(s],sz) is positive over a finite open interval
(520,520 + n) along the So characteristic through D (n > 0). Indeed, it
follows from (4-65) that k = 0 over that interval would result in a con-
tradiction to 1°).

7°) ”(SID’SZ) > 0 for all Sy G(SZD’SZD + n). Indeed from 6°) and
(4-66) it follows that p ¢ 0 at any point of that interval would result
in a contradiction to 4°).

8°) Since the initial condition xo(t) and the control k(t)
are piecewise continuous functions, it follows from (4-65) and (4-66),
that in the interval [SZD’SZD + n) along the 5o characteristic ihrough
D, both x and u are smooth functions of Sy and hence differentiable.
A necessary condition for having a local minimum for )(and u at the
point D is that the first nonzero right-hand derivative of X and u
with respect to Sy be positive. '

9°) thh A =p=0atD, it follows from (4-66) that du/ds2 = 0.

Further differentiation of (4-66) with respect to Sps Up to
the point where one of the derivatives of X or p becomes nonzero for

-

the first time, leads to

ntl n
d_¥. . 22ynx) . (E-3) .
d52 as2 . z

It is clear that all derivatives are right-hand derivatives of

A and p with respect to S, at the point D.
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Since in order to reach a local minimum at D, the first nonzero
derivative has to be positive, Equation (E-3) cannot be satisfied for
any finite value of n.

From the Taylor Theorem, it follows then that » and u remain
zero in a neighbourhood of the point D in the interval [520,520+ n).
This however, is in contradiction to 4°) and 7°) and therefore, the
existence of any point D i; the S} X Sy domain where 1 becomes zero
can be excluded.

10°) The expression for the secohd derivative of H with
respect to k is identical to (C-5) and since again all factors in the

integrand are positive for k > 0, p > 1 and xo(t) <1, His a strictly

convex function of k. Q.E.D.
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