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ABSTRACT,
. . .

The ability to predict the flow patterns and flo~ pattern ttansiti~ns in a two-phase'

flow process is useful for an accurate prediction of the pressu~~rop,'heatand mass transfer

rates, and also for the choice of appropriate two-;phase flow design parameters.for the system.. .
During a loss ofcoolant 'accident (LOCA) in a nuclear x:eactor, two-phase flow may exist in t~e

\ '

primary heat transport loop, and a knowledge of the flow patterns thal are ?ccurringat the

various flow c:'onditions isneeded to'accurately mo.del the aeciden~scenario.

Horizontal gas-liquid t.wo-phase flow patterns and flow pattern tra~sitions have

been investigated both tli.e?reti~al1Y· and experimentally for a pipe of 5.08 cm Ld., annulus'

geometries f?,f outer tube diameter 5.08 em Ld. and iimer-to-outer diameter ratios from 0.375

.. to 0.625, and for a37-rod nuclear fuel type bundle flow system having an outer tube diameter

of 10.16 em i.d. a,nd rods of diameter, 1.27 em.. The 28-rod bundle flow geometry was also

studied theoretically. The flow conditions ~ere" at inlet pressures of about 1. to 2 bar and at

near room temperature.. J

In this study, the time averaged void fraction and pressure drop measuremeQts

wer~ also successf~tained. The instantaneous and time Iiver~ged void fr~ction measu're-.
ments were achieved by the ring type capacitance transducers based on the differences in the, '

•

/

-. dieleCtric constants of the liquid and gas phases. The various flow patterns occurring in the

pipe, "annulus andrcd bU~dle now systems were successr!haracterized by direct visual

observation through t~e tran:;parent test se~tions and also f: om the signal waveforms of the.
instantaneous fluctuations in 'the void fraction;t:the pressure drop measurements and the

ultrasonic.transmission waveforms. Flow pattern transitions were determined from both the

results of the measured void fraction and direot visual observation.
~

,
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The experimental results 'sbo\V .that t~ flow pattern structures occ~rring in'
• .. . t ... J

horizontal annul~s and rod bundle geometries are similar to those observed for the pipe flow
. t

~ase, except the annulus flow system where Yi~ characteriz~9 two additional flbw pat4!rns.
~ .

, I'

namely, "Annulus~Slugtl and ·"Ann-QJus-Plugu
• These' flow pAtterns are similar to the Slug

.... '. '." ~ .
and Plug flow structures observed for the pipe geometry, but are .restricted to, the lower

. . . .' ~

. annulus ~ha.nn~l gap below the annulus rod. These occur at the flow conditions that would

otherwise lead to Stratified flow patter~or pipe flow cases. _,

, . The re~ults show that th~ ~ow patterk transitions for the a~nulus and r~d bu:ndle

n:w geometries are significantly different from those ofthe~. The flow

- . .
pattern transitions for the annulus flow geometries wereobser~ed to be significantly influ-

-.. "~

t·

)

....
-' \, y- enced by different inner·to-outer diameter ratios, except the Str~tified Smooth to Stratified

Wavy transition. The Stratified to Intermittent and the Intermittent to Dispersed Bubble

transitions occur at lower superficial liquid velocities, while the Intermittent to Annular. .. . ---transition occurs at higher superficial gas velocities for larger inner·to.ou_ter diameter ratios.

In the rod bundle geometries, the flow pattern transitions we~e observed to vary slightly with

the particular angle of orientation of the bundle within the enclosing tubeshel1. The various
. ,

influences on the flow patteTn transitions observed in.the present study are mainly due to the'

differences in geometries and· force distributions. .

From direct visual observation results,' we also obsJv~d that interfacial waves in

the rod bundle flow geo~e.try were generated and dissipated a~ the rod bundle end plates. No

significant effect of tne rod bundle end plates on the other flow patterns was observed, except

a slight effect on the regularity of these intermittent flow patterns, usually becoming more
I.

. apparent at higher flow rates.
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The predic~d'results for. the' pipe,' a!lnulus and rod bundle geometries a"gree-:Well

with the pcesent experimental observations, and also with the result!, of the limited pre~o~s ~
.' ~ -, '.' -.

. stiIdies found in the 1iter~ture,/
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