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Abstract

A sequencing problem involves finding a sequence in which to process a set of jobs
that minimizes a given cost function. The primary difficulty with such problems is
that as the number of jobs increases the number of sequences grows astronomically
large, and the problems become intractable.

Pairwise job interchange is one of the most commonly used solution techniques
for sequencing problems. It compares the cost of sequences that differ only in the
interchange of two jobs. In this way the cost function indicates a preference for the
ordering of certain pairs of jobs such that if a pair of jobs is not in preference order,
then the jobs can be interchanged with no increase in cost. The traditional method of
pairwise job interchange assumes that either there are no intermediate jobs (adjacent
pairwise interchange) or that an interchange can be performed no matter what the
intermediate jobs are (nonadjacent pairwise interchange). In this thesis we introduce
a generalization that permits the pairwise interchange of a pair of jobs provided that
the intermediate jobs belong to a restricted subset of jobs (subset-restricted pairwise
interchange).

We use subset-restricted pairwise interchange to derive a dominance order on
the jobs. This is a partial ordering of the jobs that consists of pairs whose relative
order can be fixed in an optimal sequence. The search space can then be reduced to
consist of only those sequences that satisfy the relative job orderings in the dominance
order. We apply this technique to certain one- and two-machine sequencing problems,
and show that the use of our dominance orders significantly reduces the computation

time necessary to solve these problems.
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Chapter 1
Introduction

1.1 Methods of sequencing and scheduling

Sequencing and scheduling problems are of great practical importance in many ar-
eas, including production planning and computer systems. Broadly defined, these
problems are concerned with the optimal allocation of scarce resources to activities
over time [26]. A sequencing problem involves finding a sequence in which to process
a set of tasks, that minimizes a given cost function. A scheduling problem involves
determining a detailed assignment of jobs to machines over a period of time, that
minimizes a given cost function. The assignment of jobs to machines is subject to
different technological constraints imposed by the jobs themselves and the machine
environment. Given the variety of technological constraints and cost functions, the
number of different types of scheduling problems is practically unlimited. The job
shop scheduling model describes a very important class of scheduling problems. In
this model, there is a set of jobs that must be processed by a set of machines, in or-
der to minimize a single cost function that is usually a function of the job completion
times. Each job is broken down into separate operations that need to be performed
on different machines, in a prespecified order depending on the job. Each machine
can process only one job at a time, and each job can be processed on only one ma-
chine at a time. Problems in which the machine order is the same over all jobs are
called flow-shop problems. We will only be concerned with scheduling problems that
are sequencing problems; problems for which a schedule is completely specified by
the sequence in which the jobs are processed. We will focus on certain single-machine
scheduling problems and two-machine flow-shop problems.
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The theory of computational complexity provides a mathematical framework in
which to study and compare different computational problems. (For an introduction
to the concepts involved the interested reader is referred to Lawler et al. [26] and the
book by Garey and Johnson [13].) According to this theory, problems are classified
as either ‘easy’ or ‘hard’ depending on the theoretical worst-case behavior of their
solution algorithms. The easy, or well-solved problems, are those for which there
exist solution algorithms whose running times are bounded by a polynomial in the
size of the problem input. The hard problems are those for which it is provably
doubtful that such polynomial time algorithms exist. For our sequencing problems
this is the class of “NP-hard” problems. (Following the scheduling literature, we
use “NP-hard” to refer to the optimization version of an “NP-complete” decision
problem.) For the class “NP-hard” it has been proven that, a polynomial algorithm
exists for a given problem if and only if polynomial algorithms exist for all problems
in the class. Since the class “NP-hard” contains many known hard problems, this
provides strong evidence that a polynomial algorithm probably does not exist for any
of these problems. This complexity result suggests that we must resort to solution
methods that are essentially enumerative in nature to solve such problems. This is
the case for the one- and two-machine problems that we study in this thesis. For these
problems we employ a well-known enumerative method called branch and bound.

Branch and bound attempts to solve a sequencing problem by building a search
tree that consists of fixed partial sequences. The branching scheme determines how
to branch between fixed partial sequences, in order to traverse the tree in search of
an optimal sequence. The bounding scheme specifies upper and lower bounds on
the optimal completion of a given fixed partial sequence. A partial sequence and
all its descendants can be eliminated from further consideration if its lower bound
is greater than the best solution identified in the search tree up to this point. A
stopping rule, which is usually expressed in terms of the total computation time or
the total number of partial sequences examined, curtails the search. If the algorithm
terminates by examining or eliminating all partial sequences, then the best solution
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identified is necessarily optimal. In this thesis, we examine new ways to further reduce
the search space for such algorithms, in order to reduce both storage requirements
and computation time. We derive a dominance order, which is a partial ordering of
the jobs that is obeyed by at least one optimal sequence. Partial sequences that do
not obey the dominance order can be eliminated from consideration, reducing the
size of the search tree. One technique we use to derive our dominance order is called
pairwise job interchange.

Pairwise job interchange is one of the most commonly used techniques for
sequencing and scheduling problems. Pairwise job interchange compares the cost of
sequences that differ only in the interchange of a pair of jobs. It tries to improve a
sequence by performing interchanges that result in no increase in cost. The different
types of pairwise interchanges can be considered as interchange operators that perform
the specific transformation.

The interchange operators are classified following Monma [30], both by the
type of interchange they perform and the relative position of the jobs. The jobs (be-
fore interchange) are classified as either adjacent or nonadjacent, and the type of
interchange is either a direct swap of a pair of jobs or the insertion of a job either
forward or backward in the sequence. The most commonly used interchange opera-
tors in the scheduling literature are: Adjacent Pairwise Interchange (API), Pairwise
Interchange (PI), Backward Insertion (BI), and Forward Insertion (FI). To illustrate
these operators consider the sequence s; = (XmYkZ) where m and k are individ-
ual jobs and X, Y, and Z are (possibly empty) sequences of jobs. If Y = &, then
s1 = (XmkZ), i.e., m and k are adjacent and API applied to s; gives s; = (XkmZ).
If Y # &, then m and k are nonadjacent and PI, BI, and FI applied to s, give
respectively s3 = (XkYmZ), sq = (XYkmZ), and s5s = (XkmY Z). Note that BI
involves removing job m and inserting it backward in the sequence just after job k,
while F'I is the dual operation of removing job k& and inserting it forward just before
job m. Also note that if Y = &, then PI, BI, and FI all reduce to Al.
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Pairwise job interchange has been used in various areas of scheduling theory.
Among these:

e Proving the optimality of sequencing rules;
e Proving precedence relations and dominance criteria;

e Computing lower bounds for enumerative algorithms like branch and bound.

What all of these have in common is the property that there exists a preference order
for the pairwise interchange of jobs for a given interchange operator, such that, if a
pair of jobs is not in preference order then applying the interchange operator to the
pair to make their order consistent with the preference order results in no increase
in cost. In this way the sequencing function indicates a preference for the ordering
of certain pairs of jobs. This ordering can be defined a priori, or it can be sequence-
or time-dependent (i.e., dependent on the start time of the pair of jobs). In general,
these preference orders can be very poorly behaved, they need not even be transitive.

The sequencing rules of Johnson [21], Smith [37], and Jackson [20], are exam-
ples of preference orders for the adjacent interchange of jobs that are complete and
transitive orders. This order is complete because every pair of jobs k£ and m is ordered
by the sequence, and it is transitive because of the transitivity of the sequence. Recall
that in this case if k is preferred to m, then k£ and m can be interchanged if kK and m
are adjacent and m precedes k. If there are n jobs, then any optimal sequence can be
transformed into preference order by applying at most 1("2;12 adjacent interchanges,
proving the optimality of the sequence. Johnson’s rule establishes such a sequence
for the two-machine maximum completion time flow-shop problem F2 //Cpax - (We
use the standard notation to describe scheduling problems, and refer the reader to
[26] and [32] for any terminology not defined here.) The rules of Smith and Jackson
state the optimality of the weighted shortest processing time and earliest due date
sequences for the total weighted completion time and maximum lateness problems,
1//3-w;C; and 1 //Lmax , respectively.

Dominance criteria and precedence relations are partial orderings of the jobs

that are satisfied by at least one optimal sequence. These orderings can be used to
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limit the search space, or provide branching rules for enumerative techniques such as
branch and bound. They are most often derived using interchange operators where
the conditions that define the preference ordering for interchange are sequence- or
time-dependent. Next we consider some examples to illustrate the different properties
of these preference orders. The precedence relation for total tardiness 1 //3" T; due
to Emmons [7], is an example where the preference order for nonadjacent pairwise
interchange (i.e., for the PI operator) is an incomplete and transitive order, or partial
order. This order does not depend on time, and is defined a priori by the jobs’
parameters. By applying nonadjacent job interchanges any optimal sequence can be
transformed into an optimal sequence which extends or satisfies the preference order.
Thus the preference order for the PI operator is a precedence relation. Rinnooy Kan
et al. [36] extend this to general nondecreasing costs f;(C;), to minimize total cost
for the single-machine scheduling problem 1//3" f;(C;). They derive dominance
criteria for an enumeration scheme that fills a schedule from back to front. They
use a number of interchange operators including (PI) and (BI) to demonstrate their
dominance criteria. Here the conditions for the preference orders for interchange are
sequence-dependent, depending on the predecessor and successor sets as well as the
job parameters. For multiple machines Della Croce {5] derives dominance criteria
for partial sequences using (PI) and (FI). He does so for the two-machine total
completion time problem, F2//3" C;, and the maximum completion time problem
with release times, F2 /r;/ Cpax, in flow-shops. For the API operator two different
approaches have been used to derive precedence relations. The first is a sequence-
dependent approach, and the second is a time-dependent approach. In the first case we
have the pyramid precedence orders of Erschler et al. (8] and [9], for maximum lateness
with release times and maximum completion time with release times and deadlines,
1/rj/ Lpax and 1 / r,-,d—,-/ Chax, respectively. The pyramid order, is a precedence
relation that is a subset of the preference order for adjacent interchange. This subset
defines precedence relations that are true for nonadjacent jobs, not just adjacent jobs.

They find conditions on intermediate jobs that determine when adjacent preferences
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extend to nonadjacent preferences. Given a sequence (XmYkZ) with k preferred
w0 m for adjacent interchange, they find conditions on the intermediate sequence Y
that permit k and m to be interchanged using PI to obtain the dominant sequence
(XkYmZ). Thus, this approach can be considered as sequence-dependent, depending
on the intermediate sequence. The parametric precedence relations of Szwarc et al.
(39], [38], and [40] are examples where the preference order for the adjacent interchange
of jobs is an incomplete and intransitive order that depends on the start time of the
pair. Pairs that are ordered independently of start time are called globally ordered
while the remaining pairs are said to be locally ordered. Assuming that the global
order is decomposable, they split the problem into smaller subproblems and look at
the mix of global and local orderings on each part. It is the mixture of these two
types of orderings that is not transitive, and they try to find a subset of this mixture
that is a precedence relation.

Lower bounds can be computed for certain single machine scheduling problems
using the technique of Della Croce [5]. This technique is to repeatedly apply the time-
dependent precedence relations of Szwarc to compute a lower bound for a partial
sequencing of the jobs. He derives lower bounds for the total quadratic lateness
problem 1 //3" L?, the total tardiness problem 1//3 T;, and certain multicriteria
problems.

In this thesis, we consider a generalization of pairwise interchange, that is
a new sequence-dependent approach which incorporates subset restrictions on the
intermediate sequence. We call this technique subset-restricted pairwise interchange.
We use this technique to derive new dominance orders for certain one-and two-machine
sequencing problems. These dominance orders are used to reduce branching in an

efficient branch and bound algorithm capable of solving large problem instances.

1.2 Preview of the thesis

For the remainder of this Chapter, we present the preliminary definitions and notation
that will be used throughout the thesis. In the next two sections we give the basic
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definitions and notation for sequencing and scheduling problems and partial order
theory, respectively. This is followed by a discussion of the fundamental concepts
and definitions, of subset-restricted pairwise interchange, which are formulated for a
general sequencing problem.

In Chapter 2, we derive new dominance results for the single machine schedul-
ing problem 1 /7;/ fmax, using subset-restricted pairwise interchange. We derive a
dominance order that is a suborder of the adjacent interchange order for these prob-
lems. This extends the pyramid precedence orders of Erschler et al. ([8] and [9])
for 1/7;/ Lmax and 1 /1;,d;/ Crax, to the general problem 1 /;/ fmax, Which includes
1/r;j/ maxw;C; and 1/r;/ maxw,;L; as special cases. We do so by applying differ-
ent interchange operators together with a new representation of the dominance order.
This new diagonal representation is not limited by the dimension of the adjacent inter-
change order like the pyramid representation, which was restricted to two-dimensional
orders. We tested the effectiveness of the dominance order in a branch and bound
algorithm for the problem 1 /r;/ max w;C;. The algorithm performed very well solv-
ing 2381 of the 2400 test problems, while reducing the total computation time by 58
percent.

In Chapter 3, we apply subset-restricted interchange to derive a new domi-
nance order for the two-machine flow-shop problem F2 /r;/ Cnax, and incorporate it
into a very fast branch and bound algorithm. We tested the algorithm in a large-scale
computational experiment. The algorithm solved, within a few seconds, over 95 per-
cent of the test problems, some with up to 500 jobs. Even for the unsolved problems,
we were within 3 percent of the optimal solution in the worst case. This means that
the algorithm has the potential of being used as a subroutine for F2 /r;/ Cnax type
subproblems generated during the solution of more complicated problems. We also
found that the speed of the algorithm is largely due to the use of the dominance or-
der, which reduced the total computation time by around 80 percent. The experiment
also helped in classifying ‘easy’ and ‘hard’ instances of the problem, it indicated that
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the hardest problems were those with range of release times approximately 1/2 the
expected total processing time of the jobs.

In Chapter 4, we derive new dominance results for the well-known two-machine
permutation flow-shop problem F2 /r;, perm/ Lyax. This time, we apply subset-
restricted interchange with a new interchange operator, which we call shuffle inter-
change. With this operator we derive a new dominance order, which we use in a
branch and bound algorithm for the problem. The algorithm also features a new de-
composition procedure which fixes jobs at the beginning of the schedule, and was
quite effective at reducing the size of the problem. The algorithm performed well,
very quickly solving 4,384 of the 4500 test problems which ranged in size from 20
to 200 jobs. Because of this, the algorithm also has great potential as a subroutine
for the solution of more complicated scheduling problems. We also found that the
dominance order reduced the total computation time by 15 to 20 percent.

Chapter 5 gives a brief summary of the main results of the thesis, as well as

some directions for future research.

1.3 Preliminary definitions and notation

1.3.1 Sequencing notation

Recall, we call a scheduling problem a sequencing problem and its objective a se-
quencing function if any schedule can be completely specified by the sequence in
which the jobs are performed. For the problems 1 /r;/ fmax and F2 /7;/ Cpax, it is
well known that such optimal permutation schedules exist. For problem F2 /7;/ Lax,
we will restrict our attention to such permutation schedules and denote the problem
by F'2 /r;,perm/ Lpax. For each of these problems we let J = {1,2,...,n} be the set
of jobs to be sequenced. A sequence s on J is a function from {1,2,...,n} to J repre-
sented by the n-tuple (s (1),s(2),...,s(n)), where s () is the i** job in sequence s.

For these problems the objective is to find a sequence s that minimizes the maximum
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cost taken over all the jobs, where the cost of a job is a function of its completion
time.

The single-machine scheduling problem 1 /r;/ fnax has the following defining
properties. Each job j requires p; units of processing time on the machine, it can
start processing on the machine at any time after its release time r;, however, once
its processing has started it cannot be interrupted. The cost of job j is given by a
nondecreasing real valued function f;(t) that gives the cost of completing job j at
time ¢. If we let C; be the completion time of job j, then its cost is given by f;(C;).
An important example is the lateness objective with L; = C; —d;, where d; is the due
date for job j. Here the objective is to find a sequence s that minimizes max L.

For the two machine flow-shop problems F2 /r;/ Crax and F2 /7;, perm/ Lyax,
the jobs have release times r; and they must be processed in the same sequence
without interruption first on machine 1 and then on machine 2. For a given job j
its processing on machine 1 must be finished before its processing on machine 2 can
start. For job j, its processing times on machines 1 and 2, are given by a; and b;,
respectively. The completion time of job j on machines 1 and 2 will be denoted by
C} and C?, respectively. The completion time of job j is C; where now C; = CZ.
For the problem F2 /r;/Cpax, the cost of job j is C; and the objective is to find
a sequence s that minimizes the completion time of the last job in the sequence,
Co(ny- For F2 /r;, perm/ Ly, the cost of job j is given by L; = C; — d; = C? — d;,
and the objective is the same as above for 1 /r;/ Lp,.. We will choose to consider
these problems in their equivalent delivery-time form, denoted by 1/r;/ L., and
F2/rj,perm/ L., where q; = T —d, is the delivery time for job j and T is a constant
with T > max{d; |j € J}. If we define L; = Cj+q;, then L; = C; +T —d; = L; + T,
and we see that the two objectives L,,,, and L.y are equivalent.

For our problems, the dominance order will be a partial order defined by the
parameters of the jobs. Thus we introduce certain definitions for partially ordered

sets (posets).
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1.3.2 Partial orders

By a partially ordered set we mean a pair P = (X, <p) consisting of a set X together
with a binary relation <p on X x X, which is reflexive, antisymmetric, and transitive.
For u,v € X , u <p v is interpreted as u is less than or equal to v in P. Similarly,
u <p v means that © <p v and u # v. The usual symbols < and < will be reserved
for relations between real numbers. A partial order P = (X, <p) is a linear order (or
complete order) if for every pair (u,v) € X x X either u <p v or v <p u. Given a
pair of partial orders P = (X, <p) and Q = (X, <g) on the same set X, we call Q
an ezxtension of P ( P a suborder of Q ) if u <p v implies u <g v for all u,v € X.
A partial order Q = (X, <g) is a linear eztension of a partial order P = (X, <p),
if @ is a linear order that extends P. Given two partial orders P, = (X, <p,) and
P, = (X, <p,), we can define the partial order P,N P, = (X, <p,np,), the intersection
of P, and P,, where u <pnp, v if and only if u <p, v and u <p, v for all u,v € X.
The dimension of a partial order P = (X, <p), denoted by dim(P), is the smallest
[ such that there exists a set {Q1,Q2, ...,Q;} of linear extensions of P such that
P =nN._,Q:. A subset I C X is an ideal of P if for every v € I and u € X such
that u <p v we have u € I. Similarly, F C X is a filter of P if for every u € F
and v € X such that u <p v we have v € F. For every v € X the principal ideal
I (v) is defined by I (v) = {u € X |[u <p v} and the principal filter F (v) is defined by
F(v) ={u€ X|v<pu}. A partial order P on the job set of a sequencing problem
is called a dominance order if there is an optimal sequence that is a linear extension
of P.

1.3.3 Subset-restricted pairwise interchange

We follow Monma [30] in defining our interchange operators. Consider a sequence with
job m preceding job k, of the form (XmYkZ) where X, Y, and Z are subsequences
of J. We define three types of interchanges of jobs k and m that leave k preceding m

in the resulting sequence.
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1. Backward Insertion(BI) (XmYkZ) — (XY kmZ)
2. Forward Insertion(FI) (XmYkZ) —» (XkmY Z)
3. Pairwise Interchange(PI) (XmYkZ) — (XkYmZ)

If we let Y be the set of jobs in sequence Y (we do not distinguish between these),
then each of these interchanges reduces to adjacent pairwise interchange in the case

when Y = @. This leads to the definition of the adjacent interchange order.

Definition 1.1 A partial order < is an adjacent interchange order for a sequenc-
ing function f if for all jobs k, m and sequences X, Z k<m implies f (XkmZ) <
f(XmkZ).

Note that all of the above interchanges involve interchanging k, m or both k£ and
m around sequence Y. Intuitively, whether or not an interchange of jobs k£ and
m with k<m leads to a reduction in cost (for a given sequencing function f and
adjacent interchange order <), should depend on the composition of Y. This involves
placing restrictions on certain of the parameters of the jobs in Y. In the case when
interchangeability does not depend on the composition of Y, then < is a dominance
order for the sequencing problem, i.e., there exists an optimal sequence that is a linear
extension of <. Such an example is the dominance order < defined by
kem & p. < pp, and di < d

for the total tardiness problem on a single-machine, 1//>_ T; [7]. Note that here < is
the intersection of the <, and <4 orders. In general, an adjacent interchange order <
is not necessarily a dominance order, as we shall see later. We consider interchanges
that are restricted by conditions on Y and define the subset-restricted interchange

conditions as follows.

Definition 1.2 An adjacent interchange order < together with the collection of sub-

sets RF! = {Rfém |k<m} satisfies the Restricted Pairwise Interchange Condition

for a sequencing function f if for all jobs k, m and sequences X, Y, Z k<m and
Y C RFL . imply f(XkYmZ) < f(XmYkZ).
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Definition 1.3 An adjacent interchange order < together with the collection of sub-
sets RB! = {Rffsm lkém} satisfies the Restricted Backward Insertion Condition
for a sequencing function f if for all jobs k, m and sequences X, Y, Z k<m and
Y C REL  imply f (XYkmZ) < f(XmYkZ).

Definition 1.4 An adjacent interchange order < together with the collection of sub-
sets RFI = {R,’: B Ikém} satisfies the Restricted Forward Insertion Condition for
a sequencing function f if for all jobs k, m and sequences X, Y, Z k<m and
Y C RIL  imply f (XkmY Z) < f(XmYkZ).

The interchange regions for the pair k<m are the sets of jobs that k and m
can be interchanged around without increasing cost. For PI, BI, and FI these are
given by RPL ., RPL ., and RfL , respectively. In the following Chapters, we will
use subset-restricted interchange to derive a dominance order < on the jobs, that is

a suborder of the adjacent interchange order <.



Chapter 2

Minimizing maximum cost for
single-machine sequencing prob-
lems with release times

2.1 Introduction

In this Chapter, we introduce a new technique, a generalization of pairwise inter-
change that takes into consideration the composition of the intermediate sequence.
This yields a preference order which permits the interchange of a pair of jobs provided
that the intermediate jobs belong to a restricted subset. The traditional methods of
pairwise job interchange can be viewed as special cases of this subset-restricted inter-
change, where the subsets are either uniformly the empty set (adjacent interchange)
or the entire job set (nonadjacent interchange). In general, an adjacent interchange
order is not a complete order and therefore it is not a dominance order, as we shall
see for the 1 /r; / L. problem, using an example due to Lageweg et al. [23]. We
prove, however, that using subset-restricted interchange for the class of regular, sin-
gle machine scheduling problems 1 /7;/ fmax, We can derive a dominance order that
is a suborder of the adjacent interchange order. Recall, for these problems, each job
J has an associated nondecreasing, real valued cost function f; (¢), the cost of com-
pleting j at time t, and the objective is to minimize the maximum cost fy... The
dominance orders we derive have the property that they are defined independently of
the processing times. This makes them especially useful in applications with stochas-
tic or ill-defined processing times. We use only certain extreme values of the other job
parameters that display a ‘staircase-like’ structure. In addition, the dominance orders
derived belong to a special class of partial orders, the interval orders [11]. This also

13
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leads to the complexity implication that the above problems are strongly NP-hard
for interval-ordered tasks. Our results can be viewed as a unified treatment of job
interchange, that generalizes well-known rules for deriving dominance relations and
eztends the pyramid dominance orders of Erschler et al. ([8] and [9]) for 1 /r; /Liyax
to the general problem 1/7;/ fmax. We generalize the pairwise interchange and in-
sertion operations of Monma (30], and introduce ‘pyramid-like’ structures of higher
dimension than two, extending the 2-dimensional staircases of [8] and [9]. In our
unified theory, the problem 1 /r; /L. represents the most special case.

The Chapter is organized as follows. In the next section, we review some im-
portant previous results. In section 3, we define the adjacent interchange order < and
the interchange regions for 1 /7; / fuax - In section 4, we derive a dominance order <
for the problem 1 /7; / fmax , which includes the problems 1 /7 /Lmax , 1 /7, d;/ Crax,
1/r; /maxw;Cj;, and 1/r; /maxw;L; as special cases. In section 5, we discuss the
results of a computational experiment for the problem 1 /r; /maxw;C;. Finally, in

section 6 we summarize the results of the Chapter.

2.2 Previous results

Although the maximum cost objective is quite general, there are still some very im-
portant polynomially solvable general cases. The single machine problem with prece-
dence constraints 1 /prec /fmax , is solved in O(n?) time by Lawler’s algorithm [25].
Lawler’s algorithm sequences the jobs from back to front, by repeatedly sequencing
last a maximal job in the precedence order which has the smallest cost if put in the
last position. An interchange argument using BI shows that it is only necessary to
consider such schedules. Baker et al. [2] generalize Lawler’s algorithm to cover the
preemptive case with release times 1 /r;, pmtn, prec / fmax , Which can be implemented
to run in O(n?) time. That the nonpreemptive case 1/r; / fmax is strongly NP-hard
follows from the result for 1 /7; /Lmax due to Garey and Johnson [13]. This com-
plexity result has led researchers to consider various enumeration and approximation
algorithms.
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Many branch and bound algorithms have been proposed for the maximum late-
ness problem 1 /r; / Ly ; exhibiting various branching and lower bounding schemes.
Among these are the algorithms of Baker and Su [1}, McMahon and Florian [28], and
Lageweg et al. [23]. The relatively most effective is an algorithm due to Carlier [3]
, for the problem 1 /r; / L. - The effectiveness of Carlier’s algorithm is due largely
to the efficient binary branching rule he employs. The branching rule is based on the
dominance properties of a critical path in the ready-Jackson sequence; this is the se-
quence obtained by greedily sequencing the job j with the largest g; (i.e., earliest due
date) from among the ready jobs. Zdralka and Grabowski [43] consider an extension
of this branching rule for the problem 1 /prec, r; / fmax , Which they test for the prob-
lems 1 /r; /L .. and 1 /r; /maxw;L;. Erschler et al. [8] and [9], derive a dominance
order that is a suborder of the adjacent interchange order, which they use to reduce
branching in the algorithm of Baker and Su [10].

Potts [33] develops an approximation algorithm A for 1 /r; /L_.,. , which iter-
atively tries to improve the ‘ready-Jackson’ sequence. Algorithm A has a worst case
performance guarantee of 3/2, i.e., L, (A)/L%.. < 3/2. Given the complexity of the
problem 1 /r; /L, .., the best possible approximate result that can be obtained is a
polynomial approximation scheme. Hall and Shmoys present such a scheme for the
problem, in [19].

2.3 Interchange regions

In this section, we derive the interchange regions (subsets) for the general problem
1 /7j / fmax - Recall, in this problem, each job j has an associated nondecreasing, real-
valued cost function f;, where f;(t) is the cost of completing job j at time ¢, and
the objective is to minimize fh.x = max fi(C;) over all sequences. We order the
jobs according to >y, where f; >, f; & fi(t) > f;(t) for all ¢ > 0. Note that, in
the general case, >, does not order every pair 7 and j, it might be only a partial
order. Two special, linearly ordered cases of >, occur for the lateness objective in

its delivery form , where f; (t) =t + g;, and the weighted completion time objective,
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where f;(t) = w;t. Hall [17] considered the >, order and noticed that the linear
ordering property makes it possible to extend Potts’ [33] approximation algorithm for
the 1 /r; /L., problem to the 1/r;/fu.x problem when >/ is a linear order.

The adjacent interchange order and the restricted subsets for 1 /r; /fmax are
defined below. We note that these definitions use no processing time information.
This means that all of the subsequent results are true irrespective of job processing

times.
Definition 2.1 Adjacent interchange order: k€m < ry < r,,, and fi > 1 fm-

Definition 2.2 Given k<m, define the following subsets of jobs:
@) B, ={ilri < tm fi 21 fi}
() Rog,={jlr; <rm}
(i) RPL = {jlfe >y fi}-

In general, an adjacent interchange order < is not necessarily a dominance
order, as it can be demonstrated by the instance of the maximum lateness problem
1/7;/ Lypax, shown in its equivalent delivery time form in Example 1 [23]. As we shall
see in the next section, the adjacent interchange order < for 1/r;/ L.,  is defined by
k<€m < 1 < 1, and qx > gm- For the 5 job example specified below we have 4<2,
however, the unique optimal sequence is (1,2,3,4,5) with L, = 11. Thus < is not

a dominance order, since the unique optimal sequence is not a linear extension of <.

Example 1 A 5 job problem to illustrate that < is not necessarily a dominance

order.
7 1. 2 3 45
r; 02307
p; 21 2 2 2
g 5 2 6 3 2

Next we prove that the adjacent interchange order < together with the above
collections of subsets satisfy the subset-restricted interchange conditions.

Theorem 2.1 Partial order < together with the collection of subsets RFT = {Rf —m |k<m}
satisfies the Restricted Pairwise Interchange Condition for 1 /r; [ fmax -
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Proof. Given a sequence s, recall that fpa (s) =max fa6) (Cu(jy), where C,jy is the
completion time of job s(j). We construct a directed graph G (s) to evaluate fmax (5)
(see Figure 2.1). Each job s(j) is represented by two nodes: the first one has weight
Ts(j), followed by the second node with weight p,(;). G (s) has the property that the
completion time of job s(j) in sequence s is the length of the longest ‘node-weighted’
path from O to s(j). We represent the paths from 0 to s(j) by pairs (s(i), s(5))
1 <i < j < n, where s(7) is the first node on the path following the start node 0 and

s(7) is the last node of the path. Then by definition

3
ax To(i) + = s Ts(i + s
frmax (s) = max [f G) (('(') X ) ( (@) Z_;Pa(z)))J (A% [f %) ( s(i) gp (z))]

1<s<y 1<i<i<n
and we can evaluate fmax ($) as the maximum over all such pairs (s(z), s(j)) in G (s).

Is(1) Ps(1)

Figure 2.1: Directed graph G(s) for problem 1 /7; / frax -

Let s; = (XmYkZ) be a sequence with the property that k<«m and ¥ C
R7L . We apply pairwise interchange to s; and obtain sequence s; = (XkYmZ).
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We demonstrate that sz is not worse than s; by showing that for every pair of jobs
in s, there exists a dominating pair in s, with a not smaller f value. For example,
consider pair (k,m) in s;, then it has the dominating pair (m, k) in s; (see Figure
2.2): That is,

fm (rk+pk+2py+pm) < fi (rm+Pm+Epy+pk) :

veY yey
which holds since k<m implies ry < 7, and fi () = fm (t) for all t, from which it

follows that fm (rk +o+ Y Py+Pm ) < fe | Te+Pm+ Y py+pc |, and finally
yeY yeY

fr is nondecreasing.

Figure 2.2: Directed graphs G(s2) and G(s,) for PI.

Table 2.1 gives a dominating pair in s, for each pair in s,. ( We use lower case
letters z, y, or z to refer to arbitrary generic elements of the subsequences X,Y or Z,
respectively). The last three columns contain the arguments why they are dominating
pairs. @



S2 S)
(XEYmZ) | (XmYkZ) proof

(z, k) (z, k) fi nondecreasing
(z,9) (z, k) fe 21 fy | fx nondecreasing
(z,m) (z, k) f& 2¢ fm | fx nondecreasing
(z,2) (z,2)

(k. y) (m, k) Tk < Tm | f& 27 fy | fx nondecreasing
(k, m) (m, k) Tk < Tm | f& 24 fm | fx nondecreasing
(k, 2) (m, z) Tk S Tm f: nondecreasing
(y,m) (m, k) Ty < Tm | fk 27 fm | fx nondecreasing
(v, 2) (m, z) Ty S Tm f: nondecreasing
(m, 2) (m,2) f: nondecreasing

Table 2.1: Dominating pairs for Theorem 2.1.

19
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82 S1
(XYkmZ) | (XmYkZ) proof

(z,y) (z,9) f, nondecreasing
(z, k) (z, k) fx nondecreasing
(z,m) (z, k) fe 25 fm | fx nondecreasing
@.2) (,2)

(y, k) (v, k)

(yvm) (m1 k) Ty STm fk ;j fm fk nondecreasing
(v, Z) (m, z) Ty S Tm f: nondecreasing
(k,m) (m, k) e < Tm | fk 27 fm | fx nondecreasing
(kr Z) (m’ Z) Tk S Tm fz nondecmasing
(m, 2) (m, 2) f- nondecreasing

Table 2.2: Dominating pairs for Theorem 2.2.

Theorem 2.2 Partial order < together with the collection of subsets RB! = {Rfém |k<m}
satisfies the Restricted Backward Insertion Condition for 1 /7; [ fmax -

Proof. The proof is totally analogous to that for pairwise interchange. Table 2.2

gives the corresponding dominating pairs. B

Theorem 2.3 Partial order < together with the collection of subsets RfT = {Rf . Ikém}
satisfies the Restricted Forward Insertion Condition for 1 /1; [ fmax -

Proof. The proof is totally analogous to that for pairwise interchange. Table 2.3

gives the corresponding dominating pairs. @

Remark 1 We observe that for any k<m, we have R{L = RPL N RL . Thus

if Y C RJL , then this implies not only f(XkYmZ) < f(XmYkZ), but also

F(XYkmZ) < f(XmYkZ) and f(XkmY Z) < f(XmYkZ).

The preceding theorems could directly be used in branch and bound algorithms
for restricting the search space on sequences. This, however, would require branching
on sequences and storing for all pairs k€m the subsets of Definition 2.2 and the
testing of membership in these, which would be time consuming and inefficient. In



S2 Sy
(XkmY Z) | (XmYkZ) proof

(z, k) (z, k) fx nondecreasing
(:L', m) (.’B, k) fk 2[ fm fk nondeCWing
(z,y) (z, k) fi =7 fy | Jx nondecreasing
(z,2) (z,2)

(k,m) (m,k) | <tm | fx =7 fm | f& nondecreasing
(k,y) (m, k) v <Tm | fx 27 fy | fx nondecreasing
(k, z) (m, z) Tk < T f- nondecreasing
(m, y) (m,y)

(m, 2) (m, 2) f: nondecreasing
(,2) (¥, 2) fz nondecreasing

Table 2.3: Dominating pairs for Theorem 2.3.
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the following sections, we show that there is a much more effective way to restrict the
search space, by proving that there is a dominance order on the jobs.

We also note that by simply modifying release times and processing times,
problems in which the jobs have setup times can be handled as well. Two forms of
Jjob setups can be considered: either a setup p; is attached to job i, i.e., it cannot be
performed without the job being present, that is before r;; or it is detached, i.e., it can
be performed prior to 7;, if the machine is idle and waiting to process job i. Attached
setups can be dealt with by using modified processing times p; = p; + p;, while
detached setups can be handled using modified release times r; = max {0, r; — p;}
and processing times p; = p; + p;. Thus, our theory of dominance orders applies to

the case with setups too.

2.4 A general dominance order

In this section, first we use subset-restricted interchange to derive a dominance order
~< for the general case of 1/7; /fmax, followed by various special cases containing
well-known scheduling problems. We can represent the adjacent interchange order <
using a 3-dimensional structure. The axes of the 3-dimensional space correspond to
ther, t, and f(t) values (see Figure 2.3). Jobs are represented by their f;(¢) curves in
this space resting on planes whose height equals their release times. Recall that k<m
<> 1 < Ty and fi > fm, that is, if k is on a lower r-plane than m and fi is above
fmy 1.e., fi(t) 2 fm(t) for all t. The precedence order < is defined in terms of certain
‘extreme jobs’ in <, or more precisely, certain extreme curves of the 3-dimensional
structure. (Some of these extreme curves might not correspond to real jobs.) To
identify these jobs, we introduce the least upper bound in <; for a finite set of jobs
I C J, as the nondecreasing function pmax f; defined as the pointwise mazimum
of the functions f;, i.e., with values (pixé;sx[ Fi(@)(t) = rjxéa[.x fi(t) for all t. A simple
greedy procedure to define the set of boundary jobs M = {M;|i=1,2,...,H+1}
and the set of diagonal jobs A = {D,, D, ..., Dy}, is presented below. Assume that
there are K distinct r values denoted by r* fori = 1,2,...,K,andr! >r2 > ... > rK,
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Define the function f* = pmax { f; |r; = r*}, this is the least upper bound in <, of the
jobs on level rt.
Algorithm A for 1 /7; / fmax
let (rag, far,) = (L ), 1=1,i=2
while i < K do
begin
if fa, =5 ftheni:=i+1;
else
begin
let (ra, .10 fMy,,) = (v, pmax {f*, far,}) {This defines M;;, and the
function faq, ., }
let (rp,, fp,) = (r*, fm,) {This defines D, and the function fp,}
l:=1+1;
end;
end;
The procedure looks at the r-levels * (i = 1,2,..., K ) and compares the largest f
on this level (f*) with the largest f obtained so far (fay,). If f* represents a strict
increase compared to fay,, then (r*, f*) becomes the new boundary pair (ray, ,,, far, ,,)
and (rp,, fp,) is the projection of (ry,, far,) onto level r*. Note that these extreme
jobs are not necessarily real jobs, since they are defined using pointwise maximum.
Rather they are ‘artificial jobs’ used only for ordering purposes. The sets A and M
define a ‘staircase-like’ structure that contains all of the curves f; for j € J either
inside or on its surface (Figure 2.3 shows an example with |A| = 4). We augment the
partial order P = (J, <€) with the diagonal set A and call it Py = (Ja, €a), where
Ja = JU A and <, is the order < extended to include the diagonal jobs, i.e., €4 is
derived by applying Definition 2.1 to the extended set J5. Jobs k<m (k,m € J) are
separated by A (are A-separated) if there exists a D; i € {1,2,..., H} such that k is
in its principal ideal and m is in its principal filter, i.e., k € I(D;) and m € F(D;)
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in Pa. A induces a partition of P into separable and nonseparable pairs that can be
used to define <.

Definition 2.3 Dominance order <: For k<m (k,m € J ), we define k < m if and

only if k and m are separated by A.

It is well known that the main source of difficulty in all 1/r;/ fpax problems is
the fact that at any time the machine becomes available, it may be better to wait for
a yet unreleased job rather than to schedule one of the jobs available. The partition of
P by A means that the only jobs for which it may be worth waiting are the ones which
are not separated by A from the currently available jobs, that is < is a dominance

order.

Figure 2.3: Staircase structure for the general case.

Theorem 2.4 Partial order < is a dominance order for 1 /7; [ foax -
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Proof. We use subset-restricted interchange in the proof. The following observations
immediately follow from the construction of A:

Dy <a Dy, <o --- <€a D,
F(DH) > F(Dy-l) o - D F(Dl)
I(Dy) C I(Dg) C --- c I(Dy).

Furthermore, for all y € J\ F (D;) and m € F(D;) we have ry, < rp, < r,, for any
i. This is the crucial property used throughout our proof. Let s be any optimal
sequence. If every job in I (D;) is before every job in F (D)), then all jobs separated
by D, are already in < order, and consider I (D;) and F (D). Otherwise, let k; €
I (D,) be the last job in s that is after some job from F (D)), and let m, be the last
such job from F (D,) before k;. That is s = (X;m,Y1k1Z,), where Z, NI (D,) = @
and Y; C J\ F(D,;). By the above property, we have r,, < rp, < rp,, for all
y1 € Y1, which implies that Y1 € RZ'. . Thus, by subset-restricted interchange,
we can insert m; backward just after k; to obtain the alternative optimal sequence
(X1Y1kim,Z,). Following in this way, inserting the last job in F'(D,) backward after
k; until there are no such jobs, we obtain sequence s; which is an optimal sequence
with the property that I (D;) is before F (D;). Continuing similarly, if I (D3) is
before F' (D;) in s;, then all jobs separated by D; are already in < order, and consider
I (D3) and F (Dj3). Otherwise, let k; € I (D) be the last job in s; after some job from
F (D;) \ F(D,) ( since I (D,) C I(D,) and I (D,) is before F (D,) in s;, k; cannot
be after any job from F(D,) ), and let m; be the last such job from F'(D,) \ F (D,)-
Similarly, we have s; = (Xom2Y2k22,), where ZoNI (D2) = S and Y, C J\F (D3). As
above, we have that ry, < rp, < rm, for all y, € Y, which implies that Y> C sz’ < my
Thus we can insert m, backward just after k, to obtain the sequence (X;Y2kom22Z5).
When all such jobs in F (D2) \ F (D,) have been inserted after k;, we obtain sequence
s2, an optimal sequence with the property that I (D,) is before F (D,) and I (D) is
before F (D;). Continuing similarly, we obtain s; for ¢ = 3,4,..., H. Then sy is an
optimal sequence with the property that I (D;) is before F (D;) fori = 1,2,..., H.

Thus sy is a linear extension of <, and we have that < is a dominance order indeed. @
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Theorem 2.4 also has interesting complexity implications. Let us further aug-
ment Pp by adding new least and greatest elements 0 and 1, and call it Pp; =
(Jo,1, <0,1), where Jo; = JaU{0,1} and <¢; = <o U ({0} x Ja)U(Ja x {1}). Then
~< admits an interval representation using intervals I; = [z(j),y(j)] (j € J) on the set
S = AU {0,1} linearly ordered by <, where for j € J, z(j) =max {l € S|l<o,j}
and y(j) = min {l € S|j<o1l}. Partial orders (P, <p) that possess such an interval
representation on a linearly ordered set (where k <p m & I lies to the left of I,;,)
are called interval orders [11]. This leads to the following corollary for 1 /7; / fmax -

Corollary 2.1 Problem 1 /rj,prec/fma remains NP-hard in the strong sense even

with interval-order precedence constraints.

2.4.1 Linearly ordered >¢

In this section, we consider separately the special case where >, is a linear order.
This means that for each pair of jobs i and j either f;(t) > f;(t) for all ¢, or
fi (t) = fi(t) for all t. That is, we can completely arrange the jobs in nonincreasing f
order according to >;. We examine an equivalent pyramid representation for < ([8]
,19],[29] and [12]), and show how this representation does not extend to the nonlinearly
ordered general case.

For the linearly ordered case, we are able to represent the adjacent interchange
order in the plane using the r and f orders as the z and y axes respectively. Here jobs
are represented by points with preferences toward the origin, i.e., k<m if k is closer
to the origin than m in both the r and f orders. The principal ideals and filters in <
are represented by quadrants through these points. That is, let job i be represented
by the point (ry, f;). If we divide the plane into quadrants using the lines r = r; and
f = fi, then the SW and NE quadrants correspond to I (i) and F (i), the principal
ideal and filter in < for job i (see Figure 2.4).

This planar representation was used by Merce [29] to derive a dominance or-
der for the problem of minimizing the makespan in the presence of release times and
deadlines (1 /7j,d; /Cmax )- Fontan [12] noted that if we consider due dates instead of
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Figure 2.4: Ideals and filters for <.

deadlines then the same order is a precedence order for the lateness model 1 /r; / Limax -
They did not consider the adjacent interchange order explicitly ([8] and [9]), rather
they defined their order using certain extreme points in the plane, called summits.
These summits, represented by S; (i = 1 to N ), are the jobs that form a stair-
case boundary in the plane and satisfy the property that their SE quadrant minus
the boundary is empty. The summits are completely ordered S;<S;< ... «Sn. For
each summit S;, Merce and Fontan define a pyramid P(S;), which is its NW quadrant
without its boundary lines but including S;. Jobs are classified using pairs that repre-
sent their membership in pyramids. For j € J, they define u(j) = min {i |5 € P(S:)},
and v(j) = max{i|j € P(S:)}. With these, they define their partial order < by
k <" m & v (k) < u(m). The planar representation for the 5-job problem of Exam-
ple 1 is shown in Figure 2.5. Jobs 3 and 5 are the summits S; and S,, respectively.
P(S1) = {1,2,3,4} and P(S;) = {5}. We have v(z) =1 fori=1,2,3,4 and u(5) = 2,
which implies by definition of <’ that jobs 1,2,3 and 4 must precede job 5. Notice
that the unique optimal sequence (1,2, 3,4, 5) is a linear extension of <  (as we would

expect), but not a linear extension of « (as we saw earlier). Example 2 is another in-
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stance of 1 /r;/ L., this time with N = 9 summits. For this instance, the optimal
L. ... = 114 and the sequence (1,51,k,52,53,54,S55,3,5¢,57,m,2,58,59,4) is an optimal
sequence, which is also a linear extension of <. To further illustrate how <’ is defined,

consider jobs k and m in Figure 2.6. Here k <" m, since v (k) =5 < 6 = u (m).

Example 2 A 15 job instance of 1 /rj/ L., with N =9 summits.

j S 1 SQ Sg S4 55 Ss S'{ Sg Sg k m 1 2 3 4
r; 15 26 34 40 48 57 65 65 73 19 51 8 22 30 38
p; 6 8 8 7 6 10 2 5 7 5 3 5 8 8 10
gi 93 46 40 36 36 27 19 13 9 32 17 43 16 22 6

Let us now apply our general dominance order < to this special linearly ordered
case: we consider a diagonal representation for <, using the set of corner point
boundary jobs M = {M;|i =1,2,...,H + 1}, and the set of artificial jobs on their
inscribed diagonal A = {D;, Ds,...,Dy} (see Figure 2.6). The set M C S is the
subset of boundary jobs with empty SE quadrants, and again we call A the set of
diagonal jobs. We augment the partial order P = (J, <) by these diagonal jobs and
call it Py = (Ja,<a), where Jo = JU A and <, is the planar order with these
diagonal jobs included. Jobs k<m (k,m € J) are separated by A (are A-separated)
if there exists a D; (i = 1,2,..., H) such that £ € I(D;) and m € F(D;). Notice
that v(k) < u(m) when k and m are A-separated. It can be easily verified for k<m
(kym € J) that k < m if and only if k and m are separated by A, i.e. £k < m. As
an example of this equivalence, consider again Example 1 in Figure 2.5: We see that
diagonal job D, separates job 5 and jobs 1,2,3 and 4, and this is the only separation
present. Thus, by the diagonal representation of <, jobs 1,2,3 and 4 must precede
job 5, and < and < define the same precedence orders indeed.

The pyramid representation used for < can be reinterpreted in partial order
terminology to explain why it does not extend to the nonlinearly ordered higher
dimensional case. The summits S; (i = 1,2,..., N) are marimal elements of a related
partial order <¢, which is defined by k<°m & r < r, and fi <; fm, the conjugate of
<. Two partial orders on the same set are conjugate if every pair of distinct elements
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Figure 2.5: Planar representation for Example 1.

is comparable in exactly one of these partial orders. This is clearly the case if we
compare the principal ideals and filters for € and <€, using the planar representation.
For <, these are the SW and NFE quadrants, respectively, with the boundary lines
included. For «¢, these are the NW and SFE quadrants minus the boundary lines
(compare Figures 2.4 and 2.7). By a well-known theorem of Dushnik and Miller
[6] from partial order theory, <€ exists if and only if dim(<) < 2. In this context,
the pyramids are just the principal ideals of <°. The u(j) and v(j) defined in [9]
implicitly use the fact that <€ has an interval containment order representation, i.e.,
there exist intervals {I;|j € J} such that i<j iff I; C I; for 4,5 € J. In the pyramid
representation of 1/7;/Lmax, these intervals are just I; = [r;,d;]. On the other hand,
by the same theorem of Dushnik and Miller [6], a poset has an interval containment
representation iff its dimension is 2. Thus, the u(j) and v(j) can be defined for any
problem for which dim(<)< 2, but it can be defined only for such problems. Of
course, dim(<)< 2 is equivalent to >, being a linear order, so the u(j) and v(j) can
be defined only in this case. Thus we see that the diagonal representation for < has
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Figure 2.6: Planar representation for Example 2.

the advantage that it does not require that < possess a conjugate <€, and thus is not
restricted by the dimension of >;.

It is interesting to note that the original proof due to Erschler et al. [9], for
1/7j /Lmax , used pairwise interchange. This proof can also be modified to carry over
to other cost functions f when >, is a linear order. We chose to present a proof
using backward insertion, however, because this extends to the (nonlinearly ordered)
general case. A proof using forward insertion can also be obtained by proceeding
in the opposite direction. This is due to the duality of the operations and regions
for the linearly ordered case. However, the proof based on forward insertion is not
extendable to the general case either, as the duality of regions no longer holds.

Although this section deals only with linearly ordered >/, it covers a number
of well-studied scheduling problems. In addition to the ones studied in ([8] and [9]),

we mention one further example.
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Figure 2.7: Ideals and filters for <°.

Corollary 2.2 Partial order < is a dominance order for 1 /r;/ maxw;C; and, in

this case, >y is the order which orders the jobs in nonincreasing w; order.

Theorem 2.4 and Corollary 2.1 also have interesting complexity implications,
they yield the following tightening of previously known complexity results ([26] and
[17], respectively).

Corollary 2.3 Problems 1 /r;j,prec/ Lyax and 1 /r;, prec/ max w;C; remain NP-hard

in the strong sense even with interval-order precedence constraints.

Corollary 2.3 is interesting, as interval orders have a very special restricted
structure [11], which does not seem to help in reducing the complexity of the schedul-
ing problems mentioned. This is in contrast with the result of [31] which shows
that Pm /p; = 1, prec/ Cpnax is polynomially solvable for interval-ordered precedence
constraints.

Recall that when the adjacent interchange order < itself is a linear order, it
defines an optimal sequence. It can easily be seen, that < is equivalent to < in this
case, and so it also defines an optimal sequence. This means that < also solves some
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well-known special cases solved by Jackson’s rule [20] or Lawler's method [25]: For
1/7i/ Lysax, fi(t) =t + ¢; and the jobs are linearly ordered by f; >, f; < ¢; > g;- So
both « and < are linear orders and define an optimal sequence, for example, when
the f order is the same as the r order (the agreeably ordered case of 1 /r;/ L_,,, in
which r; < r; © ¢q; > gq;); or one of the orders is trivial (i.e., the f order is linear and
all the jobs have the same release time 1//Lnax); or all the jobs have the same cost
function (1 /rj,d; = d/ Limax). Similar comments apply to the corresponding special

cases of 1 /r;/ maxw;Cj; and 1/r;/ fmax-

2.4.2 Weighted maximum lateness

For this problem the >, order is no longer linear, thus we proceed as in the general
case. For the weighted maximum lateness problem, f; (t) = w;(t—d;) forall j € J. Let
g; (t) = f; (t)+L, where the constant L is chosen so that L > max {w;d; |j € J} . That
is, g; (t) = w;t + qj, where ¢; = L — w;d; > 0. We see that fi >, f <= (W > wn)
and (qx > ¢m)- Thus, we can represent the adjacent interchange order < and the
interchange regions using this 2-dimensional representation of >,. This means that

our general definitions from before reduce to the following for 1 /r; /maxw;L; .

kem < (ri <Tm) and (wk > wm) and (gk > gm)
RPL  ={jlIrj < rmw; < wi,q; < qe}
RiL =~ ={jlw; Sw, ¢ < gk}
RiL . ={jlrj<rm}
We derive the A boundary by modifying the greedy procedure presented earlier.
Once again, we assume that there are K distinct r values r* > r2 > --- > rK and
let w* = max {w;|r; =1} and ¢ = max {g;|r; =r"} fori=1,2,..., K. We use the
same notation as before for the boundary jobs M; and the diagonal jobs D;.
Algorithm A for 1/r; /maxw;L;
let (Tagy, qas W) = (Pl ¢t wl), I =1,1 =2
while : < K do
begin
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if (ga, > ¢°) and (wa, > w') then i :=i+1; {i.e. (qar, ,wn,) >y (¢, w')}
else
begin
let (ragy > My War,,) = (7%, max {¢*, qay,} ,max {w*, wpy, }) {This defines
M.}
let (rp,,q9p,, wp,) = (r*,qun,, war,) {This defines D;}
=14+ 1;
end;
end;
If we represent < in 3-dimensions with ¢, w, and r as the z,y, and z axes, respec-
tively, then (q’,w*) is the least upper bound according to <; of the jobs on the
plane r = r*. ( This is well defined by the finiteness of J.) Symbolically, (¢, w') =
max; {(gj, w;) [r; = '}, where we define max; {(g;, w;)|j € I} = (I?gx ¢;> max w;).
Taking least upper bounds, we greedily construct the sets of possibly artificial jobs
A and M. These jobs are on the boundary of a step pyramid, which contains all of
the original jobs inside or on its surface (see Figure 2.8 for an example with H = 6).
The definition of < is analogous to the general case: k < m if kK and m are A-
separated. From Theorem 2.4 we then have the following corollary for the problem

1/rj /maxw;L;.

Corollary 2.4 Partial order < is a dominance order for 1 /r; /maxw;L; .

2.5 Computational experiment

We consider a branch and bound algorithm for 1/r;/ maxw;C; that follows Potts’
implementation [34]. Potts uses an ‘adaptive’ branching technique to fiz jobs at both
ends of the schedule. More precisely, each node of the search tree is represented by a
pair (0;,02), where o, and o, are the initial and final partial sequences, respectively.
The immediate successor of (0, 05) is either of the form: (0,1, 02) for a type ! branch-

ing, or (01,103) for a type 2 branching, where i is an unfized job i € J \ (o, U 037).



Figure 2.8: Staircase structure for problem 1 /7; /maxw;L; .

The types of the branchings of the tree, are all the same within a level, but in gen-
eral, they will differ between levels. The type for a given level k is fixed on the very
first visit to level k according to the following rule: branch in the direction of the
fewest number of ties at the minimum lower bound. Let n; and n; be the number
of ties at the minimum lower bound for type 1 and type 2 branchings, at level k. If
n; < n, the next branching is of type 1, while if n, < n; then the branching is of
type 2. If n; = n, then the branching is the same as the previous level. Finally, the
search strategy is to branch to the newest active node with the smallest lower bound.

The branch and bound algorithm was coded in Pascal and run on a Sun Sparc
workstation. The experiment consisted of 24 groups with 100 problems in each group.
For each problem, with n = 100 or 500 jobs, 3n integer data (r,p;,w;), were gener-
ated. Processing times p; and weights w; were uniformly distributed between [1, 100]
and [1, W] for W = 10 and 100 respectively, while release times were uniformly dis-
tributed in [0,n - 50.5 - R] for R € {0.2,0.4,0.6,0.8,1.0,2.0}, following the data gener-
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ation technique used by Hariri and Potts [16]. Several versions of the algorithm were
tested both with and without the dominance order <, for each group we present only
the best results. An upper limit of 1,000,000 was used for the maximum number of
nodes in the branch and bound tree. The data in Table 2.4 shows that this limit was
exceeded only for a few problems, i.e., very few problems remained unsolved. Most
of these seem to be concentrated in the groups defined by n = 100, W = 100 and
R = 0.4 or 0.8. Inspection of the results reveals that the number of problems solved
is roughly the same with or without using the dominance order <. Nonetheless, the
dominance order seems to significantly improve the running time of the algorithm.
The times shown in Table 2.4 are the fotal times used for solving the 100 problems
in the group, using the format (min:sec) or (hrs:min:sec). The average CPU time for
the version with the dominance order is 42 percent of that for its counterpart without
it, resulting in a savings of 58 percent. This saving from using < appears to be due
to the reduction in the number of branchings and lower bounds that need to be com-
puted at each node. Note that if the precedence order < is used, then lower bounds
for type 1 and type 2 branchings, need not be calculated for all the unfixed jobs. For
type 1 branchings lower bounds only need to be calculated for those jobs with no un-
fixed predecessors in <, i.e., the minimal jobs. Similarly, for type 2 branchings lower
bounds only need to be calculated for those jobs with no unfixed successors in <, i.e.,
the maximal jobs. In summary, the branch and bound algorithm with the dominance

order < appears to be a very fast and effective solution method for large problems.

2.6 Summary

In this Chapter, we introduced a new method of pairwise job interchange, which
incorporates subset-restrictions on the intermediate sequence. We applied this tech-
nique to derive new dominance results for the problem 1 /7; /fuax, which includes
the problems 1/7; /Lmax, 1 /7j,d;/ Cmax, 1/7; /maxw;C;, and 1 /r; /maxw;L; as
special cases. In particular, we derive a new dominance order < that is a suborder of

the adjacent interchange order. We extend the pyramid dominance order of Erschler
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et al. ([8] and [9]) for 1 /7; /Lumax to the general problem 1 /7;/ fmax- The order < is
shown to belong to a special class of partial orders, the interval orders. This has the
complexity implication that these problems are strongly NP-hard for interval-ordered
jobs. We tested the effectiveness of the dominance order in a branch and bound al-
gorithm for the problem 1 /r; /maxw;C; . The results indicated that the dominance
order was quite effective for this problem, reducing the total computation time by 58

percent.



n = 100

W =10 CPU time Solved
R with < | without < | with < | without <
0.2 00:01 00:05 100 100
0.4 12:07 43:17 100 98
0.6 00:18 00:34 100 100
0.8 00:19 40:21 100 99
1.0 00:17 00:27 100 100
2.0 00:09 00:14 100 100

W =100 CPU time Solved
R with < | without < | with < | without <
0.2 0:00:42 0:01:01 100 100
04 3:16:27 4:32:02 90 89
0.6 0:02:31 0:07:16 100 99
0.8 0:42:20 0:56:56 92 92
1.0 0:00:22 0:00:32 100 100
2.0 0:00:11 0:00:14 100 100

n = 500

W =10 CPU time Solved
R with < | without < | with < | without <
0.2 00:44 00:35 100 100
0.4 20:33 35:19 100 100
0.6 12:51 26:59 100 100
0.8 13:08 28:09 100 100
1.0 12:51 33:52 100 100
2.0 09:07 27:02 100 100

W =100 CPU time Solved
R with < | without < | with < | without <
0.2 0:00:27 0:00:35 100 100
0.4 0:57:54 7:50:25 99 98
0.6 0:49:48 1:26:49 100 99
0.8 0:39:46 0:57:51 100 100
1.0 0:39:44 0:56:32 100 100
2.0 0:22:08 0:31:32 100 100

Table 2.4: Results of computational experiment for problem 1/r;/ max w;C; .



Chapter 3

Minimizing makespan in the two-
machine flow-shop with release
times

3.1 Introduction

Minimizing the makespan in a flow-shop environment is a classical scheduling prob-
lem. The simplest case of this problem, the two -machine flow-shop problem F2//C,ax
on n jobs, is solved in O(nlogn) time by Johnson’s rule [21]. When arbitrary re-
lease times are added, the problem F2/r;j/ Cyax becomes strongly NP-hard [27].
This result has led researchers to consider different approximation and branch and
bound algorithms. Potts [35] developed several approximation algorithms and ana-
lyzed their worst case performance. The best of these algorithms has a worst case
performance ratio of 5/3 with time complexity O(n3logn). Later, polynomial ap-
proximation schemes were developed for the problem by Hall [18] and Kovalyov and
Werner [22]. Grabowski [14] presented a branch and bound algorithm for the prob-
lem F2 /r;/ Lmax, which can also be used for the problem F2 /r;/ Crpax. Grabowski’s
algorithm used a new type of branching scheme that exploited certain dominance
properties of a critical path. Tadei et al. [41] tested several branch and bound algo-
rithms for the problem F2/r;/ Cnax- They tested the effectiveness of various lower
bounds and branching schemes. They have classified instances as “easy” or “hard” ac-
cording to the distribution of the release times. From the easy class they have solved
problems with up to 200 jobs. While from the hard category they were able to solve
instances with up to 80 jobs within 300 seconds. They have also found Grabowski’s



39

dichotomic branching scheme less effective for the problem F2/r;/ Cp. than their
n-ary branching scheme.

In this Chapter, we consider a new branch and bound algorithm for solving the
problem F2 /7;/ Cpax, with the following main features. We use an adaptive n-ary
branching rule, that fixes jobs at both ends of the schedule, similar to the one used
by Potts [34] for the problem Fm//Cpax. We present a new dominance order on the
Job set, which is derived by using subset-restricted interchange. Although the proof
of validity for the dominance order is quite elaborate, its application requires only a
very fast and simple procedure at the root of the branch and bound tree. We also
incorporate a simple decomposition procedure which proved to be especially effective
for problems with large job release times. We use four very quickly computable lower
bounds at each node of the tree. The algorithm represents an effective and very fast
tool for solving large instances of the strongly NP-hard problem F2 /r;/Cpax. In a
large scale computational experiment, the algorithm has solved in a few seconds 1,714
of the 1,800 randomly generated test problems with up to 500 jobs. We have also
gained the insight that the relatively few problems which were left unsolved had their
parameter which determines the range of release times concentrated in a very narrow
interval. Even for the unsolved problems, the best solution found by the algorithm
was, on average, within less than 0.5% of the minimum schedule length.

The Chapter is organized as follows. In the next section we derive several new
dominance results for the problem F2 /r;/ Cpa. In section 3, we present the details
of our branch and bound algorithm, a pseudocode for it is found in Appendix A. In
section 4, we discuss the results of a large scale computational experiment. In the

last section, we summarize our results.

3.2 Dominance results

In this section, we present a new dominance order < for problem F2/r;/ Cpax. We

derive < using the new technique of subset-restricted interchange.
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3.2.1 Subset-restricted interchange

Recall that the problem F2//Cmax is solved by the Johnson order: first order the
jobs with a; < b; in nondecreasing a order followed by the jobs with a; > b; in
nonincreasing b order [21]. This ordering of the jobs is an adjacent interchange order
for the problem F2//Cpax, and since it also completely orders every pair of jobs, it
is an optimal ordering (i.e. an optimal sequence). An adjacent interchange order
for the problem F2/r;/Cnax is the intersection of the nondecreasing r order and
the Johnson order. Note that this order is no longer a complete order, rather it is
only a partial order. To emphasize the partitioning of the jobs in the Johnson order
we define Jo<p = {jla; < b;} and Jy55 = {j|a; > b;j}. Next, we formally define the
adjacent interchange order < for the problem F2 /r;/ Cpax-

Definition 3.1 Adjacent Interchange Order:k<m if 1 < rm and

(i) k, m€ Jycp and ax < am or,
(ii)) k € Jacp and m € Jy5p or,
(iii) k, m € Jasp and by = by,

In general, if an adjacent interchange order is only a partial order (and not a
complete order), it need not be a dominance order. This is the case for < defined
above, if we consider the instance of F2 /r;/ Cinax in Example 3. Here we have 3<1
(rs =1 =10, 3,1 € Ja5p and b3 = 25 > 15 = b,), however, the unique optimal
sequence is (1,2,3,4) with Cpax = 125. Thus we see that < is not a dominance
order since there is no optimal sequence that is a linear extension of «. We use

subset-restricted interchange to find a suborder of < that is a dominance order.

Example 3 A 4 job problem to illustrate that < is not necessarily a dominance

order.
j 1 2 3 4

r; 10 20 10 30
a; 20 20 30 25
b; 15 30 25 20

Next we distinguish between different types of pairs in < that have different
interchange properties.
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Theorem 3.1 Ifk € Jacsy and ax < @y, then k<m together with the set R,c en =49
satisfies the Restricted Forward Insertion Condition.

Proof. Given a sequence s we construct a directed graph G(s) to evaluate Cpax(s)-
Each job s(j) is represented by three nodes with weights r,(;, a,(;), and b,(;) respec-
tively. G(s) has the property that Cpha(s) is the length of the longest ‘node-weighted’
path from 0 to s(n). Each of these paths can be identified by the pair (s(z), s(j)), for
some ¢, j € [1,n], which are the endpoints of the horizontal segments of the path (see
Figure 3.1). Then by definition

i b
Cmax (8) = (,(t) ,(J)) (r,( ) + Z asq) + Z s(l))

1<i<ji<n l=j
and we can evaluate Cpax (s) as the maximum over all such pairs (s(i), s(j)) in G (s).

(1) L OO

a2 !:bz
JS() 5(2)

by

Figure 3.1: Directed graph G(s) for problem F2 /r;/ Cnax
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82 S1
(XkmY Z) | (XmYkZ) proof
(z, k) (z,m) ag < an,
(.’L‘, m) (Ia m) k € Ja<b
(z,9) (z,y) k€ Jach
(z,2) (z, 2)
(k, k) (m,m) Te STm | G < am
(k,m) (m,m) |[re<Tm k€ Jo<h
(k,y) (my) |me<rtm k € Ja<s
(k1 Z) (ml Z) Tk S T'm
(m,m) (m,m)
(m,y) (m,y)
(m, 2) (m, 2)
(y,2) (y,2)

Table 3.1: Dominating pairs for Theorem 3.1.

Let s, = (XmYkZ) be a sequence for pair k<m with k£ € J,<» and ax <
an. We apply forward insertion to s; and obtain sequence s, = (XkmY Z). We
demonstrate that s, is not worse than s, by showing that for every pair of jobs in s,
there exists a dominating pair and corresponding path in s; with a not smaller Cp,.x
value. Moreover, we show that the choice of the dominating pairs is independent
of the intermediate sequence Y, thus we can take the interchange region to be the
entire job set, i.e., RfL = J. For example, consider pair (k,k) in sz, then the
corresponding dominating pair in s; is (m,m). That is,

Te+ax+be+bmt D byt > b <Tmtamtbut Y by +bet D b,

yeY zeZ yeY ze€Z
since 1y < 1y, and ax < ayy.

Table 3.1 gives a dominating pair in s, for each pair in s,. ( We use lower case
letters =,y or z to refer to arbitrary generic elements of the subsequences X,Y or Z,
respectively). The last three columns contain the arguments why they are dominating
pairs. @

Note that R{L = J in Theorem 3.1 means that in fact there are no restric-

tions on the intermediate set Y, i.e., k can be inserted forward before m around any
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(XYkmZ) | (XmYkZ) proof
(-'51 y) (1‘, y) m € Ja>b
(z, k) (=, k) m € Ja>p
(I, m) (I, k) bk Z bm
(z,2) (z,2)
(yi1 yJ) (mvyj) Ty S T'm m € Ja>b
(y1 k) (m, k) Ty S T'm m € Ja>b
(y,m) (m, k) Ty < Tm | bk 2> bm
(y,2) (mz) |ry<tm
(kr k) (m, k) Te < Trm m € Jass
(k,m) (m, k) Tk STm | b >bm
(k, z) (m, 2) T < Tm
(m, z) (m, z)
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Table 3.2: Dominating pairs for Theorem 3.2.
subsequence Y C J. The next two theorems show cases when the intermediate set Y

must satisfy certain real restrictions for the interchange operators to be applicable.

Theorem 3.2 If m € Jysy and b 2> by, then k<m together with the set REL =
{j|r; < rm} satisfies the Restricted Backward Insertion Condition.

Proof. Similarly, Table 3.2 gives a dominating pair in s, for each pair in s;. B

Theorem 3.3 Ifk € Jocp and m € Jass then k<m together with the set Rf ém =
Ja>b satisfies the Restricted Forward Insertion Condition.

Proof. Table 3.3 gives the dominating pair in s, for each pair in s;. &

3.2.2 New dominance order for F2 /r;/Cpyax

Tadei et al. [41] have established a dominance order for problem F2 /r;/ Cpmax, which
can be interpreted as a corollary of Theorem 3.1.

Corollary 3.1 [41} If rx <y, k € Ja<p and ax < ap then job k precedes m in an

optimal solution.
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(XkmY Z) | (XmYkZ) proof

(:B, k) (.’E, k) m € Ja>b Y g Ja>b
(I, m) (.’L‘, m) k € Ja(b

(z,v) (z,y) k € Jac

(z,2) (z,2)

(kv k) (m1 k) Tk S Tm | M€ Ja>b Y g Ja>b
(k, m) (m, m) Tk S Tm ke Ja(b

(kv y) (m1 y) Tk S T'm k € Ja<b

(ka Z) (m7 Z) Tk S 'm
(mv m) (m1 m)

(m,y) (m,y)

(m, z) (m, 2)

(v, 2) (y,2)

Table 3.3: Dominating pairs for Theorem 3.3.
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Corollary 3.1 is indeed a consequence of Theorem 3.1, since its conditions imply
k<m, and so k and m satisfy all the conditions of Theorem 3.1. Therefore, FI can
be applied to any sequence of the form (XmYkZ) to insert k before m around any
intermediate sequence Y. Since k<m, it is clear that the dominance order of Corollary
3.1 is a suborder of the adjacent interchange order <. Note that this suborder does
not contain any pairs with both kK and m € J,5;,. Our dominance order will enrich
this suborder by extending it to pairs with k,m € J,., too.

Before we derive our dominance order, we introduce a planar representation of
the adjacent interchange order «. We represent < in the plane with the z and y axes
replaced by the r and Johnson orders. A Job j is represented by the point (r;,a;) if
J € Jacs or (15,b;) if j € Jo55. Then k<m in this representation exactly if k is not
to the right or above m. This is demonstrated for the 4-job problem of Example 3 in
Figure 3.2. The planar representation here implies 2<4, 3<1 and 3<4.
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10—

Figure 3.2: Planar representation for Example 3.

The principal ideals and filters in < are obtained by dividing the plane into
quadrants using the line 7 = r; and the line a = a; if j € Jy<p or b = b; for j € Jass.
Then the SW and NE quadrants correspond to I(j) and F(j), the principal ideal
and filter in < for job j (see Figure 3.3). We add new comparabilities for the jobs in
Je>b using subset-restricted interchange. These new comparabilities are defined using
certain ‘extreme jobs’ in the planar representation of <. These are the corner-point
boundary jobs M = {M;|i = 1,2,...,H + 1}, i.e., the jobs with empty SE quadrants
that form a descending staircase, and the set of jobs on their inscribed diagonal, the
diagonal jobs A = {D,D,,...,Dy}. Note that the diagonal jobs are not necessarily
real jobs because of the way they are constructed, rather they may be ‘artificial jobs’
and are used only for ordering purposes. We augment the partial order P = (J, <)
by these diagonal jobs and call it Py = (Ja,<€4), where Jo = JU A and <, is the
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planar order with these diagonal jobs included. Jobs k<m (k,m € J) are separated
by A (are A-separated) if there exists a D; (i = 1,2,...,H) such that k is in its
principal ideal and m is in its principal filter, i.e., k € I(D;) and m € F(D;) in Pa.
A induces a partition of P into separable and nonseparable pairs. Notice that the
separable pairs can be of the three types in Definition 3.1, and are not restricted to
pairs k<m with k € J,<;- The new pairs we add are precisely the separable pairs in

P. We now formally define our dominance order <.
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Figure 3.3: Representation of the diagonal jobs A.

Definition 3.2 Dominance order <: For k€m, we define Kk < m if

(i) k€ Ja<p and ax < an, or,
(ii) there ezists a D; in Pa such that k € I(D;) and m € F(D;).

To illustrate the definition of < consider the planar representation for Example
3 in Figure 3.2. Applying condition () to pairs k€m with k € J,<;, we see that 2<4 is
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the only such pair and since a; = 20 < 25 = a4 we have 2 < 4. For condition (1) here
there are 2 corner-point boundary jobs M; = 4, M, = 2, and a single diagonal job
D; in J,> with coordinates (20,20). We see that D, separates jobs 2 and 3 from job
4, which gives us (again) 2 < 4 together with the new pair 3 < 4. Finally combining
these types of pairs we get that, jobs 2 and 3 precede job 4 in <.

Theorem 3.4 Partial order < is a dominance order for F2 /r;/ Cmax-

Proof. Let s be an optimal sequence, we can assume by Theorem 3.1, that s is a
linear extension of the suborder for condition (z) of the theorem. Thus we need to
prove the theorem only for pairs satisfying condition (7).

The following observations immediately follow from the construction of A:

Dy <a Dy, <a -~ €a D
F(Dg) > F(Dg,,) D -+ D F(D)
I(Dg) < I(Dyg-) < -+ C I(Dh).

Furthermore, we have the following crucial property: for all y € J \ F(D;) and
m € F (D;) we have ry < rp, < rp, for any i. Consider a pair £ and m satisfying
condition (i¢). If both k,m € J,<s, then they also satisfy condition (Z), and k is
already before m in s.

Next we deal with pairs with & and m satisfying condition (i) and for which
both k,m € J,5s. In the following, the notation S| J.,, i used to refer to S N Jy5p
for any S C J. If every job in I(D)|, , is before every job in F (D), then all
jobs separated by D; in Ju>s are already in < order, and we consider I(Dy)|; ,
and F (D;). Otherwise, let k; € I (D1)|,_, be the last job in s that is after some
job from F (D;), and let m; be the last such job from F (D,) before k,. That is
s = (XymY1k1Z,), where Z; N I(Dl)b‘), =@ and Y; C J\ F(D;). By the
above property, we have r,, < rp, < ry, for all y, € Y;, which implies that ¥; C
Rflléml' Thus, by Theorem 3.2, we can insert m, backward just after k; to obtain
the alternative optimal sequence (XY k;m;Z;). Note that this interchange cannot
violate condition (i), because m; € J,5» and condition (i) could never require it to

precede any job. Following in this way, inserting the last job in F (D;) backward
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after k; until there are no such jobs, we obtain sequence s; which is an optimal
sequence with the property that I (D.)|, , is before F (D,). Continuing with a
similar argument, we obtain s; for ¢ = 2,3, ..., L, where D, is the last diagonal job
in Js>s, and sy is an optimal sequence satisfying condition (i) with the additional
property that I (D;)|, , is before F'(D;) for i = 1,2,..., L. This takes care of the
pairs with k, m € J;5s.

Now we prove < is a dominance order for the remaining pairs with k£ € J,<
and m € J,55. Let mg be the first job in s, from F(D_.). If there are no jobs
from J,<; after m., then s, also satisfies the property that I (D;) is before F (D;)
for i = 1,2,...,L. Otherwise, let k € J,<» be the first such job after 7a;. By the
definition of D, we have ky<m;. Then s; = (X;m_ Y .k Z;) and by the choice
of k. we have that Y, C Jo5p = RE L’ <m,- Thus, by Theorem 3.3, we can insert
kp forward just before m, to obtain the sequence (X k,m Y. Z;). Note that this
interchange does not violate condition (i), because Y; C J,55 and condition (i) would
never require that k; follow any job from Y;. Repeating, until there is no such
job ki, we obtain the sequence s; satisfying condition (i) with the property that
I (D;) is before F (D;) for i = 1,2,...,L. We want to demonstrate that I (D;) is
before F(D;) for i = L+ 1,...,H. Let k.4, be the last job in I(Dr,,;) that is
after some job in F(Dr+1)|; ,, and let m.4; be the last such job before k.. Then
sp = (Xrs1mrs1Yi+1kr+1Z041) where Zp 1NI(Dpyy) = @ and Yy € J\ F(Dpyy).
Note that Y7 ,; may contain jobs from both parts of the Johnson partition. Let y;
be the first job in Ja<p N Yz, after mpy,. Then we have by our crucial property
that ry, < rp,,, < Tm.,,, and since y; € J,<p and mpy1 € Jusp that yiempy,.
Furthermore, all the jobs between m ., and y; are in J,55 = R;f I<m:.+1’ and thus by
Theorem 3.3, we can insert y; forward before m;,,. By repeatedly doing this, we
end up with a sequence where there are only jobs from J,-, between m,,, and k..
Finally, again using Theorem 3.3, we can insert k;,; forward before m ., to obtain
a sequence with kp4+; before mp,,. As for the previous case, these interchanges do

not violate condition (7). We continue until there is no such k;,, and m ., and then
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we obtain the sequence s; , that satisfies the property that I (D;) is before F (D;)
fori =1,2,...,L + 1. We proceed in exactly the same way for the remaining cases
for L+1 < j < H, and we end up with a sequence s, satisfying both conditions (i)
and (¢z). B

3.3 Branch and bound

In this section, we outline the basic components of the branch and bound algorithm
used to solve the problem F2 /r;/ Cpax- A pseudocode for it is given in Appendix A.

3.3.1 Branching rule

We consider a variant of Potts’ adaptive branching rule that fixes jobs at both ends
of the schedule [34]. More precisely, each node of the search tree is represented by a
pair (o,02), where o, and o, are the initial and final partial sequences, respectively.
Let S; denote the set of jobs in o; for ¢ = 1, 2 and let S be the set of unfixed jobs
ie, S = J\(51US;2). We use <|g to refer to the restriction of < to the set S. An
immediate successor of (o, 03;) in the tree is either of the form (o7, 02) for a type 1
branching; or (o,,102) for a type 2 branching, where 7 is a minimal or maximal job in
<|g, respectively. The types of the branchings are all the same within a level of the
tree. The type for a given level k is fixed on the very first visit to level k according
to the following rule: branch in the direction of the fewest number of ties at the
minimum lower bound. Let n; and n, be the number of ties at the minimum lower
bound for potential type 1 and type 2 branchings, at level k. If n; < n, the next
branching is of type 1, while if n, < n; then the branching is of type 2. If n; = n,
then the branching is the same type as at the previous level.

The search strategy is to branch to the newest active node with the smallest
lower bound. We consider two rules to break ties between nodes with the same lower
bound. We assume that the jobs are indexed in increasing Johnson order. The rule
T, breaks ties for type 1 or type 2 branchings by choosing the job with the smallest
or largest index, respectively. The other rule T; breaks ties for type 1 branchings by
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choosing the job with the largest principal filter in <|g, the smallest index is used
as a further tie-breaker. Similarly, for type 2 branchings the rule is to break ties by
choosing the job with the largest principal ideal in <|g, with the largest index as a
further tie-breaker.

3.3.2 Bounds

Upper bounds are calculated for the root node and for the first n nodes, afterward
the upper bound is evaluated only at leaf nodes. At the root, the upper bound is the
result of the improved ready-Johnson heuristic due to Potts {35]. This heuristic has
time complexity O(n®logn) and a worst case performance ratio of 5/3. For the first
n nodes, the upper bound is the length of the sequence obtained by concatenating
the ready-Johnson sequence between o, and o, which requires O(nlogn) time. For
leaf nodes, there are no unfixed jobs and the upper bound is just the length of the
sequence obtained by concatenating o, and 0.

Since the branch and bound tree may require the computation of lower bounds
for a huge number of nodes, it is very important that we use lower bounds whose
calculation requires only O(n) time per bound. (We have also experimented with some
potentially better lower bounds, requiring O(nlogn) time, but they have noticeably
slowed down the algorithm without any substantial increase in the number of problems
solved.) We consider four lower bounds for each node (o;,02). We calculate lower
bounds on the lengths of different paths for the unfixed jobs S, and we combine these
in various ways with the actual lengths of the fixed sequences o, and o,. For oy
we look at the forward problem (with release times included) and we let C(o,) and
C?(0,) be the completion times on machines 1 and 2, respectively. For o, we consider
the reverse problem, in which each job j must be processed first by machine 2 for b;
time, followed by processing on machine 1 for a; and a ‘delivery time’ of r;. We define
the completion times C'(o;) and C?(o,) analogously, and we define Cpa(02) to be
the ‘delivery completion time’ for o,. For S we consider the forward problem, and
assume that these jobs cannot start on machines 1 and 2 before C'(0,) and C?(0,),
respectively. Ignoring release times for the jobs in S, let L,(S) be the completion
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time on machine 2 of the Johnson sequence on S. Let Ly(S) be the completion time
on machine 1 of the jobs in S sequenced in nondecreasing r order, that is the earliest
time at which the jobs in S can be completed on machine 1. Similarly, if we relax the
capacity constraint on machine 1 and sequence the jobs in nondecreasing r + a order,
then the resulting completion time of this sequence on machine 2, L3(S) is a lower
bound on when the jobs in S can complete on machine 2. Our lower bounds are the

following:

LB, = Ly(S)+ C*(o2)
LB, = Ly(S)+C'(o2)
LB; = Lg(S)+rinei§1b.-+C2(dg)
LBy = L;(S) + C%(o2).

Finally, the best lower bound is the maximum of the above four lower bounds and

Cmax(o'g).

3.3.3 Decomposition and dominance

We find a starting sequence o, by applying the following simple decomposition pro-
cedure, which was also used in [41]. Given a sequence s, if thereexists a2 < k < n
such that min r,; > Cli-1y and km.m [re) + asy] = CZ%;_,y, then sequence
(s(1),. s(k - 1)) is an optimal initial sequence. We apply the decomposition pro-
cedure for the jobs sequenced in nondecreasing r order, then oy = (s(1),...,s(k — 1))
for the largest k value found. After we have fixed o,, we determine the dominance
order < on the remaining jobs in S = J\S;. Note that the dominance order is cal-
culated only once at the root node. This eliminates the potentially large overhead of
having to calculate and update dynamically changing dominance conditions at every

node of the search tree.
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3.4 Computational experiment

3.4.1 Test problems

For each problem with n jobs 3n integer data (r, a;, b;) were generated. The process-
ing times a; and b; were both uniformly distributed between [1,100]. Release times r;
were uniformly distributed in the range [0,n-101- R] for R € {0.2,0.4,0.5,0.6,0.8, 1.0},
following the technique used by Hariri and Potts [16]. For each R and n combination,
50 problems were generated. We used the random number generator of Taillard [42]
to generate these problems. This means that all our test problems are reproducible
by running the problem generation procedure from the same seeds. (The seeds used
have been saved and are available from the author on request.)

3.4.2 Results

The branch and bound algorithm was coded in Sun Pascal 4.2 and run on a Sun
Sparc5 workstation. Three separate versions of the algorithm were run, testing the
effectiveness of the dominance order and the different tie-breakers T} and 7>. Algo-
rithm A; has the dominance order < ‘turned on’ and uses tie-breaker 7). Algorithm
Aj also has the dominance order ‘turned on’, but it uses T3 to break ties. Finally, al-
gorithm Az has the dominance order ‘turned off’ with tie-breaker 75. Each version
of the algorithm was run until either it obtained the optimal solution or the number
of nodes branched from in the tree reached one million for the problem. In the latter
case, the problem was declared unsolved.

Table 3.4 contains the results of the computational experiment for the different
R values. For each group of 50 problems we report: the total CPU time required
for the 50 problems (denoted by total CPU); the average CPU time for the solved
problems in the group (denoted by avg CPU); the total number of nodes in all of the
trees (denoted by total nodes); the number of problems solved (denoted by solved);
and for each of the unsolved problems we calculate the gap between the best solution
obtained and the smallest lower bound among the left-over nodes in the tree, the
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maximum gap (denoted maz gap) is the largest of these over all the problems in the
group.

Our results indicate that the difficulty in solving a problem depends much
more on the value of R than on the number of jobs. The actual size of the problem
for the branch and bound algorithm is determined by how many jobs are fixed by
the decomposition procedure. In general, as R increases the percentage of the jobs
fixed increases. Recall, in the model n - 101 is the expected total processing time
of the jobs, and the range of the release times is [0,n - 101 - R]. For small R values
(R < 0.4), the decomposition procedure is ineffective and fixes less than 2 percent
of the jobs. However, since all the jobs are ready relatively early, release times play
less of a role and the problem is easily solved in just a few nodes. For large R values
(R > 0.6), the opposite is true, the jobs do not become ready simultaneously, there
may be gaps in the schedule, and the decomposition procedure fixes over 90 percent
of the jobs on average. The difficult problems are those with R values concentrated
close to R = 0.5, in the range R € [0.4,0.6], with the most difficult being R = 0.5
itself. For R = 0.4 the decomposition procedure fixes only 3 percent of the jobs, while
for R = 0.6 it fixes a much larger 70 percent of the jobs on average. In spite of this
large difference in the effectiveness of the decomposition procedure for R = 0.4 and
0.6, we are still able to solve at least 90 percent of these problems, even those with
500 jobs. Whereas, for R = 0.5 the decomposition procedure fixes around 20 percent
of the jobs, and the problems appear to be more difficult with a clear decreasing trend
in the number of problems solved as n increases.

Recall, a problem was ‘unsolved’ when the number of nodes branched from
reached a million. Thus the total number of nodes for a group of 50 problems,
contains a million nodes for each unsolved problem. As can be seen, the algorithm
typically generated much fewer nodes for the solved problems. In those groups where
there were unsolved problems, the solution obtained was nearly optimal as measured

by the maximum gap. The largest such gap was on the order of 1 to 2 percent,
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meaning that in the worst case we were within this range of the optimal solution.
The average gap was much smaller, less than 0.5 percent.

Comparing the different versions of the algorithm, we found that versions A,
and A, (with the dominance order included) together always solved as many problems
as version Aj; (without the dominance order included), and in some cases a few more.
The main benefit of using the dominance order is the substantial reduction in the
CPU time required to solve a group of problems. This reduction in CPU time is
approximately 80 percent over all the groups, although sometimes it is more than
this. Consider for example the group of problems with R = 0.4 and n = 200: here
A; and A; both took approximately 37 minutes to complete, while A3 took over
12.5 hours to do so. We also found that this speed-up factor tends to increase as n
increases. This explains why we did not run algorithm Aj; for groups with n = 500
jobs, as it would have required excessively long times. The use of the different tie-
breaking rules in A; and A; did not result in any clearly identifiable differences in

the relative performance.

3.5 Summary

This Chapter considered a new branch and bound algorithm for the problem
F2 /7;/ Crax- The main features of the proposed algorithm are: an adaptive branch-
ing rule that fixes jobs at both ends of the schedule, and a new dominance order that
substantially reduces branching. In general, computational results indicated that the
algorithm performed well in solving a large percentage of test problems, some with
up to 500 jobs. We found that the difficult problems were those where the range of
release times was approximately 1/2 the expected total processing time of the jobs
(i.e., R = 0.5 in our model). Even when we failed to solve a problem, we were always
very close to the optimal solution. We also found that the use of the dominance or-
der resulted in a reduction in computation time of roughly 80 percent. In summary,
we feel that the proposed algorithm is relatively more effective than previous solution
methods for the problem F2 /r;/ Cpnax, in that it found fewer hard problems and it
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was also able to solve much larger problems than previous algorithms. The fact that
most problems were solved to optimum within a few seconds, means that the algo-
rithm has the potential of being used as a callable subroutine for F2 /r;/ Cpa-type
subproblems generated during the solution of more complex scheduling problems, for

example problem Fm /7;/ Cuax-



Table 3.4: Results of computational experiment for problem F2 /r;/ Crpax-

n alg total CPU avg CPU total nodes solved maz gap

(hrs:min:sec) (min:sec) (%)
R=0.2
A 0.28 0.0056 107 a0 -
40 A, 0.24 0.0048 107 50 -
Az 0.24 0.0048 107 50 -
A; 1.28 0.0256 1787 30 -
60 A, 1.25 0.0250 1787 50 -
Aj 2.76 0.0552 1789 50 -
A 1.08 0.0216 89 50 -
80 A 1.09 0.0218 89 50 -
A3z 0.61 0.0122 89 50 -
A; 1.86 0.0372 111 50 -
100 A 1.83 0.0366 111 50 -
Az 1.02 0.0204 129 50 -
Ar 11.95 0.2390 218 50 -
200 A, 12.13 0.2426 218 30 -
A3 5.37 0.1074 218 50 -
A 5:54.83 7.0966 1384 30 -
500 A 4:41.84 5.6368 1384 50 -
R=04
A 1:28.11 0.0050 1,001,861 49 0.14
40 A, 1:04.16 0.0046 1,001,861 49 0.38
As 3:21.83 0.0223 1,002,050 49 0.24
A; 6:36.66 0.4769 2,087,118 48 0.74
60 A 6:32.20 0.4757 2,087,118 48 0.74
Az 43:24.47 21.8289 2,857,484 48 0.74
Ax 24:25.99 0.7544 3,098,632 47 0.70
80 A, 23:09.80 0.7507 3,098,632 47 0.70
A3z 1:51:02.56 6.1055 3,118,415 47 0.70
A, 5:44.35 0.0888 1,005,725 49 0.35
100 A, 5:37.48 0.0910 1,005,725 49 0.29
Az 38:30.42 0.6191 1,007,805 49 0.29
A, 37:17.79 0.7253 3,018,471 47 0.39
200 A, 37:01.58 1.0868 3,018,471 47 0.39
Az 12:31:32.71 17.2627 3,050,546 47 0.39
A 11:23:54.14 7.0742 5,005,152 45 0.30

500 Az 10:07:29.49 5.4205 5,005,152 45 0.30




Table 3.4: (continued).

n alg total CPU avg CPU total nodes solved maz gap
(hrs:min:sec) (min:sec) (%)
R=05
Ay 3:30.76 0.0853 2,027,081 48 0.62
40 A, 5:59.66 0.0926 2,029,231 48 0.62
Az 10:08.70 0.4476 2,051,022 48 0.62
A; 18:15.17 0.7275 5,189,188 45 1.37
60 A, 20:24.29 0.7349 5,189,000 45 1.55
As 38:43.69 13.2302 5,733,770 45 1.37
A 1:14:10.25 1.5020 8,211,107 42 0.79
80 A, 1:18:09.24 1.4863 8,210,998 42 0.79
Az 2:36:10.73 8.3622 8,438,701 42 0.79
A 1:59:06.36 5.3600 9,540,374 41 1.26
100 A,  1:52:27.48 5.3471 9,540,357 41 1.26
Az 4:19:29.52 8.3293 10,143,663 40 1.26
A, 3:33:16.72 1.3308 13,019,825 37 0.97
200 A,  6:15:50.78 1.2841 13,020,073 37 0.97
A;  26:17:52.63 4:46.57 13,639,751 37 0.97
A 17:42:05.92 7.0524 14,019,667 36 0.24
500 A, 15:52:55.39 5.9951 14,019,667 36 0.24
R=0.6 -
A 2:59.01 0.0608 1,017,391 49 2.71
40 A, 2:51.86 0.0594 1,017,379 49 231
Az 7:38.57 0.5191 1,283,222 49 2.71
A 13:23.16 0.0030 2,001,035 48 0.26
60 A, 13:19.02 0.0022 2,000,982 48 0.26
As 23:51.37 0.1535 2,001,383 48 0.24
A 16:06.71 1.6158 3,548,901 47 1.30
80 A, 19:42.08 1.5206 4,496,662 46 1.13
Az 42:25.34 5.6657 5,154,014 45 1.47
Ay 24:59.50 0.1235 4,029,291 46 0.50
100 A, 24:48.82 0.1193 4,029,291 46 0.50
Aj 58:36.76 0.4002 5,071,945 45 0.50
A 11:26.63 0.3044 2,082,825 48 0.49
200 A, 13:44.03 0.0985 3,028,215 47 0.49
Az 21:10.28 0.8350 2,139,389 48 0.49
A 3:16:36.69 4.1353 5,066,898 45 0.19
500 A,  3:14:37.67 7.1349 5,066,898 45 0.19
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Table 3.4: (continued).

n alg total CPU avg CPU total nodes solved maz gap
(hrs:min:sec) (min:sec) (%)
R=08
Ay 0.12 0.0024 216 50 -
40 A, 0.10 0.0020 216 50 -
A3 0.13 0.0026 216 50 -
A 0.13 0.0026 284 50 -
60 A, 0.15 0.0030 284 50 -
As 0.17 0.0034 342 50 -
A 0.19 0.0038 218 50 -
80 A 0.20 0.0040 218 50 -
A3 0.22 0.0044 232 50 -
A 0.25 0.0050 502 50 -
100 A, 0.29 0.0058 502 50 -
Az 0.33 0.0060 746 50 -
Ay 4:09.77 0.0086 1,000,613 49 0.22
200 A, 3:58.20 0.0119 1,000,607 49 0.22
Az 6:49.31 0.0138 1,001,398 49 0.22
A 6.34 0.1268 11,683 50 -
500 A, 446 0.0892 6,916 50 -
R=10 N o
A 0.07 0.0014 91 50 -
40 A, 0.10 0.0020 91 50 -
Az 0.07 0.0014 91 50 -
A 0.12 0.0024 102 50 -
60 A 0.11 0.0022 102 50 -
As 0.12 0.0024 102 50 -
A, 0.17 0.0034 169 50 -
80 A 0.17 0.0034 169 50 -
As 0.20 0.0040 189 50 -
Ay 0.19 0.0038 88 50 -
100 A, 0.21 0.0042 87 50 -
Az 0.22 0.0044 101 50 -
A 0.55 0.0110 82 50 -
200 A, 0.55 0.0110 82 50 -
Aj 0.56 0.0112 89 50 -
Ay 2.35 0.0470 81 50 -
500 A, 2.32 0.0464 81 50 -

59



Chapter 4

Minimizing maximum lateness

in the two-machine flow-shop with
release times

4.1 Introduction

We consider the two-machine flow-shop problem with release times where the objec-
tive is to minimize the maximum lateness for permutation schedules. This problem
denoted by F2 /r;, perm/ L. .., is a well known strongly NP-hard scheduling prob-
lem [27]. Much of the underlying interest in the problem F2 /r;,perm/ L, stems
from the fact that it arises naturally in the solution of more complicated scheduling
problems, such as the problem Fm//Cunax [24]- The complexity result above suggests
that in order to optimally solve the problem F2/r;j,perm/ L,,., it is necessary to
resort to some efficient enumerative technique, such as branch and bound.

Branch and bound algorithms are characterized by various components: the
branching scheme employed, the different types of upper and lower bounds used,
along with other features. Grabowski [14] and Grabowski et al. [15] presented branch
and bound algorithms for the problems F2 /r;, perm/ L., and Fm /rj,perm/ L ,,,
respectively. These algorithms used a branching scheme that exploited certain dom-
inance properties of a critical path. Tadei et al. [41] tried this type of branching
scheme for the problem F2 /r;/ Cnax, but found it to be less effective than their tra-
ditional n-ary branching scheme, that fixes jobs only at the beginning of the schedule.
Potts [34] considered an adaptive branching scheme that fixes jobs at both ends of
the schedule, and found this branching scheme to be quite effective for the problem

Fm//Cmax- Dominance rules are another common feature of branch and bound algo-
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rithms, they are typically used to eliminate nodes (before their bounds are calculated)
in order to reduce computation time and storage requirements. Cheng et al. [4] ap-
ply approximate dominance rules, in the context of fuzzy inference, for scheduling
and searching in flow-shop problems such as F3//Cpa.x and Fm /perm/ Cpax. The
authors were able to find a nearly optimal initial schedule by repeatedly applying
the fuzzy dominance rule to schedule the jobs. This fuzzy schedule also proved very
useful for tie-breaking purposes, to decide which way to branch among several nodes
with the same lower bound.

In this Chapter, we consider a new branch and bound algorithm for solving the
problem F2/r;, perm/L,_, , with the following main features. We use an adaptive
n-ary branching rule, a variant of the one used by Potts. We derive a new dominance
order on the job set, using the proof technique of subset-restricted interchange that
employs a new interchange operator which we introduce. In addition, we make use of
fuzzy dominance properties for initial scheduling and tie-breaking. We also incorpo-
rate a simple decomposition procedure that reduces the problem size by fixing jobs
at the beginning of the schedule. We use six very quickly computable lower bounds
at each node of the tree. The algorithm represents an effective tool for solving large
instances of the strongly NP-hard problem F2 /r;,perm/ L., . In a large scale com-
putational experiment, the algorithm has solved in a matter of a few seconds 4,384
of the 4,500 randomly generated test problems with up to 200 jobs. Even for the un-
solved problems, the best solution found by the algorithm was on average within less
than 0.5% of the optimal value.

The rest of the Chapter is organized as follows. In the next section, we derive
several new dominance results for the problem F2 /r;, perm/ L, ..- In section 3, we
present the details of our branch and bound algorithm, a pseudocode for it is found
in Appendix B. In section 4, we discuss the results of a large scale computational

experiment. In the last section, we summarize our results.
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4.2 Dominance results

In this section, we present dominance results for the problem F2 /r;,perm/L._.. .
First we derive a new dominance order <, using subset-restricted interchange for a
new interchange operator which we introduce. Secondly, we consider a fuzzy approx-

imation of dominance that is used in both initial scheduling and searching.

4.2.1 Subset-restricted interchange

Recall that we follow Monma [30] in defining our interchange operators. Let s; be a
sequence with job m preceding job k. In general, s, is of the form s, = (XmYkZ),
where X, Y and Z are subsequences of J, and let U and V' be disjoint subsequences
of Y. Three types of interchanges of jobs k and m that leave k preceding m in the

resulting sequence s,, are the following:

1. Backward Insertion(BI) s =(XYkmZ2)
2. Forward Insertion(FI) s =(XkmY2Z)
3. Shuffle Interchange(SI) s2 = (XUkmV Z).

To define more precisely the new SI operator, consider again sequence s; = (XmY kZ)
and a partition of Y into Y = U UV, where U = (ujusu3) and V = (vivov314), and YV
is of the form Y = (u uqvivusvzvy). Then ST applied to sequence s;, for this particu-
lar choice of U and V/, gives sequence s; = (Xu ususkmuv,vov3v4Z). We call it shuffle
interchange because the interchange of jobs has the resulting net effect of ‘shuffling’
sequence Y into subsequences U and V, and placing jobs £k and m between them.
Notice that SI may change the relative order of some u’s and v’s after interchange,
but it never changes the relative order of two u’s or two v’s. Thus SI depends on the
choice of subsequences U and V. SI generalizes BI and FI: If we let V and U be
the sets of jobs in sequences V and U (for the sake of brevity, we do not distinguish
between sets and sequences) when V = @ or U = &, then SI reduces to Bl or FI,
respectively. Further, these interchanges all reduce to adjacent pairwise interchange
in the case when ¥ = @.

Recall that the problem F2//Cmax is solved by the Johnson order: first order
the jobs with a; < b; in nondecreasing a order followed by the jobs with a; > b; in
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nonincreasing b order [21]. To emphasize the partitioning of the jobs in the Johnson
order we define Jo<p = {j|a; < b; } and Jo5p = {j |a; > b; }. This ordering of the jobs
is an adjacent interchange order for the problem F2//Cax, and since it also com-
pletely orders every pair of jobs, it is an optimal ordering (i.e., an optimal sequence).
An adjacent interchange order for the problem F2 /r;, perm/ L_,.. is the intersection
of the nondecreasing r order, the nonincreasing ¢ order and the Johnson order, as de-
fined formally below. Note that this order is no longer a complete order, rather it is

only a partial order.

Definition 4.1 Adjacent Interchange Order <: k€m if rx < v, @ > qm and

(i) k, m € Jy<p and ax < an, or,
(Z?.) ke Jagb and m € J,5, or,
(ii‘i) k, m € Ja>p and by > by,.

In general, if an adjacent interchange order is only a partial order (and not a
complete order), it need not be a dominance order. This is the case for <« defined
above, if we consider the instance of F2 /r;, perm/ L:'na.x in Example 4. Here we have
3<l (sincerz3 =71, =10,¢3 =10 > 0 = q1, and 3,1 € J,5p With b3 =25 > 15 = b,),
however, the unique optimal sequence is (1,2,3,4) with L_.. = 125. Thus we see
that < is not a dominance order since there is no optimal sequence that is a linear
extension of <. We will use subset-restricted interchange to find a suborder of < that

is a dominance order.

Example 4 A 4 job problem to illustrate that < is not necessarily a dominance

order.
j 1 2 3 4

r;, 10 20 10 30
a; 20 20 30 25
b; 15 30 25 20
g; 0 10 10 0

Recall, that the ST operator above interchanges £k and m ‘around’ sequence Y/,
for some particular choice of U and V. Intuitively, whether or not such an interchange
leads to a reduction in cost (for a given sequencing function f and adjacent interchange

order <), should depend on the composition of Y, as well as on the choice of U and
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V. We consider interchanges that are restricted by conditions on Y and define the

subset-restricted interchange condition for SI.

Definition 4.2 An adjacent interchange order < together with the collection of sub-
sets {Uxem U Viem |k<m} satisfies the Shuffle Interchange Condition for a sequenc-
ing function f if for all jobs k, m and sequences X, Y, Z there exist a partition U
and V into disjoint subsequences of Y such that kem, U C Upgyp, and V C Vi,
imply that f (XUkmV2Z) < f(XmYkZ).

Next we examine the structure of U, «,, and V, ,, for the different types of
pairs k<m for the problem F2 /r;,perm/ L,,..

Theorem 4.1 Ifk € Jo<p and ax < am, then k<m together with the sets Uy <,, =
{ulu € Jach,Tu < Tmay < am} and Vig,, = {v|qy < qr} satisfy the Shuffle Inter-

change Condition.

Proof. Given a sequence s we construct the directed graph G(s) to evaluate L, (s).
Each job s(j) is represented by four nodes with weights 7.y, as(;), bs(j), and s,
respectively. L., (s) is the length of the longest ‘node-weighted’ path from the
start node to the finish node. These paths can be uniquely identified by the triples
(s(?), s(3),s(k)), for 1 < i < j < k < n, representing the end points of the three
horizontal segments on the path (see Figure 4.1). By definition,
j k
Linax (5) = (s(6),80)re k) (r"") +D_aw + D by + qs(k)) ’

1<i<j<k<n =i =5
and we can evaluate L_, (s) as the maximum over all such paths in G (s).

Let s; = (XmYkZ) be a sequence for pair k<m with k € J, and ax < am-
Let U C Uyem and V C V, ,, be disjoint subsequences of Y, with Y = U U V.
We apply shuffle interchange to s,, with this U and V, and obtain sequence s; =
(XUkmV Z). (We use lower case letters z, u, v, and z to refer to arbitrary generic
elements of subsequences X, U, V, or Z, respectively.) We can demonstrate that s,
is not worse than s;, by exhibiting for every path in s, a dominating path in s; (see
Figure 4.2). For example, consider the path (u, k,v) in sz, then the corresponding
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Tx(1) ay1) bq q
G(s) *‘f SN

T,
o LR L

Figure 4.1: Directed graph G(s) for problem F2 /r;,perm/ L. .

dominating path in s, is (m,m, k), which can be proved as follows. (Note that we
use U, to represent the subsequence of U starting with u and ending in the last job
in U; and V], to represent the subsequence of V from its beginning to job v.)

rat ) Gitak+bitbnt Y bit g STmAtam+bmt D bt D bi+ b+,

iGU(u',] l’.GV[._‘,l €U eV
since 7y, < Ty, U C Ju<h, @k < @, and gx > g,,.

To complete the proof, we present Table 4.1 which gives the dominating paths
in s, for each path in s;. The last column contains the argument why each path is a
dominating path. B

Theorem 4.2 Ifk € J,<p and m € Ju5s, then k<m together with the sets U, <,, =
{ulu € Jacp,Tu < Tm} and Vie,, = {vIv € Josb,qu < i } satisfies the Shuffle Inter-

change Condition.

Proof. Similarly, Table 4.2 contains the appropriate dominating paths. @



Table 4.1: Dominating paths for Theorem 4.1.

S2 S
(XUkmVZ) | (XmYkZ) prr
(1'1,12,13) (11,12, $3)
(117::27“7 (zlyzQ, u)
($1,$2,kT (Il,Iz, k)
(Ila 272,‘”1) (xlaz% k) U3 Z dm
(I1,$2,‘U) (1'1»-'52, k) L3 Z Qv
($11$21 Z) (1'1,1:2, Z)
(z,u1,u2) | (z,u1,u,)
(I, u, k) (Ivuv k)
(a:,u, m) (Iv m, k) U g Ja(by Oy S Qm, 9k > dm
(.’E,u, ’U) (1:7 m, k) U g Ja(by ay < Qm, Gk > Qv
(x':uw Z) (:z:,m, Z) U g Ja<byau < am
(z,k, k) (z,k, k)
(z, k, m) (z,m, k) U C Jact, k € Ja<t, @k 2> qm
(21 ky v) (I,m, k) U - Ja<ba ai < am, gk > Qv
(Iv k1 Z) (:z:,m, Z) U g Ja<ba ai < am,
(:B, m, m) (:L', m, k) U g Ja<ba k € Ja<Lby dk Z Gm
(I, m, ‘U) (z) m, k) U g Ja(ba k e Ja<b1 i3 2 qv
(z,m,z) (z,m,2) | U C Jacp, k € Ja<b
(z,v1,v2) (z,v1,k) | U C Jacs, k € Jach, @k > qu,
(:L', v, Z) (Ir v, Z) U g Ja(b, k € Ja<b
(.’E, 21,227 (.’D, 21122)
(uy,uz,u3) | (u1,uz,u3)
(ul) us, k) (ula Uz, k)
(ul’u21m) (mv m, k) Tuy S Tm, U _C_ Ja<b7 Ay, S A,y Gk 2 dm
(ui,u2,v) | (mmyk) |1y, S7m, U C Jach, Oz < Gmi Gk 2 Go
(ul, uz, Z) (m,m, Z) Tu, S Tm, U g JaSb, Ay, S Qm
('U-, k, k) (mv kv k) Ty < Tm
(u, k, my (m,m,k) | ry <rm, U C Jacs, 8k < @m, Gk > Gm




Table 4.1: (continued).

S2 S1
(XUkmVZ) | (XmYkZ) proof
(u, k, v) (m,m,k) 1y <Tm, U C Jach, 8k < m, G > Qo
(u, k, 2) (mm,2z) [ ry <Tm,UC Jochp, 0 < am
(u1 m, m) (my m, k) Ty S 'm, U g Ja<ba k € Ja<bs 9k _>_ dm
(u,m,v) (m,m,k) | ry <rm,UC Jacs, k € Jach, @x = Qo
(u., m, Z) (ms m, Z) Ty S T'm, U C_:_ Ja<b, k € Ja<b
(u, v, v2) (m, U1, k) Tu S Ty U g Ja<bs k € Ja<ba qi 2 Qo
(u,v, 2) (m,v,2) |1y < 7tm,UC Jacr, k € Jacs
(uv Z1, 22) (ma 21, 22) Ty < Tm
(k, k, k) (k, k, k)
(k1 ka m) (m1 m, k) Tk S T'm,Qk S Gm, Gk 2 dm
(k, k,v) (m,m,k) | re <rtm,ae < am, @ > ¢
(k1 k’ Z) (m7m9 Z) Tk S Tm, Ak S Qm
(k’ m, m) (mvmy k) Tk S Tm,k = Ja(bv dk Z Im
(ky m, 'U) (m)my k) Tk S Tm, k < Ja<ba (3 Z dv
(k,m, z) (m,m,2) | e <Tm,k € Jacp
(k, vy, v2) (m,v1,k) | e < T,k € Jach, @k 2 Gu,
(k,v, 2) (m,v,2) |1 < T,k € Jocs
(k1 21, 22) (mv 21, 22) Tk S Tm
(m,m,m) | (m,m,m)
%m, m,ﬂ) gm, m, v;
m,m,z m,m,z
(mw v, ‘U;) (7(71, v, ‘Ug)
(m, v’ z m’ v’ Z)
(m, 2, z2) (m, 1, z2)
(vla v, 03) (v17v21 ‘U3)
(v1, v2, 2) (v1,v2, 2)
(‘U, 21, 22) (U, 21, Z2)
(zlv 22, Z3) (zlv 22,4 23)
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Table 4.2: Dominating paths for Theorem 4.2.

S2 $1
(XUkmV Z) | (XmYkZ) proof

(z1,Z2,73) | (21,2, Z3)

(zlaIZa ‘U) (xly Iz,U)

(1, Z2,k) | (21,72, k)

(331,1217") (zlv I, k) dk > dm

(21, Z2,v) | (Z1,T2,k) | 2 qu

(21,.’1?2, Z) (311327 Z)

(J:, u13u2) (xa ulyuz)
(z,u, k) (z,u,k)

(z,u,m) (z,u,k) | m € Jasp, gk > gm
(I, u, ‘U) (.’L', u, k) m € Ja)b) | 4 - Ja>b1 dk > Qv
(21 u, Z) (1‘1 u, Z) m € Ja>ba |4 g Ja>b
(z, k, k) (z, k, k)
(z,k,m) (z,k, k) | mE Jae, V C Ja>b, Gk = Gm
($7 ka ‘U) (I, k, k) m e Ja>b)V g Ja>ba gk 2 Qv
(z, k, 2) (z,k,z) | m€ Jass,V C Jass

(I1m: m) (37 m, k) U - Ja<bs k € Ja<bv dk = dm
(z,m,v) (z,m,k) |UC Jach ik € Jach; @k = Qo
(zr m, Z) (17, m, Z) U - Jd(byk € Ja<b

(IL’, Uy, ‘U2) (.’E, v, k) U g Ja(b) k€ Ja<b1 (3 > Qv
(z,v,2) (z,v,2) | UC Jact, k € Ju<p

(I, 21322) (Il 21122)

(ulau21u3) (u17u27u3)

(uh U2, k) (u'lv Uy, k)

('ll.]_, U2, m) (m, Uz, k) Ty,  Tm,ME Josb, Gk = Gm
(u1,u2,v) (m,ug, k) | ey £ Tmym € Jas,V S Ja>b, @k >
(ul,u21 Z) (m1 Uz, Z) Tuy < TmyM € Ja>s, V C Jass
(us k, k) (us k!ﬂ

(u, k,m) (m,k,k) | e <Tm,m € Josp,qk = Gm




Table 4.2: (continued).

S2 S
(XUkmV Z) | (XmYkZ) proof

(u’ kv ‘U) (m, ks k) Ty < Tm, M € Ja>by |4 g Ja>b1 9k > Qv
(u, k) Z) (m1 ks Z) Ty S Tm, M € J¢>ba | 4 g Ja)b

(‘U., m, m) (ma m, k) Ty < T'm, U g Ja<br k € Ja<ba 9k > dm
(u’ m, v) (m’ m, k) Ty < T'm, U g Ja(bs k € Ja<b’ qk > Qv
(uv m, Z) (m1 m, Z) Ty S Tm, U g Jgﬁbs ke Jaﬁb

(u, vy, ‘U2) (ms Vi, k) Ty < Tm, U g Jaﬁba k e Ja(b; dk Z Qv
(u,v, z) (m, v, z) Ty < Tm, U C Ja<s, kK € Jach
(u,21,22) | (M21,22) [Tu<Tm
(k, k, k) (k, k, k)

(k’ k! m) (m1 kr k) T < Tm, M € J¢>b1 Qk 2 dm
(ka k1 ‘U) (m, k, k) T < Tm, M € Ja>ba | 4 g Ja>by dk > Qv
(k, kv Z) (ma k, Z) Tk < Tm, M € Ja>bs | 4 g Ja>b

(ks m, m) (m, m, k) Tk < Tm, k € Ja<b7 9k > dm

(kv m, ‘U) (ms m, k) T < Trn, k € Ja<b1 dk > Qv

(kv m, Z) (m1 m, Z) Tk < T, k € Ja<b

(kv U1, U2) (m1 U1, k) T < Trm, ke Jaﬁks dk > qv,
(k,v,2) (m,v,2) | <rtm,k € Jach

(k, 21, 22) (m,z1,22) | Tk ST

(m,m,m) | (m,m,m)

(m, m,v) (m,m,v)

(m,m, 2) (m,m, 2)

(m1 v, U2) (m1 V1, Uz)

(mv v, Z) (mv v, Z)

(m,z1,z2) | (m,21,20)

(v1,v2,v3) | (v1,v2,v3)

(v11v2az) (vl,vQ: Z)

(v, 21, 22) (v, 21, 22)

(21, 22,23) (21, 22, 23)
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Figure 4.2: Directed graphs G(s;) and G(s;) for SI.

Theorem 4.3 Ifm € J,>5 and bi > b,,, then k<m together with the sets Ur<,, =
{ulry <tm} and Vie,, = {v|v € Jass, qv < i by < by }satisfies the Shuffle Inter-

change Condition.

Proof. Symmetric to Theorem 4.1. B

4.2.2 New dominance order for F2/r;, perm/ L;nax

In this section, we use subset-restricted interchange to derive a new dominance order
on the jobs, denoted by <, for the problem F2 /r;,perm/ L., . We define the follow-
ing sets of jobs for every pair k<€m. (Note that a pair k<m may satisfy more than
one of the following three conditions, so that more than one may be applicable to a

pair.)
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1. If ax < bx and ax < ay,, then let Utém ={ulu € Jocp, T < Tm,@u < @Gy Qu > G }

Vklém = {v IQv < Qk}'
2. Ifar < b and a,, > b, then let Uk2<m ={u|ue']a$baru _<_rm}
Vk2<m = {v|v € Josb,9v < qi }-
3. Ifam > by and b > by, thenlet UZ. =~ = {u|ry <rp}
Vfém = {‘U I‘U € Jasp, v < Qk,bv < bg,y 1y > rm}-

These are just the sets U,«,, and V,¢,, from the previous three Theorems with
additional conditions in cases 1 and 3, to ensure that U . NV/_ = & and maintain
that v; £ u; for u; € Uzém
Ty > Tm has been added in case 3. For a given pair k<m, then k<m is included in the

and v; € Vk"ém. In case 1, ¢, > ¢x has been added, and

dominance order < exactly when any of the applicable sets U,‘; <mY Vk‘ <m 1S the entire
job set. Thus, the dominance order < is defined as the suborder of « consisting of
pairs k<m, that can be interchanged around any intermediate sequence using the ST

operator for the appropriate choice of U and V.

Definition 4.3 Ifk<m and U, UV = J for some i applicable to k and m,

then k < m.

To illustrate the definition of <, consider again Example 4. The adjacent
interchange order < consists of the pairs 2<4, 3«4, and (as we saw previously)
3<1. For pair 2<4 both Theorems 4.1 and 4.2 apply, and checking the conditions
for these we see that both U)_, U V)., and UZ., U V7, are equal to J, thus we
have that 2 < 4. For pairs 3<4 and 3<1 only Theorem 4.3 applies. We also have
Ul ,UVi., = J, thus 3 < 4. However, U UV3  #J becausejob 2 ¢ V3,
since 2 € Jacs, and 2 ¢ U2 since rp > ry, thus 3 £ 1. Therefore, we have that the
dominance order < is the suborder of <consisting of the pairs 2 < 4 and 3 < 4, and
we see that the unique optimal sequence (1,2, 3,4) is indeed a linear extension of <,

as we would expect.
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We define the following suborders of < for the different types of pairs in <

< =< n(Jasb x Jasb)
<2 ==<[WJacp X Ja>s)
<3 == [(Ja>b X Jass),

where A x B represents all pairs with first element from set A and second element from
set B. These suborders will be used first to demonstrate that < is indeed a partial

order, and then to prove that < is a dominance order for problem F2 /r;, perm/ L:nu.

Lemma 4.4 Suborder < is a partial order.

Proof. Since < is a suborder of <, it only remains to show that < is transitive, i.e.,
we want to show that for any jobs k, [, and m if k <l and | < m, then £ < m.
First we consider the case where all of the jobs k, [, and m are in J,<5. In this case,
we have that k <; [ and | <; m, and we want to demonstrate that & <; m. By
Definition 4.3 k£ <, m if Uéém
Jagb, we have that rx < 1 < 7y, and ax < @; < am. These imply that Ul 2D Uler

UVl = J. Since k<l<m and k, I, and m are in

and since VI = Viep Wehave that Ul UV contains U} <YV, However,
k <1 ! implies that U], U V], = J, which by the above observation and Definition
4.3 implies that k <; m. Next we examine the case where k, [ € J,<;, and m € Jg5s,
in which k <, | and | <2 m. We consider separately the different cases of Definition
4.3 that may apply for pair | <; m. If case 1 applies for [ <, m, then (ax <) a; < ap
and the previous argument carries over exactly as above. For case 2, we assume that
Uk UVE,,
These imply, however, that U2 = UZ_ and V2

= J. Since k<l<m, we have that rp, < 7, < r,, and ¢x > q > ¢m-
-, ‘/,2<m, so we also have that
Ulc,.UV2., = J. Thus, by Definition 4.3 we have that k <; m. Finally, if
case 3 applies to | <2 m, then b > by, and U, UV = J. We notice that
(Ufémuvfém)n Ja<s equals U2, N J,cs, which equals U,fém. Since V& NJacp = O
and Ulsém UV, = J, this implies that Uk2<m contains all of the jobs in J,<5- We
also have that U} ., U V', = J since k <; . Similarly, (Ul U Vi) N Jass equals
Vi<i N Ja>s, which equals V:_sm. Since Ulg, N Ja>e = @ and U, UV, = J,
this implies that V2. contains all of the jobs in J,>. Combining these two results
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we have that UZém U Vfém contains all of the jobs in J, from which it follows by
Definition 4.3 that k <, m. The remaining cases, where k, I, and m are in J,54 k <3 |
and | <3 m, or k € Jy<p and I, m € J,5p With k <3 l and | <3 m, follow by symmetry.

Thus we see that < is a transitive order indeed. B

Theorem 4.5 Partial order < is a dominance order for problem F2 /r;,perm/L_,. .

Proof. Let s be an optimal sequence. We find an optimal linear extension of < by
repeatedly applying the SI operator to sequence s without increasing the length of
the longest path. We demonstrate the comparabilities in the order <3, <; and <;,
respectively.

Assume that s is not a linear extension of <3. Let m € J,-; be the last job
in s with some job j € J,55 with j <3 m, such that j is after m in s. Let k be the
first such job j in s, then s is of the form s = (XmYkZ). Since k < m, k and m
can be interchanged around any intermediate sequence using S, in particular around
subsequence Y. Since k <3 m, Ure,, U Viem = Ul UVE_ = J. Applying ST to
swithU=Ul_, NY and V =V3_ NY, we obtain sequence (XUkmV Z). This
sequence now orders k and m properly, and it does not introduce any new violations
of <3: To see this, consider any jobs « € U and v € V. Since u € Ul and
v € V2. ,v#u, sov £ u, which implies that v £3 u. Also, m A3 u follows by the
choice of m, and v #£3 k follows since r, > r, > r. By repeatedly applying the above
procedure until there is no such job m, we obtain an optimal sequence s which is a
linear extension of <j.

For <, we proceed in exactly the same way. Assume that sequence s is not a
linear extension of <;. Let m € J,< be the last job in s with some job j € Ja<p With
J <1 m, such that j is after m in s. Let k be the first such job j in s’, then s’ is of the
form s' = (XmYkZ). Applying SIto s with U =Ul_ NY and V =V _nY,
we obtain sequence (XUkmV Z). This sequence now orders k& and m properly, and it
does not introduce any new violations of <; or <3: For <;, once again consider any
jobsu € U and v € V. Since, v £ u, then v £; u. Also m £, u since qu > gk > gm,
and v #£; k follows by the choice of k. To see that this doesn’t introduce any new
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violations of <3 either, note that all jobs in Y N J,5; must be in V, and for these
Jobs their relative order is unchanged. Repeatedly applying SI we obtain an optimal
sequence s that is a linear extension of <; and <j.

Finally, assume that sequence s is not a linear extension of <,. Let m € J,5;
be the last job in s with some job j € J,<» with j <2 m, such that j is after m in
s. Let k be the first such job j in s”, then s” is of the form s” = (XmYkZ). Since
k <2 m, we know for some i that J = U; . U V] , applying ST for this choice of
iwithU = Ui, . NY and V = Vi_ NY, we obtain sequence (XUkmV Z). This
sequence now orders k and m properly, and it does not introduce any new violations
of <: As above, for any jobs u € U and v € V we have that v £ u which implies
that v £ u. In addition, we have m 43 u (= m A u) and v £, k (= v £ k) as
above. Thus, we see that this interchange does not introduce any new violations of <.
Continuing to apply S until there is no such job m, we obtain an optimal sequence

s* that is also a linear extension of <. B

4.2.3 Fuzzy approximation of dominance

Dominance rules on sequences are usually used to specify whether a node can be
eliminated before its lower bound is calculated in a branch and bound algorithm.
However, they also can be used heuristically in finding a good initial solution, or

directing the search in case of ties [4].

Theorem 4.6 Consider a partial sequence o for the problem F2/r;/L, ... If there
are unsequenced jobs i and j such that

Cl(oij) < CYoji),1<1<?2 (1)

Loax(015) < Linax(a3), (2)

then the partial sequence oij dominates oji, i.e., any completion of oij has an L_,,

which is not larger than the L . for the same completion of oji.

Proof. Consider an arbitrary completion sequence w for the remaining unsequenced
jobs. If Eq.(1) holds, then every job in w will be able to start no later on both
machines, in the sequence (¢ijw) than in the sequence (ojiw). This implies that
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no job in w can have a larger L' value in the sequence (oijw) than in the sequence
(0jiw). Combining this with Eq.(2) completes the proof. B

If there exists a job ¢ for which Eq.(1) and Eq.(2) hold for all unsequenced
jobs 7, then sequence o has an optimal completion with job 7 sequenced next. Such a
job i, very rarely exists, however. This suggests that if they only approrimately hold,
i.e., they hold for job ¢ with almost all unsequenced jobs j, then job i may precede
another job j in an optimal completion of sequence o with high probability. We
measure the closeness of this approximation by a fuzzy membership function. We use
this fuzzy inference to find a good initial sequence, and to break ties between nodes
with the same lower bound when branching. These techniques proved very useful for
the problem Fm//Cpax [4]- Let

D'(oij) = C'(oij) —C'(oji), 1<1<2

D¥01j) = Lpay(0if) — Lipae(05%))-
The fuzzy membership function that represents the likelihood that job i precedes job
j in an optimal completion of ¢ is given by

o (i §) = 0.5 — 51’%”(}5

where D(0ij) = Yo, 1D 01j), Dmaz(0) = max;;|D(0ij)| and a1, 02,03 (0 <
o1, a,a3 <1 and Z?:x a; = 1) are real numbers. (Note that this definition ensures
that 0 < p,(3,7) < 1.) Let S be the set of jobs not scheduled in o. Then, the
likelihood of job i € S dominating the remaining jobs after partial sequence o is
measured by

#o(i) = min 1o (2, 3),
and job ¢* satisfying
po(i%) = max u; (i)
is identified as the job that immediately follows o.
The rule determining i* in this way is referred to as the fuzzy rule and the
schedule obtained by repeatedly applying the fuzzy rule is referred to as the fuzzy
schedule (or fuzzy sequence). To obtain our fuzzy sequence we apply the fuzzy rule

with a; = 1/3 for | = 1,2,3. This requires O{n?) time.
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4.3 Branch and bound

In this section, we outline the basic components of our proposed branch and bound
algorithm to solve the problem F2/r;,perm/L_ . A pseudocode for it is given in
Appendix B.

4.3.1 Branching rule

In order to exploit the symmetry of the problem, we consider a variant of Potts’
adaptive branching rule that fixes jobs at both ends of the schedule [34]. More
precisely, each node of the search tree is represented by a pair (o;,02), where o, and
o2 are the initial and final partial sequences, respectively. Let S; denote the set of
jobs in o; for i = 1, 2, then the set of unfixed jobs is S = J\(S; U S2). We use <|g
to refer to the restriction of < to the set S. An immediate successor of (o;,02) in
the tree is either of the form (o,%,02) for a type I branching; or (o1,i0,) for a type
2 branching, where i is a minimal or maximal job in <|, respectively. The types of
the branchings are all the same within a level of the tree. The type for a given level
k is fixed on the very first visit to level k according to the following rule: branch in
the direction of the fewest number of ties at the minimum lower bound. Let n; and
1, be the number of ties at the minimum lower bound for potential type 1 and type
2 branchings, at level k. If n; < n, the next branching is of type 1, while if n, < n;
then the branching is of type 2. If n, = n; then the branching is the same type as at
the previous level.

The search strategy is to branch to the newest active node with the smallest
lower bound, breaking ties by the appropriate fuzzy rule. For type 1 branchings
we use fuzzy sequence 1 to break ties, this is the sequence obtained by repeatedly
applying the fuzzy rule to the forward problem. For type 2 branchings we use fuzzy

sequence 2 to break ties, this is the analogous sequence for the reverse problem.
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4.3.2 Bounds

Upper bounds are calculated only for the first n nodes, afterward the upper bound is
evaluated only at leaf nodes. For the first n nodes we calculate four separate upper
bounds. The first two upper bounds are obtained by sequencing the unfixed jobs in
the fuzzy sequence for the forward and reverse problems, respectively. Each of these
requires only O(n) time working from the previously established fuzzy sequences. The
two remaining upper bounds are obtained by sequencing the unfixed jobs in ready
q + b order for the forward problem, and ready r + a order for the reverse problem.
Each of these upper bounds requires O(n log n) time to compute. For leaf nodes, there
are no unfixed jobs and the upper bound is just the length of the sequence obtained
by concatenating o; and 0.

Since the branch and bound tree may require the computation of lower bounds
for a potentially very large number of nodes, it is important that we use lower bounds
which require only O(n) time per bound. (We have also experimented with some
potentially better lower bounds, requiring O(nlogn) time, but they have noticeably
slowed down the algorithm without any substantial increase in the number of problems
solved.) We consider six lower bounds for each node (o1,02). We calculate lower
bounds on the lengths of different paths for the unfixed jobs S, and we combine these
in various ways with the actual lengths of the fixed sequences o; and o,. For o;
we look at the forward problem and we let C!(0;) and C?(o;) be the completion
times on machines 1 and 2, respectively. For S we consider the forward problem, and
assume that these jobs cannot start on machines 1 and 2 before C'(o,) and C?(0;),
respectively. Ignoring release times for the jobs in S, let L;(S) be the completion
time on machine 2 of the Johnson sequence on S. Let L2(.S) be the completion time
on machine 1 of the jobs in S sequenced in nondecreasing r order, that is, L2(S) is
the earliest time at which the jobs in S can be completed on machine 1. Similarly, if
we relax the capacity constraint on machine 1 and sequence the jobs in nondecreasing
r + a order, then the length of this schedule on machine 2, L3(S), is a lower bound

on when the jobs in S can complete on machine 2. For o, we define the completion



78

times C'(o;) and C?%(0;) on machines 1 and 2, respectively, for the reverse problem.
Once again, we assume that the jobs in S cannot start before these times. We let
L4(S) be the completion time on machine 1 of the reverse Johnson sequence. As for
the forward problem, the earliest that the jobs in S can complete on machine 2 in the
reverse problem is to sequence them in nondecreasing g order, we denote the length
of this schedule on machine 2 by Ls(S). Relaxing the capacity constraint on machine
2, and sequencing the jobs on machine 1 in nondecreasing q + b order, the length of
this schedule denoted by Lg(S), is a lower bound on when the jobs in S finish on

machine 1 in the reverse problem. We compute the following for the node (o, o2):

LB, = Ly(S)+ C?*o)

LB, = Ly(S)+ C'(ay)

LB; = L3(S)+ C%*oy)

LBy, = C'(01) + L4(S)

LBs = C?*(o1) + Ls(S)

LBs = C'(o1) + Le(S).
Finally, the lower bound is the maximum of the above six lower bounds and the lengths
of the fixed sequences o, and o2 (in the forward and reverse problems), L_,, (o) and
L. (02), respectively.

At the root node we evaluate two additional lower bounds, these are single
machine preemptive bounds obtained by relaxing the capacity constraints on each of
machines 1 and 2 in the forward problem, respectively. It is well known that these
are solved by the preemptive ready Jackson rule, which requires O(nlogn) time to

compute.
4.3.3 Decomposition and dominance
We find a starting sequence o, by applying the following simple decomposition pro-

cedure, which is a generalization of the one used in [41] for the problem F2/r;/Cnmaz-

Given a sequence s, then partial sequence s*~! = (s(1),...,s(k — 1)) is an opti-
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mal initial sequence if there exists a k € [2,n] such that Jin ) > Cre-1)» Jmin
[s) +@a(s)] = CZy_y), and we have LB(J\(5*7')) = Lypac(s*~1), where LB(J\(s*71))
is computed as follows. We apply the decomposition procedure for the jobs sequenced
in nondecreasing r order, and we use the two preemptive single machine bounds men-
tioned in the last paragraph of the previous section to determine LB(J\(s*!)). Then
the initial partial sequence o, is s*~! for the largest k value found.

After we have fixed o,, we determine the dominance order < on the remaining
jobs in S = J\S;. In addition, it is possible to dynamically update the dominance
order < at each node (o, 02), to see whether fixing jobs in ¢; and o, can add new

comparabilities, thus further reducing the amount of branching.

4.4 Computational experiment

4.4.1 Test problems

For each problem with n jobs 4n integer data (r;,a;,b;,q;) were generated. The
processing times a; and b; were both uniformly distributed between [1, 100]. Release
times r; and delivery times ¢; were uniformly distributed in the range [0,n - 101 - R]
and [0,n - 101 - Q], respectively, following the technique used by Hariri and Potts [16].
Different R and Q values were tested for values Q < Rand R € {0.2,0.4,0.6,0.8,1.0}.
For each individual R, Q, and n combination, 50 problems were generated. We used
the random number generator of Taillard [42] to generate these problems. This means
that all of our test problems are reproducible by running the problem generation
procedure from the same seeds. (The seeds used have been saved and are available

from the author on request.)

4.4.2 Results

The branch and bound algorithm was coded in Sun Pascal 4.2 and run on a Sun
Sparc5. Three separate versions of the algorithm were run. Algorithm A, has the
dominance order < ‘turned off’. Algorithm A; has the dominance order ‘turned
on’, and it dynamically updates < at each node. Finally, algorithm A3 also has the
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dominance order ‘turned on’, but < is only calculated once at the root node. Each
version of the algorithm was run until either it obtained the optimal solution or the
number of nodes branched from in the tree reached one million for the problem. In
the latter case, the problem was declared unsolved.

Tables 4.3, 4.4, and 4.5 contain the results of the computational experiment for
the different R and @ values. For each group of problems we report: the fraction of
problems solved (denoted by solved); for each of the unsolved problems we calculate
the gap between the best solution obtained and the smallest lower bound among the
left-over nodes in the tree, and the maximum gap (denoted maz gap) is the largest of
these over all the problems in the group; the total number of nodes in all of the trees
(denoted by total nodes); the average CPU time for the solved problems in the group
(denoted by avg CPU); and the total CPU time required for all of the problems in
the group (denoted by total CPU).

Recall, a problem was ‘unsolved’ when the number of nodes branched from
reached a million. Thus the total number of nodes for a group of 50 problems,
contains a million nodes for each unsolved problem. As can be seen, the algorithms
typically generated much fewer nodes for the solved problems. In those groups where
there were unsolved problems, the solution obtained was always nearly optimal as
measured by the maximum gap. The largest such gap was on the order of 3 percent,
meaning that, in the worst case, we were within this range of the optimal solution.
The average gap was much smaller, less than 0.5 percent.

As the results indicate, all three versions of the new branch and bound algo-
rithm proved very effective in solving the test problems. In total, each of the three
solved 4,384 of the 4500 randomly generated test problems with up to 200 jobs. There
were differences in the time-performance of the three versions, however. In general,
algorithms A, and A3 (with the dominance order) required less time than version
A, (without the dominance order). Algorithms A; and A3 needed roughly 5 percent
and 15 percent less total CPU time, respectively, than A, for the 4500 test problems.
For the 4384 solved problems, the savings in total CPU time amounted to 15 percent
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and 20 percent, respectively, when compared to A;. Thus, both A; and A; made the
search through the tree faster, but the substantially larger overhead of A, (i.e., of up-
dating < at every node of the tree) offset a large part of the speed-up. In summary,
algorithm A3 was the most effective method, it was extremely fast on all of the solved
problems, never requiring more than a few seconds.

The very extensive computational experiment has led to further insights. Our
results suggest that the difficulty in solving a particular problem depends much more
on the values of R and @, than it does on the number of jobs. Given this observation,
the difficult problems are those with intermediate R values, with the most difficult
being the problems with R = 0.4. We have also found that for a given R, the
problems with small Q are most difficult. Recall, that the actual size of the problem
for the branch and bound algorithm is determined by how many jobs are fixed by
the decomposition procedure. We noticed some trends regarding the effectiveness
of the decomposition procedure. First, and most importantly, we noticed that as
R increases the percentage of jobs fixed tends to increase. We also noticed that
for a given R value, the percentage of jobs fixed decreases for increasing Q values,
where recall that Q < R. For small R values with R < 0.4, the decomposition
procedure is ineffective and fixes at most 1 and 6 percent of the jobs for R = 0.2
and 0.4, respectively. Moreover, for these values the decomposition procedure tends
to become less effective as the number of jobs increases. For larger R values with
R > 0.6, the decomposition procedure is quite effective, and it performs even better
as the number of jobs increases. For R = 0.6, the decomposition procedure fixes
around 40 percent of the jobs for the problems with n = 20, this increases to around
80 percent for n = 200. For R = 1.0, the percentage of jobs fixed increases to around

75 percent and 90 percent for problems with n = 20 and n = 200, respectively.
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4.5 Summary

This Chapter considered a new branch and bound algorithm for the problem
F2/r;,perm/ L. The main features of the proposed algorithm are: an adaptive
branching rule that fixes jobs at both ends of the schedule, a new dominance order
to reduce branching together with new fuzzy dominance properties that are used for
scheduling and tie-breaking, and a simple decomposition procedure that reduces the
problem size by fixing jobs at the beginning of the schedule. In general, computa-
tional results indicated that the algorithm performed very well. It has solved more
than 97% of the test problems with up to 200 jobs within a few seconds. Even when
we failed to solve a problem, we were always very close to the optimal solution. We
found that the use of the dominance order resulted in a reduction in computation
time of 15 to 20 percent. We also found that the use of fuzzy dominance properties
aided the search by breaking ties and by often finding a nearly optimal initial solu-
tion. In summary, we feel that the proposed algorithm is more effective than previous
solution methods for the problem F2/r;j,perm/L,_,,, in that it found fewer hard
problems and it was also able to solve much larger problems. The fact that most
problems were solved to optimum within a few seconds, means that the algorithm
has the potential of being used as a callable subroutine for F2 /r;, perm/ L, ,.-type

subproblems generated during the solution of more complex scheduling problems.



Table 4.3: Results for (0.2,0.2) and (0.4, 0.2).

n alg solved mar gap total nodes avg CPU  total CPU

_ (%) (sec) (hrs:min:sec)
R=02 Q=02 ] -
A;  50/50 - 24,666 0.0840 420
20 A 50/50 - 24,593 0.0958 4.79

A;  50/50 - 24,666 0.0828 4.14
A, 50/50 - 3,894 0.1146 5.73
40 A, 50/50 - 3,893 0.1190 5.95
A;  50/50 - 3,894 0.1098 5.49
A, 48/50 1.1401 2,001,789  0.2225 30:57.50
60 A, 48/50 1.1401 2,001,791  0.2056 33:17.86
A; 48/50 1.1401 2,001,791  0.1954 29:33.53
A, 49/50 0.4968 1,009,292  1.0969 20:16.54
80 Az 49/50 0.4968 1,009,278  1.1967 22:48.84
A 49/50 0.4968 1,009,288  1.0549 19:53.81

A, 48/50 0.6178 2,029,119 4.6633 2:40:15.34
100 A, 48/50 0.6178 2,048,242 6.9856 2:16:42.26
A; 48/50 0.6178 2,048,242 5.9825 2:01:24.72

A 49/50 0.0655 1,063,650  38.7327 8:02:25.27
200 A, 49/50 0.0655 1,063,647  24.1063 7:06:01.35
Az  49/50 0.0655 1,063,647  22.0294 6:11:14.99

R=04,Q=02

A, 48/50 1.6575 2,947,498 2.9265 7:32.65
20 A, 48/50 1.6575 2,900,048 3.1988 8:11.50
As 48/50 1.6575 2,903,012 2.7614 7:14.97

A, 38/50 14881 13,365,909 7.3640 49:02.53
40 A, 38/50 14881 13,364,572  7.0429 44:46.62

As 38/50 1.4881 13,365,936 6.7934 42:02.63
A, 37/50 1.0747 13,323,626 1.5924 49:22.47
60 A, 37/50 1.0747 13,323,151 1.7548 43:38.78
As 37/50 1.0747 13,323,293 1.5751 44:37.38
Ay 41/50 0.8299 9,758,575 3.8098 30:58.02

80 A 41/50 0.8299 9,769,357 4.1583 33:56.53
As 41/50 0.8299 9,782,955 3.8634 31:27.20

A, 42/50 0.4259 8,232,036 2.9133 2:03:40.23
100 A, 42/50 0.4259 8,203,264 2.3276 2:20:44.43
As  42/50 0.4259 8,203,030 2.4000 2:00:28.92

Ay 39/50 0.2801 12,391,165 15.8108 1:07:04.76
200 A, 39/50 0.2801 12,391,035 16.7367 1:12:45.20
A; 39/50 0.2801 12,391,171 15.5379 1:07:01.03




Table 4.4: Results for (0.4,0.4) and R = 0.6.

n alg solved maz gap total nodes avg CPU  total CPU

(%) (sec) (hrs:min:sec)
R=04,Q=04
A, 45/50 3.2119 5,505,470 1.9667 13:31.30
20 A, 45/50 3.2119 5,474,584 1.6951 14:21.46
Az 45/50 3.2119 5,468,818 1.5591 12:53.13

A, 43/50 1.3497 7,000,924 0.0623 30:22.67
40 A 43/50 1.3497 7,000,874 0.0642 30:20.04
A;  43/50 1.3497 7,000,879 0.0607 27:27.53

A, 46/50 0.2151 4,001,078  0.1924 18:50.55
60 Az 46/50 02151 4,001,105 0.1935 18:55.89
A; 46/50 0.2151 4,001,111  0.1820 17:25.11
A, 47/50 0.6494 3,000,978  0.3975 15:54.83
80 A, 47/50 0.6494 3,001,023  0.3966 9:51.74
As  47/50 0.6494 3,001,013  0.3753 11:24.47
A, 48/50 0.4598 2,001,628  0.8077 8:10.88
100 A, 48/50 0.4598 2,001,549  0.7938 6:40.89
A; 48/50  0.4598 2,001,582  0.7523 8:14.86
A, 49/50 0.1693 1,002,837  6.4861 22:23.65
200 A, 49/50  0.1693 1,002,824  6.4520 22:36.68
A; 49/50  0.1693 1,002,841  6.0212 19:50.06
R=06,Q=0204,06 ] -
A, 147/150 1.3150 3,120,585  0.0995 6:22.79
20 A, 147/150 1.3150 3,098,357  0.0852 6:37.17
A; 147/150 1.3150 3,099,007  0.0767 6:25.34

A, 137/150 1.3754 13,100,696  0.1467 36:56.68
40 A, 137/150 1.3754 13,103,281  0.1450 36:03.00
A; 137/150 1.3754 13,103,391 0.1322 31:22.49

A; 147/150 0.7059 3,055,775 0.1070 13:34.11
60 A, 147/150 0.7059 3,036,978 0.0748 12:32.31
Az 147/150 0.7059 3,036982 0.0707 11:38.68
A, 145/150 0.3267 5,003,273 0.0682 11:43.19
80 A, 145/150 0.3267 5,003,245 0.0657 24:34.21
Az 145/150 0.3267 5,003,245 0.0635 14:08.36
A; 148/150 0.4820 2,006,622 0.0818 4:28.17
100 A, 148/150 0.4820 2,006,722 0.0845 4:40.68
As 148/150 0.4820 2,006,722 0.0810 3:23.59
A, 147/150 0.1533 3,000,729 0.2136 17:11.18
200 A, 147/150 0.1533 3,000,778 0.2206 18:39.67

As 147/150 0.1533 3,000,732 0.2064 15:32.97




Table 4.5: Results for R =0.8 and R =1.0.

n alg solved mazx gap total nodes avg CPU total CPU
(%) (sec) (hrs:min:sec)
R=08,Q=0.2,04,06,08
A, 200/200 - 1164 0.0026 0.51
20 A, 200/200 - 1149 0.0029 0.58
Az  200/200 - 1149 0.0027 0.54
A; 200/200 . 914 0.0056 .11
40 A; 200/200 - 912 0.0056 1.11
Az 200/200 - 912 0.0053 1.06
A; 199/200 0.2625 1,001,163 0.0098 2:32.97
60 A, 199/200 0.2625 1,001,167 0.0097 6:53.71
Az 199/200 0.2625 1,001,167 0.0095 2:33.83
A; 198/200 0.1513 2,000,359 0.0013 6:10.13
86 A, 198/200 0.1513 2,000,357 0.0012 3:35.69
A; 198/200 0.1513 2,000,357 0.0012 3:30.68
A, 200/200 - 257 0.0181 3.61
100 A, 200/200 - 261 0.0183 3.65
Az 200/200 - 261 0.0180 3.59
A, 200/200 - 259 0.0571 11.42
200 A, 200/200 - 267 0.0569 11.37
A;  200/200 - 267 0.0568 11.36
R=10,Q=02,04,06,08,10
A, 250/250 - 376 0.0020 0.49
20 A; 250/250 - 543 0.0022 0.54
A;  250/250 - 543 0.0023 0.57
A; 250/250 - 332 0.0042 1.04
40 A, 250/250 - 329 0.0043 1.08
Az 250/250 - 329 0.0043 1.08
A, 250/250 - 354 0.0076 1.91
60 A, 250/250 - 354 0.0080 1.99
Az 250/250 - 354 0.0082 2.06
Ay 249/250 0.2736 1,000,309 0.0119 2:36.63
80 A, 249/250 0.2736 1,000,307 0.0121 3:14.71
A; 249/250 0.2736 1,000,307 0.0121 3:13.30
A, 250/250 - 273 0.0177 4.43
100 A, 250/250 - 273 0.0178 4.45
Az 250/250 - 273 0.0178 4.45
A; 250/250 - 276 0.0619 15.47
200 A, 250/250 - 276 0.0620 15.49
Az 250/250 - 276 0.0620 15.50
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Chapter 5
Thesis summary

In this thesis, we have introduced a new technique, subset-restricted pairwise inter-
change, that generalizes well-known methods used to derive dominance results for
scheduling problems. Subset-restricted pairwise interchange is a generalization of
pairwise job interchange that incorporates subset-restrictions on intermediate jobs.
The traditional methods of pairwise job interchange can be viewed as special cases,
where these subsets are all uniformly either the empty set (adjacent pairwise inter-
change) or the entire job set (nonadjacent pairwise interchange).

We have used this technique to derive dominance orders for the one- and
two-machine scheduling problems with release times 1 /7;/ fuax, F2/7j/ Cmax, and
F2 /r;,perm/ L ... The dominance order we derive is a suborder of the adjacent
interchange order for the problem. We have shown that in general the adjacent in-
terchange order is not a dominance order, but that there is a subset of this order
that is a dominance order. These results generalize the dominance results of Erschler
et al. [8], [9], and [10], for the one-machine scheduling problems 1 /r;,d;/ Crmax and
1/7;/ Linax-

We have tested the effectiveness of the dominance orders in efficient branch and
bound algorithms. We found that the dominance orders were effective at reducing
the number of branches in the search tree, and that this led to a sizeable reduction
in the total computation times. Our experiments indicated that the difficulty in
solving these problems depends much more on the range of release (and delivery)
times than on the number of jobs. We have classified problem instances as either
‘easy’ or ‘hard’ on this basis. Our test problems were generated using the random
number generator of Taillard [42], thus they are easily reproducible, and can serve as

benchmark problems for future researchers.
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There are several directions for future research. A natural extension would be
to consider problems with more than two machines (i.e. m > 2) such as Fm /r;/ Cpax,
Fm//Crax, and Fm /r;/ L_,... These techniques could be applied directly to derive
dominance orders, or the proposed algorithms could be used as subroutines to solve
F2 /7;/ Cmax- or F2 /7, perm/ L_,, -type subproblems generated during the solution
process. Another extension would be to apply these techniques to problems where the
objective is to minimize the total cost, instead of the maximum cost. Continuing in
this vein, still another extension would be to consider multiple criteria combinations
of the above two types of objectives. These directions will be the subject of future

research.



Appendix A
Algorithm for F2/r;/Cyax

Calculations for root node

e apply decomposition procedure with nondecreasing r sequence to fix o;;
e let S := J\S, 02 := J; nodes := 0;
e construct the dominance order <;
e calculate initial UB and LB, and let BestMakespan := U B;
e call recursive procedure Opt that facilitates branching;
procedure Opt(o,, S, 02, Best Makespan);
begin
if nodes < 1000000 then
begin
nodes := nodes + 1;{increment the number of nodes branched from}
if (nodes < n) or (|S| = 1) then calculate UB and (possibly) update
BestMakespan
if (LB < BestMakespan) and (|S| # 1) then
begin
find lists of minimal and mazimal jobs in <|g
if type = 1 then calculate lower bounds for minimal and sort in
nondecreasing order
else if type = 2 then calculate lower bounds for mazimal and sort in
nondecreasing order
else (type not set)

begin
88
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must calculate and sort lower bounds for both minimal and
maximal to find n; and n, to determine type for node
if n; < n, then type :=1
else if n, > n, then type := 2
else type := previous_type;
end;
if type = 1 then list := minimal
else if type = 2 then list := mazimal,;

while (list # &) and (Best Makespan > lower bound from head of list)
do

begin
remove head of list
let job be the job that is fixed and let LB be its lower bound
remove job from <
S == S\{job};
if type = 1 then add job to o,
else if type = 2 then add job to o5;
Opt(o,, S, 02, Best Makespan);{recursive call}
if type = 1 then remove job from o,
else if type = 2 then remove job from o;
S := S U {job};
restore job to <

end;{while}

end;{if (LB < BestMakespan) and (|S| # 1)}
end;{if nodes < 1000000}

end;



Appendix B
Algorithm for F2/r; perm/L

Calculations for root node

e apply decomposition procedure with nondecreasing r sequence to fix o;;
o let S := J\S), 02 := J; nodes := 0;
e construct the dominance order <;
e find fuzzy sequence land fuzzy sequence 2;
e calculate initial UB and LB, and let BestUB := UB;
e call recursive procedure Opt that facilitates branching;
procedure Opt(o,, S, 02, BestU B);
begin
if nodes < 1000000 then
begin
nodes := nodes + 1;{increment the number of nodes branched from}
if (nodes < n) or (|S| =1) then calculate UB and (possibly) update BestU B
if (LB < BestUB) and (|S| # 1) then
begin
find lists of minimal and mazimal jobs in <|g
if type = 1 then calculate lower bounds for minimal and sort in
nondecreasing lower bound order breaking ties using fuzzy sequence 1
else if type = 2 then calculate lower bounds for mazimal and sort in
nondecreasing lower bound order breaking ties using fuzzy sequence 2
else (type not set)
begin



calculate and sort lower bounds for both minimal and mazrimal
breaking ties accordingly
find n; and n, to determine type for node
if n; < n; then type ;=1
else if n; > n, then type :=2
else type := previous_type;
end;
if type = 1 then list := minimal
else if type = 2 then list := mazimal;
while (list # @) and (BestU B > lower bound from head of list) do
begin
remove head of list
let job be the job that is fixed and let LB be its lower bound
remove job from <
S := S\{job};
if type = 1 then add job to o,
else if type = 2 then add job to oy;
Opt(o1, S, 02, BestU B);{recursive call}
if type = 1 then remove job from o,
else if type = 2 then remove job from o5;
S := SU {job};
restore job to <
end;{while}
end;{if (LB < BestUB) and (|S] # 1)}

end;{if nodes < 1000000}

end;
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