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ABSTRACT

Measurements of the surface energy balance and

ground thermal regime were carried out near Churchill,

Manitoba at two sites in the summers of 1984 and 1985, and a

third site in the summer of 1987. The sites represented

unforested permafrost locations with a non-transpiring

organic surface cover. After examining the ~icroclimatic and

ground thermal regimes, the measurements were used to

develop a physically-based one-dimensional model capable of

emulating the observed regimes. sensitivity analysis of the

model was carried out to determine the relative importance

of processes and factors influencing ground temperatures at

the stUdy locations, and to assess the validity of using

this modelling approach for prediction of changes in the

microclimatic or ground thermal regimes.

The data collected in this stUdy represent a

complete, comprehensive, and accurate series of measurements

of the summer microclimatic regimes at the stUdy locations.

On a descriptive basis, the data-provides a strong knowledge

base of microclimatic processes in this type of terrain. The

major significance of the thesis lies in the results of the

numerical modelling. Although the general modelling approach

is similar to previous models in the literature, the model

developed in this study uses a more comprehensive

evaporation model which includes a thermal resistance factor
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acting in the surface layer. Changes in the thermal

resistance factor completely reverse the sensitivity of the

model to surface moisture changes: with a high thermal

resistance the soil cools in response to surface drying,

while low the~al resistance values lead to soil warming in

response to surface drying. This result is very important in

assessing the response of permafrost conditions to local or

global climatic change.

In- addition, the field data indicate that both

surface moisture and surface temperature vary widely over

horizontal distances of only a few metres. This result

indicates that one-dimensional models may not be capable of

treating the evaporation process in a physically-based

manner. Evaporation models previously used in the literature

may be misleading in their predicted response to climatic

change. Further study is required into the nature of the

surface evaporative layer, and the validity of one

dimensional evaporation models in non-homogeneous terrain.
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Chapter 1: Introduction

As human activities increase in permafrost areas,

predictions are required of both the effect of development

and the range of possible natural changes over the lifetime

of the activities. For example, in the case of railways,

bridges, or pipelines, the design engineer must consider the

local effects of construction, and the possible range of

conditions which will occur over the many years the facility

is in use. A design which is stable after initial

construction could be in danger if permafrost degrades as

the result of local hydrologic changes or global warminq.

Adequate planning requires an understanding of the nature

and characteristics of permafrost, and knowledge of its

relationship to climate.

Permafrost is defined on the basis of ground

temperature, and ground temperature is controlled by

climatic conditions. On a regional scale, the most important

factor is mean annual air temperature, which in lowland

terrain varies only slowly over distances of hundreds of

kilometers. At this scale, permafrost is commonly divided

int.o cont.inuous, and discontinuous zones - based on how

extensive the permafrost. is in the area. Figure 1.1 shows

the southern limit.s of these zones in North America. Within

each of these broad zones, variations in permafrost

1



Figure 1.1: Southern limit of continuous permafrost (heavy line) and discontinuous
permafrost (medium line) in North America. Permafrost may exist outside
these limits at high altitude in mountainous regions.
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