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ABSTRACT

Recent progress in VLSI technology has created a major impact on digital
signal processing, including array signal processing. Proposals have been made for
using high throughput processors for digital adaptive beamforming in radar and
communications systems applications. In this thesis, novel techniques and
architectures for adaptive beamforming will be developed and presented. These are
typified by the development of adaptive beamforming algorithms for planar arrays
and by a self-calibration algorithm for antenna arrays. The emphasis however will
be placed on modern adaptive beamforming techniques in which the adaptation is

carried out by means of a triangular systolic array processor performing the QR

decomposition.

Adaptive beamforming algorithms for a planar array or two—dimensional
(2-D) adaptive beamforming algorithms, which are typified by the 2-D
least-mean-squares (LMS) algorithm and 2-D Howells—Applebaum algorithm, are
derived and presented. = The concept of 2-D eigenbeams will be given to
demonstrate the performance of the 2-D adaptive beamforming techniques. As
well, the 2-D adaptive beamforming problem will be formulated in terms of the
1-D case with operation taking place along rows and columns of a planar array.
The adaptive processor is then implemented by wusing a manifold of the
least-squares triarray processors, which in the limit takes the form of a 3-D
systolic array. It will be shown that the structure is capable of performing

adaptation along the rows and columns of the 2-D array simultaneously.

iv



Cne of the major challenges that face workers in array processing is
overcoming the degrédation in the output of the high performance algorithms due
to errors in the calibration of the array. A new self-calibration technique for
solving this difficult problem will be derived and presented herein. The algorithm
is based on the use of iteration — whereby the calibration coefficients are refined
through repetitive imposition of the calibration procedure. Its derivation is based
on the eigen-based method and the least~squares norm minimization. It will be
shown that the algorithm is capable of automatical estimating the angles—of-arrival
(AOA) of the received signals and calibrating the array with a minimum phase
and gain errors. Results obtained by using both simulation and measurement data
will be given. In the case of the experimertal results, the measurement setup is

subjected to multipath scenarios.
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CHAPTER 1

INTRODUCTION

1.1. Introduction to Adaptive Beamforming Problem

The performance of conventional communications and radar antenna systcms
is usually degraded by undesired signals which intrude via the antenna’s mainbeam,
as well as its sidelobes. @ The undesired signals may consist of deliberately
generated signals as an electronic counter measure (ECM), RF interference, radar
clutter returns, and natural noise sources. Also, antenna motion, poor sitiing
conditions, multipath, and mutual coupling might further contribute to tinis
degradation.  Adaptive beamforming techniques offer possible solutions to these

critical problems of interference and system antenna errors.

Adaptive beamforming technology has been actively discussed in the literaturce
for at least two decades and is now, increasingly, finding applications ‘n radar,
sonar, and communications systems [1-5]. The reason of all of this interest lies in
the ability of adaptive arrays to automatically steer nulls in the direction of
interfering sources.  Recently, with the rapid growth of VLSI technology, and
particularly with the advent of systolic arrays, the use of VLSI array processors in

adaptive digital beamforming has become a subject of considerable interest [6-8].

Adaptive beamforming can be carried out with narrowband signals or



broadband signals. In tne case of narrowband adaptive beamforming, each channel
of the antenna array is associated with an adaptive weight and the adaptive
processor is just a linear combiner (Fig. 1.1). In the broadband case, each channel
is associated with a tap—delay line and the adaptive prozessor takes the form of a
transversal filter (Fig. 1.2). Nevertheless, from a mathematical point of view the
iwo types of beamforming have similarities, although the broadband case is
considerably more complex. Therefore, for simplicity of analysis, only narrowband

signals will be considered in this thesis.

Consider the adaptive antenna array, which is illustrated in Fig. 1.1.
Essentially, it is an array, consisting of M+1 antenna elements. The first M
clements are called auxiliary elements and the signals at their ports are denoted by
z)(n), m(m), .., n:M{n). Prior to summation, the ouiputs of these elements are
multiplied or, in other words, weighted by the parameters wy(n), wy(n), ..., wydn).
The last element of the array is used as a reference antenna. For the purpose of
formulating the problem, it is called a primary element and is denoted by y(n).
The statement of the problem is as follows. Given a data matrix X(n) and a
primacry vector y(n), find the tap weight vector w(n) which minimizes the

combined output signal e(n), where

e(n) = y(n) - X(n)w(n) (1.1)

with
en) = [e(l), e(2), ..., e(n)] T (1.2)
y(m) = [w1), ®2), ., f(m)]” (1.3)

and



T
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Fig. 1.1  Narrow band adaptive antenna

Fig. 1.2 Broad band adaptive anteana



[ 2(1) 2o(1) o 2 (1) oo 2p,(1) ]
2,(2) 24(2) ... z(2) .. 7A2)

X(m) = | © (1.42)

_ z(n} zo(n) ... 2.(n) ... z,{n) |

=[xy () o) oo Ry (1.45)
x (1)
= I:(Q) (1.4¢)
x(n)
and
w(n) = [w(n), wy(n), ..., wyyln)] (1.5)

where the vectors x_(n) and xT(n) in Eqns. (1.4b) and (1.4c) are defined as

(1.6)

and

xT(n) = [5y(n), gy(n), - 5y )] (1.7)

which respectively represent the signals received at element m from time t) to t,
and those received by the M elements at time ¢ (snapshot). Also, from Egn.

(1.4c), it can be seen that each row of the data matrix X(n) constitutes a single

snapshot xT(n). Then from Eqn. (1.1),



e(n) = y(n) - x'(n)w(n). (1.8)

In Eqns. {1.1) to (1.8) n € N, is the snapshot number. It is assumed that
z(n) is the narrow band signal which is received at array element m at time by

Within the receiver pass band the signal takes the form

(=1 0( 0 K (e 0
() = Ay e Alm-1,A0 )+ 4} N E Ao K(m=1)@(0,)+v.} N

k=1

v(n) (1.9)

where (p(oz.) is the phase difference between adjacent elements given by

_ 27d .
(,0(01) = T Sln(g?‘-)
with d being the interelement spacing and X the antenna wavelength. Also in

Eqn. (1.9), the other variables are defined as follows:

8, — direction of angle-of-arrival (AOA) of the desired signal,
Gk — direction of arrival of the k&th interfering source,

A g — amplitude of the desired signal,

A P amplitude of the kth interfering source,

um(n)— receiver noise assumed to be Gaussian; with zero mean, and variance

02, and

wd, wk— uniformly distributed random variables with probability density
[ 1/27 : 0¢ Y, <27

P('ﬂbi) = 1 0

: elsewhere.



The objective of adaptive beamforming, as expressed by Eqn. (1.1), is to
minimize the combined output signal, which includes interference and thermal noise,
while maintaining 2 constant gain in the direction of the desired signal. In
general, this leads to the maximization of the signal-to—interference-and-noise ratio
(SINR).  The desired signal is usually assumed to be both weaker than, and
uncorrelated with, the unwanted signal. The first assumption is usually valid in
radar applications. This is especially true for those interferers that are generated
by hostile or intelligent jammers [4]. This follows from the fact that, in terms of
range, radar returns follow the inverse fourth power law whereas interfering signals
follow the inverse second power law. However, if the desired signal is at about
the same level as the interferers, such techniques as mainbeam constraints [9] or
reference signal generators can be employed [4] to separate or/and isolate the
wanted signal from the others so that it is not included in the adaptive nulling

operation.

Although, in general, the assumption is made that the desired and unwanted
signal are uncorrelated, this is not necessary always the case. If the desired signal
and the interferers are correlated the adaptive beamformer not only fails to form
deep nulls in the directions of the coherent interferers but also partially or
completely cancels the desired signal. This problem is particularly relevant in the
case where the interferer is a multipath signal and therefore correlated with the
wanted signal. There are a number of methods to deal with fully or partially
coherent sources {10-14]. The spatial smoothing method [10-12] has acquired some
prominence amongst these techniques. It has been shown that this tchnique can
reduce the degree of correlation between the signals, thereby improving the

performance of the adaptive beamformer.



There are a number of algorithms that can be used to solve the problem
defined by Eqn. (i.l). Those, that are classified as the classical adaptive
beamforming  algorithms, are typified by the control-loop algorithm by
Howells~Applebaum [15,16], the LMS algorithm by Widrow et al [17], and the SMI
algorithm by Reed et ol [18]. The Howells—Apolebaum algorithm and the LMS
algorithm are closed-loop algorithms, which are well-known for slow convergence
because their rate of convergence is heavily dependent upon the choice of step size
and the condition of subjected environment. On the other hand, the SMI
algorithm, which is an open-loop algorithm, involves computation of the covariance
matrix (of the input data) and its inversion. As a consequence, this requires a
large amount of memory for storage of data during processing. The applicability
of these classical algorithms is therefore limited to communications systems, where
the response time is not too critical and/or the number of array elements is small.
Also, they are well suited for stationary environments where the rate of change of
the interference or jammer environments are relatively slow compared with tie
adaptation rate. For radar applications, the interference environment is usually
non-stationary, particularly in the case of hostile or intelligent jammers. Thus, to
achieve and/or improve real-time signal processing in adaptive beamforming it is
necessary to use faster digital processors. This requirement places a stringent

demand on the use of array processors with higher throughput rate.

There has been a considerable amount of discussion of adaptive beamforming
techniques that are carried out in beamspace [19-21]. These expositions are
typified by the work on partial adaptivity of large arrays by Chapman {19], and
the adaptive-adaptive beamforming method by Brookner et al [20].  The
retrodirective eigenvector beam concept introduced by Gabriel [21] is a useful tool

and gives a valuable insight into the fundamental principles of beam-space



processing. One of the advantages of the beamspace method is that
degrees—of-freedom for the array necessary to achieve adaptivity is proportional to

the number of of unwanted signals rather than to the number of antenna elements.

Recently, a class of algorithms, which use QR decomposition to perform the
least—squares adaptive beamforming described by Eqn. (1.1), has been proposed
[7,8], [22]. These algorithms are called modern adaptive beamforming algorithms.
It has been shown that they are highly stable, converge rapidly when implemented
using Givens rotations, and are amenable to the processing with systolic arrays.
As well, they permit the incorporation of superresolution techniques for nulling out
interferers in those cases where the desired and unwanted signals are separated by

less than the antenna beamwidth.
Two—-Dimensional Adaptive Beamforming

Most of the work that has been carried out in the past, however, has
concentrated on applications to linear array antennas, i.e. the 1-D case. Because
beam steering, in the case of linear arrays, is restricted to one plane, its beam
adaptation is likewise limited to only nulling interferers in one plane. Since, in
practice, most antenna arrays are planar arrays, the focus of future developments

in adaptive beamforming must start to shift to the 2-D case.

Two—dimensional adaptive beamforming is rarely discussed in the literature.
[t is thought that there are two reasons for the lack of 2-D results. First, there
1s the general impression amongst workers in the field that the principles
underlying the 2-D case are a simple extension of the 1-D case [23,24]. Secondly,

it is felt that the only way around the complexity that is inherent to the 2-D case



is by means of subarraying, i.e. by reducing the degrees of freedom [19]. As a
result, very little work has been carried out to optimize 2-D adaptive beamforming
techniques. In fact, one of the earliest discussions in the literature on 2-D
adaptive beamforming was provided by [19]. There had not been much discussion
beyond this early paper. In this work, the 2-D adaptive beamforming problem is
analyzed by using a subarray transformation method to reduce the complexity in
computation and implementation. Also, the simple case is treated where the
adaptation process takes place on the rows and columns of the array, i.c.
contiguous row elements are combined together to form subarrays and the column
elements are combined in a similar manner. Recently, though, the problem has
been taken up again, albeit in a cursory manner, by ([23,24). These workers
propose a solution that is simply an extension of the 1-D method. Their solution
is based on lexicographic ordering of the adaptive weight matrix elements. 2-D
adaptive beamforming based on the QRD-LS algorithm was only recently
introduced by {25]. Again, only recently, a discrete form of a 2-D adaptive LMS

algorithm was proposed and presented by [26] for use in image processing.

Calibration Errors in Antenna Arrays

Another problem associated with adaptive beamforming algorithms and AOA
estimations is that the data from the antenna are usually assumed to be ideal, i.e.
not to require calibration, and at the most may be degraded by additive noise (see
Eqn. (1.1)). This assumption, however, does not often hold in practice because of
the presence of both gain and phase errors in antenna elements. The development
of an effective antenna calibration technique is one of the major practical problems
in implementing digital adaptive beamforming. The sensitivity of high performance

algorithms to gain and phase errors associated with the elements of phased array



10

antennas has been studied extensively in the literature [27-29].  These effects
consist of: (1) reduced resolution in signal AOA estimations, (2} increased sidelobe

levels, and (3) limitation to the nulling performance of adaptive beamformers.

Many previous workers have raised the problem, but very few have attempted
to solve it [30-32]. In [30], Zahm proposes injecting pseudo noise into the array
processor in order to reduce the degradation caused by array errors. However, this
method reduces the signal-to-noise ratio (SNR), thereby reducing the processor’s
effectiveness in nulling out undesired signals. The eigenstructure based method
proposed in [31] relies heavily on the Toeplitz structure of the array covariance
matrix; thus it can only be applied to uncorrelated signals and arrays with uniform
spacing.  The subspace approach presented in [32] has shown some interesting
promises in array error estimation and antenna system calivration. However, the
method assumes that some of the signals’ AOA are known in advance. In
practice, this assumption may prove to be a limiting factor, especially when dealing
with interference from intelligent jammers or in the case of multipath signals. As
well, it will be shown in the thesis (Chapter 5) that the set of AOA derived for
the undesired signals is not optimal. Very recently, in [33], 2 method, which only
deals with real elemental gain error, was proposed. And in (34), the AOAs of
impinging signals and the calibration errors are recursively computed via the
minimum norm least-squares method. However, it has been pointed out in [34]

that there exist several local minima, which correspond to different sets of AOAs.

1.2 Scope of Thesis

In this thesis, 2-D adaptive beamforming algorithms typified by the 2-D



1

LMS algorithm, the 2-D Howells—Applebaum algorithm, and the QRD algorithm,
which can be implemented using systolic arrays, will be developed and presented.
In the case of the 2-D LMS and 2-D Howells-Applebaum algorithms, both the
recursive form and the matrix form are given. Also, their relationships with the
1-D adaptive beamforming algorithms are investigated. @ The concepts of 2-D
eigenbeams will be developed to help in graphically illustrating the fundamentals of
the various adaptive beamforming algorithms. In the case of 2-D adaptive
beamforming carried out using the QRD-LS algorithm, the systolic array’s
configuration is three—dimensional (3-D), and the PEs are highly pipelined and
locally interconnected. The structure uses a manifold of triangular systolic arrays
to carry out the QRD-LS minimization [6]. It will be shown that with a proper
flow of input data, in time skew format, adaptations in both directions of a planar

array can be computed concurrently and simultaneously.

Also, in this thesis, calibration errors for antenna arrays will be modcled and
a self-calibration algorithm will be derived and presented. The derivation of the
algorithm is based on the eigen-based method and the least-squares norm
minimization. It will be shown that the self—calibration algorithm is capable of
automatically estimating the AOA of the received signals and calibrating the array
with a minimum mismatch in gain and phase errors. Resulte obtained using both
simulated and measured data will be given. In the case of the experimental
results, the measurements were recordcd in the presence of multipath signals — one

of the signal environment which was identified earlier as being a difficult one.

It should be emphasized that the unique contributions in this the - are: (1)
the derivation of the 2-D adaptive beamforming algorithms and the development of

the 2-D eigenbeam concept, (2) the formulation and derivation of the 2-D adaptive
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beamforming using the QRD-LS algorithm and its 3-D systolic array
implementation, which is capable of performing the adaptation concurrently and
simultaneously in boih directicns of a 2-D array, and (3) the derivation of the
self-calibration algorithm for antenna arrays, which is the main contribution of the
thesis. In the last contribution, for the first time, the self-calibration schemes for

antenna arrays are demonstrated by using both simulated and measured data.

The organization of the thesis is as follows. Chapter 2 presents the classical
adaptive beamforming techniques. A short review of the 1-D adaptive
beamforming algorithms will be given. Two-dimensional adaptive beamforming
algorithms such as the 2-D LMS algorithm and 2-D Howells-Applebaum algorithm
will then be derived and presented. Also, the relationship between the 1-D and
2-D adaptive algorithms will be given. Finally, the concept of an 2-D gigenvector
beam will be developed. Modern adaptive beamforming techniques are given in
Chapter 3. In particular, the QRD-LS algorithm and its systolic array
implementation will be presented. Systolic array architectures for both
unconstrained and constrained adaptive beamformers will be presented. Also, in
this Chapter the QRD-LS algorithm will be formulated for 2-D adaptive
beamforming and its systolic array implementation will be given. The performance
of the modern adaptive beamforming algorithms will be evaluated in Chapter 4.
Results will be presented for both 1-D and 2-D adaptive beamformning algorithms.
The self—alibration algorithm for correcting antenna array errors is presented in
Chapter 5. As well, calibration results are given to demonstrate the effectiveness
of this algorithm. These were obtained by using both simulated and experimental
data. Finally, the conclusions and a general discussion of the results of this study
are given in Chapter 6 followed by recommendations and suggestions for future

work.



CHAPTER 2

CLASSICAL ADAPTIVE BEAMFORMING TECHNIQUES

2.1. Introduction

Classical adaptive beamforming methods have their roots in different ficlds,
including retrodirective and self-phasing RF antenna arrays, sidelobe cancellers,

adaptive filters, acoustic or sonar arrays, and seismic arrays.

The development of adaptive beamforming technology can be tracked back to
the invention of the IF sidelobe canceller by Howells and the use of phase—locked
loops for self-steering in antenna arrays by Altman and Sichak in the late 1950’s.
The second major comtribution to adaptive array antennas is the invention of the
IF sidelobe canceller by Howells in 1957 [15]. Further analysis was made by
Applebaum in 1966 {16], in which he derived the control law governing the
operation of an adaptive antenna using a contrc! loop with each element of the
array. The derivation of the Howells—Applebaum algorithm is based on maximizing
the signal-to-noise ratio (SNR) at the array output. Another independent work on
adaptive antenna systems was developed by Widrow and his co-workers in 1967
[17], who firmly established the least-mean-square error (LMS) algorithm based on
the method of steepest descent. It is interesting to note that although the
derivations of the maximum SNR. algorithm by Applebaum and the LMS algorithm

by Widrow et al use different approaches, they are in fact very similar. Both

13
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algorithms derive the adaptive weights that are applied to the array antenna
clements by sensing the correlation between element signals, and both converge

toward the optimum Wiener solution [35].

Since the pioneering work mentioned above, several adaptive beamforming
techniques and algorithms have been proposed in the literature in an attempt to
improve and enhance the performance of adaptive antenna systems. In general,
these adaptive beamforming algorithms fall under two distinct categories, which are:
closed-loop and open-loop techniques. Closed-loop techniques, which are derived
using the steepest descent gradient method, consist of the Howells—Applebaum
algorithm, the LMS algorithm, and others including the modified LMS algorithm by
Griffiths [36], Frost [37], and Compton [38]. Open-loop techniques are developed
by wusing the "direct solution" of the sample covariance matrix based on
least~squares minimization. The techniques include the sample matrix inversion
(SMI) algorithm developed by Reed and his co-workers in 1974 [18], and others of
a similar kind [39—40]. The minimum variance distortionless response (MVDR)
beamforming algorithm [40] and the superresolution technique [21] also fall into this
category. Good overviews of adaptive beamforming algorithms and related issues

are given in [1-5], [35] and also [41-43].

This Chapter begins with a brief review of adaptive beamforming techniques
for linear arrays. It then proceeds to the derivation and development of 2-D
adaptive beamforming algorithms with planar arrays, namely the 2-D LMS
algorithm and 2-D Howells—Applebaum algorithm. The relationship between 1-D
and 2-D adaptive beamforming algorithm will be derived. As well, 2-D

eigenbeams will be presented.



2.2. 1-D Adaptive Beamforming Algorithms
2.2.1. LMS algorithm

Typical of the classical adaptive beamforming algorithms are the LMS
algorithm and the Howells-Applebaum algorithm. In general, the key components
of a closed-loop adaptive system are illustrated in Fig. 2.1. The weight vector
w(n) is updated at each snapshot by an adaptive processor that responds to the
output signal e(n). The derivation of e(n) is based on the steepest descent
method.  Changes in the weight vector are made along the direction of the

estimated gradient vector. Accordingly

w(nt1) = w(n) - 4-V(n) (2.1)

where ¥(n) is the gradient vector of the array output with respect to the weight

vector w(n), which is defined by

W) = LB o op (men) (2.2)
ow
where
fn) = y(n) ~x (n)w(n) (2.3)

and g is the update gain factor or step size parameter. In general, y must be

chosen to lie in the range

0 ¢ p < 2/Tr[®] (2.4)
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to ensure the stability of the LMS algorithm. In Eqn. (2.4), ¢ is the covariance

matrix of the data vector given by
* T
$ = E[x (n)x (n). (2.5)
Substituting Eqns. (2.2), (2.3), and (2.5) in Eqn. (1.8) yields
w(n+1) + (4 - Dw(n) = pp (2.6)

where p is the correlation vector between the primary signal y(n) and the snapshot

vector xT(n) and is defined by

p = E[g{n)x (n)]. (27)

Thus, the optimum weight vector of Eqn (2.6) denoted by wo, which gives

the least mean squares error (V(n) — 0, w(n+1) - w(n)), satisfies the Wicner—Hopf

equation

w = & p (2.8)

where <I>—1 is the inverse of the covariance matrix .

2.2.2. Howells—Applebaum algorithm

In the Howells—Applebaum algorithm, the SINR is maximized by means of
cross—correlation filters (Howells—Applebaum loops). A typical arrangement based

on the Howell-Applebaum loop is given in Fig. 2.2. Correlation loops can he
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signals from other elements

array output

AN

Fig. 2.2 Correlation loop of Howells—Applebaum algorithm
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implemented using mixers, high gain amplifiers, and narrow band filters or,
alternatively, they can be implemented using digital processors. In the latter case,

the algorithm can be formulated in the same manner as the LMS algorithm. The

tap weight update is given by

w(nil) = w(n) - 47 () (29)
where it follows from Fig. 2.2 that
* *
V(n) = -2as (1)) + 2x (n)eyn). (2.10)
Central to the technique is the vector

=0y ~2¢(0y) e-j( M-1)¢(0 )

s(0) = [t e e . L (2.11)

This is called the steering vector and is used to set up a shaped received heam

which is pointed in the desired signal direction, 0, Furthermore, in Eqn. (2.10),

the quantity a« is chosen sc as to keep the gain of the receiver beam constant.
The error signal ¢ S(n) is given by
n)w(n). (2.12)

With the introduction of the covariance matrix ¢, Eqn. (2.9) becomes

w(nt1) + (u® - Dw(n) = pos (0). (2.13)
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The optimum weight vector follows directly from Eqn. (2.13) and is given by
o _ -1 *
wo o= ab s (0 (2.14)

Clearly, the Howells—Applebaum algorithm has the same form as the LMS
algorithm except for the steering vector, as*(od), being used in place of the
correlation vector p. This difference is due to the fact that in the
Howells—-Applebaum beamformer the direction of desired signal is known in advance
which is not the case for the LMS beamformer. With the Howells—Applebaum
algorithm, it is assumed that the desired signal is not contained in the data
processed by the beamformer, therefore one is not able to use a reference signal
¥(n) in formulating Eqn. (2.12) as in the case of the LMS algorithm. It should be
noted that the reference signal used in the LMS algorithm, which is often referred
as the desired signal, need not be perfect replica of the desired signal. Tt is only
nccessary that it correlates with the desired signal. Several techniques have been
proposed in the literature for generating the reference signals that are used with
the LMS algorithm. However, this subject is beyond the scope of this thesis.

Interested readers are referred to papers by Compton [44] and Winters [45)].

2.2.3. Fligenbeam concept

Eigenvector beams are useful for providing insight into the interference nulling
performance of adaptive beamforming techniques. They are formed by applying an
orthonormal transformation io the covariance matrix of data signals [32]. The
orthonormal transformation can be carried out using the singular value

decomposition (SVD) as follows.
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The SVD of the covariance matrix @ is given by

¢ = vzul (2.15)

where

U = [ul, Uy, ooy Upey oo uM] (2.16)

is an unitary matrix of M columns which are eigenvectors of the covariance matrix

®. The first K eigenvectors ("1’ Ly, o U K)’ called the principal eigenvectors,

constitute the signal subspace, and the last M-K eigenvectors (“K+l’ Upeggr oo
uM) constitute the noise subspace. L is a diagonal matrix of dimensions M by M.

With the assumption that the noise is white, it then has the form

. 2 2 ‘
L = d.;-g(/\l, Agy o Ager 055 oy o) (2.17)
with
_ 2
AL 2 A9 2 oy 2 A8 > ’\K+1 =g
where Ak is the eigenvalue corresponding to the kth source.
The matrix ¢ then may be written as
K M
H 2 H ‘
k=1 k=K+1
It follows that
K M
-1 1 H 1 H
&7 = ] wug t =g ) um

=1 * 0 = K+1
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K
2
1 H
= -4 5 (1 - Dl (2.19)
o 0 ey k
Equation (2.10) now becomes
* K 2
w = —azs (0, - % E (1 - -g—-)'rkuk. (2.20)
a "= k
with
Ty = uks (Gd) (2.21)

The first term on the RHS of Egn. (2.20) is the quiescent weight vector
(unadapted) of the antenna array and the second term represents the sum of the
cigenbeam vectors, which are subtracted from the first term to obtain the adapted
weight vector w°. The magnitudes of the eigenbeams are such that when summed
together and subtracted from the quiescenrt beam the K interferers are nulled.
Also, the gain factor o must be adjusted to keep the main antenna beam constant
at certain value above the noise level (given by 02). As the noise power increases
the eigenbeams will be distorted resulting in shallow nulls at the jammer locations,
which subsequently leads to a decrease in the SINR. Eqn. (2.20) can be adapted
for use in conjunction with the LMS algorithm by substituting the correlation

*
vector p in place of as (0).

It ts worth noting that Eqn. (2.20) also establishes the fundamental concept
of beamspace adaptive beamforming [22,23]. In this case, the eigenvectors u, are

replaced by directional beam vectors a(Bk), in which
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o0 -e0)  -AM-D)(0)
e , € , € ).

a() = 11, (2.22)

rery

where Bk is the signal direction of the kth interferer.

2.2.4. Sample Matriz Inversion Algorithm

The major problem associated with an adaptive beamformer based on the
gradient descent method, which is true of the LMS algorithm and the control-loop
method of the Howells~Applebaum algorithm, is that under certain external signal
environments the convergence is poor. In recent years, the least-squares
minimization method, a direct solution of Eqn. (1.1), has been proposed to improve
the rate of convergence. This is known as the sample matrix inversion (SMI)

algorithm [21}. The minimum norm of the output signal of Eqn. (1.1) is given by
le{mli® = lly(n) - X(n)w(n)|)? (2.23)

Its gradient is of the form
em)i® = 2{ XHn)y(n) - xH(n)X(nyw(n) } (2.24)

where XH(n) denotes the Hermitian transpose of the data matrix X(n). And the

least-squares solution is given by

w(n) = ®&n) lp(n) (2.25)
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where (i’(n)"l denotes the inverse of the maximum likelihood estimate of the

covariance matrix

o(n) = XAn)X(n) (2.26)
and
pn) = xHn)y(n). (2.27)

Equation (2.27) gives the estimate of the vector of correlations between the data

matrix X(n) and the reference signal vector y(n).

Note that Eqn. (2.25) is similar to that of Eqn. {2.8) except for the fact that
estimates of the covariance matrix and the correlation vector are used in place of
their true forms. It has been shown in [21] that the SMI algorithm converges to
within 3 dB of the steady state in 2M iterations, i.e, with the use of
approximately 2M data samples (snapshots), where M is the number of array
clements. In many applications, because of the fast convergence feature of the
SMI algorithm, it is much preferred over the slower closed—loop algorithms [33].
Usually these applications are ones where the external signal scenario undergoes
rapid changes. In these instances the closed—loop techniques are too slow to be

effective,

A schematic diagram of an adaptive beamformer which is based on the SMI
algorithm is given in Fig. 2.3. The adaptive processor has three key components:
(1) a estimate covariance processor to form and store the covariance matrix
estimate, (2) a high-speed arithmetic processor to solve the matrix operation
defined by (2.25), and (3) a weight—combining processor to apply the weight vector

to a digital beamformer. Obviously, this type of architecture is complicated and
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difficult to design and in general not suitable for VLSI 1rnplementat10n The
second problem assocxated with the SMI algorithm is its numerical instability for
signal space conditions, as revealed by the condition number of the matrix @(n) in

Eqn. (Z.26), which is

co(m} = oxmx(my = 1818, 12 (2.28)

ﬁm oz nd B min 21¢ the largest and the smallest singular values of the data matrix
X(n), respectively.  Eqn. (2.28) indicates that the condition number of the
estimated covariance matrix %(n) is much greater than that of the data matrix
X(n). Since there is a direct linkage between condition number and the stability
of the solution to a system of linear equations, an algorithm that avoids forming
the covariance matrix explicitly, and which operates directly on the data matrix, is
likely to have much better numerical stability than one based on a covariance

matrix.

Another problem associated with the SMI is the computational load on the
beam controller. The formation of the sample matrix and the solution of the
optimum weight require respectively about M3 and M3/6 complex multiplications,
leading to a total of 7M3/6 complex operations [18]. With an M3—dependence, it
is clear that for real-time application there would be a strong need to explore
parallel processing techniques to maintain the solution throughput rate implied by

current system demands.

The above problems can be solved with the use of VLSI array processors, in
particular the systolic array architectures, which are associated with the modern

adaptive beamforming techniques presented in the next Chapter.
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2.3. 2-D Adaptive Beamforming Algorithms

The configuration for a 2-D antenna array with dimensions L by M is given
in Fig. 24. The angles—of-arrival of signals impinging onto the array are described

by the polar angle § and the azimuthal angle ¢. The far field signal reccived at

the array element im is

i %—E {(l—l)dzcosad+(m—1)dycosﬁd+¢d}

z(n) = A e
K i %{(l—l)d cosa+(m-1)d cosf -t}
+ ) A 7 y + v, (n)  (2.29)
k=1

where d:r:’ dy are element spacings along the rows and columns, respectively, and
cosa; = sinfcosg, and cosf; = sinfdsing, (2.30)

in which 0:' and ¢, are the elevation and azimuthal angles of arrival. Also in Eqn.

(2.29), v, m(n) is the receiver noise component assumed to be Gaussian; with zero

n

mean, and variance ¢,

At a glance, Eqn. (2.29) indicates that each snapshot for the 2-D array is a
2-D array of numbers. Therefore the data matrix X(n) is a 3-D matrix. It
follows from the 1-D case that the error signal for a 2-D array can be expressed

as
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Fig. 24  Geometry of a planar array
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L M
en) = y(n) - Izl mzl Wy (R)z, (7). (3.31)

A statement of the optimization procedure required for implementing 2-D adaptive
beamforming is as follows. Given a primary vector y(n) = { y(n) } and a 3-D
data matrix X(n) consisting of data matrices X(n) = { z (n) }, estimate the
adaptive weight matrix W(n) consisting of weight elements w, (n), which
minimizes the residual power ||e(n)||2 at the output of the beamformer. Note that
the primary signal y(n) described in Eqn. (2.31) is obtained by using either a high

gain antenna (feed horn) or a primary planar array.

2.3.1. 2-D LMS Algorithm

Using the 1-D LMS algorithm as a guide, the 2-D LMS algorithm can be
defined as follows. Estimate the weight matrix W(n) of a L-by-M array in such

a manner as to minimize the least-mean—squares of the output signal e(n) defined

by Eqn. (2.31).

The LMS estimate for Eqn. (2.31) is given by

2 L M 2
Bl = Blldn) - B E wp(nla (ol

L M L M *

= Byt - T 3 Uy WY () = B 8wz ()]

L L

2 M * M * *
= Bllu)% - BB w (el - B2 (W ()



L M L[ M
+Z & E I w(n

* *
w
=1 m=1 p=1 ¢=1 P

n)E(z,, ( n)zp l1’( n)).
In discrete form, the weight matrix can be updated as follows

W(n+l) = W(n) - 5(n)

and adaplive weight element w, (n) is of the form

W (k1) = w (1) - 59, (n)

where V(n) is 2-D instantaneous gradient matrix defined by

Wn) = {7, (1)) = { LBy,

6wlm

Morcover, it follows from Eqns. (2.31) and (2.32) that

o {ENIN - opemys, (m)
dw,.

Thus

%
Vim(®) = -2E[e(n)z; (n)].
Substitution of Eqns. (2.35b) and (2.31) into Eqn. (2.33b) yields

L M

w(ntl) = w (n) - Py - pE-I qglwpqrp—l,q—m)

30

(2.32)

(2.33a)

(2.33b)

(2.34)

(2.35a)

(2.35b)

(2.36)
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in which

p, = Elg(n; () (2.37)
and

Polem = Elz, (v O (2.382)

It follows from Eqn. (2.36) that the optimal solution for the weight clements

satisfies

L M
plm=22w

2.39
el g=1 pq p-lg-m (2:39)

which is the 2-D Wiener—-Hopf equation of the first kind [46].

It should be noted that Pim and rp__ described in Eqns. (2.37a) and

Lg-m
(2.38a) are the elements of the cross—correlation matrix P and the correlation

matrix ¢, respectively, i.e,

P = { plm} (2.37b)
and
2= {rem!
(o] (2] . (2]
= | Bl Bl e 10yl (2.38b)
[ pp [2pyol - 1%g]

It can be seen that & is of Block Toeplitz structure [46] of dimensions LM by LM,
and the partitions <I)i are Toeplitz matrices of dimensions M by M, where the

index ¢ is computed as (p-0), i.e.,



In matrix form, Eqn. (2.39) becomes

(%] (#] . (1] [ %) ]
(2] (Bl [l | Wy ]
gl [Boppol - 1Bl | | W] |
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(2.40)

(2.41)

where w?’s denote the row vectors of the optimum weight matrix WO, and p,/’s are

the row vectors of the cross—correlation matrix P, ie,

weT - [wtl), wg, veey wg]

and
T
P = [pll p2! b | pL]
with
0o _ T
W= [y v e
and

T
pi = [pi,l’ pi,2: ) pi,ﬂf] .

(2.42a)

(2.43a)

(2.42b)

(2.43b)

As it can be seen in Eqn. (2.33), the adaptive weight elements wy,(n) are

computed by operating on all elements of the 2-D antenna array, as denoted by

the gradient V[m(n) in Eqn, (2.35). The discrete form of the 2-D LMS algorithm,

as given by Equs. (2.33), was recently proposed in [26]. This algorithm has been
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found to be cost-effective and useful in image processing, especially in data

compression and image enhancement applications.

As in the case of the 1-D LMS algorithm, the step size parameter g in Eqn.
(2.33) must be chosen within the range 0 and 1/Tr(®). However, from Eqn.
(2.38b), it is observed that

Ti(®) = L Tr(%y). (2.44)
Hence
0¢ pg —2 . (2.45)
L Tr(®g)

2.3.2. Relationship with the 1-D LMS algorithm

Equation (2.33), which gives the weight updates for the 2-D case, can be
derived directly from the corresponding expression for the 1-D case. We proceed
by converting the weight matrix W(n) and the data matrix X(n) to LM by 1
column vectors by lexicographic ordering. These are denoted by wv(n) and x'u(n)’

respectively, and given by

w(n) = [uy,(n), vy, wy pfm)s wy ) (), oy ylT (246)

and

x(n) = [g4(m), zyp(n), -y pln), )y o IL’M{n)]T (2.47)

It follows from (2.3) that Eqn. (2.31) becomes
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fn) = on) - x](njw,(n) (2.48)

and that
w(ntl) = wv(n)——g—vv(n) (2.49)

in which
T(n) = -2x(n)e(n) (2.50)

is the instantanecus gradient vector. Thus the optimum weight vector w(:, satisfies
the equation
0
Q?)wv = p, (2.51)
where @v and P, respectively, are the covariance matrix of dimensions LM by LM

and the correlation vector of dimensions LM by 1 given by

%, = Elx (mx1(n)] (2.52)
p, = El(m)x.(n)]. (2.53)

It is interesting to note that the matrix ¢ in (2.52) is mathematically
equivalent to the matrix & in Fqn. (2.38b), as well the weight vector of Eqn.
(2.51) is mathematically equivalent to the weight matrix of Eqn. (2.41). It follows
then that the analysis procedures and results for the 1~D LMS algorithm can be
applied to the 2-D LMS algorithm.

2.3.3. 2-D Howells-Applebaum Algorithm

It follows from the derivation of the 2-D LMS algorithm that adaptive
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weights of the 2-D Howells-Applebaum algorithm can be expressed in a recursive

form as
W(n+1) = W(n) - 5-Vdn) (2.54)
where
T(n) = 268 (0,4,) + 2¢(mX (n),
in which

* * -7 2701 1Vd + (me1)d cosf
S (gd’¢d) = { slm(gd,%) } = {e JX_{( ) zCOSC!d (m ) yo.; d)}

is the steering matrix in the direction of the desired signal, denoted by spherical

angles @ g and ¢,

L M .
e(n) = IEI mzl wlm(n):r:!m(n) (2.56)

and
X(n) = {z,(n)} (2.57)

are the combined output signal, and the received data signals at the 2-D array,

respectively.
Adaptive weight elements w,_(n) are then updated in the form

v (ntl) = wy(n) - —g—vs(n) (2.58)

where

V(n) = _QQS?m(od"ﬁd) + 2e(n)z;m(n) (2.59)

Hence, optimum weights «>_ can be found by solving the equation
g Im g
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L M

* 0
as; (0,8, = pil qu U el g (2.60)

where Tl g-m denote elements of the covariance matrix ® of the receiver signals

which has the form of Eqn. (2.38a).

In matrix form, the optimum adaptive weight matrix WP is found by solving

8] (8] . 8,01 [WO] 51(046,) )
@] Bl el | [ WS | o | sp(0p00 (2.61)
(@il [Bpygl - (%) | | ¥ ] _ 5104 |

*
where w(z)-, si(0 29 d) are row vectors of the adaptive weight matrix W and of the

*
steering matrix S ((Jd,qbd), respectively, i.e,

T
wo' = [w), wo, .., w(] (2.62)

and

70,6 = 150048, 850048, - 57050 ) (2.63)

The relationship between the 2-D and 1-D Applebaum algorithms can be
derived in the same manner as for the case of the LMS algorithm. Using the
result derived in the last section, we substitute a LM-by-1 lexicographic ordered

*
form of the steering vector asv(!) d,qﬁ d) for the cross—correlation vector P, in Eqn.

(2.51).



2.34. 2-D Eigenvector Beam

The SVD of the covariance matrix  of Eqn. (2.38b) or (2.52)

& = ygu?
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is given by

(2.64)

where U is an unitary matrix of dimensions LM by LM, whose columns are

eigenvectors of the covariance ¥, i.e.,

U = lup g uy o uy, Ugpps o Uppyl

and ¥ is a diagonal matrix of dimensions LM by LM,

L = diag {’\1’ Ags - Ap oo A 02, 02, ey 02}.

Equation (2.64) can be written in the form

K LM
¢ = z)\kukuf+ 02 E uiu?.
=1 i=K+1
Then
K LM
-1 _ 1
" = Zj‘;c“k“k*‘_z ) ua
k=1 7 i=K+1
K 2
1 1 g
k=1

(2.65)

(2.66)

(2.67)

(2.68)

where 1 is a LM by LM identity matrix. It follows from Eqn. (2.51) that the
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optimum weight is given by

K
2
*
wo = s (0,0) - % Y (- )1 (2.69)
o 7 =1 k

with

H*
T = w058y

Now, if the orthonormal transformation is applied to Eqn (2.69) and the

constant af o is neglected, Eqn. (2.69) becomes

. " 2
w, = sv(-ad'qﬁd) - (1= Tk) svk(od’qbd) (2.70)
i ?

where

i=12 ., LM and k=12 .. K

- %
The quaniities w?)‘, and Sv(.a % d)’ respectively represent the transformed weight
i !

*
vector w?} and the transformed steering vector sv(od,qbd) corresponding to the ith

cigenvector, i.e.,

. H
wgi = uiw?} (2.71)
and
~¥ H*
Sv(od‘¢d) = u isv( 9d’¢d)' (2.72)

1

The adapted beam pattern for the 2-D array which is denoted by Ga(ﬂ,qb,n)

is given by
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Glbm) = wy(0d)w(n) = sy(6,9)w(n)

=3 wv-(n);vi(0’¢)' (2.73)

Now, by substituting wc;. from (2.70) for w, (n) in (2.73), the steady state of
i i

adapted pattern can be expressed as

K
2

G, (04) = G08) = } (1 -1 al0:0), (2.74)
- k

1

where Gq(ﬂ,q&) is the quiescent pattern of the array, which is defined by

. LM .
G l0.¢) = sz;sv =) svz_(O,qb)svi(Od,qbd)
=1
L M ,
= z Eslm(o’msim(ad:‘{bd): (2.75)
=1 m=1

in which
s[m(osqb) = svi(gxﬁﬁ)

e j—A—%{(l—l)dzsinﬂcoscﬁ + (m—l)dysin{)sinqb} (2.764)

and
* *
SimUpty) = Svi(gd’¢d)

. 2 , e,
, —]TE{(Fl)dI51nﬂdcos¢d + (m—l)dysmﬂa.smrbdr' (2.76h)
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The quantity gk(ﬂ,qb) in Eqn. (2.74) is the 2-D eigenvector beam pattern

corresponding to the kth source, which is given by
A* -
gk(o:d’) = gk,l’m(gsﬁb) = svk(gd’¢d) 3%(0,(5)' (2.77)

Equation (2.74) can be interpreted in such a manner as to reach a similar
conclusion to that arrived at for the 1-D case, i.e. the adapted beam pattern of a
2-D array is formed by subtracting the quiescent beam pattern from the
retrodirective ecigenvector beam pattern. The juiescent pattern is represented by
the first term in RHS of the equation. Moreover, from Eqn. (2 74, it follows that
an eigenbeam pattern is formed to point at each of the interfering sources and that
the nulling capability of the eigenbeam pattern is dependent upon the jammer

power, denoted by the eigenvalue /\k.

Note that eigenvectors u. of the covariance matrix & can be written as

T .
Ve D Y e e Ha s o v (2.782)
T T T T

= [ui,l’ UG g0 e Y p e ui,L] (2.78b)

where u, ;are M by 1 vectors, i.e.,

_ T
U = [ui,“, Uj g uz’,l,M]' (2.78c)

It follows that the row vectors of the adaptive weight matrix W° in Eqn. (2.61)

satisfy the equation



- &0 ' - ¥ - - ;
w1 81 (0p94) K L U1
9 (0 ¢ 1) a o, u
V2 | = &l lle?d) ) -2y Y- ) Thp| B2

; o, 7 k=1 p=1 k :
0
YL | | 8(0p¢g) | U |
or
) K L
o _ « o
w; o= —8 (089 - —52 L (=
a o =1 p=1 k

with the constant

_ B *
Yp = Yk,ptpl00 )

And adaptive weight elements wcz m 3Te

K L 0

0 _ g

Yim = —?"zm (0peq) ~ —22 E rk”k,p“k,zm-
7 k=1 p=1

(2.792)

(2.79b)

(2.79¢)

It should be noted that Eqn. (2.79a) is mathematically equivalent to the Egn.

(2.69). However, Eqn. (2.79a) is expressed in matrix form whereas Eqn. (2.69) is

in vector form.

To further interpret the relationship between 2-D weight vectors and 1-D

weight vectors, consider the following theorem.

Theorem: The eigenvector beam pattern g,(f,¢) for a 2-D array can be formed by

using two independent 1-D eigenbeams, which are eigenvector beams along the
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rows and columns of the 2-D array, respectively, i.e.,
gk(0)¢) = gk,l,m(osff’) = gk,f(ﬂ,cb)yk,m(ﬂ,@ﬁ)- (2.80)

Proof: It follows from Egn. (2.70) that adaptive weights along row ! and column

m of a 2-D are giver by

) . 8. .

W = 508 - (1 - B%)ﬁ;,t(” 269 (2.81a)
o e By s
W, = Sm(od’¢d) - (1 - Bk_r)n3k’m(0ds¢d) (2.81b)

where ﬁo is a constant, and ﬁk p ﬁkm are eigenvalues for the covariance matrix
formed using row ! and column m of the 2-D array corresponding to the hth

source. Also, in Eqns. (2.81a) and (2.81b)

~ % ~%
Sk,l(ad’cbd) = sl(gdatﬁd)
and
-~ %

“%
fori=12 ., K and m=1, 2 .., K

The adapted beam pattern can be expressed as

L M

Glo8) =) ) o), s (09) (2.82)
=1 m=1



0 _ 0 0 .
Uim = Y Yy (2.83)
and
Slm(0,¢) = Sl 3m (28‘1)
in which
B T

;lz “{,lsl and 3 s

m = Ykmm
where u, u_  denote the eigenvectors of the covariance matrix formed using row !

and column m of the 2-D array, respectively. And 5 and 8, are steering vectors,

which have the form

. "
s‘({?,¢) = e [1, e Yy e 'V e A 1)tp?”]T (2.85a)

and

Am-1)e Jo, Ry, ) J(L—I)WI]T

sm(ﬂ,qﬁ) = e Y[,e T e y e (2.85h)

with

o, = %—dzsinﬂcow and o, = %r—dysiﬂosmfﬁ-

Then by substituting Eqns. (2.81a,b) into (2.82) and performing some simple

manipulations, we obtain
K

G (09) = Gq(w)"kzl{l-yg;%m}gk,ﬁﬂr¢>9k,m(0:¢) (2.86)

for i=12, .., L and m = 12, .., M,

where

5,069 = 50,85 30.0) (2.87a)
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and

Gl = 37(048)) 3,(0.9) (2.87b)

are eigenvector beams for row [ and column m, corresponding to the kth source,

respectively.

Moreover, since A is the eigenvalue of the covariance matrix ¢ of dimensions
LM by LM and ﬁk [, ﬁk m are respectively the eigenvalues of the covariance
H )

matrices @, of dimensions L by L and ¢ _ of dimensions M by M, therefore,

and

B Brm = Mm = M

Also, since the second term on the RHS of Eqn. (2.86) is equivalent to that of
Eqn. (2.74), it is concluded that the 2-D eigenbeam g (6,¢) corresponding to the
kth source can be formed by using the two 1-D eigenbeams which correspond to

row [ and column m of the 2-D array, i.e,

gk(0:¢) = gk,1(01¢)gk1m(gr¢)

Furthermore, it follows from Eqn. (2.86) that with a single desired beam a
2-D adaptive beamformer is capable of nulling up to LM-1 jammers. In other

words, there are up to LAM-1 degrees of freedom for a 2-D adaptive array.
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2.4. Concluding Remarks

In this Chapter, some of the classical adaptive beamforming algorithms that
have been derived for linear arrays have been extended for planar arrays. The
formulation for the 2-D algorithms followed closely from the theory of 1-D
beamforming algorithms.  In large measure the 2-D algorithms are natural
extensions of corresponding 1-D algorithms. The 2-D LMS and 2-D Applebaum
algorithms have been presented. It has been shown that in the steady state the
optimum weights for 2-D adaptive arrays satisfy 2-D Weiner-Hopf equation. The
relationship between the 2-D and 1-D adaptive algorithms was derived. [t has
been shown that by rearranging the data from an 2-D array into a lexicographic

order the two algorithms are mathematically equivalent to each other.

The concept of 2-D eigenvector beams was introduced to interpret the
interference nulling performance of the 2-D adaptive beamforming techniques. It
has been further shown that the eigenvector beam of a 2-D array can be formed
by using two independent 1-D eigenbeams, which respectively are formed by

operating on the rows and columns of the 2-D array.



CHAPTER 3

MODERN ADAPTIVE BEAMFORMING TECHNIQUES

3.1. Introduction

The major problem underlining the performance of the closed-loop algorithms,
typified by the LMS algorithm, is one of poor convergence. In comparison, the
SMI algorithm is cumbersome and numerically unstable. An alternative approach
to the minimum least-squares, i.e. an open-loop algorithm, which is particularly
good in the numerical sense is that of orthogonal triangularization [47]. This is
typified by the method known as QR decomposition (QRD) which involves the
application of a sequence of unitary transformations to reduce the measured data

matrix to an upper triangular form.

Recently, with the growth of VLSI technology, workers have proposed using
systolic arrays to solve the recursive least—squares problem, which is based on the
QRD algorithm [22], [48]. 1In particular, the systolic array represents a highly
pipelined and parallel architecture. Thus, an adaptive beamformer implemented
with systolic arrays is potentially capable of performing real-time processing. In
fact, systolic array processors have shown much promise in adaptive beamforming

applications [6-8].

In this Chapter, the adaptive beamforming problem is formulated as a

46



recursive least-squares problem and is solved using the QRD algorithm. The
adaptive beamformerl is implemented using an efficient pipelined architecture in the
form of a triangular systolic array. Adaptive beamforming for linear arrays and
planar arrays (1-D and 2-D) are presented. Linearly constrained adaptive
beamforming will be also given. It is further shown that in the 2-D case the
systolic array implementation is arranged in a 3-D form, in which PEs are highly
pipelined and locally interconnected. @ With a proper data flow in time skew
format, adaptation along rows and columns of a 2-D array can be computed

concurrently and simultaneously.

3.2. QRD-LS Algorithm and Adaptive Beamforming
3.2.1. QR Decomposition and Givens Rolation
Equation (1.1) may be implemented by using the QRD algorithm as follows.

If we premultiply both sides of Eqn. (1.1) with a composite unitary transformation,

Q(n), we obtain

Q(n)e(n) = Q(n)y(n) - Q(n)X(n)w(n) (3.1)
= { u(r) } - B(n) w(n} (3.2)
v(n) 0

where Q(n) is an n by n matrix, u(n), v(n) are column vectors of dimensions Afxl
and (n-M)x1, respectively. R(n) is an M by M upper triangular matrix, and O is
an (n-M) by {(n-M) null matrix. Note that muitiplication by Q(») irn Eqn. (3.1)

does not alter the least—squares minimization process, because
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IQm)e(m)® = [e(n)]? (3.3)

It follows from Eqn. (3.2) that the condition for a minimum in the residual

error is

u(n) - R(n)w(n) = O (3.4)

and hence

le(m)|® = [v(n)* (35)

Fquation (3.4) therefore defines the least—squares solution for the weight vector and
can be easily solved by back substitution, which is much easier than trying to
solve the Wiener-Hopf equation described in Chapter 2. Eqn. (3.4) is also much

better conditioned since the condition number of R(n) is given by

AR(n) = AQ(n)X(n)) = AX(n)). (3.6)
This property follows directly from the fact that Q(=) is unitary.

The triangularization process of Eqn. (3.1) can be carried out using either the
Houscholder transformations [47] or the Givens rotations {49]. The Givens rotation
mecthod however has been found to be particularly suitable for adaptive antenna
applications since the triangularization process is recursively updated as each new
row of data enters the computation [22). With the Givens rotation method, the
triangularization is performed by a process whereby coefficients of the the lower
half of the data matrix are successively eliminated by manipulating pairs of row

vectors.  An elementary transformation of the Givens rotation is of the form



*
c S 0.0, Faer Thoeo _ 0..0
-5 C 0 ..0, Zo zj.., Tparer 0..0

where the rotation coefficients, C and S, satisfy
* *
S§+CC =1

C = C

from which the rotation coefficients may be specified as

|ri|
¢ = 7 YN
Uzl + 1)
and
T.
_ 1
s = L

3.2.2. Recursive QRD-LS Algorithm

YoM, T,
A (7
H J") k:

(3.8a)
(3.8b)
(3.8¢)

(3.9a)

(3.9b)

An important feature of the QR method using the Givens rotations is the

ability to apply the algorithm in a recursive form in which the elements of the

upper triangular matrix can be updated on a sample by sample basis as each new

row of data enters the computation [22], [48]. In the recursive problem, a

sequence of elementary transformations may be used to triangularize the matrix

X(n) as follows.
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Assume that the matrix X(n~1) has already been reduced to triangular form

by the unitary transformation, ie.,

n-1
Q(n-1)X(n-1) == [R( )J (3.10)
o
with O is (n-M-1) by M null matrix.
Now define the unitary matrix
Q(n—1)| 0
Qn-1) = [ T —I} (3.11)
with 0 is a (n~1) by 1 null vector. It then follows that
Q(n-1)X(n) = TQn-1) T ] = (3.12)
b ¢ (n) IT( TL)

and thus the triangularization process may be completed by the following sequence
of operations. Rotate the snapshot vector xT(n) with the first row of R(n-1) so
that the leading element of xT(n) is eliminated producing a reduced vector xT’(n).
Then rotate the vector xT’(n) with the second row of R(n-1) so that the leading
element of xT’(n) is eliminated and so on until every element has been eliminated.
The resulting triangular matrix R(n) then corresponds to a complete

triangularization of the matrix X(n) as define in Eqn. (3.1), i.e,

R( n-1) R( n)
G(n) O = o {3.13)
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where G(n) is a unitary matrix, representing the combined effects of Givens
rotations. The matrix G{n) is simply the product of the elementary rotations g

(+=1,2,..., M) which are needed to update the existing triangular system with the

introduction of new data, i.e.,

G(n) = gpr - 99 (3.14)
in which
(1 0
1 x
g = Czl oo St (3.15)
0 5. l1tc,

where the only nonzero off~diagonal elements occur in the last row and last

column. Consequently, the corresponding unitary matrix Q(n) is simply given by

the recursive expression

Q(r) = G(n)Q(n-1). (3.16)

Equation (3.16) shows that, given the (n-1)x(n-1) unitary matrix Q(n-1) that
performs the QR—decomposition of the data matrix at time n-1 and given the
sequence of Givens rotations represented by the unitary matrix G(n), the updated

unitary matrix Q(n) may be computed.

In the same manner, the desired vector y(n) can be partitioned as follows.

Let
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¥(n) = [Y(nml)} (3.17)
y(n)
then
Q(n-1)y(n-1
Quy(n) = n{ (st )}

y(n)

u(n-1) u(n) u(n)

= Gn)| v(n-1) [ = [ v(n1)| = [ } (3.18)
y(n) a(n) v(n)

Equation (3.18) shows that both the vectors u(n) and v(n) can be updated
recursively using the same sequence of Givens rotations, G(n), that is used to
update R(n). The least-squares weight vector w(n) may then be computed using
back substitution in Eqn. (3.4). Note that the soluiior is not defined if n < AM
but the recursive triangularization procedure may be initialized by setting R(0) =
O and u(0) = 0. The algorithm defined by Eqns. (3.4), (3.14), and (3.16) is

referred to as the recursive QR decomposition least—squares (QRD-LS) algorithm.

3.23. Use of QRD-LS Algorithm in Adaplive Beamforming

In the adaptive beamforming problem as described in Eqn. (1.1), the
least-squares weight vector w(n) is not of direct interest since the main objective
is to compute the least—squares residual power |[e(n)||2 at the beamforming output.
In a recent paper (22], a modified version of the recursive QRD-LS algorithm is
described in which the least—squares residual is produced directly at cach stage of

the recursive process without computing the weight vector explicitly. The modified

algorithm is more r. 2cause it avoids the solution of a system of linear
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equations which could be ill-conditioned.  Also, since the back substitution
processor and the separate beamforming network are no longer needed, the

algorithm offers a significant reduction in the complexity of the subsequent

hardware implementation.

The derivation of the updated residual error e(n) at the beamforming ocutput
can be summarized as follows. From the results in the last section, by combining

Eqns. (3.13) and (3.18) the new result becomes

w(n). (3.19)

Since the weight vector must satisfy Eqn. (3.4), it follows that the residual error

vector is given by

= v( n-1) (3.20)

= G| v(n1) | (3.21)

To derive the residual error e(n), consider the product of the hottom row of the
H

individual matrices g; (Eqn. (3.15)) with the column vector containing v(n-1) and

ofn) in Eqn. (3.21). By inspection, the current least—squares residual is given by
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P(n) = ~n).afn) (3.22)
where
M
An) = 'EICi (3.23)

is the product of all cosine parameters produced during the sequence of Givens

rotations used to eliminate the vector xT(n).

3.2.4. Systolic Array Implementation
Triangular Least-Squares Array

The systolic array configuration that is well suited for solving the
least-squares problem ¢f Eqn. (1.1}, based on the use of the QR—decomposition and
Givens rotations, is shown in Fig. 3.1. This was proposed by [22] and is a
modification of an earlier processor [48]. The systolic array’s structure takes the
form of a triangle and consists of three types of processing elements (PEs), which
are: (1) boundary cells, (2) internal cells, and (3) a final processing cell. The first
two types of cells perform Givens rotations and store processed output data while
the final processing cell is simply a multiplier. Computations performed by these
PE cells are given in Fig. 3.22. It is to be noted in Fig. 3.1 that the vectors
u(n) and v(n) are stored in the internal cells located on the right-hand side of the
array; the boundary cells and other internal cells stores the upper triangular matrix
R(n), and the final processing cell computes the residual error vector e(n). In
addition, it can seen that the flow of input data is arranged in time-skew format

to compensate for propagation delays. These are a consequence of the manner in
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input data flow from an array of antenna elements

XM

—-rlll.}{ S ul
! \
-—--PQlM - ’U,2
| 1
—="3 M 3
1 1 internal cell

final processing cell

e, Wy, Wy, - Wpy

Fig. 3.1  Trangular systolic implementation for adaptive beamforming



56

mno

uy
R

% g a5 fp=0 R

'n —n

T §5+X
*

..ﬂ\cmdk -

ut_uft
Xlm

I

—

mo

.Hull.m.

ut-

X

100

asp

(q

aa1j—j001-a1e0bs (q SuonEI0I SUIAID) (e
-squowa Juissavord £q pountoprad suonendwo)  ZE ‘g

mo mo

a3
=]

e ——
DR

§ ] — 5 s 4txo 0 X 5] -3
e -—o
ur, Y,
ap [eu1du
1130 [eulay] Eab _ino, 1130 1 I
lxl/Ixl - o
.:56 &‘\:_: R ..:OG
ut
.3._ + .x\w -+ X
§—-—— mﬁm_ £ asP 5=
O —-— Uly W00, ) —
] 0~ 85 ‘'Il+0
uy, uay) g =" 1 Uty
ug ut
' ‘n
2D Arepunog 190 Arepunog



which the data are processed as they pass through the PEs. The array is
controlled by means of a global and synchronous clock. As well, additional delays
are added to the signals which move form one boundary cell to another. These

delays are indicated by the black dots in Fig. 3.1.

Sgquare-Root-Free Algorithm

If one makes use of the square-root-free algorithm [50], the upper triangular

matrix R{n) can be factorized as follows

R(n) = DY2(n)K(n) (3.24)

where

DY%(n) = diag{ R(n) )} (3.25)

and K(n) is an upper triangular matrix with elements in the diagonal equal to one.
In this version of the algorithm, the elements of the matrix K(n) are stored in
both the boundary cells and the internal cells of Fig. 3.1, and those of the
diagonal matrix D1/2(n) are stored in the boundary cells alone . The
computations that are performed by the processing cells, when using the

square-toot—free algorithm, are given in Fig. 3.2b.

It is worth noting that the systolic structure of Fig. 3.1 is primarily used to
compute the residual error |[e(n)||2. However, it can also be used to extract the
weight vector w(n). This can be achieved at any time after initialization of the
upper triangular matrix R{n) takes place (i.e., n > 2M) with no additional control

of the array required. If, for example, at time L, the update of R{n) is suppressed
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by setting @, = 0 with the input vectors becoming
y(n) = 0, z{n) = 1, and zj(n) =0if j# ¢

then Eqn. (1.8) becomes

en) = = w{n), (3.26)

from which the tap weights follow directly. This is the so-called weight flushing
method for extracting the weight vector [7}. It does not require the use of a
linear systolic section as proposed in [48]. In fact, the weight flushing can be
casily carried out by using the QRD-LS systolic structure which is implemented
using the square-root—free form of the Givens rotation algorithm. It follows from
Figs. 3.1 and 3.2b that when a, is set equal to 0, all elements of matrix R(n) are
frozen, i.e., unadapted. At the moment that @, is reset to 1, the adaptation
process will resume, and will not be affected thereafter by the weight flushing

procedure that had been implemented previously.
Adaptive Beamformer with a Clamped Element

The systolic structure of Fig. 3.1 has been applied to antenna arrays with the
primary signal being derived by using a separate high gain antenna [6,7). When
the high gain antenra is not available for supplying the primary signal, one of the
clements of the antenna array can be used in its place to derive the reference
signal.  For example, if element 1 is selected as a primary element having its
weight coefficient, wl(n), constrained to unity, then other (M-1) elements are used
as auxiliary elements. The least—squares problem of adaptive beamforming can be

expressed as



= x(n) + X(n)w(n) (3.27)

which is similar to that of Eqn. (1.1).

In Eqn. (3.27) the data matrix SC(n) and the weight vector ;v(n) are defined

as follows

gl
=2

p —
|

[xo(n), x4(n), ..., xpAn)] (3.28)

and

w(n) = [wy(n), wg(n), ..., wpdn)]- (3.29)

Note that, in this case, prior to adaptation the overall beam pattern of the
adaptive processor is solely determined by the response of the primary "clamped”
element z;. This configuration provides no inherent mechanism to inhibit the
adaptive process from nulling the desired signal. In fact, the system is only
allowed to adapt when the desired signal is absent. ~When it is present the
adaptive weight vector is frozen thus allowing signal reception. Note that in this

case only M-1 weights are computed. Therefore the M-element array has Af-1

degrees of freedom.

3.3. Linearly Constrained Adaplive Beamforming

The triarray processor described in the last section, which minimizes the
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least-squares norm of the residual vector e(n), is only applied to unconstrained
adaptive beamformers. In these systems the primary signal constitutes the output
from ecither a main (high gain) antenna or a clamped element of the array, in
which the desired signal is assumed to be absent during the adaptation process, A
particularly important application of adaptive arrays requires the power of a
combined signal

e(n) = X(n)w(n) (3.30)
to be minimized subject to P linear beam constraints of the form
Cw(n) = & (3.31)

In Eqn. (3.31), C and g, are respectively the constraint matrix and the gain

vector. They are defined as

cl= [e(0), e(8y), . o(0p)] (3.32)

B (3.33)

with

and the constraint gain vector is given by

S (3.34)
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3.3.1. Pre-processing Technique

Several techniques have been proposed in the literature to implement the
adaptive beamforming problem with multiple linear constraints. In all cases,
however, the resulting implementation is extremely cumbersome {17], [28], [9]. In
this section, the problem is formulated in a much simpler manner, which is easily
implemented using the triarray least—squares processor given in Fig. 3.1. 'The
result presented follows directly the development described in [54]. It is to be
noted that each constraint vector c(Op) constitutes the beam steering direction of

the desired signal. Arbitrary linear constraints have been studied extensively in

[51].

The constraint matrix C may be reduced to an upper trapezoidal matrix C’

by using the QR decomposition. Denoting the orthogonal transformation matrix by

Ql’ then

Q)[Cw(n) -y = Cw(n)-pw = 0 (3.35)
Consider the first transformed constraint equation

' -rT- H 1
¢ w(n) = ey v (n) + ¢ w(n) = pj (3.36)

where

and
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The residual vector can now be rewritten as

en) = x (n)uy(n) + X(n)w(n) (3.37)

where

Since the constraint matrix C is a matrix of the Vandermonde type [2], its
diagonal elements C;,Jp are non-zero. Now, by substituting wl(n) of Eqn. (3.36)

into (3.37), we obtain

o) = y(n) + X(n)w(n) (3.38)
where
X(n) = X(m) L - T
n) = X(n) Fl,—i-xl(n)cl (3.392)
and
pl
y(n) = %-xl(n) (3.39b)

Similarly, the introduction of the second constraint is as follows

; ) o T =
¢ w(n) = CaoUo(n) + €4 W(n) = ey (3.40)
where

T )
o = ey ¢q]

and
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The residual vector then becomes

e(n) = xi(njuy(n) + X(n)¥(n) (3.41)

where

And, by substituting wy(n) of Eqn. (3.40) into (3.41), the resultant is

e(n) = y'(n) + X{(n)¥(n) (3.12)
with
X(n) = X(n) -% xy(nye; T (3.43a)
and
Ho
yn) = y(n) + G x}(n) (3.43b)

The above procedure can be extended to incorporate all P constraints in Eqn.
(3.32).  Each constraint transformation is implemented at the expense of one
degree of freedom, i.e., the elimination of control of the weight element, "’p(”)
(p=1,2,..., P). Thus after the application of P constraint transformations, the
transformed data is reduced to M-P columns, i.e, the adaptive weight vector has
been reduced in size from M to M-P. In the next section, it will be shown that
the above procedure can be implemented by using the triarray least-squarcs
processor in Fig. 3.1. The top P rows of the processor have two distinct
functional modes. First, the adapted mode, which performs the QR decomposition,
transforms the constraint matrix C to the trapezoidal matrix C'. Secondly, the

unadapted (frozen) mode performs pre-processing operations of the input data.
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3.3.2. Systolic Implemeniation

The architecture for a systolic array that has been configured for solving the
adaptive least-squares beamforming problem with P linear constraints, is given in
Fig. 3.3, The top P rows of the processor are used to transform the initial
constraint matrix C into the trapezoidal form C’. The elements of matrix C' are
stored as the elements of the R matrix within the corresponding PEs in the first P
rows. Note that no connections between boundary cells of the top P rows are
required, since the residual error is always zero at these stages (Egqn. (3.35)). If
the square-root-free algorithm is used the elements of matrix K(n) (see Eqn.
(3.24)), which are stored in the internal cells, will have the normalized value of
CI’JQ/CJ;J p Furthermore, if the adaptation within these rows is subsequently frozen
by setting a, = 0 (p=1,2,...,P), it follows that the cell functions specified in Fig.
3.2b perform the same function as that of the pre-processing operations of Eqns.

(3.39) and (3.43). In fact, by denoting

t = ¢ Jc V' o= —ufe 3.44
pq o pp 304 G # ey (3.44)

where

neg=12 ., P

then by inspection of Fig. 3.2b, which gives the processing at the nodes of the
systolic array, Eqns. (3.39) and (3.43) follow directly [54]. Therefore, the role of
the top P rows of the triarray processor is that of a pre—processing network. The
remainder of the minimization procedure is carried out in the remaining (M-P)

rows, i.e., they act as a triarray least—squares processor.



input data flow from an array of antenna elements

Fig. 3.3

LS triarray processor with P linear constraints
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3.3.3. Special Cases

A common problem in beamforming is the minimum veriance distortionless
response (MVDR) beamforming or adaptive beamforming with a single constraint.
The problem is summarized as follows. Minimize the residual vector e{n) subject

to the constraint

T =

¢ (fpw(n) = 1 (3.45)
where c(od) is the steering vector corresponding to the desired signal direction, 0,

Several algorithms and implementations for realizing the MVDR beamforming
have been studied and proposed [46]. However, these methods are rather complex.
From the results given in the last two subsections (sections 3.3.1. and 3.3.2), it is
clear that the problem can be easily handled by the triarray processor described in
Fig. 3.3, in which the first row of the processor is used for pre-processing the
data.  Another approach, which is simple and specifically designed for the MDVR

beamforming, is described in the following.
Equation (3.45) may be rewritten as

wl(n) = 1l-c¢ (Od)w(n) (3.46)

where ;:(0 2 and v-v(n) denote the last M-1 elements of the vectors ¢(d;) and w(n),

respectively, i.e,

cfloy) = [ cT(oy) (3.47a)
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and
win) = [un), w(n)]. (3.470)
Substitution of the guantity wl(n) in Eqn. (3.46) into Eqn. (3.30) yields
e(n) = x,(n) + {X(n) - x,(me (0,)}w(n) (3.182)
= x/(n) + X(n)w(n) (3.48b)
where

X(n) = [x(n), X(n)],

has been used. It follows from Eqn. (3.48b) that the residual vector of the
adaptive beamformer may be computed directly using the triarray processor of Fig.
3.1. The term xl(n) corresponds to the primary vector and the transformed
matrix X’(n) corresponds to the auxiliary data matrix. Since the constraint has
been absorbed explicitly by removing the coefficient wl(n), and thercby reducing
the degrees of freedom to M-1, the residual power ol the combined signal, ||c(n)||2,
may now be minimized by using the unconstrained M-1 element weight vector
;v(n). A complete schematic of the MVDR beamformer is given in Fig. 3.4. Note
that the constraint processor precedes and is separate from the triarray processor.
Thus no control is necessary to frceze the processing in the first row of the

adaptive processor as was the case in Fig. 3.3. However, more circuitry is

involved in this implementation due to the constraint pre-processor to be atiached.

It should be pointed out that the clamped element configuration described in
Section 3.2.3 is also a special form of linearly constrained process, in which the

constraint vector is of the form
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ef = 1,00, .. 0. (3.49)

In fact, if the vector c is substituted for c(0d) in Eqn. (3.47a) it can be shown
that the Eqn. (3.48b) becomes identical to Eqn. (3.29).
3.4. Adaptive Beamforming with Planar Arrays

34.1. QRD-LS Algorithm

Based on the earlier discussion of 2-D adaptive beamforming in Chapter 2

“

the output signal from the beamformer can be expressed as

e[(n) = y,(n) - X{n)w(n) (3.50a)
e (n) = y. (n) - X (n)w (n) (3.50h)

where subscripts [, m are, respectively, indices along the row and column
directions. Without any loss of generality, we may assume that L = M, therehy

allowing Eqns. (3.50a,b) to be written in the combined form
By applying unitary transformations Q m(n) to Eqn. (3.51), we obtain

Q‘l,m n)eg,m(“) = Q[,m(n)yl,m(n) - Ql,m(n)xgim(n)wz’m(n)



70

_ e | Ry (352)

vl’m( n) 0

Referring to FRAXFS5 it can be seen that the receiver signal at element m of

row [ is equal to that at element [ of column m, ie.,
g,(n) = z_(n). (3.53)
Y =

An cvaluation of Eqn. (3.52) along with the condition given in Eqn. (3.53), leads
to the conclusion that 2-D adaptive beamforming can be implemented by applying
a scquence of unitary transformations to the measured data matrix. If the data
flow is managed in a suitable manner, the processing can be carried out using a
distributed configuration of PEs. As a result, the beamformer output can be

derived by concurrent processing of the rows and columns of the antenna array.

The triangularization process using the Givens rotation method can be applied
to the 2-D problem in the same manner as for the 1-D case. As before, the

clementary transformations are of the form

*
Cl,m Sl,m 0 ..0, rl.,m-‘“’ T om
-8 C L rq
Lm l,m 0 ...0, 5 omr T oy
vy J
0 ..0, m T
' l . ’
) [0 0 Oz’m.7 Ip’mq } &3
...0, y T
lp’mq
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where the rotation coefficients, Clm and SI m Satisfy
) ' )

=S, r + C_z = 0 (3.55a)
Lm Ii'mj L,m li,mj
* *
* -
Cl,m Cl,m (O.DSC)

Therefore the rotation coefficients are uniquely specified by

T1ym) (3.562)
C = 3.56a
! 3 1/2
T gy ey Y

v vy
and
T
lom,
S - 1o (3.56b)
{ rl Lm
™

3.4.2. Systolic Array Implementation

Implementation

In the last section, it was shown that triangularization of the rows and
columns of the irput matrix can be computed independently. In other words,
2-D adaptive beamforming can be performed on the rows and columns separately.
The overall performance of the adaptive system is based on the combined results.

Decoupled row—column adaptive beamforming could be carried out with a single



triangular-form systolic structure, similar to the one used for linear antennas (Fig.
3.1).  This, howevér, is a slow and time consuming approach, since a large
memory is required to store unprocessed data for later use. For instance, with an
array of dimensions L by M, the storage requirement for unprocessed data can
reach as high as LxAfxN. It follows, as well, that an equivalent number of time
delay cycles will apply to the processing required to obtain the beamformer output.
This may become impractical, especially when the size of the antenna array is

large, as is the case of some radar applications.

The second approach to be considered in this thesis for implementing 2-D
adaptive beamforming is given in Fig. 3.6. This arrangement consists of M layers.
It is assumed that M > L. Each layer is a triarray of PEs that is configured to
perform adaptive beamforming on either a row or a column of the 2-D array.
The advantage of this configuration is that the processing on the rows and columns
of the antenna array can be carried out concurrently. However, the amount of
unprocessed data that must be stored for latter use is again large: it is equal to

LxMxN. And the total delay in processing the data is about MxN.

The third configuration to be considered is shown in Fig. 3.7 [25]. [t will be
shown that the processing is extremely robust. The systolic array arrangement is
a 3-D structure. It is composed of four types of cells: (1) boundary, (2) internal,
(3) dual, and (4) a final processing cell. The computations performed by these
PEs are given in Fig. 3.7, as well. The functions of the boundary and internal
cells are as discussed in Section 3.2.3. A dual cell is one that has two functions,
i.e. it can act either as a boundary cell or as an internal cell. The specific
function that it executes is selected and set by an internal clock. As can be seen

in Fig. 3.7, all of the PEs are highly pipelined and interconnections exist hetween



input data flow from 2 planar array

Fig. 3.6

2-D systolic layers for 2-D adaptive beamforming
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input data flow from a planar array
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nearcst neighbours throughout the 3-D systolic structure. The main feature of this
highly pipelined structure is its concurrent adaptation of both the rows and
columns of the 2-D array. The input data flow, as in the 1-D case, is arranged
in time skew format, as a consequence of the internal operaition of the systolic
array, and is controlled by a global and synchronous clock. It is also to be noted
that the processing of input data occurs at the instant that they enter the systolic
array. At most, only 2M time delay—cycles are executed prior to results appearing
at the output of the beamformer: 1M delay cycles are due to the time skew format
of the 2-D input data as compared with the 1-D case (2M delay cycles are
associated with the triarray processor), and another 1M delay cycles are due to the
use of a directional clock signal, which will be discussed in the next section. In
conclusion, a total of 4M snap shots is required to initialize the 3-D systolic

processor for 2-D adaptive beamforming. If L # M this value is 4maz(L,M).

A comparison of the processing requirement for the three approaches described
above as well as the conventional approach is given in Table 3.1. It should be
recalled that the conventional approach to 2-D beamforming treats an L-by-M
array as an !-D array with LM elements. In Table 3.1 it is assumed that L =
M. Tt is to be noted that of the four techniques considered the 3-D systolic array
approach seems to be the best. Its time delay is the least of all the approaches
described. From the point of view of the number of PEs required there is a
tradeoff between the first approach (2-D systolic witk weight decoupling) and the

last approach (2-D systolic without weight decoupling).



17

Table 3.1.

A comparison of different systolic structures for 2-D adaptive beamforming.

Method Unprocessed Time delay Number of PEs tequired
used data storage cycles ICs BCs DCs FCs
(1) 2—D sy s tolic
(M elements) MxMxN (M-1)xMxN Mx(M-1)/2 M-I 0 1
(2) 2-D systolic
layers MxMxN MxN M {M-1)/2 MM-1) 0 M
(3) 3D
systolic 0 2M M(M-1)(4M-5)} (M-1)? M(M-1) 2M-1
5
(4) 2—D systolic
(M? elements) 0 207 M%(M~1)] 2 M 0 1

ICs - internal cells

BCs - boundary cells

DCs - dual cells

FCs - final processing cells



78

Data Flow Format and Control Signals

Besides the time-skewed format required for the input data, which is a
consequence of the highly pinelined nature of the systolic array implementation, the
3-D systolic structure also requires the control of data flow to achieve adaptation
in both directions, i.e. along the rows and columns of the 92-D array
simnltaneously. We have yet, as well, to carefully define the types of cells that
are used in the computations -~ of particular interest here are the dual cells.
Furthermore, the introduction of dual cells leads to the requirement for defining
two other clock signals (control flags), which are: (1) the direction control clock;
and (2) the dual—cell control clock. The functions performed by these clocks are

as follows.

i. Direction Control

If (direction-flag=1) then
direction-of-adaptation ——— row-wise
else
direction—of-adaptation — column-wise
end.

it. Dual-Cell Control
If (cell-flag = 1) then

dual-cell ~—— boundary-cell
else

dual-cell — internal-cell
end.

Both a directional control and a global clock are used in Fig. 3.7 to ensure
that the incoming data flow in the proper direction. The signals for these clocks

are given in Figs. 3.8a and 3.8b. Note that the frequency of the direction clock is
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only one-half of that for the global clock. As a result, new row or column input
data enter the procéssor every two clock cycles, which resuits in 1M extra time

delay cycles at the beamforming output, as pointed out in the last section.

A dual cell control clock, on the other hand, is just a local clock, which
operates as a switch between boundary and internal cells. It is only used for
controlling dual cells. As an example, when used to control the dual cell in the
far left corner of Fig. 3.7 the foim ot the clock signal is given in Fig. 3.8c. It is
important to note that the dual—cell clock has the same frequency as the direction
clock. The phase between these clocks is either 0° or 180°. Its use therefore will
rot affect the synchronization of the processors which form the 3-D systolic
structure. In other words, the time delay at each processing cell is constant,
depending only on the global and direction clock rates, whether or not the dual

cell is used in the computation.

It should be noted that computations performed by 3-D processing cells in
Fig. 3.7 are the same as those performed by 2-D cells, except that extra control
clocks are added to the 3-D cells. In essence, the introduction of control clocks
will require more memory for storing row data while the adaptation is performed
along the columns and vice versa. The amount of data storage, however, varies
within each cycle of the computations. Since the requirement for storage 1is
restricted to the PEs, sufficient memory must be included in each PE to ensure

that the requirement for memory never exceeds the resident memory in the PE.

To conclude, it has been found that a 3-D systolic array provides a
significant improvement in memory storage and overall system time delay over that

which can be achieved using 2-D configuration. 3-D adaptive processors are
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potentially capable of performing real time processing. The key to the successful
operation of the 3-D systolic array has been the introduction of two additional
control clocks, above and beyond the global system clock, namely the direction
control clock and the dual—cell control clock. The direction control clock is used
to control adaptation to the rows and columns. The dual cell clock, whica is a

local clock, is used to switch processing data between boundary and internal cells.

At first sight there appears to be a number of drawbacks to the 3-D
arrangement. In the main, they revolve around the requirement for: (1) complex
I/O interfaces, (2) large numbers of PEs, and (3) an extensive communications
network to link the PEs. The development of a 3-D systolic array therefore is
strongly dependent on the availability of processors with high I/O and throughput
rates. The development of these, in turn, depends heavily on the progress that is
made in VLSI design methods and technologies. The rapid development that is
and continues to occur in VLSI and VHSIC suggests that 3-D systolic arrays are a

distinct possibility in the not too distant future.

3.5. Concluding Remarks

Adaptive beamforming algorithms, which are formulated and implemented
using systolic arrays, comprise what we call the modern adaptive beamforming
techniques. These methods have been analyzed, investigated, and undergone further
development in this Chapter. Adaptive beamforming algorithms for both linear
arrays and planar arrays have been presented. Linearly constrained adaptive
beamforming was also studied and presented. It has been shown that the recursive

QRD-LS algorithm, which is computed based on the Givens rotation and which
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can be implemented.using systolic arrays, is the cornmerstone in the development of
the modern beamforming technology. VLSI technology is well suited for the
development of systolic arrays: thus the successful development of adaptive
beamformers with a real-time processing capability in the near future looks fairly

promising.



CHAPTER 4

PERFORMANCE EVALUATION

4.1. Introduc.ion

In this chapter, results giving the performance of adaptive beamforming
algorithms will be presented. Both 1-D and 2-D adaptive beamforming algorithms
will be evaluated. The emphasis however will lie on the modern techniques. In
particular, adaptive beamforming techniques which is based on the QRD-LS
algorithm and therefore amenable to having the processing carried out using
systolic arrays will be of primary interest. In addition, comparative studies

between the modern and classical approaches will be given whenever applicable.

In the 1-D adaptive beamforming problem, resuits will be derived for both
unconstrained and linearly constrained adaptive beamforming techniques. 2-D
adaptive beamforming is typified by the 2-D Howells—Applebaum algorithm in
which 2-D eigenbeams are used to demonstrate the nulling capability of an
adaptive beamformer. And finally, the performance of the 2-D adaptive
beamforming algorithm based on the QR decomposition and amenable to processing

by 3-D systolic arrays will be presented.
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4.2. 1-D Adaptive Beamforming
4.2.1. Unconsirained Method

As discussed previously, adaptive beamformers in which the primary signal is
constituted from either a main (high gain) antenna or a clamped element of the
antenna array are classified as unconstrained beamformers. In these systems, the
desired signal is assumed to be either totally absent during the adaptation process

or to be very weak in comparison to interference signals (20-30 dB below).

Figure 4.1 shows the configuration of an M-element (M=10) antenna array
utilized in the simulation results presenied in the following sections. All ten
elements are uniformly weighted and linearly combined to form the primary
channel, while individual elements are also used to form the auxiliary channels.
The signal model for the mth channel of the antenna array was described in Eqn.

(1.9). It is repeated here for convenience

Ao ;Ake (LN

k=1

oM = Ay

m(n) (4.1)

where ¢(f,) is the phase difference between adjacent elements

o(0) = 2% sin(g)
and

d - the inter—element spacing,

A - antenna wavelength,
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6, — direction of arrival of the desired signal,

Ok — direction -Of arrival of the kth interfering source,
A - amplitude of the desired signal,

A g — amplitude of the ith interfering source,

v,.(n)- receiver noise assumed to be Gaussian with zero mean, and variance

a? and

zbd, ¢k— uniforialy distributed random variables with probability density

1/2m: 0¢ $ ¢ 2r

P(‘Pz‘) = {

0 : elsewhere

The processing for adaptive beamforming can be carried out by using the
triarray systolic processor given in Fig. 3.1. Table 4.1 depicts four different
scenarios for the simulated data. Unless it is otherwise specified, the inter—element
spacing in terms of wavelength, i.e. (d/A) ratio, is chosen to be equal to 1/2.

Some results of systolic array beamforming are shown in Figs. 4.2a to 4.5a

As can be seen, deep nulls occur in the directions of the interferers. The
depth of each null is dependent upon the corresponding jammer power in such a
manner that the higher the interference-to—noise ratio (INR) is, the deeper is the
null obtained.  Performance characteristics of different adaptive beamforming
algorithms are further illustrated in Fig. 4.6 and 4.7. It can be seen that the rate
of convergence of the LMS algorithm is quite poor and particularly sluggish when
the INR is low as compared with that of the SMI algorithm or the QRD-LS
algorithm. Furthermore, it can be seen that the residual curve of the QRD-LS

algorithm is quite independent of the environment conditions; it converges in a few



Table 4.1. Cases of simulation studies
case  number of angle of arrival interference to
# jammers ; noise ratio (INR)
1 9 7°, 20° 35 dB, 40 dB
2 3 -15% 7% 20° 15, 20, 10 dB
3 4 -18°, -3°, 15°, 20° 20, 30, 30, 35 dB
4 4 -15°, 3%, 7°, 20° 20, 30, 30, 35 dB
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iterations after an initialization (2M snapshots).  The curves giving the residual
power (]Ie(n)|[2) in .Figs. 4.6 and 4.7 also indicate that, under severe conditions
(large number of interferers with low INR and/or constant change of interference
scenarios), the QRD-LS algorithm implemented with systolic array is highly stable,
whereas the LMS and the SMI algorithms are quite sensitive. [n such cases, the
signal environment is often referred to as ill-conditioned (A /A . >> 1). I
should be noted that the performance of the SMI and the QRD-LS algorithms arc
very similar under well—conditioned scenarios (Fig. 4.6); however, under
ill-conditioned environments (Fig. 4.7), the QRD-LS algorithm seems to be better
behaved than the SMI algorithm. As the INRs are relatively high the SMI
algorithm converges to within 3—dB of the steady state in less than 2A{f iterations,
i.e, its rate of convergence is much faster than expected by [18]. This phenomenon

has also been demonstrated by [2].

Figures 4.4a and 4.52 (case 3 and 4) show the results for adaptive
beamforming with jammers located in the main antenna beam.  Under these
circumstances, the antenna beamwidth has been reduced and the main antenna
beam is highly distorted as compared to those in Figs. 4.2a and 4.3a. These
effects may further degrade the final SINR and limit ihe performance of the
antenna systems. Actually, the degradation of the main antenna beam due to
jammers being located within the main beam is a well-understoud problem by
those workers that employ beamspace adaptive beamforming. The degradation is
due to the separation between the jammers and the antenna boresight (direction of

the desired signal) being less than a beamwidth (.886A/Md) [21].

Simulation results are also provided for the case where the beamforming is

carried out with a clamped element. Results are shown in Figs. 4.8a to 4.1la,
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respectively, using the same simulated data described in Table 4.1. In this
instance, the first elément of the 10-element array is used as the primary channel
and the other nine elements are used as the auxiliary channels. As it can be seen
the results are similar to those that were obtained using a high gain antenna and
which were given in Fizs. 4.2a to 4.5a. Again, deep nulls are generated in the
direction of the interfering signals and the antenna main beam is distorted as the

jammers enter its 3-dB beamwidth.

4.2.2. [Linearly Consirained Method

As discussed in section 3.3 and as shown in the last section, adaptive
beamforming with an element clamped and used as the primary channel is a

special case of the linearly constrained adaptive beamforming. In this case, the

constrained vector ¢ = {1, 0, 0, ..., 0]? and thus the results given in Figs. 4.8a to
4.11a are readily applied. In this section, a linearly constrained adaptive

beamforming or the MVDR beawmforming i presented.

Consider a constrained vector ¢(f;), which satisfies

(0 )w(n) = 1 (4.2)
where
~joy; Ry _j(M"l)Wd
() = [t,e Ze ., ]
with
27d

A
=W
I

5 sinﬂd, M = 10.
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It is noted that the constraint given by Eqn. (4.2) is to maintain a constant
gain in the desired look direction, Od. The adaptation may be carried out by
using the adaptive processor in Fig. 3.4. However, as pointed out, more circuitry
is required in the implementation because of the use of the pre-processor network.

In addition, the adaptive processor is limited to a single constraint.

The implementation in Fig. 3.3 is well suited for multiple linearly constrained
adaptive beamforming. In particular, in the case of the MVDR adaptive
beamforming its first row can be used as the constrained pre-processors. Initially,
the constrained vector, c¢(f d)’ enters the triarray processor for adaptation and is
transformed into vector ¢’(f,), which is stored in the PE cells in the first row.
The adaptation in this first row is subsequently suppressed by setting a; = 0. As
the input data of the received antennas arrived at the triarray processor they
experience a pre—processing performed by the first row (Eqn. (3.39)) before entering
the adaptation, which is carried out by the rest of the rows of the systolic array

ProCessors.

Figures 4.2b to 4.5b show the results obtained with a linear constraint, in
which '9d = 0°% using the same simulated data given in Table 4.1. It is noted
that in each of the above figures the retrodirective pattern forms a null at the
constrained direction (8d=00), which in effect eliminates any degradation at the
wanted direction during the adaptation. As a result, it has been shown that the
gain of the antenna pattern remains constant at the desired looking direction. The
consequence of applying constraints is that it eliminates one degree of freedom for
each constraint, which will further reduce the nulling capability of the adaptive
processor as the number of jammers increases. In practice, most antenna arrays

used are large and operate in the environments with the number of interferers
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much less than the array degrees of freedom, M-1; thus the use of one or two
linear constraints wiil not significantly affect to the performance characteristics of
the antenna systems. This can be easily verified by comparing Figs. 4.2b to 4.5b
with the unconstrained adaptive beamforming results shown in Figs. 4.2a to 4.5a,

respectively.

Adaptive beamforming results with a constant gain in the desired look
direction using a clamped element are given in Figs. 4.8b to 4.11b, respectively.
Again, as it can be readily seen the antenna gain at the constrained look direction
(0 ﬂl:OO) remains constant whilst interferers are suppressed. In fact, the linearly
constrained adaptive beamforming technique is very useful in practice since the
adaptation can be carried out with the presence of the desired signals. With the
use of constrained vectors, the adaptive processor is capable of preventing the

desired look directions from being nulled out or distorted during adaptation process.

4.3. 2-D Adaptive Beamforming

In this section, simulation studies are given to describe the performance of
the 2-D adantive beamforming algorithms that were presented in Chapter 2 and 3.
It can be stated that all of the 2-D adaptive beamforming algorithms converge to
the optimum solution that is given by the Wiener~Hopf equation, even though the
starting points of their derivations were quite different. Where they differ is in
their robustness, i.e., the rate at which they converge and the numerical stability
they exhibit when processing ill-conditioned data. Their performance relative to
one another largely parallels that observed for 1-D beamforming.  Since; 1) the

1-D case is widely discussed in the literature, and 2) the performance of the 2-D
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algorithms can be inferred from the 1-D case, a comparison of the performance of

the 2-D algorithms will not be presented here.

In order to simplify the presentation of the results which follow we choose to
change the notation commonly used to denote elevation and azimuth angles.

Rather than using (900—0) and ¢ we select to use f, and 0, The simple

transformation is given by

(6,0,) — (90°-0,9)
where
0, = tan"l(tanﬂ sing).

and

0, = tan_l(tanﬂ cos¢)

Figure 4.12 shows the steady-state adapted beam pattern for a 4x4 antenna
array. The desired signal direction coincides with the antenna horesight and a
jammer with an interference-to-noise ratio (INR) of 40 dB is located at 0, = 48°,
and Ba = -10°. The quiescent pattern for an array with uniformly weighted
clements is given in Fig. 4.13. The eigenbeam pattcrn corresponding to the
interferer in Fig. 4.12 is given Fig. 4.14. TFigure 4.12 was derived using the 2-D
Howells—Applebaum algorithm. The derivation of the 2-D eigenbeam pattern is
based on the procedure described in section 2.3.4. In Fig. 4.14 it is observed that
the main lobe of the eigenbeam pattern coincides with the AOA of the unwanted
signal and its amplitude is equal to the magnitude that the interfering signal would
have if it were received by the quiescent pattern in Fig. 4.1s. This results in a
deep null in the direction of the interferer in Fig. 4.12. The interference null is

further illustrated in Figs. 4.15a and 4.15b, which show cross sections through the
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interfering source along the elevation and azimuth planes. Note that a deep null
is observed in both figures at the expected jammer location. These results support
the contention made earlier that adaptive beamforming can be carried out by

operating independently on the rows and columns of the 2-D arrays.

Results from a 3-D systolic array, which is configured for the 2-D QRD-LS
algorithm, are now presented.  The characteristics of the systolic array are
described in Section 3.4. Figures 4.16a and 4.16b give the adapted pattérn after
20 and 50 iterations, respectively, The primary vector y(n), which is required for
implementing the QRD-LS algorithm was derived from the unweighted 4x4 planar
array. That is, the same data were used for the primary vector as used to form
the quiescent pattern in Fig. 4.13. It can be seen that, as in the case of the 2-D
Howells—Applebaum algorithm given above, null occurrence is observed at the
direction of the interferer, (480, -10°), in both Figs. 4.16 and 4.17. Also, a
significant increase of sidelobe levels is observed in the adapted pattern. This
effect however is not usually important to the overall performance of an adaptive
antenna system, since the SINR is decided solely by the interference-nulling

capability of the adaptive processor, i.e., the depth of nulls in the adapted pattern

at the unwanted signals.

The curves of the residual beamforming output power, ||e(n)|]2, of the 2-D
array are given in Fig. 4.17. These results are derived by using the 2-D LMS, the
SMI and the QRD-LS algorithms. It can be seen that the residual curve of the
QRD-LS algorithm converges quickly to the noise floor (40 dB) and becomes
quite stable after only a few iterations (snapshots) following initialization. The
results with the LMS and SMI algorithms, on the other hand, converge slowly and

exhibit large fluctuations.  Typically, the convergence time for the QRD-LS
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implemented with systolic array is about 4M (=16) clock cycles, which is

consistent with the discussion in the last section.

Figure 4.18 gives the steady state adapted pattern for two jammers, one
locates at (480,—100) and the other at (-150,—500). Both jammers are 40 dB
above the thermal noise level, i.e.,

INR, = INR, = 40 dB.

2
The retrodirective (eigeabeam) patterns corresponding to the two interference
directions are given in Fig. 4.19. As in the last example, the main lobes of the
cigenbeam coincide precisely with the jammer directions, thereby producing deep
nulls, as illustrated in Figs. 4.18. The results obtained by using the QRD-LS
algorithm are given in Figs. 4.20a and 4.20b, respectively. In these figures, it is
to be noted that the adapted patterns are degraded with the increase of sidelobe
levels; however, locations of interference nulls are very well defined. These results
again verified the performance characteristics of the 3~D systolic array processor for
2-D adaptive beamforming. That is to say the adaptive nulling process of a 2-D
array can be achieved by operating along the columns and rows of the array. The
curves of the residual output power are given in Fig. 4.21. As it can be seen the
convergence rate is noticeably slower than that observed in the last example. This
is because the rate at which the beamforming processor carries out the adaptive

weights becomes increasingly sluggish as the number of interferers increases.
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4.4. Concluding Remarks

Performance of the adaptive beamforming algorithms has been examined in
this chapter. In particular, the use of systolic array for implementing adaptive
beamforming processors has been emphasized. Results obtained by using both
unconstrained and constrained adaptive beamforming methods have been presented.
Both the 1-D and 2-D adaptive beamforming results have been given. In essence,
it has been shown that an adaptive processor implemented with the QRD-LS
algorithm amenable to systolic array is highly stable and rapidly converges as
compared to the others such as the LMS algorithm and the SMI algorithm. As
well, the QRD-LS algorithm deals quite well with the ill-conditioned scenarios,
while the LMS and the SMI algorithm will become sluggish and highly fluctuated

(unstable) as the environments are constantly varied.

Results obtained with 2-D adaptive beamforming algorithms have verified the
analysis given in Chapter 2 and 3. Especially, the role of 2-D eigenbeams in the
interfcrence nulling process has been illustrated.  Also, performance of the 3-D
sysiolic array implementation solving the QRD-LS algorithms for 2-D adaptive
beamforming has been described. Throughout the simulation results, it has been
demonstrated that adaptive beamforming with a planar array can be achieved by

computing the QRD-LS algorithms along the rows and columns of the 2-D array.



CHAPTER 5

AN ALGORITHM FOR SELF-CALIBRATING ANTENNA ARRAYS

5.1. Introductiion

Most modern array signal processing techniques such as adaptive beamforming
and AOA estimation, which have been introduced in the literature in recent ycars,
have assumed that the processed data are correctly calibrated, and at most are
corrupted by the presence of additive noise. This assumption, however, hardly ever
holds in practice because of the presence of both gain and phase errors due to
misalignment of antenna elements, mutual coupling and drift in the electronics
associated with the antenna elements. In fact, array calibration is one of the
major practical difficulties that must be overcome before high performance
algorithms become robust. The problems associated with the sensitivity of
algorithm to gain and phase errors have been extensively studied in the literature
[27-29].  These errors can greatly reduce the resolving performance of high
performance AOA estimation algorithm, increase sidelobe levels, and limit the
depth of the nulls achieved for nulling out interfering sources. In fact, it has been

shown in [27] that optimal beamformers are very sensitive to array errors.

Many of the current workers in array processing have raised the problem, but
very few had attempted to solve it [30-32]. In [30], it was suggested that psendo

noise should be injected into the processor to reduce the sensitivity of the system

114
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to array errors, However, the method reduces the system’s adaptivity against
undesired sources, as well as the output SNR. The eigen-based method proposed
in [31} relies heavily on the Toeplitz structure of the array covariance matrix; thus
it can only be applied to uncorrelated signals and uniformly spaced arrays. The
subspace approach based on the MUSIC algorithm presented in [31] shows some
interesting properties in array error estimation and antenna system calibration.
However, the method assumes that some of the signal AQAs are known in
advance. In practice, this assumption usually fails, especially, wher interfering
signals are from intelligent jammers or consist of multipath signals. As well, it
will be shown in the following sections, the set of derived AOAs is not an optimal
one. Very recently, a method (33] which only deals with real gain error was
proposed. And in {34], the AOAs are computed recursively via the minimum norm
least—squares method. = However, it has been pointed out that several local
minimum norms exist, which correspond to different sets of AOAs. Thus, neither
the algorithm proposed by [9] nor that by [10] is robust because of the
non-uniqueness of the solution for the optimal AOAs and the array calibration

and/or because of the use of unrealistic assumption in the derivation.

In this Chapter, a self—calibration algorithm, which is capable of computing
the optimal AOAs and estimating the gain and phase errors i.. elements of an
array, will be developed. The algorithm is an iterative method. [ts derivation is
based on the eigen-based method and optimal AQAs are estimated via the
least~squares norm minimization of a so called calibraion vector. Results obtained
using both simulated and measured data are presented. It will be shown that the
proposed seif-calibration algorithm is capable of estimating AOAs with minimum
mismatch, even when the signals of interests are correlated, i.e. interferers are

multipath signals.



5.2. Signal Model

When one takes into account gain and phase errors, the received signal at
the mth element of an antenna array at time t,, which formerly was given by

Eqn. (1.9), is rewritten as

z.(n) = 9m(n) I s(n)e + v (n) (5.1)

where
in which gm(n), a complex constant, represents gain and phase errors in the mth
element, and sk(n) is the paseband signal amplitude of the kth source
From Eqn. (5.1}, the received antenna data x(n) is given by
x(n) = [z(n), ) - zM(n

= GAs(n) + n) (5.2)

where G is a diagonal matrix of ¢ - ie.,
G = diag { g, } (5.3)

and A is a matrix of steering vectors a(4,),
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A = [3'(01): 3(02): e a'(oK)] (5'43')
with a(0) = [1, e R _iM_l)wk]T (5.4b)

s(n) = [sy(n), sp(n), ,SK(H)] (5.5)
and

Un) = [v(n), vo(n), ..., vpdn)] (5.6)

The array covariance matrix of the received signals is thus given by

¢ = Elx(nx"(n)]

_ 2
= ¢, + o1 (5.7)

where I is an AfxM identity matrix, and

2 = GasafeH (5.8)

in which

S = Els(n)s(n)]

When @, is expanded in terms of its components in eigenspace form, we

obtain

H
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where A, and e are the eigenvalues and the eigenvectors of the MxM matrix &

corresponding to the Ath source.

Note that with the inclusion of the error matrix G in Eqn. (5.8), the
eigenvalues Ak in Eqn. (5.9) are implicitly composed of two components: the true
eigenvector e and a component that is contributed by errors in the array
elements. Nevertheless, if the first K eigenvalues of the matrix ¢ are large
enough so that the number of signal sources, K, can be determined (this condition
is usually met in radar applications) then the first K eigenvectors and the last
M-K eigenvectors of @ . can be used as the estimates of the signal subspace and

the noise subspace of the array covariance matrix.

Let B and E denote the column matrices represent the signal and the noise

subspaces of the matrix @ - ie.,

E, = le): ey -y egd (5.10a}

and

E, = legiy s o ep (5.10b)

then B and E  are orthogonal subspaces.

Note that the signal subspace E g SPa:s the same subspace spanned by a.(Ok)’s,
where a(Bk) is the steering vector corresponding to the kth source. Thus, if B, is
truly an exact representation of the noise subspace then

gfa(0) = o (5.11)

v
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where 0 is a null vector.

Unfortunately, because of the presence of gain and phase errors in the array
clements, Eu will be corrupted, and the equality in Eqn. (5.11) will not usually
hold. 1In fact, the noise subspace E, is orthogonal to the vector a(bk), where 0, is
an estimate of the true angle of arrival Uk, where

a(0) = Ga(d,) (5.12)

and G is a MxM diagonal matrix as defined in Eqn. (5.3). Equation (5.11)

becomes

H
b, = E Ga(f) = 0 (5.13)

5.3. Seli-Calibration Algorithm
5.3.1. Gain and Phase Error Estimation
It follows from Eqn. (5.13) that a precise calibration of our antenna system

can be made when we have a good estimate of the diagonal error matrix G. The

system of linear equations that follows from Eqn. (5.13) is

H
b, E’Ga(d,)
H
b = |b, | = | EGa(d,) (5.14)

: HaA:
B E Ga(f)



where b is a K(M-K)x1 vector and is defined as the calibration vector.

Now, by utilizing the equivalent notation

Ga(d,) = 0(0,)g

120

(5.15)

where n(ok) is a MxM diagonal matrix whose elements are those of steering vector

a(ﬂk), and g is a vector composed of the elemental array errors, ie.,

() = disg{ o (0 )
and

g = [9(n), g9(n)s -y gpfm)]

Equation (5.14) then can be expressed as

b = Tg
where

. - o H
T E, 0(0,)

H
T = T2 = EUQ(02)

. H .

L TK _ EUQ(OK).

(5.16)

(5.17)

(5.18)

(5.19)

The matrix T in Eqn. (5.19) of dimension K(M-K)xM is defined as the projection

calibration matriz.

It should be noted from Eqn. (5.18) that in the case of error free array
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elements the vector. g is a unit vector (all elements are equal to 1) and the
calibration vector b is a null vector. In this case, the matrix T must be a
singular matrix of rank M-1, ie., its Mth singular value ‘BM = 0. On the other
hand, when gain and phase errors are present in array elements, and if K(M-K) >
M, and furthermore, if the rank of the matrix T is M-1, then the right singular
vector v, of the matrix T is the least-squares norm estimate of the error vector
8 As well, if these conditions hold, the angles #'s, which are used to form the

matrices Q(Ok)’s, are the minimum norm least-squares estimates of the AOAs.

By utilizing the SVD, the matrix T is decomposed into the form

H

T = USV (5.19a)

where U is a K(M-K)xK(M-K) column matrix of the left singular vectors, V is a

MxM column matrix of the right singular vecters, i.e,,

U = [ul, u2, ceny uK(M—I()] (5.19b)
and

vV = [vl, Vo, - vM] (5.19¢)

and ¥ is a diagonal matrix of the singular values ﬁm, in which

B, 2 B,

v

-2 Bppy> By

Then, if ﬁM ~ 0,

g = vy (5.20)
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from which it follows that the least—squares norm
IT gl is minimized. (5.21)

It should be noted that the vector g has been normalized, i.e., its leading
element 9 = G00 = Uy = 1; thus it is within an arbitrary complex scaling
factor of the true vector g However, as it will be seen in what follows that this
scaling factor will not affect the calibration procedure because of the errors that it

introduces into the array covariance matrix.

The calibration of the antenna system can be carried out by first correcling

the array covariance matrix given by Eqn. (5.7) as follows

- & 2 o
tbm = *bss + o1 (5.22)
where
c Al e H -1
s8 G ‘pss(G )
= (";‘1(3AS."\HGH(E?.H)“1 (5.23)

where (.)_1 denotes the inverse of a matrix.

It follows from Eqn. (5.23) that if G is an exact estimate of the error matrix

G then

_ _ H .
s = B, = ASA (5.24)

ie., the calibration errors are totally removed from the system covariance matrix

$ .
Iz
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Unfortunately, the rank of the matrix T in general will be equal to M. That
is, its Mth singular value does not equal zero, and thus no solution for the vector
g will exist. Obviously, in this case the only solution for g that satisfies the
condition b = 0 is that g = 0, which is not a non-trivial solution for the array
error vector. In [32], it was proposed that v,, be used as an approximate solution
for g This means that the calibration process is carried under the assumption
that some of the AOAs are known in advance. This assumption however does not
often hold in practice, especially when the signals of interest are intelligent
jammers or when the interferers are multipath signals. As well, the set of AOA
estimates is not truly an optimal set. The self-calibration algorithm, which is
described in the following, will be shown to be capable of automatic searching for
an optimal set of AOAs. The development of the algorithm is based on the
cigen-based structure method and a recursive minimum rnorm least-squares

optimization of the vector b.

5.3.2. Self-Calsbration Algorithm

A criterion for an optimal estimate of the calibration error vector g can be
expressed as follows. Given a set of AOAs, Gk’s, defined by steering vectors
a(ﬂk)’s, and the noise subspace E , find an optimal estimate of the vector g,

denoted by g, to minimize the residual norm ||Tg|l2, where



124

- CHAt
1 E,0(0,)
: : ey
T o= [ Ta| = | EAO) (5.25)
. H .
Ty EL0(0,)]

This procedure is a least squares minimization problem.

It is followed from Eqns. (5.20) and (5.21) that the optimal estimate of g for

a given set of 0,)s is & = v, aild the minimum norm estimate of e(Uk’s) is given
by

- - . |
e(()ks) = |[Tle| ) (5.26)
Furthermore, the set of th2 minimum norms, denoted by C(e), is

Cle) = {e(6y9)} (5.27)

-

where the angles bk are recursively computed using the MUSIC algorithm [52], i.e.,

the K highest peaks of the spatial spectrum

1
50 = TG o o28)
where
a(f) = [g(0), ag(), -, e (0), - e, 0)] (5.29a)
with
a (0) = e ~Am-1)¢, (5.29b)

The overall optimal estimate of the vector éo is defined by
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g = { g / £(bk’s) € C(¢) : minimum } (5.30)

and the set of ﬂk‘s corresponding to the optimal vector go is the optimal estimates

of the AOAs, 0%s.

Ia practice, however, the search for an optimal set of the AOAs is very
time-consuming. As well, there often exists several local minimums of e(bk’s) that
correspond to different sets of bk’s (34]. From this it appears that if a reference
look direction is provided, then a unique set of the AOAs can be specified.
Furthermore, the use of a reference signal will significantly reduce the computations

required to carry owt ai iterative process.

In summary, the algorithm for self—calibrating antenna arrays is illustrated in

Fig. 5.1, which can be summarized as follows.

1. Form the array covariance matrix ®_= E[x(n)xH(n)], and estimate the

noise subspace Eu.

2. Utilize the subspace method (MUSIC) defined by Eqn. (5.28) to estimate

the AOAs, bk’s, with G = 1, an identity matrix.

inifial
3. For each set of Ok’s, form the estimate of the projection covariance matrix

T defined by Eqn. (5.25), where 0; = is assumed to known in advance.

g
reference’

Compute the least—squares norm
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xy %2 M

Form

H
Q= Elx(n)x""(n)]

covariance matrix

|

. HO) = —gr——3
estimate IELG a(®)||
the AOAs, Bk's
l Ginitigs = !
A A 2 A 2
I PR A I CORE R L AT
compute €(0,'s)
: . a1 = 8, oference
Repeat
A
for all Bks
go = g / g(‘ék's) : rminimum
compute calibrated A Al
. . ® = G0 G
covariance matrix xx xx

ig. 5.1 Flow chart of the self-calibration algorithm
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f(0s) = |2 = [|Tvy (5.31)

where v M which is the estimate of the gain and phase vector g, is the Mth right

singular vector of matrix T decomposed using the SVD.

4. Repeat 3tep 3 for all 0;.:5 The set of bk’s at which ||b||2 is minimum will

correspond to the optimal estimate of the AOAs, and so also the error vector g°.

5. Finally, using Eqn. (5.22) to compute the calibrated covariance matrix,

-~

_ Al
¢ . = G ¢ G (5.32)

The range of the angle 4, at which the minimum norms e(ﬂk’s) is computed

is defined as follows

0, = 0, + AGJ2 (5.332)
‘_kmaz ‘k k/
0, = 0, - Af/2 (5.33b)
ko= O A0
where
AG, = 0, - 8 (5.33¢)
k kmaz kmm

is chosen as the minimum separation that can be resolved between two nearest
sources using conventional estimation methods. The criterion that was proposed by
Gabriel [21} can be employed here. That is, the minimum separation of the two
signals, A()k, is defined as a function of the SNR, i.e. Aﬂk is smaller for high
SNRs than for low SNRs.
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5.4. Results
5.4.1. Simuletion data

The effect of array calibration on the AOA estimates is shown in Fig. 5.2.

In this result, the gain and phase errors at the mth element is denoted by

76
b = (148, )e P™ (5.34)

where 6 o 6pm respectively are the relative errors in amplitude and phase of the

mth element. It should be noted that ¢
defined by

gain’ aphase in Fig. 5.2 are respectively

aga.in | 6am‘ '

and

aphase = | 6pm|‘

The antenna array used in the simulation is a 32-element array with two
uncorrelated signals arrived at 0° and 1° with SNB.1 =SNR2 = 30 dB. It can be
observed that as the calibration errors increase the AOAs become more and more
difficult to distinguish and/or tend to shift away from the original direction. This
phenomenon is further illustrated in Figs. 5.3a to 5.3d, in which the eigenbeams,
which correspond to the eigenvectors that are formed in the noise subspace, are
increasingly degraded as the array errors increase. The effect is typified by the
distortion in the nulls of the patterns: the nulls correspond to the signal AOAs.
Fig. 5.4 gives a plot the minimum norm of the calibration vector as a function of

the AOA estimates for the case ¢ = .04 by using the self-calibration

gain ~ “phase
algorithm presented above. The reference signal is chosen to be at § = 0%, and



129

(@=aboep) o124}
(o ]a 21 001 000 o0 "t —
t 1 i 1

]

0 ——

00°0

asoyd uih
o = D = 0

ol = NQ .Oo — ﬂm
‘50110 aseyd pue ureS jo 1099 ayj 1epun sreudis paduiduir jo syQV

'S "3y

(gp) epnijidwo




P
m
o
o
[+
he)
=2
braed
o
£
o
_QQ .
- 100
—0.
~
o]
0
S
L]
B
=]
>
a
E
Q
-—TQ o
—80 4
-G o
— 100
-—
Fig. 5.3

AOAs at 0° and 1°, N=32

| !
1

T T
—-2. —1. a. 1.
theta (degrae)

T T ] T 1 1

—-2. -1. =] 1. 2. 3.

theta (degree)

Typical eigenbeam patterns of the noise subspace

— — . = - .2
a.)ag 7y 0.0 b)ag a, 0.02,

130



amplitude (dB)

amptitude (dB}

4]

|
1]

|
N
]

t
W
[+]

1
»
o]

|
o
o

|
o
0

!
N
o

|
o
o

|
9
0

—100

AOAs at 0° and 1°, N=32

T T ] ¥ T 1
—2. -1, o. 1. 2. 3.
theta (degree)

-850 4

-_T0

—Aan 4

-0

—100 T T T T T —

-3, -2. —~1. Q. 1. 2 o
thaeta (degree)
Fig. 5.3 Typical eigenbeam patterns of the noise subspace

c) 0, =0, = 0.04 d)ag =0, = 0.06

131



132

(eoubop) D3IOY)}

oSt OF'L OS'L 0Tt OL°L 0QO°L O8'0 O'/'0 OL'0 08’0 08°0

L [ ] [ ] [ I 1 . L

o0 = 0 1e [eudis 9duaIdpl ‘00 = d, _ b,

‘uryj1108]e uoljRIqI[RI-J[os Y} Suign €ojewINS? YOV 'SA ULIOUW WNUITII be -

QL —

os—

oT—

(ap) llall so wiou wawiuw




133

. (eoabop) DoY)}
00°Z ©OS°t 00'L OO0 000 00— 00I— 0§'L— QO'Z—
1 1 1 1 1 1 L 1

uol}DIqIDO JOLID BIOJFq ——

esbyd upb
D = 0

o0 = § Y& [eudis adUDIBNIL
‘surrou sarenbs—)sea] jo 195 JUSISNIP 1B sewnis? yOvy rewndo ¢¢ Sy

(8p) epnydwo




134

A02 = .2 beamwidth. Tt should be noted that in this example the gain error is
very small but the phase error is about £2.3°, in terms of the required phase
accuracy is relatively large. As it can be readily seen in Fig. 5.4, the minimum of
the minimum leaét—squares norm is uniquely defined with a value for the AOA of
the second signal of 1°. The optimal AOA value of the AOA is found to be

1.02°. Its relative error is given by

0 0
7 =1027) , 400 = 2%,

10

which is largely due to round-off errors during computation. Further resulls arc

illustrated «n Fig. 5.5, in which the peaks are highest at the desired AOAs, ie, 01
0 _ 40
= 0, 02 =1".

It should be noted that similar method was proposed by [32], however, the
set of AOAs obtained is not an optimal one since the corresponding minimum
norm (e} is not the least minimum one. In fact, the AOAs are evaluated via the
calibration vector g by computing the minimum least~squares norm of vector b
where some of the AOAs are assumed to be known in advance. Meanwhile, the
self—calibration technique presented here is capable of searching for the AOAs with
the least minimum norm by using an iteration method. The algorithm is thus
more robust due to the fact that the eigenstructure based method and the 3VD
are iteratively utilized to compute the minimum norm least-—squares solutions for

the AOAs, Bk’s, and the array calibration error vector g simultaneously.
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5.3.2. Measurement . dala

Tn this section, we present results that were derived using measured data.

hese data was recorded on Lake Huron, Ontario using a measurement facility

developed at the Communications Research Laboratory (CRL). The equipment
used in the experiment is consisted of a C-band beacon transmitter and a receiving
antenna consisting of a 32-element sampled aperture array. The transmitted
frequency was 8.32 GHz, and the inter-element spacing for the array is 0.02 m,
e, ¢/A = 1.585. Details of both the measurement setup and the measurement
site are presented in Appendix B. The setup is one in which multipath signals,
i.e. surface reflected signals, are recorded along with the direct signal from the
transmitter to the receiver. It is to be expected that the signals received at the
antenna array are highly correlated. In order to decorrelaie the multipath signals,
the array is decomposed into subarrays of 27 elements and the formation of the
array covariance matrix is carried out by means of the forward-backward spatial

smoothing method [10], i.e.,

2= {2l + ol (5.35)
where
6
/= —é—iilE[xz(n)xz-H(n)] (5.36a)
and
6
¥ = L jﬁlE[xJ(n)xjH(n)] (5.36b)
in which
x{n) = [z{n), 7, 1(n), -y zi+26(n)] (5.36¢)
x}(n) = [zq5 J(n), 332—-3(”)’ x 7)) (5.36d)
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Table 5.1. Measurement parameters and conditions of the data set
used in the analysis

Time: 12:14:53, 4-Nov-87
Temperaturc: 120

Wind: westward, 16 km/hr
Precipitation condition: drizzle

Pressure: 944 millibars

Average water elevation: 176.8 m above sea level
Sea surface condition: 1.5-m waves in height
Transmitter horn elevation: 192.37 m

Transmitter polarization: horizontal

number of samples: 128

Table 5.2. Comparison of theoretical and measured AOAs

angle of arrival theoretical measured}
0. 107° 240"
0 -.338° -315°
Y 445° 555°

! average values
AV _ 79
dr T
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Typical measurements of the amplitude and phase aperture distributions of
the antenna array are shown in Figs. 5.6a and 5.6b, respectively, with the
measurement parameters and conditions given in Table 5.1. In this example, a
test signal is located at .107° (i.e., 0 4i) from the boresight. Let us recall that
the ratio d/X is equal to 1.585. It can be seen that the array amplitude decreases
from the left to right and then decreases near the end, whereas the phase increases
monotonically (expected to be linearly increasing), slowly at first, then quickly
increases when the amplitude becomes increasing rather than decreasing. These
variations in amplitude and phase are due to errors in the array elements. The
angles of arrival, which are estimated by using different methods, are shown in
Fig. 5.7. As expected the FFT method failed to resolve the AOAs since the signal

separation is less than one beamwidth. In fact
0
A0 = 0, - 0,0 = 445" (see Table 5.2)

while the beamwidth

_ 88X 0
bagp = Jz— = 10"

As well, the eigen-based structure method (MUSIC) also fails to resolve the signals
because of the coherent characteristics of the multipath signals. However, after
applying spatial smoothing, the AOAs are well separated and clearly distinguished
from each other. The measured signal directions, however, do not coincide with
the true look directions due to the effect of calibration errors. The true and
measured AOAs are given in Table 5.2. Note that the true values for the direct
and indirect angles, denoted by adir and gin g respectively, were derived using the

multipath model given in the Appendix B. To further illustrate the errors
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associated with the AOA measurement in Fig. 5.7, some typical eigenbeams of the
corresponding eigenvectors, which is used to form the null subspace (after spatial
smoothing), are shown in Fig. 58. It is can be seen via the eigenbeams that
directional nulls (i.e signal directions) are degraded due to the calibration errors in

both gain and phase of the array elements.

Figure 5.9 pgives the results obtained by applying our self—<alibration
algorithm with the reference signal chosen as

< _ 0
areference - adir = 107

and the separation between the reference and auxiliary (indirect) signals

A02 = .15 beamwidth.
The curve of the minimum norm values, i.e. C(e), ic shown in Fig. 5.10. As it
can be scen the highest peaks of the pattern occur at the directions of the optimal
AOAs. It follows from Fig. 5.9 that the indirect signal is located urniquely, and
that its optimal value, "Ucznd, is found to be -348%. Its relative error is found
from

-~

10, - & |
ind ind' 100 = 3%,
ind

where ﬂmd is the true value.
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Adaptive Nulling Results

Now that we have successfully demonstrated AOA estimation using
uncalibrated data, we can go on to implementing adaptive beamforming for nulling
out unwanted signals and for maintaining the desired signal at a prescribed level.
The adaptive process can be carried out by using the LS triarray processor given
in Fig. 4.4. Figs. 5.11a and 8.11b show the results of adaptive nulling using the
measurement data before and after applying the self-calibration algorithm. In
these figures, a constrained vector c(Od) corresponding to the angle 0, = 8, =
.107° has been employed. As it can be seen this results in a deep null at 4 =
.107° in the retrodirective beam pattern, which leads to a constant gain at the
desired look direction in the adapted pattern. It is worth noting that the null
formed before applying the calibration algorithm (Fig. 5.11a) is located at an angle
0 = —.3150, which is in variance with the AOA of the indirect signal. Also, this
nyll is much shallower than that which is formed after utilizing the self—calibration

algorithm (Fig. 5.11b).

5.5. Concluding Remarks

An seli—calibration algorithm for antenna array systems has been presented.
The development of the algorithm was based on the minimum norm least-squares
estimate of the calibration vector b. The gain and phase error vector is computed
via the SVD of the projection calibration matrix T. The AOAs of the test signal
and an auxiliary signal are simultaneously computed via the spatial spectrum using
the MUSIC algorithm. It has been shown using both simulated and measured data

that the proposed algorithm is capable of estimating the optimal error vector and
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the optimal AOAs with minimum mismatch. The self-calibration algorithm was
demonstrated to be robust. It is expected that this algorithm will lead to the

development of practical self—calibration subsystems in the not too distant future.

An outstanding problem associated with the self—calibration algorithm
presented above is the validation range of the AOA (A#), which is used in the
computation of the minimum least-squares norm. Under normal conditions, for
example, as was the case for the measured data, the AOA estimates can be found
by using an eigen—based technique and the validation range can be estimated.
However, as the calibration errors become critical, for example, in the case of
simulation data with Osain = Tphase = .06, or more (Fig. 5.1), it is impossible to
estimate the validation range of the AOAs, therefore the calibration will be more
difficult to carry out. In fact, this difficulty suggests that there exists a limitation
in the range of errors that the selfcalibration process will be able to successfully
cope with, i.e. there is an upper bound beyond which the technique fails. It is
believed that this bound varies as a function of the signal separation and the

signal-to-noise ratio.



CHAPTER 6

CONCLUSIONS

6.1. Conclusions and Discussion

The objective outlined in the beginning of the thesis has been achieved.
Novel techniques and architectures for adaptive beamforming, which are typified by
the 2-D adaptive beamforming algorithms and the self-calibration algorithm for

antenna arrays, have been derived and presented.

Two—-dimensional Adaptive Beamforming

Two—dimensional adaptive beamforming algorithms, both the classical and
modern methods, have been developed.  The derivations that were ysed in
presenting these algorithms followed closely from thke theory of 1-D beamforming
algorithms.  In large measure the 2-D algorithms are natural extensions of
corresponding 1-D algorithms. The 2-D LMS and 2-D Applebaum algorithms have
been shown to be cost-effective, i.e. they are bounded. In particular, their discrete
forms are within reach of current digital signal processors. The relationship
between the 2-D and 1-D adaptive algorithms was derived. It has been shown
that by ordering the 2-D array into a lexicographic format the two algorithms are
mathematically equivalent to each other. The nulling capabilities of the 2-D

adaptive algorithms were further illustrated by the introduction of 2-D eigenbeams.

147
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It has been shown that a 2-D retrodirective beam pattern can be formed by two

independent 1-D eigenbeams, which respectively, are formed along a row and a

column of the 2-D array.

It is believed that the concept of 2-D eigenbeams was first presented in this
thesis, and also the true forms of the 2-D adaptive beamforming algorithms. Most
of work in the past has treated the 2-D problem as an extension of the 1-D cascs.
Although partially adaptive beamforming with large arrays was proposed by
Chapman [19] the adaptation was carried out along the rows of the 2-D array and
results are combined along the columns or vice versa. This approach is thus not
robust since interference nulling applies along a plane containing the interferer

instead of locally nulled process as provided by the 2-D methods.

The degree of freedom for a 2-D array is usually greater than that for a 1-D
array, simply because a 2-D array usually has more antenna elements. There are
up to (LM-J) degrees of freedom associated with a 2-D array, where J denotes the
number of desired directional beams. That is, a 2-D antenna array equipped with
an adaptive processor is capable of nulling out up to (LM-J) jammers. The
inherent versatility of 2-D arrays, which arises from the large number of
independent antenna elements, provides much promise for the future development of
surveillance radar systems. Indeed, 2-D adaptive antennas provide such systems
with the capability to conduct both track-while-scan and adaptive beamforming

operations at the same time.

A 2-D adaptive beamforming algorithm based on the QRD-LS algorithm was
also presented. It was shown that this algorithm could be implemented by using

triarrays for performing the least—squares minimization. The adaptive beamformer



149

architecture is arranged in the form of a 3-D systolic array in which the PEs are
highly pipelined and interconnected with their nearest neighbours. With the proper
data flow in time-skewed format the adaptation in both the rows and columns of
the 2-D array can be processed simultaneously and concurrently. The use of the
3-D systolic array for implementing 2-D adaptive beamformer has resulted in a
significant improvement in memory storage and overall system {ime delay. It has
heen shown that the computation is improved approximately by a factor of L over
the conventional method, with the assumption that L¢M, where L and M are the
dimensions of the planar array. In fact, it requires 2(LxM) delay cycles to
initialize the triarray systolic adaptive beamforming processcr for a planar array,
whercas only 4M delay cycles are required by the 3-D systolic array
implementation. The tradeoff however is in the complexity of the implementation.
[n particular, a larger number of PE cells is required, which means that more
memory and interconnections are involved. As a consequence, this will reduce the

performance of the adaptive processor.

The computational requirements for a f{ully adaptive 2-D array are very
demanding and therefore are expensive to implement in large arrays. In the past,
adaptive beamforming has been implemented using closed—loop algorithms and
analog processors. Because of their rates of convergence, closed-loop algorithms are
much less attractive than they have been in the past due to the rapid changes
that can take place in present day signal environments. This suggests that in the
future open—loop algorithms and digital processing will become increasingly
prevalent. In order to reduce the computational overnead for digital adaptive
beamforming, in the near term, the dimension = of 2-D arrays will be reduced
by means of subarraying. Each subarray is . o that its beam points in the

wanted direction. The adaptive beamforming i~ .:en carried out on the outputs of
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stbarrays using multiple parallel digital processors. At the present time, systolic
arrays, which are massively parallel and pipelined processors, show considerable
promise for being the vehicle which will provide radar systems with a real-time

signal processing capability.
Self-Calibration Algorithm for Antenna Arrays

Adaptive beamforming process cannot be done satisfactorily without the use
of a proper calibration of the signals received at antenna elements. In this thesis,
calibration errors in both gain and phase of an antenna array have been
systematically modelled. As well, a self—calibration algorithm has been developed.
The algorithm is an iterative one, whose denvation is based on the subspace
technique and the least-squares norm minimization. It has been shown with the
use of a reference signal, which is assumed to be known in advance, that the
self—calibration technique is capable of locating the optimal AOA for an auxiliary
signal and correcting the calibration errors with minimum mismatch. The
algorithm has been successfully demonstrated using both simulated and measured
data. In particular, in the case of measured data, the auxiliary signal was a
multipath  signal and highly correlated with the test signal. The
interference-nulling capability of an adaptive beamformer has been shown to he

significantly improved with the incorporation of the self-calibration technique.

Although, several workers have claimed to solve the self—calibration preblem
[32,34] either by using an algorithm to compute the recursive least-squarcs norm
minimization of the calibration vector or by assuming that some of the signal
sources are known in advance, it is believed that their solutions are ambiguous,

non-unique, and/or not optimal. The terative scheme presented in this thesis has
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solved the problem of uncertainty and non-uniqueness associated with the
calibration errors. As well, with the technique presented here optimal solutions for
the sigial AOAs can be obtained. The technique has been shown to be robust

and superior to the other methods presented in the literature.

The problems associated with the self-calibration algorithm are the estimate
of initial AOAs and the choice of a validation range. It may be readily observed
that the level of calibration errors may degrade the initial estimate of the AOAs.
As a conscquence, this may further become a critical matter in the choice of a
validation range of the AOA, which is used in the computation of the minimum
lcast—squares norm. It has been shown that self calibration of an antenna array
can be achieved as long as an estimate of the AOAs can be made and the signal

separations are well defined.

6.2. Recommendations

The following recommendations are made with regard to future work. It is
believed that there are still a great number of improvements to be made to bring
the described algorithms a step closer to a practical realization and to further

improve the performance of the algorithms and methods presented.
Two - Dimenstonal Adeptive Beamforming
1) The performance of the 2~D adaptive beamforming algorithms should be

investigated further from an analytical point of view; in particular, it is still

necessary to derive the SINR expression for the beamforming output. The



performance of the 2-D LMS and 2-D Applebaum algorithms as the signal
environment is varied should be extensively studied. As well, implementation
of 2-D adaptive beamforming with linear constraints requires further work.
Intuitively, it is thought that linearly constrained adaptive beamforming with
planar arrays can be conveniently incorporated into the 3-D systolic array

structure, which was used to implement 2-D adaptive beamforming using the

QRD-LS algorithm.

2) The effect of mutual coupling effect on the performance of 2-D adaptive
beamforming algorithms should be investigated, especially when the antenna
main beam is steered away from boresight. 1In this instance, the sidelobe
levels will increase, which in turn may degrade the SINR, to negate some of
the improvement achieved by the beamforming algorithm. By correcting
mismatch errors due to mutual coupling and applying weighting such as the
Chebyshev weighting, it may be possible to reduce the sidelobe levels, thereby

improving the adaptive anienna’s performance.

3) An experimental antenna system should be developed to test the performance
of the 2-D adaptive beamforming algorithms in practical situations. The
self—calibration algosithm could be employed 1o correct any gain and phase
errors. Ultimately a 2-D adaptive beamforming processor should be

developed and tested with a planar antenna array.
Self-Calibration Algorithm for Antennc Arrays

4) Even though the algorithms presented here work well for the case of two

signals or under multipath scenarios, the requirement for uniqueness in the
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AOA estimates is not thoroughly defined. It is not clear that if the
characteristics of the calibration problem is solely represented by the local
minimum of the least-squares norm. The exact bound of the AOAs, which
must be used in the searching procedure so that a unique solution can be

obtained, remains undefined. Further investigations should be carried out.

Self—calibration with more than two signals should be investigated. Tests
using both simulation and experimental data should be carried out. The
iterative optimization process is expected to be more complex as the number
of signals increases, however, it is worthwhile to investigate the computational

aspects of the method.

Recently, a Warp computer, a linear systolic machine, became part of the

CRL research facilities. A systolic adaptive beamformer test~bed model using the

Warp has been proposed [53]. Further investigations into the following are also

recommended

-3

)

A systolic adaptive beamformer test-bed using the Warp processor should be
developed. To evaluate a real-time adaptive beamforming, it is desirable
that the Warp computer will be used incorporating a 22-element C-band
antenna system which is being developed at the Commurications Research
Laboratory.  The success of this system relies heavily on proper data
acquisition and transfer between the antenna system and the host of the
Warp computer. Further work needs to be carried out in developing the

hardware interface between the antenna and the Warp.

The self—calibration algorithm should be implemented on the host of the
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Warp computer for calibrating the antenna data prior to processing by the

Warp.

Finally, the 3-D systolic array architecture for 2-D adaptive beamforming
should be implemented using the Warp computer. As well, implementation
complexity and the time required for processing the antenna data using the

Warp computer should be compared with the time required by the VAX

computer.
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APPENDIX A

BASIC TERMINOLOGY AND CONCEPTS

A.l. Basic Theory of Array Antennas

Linear Arrays

Consider the linear array in Fig. A.l, consisting of M elements with
inter—element spacing 4. For convenience the array is treated as a receiving
antenna but because of the reciprocity principle, the results obtained apply equally
if the array is considered to be a transmitting antenna. The elements are assumed
to be isotropic point sources. The radiation pattern in the plane of the array in

direction ¢ denoted by E () is given by

B (0 ~jip | -AM-1)p

I
ta
p—
+
o
(3]
+
+
=
S

where i is the phase difference of signals in adjacent elements

o = 222 (sind - sindy) (A.2)
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where § is the main antenna beam direction with respect to boresight (Fig. A.2).

For uniformly excited arrays with all signals in phase, the Em are identical,

then

(A.3)

When the individual elements are not isotropic (omnidirectional) but have a
radiation pattern Ee(ﬂ) themselves, this can be included to give the overall array

pattern

E(0) = E(OE[0 (A.4)

Ea(()) is known as array factor, and E 6(0) the element factor. In many cases, such

as those of dipoles, slots, and waveguide apertures, E 8(0) may be approximately by

a simple y cos? function [Al].

The grating lobes for a one—dimensional array are located at

sind, - sind) = * R n=0,1,2 (A.5)

The lobe at n = 0 is the main beam. The array will have only one single major
lobe, and grating-lobe maxima will not occur at values of -90° < 0 ¢ 90° as long
as A/d < 1/2. When the scanning is limited, the value of A/d may be increased.

The maximum scanning angle, 0 [A2], is related to d and A by

maz

d < M(1 + |sind__|)
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The key para.rheters of interest in the array pattern are the width of the
main beam and the sidelobe levels. For the uniformly excited array (see Eqn.
(A.3)), the half-power beamwidth 03 is given by,

0g = 0.886)/D or 0y = S1A/D (A7)
where D = (M-1)d is the length of the array, and the first side lobe level is at
_139 dB relative to the main beam [A2]. It can be seen that (see Eqns. (A.3)

and (A.7)) as the number of elements increases the main lobe beamwidth decreases,

and the number of sidelobes and pattern nulls increases.
Planar Arrays

Consider a rectangular planar array (Fig. A.3) consisting of LxM elements.

The radiation pattern is given by

L M )
~H{(FL)p,+(m-1)p,}
E(06) = ) Y Bt z y (A.8)
=1 m=1
where the phase differences - (py are
27rdI
o = (sinfcos¢ - sinGUcosﬂo) (A.92)
2rd
0, = Y (sinbsing - sinfsinfp) (A.Sb)
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Fig. A4

Beam pattern of a 4«4 antenna array

a) main beam at 0° b) main beam at (10%,10")
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and dz, dy are the element spacings along the z and y directions respectively, and
Oy ¢g » are the beam pointing angles. It is assumed 4, and dy are constant, i.e.

the spacing along the r-axis and the y-axis are uniform.

The radiation pattern for a LxM rectangular array of radiators may be
written as a product of the radiation pattern in the two planes which contains the

principle axes of the antennas, i.e.,

B(06) = Efvu0)
Then, for uniformly excited arrays
: L : M
E, E. sin sin
- 0z70 7 Pz 2 ‘py
Ea(0,¢) = -—L—M'—H (A.11)

Sln—gl:(pz Sln—g—(py

Consequently, the constraint on the element spacings d_ and dl; is the same as
that for linear arrays in order to avoid grating lobes. Also, it is clear that the
beamwidth, sidelobe jevels, and main beam directions for a planar array can be

analyses in the same manner employed for linear array.
As with linear arrays, the row and column array factors E (6,4) and E (6,4)
of the rectangular array ¢an each be arbitrarily steered by introduction of the

appropriate phase shift sequences for the row and column elements (Fig. A.4).

In addition to the rectangular arrays, there are circular arrays and elliptical
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arrays, which are useful when angular symmetry is desired in a 2-D operation,

A.2. VLSI Array Processors

Real-time array signal processing requires the use of parallel processors
because of the speed offered by computing machines [A3]. Current general-purpose
computers suffer severe system overhead, and therefore are not suitable for
real-time signal processing. Recently, low—cost, fast VLSI devices have become
available. Their use in the future design of massively parallel processors suggests
major improvement in ithe speeds of signal processors. In fact, at present one
solution is to use special-purpose array processors, and to maximize the processing

coucurrency by means of either pineline processing and/or parallel processing.

Two speciel-purpose VLSJ array architectures, which havz been extensively
discussed in the literature, are the systolic and the wavefront array.  The
concurrency in these arrays is derived from pineline processing andfor parallel

processing. These types of processing are illustrated in Fig. A.5.

Systolic Array

A systolic system is a network of processors which rhythmically compute and
pass data through the system [A4]. In a systolic computing system, every
processor regularly pumps data in and out at a rate which is controlled by a
global clock. During each cycle, computations are carried out at each processor so

that a regular flow of data is maintained within the network.  The data
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Fig. A.6 A systolic array of matrix multiplication. The figure shows a systolic
array consisting of a 4x4 array of PEs (represented by black boxes). All the PEs
uniformly consume and produce data during each time unit. The input data,
matrices A and B, are pre-arranged in an ordered sequence. The C data (C =
AxB) stay temporary within the PEs and will be pumped out from one side of the
array.  Due to the systolic nature of the array the time of arrival of the input
data is adjusted by introducing delays. This is why the zeros are shown in the

figure.
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movements in a systolic array are described in terms of snapshots of the activities

of the processors and the interconnecting lines.

The systolic array is especially suited for implementing those algorithms [A35],
which can be structured to take advantage of the parallelism offered by the systolic
array. The processing elements {PEs) in a systolic array can be locally connected
to perform digital filtering, matrix multiplication, and other related operations. An
example of a systolic array structure for matrix multiplication is shown in Fig.
A.6. The input data are pre-arranged in an orderly sequence and enter the
computation in time skew format because of the systolic nature of the structure.
Also, it is to be noted that the data reside temporarily within the PEs and will be

pumped out from one side of the array.

The physical realization of systolic arrays is closely tied to VLSI technology.
The affinity of VLSI comes about because of the important properties of
modularity, regularity, local interconnection, as well as high degree of pinelining
and highly synchronized multiprocessing. It is also architecturally scalable, i.e., the
size of the array may be indefinitely extended as long as the system
synchronization can be maintained. There is extensive literature on the subject of

systolic arrays and their applications. The interested reader is referred to [A6,A7].
Wavefront Array

The limitations of systolic arrays are closely tied to the fact that their
activities are controlled by a global clock. From a hardware perspective, this
global synchronization is of primary concern due to its effect to the clock skew,

fault tolerance, and peak power of an array processor [A8]. A simple solution to
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Fig. A.7 A wavefront for carrying out matrix multiplications. In this figure, the
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arithmetic operations: multiple-and-add. The speed of propagation of the
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transfer time. In generai, the major advantages of the wavefront arrays over
systolic arrays are seif-timing and data driven computatior, which means that the

global clock can be dispensed with.
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these problems is to adopt the principle of data flow computing in array
processors. The array architecture is so called the wavefront array. It takes
advantages of control-flow locality in addition to the data—flow locality inherently

possessed by most algorithms.

The execution of instructions in a wavefront array processor is dependent only
only upon the availability of operands and resources required. Unrelated
instructions can be executed concurrently without interference. Conceptually, this
permits a data—driven, self-timing approach to array processing which substitutes
the requirement of correct "timing" by correct "sequencing" [A8]. An example of
matrix multiplication using a wavefront array is illustrated in Fig. A.7. The data
matrices are stored in the memory modules to the left (in columns) and on the
top (in rows). The process starts with the processing element at the far left
corner.  The computational activities then propagate to the nearest neighbors,
thereby creating a computational wavefront which travels down the processor array.
The computational wavefront is similar to an electromagnetic wavefront, since each
processor acts as a secondary source and contributes to the propagation of the

wavefront.

The principle advantages of wavefront array processors are simple
representation of concurrent activity, relative independence of PEs, greater use of
pinelining, and reduced use of global control and memory. Since there is no need
for synchronizing the entire wavefront array is truly architecturally scalable. In
fact, it may be stated that a wavefront array is a systolic array in combination

with the data flow principle.
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APPENDIX B

EXPERIMENTAL SETUP AND MULTIPATH PHENOMENON

B.1. Expecrimental Setup

A set of experiments were carried out to collect data with a sampled
aperture antenna. One of the objective was to evaluate the performance of
adaptive beamforming algorithm. The experimental setup is shown in Fig. B.1. It
used a multi-parameter aperture radar system (MARS), a bistatic radar, which was
developed at the Communications Research Laboratory, McMaster University [B1]
(Fig. B.2). The MARS cousists of a transmitter, a 32-element sampled aperture
antenna and a data acquisition metwork. The specifications for the system are

summarized in Table B.1.

The measured data that were presented in the thesis were collected during a
field trip in late October 1987, on the west coast of Bruce Peninsula, close to
Tobermory, Ontario, at a site overlooking Lake Huron (Fig. B.3). The distance
between the receiver and the transmitter was greater that the far field region for

the MARS array, which is defined by
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Table B.1. Specifications of the measurement system used
in the Lake Huron experiments.
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Transmitter

[

100 mW CW sources feeding two 22 dB horn antennas
simultaneous dual frequencies

horizontal and vertical polarization

adjustable transmitter height

Antenna Array

32-element linear array

1.82-meter aperture, .05715-meter inter—element spacing
10 dB H-nolarized horns

matched = .1 mm machine tolerance

multi—frequencies; 8.0 to 12.4 GHz with 30 MHz steps.

Receivers

2

coherent modulation, with frequency stability to 10 !
accuracy of .1 dB and 1¢

.1 Hz Doppler resolution

1 Hz to 2 KHz sampling rate
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where D is the maximum dimension of the antenna, and A is the wavelength of

the radar signal. For the geometry 'n Fig. B.1

2
3\
rp = Aiael = 225.24 m,

which is less that 4610 meters. ‘Therefore, the receiver site is the in far field

region, and the received signals can be approximately assumed to be plane waves.

B.2. Multipath Phenomenon

In Fig. B.1, it is seen that the received signal consists of, not only the direct
signal, but also a surface reflected or multipath signal. That is, it consists of two
components: 1) the direct component from the transmitter, and 2) the specular
(indirect) component reflected from the surface. The direct component constitutes
the desired signal and the latter the undesired signal. In the measurements that
were carried out the multipath signal was very close to the desired one; their
separation is being a fraction of a beamwidth. The cver—sea multipath problem
should not be underestimated since it may corrupt the antenna’s performance,
especially when the antenna is operating under rough sea surface conditions. In
this case, the indirect signal usually consists of two components; (1) a coherent

component (specular) and (2) a noise-like component (diffuse).

The current earth geometry which describes the characteristics of the signals
when they are reflected by a curved earth is given in Fig. B.4. The source and

the receiving antenna are separated by the range d. The point of reflection,
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indicated by P, determines the distances d, d,, and the grazing angle 9. Also, in
Fig. A.4, h; is the height of the centre of the antenna aperture and hy is the
height of the source. The angle-of-arrival for the direct and indirect signals are

04 and 0. ., respectively, and they are given by [B2]

h“Z"hl-d?/Re

04 = tan"'l{ 7 } (B.1)

1

By + &R,
i t
1

0, . = tan_l{

where

d, = —g— + pcos(JL;—W),

= 3Ry + by + (P,

= cos {-2g[2Re(h; - hy)d]}, for by < hy,
?

—

e = effective radius of the earth = 7R, and

a8 ™
!

= radius of the earth = 6.38 x 106 m.

The parameter 7 is given in terms of refractivity —(di—%— of the troposphere by

o 1

_
1+ .00637%

(B.3)

The multipath signal model received at the element m of the antenna array

can be expressed as

T = z + z
m . }
T iip Mind

- Ae J(m‘l)ﬁodir T (o] Ae ﬂm‘l)(‘Pind + Ap) (B.4)
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where A4 is the amplitude of the measured signal, and p is the complex reflection

coefficient with Ay is its phase. Since the difference between the direct and

indirect path, given by

Ar = 1 + Ty = T, (B.5)

is virtually constant, the amplitude and phase differences between and Z
dir nd

remain unchanged from one data sample to another, provided that the source

elevation does not vary appreciably over the observational time interval, Thus the

expected value of the cross—correlation of the two signals at the output of the mth

element is
E| " 10].14]2 (B.6)
T z = |p|. .
™ dir mind]

which is a constant. This implies that the direct and indirect signals can be
highly correlated. The coherence between these signals will degrade the

performance of most superresolution techniques, in terms of their ability to resolve

the signals.

B.3. Array Calibration Method

It is necessary to calibrate the received data because of the inevitable
presence of measurement errors, which are due to: 1) direct current (dc) offsets in

the T and Q channels, 2) differences in the gain and phase characteristics of
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individual receivers, and 3) discrepancies in the test and local oscillator signals
supplied to the recéivers [Al). The dec offset, and partially errors in gain and
phase of the antenna array as well as other discrepancies can be removes by using
IQ calibration and far field calibration procedures [B3]. The errors, which remain

after these processes, are termed as calibration errors.

In baseband, the received signal will then can be modeled ag

K

{m-1
() = o (n) ] sme %
k=1

+ v _(n) (B.7)

in which
jﬁpm

where K is the number of signals, which is equal to 2 in the case of the
experimental setup above, and gm(n) represents the calibration errors. In Eqn.
(B.8), 6§ am '5pm respectively denote the relative errors in amplitude and phase of
the mth element. Note that these errors can not be totally removed by the IQ
calibration and the far field calibration processes due to drift in the individual
array element, which results in different forms from one snap shot to another.
Thus, an algorithm, which is capable of automatical correcting these errors in
real-time basis, is necessary. This algorithm, so called self—calibration algorithm, is

developed and presented in Chapter 5.
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