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ABSTRACT

Recent progress in VLSI technology has created a major impact on digital

signal processing, including array signal processing. Proposals have been ma.de for

using high throughput processors for digital adaptive beamforming in radar a.nd

communications systems applications. In this thesis, novel techniques and

architectures for adaptive beamforming will be developed and presented. These are

typified by the development of adaptive beamforming algorithms for planar arra.ys

and by a self-calibration algorithm for antenna arrays. The emphasis however will

be placed on modern adaptive beamforming techniques in which the adaptation is

carried out by means of a triangular systolic array processor performing the QH

decomposi tion.

Adaptive beamforming algorithms for a planar array or two-dimensional

(2-D) adaptive beamforming algorithms, which are typified by the 2-D

least-mean-squares (LMS) algorithm and 2-D Howells-Applebaum algorithm, arc

derived and presented. The concept of 2-D eigenbeams will be given to

demonstrate the performance of the 2-D adaptive ~Jeamforming techniques. As

well, the 2-D adaptive beamforming problem will be formulated in terms of thc

I-D case with operation taking place along rows and columns of a planar array.

The adaptive processor is then implemented by using a manifold of the

least-squares triarray processors, which in the limit takes the form of a 3-D

systolic array. It will be shown that the structure is capable of performing

adaptation along the rows and columns of the 2-D array simultaneously.
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One of the major challenges that face workers in array processing is

overcoming the degradation in the output of the high performance algorithms due

to errors in the calibration of the array. A new self~alibration technique for

solving this difficult problem will be derived and presented herein. The algorithm

is based on the use .if iteration - whereby the calibration coefficients are refined

through repetitive imposition of the calibration procedure. Its derivation is based

on the eigen-based ~ethod and the least-squares norm minimization. It will be

shown that the algorithm is capable of automatical estimating the angles-of-arrival

(AOA) of the received signals and calibrating the array with a minimum phase

and gain errors. Results obtained by using both simulation and measurement data

will be givcn. In the case of the experimer.tal results, the measurement setup is

subjectcd to multipath scenarios.
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