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Spatial Statistics have been applied to many types of problems in the
environmental sciences, mostly dealing with continuously distributed data from
Gaussian or near-Gaussian processes. There is a need for methods capable of
handling discrete, non-Gaussian data, such as species counts from biological
processes. This thesis applies the method of quasi-likelihood from general linear
models to the problem of spatial prediction of benthic invertebrate counts. These
organisms are important elements of the aquatic food chain and are indicators of
pollutant impacts. Predictions of their abundance are needed as clean up targets
in areas where remedial actions are being considered. The proposed method is

illustrated using an example daia set frorm Great Lakes reference sites.

The applicability of the method is first illustrated by re-analysis of
examples from the literature. Variogram models are fitted to quasi-likelihood
residuals with two alternative distance metrics. The models are compared using
cross-validation and predictions are made using the classical estimator of the
variogram and distance determined from a Geographic Information System

(GIS). Asymptotic normality of quasi-likelihood parameter estimates is shown to



hold when spatial dependence is accounted for by an exponential variogram
model. A brief simulation study is included that verifies the applicability of

asymptotic results to the estimation of model parameters.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Geostatistics has been developed for use in the fields of mining,
metallurgical engineering and geology to estimate unknown quantities of ore and
to predict likely locations of mineral deposits. The basic approach is to take
advantage of the correlation structure among observations distributed in space to
perform estimation, prediction, hypothesis testing and other statistical
procedures. The similarity of these applications to some agricultural, sociological
and environmental applications is obvious, especially for large, continuous
resources such as lakes and forests. In fact, Matheron (1963) defines
Geostatistics as: "The application of the formalism of random functions to the
reconnaissance and estimation of natural phenomena." Many environmental

problems would benefit from a geostatistical treatment.

In the Great Lakes, one of the most serious problems is the
contaminated sediment that lies below the water in many poliuted areas,
especially in harbours and bays. When this material is dredged for navigational

purposes, it must be "confined" because it is often toxic to aquatic life or contains



persistent chemicals that bioaccumulate throughout the food chain. Confinement
facilities are expensive, usually only temporary, and often create environmental
problems of their own. In areas where navigational dredging does not occur,
contaminated sediments often do not provide the quality of habitat required for a
healthy aquatic ecosystem. These sediments may need to be removed, isolated

or treated in situ, depending on the results of assessment procedures.

Current assessment procedures for sediment quality are chemically
based, ie. they prescribe a lowest effect level for each chemical found in the
sediment that must not be exceeded. However, natural variations of a geological
and biological nature confound these procedures, leading to non-optimal
decisions. Recently, advances (Bailey, et al, 1995; Moss, et al, 1987) have been
made in biologically based assessment procedures that avoid some of these
pitfalls. The basic concern of these procedures is biological response, not
chemical concentrations. A problem with this approach is that biological
responses have inherent spatial variability due to habitat changes and therefore
generic guidelines cannot be established. Methods for establishing site-specific

guidelines are critical if biological responses are to be used as sediment criteria.

Reynoldson et al. (1995) have taken over 300 sediment samples from

the Great Lakes nearshore areas and have analyzed them biologically as well as



chemically. All of the samples have been taken from "clean areas", ie. those
relatively unimpacted by human activity. It is intended that this data set be used
as a training data set to predict what type of biological community should be
found in an area assuming it to be clean. This can then be used as an
assessment tool (Corkum, 1989; Johnson and Wiederholm, 1989; Wright et al.,
1984, Zaruil and Reynoldson, 1992) to identify which areas require remedial
action. Alternatively, the data set could be used as the nominal condition, against
which other areas are compared when reporting the state of the sediment
habitat. While this is a promising approach, the significance of differences
between observed and predicted biological communities is an area that requires
further development. The communities could be represented in ordination space
and compared using multivariate statistical methods. Current multivariate
methods use discriminant function analysis to select site specific responses. This
requires groups to be formed that represent biological communities. However,
while statistically different, these groups may simply represent response continua

and therefore alternate methods that do not require groups may be preferable.

Preliminary analysis of this data set indicates strong spatial clustering
(Bailey, et al. 1995), that may be related to natural phenomena such as geology,
climate, and hydrology. They identified three distinct benthic communities based

on Euclidian distances calculated from mean densities of 15 major community



members. Sites that were geographically "close" were often also "close" in
ordination space. In order to take advantage of all of the information contained in
a sample, as well as make the best prediction possible, the methods of spatial

statistics shouid be explored as a possible approach for analysis of these data.

1.2 The Problem

The problem posed here is that of using the methods of spatial
statistics to predict the value of a count variable given a location and a set of
explanatory variables. Methods exist for prediction of continuous variables with
known distributions using Geostatistics, but this work extends existing
methodology to the case of a spatially autocorrelated regression model with a
discrete variable with unknown distribution. This work is applied in nature:
examples from the literature are re-analyzed using new combinations of existing
methods. The example described in Section 1.4 is then analyzed using these

procedures.

One of the major issues in spatial statistics is the estimation of the
covariance function. This is made considerably easier when the data are
multivariate normal, but some data of interest are not distributed in this way. In

particular, binary responses and counts often occur in the biological,



environmental and health sciences. Methods (e.g. autologistic, autobinomial,
auto-Poisson and auto-Pascal models) have been developed that take into
account various dependencies in the data, with different assumptions about the
underlying distribution of the data (Haining, 1990, p. 99-101). Each assumption
has its drawbacks and the degree of success achieved depends on the nature of
the problem. The use of quasi-likelihood methods avoids assumptions about the
distribution of the data, but these methods have not been used frequently with

spatial statistics.

1.3 The Approach

A general review of quasi-likelihood methods, spatial statistics and
relevant environmental applications from the literature is presented in Chapter 2.
Existing methods and studies that are directly related to the current work are

reviewed in subsequent chapters.

As will be discussed in Chapter 2, Zeger (1988) presented an
approach to modeliing dependency in time-series data of counts. He used quasi-
likelihood methods and estimating equations based on the score function to
solve for unknown coefficients for the explanatory variables and account for time-

dependency. The approach here will be to extend Zeger's work to the case of



spatial dependence. There are many obvious analogies between time-series and
spatial statistics. If time-series data are thought of as unidirectional, where the
value of a random variable at time t is some function of a random shock and all
previous observations of the variable, then spatial data may be thought of as
multidirectional, where the value of the random variable at a site s is some
function of a random shock and all other observations. Zeger accounted for time
dependency through the variance-covariance matrix in the score function. There
is no reason why this matrix could not be structured to account for spatial

dependency. This is the topic of Chapter 3.

The identification of the form of the dependency is a major aspect of
this work. Since the large-scale variation is modelled by a function of explanatory
variables, the spatial dependency will be among residuals. Various
parameterizations of the spatial covariance function are examined and

procedures for estimation are employed. Chapter 4 contains this material.

Because the goal of this work is to identify optimal prediction
equations, the different types of kriging that permit accurate projections from
spatial data are discussed and evaluated relative to example data sets in
Chapter 5. Cross-validation of different models is used to select the "best" model

and predictions are made for two examples.



Finally, simulations are performed that check the validity of the results
and the applicability of inferences based on quasi-likelihood. This is the topic of

Chapter 6.

1.4 Example - Benthic Counts at Great Lakes Reference Sites

Reynoldson et al. (1995) have reported the initial results of the
extensive sampling of the sediments of nearshore areas of the Great Lakes. The
purpose of their study was to develop sediment quality criteria based on
ecological response. Stratified samples were taken at reference sites throughout
the Great Lakes Basin. The sites were stratified by ecoregions which are regions
of similar climate, vegetation, bedrock geology, flora and fauna. The reference
sites were taken to be representative of "unpolluted conditions" and were

selected according to the following rules:

1) further than 10 km away from known discharges
2) less than 2 km from shore
3) less than 30 metres in depth

4) known or suspected to have fine-grain substrate

The resuitant sites for the Great Lakes are shown in Figure 1.1. Various physical
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and chemical measurements were made on samples from a box-core or a "mini-
box core” which are devices for taking up to a 50 cm by 50 cm section of the
sediment at the site to a depth of about 25 to 30 cm. The material in the box core
was then subsampled using five small plexiglass tubes (inner diameter 6 cm) to
obtain organisms for benthic community structure evaluations. A separate
sampling device, called a mini-ponar, was used to collect five replicate sediment
samples for laboratory bioassays. Samples for analysis of nutrients in the

overlying water were also taken.

Benthic community structure was reported by mean species count per
site. Typically, only those taxa that made up 0.05% or more of the sample were
included in subsequent analyses. Stylodrilus herringianus, Diporeia hoyi,
Procladius sp. and Limnodrilus hoffmeisteri were among the more common and
abundant species. Forty-three environmental variables were measured on the
sediment and overlying water including nutrients, metals, and physical
parameters of particles (Table 1.1). The authors of this work have made their
entire data set available for use in this dissertation; however, only two benthic
species are examined in detail and the geographical area has been restricted to

Georgian Bay and the North Channel of Lake Huron.



TABLE 1.1

Data Available from Example Problem

SITE INFORMATION:
Location information (latitude, longitude), sample dates, and
ecodistrict.
FIELD DATA:
Water depth, field measurements, such as temperature, dissolved
oxygen and conductivity.
WATER CHEMISTRY:
Alkalinity, nutrients (including nitrogen and phosphorous).
SEDIMENT CHEMISTRY:
Minerals, metals, percent gravel, sand, silt, and clay, and organic
content.
BENTHIC INVERTEBRATE COUNTS:
ARTHROPOQODS - 80 Species
MOLLUSKS - 93 Species
FAMILY - Arthropods and Mollusks aggregated to 45 families

ORDER - Arthropods and Mollusks aggregated to 18 orders.

10



The rationale for the choice of geographic area and benthic species to
model is included in Chapter 2. Diporeia hoyi are important indicators of
oligotrophic conditions in lakes and are a key link in the aquatic food chain. They
make up as much as 60% of the benthic biomass in Lake Huron. The Great
Lakes Water Quality Agreement includes a quantitative objective for Diporeia
hoyi abundance in Lake Superior. Procladius are ubiquitous in most areas of the

Great Lakes, but are sensitive to pollution.

11



CHAPTER 2: LITERATURE REVIEW

2.1 Quasi-likelihood Methods

2.1.1 Definition

McCullagh and Nelder (1983, Ch. 1) describe how Gauss abandoned
the assumption of normally distributed errors in the classical regression model in
favor of the weaker assumption of constant variance only. They then describe
how this weaker assumption was in turn generalized by Wedderburn (1974) to
the case of generalized linear models using the concept of quasi-likelihood. In
standard likelihood methods, the form of the distribution of the random variable
must be specified. In the quasi-likelihood method, a relationship between the
mean and variance of the random variable is all that need be specified. The
resultant quasi-likelihood function can then be used for estimation in exactly the

same manner as the log-likelihood function.

The quasi-likelihood function, K(z;, 11,), for eazh observation, z; (i =

1....,n), is defined by the relation:

3Kz, 1,)/3n, = (z- 1, IN(n,) (2.1)

12



where z, are independent observations
n,; are the expectations E(Z). Each v, is a known, differentiable
function of a set of parameters By B

P

and V(u,) is the finite variance Var(Z).

2.1.2 Properti i-likelih

THEOREM 1. (Wedderburn, 1974) Let z, 1, V(pn) and K be defined as above
(with the subscripts dropped). For each observation, p is some known function
of a set of parameters B.,..., B Then K has the following properties:

(i) E(6K/op) =0

(ii) E(oK/aR,) = 0

(iii) E(0K/9n )? = - E(02K/on?) = 1N(n)

(v) E((9K/3B, )(5K/3B,)) = - E(2K/3B 38, )

= (1V(n))(0u/9B ;)(du/dB,)-

These properties are similar to those of log likelihoods. The theorem is proved

below, following the proof sketched by Wedderburn.

Proof. (i) From the definition of K,

E((Z-p) V(n)) =E@Z/V(n))-E(n /V(n))=0

13



(ii) Noting that 9K/B | = (9K/au)(an/aB ),

E(3K/3u)(3n/a8,)) = dnlap, E(3K/dn) =0

(iii) A special case of (iv). See below.

(iv) E((9K/aB ;)(3K/3B,)) = E{((5K/Bn)(r /3B ,)(OK/dn)(8u/aR, )}
= E{(9K/on)°ou/aB,)(dn/dR,)
= E{((Z-n)V(1))*}(9n/3B ;)(3n/3B,)
Since V(n) = Var(2), = (1NV(u))(on/oB;)(on/o8B,).
Also, - E(3? K/op8,) = - E{a/aak((awau)(ap/asj))}
= - E{(Z-1)a/08,(1NV(n))(on/B,)}
- E{(1V (1)) (9n /0B ; )(-9n13B )}
=0+ (1NV(n))(on/oB ) (dn/aB,).

To prove (iii), E(dK/dn)? = E((aK/aej)/(ap/as j))z as in (ji), and apply (iv) with i=j.
COROLLARY. If the distribution of z is specified in terms of ., so that the log
likelihood, |, can be defined (for each observation), then

- E(0*°K/du?) s - E(8%I3p?).

Proof. From (jii), - E(32K/0u?) = 1N(n) = 1NVar(2).

14



From the Cramer-Rao inequality,
Var(Z) > -1/E(3%1/9p?).
So, -1/E(3*K/du?) = Var(Z) > -1/E(82V/5p?)

and - E(3°K/dp?) < - E(8%1/9p?).

Wedderburn (1974) has also shown that the above inequality
becomes an equality when the observations are distributed as a one-parameter
exponential family. Further, he argues that - E(3%2K/ou?) is a measure of the
information z gives concerning 1 when only the mean-variance relationship is
known and that E(3%(K-I)/dn?) is a measure of the additional information

provided by knowing the distribution of Z.

For a one-parameter exponential family, the log-likelihood is the same
as the quasi-likelihood. To see this, write the log-likelihood for one observation
from a distribution belonging to a one-parameter exponential family:

I(u(B),z) = z6 - g(8) +f(2)
where 6 is some function 6 (p) .

Differentiate with respect to ;1, then:
dl(p(B).z)/on = (z-g'(8))de/dp)
=(z- u)N(n)

= 9K(z,u)/on
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since p =g'(8) and de/dp = 1/V(n). Hence the log-likelihood and the quasi-

likelihood are the same. Therefore a one-parameter exponential family can be
assumed as a weak sort of distributional assumption. The variance, Var(Z), of
each observation, z, is assumed to be either equal to, or proportional to, some

known function of its expectation, 1 , ie. Var(Z) = V(n).
2.1.3 Score Function of Quasi-likelihood

The score function, U, for quasi-likelihood is defined analogously to
that of likelihood with more than one observation (ie. it is the first partial

derivative of the log quasi-likelihood with respect to B):

UB)= 3 (3u,/3B)z- 1 )N(n,)

t=1

where the conditions of equation 2.1 apply to each observation, z. The
parameter estimates, 8, are the solutions of the set of equations resulting when
the expectation of the score function is set equal to zero. McCullagh (1983)
shows that parameter estimates based on this function are consistent,

asymptotically Gaussian and optimal in an extended Gauss-Markov sense. First,

the expectation, E(-B) is shown to be of order n™'. This satisfies the definition of

consistency since the expectation tends to zero as n increases to infinity, as

16



does the variance, Var(B). Next, McCullagh shows that the quantity /Fi(B—B) has

an asymptotic normal distribution as n tends to infinity. Finally, the parameter
estimates are shown to be asymptotically optimal in that they are unbiased and
have uniformly minimum variance as n increases to infinity. This is an extension
of the Gauss-Markov theorem (Harvey, 1981, pp. 44-46) under the assumption

of local instead of global linearity and asymptotic instead of exact unbiasedness.

2.1.4 Quasi-likelihood Function for Dependent Observations

Zeger (1988) generalized the score function of the quasi-likelihood to

the dependent case:

U(B) = (3n/3B) V'{B.8(B)} (z- m) =0

where 8 are vVn-consistent estimates of the parameters of the variance-

covariance matrix (These are treated separately and not estimated
with weighted least squares)

z and u are now vectors of the observations and means, respectively,

and V is the variance-covariance matrix of the observations.
For the independent case, V is a diagonal matrix. The dependent case can

include additional parameters in the off-diagonal elements that describe the
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covariance of the observations (see Section 2.2.5 for the conditions for positive

definiteness of V). Zeger developed the method for autocorrelated counts.

Autocorrelation can be introduced to the model either by observation-
driven or parameter-driven log-linear models (Cox, 1981). In the observation-
driven case, the conditional expectation is E(Z)Z,.,) = iz, 2,,. ....Z,), where fis a
function of all previous observations (Zeger and Qagish, 1988). A special case is
E(ZIZ.,) = f(z.,) where {Z} is a Markov process. The autoregressive time series
models described in the next section are also examples of observation-driven

models.

In the parameter-driven case, a latent process, e .+ IS usedto
introduce autocorrelation:

8, =log p, = 8(e. by qrrity)

A special case is 6, = 6(e .M., ) where {1} is now a Markov process.

Zeger gives the first two marginal moments of a time series z, that is
Poisson, given the latent process ¢, . The derivations follow:

Conditional on ¢, let z, be a sequence of independent counts with
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mean, u, = E(Z]e,) = exp(x,B)e, and variance, w, = Var(Zje,) = u,.
Assume that ¢ _is an unobserved stationary process with E( e )=1
and Cov(e,,e,, ) = o’o_(1) . Then the marginal moments of z, are
found by:
n, =E(Z) = E[EZ]e,)]
f exp(x,B)e, g(e,) d(e,)
= exp(x,B) f e, g(e,) d(e,)
= exp(x,B) E(e,) = exp(x,B),
where g(e,) is the marginal density of e o
Also by Woodroofe (1975, p. 282):
= Var(z) = E]Var(Z|e,)] + VarlE(Z]e,)]
=y, +Varp e ]
= p, + niVarle,]
=n, + ngo? = p(1+ o?,), and
p,(t 1) =corr(Z,2,,,)
= Cov(Z, Z,..)/((Var(Z)Var(Z,,,))'*
={ElCov(Z,. Z,.,l¢..c,.. ]+
Cov[E(Zle,).E(Z. le,, )M(VarZ)Var(Z,,,))"?
={0 +Covlp,e,.n,,.c.. M(VarZ)Var(Z,, ))"*
={nMn,., Covle,, e, MVarZ)Var(Z, ))"?
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= {ptptq O‘zﬁ)e (t) }/(Var(Z()Var(Z,,,))”z

={p, () V(1 +{0%u "1 +{o%n,. I'N"™.

Zeger then uses an estimating equation approach analogous to quasi-
likelihood to estimate B and applies it to the example of a time series of counts
of polio cases. Since V can be quite large its inversion may be a problem and
hence Zeger gives approximate methods for estimation of B and shows via

simulation that they are adequate.

215A i ies of i-likeli

McCullagh (1983) has shown that the estimates of quasi-likelihood
parameters are asymptotically Gaussian when the observations are independent
(see Section 2.1.3). Moore (1986) generalized this result for the case of
overdispersed counts and proportions. He assumed a model similar to that of

McCullagh (equation 2.1), but allowed for overdispersion:

E(Z|) = ui ' var(zi) = Vl(ui. ni) + szz(pi, ni)

where v, and v, are functions of the means n; and possibly of n,
and g(n) = n=Xp, where g is the link function.

Moore used the Lindeberg Central Limit Theorem and the Inverse Function
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Theorem (see Foutz, 1977) to prove that 8= (G,GZ) estimated from quasi-
likelihood equations is asymptotically multivariate normal. He also stated a
corollary that showed that the asymptotic covariance of f8 is not affected by the

estimation of &2.

Liang and Zeger (1986) and Zeger and Liang (1986) extended the
estimating equation approach to longitudinal data analysis. They showed that the
parameter estimates from the generalized estimating equations, which are
closely related to quasi-likelihood, are asymptotically Gaussian (see Section 6.2).
Kaufmann (1987) generalized regression models for stochastically independent
categorical observations to the case of nonstationary categorical time series. He
presented theorems that showed the asymptotic properties of the maximum
likelihood estimator. Zeger and Qagish (1988) used the results of Kaufmann to
establish the asymptotic normality of estimators for parameters in quasi-
likelihood Markov models. Zeger (1988) developed a parameter-driven
regression model for time series of counts (see section 2.1.4). He showed that
the parameter estimates from quasi-likelihood estimating equations were
asymptotically multivariate Gaussian. The generalized estimating equation
approach of Liang and Zeger was extended by Prentice (1988) to allow joint
estimation of parameters of both the marginal response probabilities and the

pairwise correlation in correlated binary regression models. He showed that the
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joint asymptotic distribution of these parameters was multivariate Gaussian. Thall
and Vail (1990) presented a family of covariance models for longitudinal counts
with predictive covariates. Their philosophy of parameter estimation was to
obtain a unified distribution theory for regression parameters and covariance
parameters as Moore (1986) and Prentice (1988) did. They showed that the 8
from Moore (above) will be asymptotically normal when the estimating equations
for B are augmented by a second set of moment equations for the parameters &
that arise in the formulation of the covariance matrix of the observations (ie. 6 =

(B.&) is jointly multivariate Gaussian).

2.2 Spatial Statistics

2.2.1 Introduction

Since its beginnings in the early 1960s, Geostatistics has evolved
into the field of Spatial Statistics. With the availability of powerful computers for
simulation and graphical display, the field has seen applications in many other
disciplines besides geology. According to Ripley (1981, p. 1), Spatial Statistics
includes spatial data analysis and confirmatory data analysis. Spatial data
analysis is "the reduction of spatial patterns to a few clear and useful

summaries.” Confirmatory data analysis goes beyond this by comparing these
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summaries to what might be expected from theories of how the patterns might

have developed and originated.

As mentioned in Chapter 1, strong spatial clustering has been
observed in the example data set. Basically, samples that are "neighbours"
geographically tend to cluster together. Although cluster analysis does not use
geographic distance explicitly, there is a strong connection with Spatial Statistics

through the spatial autocorrelation function. In the univariate case, define the

“squared distance", dfj, between two sites i and j as:

dfj=i: (X5-%5)%/n
k1

where X, is the kth sample value at the ith site
and n is the number of samples taken at each site.
This distance is determined in relation to the metric of the sample observation,

ie. # of organisms per square metre or milligrams of contaminant per litre of

water. If X; has mean p, and variance o?, and if the covariance of X;and X is
denoted by o, 50 dfj is an estimate of E[(X; - X,-)Z], where

E[(X, - X)2] = E[X% - 2XX; + X
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= Var(X)) + [E(X)F - 2Cov(X;, X))
-2E(X)E(X) + Var(X)) + [E(X)F?

= o’i + o§ - 2011, +(n, - pj)z. (2.2)

To see this, expand d fj and compare terms with (equation 2.2).

In cluster analysis, sites with small d; cluster together, usually forming
a cluster if d; is less than some minimum D,. However, a small d; requires that

both o,, belarge and that (p,-u ;) ? be small. Some of the techniques of Spatial
Statistics, discussed in Section 2.2.5, can be used to estimate Oy the spatial

covariance function, or g0 the spatial autocorrelation function. These two
functions are related by:

0;;=0,0,0

ij°

Agterberg (1970), describes a typical geostatistical prediction problem
that can be solved by a method known as kriging, named after D. G. Krige, a
South African mining engineer. If P, i = 1, ..., n, are irregularly distributed points
in a geographic area and values x, i = 1, ..., n, for a given attribute (i.e., data

from samples) are known for the points, and if P, is a point with arbitrary
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coordinates, the problem is to predict a value %, for the point P, from the known

values in the "neighbourhood”. The method of kriging estimates the value of x, at

the point P, by:

where the coefficients, 4, ,, are given by:

o1/ | 1 Py P13 - -+ Py R0
8o,2| [Par 1 Pz« + -« Pyl [P02
= ’
.éo,n _pnl pn2 pn3 st 1 ) .DOnJ
and 1, is the expected value of the attribute at point P,,

R, is the value of the mean of the process at point P,

and 05 is the spatial autocorrelation function discussed above.

This method is known as simple kriging (Matheron, 1971) and requires that the

mean function, u; and o ij be known. If the data, x,, are Gaussian, then %, will

be the optimal predictor if the criterion is minimization of E(x, - %,)%.
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Cressie (1993, p. 106) defines kriging as "a minimum-mean-squared-
error method of spatial prediction that (usually) depends on the second-order
properties of the process Z(-)", where Z(-) is a random process. There are other
types of kriging, such as ordinary kriging and universal kriging. These are

described in more detail in Section 2.2.6.

2.2.2 Analogy with Time Series

In time series analysis, the two most basic models are the first order
autoregressive model, AR(1), and the first order moving average, MA(1). These
models may be compared with their spatial counterparts, simultaneous
autoregressive (SAR) and spatial moving average (MA) as described by Haining

(1990, pp. 81-84):
AR(1) Z=p+0o(Z,-u)+te,
SAR  Z=p, + Jz'; 0, Z-n,) + e, (2.3)
MA(1) Z=n+e,-6e,

Spatial MAZ = p, + 3 6, e +e,
j=1 1 J 1
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where Z,, are random variables at time t=1,..., or site i=1,..., from a

stationary (in time) stochastic process,

n is the mean of the process,

n,., is the mean of the spatial process at a site

¢ is the autoregressive parameter,

¢,, are spatial autoregressive parameter with i and j
indexing sites that interact,

8 is the moving average parameter,

6, are spatial moving average parameters with i and j
indexing sites that interact,

€., are random shocks at time t=1,..., or at sites
i=1,..., from a white noise process

and n is the number of neighbouring observations that influence Z,.

The spatial models presented here are for two dimensions, but can be
generalized to higher dimensions. If the sites are on a regular grid or lattice,
distances among sites will be uniform and the idea of lags from time series can
be extended to the spatial case. For example, in time series, observations z, and
Z,, are said to be one lag apart. If observations z, and Z; are neighbours on a

spatial grid, they are said to be one lag apart.
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2.2.3 The Variogram

A principal tool in describing spatial autodependence in Geostatistics
is the variogram. Matheron (1963) describes the variogram in detail. it is a curve
in R? which displays the mean of the square of differences between the same
characteristic (ie. temperature, concentration, number of organisms) at two
points a distance, r, from each other versus that distance. The variogram and its
parameterization is an increasing function of distance since, in general, the
further apart the two samples are, the greater is likely to be their difference. The
variogram, or more conveniently, the semivariogram, y(r), is related to the
covariance function (ACF or correlogram if standardized by dividing by the
variance of the process), at least for stationary random fields, by the following
relationship:

C(r) = o® - y(r)
where o? is the variance

y(r) is the semivariogram
and C(r) is the covariance function (see Section 2.2.5).

To see this, let Z(s) and Z(u) be two realizations of a process with the same
mean determined at locations s and u, a distance, r, apart. By the definition of
the variogram,

2y (r) = Var{Z(s) - Z(u)}
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= Var{Z(s)} + Var{Z(u)} - 2Cov{Z(s),Z(u)}
=202 - 2C(r) (2.4)

or Cn =a%-vy().

Cox (1981) has noted that the sample estimate of the variogram may
be more useful than the corresponding sample estimate for the covariance
function in time series. One of the advantages is that a linear trend added to a
stationary series barely affects the variogram for small lags (distances) whereas
large shifts can occur in an autocorrelation plot. Upton and Fingleton (1985, Ch.
3) use correlograms to identify spatial autocorrelation. As mentioned above,
these are tools from time series extended to the spatial case. Cressie (1993, p.
73) notes that despite possible advantages, statisticians probably do not use the

variogram because of lack of familiarity.

Monestiez, et al. (1990), describe the classical definition of three parts
of the semivariogram curve (Figure 2.1):

1) discontinuity at the origin. This is often described as the "nugget

effect" and is discussed below.

2) monotonic increase with distance. This means that the closer two

samples are, the more likely they are to have similar values (ie.

dependence).
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3) the steady value or sill that is reached by the function. The value of
the sill is just 202 (or just o? for the semivariogram) which is a
consequence of the covariance going to zero at greater distances

(equation 2.4).

Christensen (1991, pp. 274-275) has shown that the "nugget effect",
or non-zero variance at the origin of the semivariogram, can be reproduced by a
measurement error model. Thus for each realization of a second order stationary
process, the value, Z(s), is made up of three components:

Z(s) = p +e(s) + ey(s)
where n is the mean value of the process

e(s) is the stochastic error process
and eu(s) is the measurement error process.
This measurement error is the only process active when r=0 on the

semivariogram and so y(0) = of,, the measurement error variance.

Monestiez, et al. (1990), note that the value of r in the semivariogram
at which the function reaches the sill, or steady value, is called the range and is
basically the limit of spatial dependence for the process. For higher values of r,
the sill can fluctuate. This may be due to a non-regular phenomenon at larger

distances or lower accuracy in the estimation of mean square difference due to a
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smaller number of pairs at large distances. In time series analysis a rule of
thumb is to look at only the first 25% of lags (Box and Jenkins, 1970, p. 33). For
spatial autocorrelation, this could be modified by defining the maximum distance
on the x-axis of the semivariogram to be 25% of the maximum possible distance.
Journel and Huijbregts (1978, p. 194) recommend that no more than 50% of the
maximum possible distance be used depending on the number of pairs

available.

2.2.4 AR(1) Variograms

Continuing the analogy with time series, comparisons between
simulated covariance functions and semivariograms are now made. Abraham

and Ledolter (1983, p. 195) give the sample autocorrelation function (SACF) as:
b= 3 @- DY @G- r=012.

Also, the variance of these sample autocorrelations can be estimated by:
Var(p,) = (1+ 2p] +..+ 2p2)In

where q is the lag at which p,=0forr>q.

The classical estimator of the semivariogram, from Matheron (1962, as cited by

Cressie, 1993, p. 69), for one dimension and in the notation of time series is:

29 =) ¥ (-2 (2.5)

n(r)
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where n(r) is the number of pairs of z that have lag r.

The expected semivariogram for an AR(1) model with ¢=0.5 is shown
in Figure 2.2, along with the results of three simulations. Figure 2.3 shows the
same model with a Poisson error term. Note that the expected semivariogram is

the same as for the normal case, but the variability is greater.

2.2.5 The Spatial Covariance Function

Ripley (1981, p. 10) defines the covariance between Z(s) and Z(u) for
two points s and u by:

C(s.u) = E[{Z(s) - E(Z(s)){Z(u) - EZ(u))}].
Further, the stochastic process that generates Z is considered to be stationary
under translations or homogeneous if C depends only on the vector h = u-s. If C
depends only on the distance d(s,u) between s and u, then the process is
isotropic, or stationary under rotations about the origin. Homogeneous
covariance functions are identified by C(h), while isotropic covariance functions

are identified by C(r), where r = d(s,u).
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Haining (1990, pp. 90-94) describes examples of isotropic covariance
functions that can be used to specify relevant variance-covariance matrices V.
Since V has to be invertible, the covariance function C(- ) must preserve the
symmetry and positive definite property of V. So:

Q) C(0) > 0 (variance must be non-negative)

(ii) C(r) = C(-r) (symmetry)

(iii) [C(r)] < C(0).

Further, relevant covariance functions for social and environmental data often
have these common features:

(i) C(r) -~ 0 as rincreases

(it) IC(r)l < IC(r ) ifry >,

(iii) C(r) 2 Oforalir.

The following example covariance functions are described by Haining (1990, p.
91).
(i) Triangular correlation function
C)=o?(1-vyr) forr< 1ly

=0 forr>1/y
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(ii) Spherical model
C(r) = o*{1 - (3Ir{/12a) + (Jr{*/2 )} I < a

=0 Ir > o

(iii) Exponential function

C(r) = o? expl-arP] a>0;p>0 (2.6)

(iv) Whittle's model (1954)
C(r) = o® nrK,(nr) n>0
where  K(x) is a modified Bessel function of the

second kind of order 1 (Murphy, 1960, p.339).

Guttorp and Sampson (1994) refer to the Gaussian covariance
function which is the same as equation 2.6 with g= 2:
(v) Gaussian function:

C(r) = o? exp[-ar a>0.

Ecker and Gelfand (1997) have added the Cauchy covariance function to the
choices of parametric models:
(vi) Cauchy correlation model:

C(r) = o [1/(1 + ar?)] a>0. (2.7)
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A variety of methods exist for estimating the parameters of the
variance-covariance function. Zeger (1988) uses only two parameters to specify
this function, o? and p, the first order autocorrelation. These are estimated by
the method of moments, but he indicates that other methods may be necessary,
especially for small sample sizes and large |p|. Kitanidis (1983) presents and
applies three methods: maximum likelihood, minimum variance unbiased
quadratic and minimum norm (least squares). Cressie (1985) shows that
weighted least squares and generalized least squares can be used to estimate
these parameters at the cost of increasing complexity. He also presents a robust
estimator which is a compromise between simplicity and accuracy. Zimmerman
and Zimmerman (1991) compare the performance of seven different versions of
the above estimators and then go on to compare the performance of the ordinary
kriging predictor corresponding to each of the seven estimators. They conclude
that the computationally simpler ordinary least squares and weighted least

squares perform as well or nearly as well as the more complex methods.

The spatial covariance functions considered so far are appropriate for
stationary, isotropic processes. The nonparametric approach of Sampson and
Guttorp (1992) assumes neither spatial stationarity or isotropy. In this approach,
a random function Z(x,t) is observed repeatedly at times t; at a finite number of

sampling stations x,. The spatial dispersions var(Z(x,t) - Z(x,t)) are analyzed
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instead of the semivariogram. Multidimensional scaling and thin-plate splines are
used to obtain nonparametric estimates of var(Z(x;t) - Z(x,t)). The resulting
nonparametric model corresponds to a valid covariance model as described by

Haining (1990, p. 90).

2.2.6 Properties of Semivariogram Parameters

Cressie (1993, p.99) noted that the distributional properties of the
semivariogram parameters defined above "are not well understood for any of the
methods proposed..." These methods include all of the estimators compared by
Zimmerman and Zimmerman (1991). The weighted least squares procedure
from their comparison would yield asymptotically normal parameter estimates if
the semivariogram estimates, v(h) at each lag h, were independent (Jennrich,
1969). As Armstrong (1984) pointed out, since these estimates are from squared
differences of the observed data, the assumption of independence is untenable.
Switzer (1984) proposed that this problem be addressed by linear
transformations of the data to uncorrelated contrasts. This would allow
confidence interval estimates to be generated for the semivariogram parameters

using Jennrich's (1969) asymptotic theory for nonlinear least squares.
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Simulation often offers a reasonable alternative to complex
distribution theory. Cressie (1993, p. 477) noted several small simulation studies
that "examine the finite-sample properties of different types of estimators..." of
both semivariogram parameters, 6 and the coefficients of explanatory variables,
B. These studies have typically been for Gaussian data on a lattice. In general,
they conclude that while B can be estimated with low bias and asymptotic
variances are good approximations of exact variances, 6 has to be bias
corrected and asymptotic variances are not good approximations unless the

spatial dependence is weak.

The Bayesian approach to variogram modelling offers advantages if
previous studies are available that yield prior information about spatial
covariance functions. Cui et al. (1995) used semivariograms from different, yet
comparably polluted, areas to establish prior semivariograms with empirically
determined prior distributions for semivariogram parameters. The inverse of the
sill of the semivariogram was found to have a x*distribution and the range of the
semivariogram had an exponential distribution. Thus, finite sample inference was
possible for the semivariogram parameters. Ecker and Gelfand (1997) used
discrete mixtures of Bessel functions to nonparametrically model variograms
within a Bayesian framework. They point out that this approach yields posterior

distributions for each semivariogram parameter which allows inference without
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the possibly inappropriate reliance on approximate normality assumptions.

Shapiro and Botha (1991) also used a nonparametric method for
semivariogram estimation with mixtures of Bessel functions. Cherry (1997) used
the method to generate nonparametric estimates of the sill of the semivariogram
which he found to be badly biased using simulated random fields. He then
developed a bias correction for the sill using a penalized fitting routine which

resulted in essentially unbiased estimates of the sill.

2.2.7 Prediction

As mentioned above, the main approach to prediction in Spatial
Statistics is kriging. The method introduced above (Section 2.2.1) is known as
simple kriging. Ordinary kriging is similar to simple kriging except that the mean
function is assumed to be unknown but estimable. This method also assumes
that the spatial data is jointly Gaussian, a constraint not often met in practice,
especially for environmental data. Noting that simple transforms to normality may
be difficult to identify in the presence of outliers, Hawkins and Cressie (1984)
proposed the method of robust kriging. The idea is to model the noise process
as a mixture of distributions in which most of the data is Gaussian, but a fraction

of it is from some heavy-tailed "contaminating distribution". This distribution could
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also be normal but with large variance to account for outliers.

There are currently many forms of kriging which are detailed in
Cressie (1993, Ch. 3). Besides ordinary kriging and robust kriging, the two most
important types are universal kriging and median-polish kriging. In universal
kriging, the expectation of the spatial process E[Z(s)] is no longer assumed to be
constant, but rather an unknown linear combination of known functions. These
functions, in turn, could just be values of explanatory variables at the point s.
Median-polish kriging assumes that E[Z(s)] is unknown, but decomposes

additively into directional components.

Other types of predictors exist and have been used in spatial
prediction problems. Laslett (1994) mentioned two alternatives: smooth
interpolators and nonparametric spatial regression. From these, the method of
splines is prominent. In fact, there has been an ongoing debate since the early
beginnings of Geostatistics as to what method of prediction to use. This has led
to studies of the performances of various alternatives to kriging (Matheron, 1967;
Delfiner and Delhomme, 1975; Laslett, 1994) but that method has always
remained popular. Ordinary kriging is used in the present study and no
conclusions are drawn about other methods, except to note that most

environmental applications seem to involve its use.
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2.3 Environmental Applications

2.3.1 Spatially Distributed Environmental Data

The variance-mean relationship known as Taylor's power law (Taylor,
1961) has been used by biologists and ecologists to characterize the spatial
distribution of individual organisms. The relationship is:

s?=am®
where s? is the sampling variance

m is the sample mean

a is a scaling factor
and b is an empirically determined index of spatial distribution

characteristic of a species.

Banerjee (1976) has used this law to analyze the distribution of Trigoniulus
lumbricinus, an lulid diplopod. He has shown that there are intra-specific
variations in b that depend on the sex of the organism. Taylor and Taylor (1977)
have applied this law to terrestrial insects and found that the specific value of b

that characterizes a species hold at spatial scales of 102 km.

King (1981) related the macroinvertebrate distribution in a small river

in South Africa to changes in the physico-chemical environment using stepwise
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muiltiple discriminant analysis. The species composition of various benthic
communities were described. The communities were identified using cluster
analysis. Changes in the communities occurred with changes in substrate and
environmental variables such as pH and total alkalinity. Corkum and Currie
(1987) have observed distributional patterns of black flies (Diptera) throughout
northwestern North America. Using multiple discriminant analysis, they have
shown that latitude and distance from stream source were the most useful for
separating black fly groups. Similarly, Corkum (1989) used cluster analysis to
determine the spatial distribution of benthic invertebrate assemblages at 100
river sites in northwestern North America. She found that mean current velocity

and mean depth at site were most useful in delineating site groupings.

2.3.2 The Importance of Individual Benthic Species

While the use of multivariate techniques to analyze biological species
assemblages has become quite popular (see Section 2.3.1), the reporting of
individual abundance and univariate analysis of species counts is justified if a
single organism is dominant. The amphipod Pontoporeia hoyi has been found to
be dominant in areas of Lake Superior unimpacted by poliution, but was absent
in nearshore areas impacted by copper mining activity (Kraft, 1979; Kraft and

Sypniewski, 1981). Parker (1980) has noted that Pontoporeia hoyi is the
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dominant macrobenthic organism in the Great Lakes and is an important food
source for immature salmonids and other fish species. In nearshore,
southeastern Lake Michigan, Nalepa and Quigley (1983) found that Pontoporeia
hoyi totally dominated (99.6% by number) the amphipod group. The genera
Procladius, was found to be the most abundant of the Insecta class in
nearshore, western Lake Erie by Cole and Weigmann (1983). In 575 samples
from nearshore Lake Erie, Procladius was found most frequently (in 402
samples) of any benthic taxa (Barton, 1988). Pontoporeia hoyi was found in 107
samples. In 1980, Barton and Griffiths (1984) sampled benthic invertebrates at
86 stations in Lake Huron, Georgian Bay and North Channel. They found both
Pontoporeia hoyi and Procladius to be among the most frequently occurring taxa,
depending on depth, exposure to wave action, and local geology (substrate). In
Lake Ontario, Pontoporeia hoyi and Procladius were among the most frequently
occurring taxa at a depth of 20 metres in a study of nearshore benthic

invertebrates (Barton, 1986).

The Great Lakes Water Quality Agreement (International Joint
Commission, 1987) includes a quantitative objective for Pontoporeia hoyi in Lake
Superior to be used as an indicator of ecosystem health:

“the abundance of the crustacean, Pontoporeia hoyi,

maintained throughout the entire lake at present levels of
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220-320/(metres)? (depths less than 100 metres) and 30-

160/(metres)? (depths greater than 100 metres)."
Quigley (1988) identified the opportunistic, intermittent feeding strategy of
Pontoporeia hoyi and suggested that it may explain the exclusive and
widespread abundance of this organism in profundal areas of the upper Great
Lakes, compared to other amphipods. Pontoporeia hoyi constitute approximately
65% of the benthic macroinvertebrate biomass at depths greater than 30 metres
in Lake Michigan (Nalepa, 1989). In Lake Huron, Pontoporeia hoyi was reported
by Shrivastava (1974) to make up over 80% of the total macroinvertebrate
biomass in waters over 90 metres in depth. Poulton et al. (1988) found
Pontoporeia hoyi abundance to be negatively correlated with metal content in

western Lake Ontario sediments.

Bousfield (1989) revised the amphipod genera Pontoporeia by
dividing it into three genera, including Diporeia, a new genus. All organisms
previously identified as Pontoporeia hoyi have since been referred to as Diporeia
hoyi. The sensitivity of Diporeia to cadmium, salinity and temperature has been
examined in laboratory tests by Gossiaux et al. (1992). Diporeia was one of two
dominant taxa in the diet of the slimy sculpin, an important link in Lake Ontario's
food chain (Owens and Weber, 1995). Fratt ef al. (1997) found that Pontoporeia

hoyi made up 17% of the volume of food in burbot less than 350 mm in length
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from western Lake Michigan and Green Bay.

2.3.3 Predictions of Organism Presence and Abundance

Poole (1978) reviewed statistical techniques that have been used to
predict population fluctuations over time. Most of the applications he discusses
are the use of forecasting techniques with classical ARIMA and transfer function
models. He illustrates the forecasts with an example data set of sheep blowfly

egg abundance.

Armitage et al. (1983) appraised a presence-absence scoring system
for running-water sites that assigned weights to families of benthic
macroinvertebrates based on their pollution tolerance. Multiple linear regressions
were then developed to predict site scores based on physical and chemical
variables. The score predictions were tested by calculating the sum of squares of
differences between observed and predicted scores. Moss et al. (1987) used
multiple discriminant analysis to estimate the probability of occurrence of
individual macroinvertebrate species from 28 environmental variables. Armitage
et al. (1987) reduced the number of predictor variables to five and used them to
estimate the probability of occurrence and expected relative abundance of 37

commonly occurring macroinvertebrate families. The technique was applied to
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the problem of assessing the effects of flow regulation on a set of upland

reservoirs in Great Britain.

The approach of Reynoldson et al. (1 997) was to predict membership
in groups of macroinvertebrates based on physical and chemical variables from
the Great Lakes reference site data base of Bailey et al. (1995). Data on
organism abundance from impacted sites could then be compared to the
appropriate reference group based on the physical and chemical data.
Alternatively, the results of physical and chemical sampling could be used to

predict species composition at sites where sediment remediation was proposed.

2.3.4 Approaches to Dependence in Environmental Data

Millard et al. (1985) examined the effect of spatial and temporal
correlations on statistical models used to detect ecological change. They used
the results of Monte Carlo simulations to show that either spatially or temporally
correlated errors can seriously affect the outcome of statistical tests such as
ANOVA. The example of the effect of a nuclear power plant in Lake Michigan on
total phytoplankton abundance at sites within 3 km. of the discharge is used to

illustrate their findings.
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Elliott and El-Shaarawi (1995) analyzed sediment lead loads in the
Niagara River. Their approach was to consider weekly data from two points on
the river, Fort Erie (upstream) and Niagara-on-the-Lake (downstream). Each
point was subjected to time series analysis separately and then the ratio of loads
between the two points was modelied. They found that autoregressive models fit
the data well after adjustment for seasonality and trend. AR(1) models were
adequate for the Fort Erie data and the ratios of loads and an AR(4) model was

needed for the Niagara-on-the-Lake data.

2.3.5 Environmental Applications of Spatial Statistics

Kitanidis (1983) used a set of spatially correlated rainfall data to
illustrate estimation of spatial covariance methods discussed above. This
example is of particular interest because the experimental semivariogram
presented appears very similar to that found for the benthic data used in this
study. The main common feature is many zero or very small squared differences

at all distances.

Upton and Fingleton (1985, Ch. 5) used example data from Johnson
et al. (1968) on the distribution of plant species in California coastal localities and

the Galapagos Islands to illustrate a variety of regression based approaches for
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modelling spatial dependence. These methods included maximum likelihood with
spatially correlated errors and Poisson responses with a logarithmic link. These
approaches are similar to the quasi-likelihood approach with time dependent

errors used by Zeger (1988).

Brus and de Gruijter (1993) compared model-based prediction of
spatial means to design-based estimation. They concluded that even if spatial
autocorrelation is accounted for, model-based predictions are not, in general,
unbiased. To illustrate the two approaches, they applied them to a case study of
areal fraction of soil saturated with phosphorus in the Netherlands. Spatial
structure was modeled using the spherical model as the covariance function as

discussed above.

Gotway and Hartford (1996) used an extension of universal kriging
known as "kriging with external drift" to predict areas of corn fields in Nebraska
where variable rates of nitrogen fertilizer application could be used to reduce
groundwater contamination. The problem was also addressed with cokriging and
the results of the two analyses compared. In this application, the covariate was
yield which can be measured easily and accurately with the aid of a global
positioning system (GPS). Both methods were found to be viable ways to

produce maps for variable-rate fertilizer application. The "kriging with external
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drift" approach was easier to apply, but co-kriging utilized more of the information

available from covariates.

Recently, Gotway and Stroup (1997) extended the methodology of
generalized linear models to spatial statistics for discrete and categorical data.
They show how the methods of quasi-likelihood can be applied to problems of
estimation and prediction with spatially correlated variables. These methods
were illustrated by three example applications: estimation of treatment effects in
agronomic field trials, prediction of weed counts in a corn and soybean field, and
indicator mapping of groundwater levels in a well. The weed count example is
similar to the species count examples analyzed in subsequent chapters of this
thesis. The results of this application were that generalized linear models using
Poisson and negative binomial link functions gave better predictions than

universal kriging.

Ecker and Gelfand (1997) adopted a Bayesian approach to variogram
modelling (see Section 2.2.6). They applied it to example data of scallop catches
(counts) in the Atlantic Ocean off the New Jersey and Long Island coastline. In
this application the count data was log-transformed with the constant 1 being
added to each value to address the problem of observed zero catches.

Exploratory analysis of the transformed data indicated that the assumptions of
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normality and second-order stationarity were justified. Isotropic variogram
models were fit using both parametric and nonparametric methodologies. A
utility-based model choice criterion based on the deviance associated with the
Gamma distribution was introduced to differentiate between models. The best-
fitting parametric model was the Cauchy (equation 2.7) while the best-fitting

nonparametric model was a mixture of five Bessel functions.

Rathbun (1998) used restricted maximum likelihood (REML) and
universal kriging to predict values for salinity and dissolved oxygen in Charleston
Harbor, an estuary on the Atlantic Ocean in South Carolina. Of particular
importance in this study was the selection of a distance metric. Use of Euclidian
distance between sampling sites was found to give less realistic predictions,
especially for salinity. An alternative metric, water distance, was defined as the
shortest distance between two sites that could be traversed entirely by water.
The use of this metric improved the salinity predictions. Dissolved oxygen was
not as sensitive to the choice of the distance metric because the semivariogram

for this parameter had a small range.
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CHAPTER 3: QUASI-LIKELIHOOD APPLIED TO SPATIAL STATISTICS

3.1 Introduction

As noted above, one of the problems with modelling count data, with
or without independence, is the occurrence of zeroes. This makes the Poisson
distribution an attractive alternative, and quasi-likelihood methods even more so,
when no distribution can be specified. In this chapter, the regression model of
Zeger for time-dependent counts will be extended to the case of spatially
dependent data. As an example application, the resulting model is applied to the
data of Upton and Fingleton, using the same spatial covariance structure, but
quasi-likelihood methods. This example, using California plant species data,

originally assumed the errors were Gaussian.

Likelihood ratio tests are used to check the improvements to the
model for plant species counts by accounting for spatial dependence in the case
of least squares models and for a more realistic variance function in the case of
quasi-likelihood models. Cross-validation of models with different distributional
assumptions is used to assess goodness of fit. Quasi-likelihood residuals from

two example applications are examined.
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3.2 Parameter Estimation

3.2.1 Introduction

As discussed in Section 2.1.4, Zeger (1988) generalized the quasi-
likelihood estimating equations to the time series case. This was done through
the variance-covariance matrix:

V=var2)=A+c?AR.A (3.1)
where: A= diag(ul,...,pn)
and R, is an n x n matrix with each j.k element = P.(T)
where: T =[j-K|.

The covariance function is then modeled through the R, matrix. Zeger observed
that this approach can be generalized to a more complex covariance structure. In
this section, the generalization to spatial covariance will be accomplished. First,
the independent case of the models to be used will be presented. Next, the
estimating equations of Zeger will be applied to the example of polio counts
without the approximation used in the 1988 paper. Finally, the equations will be
applied to the species counts example of Upton and Fingleton (1985, Ch. 5)

using an R_ matrix composed of spatial interactions specified by the authors.
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3.2.2.1 Zeger's Polio Count Data

Zeger (1988) illustrated the application of the quasi-likelihood model
to data on the monthly incidence of poliomyelitis in the U.S. for the years 1970 to
1983 (Table 3.1). For comparison to the times series model, he included the
case where independence among the polio counts was assumed. An iterative
weighted least-squares procedure was used to obtain the parameter estimates
B. The resultant variance-covariance matrix for this case is equation 3.1 with R,
= I. The estimating equations reduce to those resulting from the score function
(equation 2:2) of McCullagh (1983) and the parameter estimates f§ are found by
iterating the following equation until convergence:

B = (on'13B v onsap) (au'1ap v+ 2) (3.2)
where Bw is used to evaluate Bon the right-hand side of the equation

= (6n/oB)B +(z- n)
r =exp( n), the inverse of the log link
and n = X, the linear predictor.
The standard errors of the Bs are obtained from the variance-covariance matrix

for the estimates:

V; = (ou'loB V! on/ap)™. (3.3)
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TABLE 3.1

Monthly Number of U.S. Cases of Poliomyelitis for 1970 to 1983 (Reported to the
U.S. Centers for Disease Control and published in Morbidity and Mortality
Weekly Report Annual Summary (1970-1983))

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
1970010013923535

1971 2 2 01 0 1 3 3 2 1 1 5
1972 0 3 1 0 1 4 0 0 1 &6 14 4
1973 1. 0 01 1 1 1 0 1 o 10
1974 1. 010 1 0 1 0 1 o 0 2
1976 01 01 0 0 1 2 0 o 1 2
1976 0 3 11 0 2 0 4 0 2 1 1
1977 1 1. 01 1 0 2 1 3 1 2 4
1978 0 0 0 1 0 1 0 2 2 g4 2 3
1979 3 0 0 2 7 8 2 4 1 1 2 4
1980 0 1 1 1 3 0 0 0 0 1 0 1
1981 1. 0 0 0 0 0 1 2 o 2 00
1982 0 1 01 0 1 0 2 o 0 1 2
183 0 1. 0 0 0 1 2 1 o 1 3 6

56



The parameter o? is estimated by the method of moments. Since var(Z,) =
.+ o?u2, o can be estimated by:
=3 {0 R-a Y 6. (3.4)
The parameter estimates and standard errors from Zeger (1988) are
compared to those obtained by implementing the above equations on SAS/IML
(SAS Institute Inc, 1990) for the independent case (Table 3.2). The estimates are

very similar.
3.2.2.2 California Plant Species Count Data

Upton and Fingleton (1985, Ch. 5) use several example data sets to
illustrate issues that arise when spatial data are analyzed with regression
techniques. The example described in Section 2.3.3 for counts of plant species
at various locations on the California coast was analyzed using a multiple
regression model with spatially autocorrelated errors. Preliminary analysis of the
data (Table 3.3) was done using a multiple regression model with independent,
Gaussian errors (i.e., ordinary least squares (OLS)):

zZ=XpB+ e
where:  zis a 26 x 1 vector of the number of plant species found in 26

California locations
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TABLE 3.2

Parameter Estimates for Zeger Example, Independent Case

Zeger's Results SAS/IML Results

B  Stderr. B Std err.
intercept 0.15 0.10 0.16 0.10
Trend x 10° -4.28 2.06 4.47 2.02
cos(2nt/12) -0.14 0.14 -0.13 0.14
sin(2nt/12) -0.49 0.15 -0.51 0.15
cos(2nt/6) 0.18 0.14 0.18 0.14
sin(2nt/6) -0.42 0.14 -0.43 0.14
&2 0.80 0.75
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TABLE 3.3

The Number of Plant Species and Other Characteristics of 26 California

Locations

Site  Number of Site Area Maximum Latitude
Species (z) (x,) Elevation (x,) (x5)

1 205 134 3950 28.2
2 163 98 4600 29.0
3 420 96 2470 34.0
4 340 84 1560 34.0
5 392 75 2125 33.3
6 235 56 1965 32.9
7 120 22 910 33.2
8 190 14 830 34.0
9 42 2.8 490 27.9
10 40 1.0 635 33.4
11 62 0.9 470 30.5
12 4 0.2 130 29.8
13 12 0.1 360 37.7
14 40 0.02 60 371
15 39 2.5 660 28.3
16 70 1.1 930 34.0
17 83 1.0 670 32.4
18 72 0.5 315 31.8
19 1450 4260 6535 33.0
20 1400 3324 5860 36.2
21 1060 529 2610 38.1
22 1200 1386 3810 37.3
23 640 320 3110 34.1
24 680 110 3985 34.4
25 640 45 930 37.8
26 370 5.9 750 37.9
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Xis a 26 x 4 matrix of explanatory variables composed of four
vectors, x,, a column of ones, x,, the area of the site, x,, the
maximum elevation at the site, and x,, the latitude of the site.

and € isa 26 x 1 vector of independent, identically distributed

Gaussian errors.

Upton and Fingleton (1985, p. 306) observe that while the assumption
of normality of errors may not be unreasonable, it can lead to negative estimates
for count variables. They suggest as an alternative, the Poisson distribution with
site parameters p_, functions of the explanatory variables. This results in
Poisson regression (Diggle et al., 1994, p. 242) which is similar to the quasi-
likelihood approach used by Zeger with a simpler variance function (i.e. var(Z) =
1,). Zeger's approach utilizes a negative binomial variance function (McCullagh

and Nelder, 1983, p. 170).

Equation 3.2 can be used to obtain parameter estimates for any of the
above independent errors models by changing the variance function and, in the
cases of Poisson regression and quasi-likelihood, taking the natural log of the
explanatory vectors, x,, x,, and x,. The logs of the variables are used to allow
comparison to the OLS case. Tables 3.4 and 3.5 present the results of

parameter estimation for each model assuming independent errors. Figure 3.1
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TABLE 3.4

Parameter Estimates for California Plant Species Example Using Ordinary Least

Squares (OLS) (Upton and Fingleton, 1985, p. 275)

oLsS
B Std err.
Intercept -1668.2 370.0
Area 0.1642 0.0502
Max. Alt . 0.1165 0.0281
Latitude 52.5103 10.8296
&2 x 10° 0.0275
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TABLE 3.5

Parameter Estimates for Upton and Fingleton Example Using Quasi-Likelihood

with var(Z) =u, (Poisson Regression) and var(Z) = yu, + ozpﬁ.

var(z) =u, var(Z) = p, + o?p}
B Std err. B Std err.
Intercept -12.839 0.790 -13.335 2.332
log(Area) 0.267 0.014 0.338 0.046
log(Max. Alt.) 0.190 0.042 0.058 0.128
log(Latitude) 4.581 0.173 4914 0.557
&° - 0.050
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compares the predicted counts for each model to the observations. Note the

negative predictions for the OLS model for observations close to zero.

Since some of the OLS predictions are negative, the application of
this model results in inadmissible values. Although the Poisson regression model
results in admissible predictions for all observations, the consequences of
overdispersion in the count data should not be ignored. These include
underestimation of standard errors of regression coefficients and, consequently,
over-statement of significance in hypothesis testing (Diggle et al., 1994, p. 245).
The standard error estimates for Poisson regression in Table 3.5 are
considerably lower than for the quasi-likelihood with negative binomial variance
function case . Also, the estimated coefficient for log maximum altitude would not
be significantly different from zero when the negative binomial variance function

is assumed. These models are compared further in Section 3.3.

3.2.3 Parameter Estimation with Time Dependent Data

The iterative weighted least-squares procedure used by Zeger for the
time dependent case is the same as that used for quasi-likelihood with
independent data (equation 3.2). Autocorrelation is introduced through the

R matrix in equation 3.1. Zeger assumed a first-order autoregressive process,
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so the j.k element of R, was equal to 5] (1), the estimated first lag
autocorrelation raised to the 1= |j - k| th power. As in the independent case, o2
in the variance-covariance matrix can be estimated by a method of moments

(equation 3.4). Similarly, the first lag autocorrelation, P, (1), can be estimated by:

2.(1=62 3 (- )@~ B WY Bl (3.5)

The parameter estimates and standard errors from Zeger (1988) are
compared to those obtained by implementing the above equations on SAS/IML
(SAS Institute Inc., 1990) for the time dependent case (Table 3.6). The estimates
are very similar except for the first lag autocorrelation. The conclusions drawn by
Zeger are supported by the SAS/IML estimates: the evidence for a linear
decrease in the number of monthly polio cases is weaker when autocorrelation is
taken into account. The slight differences in estimates in Table 3.6 are due to the
approximation that Zeger used to avoid the inversion of the large (168 x 168)
variance-covariance matrix. The SAS/IML (SAS Institute Inc., 1990) estimates
were done on an IBM mainframe for which inverting a 168 by 168 matrix

presented little difficulty.

3.2.4 Parameter Estimation with Spatially Dependent Data

Following the analogy of time series analysis, spatial covariance is
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TABLE 3.6

Parameter Estimates For Zeger Example, Time Dependent Case

ZegersResults ~  _SAS/ML Results

g  Stderr. f Stderr.

Intercept 0.17 0.13 0.17 0.15
Trend x 10 -4.35 268 -3.80 2.94
cos(2nt/12) -0.11 0.16 -0.12 0.17
sin(2nt/12) -0.48 0.17 -0.49 0.18
cos(2nt/6) 0.20 0.14 0.19 0.14
sin(2 nt/6) -041 0.14 -0.43 0.14
a° 0.77 0.77

p.(1) 0.77 0.55
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incorporated into the quasi-likelihood estimation process through the R, matrix.
In Section 3.2.3, this matrix was n x n with each element equal to (1), where
T =|j - k|. Since this corresponded to an AR(1) process, the SAR model
(equation 2.3) is now introduced to account for spatial dependence and R, has
the form (Haining, 1990, p. 81),

R, = (- oW)(I - pW))"

where W is the spatial interaction matrix as discussed below.

In Section 3.2.2.2, the example of Upton and Fingleton was modelied
using the quasi-likelihood approach assuming independence of plant species
counts. Now the W matrix from Upton and Fingleton (1985, pp. 291-292) will be
used to illustrate the application of quasi-likelihood to the spatially dependent
case. The spatial interactions were accounted for by a 'two-part distance-based"

weights matrix:

w;=d?, d; < k, (3.6)

w;=0, d; > K, (3.7)

W, =w'ﬁlz Wi, (3.8)
J

where k is the ‘cut-off distance and d; is the distance between sites i and j.
Upton and Fingleton assumed that the weight that the error value at site i carries
with respect to the value at site j decreased non-linearly with increasing intersite

distance until the distance k where the autocorrelation mechanism ceases to
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function. Part of the W matrix is illustrated in Table 3.7.

As for the time dependent case, the maximum quasi-likelihood

equations are written:

(on/aB) V'{B.8(B)} (z- ) =0

where 8 are now the parameters o and p which are treated

separately and not estimated with weighted least squares

and V is the variance-covariance matrix, equal to
A + GA((1- oW)'(1 - pW))'A.
Once again, n = exp(XB) where the vectors of X are the logs of the three

explanatory variables plus a vector of 1's for the intercept.

Equations 3.1-3.3 are used to obtain the parameter estimates and
standard errors, with the exception of p, which was assumed to be equal to
-0.72 as found by Upton and Fingleton (1985, p. 292). The results of parameter
estimation, with and without accounting for spatial dependence are presented in

Table 3.8. Except for an almost threefold decrease in B,. the coefficient for

maximum altitude, the effect of accounting for spatial dependence on the

parameter estimates is slight. These results are similar to the those of Upton and
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TABLE 3.7

W Matrix (Proximity Values) Used for California Sites

ROW/COL 1 2 3 4 25 26
1 0 0.0067 0 0 0 0
2 0.1928 0 0 0 0 0
3 0 0 0 0.2200... 0 0
4 0 0 0.2406 0 0 0
25 0 0 0 0 0 0.4953
26 0 0 0 0 0.5096 0
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TABLE 3.8

Parameter Estimates for Upton and Fingleton Example Using Quasi-Likelihood

With and Without Spatial Dependence

Independent Case Spatial Dependence Case

-

B Std err. ¢ Std err.
Intercept -13.335 2.332 -13.389 2.145
log(Area) 0.338 0.046 0.361 0.056
log(Max. Alt.) 0.058 0.128 0.020 0.146
log(Latitude) 4.914 0.557 4.988 0.452
a° 0.050 0.067
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Fingleton for the multiple linear regression case (Table 3.9). In this case, the

main difference caused by the assumption of spatial dependence is to lower 52,

which, in turn, lowers the standard errors of the parameter estimates. For the

quasi-likelihood case, 32 increases and the changes in the standard errors of the

parameter estimates are not as large. The similarity in the effect on the values of
B is to be expected, because the estimating equations used for f given by
Upton and Fingleton are identical to the iterative weighted least squares used by
Zeger ( Equation 3.2) for the case of the log linear model. Upton and
Fingletons'equations are:

B = (XV'X)" X'V 2).
These are the same as Zeger's equations, since dn/dB = X. The differences in
the effects on the standard errors for the two models (least squares vs. quasi-
likelihood) are due to the estimation procedure for determination of &2 and the a
priori specification of p for the quasi-likelihood model which may not be optimal.
The topic of the best spatial covariance function for quasi-likelihood models is

the subject of Chapter 4.
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TABLE 3.9

Parameter Estimates for California Plant Species Example Using Multiple Linear
Regression With and Without (OLS) Spatial Dependence (Upton and Fingleton,
1985, pp. 275 and 292)

OLS Autocorrelated Errors
B Std err. B Std err.
Intercept -1668.2 370.0 -1618.9 173.56
Area 0.1642 0.0502 0.1628 0.0361
Max. Alt . 0.1165 0.0281 0.1040 0.0224
Latitude 52.5103 10.8296 51.8470 4.8765
32 x 10°® 0.0275 0.0153
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3.3 Goodness of Fit

3.3.1 Introduction

Cressie (1993, p. 498) points out that sensible model-selection criteria
are needed for the case of spatially dependent data. The likelihood functions for
Gaussian models are readily available and so, likelihood ratio tests are a
possibility. For quasi-likelihood models, no actual likelihood function is specified.
However, McCullagh and Nelder (1983, p. 170) list quasi-likelihood functions
associated with some simple variance functions. The quasi-likelihood

corresponding to the variance function (n+ o?u?) from Zeger's model is from the

negative binomial likelihood. Cressie (1993 pp. 432-433) defines the auto
negative binomial spatial model but notes ihat it is "almost never possible to
construct a closed-form likelihood" for this type of model because of the
intractability of the normalizing constant. In order to compare spatial models with

different distributional assumptions a different type of procedure is needed.

In the original example with no spatial dependence, Upton and
Fingleton used ordinary least squares to fit the number of species to the three
explanatory variables. They then used maximum likelihood with spatially

correlated errors to estimate the parameters for the dependent case. The main
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effect of accounting for spatial interactions was to change the standard errors of
the estimates, thus more realistically describing the uncertainties with the fit of
the model. Upton and Fingleton (1985, p. 306) then suggest the Poisson
distribution with site parameters u;, functions of the explanatory variables, as an
alternative to guarantee non-negative counts. As noted previously, this is similar

to the quasi-likelihood approach of Zeger, with a simpler variance function.

Accounting for spatial dependence in the least squares model
amounts to changing the variance function from V = 521 in the independent

case, to V = o*((I - pW)'(I - oW))™. The significance of this change can be

assessed by the likelihood-ratio test as suggested by Upton and Fingleton (1985,
p. 303). Accounting for overdispersion in the quasi-likelihood model amounts to
changing the variance function from V = A in the case of Poisson regression, to
V =A + o?A? where A = diag(y, ,...,n_) as in equation 3.1 (the negative binomial
variance function). A likelihood-ratio test for comparing two variance functions
with discrete observations is described by McCullagh and Nelder (1983, pp. 212-

214). These tests are applied to the models for the Upton and Fingleton example

in this section.

It is reasonable to ask if the overall fit has improved by proceeding

from least squares to quasi-likelihood. Because different models are involved, a
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measure of goodness of fit that will allow for different modelling assumptions as
well as assess the fit is needed. Cross-validation as developed by Stone (1974)
and Geisser (1975) has been suggested by Cressie (1993, p. 101) as a tool to
employ in this situation. In Chapter 5, this procedure will be used to compare
different variogram models. In this section, cross-validation is used to compare

models with different distributional assumptions.

3.3.2 Likelihood-Ratio T
3.3.2.1 Least Squares, Dependent vs. Independent

Upton and Fingleton (1985, p.293) report that the expiained
proportion of the variation in observed California plant species counts increases
from 0.876 to 0.918 when spatial dependence is accounted for in the multiple
linear regression model. The significance of this increase can be tested with a
likelihood-ratio test (Upton and Fingleton, 1985, p. 304). The test compares a
pair of nested models which are identical except for k restrictions. In this case,
the single restriction is that o= 0 (i.e., the errors are uncorrelated). The null
hypothesis is that the restrictions are true. Since it is more convenient to work
with log-likelihoods, the test statistic is 2{In(L,) - In(Lz)} which is asymptotically

distributed as xZ, where Ly is the likelihood of the unrestricted model and L, is
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the likelihood of the restricted model.

The likelihood function for ordinary least squares assuming the
residuals, €, are MVN(0, 621), is:
L = (1/(c"(2n)")exp((- €’ ))/2 5?)
where €e=2z2-XB.
The log maximum likelihood for the restricted model is thus:
In(Lg) = -(n/2)In(2n8?) - (1/252)(&’€)
where é =z-X§p.
Cressie (1993, p. 92) gives the negative log-likelihood for least squares with
spatially correlated errors as:
-1 = (n/2)Iin(2m) + (1/2)In(|V)) + (1/2)(e'V ' €)
where v =c?((l- pW)(I - pW))"
and W and p are as defined in Section 3.2.3.
The log maximum likelihood for the unrestricted model is thus:

).

In(Ly) = -(n/2)In(2m) - (1/2)In( | V] ) - (1/2)(&'V
Using the results from the example in the above equations, In(L,) = -161.26,
In(Lg) = -167.62, and 2{in(L,) - In(Lr)} = 12.73 which is greater than xfm, 1=
10.83. Therefore, the null hypothesis is rejected and the improvement due to

accounting for spatially dependent errors is highly significant.
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3.3.2.2 Quasi-likelihood, Poisson vs. Negative Binomial

Although the Poisson assumption that Var(Z) = E(2) is traditionally
used with count data, it is often inconsistent with empirical evidence (Diggle et
al., 1994, p.164). With biological data, over-dispersion (Var(Z) > E(2)) is more
often the case. Application of the quasi-likelihood approach requires the
specification of the relationship between the mean and the variance. If the
Poisson assumption is inadequate, some way to test the significance of changing
variance functions is needed. The likelihood-ratio test for comparing two variance
functions with discrete observations described by McCullagh and Nelder (1983,

Pp. 212-214) is applied here to the Upton and Fingleton example.

McCullagh and Nelder define the log-likelihood ratio statistic, A, for
two variance functions, V(1) and V,(11) with deviances D, and D,, given the
same link and linear predictor (see equation 3.2), as:

A =nIn(D,/D,) + ﬁ; In(V;(Z)V,(z))
where  D(z;i) = -2{i(;2) - I(z;2)}

I(7a;2) is the maximized log-likelihood at B

I(z:2) is the maximum log-likelihood achievable for an exact fit

(ie., § = 2).

The null hypothesis is that the second variance function is as good as the first.
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For discrete distributions, McCullagh and Nelder (1983. p.214)
recommend replacing the variance function by V'(z),
where Vi(z)=2z+c for Poisson

V'(z) = (z; + ¢) + o?(z, + ¢)? for negative binomial

and c = 1/6.

The Poisson and negative binomial both have the same link functions (n=Inp)
and linear predictor (n = XB). McCullagh and Nelder (1983, p.25) give the
deviance of the Poisson distribution as:
D) = 2} [2in(@/n,) - @ - 1)}
For the negative binomial distribution, the log quasi-likelihnood (McCuliagh and
Nelder (1983, p.170) is:
(@:z) = f, Zin(n,Ku, +K) + K In(ki(p, +K))
where k= 1/c2.
so:
D(z:n) = -2{(:2) - I(z;2)}
=23 [2in(i, K, +1) + K In(Ki(z, + k)]
- [zIn(z/(z + k) + k In(k/(z; + K)]}
=20} [zin(z(n, +Ki(n, (2 + k)
+KIn((n, + Kz + K.
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Using the results of the Upton and Fingleton example in the above
equations, D, = 556.10 (negative binomial), D, = 65.69 (Poisson), i In(V,(2)) =
133.50, i: In(V,(z)) = 195.20, and A = 6.16 which is greater than x> T0s,1 =3.84
but less than X.o1, 1 = 6.63. Therefore the null hypothesis is rejected and the
improvement due to the use of the negative binomial variance function is

significant.

3.3.3 Cross-Validation to Assess Fit

Cross-validation is used to assess the fit of the two quasi-likelihood
models ( with the Poisson and the negative binomial variance functions) vs. the
OLS model. The procedure used follows that suggested by Cressie (1993, p.
102) and applied by Carroll and Cressie (1996). The basic idea is to iteratively
delete one observation at a time from the data set and then estimate ﬁ_, which
are the parameters based on one less observation (Stone, 1974; Geisser, 1975).
B_ is used to predict z_, the missing observation. The prediction residuals,
(z_-Z.), are standardized by dividing by the square root of o _, the root mean-
square prediction error for one less observation. The standardized prediction
residuals (R,) are averaged and compared for each model. R, should be close to
zero. The root mean-square standardized prediction residuals (RMSR;) are also

compared and should be close to one. The prediction sum of squares (PRESS)
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statistic (Draper and Smith, 1981, p. 325) is the same as RMSR, without

standardization by o2_ and should be as small as possible.

In Chapter 5, the mean-square prediction error, o?_, is determined
from the kriging equations. For independent models,
. o;. = Var(z_-2)) = Var(z_-fix_B_))
where  fx (B.)= xf_ for OLS

fix_(B_))= exp(x_f_) for quasi-likelihood
and X_ is the explanatory vector for the deleted observation.

Therefore, the root mean-square prediction errors used to standardize the
prediction residual, (z_-Z_), for each model are:
0,.= V(82 (1+x/(X'X)'x ) for OLS
0,.= V(exp(x_B.) (1+exp(x_B)x/(X'V-1X)"'x)) for QL (Poisson)
o,.= V(exp(x_B.) (1+exp(x_B_)&2+x/(X'V-1X)"'x_)) for QL (neg. bin.)
where V =A+ &*A? for the negative binomial variance function and V = A
for the Poisson variance function
and X, A and &° are as defined previously except with one less
observation.
The quasi-likelihood root mean-square prediction errors are approximate

because they are obtained from a Taylor Series expansion.
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Table 3.10 contains the results of the cross-validation for the
independent models. The OLS model has the best R; and RMSR; but the
PRESS is the worst due to the poor fit for low values (see Figure 3.1). The quasi-
likelihood model with Poisson variance aiso has good R, but the RMSR; is very
large (indicative of the underestimation of the variance). The quasi-likelihood with
negative binomial variance had the worst R, but values around 0.1 are not
indicative of a severe problem. The other cross-validation statistics are
intermediate to the results of the other two models. These model will be

compared to the dependent models developed in Chapter 5.

3.4 Quasi-likelihood Residuals

3.4.1 Zeger's Polio Time Series

The residuals resulting from Zeger's model for the independent and
dependent cases are presented as histograms in Figures 3.2 and 3.3,
respectively. In both cases, the distribution of residuals appears non-Gaussian.
This is due to the heavy right tails which are caused by a few observations which
are probably outliers. Zeger recognizes the observation responsible for the
residual at +11.5 as an outlier, but chose to conduct the analysis with the

complete data set. The effect on the residuals of accounting for time
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TABLE 3.10

Cross-Validation Results for iIndependent Models of California Plant Species

Data.

Model R, RMSR, PRESS
oLS -.020 1.095 187.8
QL (Poisson) .048 5.428 167.2
QL (negative binomial) 107 1.572 178.2
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dependence is a very slight increase in the skewness (from 2.701 to 2.747) and

kurtosis (from 11.979 to 12.299) of the residuals.

3.4.2 California Plant Species

The quasi-likelihood residuals for the independent case are presented
as a stem and leaf plot in Figure 3.4. These plots are used instead of histograms
since there are not enough observations to form groups. Because the
observations in this example span almost three orders of magnitude (Table 3.3),
the residuals appear to have several outliers. This will have implications for the
estimation of the variogram in the next chapter because two or three high values
will dominate the observed mean-squared differences. If the quasi-likelihood
residuals are normalized by division by {1, the stem and leaf plot (Figure 3.5) is
much more Gaussian. In fact, when the Shapiro-Wilk W statistic is calculated for
these 26 residuals (Shapiro and Wilk, 1965), the null hypothesis of normality
cannot be rejected. The W statistic is the ratio of the best estimator of the
variance to the sum of squares estimator of the variance and for these residuals

its value is 0.967.
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FIGURE 3.4 Stem and Leaf Plot For Quasi-Likelihood Residuals, California Plant
Species Example, Independent Case
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FIGURE 3.5 Stem and Leaf Plot For Normalized Quasi-Likelihood Residuals,
California Plant Species Example, Independent Case
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CHAPTER 4: MODELLING SPATIAL AUTOCORRELATIONS

4.1 Introduction

The autocorrelation structure in the models of Chapter 3 was
specified a priori. In Zeger's model, the first lag autocorrelation of the residuals
was found by a method of moments and then an AR(1) structure was assumed
for the rest of the lags, ie. p (1) = (1) . In Upton and Fingleton's California
plant species model, the autocorrelation of the residuals was a parameter to be
estimated by maximum likelihood and the structure of the variance-covariance
matrix was determined by the interaction matrix, W, which had elements w;
based on the inverse squared distance between sites. In spatial statistics, the
usual way to determine spatial autocorrelation structure is by fitting a

semivariogram, as reviewed in Chapter 2.

in this Chapter, the variogram is used to identify autocorrelation
structure for use with the quasi-likelihood model with dependent errors. It is first
applied to Zeger's polio example, as a further illustration of the similarities
between time series analysis and spatial statistics. It is then applied to Upton and

Fingleton's example to continue the idea of replacing the regression with
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dependent errors model with the quasi-likelihood model. Finally, it is applied to
Reynoldson's benthic data. In all cases, the semivariogram of residuals is used

because of non-stationarity.

4.2 Time Series Models With Variograms

4.2.1 [ntroduction

As discussed in Chapter 2, there is no reason that variograms cannot
be used to identify autocorrelation structure in time series data, instead of the
usual autocorrelation function (ACF) and partial autocorrelation function (PACF)
(Cox, 1981, Diggle, et al, 1994, pp. 51-54). Figure 4.1 is the semivariogram for
Zeger's polio data for 39 lags. It exhibits all of the characteristics described in
Chapter 2: the steep ascent to a "sill" at about lag 5, after which it is roughly
constant. Because the polio data is non-stationary, the semivariogram of
residuals (Figure 4.2) is used because it reflects more accurately the features in
the data. Also, since Zeger used iterative weighted least squares to solve for the
parameter estimates, ﬁ updating the value of p in each iteration based on the
current values of @, an analogous procedure using the variogram should be
applied, if the comparison of approaches is to be maintained. This is developed

in the next section.
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4.2 .2 Fitting the Semivariogram

As reviewed in Chapter 2, there is a variety of semivariogram fitting
procedures in the literature. The weighted least squares procedure of Cressie

(1985) uses an iterative process to minimize the quantity:

szl INChG)) (¥ (hG)) v (h(),B) - 1)? (4.1)
over 6
where k is the number of lags to be used
[N(h(j))| is the number of distinct pairs of
observations at lag h(j)
Y (h(j)) is the observed semivariogram at lag h(j)
Y (h(j),8) is the assumed theoretical (fitted)
semivariogram at lag h(j)
and 0 is a vector of fitting parameters.
The classical estimate of the semivariogram, v (h(j)) (equation 2.5), can be
replaced in the above equation, by the robust estimate:
v(h()) = {(1/IN(h(i))I)N(§(;) ) |2, - g °}* /2(0.457 +0.494/IN(h())),

which is more efficient.

Zimmerman and Zimmerman (1991) report that either estimate for the
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semivariogram, when fitted by minimizing the above quantity (equation 4.1),
sacrifices little to more complex methods when used in conjunction with ordinary
kriging. Since the semivariogram estimators, ¥ and y, are moments estimators
and since the weighted least squares procedure avoids distributional
assumptions (Rathbun, 1998), the above process was implemented. Cressie
(1993, p. 99) suggests that the above equation (4.1) can be implemented using
the SAS procedure NLIN with the Gauss-Newton method (Hartley, 1961). The
equations from NLIN (SAS Institute Inc., 1982, pp. 22-23) were written in

SAS/IML (SAS Institute Inc., 1990) for use with the quasi-likelihood model.

4.2.3 Quasi-likelihood Model with Variogram

In the polio count example from Zeger, &2 and p_(1) were estimated
by the method of moments (equations 3.4 and 3.5) at each iteration of the least
squares procedure. These equations can now be replaced by the method for
fitting the semivariogram of Cressie (equation 4.1) and estimates of 32 and P (1)
from this fit can be used instead. The theoretical variogram model

v(1,8) = 8,(1- 63),
was assumed. éz corresponds to ¢_(1), and é, , the sill of the variogram, is an
estimate of the variance of the counts, var(Z,). Since var(Z) = p, + &%p? in

Zeger's model, an estimate of o2 is
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and g2 =) am.
In the notation of the previous section, 8 = (8,,p_(1)) and the optimal 8 is used
for each iteration of the weighted least squares procedure for parameter

estimation.

Residual semivariogram plots for both the classical estimator, y, and
the robust estimator, y, were examined and the classical estimator appeared to
be smoother and easier to fit. This may be due to the equal spacing of the polio
data series and the relatively large number of observations for each lag (n=167
for t=1, n=166 for 1=2, etc.). Table 4.1 gives the results of the parameter
estimates of Zeger's model using the fitted semivariogram to obtain p.(1)and &2
for each iteration. The results of the method of moments estimates are repeated
here for comparison. Table 4.2 gives the correlations between the parameter

estimates from the asymptotic variance-covariance matrix for § for both cases.

The results are very similar, with slight changes mainly in the standard
error of the estimates. The main difference is in the estimates of (1) and &°
which is due to the use of more lags in the variogram case. The maximum

number of lags could also be a fitting parameter which would probably further

94



TABLE 4.1

Parameter Estimates for Zeger Example, Time Dependent Case, Semivariogram

(k=9) vs. Method of Moments

B Stderr. B Stderr.

Intercept 0.17 0.14 0.17 0.15
Trend x 10 -3.89 2.72 -3.80 2.94
cos(2nt/12) -0.12 0.1 -0.12 0.17
sin(2ntt/12) -0.49 0.17 -049 0.18
cos(2t/6) 0.18 0.13 0.19 0.14
sin(2rt/6) -0.43 0.10. -043 0.14
&? 0.67 0.77

5, (1) 0.52 0.55
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TABLE 4.2

Correlation Matrices for Parameter Estimates for Zeger Example, Time

Dependent Case, Semivariogram (k=9) vs. Method of Moments

a) Semivariogram
Bo B, B, B, Bs Bs
B, 1
B, 0.0636 1
B, 0.0413 0.0181 1
B; 0.1318 0.0641 0.0919 1
B, -0.0717 0.0071 0.0020 -0.1157 1
Bs  0.1286 0.0364 0.1148 0.0640 -0.0123 1
b) Method of Moments
Bo B, B, Bs Bs Bs
Bo 1
B, 0.0551 1
B, 0.0340 0.0177 1
B; 0.1165 0.0625 0.0841 1
B, -0.0657 0.0074 0.0016 -0.1070 1
B 0.1163 0.0354 0.1070 0.0604 -0.0112 1
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improve the estimates. The number of lags used for this example was nine.

The correlation between most of the estimates is small, except for
between f, and B, and B and between f, and f3, and f3. Thereis a
moderately large negative correlation between {3, and B,. The effect of using
the semivariogram is to increase the correlation between the estimates slightly in

most cases.

4.3 Variograms for Spatial Residuals

4 3.1 Introduction

In the transition from time series analysis to spatial data analysis,
several new issues become important. The most obvious is the addition of one
or more dimensions that needed to be accounted for in the analysis. With each
dimension comes the possibility of anisotropy, i.e. the variogram depends on
distance and direction, which was not a problem with time series. Further, unless
the spatial data is on a uniform grid, the idea of a "lag" loses meaning and must
be replaced with a differently defined geographic distance. The definition and
measurement of distance may not be straightforward as reviewed in Chapter 2

(i.e. Rathbun, 1998).
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In this section, two examples of spatial count data will be used to
illustrate some of these issues as they affect the variogram for quasi-likelihood
residuals. Alternate spatial covariance models are used to account for spatial
autocorrelation in the examples of a) Upton & Fingleton's plant species data and

b) Reynoldson's benthic data.

4.3.2 California Plant Species Counts

This example, originally from Johnson, et al. (1968), was reviewed in
Chapter 2 and the data were modelled using quasi-likelihood in Chapter 3. The
use of quasi-likelihood was shown to improve the prediction residual sum of
squares (PRESS) compared to ordinary least squares (for cross-validation), but
the goodness-of-fit was also improved (for a likelihood-ratio test) when spatial
dependence was accounted for using a somewhat arbitrary spatial
autocorrelation structure. It may be possible to further improve the model for this
example data by fitting a semivariogram to the quasi-likelihood residuals as was

done in Section 4.2.

As illustrated in Table 3.7, Upton and Fingleton use a 'two-part
distance-based' weights matrix or W matrix to account for spatial interactions.

The weights are based on the inverse square of the geographic distance
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between two sites (equations 3.6-3.8). Knowing w; from Upton and Fingleton and
selected d; from Johnson et al. (1968), it is possible to calculate all of the
intersite distances, d,, from:

ij?

dii = J_(let W;J) -1
j=1

where the sum, Z w; (€ d; < k) is calculated using any known distance from a
site i to another s;tej and the corresponding w; (ie., E w;= 1/w,jd2,7). The
calculated d; may then be used to construct the com;Iete intersite distance
matrix, D, and then used with the residuals from the quasi-likelihood model for

California plant species in Chapter 3 to estimate the variogram as in Section 4.2.

Figure 4.3 is the semivariogram for the quasi-likelihood residuals for
the California plant species counts. The semivariogram was fit using the
weighted least squares (equation 4.1) and a special case of the exponential
model (from combining equations 2.4 and 2.6):

Y(h,8) = 6, + 6,(1 - exp(-h6,)).

Due to the variability of the species counts, the residuals are not
stationary. As mentioned in Chapter 3, the residuals are not Gaussian either. In
the maximum likelihood case, the autocorrelation was estimated to be negative.

In this situation, Cressie (1993, p. 62) recommends that the following wave
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model be fit to the semivariogram:

v(h,8) = 8, + 8,(1 - 8,sin(h/8,)/h).

This results in the semivariogram shown in Figure 4.4. Using the wave model to
fit the semivariogram allows the quasi-likelihood parameters, {3, to be estimated
more precisely (Table 4.3). Comparing these results to the independent case
from Chapter 3 (Table 3.8), there is very little difference among the Bs. For the
exponential model, some of the standard errors seem to be quite large. Table
4.4 shows the correlation matrix for the s for the exponential and wave modeis.
There are extremely large negative correlations between ﬁo and (33 and
between B, and B, for both models. This is the same type of correlation
structure observed by Upton and Fingleton for their OLS model and is due to
colinearity in the data and confounding of the explanatory variables. From a
model selection viewpoint, it may be advisable to drop the maximum altitude
variable, x,. However, the variables from the original example have been

retained for comparison purposes.

Cressie (1993, pp. 64-66) discusses the relative variogram in which a
spatial process is only stationary within limited subregions. He notes that if a
simple relationship of mean to variogram exists, it may be possible to combine

estimates. One such relationship has been described by Journel and Huijbregts
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TABLE 4.3

Parameter Estimates for Upton and Fingleton Example Using Quasi-Likelihood

with Spatial Dependence and Exponential and Wave Models for Semivariogram

_Exponential Case Wave Case
B Std err. B Std err.

Intercept -12.744  2.951 -13.221 2.267
log(Area) 0.344 0.050 0.330 0.046
log(Max. Alt.) 0.031 0.142 0.075 0.129
log(Latitude) 4.794 0.754 4.854 0.275
8, 0 0
82=(8,-pyp? 0.072 0.050
8, 0.054 5.119
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TABLE 4.4
Correlation Matrices for Parameter Estimates for Upton and Fingleton Example
Using Quasi-Likelihood with Spatial Dependence and Exponential and Wave

Models for Semivariogram

a) Exponential Model

By 1

B, 0.5156 1

B, -0.4964 -0.9446 1

B -0.9569 -0.2710 0.2245 1
b) Wave Model

Bo B, B B,
B 1
B, 0.5472 1

B, -0.5392 -0.9434 1
B, -0.9483 -0.2830 0.2456 1
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(1978, pp. 187-190) and is called the proportional effect. They use this model to
define the relative variogram:

2v7 (h)/ i
where Z is the spatial process of interest

j indexes the subregions that are to be combined

M is the mean of the process within subregion j.

If the true mean is replaced by the estimated mean in the above
definition of the relative variogram, then a variogram of normalized residuals can
be estimated from the residuals defined in Section 3.4.2 that is analogous to
Journel and Huijbregts' definition. So the variogram of the stationary process, Y,
combined over various subregions where the nonstationary process, Z, is in
effect is:

2Yy(h) = var(Z(s + h) - Z(S))/(E (Z(s)))*
where  E(Z(s)) = i = exp(XB).

These estimated means depend on s through X, the vector of explanatory

variables.

Figures 4.5 and 4.6 are "relative” semivariograms of the normalized

quasi-likelihood residuals using the exponential and wave models, respectively.
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The quasi-likelihood parameter estimates are shown in Table 4.5 and the
correlation matrices for these estimates are shown in Table 4.6. The estimates
are highly correlated as in Table 4.4. The wave model for the semivariogram
(Table 4.2) seems to give a slightly better fit, but the models can be best

evaluated by cross-validation (Chapter 5).

4.3.3 Benthic invertebrate Counts

4.3.3.1 Introduction

The example data set described in Sections 1.4 and 2.3.4 provides
many interesting case studies of spatial dependence of counts of
environmentally significant benthic species. In this section, the quasi-likelihood
model of Chapter 3 and the variogram models of the previous sections will be
applied to two sets of benthic species counts to illustrate some of the issues
involved in spatial analysis of environmental counts data. Reynoldson, ef al.
(1995) have identified explanatory variables that affect benthic community
structure at reference sites in the Great Lakes. Of the over 300 reference sites
established in this project, 79 are located in the Georgian Bay and North

Channel regions of Lake Huron (Figures 4.7 and 4.8). Since the site density of
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TABLE 4.5

Parameter Estimates for Upton and Fingleton Example Using Quasi-Likelihood

with Spatial Dependence and Exponential and Wave Models for "Relative"

Semivariogram

X ntial Wave Case

B Std err. B Std err.

Intercept -13.209 3.845 -13.373 3.235
log(Area) 0.338 0.073 0.327 0.068
log(Max. Alt.) 0.054 0.204 0.084 0.187
log(Latitude) 4.884 0.956 4.881 0.754
8, 0 0
6%=6,-1/ 0.151 0.121
8, 0.098 5.171

NOTE: T/ =1m 3. 1/p,

i=1
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TABLE 4.6
Correiation Matrices for Parameter Estimates for Upton and Fingleton Example
Using Quasi-Likelihood with Spatial Dependence and Exponential and Wave

Models for "Relative" Semivariogram

a) Exponential Model

Bo 1
B 0.5472 1
B, -0.5392 -0.9434 1
B, -0.9483 -0.2830 0.2456 1
b) Wave Model
By B, B, B
B 1

B, 06343 1
B,  -06457 -0.9407 1
B,  -0.9431 -0.3765 0.3564 1
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some areas of these regions is high, spatial dependence of observed counts

among sites was likely.

4.3.3.2 Independent Case

Two species of considerable ecological importance, Diporeia hoyi and
Procladius were modelled separately to check the appropriateness of the
procedures being considered. Histograms of mean counts (n=5, see Section 1.4)
for sites in Georgian Bay and the North Channel are presented in Figures 4.9
and 4.10. First, the quasi-likelihood model from Chapter 3 was applied assuming
spatial independence. Explanatory variables were selected using a stepwise
procedure from among several physical and chemical measurements. The
results are reported in Table 4.7. The resultant models are intuitively reasonable.
Of the explanatory variables in Table 4.7, depth is probably the most directly
related to cause and effect, while the rest are surrogates for geochemical and
aquatic conditions (Reynoldson, personal communication). Diporeia hoyi prefer
deeper, cooler waters, while Procladius tend to be found at shallower, warmer
sites. The residuals for these models are presented in Figures 4.11 and 4.12.
Although the residuals appear symmetric, they are not Gaussian. This is due to
the heavy tails on both sides of the center of the histogram. These tails are

caused by anomalous values which are outliers in the sense that they do not fit
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TABLE 4.7

Parameter Estimates for Diporeia hoyi and Procladius Using Quasi-Likelihood

and Assuming Spatial Independence

B Stderr. B Stderr.
Intercept 10.39 3.91 -3.563 205
log(Depth) 0.866 0.19 -1.36 0.20
log(Al,O,) -2.50 0.67 3.03 0.87
(Aluminum Oxide)
log(K,0) 301 074 - -
(Potassium Oxide)
log(alkalinity) -1.98 0.89 - -
o2 0.688 0.40
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the model (Figures 4.13 and 4.14). However, they are real observations for which
the abundance of the benthic species does not agree with that predicted by the
model. Robust methods may be required to handle these observations in a

satisfactory manner.

Table 4.8 shows the correlations between the parameter estimates for
the independent case. As in the California plant species example, some of the
parameter estimates are highly correlated. For Diporeia hoyi, B, and #, and f,
and fis are highly correlated. For Procladius, ﬁo and Bz are highly correlated.
Once again, the explanatory variables are probably confounded and the data are
colinear. The high correlations with the intercept parameter may indicate that it is
not needed in the model. Note the relatively low correlations with 61 , the depth
coefficient, which intuitively would be independent of geochemical or water
quality effects for reference sites. If the focus of this research was on variable
selection, it may be necessary to find explanatory variables that are more

orthogonal.

4.3.3.3 Spatially Dependent Benthic Counts - Direction

Besides the explanatory variables for the 79 sites in Figures 4.7 and

4.8, accurately determined latitude and longitude (via the global positioning
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TABLE 4.8

Correlation Matrices for Parameter Estimates for Diporeia hoyi and Procladius

Using Quasi-Likelihood and Assuming Spatial Independence

a) Diporeia hoyi

B, 0.1346 1
B, -0.4050 00583 1

B, 0.2778 -0.4306 -0.6240 1

B, -0.9390 -0.2288 0.0991 -0.1533 1

B, -0.9705 -0.3441 1
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system - GPS) are available. This allows the construction of the intersite distance
matrix, D, directly by converting the coordinates to distances:

_ 2 . ,2
dii = V Alal:"’Alonq

where A = (lat, - lat) * 111.198

lat

and Bong = (long;-long,) * 78.867.
The constants in the above equation convert degrees of latitude (lat) or longitude

(long) to kilometres.

Further, this location information can be used to check for anisotropy
of the variogram by sorting pairs of sites according to their compass orientation
(ie. N-S vs. E-W). In this section, two pairs of orientations will be checked for
anisotropy: N-S vs. E-W and NW-SE vs. NE-SW. Semivariograms are estimated
using only site pairs that have the orientation of interest. This is determined as

follows.

For N-S vs. E-W, the absolute value of the ratio, 4, /4, is
compared to 1.0. If the value is greater than 1.0, then the N-S distance between
sites is greater than the E-W distance and the pair of sites is considered to have
a N-S orientation. If the value is less than 1.0, the opposite is the case. For NW-
SE vs. NE-SW, the sign of the ratio, 4, /4 is examined. If the sign is

t " long

negative, the pair of sites is considered to have a NW-SE orientation (ie. in the
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second or fourth quadrants of the unit circle), while if the sign is positive, the

opposite is true.

Figures 4.15-4.18 are the estimated semivariograms for Diporeia hoyi
counts using the different orientation of site pairs. For the first three orientations
(Figures 4.15-4.17), the estimated semivariograms and the fits using the
exponential model are quite similar. This is an indication that anisotropy is not
pronounced. For the NE-SW orientation (Figure 4.18), the exponential model
could not be fit to the estimated semivariogram because the outliers have too
much weight. This is a problem for checks of this nature, because dividing the
observation pairs into two separate groups decreases the number of pairs at
each distance and increases the importance of outliers. Table 4.9 gives the
number of pairs for each distance group by orientation. Journel and Huijbregts
(1978, p. 194) recommend that the number of pairs in each distance group be at
least 30. As Table 4.9 shows, this is not usually achieved for these
semivariograms. It was not possible to consistently fit the same exponential

model to the estimated semivariograms for all of the above orientations.
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TABLE 4.9

Number of Site Pairs for Semivariogram Estimation by Orientation

Distance (km) #N-S #E-W TOTAL #NW-SE #NE-SW TOTAL

2 2 3 5 3 2 5
4 14 15 29 12 17 29
6 21 29 50 22 28 50
8 25 25 50 27 23 50
1 21 18 39 12 27 39
13 19 31 50 15 35 50
16 21 21 42 17 25 42
18 12 23 35 13 22 35
21 17 19 36 10 26 36
23 11 21 32 11 21 32
26 14 16 30 8 22 30
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4.3.3.4 Spatially Dependent Benthic Counts - Models

Since anisotropy does not appear to be too great a problem, at least
for Diporeia hoyi, all site pairs were used to estimate the semivariogram (Figure
4.19). The resulting model parameters are shown in Table 4.10, with the
estimates for the independent case from Table 4.7 repeated for comparison. The
main effect of including spatial dependence in the model is to reverse the sign
for 34, the coefficient for log alkalinity which is highly correlated (negatively) with
B, which also reversed sign. The standard error of the parameter estimates also

increase slightly and the need for an intercept is questionable.

Two additional improvements have been considered for the Diporeia
hoyi model. Although the fit of the exponential model in Figure 4.19 is
reasonable, there is an obvious influence of outliers. The robust semivariogram
estimator, v, discussed in Section 4.2, often gives better estimates in the
presence of outliers. Another possible improvement is the use of water distance
as defined by Rathbun (1998). If the sites in Figures 4.7 and 4.8 are plotted in a
GIS, such as SPANS, a utility can be used that will report the distance between
any two points along any path. If the path selected is the shortest distance by
water (ie. around islands and peninsulas), then the distance reported will be

Rathbun's water distance. Using this distance will have the effect of increasing
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TABLE 4.10

Parameter Estimates for Diporeia hoyi Using Quasi-Likelihood for Cases With

and Without Spatial Dependence

Independent Dependent
B Std err. B Std err.

Intercept 10.39 3.91 -6.14 4.74
log(Depth) 0.866 0.19 0.805 0.19
log(ALO,) -2.50 0.67 -1.62 0.78
log(K,0) 3.01 0.74 1.89 0.75
log(alkalinity) -1.98 0.89 1.76 1.08
a2 0.688 0.623
8, - 0.0885
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the interaction distance between many of the sites. Table 4.11 gives the number
of pairs for each water distance group. The resulting semivariograms from these
two improvements are shown in Figures 4.20 and 4.21. Figure 4.22 is the
semivariogram that results when both improvements are combined. The
parameter estimates are presented in Tables 4.12 (previous results repeated for

comparison) and 4.13.

The use of the robust variogram estimator, y, seems to have the
expected effect of lowering the variance estimates for all parameters of the
quasi-likelihood model. The use of the water distance has the effect of lowering
both parameter estimates and standard errors. Whether this will lead to better
predictions is best decided by cross-validation (Chapter 5). Tables 4.14 and 4.15
show the correlation matrices for the parameter estimates. The different choices

of distance and variogram model have little effect on this structure.

The effect of these changes in the model for a second species,
Procladius, are examined here. Figures 4.23 - 4.26 are semivariograms for
quasi-likelihood residuals of Procladius counts with and without the robust
semivariogram estimator and with and without water distances. Common to all
four figures is the fast approach to the sill of the semivariogram with a range of

about 4 km. This is in contrast to Diporeia hoyi, which had a range of about
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TABLE 4.11

Number of Site Pairs for Semivariogram Estimation with Water Distance

Lag Number Average Water Distance (km) Number of Site Pairs

1 1.33 3
2 3.78 25
3 6.01 39
4 8.73 45
5 11.17 42
6 13.83 45
7 16.04 31
8 18.78 26
9 20.99 32
10 23.44 19
11 26.11 15

Minimum Water Distance = 0.8 km

Maximum Water Distance = 65.0 km
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TABLE 4.12

Parameter Estimates for Diporeia hoyi Using Quasi-Likelihood for Cases With

and Without y and Distance from Latitude and Longitude

Y "
B Std err. B Std err.

Intercept -6.70 4.01 -6.14 474
log(Depth) 0.747 0.15 0.805 0.19
log(Al,0;) -1.51 0.61 -1.62 0.78
log(K,0) 1.78 0.74 1.89 0.76
log(alkalinity) 1.91 0.92 1.76 1.08

&2 0.311 0.623

6, 0.0577 0.0885
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TABLE 4.13

Parameter Estimates for Diporeia hoyi Using Quasi-Likelihood for Cases With

and Without y and Water Distance

—y ¥

B Std err. B Std err.
Intercept -2.60 3.21 -2.45 4.02
log(Depth) 0.681 0.13 0.758 0.17
log(AL,O,) -1.23 0.51 -1.41 0.67
log(K,0) 1.55 0.52 1.75 0.68
log(alkalinity) 0.86 0.73 0.83 0.92
&2 0.185 0.456
8, 0.0979 0.1271
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TABLE 4.14

Correlation Matrices for Parameter Estimates for Diporeia hoyi Using Quasi-

Likelihood for Cases With and Without y and Distance from Latitude and

Longitude
a) With y
By B, B
Bo 1
B,  0.0309 1
B, -0.3141 -0.1393 1
B, 02981 -0.2058 -0.7234
B, -0.9612 -0.0617 0.0677
b) With ¥
B B, B,
B 1
B,  0.0363 1
B, -0.3324 -0.1067 1
B,  0.3025 -0.2087 -0.7252
B, -0.9521 -0.0817 0.0574

B3 Ba
1
-0.1617 1
By B
1
-0.1496 1
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TABLE 4.15

Correlation Matrices for Parameter Estimates for Diporeia hoyi Using Quasi-

Likelihood for Cases With and Without y and Water Distance

a) With y

B, 0.1119 1
B, -0.3678 -0.0472 1

B, 0.2859 -0.3151 -0.6658 1

B, -0.9532 -0.1723 0.1003 -0.1619 1

B,  0.1009 1

B, -0.3622 -0.0358 1

B, 0.2848 -0.2976 -0.6853 1

B, -0.9481 -0.1694 0.0786 -0.1447 1
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30 km. Examining the semivariograms, it may be that a more appropriate
variogram model could be found. However, it is more likely that spatial
autocorrelation for Procladius, if present, is occurring at a scale smaller than
observable for this data set. Tables 4.16 and 4.17 present the parameter
estimates. No intercept (B, ) was used in the log linear model because that
parameter was found to be not statistically different from zero. There are very
little differences among the estimates. There is a large negative correlation

between the parameter estimates in all cases.
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TABLE 4.16

Parameter Estimates for Procladius Using Quasi-Likelihood for Cases With and

Without y and Distance from Latitude and Longitude

_y v

B Std err. B Std err.
log(Depth) -1.275 0.18 -1.402 0.21
log(Al,0,) 1.534 0.18 1.662 0.22
&2 0.201 0.514
8, 2.1863 1.6946
Corr(B,.B,) -0.9705 -0.9719
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TABLE 4.17

Parameter Estimates for Procladius Using Quasi-Likelihood for Cases With and

Without y and Water Distance -

— -

_y —_
B Std err. B Std err.
log(Depth) -1.314 0.19 -1.408 0.22
log(Al,0,) 1.572 0.19 1.668 0.22
&2 0.283 0.542
8, 1.4228 1.6636
Corr(B,.B,) -0.9710 -0.9721
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CHAPTER 5: SPATIAL PREDICTION

5.1 Introduction

This topic was reviewed briefly in Chapter 2 (2.2.6). The main tool for
prediction in spatial statistics is kriging, as introduced in Section 2.2.1. The
different types of kriging have been developed to deal with various problems that
occur with spatial data such as non-stationarity, non-Gaussian data and outliers.
The variogram, as described in Chapter 4, is the key to deriving the kriging
equations. It contains the information on the strength and structure of spatial
autocorrelation at different distances or lags. The information carried by
autocorrelation at a new site, s,, at known distances, d, from the sites s,, is
needed to predict a new value. The analogy with time series continues here.
Suppose a prediction, or forecast, was desired at time t=n+|, where n is the
number of observations and | is a positive integer representing the number of
lags into the future the forecast will project. If | is large, then there will be little
autocorrelation effect and the model for the mean, n, will be the forecast, under
the assumption of stationarity. If | is small, then some adjustment to the forecast
will have to be made for autocorrelation. This is what the kriging equations and

the variogram accomplish for spatial predictions.
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In this Chapter, kriging is used to make predictions. The quasi-likelihood
model with dependent errors is used to handle the non-stationarity and the
variogram is used to model the autocorrelation structure of the residuals. First,
simple kriging and ordinary kriging will be developed in some detail following
Cressie (1993, Ch. 3). Then, median polish kriging will be described so that the
analogy can be made with the approach taken here; i.e. kriging of residuals to
allow predictions at new sites for which explanatory variables are available. The
approach will be applied to the examples from the previous chapter and the
prediction error will be estimated. The models developed so far will also be

cross-validated.

5.2 Kriging

5.2.1 Simple Kriging

As introduced in Chapter 2, there are many types of kriging. They are
all based on finding an optimal predictor that minimizes the squared-error loss:
L(Z(s0).P(Z;S0)) = (Z(s,) - P(Z:S0))°
where L(-)is the loss function
P(Z:s,) is the prediction for the process Z(- ) at site S,

and Z(s,) is the true value of the process at site s,
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The predictor, p°(Z;s,) which minimizes the expectation:
E((Z(so) - P(Z:8,))12)

is E(Z(s,)|Z), the conditional expectation.

Cressie (1993, p. 109) notes that this conditional expectation is not
always linear. However, if the best linear predictor that minimizes the expectation

is sought, the results are the kriging equations. If the predictor is:

n

PZiso) = ) hZ(s) +k,
i=1
L,....I,,k are sought such that E(Z(s,) - p(Z;s,))? is minimized. This is equivalent to
minimizing over /,,....1 .k

ElZ(so) - X 1 Z(s) - k7] = var@(s,) - 3 | Z(s))

i=1 i=]
| n(s) - k)?

"o 3
where u(s) = E(Z(s)).
The optimal solution is found by differentiating this expectation with respect to
l...I..,k and equating the result to zero:

k=n(s)- 3 I n(e),
and I =c's™?
where ¢ = (C(s,,Sy),....C(S,.S,))'

and Z is an n x n matrix whose (i,j) element is C(s;s).

Therefore, the optimal linear predictor is:
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P(Zsy) =c'zsHZ- n) + n(sy)
where B =(u(s),....n(s,)-
The minimized mean-squared prediction error is:

o?(s,) = C(s,.8,) - €' 2 *¢.

This type of spatial prediction is known as simple kriging and it assumes
that the mean function, u(- ) is known. Since the semivariogram is related to the
covariance function by:

v(s) = C(0) - C(s),
knowledge of the variogram and the mean function allows prediction via simple

kriging.
5.2.2 Ordinary Kriging

In practice, the mean function is rarely known. Like the variogram, the
mean function is usually estimated from the data. Ordinary kriging assumes that
the mean function, 41, is unknown, but, as in simple kriging, the predictor is still
assumed to be a linear combination of observed values. An additional constraint,
that the coefficients of the linear predictor sum to 1 (ii; A; = 1), is introduced to
guarantee unbiasedness:

E(p(Z'so) = n = E(Z(s,)) for all .
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The optimal predictor that minimizes the squared-error loss over

E A, Z(s;) subject to }u: A; = 1, is the ordinary kriging predictor. Equivalently,
i=1 i=1

the quantity
E@(s) - 3o 8, ZE)7-2m(3 A, - 1)
i=1 i=1

(6.1)

is minimized with respectto A ,...,A_, and m (a Lagrange multiplier that ensures

the constraint on the A s will be met). If the variogram of the process is:
2vy(h) = var(Z(s + h) - Z(s)),
then the quantity to minimize becomes:

YA v(E-8) + 23 A, v(se-8) -2m( Yo A, - 1).
1 i=1 i=1

i=1 3=

To see this, note that since i: A; = 1, the following relations hold:

i=1

Z(s, = Yo A, Z(so)
i
Z(s,) ﬁ; A, 2(8) = f; A, Z(so) Z(s)

RVECIED 3D WO,

i=1 j=1

Jf; N ZE)P= 3 Y AL, Zs)

i=1 j=1

Note that equations 5.5 and 5.6 are equivalent, since only the subscript is
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different. Also,
(A 26 = 3 XA, 26) 26) (5.7)

and  (Z(s,) - i A; 2(8)) = Z(s,)? - 22(s,) E A, Z(s) + {2: A ZE)F  (5.8)

which is the expansion of the expectation in eqation 5.1. Substituting equations

5.3-5.7 into equation 5.8,
(sy) - z; A, Z(s)) = f; A, Z(So) - 2): A, () Zs)
+ f; A, Z(s)? - 1/2{; Ji; A, 2(s)?
; 22 Jf; A, Z(s) Z(s)
* il Jf; A, 28))
=2 }: A, (Z(80)? - 22(s,) Z(s) + Z(s))/2 -
123 Jf; A, (2(8)? - 22(s) Z(s) + Z(s)?)}

=2 2. Y AN @(s) - )P+ 230 A, (Z(so) - Z(s))R2
i1 591 i=1
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Taking the expectation as indicated in equation 5.1 yields equation 5.2. If
equation 5.2 is now differentiated with respect to A and m and equated to zero,
the optimal A for ordinary kriging, A, can be obtained from:

Ao = To'Yo

where A = (A

1o A M),

Yo =(Y(So - $1)s-... Y(Sp - S,), 1)’

and Ty, =Y(Si-8), fori=1,...n, j=1,...,n
=1, fori=n+1, j=1,...,n
=0, for i=n+1, j=n+1

The minimized mean-squared prediction error, or kriging variance, is:

Gi(se) = A,y = gz\ v(So-8) +m. (5.9)

5.2.3 Median-Polish Kriging

The two types of kriging described so far both rely on the following
decomposition of the process Z(- ):
Z(s) = u(s) + 5(s), s € D,
where u(-) = E(Z(-)) is the mean structure
and 5 (- ) is the error structure.
If u(-) is known, then the optimal linear predictor of Z(s,) is the simple kriging

estimator defined in Section 5.2.1. If (- ) is unknown, it may still be possible to
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estimate n(- ) in terms of its directional components. For example, in two
dimensions, assume:

B(s) = a +c(x) + r(y), s=(xy) eD.
If the s, are on a grid, c(x) can be thought of as a column effect, r(y) as a row

effect and a as an overall effect.

In median-polish kriging, the median-polish estimates (s are found
from the data and the residuals, Z(s) - #(s;) = R(s,), are kriged using ordinary
kriging (Section 5.2.2). The median-polish kriging predictor of Z(s,) is:

Z(s) = B(s) + Ree) = B(s) + 32, RE).

The kriging variance associated with Z (s,) is defined as the ordinary-kriging
variance of the median-polish residuals. This quantity, which Cressie (1993, p.
191) calls &2, is the same as equation 5.9 of the previous section when the
residuals are kriged instead of the raw data. This is justified as follows:

(Z(sa) - Z(S0)) = (Z(so) - B(so) - R(so)

= (R(so) - R(sy))

and therefore:

ElZ(so) - Z(s,)] = E[(R(s,) - R(s0))?]

Conditional on {, the kriging variance is:

E{(R(S,) - R(so))? & () } = o2
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5.3 Kriging with Quasi-likelihood Residuals

5.3.1 Introduction

Cressie (1993, p. 190) points out that the median-polish residuals of the
previous section can be thought of as a new spatial data set that has been
detrended to allow ordinary kriging. Further, the analogy is made to time-series
analysis where stationary models are fit to data after detrending. The quasi-
likelihood model of Chapter 3 is another parameterization of the mean function,
n(-), and the variograms fit in Chapter 4 were all based on residuals analogous
to median-polish residual. It seems natural to attempt to make predictions based
on the quasi-likelihood model for the mean and residuals that have been

subjected to ordinary kriging.

Gotway and Hartford (1996) describe a similar approach known as
"kriging with external drift." In this case, the mean function, u (') is a linear
combination of the explanatory variables and is incorporated into the universal
kriging process in place of the usual functions of location. If the quasi-likelihood
model of the present study were replaced by an ordinary least-squares model

using the explanatory variables, the result would be "kriging with external drift."
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5.3.2 Cross-Validation to Assess Fit

Cross-validation is used to assess the fit of the two quasi-likelihood
models, with and without correlated errors. The procedure used was described in
Section 3.3.3. The results presented in that section are repeated here for
comparison. When an observation is deleted for the case of the spatially
dependent model, one row and one column must be deleted from the W or D
matrix, since there will be one less interaction. The corresponding row and

column must also be deleted from r o and the deleted values form Y-

5.3.3 Comparison of Quasi-Likelihood Models

5.3.3.1 California Plant Species Example

When the above cross-validation procedure was carried out for the
quasi-likelihood models of the California plant species example, the results in
Table 5.1 were found. The quantity R,, the standardized prediction residual
defined above, should be close to zero. RMSR,, the root mean square prediction
residual, should be close to one. PRESS, the prediction sum of squares, should

be as small as possible. Based on this procedure, the quasi-likelihood model
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TABLE 5.1

Cross-Validation Results for Quasi-likelihood Models of California Plant Species

Data (With Table 3.10 Included for Comparison)

Model R, RMSR, PRESS
oLs -.020 1.095 187.8
QL (Poisson) .048 5.428 157.2
QL (neg. bin.) 107 1.572 178.2
Expcnential -.058 1.100 181.2
Wave -.032 1.152 166.1
Relative Exp. -.833 2.924 176.2
Relative Wave -.531 1.580 164.3
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with dependent errors with the semivariogram modeled by the wave function is

the preferred model.

5.3.3.2 Benthic Counts Example

The cross-validation described above was also carried out for the
models for benthic counts described in Chapter 4. In this case, the exponential
model was used for the semivariogram for all parameterizations involving spatial
dependence, but two different procedures for estimating intersite distance as
well as the classical and robust estimator of the semivariogram were compared.

Table 5.2 gives the results.

All of the spatial dependence modeis have better cross-validation
statistics than the independent case, except for the robust semivariogram which
has a slightly larger root mean-square standardized prediction residual (RMSR)).
Clearly, the lowest prediction sum of squares occurs for the case of water
distance. Since the classical variogram model had lower R, and RMSR,, it was
used in the following section to illustrate predictions and in Chapter 6 for

simulations.
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TABLE 5.2

Cross-Validation Results for Quasi-likelihood Models of Benthic Count Data

(Diporeia hoyi) .
Model R. RMSR, PRESS
Independent 112 1.932 9.290

Latitude/Longitude Distance:

Classical Est. -.041 1.231 7.024
Robust Est. -.064 2.045 7.071
Water Distance:

Classical Est.  -.041 1.269 6.435
Robust Est. -.066 2.005 6.275
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5.3.4 Predictions

5.3.4.1 Introduction

As discussed in Chapter 1, the need to establish biologically-based
clean-up targets is the motivation for a predictive model of benthic counts. In this
section, the procedure for predictions at new sites will be described. As for the
case of cross-validation, ordinary kriging of quasi-likelihood residuals will be
used, but block kriging will also be discussed as an alternative. Predictions will
be made for Diporeia hoyi abundance at two sites in Georgian Bay and the North
Channel of Lake Huron and prediction intervals will be constructed. Finally, the
potential for adapting the predictive method to the multivariate case will be

discussed.

5.3.4.2 Prediction at New Sites

Predictions at a new site require information about the new site and its
spatial relationship to existing sites. In particular, the explanatory variables at the
new site must be available to obtain the estimate of the mean. Then, as was
done with cross-validation, the vector Y,, is constructed using the variogram and

the location information about the new site. In this case, the entire r, matrix is
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used. The predicted value for a new site, s,, is:
2(s9)= B(s) + Y- A, R@)

where fi(s,) = exp(x,'B)

X, = the vector of explanatory variables for site s,

B = the quasi-likelihood parameter estimates

A, = the kriging coefficients based on the variogram

and the location of site s,

and R(s;) = the quasi-likelihood residuals at sites s..
The kriging variance, o2, is still the result (equation 5.9) from Section 5.2.2. A
nominal 95% prediction interval for Z(s,) can be constructed (Cressie, 1993, p.
122):

A ={Z(s,) - 1.960,(s,), Z(s,) + 1.96 5, (o).

5.3.4.3 Predictions Using Block Kriging

The ordinary kriging equations and quasi-likelihood parameter
estimates are estimated using measured data from the sampled sites, s,. The
explanatory variables, x; and the measured counts, Z(s,) are assumed to be point

estimates. As described in Chapters 1 and 2, this is not really the case because
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the samples come from a "box corer" which has a known area and volume.
Since the volume is small compared to the volume of lake bottom being

sampled, this difference is usually ignored. However, the predictions made using
these point estimates may be representative of a volume of sediment whose
magnitude cannot be ignored. For example, if 30,000 m® of contaminated lake
bottom is removed from a harbour, a prediction of the average Diporeia hoyi
count over the entire new lake bottom may be desired. The explanatory variables
may vary substantially over this volume and distances from the known sites, s,
may depend on what location within the volume is used. In this case, the use of

block kriging should be considered.

Cressie (1993, pp. 124-125) describes the general problem of kriging
when the data and predictor have different supports. In the example described
above, the data have point support, while the predictor may require block
support. In this case, the ordinary kriging equations are modified to:

Ao = T3Yo(B)
and  0;(B)=A,'v,(B)- v(BB)
where v (B)=(vy(B,s,),...,y(B,S,),1)'

Y(B,s) = f Y (v - s)dv/|B|
and v(B,B) = f sz(u - v)dudv/|BR.

This is a case of block kriging. If the geometry of the block, B is known, and is
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significant relative to the geometry of the sites, s, then block kriging should be
considered. In the case of predictions for benthic counts, the geometry of B will
not be known and the surface of explanatory variables within B would have to be

predicted also.

5.3.4.4 Predictions for Diporeia hoyi Counts in Georgian Bay

In Georgian Bay and the North Channel of Lake Huron (Figures 4.7 and
4.8), there are three areas where contaminated sediments have accumulated
and impacted the benthic community. These areas are Spanish River, Severn
Sound and Collingwood Harbour. If some type of sediment remediation (such as
dredging or in situ treatment) is attempted, a target Diporeia hoyi abundance for
the area will be desirable to measure success of the effort. Since the explanatory
variables for the quasi-likelihood are based on the physical and geological
characteristics of the area, it should be possible to predict the abundance of

diporeia for typical locations within these areas.

Since several reference sites are located within Severn Sound (Figure
4.7), impacted sites within this area would be candidates for prediction via block
kriging. As mentioned in the previous section, this would require prediction of the

explanatory variables. The other two sites, Collingwood Harbour (Figure 4.7) and
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Spanish River (Figure 4.8), would be candidates for kriging at a point since they

are both some distance (ie. 5 - 10 km) from the nearest reference site.

The procedure for obtaining predictions at these points is to measure
the distance from nearby reference sites to the point for which the prediction is
required. The water distance was measured using GIS as in Chapter 4.
Representative values of the explanatory variables at the site to be predicted are
also required. However, these can be based on previous measurements since
these variables are more representative of geological and physical conditions
than they are of contaminant loading. The prediction equations of Section 5.3.4.2
are then applied for the sites requiring prediction. The values of the explanatory
variables used for each site are presented in Table 5.3 and the resuits of the

predictions are found in Tabile 5.4.

The predictions in Table 5.4 are dominated by the effects of the
explanatory variables. However, in the case of the Spanish River site, a negative
adjustment was made due to the residuals. The interpretation of these
predictions is straightforward. For Collingwood Harbour, when clean-up is
complete, Diporeia hoyi counts should average between 5 and 26 counts per
sample. For Spanish River, even when clean-up occurs no diporeia are expected

because of the high aluminum levels in sediment and low alkalinity
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TABLE 5.3

Values of Explanatory Variables at Predicted Sites

Variable Collingwood Harbour nish River

Depth 22 metres 22 metres
Ai,O, 5.7 mg/g 11.4 mg/g
K,0 2.8 mg/g 2.8 mg/g
Alkalinity 75.7 mg/l 17.2 mg/i
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TABLE 5.4

Results of Predictions at Two Sites

Variable  Collingwood Harbour

Z(s,) 15.92
A(so) 15.74
Z; A, R(s) 0.18
o, (Se) 5.35

Upper C.I. (95%) 26.4 (two-sided)
(for Z(s,))
Lower C.l. (95%) 5.4 (two-sided)

(for Z(s,))

0.08
1.69
-1.61
5.76

11.4 (one-sided)
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concentrations in the water. in the case of Diporeia hoyi, the upper confidence
limit is probably not that important because Diporeia hoyi is an indicator of clean

sediment. This limit may be more important with nuisance species.

These predictions have been made to illustrate the application of kriging
with quasi-likelihood residuals. Because the goal of using biologically based
clean-up standards is establishment of a healthy benthic community, more than
one species will normally be of interest in prediction. This would require a
multivariate analog to the model used here. An alternative would be to krige
discriminant function scores instead of counts. However, if more than one
discriminant function were important for a community, then this procedure would
also require a multivariate prediction. Clearly, this is an area for further

exploration.
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CHAPTER 6: ASYMPTOTIC RESULTS AND SIMULATIONS
6.1 Introduction

The standard errors of the parameter estimates § in the models
developed in Chapters 3 and 4 are all based on V;, the variance-covariance
matrix for the parameter estimates. Zeger (1988) has shown that Jn(B-B) is
asymptotically muitivariate Gaussian with zero mean and variance-covariance
matrix:

v, = 210 (3'IaB V"' oulap Mn)".

He then simulated 100 realisations of the parameter-driven model to check if
these results hold. In this chapter, the asymptotic results of Zeger will be
extended to the case of spatially dependent data and simulations will be
conducted using the cross-validated models from Chapter 5 for the case of
spatially dependent benthic counts. The results of the simulations will be
compared to the asymptotic results to check agreement with asymptotic
normality for the parameter estimates, 8. The characteristics of the distribution

of simulated results for the variogram parameters will also be discussed and

compared to results of similar studies.
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6.2 Asymptotic Results For Spatially Dependent Quasi-Likelihood Parameters

The following theorem is presented as a proposition in Zeger (1988)
and the proof is sketched for the case of generalized estimating equations in
Liang and Zeger (1986). The proof is analogous to proofs for asymptotic
normality of maximum likelihood estimates (e.g. Zacks, 1971, pp. 246-247). The
definitions used here are the same as those used throughout Chapters 2 - 5, but

are repeated here for clarity and emphasis.

As in Section 2.1, letz = (z,,...,2,), X = (X, ...X,)", p = (Byr o v -rm,)s
V=var(Z)=A+ c®> AR A,
where Z; are data values (counts) corresponding to Z,,....Z, dependent
random variables, not necessarily identically distributed, but each
having a distribution in the exponential family
Xis an n x p matrix of explanatory variables or a design matrix
B = E(2) = exp(XB)
B isap x 1 vector of unknown, fixed parameters
V is a general symmetric positive definite matrix whose elements are
functions of p
A =diag(p,, ..., H,)

€ is an unobserved, stationary process with E(e;) =1, var(e;) = o
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and R_is ann x n correlation matrix that describes the dependence
among the ¢,.

The following regularity conditions (modified from Zacks, 1971, p.194)
must be satisfied in order for Theorem 2, below, to hold:

(i) The parameter space B is either Euclidian r-space E” or a

rectangle in E®.
(i) n'1aB V{B,B(B)}z - p) exists for each B, j = 1,..., p and all B.
(iii) E,(8/0B[own'IoB V{B.B(B)}z - w))) exists and is finite for
all B, B;,1=<i,j<pandall B.
(iv) The matrix [ou’/3B V{B.8(B)} ou/dB] is positive definite for
all BeB.

In addition, the following conditions are needed for Lemmas 1 (Serfling, 1980, p.
27) and 2 (Yasui and Lele, 1997) , below, to hold:

(C1) The series 2 p; must converge, where o is the correlation

between sites separated by distance i.
(C2) The series 21 oﬁ (log i)*/i# must converge, where cﬁ is
the varianc; at site i.

(C3) E(Y)=E(Z- n;)=0foreachieD.

(C4){ Y% =(z - u,)*;i eD}is uniformly integrable.

(C5) there exist 5> 0 and K < = such that p‘l’yl; sepy (1) s K(log r)®+9),

where
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pf,,u. iep) (1) is the maximal correlation coefficient and is equal to:

sup sup [corr(x,,x,)|
D,,D,cD x,€L, (o] Y. iEDl] )
d(Dl'DZ) >r x,€L, (O’[Yi,' ieDz] )

D is the set of sampling locations
dis a metricon D
and  Ly(-) is the set of L, random variables measurable with respect to

the o-algebras.
The following lemmas are needed for the proof of Theorem 2, below.

LEMMA 1 (Serfling, 1980, p. 27). Let Z,, Z, ..have means ¥, 1,, ..., variances
o3, 03...., and covariances Cov(Z, Z) satisfying
Cov(zll Z]) s pj-i Oi Cj(iSj),

where O<p,stforallk=0,1,...

If the series i p, and Z-: o%(log i)?/i? are both convergent, then the following
i=1

i=1

holds:
1/n£ Z -1n), u, -0 with probability = 1.
1=1 i=1
Proof See Serfling (1970).
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LEMMA 2 (Goldie and Greenwood as stated by Yasui and Lele, 1997). If a
random field {Y;; i D} satisfies the following conditions: (1) E(Y,) = 0 for each i
€D, (2) {Y?;i €D} is uniformly integrable, (3) pf,u. sepp (1) < K(log ry®® with
some K < = and 5> 0, then

(@) V,, snC(sup, var [Y;]) with some C < =, and

(b) Zmn Y;/,/V, converges in distribution to the standard Gaussian

distribution as n ~«,

where p‘[’,y. zep) (1) is the maximal correlation coefficient and is equal to:

sup sup lcorr(x;,x,)|
D,,D,cD  x,€L,(0[Y,;i€D,])
d(Dl, b,)>r x,€L, ([ Y;; iEDzl )

D is the set of sampling locations

dis ametricon D

D, =D is a set of n spatial locations where observations are sampled

L(-) is the set of L, random variables measurable with respect to the
c-algebras

and Vo=var[ ) Y]

Proof See Goldie and Greenwood (1986a, 1986b).
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LEMMA 3. (The Cramer-Wold Device) InR®, Y, converges in distribution to Y if
and only if each linear combination of the components of Y, converges in

distribution to the corresponding linear combination of the components of Y.
Proof See Billingsley (1968, pp. 48-49).

LEMMA 4. The asymptotic distribution of U{B,8}/,/n is multivariate Gaussian
with zero mean and covariance matrix:
17 (3w'13B V'Cov(Z)V a/aB n)

where U{,6} is the score function defined previously.

Proof Let v''.. be the elements of V-'. U{B,68}is a p-dimensional random vector

whose components,

U{B.8} = on'/aB, V' (- p) = 3 3" v, 0u,/aB(z - 1,),

i=1 k=1

each involve the sum of the residuals, z, -n, (ie. E Y; from Lemma 2).

i€D,
Assuming that the conditions of Lemma 2 are satisfied for each component,
U{B.6)/n is asymptotically normal with variance:

var(U{B.8)/yr) = 21 ™var(}" 3" v, 3n,/aB(z - 1,))in

i=1 k=1
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n

= ,l).l.f.f[; var (Z,) V'nV'i 01, /0B; 90, /0B,

i=1 k=1
23" 4 UZZ)Y 3 Vv, o0/, /B0 (6.1)

1 smei isl k=1

By Lemma 3, U{B,8}//n is multivariate Gaussian with zero mean and
covariance matrix:
LI (n/I9B VF'Cov@Z)V ap/a In)

which is a p x p matrix formed from equation 6.1.

THEOREM 2. Let 6 be a Vn-consistent estimate of 8 depending on z and B.

Let 8 be the solution of:

U(B) = U{B,6(B)} = an'/aB V(B.6(B)}z - n)

where U(B) is the score function of the quasi-likelihood function for the case
of dependent errors (Sections 2.1.4 and 3.2.3)
and 8(B) are parameter estimates such as 42 and p or the sill and range

of the semivariogram.

Suppose ¢ is a stationary process. Under regularity conditions (i) -
(iv) and given that /n (é-e) = Q,(1) for some fixed 6, /n (B-B) is asymptotically

multivariate Gaussian with zero mean and variance-covariance matrix:
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Vs = 210 (3n'13B V"' au/ap in)".
Proof Let O,(+) and o,(- ) refer to the rate of convergence in probability. Let X =
0,(Y,) as n - if X,/Y, £0; and let X, = O,(Y,) if there exists a constant K ,
0 <K<, suchthat ™™ P([| X/Y,| s K] = 1. Expand U(B,8(B)}/y5 around
B = By:
U{B.8(B)MVr = U{By, B(By)MVR + [5/5B U{B',8(B")in]yri(B-B,X6.2)
where  5/3B U{B’,8(p")} = /3B U{P’,6(B")}
+ [3/3BU{B',6(B')} 1[0 (B')/oP]
and B’ is a point on the line segment connecting 3 and B,.
Substituting into equation 6.2, if § is a quasi-likelihood estimate of B,
W{B.8(B)/yn = U(B.8(B) VA
+ [5/50 U{B.6(B)ynlyn(B-B)=0.  (6.3)
where B is a point on the line segment connecting f and @
and (5/5B U{B,6(B)} = a/aB U{B.B(B)} + (5/3BU{B.B(B)NI28(B)/aB]
= /3B U{B,6(pB)} + AB. (6.4)
Rearranging equation 6.3:
- U{B.B(B)Yy7 = [5/B U{B.8(B)Vnl/n(B-B) 6.5)
By regularity condition (iii),
E,[3/3B U{B,B(B)}] = E,(9/3B[onI3B V'{B.B(B)}zZ - n)))
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= Ey(6n'/3B* VYB,B(B)Nz - n)
+ on'I9B[3/3B V'{B.B(BINZ - 1)
- w'I3B V(B8 (B)}on/aB)
=-0p'/B V'ou/dB.
Soforeachn=1,2, ..,
E,[8/3B U{B.B(B)}/n] = - (6u'/oB V"' 3u/aB)/n.
in equation 6.4 above, asn -~ , A = 0,(1) by Lemma 1 since
3/38 U{B.B(P)} is a linear function of (z - j1) and B = O,(1) since 8 is fixed and
8 is a consistent estimate of 8. Also, since ﬁ-o B as n -, so does J,
since B=vB +(1-v)B,0sv < 1. By Lemma 1,
[6/3B U{B.8(B)}n] = - (9n'/3B V"' an/aB)/n + o (1).
By regularity condition (iv), [8/6B U{B,8 (B)}/n]" exists for n sufficiently large and
SO, as n -, the above asymptotic results can be substituted into equation 6.5 to

obtain:

Vr(B-B) = - [(3n'13B V-'au/aB)n]" U{B.B(B)}VE. (6.6)

Now let B be fixed and expand U{B,8)/,/7 around 6 = 8,

U{B.8Y/yn = U{B,8,}/yn +[3/38 U{B,8'}n]yn(6 - 8,)
where 8’ is a point on the line segment connecting 6 and 6,.

Substituting 8 for 8,:

U{B.6(B)Yyn = U{B,B8)yn +[3/30 W{B,B)n}/n(8 - B)
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where 8 is a point on the line segment connecting 8 and 6. Since 6 is \/n-
consistent, 8 =v8 +(1-v)8, 0 <v < 1, is also /A-consistent and, as n—,
8-8 and 3/86 U{B,B}/n -~ 3/98 U{B.8}/n, so

U{B.8(B)Yvn] =U{B.8)/yn +[8/38 U{B,B}n]y/n(B -8) + o (1)

=A*+B*C* +0,(1)

Following the proof by Liang and Zeger (1986), B* is o,(1) by Lemma 1, since
9/86 U{PB,8} is a linear function of (z - n), C* is O,(1) and U{B.é(B)}/,/H is
asymptotically equivalent to A* whose asymptotic distribution is multivariate
Gaussian with zero mean and covariance matrix:

i,.l.f: (cn'I9B V'Cov(Z)V™' ou/aB In)

by Lemma 4.

So, from equation 6.6, /n(B-B) is asymptotically multivariate
Gaussian with zero mean and variance-covariance matrix:
o N(3'13B V' 3/3BY ' (3w'18B V" Cov(Z)Vaulap)
(on’13B V'op/aB)"
If V = Cov(Z) as assumed in the quasi-likelihood model, then
Vn(B-B) ~ MVN(0, V;) (asymptotically)
where  Vj= -1™ (3n//aB V-'ou/oBin).

= oo

This completes the proof.
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6.3 Verification Of Conditions For Simulation

The model used for simulation in the next section is the spatially
dependent quasi-likelihood model for counts with classical semivariogram
estimator and water distance developed in Chapters 3 and 4 and cross-validated

in Chapter 5. The above conditions are checked with respect to this model.

Condition (i) Bis a p x 1 vector and -=<B;<= foreachj=1, ..., p, therefore the
parameter space is a real vector space, closed under addition and scalar

multiplication. So the parameter space B is Euclidian r-space E® with r=p.

The following theorems from Anderson (1958, p. 337) are used to
verify conditions (ii)-(iv) below:
() If C is positive definite and B is non-singular, then B'CB is positive
definite.
(I) If C is positive definite, then C is positive definite.
(1) if € with p rows and columns is positive definite and if B with p
rows and q columns, q <p is of rank q, then B'CB is positive

definite.
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Condition (ii) The matrix ou’/3B consists of elements du :19B;= x; exp(x;B) which
are defined foralli=1,....nand j = 1,...,p. The elements of R are exp(-d(s.t)/és).
where é._, is the range of the semivariogram and d(s,t) is the water distance
between sites s and t as defined in Chapter 4. &2is obtained from the sill of the
semivariogram (see Chapter 4). 3°R_ is the exponential covariance function
which is positive definite by definition (Haining, 1990, pp. 90-91). The variance-
covariance matrix used in the estimating equations is:

V=A+5’A'R A 6.7)

where A = diag(n,,n,,...n_) as defined previously.

Since A is non-singular (i.e. p ;= exp(x,B)>0), A'R A is positive
definite by |. Likewise, V is an n xn, positive definite matrix and, by II, so also is
V' and therefore V' exists. z - u’ is an n x 1 vector of differences between
observed and expected counts,

Z,- p,,and exists foralli=1,...,n.

Condition (ji) £,(3/0B[n'/aB V'{B.B(B)}z - w)]) =
E;(&*'I3B* V'{B.B(B)}z - w)
+ on'/oB[3/3B V(B.B(B)(z - n)
- on'/5B V(B 6(B)}on/3B).

The matrix 62n’/6B? consists of elements 32 :19BB= x; x, exp(x; ) which are
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defined foralli=1,..,nandj k= 1,...,p.
[0/3B V*{B.B(B)}] =-V{B,B(B)}3/aB V{B.B(BYIV-'(B,B(B)} (Morrison, 1976,
pp. 74-75). The matrix [6/3B V{B,6(B)}] consists of elements:

Svi/IB;= 357 x; exp(x;B) + [3/5B; 52)(exp(x,B))(1 + exp(x,B)) i=k

= (exp(x;B) exp(x, B)}{&* R, (x; + x) + [0/9B; 0?| R + [3/3B, R ]6%} i =k

Since 6% and R, are fixed, [0/9B; &%] and [6/9B;R, ] are zero and so,
v,/ 9B,= 36%x; exp(x;B) i=k
= (exp(x;B) exp(x, B)){&? R, (x; + X)} i =k

which are defined for alli, k= 1,...,n andj=1,..p.

Condition (iv) By lii, since /3B is a matrix of n rows and p columns with rank p
(McCullagh and Nelder, 1983, p. 168), on’/aB V-'ou/dB is positive definite.

Condition (C1) Since the exponential covariance function has been used to
account for spatial correlation among sites, the series :Z; exp(-8;i) must
converge. By the ratio test for convergence of series (Kaplan, 1973, p. 385),
since the limit

1M lexp(-8,(n + 1))/exp(-8,n)] = 0.881

is less than one, the series converges and Condition (C1) is satisfied.
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Condition (C2) The expected count at site i, u,, is finite by definition. Let M* > 1 i
fori= 1... n, where n is the number of sites. Then M = M* + 62M™ (where o2 is
estimated from the sill of the semivariogram). The variance at each site, oﬁ. is
n, +o?n} and is less than M. If g M (log i)¥/i* converges, then 2 o’ (log i)
converges. Since M is a constant, it suffices to show that ; (log i)%/i? converges.
The inequality

((log i)%/i**) (1/i¥%) < (1/i) for all i > 0
holds because (log i)*/i* < 1 for all i > 0. Thus, by the comparison test for
convergence of series (Kaplan, 1973, p. 383), JZ.; (log i)/ converges since
i 1/ converges (a harmonic series of order greater than 1 converges

i=1

(Kaplan, 1973, p.384)). Therefore Condition (C2) is satisfied.

Condition (C3) The Y; are the residuals, z - H;, i =1..79, whose expectations

are zero. Thus each Y, satisfies Condition (C3).

Condition (C4) Serfling (1980, pp. 13-14) presents a lemma that states, in part,
that:

Sufficient for uniform integrability of {n.} is that
su +e
i PE Ir‘il1 < o

for some € > 0.

If € = 1, this condition reduces to the requirement that the variance of the least
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upper bound of the counts be finite (i.e. less than M in Condition (C2)) and so

Condition (C4) is satisfied.

Condition (C5) Since the exponential covariance function has been used to
account for spatial correlation among sites, the maximal correlation coefficient
p‘[’,,i,. iep) (1) = exp(-6,r), where r is less than the water distance (d(D,, D,))
between two sites. For the example being simulated in the next section, the
smallest water distance is 0.8 km which occurs twice among all of the site pairs.
The largest water distance is 64.8 km which occurs for one pair (See Chapter 4).
With 6,= 0.1271 substituted for 8,, choose 5=2 and K = 10. For values of r
near 1km, K(log r)®*? s quite large (>100) and exp(-6,r) < 1 for all r >0.
Therefore the values of r that need to be checked are those for which

K(log r)*®*® < 1. This occurs for the interval [5.92,64.79]. Over this range, the
function K(log r)®*® is monotone decreasing from 0.9999 to 0.0330. Over the
same range, exp(-8,r) is also monotone decreasing from 0.47122 to 0.0003.
Therefore,

Ply,: 1em () < K(log iy for all r €[0.79,64.79]

and condition (C5) is satisfied.

The process ¢ is stationary by definition and by condition C5, it is
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also a mixing process. Therefore, Theorem 2 may be applied in the following
simulation (Section 6.4) if 2 and éa from the weighted least squares fit of the
semivariogram are ,/n-consistent . The required consistency may be seen as

follows.

The weighted least squares method for fitting the semivariogram
model relies on minimizing the quantity

(2Y - 2v(8)) v2(8)" (2¢ - 2v(B) ) (6.8)
where y is the classical estimator of the semivariogram

v(8)is the semivariogram model to be fit

V2(0) is approximated by diag {var(2y (h(j)))}.j =1....K

var(2y(h())) =2 {2y(h();8)¥ / IN(h())I

h(j) is the jth lag or distance

K is the maximum number of lags in the semivariogram
and [N(h(j))| is the number of distinct pairs at each lag.
Gallant and White (1988, Ch. 2 and 3) define a broad class of nonlinear
“optimization” estimators of the form

6,=min w(@)' P, w(®)
where W(B)is a function of 6, the parameter vector to be estimated and the

data

and P, is an estimate of the asymptotic variance of y(6).
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They then prove a theorem which states that under regularity conditions, é,, -0
~ 0 almost surely as n ~=. The regularity conditions are very similar to conditions
(i) - (iv) and (C1) - (C5) in Section 6.2. Minimizing the quantity in equation 6.2

leads to an “optimization” estimator 8, which is consistent.

McShane et al. (1997) have used an estimating equation approach to
obtain consistent estimates for the correlation structure parameters in Zeger's
(1988) model. Their estimating equation is an alternate version of that used by
Diggle et al. (1994, p. 165) and uses a working variance matrix which is
analogous to V2(8)™ in equation 6.8. The McShane et al. equation (with variable
names changed to avoid confusion) is

E(6,.0°.B) W' (y(B)-v(6,.0%,B)) =0 (6.9)
where E(Bp,oz,B)' = av(Bp.cz.B)/ a6,

W = var(y(B))

y(B) is a vector of n(n-1)/2 elements consisting of all entries below the
diagonal of the matrix of residuals, Y, as defined in the previous
section

and v(6,, o?,B) is a vector of n(n-1)/2 elements consisting of all entries

below the diagonal of the matrix V as defined above (equation 6.7).

186



McShane et al. (1997) chose W = |, but note that “...consistent
estimates of the correlation structure parameters are obtained for any choice of
W', as discussed by Prentice (1988). Taking the partial derivative of equation 6.8
with respect to 8 results in estimating equations similar to equation 6.9:

-2(0y(B)/ 88)' V2( 8)"' (2y -2y(©))=0 (6.10)
Equations 6.9 and 6.10 have similar components and would yield the same
estimates for 6 if W is chosen to be equal to V2(8). As Cressie (1993, p. 97) has
stated, the use of V2(8) is attractive because more weight is given to the smaller

lags.

Equation 6.10 results in the following variance matrix for 6:
var(8) =[(3y(6)/ 98) V2(B)" (ay(8)/ 38)]" .
If V2(8) is approximated as in equation 6.8, and the exponential model used for

the variogram, with 8,as the sill and 6,as the range, then var(é) « (6)"

where 1, = (1/ 6) 3 IN(h())
j=1
e = by = (11 8,) f INCh()] hG) Aexp(h() B,) - 1)

and 1= 3" INChG)] hGY? Kexn(h() B) - 12

j=1
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Using this approximation, the estimates for 8 will be ,/n-consistent if
the information, I(8 ) grows as n grows, or if the smallest latent root of I(8 )
tends to =as n-= (Mardia and Marshall, 1984). The smallest latent root of I(6 )
can be found from the smaller root, A,, of the characteristic equation for l(é ):

(A = LA - 1y) - (1,02 (6.11)
A, can be found from the quadratic formula. Rearranging equation 6.11,

A2 - Ay #+ 1) + (Iyls - (1,5)9).

Now A is the solution of:

A=-Br2 + {B%-4ACI2
where A=1

B=l,,+1,

C = (l,4ly, - (1,,)) = det (1(6 )).

So,

Ay = (I + 1)/2 - /Uy +1y,)2-4det(K(B)) /2.

Since |,, = (1/ Gi)i IN(h(j))| which is equal to n(n-1)/282, A, will tend to =as
j=1

Nn-oo if

Ly + 1y > /(14 +lpp)?-4det((8))..
Squaring both sides of the inequality,
(s + 12)* > (I + 1,,)* - 4det (I())

or, 4det (I(6)) > 0.
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By the Cauchy inequality for sums,
det (K(8)) = [{(1/ 2) ﬁ |N(h<j»|}{}fl IN(h())| h()? /exp(h() 6,) - 1)3
j= j=

-{(17 8,) Ji; IN(h())| h() Aexp(h() 6) - 1)} > 0

and therefore 6 is ,/n-consistent.

6.4 Simulation

6.4.1 Introduction

Ripley (1981, p. 16) motivates the need for simulation as follows:
“Suppose we are interested in the distribution of a statistic, T, which may be
unavailable analytically or have an asymptotic or approximate answer the validity
of which is unknown." The asymptotic results of the previous section are a case
in point. Then simulation is used to compare empirical, simulated results to
theory. Haining (1990, p. 116) notes that: "The fit of a model can be assessed by
comparing properties of the data with properties derived from realisations of the
model.” In this section, the usual technique of simulation of realisations from a
spatial model assuming Gaussian data will be described. Next, the procedure will

be adopted for quasi-likelihood residuals. Finally, simulations will be conducted
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with the model of benthic counts from Chapter 4 to check the asymptotic resuits

of the previous section and provide another assessment of the model fit.

6.4.2 Simulation of a Gaussian Spatia! Process

General techniques are available (Ripley, 1981, pp. 16-18:; Haining,
1990, pp. 116-117) for simulation of a spatial process whose underlying
distribution is multivariate normal (MVN). Suppose we wish to generate Z,,....Z,
joint normal random variables with means ... B, and covariance z, ie. a
drawing (z) from MVN(n, £). The procedure is to find L with LL' = £, and then
calculatez = p_ + f_; Iiej where e, ,...,e, are independent, identically
distributed, N(0, 1) rJandom variables. L may be found in general by the Cholesky
decomposition of =, or specified directly as in the case of Upton and Fingleton's

model where £ = o?((I- oW)'(I- pW))'and L = o(1 - pW)™.

6.4.3 Simulation of a Spatial Quasi-Likelihood Process

Zeger (1988) conducted simulations with his parameter-driven model
using a log-Gaussian error process with the same moments as were found for
the polio example data set. To continue the analogy with time series, a similar

process will be used for simulation of the spatial quasi-likelihood process. Zeger
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used the process:

5, =log e,
which was assumed to be Gaussian AR(1) with moments for e, equal to the
example. In order to apply this to the example of spatially dependent benthic
counts, the method of Aitchison and Brown (1963, p. 28) for generating log-
Gaussian random variables is used with the procedure described in Section

6.4.2 to introduce spatial correlation.

The procedure of Aitchison and Brown is to generate log-Gaussian
deviates, w, using

w; =exp(p, + oY) = exp(5,)
where H,. 0, are the first and second moments of the process
and y; are N(0,1) random deviates.
Because the expectation and variance of a log-normally distributed random
variable with p, = 0 are exp(c?/2) and exp(a?)(exp(a?) - 1), respectively,
adjustments have to be made to obtain the required moments for ¢, . Since the
quasi-likelihood model assumes E(e,) = 1 and Var(e,) = o2, choose e i =
exp(3, - 0;/2) and choose o, so that exp(a?) - 1 = o2. To introduce spatial
autocorrelation in €, let 5, = o,y; as above, and form

e, = exp(-02/2 + Jf,: 45,)

where |, is the ith,jth element of the L matrix which is obtained from the
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Cholesky decomposition of the correlation matrix of R(s)R(s;) from

Section 5.3.

Once the vector € has been formed as above, it can be muitiplied
elementwise by the { vector from the quasi-likelihood model to obtain E(z|e).
Since z conditional on e is assumed to be independent with both mean and
variance equal to E(z|e), the simulated zs are generated as Poisson deviates

with means i e..

6.4.4 Simulation Results

The above simulation procedure was used to obtain 1000 realisations
of the quasi-likelihood model with spatially correlated errors to check the
asymptotic results of Section 6.2. The case of distance determined by
measurement using a GIS (water distance) and variogram estimated by the
classical estimator was used because this combination performed well under
cross-validation (Chapter 5). For comparison, 1000 realisations assuming
independent errors were also obtained. Ideally, more simulations should be
performed to fully explore the behaviour of the model. However, the variogram
fitting is time (CPU) consuming and is dependent on initial values for efficiency.

Automated selection of initial values for variogram fitting is necessary for lengthy

192



simulation runs, but this is beyond the scope of this study.

The results of the simulations are presented in Tables 6.1 - 6.4.
Tables 6.1 and 6.2 contain information on bias for the simulated parameters, 3,
&% and é3 for the case of spatially correlated error and independent errors,
respectively. Tables 6.3 and 6.4 contain the asymptotic 95% confidence
intervals, coverage proportions and the Shapiro-Wilk test for normality for each
element of 8. The bias for all of the estimated regression coefficients was quite
low except for the intercept, Bo. However, bias in the variogram parameters, &2
and é;, was quite large. In the case of independent errors, where &2 is estimated
by the method of moments, its bias was still substantial. These results are
consistent with the simulations in Zeger (1988) who found bias of about 15% in

the estimated &2.

Harris and Johnson (1996) conducted simulations with a regression
model with spatially correlated errors to study the distributions of §, &2 and 8. In
this study, the explanatory variables were in situ measurements of temperature
at a grassland site and the modelled variable was the remotely sensed
temperature. 8 were maximum likelihood regression parameters and 2 was the
estimated variance of a Gaussian error process analogous to Upton and

Fingleton's model. However, 8 was the range parameter of an exponential
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TABLE 6.1

Simulation Results (Bias) for Diporeia hoyi (Water Distance and Classical
Variogram Estimator)

m = 1000 Realisations

Parameter True Value Mean Bias Percent
Bo -2.45 -2.76 -0.31 -12.6
B, 0.758 0.745 -0.013 -1.72
B, -1.41 -1.37 0.04 2.84
B, 1.75 1.80 0.05 2.86
B, 0.83 0.87 0.04 4.82
&2 0.456 0.341 -0.115 -25.2
8, 0.1271 0.3243 0.1872 155.2
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TABLE 6.2

Simulation Results (Bias) for Diporeia hoyi (Independent Errors)

m = 1000 Realisations

Parameter

True Value

-2.45
0.758
-1.41
1.75
0.83

0.456

Mean Bias
-2.84 -0.39
0.750 -0.008
-1.35 0.06
178 0.03
0.88 0.05
0.384 -0.072

195

Percent

-16.9
-1.06
4.26
1.71
6.02

-16.8



TABLE 6.3

Simulation Results (Coverage) for Diporeia hoyi (Water Distance and Classical

Variogram Estimator)

m = 1000 Realisations

Parameter
By 4.02
B, 0.17
B, . 0.67
B, 0.68
B, 0.92

417
0.17
0.66
0.70
0.96

-10.33
0.42
2.72
0.42
-0.97

196

5.43
1.09
-0.10
3.08
2.63

0.95
0.95
0.95
0.94
0.95

S.E.(Asy) S.E.(Sim) LowerC.l. UpperC.. Coverage W Pr<W

0.984 0.092
0.984 0.128
0.989 0.877
0.986 0.407
0.985 0.222



TABLE 6.4

Simulation Results (Coverage) for Diporeia hoyi (Independent Errors)

m = 1000 Realisations

Parameter
By 4.02
B, 0.17
B, 0.67
By 0.68
Bs 0.92

3.69
0.16
0.57
0.61
0.85

-10.33
0.42
-2.72
0.42

-0.97
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5.43
1.09
-0.10
3.08
2.63

0.97
0.95
0.98
0.97
0.97

S.E.(Asy) S.E.(Sim) LowerC.|. UpperC.I. Coverage W Pr<wW

0.983 0.045
0.986 0.455
0.989 0.818
0.986 0.442
0.985 0.186



semivariogram as used in Chapters 4 and 5. The results of 1000 replications
were summarized for the variance-covariance matrix of ﬁ, and the mean,

standard error and skewness of 32 and 6.

Harris and Johnson report very little bias in their estimates of B when
the exponential variogram was used to account for spatial dependence.
However, their estimates of 2 were found to have substantial negative bias.
Similarly, their 8, which is the inverse of és in this work, had a strong negative
bias when B included a trend parameter. This corresponds to the large positive
bias in 6, in this study. Harris and Johnson point out that in some cases the
biases in 52 and 6 counteract each other in their effects on the confidence

intervals of .

Table 6.5 gives the characteristics of the simulated variogram
parameters (&2, 63 in the dependent case) and method of moments estimate
(&% in the independent case). The distributions of the sill and the range are not
normal and are quite skewed, especially the sill. Upper and lower 95%
confidence levels were determined empirically from the simulation results. The
simulated values of the sill and range had a Pearson correlation coefficient of

-0.0978 which was significantly different from zero (p=0.002).
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TABLE 6.5

Simulation Results for Variogram Parameters for Diporeia hoyi

m = 1000 Realisations

True Value
Maximum
75% (Q3)
50% (Med.)
25% (Q1)
Minimum
Lower C.I.
Upper C.1.
Skewness
Pearson
Corr. Coef.

p value

&2(Indep.)

0.456
2.327
0.456
0.326
0.233
0.069
0.137
0.931
2.904

3% (Depen.)

0.456
8.576
0.404
0.272
0.193
0.031
0.096
0.877
12.78
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-0.0978
0.002

[es ]
w

0.1271
1.8038
0.4301
0.2334
0.1373
0.0094
0.0556
1.0819

1.704



The method of Cherry (1997) is available to reduce the bias in the sill.
This would probably have a beneficial effect on the bias of the range parameter
also, since these parameters often compensate for one another (Harris and
Johnson, 1996; Ecker and Gelfand, 1997). If the goal of the study is to examine
the characteristics of the spatial dependence, the effort to reduce or eliminate
the bias in variogram parameters is justified. In this work, where the goal is
spatial prediction, the improvement in predictive capability of the model may not
be enough to warrant the extra effort. For the case of universal kriging, unbiased
variogram parameters are not needed to obtain unbiased predictors (Cressie,

1993, p. 295).

In both of the simulation cases in this study, the results of the
estimation of f using the quasi-likelihood model where consistent with Theorem
2. The standard errors were obtained from the diagonals of the variance-
covariance matrices and used to construct the confidence intervals in Tables 6.3
and 6.4. The coverage proportions of the nominal 95% confidence intervals are
close to the nominal value for the dependent case (Table 6.3) and in Table 6.4
four of the proportions exceed the nominal value (independent case). The
attained significance level of the Shapiro-Wilk test for normality was greater than
0.05 in all but one case (for @, in Table 6.4). Visual examination of histograms

and normal probability plots confirmed this finding. The effect of spatially

200



dependent errors is to allow more realistic estimation of standard errors and
approximately correct coverage proportions for interval estimates. For the
independent case, the standard errors are underestimated and the coverage
proportions inflated similar to Zeger's findings (1988) regarding the effect of
incorporation of time dependence on confidence intervals for parameter
estimates in his model. These results are also consistent with the resuits of

simulations for spatial lattice data discussed in Section 2.2.6.
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GLOSSARY

Autocorrelation - Correlation exhibited by neighboring values of a time series or

spatial process.

Cholesky Decomposition - A procedure for finding a matrix £/2, such that

Cluster Analysis - A procedure for deciding empirically whether individual
observations "group" or “cluster" based on some concept of nearness or

distance.

Expectation, or expected value, of X - Defined as:

*m

E(X) = f xf(x) dx

where f(x) is the density of x.
Gauss-Markov Theorem - If a regression model satifies the classical

assumptions, the ordinary least squares estimator of the regression parameters,

B, is the best linear unbiased estimator (BLUE).
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Gauss-Newton Method - A computational procedure for estimating the
regression parameters, B, of a non-linear model using a Taylor series
expansion. A starting value is chosen for B and it is iteratively improved until the

error sum of squares is minimized.

Geographic Information System (GIS) - A computerized system for mapping and

analyzing spatial information.

Global Positioning System (GPS) - A system of satellites that provides accurate
information on geographical location to ground-based receivers. These receivers
are accessed by means of a hand-held instrument which can be used to locate a

sampling site to an accuracy of within a few metres.

Inadmissible - Define the mean squared error of a parameter estimate as R(9,T)
where 6 is the parameter and T is the estimate. If two estimators S and T are
such that R(6,T) < R(6,S) for all 6 with strict inequality holding for some 6, then

S is inadmissible. (Bickel and Doksum, 1977, p. 118)

Kriging - A minimum-mean-squared-error method of spatial prediction that
(usually) depends on the second-order properties of the process. Named after

D.G. Krige, a South African mining engineer who, in the 1950s, developed
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empirical methods for determining true ore-grade distributions from distributions

based on sampled ore grades. (Cressie, 1993, p. 106)

Kurtosis - The degree of peakedness of a distribution, taken relative to the
normal distribution. It is usually expressed as the ratio of the fourth moment
about the mean to the square of the second moment about the mean, minus 3:

n,/us -3

Lagrange Muitipliers - A scalar or vector value that is introduced to add one or

more constraints to the solution of the extrema for a quadratic form.

Marginal Density - If X and Y have joint density £, then X and Y have marginal

densities given by:

g(x) = f f(x,y) dy for - <x< +o  and,
h(x) = f fix.y) dx for -~ <y < 4w .

Marginal Moment - Moments calculated using the marginal densities defined

above.
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Markov Process - A process in which the future state depends on the present

state and not on past states given the present.

J/n - Consistent Estimate - An estimate, én, of a vector of parameters, 8, such
that ./n (én- 0) is bounded in probability so that éntends to Qat least at the rate

of 1/,/n (Lehmann, 1991, p. 422).

Ordinary Least Squares (OLS) - The estimator of regression parameters when
the variance matrix satisfies classical assumptions, ie. independent, identically

distributed errors.

Skewness - The degree of asymmetry of a distribution. It is usually expressed as
the ratio of the third moment about the mean to the 3/2 root of the second

moment about the mean:

3/2
H3/12

Uniformly Integrable (Serfling, 1980, p.13) - A sequence of random variables
{ Z,} is uniformly integrable if:
oo S PTE(Z,INZ )} = 0

Cc—~e® n
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where E{- } is the expectation

and I(+ ) is the indicator function.

Variogram - The mean-squared difference between the values of a characteristic

at two points as a function of the distance between the points.
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