ARCHITECTURAL FEATURES OF WCRC -

A DATA BASE COMPUTER

By

Surya R. Dumpala, B.Sc., B.E.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Engineering

[l

McMaster University
Hamilton, Ontario

March.1981

MASTER OF ENGINEERING McMASTER UNIVERSITY
(Electrical Engineering) : Hamilton, Ontario
. ‘)‘
TITLE: Architectural Features of WCRC - A Data Base
Computer
AUTHOR: Surya R. Dumpala

B.Sc. (Andhra University) -
B.E. (Indian Institute of Science)

SUPERVISOR: Dr. Sudhir K. Arorac

NUMBER OF PAGES: xiv, 259

ii

ACKNOWLEDGEMENTS

~
o

I would like to expréé;\mK deeprgratitude to my supervisor,
Dr. Sudhir K. Arora, for his consqigt guidance and helpful discus-
sioné throughout the course of this work. I also extend my thanks
to Dr. D. P. Taylor and Dr. J. B. Anderson for serving as the super-
visory committee.

I would like to express my appfbci:tion to McMaster University
fo¥ financial support.

Finally, the prompt and excellent typing services provided

by Ms. Linda Hunter are gratefully acknowledged.
~

iii

e

ABSTRACT

Several data base machiﬁe architectures have been proposed
in the past few years. The next generation of these machines must
support different data models on the same physical aata simultaneously
as envisaged in the ANSI/X3/SPARC report or the coexistence model.

This thesis presents the architectural features of one such
data base machine called Well Conné;ted Relational Computer (WCRC).
The overall architecture and the facilities to the user as well as
the DBA have been degé;ibed. A framework for the conceptual level
and detailed design of the internal level are reported. The algor-
ithms for schema conversion and view translation have been developed.
The concepftual level language, WCRL is extended to accommodate data
definition, data manipulation and storage definition facilities. A
high leviy language, DBAL, is developed for the DBA. Two binary
storage structures (Pseudo Canonical Partitions (PCP's ~ Options I
and II) have been reported for storing the data at the internal level.
They radically differ from the conventional n-ary relational storage
structure. A machine oriented language (WCRML) is developed to
directly execute the data base instructions in hardware on the PCP
storage structures. The basic hardware organization of the internal
level along with special hardware units for some data base functions

such as'join_and sort have been reported. Finally, a performance
iv

evaluation of WCRC storage structures has been presented. The
results indicate that WCRC requires lesser storage and offers
faster query response time when compared to architectures based

on n-ary relation storage.

.
»

~7

J
9

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS 111
ABSTRACT : iv
TABLE OF CONTENTS - vi
LIST OF FIGURES‘ X
LIST OF GRAPHS xiv
CHAPTER I - INTRODUCTION 1
CHAPTER II - BACKGROUND AND PROBLEM DEFINITION 4
2.1 Introduction 4
2.2 The Data Models 4
2.2.1 The Relational Model S5
2.2.2 The Network Model . 9
2.2.3 The Hierarchical Model) 9
2.3 Associative Processors and Logic-Per-Track 11
Devices
2.4 Data Base Systems Implemented on Special Purpose 17
Hardware
2.5 Problem Definition 20
CHAPTER III - OVERALL ARCHITECTURE OF WCRC 22
3.1 Basic Organization 22
3.2 Query Processing : 26

vi

3.3 Data Base Facilities in WCRC

CHAPTER 1IV -
4,1

4.2

4.3

4.4

4.5
4,6

4.7

3.3.1 The External Languages
3.3.2 Security and Integrity

3.3.3 View Generation and Updates Through
Views

3.3.4 Concurrency

3.3.5 Data Base Growth

THE CONCEPTUAL LEVEL
Introduction
Choice of the Data Model

4,2.1 Entity-Relationship Model
4,2.2 Derivation of Other Data Models

Choice of the Data Language

4.3.1 WCRL - Data Retrieval Language
4,3.2 Data Definition Language (DDL) for

WCRL
4,3.3 Data Manipulation Language (DML)
) fdr WCRL
4,3.4 Storage Definition Language (SDL)
for WCRL

Data Base Administrator Language (DBAL)

4.4.1 DBAL - Data Definition (DDL)
4.4.2 DBAL - Data Manipulation (DML)
4,4,3 DBAL - Storage Definition (SDL).

Query Translation
Query Analysdis

View Translation, Consistency and Update
Strategy

. vii

29

29
30
34

40
40

42
42
43

44
46

52
54
60

65

68

71

72
77
83

84
92

99

4.8

4.7.1 Mapping Relational Views into E-R
Model

4.7.2 Mapping Network Views into E-R
Model

4.7.3 Mapping Hierarchical Views into E-R
Model

4.7.4 View Consistency and Updates

Summary

CHAPTER V — THE INTERNAL LEVEL

5.1

5.2

5.3

5.4

5.5

Introduction
+ .
The Data Structures

5.2,1 PCP -~ Option I
5.2.2 PCP - Option II

A Comparison of Options I and II
WCRML Instruction Set
5.4.1 Instructions Executed by the Cell

Processor

5.4.2 Instructions Executed by a Query
Processor

5.4.3 Translation of WCRL into WCRML
Instructions

Cell Hardware

5.5.1 ‘Circulating Memory (CU)

5.5.2 Track Format Identification Unit (TFIU)
5.5.3 Buffer Umit (BU)

5.5.4 Search Unit (SU)

5.5.5 Arithmetic and Logic Unit (ALU)

5.5.6 RAM Logic Unit (RLU)

5.5.7 1/0 Unit (IOU)

5.5.8 Control Unit (CU)

100
107

110

117

129

130
130
131

131
135

138

144
144

151
154

159

159
163

167

169
171
174
174
176

5.6 Cell Executed Instruction Times
5.7 Query Processor Hardware

5.7.1 Boolean Evaluator
5.7.2 Join and Sort Unit
5.7.3 RAM POOL

5.7.4 Controller

5.8 Summary

CHAPTER VI - PERFORMANCE EVALUATION
6.1 Introduction
6.2 Storage Requirements
6.3 Retrieval Time

-6.4. Comparison of Overall Retrieval Times
of GDBMS and WCRC

6.5 Update Time
6.6 Overall Comparison of GDBMS and WCRC

6.7 Summary

CHAPTER VII - DISCUSSION AND FUTURE RESEARCH
7.1 Discussion

7.2 Future Research
REFERENCES
APPENDIX A
APPENDIX B

APPENDIX C

<5

180
184

184
188
196
198

198

199
199
199
217

224

230
230

232

233
233

235

237

243

250

256

Figure

2.1
2.2
2.3
2.4
2.5
3.1
3.2
3.3
3.4
3.5
3.6
4.1

4.2

4.3

4.4
4.5

4.6

4.7

LIST OF FIGURES

Title

The Relation - Graduate Students
A Network of Record Types and Links
A Hierarchical Data Base

An Assoclative Memory

Logic Per Track Devices

Overall Architecture of WCRC

The Stages of Query Processing
The User Access Table (UAT)

Some Views in‘Relational Model
Sopme Views in Hierarchical Model
Some Views in Network Model

E-R Diagram of Corporate Data Base

?

Relational Equivalent of the Corporate Data

Base

Network Equivalent of the Corporate Data Base

Hierarchical Equivalent of the Corporate Data

Base

-

Hierarchical Tree Corresponding to a N:M

Relationship

Illustratiod of a WCR, an EWCR and a CP

Conceptuafl Schema of an Example Data Base

\

10
12
13
15
23
25
32
36
37
38
47

49

51

53
53

56

75

Figure

4.8 a
4.8b
4.8 ¢
4.8d

4.9

4,10

4.11
4.12
4.13
4.14
4.15

4.16

4.17
4.18
4.19
4.20

4.21

4.22

5.1
5.2

5.3

X

Title

An Example Data Base

The Data Base After Adding Entity 'City’
The Data Base After Splitting 'Phgne'
The Data Base After Shift Operations

E-R Diagram of a Corporate Data Base

The External Schema in Relational Model
The External Schema in Network Model

The External Schema in Hierarchical Model
The PCP!s Corresponding to Fig. 4.9
Permutations of Type II b Condition

Equivalent Forms of Type IIb Conditions

A Relational View of a Hypothetical Data
Base

The E-R View Corresponding to Fig. 4.16
A Network View of a Hypothetical Data Base

The E-R Model of the Network View in Fig. 4.18

_ A Hierarchical View of a University Data Base

a) A Graph CorreSpondiﬁg to Fig. 4.20 ‘
b) The E-R Model Corresponding to Fig. 4.20

Behaviour of Binary Relationship Relations
Under Natural Join

Track Format of PCP - Option I
PCP's on a Track - Oﬁtion I

Track Format of PCP - Option II

» S

79
79
80
80

85

86

86

87
87
95
96

106

108
111
112
115

116
116

121

133
134

137

o

-Figure

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13

5.14
5.15
5.16

5.17

5.18
5.19
5.20
5.21
5,22
5.23
5,24

6.1

egd

Title

PCP's on a Track - Option II

Ap Example Showing PCP's Corresponding. to
an E~R Schema)

(a) An Example Data Base (b) The PCP's
Overall Organization of a Cell

Storage Format

Gap Indicators

TEM, TBM and DS Indicators

Bit Sequence Indicators and Flag Indicators

.~Byffer Unit

a) Overall Search Unit;
b) One Comparator Unit

ALU Unit
RAM Logic Unit
I/O" Unit

Control Unit

* uyProgrammed

ganization of a QP

n Evaluator

Jéin aﬁd Sort Unit
Associative Memory (Data’ Part)

Elow Charq to Find Maximum and Minimum

. Cartesian Product

A Hierarchy of Relations With n-Level
Embedding"

oooxdd

139

140

155
160
162
164
166
168
170

172
172

173
175
175
177
179
185
187
190
192
194
197

201

Figure Title

Page
6.2 ANF in Associative Memory ‘ 202
6.3 An Exémple Showing How ANF is Stored as PCP's 205
6.4 PCP RAM POOLS at Level i and i+1 221

—
N
/
* ‘\’
S, T ‘
AN

xiii

LIST OF GRAPHS

Title Page

Storage vs., %
Storage vs. N -
Storage vs. n
Storage vs. s
Storage vs. a

Number of Interrogations vs.
Level of Embedding

xiv

SN

CHAPTER T
INTRODUCTION

In recent yéars, there has been a rapid growth in the usage of
Data Base Management Systems (DBMS's). They are being widely used in
several areas such as industry, business, government, library manage-
ment, artificial intelligence and natural language manipulation. These
areas primarily involve manipulation of information, rather than com-
plicated numerical computations.
- The early DBMS'S were implemented on conventional Von Neumann
type machines which are primarily intended for numerical tasks. These

systems suffer from the following drawbacks:

1. The non-numeric capabilities such as search, retrieve and update,
desirable by a DBMS have been provided on the conventional machines
at prohibitively high software cost and complexity.

2. With the increasing size of the data bases, increasing complexity
of data structures and user's demands becoming more sophisticated,
the software overhead to support these systems has further grown
in comélexity and cost.

3. It is difficult to achieve a high degree of data independence and
provide a.f;amework to support multiple user views of the data base

using comventional architectures. Data independence 1s a measure

of how well applications are insulated from changes to the phvsical
1 .

organization of data - '"Physical Data Independence'. Also, different
users must be able to view the data independent of each other -

"Logical Data Independence'.

The increasing software overhead of these systems calls for a
machine architecture which can support some of the data base functions at
the hardware level. The rapid decrease in the cost of hardware with
technology makes it more attractive for developing such new hardware-
oriented architecture. In addition, achieving logical and physical data
independence calls for organizing the database at various levels. The
idea of levels of a DBMS has been formally proposed as‘a éramework for
DBMS architecture in the ANSI/X3/SPARC Report [ANSI 75]. This report
proposes three levels for a DBMS namely, the external, the conceptual
and the internal. The external level corresponds to different user views
and applications which may be based on different data models. The con-
ceptual level represents the data model which corresponds to a 'stable'
and common view of the data. The internal level deals with the organiz-
ation of physical storage of the data. Implementing such a multilevel
architecture on a conventional machine by software will suffer from the
drawbacks discussed earlier. Therefore, it is worthwhile to develop a
computer architecture to meet these needs.

This report addresses the problem of designing a data base computer
architecture (WCRC) that can support multiple user environment within the
ANSI/SéARC framework utilizing specialized hardware. To the best of our
knowledge, there is only one other project in the world addressing this

problem [DOGAC 80]._The relevant background and scope of the problem are

discussed in Chapter II. An overview of the proposed data base machine
is presented in Chapter III. Chapter IV and V discuss salient features
of the three levels of the computer. In addition, performance analysis
of the proposed system in comparison with Generalized Data Base Manage-
ment System (GDBMS)\tﬁbGAC 80] and some previous work [DEFIORE 74] is pre-
gsented in Chapter VI. Finally, a discussion of this research, together

with suggestions for future research, is presented in Chapter VII.

Plad B
~
~
: - ’
N
CHAPTER II
BACKGROUND AND PROBLEM DEFINITION
2.1 Introduction

The problem addressed in this report is the design of a data
base computer with special hardware for supporting different data
models. Therefore, the literature review will focus on non-numeric
computer architectures, specialized hardware systems that support
some DBMS functions and schemes that support multiple user views.
However, before proceeding with the literature survey, two subsections
are presented to acquaint the reader with the concepts and terminology
of the three widely-used data models and associative pqécessors, which

are essential for further discussion.

2.2 The Three Data Models

A data model is an abstragtion of the "real world'. It forms
the basis for representing and manipulating the reality as perceived
by a designer. Within a model of the world, similar things are usual-
ly grouped into classes of objects called object types [scuMID 75] .
An example of an object type is employees. An object type is described
by listing its characteristics. For instance, the object type employees
has characteristics such as employee number, name, age and salary. Object

types that have an independent existence and can be meaningfully consid-

4

ered by themselves are interpreted as sets of entities or entity sets.
The characteristics of an entity set are known as attfibutes. The
&

correspondence or mapping between attributes of an entity set is called
an attribute relatioﬁship. The relationship (or mapp;;g) between entity
sets is referred to as am association. For example, an employee's name
and salary have an attribute relationship between them. On the other
hand, the two entity sets such as employees and department, which exist
independently, have an association ''work in" between them.

A number of data models have been suggested in the literature
to capture the entity sets and relationships existing in the real world.
The three most important such models are the relational, the network,

and the hierarchical. The distinctive characteristics of these models

are briefly discussed in the following sectioms.

2.2.1 The Relational Model

The relational model is based on the mathematical theory of

relations [coDD 70].

Definition 2.1: Given sets Dl, D2, ces Dn (not necessarily distinct),

R is a relation if it is a subset of the Cartesian Product Dl X D2 X

...an. That is, R is a set of ordered tuples < dl’ d dn > such

2’
-

that dl belongs to Dl’ d2 belongs to D2, ...,dn belongs to Dn' Sets

Dl’ DZ’ ...,Dn are called the domains of R and the value n is called the

degree of R.

Alternatively, a relation may be viewed as a two-dimensional

table as shown in Fig. 2.1. Each row is ¥eferred to as omne tuple and

STUDENT # T JNAME DEPARTMENT PROGRAM

7929420 Johnson Electrical M.Eng.

7984185 Smith Mechanical Ph.D.

7842535 Parker Civil T M.Eng.

7926476 Miller Electrical g;f?g.

7891887 Brown Electrical - Ph.D.
N

Fig.

2.1 The Relation - Graduate Students

each column is called an attribute. The domaiﬁ‘lsfthe\get of values

——

that can appear in that attribute. Further, the table has the beIUw—\\\\\\\\\\\\

ing properties: 1) No two rows are identical, 2) The ordering of

rows and columns is unimportant.

Definition 2.2: An attribute whose domain contains values which uni-

quely identify the tuples of the relation is called the primary key.
Such a key 1s said to be nonredundant if it is either a simple domain
or a combination such that none of the simple domains in the combination

is superfluous in uniquely identifying the tuple.

L4

Definition 2.3: 1In a Relation R, the domain Y is functionally dependent

on domain X if and only if (iff) each X-value 1is associated with exactly
one Y-~value at any particular instant. Domain Y is fully functionally
dependent on domain X if it is functionally dependent on X and not
functionally dependent on any subset of X,

In Fig. 2.1, STUDENT # is the key and domains DEPARTMENT and

PROGRAM are functionally dependent on NAME.

Definition 2.4: A relation is said to be in first normal form (1NF)

if each of its domains contains only atomic values. A relation is

said to be in second normal form (2NF) iff it is in 1NF and the non-key
domains of R, if any, are fully functionally dependent on the primary

key of R. A relation is in third normal form (3NF) iff it is in 2NF

and the non-key domains of R, if any, are 1) mutually independent
(i.e. not functionally dependent) and, 2) fullv functionally dependent

on the primary key of R.

A further discussion on dependencies and normalization may be

found in [TSICHRITZIS 77] and [ULLMAN 80].

In the relational data model, both the entities in the real

world data and the/associations among them are represented by relatioms.

tions are generated from the existing relations in the data base,

by using relézzsﬁii\egﬁfisijfi;\T:ifre are five basic operations that

serve to define relational algebras

1.

\\\\\\\\\\\

Projection: - It is the operation whereby cé;zgiﬁ\spggified columns
of a relation R are selected and the duplicate rows are remo
from the resultant relation.

Selection: This operation selects a set ofﬂtuplg§ in R that satisfy

a given clause F, where F involves operands that are cdd§tan§s, the
arithmetic comparison operators (>, =, < etec.) and the logical oﬁéf;‘
ators (AND, OR and NOT). For example, in Fig. 2.1, F may be NAME =
'Smith' AND PROGRAM = 'Ph.D.".

Join: The Join of two relations R and S over am attribute(s) is

the set of tuples formed by taking cross product of those tuples

from R and S satisfying the join relationship/condition. It is

used to combine two or more relations.

Union: The union of relations R or S is the set of tuples that are
in R or S or both.

Difference: The differegce of relations R and S is the set of tuples

in R but not in S.

Thus, the relational model provides a simple data structure, the

relation, as a basis of the data base and enables the user to define
flexible data relationships using operations such as projection and

join.

2.2.2 The Network Model

The network model consists of 'record types' and 'links'.
Record types are used to represent the relationships among the attri-
butes of an entity set. Links are employed to represent the assocy
iations between entity sets. [TS!GERITZIS 77].

In general, there are no restrictions on the relationships

represented by the links. They can be 1:1, 1:N or N:M mappings. Links

,
are always labelled, as theg’are concrete objects representing assoc-

iations in the network data 'model. An example of network model of a

[N

data base involving DEPARTMENTS, TEACHERS, COURSES and STUDENTS is

-~

. shown in Fig. 2.2 illustrating record types and links.

2.2.3 The Hierarchical Model

The hierarchical data model is a special case of the network
model where all the links are of the typi i;N} \I; is based on a
hierarchical definition tree which is nothing but an ordered tree.
Every node in the tree represents a record type and every arc stands
for a link. There can be at most one arc between any two nodes of
the tree. The relative order of the records (nodes) indicates the
relationship among them. Except the root node records, no other

records can have an independent occurrence (i.e. without links to

10

(E#, Name, Qualification) (Dept. Name, Location)
N:1
TEACHERS DEPARTMENTS
EMPLOY
1:N TEACH 1:N REGISTER
: M:N
R dT
COURSES pm——tim STUDENTS _
ATTEND T‘ (ID#, Name, GPA)

"(Course #, Title,

Description) Link

. Fig. 2.2 A Network of Record Types and Links

-

N

[auhaaitl
v

11

-

other records). A collection of such disjoing trees constitutes a
hierarchical data base. A hierarchical path in the data base is a
sequence of records starting at é root record and ending at a dependent
node with all the intermediate nodes exhibiting parent—ghild relation-
ship alternativelf.

An example of a hierarchical data base is shown in Fig. 2.3
illustrating the characteristics of the model [DATE 76].

In the next section, associative processors and loéic—per—track
devices are introduced to facilitate further discussion.

T

2.3 Associative Processors and Logic-Per-Track Devices

Associative processors are also known as Content Addressable
Parallel Processors. In contrast to Co~ordinate Addressed Memory, the
content addressable memory involves accessing of data baseé on the con-
tents of the memory cells rather than the physical address of the cells,
'They are capable of performing parallel search operatioms such as exact
match, maximum, minimum, less than, greater tﬂan, and the Boolqah oper-
ations. Some associative memories are also capable éf performing arith-
metic operations. The terms associative memories and aséagiative pro-
cekso;s are used interchangeably in the literature [PARHAMI 731.

Figure 2.4 shows a typical associative memory. It consists of
an array which co%tains the data} a comparand register which holds the/’fx“
argument that will be used against the data in the array for searchiné;
and a mask register which enables or inhibits bit slices of the array

for a given operation. The response registers are qmployed to record
~

12

- /
\ «
ICOURSEI \(Course#, Title, Description)
(Course#, Title) . . (Date, Locatioa, Format)
PREREQUISITE OFFERINGt
. (ID#, Name,
(Emp#, Name) : GPA)

TEACHER STUDENT

Fig. 2.3 A Hierarchical Data Base

13

Comparand | T FE B)
T \g
. !
Mask [0000000 1T 0000000] —
—~
Xy z
Johnsoén EE M.Eng. Y
Smith ME Ph.D. ‘
Parker CE M.Eng.
Miller EE M.Eng. v
Array Response
- Brown EE Ph.D. Y Registers
; Blake ME M.Eng. L
Clark ¢S Ph.D.
Jones CS M.Eng.

Fig. 2.4 An Associative Memory

by,

-

14

the search results, perform boolean operations and provide a word
selection capability. For example, consider the query where all
students registered in EE have to be reported. This query is pro-
cessed by placing EE in the comparand register, loading the mask
register with ones in the corresponding positions, and executing an
exact match search on the memory. All the words that satisfy match
condition will be marked in the response register x. Any further
search criteria may be similarly processed using the other response
registers and performing boolean operations on the marked bits of these
registers. These marked words may subsequently be retrieved from the
memory array. ;

Further information concerning the operation of associative
memories can be found by consulting references [PARHRMI 73], [PARKER 71]
and [FOSTER 76] .

The content addressable memories are more expensive compared
to the co-ordinate addressed memories, because of their associated logic
at the cell level. The recent LSI technology is exbected to bring down
the cost of solid-state associative devices.

The other type of memories which have search capabilities simi-
lar to associative memories are logic-per-track devices. They differ
from conventional rotating disks in their features such as logic assoc-

‘

iated with each track of the fixed head of the rotating device.

N

A typlcal logic-per-track device is shown in Fig. 2.5. It con-

sists of four major components: Memory elements, processing elements,

controller and I/0 mechanism. The tracks of disks and drums, CCD shift

Processor Memory
Element Track

l

=Y

[R

Controller

Fig. 2.5 Logic-Per-Track Devices

I/0
Mechan-
ism

16

registers, magnetic bubble memories or any other delay line techmologies
may be used as the circulating memory elements. The processing elements
are capable of performing search and select operations, arithmetic and
logic operations, data processing operations such as 'SUM', "AVERAGE',
'MIN', etc., and data base operations such as read, delete, modify and
insert. The controller co-ordinates all the processors and controls

the execution of identical instructions on several processors simultan-
eously. Thus, a logic-per~track device can be classified as a SIMD
(single instruction multiple data stream) architectures. The I/0
mechanism is responsible for moving data in and out of themmemory ele~
ments.

The existing cellular logic-per-~track devices vary widely,
based on the facilities provided such as inter-processor communication,
parallel or serial I/0 and tvpe of technology used for memory elements.
These systems are also classified as partially associative memory systems
since associative search capabilities and the required logic are built
into the processor cells, not the data cells. These devices provide a
cost effective alternative to the associative processors.

The storage organizations described in this section have contri-
buted significantly to non-numeric processing and these .techniques have
influenced a number of designs for the data base computers. In the next
section, some systems implemented with nonconventional computer archit-

ectures are examined.

g 1
// 7

2.4 Data Base Systems Implemented on Special Purpose Hardware

A number- of machine architectures have been proposed in the
literature which address the‘problem of implementation of Data Base
Management Systems on special purpose hardware. However, none of these
systems provide the facilities to support different data models simul-
taneously.

In [LIPOVSKI 78] and [SU 79] the architecture of CASSM is
presented. This is a back-end computer designed using top-down
approach for efficient implementation of hierarchical model. The
data is stored on memory cells as linear files. The system is imple-
mented on head-per-track disks utilizin§ an array of logic cells which
enables parallel processing of data. The system can handle one query
at a time. Each processor cell can communicate with the neighbouring
cells. Data retrieval is achieved by content addressing and location
addressing.

The architecture of RAP is discussed in [OZKARAHAN 75]. A
recent version of this machine called RAP-2 is described in [SCHUSTER
79]. Both are back-~end processors for implementing relational data
model. The design incorporates a parallel array of associative cellul-
ar processors which is driven by a Central Controller and a Statistical
Processor. The data is stored on rotating logic-per-track memory devices.
In the earlier version of RAP, all tracks are of the same length and the
cells are allowed to communicate among themselves. But in the later
version, inter-cell communication is restricted through the controller

and the tracks are allowed to be of variable length. The svstem is of

18
SIMD type and it can handle only one query at a time. Data retrieval
is accomplished by content addressing.

The Data Base Computer (DBC) is another back-end computer gﬁich
can be used to implement network, relational or hierarchical data bases
[BANNERJEE 79]. There are primarily six functional components: The
Data Base Command and Control Processor (DBCCP), the Post Processor (PP),
the Mass Memory (MM), the Structure Memory (SM), the Structure Memory
InfoFmation Processor (SMIP) and the Index Translation Unit (IXU). The
data is stored on disk-type mass memory with content addressing capabil-
ity. An index to the mass memory is maintained in the CCD based SM.
The DBCCP translates the data base commands into lower level commands
for MM and co-ordinates all the other units. SMIP performs set oper-
ations such as AVERAGE, COUNT and SUM, while IXU is responsible for
finding the address of the partition(s) of data required to answer a
query. The system can handle one query at a time. Clustering and
Indexing techniques are used to minimize the main memory search time.

In [DEWITT 79], the architecture of DIRECT is presented. This
is a back-end computer for supporting relational data bases. The data
is organized into fixed size pages on'the mass memory and retrieved
into rotating CCD tracks when required. This system can handle several
queries simultaneously. It provides the facilities of shared reading
to several query processors and single writing to one processor employ-
ing a lock on the data page. Retrieval from the CCD memory is by con-

tent addressing.

The architecture of RARES is discussed in [LIN 76]. RARES

19

architecture is tailored to support an "oprimised relational interface
such as SQUIRAL", as described by the authors. It uses search logic
attached to head-per-track storage devices. It performs search and
selection operations at the storage device level and provides a means
for high output rate of sorted tuples. It uses the "orthogonal' storage
layout which provides two advan;ages; reduction in storage capacity
required by search logic and high output rate of selected tuples.

The Relational Associative Computer System (RELACS) is another
associative system with special hardware for implementing a relational
data base [OLIVER 79]. This system has five main functional units; the
Dictionary/Directory Processor (DDP), the Associative Query Translator
(AQT), the Mass Storage Device (MSD), the Output Buffer (OB) and the
Associative Units (AU¢, AUL). I; <an support a large relational data
base with no size restriction as it’ uses a specially designed assoc-
iative processor to search relations. -Unlike the other logic-per-
track processors, this processor does not search the entire memory for
answering a query. The DDP retrieves the description of the required
data and passes it to the AQT along with the sequence of instructions.
The AQT translates these instructions into a set of low level commands
executable by the AU's, which can perform content searching.

Up to this point, the discussion has been about the systems
which are designed for implementing the entire data base environment.
In addition to these, there has also been reseafch in the area of spec-
ial processors for implementing specific data base functions (list

mergers, search processors, etc. ...). In [LEILICH 78], the archit-

20

ecture of Search Processor is described. This processor is capable

of performing selection and restriction on data stored on the disks.

It uses 14 'search modules' to handle several queries at a time. There
is no content addressing of the data on the disks. In [HOLLAR 79] a
design for list merging network .is discussed. It uses a number of
processors combined in the form of a network to process complex boolean
expressions on sorted lists without producing intermediate results.

There have also been some theoretical models proposed for
supporting multilevel architectures. One such model for relatiomal
‘data bases is suggested in [BRACCHI 74]. The model proposes five
logical levels which ;nclude the schema, the user subschema and the
related logical and physical mappings. The data independence, flexi-
bility and optimisation features of the model are highlighted.

In [KLUG 78] a scheme for supporting different data models at
user level is suggested. It employs a simplified network model at the
conceptual level from which the user views are derived by using mappings.
A general discussion on how user queries may be tramslated into queries
on conceptual model is presented. However, no machine arcﬁitecture to

support this scheme has been put forward.

2.5 Problem Def;nition

From the previous discussion, it is obvious that there is a
.need for a data base machine architecture which can support different
data models simultaneously on the same physical data in conformity with

the ANSI SPARC Proposals [ANSI 75]. To the best of our knowledge,

21

there is only one project in the world addreséﬁng this problem - GQBMS.
[(DOGAC 80]. Here the authors simulate the ANSI‘SPARC proposals or the
co-existence model [NIJSSEN 76]. The RAP machine is used at the inter-
nal level and the conceptual and external levels are simulated by soft-
ware. \

In this report, we study features of a machine architecture
(WCRC) [ARORA 81] to meet the above-mentioned requirements and compare
our approach to GDBMS. The machine is one hardware version of the ANSI
SPARC architecture. It has.an external level, a conceptual level and
an intermnal level. It can handle several queries simultaneously. It
can support three major data models, network, relational and hierarch-
ical simultaneously on the same data at the intermal level. It may be
used as a back end to a host computer or as an independent data base
computer to do non-numeric processing.

The overall architecture, the features of the external level
and the languages used at the user level are discussed in Chapter III.
The salient feaEures of conceptual level including the language, the
model, the schema translation and the Data Base Administrator (DBA)
faciliti;s are discussed in Chapter IV. The data structures, the hard-
ware primitives and the associated hardware of thf/internal level are
discussed in greater detail in Chapter V. The/§;rformance evaluation

¢

based on the intermal level is worked out ;Q’Chapcer VI. Furthermore,

the performance of the system 1s compared with the RAP system and

Defiore's Associative Scheme [DEFIORE 74].

CHAPTER III .

OVERALL ARCHITECTURE OF WCRC

3.1 Basic Organization

WCRC, Well Connected Relational Computer is an independent
data base computer intended for non-numeric processing. As shown
in Fig. 3.1, the system consists of three major blocks corresponding
to the three levels: the External Processor, the Conceptual Pro-
cessor and the inf%rnal Processor.

The Extermal Processor performs the following main functions:

i) Queuing of jobs (or queries)

ii) Priority encoding of queries

iii) Translating queries from user language inteo
conceptual level language (WCRL)

iv) Security checking to protect the data base from

unauthorized operations.

It has three memory areas: The User Work Area (UWA), The Interface
Buffer Area (IBA) and The Processor Memory Area (PMA). A portion of
UWA 1s allotted to each user as his/her work space. In this area,
the user can define his own view, a part of the data base as seen
by him and specify the constraints on it such as granting other

users to use this view or some additional integrity constraints.

22

~N

UV;’S Uws|_ _ _ _] +—Jser Work area
2
N S

EXTERNAL Processor Memory
L DALl Area (PMa) lp—— Translators
LEVEL

J

IBA

-~

s

[Controller 1

= DBA facility
CONCEPTUAL / DDL

J s operations on C. 8.
LEVEL -~ constraints
QA CsSD QT
&
user facilityje, | USsD USD
DDL UiD 2 3 BM

(Sub Schema
Definition), Network Rel. Hier. I

Operations &
Constraints

INTERNAL R L
LEVEL Qpl QP2 === m= == QP ! gt~ Query Processor

pb—Main Memory
l-Cell Processor

| I

F16. 3.1 OVERALL ARCHITECTURE 9F WCRC

24

The IBA is organized as a first-in first-out (FIFO) memory where the
queries are stored after they are translated from user languages into
the conceptual level language. The translation is handled by three
translators,cogresponding to the three data models, which are stored
as software modules in the processor memory. The jobs may also be
ranked on a preassigned job priority encoding scheme.

The external level may be implemented on a host computer by
software. This would involve developing program packages in the host
language such as COBOL or PASCAL, to handle the translation as well as
the other housekeeping activities. The details of the implementation
procedures are out of the scope of this thesis. ’///’/’-\\\\

The conceptual level supports the conceptual model and the '
user subschemas in the three major data models: The conceptual level
model is based on the Entity-Relationship Model [CHEN 76]. The lang-
uage at the conceptual schema is the Well Connected Relatiomal Lang-
uage (WCRL), [ARORA 80]. The conceptual level has the facilities for
query optimization and translation from WCRL into machine language -

(WCRML) and a data dictionary. In addition, it also provides facil-
ities for Data Base Administrator (DBA) to act directly on the con-
ceptual model of the data base. A special high level language (DBAL)

is developed to handle the DBA requirements.

<. The conceptual level consists of eight functional blocks

(Fig. 3.1): The Controller, The Query Analyser (QA), The Query
Translator (QI), Three User Schema Descriptors (USD's), Conceptual Schema

Descriptor (CSD) and a Buffer Memory (BM). The Conceptual Processor

25

maintains the information about the storage structure at the internal

level as well as about the conceptual model. The Query Analyser

breaks up the queriesyinto subqueries on the storage structure at

the internal level. The CSD contains the information ﬁbout the

schema definition operations on the schema, the constraints and the
{

data dictionary. Tﬁe term 'schema' is defined as the description of

a data base [CODASYL 71]. It describes the&&ogieal units of data in

‘s
=

the data base and specifies the integrity constraints and security

\
measures such as access restrictions to certain units of data. The

description of a view by an application is called a subschema. It is

a logical subset of a schema. The USD's at conceptual level contain
!

the subschema definition, operations and constraints corresponding to

views in three models. The information in CSD and USD'S is used by

L

the QA during query analysis. The QT performs the task of trans-

lating analysed queries in WCRL into machine level primatives (WCRML)

that can be directly executed by the internal level and stores them

in the Buffer Memory. . A

= e

The intermal level consists of a number of Query Processors
(QP's) and an array of Cell Processors (CP's). Each QP is a master
processor which is responsible for executing one query in machine
lanéﬁage using the cells. The cells are logic per track devices.
The data is stored on the cell tracks as binary partitioms, known
as pseudo-canonical partitions (PCP's). A formal discussion on PCP's

is presented in Chapter IV, along with the description of WCRL, for

the sake of continuity. For the present overall discussion, it would

L

ﬁ‘q;;

26

* suffice to note that PCP's are partitioned binary rel;tions. All the
cells are i;gé;endent of each other, i.e. there is no direct commun-
ication among them. They can only communicate through the query pro-
cessor which controls them. The data on the cells can be read by any
number of QP's but only one QP can write on to the track at a time.
The Qﬁ selects the cells required by the query it is handling and makes
them slaves. They are\released once the query is processed. The QP
co-ordinates its slaves and also computes the overall set results.
_Several queries can be handled at the same time as the QP's cin work
in parallel. This is a multiple instruction - multiple data stream
organization (MIMD) . . -

The memory at the internal level 1s divided into two .parts -
the permanent memory stores the data base and the temporary memory
stores any intermediate results of a query, if required. The-data
séructure and hardware organization are discussed in detail in Chaptgr

V.

3.2 Query Processing

Inlthis section, an overview of how a query is processe& at the
three le éIE\iENiiscussed. The querigs originate at the user.end in
three Jlanguages corresponding to three different models. These are
t slated dnto WCRL, priority encoded and put in a queue into the
IBA by the External Processor. The system also supports the Data Base

~ - . [«
}_Admfﬁistfﬁtorawhdtﬁbrks on the conceptual level directly but reaches

——

- it'bhrough external leve}flike»aﬁy other user. Therefore, some queries

St

A a3

may be originated by the DBA.

Once a query .is received by the external processor, it is
checked for syntax and violation of any security or integrity con-
straints. After it successfully goes through these stages, iF is
translated and put on the job queue, the conceptual processor is
activated. It takes one query at a cime’from the IBA and performs
query analysis on it. It bfeaks up the query on logical’well-

connected relations (WCR's) into subqueries on physically stored

PCP's. It checks whether logical WCR's can bé constructed from the

‘7

stored ones or not and also subjects them to constraints such as
security and integrity. Any violation of these comstraints would
terminate the query at this stage and an error message would be
channelled to the user through the external level. The successful
queries would now be translated by the Query Translator into WCRML

and submitted to the internal level through buffer memory. The query
translator glso provides the iﬁformation about the required cells

along with the machine primitives. This minimizes the search time.
required to select the cells. The QP's take the queries from tﬁe
buffer memory and select the required tracks by a polling schemé:

The machine languages primitives are executed on the slave processors.
For the retrieval queries, the data is sent to the external level direc-
tly through an I/0 read mechanism. For the update queries, the success/
failure is cémmunicated_to the user.

These various stages of query processing are illustrated in

<

Fig. 3.2.

.

28

Query in
At
External Syntax checking
Level
Security checking
A 4
= Translation into WCRL
— h 4
Security checking
)\ 4
§ Integrity checking
At
Conceptual
Level v
Query Analysis, optimization
Concurrency Resolving
5 Translation into WCRML
Execution
At
Internal
Level Retrieval/Reporting

Fig. 3.2 The Stages of Query Processing

29

3.3 Data Base Facilities in WCRC

In this section, some desirable DBMS facilities provided by
WCRC, for the user as well as for system operation, are examined.
They include the external language facilities, facilities for the
security and integrity maintenance, view generation and updates
through views, concurrency and provision for data base growth.
The implementation strategies for these facilities are outlined here.
The detailed software implementation is out of the scope of this

thesis.

3.3.1 The External Languages

The WCRC supports the following query languages at the user

level:

a) SEQUEL [BOYCE 74] for elational model,

b) LSL [TSICHRITZIS 764 for the network model

s [DATE 76] for the hierarchical

model \\,/i\\

These languages provide two types of facilities t0 the user: a

¢) IMS Data Sublangua

data manipulation facility and a data definition facility. The
corresponding subsets of a user language are called as the Data
Manipulation Language (DML) and the Data Definition Language (DDL).
The DML is used by the user to select the data and cause the selected
data to be transferred from the data base to the application program.

On the other hand, DDL allows the user to describe his view of the

30

data base and constraints on them. -

The views in the three models are mapped into the conceptual
model by a set of transformation rules. Three translators mapping the
external languages into conceptual language (WCRL) would suffice to
support the external languages. The details of WCRL, the transform-
ation rules and some examéles showing the translation of queries in
SEQUEL, LSL and IMS are presented in Chapter IV.

As mentioned earlier, WCRC supports the DBA at the external
level like any other user. For this purpose, a high level language,
DBAL is developed. The details of DBAL are presented in Chapter IV.
The DBAL provides facilities for Storage Definition Language (SDL) in
addition to DML and DDL. The SDL allows the DBA to describe the phys-
ical storage of the data. Thus, DBA can define and create the data
base, make changes to the data base, and access the data to monitor

performance.

3.3.2 Security and Integrity

WCRC also provides facilities for protecting the data base
against unauthorized disclosure or alteration. This is implemented
at two levels in the form of security constraints. Firstly, at the
user level, it involves specifving a password or some other ident-
ification to invoke programs or to issue certain commands. For
example, to log og,the user may be required to supply a password.

Similarly, to delete, insert or modify a record(s), or a data item,

the user may have to supply a. code word. These checks are maintained

31

at the external level and implemented during translation by the
external processor. Secondly, at the system level, a data dictiomary
is maintained which includes the security information regarding the
data. The data dictionary constitutes a part of the CSD and it is
common to all the three models supported by the system. The data
dictionary includes the following information for all attributes at

the conceptual level:

i) Attribute name

ii) Data type (Integer, Real, Character, etc. ...)

iii) Entity/Relationship name in which it is participating
iv) Synonyms, if any

v) Security code to allow updating

vi) User access control to attributes

For example, the access control to users may bé organized
as a User Access Table (UAT) in the data dictionary as shown in fig.
3.3. The table shows user privilege associated with each attribute
to read, write, modify or perform statistical operations such as
average and sum on the data.

The data base integrity is maintained in WCRC in the form
of constraint checking to ensure that the data is alwavs accurate.
These constraints would protect the data base from any invalid or
illegal alterations to the data. Integrity constraints are main-
tained at the conceptual level in the USD's and the CSD. They are

primarily of two types:

Users

Attributes
By Attr., A1 Az ———
R 1% M S
1 Ylx | VY| Y
2 Yl X XX
3 ‘ Y (Y | Y| Y
) .

Fig. 3.3 The User Access Table (UAT)

32

1)

ii)

33

System defined constraints (by DBA)

User defined constraints

The system defined constraints are based on the conceptual

schema of the data base., They are specified by the DBA using data

definition language. They are invoked during query processing in

the conceptual processor. The user defined constraints are based

on the views of the data base. The DDL facilities in the user lang-

uages are used to specify these constraints.

The followilng types of integrity counstraints are provided

in WCRC:

1)

ii)

iii)

iv)

v)

)

Specification of allowable/permitted/'unique’ values
for the attributes. (EX: 'salary should not exceed
certain amount', 'Age should be between 20-55 years',
eLC. +..).

Specification of key values and functional dependencies
in the conceptual model.

Specification of the type of relationships in the con-
ceptual model (i.e., 1:1, 1:N, M:N, total, partial,
ete, ...).

Consiétency constraints such as 'the sum of the budgets
of the individual departments should be equal to the
total budget of the organization'. (These are specified
?y the DBA).

Access control (as mentioned under security constraints)

to prevent invalid alteratioms.

34

It may be noted that integrity constraints are closely
related to the security constraints. Further, the choice of entity-
relationship model at the conceptugl level and the DBA language make
it easier to specify these constraints. These details are presented
in Chapter IV. The Query Analyser at conceptual level 1s responsible

for invoking the constraint checking routines.

3.3.3 View Generation and Updates Through Views

As mentioned earlier in this chapter, WCRC allows the users
to define their own views using the data definition facilities pro-
vided at the external level. Views have three primary benefits
{CHAMBERLIN 75]. They simplify the user interface by allowing the
user to ignore the data that is of no interest to him. They enhance
the data independence, as changes in the data base need not have any
impact on the views., Finally, they provide a measure of protection
by preventing a user from accessing the data outside his view.

The external schemas corresponding to the conceptual model
of the data base are available in all three models with the DBA,
Before the user defines his view, he obtains the necessary inform-
ation about the external schema of his interest, from the DBA. Un~
like GDBMS [DOGAC- 80], we do not provide the user with all the inform-
ation, for security reasons. Once the subschemas are defined, they
are translated into views iﬁ the entity-relationship model. These
views are checked to find out whether they can be derived from the

main schema or not. The views which are not derivable or violate

35

1 .
somé integrity constraints will be rejected at this stage. The USD's

maintain the description and constraints of the views. Once a view
is 'undefined' the corresponding information is deleted from USD's.
The following criteria are suggested to be taken into con-

sideration to define allowable views:

i) Views in the relational model may be derived using
relation algebra on the 'base' relations which appear in the relation-
al model of the main schema. Fig. 3.4 illustrates the view construc-—
tion.

ii) A view in the hierarchical model should be a subset of
the hierarchical trees or a subtree of one such tree in the hierarchical
model of the main schema. However, the subschema may have a rearrange-
ment of a tree or a part of the tree such that: a) The nodes in the
subschema tree are a subset of nodes in the external schema, b) For
each node in the subschema tree, the set of ancestor and descendent
nodes in the subschema is a subset of the same in the external schema.
The descendents of a node n, are those nodes in the tree, which have
n as the root (including n). The ancestors of n are all thoge nodes

<
for which n is a descendent (excluding n). Some possible views in the

hierarchical model are illu;trated in fig. 3.5.

iii) A view in the network model may be a subset of the record
types and the links in the corresponding external schema. Sometimes,
the record types in the view may be formed by join of certain record

types in the schema. The user language LSL provides facilities to

define such views [TSICHRITZIS 76]. Fig. 3.6 illustrates some examples

36

External Schema Some Subschemas

Ry (EMP, DEPT] i) v, : R, (EMP, DEPT]
RZ [EMP, SAL, AGE]
R, (EMP, SAL, AGE]

ii) v, (RL CEMP=EMP | Rz)

R, [DEPT, MGR, PROJ] CEMP, DEPT, SAL]

Fig. 3.4 Some Views in Relational Model

~

37

External Schema Some Subschemas
COURSE(CH,Title) - . COURSE
/\ | /\ TEACHER
PREREQ(P#) OFFERING(O#,Date,Location) TEACHER STUDENT

/ \ OFFERING

TEACHER(E#) STUDENT (ID#,Grade)

view 1 view 2

Fig. 3.5 Some Views in Hierarchical Model

38

External Schema Some Subschemas
EMP (E#,Name,sal) EMP. (E#, NamJ//
Salary,B#,
Street)
2
9 P
/4 WORKS
§ S\ S WORKS WORKS
MGR.
\V
HOUSE DEPT. (D#,Budget) HOUSE DEPT. DEPT.
(H#,Street ,Cost)
Located in
BUILDING(B#,Address) view 1 view 2
N

Fig. 3.6 Some Views in Network Model

'

39

of views in network model.

As views in the three models are translated into views in the
concéptual model, the view operations cannot be performed directly.
They must be first translated into equivalent operations on the con-
ceptual model. After translation, only those updates which do ﬂot
violate the integrity constraints will be allowed. This problgF of
permitting updates has been well investigated in ;he lite:g;uré_
[LEwis 78], [FumrTapo 79], [0SMAN 79]. However, all these approaches
address the update problem where both schema and the subschemas are
in the relational model. In our case, the main schema is in Entity-
Relationship model and the subschemas are in three different models.
Therefore, the update strategy is invoked at the conceptual level.
This problem is revisited in Chapter IV in the context of conceptual

“model. _
- T .
As far as the external level is concerned, the following types

Qf updates are allowed in the viewsr\»xr

i) Insertion, deletion and modification of é;plés\ig .
the relational model.

ii) Insertion, deletion and modification of record occur-

rences and links in the network model [TSICHRITZIS 76].

-

i1ii) Insertion, deletion and modification of record occur-

rences in the hierarchical model [DATE 76].

40

3.3.4 Concurrency

Since WCRC supports multiple queries simultaneously, a
strategy is called for,to allow only those concurrent operations
that preserve integrity. There are two types of concurrent oper-

ations in WCRC:

i) Inter-query concurrendy,

ii) 1Intra-~query concurrency.

The inter-—query concurrency refers to execution of several queries
simultaneously while the intra-query concurrency corresponds to
parallel execution of 'the same query on several éells at the intermnal
level. We follow the following conflict-free strategy §or both the
types. If two adjacent tasks (queries or subqueries) in a sequence do
not have any data sharea in common, they are executed in parallel. -
Otherwise, the tasks are §erialized. Concurrent updates on the same

data are not supported by the system. Further investigation is needed

for a more'sophisticated concurrency policy.

3.3.5 Data Base Growth

Every data base is likely to increase in size with time.
Thereforé, a DBMS. should make provisiops in the design to accommodate
data base growth. In WCRC, there are provisions at two levels to
handle growth. Firstly, at the internal level, the organization
of cells';nd query processors is modular., This makes it possible

to expand storage as well as the processing capacities of the system

~

by simply adding more modules., The second, at the conceptual level,
the DBA is provided with language facilities to change the conceptual
schema. These facilities include adding, deleting, shifting and
renaming of the entities, relationships and the attributes of the

conceptual schema,

In the discussion so far, the main units of the system and
the DBMS facilities provided have been introduced. In tﬂe.next

chapter, the features of conceptual level are described in detail.

L

©

CHAPTER IV

THE CONCEPTUAL LEVEL

4.1 Introduction

As mentioned in the previous chapter, the conceptual schema
represents a common view of data that encompasses all applications.
All the external schemas are mapped into the conceptual schema, which
has an overall view of the logical data orgaqization of the 'real
world' or the 'enterprise'. Some of the criteria that sho&%d be taken
into consideration during the design of the conceptual level, are the

following:

i) The data model and the language at the conceptual level should
preserve a high degree of data independence.
ii) The model should be flexible enéugh to be easily translated

into the external data models.

~
. ~

1iii) The software involved to implement the conceptual level should
be of minimal complexity to Improve the reliability of the
system.

iv) The response time degradation due to conceptual level should
.be as small as possible in order to achieve high performaﬁce in

a real time environment.

42

43

4.2 Choice of the Data Model

A number of data models have been proposed in the literatuyre,
out of which some have been considered for the conceptual level. The
most widely used data models include: the network, the hierarchical, .
the relatignal, the entity set [SENKO 73] and the entity relationship
models [CHEN 76]. The first four models are not very suitable for the

conceptual level for the following reasons.

i) The hierarchical model does not permit enough flexibility for a
conceptual model. It is not always possible to represent effic-
iently all types of relationships among data in a hierarchical
organization [KLUG 78].

1i) Though network model is more flexible, it's capability to achieve
data independence is limited [CODD 7oj.

iii)'The relational model provides flexiﬁi;itz\ffﬂffll as a high
degree of data independence. But (i cannot truly represent the
semantic information in the real world data. For instance, abil-
ity to perform arbitrary joins may give rise to semantic problems
CscaMIp 751. |

iv) The entity set model uses only binary relationships and provides
a high degree of data independence. However, it identifies
values with entities, which makes it difficult to capture natural

view of the real data [CHEN 76.

On the other hand, the entity-relationship model possesses

the following characteristics which make it appropriate for the con-

44

ceptual model.

i) It adopts closely the natural view of the real world.

ii) It inaorporates semantic information about the data.

iifs It provides high degree of data independence.

iv) Other data ;odels are easily deriwvable from it.

v) It avoids many problems associated with normalization. It
always achieves 3NF at least.

vi) It allows for changes in the schema and thereby provides facil-

ity to handle data base growth.

In view of these reasons, the entity-relationship model has
been chosen as the conceptual model in WCRC. A review of the model

is presented in the next section to facilitate further discussion,

4,2.1 The Entity-Relationship Model (E-R Model)

There are four basic objects in this model: entities, -

relationships, attributes and value sets.

Definition 4.1: An entity is a thing which can be distinctly

identified during design of a data base.
EX: .Employee, Company, House, etc. ... A set of entities with

common properties constitute an entity set.

Definition 4.2: A relationship is an association among entities.

EX: 'Work' is a relationship between employee and company. In
general, it could be binary 1:1, 1:N, N:M type of association or

a k-ary type of relationship. A set of same type of relationships

45

among entities is called a relationship set.

Definition 4.3: The value sets describe the information about an

entity or a relationship.

EX: 'No.of years' 1s a value set that describes age of the entity
'Employee’.

Definition 4.4: An attribute is defined as a function which maps

from an entity or relationship set into a wvalue set or Cartesian
product of value sets.

EX: 'AGE' maps the entity set employee into value set ‘no. of years'.

In addition, the function performed by an entity in a relation-
ship may be specified by "role". EX: The relationship among employ-
ees may have roles, 'Manager' and 'Employee'.

An entity is identified by a primary key among its attributes,
and a relationship by combination of primary keys of the entities
involved. Sometimes, if an entity cannot be uniquely identified by
its own attributes, a relationship is used for its identification.
Such a weak entity is identified by one of its attributes and primary
key of the entity supporting it through the relationship. Thus
entities and relationships could be logiéally viewed as relations
with the attribute names and role names forming the intension (i.e.

the description) and the Cartesian product of value sets forming the

-extension (i.e. the ‘tuples). Certain integrity and consistency con-

straints may be specified on the value sets, such as allowable

values, permitted values, and relationships such as 1:N relationship.

46

The model also allows for changes due to the data base growth,
Entities and relationships constitute the upper domain, while attri-
‘butes and value sets form the lower domain of the model. The follow-
ing operations are employed to effect the changes within the domains:
'Split', 'Merge', 'Add', 'Delete’'. EX: Adding an entity to the
existing model. In addition, 'Shift' operation is used to carry out
changes between the domains. EX: Changing a value set into an entity.
An examﬁle of a conceptual schema expressed as an Entity-Relationship

(E-R) diagram is shown in Fig. 4.1 (A corporate data base),

. 4.2.2 Derivation of Other Data Models

The relational model is easily derivable from the E-R model.
The entity and the relationship relations correspond to 3NF rela-
tions in the relational model. The semantic information of function-
al dependencies (FD's) is maintained as FD's among the entity and
the relationship relations (ER's and RR's). The corresponding
relational model is free of many semantic problems addressed by the
normalization theory.

A meaningful relational model may be obtained from the E-R

madel by the following conversion algorithm.

Algorithm for E-R Model to Relational Model Conversion

Step 1l: For each entity relation, define a corresponding relatiomn
in the relational model.
Step 2: For each k-ary relationship, generate a corresponding

relation.

47

Junomp
3800 g
ONIa1Ing
0a14g: 143
207 ‘ameN 1
~
unouww
swaly
Joro
awnto 802
qoud:.14da,
Londgoud |

. 891NqTI2Y

8798 anyvp

J¢o]

sdiysuoyi8(ay
8a13113uUg NOI.LV.LON
gavalk Jaqunn
Te3atded 1eiydeo 22180p Jo *ou Junoww sawsu anoyrod> Auedwod 1004
: €) axen
1 198fnq N age [res - anoTo 1 -
t 1
"Jd3da dnd YY) : 4 uvo
> 1 R =
.@ Ng
Wi 1dd 2 6
l N

ISYAVLYA 3L¥40440D 4O WWHOVIQ '¥'3 I'h ‘914

48

Step 3: For each binary relationship with atfributes, generate a
relation in the relational model. -

Step 4: For each binary relationship without attributes, generate
a relation only if it is of the type N:M. If it 1is of the
type 1:N or 1l:1, associate the key of the source entity as
an attribute with the relation corresponding to the target
entity, (We define the source and target entities as
follows. Let E, and E2 be the entities involved in a

1

relationship R, of type 1:N. Then El is referred to as
the source entity and EZ’ the target entity. Note, for

1:1 type relationship, we choose to call El as the source

3

entity).

The relations obtained by this algorithm would al&ays be in
3NF because each relation would have a primary key on which aill the
other non-key attributes would be functionally dependent. An example
1llustrating the relational equivaleﬁt of the E-R model of Fig. 4.1
1s shown in Fig. 4.2.

The network model can be derived from E-R model by treating
entity relations as record types and relationship relations as links.
The data structure diagram [BACHMAN 69] representation of the network

model can be obtained from E-R model by the following algorithm.

Algorithm: E-R Diagram to Data Structure Diagram Conversion

Step 1: Represent every entity and relationship relation as a

record type in data structure diagram.

Yoy

Relations
A/(Mgr)
DEPT. (DNO, Budget, CE, ENO, Name, Loc)
EMP. (ENO, Name, sal, Age, Qual, DNO)
PRODUCT (PNO, cost, volume, DNO)

BUILDING (Name, LOC, cost)

CAR (CNO, year, make, colour, ENO)

owner

Fig, 4.2 Relationgl Equivalent of the Corporate Database

50

Step 2: For each 1:N binary relationship draw unidirectional arrows
in the diagram from source entity to the target entity. For
1:1 relationship, draw a bidirectional arrow,

Step 3: For each N:M relationship, create a new record and draw
pointed arrows from the entities involved. The same holds
good for k—-ary relationships (k > 2), As an illustration,
the output of the algorithm for the example in Fig. 4.1 is

shown in Fig. 4.3,

The following algorithm converts an E-R model into an equival-

ent hierarchical model.

Algorithm to Convert E-R Model into Hierarchical Model

Step 1: Convert all 1:N relationships into a one-level tree with
source entity as the root. As a special case, for 1l:1
relationships, associate the information carried by the
relationship with the node corresponding to source entity.

Step 2: Convert N:M relationships into two trees. The parent node
in the first tree would be the child node in the second tree
and vice versa. The child nodes are of course renamed.

Step 3: Convert a k-ary relationship into a one-level tree with
a newly definea node és the root and the k nodes as legves.
The new node is a record consisting of the keys of the k
nodes and attributes of the relationship.

Step 4: Combine éll the Brees obtained above at the common nodes.

This would give rise to a forest of hierarchical trees.

51

éo
EMP PRODUCT
ENO | Name Cost { Vol
CAR ' BUILDING
CNO| Year | Make | Colour Name | Loc | Cost

Fig. 4.3 Network Equivalent of the Corporate Data Base

[SS VIR

52

The above algorithm yields the hierarchical model shown in
Fig. 4.4 for the example shown in Fig. 4.1, Step 2 for N:M reiation-
ships is illustrated in Fig. 4.5.

These algorithms provide the DBA with the external schemas
corresponding to the conceptual schema. Users may obtain this inform-

ation from the DBA while defining their views.

4.3 Choice of the Language

As mentioned earlier, WCRC supports several user languages at
the external level. This makes it necessary to have a common data
model independent language at the conceptual level. Some.,of the data
model independent languages proposed in the literature are LSL
[TSICHRITZIS-76], FQL [BUNEMAN 797, QUEST [HOUSEL 79] and WCRL
[ARORA 80]. We use WCRL as the la;guage for conceptual level of WCRC

for the following reasons.

i) The language is based on a data structure called elementary well-
connected relation (EWCR), which can be easily mapped into the
storage structure at the internal level, a binary pseudo-canonical
partition (explained later in detail).

ii) It allgws complex comnditional expressions involving set compar-
ators, aggreg;te fuﬁctions,and recursion, some of which are not
available in the other languages.

iii) It is algebraic in nature and also allows navigation through the

model. .

-

BUILDING

Name | Loc Cost
DEPT.
DNO | Budget | CE | MGR

T~

ENO

Name

Sal

Age

Qual

CNO

Year

Make

Colour

53

PRODUCT

PNO

Cost

Volume

Fig. 4.4 Hierarchical E&uivalent to the Corporate Data Base

(1:N)

(1:N)

Fig. 4.5 Hierarchical Tree Corresponding to a N:M Relationship

-

iv) It applies equally well to the three major data models - Network,

relational and hierarchical.

The language as described in CARORA 80] provides only data
retrieval facilities. .In this report, we extend the language to
accommodate data definition, data manipulation (update) and storage
definition, In the sections which follow, these aspects are dis~

-~

cussed in detail.

4.3.1 WCRL - Data Retrieval Language

WCRL is based on the theory of well-connected relations
CARORA 79]. Those definitions and the language commands which are

~ relevant for the discussion, are presented below.

Definition 4.5: A Well-Connected Relation (WCR) 1is a binary relatiom
W, on two sets A and B such that

. (¥a) (aea) (¥b) (beB) (aWb)

The sets A and B are called the fi;sé and the second constituents of

3

the WCR. Two WCK'§ are compatible if their constituents are based

on the same domains. ,f/”/#,,,/"”"

Definition 4.6: An Elementary_Well-Copﬁected Relation

(EWCR) 13 a WCR in which the first constituent has a single element.
The second codnstituent is then called the 'Image set' of the first

constituent.

55

Definition 4.7: A Trivial Well-Connected Relation (TWCR)

is a WCR in which both ﬁhe constituents have a single element.

Definition 4.8: A relation R[A, BJ can be expressed as

R [4, B]

n
£ R, [A,, B,]
=1 S it S |

= Rl [Al, Bl] U R2 [Az, 32] U...U Rn [An, Bn]

7 (R), a partition of R .

where R, [A,, B.]J 0 R; [Aj, Bj] = ¢
. n n
for i# §,1>1,j<nand A= U Ai and B= U Bi
. i=1 i=1

" Definition 4.9: A partition of a binary relation R Ca, B] is a

canonical partition (CP) if,

n
R[A, BJ]= ¢ w, [A,; B
gy 171

.

whére, i) Wy [Ai; Bi] is a WCR for 1 < i < n,

i1) A, is a set with a single element for 1 < i < n,

i

iii) Ai # Aj for 1 # jand 1 <1, j <n

A graphical illustration of these definitions is shown in Fig,
4.6.
WCRL provides two levels of oparations based on set proces-

sing. This means, any condition on the first comstituent of an EWCR

Set A Set B

w[A;éj

Set A Set B

wla;B]

" ¢p[A;Bl.

Fig. 4.6 Illustration of a WCR, an EWCR and

WCR

EWCR

a CP

56

57

is evaluated only once for all the.tupies in the EWCR. The two levels
in WCRL are the low level and the high level. The former uses only
EWCR's as operands while the latter uses canonical partition. The
operations fall into three classes, namely, set reconstitution, set
join and pseudo set operations. These operations are briefly dis-

cussed below.

i) Set Reconstitution (osr):

The algebraic representation of this operation is given by,

-

o . W [A; B] (First Expression (x); Second Expression (y)) = C [X; Y]

¢

where expression may be,

'a) A list of attributes belonging to (AU B)
b) Null
¢) A list of attributes where some attributes are restricted or

selected according to a relationship.

A qualification may involve arithmetic (+, -, *, %) operators and

aggregate functions. For example, X may be of the form,

EX: X = A, (B, = 1000), (B

B, = AVG (B3) + 100)

1 2

The result of this operation is a CP, C(X; Y).

ii) Set Join (st):

It is of the form,

st vy [Al; Bl], v, [Az; sz, eds W [An; Bn] (conditional

expression) = C [X; Y]

58

where X=A A

. . Codd's join (ocj)
and Y=8B,,8, ..., B

1 72 n -
™~—— -~ Y
-
or X = Al, Bl, AZ’ BZ’ .oy An
Brooming Join (obj)
and Y =238

The conditional expression is a set of conditions ¢onnected
by boolean operators (A, V, 1). Each condition mnay involve rela-
tional operators (=, >, >, etc.) set comparison operators (current
29 All Al_i some Bl’
(Al.S'Bl’ A.2 % B2, etc.) on any two attributes from A's and B's,

A1 > Al1 B etc.) and set containment operators

EX: A conditional expression may be of the form,

(A; = 50) A (A, = A4y A (B, > 100) ¥ (By+> - B,)

4 t

where stands for some B2 is greater than or equal to all B

¢ D> se .
- 3
(Note,'one dot' corresponds to 'some', 'two dots' to 'all' and 'no

dot' to 'current').

iii) Pseudo Set Operations:

These operations are 'selective union', 'selective inter-—
section' and 'selective difference!. The arguments of these oper-

ations should all be compatible EWCR's.

59

a) Selective Union.(c)
su-

o V1 CA; Bl] _— EAZ; sz, cees W [An; an (conditional

e expression) = W [A; B]

i

b) Selective Intersectiom (cs
. A . . ‘p
ooy Y CAl, Blj, wy (A3 82], cees W [An, Bn] (conditional
expression) = w [A; B

¢) Selective Difference (o dl
=3

2

) &\ ‘ e
g Y1 [Al, Bl], w, [Az, sz, P [An, Bn} (conditional

-

expression) = w [A; B]

In selective union, the tuples from the EWCR's that satisfy
the conditional expression are unionized into one EWCR. Selective
intersection.collects the common tuples from the EWCR's that satisfy
thé expression ana\forms a new EWCR. Selective differenc;'removes

the common tuples from w, and retains only those that satisfy the

1
expression in Wy
The high,ievel operations are similar to the low level ones
except that the arguments are canonical partitions instead of EWCR's.
When CP's are involved, the low level operation is applied to each

EWCR/set of EWCR's in thé' CP.

In order to demonstrate the suitabilify of WCRL as a concep-

60

tual language, the language must be further developed. The oper-

ations for data definition, data manipulation (for updates) and

storage definition are developed in sections 4.3.2, 4.3.3'and 4.3.4,

4.3.2

Data Definition Language (DDL) for WCRL

{
The DDL of WCRL presented here, 1s intended for defining

the schema and the constraints of the entity-relationship model. The

various statements are given below,

i) Entity Definifién Statement:

where

and

i

ii) -

This statement takes the form,

Gde

a)

,b)

c)

a;, 2

gy tees A (<E_SPECIFICATION>) = e(Ei)

a a

1’ 392 ceeo an represent the attributes of the entity,
Ei is the name of the entity,
<E_specification> is of the form (te’ K, R)

where to indicates the type of the entity (weak, normal),
K denotes the key and R specifies the supporting relation-

ship in the case of a weak entity,

DNO, Budget, CE (Normal, DNO, ¢) = e(Dept.)

Relationship Definition Statement:

4]

dr

-
[

The algebraic representation of this statement is given by,

al,-az,_..u, a_ .(<R_SPECIFICATION>) = 1r(R,)
n - 1

where

and

EX:

a)
b)

c)

61

275 85, ..., 8 are the attributes of the relationship,
Ri is the name of the relatiomship,

<R_spe£ification> is of the form (d,<spec. list>)

Here d indicates the degree of the relationship

(i.e. binary, k-ary), and the

<spec. list> constitutes (sl, Sps vevs Sys oeees sk) where
each Sy is of the form (el, s tr); &y and e, denote the
entities involved in a relationship whille'tr indicates
the type (i.e. 1:N, 1:1 or N:m). Further, the existence
of some entity instances that do not participate in the
relationship may be indicated by a '~' sign on top of

the corresponding entry in t.. Such a relationship is
called partial relationship. They are made total by

inclusion of null values.

To define N:M relationship 'Work' between entities 'Employee'’

and 'Project' where évery employee 1s not required to work on at

least one project, the following statment may be used.

o]

“dx

a¥

No. of Hours (binary, (Employée, Project, N:M))

= r(work)

" 1ii) Attribute Definition Statement:

cda

This statement takes the form

v (<V_SPECIFICATION>) = a(A,)

62

-,

where a) v{denbtes the value set that forms the domain of the
attribute, |
b) Ai is the namyof the attribute,
and c) <V_Specification> is of the form (td, u, p)

where t, represents the data type of the value set

d
(real, integer, ete.),
u specifies the units (dollars, years, etc.), and

p denotes the range of allowable values or unique-

ness

EX: The attribute 'Salary' ma& be defined as follows:
04, Amount (Integer, Dollars, 10,000 - 60,000)

= a(salary)

iv) Constraint Specifi&ation Statements: s

The constraints on E-R model may be specified using the

following security and integrity statements.

a) ¢ a;, 3

sc a, (SE, SE,, ..., SE_)

21 v n ' 0 . n.

where a) a, is an attribute or an entity

and 6) SEi is a security constraint expression on a. In general,
SEi is a'lisF of expressions of the form (U#, (<A LIST>))
where U# indicates the user identification number and A LIST

consists of the allowable accesses (Read(R), Write(W), Modify

63

(M), Read statistical values (S) such as 'Average', etc.). Thus,

several constraints can be specified in one statement.

0 0

b) ¢ 0 20 sres O {

c % IE), IE

25 sees IEn)

where a) Oi is an object name, namely, an entity, a relationship,

an attribute or a value set name.

and b) IEi is an integrity constraint on 0i of the form,

<Agr_fn> <object name> <opr> <opd> where,
<Agr_fn> : = AVG|SUM|COUNT |MIN|MAX|[®(optional),

- <object name> : = entity namelrelationship name|value set

name [attribute name,

<opr> : = set containment Operacor}comparison operator,

4
<opd> : = constént]<Agr fn> (<object name>),
EX: 1) The user access to an attribute 'Salary' can be specified as

Osc Salary (U, (R,W), (U,,(,8)))..

This means that user ’Ul' is allowed to read and write while
user U2 is permitted only to modify and read the statistical

4

results. Of course, modify implies read and write as well

~

but not vice wversa.

.1i) The integrity comstraint, 'Manager's salary should be greater

than average salary of the employees' can be specified as,

Orc M8r - Sal (Mgr. Sal > AVG (EMP. Sal))

64

iii) The constraint "The managers should be a subset of employees'

may be specified as, '\\\““\>

c Mgr

IC

(Mgr < Emp)

iv) Schema Change Specification Statement:

A change in the objects?E the schema may be effected by the

following statement,

o] 0.3
cs 1’

where a) o

b)

and 4)

0y e, o, [<object type list>] (<condition list>)
= 0€035 0p35 .5 0)

i is an object name list or an object name
<object type> is either an entity, a relationship, an
attribute or a value set; the ith object type corresponds

-,

to o,

i

~

<condition> is of the form
<object name> <opr> <constant> and
<opr>: = #|=[>]<|>]|<
<constant>: = Integer]Reallcharacter string,
Oi is a list containing the new name(s) of the object Oi'
If 0i contains two names, the instances satisfying the

condition are given the first name. The rest are given

the second name.

Note, all the schema change statements of the DBA Language,
split, merge, shift, rename, and delete, (explained later

in section 4.4.2) can be expressed by O.¢ Statement. The

65

other statement 'add' is taken care of by the data
definition statements i, ii, iii and iv of this

section.

EX: 1) Change the entity 'Persons' intoc two entities called 'Male

persons' and 'Female persons'; change the attributes
ocs{Person; (home phome, office phone)} (Entity; attribute]

(Person . Sex = 'Male':9)) - \

- $

= 0{(Male person, Female person): (phone)}
ii) Delete attribute 'Age' of the entity person

o, Person - Age [Attribute] (32) = 0(9)

4.3.3 Data Manipulation Language (DML) for WCRL

The DML of WCRL for updates, based on the entity-relationship

model, comprises the following statements. ‘ i - e

a} Insertion:
Ingertion of a tuple into'entity or a relationship is accom-

plished by the following statement,

1 A A2, cens An [<object name>](tl; Eyi cees cm) = O(Oi)’
Or Oy A;, Agy ey A [<object name>](<Expression list>) = 0(0,)
-

where a) Ai is a list of some or all attributes of the object type
(unspecified values are'taken as null values)

b

b) <ebject name> is either an entity or a relationship name ,

66

c) ty denotes a tuple which is of the form (al, s eees an)

where ai is a value

d) <Expression list> gives a tuple or a set of tuples, as follows,
<Expression list>: = <expression>; <expression list>|
<expression>
&
<ekpression>: = <jiexpr>, <iexpr list>|<iexpr>
<iexpr>: = <aggr func> (<atname>) |
. <aggr func> (<atname>) <op> <constant>

e
h

where‘<atname> is an attribute name -
<aggr func> is one of (MIN, MAX, SUM, AVG, CAR)

and <op> is one of (+, -, x, %).

e) 0, is the 'rename' of the object type (Renaming is optional).

b) Deletion:
The following statements can be used for deleting the tuples

from an entity or a relatiomship

e ——

——

op Aps Ay rrAy Eeobject name>](ty; €55 L5 ky) = 0(0))

—— .

or : . . »

on A A?’ cies A [<object name>](<rexpression list>) = O(Oi),

where <yexpression list>.1ls as follows

<rexpression list>: = <rexpression> <rexpressfon list>|
<rexpression>
<rexpression>: = <rexpr>, <rexpr list> | <rexpr>

<aggr func>

<rexpr>: = <aggr func> %atname> <op> <constant>

| <atname> <cop> <aggr func> <atname>
9

where <atname> is an attribute name,
<op> is one of (+, -, x,) ~u

<cop> is one of (=, #, >, <, >, %)

and <aggr func> is one of (SUM, AVG, MAX, MIN, C .

The syntax is similar to that of insertion statefment.

-

c¢) Modification:
The statements to modify tuples in entities or relationships

take the form,

e

3
.

Oy Aps Ags eees A [<object ngme>] ((al, ays wees ag), (bl, b,» s

b)) = 000

»

or oy A Az; cees A [<object name>](<mexpression list>)
(bl’ b2’ vy bn) = 0(01) '
N
where a) ai*§“5fE”thé“vaiues~ef—AIlswbefare.npéggg__h‘_bhﬁ
b) bi's are the values of Ai's after update
and ¢) The.value for, <mexpression list> is a tuple or a set of

tuples. The syntax of <mexpression list> is same as
<rexpression list>. Note, all the three update. statements

provide an option to rename the object after update.

68

Note: WCRL also allows for recurgion which can be used to define
new operations based on the other retrieval operations. The detailled
syntax of a recuyrsion statement is shown in Appendix A.

‘

4.3.4 Storage Definition Language (SDL) for WCRL

The SDL part specifies the mapping between the logical and
physical organization of the data (i.e. the conceptual and the
internal levels). It als; ﬁrovides facilities for formatting,
creating, destroying and renaming of the internal leéel storage
structures. Before developing these language statements, a dis-
cgssion ;n thé mapping betwegg conceptual and intermal levels is
presentéd here. |

It may be recalled that the logical objects at the concep-
tual level are entities, relationéhips, attributes and value sets
while the storage structures at the internal level are canonical
partitions (€P's). There exists a simple mapping between the objects

of E-R model and the CP's, as follows.

i) As mentioned in section 4.2.1, the attribute’s are fupctional
mappings from entity sets and relatiomship sets into value sets.
Therefore, a bihary relation consisting of the-key of an entity -
or a relationship set and a vg}ue set would conveniently form

a CBR representing an attribute.

ii) A1l binary relaiiouships which are 1:1 or 1:N type directly

« - correspond to the respective CP's.

- 69

iii) Any N:M type binary relationship may be transformed into a set
of two CP's by associating a system defined key with it. For
example, a relationship, R{A B]would become CP's,[K;A] and
C, [K;B] whereK is the system defined key. On similar grounds,

a k-ary relationship may also be transformed into a set of CP's.,

These mapping rules would form the basis for the following

SDL statements.

a) Mapping Statements » s

;) og cl, Cps g5 seey € (<M_Expression>) e(Ei)

[}

i1)oy ..Zi, ¢, (<M Expression>) = e(R,)

€15 C5 Cq5

These statements define the entity|relationship sets respec-
tively, in‘terms of the CP's. <M _Expression> stands for a Codd's
join statement. The ci's denote the canonical partitions and Ei/Ri“
the name of entity|relationship set.

The language also allows for "logical CP's' to be defined in'\”’
terms of‘the CP's at the‘internal level, by the following statement.

A logical CP may have more than two attributes.
114) Ogp Cp2 Spr o € (<M_expression>) = Cp(ci)

where ci's denote the CP's or other logical CP's already defined.

™
Egj?_g;ﬁ‘ :

C; dendotes the logical CP \Qi‘

and <M _Expression> stands for a set join or a pseudo set operation.

70

For example consider the CP's, ¢y [ENAME;SAL] and CZEENAME;SAL]

where C, corresponds to all the employees and C2 corresponds to only

1
managers. Suppose wepneed only those employees who are not managers

but earn more than $30,000. Then a logical CP, Cy can be defined as

Oap Cp» Gy (o4 C,[ENAME;SAL], C,[ENAME;SAL] (C,-SAL > 30,000))

= cp (C3EENAME;SAL])

Note, These statements may involve some data retrieval statements
such as set join in their <M expression> part. The same statements °

may also be used for renaming by letting M expression to be null.

b) Storage Definition Statements

i) Format:

The following statement is used to specify the format of the

canonical partitions,

o (<Fy, Fy, oony E2)

M Cl, C2, ceey 'Cn 29

) , ‘ i
where ci 8 are the CP's and Fi is of the forg <f1’ f2>. 'fl

_represents the first constitueﬁt and fz,'the second copstituent..
Each fi~is a 3-tuple of the form <n, td’ nb> where n is the

name of attribute, tq the data type and o the number Qf bytes.
EX: op, SAL, BUD (((ENO, Integer, 4), (Salary, Integer, 5)),

. ({DNO, Integer, 3), (Budget, Real, 6))

[

This statement defines the format of two CP's, SAL(salary)
and BUD(Budget).
ii1) Create:

This statement takes the form,

o) cp (<DATA>)

CR

It creates the CP with the data specified; the data must

follow the format specified earlier by a format statement.

iii) Destroz:‘

This statement 1s of the following syntax,

9pg €pr S eres S
»

All the CP's specified would be physically deleted from the

data base.

A detailed Backus-Naur form (BNF) syntax of WCRL is pre-

sented in the Appendix A. The syntax includes the recursion feature

t
of retrieval part of WCRL.

EN

In the next section, a higher level language for the Data

Base Administrator is developed.

5.4 Data Base Administrator Langwage (DBAL)
The concept of a Data Base Administrator (DBA) was first

introduced in the recommendations of CODASYL [CODASYL 71] and ANSI

. {ansz 75] committees. Since then, the functions, to be performed

71

72

by a DBA, have gone through a number of changes due to trends in the
evolution of DBA concept. A detailed review on this, may be found in
[DeBLASIS 78). Some of the major functions performed by-a DBA are

the following.

i) The Data base design and implementation,
ii) Incorporating changes in the data base from time to time.

iii) Monitoring the perfprmance of the data base.

In order to support these functions, a high level language for
DBA is developed in this section. So far; no dedicated language for
DBA has been developed in the literature. Though WCRC supports DBAL
at the external level, it allows the DBA to act directly on the con-
ce#tual level., The high level, english~like DBAL makes the task
‘easier for the DBA. The tramslation of DBAL into WCRL is carried out

at the external processor. The subsequent sections discuss the

details of this language.

4,4.1 Q§AL‘- Data Definition (DDL)

¥

L~
The data definition part includes the facilities for defin-

ing the conceptual schema during the design process. The statements

to define ‘entity/relationship sets, attributes and value sets are

\.

listed below.

1) DEFINE ATTRIBUTE <attribute name> ON

VALUE SET <value set name>

(RN

-

ii) DEFINE VALUE _SET <value set name> OF .
DATA TYPE <data type> WITH
PREDICATE (<allowable values, units>)

iii) DEFINE ENTITY SET <entity set name> WITH
ATTRIBUTES (<list>)
KEY <key name>

iv) DEFINE RELATIONSHIP SET <relationship set value> ON
ENTITIES (<list>) OF
TYPE (<association type>)
ATTRIBUTES <list>

v) DEFINE WEAK_EN&ITY_SET <entity set name> WITH
A?TRIBUTES <list>
KEY <key name> DEPENDENT ON

RELATIONSHIP relationship name

The predicate in value set definition allows the DBA to
specify the integrity constraints such as allowable or permitted
values. Further, any other integrity or security constraints may be

specified by the following statements.
Py}
vi) DEFINE ON <object name>

_CONSTRAINT <expression>
where <expre§sion> is of thg forﬁ
<object name> <0pf> <opd> and
<opr»: = set comparison or relational‘Operatof

<opd>: = <aggregaté function> <object name>:<constant>

73

®

74

vii) GRANT *TO (<user numbers>)
/7
ON <object name>

ACCESS (<access type list>)

This command may bé used to specify the access privilege, such
as read, write, etc., granted to the users,
An example to illustrate schema definition is shown in Fig. 4.7.

The corresponding DDL statements are given below.

Example: Schema Definition

DEFINE VALUE SET Name of
DATA TYPE String (10) WITH
PREDICATE Null ;
'DEFINE VALUE SET Amount OF
DATA TYPE Integer (4) WITH
PREDICATE (10K - 60K, Dollars) : .
DEFINE VALUE SET Ef OF
DATA TYPE Integer (4) WITH
PREDICATE (6000 - 9999)
DEFINE VALUE SET D# OF :
DATA TYPE Integer (4) ﬁITH
PREDICATE (1 - 40) ;
DEFINE VALUE_SET Capigai OF
DATA TYPE REAL (8) | WITH

PREDICATE (100K - 2M, Dollars) ;

Work

Name Amount E

-

EMP
' 1
ename ENO .
Salary Manage
#

1
DEPT
Budget bNo
Capital D#

Fig. 4.7 Conceptual Schema of an Example Data Base

75

4}

DEFINE ATTRIBUTE ©Ename ON
VALUE_SET Name ;

DEFINE ATTRIBUTE Salary ON
VALUE SET Amount ;

DEFINE ATTRIBUTE ENO ON

' VALUE_SET E# ;

DEFINE ATTRIBUTE Budget ON
VALUE SET Capital ;

DEFINE ATTRIBUTE DNO ON
VALUE SET D ;

DEFINE ENTITY SET Emp WITH

‘ ATTRIBUTES ENO, ename, salary; Age

KEY ENO ;

DEFINE ENTIT&_SET Dept. WITH
ATTRIBUTES DNO, Budget
KEY DNO ;

76

DEFINE ' RELATIONSHIP SET Work ON
ENTITIES (Dept, Emp)- OF
" TYPE (Binary, 1:N);
DEFINE | RELATIONSEIP_SET Manage ON
ENTITIES (Dept, Emp) OF

TYPE (Binary, 1:1) ;

" (Note: These relationships do not have any attributes)

77

Some Constraints: ‘ N

DEFINE ON Emp. Salary
CONSTRAINT (SAL 15K) ;
DEFINE ON Manage

CONSTRAINT (EMP (Manage) CEMP) ;

GRANT TO (Ul, Uys U3)
ON (EMP)
ACCESS (Read, Modify) ;

Note, all these DDL statements have equivalent commands in WCRL-DDL.

Therefore, they can easily be tramslated into WCRL commands.

4,4,2 DBAL - Data Manipulation (DML)

This facility allows the DBA to make changes to the schema as
well as the data, due to data base growth. The schema change commands

take the following form:

i) ADD <object name> TO <object type>

ii) DELEIE <object name> FROM <object type>

1i1) SPLIT <object type> <object name> INTO <list>
QUALIFICATION <expression>

iv) MERGE <object type> <list> INTO <object name>

v) SHIFT (<mode>) <object ﬁame> TO <object name>

vi) RENAME <object name> TO <object name>

where <object type> denotes entities/relationships/attributes/value sets,

<object name> is the corresponding name,

78

<list> is a set of two object names,
<expression> is of the form similar to the expression des-
cribed in the previous section, and,

<mode> is either low or high

The 'add' command can be used to expand the schema, by adding
an object to the existing conceptual schema, while 'delete' may be
used to do the opposite. The 'split' operation may be employed to
effect splitting of an object. For example, 'split' could cause the
entity, employee to be divided into two entities, namely, managers
and the managed. On the other hand, 'merge' can be used to combine
two objects of the same type. The 'shift' operation is a unique oper-
ation, which changes a value set into an entity or an attribute into
a relationship (high mode) and vice'versa (low mode). Needless to
say, the 'rename' operation allows for renaming of the objects in the
schema. The use of these commands are further illustrated in Fig.

4.8a ~ 4.8d, borrowing the example from Fig. 4.7,

Example: To start with, consider a primitive data base shown in

fig. 4.8a, consisting of only employees and departments. After some
time, the DBA wants to expand the data base to include the information
regarding the location of the departments. This can be accomplished
by adding a new entity 'city' as shown in fig. 4.8b. Further, if it
becomes necessary to distinguish between 'home phone'.and 'office
phone', the attribute phone may be split into two, as shown in fig.
4,8¢c. Furthermore, i1f the need arises to keep the informatiom about .

the car owned by the employee, the shift operation may be utilized

79

N 1
DEPT

i

ame Phone#f Car# Name

Fig. 4.8 a An Example Data Base

Work Locatjion
N 1l N 1
EMP DEPT L——<>—— CITY
B Dname
name own
Phbne \ Z2IP
O O
Name Phone# Car# .
code

ADD City to Entities
ADD Locatiomn to ﬁelationships

ox

Fig. 4.8 b The Data Base After Adding Entity 'City’

80

T <o

Dname Z1P

Oname O code
Name Phone# Car# t

SPLIT Attribute Phone INTO (Home Phone, Office Phone)

uno

)Office phone %

Ename
Home phone

Fig. 4.8 ¢ The Data Base After Splitting 'Phone*

—-—-<>——- DEPT ——0—— CITY
Q
“\ .

ZIP

OCode

Name Name

CAR

SHIFT (High) 'Own' To ‘bwns'
SHIFT (high) 'Car#' To 'Car'

Fig. 4.8d The Data o AT

81

to promote the vwalue set 'car' to an entity 'car', as shown in Fig.
4,8d.

Thus, schema changes can be handled by the DBA using commands

i) through vi).

All theseischém; changéicom;;ﬁdg: exé;pt 'a&&iz can be ex-
pressed as s operation of WCRL-DDL. For example, comnsider the
command, shift (High) 'own' To 'car'. The equivalent operation in
WCRL-DDL is:

Ocs own (attribute) (¢)
= g('car')
Similarily, 'spMMt', 'merge', 'delete', and 'rename' commands are
expressible as Special|cases of 0. g Examples .for 'split', 'merge’
and 'delete' are already shown in section 4.3.2. The WCRL equivalent

of 'rgname’ is as foilows:

O 'Employee' (entity) (¢) = e ('worker')
Depending upon the object type, the WCRL equivalent of 'add' command
may take the form of any of statements i, ii, iii or iv of séction
4.3.2.

For updating the data, the DBA f%-supplied.with the following

statements, which are self-explanatory.

vii) INSERT INTO <object name> <tuple|block of tuples>
viii) DELETE FROM <object name>(<tuple> |WHERE<condition>)
1x) MODIFY <objéct name> (<tuple>|WHERE<condition>)

BY <tuple>

82

Here, condition indicates which tuples should be selected.
The syntax of these commands may be found in Appendix B. These three
commands have equivalent DML statements in WCRL (section 4.3.3).

In order to ensure good performance, the DBA has to check
the data base from time to time, For this purpose, the DBA is pro-
vided with a data retrieval com&énd. The general form,of the command
is shown below.

RETRIEVE <argument list>

WHERE (<econditions>)

The argument list specifies the attributes of an entity or
a relationship to be retrieved. If attributes are not specified
explicitly along with the entity (or relationship), all the attri-
butes will be retrieved. While retrieving an entity/a relatiomship,
the navigation may also be specified in the agruement list by the
USING clause, which consists of a set of entities and relatiomnships,
along a particular path in the E-R model of the data base. The navig-
ation allows the DBA to retrieve the same data in several paths and
helps to check the accuracy and consistency of the data base. The

vy

tuples, to be retrieved, are restricted by a condition. The condition
consists of seve;al expressions connected by boolean operators, where
each expression in turn may involve set and aggregate functions, and
relational and set comparison operators. A detailed svntax of the
statement 1is presented in Appendix B. Soﬁg example queries are pro-

vided below to demonstrate the use of the command.

Example: Consider the data base shown in Fig._4.7.

i) List all employee names whose salary is greater than $10,000.

- \l
RETRIEVE All (EMP.(Ename))*§

WHERE (EMP. Sal > 10,000)

ii) TFind average salary of the employees in the department where
'D-NO = 50' and 'Budget < 100,000’

RETRIEVE AVG (EMP.(Sal)) USING Dept, Work, Emp

WHERE (DEPT. DNO = '50') AND

(DEPT. Budget < 100,000)

1ii) List all employee names and their salary who work in the
same department as 'SMITH'

RETRIEVE DEPT. (DNO [XJ) USING Emp, Work, Dept. (

WHERE (EMP. Ename = 'SMITH')

RETRIEVE All (EMP. (Ename, Sal)) USING Dept, Work, Emp

WHERE . (DEPT. DNO = X)

4.4.3 DBAL - Storage Definition (SDL)

The SDL commands provide the 5BA with facilities to define
the storage organization pf data. They allow him/her to specifv the
internal level data structure as well as the mapping between concep-
tual level and the internal level. These commands are listed below.
B i) DECLARE CP <canonical partition name>

\

\ AS <first comstituent, second constituent>

o

%

84

ii) DECLARE ER <entity name>
AS <CP name list> KEY <key name>
iii) DECLARE RR <Relationship name>

AS <CP name list> KEY <key name>

The first command defines the constituents, of a canonical
partition, which are nothing but the attributes in the E-R model.
Tﬂey are already defined using DDL statements. The last two commands
specify, the entity and relationship sets in terms of CP's. Note the
E~R model guarantees loss less join of the CP's to form-entity and
relationship relations.

A detailed BNF syntax of DBAL can be found in .Appendix B.

4.5 Query Translation

As mentioned in the previous chapter, the queries in the user
languages, namely, SEQUEL, IMS Data Sublanguage and LSL, are translated
by the external processor into queries in WCRL. 1In additi?n to these
languages, the external processor must also translate the DBAL commands
into equivalent commands in WCRL. In this section, the translation of
these languages is illustrated with an example.

Consider a slightly modified version of the conceptual schema
corporate data base (Fig. 4.1) as shown in Fig. 4.9. For the sake of
simplicity, it is assumed that, the users in all models view the whole
data base instead of only parts of it. The external schemas corres—
ponding to the conceptual schema, in relational, network and hierarch-

ical models are shown in Figs. 4.10 - 4.12. The canonical partitions

85

aseqg ke 23v10dio) ® jo weaderq ¥-1 6°% 314

Iunowy ’ . HmuHQQO . mw&.uwmﬂ
128pn :
) png HOKW: LdAd
1 I
Ldad

dHd ¢ 1434

3unoury

90714
>

adL],

\ 91L1g

dSN0OH
s1e9y) N junomy suey sinoTo) Auedwo) ONX
i
S [& INOTOd axen fieay
~T mf~ &
9 >
%,
ana R AV
T N T
OND

DEPT (DNO, Budget, CE, Mgr)

EMP (ENO, Name, Sal, Age, Qual, DNO)

CAR (CNO, Year, Make, Colour, ENO)

HOUSE (HNO, Type, Price, ENO)

Fig. 4.10 The External Schema in Relational Model

EMP .
< DE
ENO | Name | Sal | Age | Qual P o
~ 7
DM
EH
EC
CAR
CNO | Year | Make | Colour /

DEPT
DNO | Budget | CE
HOUSE
HNO [Style}Price

Fig. 4.11 The External Schema in Network Model

86

Building
DEPT | DNO |[Budget | CE Mgr
N
EMP | ENO | Name | Sal | Age | Qual
N HOUSE
CNO Yeaf'Maéé{deur HNO | Style {Price

Fig. 4.12 The External Schema in Hierarchical Model
i

[(ENO; Name]
(ENO; Sal]
[ENO; Age]
(ENO; Quall]
[DNO; Budget]
[DNO: CE]
[HNO; Style]

LHNO; Price]

Fig. 4.13 The PCP's Corresponding to Fig. 4.9

Yy

Y10

Y11

w

12

Y13

Y14

w,

15

Y16

{cNo;
Ccno;
[cNo;
(ENO;
[DNO;
(DNO;
CENO;

[pNO;

Year]

Make]
Colour]

CNO]J

ENQOJ .

ENO] = (Mgr)
HNO

BNO

87

88

(CP's) stored at the internal level, corresponding to the E~R model of
the data, are shown in Fig. 4.13.
A typical query is expressed in these various languages and the

corresponding translation into WCRL is as given below.

’

Example Query

Find the employees who live in houses that cost more than
$80,000 and who earn more than $25,000, the brand of the cars owned
by them, and the budget of the departments they work in. <(i.e. report

house price, employee name, car make and the department budget).

SEQUEL:
Based on the relational schema shown in Fig. 4.10, the user
would write the query in SEQUEL as follows [CHAMBERLIN 76].
SELECT HOUSE-price, EMP-name, CAR‘make, DEPT-budget
FROM HOUSE, EMP, CAR, DEPT
WHERE (HOUSE-price > '80,000') AND
(EMP-sal > '25,000") AND
(HOUSE-ENO = EMP-ENOQ) AND
(CAR-ENO) = EMP-ENO) AND

(EMP*DNO) = DEPT-DNO)

A user in network model would generate the same query, based

on Fig. 4.11, as follows [TSICHRITSIS 76].

89

SELECT HOUSE

WHERE HOUSE.price > '80,000'

KEEP HOUSE. price

LINK WITH EH IO EMP '
SELECT EMP

WHERE EMP.sal > '25,000'
KEEP EMP.name

LINK WITH EC IO CAR

KEEP CAR.make

LINK ' FROM EMP WITH DE TO DEPT

KEEP DEPT.budget

IMS Data Sublanguage:

Based on the hierarchical view of the data base shown in

Fig. 4.12, another user would write the same query as follows

[DATE 76

GU BUILDING

S
+

GN BUILDING

- GNP DEPT * D

GNP EMP’TEMP.gal > '25,000")

If not found GOTO C

GNP HOUSE (HOUSE.price > '80,000')
If not -found GOTO D‘

GNP CAR

90

(Add DEPT. budget, EMP. name, HOUSE.price, CAR.make
. to Result list)
GOTO B

GOTO C

It may be noted that, the above program is not based on the
genuine IMS DL/I [IBM 75] but on the hypothetical syntax given in
3

[DATE 76], for the sake of simplicity.

DBAL:

If the DBA writes the same query in DBAL based on the E-R model

shown in Fig. 4.9, the query would appear as given below.

RETREIVE EMP. name, HOUSE. price USING Emp:House,
CAR.make USING Emp:Car,
DEPT.budget USING Emp:Dept.

WHERE (EMP. sal > '25,000') AND

(HOUSE.price > 80,000)

3

Finally, the query in all these languages, when translated

into WCRL, would appear as follows.
WCRL :

S {ocj wl[ENo;NAME] wZLENO;SAL] (wl°ENO = W

Z-ENOAWZ-SAL > 25,000) }

(ENO;NAME) = cl(ENO;NAME)-

. I . N - . ; .
o r {obj wlSEENO,HNO] wskHNO,PRICE] (wl5 HNO g HNO A Wy PRICE

80,000) (ENO;PRICE) = C, (ENO;PRICE)

p 91

s

g _ {o wl3[DNo;ENo] wSEDNO;BUDGETj(wl3-DNo = w_+DNO)} (ENO;BUDGET) =

sr " c¢j 5

C3 (ENO; BUDGET) .

o {o -CNO) (ENO;MAKRE) =

. . . 0 =
sr%; wlZEENO,CNO] wlOCCNO,MAKE] (wl2 CN w

10
CA(ENO;MAKE)

°sr{°cj cl[ENO;NAME] cz[ENO;PRICE] c3[ENo;BUDGET] ca[ENO;MAKEJ

(c,*ENO = ¢,*ENO A c,-ENO = ¢_-ENO A c,"ENO =

1 2 2 3 3 cA'ENO)} (¢; -NAME,

PRICE, BUDGET, MAKE) = CS(Q; NAME, PRICE, BUDGET, MAKE)

It may be noticed that, some cof the WCRL statements are inde-~
pendent of one another whiie the others depend upon the sequence of
statements before, Those statements which do not depend on others may
be executed simultaneously on the CP's. The rest may be executed in
the proper sequence. These WCRL statements will again be translated
into machine executable hardware primitives, i.e. WCR machine language
(WCRML) commands, before they are submitted for execution to the inter-
nal level. The WCRML commands and the translation of WCRL into WCRML

are provided in Chapter V.

Note: Both WCRL and DBAL can handle partial relationships. However,

this would lead to propagation of null values in the data base operations.
Handling null values is still a grey area and it falls out of the scope
of this thesis. Also, incorporation of null values would call for ex-
tension of LSL, SEQUEL and IMS data sublanguage. Some work in this

area is available in [CODD 79] and [VASILLIOU 80_.

92

4.6 ‘ Query Analysis .
In general, the higher level languages allow writing queries
with complex conditional expressions [BOYCE 757, [CHAMBERLIN 74],
{COPELAND 74]. Such queries would take a great deal of time if they -
are executed as they are. For this reason, the queries are first
analysed and 'rephrased' before they are submitted for execution.
Such improvements during query analysis are called query optimization.
In this section, the conditional expressions involved in WCRL commands .
are examined and methods for optimizing some of the expressions aie
explored.
In WCRL, each command has an operation to be performed, a

data specification section indicating which data is to be operated

upon, and a qualification specifying the conditions that must be met
before the operations can be fulfilled. Among these, the qualific-
ation forms the heart of a command. The gqualifications in WCRL com~
mands are primarily of two types, type I and type II:
1) The general format of the type I, is as follows \
<attribute> <comparator> <operand>
where <attribute> is an attribute name in an EWCR or a CP,
9 ~ <comparator> dis '=' ,
<operand> is one of the following: ,;
a) <aggr func> <attribute> ,
b) <aggr func> <attribute> <aop> <aggr fune> <attribute>

¢) constant

93

Here, <aggr func> refers to one of the following,
1) SUM = sum of all appropriate attribute values,
ii} MIN = minimum of all appropriate values of the attribute,
iii) MAX = maximum of all appropriate values,
iv) CAR = number of distinct values of the attribute
v) AVG = average of all appropriate attribute values

and the <aop> is one of (+, -, x, %).

It may be noticed that, the right-hand side of this type of
qualification is always a constant, after it has been evaluated.
Therefore, it takes only one interrogation or comparison to check the

validity of the qualification.

ii) The type I1 qualification or conditional expression in WCRL
consists of a set of conditions connected by boolean operators
(A, V,=1) where each condition is of the type:
a) <attribute> <opr> <constant>
b) <set function> <attribute> <opr> <set function> <attribute>
¢c) <attribute> <copr> <attribute>

where <opr> is one of the relational operators (=, #, >, <, >, <),

<copr> is one of relational or set operators (=, #, >, <, >, <;

s, E,D,C, = _c_)

and set function is one of set functions (current, some\\ji:)
EX: (A > 1000), (B < C), (current A > some B) abbreviated s A > B,

(A11 A < some B) denoted By A -- < - B.

\

94

The type (IIla) condition. is gimilar to type I, except that
the operator involved in type (IIa) may be one of comparison operators.
The type (IIb) involving relational operators and set functions
may have 54 permutations as shown in figure 4.14, However, these
permutations could be transformed into 3 basic classes. For the sake
of simplicity, only '=, > and <' operators are considered and the
equivélent‘forms for type (IIb) conditions involving these operators
are shown in figure 4.15. The rest may be expressed on similar grounds.
The equivalent forms of these conditions may be obtained as follows:
Consider, the condition 'Some A > A1l B'. As can be seen, it
is equivalent to 'max (A) > max (B)'. The evaluation of the latter
would take only one éomparison, provided the max (A) and max (B) values
are previously known; while the former would have taken at-least n
comparisons and almost mn comparisons, where m and n are the number of
values in attributes A and B respectively. Sometimes, the words 'set'
and 'element' are used interchangeably with attribute and value in
this section. From Fig. 4.15, the type (IIb) conditions may be
classified into 3 classes, based on the number of comparisons, as
1) Class 1, which requires a small constant num$er of comparisons
(1, 2 or 3) independent of the cardinalities of the sets A
and B (22 permutations)
ii) Class 2, which require 0(n) or O(m) comparisons (4 permutations)
i1i) Class 3, which needs O0(mn) (i.e. O(nz)) comparisons (1 permut~

ation)

It is clear from the above analysis, that most "of type (IIb)

B current some

95

all
A
- >’ <, =-', >", <" =0’ >~o’ <o-, =o"
current
. >, <, %’ >, <-, #.’ S, S, #..,
o>’ c(’ -:l, .>-, -<o’ o:o’ o>o-’ .<-., o=--’
sSOme
>, c<, e#, ete. etc.
.o>’ -.<’ 'on::’ o->o’ o'-(o’ -o=o,’ nc)oo’ LI 3
all
ce>, ce<, eeg etc, etc.,

Figure 4.14 Permutations of Type IIb Condition

¥

96

of # of
compar- compar-
Condition Equivalent 1?225 fiiozie
original 4 equiv-
condition alent
Current A > Current B al > bl 1 1
Current A > Current B al = bl 1 1
Current A < Current B al < bl) 1
Current A > Some B a, > min(B) 1 - n* 1
Current A = So B = =
urren me (a bl) v ... V(al bn) n n
Current A < Some B a, < max(B) l1~-n 1
Current A > All B al > max(B) n 1
Current A = All B (al = min(B) = max(B)) n 2
Current A < All B a, < min(B) n 1
Some A > Curreni B bl < max(A) 1l -m 1
Some A = Current B (b, = a)V ... V(b,=a) m m
1 1 1 m
Some A < Current B bl > min(A) 1 ~-m 1

(*Note:

l-n denotes that it

takes at least 1 comparison

n comparisons)

Figure 4.15 The Equivalent Forms of Type IIb Conditions

and at most

5=

97

of # of
compar- compar-
. isons isons
Condition Equivalent for for the
original equiv-
condition alent
Some A > Some B max(A) > min(B) 1-mn 1
(a,=b,)V...(a,=b V...
Some A Some B 171 1l "n l-mn m”
...V(an=bl)V...V(am=bn)
Some A < Some B nin{A) < max(B) l-mn 1
Some A > All B max(A) > max(B) n-mn m+1
(a,=min(B)=max(B))V
Some A All B 1 n-mn 1
..IV(am=min(B)=max(B))
Some. A < All B min(A) < min(B) n-mn 1
Al;\A > Current B min{A) > b1 m 1
YMA = Current B (bl=min(A)=max(A)) m 2
All A < Current B | bl > max(A) m 1
All A > Some B min(A) > min(B) m—-mn 1
_ (b,=min(A)=max(4))V
All A = Some B 1 memn n+1
...V(bn=min(A)=max(A))
All A < Some B min(A) < max(B) m~mn 1
All A > A11 B min(A) > max(B mn 1
All A = ALl B min(A) = max(4) = _ 5
min(B) = :j> B)
All A < A1l B max(A) < #Ain(B) mn 1

Figure 4.15 The Equivalent Forms of - Ty

pe ITb Conditions (continued)

98

conditions involve only a few comparisdns. Therefore, these conditions,
in the queries, should be replaced by their equivalent forms. It may
be noted that, the use of equivalents would save considerable number of
memory interrogations:‘when partially associative memories are used for
storing the data. Also, the minimum and maximum values can be cobtained
in these memories in just one interrogation.

The type Ilc conditions would involve either relational oper-
ators or set operators. The conditions with set operators are the
following:

i) A DB (set A contains set B)

ii) AC B

1ii) A B

iv) A€ B

vf A 2B (set A is equal to set B)

vi) A £ B

vii) A

v
e

viii) A< B

Qut of these, only i, iii and v need to be considered. The rest can
be derived from the three conditions and the boolean operators.

EX: 'A £ B' is equivalent to™(A = B). These three may further be
simplified as follows. 'A DB' is equivalent to 'All B = Some A and
CAR(A) > CAR(B)' . 'A $ B' is same as 'Some B > All A or Some B < All A'.
'A = B' can be expressed as 'All A = Some B' and CAR(A) = CAR(B)'.

Note, these are similar to type (IIb) conditions. In fact, they belong

to class 2, class 1 and class 2, resfectively. Also, for the
conditions involving set operators, the number of interrogations
required to evaluate the condition would be of the order of O(nz);

i.e. they belong to calss 3. These results are summarized below.

Type of comndition it of comparisons
Type I 1
Type (1Ia) 1
Type (IIb) & (Ilc)
1-3
-class 1
-class 2 0(n)
-class 3 O(nz)‘

Up to this point, the discussion has focussed on query
translation into WCRL commands and query analysis based on the
conditional expressions in WCRL statements. In the next section,

the translation of user views into views on the conceptual model,

99

the consistency checking of these views, and update stratégy adopted

at conceptual level are discussed.

4.7 View Translation, Consistency and Update Strategy

As mentioned earlier, the user views may be in relational,
network or hierarchical models. These views must be mapped into

views based E-R model by the external processor.

100

Even though the view translation is not handled at the
conceptual level, it is discussed in this chapter because the mapping
algorithms can be better appreciated in the context of the ionceptual
data model. In the following sections, firstly, the mapping algorithms
from various views into E-R views are described and secondly, the con-

cepts of consistency of views and update strategy are developed.

4.,7.1 Mapping Relational Views into E-R Model

¥

The views in the relational model consist of a set of relations,
where each relation satisfies the following conditions. All the non-
key attributes are fully functionally dependent on the key attributes
and the non—ke; attributes are independent of each other; i.e., the
relations are in 3NF. These conditions are necessary to maintain
semantic uniformity between external subschemas in relational model
and the main schema in E~-R model. Before the mapping rules are pre~
sented formally, a set of definitions are presented to facilitate

further discussion.

Definition 4.10: A relation whose key (primarv) does not contain a

key of another relation is called a primarv relation (PR).

Definition 4,11: A relation, whose primary keyv 1s fully or partially

formed by concatenation of primarv kevs or other relations, is called

a secondarv relation (SR). A secondary relation whose key 1s formed

fully by concatenation of primarv kevs of other primary relations is

101

said to be of type 1 (SR1). The secondary relations with primary key
forted fully by concatenations of primary keys of primarx\and secon-
dary relations are referred to as type 2 (SR2). The seconﬁary rela-
tion whose key co;tains partially some independent attribute(s) are
called type 3 (SR3). The key attribute(s) in secondary relations
(SR2 and SR3), which is either independent or key of some primary

relation, is referred to KAIL or KAP type, respectively.

Definition 4,12: The non primary key attributes of a relation may be

classified into three types. Those non primary key attributes of a
rgl;tion which do not participate in any o;her relation are called NKAL
tvpe. The non primary ke& attributes of a relation which form a part
of some primary relation are termed as NKA2 type. The rest are called
NKA3 type, i.e., the non primary key attributes that are part of some

secondary relation and not involved in anv primary relatiom.

1

Based on this formalism, the transformation rules, from

relational views to E-R views are described below.

A

Q’Transformation Rules

\\

1) For éach primary relation, define a corresponding entity and
iden;ify it bv the primary key. Define its NKAl type attributes
as the attributes of the entity and set up the domains as value
sets.

2) For each secondarv relation, SR1, define a relationship among
the entities involved, identify it by the primary kev, and

identify the association as binary or k-ary depending upon the

102

number of entities involved. Define the NKAl type attributes
as attributes of the relationship.

3) For eachgsecondary relation, SR2, define a weak entity and identify
its primary key and the NKAl type attributes as the attributes of
the weak entity.

4) For each secondary relation, SR3, define an entity for each of the
KAI type attribute(s). Define a relatiomship, between this entity
and the newly defined entities involved, and identify its assoc-
iation type based on the functional dependencies between the key
and the KAI type attributes.

5) For each NKA2 type attribute of a primary relation, define a
relationship between the entities involved. *

6) For each binary relationship obtained above, check whether there

is a functional dependency (FD), El - E2, E, ~ El, or both. If

2
there is, identify the type of relationship as N:1, 1:N, or 1:1,

L)

respectively.. If none of the above FD's exist, identify the type

as M:N. _

An algorithm based on the transformation rules is presented
here in an ALGOL-like language for automating the translation pro-

cedure,
-

The Algorithm:

Input: {S}, a set of primary and secondary relations,

{F}, a set of functional dependencies.

103

Qutput: {E}, a set of entities where Eis {E} is of the form
l Ei(ID, (Ai))’ ID being the identifier of the
entity and (A), the set of attributes of the entity.
{R}, a set of relationships where R, is of the form
Ri(ID, t, (A)), t being the type of the relation-

ship.

Procedure TRANS RE (S,F)

begin
For each PR ¢ § do
begin
Define an Ei;
Ei (ID) <« key (PR);
{E} « E;

For each domain Die PR do
begin ////
If D, ¢ NKAL then Ei(Ai) « D,

else

begin
If Di € NKA2 then
Define a Ri
Identify ti;
Ri(ID) « (key, D,);
Ry(A) + ¢

If R, ¢ (R} then (R} =« R;

104

else (skip)

end
else (skip)
ead S
end : \
end;
For each SR2 ¢ S do
Define a weak Es
Ei (ID) « key (SR2);
E+E ‘

i

For each D, ¢ SR2 gg

i
begin
If D, e NKA; then E;(A;) « D,
else (skip)
end
end;
For each SR3 ¢ S do
begin
Define KAI as Ei;
Ei(ID)*-KAI;
Define a relationship Ry
R (ID) <« key (SR,);
Identify the type, t

1
If R, ¢ {R} then {R} « Ry

105

else (skip)
For each NKAL « SR, do Ri(Ai) « Dy
end;
For each Rie {R} do
begin
If Ri is binary then
begin
~££’Ei f* Ej then Ri(ti) « 1:1
else If E, » E, then R, (t_) + N:1
s j— i1
else R,(t.,) <« M:N
=== "i‘Ti
end
else Ri(ti) « M:N
end;

end (procedure)

As an example, consider the relational view shown in Fig. 4.16.
The EMP relation describes a set of employees, giving the name, salary,
manager, department number, and the commission for each employee. The
H’,,iiEPT' relation gives the department number and the location. The SALES
and NEW SALES relations describe the items sold by the department in
the past and the present and their volume. The relation SUPPLY gives
the information about the companies thgt supply items to the depart-
ments and their volume. The relation CLASS describes the type of each
item. The keys of these relations are marked in Fig. 4.16 bv under-

lining. According to this information given in Fig. 4.16, the above

EMP (Name, sal, Mgr, Dept#, Comm)
DEPT (Dept#, Building, Floor)
SALES (Deptf#, Item, Cvol)

SUPPLY (Compgn,;, Ttem, Dept#, Vol)
|

s

CLASS (Item, Type)

NEW SALES (Dept#, Item, Volume)

Figure 4.16 A Relational View of a Hypothetical Data Base

r

106

algorithm yields the E-R view shown in Fig. 4.17. The primary
relations EMP, DEPT, and CLASS giv; rise to three entities with the
same names. The key attri;ute, company, in secondary relation, SUPPLY,
defines the entity, COMPANY. All the secondary relations give rise

to corresponding relationships as shown in t;é Fig. 4.17. Note, if
interrelational dependencies are not specified, the algorithm may

~

give rise to a disconnected E-R diagram.

4.7.2 Mapping Network Views Into E-R Model

A network view may consist of several record types and links
as in the general network model [TSICHRITZIS 77]. All the links are
binary and are of type 1l:1, 1:N or N:M. Some record types .may have
recursive links defined on themselves. A recursive link refers to a
link defined o; a single record type. For example, a link 'Component'
is a recursive link defined on a record type, 'PART’, implying‘that

a part is made up of other parts. The transformation rules for mnetwork

views described above, are the following.

Transformation Rules

i

1) For each record type, define a corresponding entity and identify

the data items (d;ias the attributes of the entity.

Ld

N 1
sal [Mgr Comm Building Floor
Vol

Fig. 4.17 The E-R View

SALES

Cvol

NEWSALES

SUPPLY

COMPANY

108

CLASS

Volume

Type

Corresponding to Fig. 4.16

. 109

2) -For each link, define a relationship and label the association

type (t).

3) For a recursive link, define a relationship on the same

entity.

An algorithm for such a mapping is presented here.

The Algorithm ,

Input {RT}, a set of recordvtygés,
{L} , a set of links
OQutput {E} , a set of entities
{R} , a set of.relationships
Procedure TRANS NE (RT,L)
For each v e RT do
begin
Define an Ei
For each di e Y do Ei(Ai) « dg; ¢
E,(ID) « key (v)3 ‘
{E} « E

i

end; -

—

For each 2 ¢ L do

begin

Define a Ri;

110

Identify the type, ti;
Ri(ID) - gey (yi), key (yj);

,{Yi and Yj are the record types linked by 1}
{R} +Ri . N

end; RN

end (procedure)

As an example, consider a network view of some hypothetical
data base as shown in Fig. 4,18. It consists of record types, EMP,
PROJ, DEPT, SUPPLY, PART, describing the projects and the associated
information and record types SPOUSE and CHILD describing personal
information about the employees. The links between the records are
labelled in Fig. 4.18. The corresponding E-R model obtained by
applying the above algorithm is shown in Fig. 4.19. For simplicity,
the attributes are not shown in.the figure. Only entities and the

relationships are identified.

4.7.3 Mapping Hierarchical Views Into E-R Model

As mentioned earlier, the hierarchical views are represented
by a set of trees, where each tree has a set of record tvpes as nodes.
The links from a parent node to its child nodes are information carrv-
ing. They are either 1l:1 or 1:N type. It mav be noted that, each
tree 1n the hierarchical model is nothing but an acyclic, connected
graph. [KNUTH 73]. The transformation rules for such a hierarchical

forest into a E-R diagram are given below.

111

DEPT sup
A
1 M P
Employs
ploy PROJECT Parts Supply
N
N N
NV & @é§ v
W
EMP PART
1
1
M N
Parent
Married Component
1 N
SPOUSE CHILD

Fig. 4.18 & Network View of a

Hypothetical Data Base

1i2

1¥vd

A1ddng-gq

dfns

8Ty 314 U mOIA MI0MISN 24T Jo TapoW y-g oyl

ades

a'TIHD

LOdrodd

A1ddng

a93euey

A0

61°% 314

Aotduig

1434

q8n0ds

paTaaey

* 113

Transformation Rules

1) 1If two trees in the forest have only common node, connect them
at that node. Repeat this until the forest becomes a connected
but not necessarily an acyclic graph.

2) Replace all nodes in the graph, by entities and edges by relation-

ships. 1Identify the type of the relationships (either 1:N or 1:1).

An algorithm for the above mapping is given below. For
the sake of simplicity, the details like attributes and relation-

ships types are omitted.

The Algorithm

Input {F}, A forest of hierarchical trees with edges (ei)
as 1l:1 or 1:N and nodes oy
Output {E}, A set of entities,
{R}, A set of relationships

Procedure TRANS HE (F)

begin
G« t; (G is a graph; t is some tree in F)
For each tree s ¢ (F-G) do

begin

For each node n ¢ s do

begin

For each node m ¢ G do

begin

f n=m then NJOIN (G,s,n)

o 114

end

end
end;
For each node n ¢ G do

REPLACE (n,E);
G do

For each edge e ¢

REPLACE (e,R);

end (procedure)
NJOIN (G,s,n) - is a function which performs the joining of the

graph G and the tree s and the node n,

REPLACE (n/e, E/R) - 4is a function which replaces nodes by entities
and edges bv relationships and outputs the entities

]

and relationships.

The above algorithm is 1llustrated bv the example shown in

The hierarchical model in this figure comnsists of records
It is a view of some data

Fig. 4.20.
STUDENT, COURSE, TEACHER, CLASS, ROOM.
Each student in this view, may take

base concerning a university.
Each course is taught bv one teacher and held in

several courses.

one class room. But a teacher can offer more than one course and
take several classes, where each class mav have a number of students.
These pieces of inform-
The

.21 aand b.

/,

Also, a class 1s taught by several teachers.
ation are represented as hierarchies, as shown in fig. 4+..20.
4

corresponding graph and the E~R diagram are shown in fig.
For the sake of simplicitv, the attributes ace not shown in any of these

115

*
STUDENT CLASS TEACHE%
1 1/ \1 1
N
N N N
COURSE
TEACHER STUDENT COURSE
1 1
1 1
TEACHER ROOM
1
N
CLASS

Fig. 4.20 A Hierarchical View of a University Data Base

(* Some teachers mav offer courses, but there may not be any
classes taking them. Such information is shown in this tree)

116

Student

Course

Teacher
Room

Class

Fig. 4.21a A Graph Corresponding to Fig. 4.20

ENROLL
1 N
——————-—<:::::::>-——————- STUDENT
TEACH
ROOM
LOCATION
OFFER)
1 N
1
COURSE
1 1
TAKEN T

Fig. 4.21b The E-R Model Corresponding to Fig. 4.20

117

diagrams. Note, the algorithm may sometimes give rise to discon~-
nected E-R diagram.
In the following section, the consisténcy of E-R views,

obtained by the above algorithms 1s discussed.

4.7.4 View Consistency and Updates

In the previous section, it is shown how user views can be
mapped into the conceptual schema. Now, an operation is permissible
on such a view, only if it can be successfully mapped on to an oper-
ation(s) on the conceptual/main schema. In other words, given a
main schema Sy and an instance, I of the data base, what subschemas
s, are permissible. Intuitively, a permissible view may be said to
be consistent with the main schema. A similar problem is addressed
elsewhere in a different context. For example, in [DALE 76 and
(DALE 77], the main schema -~ subschema interaction is considered,
in the context of hierarchical model. Also, in [ARORA 80A], a
class of views are identified as consistent viegf, based on the
functional dependencies in the underlying data base, in the context
of the relational model. Here, we examine the consistency problem
in the context of the conceptual level, where both the schema and
subschemas are in the E-R model. The required formalism is developed

below.

Definition ~ Consistency of View Mapping: A view mapping (fv) is

sald to be consistent with the main schema SW (s, I, C), where S
&

is the schema, I is the instance and C is the set of constraints,

if no constraints in C are violated by the mapping, fv'

Definition: A view is sald to be retrievally consistent, if every

query definable on view, S, is executable on the instance I of S,

Such a view is called 'query equivalent' to the main schema,

The following views are query equivalent to the main schema:
a) Subset views

b) Derivable views

Definition: A view, s, is called a subset view of a main schema,
SM’ if, i) the entities in s& are a subset of entities in SM’
ii) the relationships in s, are a subset of relationships in SM’
and iii) for every entity and relationship in s, the set of

attributes 1s a subset of the attributes of the corresponding entity

or relationship in SM'

Definition: A view, S, is called a derivable view of a main schema

SM if the entities and relationships in s, are derivable by the
Py

Y

following five operations from those in S%.

1) Joining the relationships in S, to obtain new relationships

M
(R _JOIN). -

Fd

2) Joining entities through relationships to obta#ﬁ new entities
(E JOIN). -
3) Shifting value sets into entities and attributes into relation-

ships, and vice versa (SHIFT).

118

119

4) Breaking a k-ary relationship into a set of binary relation-
ships (BREAK) and performing RJOIN on them.
5) Reconstituting the attributes of an entity or relationship,

i.e., selecting only certain attributes (RECONSTITUTE).

As an example, consider the E-R model of a data base shown
in Fig. 4.19. By joining (R JOIN) the relationships 'Employ' and
'"Work' between entities DEPT, EMP and PROJECT, a new relatiomship
may be obtained between DEPT and PROJECT. Similarly, a new entity
may be obtained by joining (EJOIN) entities EMP and SPOUSE over
the relationship 'Married'. The other operations SHIFT, BREAK and
RECONSTITUTE are self explanatory.

The operations RJOIN and EJOIN are based on the 'natural’
join. It is easy to see that, the queries defined on subset views
are executable directly on the main schema. In the case of deriv-
able views, the queries must be subjected to the derivation func-
tion (fd), before they are executable on the main schema. There-
fore, to check the retrieval consistency of user views, it has to
be decided whether the corresponding E-R views can be categorized
as subset or derivable views of the main schema. If they do not
belong to the above two types, they would be rejected as incon~
sistent views. Further, in order to derive the relationships in a
view s, from the relationships in main schema S*, it is necessary
to use 'BREAK' and 'RJOIN' operations. For this purpose, the behav-

iour of binary relationship relations under natural join is examined.

120

Figure 4,22 a and b shows the type of the relatiomship relation
obtained by joining two relationship relations. DNote, Fig. 4.22Db
shows how partial and total relationship relations behave under the
natural join operation. This information is useful in deciding
whether the relationships in S, agree semantically with the synthes-

ized relationships.

Definition: A view s, is said to be update consistent with schema

S if every update u on s, is tramslatable into a set of updates

M’
{vi} on SM'

Definition: An update u on S, is translatable onto S if it does

M’

not violate any constraints C and the consequences of such an update

are well defined.

The consequences are well defined for the following types of

updates on the instance IV of a view s,-

1) Insertion of a tuple into entity/relationship in Iv causes
insertion of these values into corresponding attributes of
entity/relationship in I with null values in extraneous attri-
butes. The extraneous attributes are those which occur in an
object of I and not in the corresponding object of IV, the object
being an entity or a relatiomship. .

2) Insertion of a tuple into weak entity causes a corresponding
entry into the key of the supporting relationship (the other

attributes get null values).

(a)

(b)

Fig. 4.22 Behaviour of Binary Relationship Relations Under Natural

Type

Type

1:1

1:N

1:1

1:1

1:N

1:N

I:N

1:N

M:N

Type
Type

TOTAL

PARTIAL

TOTAL

TOTAL

PARTIAL

PARTIAL

PARTIAL

PARTIAL

Join

121

122

3) Deletion of a tuple from an entity in Iv causes deletion of
specified values from the corresponding attributes in I. If-
the entity in SM has no extraneous attributes, then the corres~
ponding key value is also deleted. A null value is introduced
into any relationship which involves this entity.

4) Deletion of a tuple from a relatiohship in Iv causes deletion
of the values from the corresponding attributes. It also deletes
.the key of the relationship if there are no extraneous attributes
in the corresponding relationship in SM‘

5) For modification, if the primary key (K) is modified, then the tuple
is deleted and a new tuple is inserted. If a nonprimary key is
modified, say, attribute A, then the modification is allowed
only if the dependency K - A is not violated; otherwise it is

*

rejected.

We allow null values in the binary tuples. However, in
query evaluation of a tuple, instead of three valued logic - 'True',
'False' and 'May be', we have only two valued logic - 'True' and)
'False' with 'May be' treated as False. Each entity relation or
relationship relation has an all null tuple with a distinct key
value. This has the effect that no nulls can occur in any key
domain and partial relationships can be treated as total. In view
of this two valued logi;, the following strategy 1s adopted for the

basic relational algebra operations, join, projectionm, selection,

union and difference. For join, the nulls on the joining columms are

123
dropped but nulls on the nonjoining columns are reporteJ to the
user. In case of projection, if the resultant relatiomn has null
values in all the columns, it is ignored. For selection, the null
values do not qualify for any condition clause. For union and set
difference, the null values are treated as any other value.

This strategy has the following advantages:
i) Updates through user views can be allowed.
ii) No modification of external languages - LSL, SEQUEL and IMS
language - are needed.
iii) Uncontrolled propagation of nulls in the system 1is avoided.

iv) No special hardware for nulls is required.

In the above discussion, the entities and relationships are. .

assumed to be organized as relations. In fact, these are organized

2’

as canonical partitions. So, it remains to show that any operation
/

conceivable on these assumed relations can always be tramnslated 1n§3jjw

a set of operations on the CP's. (It may be recalled that, the
/

information regarding an entity/relationship relation is obtained by
taking a nmatural join over the correspondihg CP's). Now, the requir%?

result may be shown with the help of the following propositionms. The

notation here is similar tdfgggt of relational algebra [ULLMAN 80].

Proposition 4.1: Le B{fKAB'1 be an entity/relatlonship relation,

where K is the key aéé A, B are the attributes.

Let R(KAB) = R[KA] * R[KB]

- =

124

Let F be a selection clause such that F = Fl \Y F2 where Fl
is a selection clause on A and F, on B. (For the sake of simplic-

ity, no selection clause is assumed on key. However, it can always

be incorporated on similar grounds). Then,

op (R(KAB)) = (o (R[KAD) + R(KBD) U

Fl
Qgrl (RERAD) =« ch (RCKBJ)) .
Proof: Consider F= (A6 al) vV (B S bl)

where a; ¢ Dom (A) and bl € Dom (B). 6 could be one of the compar-

N
~

ison operators (=, #, >, <, >, <). Let § be in particular '=',
The proof would follow on similar lines for other operators. We
shall prove :that any tuple that satisfies LHS (left hand side) also
satisfies the RHS and vice versa. '

There are three types of tuples that satisfy the LHS:

a) <ki a; b£> , b) <ki aj cl> , ¢) <ki a, bl>

Now, consider <ki al bl> £ R(KAB)

= <ki a,> e R[RA]

-

and <ki~b£> e R[KB]

<k al> satisfies o

i Fl

<ki al> %* <ki b£> = <ki al b2> € RHS

. 125

Similarly, <k, a, ¢.> and <k, a
: i 7] i

1 bl> also belong to®RHS,

1

Any tuple that satisfies LHS also satisfies RHS

i.e. LHS < RHS

To satisfy Ips @ tuple ¢ R[KAT] should be of the type -

<k; a;>. Let some <k, b> e R(CKB]. This implies, <ki a; b£> £

RHS. This tuple also satisfies LHS. Similarly, a tuple that satis-

fies 0. belonging to RLKCI must be of the form <k; by>. This implies
1

that <ki a; b;> e RHS, if there is some tuple <ki aj> e RLKAJ. \Note,

3

<k, a, b_> also satisfies 0., the LHS
i3 "1 F

RHS < LHS

Hence, the result.

Note: This result may be extended for a n-ary relation with a

clause F = Fl \Y F2 ... VF

only relational operators are considered for 8. However, the result

n» On similar grounds. In this propositionm,

can be extended for set comparisons operators.

Proposition 4.2: Let F be a selection clause on R(KAB) where

R(KAB) = R[RA] = R{KB] and F = Fl n F2 such that Fl is a selection

clause over A and F2 is selection clause over B. Then

\\\

o (R(KAB)) = oFl(REKAD * oF2<R£KB])

Proof: OF(R) = cFlan(R)

et e e A——— e s

126
Op1 (on(R)) (cascade of selections)

0py (95, (RTKAD * RCKBD)

= ap; (RKAJ * oo, (R(KBD))

= opy (R(kAD) = (RCKBD)

F2

Proposition 4.3: It is always possible to translate any guery

expressible in relationmal algebra based on entity/relationship rela-

tions into a set of gueries on canonical partitioms.

Proof: Let El(§BCD) and E, (PQR) be two entity relations (or rela-
tionship relations). For the sake of simplicity, we assume that

there are only two of these relations. Note El and E2 are similar,

to relations in relational model. Thereforg, relational albegra could

be applied to these relations. The operations in relational
algebra are projection, sele;tion, atural join, cartesian product,
union and set difference. The othen operations like 8-join, division

and intersection are expressable in terms of these operafions [ULLMAN 80_.

Let C, (AB), C, (AC), Cy (aD), €, (PQ), and Cq (PR) be the

-

canonical partitions corresponding the El, E2 and R, We show that
the five relational algebra operations can be expressed as a combin-

ation of these operations on CP's., This would prove the prOposit}oﬁ.

Projection (Case 1): When projection involves the key of a entity/

relationship relation, it can be expressed as a natural join.

127

EX: E,[(4BC)] = C (4B) * C,(AC)

Projection (Case 2): When the projection does not involve key, as in

E1[BC], it can be expressed as follows:
E,(BC] = (C,(aB) * c, (AC)) [BC]

Selection (Case 1): When selection function is of the form F = Fl v F2

1 is a selection clause, say, on Q and F, is a selection clause
s

where F

on R.

7 (Bp (B = (g (G () * &5 (FRY) U

K (CLFR) % op (C5FQO)

Selection (Case 2): When F = Fl;\ F2
O (E, (PQR)) = °Fl(CA(PQ>) * ch(Cs(PR))

Y

The validity of these identities follows from propositions

4,1 and 4.2.

Natural Join: It 1s easy to see that

E, (ABCD) * E, (PQR) '

\

= (Cl(AB) * C,(aC) * C4(aD)) * (C,(PQ) * C5(PR))

= Cl(AB) * CZ(AC) * C3(AD) * CA(PQ) * CS(PR)

Cartesian Product: Consider the cartesian product of El(ABCD) and

EZ(PQR). The equivalent expression is given by:

El(ABCD? X EZ(PQR) = C; (AB) % C,(AC) * (C4(4aD) x CA(PQ))* CS(PR)

Union: Suppose the domains of A, B, C are compatible with those of

P, Q, R. Consider union El[ABcj and E,(PQR).

E, ABC U E,(BQR) =(C,(AB) * C,(AC)) U (C,(PQ) * C. (PR))

= (C,(AB) U C,(PQ)) * (C,(AC) U C4(PR))

This identity holds good because both A and P are keys of

1
the CP's, Cl and C2, C& and CS’ respectively.

Difference: Similar to the case of uniom, it can be easily shown

that E,[ABC] - E,(PQR)

= (C;(4B) ~ C,(PQ)) * (C,(AC) = C,(PR))

Thus, all the five relational operations on the entity/
relationship relations can be expressed as a set of operations on

the canonical partitions.

Proposition 4.4: Any query expressible in relatiomal algebra on

entity and relationship relations can be expressed in terms of WCRL

/
commands on the canonical partitions. 4

e e e em %

128

129

Proof: The proof of this proposition follows from proposition 4.3
and relational completeness of WCRL, The relational completeness of

WCRL is proved elsewhere [ARORA 80].

4.8 Summary

The purpose of this chapter has been two-fold., First, a
bottom-up design of the conceptual level based on the data model
and the data language are described. Second, a theoretical basis
for query analysis, query translation and view consistency are
reported., The required algorithms for schema conversion and view
translation are presented. These aspects would form the basis for
implementing a conceptual processor, as described in Chapter III.
The detailed software desién of the conceptual processor is out of

the scope of this thesis. 1In the next chapter, the details of the

internal level will be discussed.

B e e

CHAPTER V

THE INTERNAL LEVEL

5.1 Introduction

This chapter presents the details of storage structures,
WCR machine language instructions and hardware organization of the
internal level. For the overall configuration of the intermal level
the reader is referred to Fig. 3.1 in Chapter III.

The following design decisions have been taken regarding the

hardware architecture of the internal level.

i) The storage organization is based on pagtially associative
memories or logic—pe;-cell devices. These devices have been argued
elsewhereg, as cost effective alternatives to associative memories
(su 79A]. They reduce the system cost due to reduced software and
increased memory utilizationm.

ii) An array of identical cells and query processors are used
so that the cost of processing power is reduced, modular growth is
made possible and processing efficiency is gained due to parallel
processing.

iii) CCD memories may be used as the cell‘memories because
they provide cost effective utilization of memory space: avoid pro-

blems associated with synchronization and mechanical driving, as in

the case of magnetic disks, and provide less expensive packaging and

130

131

interconnections.

iv) The data is stored as binary canonical partitions rather
than n-ary relations. These partitions provide greatest amount of
flexibility in organizing the data to suit different data model needs
at the external level. This approach is radically different from the
other approaches in the literature.

The following section describes two possible implementations

of canonical partitions.
»
;
S

5.2 The Data Structures

Since, in a canonical partition the WCR's may be of arbit-
rarily large size (number of tuples), it cannot be implemented direct-
ly as a data structure. Instead, two types of 'physical' data struc-
tures are proposed, in the section, for the storage of data on cell
tracks. These are: a) pseudo canonical partition (PCP) -.option I, b

pseudo canonical partion - option II.

5.2.1 PCP - Option I

Similar to a canonical partition, a PCP may be defined as

follows: A partition of a binary relation R[A,B] is a pseudo can-

ja]

onical partition - option I, if R[A,B] = I wi[Ai;Bi]
i=}1

where 1) zwi[Ai;Bij is a WCR for 1 < i <n
ii) Ai is a set with a single element for 1 < i < n

iii) A, or Bi'values are ordered

i

132

It may he noted that, elements of A, may be repeated in several

i

\\\\ W?Bfgz‘;nlike in the CP's.
. In such a PCP all WCR's can be made equal in size by breaking
the larger WCR's into several smaller ones. The hardware size
of each of these PCP's can be standardized at the system level or cell
level. With the WCR size fixed, each of them can be assigned a "fixed"
position on the track. This reduces movement of data and eliminates
need for garbage collection. The track format for this data structure
is shown in Fig. 5.1. The track is divided into two halves. Each half
contains one constituent of a PCP. Logically, any one of the two
constituents of a PCP may be made the first constituent. This gives
rise to two possible PCP's for the same binary data, one forward PCP
and one reverse PCP. A header at the beginning of each half is pro-
vided for this purpose. The header contains the number of WCR's in
that half, the attribute name(s) of that constituent and some flags,
common to all the WCR's in that half, such as source flag and destin-
ation flag. Each standard sized WCR consists of a set of mark bits
(5), an address field containing the relative position of the WCR,
a value field containing a value of the first constituent and a fixed
number of pointers. The pointers contain addresses of values in the
second constituent of the WCR.in the other half of the track. Thus
all pointers in one half of the track point to addresses in the other
half of the same track and excessive pointer chasing is avoided. An

example of a binary relation stored as a PCP on a track is shown in

Fig. 5.2.
q

\

Standard sized WCR's
for Reverse PCP

Header
Header
Standard sized WCR's (a) TRACK
for forward PCP
H {b) HEADER
Track Flags First Constituent
Address Attribute Names
{(¢) WCR *
WCR Mark Value Fixed Number of Pointers
address Bits Field

FIG, 5.1 TRACK FORMAT

133

(2)

(3

(1)

(2)

(3

BN

(a)

(b)

(c)

FIG.

21 by
2y Py
29 Py
29 by
29 by
ag bl
23 by

Binary Relation

») (ap) (1, 2, 3)
S (ay) (1, 2, 4)
;) (ag) (1, 2, ¢9)
One half of track

,) (b)) (1, 2, 3)
») (by) (1, 2, 3)
y) () (1, 4,4
Other half of track

5.2 PCP's on a Track - Option I

134

135

This storage structure has the following advantages. The
poiﬁters in each half of a track are always forward pointing. There-
fore, there is no backward referencing and the hardware for imple-
mentation would be simpler. The data is organized in such a way that
the queries based on both forward and reverse PCP's can be answered
with equal ease. It also avoids duplication of data .wvalues. However,
if a PCP overfiows one track, it may give rise to duplication of some
values at these cell boundaries. If the standard WCR size on the
track is chosen in such a way that the "average' WCR size in the P
is an integral multiple of this, the extra storage for the duplicate
77yalues and.the pointers may be minimized. Also, if we use a counter

to locate the WCR's (standard sized) onsthe track, there is _no need

to store the WCR address with each WCR.

5.2.2 PCP - Option II

Though the use of pointers in the PCP - option I provides
an efficient utilization of memory space, the pointer chasing would
increase either the complexity of hardware or computatiqn time to
perform operations like join, which require data contiguity. In view
of this, another data structure is presented here, which iﬁvolves no
pointers.

This second type of data structure exploits an inherent
characteristic of the E-R model. As mentioned earlier, in all the
CP's corresponding to entities and relationships, the first con-

stituent is always a key or a system defined key. Therefore, a CP

136

would always be a set of EWCR's, where each non-key value may be
connected to several key values, but not the other way around. Such
a CP may be viewed as a set of disjoint EWCR's. It is formally
defined as follows. It 1s different from a PCP - option I in that
the elemen&F of the constituents are not ordered.

A partition‘of a binary relation R[A,B] is a pseudo canonical

partition ~ option IT if

n
REA,B]:iil w,[a,;8.]

where, 1) wi[Ai;Bi] is a WCR for 1 < i <n
ii) Ai is a set with a single element for 1 < i <n

iii) The elements of A and B are unordered.

In option II, the EWCR's may be of arbitrarily large size
(number of tuples). The EWCR's can be made equal in size by breaking
the larger EWCR's into several smaller ones. Now, the hardware size
of each EWCR can be standardized similar to the PCP's of option I.
The track format of this data structure is shown in Fig. 5.3. The
track is continuous and undivided, unlike the option I format. The
header of the track contains the information about track address,
size of the EWCR's in the track and some flags common to tﬂe whole
track. It also contains the attribute names of the first and the-
second constituents. Each EWCR consists of several mark bits, a

.

first constituent value field and certain number of second con-

stituent value fields. The number of second constituent value fields

s

Fig. 5.3 Track Format of PCP - Optiomn II

(a) Track

Track Size of Flags First Second
Address EWCR Constituent Constituent
Attribute Actribute

Names Names

(b) Header
Mark * Nonkey
v
. Bits Value Field Key ieié‘s‘e
Const iteent) (Second
n Constdituent)

(¢) EWCR

137

o>

138

(key values) per EWCR is standardized at the system level or track
level, This makes the size of the EWCR fixed and it is specified
in the track header. A hardware limjt is placed on this size to
facilitate hardware implementation. Thus the EWCR size may be
variable within this hardware limit., An example of a binmary canon-
ical partition stored as PCP's of option II on a track is shown in
Fig., 5.4.

This data structure offers the following advantages. There
is no duplicationh of value fields as long as the EWCR size is not
greater than the hardware limit. There are no pointers and hence
storage requirements for pointers ané pointer chasing are avoided.
;c is possible to view the PCP's as both forward and reverse PCP's
for the same stored binary data because the second constituent values
are key values and are never duplicated. Finally, the contiguity of

first and second constituent values in an EWCR makes it easier to

implement operations such as join and sort.

5.3 A Comparison of Options I and II

The storage requirements of the two proposed data structures
are compared with the aid of an example. Consider a typical segment

of a data base consisting of two entities E, and EZ’ connected by a

1

relationship R, as sh;§h~in Fig. 5.5. Let Al’ AZ’ “en ANl; Bl, BZ’

.o 83, “es BN2; Cl’ CZ’ ce CN3 be the attributes of El, E2

respectively. The corresponding data wauld be stored as the follow-

, and R,

e T wa 7 g o4 7 A . 'y . O v . .
ing PCP's; [K 34,5, [Ki5a.0, ..o, Ex\l,ANlJ, D\z,Bl_, ...,_KZ,Bsz,

)

—— et s

139

Non Key Field Key Field

3 by

\\ ay b2
a, b6
3, b7
a, bsf
33 b3
23 b,

(a) A Binary Relation

D (L5, (@) (G, by,

2) (,,,) (ap b

6’.b7’ 8)
3) (Yy 2) (33) (b39 bA’ ¢)
Mark bits

(b) The PCP's on Track

Fig. 5.4 PCP's on a Track - Option II

140

ENTITY

N2

(a) A Typical Segment in the Data Base

[Kl; A2] [Kz; 32] Las Fl](i [as C1
(ks 4,0 [K,5 B, [as K3 Las €]
L -
EKl; ANl] [K,; BN2] 7 N
(b) The PCP's

Fig. 5.5 An Ekample Showing PCP's Corresponding to an E-R

Schema

)
»

141

[Kl;a],[Kz;a], [a;Cl], cee [a;CN3], where a is a system defined key.
If the type of the relatiomship is l:N,'then the system defined key
would be the same as Kz-and the total number of PCP's would be one
less. The folio&ing assumptions are made while comparing the PCP
storage structures, Options I and II: 1) The WCR's'in both halves
of the tracks in PCP-option £ do éot have the WCR address field, ii)
the values in PCP - option II are unordered, and iii) the keys are

stored in coded format in both options.
;’

Let m be the average size of an EWCR in a PCP,
a be the storage for one value item in bits,

21, 22, 23 be the number of tuples in relations ~

corresponding to El, E, and R,

2

P Pz, P3 be the storage need for a pointer in

l’
PCP - option I corresponding to El, EZ and R,
respectively (in bits)

Now, let Sl be the storage required when the data is stored as PCP’'s
of option I

82 be the storage required when the same data is stored as

PCP's of option II.

The total number of PCP's N = Nl + Nz + Ny + 2 The storage for

PCP's corresponding to entity E is given by:

1* 511

Sll = hlo {storage for one PCP}

1]

Nl. {storage for first constituent values + storage for

second constituent values + storage for pointers}

Note, the

the

given by

The stora

given by

L
1
1 {21 Py + - a + 221 pl] (5.1)
21 ,
number of second constituent values = 7;y‘and
total number of pointers = 221
Similarly, storage for PCP's corresponding to entity EZ’ S12 is
%2
= N2 . {iz " P, + — ' a + 222 . pz} (5.2)
ge for PCP's corresponding to relatiomship R, 813 is
3 J
“x3.{£3'p3+—m?‘a+252,3p3]
(5.3)
£ 'A
1 2, .
T TPt TPyt 83t op
=51t St Sy
3 li
= iil NooRy P v at2epy
(5.4)
L L
1 2 2
— . + == . +
YR T LT

rlog2 217 , because we need pointers to point only half

of each track. (5.5)

e
m

']
B 1w

1
Ny (32 rlogzliT + -a}l+ E-{zlrlogzllj

1

+ zzflog2227 }+ 6z3flog223; (5.6)

142

143

Similarily, s2 =85, * Sié + 5,4 where
521 - is the storage for PCP's of entity El’
822 - is the storage for PCP's of entity E,
823 - is the storage for PCP's of relationship R

5,1 = No. of PCP's . {storage for one PCP}

= N, « {storage for non key values + storage for key values}

1
1
=N, - {7; cat e Flogzle} (5.7)
%2
S, = N, -‘{7;-' a+ g, rlogZRZT} (5.8)
*3 ! '
= . {—= . —_ . i | -
§,5 = N, { —cat i, flog2£37} + o Tlog,e, T+ = {—log2 27 +
2 - 2 rlog2237 (5.9)
3 4 1 -
S5, = 151 N, {li rlogzliT = a} + E'{£1 Ilog2£17
+ £2rlog2£21} + 20, rlogzi37 (5.10)

From Equations 5.6 and 5.10, it is easy to see that Sl >> 82.
Therefore, PCP - Option 1I offers a better storage structure.

In the above analysis, it is assumed that the average size
of an EWCR in a PCP (m) is equal to the standard size of EWCR (st)
on the track. But this assumption does not hold good if some of the

EWCR's have a large number of tuples. When these are broken down into

smaller omnes, there would be repetition of nonkey values. If P is the

— A e = e

144

proportion of large EWCR's in a PCP, the storage SP needed for one

such PCP with some repeated nomnkey values is given by

Sp = L (1-p) + f;i P (5.11)
t
. ag
when P is very small S = —
P m
5.4 WCRML Instruction Set

The WCRC system supports a machine oriented instruction set
at the internal level. These instruGE§ens‘£;e implemented in hardware.
The WCRL commands at the conceptual level are translated into these
WCRML instructions. The WCRML instructions can be classified into the

following two major types:

i) Instructions executed by the cell processors

ii) Instructions executed by the query processors

5.4.1 Instructions Executed by the Cell Processor

The general format of all these instructions is:
<LABEL> <OPCODE> <OPERAND> <CONDITION> <PARAMETERS>

The label specifies an optional symbolic instruction address. The
opcode specifies the operation to be performed. The operand indic-
ates the cell name or addreés and the constitutent name. The con-
dition may take any one of the.following forms:

a) Null

B) 4 A 99 Ad; .- Aqy

e e e s e ———— - —

145

c) q v 4, v 93 .- \Y Qs where q. is of the form,

i

i) <CONSTITUENT> <OPR> <OPERAND>, OPR is one of =, #,
<, >, <, > and OPERAND can be a constant, a register,
or a comnstituent name.
ii) marked (x), denoting a combination of mark bits set.
iii) wunmarked (x), denoting a combination of mark bits reset.
iv) RAM marked. (Note, each cell has a l-bit wide RAM
whose length is equal to the number of key values on

the track).

~

This qualification is valid only for a key eonstituent. It
is 'true' if the corresponding RAM bit is set. Within a cell, the
qualifications are either in a conjunction or disjunction. But a
selection clause over the cells may be a combinatioa of conjunctions
and disjunctions of these conditions. k denotes the maximum ﬁumber
of comparators in the cell. In option I, the OPERAND may be restricted
to be only a constant or a register, otherwise qualification eval-
uation would take several revolutions. However, in option II, the
OPERAND may be either a constant, a register, o; the other con-
stituent on the cell. Also note, null values of the constituents
would not qualify for any condition, i.e., they would return 'False’
to every condition.

The cell executed instructions can be divided into the follow-

>

ing types:

146

a) Retrieval

b) Set function

¢) Update

d) Storage definition

Most of these instructions are executable in one or two

revolutions of the cells. These instructions are supplied by the

query processor to cell processors. The instructions are described

below:

a) Retrieval Instructions:

1) SET

<LABEL>

SET (M) [<PCP name>:<constituents>_](CONDITION) (X,Y,N,2)

This instruction sets the mark bit (M) of the qualified

constituent(s) values of EWCR's on the track. The mark bits of

unqualified values are left untouched. The parameter X (All, First)

specifies whether all/first of the-.qualified values are to be set;

Y (Yes, No) specifies whether the other constituent values that go

with the marked values have to be set or not. N indicates the mark

bit of the other constituent. Z (Yes, No) indicates whether the RAM

associated with the cell has to be set or not. Recall, each cell of

a PCP contains a 1 bit wide RAM whose length is equal to the number

of key values stored on the track. ‘S&milarly, each query processor

also contains a 1 bit wide RAM whose length is equal to maximum size

of cell RAM's.

(The details of the cell and query processor hard-

147

ware are discussed later). A QP can read any cell RAM into its

own RAM.

2) RESET : ’

<LABEL> RESET (M) [<PCP name>:<constituent>]

This instruction resets the mark bits of the constituent(s)’

specified. It does exactly the opposite of SET.

3) READ
<LABEL> READ [<Cell#/PCP Name> / <constituent(s)>](CONDITION)
(BA/R, X, Y)

This instruction reads the qualified values of the constit-
uent (s) into the buffer area (BA) specified. The option to reset,
after reading is provided by parameter Y (Yes, No). -The parameter X
specified whether All or just One value have to be read from the
cell/PCP involved. When only one value is being read, it may be read

into a register specified by parameter R.

b) Set Function Instructions

5) MIN
<LABEL> MIN [<PCP name>:<constituent>] (CONDITION) &
(R#) »
This instruction obtains the minimum of the marked values
of the constituent specified into the register R# specified. Each
of the cells belonging to the PCP compute their local minima and

store them in the specified register. 1If no register i3 specified,

148

the result 1is palced in a special }egister called the result
register of the cell. The global minimum is computed by the query
processors using a set function instruction (explained later). All
the registers in a cell are accessible to the QP.

Note, the CONDITION here does not need the RAM marked option.

6) MAX
<LABEL> MAX [<PCP name>:<constituent>] (CONDITION) (R#)
This instruction is similar to MIN, except the register

would contain the maximum value.

7) SUM
<LABEL> SUM [<PCP Name>:<constituent>] (CONDITION) (R#)
This instruction compufes the sum of all distinct qualified
values of the constituent specified and stores it in the register
specified. The overall sum is computed by QP. Again, CONDITION does

not need RAM marked option.

8) CAR
<LABEL> CAR <PCP name>:<constituent> (CONDITION) (R#)
Discinct qualified values of the key are counted
and the result is stored into the register indicated. The.overall

result is obtained by QP.

9) AVG

<LABEL> AVG [<PCP name>:<constituent>] (CONDITION) (R#)

- e e SR s MM e e e i e g - st A, A ————————

149

This instruction computes SUM of a nonkey attribute and CAR
of the corresponding key attribute and divides SUM by,CAR to
obtain AVG and stores it in the register specified. The overall

result is computed by QP.

¢) Update Instructions:

10) INSERT
<LABEL> INSERT [<PCP name>](<Buffer Area>/<tuple>)
This instruction inserts the EWCR's in the buffer area into
the first available track of the PCP specified. If no track is

available, then a new cell is formatted and insertion is carried out.

11) DELETE
<LABEL> DELETE [<PCP name>:<constituent(s)>] (CONDITION) (X)
This instruction deletes the qualified values of the specified
constituent(s). di.e. It replaces the value by null. If only one
constituent is specified, the parameter X allows the option to delete
the values of the other constituent connected to a qualified value.

X can be Yes or No.

12) MODIFY
<LABEL> MODIFY [<PCP name>:<constituent(s)>] (CONDITION)
<0PD(s)>)
This instruction replaces the qualified values of the con-

stituent(s) by the opd(s) where opd can be a constant or a register.

150

13) ADD
<LABEL> ADD [<PCP name>:<constituent>_] (CONDITION) (<opd>)
This instruction adds opd to the qualified values of the
specified constituent. opd can be a constant or a regigter. The
following instructions are similar to ADD except that they carry a

different operation specified by the opcode.

14) SUB

<LABEL> SUB [<PCP name>:<constituent>] (CONDITION) (<opd>)

15) MUL

<LABEL> MUL [<PCP name>:<constituent>] (CONDITION) (<opd>)

16) DIV

<LABEL> DIV [<PCP name>:<constituent>3] (CONDITION) (<opd>)

17) LOAD
©
<LABEL> LOAD [<cell address>] (Reg 1, <opd>) '
This instruction allows gor register transfer between the
registers of the specified cell, If <opd> is"a ednstant, it would
be loaded directly into Reg 1.

-

d) Storage Definition Instructions

18) <LABEL> CREATE [<PCP name>:<cell#>] (<Format>)

This iastruction creates a new track and formats it according

o e e e~

151

to the data supplied in parameter 'Form;t'. The query will supply
the cell pro;essor with the format data. The format specifies the
header(s) and a typical tuple(s) on the track. This information may
be specified along with‘the instruction or in the work area, the
address of which is specified by the iastruction. The new cell is
given the specified name and the entire track is formatted to receive
tuples of type specified (i.e. gaps and headers are stored on the

track). v
»

-

v 19) DESTROY [<PCP name>:<cell#>]

This instruction deletes all the EWCR'§,an gome of the
hgader information of the cell/PCP specified. ff the cell# 1is not
specified, the whole PCP is destroyed. A flag is set at the begin-
ning of the track indicating that the cell is empty. Except for
the flag bits and the track address, all the other header inform-

ation is destroyed.

5.4.2 Instructions Executed by a Query Processor

[

These instructions can be divided into five major types:
a) Inter-cell commugicationsinstructioﬁs
ﬁ) Set function instruction
¢) Program control instruciion
d) 1/0 instrucfi;n

e) End of program instruction

-

152

a) Inter-Cell Comhunication Instructions

As mentioned earlier, cells have no direct communication
between tnem. Usually, there is very little transfer of inform—
ation between cells. Therefore, the hardware provision for direct
inter-cell communication cannot be justified in terms of cost and
complexity. However, indirect communication is p;ovided through the
QP by means of a set of instructions executable by QP. The general

format of these instructions is as follows:
<LABEL> <OPCODE> [<SOURCE>] <DESTINATION>] (<parameters>)

The opcode specifies the operation to be performed, the source
indicates the source Pcé or cell from where the information is
transferred. The ‘destination indicates the cell or PCP which is
receiving this information through the QP. The details of the

instructions are. given below.

1) <LABEL> TRANS RAM [<source PCP cell>] [<Dest. PCP/cell>]
This instruction transfers the contents of the RAM of a
source cell into the RAM of destination cell or the RAM POOL of
a source PCP into RAM POOL of destination PCP. The RAMS of all
tracks cofresponding to a PCP put together, are célled a RAM POOL.
Note, the source and destination RAM's/RAM fOOL's should be com-~

patible in size.

2) <LABEL> BOP_MARK [<Source PCP list>] {<Dest. PCP list>]

(BW) '

153

This instructién performs boolean operation indicated
by the boolean word (BW) on the RAM POOLS of the source PCP's
and the result on to the RAM POOL(S) of the destination PCP(s).
The BW allows specification of the combination of boolean oper-
ations on the source PCP's. It is a word of ones and zeroes where

a one indicates AND and zero indicates an OR.

3) <LABEL> TRANS REG (<Source cell/Source PCP>)
(<Dest.cell/QP/PCP>) (SR#, DR#)
- This instruction tr;nsfers the contents of the specified
- register from the source cell (SR#) into the register of the destin-

ation cell (DR#). The destination can also be the QP.

b} Set Function Instruction

e

This instruction is Qé‘the foilowing format.

4) <LABEL> SET FUNC (<source PCP>) (<sopr>)
This instruc;ion reaés the local set'function values from
the result register;-of the PCP specified, and computes the global
value and stores it in a register called SF Register in the query

processor. <sopr> specifies theée type of the set function (MIN, MAX,

AVG, CAR, SUM).

c) Program Control Instruction
5) <LABEL> BRANCH (LABEL/Address) (condition) (DEC/INC)

This instruction .is used for the program control. It can

S U,

154

work both as conditional or unconditional branch instruction. The
condition may be of the form <Reg> <opr> <opd>, where opr is one of
(=, #, >, <, >, <) and opd is a constant. Before the condition is

tested, the Reg may be incremented or decremented by omne (INC/DEC).

d) 1/0 Instruction

6) <LABEL> JOIN (fPCP list>) (NJ/CP, key PCP, SA)
This instruction performs the join over the marked key values
of the PCP's specified. Note, this join can be a natural join or a
cross product (NJ/CP). The parametgﬁ/ﬁAfspecifies the attribute

over which the resultant tuples should be sorted.

e) End of Program Instruction

7) <LABEL> END ’)

This instruction indicates the end of a WCRML program.

5.4.3 Translation of WCRL into WCRML Instructions

In this section, the translation of WCRL commands into WCRML
instructions is demonstrated with the aid of some examples.

Consider the data base shown in Fig. 5.6a, involving Employees,
Dept., Company and Item. The corresponding PCP's are shown in Fig.

5.6 b. 'Note, oy is a system defined key.

4

Example Queries

Ql) Find the employees (E#) whose salary is greater than that of

Work

G

1
M
Sal Mg Comm (:3:) Supply
Amount ENO Amount
N
D ol
ITEM
Volume
Type
o Type
) yp

Fig. 5.6 a An Example Data Base

PCP's:

P, [E#; saL]

o L[E#; MGR]
Py [E#;
4 L[E#; DNAME]

P. [DNAME; Loc]

COMM]

Fig, 5.6b

Loc

155

Floor

COMPANY

156

any employee in the 'AUTO' department WCRL:

o {ccj Py {E#; saLl], P, CE#; Dname] (pl . E3 = < E#)

LA

(p, * Dname = AUTO0))} (¢; SAL) = cl[¢; SAL]

Ir {ch Py CE#; saL], c1[¢; SAL:I(p1 * SAL > Cl - SAL)}

(E#; ¢) = c2 CE#; ¢

WCRML

7

A
SET (A) [P4: Dname] (DName = AUTO) (All, Yes, ¢, Yes)

TRANS_RaM [P] [P,]

SET (A) [P,: E#] (RAM Marked) (All, Yes, A, No)
MAX [Pl: SAL] (Marked (a)) (R;)

SET (8) [P,: SAL] (SAL R)) (All, Yes, B, No)
READ [P,: E#f] (Marked (B)) (Buffer, All, Yes)

Now the Buffer contains all the E#'s who satisfy the query

condition.

Q2) List the Eff's and their managers and their salaries who work
%
in the department 'AUTO' and whose salary is greater than

their annual commission. (Note, this query has an inter-

157

attribute selection clause).
WCRL

51 {acj P, (E#, DNAME]) P, [E#; sAL) P, [E#; comM)

((P4 « Ef = Pl « E#) (Pl « Eit = P3 + E#)

(P, - DNAME = 'AUTO') (P, - SAL> P

1 3 coMM))

4

(E#; SAL) = o CE#; 9]

o, {ccj P, CE#; MGR] ¢y CE#; o] (P2 - Ef = c1 * E#)}

(E#; Mgr) = C, [CE#; MGRJ

WCRML

SET (A) [P, :DNAME] (DNAME=AUTO) (ALL, Yes, 4, Yes)
TRANS_RaM [P,] [P,]

SET (A) [P,:E#] (RAM Marked) (ALL, Yes, A, Yes)
.CAR [Pl:SAL]

SET_FUNC [Pl] (R¢) (R 1is a QP register).

LOOP READ [Pl:SAL] (Marke; (4)) (R;, One, Yes)
TRANS_REG [P,] (p,] ®Ry» Ry)

SET (B) (p,:comM] (com < R,) (ALL, Yes, B, Yes)

TRANS_ﬁAM‘ (p,] [Pl, P,]

158

READ [Pzz(E#, MGR)] (RAM Marked) (BA, ALL, Yes)
READ [PI:(E#, SAL)] (RAM Marked) (BA, ALL, Yes)
JOIN [Pl, sz (NJ, P :Ef, ¢)

BRANCH (LOOP) (R¢ > 0) (DEC)

Q3) Move the location of 'CRANE' department to 2nd floow

WCRL

cﬁ DEPT [Entity](DNAME = 'CRANE') (, 2)

Note: A blank in the tuple indicates that the value is to remain

unchanged and a2 ¢ indicates the .value to be changed to null

WCRML

MODIFY [P

53 LOC] (Dname = 'Crane') (2)

Q4) Insert an Employee record with E#, Salary, Mgr#, Commission,

as follows:

''2020, 10k, 64, 2k"
WCRL

o; EMP [Emcity] ("2020, 10k, 64, 2k")

’

WCRML

159

INSERT [Pl] ('2020, 10k')

INSERT [sz ('2020, 64")

INSERT [P3] (12020, 2k")

5.5 Cell Hardware

In this section, the details of cell hardware are presented

to a moderate level of complexity. The overall functional organiz-

ation of a cell is shown in Fig. 5.7. It consists of the following

seven major blocks:

a)
b)
c)
d)
e)
£)
8)
h)

Circulating memory or track (CM)

Track format identification unit (TFIU)
Buffer unit (BU)

Search unit (SU)

Arithmetic and logic unit (ALU)

RAM logic unit (RLU)

I/0 Unit (IOU)

Control unit (CU)

5.5.1 Circulating Memory (CM)

Each cell has a circulating sequential memory (track). CCD

memory technology or amy other current technology which provides low

cost per bit and high bit rate should be chosen for implementing this

R

160

T

R A
S F

L L
U I

3) U
U

WG mE T o

5 4 I N

L.T..l—-—— ——

—
Control Unit 100
-
. .
) { ! _ _ . Mark Bit, RAM Bit &
< - - 1 e Flag Bus
I
<: $ '1) Data Bus (serial)
=-
o
& —— — _:—..*- —————————— » Control Bus
l
< ! > Status Bus
é——-—-——--—— ettt ——————— b ———————

- = P (Cell Address Bus

Fig. 5.7 Overall Organization of a Cell

-

™
b’
memory. The data is read and written via a fixed head pair. The
time taken to read the whole track contents is called one revolution
time (t). £
The data is stored as PCP's on the tracks. Each track con-
sists of several EWCR's which are laid out with gaps in between. These
gaps provide the time required to issue the control signals for the
a

operations on the data when it passes through the bu;fer unit. The

— storage formats for option I and option II are shown in Fig. 5.8. For
illustration, the size of an EWCR is assumed to be 5 binary tuples.
In practice, this is a system parameter (st), which has to be chosen
based on the nature of the data. Each track has a track beginning
marker symbol (TBM) and a track end marker (TEM). TEM indicates the
logical end of the track. Note, in optiom 1, both halves have the
same format for the header and the number of address fields (n) is 1
for the first half and 5 for the second. All the fields except value
fields, have a fixed length defined at the system level. The length
of value field may be 2, 4, g, or 8 bytes depending on the type of
data. This may vary from cell to cell, but within a cell all the value
fields of a constituent are of the same length. Thus the nonkey value
field has a fixed lengtﬁ defined at cell level. The key value fields
are stored in a coded format and hence a maximum 2 bytes would be suf-
ficient for storing them. A nonkey value field may be an integer number
or a character string. For option I, the value fields for the keys have

an ordering on them, which eliminates the need for storing the PCP

address. If ordering is not maintained, then an extra PCP address

le62

Constituent
Flags Name
/ % % 87
\VAR//RNE 7) micr Amicr ({] e
g TBM 421 2 - 4 P // <g:§§
7 / ? 7
gap 1 gap 2 gap 3 gap 3
i) Header (same for both Halves)
Mark Bits
7, 7, v o 7,
D (/] Value /] //
A|B{-. E Address (Jaddress
B i
J Field Y/ % /)
7 p 7 1 7
gap 4 Delimiter DS ‘DS gap 3
Symbol (DS)
ii) EWCR
Note n =1 for key constituent (first half track)
n =5 for Nonkey constituent (second half track)
a) Option I
Flags
7 Z’ First }j Second [/ %
V ¥ /] Const. [% 7 7
11| 2}- - jm}/] Const. | Const.] EWCR Y/ EWCR [TEM
TBM |/ /| Name [} Name % 4
£ f 7
gag 1 gap 2 Ds gap 3
i) Header
Common Mark Bits
Mark Bit For 5
for EWQE\ Key, Values
P/
Dl RIB ABﬁNonkey ﬁ Key % / /
/’Bcll... 5|61 value [value, 7 7
—; A 7 T T #
Delete paTk gdp 4. DS DS DS gap 3
Bit Bits
for Nonkey ii) EWCR
Value b) Optiom II

Fig. 5.8 Storage Format

- 163

field has to be introduced in each EWCR just before the mark bits,
whose length would be rlogzPW, where P is the number of EWCR's in
the other half of the track. \

In option II, a 'directory' track for each PCP may be main-

tained at the intefnal level which stores the actua% key wvalues and

their encoded values.

5.5.2 Track Format Identification Unit (TFIU)

This unit detects the format of the track and sets on the
appropriate indicators to control the operations in the cell. The

organization of this unit consists of the following subunits:

a) Gap Indicators

b) TEM, TBM and DS Indicators -
c) Bit sequence indicators

d) Flag indicatprs

e) Constituent name indicator

f) Mark bit indicators

a) Gap Indicators: There are four counters - qne fég each g&p
‘type to detect.the gaps. Before any Operation'is pecformed on a
cell, a 'syne' signal is issued by the QP processor to the cell.
This signal is used to align beginning of the track under thggread—
head. The gap lengths are chosen in such a way that they allow
enough time for performing the operations. A typical ciréuit for

detecting these gaps is shown in Fig. 5.9. Each detector has a

TBL——1S Q
(Track R
Beginning
Indicator)
E — Q
S Q Modulo Gap 1 [= S GI
R ¢ Counter 2 R
1
- E S eI
Fm Q o Modulo Gap 2 2
(flag m) R Counter [-1R
CN ——i
E .
(End of s @ = Hod¥o Gap 3 S 613
onst.name) R Counter —1{ R
EE
(End of
EWCR)
E [MModulo Gap 4 GI
ML S C Counter 4
(Last Mark R ua —
Bit) P j
" CL

Bit Rate Clock

Fig. 5.9 Gap Indicators

R

165

Modulo-‘gap length' countef, which starts count;ng the number of
a -
bits after proper cogtrol lines (such as TBI from the TBM Indicator)
are set. At the'end of the codunt, that particular indicator is set
on and it is reset when the next gap indicator is set.
The signals TBI, Fm’ CN AND ML are obtained from TBM indic-

ator, flag indicator (m), constituent name indicator and mark bit

‘indicators, respectively as described below.

b) TEM, TBM and DS Indicators: The-encoded patterns of these marker

symbols are stored in three sequential registers. These‘patterns are
.compared on a bit serial basis wi#h the incoming daté from tﬁe read-
head at the appropriate time. The hardware to perfofm the comparisons
is shown in Fig. 5.10. The ciming is controlled by the gap indicators
and other control signals such as EF (end of value or address f%eld).
The delay D is required to reset DSI signal so that the next Delimiter

symbol is recognized again.

-

D) 'Bit Sequence Indicator: This hardware generates sequences

synchronizéd to the track bit rate starting from the end of gaps.

For é#ample, the six biﬁ sequences after gap 3 (in option I) would

;ndicaté the six‘mark bit pogitions on the track. Tg;se sequences

are decoded,anﬁ uged to check the incoming data at the app;opriate.
\ .

time for mark bits. ©Note, the gaps denote the beginning of record

blocks such as value fields, mark bit field, etc. Corzespondingly,‘

‘there are five bit sequence generators (gap-l-4 and DS). Fig. 5.11la

and b show two such bit '‘sequence indicators. The first one is used

166

Circulating
Start Register
E -
Reset
C] TBM Pattern) Gap 1
Gap 4
‘ | Serial
From Read Head \) Comparator T8
Gap 4 [-
E
»EL' ‘ Reset
[i" TEM Pattern [Gap 3
| \ : Comparator L TEI
Gap 4 [T
C > . [3
DS Pattern
[|
€ \ Delay
\ Vale ' ‘ ; | DSI
‘(End of Value | . - Comparator
or Address Field) ' —__\\
EF I— ’

Bit Rate Clock

Fig. 5.10 A TEM, TBM and DS Indicators

167

for flags and mark bits. The second one is used for indicating

beginning-and end of a field.

d) Flag Indicators: These are just flip flops which indicate the

status of the corresponding flag of the track header. One such

flag indicator is shown in Fig. 5.1l c,

e) Constituent Name Indicator: This circuit is similar to bit
sequence ind;cator. It indicates the starting and ending of con-
stituent mame fiéld. These indicator signals are used by search
unit to load the constituent name from the read head into onme of its

comparators for constituent name evaluation.

f) Mark Bit Indicators: These are similar to flag indicators.

Each mark bit has an associated flip flop, which is set or reset
Based on the incoming data at the appropriate time. The timing is
provided by the bi{ sequence indicators.

\

5.5.3 Buffer Unit (BU)

The buffer unit consists of a buffer register and an auxiliary
register. The length of the ﬁuffer register is chosen in such a way
that it can @old an EWCR and gap 3. It provides the necessary delay,
between read and write, which will be used to perform the operations.
The auxil;ary register is used fér insert and updage Operations; If
the EWCR passing through the buffer is fot a qualified EWCR, it is

written back as it is-on to the track. Output of the buffer passes

168

GI
| —1
3 E T 82
' DECODER :
R ¢ (Modulo n) :
s
n
Sequences
Bit Rate '
Clock
a) For Mark Bits
~4
GI,/DS
* BF (Beginning
= of a Field)
E
S Bit Gating
R C Counter{n) EF (End of a
' Field)
Bit Rate .
.Clock b) For Fields
Sequence 1 * f
Si s B S Q Flag 1
I e Flag i
Data el -
In .. .
¢) Flag Indicator
< - Hs 5.11 Bit Sequence Indicators and Flag Indicators
& -

169

through write head which enables setting or resetting of the

flags or mark bits. Changes in the value or address fields are
affected using auxilliary register. For example, if ane of the value
fields is to be replaced by anothgr value, the replacing value is first
assembled in the auxiliary register and it is routed into the write
head instead of the buffer register., To delete an EWCR, the buffer
register is "shorted" and the incoming tuple is written directly onto
the track. After fieldé are evaluated while exiting, the output of
the buffer unit is connected to the I/0 unit. The organization of
the buffer unit is shoﬁn in Fig. 5.12 for both options. Note, in
option I, the buffer is divided into two parts because the EWCR's are
of different size in two halves of the track. While writing onto the
track, the incoming EWCR record provides the synchronization. Note,
all the records are of the same length. For the last rec&rd, the TEM
provides the synchronization. For this purpose, the TEM is chosen in
such a way that its length and format is similar to a record except
for the value field, which contains a special pattern.

4

5.5.4 Search Unit (SU)

This unit evalqates the condition or the qualification on
the fields of the EWCR's. Fifstly; it evaluates the specification
of‘coﬁstituent name(s) indicated.in the WCRML instructions. Then
it performs compari;oﬁs on the value fields as specified by the
instructions. The operands are supplied by the concroi unit prior

to starting of comparison. The overall organization of search unit

170

From Control Unit

e

A
Inhibit \tf————- Load Aux (CU)
Rea -7
Din Ay ‘i/ Load Aux (R)
—_— - Enable Buffer
Reg
A
B
B U
X
[
1
F
L
F
L
E
R A
R
Y
N
~
Pass Signal

Delete Signal
V——— V——— Enable Aux
§

ponre— Set Bit

g
v <] qQ $
‘ R Reset Bit _J
Enable Marking

To 1/0

Option I (Extra Hardware)
Flag FH (First Half)

Din ——— Buffer Reg- . | D’—

i
Buffer Reg \i:::}__

Flag SH (Second Half)

\

|
|

) Fig, 5.12 Buffer Unit

) .

is shown in Fig. 5.13 a. Each comparison unit consists of a shift
register Qﬁich holds the compéfgpd and the assoclated logic for per-
forming bit serial comparison;i The comparison operator for each of
these units is supplied by the control unit. The final result match/
mismatch is asserted by an indicator flip flop. These details are
shown for one such unit in Fig. 5.13 b.

As mentioned earlier, the qualifications within a cell are
either in conjunction or disjunction. This is performed by the gating
circuit and the final result is asserted. This signal enahl2s oper-

ations to be done on the qualified items.

5.5.5 Arithmetic and Logic Unit (ALU)

Each cell has an ALU s%ich performs set function computations
and arithmetic updates, such as MIN, MAX, ADD, SUB, etc. These
operations are performed within the cells avoiding any -transporting
of data out of cells. The overall results in the case of set function
operations are computed by the QP. The required hafdware is shown in
' Fig. 5714. Note, the arithmetic operations have to be performed within
the time delay provided by the buffex regis£eq. For this reasom, a
local clock which has a higher clock rate tﬁan the bit rate is used.
All arithmetic is perfofmed serially using standard Yeircuits. For
set functions the folloging seheme is adopted. MIN/MAX is obtained
by replacing the present extremum value in ; registér with the in-

coming value only if it qualifies to be the next extremum. SUM is

obtained by cumulative addition of the incoming items. CAR (cardin-

-— -

Other Qualifications

Such as Mark Bits,

172

[—p(EOd) (EOC)}

Gating

" Load

l . C - - {0mua

‘ (B)E Shift Reg - . Counter Keg
i }E@éet . T
Clock - Load Operation’
*) (From CU)

Fig. 5.13b One Comparator Unit

RAM bit >
—
Data In
7
Comparator Comparator-———J Comparator AND/OR
Unit 1 Unit 2 e Unit k [
Gating
(Data From y Y 7
Controller) fT krﬁf l
Control LinFs Result
(Comparison
Fig. 5.13 a Overall Search Unit Operator Data
) From Controller)
Start Comparison > EOC
(8C) éi,>:§i‘ C‘ }
S S N
R | —R
R [-:
EOC
SC
.) > THH ——
. rT R =
\ oen

EOC
SC

R S
Q

v

Match/
Mismatch

S (Sequence from Bit

Sequence Indicator) Serial

ADD/SUB Unit

!

. e o L.
Data In — Som |
T
. | Serial
DIV/MUL Unit
- -
Y
]
et <
Load —>i Operand Reg 1 f']
[} ‘o——i———-
Bit | MAX/MIN/SUM- ?
Clock T =" Undit
| v
Local s '
Clock * |
Operand Reg 2 .
. — | CAR Unit
Data From I \1/
' |
Controller
) L —a—] :
(Control line indicating 1
the operation from controller)

B e

"

“4—1 Result Reg —F

Fig. 5.14 ALU Unit

173

174

ality) is applicable for only key values. Since key values are
distinct, CAR is.obtained by either counting the incoming items

or marking RAM bits and counting the marked RAM bits. Note, in

most queries, CAR is associated with the key values only. (For
example, 'how many employees earn more than 20k', 'how many salesmen
live in Teronto', etc.). In option I, this scheme would require

more refinement due to key duplicationm.

5.5.6 RAM Logic Unit (RLU)

Each cell consists of a one bit RAM whose length is equal
to the number of key value fields on the track. The RAM and the
associated logic is shown in Fig. 5.15. 1In option I the address
register inputs are connected to either the outputs of a counter,
which counts the EWCR's on the track, or a serial in parallel out
register, which would be loaded with the address field from the
incoming data (at the appropriate time). In option II, the address
register is connected to the counter only. The counter may be
clocked by bit sequence indicator corresponding to EWCR's., For
allowing transfer of RAM contents between a cell and the QP, a
faster local clock is used by the QP. ' Thus, a cell RAM is directly
accessible by the QP, if it is not being used by the cell. The out~

put of the RAM is also used for qualificatien evaluation.

5.5.7 1/O Unit (IOU)

The I/0 unit consists of a set of registers and a buffer

175

Set
_ RAM Q Din |
From — S '
Controller \ :
\ —4 R Address Reg !
Reset
RAM
RAM
n, n,
Ld ’ —l
CL =~ Counter Reg
!
Data in X
l .—-\ 1
f o To SU Pout
Seq. Indicator <+ »

To RAM Bus (QP)

Fig. 5..5 RAM Logic Unit

Data in From
Buffer Unit

—»

1/0 Registers

From Controller

.Or Qp

- I
{ i - I/0
: : : Buffer
{ 1 Memory .
t
A
~» D MUX
R

. l Serisl

1/0 Bus

i

176

memory. The outputs of these, are multiplexed onto a serial I/0

bus which is accessible by the QP. The required register or buffer
may be selected by placing a control word into the multiplexer. The
I/0 unit is accessible by the QP, if it is not being used by the
control unit of the cell. The input to the IOU is from the output of
buffer register in Buffer unit. Fig. 5.16 shows the organization of
this unit. The registers can hold only one value at a time, while the
buffer can hold several qualified values. The buffer is used for JOIN
oper;tion by the QP while the registers are used for TRANS REG oper-

ation.

5.5.8 Control Unit (CU)

The control umit is responsible for overall co-ordination of
the various functional units mentioned above. In addition, it also
recelves the WCRML instruction set and the associated data from the
QP and executes the instructions in the cell. It receives the various
control signals such as track identification indicators, qualification
results from all the units and issues the proper control signals for
further operations at the appropriate time. The overall organization
of the control unit is shown in Fig., 5.17. There are two ways of
implementing the control unit; a) using a microprocessor, b) using
a microprogrammed- control unit. If a microprocessor (up) such as
Intel 8085 is used, the response time of a cell would be very slow
due to the cycle time of the up. However, this would provide an added

advantage of eliminating the ALU unit, because che‘up can perform these

177

. 1
Control Signalsl Ix Control Lines
to Cell Units | 7 From Units
' Control Lines
s
. i ue From QP
Decoder
e i IDM
Opcode I
MAR MBR PC IR
i Address
Bus
Data ,
Bus y 3
Gontrol Lines from uC
Cell Address |
l l Register
GPR's ' ')
STATUS
\ Serial to X
Parallel A
Control < Co?version
Lines A
W Y) Cell Address
Bus From QP's ~
Status Lines Serial
to QP 1/0 From
QP

Cell Units

/

Fig. 5.17 Co;%rol Unit -

178

operations. Also, since the word length of commercially available

's is small when compared to the value items on the track, the

Hp
software overhead would lead to slower response time. On the other
hand, microprogrammed control unit would provide a faster response

due to complete hardware design. Fig. 5.17 shows the uprogrammed

version of the control unit.

The control unit consists of the following major units:

a) Instruction and Data Memory (IDM)
b) Memory Address Register (MAR)

c) Memory Buffer Register (MBR)

d) Program Con?ioller‘(PC)

e) Instruction Register (IR)

f) uprogrammed.Controller (uC)

, \The QP processor loads the IDM with the machine encoded
WéRML instructions and the data. Once control unit is initiated
by theNQP,‘it fetches the instructions and the data from the IDM
into IR. ~Thén, it transfers the data to SU and ALU (depending upon
the instruction). It decodes the instruction and provides the de-
coded inforﬁation to the uc. Tﬁe ue utilizeé this instruction
information and the other control limes from the various functional
units and provides the required sequence of control signals to all
the units,

The control unit has a set of general purpose registers

used for program control as well as for storing some intermediate

. B 179
- ~
— '
External — .
Signals ~ _ \ ’
; —% X ~
—
- Incre~ \
\ ment [
Load N
Condition 1 ’
select
J Control
. Memory
Logic
.
\ : | Branchfield
B ! Control Memory
- ,) Data Register
o
oF
Control _,,44”///
Fields .
\ DECODERS

Hivi

Control Signals
to Cell Units

Ly

¢

Fig. 5.18 ‘ufrogrammed Controller

L

. %,_3 ‘ 180
values, guch as SUM, MIN, etc, It has two more registers called
Status Register and Cell Add;ess Register. These are usad for
communication between the QP's and the cells. The status register
consists of stdtus bits such as active cell, empty cell, I/O active,
etc. To poll a gell, the QP simply broadcasfs the cell address one
after another. The polled cell would enable its status on to the
vstatus bus. The.QP receives the status and checks for the requiredr3>°?
,bit. - For'example, if the cell is inactive, the QP would send a
control siéﬁal to the uc of the polled cell. the mwc in turn, sets
a status bit indicating it is active and no other QP can enslave
the cell.

The uPrOgrammed.controller (uC) would be tyeicaily as
shown in Fig. 5.18. ‘It-cénsists of a control memory'(CM), a micro -
program counter (uPC) and a control memotydata register (CMDR).
The sequences of operaéions are converted into a uprogram code and
loaded into the CM. The p instructions are fetched into CMDR and
decoded to give the required signals. The u instructions select the

3

external conditions to be checked and if they are satisfied, the
program branches to the location specified by the branch field. The
détailed chip level design ané the uprogrammed instructions are out

of the scope,of this thesis. In the next two sections, the WCRML

instruction times and the hardware of a QP are outlined.

5.6 Cell Executed Inscruécion Times

The retrieval 1nstrg§5}pns in both options are executable

. <

! v 7 - 181

*

*

in one revolution of the cell. No additiongl hardware is requi#ed
for this purﬁosé; Once the operands are supplied to the cell, the
gualificatiOn is evaluated ana t@F marking, resetting or reading of
the marked values is performed. In option I, ‘the markiné of secon&
. ' .
constituent values which go with the marked valueé of thé first
constituent values is accomplished using the RAM. However, if
marking of béth second constituent values and the RAM is required,
tt would take 1) revolutions in option I (for SET.instruécion). All
the set fuhction instructions require only one revolution‘tihe. Na
additional hardwaréﬁis required in option I.

Other instructions such as\CREATE,-DESIROY need only one
revolution in both the options. For creating a new cell, the format
of the header and an EWCR are supplied by the QP to the cell - The -
first two (three for option I) general purpose registe;s of thg
controller. The ﬁpdate instruction;, ADD, SUB, MUL aﬁd;DIV can be

executed»in cne revolution in both the options. However, the exec-
ution of INSERT, DELETE and MODIF; differs significantly in option

I and ITI. 1In option 1I, they would require only 1 rxvolution because
the tuples are unordered and both the constituent alues are together,
In the case of option 1, these instructions are.executed as described
beiow. ‘

A3

To insert a key value - nonkey value pair in a cell with empty

space (indicated by the status)of optiom I, the following sequence of

operations have to be performed by the control unit:

i) Find the EWCR in the first half of the track with a key valu;}

e

greater than the value to be inserted. Iﬁsert an EWCR with
the key wvalue-in that position using the éuxiliaty register. —///////’\\n.
Note the address\Bf”the inserted EWCR (Al).

ii) Move the following EWCR's down the track using the buffer

[y

and the auxiliary registers., \

iii) Insert the nonkey valué of the end of the second half of the
track as an EWOR with the value and address field Al; as in

, step i). Note the address of the newly inserted EWCR (AZ)'

iv) Insert A2 into the address field gg key value inserted in

step 1).

. -
-

Clearly, these operations take 1% revolutions. However, if
the track isj{full, it would take more than 1% revolutions because

the qverflow would have to be inserted into the next track. The

P ™
i

/\._,J

maximum number of revohutions would be 1} * (# of tracks which are

_ full and contain values greater than the value to be inserted). For
DELETE instruction, the values are marked for deletion only if no
address fields point to this,value. Otherwise, only the corresponding
address field pdinters of the other constituent are changed to null.
In case of an EWCR deletion, the sequences of operations are similar
to insertion except that it is deletgd instead of being inserted.

The number of revolutions is still the same (1% revolution). MODIFY
is executed by first deleting the values and then inserting the new _)

values. The instruction times are summarized below.
H

183

o Instrucﬁion - f‘ Time i? Revolutions - Time in Revolutions
Opthn I Option II-
SET . 1 ' 1
RESET 1 1)
READ 1 , ' 1
MIﬁ R § 1
MAX q 1 1
sM 1 L 1
CAR 1 | 1
)
AVG ' 2 2
INSERT ‘ | Ls*n 1
DELETE . Ls*n ‘ 1
MODIFY L 3 . 1
ADD 1 1 ’ /’\/'
SUB ‘ . 1 . : 1 / ’
MUL | 1 1 ‘
DIV 1. 1 ¢
LOAD _ negligible Qegligible
CREATE lf o1
DESTROY ' 1 1

n = number of tracks that are full following the .
track into which the value is to be updated

|t

184

[

5.7 Query Processor Hardware

Each query processor is implemented on a micro/ginicomputer

with some additioral hardware. The overall organization is shown
in Fig. 5.19. The QP receives the WCRML programs from the conceptual
processor and b;oadcast; them to selected cells. It also computes
the overall set function results and co—ordinates\the eﬁI{s for >
inter-cell communication. . A

The functional units of a QP are Fhe fo;lowing:

1) Boolean Evaluator (BE)

ii) Join and Sort Unit (JSU)
iii) RAM POO#

iv) Controller (uprocessor/minicomputer) Py

5.7.1 iEoolean Evaluator

As mentioned earlier, a conditional expression in WCRL
may involve AND/OR combination of conditional clauses on the
attributes. These individual conditional clauses are evaluated in
the cells while the overall evaluation of conditional expression
is done by the Boolean evaluator. This instruction BOP_MARK is
used for this purpose. This instruction svaluates the overall con-
dition on the RAM pools of PCP's.

Any general boolean expression can always be expressed as
sum products or product of sums [MILLER 65]. Let n be the number
of input variables and m be the number of terms in the sum of

product form.

185

Cell

. ’ I/0 Bus Cell
. A RAM Bus
Control Lines to A
Cells
[N # ‘
Interface) Y
o = 3 Y RAM Pool |
Boolean N
I Evaluator ||
v LI
Ay
Status ‘ — E . o 1
Lines From Ij\:’l R pm——— - —— -—--—--‘---.._..]
Cells E i
T’ v} ! ‘
' E Ut Process A i
R . C] :
or E
F ! Join
Sliced
e . Miqi‘) ! and Buffer !
o ¢ Computer] Sort !
E (Contredjler) : Logic [
|
3 l '
- A
Y . Join and Sort |

To Conceptual
Processor

Unit

To Conceptual
Protessar

Fig. 5.19 Organization of a QP

+

186.

i.e,
f = Py +'p2 ve. + P (1)
where Py =9 * 9 -+ 9,
and - q = 9y brkqi

A boolean expression such as f is evaluated as follows.

R

For each product term p;» @ vector sy (ai, 3195 e ain)’ where

0 if is involved in Py

q.
.)
a =

1] 1 1if q, is dot involved in p,

i . i
Thes; vectors are ﬁtored in a random access memory as shown in Fig.
5.20. Now, the product terms is evaluated sequentially using n -
number of R-circuits. An R-circuit allows the corresponding boolean
variable q:L to pass through only if alJ = 0; otherwise, the output of
;R-circuit would be 1. 'JThe sum of the products is achieved by an OR

gate., ~After m clock pulses, the boolean function would have been
@
evaluated and the result would be available at f (Fig. 5.20). The

memory ??/addressed by a counter, which gets reset after m clock
. 4

pulgébu " Now, the neéz set of inputs tH through q, may be evaluated
SN ' — _

following the same procedure.
The time taken to evaluate f would be (m - ta) where £t is the

access time of the memory. Therefore, it would be of the order of u

seconds to evaluate a reasofble boolean expression f. The Ai vectors
~
N N

can be obtained from the conditional expression during query evaluation

s

J

\ e

187

Control Local Clock 1 n

Signal

m Words
(Ai vectors)

Y

Address Counter

izm Comparator - -
/\
Reg 31
' 1 é

17

m Preset T S,

i) >
DFF : S .

—{— o,

1
1 S R-Circuit

£l) f)

-9

N R i

|

i . .

I

! L 1243

| R-Circuit : r" = ‘1

: : { R'=Circuit
i

! R G

!

]

- o

Fig. 5.20 Boolean' Evaluator

188

by the conceptual processor and supplied to the QP.

Since there always exists a product of sum equivalent for
any expression f, th@ evaluation can be altermatively carried out
using a slightly modified hardware.” The chahges to ,be.made to Fig.

5.20 are the following:

i) Replace T by an n-input OR gate
ii) Replace S by an AND gate

iii), Replace R by R' circuit (AND gate)

s
It may be noticed that, in this case the number of gates

required to implement the hardware is much less than\fhe previous

scheme,

5.7.2 Join and Sort Unit

-4

Join is one of the most impqrtanf functions performed by
any data base machines. So far, the trend in designing hardware
to implement the join has beén restricted to implicit join only.
While RAP [OZKARAHAN 75] and CASSM [SU 79] implement only implicit
join, LEECH [McGREGOR 76 and CAFS [BABB 79] implement full joins
by selecting the rows and sending them to a general'purpose processor.
None of the machines provide a hardware-supported join facility. In *
this section, a hardware unit, using aésociative memory, ig proposed.
This unit is also capable of performing partial sorting. :

As mentioned earlier in WCRC, the JOIN instruction is

executed by a QP. It allows for both natural join and cross product.‘

189

ﬁatural join is sufficient if the conditional expressions do not e
invﬁlve inter-attribute clauses. If these clauses‘are present,
cross product of the EWCR's is inevitable. At first, the hardware
to perform natural join over a key domain is presented. This is
slightly modified to accommodate cross product.

The overall organization of this unit is shown in Fig. 5.21.

It consists of an associative memory (AM) and a buffer memory (BM).

-~

each key value - nonkey value pair read from the I/0 buffer memories
of the¥celi%. Consider an example where s;veral PCP's with a common

key have to be joihed on the marked key values of one of the PCP's.

The algorithm to perform such a join is summarized as follows.

~

Algorithm 1 (Natural Join on Keys)

i) Read the'marked key and nonkey value pairs into the data part
3 N . = .
of tHe associative memory from the PCP.which tontains the marked '

key values. If sorting is required on a particular attribute, trans-

1
-

. fer these marked key values. tb the PCP containing this attfibupe and"

< o

_read this PCP instead,iuté the associative.memory.

i1) Sort the associative memory on the nonkey domain and set

upzthe address part of the associative memofy such ghat the minimum

N

valued data 3tem has the starting address of the buffer; i.e. the

b

addresses indicate the sorting order of the values.
. . . (’-“*T‘
*1ii) Read the next PCP and for every value pair, use the key value

[l . - * F. 3
as the comparand to AM to obtain the address .associated in the out-

4

Feg

Comparand Reg

MASK Reg

Data
Register

Associative
Memory

Address [

Register 1

Address Part

KD | NKD | Address

¢ . 190

Sliced Buffer
Memory

Address
Reg 2

MASK

Output- Register

Decoder

Selection Register

Input Register

,
Y

From

Controller
’ of QP

.21 Join and Sort Unit

’ N
. . v * »-
» . N .

191
Y ~
put register. Use this address to store the nonkey value into the

apptrepriate buffer slice.

iv) Repeat step iii) for all the PCP's. involved in the join. ~ At
the end of these operations, the sliéed buffer will have the required

tuples formed by joining “the PCP's over the key.

The selection of the slices of the buffer can be controlled
using a selection register and a decoder (Fig. 5.21). The selection
register gets its information from.tﬁé QP controller. To accomplish
the above operations, the associative memory must have the following

features:

a) Bit parallel word serial write
b) bit parallel word serial read

c¢) word parallel bit serial comparison

The design of one such memory is shown in. Fig. 5.22. It consists of
a data part of M words, each N bit long and an address part, & words
of k bits e;Eh, The data and commands are issued by the controller
to every cgi} in the memoxy, which is capable for performing fead,
write or ;ZZrch.

The comparand register is used to hold the key value. fhe

mark register is used to-choose selected bits of the comparand

register for search. ' Associated with each word, there is a respomse

.

store, which indicates match/mismatch. A separate.'SET' line is

used by controller to set all the response stores at the beginning

*

o,
- ;,7 ’ -3 »
<
Comparand v - a Responge
Register - " Store *
‘\’
- k..,’
Mask _ .
_Register Ef -
—~ \ -
) {
~ From !
. Input ‘
’ Register —~—
4
f Q 1 S i =
y ol
h v 4 e » - R
- ‘I D
Address —— E
. Lines .| O L
~)) -
— E m
. R
~ { Q. 1S 0
o o - - n)
/'\ 1 :: —R
‘ -]
f/ A
/
Qutpuc | | | _ n
Register
OQutput Mask i
Register =-T==

b

Fig. 5.22 .Associative Memory (Data Part)

.
v§ -
L .
I
B
—x

-~

\}\
& vNamxé
—_

A

193

v

:3/ ,of a séarch. After the search, only the word with matched vaiue

~///;;:lmg}ave its response set, the rest will be reset. This word
would be available in the output register. The addregi part of
the associative memory does not have, search logic associated with

the cells because only data part Hp,searched or sorted.

'3
¥
The algorithm for sorting the nonkey domain of the dd%ta
part is deséribed below. : ‘ S~
Algorithm 2 (SORT) - '
i) Find the first available minimum and maximum of :::\nonkey
domain of the Qerdé in one interrogation of the aééociative
\ ,
memory.
ii) Set up the address part of the minimum word cg\iiijéin the Ve
starting address of the buffer and that of the maXimum to
, s
have the last address of the buffer.
. 1ii) Set up the indicator flags of the words processed.
iv) Repeat step i) through iii) until a1l the indicators are set.
N
.
- In step 1) of the algorithm,aghe maximum and minimum are

obtained into the comparand and output registers,.respectively,

by the hardware algorithm shown in(Fig. 5.23. The eytra hardware
needed to implement this algorithm is an additional flip flop with
each word (inéiéator flag), a counter to control the hardware pro-
gram and, a few gates to find out if there are 'some' (og_'all'%i

responders. To sort M data items of P bits wide, it would take*

is the clock rate”and t_.. is

(Pt + M - tRT) time, whele t1 RT

cl

L

194
C - Comparand Register
0 - Output Régister
M -~ Mask Register

S

Set Comparand to Al{ 1'

Output Rep. to 1
t Mark to (100...0)

No

Done?

Yes

Exit

Fig. 5.23 Flow Chart to Find Maximum and Minimum

1

. _ ' 195 .

the time gaken for a register transfer. Note, this is of the
order of pu seconds because this involves rea&ing the marked values
from the cell I1/0 buffers, loading and interrogating the assoc- o/

“a,

iative memory and loading of the buffer memory. Thus, the overall

time for join would be well within the order of one revolution time

1

~of a cell (tr is about .2 to .5 seconds typically).

Theta Join on Nonkey Values N -
) AN
As mentioned before, if the conditional expression involves
~.
\M =
inter-attribute clauses, the natural join may not always suffice. In ™.

this case, the EWCR's have to be taken One at a time and a natural

i

join or cartesian product may have to be performed to obtain the }/
tuples. For example, consider two PCP’'s Pl[Kl; AJ and Pl [Kl;\B]

which have to be joined only if A > B is satisfied. This can be done

- AN

as follows.

1) Take one EWCR from [Kl; A] and pass A value to the PCP [Kl; BJ.

Mark the B values that satisfy the condition and mark kl valuesL w

which go with theses~ Join (natural) the two PCP's over the K

1

values of Pl.

2) Step 1 is repeated{(for all marked EWCR's in the PCP Pl'

If the second/PCP is of the form P, [KZ; B], then a cross . -
product has to belpérformed in step 1. In a more general case, where

we have more than two PCP's, the cross product has to be performed on

n PCR's. This can be done as follows.

196

£
Let ny be‘the number of values in the first PCP, n, be

the number of #alues in the second and n be the number in the nth

PCP. Obviousl the cartesian product will have n.*n,*n *...*nn (n)

1 3
tuples. Each value in the first PCP is repeated in these tuples

n2*n3*...*nn times. Once all values~are repeated this many number

. . n
ratio repe i .
of times, the whole operation is repeated nl*nz*n3*...*n times
Similarly, for the second PCP, each value.is repeated n3*...*nn
times and the whole operation is repeated o 2 s times. For

n2 3...n

the ith PCP, each value is repeated ni+l*...*nn times and the operation

n

n,*...*n
i n

shown in Fig. 5.24. Note, for the nth PCP, the values are repeated

¢
is repeated . An example illustrating this procedure is

only once.

- -

From the above precedure, if ni's are known beforehand, the

cartesian prpduct can be formed in the sliced buffer with the PCP's

4

read 1in parallel or serial. The extra hardware required is an

additional buffer to hold the marked values from one PCP and a
e

LA

counter to obtain n;. If sorting is required on any attribute, the
values of the corresponding PCP are first read into the additional

buffer and sorted using the AM, as described before, and the corres-

* ponding bit slice is filled inm. -

TN

5.7.3 {RAM Pool
. -~
The QP consists of a RAM pool gf gize equal to the maximum
NN
size of PCP RAM pools in the system. Tﬁisiis used for transferring

)

RAM contents between cells/PCP’'s.

-

Cross Product

Q

I

(o
o,

bl cy
k!)
3

n, = 2 n, = 3 n

P

| N\
* bl ¢
b1 ¢y
bl cy
by cy
.bl Cy
by Cq
b2 ¢y
b2 ¢y
b2 ¢,
b2 c,
b2 cy

by " ¢y ,

Figure 5.24 Cartesian Product

197

&

198

5.7.4 Controller . /

The controller is responsible for co-ordinating the various

-
’

units in the QP. It ig also resfoqfible for computing the overall
set function results, Since QP is implemented in a pp/minicomputer,
no additional hardware is }equired for this purp?se. The controller
recelves WCRML instructions and the parameter data from the con-
ceptual processor and enkslaves the required cells using the status
bus. Once the resultant tuples are obtained in the join unit,_ the
controller éends these tuples to the conceptual processor. It also
checks 'the cell status for any error messages and conveys them to
the conceptual processor. ‘Of all the instructiohs executed by QP,
only 3OIN takes considerable time, the execution times for other

instructions is negligible compared to revolution time of a cell.

5.8 Summary

In this chapter, the details of storage structures, WCRML
and the hardware organization of cells are reported to a moderate
level of complexity. The ou@Iines of cell control unit and the QP
hardware are discussed. In the next chapter, the performance of

WCRC is evaluated and compared with som gﬁher schemes.

e

3]

w

A . CHAPTER VI

PERFORMANCE EVALUATION

'6.1 Introductian

In this chapter, the performance of WCRC is compared with
that of GDBMS [DOGAC 80] and DeFiore's associative scheme [DEFIORE 74
Note the comparison will be based on the storage structures only, For
a clasé of data base systems based on hierarchical structure of rela-
tions, general expressions are derived for storage in number of bits,
+ and retrieval and upda;e times in number of interrogations.

-

/{ 6.2 Storage Requirements

|
}

The storage r uiréments for a hierarchy of relations, when
//-:“'g% i ’

data is stored as PCP's is compared with the same when stored as

large n-ary relations as in GDBMS or DeFiore's associative scheme.

The following assumptions dre made while comparing the storage

requirements of the three schemes:

o

i) -2 all schemes, the storage needed for track headers, gaps,
mark bits, etc. are not taken into consideration. Only the
storage needed for domain values and address fields are con-
sidered.

» o~

11) In all schemes, keys are storegliﬁ’toded (binary) format.

199 ¥ <\

200

Consider the hierarchical structure with n-level embedding

as shown in Fig. 6.1. Each level i corresponds to a relation Ri'

Each Ri has m

" simple domains 2 to 2m and a non-simple domain

i
Ri+l’ which in turn is a relation of-mi+l domains at the next level
/
i+l.

The associative normal form (ANF) for this structure as

N ’

described by [DEFIORE 74] is as follows:

/

/
Ry (@375 2395 «---- *21m, ’ &)
Ry (@p15 8ppr «v--e *2om,” E1° a5)
Ry (2375 255> v Eamyr &0 2y a5
Rn <Enl’ Sn2? o0 -anmn’ Z12 B0 v ’ —gn-l)

Here, Eij's denote the simple domains.
_Ei's denote simple domains to link the relations from

one level to another, i.e., they are the pointers.

Note,‘gi at level i, is nothing \but the key domaign of gpg{;elaxion,
Ri’ because every tuple in éi is associated with a uniéue value of
a4 domain. The ANF form would be stored in associative memory as
shown in Fig. 6.2 In GDBMS, they would be stored as n-ary relatioms.

The storage requirement for associative scheme, Sl, as

e

201

~
~
~
~
~
~
~
~
~
~ R
n
a
=l
a
-n2 a
—nm

Fig., 6.1 A Hierarchy of Relations with n-Level Embedding

g
N
Response
Store
1 311 | 22| =~~~ 21
|
)
A
‘ -
L
]
'
i
‘ | I
l 1
t ' :
| | 1
' ! I
0 =nl |Zn2 [~ - - -~ —n-1 &,

A

Fig. 6.2 ANF in Associativ?Memory

202

s 203
¢

-

m. -
n i n 2 i
S.= £ I a, & + I Raa,+! T 2, I a ~£L a_n>1
Loy g=1 3301 4 31 sy e BoRoE
0 n=1 (6.1)
where, -

24 = represenﬁs the number of tuples in relation Ri

//// ‘ (length of R)) .
s)

n - .denotes the level of ‘embedding

a -‘fepresents the sﬁorage needed for storing the domain
v . bits))
alue EiJ (iny its))

R, - denotes the siorage in bits for storimng relation

S

fumber 1 |
\

Q
]

enotes the stordge for one value of domain g

i 1 .

By expanding and regrouping the terms, Eq. 6.1 can be
simplified as follows

n mi n-1 n-1 n

n
S, = I I a,, & + [ad,+ T a, I &, 4 I R.2, (6.2
boogerg=r B0 g P g R g b g 1R
Y ¢

In GDBMS, the hierarchy is stored as n-ary relations,
except that the relation number is not repeated with each tuple.
The storage (Sz) required would be same as Eq. 6.2 except the

last term. ’

.

_/—\\ o
204
n mi n-1 n-1 n
S, = I z a, . 2, + ¢ a8, + L « T L X - (6.3)
V2 ij “i i=1 i1 =1 i k=141 i,\:

o i=1 j=1 *

= In WCRC, the hierarchical structure would be %(ored as a

number of PCP's. An example, a hierarchy with tLree levels of

embedding is showm in Fig. 6.3. Corresponding to relatiom Ry there
> i

"x

will be m, PCP's of type Egi;-iij] and (i-1) PCP's of type Egiiﬂgj].

. 1] . -
Note o, is the key in R Therefore, PCP's Egi’-iij] and Egi’ Eﬂ]

e
would be a set of EWCR's each. », in RA, a system defined key .

* is introduced because the ke oul& be repeated séeveral times in
the PCP's. Since keys are encoded, introducing 2y would Qinimize
the storage required. Now, the storage Bequireménq for*WCﬁé with
PCP - option I can be obtained as follows.

Let’si be the average size ofaau EWCR in PCP's corgesponding
to relation Ri' The storége requireg (Sv) for the valueslgij of

all domains in all PCP's of €§pe Egi;-éij] corresponding to felations’
4

R1 to Rn is given by N v

”\
P,
-~

(6.4)

—~—y

- (6.5)

)
—

-

i

o~

-
e

" (b)

N

)

The PCP's

(c)

(2,2, i)

type

Figure 6.3 An Example Showing How ANF is Stored as PCP's

The ANF Form

Rl (é'll: 5.12’ g.'.l)
R, (<3_21, 2505 2595 495 52)
R

3 (@310 2395 855 &y 23)

Lags 2)5d Leps 2y Lays 2yl
Laps 250 Caps 2p,0 Lags 2y,

Lays ay4d

/ Cops @] Lags a,d Lags o]

(a) Hierarchy (n=3)

“wrioe

205

prmr——ry

Pz

A

206

-

The storage required (sp) for address (pointer) fields in one PCP

of type Eﬁi;-éii] is given by
. s =2 8, v (6.6)

where A is the storage for one pointer field

and _ 2%, 1s the number of forward and backward pointers in

- i
ﬁk\k\kgfth halves of the track(s)

The total storage (Sp)tneed for pointers in all PCP's of type

Egi;‘éijj is given by

Comy (6.7)

=

The.storage need for PCP's of type [gi; Ej] can be obtained

in.n

these.PCP's. The total storage need (sak> for pointers in all the

as foilbws. Assume that the average size of EWCR's is still s

PCP's of type Egi;_gj] is given by

n

Sap ™ iil (1-1) 22, * v, B (6.8)

The storage reqﬁired by the nonkey and key values of [a_; gj] is

obtained as follows. Recall, at level i)a is the key.

i

P

3

~ ’
S 3
. -
. A
v

207
For level 1, the storage for values = 0
‘ qlll
For level 2, the starage for values = azlz + S
1 -
) 0‘.22,2.
For level 3; the storage for values = aii? + S ﬁ,q323
3 2
a2,
ke
1
o, L L
. - so-on = 2a323 + i 1 + @5 ;g
1 2
. . 2
For level n, storage for values = (n-1) anin + 4y g v
1
a 2n—l
n-1 S._1 o

Summiﬁg“ﬂp«ahsse terms, the total storage for values isaa is,given by °
.)
AY

n a.f a.f L
S = ¢ (4-1) a8, + (n-1) =X 4 (m-2) 224 .. +1q n-1
oo ii s s n-1 s
n=2 1 2 n-1
(
n n—~1 21
= I (i-1) a2, + ¥ (n-1i) o, —
=2 . 144 1y
The total storage for PCP - option I, S3 is given by
83 = Sv + Sk + Sp + Sap + Saa
n By Ly n n
= I I a,, —+ I a,4.m, + I .22,v, (m, +i-1)
1=1 §=1 ij si i=1 1714 n=1 ii i
ﬁ n-l_ “121
+ Iz (i-1) aili + & (n-1) (6.9)

{=2 i=1 81

208

Equation 6.9 can be further simplified making the following assump-

tions:

1) On the average, all si's are about the same and si =s v,

2) All relations have the same length on the average given by

£, = 4 ¥ v, =vw i
i

3) The storage required for all domain values, aij is the same,

i.e., a =a w41, j

1j
1 n n N n
S,==< a2 (o m) +a2(f m) +22v - (I (m+i-1))
3 s , i . 1 . X i
i=1 i=1 i=1
n. | af n-1
+ a2 I (i-1) + = £ (n-i) (6.10)
i=2 © % =1
n
Let Z mi = ND, the total number of domains of all the relations
i=1

Then, Eq. 6.10 becomes,

-

n n
S, = i af N_+af N+ 20v (N_ + £ (i-1l)) + a2 ¥ (i-1)
3 s D D D .
i=1 i=2
n-1
2
+22 ¢ (n-i)
s
i=1

.1 n(n-1) -, n(n=1) a2 n(n-1)
SaiND+a£ND+2£v (ND+-—————2)+a£—-——-—2 + s o

°

L

Now, v = rlogzlq = a("'2 1is the number of distinct values in a PCP)

-
» 209
(
Eq. 6.11 becomes: -
21 n(n-1) n(n-1) .
S3—ga2 ND+a2 ND+2a£ (ND+———2)+a£-———-—2
~N
+.g& n(n-1)
s 2
=1 3n(n-1) . n(n-1)
S at Np+ a£[3ND + > +] (6.12)
Applying the s3me assumptions 1-3, to Equations 6.2 and 6.3 we get
the following: .
- n{n-1) n
S1 as ND + af (n=-1) + ag — + 3 i Ri

Note Ri’ the storage required in bits§ for the relation number i,is

rlogznT. Let B8 denpote flog2n7.

s, = at N + a2l (n=1) + “—(“2‘—1)] + nB2 (6.13)
s, = at N+ agl(a-1) + “—(“—2‘23 (6.14)

The storage requirement for PCP - option II can be obtained
similar to option I as folTlows:

3
The storage needed for {:91; Eij: type PCP's, S a is given by

sda = storage for key values of all PCP's + storage for nonkey

values of all PCP- s

P

. 210
Y
" 4
n n mi 9.1
= 2 a2, m, + I _ L a,,6 — (6.15)
=1 11 1=1 j=1 1384

Storage required for [gi ;_gj] type PCP's, S,y 1s given by:

n n-1 aizi
Sua = r (i-1) a,li + I (n-1) S (6.16)
¢ =2 Yo i=1 i
\\-‘—’
Note, there are no pointer fields in the option II.
The total storage for PCP -~ option 1II, Sé is given by:
= +
S& Saa Saa
n n Z,
= I a.i.mi + I L a,, —+
i=] * % i=1 j=1 3 B4
n n-1 aiii
T (i-1) aiii + I (n-1i) < (6.17)
i=2 i=3 i

Based on assumption 1-3, Eq. 6.17 can be furthekr reduced‘;o he

following form: N

S, = 3 a LN
s

. + aalng + E%il (1 + é)] (6.18)

D
While deriving Equations 6.12 and 6.18 it is assumed that the

average EWCR size (s) is equal to the physical EWCR size on the track.

(st). However, if they are not equal, the track EWCR size is so chosen

that s 1s an integral multiple of S, Taking this factor into account,

the Equations 6.12 and 6.18 will be modified, as follows:

-

N

211

S
\h -
s
_ e 3(n-n n(n-1) s
S; =5 at Ny +al E3ND+ > + =5 e’ (6.19)
s s
= -2 n(n-1) e
S, =5 at Ny +az (N + 5% (1 +-=)]
where Se = réiﬂ (6.20)
t

P e ony ¥

For Equations 6.13, 6.14, 6.19 and 6.20, the variations of
Sl’ SZ’ S3 and S4 w.r.t. £ , ND’ n, s, a are shown graphs 6.1, 6.2, 6.3,
6.4 and 6.5.

-

This shows that the storage requirement is less for

Graph 6.1:

WCRC when compared to DeFiore's scheme or GDBMS scheme. Among options

I and 1I, option II has the least storagé requirement.

7

Graph 6.2: This shows the variations of Sl’ 32, S3 and S4 w.r.t,
ND while ¢, n, s are kept constant. Once again, WCRC storage scheme
takes less storage and WCRC - option II takes the least amount of

storage .,

Graph 6.3: ThlsAshows the variations of Sl’ SZ’ S3 and S4 w.r.t. n.
WCRC - option II needs the least storage among all. The storage for

option I gets worse at higher values of n, the number of levels.

Graph 6.4% This graph shows how the storage of different schemes

vary with the EWCR size. Note Sl and S2 remain constant throughourt,

7

Graph 6.1 STORAGE vs. 2 212

34.1

25.8

17.6

9.4

2000 4500 9000 13500 16000

NUMBER OF.TUPLES

66.1

50.4

. 34.7

15.0

3.3

Graph 6.2 STORAGE vs. ND

\. S

ND -+

NUMBER OF DOMAINS

100

213

32.2

25.5

18.8

STORAGE IN 106 B#ITS

Graph 6.3 STORAGE vs. n

a = 64

¢ = 10,000
s, = 10

s = 200

n -

NUMBER OF LEVELS) =

214

g

A e gt e

STORAGE 1IN 106 BITS

27.1

22.5

17.8

12,7

7.5

Graph 6.4 STORAVE vs. s 215

64
10,000
10

30

20

50 80 110

SIZE OF EWCR

STORAGE IN 105 B1ps

29.0

Graph 6.5 STORAGE vs,

a’

a =

STORAGE SIZE/VALUE

i1

216

217

while S3 and S4 decrease with increasing s valué. It is clear that,

for higher values of s the storage for S3 and S4 decrease further.

WCRC ~ option II always takes the least amount of storage.

1’ SZ’ 83 and S4 with the

storage size of nonkey domain value, a . As can be seen easily,

Graph 6.5: This shows variations of §

it is economical to use PCP storage option I for storage sizes
greater than about '36 bits' (for the given values of 2, n, ND’ and
s). But option II provides the least storage structure for all sizes

of the nonkey domain values.

6.3 Retrieval Time

The following general case of retrieval is chosen to'éompare
the performance of three schemes. The retrieval query involves
qualification over all the attributes of the hierarchy, starts at the
top of the hierarchy a#d continues through all levels of embedding.
In this section, only marking time for qualifications is considered.
Also, since RAP [OZKARAHAN 76 does not allow interattribute qualif-
ications, only simple qualifications of the type <attribute> <opr>
<constant> are considered. The overall retrieval times for GDBMS
and WCRC are examined in the next sectiom.

Let cij represent the number of search criteria on iij and
[pi] denote the number of tuples which respond in Ri to the search

criterion. The total number of interrogatiomns (Tl) needed by the

query in DeFiore's scheme [DEFIORE 74] is given by:

-

n mi n-1

218

T, = £ £ ¢, + I lpi[o (6.21)

boogmpger B

This is described as the worst case time, since logical operations

between domains of the same relation can be performed in parallel in

the associative memory.

The number of interrogations in the case of G?EEE;/EpiéL u}es

RAP [OZKARAHAN 75] at the internal level, can be derived as follows.

If ¢,, is the number of search criteria on a,., attributes of R,, the
ij —i3 1

number of interrogations (t) needed on Rl is given by,

t = % z c,., k ris the RAP parameter

Note, in RAP only k domains can participate at one tifme in the
qualification. Let Ipll be the number of tuples which respond to

the above search on Rl' The ay values from these tuples are useqﬂ

as arguments to search for the matching ay

1P1]

values in the relation
R This would take 1 +
with marked tuples [OZKARAHAN 76]. This can be generalized for n

levels on similar grounds.

The total number of interrogations, T2 for n-levels of embedding

for GDBMS is given by:

m
1 0 i n-1 ;pi‘
T2 = X T z Ci' + I (1 +-T: + Yi) (6.22)
' i=1 j=1 =1

¢ m + Yl where Y,.is the gzmber of cells °

For the sake of simplicity, we assume that on the average, every cell

219

_ corresponding to Ri has marked tuples.

The number of interrogations for the same search criteria
in WCRC can be defived as follows. ‘

Since all the cells age independent in PCP schemes, the
search on all cells can be performed in parallel. However, each
cell has only m comparators, which would restrict the number of search
criteria on each cell. The maximum number of interrogatians for

‘»search on the domains is given by max [i%;J , where K is the WCRC
parameter. In these interrogatifns all the attribute domains in all
PCP's of levels 1 to n are mafﬁgd in parallel. Their corresponding.

’
key values (gi‘valuéé) are also mégzed in the same revolution).
(Note, in case of RAP and WCRC, the words_';umber of interrogations'
and 'number of revolutions' are used interchangeably). Depending
upon the qualification of the query, a boolean evaluation (AND/OR
combination)_must be performed on the marked 2 key values at level
i and these should, in turn, be used to mark the PCP Egi+l’-gij at
the next level i+l. This may be called traverse time along the
hierarchy. The traverse time can be obtained as follows.

-

Traverse Time (t):

B v (.
Let Li be the average nugber of tracks oé&upied by each

PCP at level i. So at level i, we have o PCP's each occupying

L, Efacks which are of the type Egi"éij] where j = 1; 2, ..., m, .

During search and mask time, all the attributes_gij(j=l,..m)

¥

satisfying cij search criteria and the corresponding a4 values are

220

-

<
marked. Now, the boolean expression involving c is evaluated

ij

over these] values, using qhe special hardware as follows (Fig.

at
6.4).

(1) Note, each cell/track has an associated RAM with the number

of bits same as that of the number of distinct key values on it.

All these cell RAM's correspoﬁ&ing to a PCP would form a "PCP RAM".
A PCP RAM is accessible by any of its tracks. Now, using “the marked

%y values, the corresponding RAM bits are marked in all PCP's at

I
level i. These PCP RAM's at level i are used as the‘f;puts,to the
Boolean Evaluator which performs the required boolean expressioh and

writes back the result on one of the PCP RAM's, say RMil'

- o

The time taken tao mark the PCP RAM's’tmr is given by,

, t - (1) = 1 revolution) (1

Note, all PCP RAM's are marked in parallel. However, in option I,
collisions are possible in theory because of possible repeated key

values at the track boundaries of a PCP. The chances of a collision

bd

are remote because the repeated key values are at the end of LEE,
. track and the beginning of (i+l)£§ track and these opposite ends are
) s i R
not,érocé?heggat the same time. This problem is nonexistent in
/

j/;gﬁtion 1I. ~ ’ >

The time taken';o evaluate boolean expression tb is given by:

tb(i) =m @i -t units’

O-0O["|0-0O| 000

N
~
Level 1
RMil i - o
rad 2 N
" track 1 AN
N
1 L, ™
1 ! | i
| ' 1] bits
| | i
track TL
1 2 . mi \\
~
PCP RAM S
RAM POQLS
ma al values
Level 1+ 1
RM,1
1 -
| 441 ¢//
2i
! bits

5 5\\
|] I
R 241 | ' :
bits ! ‘
x
N
~
\4

Fig. 6.4 PCP RAM POOLS at

O-0O| |00l |0-O

|o-of--

Level i and I+1 -

\

PCP[ai;ai+1]

PCP1 Eui+1"ai+ll]

PCP, [a;,13254,2]

PCP [a La m]
5
m 1 #1774+ 141

222

where m = number of terms in the boolean expression

o
]

number of bits in each PCP RAM at level i,

rt
I

clock rate of the Boolean Evaluator

Since tc could be in the order of manoseconds, t, may be neglected

b

compared to the revolution time (0.1 to 0.5 seconds).

(2) Now, the RAM RMil at level i 1s used to mark the oy values

in the PCP Edi’ a; + 1] at level i+l. Marking is done by accessing
the various units of RMil through the RAM bus under the control of

Q.P. For each value of & and marking %F if its corresponding RAM

values that go with theégi values

it i . a
bit is set The correSponding__i+l

are also set in the process.
The time taken to link level 1 and i+l, t, is given by
) te(i) = Li revolutions (2)

Because there is only one RAM bus which cam be used by one cellAat

a time.

(3) The marked a values aredgsed in turn to mark the corres-

i+l
ponding PCP RAM as explained earlier. This again takes another

revolution (t_*).
rm

i.e, trm(i) = 1 revolution (3)

The contents of the marked PCP RAM pool at level i+l are transferred

onto all the PCP RAM pools at that level. This transfer time is

negligible compared to the revolution time.

?

(4) Finally,. the PCP RAM's are used to mark the_zi+l values in all

the PCP's, which takes one revolution (tcr)'

re

These steps (l-4) are repeated at level o Thus, the time

i+1°

taken to traverse from level i to level i+l, tt(i) is given by,

t:t(i) = tmr(i) + te(i) + tm(i) + ttr(i)
= 3 + L. ‘
1

The traverse time for the whole hierarchy,

N i3
. t. = I L, + 3 (n-1)

i

i=1 m
Assuming the number of tracks Sccupied by all PCP's at all leVels

to be L on average, we get

£, = (a=1) (LT

The total anumber of interrcogations, T3 for marking the qualific-

ation of the query over the entire hierarchy is given by:

C..
T, = max ‘(—§l> + (n-1) (3+L) (6.23)

Ig option II, the number of interrogations would be the same

as option I, becuase marking (SET instruction) takes the same amount

-

224

of time in both. To compare the retrieval times of three schemes,

the following assumptions are made.

1) The number of search crﬂqeria on each>domain is chosen to be 1.

2) The average number of selected tuples at all levels is assumed
to be the same given by]pi] = p for all i.

3) The number of tracks occupied each relation in RAP is taken to
be the same for all relatiomns, i.e. Yi = y for all i. The same

> . is true for the PCP.

Based on these assumptions, the equations 6.21, 6.22 and

6.23 would become:

Tl = ND + (n-1) p . (6.24)
Ny

T, = —+ (a-1) (1 + 5 +y) (6.25)
k

T, = 1+ (3+) (a-D) ‘ (6.26)

be variations of Tl’ TZ and T3 (Equations 6.24, 6.25 and 6.26) w.r.t.
n, the level of embedding is shown in graph 6.6. It is clear from

this graph that WCRC has the least number of interrogations of the

three schemes.

N

4

6.4 %Gdﬁparison of Overall Retrieval Times of GDBMS and WCRC

-

In this,secﬁion, both marking time and I/0 time for a general

retrieval query are examined and a comparison of GDBMS and WCRC based

on this owerall time is presented. ¥For the sake of simplicity, the

- 4

NUMBER OF INTERROGATIONS

93

70

47

24

T
=

Py

Graph 6.6 NUMBER OF INTERROGATIONS 225
vs. LEVEL OF EMBEDDING

N, = 30
10,000
100 (1%)
2
= 2
5

t

A < v = U
[

——— s

226

following assumptions are made:

1) There is a q;alification (selection) clause on every attribute
of each relation.

2) At each level, i.e. in each relation, one attribute is chosen
for output.

3). All levels are joined (natural) over 31 values.

4) The qualification is of the type <a£€fibute> <opr> <constant>,

{ .
where <opr> is ome of (=, #, >, <, >, <)

Note, GDBMS, does not allow interattribute qualifications.

GDBMS
As shown in the previous section, the total marking time,
(tm) would be
N

19 + (n-1) (1 + p/k + 3)

where ND is the total number of domains/attributes.

Once all the relations are marked, each relation is projected over
one domain, which has to be output. The time taken for one such pro-

jection in RAP is shown in Appendix C. It is given by:

t = 14+ 2n

pl d

where ny is the number of distinct values in the domain of interest.,

Total time for o projection (tp) =qn « (1 +2 nd)

7 |

—
/

227

\
Now, all the relations have to be joined on the marked 2]

values. The time taken for one such physical join is given in

> \\\
Appendix C. To physitelly-join R with, say, R, would take tjl

revolutions where tjl

is given by:
<

t., =P, (2 +4 q)+3 p, + 2 revolutrions

il

where P, = number of qualified tuples in Rn

q = number of tuples that qualify for join condition in

Ri for every tuple in P,

Similarly, the number of revolutions (th) to join Rn with R, and R.j

i
is given by:

~

tj2 =P, (2 + 4(qi+qj)) +.3 Py 2 + 2

The total number of revolutioms (t,) to join Rn with R1 to Rn—

3 1

is gdven by:

n-1
. o= 4 -
tj P, (2 4 iil qi) + 3 Py {(n~1) + 2

The overall time (tt) for retrieval = tm + tp + tj

N
D
=4+ @D Q+2+y)+n @ +2ny

n-1
z qi)'+ 3 P, (n-1) + 2

S+ p. (2 + 4
n
i=1

228

Assuming P, = p, we get
ND P . n-1
tey = % + (1) (l+k+y) +n(l+2nd)+p 2 + 4 iil q)
+ 3p(n-1) + 2 (6.27)

For WCRC, the overall time can be derived as follows. The
marking and traverse time, as shown in the previous section, would be
-14+(3+L) (n~-1) revolutions. YAfter marking, we have the following sit~

: 1 - . .
uation. There are n PCP's Lgl’ 523’ Egl’ 23], e [31,-9n], all of
them with their ﬁgl; Ei) value pairs marked. They have to be joined

based on the marked values of a, in the final level PCP [al; an]. Note,

1

since aq is not the key in any of the PCP's, a cross-product has to

be obtained for all the nonkey valuesl_g2 to =5 for every &g value in

(a,; a . The EWCR's are taken one at a time from [a,; &] and the
-] -1 =1’ =n

cross product is formed. 1In the tuples so obtained the_gi‘values are
replaced by the attributes which have to be ocutput (one attribute
from each level). Clearly, this'operation will repeat for P times,

where p, 1is the number of qualified (a -_gn) pair values in [al;.gnj

1

The time t, to perform this operation is given by,

t = p (tn + t.) + ¢ (6.28)

o p tp

where tcp is the time to perform cross product
t, is the time to read the value pairs &, - «

-1 ~i

(for i =1, 2, ... n) from the cell I/0 buffers

229

!

‘\\\ . and trp is the time to replace the ay values with the attribute

N

values

tcp and t, are very small compared to the revolution time of the

track. (Note tcp is nothing but the instruction time of WCRML

instruction JOIN). € would be the time to read the n I/O buffers
. k3

from the cells involved and accessing and replacing each of the‘ii

values in the sliced buffer of the QP. For a large number of these

values, this time would be of the order of the revolution time.

Finally, the total time for WCRC, tt2 would be
= + (3+ - +
ttz 1 (3+L) (n-1) Py (tn + tcp) + trp
= 1+ (3HL) n-1) +p (t_ + + 6.2
= (3+L) (n-1) +p (¢t €p’ * tep . (6.29)

-

(assuming P, = p)
4

Comparing Eqlhiation (6.29) with Equation (6.27), it is easy to see that

t >t ..
tl t2

’ putation time \{n qup‘is partly due to the specialized extra hardware

However, it must be pointed out that the gain in com-

such as boolean evaluator and the join and sort unit, at the intermal
level.

Further, if more than one attribute has to be selected for
output from each level, the time t_, for WCRL would still remain the
same becausg, this would mean more slices of the buffer being selected
in the QP. In the casg of GDBMS, all the other timings would remain

.
the same except the time for projectton, tp, which would increase by

230

>

a factor E%R where Ndp is the number of domains to be projected on.

Note RAP can project a maximum of 3 domains at a time. [OZKARAHAN 76].
If a 6-join has to be performed instead of natural join, the expressions
for times t;l and tt2 still remain the same because RAP can perfarm
0-join as easily as natural join and WCRC would have to.perform cross

H
product taking one qualified EWCR at a time, which is already showm

above,

6.5 Update Time

_f
For a general update on all domains on one relation Ri (say),

GDBMS would take m revolution where m is the number of. domains in Ri'
WCRC would take only 1l revolution with option II, because all update
can be done in parallel.on the PCP's. WCRC with option I would take

3 * n, revolutions, where n, is the number of tracks which are full
following the track in which the update has to be performed. Note
option I maintains ordering on the values in a PCP track. Insertion
or deletion of a tuple in Ri’ would take one revolution in GDBMS while

it takes (1} * nt) revolutions in WCRC - optionI, and 1 revolution in

option II.

6.6 Overall Comparison of GDBMS and WCRC

An overall comparison between GDBMS in [DOGAC 8G] and WCRC is

presented here.

1) GDBMS uses RAP as its internal level. The storage of data is n-ary

#

e e

231

relations. This limits efficient utilization of data in data models
other than relational and also could restrict query optimization-WCRC
uses binary PCP's based on WCR's as the storage structure, which avoids
these problemé. It further avoids any bias between forward and the
reverse PCP's by éhe design of the data storage schemes (option I and

I1).

ii) GDBMS performance would depend on the query statistics - faster
for queries in relational data bases. WCRC is independent of query

statistics by virtue of its binary PCP's.

»

iii) In GDBMS the user views are translated directly into the internal
level RAP primitives without going through the conceptual level. This
severely limits ph&sical data independence. In WCRC the conceptual

level separates the extermal and internal levels giving better physical

data independence.

iv) - In GDBMS, the DBA has no DML at the conceptual level, while WCRC

supports DBA fully.

v) GDBMS is an SIMD scheme while WCRC is a MIMD schema.
%
vi) The space requirements for PCP data structures compared to n-ary

relations is lesser.

vii) The response time, due to internal level for most of the queries

is better for WCRC..

-

A

232

6.7 Summary

L

In this chapter, WCRC is evaluated in comparison with GDBMS
and DeFiore's seheme in terms of storage and retrieval. The overall
times for retrieval iﬁ GDBMS and3WCRC are derived and compared. In
the next chapter, the concluding remarks and suggestions for future

research are presented.

CHAPTER VII

DISCUSSION AND FUTURE RESEARCH

P

7.1 Discussion 4
This thesis has concentréted 6n the architectural features

s

of a new data base machine calledtWCRC. The architecture is wgll
within the ANSI/SPARC proposals. EIt consists of three levels:
external, conceptual and internal levels. It can simultaneously
support the three major data models: mnetwork, hierarchical and
relational zt the external level. THe overall architecture and the
facilities to the user as well as the DBA, have been described.
A basis for the conceptual.level design is developed. At the con-
ceptual level, the choice of the data model (E-R model) and .the
daga language (WCRL) provide the required stable view of the data
ba;é to users at the external level, as well as physical énd logical
data independence. The algorithms for schema conversion and the
view translation are develOpgd. ‘The schema conversion algorithms
provide the DBA with the externgl schemas in different models,
" equivalentr to the conceptual schema in E-R model. These schemaé
would form an ipformal basis for defining the user views. Once the

user views are defined, they are translated into E-R views and sub-

jected to consistency checking'in the conceptual processor. A frame-. T
- 233 .

234

work for consistency checking and updates based on the conceptual

model, ié presented. \éowever, further work is needed for a sophis~
ticated update policy; Some preliminary work on query optimization
based on WCRL operations is also reported.

The conceptual le&el language, WCRL, is further extended to
accommodate data definition, data manipulation and storage defin-
ition. A specialize& high level language, DBAL is deye10ped for
the convenience of DBA, which also includes retrieval, data défin—
ition and storage definition facilities. The full BNF syntaxes are

presented for facilitafing translation of these languages in future.

The translation of external level languages SEQUEL, LSL, IMS data

sublanguage and DBAL into WCRL is described with.examgles.

At the internal level, the data is écored as PCP's. This is
a radical departure from the c0nven£iopal épproaches where data has
been stored as n~ary relations. Also, this storage schema provides
physical data independence and allows for easier conversion into any
of the data models at the external level. Two storage structures
(option I and 1I) arg'suggeéted for the storage of PCP"s on the

tracks. The relative merits and demerits are discussed. -On the

' whole, the PCP option II seems to provide a better stbrage structure.

A machine-oriented WCRML, which is dirgctly executable in hardware, is
developed. Thé basic hardware design to implement these instructions
is outlined. Special hardware units for supporting some data base
functigns such‘as physical join and sort are developed. So far in

the literature, these functions have been mostly supported by soft-

-

. o 235

ware only. The extra hardware, where applicable; to implement both
options is réported. The guiaeliges for a detailed design of cell
control unit and the query processor, -are pro;ided. .
Finally, a compa?ative analysis of WCRC fo; both options is
attempted. The storage requirements and retrieval times are.also
compared with the GDBMS and DeFiore's scheme. A detailed comparison
of WCRC and GDBMS is provided for a general retrieval (inclu?ing'I/O
time) aqﬁ a general update. The-results indicate that in a geperal
query the WCRC offers an order of magnitude better pér{g;maﬁ;e over

.q_____"'
GDBMS.

7.2 Future Research

The architectufe of WCRC reported here opens up several new

areas of research. The following lists‘;;Ee major areas thagkneed
t

- further investigation and experimentation:

i) Translation of user languages in Relational, Network, and
Hierarchical data bases into conceptual language, WCRL.

ii) Translatiom of DBAL fnto WCRL

Aiii) Translation of WCRL to WCRML, the machine level language

iv) More sophisticated upéate, concurrency, ihtegrity and security
policies. 5

") Implementation and‘experiﬁentation with the hardware design

of\cells and some units of‘the query proce;sors.

vi) Implementation of conceptual processor and query processor

controller on mini/microcomputers.

-

a 236

vii) Extension of WCRC architedture’to handle null values and

corresponding extensions of the external level languages

and the datg models.

It may be noted that the research reported in this thesis
is just the beginning of a new era in data base computer archit-
ecture and systeﬁ design. The focus of the work reported here has
been to provide a well-defined framework for a cemplete design of a

new generation of data base machines.

/\/

N

REFERENCES

[ANSI 75]

ANSTI/X3/SPARC "Interim Report ANSI/X3/SPARC Study Group on Data
Base Management Systems,' FDT 7 (2), Vol. 7, No. 2, 1975,

CARORA 79]

Arora, S. K., Smith, K. C., "A Theory of Well-Connected Relatioms",
J. of Information Sciences, 19, 1979, pp. 97-134.

[4RORA 807

Arora, S. K., Smith, K. C., "WCRL: A Data Model Independent
Language for Data Base Systems', To appear, Int. J. of Comp. and
Inf. Sciences, 1980.

CARORA 80A]

Arora, A. K., Carlson, C. R., "On the Updatability of Consistent 7
Relatiomal Views", Technical Report, Bell Labs, Naperville, Illinois,
1980, '

[AﬁORA 81] //f—_,_,

Arora, S. K., Dumpaia, S. R., Smith, K. C., "WCRQi An ANSI SPARC
Machine Architecture for Data Base\ Management', To appear, Proc.
International Symposium on Computer Architecture, Minneapolis, May
12-14, 1981.

a

tBABB 79]

Babb, E., "Impleﬁenting a Relational Data Base by Means of Special-
ized Hardware', ACM Trans. on Data Base Systems", Vol. 4, No. 1,
Mar. 1979,

CBACHMAN 69

Bachman, C. W., '"Data Structure Diagrams'", Data Base 1 (2), 1969,
pp. 4-10.

[BANERJEE 79]

Banerjee, J., Hsiao, D. K., Kannan, K., "DBC - A Data Base Computer
for Very Large Data Bases', IEEE Trans. on Computers, Vol. C-28, No.
6, June 1979, pp. 414-429,

237

[238

[BOYCE 74]

Boyce, R. F., Chamberlin, D. D., King, W. F., III, and Hammer,
M. M. [1974]. "Specifying Queries as Relational Expressiomns',
in Data Base Management (Klimbie, J. W., and Koffeman, K. L.,
eds.), North-Holland, Amsterdam, pp. 169-176.

- o [BOYCE 75]

Boyce, R. F., Chamberlin, D. D., King, W. F., and Hammer, M. M.,
"Specifying Queriés as Relational Expressions: The SQUARE Data
Sublanguage', Comm. ACM 18:11, 1975, pp. 621-628,

[BRACCHI 74

Bracchi, G., Fedeli, A., and Paolini, P., "A Multilevel Relational
Model for Data Base Management Systems', in Data Base Management
(Klimbie, J. W., and Koffeman, X. L., eds), North-Holland, Amsterdam,
1974, pp. 211-223.

(BUNEMAN 79] ' ;
Buneman, P., Frankel, R. E., "FQL - A Functional Querf Language™,
ACM-SIGMOD, Boston, 1979, pp. 52-58.

{CHAMBERLIN 747 .

Chamberlin, D., Boyce, R., "SEQUEL: A Structured English Query
Language', ACM-SIGMOD Workshop on Data Description, Access and
Control, May 1974, pp. 249-264.

{CHAMBERLIN 75]

Chamberlin, D. D., Gray, J. N., and Traiger, I. L., "Vlews; Author-
ization and Locking in a Relational Data Base System Proc. AFIPS
44, NCC, 1975, pp. 425-430.

[CHAMBERLIN 767 ' -

Chamberlin, D. D., et al., "SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control", IBM J. Res. 20:6, 1976, pp.
560-575. ‘

CCHEN 76]

Chen, P. P. S., "The Entity Relationship Model ~ Towards a Unified
View of Data", ACM Trans on Data Base Systems, March, 1976, Vol, 1,

No. 1, pp. 9-36. \\\ jL

CCODASYL 71]

CODASYL DBTG, CODASY Data ghse Task Group Report Conf. Data Sys.
Languages, ACM, New Y xk 1971.

\

239

Ccopp 70]
Codd, E. F., "A Relational Model of Data For Large Shared Data
Banks'', CACM, 1970, pp. 377-387.

(cobp 79]
Codd, E. F., "Extending the Data Base Relational Model to Capture
More Meaning', ACM Trans. Data Base Systems, December 1979, Vol.
4, pp. 397-434,

[COPELAND 74]
Copeland, G. P., "A Cellular System for Non-Numeric Processing",
Ph.D. Dissertation, Department of Electrical Engineering, University
of Florida, 1974, R

[(DALE 76]
Dale, A. G., Dale, N. B,, "Schema and Occurrence Structure', ACM
SIGMOD, Washington, DP.C., 1976, pp. 157-168.

CpaLE 777 ‘
Dale, A. G., Dale, N. B., "Main Schema - External Schema Iﬁyeraction
in Hierarchically Organized Data Bases', ACM SIGMOD, Toronto, 1977,
pp. 102-110.

[DATE 76]
Date, C. J., "An Introduction to Data Base Systems', First Edition,
Addison-Wesley, 1976.

(DeBLASIS 787-
DeBlasis, J. P., Johnson, T. H., "Review of Data Base Administrators
Functions from a Survey'", ACM SIGMOD, Austin, 1978, pp. 101-109.

[DeFIORE 74]

DeFiore, C. R., and Berra, P. B., "A Quantitative Analysis of the
Utilization of Associative Mrmories in Data Management", IEEE Trans.
Computers, Vol. C-23, No. 2, 1974, pp. 121-132.

‘ [DeWITT 78] _) o

DeWitt, D. J., "DIREGT - A Multiprocessor Organization for Supporting
Relational Data Base Management Systems'", Proc. Fifth Annual Symp. on
Comp. Architecture, 1978, pp. 182-189,.

[(pocac -80] '

Dogac, A., Ozkarahan, E. A., "A Generalized DBMS Implementation on
a Data Base Machine", ACM SIGMOD, Santa Monica, Califdérnia, May 1980,
pp. 133-143.

T

240

[FOSTER 76]]
Foster, C., C., "Content Addressable Parallel Processors'", Reinhold
Co., 1976.

(FURTADO 79]

Furtado, A. L., Sevcik, K. C., dos Santos, C. S., "Permitting Up-
.dates Through Views of Data Bases', Information Systems, 1979, Vol.
4, No. 4, pp. 269-284.

(HOLLAR 78]
Hollar, L. A., "A Design for a List Merging Network'", IEEE Trans. on
Computers, June 1979, Vol. C-28, No. 6, pp. 406-413.

[(HOUSEL 79]

Housel, B. C., "QUEST: A High Level Data Manipulation Language for
Network, Hierarchical and Relational Data Bases', IBM Res. Rep.,
RJ2588 (33488) 7/25/79, 1979,

CIBM 757

IBM, Information Management System/Virtual Storage (IMS/VS) Public-
ations; Application Programming Reference Manual, SH20-9026-2;
System Programming Reference Manual, SH20-9027-2; IBM Corp., White
Plains, New York, 1975.

[KkLuc 78] N
Klug, A., Tsichritzis, D., "Multiple View Support Within ANSI/SPARC
Framework'; VLDB, Tokyo, 1978, pp. 477-488. ~
[RNUTH 73] ‘
Knuth, D. E., "The Art of Computer Programming 3, Sorting and Search-
ing", Addison-Wesley, 1973.
(LEILICE 78]

Leilich, H. 0., Stiege, G., Zeidler, H. Ch., "A Search Processor for
Data Base Management Systems", Proc, Fourth VLDB, West Berlin, Sept.
1978, pp. 280-287. .

[LEWIS 78

Lewis, E. A., SeKkino, L. C., Ting, P. D., "Data Semantics and Data
Base Update Rules Based on Functional Dependencxes", Bell Labs.,
Technical Report, Holmdel, N.J., 1978. /
CLin 761 ,‘

‘Lin, €. S., Smlth D, C. P., Smith, J. M., "The Design of a Rotating
Associative Memory for Relational Data Base Applications", ACM TODS,
Vol. 1, No. 1, March 1976, pp. 53-65.

R e e S

241

[LIPOVSKI 78] \

Lipovski, G. J., "Architectural Features of CASSM: A Context

Addressed Segment Sequential Memory'", Proc. 5th Annual Symposium

on Computer Architecture, Palo Alto, Calif., April 1978, pp. 31-38.
[McGREGOR 76]]

McGregor, D. R., Thomson, R. G., and Dawson, W. N., "High Perform-
. ance for Data Base Systems', Systems for Large Data Bases, North-
Holland Publishing Co., 1976, pp. 103-116,

[MILLER 65]
Miller, R. E., "Switching Theory", Wiley, 1965.

[NIJSSEN 76]
Nijssen, G. M., "A Gross Architecture for the Next Generation Data
Base Mapagement Systems', Modelling in Data Base Management Systems,
North-Holl y 1976, pp. 1-24.

foLIvER 79] .

Oliver, E. J., "RELACS, An Associative Computer Architecture to
Support a Relational Data Model", Ph.D. Thesis, Syracuse University,
1979,

LY

[OSMAN 79]
Osman, I. M., "Updating Defined Relations', National Computer Con-
ference, 1979, pp. 733-740.

[OZKARAHAN 75]

Ozkarahan, E. A.,, "An Associative Processor for Relational Data
Bases - RAP', Ph.D, Thesis, Dept. of Computer Science, University
of Toronto, 1975,

[OZRARAEAN 76

Ozkarahan, E. A., Schuster, S. A., "A High-Level Machine Oriented
Assembler Language for a Data Base Machine'", Technical Report,
CSRG-74, October, 1976.

[PARHAMI 73]

Parhami, B., "Associative Mrmories and Processors: An Overview
and Selected Bibliography", Proc. IEEE, Vol. 61, No. 6, June 1973,
pp. 727-730.

(PARKER 71]

Parker, J. L., "A Logic Per Track Device'", Proc. IFIP Cong. 1971,
North-Holland Pub. Co., Amsterdam, pp. TA4~146-TA4-150.

R L G NP

242

(scHMID 751

Schmid, M. A., and Swenson, J. R., "On the Semantics of the Rela-
tional Data Model, ACM SIGMOD Intermational Conference on Manage-
ment of Data, San Jose, Californmia, 1975, pp. 211-223,

(SCHUSTER 79] . (/”\\v

Schuster, S. , Nguyen, H. B., Ozkarahan, E. A., Smith, K. C.,
"RAP 2 - An Assdqiative Processor for Data Bases and its Applic-
ations'", IEEE Trans. on Computers, June 1979, Vol. C-28, No. 6,
pp. 446-458.

[SENKO 737

Senko, M. B., Altman, E. B., Astrahan, M. M., and Fehder, P.‘L.,
"Data Structures and Accessing in Data Base Systems', IBM Sys. J.
12, 1973, pp. 30-93, ’ '

[su 79] \
Su, S. Y. W., Nguyen, L. H., Emam, A., Lipovski, G. J., "The
Architectural Features and Implementation Techniques of the Multi-
< cell CASSM", IEEE Trans. on Computers, June 1979, Vol. C-28, No. 6,
pP. 430-445.

Csu 7947

Su, §. Y. W., "Cellular-Logic Devices: Concepts and Applications”,
Computer, March 1979, pp. 11-25.

[TSICHRITZIS 76] .

. Tsichritzis, D., "LSL: A Link and Selector Language', ACM-SIGMOD,
Washington, D.C., June 1976, pp. 123-134,

[TSICHRITZIS 77]

Tsichritzis, D. C., Lochovsky, F. H., '"Data Base Management Systems',
Academic Press, 1977.
. * /‘

-

CULLMAN 80] !

Ullman, J. D., "Principles of Data Base Systems", Computer Science
Press, 1980.

(vAsSSILIOU 80

Vassiliou, Y., "Functional Dependencies and Incomplete Information",
Proc. VLDB, Montreal, 1980, pp. 260-269.

&%

APPENDIX A
THE BNF SYNTAX OF WCRL

A.l Notation

This Appe%dix defines the syntax.of WCRL using Backus-Nayr
form productions. The productions have been‘simplified for the sake
of illustration. TFor example, the term "EWCR List'" is used to denote

"wl [Al;Bl], v, [AZ, sz, ceey W [An;Bn]“.

A.2 Syntax

Statement:= Retrieval statement
| DDL Statement (E-R Model)
[Update Statement

] SDL Statement.

" Retrieval statement:= Set Reconstitution Statement
l set Join
| Selective Union
] Sélective Intersection
[Selective Difference

| Recursion Statement

243

244

~—

Set ReconsFitution:= Osr <name type> (<exp type>; ;exp type>)
<eqop> <cp type> °
<name type>: = <EWCR name cype>]<cp name type>
<EWCR name type>:= character string
<cp name type>:= character string
<exp type>:= <attribute list>
| <qualifier list>
I <null>
<eq op>i= =
<Cp type>: = <cp name type> [<attribute lisf?r\jattribute list>]
<attribute list> :="<attribute name>
) [<at_tribut_e name> , <attribute list>
<qualifier list>:= <qualifier> , <qualifier list> -
|<qualifier>
<qualifier>:= <attribute name> <eq op> <term>
<Attribute name> : =charac£er string
<term> : =<aggr func> (<Attribute name> <op> <term>)

; I;constant> -
<aggr func>:= SUM|AVG|MAX|MIN|CAR
<op>:= +|-|x]s
" set jointQ <join type> <name list>(<conditional expression>)
<eq op> <cp type>

-

< e>:=
join type ocj i ij

At s e -

245

<name iist>:= <name type> , <name list>
I<name type>

<conditional expression>:= <cond clause> <bop> <conditional expression>
[<cond clause>

<cond clause>!= <Attribute name> <cop> <opd>

[<op;d> <gop> <oprd>
alv)d
=[#>|<]2]= ‘
<sop>:= ola|z|tlplalelr

il

<bop>:

<cop>:

<opd>: = <Attribute name>|constant
<oprd>: = <func> <Attribute name>
<func>: = <aggr func>|<set func>

<set func> = some|current|all

Selective Union: = csu<namelist> (<conditional expression>)
Selective Intersection: = o 4 <name list> (<conditional expression>)
Selective Difference: = 0 q <name list> (<conditional expression>)

Recursion Statement:=,o< <cp name type> <eq 0p> &

id> <id>

~

<Retrieval statement>
<id>!= <character string>
DDL Statement : = Entity definition statement
|Relationship definition statement
'lAttribuce definition statement
]Conscrainc specification statement

|Schema change specification statement

b AP SV N,

246

’ _Entity definition statement: = e <attribute list> (<E_specification>)
<eq op> e(<ename>)
<E_specification>:= (<etype>, <attribute name>, <ename>)
<eﬁame>= = <character string>
<etype>:i= normallweak.
<rname>:= <character string>

Relationship definition statement:= <attribute list> (<R_specifi-~

dr
cation>) <eq op> r (<rname>)
<R_specification>:= (<deg>, <spec list>)
<deg>: = Binary|Ternary|Tertiary|k-ary ,
<spec list>:= <spec>, <spec list>
< | <spec>
<spec>:= (<enamé>, <ename>, <rtype>)
<rtype>:= izllileﬁgbﬂl:;ll:glNzgll:l[l:N’N:M

Attribute definition statement : = o, <vname> (<V_specification>)

<eq op> a(<aname>)

%

<vname>:= <¢haracter string>
N M\\

<V_specification>: = (<data type>, <unit>, <base type>)
<data type>:= <Integer>|<real>|<character string>
<uynit>!= <character string>

<base type>:= <scalar type>|<subrange type>

<scalar type>:= <constant>, <scalar type>|<constant>

<subrange type>:= <comstant> - <constant>

<aname>:= <character string>|<ename>-<character string>

R T— e - nam v e Ak e e A ¢ 6 e m e
e . SPVCR N -
s - « R . -
. N

S

-

247

Constraint specification statement: = security statement
) [integrity statement
Security statement: = Tee <object list> (<sexp list>)
<object list>:= <attribute list>|<entity list>
<entity list>:= <emame>|<ename>, <entity list>
<sexp list>:= <sexp>|<sexp>, <sexp 1isF>
<gexp>: = (<user no>, (<access list>))
<user no>:= Integer
<access list>:= <access type> <access type>, <access list>
<access type>:= R|W|M]|S

Integrity statement: = 9 <object name list> (<iexp list>)

<object name list>:= <object name>|<object name>, <object name list>

<iexp list>:= <iexp>|<iexp>, <iexp list>

<iexp>:= <aggr fumc> <object name> <oper> <opd> "

<object name>:= <ename>|<rname>|<aname>|<vname>

<oper>:= <cop>|<sop>

<operand>:= <constant> <aggr func> (<object name>) Q?}r

Schema change specification statement:= Tos <object spec li;t> g§\

[<object type list>] (<cdndition list>) <eq op> o(<object name list>)

<object spec list>:= <object name>; <object spec. list>|<object name>

<object type list> = <object type>]<;bject t&pe>; <object type list>

<object ty§e>:=l entity{relationshiplattribute[vaiue set

" <condition list>:= «condition>; <condition 1ist>|<condition>

<condition>:= <object name> <cop> <constant>lnull>

O i e S

. o o 248

Update Statement: = Insertion
~

|deletion

< . ~

|modification . ! : \\\{\g

insertion: = o0, <attribute list> [<type name>] (<i expression list>)

<eq op> o(<type name>)

' <type name>:® <ename>|<rhame>

<iexpressian list>:= <iexpression>; <iexpression list>|<iexpression>

<iexpression> = <value list>|<iexpr list> : -

N

<value ligt>:= '<constant>, <value list>|<constant>

<iexpr list>:= <iexpr>, <iexpr list>|<iexpr>
. L N .
iexpr: = aggr func (<aname>) . ' ;

laggr func (<aname>).<op> <constant>

deletion: = o <attribute list>[<type name>] (<yexpression list>)

» - eq op of(<type name>) £

<yexpression list>:= <yexpression> ; <Yexp;essi6n iist>'§7expregsion>

.

<yexpression>:= <value . list> <yekpr list> R

<yexpT list>:= <yexpr>,<yexpr 1ist>|<rexpr>

>) .
<yexpr>= <aggr func> <aname> <op>, <constant> E

| <aname> <cop> <aggr func> <aname>) et

modification : = Oy <attribute list> [<type name>] (<yexpression list>) -

¢ .

- ’

. (<value list>) <eq op> o (<type ﬁéme;) - e
-~ NE B

-

SDL statement: = mapping'statement ‘ . o {\

- 1

. . |storage definition statement.

- T T 249

mapping statement: = <cp name list> (<M_expression>)

9 cobi>
<eq6p> e(<obj name>)
<cp name list>: = <cp name type>, cp name list>|<cp name type>
‘<obj>:= E[R|CP
<M_gxpression>;= set joinI;et union|set intersection|
set difference|null
<obj name>: = <ename;|<rname>
storage definition statement: = format
|create .
|déstroy
format: = Opy <cp name list> (<format spec list>)
<format spec list>: = <format spec> , <format spec list>
' | <format spec> .
<format spec>: = <comstt spec, constt 3pec>
<constt spec>: = (éaname> , <data type> , <nbytes>)
<nbytes>: = Integer .y
create: = IR <cp name type> <value pair list>
<value paitr list>: = . <value pair», <value pair list>
|<vdlue pair>
<value pair>: = (<constant> , <constant>)

Destiby: = g__ <cp name list>

ps

APPENDIX B

THE BNF SYNTAX OF DBAL

This Appendix defines the syntax of Data Base Administrator -

Language (DBAL) using Backus-Naur Form productionms.

DBAL Command : = DDL command
| |DML command
|SDL command
DDL co‘mand: = DEFINE <bloék> .
|GRANT <grant block>
‘<bloék>:= <value s block>
' |<attribude block>
|<entity block>
|<relationship block>
|<weak entity block>>‘ »*
. |<constraint block>
" "<value set block>:= VALUE SET <valve set name> OF
DATA TYPE <aaCa type (<number>)> WITH -
PREDICATE (fbase type>, <unit type>)
<value ;et name>: = <character string>
<&ata type>: = <intege;>[<real>]<cﬁaracter string>
<number>: = <integer>. .

250

T

251

<base type>: = <scalar type>|<subrapnge type>
<scalar type>: = <cons#nt> , <scalar type>l<constant>
<subrange type>:= <constant> - <constant>
<unit type>: = <character string>
<attribute block>:= ATTRIBUTE <attribute name> ON
VALUE SET <value set name>
<attribute name>: = <character string>
<entity block>: = ENTITY SET éentity name> WITH
| ATTRIBUTES <attribute list>
KEY <attribute name>
<entity name>: = <character string>
<attribute list>: = <attribute name>, <attribute list>
.l<attribute. name>
<relationship block>:=‘ RELATIONSHIP_SET <relationship name> ON
ENTITIES <entity list> OF
TYPE ({<association type>)
ATTRIBUTES <attribute list>
‘<relationship name>: = <character string>
<entity J:ist>: = <entity name> , <entity list>
|<entit§ name>
<associ§tion type>: = <type name> , <rtype>
<type name>: = binary[trinary]k—afy

-

L d ~ o~ ~ o ~
<rtype>: = 1:1|1:N|N:M|1:1]1:1]1:N|1:N|N:M|N:M }//)

<weak entity block>:= WEAK ENTITY SET <entity name> WITH
PN ATTRIBUTES <attribute list>
KEY <attribute name>
‘ RELATIONSHIP ;relationship name>
<c6nstraint biock>:= ON <object‘name>
CONSTRAINT <expres;ion>
<object name>: = <entity name>
| <relatidnship name>
| <value set name>
]<attribute name>

<expression>: = <object name> <opr> <opd>

corp> : = =|f[<|>|z]|2]e|e]olz] 2]
<opd>: = <aggr func> <object name>
| <constant>

<aggr fumc>: = SUM|AVG |MIN|MAX|CAR|ALL |[SOME.
<gran; block>: = TO (<user number list>)
'ON <object name>
<user number list>: = <user nﬁmher>, <user number li$t>
<user number>
<user nuﬁber>: = <integer>
DML command : = <add command>:

| <delete coi dJ(’\

|<spiit co d> .

| <merge command> -

|<shift commard>

252

253

[<1ﬁlame command>

|<insert command>.
. -
|<delete command> ' -

| <modify command>

/o
/

| <retrieve command> _%f
<add command>:= ADD <objec£ name> TO <object t&pe>
<object type>:= Entities]Relationships}value sets]atcributes
<delete command>: = DELETE <object name> FROM <object type>
<split command>: = SPLIT <obj type> <object name>
INTO <object name list>
QUALIFICATION <ex§ression>
<object name list>: = <object nage> , <object name>
<merge command>} = MERGE <object type> <object name list>
INTO <object name>
<shift command>: = SHIFT (<mode>) <object name>
TO ;object name>
<mode>: = high|low
Grenaﬁe command>: = RENAME -<object name>
| TO <object name>
<insert.;ommand>: = INSERT INTO <object name> <tuple block>
<tuple blo¢k>: = <tuple>, <tuple block>l<tuple>
<delete command> = . DELETE FROﬁ <object name>
" (<tuple>|WHERE <condition>)

-

<condition>: = <expression>
. LI
<modify command>: = MODIFY <object name>

(<tuple>{WHERE <éondition>) ' ~

4

o

<retrieve command>:= RETRIEVE <argument list>
WHERE <cond expr>
<argument list>: # ' <item>, <argument list>
|<item>
<item>: = <term> USING <nayjgation>
- |<term>

<term> : = <entity name>

|<entity name>-.(<attribute list>)

l<aggr func> (<entity name>).(<attr list>)

|<relationship name>.

[<relationship name> (<attribute list>)

|<aggr func> (<entity name>).(<attr list>)
<attr list>:= <attr>, <attr list> <attr>
<attr>: = <attribute name> [<free variable>]
<free variable>: = <character>
<navigation>: = <path> , <navigation>

|2path>

<path>: = <entity name> , <relationship name> , <entity name>

|<relationship name> , <entity name>, <relationship name>
<cond expr>: = <expr> <bop> <cond expr> ‘ ‘
<expr>: = :<aggr func> <attribute name> <opr> <opd>
<bop>: = AND|OR ‘
SﬁL commaud: =‘ <CP coqmand>

|<ER command>

[<RR command>

254

LI

<CP command>: = DECLARE CP <cp name>

ON (<attribute name> , <attribute name>)

~

<Cp name>: = " <character string>
<ER command>: = DECLARE ER <entity name>

AS <cp name list> KEY <attribute name>

<RR command>: = DECLARE RR <relationship name>

ON <cp name list> KEY <attribute name>

<cp name list>: = <cp name> , <cp name list>
' <cp name>

U

255

YR

LT

>

¢

A e Fines

257

L2 RESET (t1lt2t3) [R] /*Reset all m;rk bits of tuples
just t3 marked*/ (1 revolution)
L3 TEST tl_RAIL /*Any more tuples to be processed?3/
BC L1,RAIL_STAT(tl) /*Yes, repeat-the loop*/
) /*All tuples with unique Di values are
\\\\\\\\\\\y/ : left t2 marked. They can be left fo
“NEL/{ future processing or read out as th
following co&e shows*/ ’
READ[R:MKED(t2)] [WORK AREA]

EOQ. ¢

The second part of éhis.ap;éhdix shows the time taken for a
physical join of two relations R and S over domain Dl' The corres—

ponding RAP program is shown below. The ﬁreprocessing takes 1 revol-

ution and the loop‘bi{ loops around fofsp times, where p is the num-

ber of marked tuples in R. The inner loop (RD LOOP), loops around
for q times, where q is the number of tuples that'qualifyvfor join

condition in s for every tuple in p. Clearly, sthe outer loop needs
1
5 revolutions and the inner loop requires 4 revolutions. The re-

setting of Rl takes 1 revolution.

The total time = 5 p +.4 ﬁq + 2

Note, if more than two relations are invglved in the ‘join, then,
' |
the instructions marked '*' in the RAP program will have to be

repeated for. {n-1) times, where n is the total number of relatioms.

v

N

258

i.e., 3 out of 5 instructions in the outer loop would be répeated

(n-1) times for each selected tuple from R.

n-1
The total time = 2p + 4p £
i=1

The RAP program for JOIN of two relations R and S

4

+ 3p (n-1) + 2
!

~

~—

MARK (tl) [R]
L1 GET_FIRST [R(D1):MKED(tl)]

*MARK (£2)[S:D1 8 (REGC 1)]

TEST t2 RAIL
BC L2, RAIL_STAT(t2)

BC SKIP

AL2 MARK (t3) [S:UNMKED(t2)]

RDLOOP READ [R:UNMKED (t1t4)]
[WORK AREA] '

GET_FIRSTLS(D1) :MKED(t2)]

/*Preprocess for loop*/ (1 revolution)
/*Loop through tuples of relation R¥*/
/*Read in the domain value of

the current tuple*/ (1 revolution)
[*Mark all tupl;; of S with domain

values satisfying the join conditien*/

(1 revoluﬁ;on)

/*Any such S tuple?*/ -
/*Yes*/'
[*No*/ .
/#*Now read out alternately, the c;rrent

R tuple and one of the t2 marked S

-
tuple until all t2 marked § tuples

have been processed*/

/*Preprocess for loop*/ (1 revolution)

/*Read the R tuple*/ . (1 revolution)
/*t2 unmark the first t2 marked S tuple
(The D1 value saved is not used)*/

(1 revolution)

259

.

,READ[S:UNMkED(tZtB)] [WORKAREA]/*Read out the S cdple just t2 unmarked*/
(1 revolution)
MARK (t3) tS:UNMKED(tZ;B)] /*Mark it as processed*/ (1 revélution)
. TﬁST t2 RAIL ' /*Any more S tuples to be proceséed?*/
| (1 revolution)
BC RDLOOP,RAIL_STAT(t2) /*Yes, repeat the loop*/
*RESET (t3) [sj /*No, clear work mark bit*/

(1 revolution)

A

/*Housekeeping before we can proceed to
the next tuple of the relation R*/
SKIP MARK(t4)[R:UNMKED(tlt4)] /*Mark tuple as processed*/
(1 rgvolution)
TEST tl_RAIL /*Any more R tuples to be processed?*/
BC_Ll,RAIL_STAT(tl) /*Yes, repeat the loop*/
/*511 tuples of relation R have been
processed. Clean up and exit¥/

RESET [t4] [R] (1 revolution)

EOQ

