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ABSTRACT

Two aspects of the electrical and light scattering

properties of various epoxide based thermosets have been

studied. In the first, the isothermal curing kinetics of the

thermosets have been measured at several temperatures by

dielectric spectrc;>scopy and Brillouin scattering measurements.

During the process of curing, the dc conductivity decreases

according to a scaling law, Uo ~ (tg-t)x, or equivalently to a

new equation, u~ ac exp[-B/ (to -t) ], and approaches zero on gel­

formation. Concomitantly, the time for the dipolar

relaxation process becomes progressively longer and the

dielectric permittivity becomes dominated by dipolar

relaxation processes. The time dependence of the complex

permittivity follows the formalism, ¢(t)=exp-(t/'l"cure)l with

,¥<O. 4. '¥ decreases as the curing temperature is increased and

tends towards a limiting value at a high curing temperature.

The relaxation time increases on curing and the rate of its

increase with respect to curing time first reaches a maximum

and then decreases towards zero. This phenomenon is a

manifestation of the rates of che.mical processes which control

the extent of cure. The initially broad Brillouin peak

becomes narrow and shifts towards higher frequencies with the

curing. The changes in the hypersonic velocity and

attenuation during the curing of a thermoset correspond to the

changes observed in the dielectric studies.
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In the second, both the sub-Tg and main relaxation

processes of the thermosets were measured by dielectric

spectrometry and their dependence on the curing and ageing

were investigated. Amongst the two sub-Tg relaxation

processes, the low temperature process is initially prominent

and its strength decreases on both curing and ageing of a

thermoset. The strength of the high temperature sub-Tg

process initially increases, reaches a maximum value and then

decreases on further ageing. A concept of accumulated

equivalent curing time is introduced and theoretically

justified for use in the investigation of tht.~ curing of

thermosets, and a general method for obtaining the asymmetric

distribution of relaxation times parameter from limited

relaxation data is developed. For the sub-Tg relaxations, the

calculated parameter remains constant during the curing

process, but for the main relaxation it monotonically

decreases towards a limiting value. The theoretical analysis

developed here is generally applicable to phenomena where

molecular diffusion allows a chemical reaction to occur, which

in turn retards molecular diffusion which slows the chemical

reactions, until a material reaches its vitreous state and

both the diffusion and chemical reactions cease to occur over

ones experimental time scale.
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