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ABSTARACT

The first parallel implementations of the extended covariance Kalman filter
(ECKF) and the extended square root covariance filter (ESRCF) for tracking
applications are developed in this thesis. The decoupling technique and special
properties in the tracking KF are explored to reduce computational requirements
and to increase parallelism.

The use of the decoupling technique to the ECKF eliminates the need for a
matrix inversion, and results in the time and measurement updates of m
decoupled (n/m)-dimensional state esimate error covariance Po(k)'s instead of 1
coupled n-dimensional covariance matrix P(k), where m denotes the tracking
dimension and n denotes the number ol state elements.

Similarly, the use of the decoupling technique to the ESRCF separates the
time and measurement updates of 1 coupled Pl/z(k) into those of m decoupled
P2 (kys.

The updates of m decoupled matrices are found to require less computation
than those of 1 coupled matrix, and they may be performed for sach axis in
paiallel.

In the parallel implementation of time and measurement updates of P(k) in
the ECKF, the updates of m decoupled Po(k)'s are found to require approximately
m times less number of processing elements and clock cycles than the updates of
1 coupled P(k). Similarly, the parallel implementation of the updates of m
decoupled Péﬂ (k)'s in the ESRCF requires approximately m time less number of

i



processing elements and clock cycles than that for 1 coupled PI/2

k).

The transformation of the Kalman gain which accounts for the decoupling of
P(k) and Pln(k) is found easy to implement.

The sparse nature of the measurement matrix and the sparse, band nature of

the transition are explored to simplify matrix multiplications.
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CHAPTER 1

INTRODUCTION

1.1_ Filtering and the Kalman Filter Algorithm

The concept of filtering is fundamental to all forms of communications
and signal processing. The signals which we receive are very often corrupted by
noise. For example, in a conversaton over a noisy radio channel, the
communication is degraded by the high level of receiver noise. In this case, we
filter out the noise and estimate what has been said, based on the received noisy
voice. Filtering can be viewed as the minimization of the effects of noise
contained in a received signal. The term “filter” is used to describe a device or
algorithm designed to extract a signal. It is implemented in the form of physical
hardware or computer software.

One type of filter is a circuit or system with frequency selective
behaviour [40], [46]. An example is a filter in radio receivers that amplifies
signals in one frequency band and attenuates unwanted noise in another. This
type of filter is based on the postulate that the useful signals lie in one
frequency band and unwanted noise lies in another.

However, the type of filter of interest in this thesis is the Kalman filter.
The Kalman filter (KF) is an algorithm that extracts information of interest from
a set of noisy data. It is based on the a priori statistical, linear, mathematical

representation of system dynamics and measurement equations



([1],[51,[19],[231,[24],[44]). The system dynamics equation describes how the state
of a system, to which filtering is applied, varies with time. The state of a system
contains all the necessary information about the behaviour of the system. The
measurement equation describes the relationships between measurements and the
state of the stystem.

Based on this a priori representation, the KF estimates the state of a
system by minimizing the mean-square value of errors in a state estimate. The
KF uses recursively the old estimate and new input data in making a state
estimate. Hence, the KF does not require to store the entire past input data nor
all the previous estimates except for the most recent estimate.

In the Kalman filter, the state of a system is expressed in the form of a
vector, referred to as a state vector. Similarly, the estimate of system's state is
expressed in the form of a vector, called a state estimate vector.

The accuracy of a state estimate may be determined in the form of an
ensemble-averaged outer product of the state estimate error vector. The state
estimate erter vector is defined as the difference between the state vector and the
state estimate vector. This ensemble—averaged outer product is referred to as the
state estimate ermror covariance matrix, or simply an error cov.iriance matrix. It is
interesting to note that the error covariance matrix is a multi-random variables'
version of the variance in a single random error variable. Like the variance in a
single random error variable, large elements of the state estimate error covariance
matrix indicate large errors in corresponding state elements,

Since the exact state of a system is always unknown, the exact accuracy
of a state estimate is impossible to find, but it can be estimated. The KF
estimatcs the accuracy of its state estimate at each filtering instant. However,

estimation of the emor covariance matrix sometimes results in numerical problems



due to the effects of finite word-length arithmetic. To reduce these problems, it
has been suggested that the estimated accuracy of a state estimate be expressed
in terms of the square root of the error covariance matrix [25). This is analogus
to exprcssing the accuracy of a random variable in terms of a standard deviation
rather than a variance. Expressing the accuracy in terms of a standard deviation
rather than a variance increases the effective precision by a factor of two, since
the square-root operation reduces the required number of bits to represent the
accuracy by a factor of two. However, this increase in the effective precision is
achieved by additional computational complexity [25]. Hence, the decision as
to the way expressing the estimated accuracy should be based on the
1equirements of computational complexity and numerical stability.

In the literature, the KF with the accuracy expressed in terms of <he
square root of the error covariance matrix is referred to as the square root
covariance filter (SRCF), whereas the KF that makes use of the emor covariance
matrix is referred to as the covariance Kalman filter. The term, KF, will be
generally used to refer to both versions of the Kalman filter as a whole hereafier,
but it will be occasionally used to refer to only the covariance KF. The use of

this term should be clear in the context.

1.2 The Target Tracking Problem

The purpose of target tracking is to track the state of a target such as its
position and velocity, using measurements made by suitable sensors (e.g., radars)
at discrete time instants ([10],[41], [42].[43]). The target can be an aircraft, ship,
or missile. Errors are inherent from various sources of measurement. One of the
major sources of error is the thermal noise at the front end of the receiver of the

radar. The KF may be used to filter out the inherent errors in measurements, and



10 estimate the state of a target. However, the KF has to be modified to handle
special features of target tracking systems.

In target tracking systems, the position and velocity of a target are
expressed in Cartesian coordinates, while measurements are made in polar

coordinates in terms of range and bearing angle, as shown in Figure 1.1.

Ky

Figure 1.1 Measurement in polar coordinates

Hence, the measurcment equation, describing the relationships  between
measurements and the state of a target, is nonlincar. Since the standard KF
assumes a linear measurement equation, it has to be modified to be used in
tracking applications. The KF, including the linearization of a nonlinear
measurement equation and a coordinate transformation from polar to Cartesian
coordinates, is called the extended KF [11.[5]. This coordinate transformation is
required in filtering to relate the state in Cartesian coordinates and measurement
in polar coordinates. When the covariance KF and the SRCF are modified to
handle nonlinearities in tracking systems, they are referred to as the extended

covariance XF and the extended SRCF, respectively.

1.3 Purpose of the Research

The computational power of a single processor is not sufficient for a

large number of filtering applications using the KF, although advances in digital



integrated circuit technology have considerably improved the throughput rate of
such processors. However, as VLSI technology becomes more accessible and cost
effective, interest in the parallel implementation of the KF has increased. There
have been a number of papers on this topic ([6],[113,[131,[21},(22]), [31],
[371,[48],[52]) However, with the exception of [11], these papers have focused
mainly on the standard KF for general filtering applications, and not the extended
KF (EXF) for tracking applications. The implementation of [11] is based on
optical technology and does not discuss the implementation of the nonlinear
coordinate transformation from polar to Cartesian coodinates, or the linearization
of the measurement equation. Hence, there has not been any parallel
implementation of the extended KF proposed for tracking applications.

The purpose of this thesis is thus to develop the first parallel
architectures for the EKF for tracking applications. Parallel implementations of
both the extended covariance KF and the extended SRCF are developed, so that
the architecture with suitable characteristics can be selected depending on the
requirements of computational complexity and numerical stability. A decoupling
technique and special properties inherent in tracking systems are exploited to
simplify implementations. These simplifications are discussed in detail in Chapter
4. The utilization of special properties of a particular application does not limit
the applicability of the proposed architectures, because the proposed architectures

are already designed for a special use.

1.4 Previous Work on the Paralle] Implementations of the Kalman Filter

Architectures based on a single processor have a limited computing
power. To increase the computing power, the concepts of pipelining and parallel

processing are utilized, using a number of processors ([20],[30],(45]). Pipelining
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and parallel processing systems are respectively depicted in Figures 1.2 and 1.3,

where boxes, labelled Pi's, represent processors.

Data in Dato out
— — P =

Figure 1.2  Pipeline processing system

Data inl Dato outl
— P

Data in2 Dato out?
Y =

Data in3 Data out3
> % >

Figure 1.3  Parallel processing system

In Figure 1.2, processors are serially connected along the line. This line is
referred to as a pipeline. In a pipeline system, a task is decomposed into many
subtasks. Each subtask is processed at successive processors as data goes through
the pipeline. When data comes out of the pipeline, a task is completed.
Pipelining allows new tasks to be initiated before the cumrent task is completed,
because processors become available for new tasks once they complete their
subtasks. In contrast to a pipeline system, a parallel processing system consists of
a8 number of independent processors that perform independent tasks in parallel.

As the computing power of multiprocessor architectures increases, local



interconnection between a processor and its neighboring processors becomes more
and more desirable, since it is simple to implement and reduces the amount of
Input/Cutput to and from memory. Multiprocessor arhitectures are generally
implemented in very large scale integration (VLSI) technolegy. VLSI technology
favours regularity and simplicity of processors to reduce design errors, time, and
cost [30],[34]. Modularity is also desired to adjust the number of processors for
the required computing power.

Systolic arrays, originally proposed by H.T.Kung [26],[28], have all the
features mentioned above and exploit both the concepts of pipelining and parallel
processing. A systolic amray consists of an arrav of individual processing cells
that are arranged in a regular structure. Each cell is connected to its nearest
neighbors. The systolic array is designed such that the regular streams of data
are clocked through it in a highly rhythmic fashion, much like the pumping
action of the human heart; hence, the name “systolic”. An example of a systolic

array designed for the muitiplication of two matrices is shown in Figure 1.4.

CHCHO)

Figure 1.4 Systolic array for the multiplication of two matrices

In a sytolic array, data are reused as they travel through processing cells



in the array. The reuse of data reduces the amount of Input/Output requirements
from and to memory. However, the reuse of data may cause a nonnegligible time
delay because a significant amount of time is required by the data to go through
many processing cells; that is particularly so when the systolic array is large. The
additional delay is created in the systolic array to introduce a skew in an input
data stream for the purpese of data synchronization.

When the reduction of time delay is required and the advantages of
systolic arrays are not significant, a parallel processing architecture with global
interconnection can be employed. This architecture, a special type of parallel
processing architecture, broadcasts data to all the appropriate processing elements
at once using 2 global interconnection, instead of passing data one at a time
through processing clements in the pipeline. It is shown in Figure 1.5. The global
interconnection is not preferrable to a local interconnection, but this is a price to
pay to reduce the time delay.

Inspite of their desirable features, systolic arrays have drawbacks. Since
all the processing cells in the systolic array are controlled by the same global
clock, the incurred clock skew may be nontrivial. The clock skew should be

carefully accounted for in implementation.

Dota outl
—

Dota in Dota out?e
rd

Data out3
—

Figure 1.5 Parallel processing architecure with global interconnection



Systolic arrays have been applied to various applications such as matrix
manipulation [28], relational database operations[27], and filtering applications
({18],(29],[30]). In particular, they have been used in the implementation of the
Kalman filter with other types of multiprocessor architectures.

Kadela and Graham {22] studied parallel implementations of the
covariance KF. Papadourkis and Taylor [37], and Yeh [52] presented a systolic
imlementation of the covariance KF. Jover and Kailath [21] presented an parallel
architecture for the measurement update part of the SRCF, while Sung and Hu
[48], and Gaston and Irwin [14] proposed an architecture for the complete SRCF.
Furthemore, Chen and Yao [6], S.Y.Kung and Hwang [31], and Gaston and Irvin
[13] developed systolic architectures for the modified SRCF which estimates the
accuracy of its state estimates in terms of the inverse of the square root of the
error covariance matrix. However, all of these architectures implemented different
versions of the standard KF, not the extended KF for tracking systems. Hence,
this thesis is the first complete development of parallel architectures of the

extended KF for tracking application.

1.5 OQutling of the Thesis

In Chapter 2, we review the representation of typical tracking systems,
and various filters for tracking applications: the o-f filter and different versions
of the KF incleding the extended KF.

In Chapter 3, we first study design principles for parallel architectures,
then review two commonly used systolic arrays to gain insights into parallel
architectures, and to study the properties of systolic arrays. At the end of Chapter
3, we review some of the paralle]l implementations of the KF so far presented.

In Chapter 4, we first present a decoupling technique and properties of
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matrices in the tracking KF. We then show how the decoupling technique and
properties of matrices can be used to simplify the extended covariance KF and
the extended SRCF. Next, we study the performance of the simplified EKF, in
comparison to the standard EKF.

In Chapters 5 and 6, we develop parallel architectures for the extended
covariance KF and the extended SRCF respectively, utilizing the decoupling
technique and special properties of the certain matrices in the tracking KF.

Finaily, in Chapter 7 we present conclusions.



CHAPTER 2

TRACKING FILTERS

The purpose of "tracking" is to keep track of the state of a target such
as its position and velocity. Tracking filters estimate the state of a target by
filtering out inherent errors in measurements. Such filters require the a priori
representation of the target dynamics, and that of the relatonships between
measurements and the state of a target. The state of a target is represented in the
form of a vector.

Different tracking filters have different characteristics in terms of filtering
accuracy, computational requirements, implementational complexity, robustness, and
numerical properties. The implementational complexity of a tracking filter is
determined by the structure of information flow in the filter. A filter with regular
structure is easier to implement than a filter without it. The numerical properties
indicate how stable filters are with respect to rourd—off errors.

The operations of the tracking filters are perhaps best explained by
describing a typical tracking scenario. Upon detection of a target, the tracking
filter initializes a state vector, which consists of position and velocity estimates,
and then the tracking filter predicts the state at the next filtering time instant.
This prediction is made with a priod knowledge of the target motion dynamics.
At the next filtering time instant, the tracking filter first makes a state estimate

combining the previous predicted state estimate with the newly received

11
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measurement, and then the tracking filter makes a siate prediction for the
following filtering instant. The tracking filter repeats this estimation and prediction
procedure at each sampling instant. There are various ways of combining the
predicted state and measured values in tracking filters.

In the following sections, a more detailed representation of tracking

systems will be given, followed by a discussion of various tracking filters.

2.] Tracking System Representation

A target tracking system may be expressed in the following two

equations:

a) A target dynamics equation
X(k+1) = ¢k) X(k) + D(k) (2.1)
b) A measurement equation

Z(k) = H(k) X(k) + E(k) (2.2)

In this representation, the state of a target, which contains all the information
necessary to specify the condition of a target, is expressed in the form of a
vector. This vector is called a state vector, denoted by X(k), and the elements of
this vector are calied state variables. The representation of a system in terms of
state vectors is referred to as a state-space medel, since an n-dimensional space
can be formed in which each coordinate is defined by one of the state variables,
where n is the number of state elements.

The state vectors for typical 2— and 3-dimensional tracking are as follows

a) 2-dimensional case;



X(k) =

b) 3—dimensional case:

X(k) =

x (k)
x (k)
(k) | _
y (k)
y (k)
y'(k)

Cx ) ]
% (k)
%" (k)
y (k)

y (k)
z (k)
z (k)
| 27 (k) |

y (k) | =

x-position at
x-velocity at
x—acceleration at
y-position at
y-velocity at

y-acceleration at

x-position
x-velocity
x-acceleration
y-position
y-velocity
y-acceleration
z-position
z-velocity

| z-acceleration

time k
time k
time k
time k
time k
time k

at
at
at
at
at
at
at
at
at

time k ]
time k
time k
time k
time k
time k
time k
time k
time k |
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Note that in this representation the acceleration of a target is also assumed to be

kept track of, in addition to the position and velocity of a target.

The target dynamics equation, as the name implies, expresses the

target

dynamics in terms of state vectors X(k) and X(k+1). The relationships between

X(k) and X(k+1) are described by a transition matrix ¢(k). A typical transition

matrix for 2-dimensional tracking is [42]

) =

OO0 -

TOO0OO
11000
0p00O
001TO
00011
0000p

where T is the sampling time interval, and p is a correlation coefficient for

acceleration,

The vector

D(k) in Equation

(2.1) represents

the disturbance or
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uncertainty in the system dynamics model. This disturbance is due to the
approximation in the model of the dynamics, random movions caused by
environments, and deliberate target maneuver.

The measurement equation {(2.2) relates, using a measurement matrix H(k),
a state vector X(k) and a measurement vector Z(k) whose elements are physically
measured. The vector E(k) describes inherent errors associated with measurements.
A typical tracking radar doss not measure all the elements of a state vector. For
example, some tracking radars measure only the position of a target.

The measurement equation will be explained with a hypothetical, simple
l-dimensional tracking example. We assume that the state vector X(k) for

l-dimensional tracking is defined as

x (k) ' x—position at timek
Xk)=| xk) | = | x-velocity at time k
x'(k) x-accelerationat iime k

and only the position of a target is measured with errors, such that the

measurement vector Z(k) and the measurement noise vector E(k) are defined as

Z&) = | z() |

Ek) = [ e(k) -

where z(k) and e(k) denote, respectively, a position measurement and a

measurement error at time k. Then the measurement matrix H(k) becomes

H(k)=[l 0 O]
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and the measurement equation is expressed as

Z(k) = HX() + Ek) = [ 100 ] :83 + [ e(k) ]

(k)

A typical tracking radar which is of interest in this thesis measures range
r and azimuth angle 6 o in 2-dimensional tracking, and range r, azimuth angle
0 A and elevation angle BE in 3-dimensional tracking, such that the measurement

vector Z(k) is for 2-dimensional tracking

r (k)
8,()

Zk) =
azimuth ang l e at time k

- [ range at time k ,

and for 3-dimensional tracking,

r (k) range at time k
Zk) = | 8 A(k) = | azimuth angle at time k

BE(k) elevation anlge at time k

Yet, the state vector X(k) is defined in terms of x(k), x(k), x'(k), yk), y(k), and
y'(k) in Cartesian coordinates, since the motion of a target is linear in Cartesian
coordinates. Hence it is not possible to express the measurement equation, the
relationships between X(k) and Z(k), in the form of a linear matrix H(k), but in
the form of a nonlinear function h(.). The required nonlinear funcion actually
performs a transformation from Cartesian to polar coordinates to relate X(k) in

Catesian coordinates and Z(K) in polar coordinates. A modified measurement
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equation with a nonlinear measurement function h(.) is expressed by

Z(k) = h(X(k)) + E(k) (2.3)

The nonlinear function h(X(k)) for 2-dimensional tracking is defined using Figure
2.1, and that for 3-dimensional tracking is defined using Figure 2.2.
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Figure 2.1 Measurement for 2-dimensional tracking
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Figure 2.2 Measurement for 3—dimensional tracking
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For 2—dimensional tracking, the two components of h(X(k)) are

k) = (x()? + (pk)DH2 2.4)
0,(6) = tan~ (y(k)x(k) @.5)

For 3-dimensional tracking, the three components of h(X(k)) are

k) = (&% + (y&N? + @)D 2 2.6)

0,(6) = tan~ (y(k)/x(k) @.7)

0pk) = tan~ z(k)x(o) 4yt H) /), (2.8)
2.2 Tracking Filter

The purpose of a tracking filter is to estimate a state vector in some
optimal sense. A number of tracking filters have been used such as the o filter
and the tracking Kalman filter. These filters make estimates as a weighted
combination of a prediction and measurement, as described before. The type of
filter to be used is determined by its complexity, achievable estimation accuracy
and other numerical properties of filters. The complexity of a tracking filter is
largely determined by the way the filter computes a weighting factor, sometimes
called a gain matrix, to combine predictions and measurements. Some filters like
the u—P filter use a fixed gain matrix, whereas the Kalman filter computes a
gain matrix at every time instant.

In this section, we first briefly describe the B filter for tracking
applications. We then describe the standard covariance KF and the standard

square root covariance KF to gain insights into the functionalities of the KF in
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general, followed by the extended covariance KF and the extended square root

covariance filter for tracking apglications.

2.2.1 The o filter.

The o—f filter estimates the state of a target by combining a prediction
and actual measurement with a time invariant weighting factor ([3],[39]). The
prediction is made at the previous filtering timec instant with the a priori
knowledge of the target dynamics, on the basis of the state estimate ar that
filtering instant. At the beginning of filtering, the state estimate is initialized with
the a prori knowledge on the state of a target, since the state estimate is not
available ’ut required to make a prediction for the next filtering instant.

The time invariant weighting factor is generally determined to minimize
the mean-square error of state estimates in a steady state, using the a priori
knowledge of the target dynamics equation and a measurement equation.

The computational requirements of the o-f filter are very small compared
to a filter that calculates a weighting factor at each filtering instant, since the
o—f filter does not calculate a new weighting factor, However, the use of the
same weighting factor makes the o-f filter not adaptable to a changing
environment, because this weighting factor does not change with variations in the

target dynamics and the measurements’ accuracy.

2.2.2 The Kalman filter

The Kalman Filter was proposed by Kalman in 1960 [23]. In the Kalman
Filter, the system dynamics =quation and that of a measurement equation are
required a priori. In other words, a transition matrix k), a measurement matrix

H(k), a target dynmics noise vector D(k), and a measurement noise vector E(k)
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in Equations (2.1) and (2.2) have to be specified. Since IDXk) and Efk) are

random, the ensemble averaged correlation matrices

E[ D@D () ] = Q(k)
E[ EWET®) 1 = RK)

are required to be respectively specified for D(k) and E(k).

Based on this a priori knowledge, the KF makes a state estimate by
combining a prediction and actual measurement with a time varying weighting
factor. As in the o-f filter, prediction is made at the previous filtering time
instant with the a priori knowledge of the system dynamics. The weighting factor,
or Kalman gain, is calculated at every filtering instant according to the accuracy
of 2 prediction and measurement. This is to minimize the mean squared error of
state estimates. The measurement accuracy, E[ B(';)ET(k) ], is specified a priori,
and the accuracy of a prediction is updated as the filtering progresses, which is
one of the KF's functions. The accuracy is represented in the form of an error
covariance matrix, as described in Chapter 1.

The KF is summarized in Equations (2.9 .. 2.13). The definition of all
the symbols are included for completeness, although some of the symbols have
already been defined.

M nt_updat
K(k) = P(k|k-1) I-IT(k) ( Hk) P(k|k-1) HT(k) + R(k) )_1 (2.9)
Pk) = ( I - K(k) Hk} ) P(k|k-1) (2.10)

%00 = R |k-1) + K@) ( Z) - HK) X(k|k-1) ) @.11)
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Time update
P+1(k) = ¢k) Pk) bLk) + Q) 2.12)
RK(k+1 k) = o) Kk) (2.13)

where }A((k) = a state estimate vector
?((k|k—1) = predicted state vector
K(k) = gain matrix
Z(k) = measurement vector
H(k) = measurment matrix
P(k) = state estimate error covariance matrix
P(k |k-1) = predicted state estimate error covariance matrix
d(k) = transition matrix
Q(k) = system dynamics noise variance matrix

R(k) = measurement noise variance matrix

The XF in Equations (29 . 2.13) is separated into two parts:
measurement update and time update. In the measurement update pan, the
Kalman gain K(k) is first calculated in Equatiov :2.9) which requires a
computationally demanding matrix inversion. And ther. "ne state estimate error
covariance matrix P(k) is calculated in Equation (2.10), followed by the state
estimate 5\((1:) in Equation (2.11). The state estimate }’E(k) is made as a
combination of the predicted state f((klk—l) and measurement Z(k). The term,
Zk) - H(k)f\{(k|k~1), indicates the difference between the measurement Z(k) and
the predicted measurement I-I(k)}A{(k|k—1). The predicted measurement is calculated
by multiplying the predicted state &(k[k—l) by the measurement matrix H(k).

In the time update part, .he prediction P(k+1|k) of the statc estimate
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etror covariance matrix, and the prediction J’\((k-i-l |k) of the state estimate are
made.

Note that a large number of matrix-matrix multiplications and
matrix-vector multiplications, and a matrix inversion are requited in each
iteration. This meams that that the KF is computationally demanding. The high
computational demand of the KF has limited the use of the KF in various
real-time applications.

However, the KF does not have to store all the measurements Zk)'s and
state predictions f((k!k-—l)’s. because the state prediction f((k|k-—l) contains all the
information on the system up to time k-1, Hence, the state estimate f((k) is
made of a combination of Z(k) and X(k|k-1), instead of all the previous Z(k)'s
and X(k|k-1)'s. The estimation of state X(k) in terms of Z(k) and Rk |k-1),
which is in turn defined in terms of f?((k), makes the KF recursive, since the
state estimate i(k—l) at the previous step is used in estimating JA((k), and '?((k) is
in tum used in estimating ﬁ(k-t-l).

In summary, the KF is a computaticnally demanding recursive filtering
algorithm, which requires that the system dynamics and measurement equations be
defined a prior. The KF is more sophisticated, more accurate, and more
computationally demanding than the a-p filter.

The Kalman filter, discussed in this section, is referred to as the
covariance KF, since this KF is formulated in terms of the state estimate error

covariance matrix P(k).

2.2.3 The Square Root Covariance Filter
The computation of the KF equations with finite word-length arithmetic

may lead to numerical problems dus to cumulative roundoff or truncation errors.
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In particular, the state estimate error covariance matrix P(k) may become negative
definite [4],[25]. It can be easily shown by examining Equation (2.10) where the
error covariance matrix P(k) is computed as the difference between two
nonnegative definite matrices.

To guarantee the positive semidefinite nature of the error covariance
matrix P(k) and to improve the numerical properties of the KF, the KF has been
reformulated in terms of the square root of P(k), where the square root of P(k) is
updated as the filtering progresses, instead of P(k). The reformulated KF is calied
the square root covariance filter (SRCF). The numerical properties of the SRCF
are much better than those of the KF. This can be illustrated by examining the

172

condition number of P(k) and that of P*/“(k). The condition number K(A) of an

arbitrary matrix A is defined as

KA) =0 i/cn

where 0'% is the maximum eigenvalue of ATA and oﬁ is the minimum

cigenvalue of ATA. It indicates how sensitive the matrix is to errors. The larger
the condition number, the more sensitive the matrix A is to purturbations. The

relationship between the condition number of P(k) and that of Plﬂ(k) is

K( Px) ) = [ K¢ PY2) ) 12

The condition number of P(k) is a square of the condition of number of PU 2

(k).
Hence, the SRCF 1s numerically superior to the covariance KF.
However, the SRCF is found to require upto 50% more comjputation than

the standard covariance KF in most practical applications [25]. The amount of
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additional computation depends on the dimension of the error covariance matrix

P(k) and measurement matrix H(k). Hence, the SRCF should be preferrable to the

KF, ~hen the guarantee of the positive semidefiniteness of P(k) and the improved

numerical properties arc required, and the additional computational requirements

are acceptable.

The reformulated KF, the SRCF, is summarized below [25]:

Measurement update
. T
©G ® | _ vk 0
0 sTw) sTae | k-DHT @) ST(k|k-1)

Kk = GT(k) / Fl()
Ru) = Rek|k—1) + KK) ( Z(&) - Ho) Rk[k-1) )

Time update
sttt | _ o [ 8Ta) 6%
0 uTk)

X+ k) = dik) X(k)

(2.14)

(2.15)
(2.16)

(2.17)

(2.18)

where lower triangular matrices S(k), S(k+1{k), U(k), V(k) are defined as follows:

P() = S(k) ST(k)
Pk+1 k) = S(k+1|k) Ske1[k)T
Q) = Uk) Ul
R(k) = V() V1K)
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Q1 denotes an orthogonal matrix which upper-triangularizes a matrix on the right
hand side.

Like the covariance KF, the SRCF is divided into two parts: measurement
and time updates. As expected, the SRCF updates the square root S(k) of Pik).
The equivalence between the update in terms of S(k) and that of P(k) can be
easily shown by the multiplication of both sides of Equation (2.17) by the
transpose of themselves, as show below:

sTae) ¢T)

_ [sosw UTw Jof o
RS

{ Sk+1|k) 0 ] [ sT+i|K)
0

Sik+1

0)sTE+1 k) = dSEY k) + UEUT k)
Plc+1 k) = GERPED (K) + Q(K)

It shows that Equation (2.17), which updates the square root S(k) of P(k) for the
SRCF, is equivalent to Equation (2.12), which updates P(k) for the covariance
KF. Note that the property, QTQ1 = I, is used in this calculation.

2.24 The Extended Kalman filter.
As discussed in Section 2.1, a typical tracking system makes measurement
in polar coordinates, and yet performs filtering in Cartesian coordinates, such that

the measurement equation for a typical tracking application

Y(k) = h(X(k)) + E(k). (2.3)

has a nonlinear measurement function h(.). The function h(.), which relates
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measurments and the state of a target, is defined in Equations (2.4) and (2.5) for
2-dimensional tracking, and in (2.6 .. 2.8) for 3-dimensional tracking. However,
the standard KF's presented so far, the covariance KF and the SRCF, assume a

linear measuremnent equation
Y&) = HK)XK) + Ek) 2.2)

To overcome this problem, the extended KF (EKF) with the linearization of h(.;
has been proposed {11,[S]. In this filter, the linearization of h(.):

3h(x)
HE) = 5 | X = Xk |k-1)

dh(x)
is performed at every filtering instant. The term —5- is defined as follows:

a) 2-dimensional tracking:

[ or or ar ar or or
ox dy ax oy %" oy

oh(x)




b) 3-dimensional tracking:

[ or or or or or ar ar or ar
ox ay oz ox ay oz ox-’ oy ° Jz°
oh(x) _ BBA BGA BBA BBA BBA aeA aeA a0 BBA
ox ox dy dz ax ay oz :> S ot’
aeE BBE 36E aeE BBE BBE a9 L] E)BE
ax ay dJz ox dy dz gx" vy’ oz’
The linearization of h(.) results in H(k) as defined below:
a) 2—dimensional tracking:
X
T t 0 0
H(K) = o <
—5—- — 0 0
(x"+y") (x7+y")
b) 3-dimensional tracking:
X z
T z r 0 0
H(k) = ——- —— 0 0 0 0
x"+y") (x"+y")
2.2
Xy -yz x4y
T IIZ 2 ) 0 0
r(x"+y") o (x"+y") r

L
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Furthermore, the coordinate transformation of X(k!k-1) is required in the

extended KF to compare the predicted state estimates in Cartesian coordinates and



28

measurements in polar coordinates.
The extended Kalman filter is summarized in Equations (2.15 .. 2.24).
The same symbols are used here as in Equations (2.9 .. 2.13) for the standard

covariance KF.

Measurement update
H) = 9 b(x) (2.19)
A
3 x x=X(k | k-1)

K(k) = P(k|k-1) H (k) ( H(k) P(k|k-1) H (k) + Rk, )™t (2.20)
X(k) = X(k|k-1) + Kik) ( Z(k) - h( Xk|k-1) } ) (2.21)
P() = ( I — K(k) H(k) ) Pkik-1) 2.22)
Time update

Ple+1]K) = (k) Pk) b (k) + Q(K) (2.23)
A A

Rik+1]k) = i) Ko (2.24)

Note that as described above, the EKF has a linearization of h(.) in Equation
(2.19) in addition to the equations common with the covariance KF. The EXF
also has a coordinate transformation of X(k|k-1), h(X(k|k-1), in Equation (2.21).

Simlilarly, the SRCF can be extended to handle a nonlinear measurement
equation using a linearized measurement equation and a coordinate transformation.
The resulting SRCF, called the extended SRCF, is summarized in Equations (2.25
.. 2.30). The symbols used for the standard SRCF in Equations (2.14 .. 2.18) are

used here.
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Measurement update
H(k) = 9 B(x) . (2.25)
g x x=X(k |k-1)
Fl) G M) | _ g vk 0 (2.26)
0 sTw sTk | k-DHT ) ST |k-1)
K® = G'(®) / Fl() (2.27)
Rk) = Ricjk-1) + K ( Z() ~ bRk |x-1)) ) (2.28)
Time update
sTa+1|K) | _ sTky ¢ (2.29)
0 ul)
X(k+1 k) = d(k) Rk) (2.30)
2.3 _ Summary

In this chpater, we have first studied the representation of a tracking
system in the form of a state-space model, which is required a priori by the o-f3
and Kalman filters. We have found that in typical tracking applications the
measurement equation, which relates a measurement vector Z(K) and a state
vector X(k), has to be expressed in the form of a nonlinear function h{.), not in
the form of a linear matrix H(K). The reason for this is that the state vector
X(k) is defined in the Cartesian coordinates and the measurements are made in
the polar coordinates.

We have shown that the KF is more accurate and computationally more

demanding than the oa-f filter, for the KF updates the error covariance matrix
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P(k) and calculates the gain matrix K(k) at every filtering time instant.

We have presented the reformulation of the Kalman filter to improve
numerical characteristics. However, the reformulated KF, the square root
covariance filter, requires more computation than the already computationally
demanding covariance KF. The selection of a filter to be used should be based
on the reqaired computation and numerical stability.

We have modified the standard covariance KF and SRCF to handle a
nonlinear measurement equation. The modified covariance KF and SRCF, referred
to as the extended covariance KF and extended SRCF, have the linearization of
the nonlinear measurement equation and the coordinate transformation of a state

vector X(k) from Cartesian to polar coordinates.



CHAPTER 3

PARALLEL IMPLEMENTATIONS OF THE KALMAN FILTER

Significant advancements have been made in digital imegrated circuit
technology. Nevertheless, the computing power of a system based on a single
processor is too limited to be used for a large number of real-time signal
processing applications. The forecasted physical limits in the progress of
fabrication technology make parallel processor systems more attractive over single
processor system to achieve the necessary throughput increase for real—time
applications. A special purpose parallel architecture is preferrable to a general
purpose parallel architecture because the latter has a significant system overhead
and is not optimized for a particular application.

Parallel architectures should be designed with different emphasises from
an architecture based on a single processor. In Section 3.1, the design principles
for a parallel architecture are investigated. In Section 3.2, to gain insights into
and appreciation of parallel processing, we describe two systolic arrays for the
multiplication of two matrices and for the QR decomposition. These systolic
arrays are commonly used in parallel implementations of various filters, including
the KF for tracking applications. In Section 3.3, we then review parallel

implementations of the Kalman filter so far presented in the literature.

31
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3.1 Pasallel Architecture Design Principles

Parallel architecture should be developed, bearing in mind the
characteristics of VLSI technology, since parallel architectures are generally
implemented in VLSI technology [29]. The overall parallel architecture should be
regular and modular to reduce design errors, time, and cost. To achieve this, a
building block structure, in terms of regular processing ceils, is desirable.

One of the goals of any parallel design is to maximize computing power.
This can be accomplished by pipelining and parallel processing, using an array of
processing cells. In a pipeline system where processors are serially connected, as
shown in Figure 1.1, a task is broken into many subtasks. Each subtask is
processed at successive processors, as data pass through the processors. As a
result, processors are available for new tasks, once data pass through them.
Hence, the computing power can be increased by initiating new tasks on available
processors, while some tasks are being processed in the pipeline. In contrast to
pipelining, parallel processing architectures increase computing power by
processing independent operations simutaneously, using an array of independent
processors, as chown in Figure 1.2.

As the computing power of an architecture increases, the data input and
output (I/O) rate among processing clements and that between processing elements
and memory become more critical. The increased computing power cannot be
utilized, if the data I/O rate is not of comparable speed. Hence, the computing
power and I/O rate have to be balanced.

Local interconnection among processing elements reduces the amount of
I/O to and from memory by allowing processing elements to receive data from
their neighbours and to pass it to their neighbours. The local interconnection is

also very desirable, for the connecting wires occupy significant part of the silicon
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area, and the time delay over wires becomes comparatle to the logic gate delay.

3.2 Systolic Arrays

A systolic array is a special type of multi-processor architecture which
was propased by H.T. Kung [26],[27]. It consists of an array of processing cells
that are arranged in a regular structure, Each cell is connected to its neighbouring
cells. This regularity and local interconnection are favoured by parallel
architectures.

Furthermore, a systolic array exploits beth pipelining and parallel
processing to increase computing power. This architecture requires that input data
is fed into the systolic array in 2 skewed manner. It will be described later in
detail,

However, one of the disadvantages of a systolic array is that it requires a
global system clock to synchronize the activities of all the processing elements in
a systolic armray. The provision of the global system clock signal to all the
processing elements requires a global interconnection, in contrast to a desirable
local interconnection. Furthermore, the propagation delay of the global clock
signal over the global interconnection results in a significant variation in the
arrival of the global clock to processing cells. Hence, this variation has to be
accounted for very carefully. To overcome this variation, wavefront arrays were
developed by S.Y. Kung [29],[30]. These arrays use a locally data—driven control.

Processing cells in a systolic array are not always completely utilized,
because some processing cells sit idle waiting for data, while other processing
cells are actively processing. This occurs at the beginning and end of processing.
The idle time can be minimized by initiating new tasks as soon as processing

cells in the systolic array are available, even before the current task is completely
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finished.

A systolic array may have a long time delay between the loading of
input and the unloading of output, because data may have to travel through a
large number of processing cells, and because input data is fed into the systolic
array in a skewed manner. The term, latency, is defined as the time between the
loading of input and the unloading of output, and it is used to express the
amount of delay. When a short latency is required and the advantages of systolic
arrays are not significant, a parallel system with global interconnection, shown in
Figure 1.3, may be preferrable.

We describe systolic arrays for a multiplication of two matrices and the
QR decomposition in the following sections to illustrate the characteristics of
parallel processing, and in particular systolic array processing. A matrix—matrix
multiplication and the QR decomposition are very commonly used in parallel
implementaions of signal processing algorithms, and are also used in the parallei

implementations of the KF presented in this thesis.

3.2.1 Systolic Array for Matrix-Matrix Multiplication
In this section, we show a systolic array for the multiplication of two

matrices, C = A B [29]:

i C1z Y3 S| [ %12 213 2| [Py by b3 by

21 ‘22 23 24 | _ | %21 %22 %3 %4 | | by Py Py by

31 C32 ©33 34 31 %32 %3 3y byp B3y Dby3 by
| %41 a2 %43 Caa | |1 %2 U3 %a | | Par Bgp Bg3 by

Without losing generality, matrices A and B are assumed to be 4-by-4. Figure
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3.1 (a) depicts a 2-dimensional systolic array designed to perform the above
matrix multiplication. This systolic array consists of only one type of processing
cell whose function is defined in Figure 3.1 (b).

To understand how this architecture works, we examine how the element
1 of matrix C is calculated at the processing cell p;, in Figure 3.1 (a). This
cell receives the first row of matrix A from the top and the first column of

matrix B from the left. The following operations are performed at each cycle:

a) Receive one element of the first row of A and the corresponding element
in the first column of B.

b) Multiply the elements received in step (a).

¢) Accumuiute the product of multiplication in step (b).

d) Pass the two elements of A and B, received in step (a), to the

neighbouring cells.

After the above operations are repeated 4 times, 1 will be produced at cell
Pir

Similarly, the other cells in the systolic array receive the appropriate row
of A and column of B, and produce a vector—vector product corresponding to an
element of C. Note that input data is reused in calculating other elements in C
as it goes through processing cells. For example, the first row of A is used at
the cell p,, to produce ¢, and is reused to generate C;, at cell p,,. However,
the first row of A arrives at cell p,, one cycle later than it does at cell p,,.
This one cycle delay requires that the second column of matrix B arrives at cell
Py, one cycle later than the first column of matrix B arrives at cell p ;. This is

achieved by introducing a zero element in the input data stream of the second
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colurmn of B. Similarly, the other rows of A and columns of B enter the systolic
array in a skewed manner for synchronization.

When the matrices A and B are n-by-n, the multiplication of these two
matrices on a singie processor requires n3 cycles. Here the matrices are assumed
to be n-by-n for generality, instead of 4-by-4, and both multiplication and
addition are assumed to take one cycle to complete. On the two-dimensional
n~by-n systolic array, this matrix—matrix multipiication requires 3n-2 cycles from
the time matrices enter the systolic array to the time the multiplication is
completed. It indicates that the systolic array decreases the total computation by

two orders of magnitudes:
3 eyl
n”/(3n-2) = o(n”).

It also indicates that processing elements are utilized about 33%, since if all the
n2 cells in the n-by-n systolic array are always entirely utilized, then the matrix
multiplication would require only n cycles instead of 3n-2 cycles. The reason for
the 33% utilization is that in some situations processing elements sit idle waiting
for data, while other processing elements are actively multiplying and
accumulating. However, the 33% utilization can be improved by initiating new
multiplications as soon as processors in the systolic amray are available, even
before the matrix multiplication is completed.

The total required time for the matrix multiplication, 3n-2 clock cycles,
instead of n clock cycles, indicates that the latency of a systolic array is not
negligible, This is due to the skew introduced in the input data stream, and the

fact that the input matrices have to travel through n-1 cells clock to reach the

processor at the bottom right comer of the systolic array. They each account for
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n-1 clock cycle delay. The remaining n clock cycles ( n=(3n-2)-(n-1)<{n-1) ) is
required to perform n multiplications for each element of matrix C.

The systolic architecture presented in this section displays desirable
characteristics of parallel architectures. Processors and data flow are simple and
regular, and a local interconnection is used for inter—processor communication.
Furthermore, a high degree of pipelining and parallelism are exploited. These
advantages are achieved by utilizing the fundamental nature of data flow in a
multiplication of two matrices, C = A B: the clement of matrix C is the inner
product of the row vector of A and the column vector of B.

A multiplication of two mawices cannoc be implemented on a
general-purpose pipelining or parallel processing system as efficiently as on the
systolic array presented in this section, because the former is not optimized for
this special use. Since the latter is designed for a particular use, it is limited in
its use. Nevertheless, it is found that other types of matrix operations such as
matrix—vector and vector-vector multiplications can be easily implemented on this
systolic array [28].

In summary, a systolic array is a very ecfficient special-purpose

architecture which has various desirable properties of parallel architectures.
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3.2.2 Systolic Amray for the QR decomposition.
A matrix A can be expressed as the product of a matrix Q with

orthonormal columns and an invertible upper triangular matix R:

A=QR

This decomposition, known as the QR decomposition ([17],[47]), arises in many
applications such as eigenvalue decomposition (i171,[47]), ieast square methods in
filtering [18], and square root Kalman filtering ([4],[25]). Furthermore, in the
extended square root covariance filter for tracking applications described in
Chapter 2, Equaticas (2.26) and (2.29) require an orthogonal
upper-triangularization. This computationally demanding triangularization may be
performed by using various algorithms such as Gram-Schmidt orthogonalization,
Householder transformation, and Givens rotation ([16],[17],[47]).

The QR decomposition by Givens rotation is preferred in parallel design,
because of the simple, regular nature of the Givens rotation. Figure 3.2 (a) shows
a systolic architecture designed to perform the QR decomposition using Givens
rotation. Jt was proposed by Gentleman and H.T. Kung [15].

This triangular systolic array consists of two types of processing cells:
internal cells represented by squares and boundary cells represented by circles.
The arithmetic functions of thses cells are defined in Figures 3.2 (b) and 3.2 (c).
In this architecture, the matrix to be orthogonally triangularized, A, enters the
systolic array from the top, in an order from the top row of matrix A to the
bottom of matrix A.

After receiving the first row of matrix A, the first row of the systolic

array annihilates the first element of every bottom (newly arrived) row of matrix
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A, and outputs results to the second row of the systolic array. Similarly, the
second row of the systolic array annihilates the secoud element of the bottom
row of A which it receives from the first row of the systolic array, and outputs
results with zerces in the first and second entries to the third row of the systolic
array. The rest of the systolic array performs similar operations to annihilate
appropriate entries. The final product of these operations is an orthogonally
triangularized matrix.

Like the systolic array for a multiplication of two matrices in the
previous section, the systolic array for the QR decompostion presented here is
very efficient and shows the desirable propertiss of a parallel architecture such as
modularity, regularity, local interconnection, and a high degree of pipelining and
parallelism. These features are achieved by utilizing the fundamental nature of
data flow in the QR decomposition. Any general-purpose pipelining or parallel
system cannot be as efficient for the QR decomposition as the systolic array
presented in this section, because the former is not optimized for the QR

decomposition.
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3.3 _Systolic Implementation of the Kalman Filter

There have been a number of parallel implementations of the Kalman
filter proposed in the literature. Papadourakis and Taylor {37], and Yeh [52]
proposed parallel implementations of the conventional covariance KF by
decomposing the KF equations into a set of matrix—matrix, matrix-vector,
vector-vector operations, and matrix inversicn. One of the difficulties of this
approach is the implementation of a matrix inversion on a systolic array.
Papadourakis and Taylor [37] used an iterative approach which takes a significant
number of cycles. To simplify a matrix inversion and other matrix operations,
Yeh [52] employed the Fadeeva algorithtm [9]. The Fadeeva algorithm avoids the
direct matrix inverse computation, and can be easily implemented on a systolic
architecture.

A parallel architecture for the measurement update part of the SRCF has
been presented by Joves and Kailath [21]. They used a square-root free QR
decompsosition technique. Sung and Hu [48] proposed an architecture for the
complete SRCF, using a set of dedicated processor arrays. Gasion and Irwin [14]
developed parallel implementations of the SRCF using a QR systolic array. Chen
and Yao [6], S.Y. Kung and Hwang [31], and Gaston and Irwin [13] developed
architectures for the modified SRCF which estimates the accuracy of the state
estimates in terms of the inverse of the square root of the error covariance
matrix.

All t%= architectures developed so far implement different versions of the
standard Kalman filter for general filtering applications. None of them implements
the extended KF for tracking applications. Furthermore, in developing these
architectures, the special properties of the applications to which they are appiied

are not utilized. Hence, these architectures are general enough to be employed for
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any KF application. However, the optimization of a parallel architecture through
the use of application—specific properties may be desirable, even though the use
of an architecture would be limited for specific applications. The reasons are that
general-purpose paralle: architectures have a significant system overhead to handle
ali applications, and that the use of properties associated with application
generally simplify architectures significantly.

In this section, we briefly review three parallel architectures for different
versions of the Kalman filter. These architectures examplify what has been done
for parallel implementations of the KF. We present an architecture for the
covariance KF by Papadourakis and Taylor [37] in Section 3.3.1, and another
architecture for the SRCF by Sung and Hu [48] in Section 3.3.2. Finally, an
architecture for the modified SRCF, proposed by S.Y. Kung and Hwang [31], is

described in Section 3.3.3.

3.3.1. Parallel Implementation of the Covariance Kalman Filter

To save computational requirements, Papadourakis and Taylor [37] first
determined common terms in the covariance KF equations, and then reformulated
the KF equations such that the common terms are calculated only once and
reused whenever necessary.

The reformulated covariance KF equations are

a = ok) K(k) 3.1
X(k+1) = Qk) Rik) + a [Z() - HE) X&) (3.2)
Pl+1) = (k) ~ a H(k) P() (k) + Gk) Q) Gl(k) (3.3)
b = P(k) H (k) (3.4)

K(k) = b ( R(k) + H(k) b ). (3.5)
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Note that the common term, a = P(k) K(k), is calculated in Equation
(3.1), and used in two equations (3.2) and (3.3). Similarly, the common term, b
= P(k) HT(k), is calculated in Equation (3.4), and used twice in Equation (3.5).

Papadourakis and Taylor decomposed the above KF equations into a set
of matrix-matrix, matrix~vector, vector-vector operations and a matrix inversion,
and then they determined the sequence of operations to minimize computational
time. They avoided loading the same matrix twice and loading the output of
operation immediately after it is calculated, because it takes time to unload and
to load matrices. An iterative algorithm [22] was used to invert a matrix in
Equation (3.5), but this algorithm is very computationally demanding.

All the decomposed matrix operations for the KF were implemented on a
single systolic array. This array has the same structure as one in Figure 3.1. It
consists of n-by-n processing elements whose functions are slightly different from
the functions of the processing celis in Figure 3.1. The letter n denotes the
number of state elements.

Although Papadourakis and Taylor minimized the computational
requirements of the covariance KF by eliminating the repetition of the same
calculations and by finding the optimal sequence of operations in the KF
equations, their implementation requires a significant number of clock cycles to
complete one iteration of filtering. The updates of the state estimate error matrix
P(k) and the calculation of the Kalman gain K(k) together require morz than I6n
clock cycles. The reason for the demanding computational requirements is that
they used one systolic array, and the matrix inversion is iteratively performed.
The matrix inversion requires close to half of the total number of clock cycles

(371



3.3.2. Parallel Implementation of the Square Root Covariance Filter

To increase parailelism and to determine the optimal sequence of
calculations, Sung and Hu [48] ecxamined dependencies among matrices and
vectors in the square root covariance filter (SRCF) and found that the SRCF can

be divided into two loosely related sets of equations as follows:

Set A
K(k) = Gl(k) / FI(K) (2.15)
Rk) = Rk|k-D + K@ ( Z&) - HK) Rek|k-1) ) (2.16)
X+ 1K) = dik) Xik) (2.18)
Set B .
[ Fa) G @ { v 0

= Q (2.14)

0 ST D osTa k-naTa)  sTak-1)

sTan 0 | _ g | sTw) ¢Tw 2.17)
L o uT@)

The equations in Set A compute state vectors f((k) and f((k|k—l), whereas the
equations in Set B update the square root of the state cstimate error covariance
matrix P1/2(c|k+1). The Kalman gain, calculated in Equation (2.15) in Set A, is
defined in terms of G(k) and F(k) which are determined m Equation (2.14) in
Set B. This exhibits dependencies between the two sets of equations. Sets A and
B can be executed in parallel, as Set A receives G(k) and F(k) from Set B.

Sung and Hu avoided using a computationally demanding iterative

algorithm to invert a matrix in Equation (2.15) by performing the computations
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K& = 6T FTan™! 2.15)
) = R |k-1) + KTk ( Z) - HEX(k|k-1) ) (2.16)
as follows:

a) Calculate W(k) = Z(k) - H(k) X(k|k-1)

b) Calculate (k) = (FL(k))"'W(k) by the method of back substitution
using F(k) and W(k)

¢) Caleulate K(k) = Rk|k-1) + G (k) Y(k)

Based on the SRCF which are divided into two sets of equations, Sung
and Hu proposed an architecture that conmsists of two pants. Figures 3.3 (a) and
3.3 (b) show a block diagram of the implementation of Set A and that of Set B
respectively. Each part is composed of a number of systolic arrays which are
represented as squares. Separate systolic armrays are employed for ditferent
operations in the SRCF, and they are connected according to the data flow.

Data are passed from one systolic array to the next without going
through the same array more than once during an iteration. This sequential
connection is useful for pipeline processing, but it prevents systolic arrays from
being used more than once during an iteration. Note that matrices F(k) and G(k),
needed to calculate K(k) in Set A, are passed from an architecture in Figure 3.3
(b) to an architecture .a Figure 3.3 (a).

Sung and Hu employed a triangular systolic array, shown in Figure 3.2,
for the time update of state estimate error covariance matrix P(k) using the QR
decomposition. When the number of state elements is n and the number of

measurements is m, the size of a triangular systolic amray needd for the time
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update is n-by-n with n(n+1)/2 processing elements. For the measurement update,
a trapezoidal systolic array of m rows of processing elements with n+m
processing elements on the top row and m+l1 elements at the bottom is
employed. This trapezoidal systolic array, shown in Figure 3.4, is obtained by the
utilization of sparse nature of an input matrix jn the measurement upg'date.

Sung and Hu's implementation of the SRCF requires max[(4n+2m,
2n+4m-2)] time steps to complete one SRCF iteration. The processing of
Equations (2.14), (2.15), and (2.17) requires 4n+m-1 time steps.

The architecture of Sung amd Hu, and the architecture of Papadourakis
and Taylor differ a great deal from each other. The latter architecture shares a
svstolic array for all the matrix operations, whereas the former architecture uses
seperate systolic arrays for different equations and connects systolic arrays
according to the data flow. Hence the Sung-Hu architecure requires more systolic
arrays  than the Papadourakis-Taylor architecture. However, the Sung-Hu
architecture requires a smaller number of clock cycles to complete one KF
iteration than the Papadourakis-Taylor architecture. The reasons are that in the
former implementaion an iterative algorithm is not used to invert a matrix, and

that parallelism is achieved by dividing the KF equations into two groups.

3.3.3. Parallel Implementation of the modified Square Root Covariance Filter
The modified square root covariance filter is a version of the Kalman
filter that expresses the estimated accuracy of state estimates in terms of the
inverse of the square root of an error covariance matrix ([4],[25]), as described in
Chapter 1. Paige and Saunders [36] have reformulated the modified SRCF by
using an orthogonal transformation. In contrast to the conventional modified

SRCF, in the Paige and Saunder's modified SRCF, the inverse of a transition
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matrix (k) is not required, and the inverse of the square root of a covariance
mairix calculated in measurement update is directly used without multiplication by
$(k) in time update. As a result, both time and measurement updates can be
performed continuously in the same orthogonalization. However, Paige and
Saunder's modified SRCF requires additional computation. The whitening
procedure, diagonalizing the system dynamics noise variance matrix Q(k) and the
measurement noise variance matrix R(k), has to be applied to the transition and
measurement matrices, and to measurements.

In developing a parallel awchitecture for the KF, S.Y. Kung and Hwang
[31] selected Paige and Saunder's SRCF over other versions of the KF. They
employed a systolic array for the QR decomposition, described in Section 3.2.2,
to implement the required orthogonal triangularization, and two triangular systolic
arrays to whiten the transition and measurement matrices.

In 3.Y.Kung and Hwang's design approach, the implementation has be
significantly simplified by the selection of a suitable algorithm for parallel
architectures, and by the reformulation of algorithms to be more easily adaptable

to parallel architectures.
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4 imm

In this chapter, we have described parallel architecture design principles
which can be used as guidelines in designing parallel architectures. Parallel
architectures should bs regular and modular to reduce design errors, time, and
cost. Processing elements in parallel architecture should be connected to their
neighboring cells for the increased computing power to be balanced with the data
input and output rate.

To gain insight into and appreciation of parallel processing, we have
studied two systolic arrays. These two systolic arrays are found to have various
desirable properties of parallel architecture; regularity, modularity, and local
interconnection. However, these arrays are found te have a nonnegligible latency,
because data may have to travel through a large number of processing cells, and
because input data are fed into systolic arrays in a skewed manner.

We have reviewed three parallel architectures for different versions of the
Kalman iilter. Papadourakis and Taylor minimized computational requirements by
reformulating the covariance KF equations such that the common terms are
calculated only once and reused whenever necessary. However, their architecturs
is not efficient, because the required matrix inversion is performed iteratively and
all the required operations are calculated sequentially on a single systolic array;
no parallelism among KE equations is thus explored.

Sung and Hu examined dependencies among matrices and vectors in the
square root covariance filter and found that the SRCF equations can be separated
into two loosely connected sets of equations. Based on this, Sung and Hu
proposed an architecture that consists of two major blocks which can be executed
in parallel; parallelism is thus enhanced. Sung and Hu eliminated the iterative

calculation of a matrix inversion by rearranging Equations (2.51) and (2.16).
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The Sung-Hu architecture is more efficient than the Papadourakis~Taylor
architecture, because the former architecture exploits parailelism among KF
equations and does not use an iterative algorithm to perform a matrix inversion.

In developing a parallel architecture for the KF, 8.Y. Kung and Hwang
[31] selected Paige and Saunder's modified SRCF and proposed an architecture
which consists of three systolic arrays: one array for the QR decomposition and
two arrays for whitening. 8.Y. Kung's architecture is less complex than Sung and
Hu's architecture. The reason for this is that Paige and Saunder's SRCF is more
suitable for parallel implementation than the conventional SRCF. This means that
the adaptability of a filter to a parallel architecture shoud be considered in

selecting a version of the KF for a parallel implementation.



CHAPTER 4

SIMPLIFICATION OF THE KALMAN FILTER
FOR TRACKING APPLICATIONS

As described in Chapters 2 and 3, the Kalman filter is computationally
demanding, and its parallel implementations are complex. This is mainly due to
the fact that the KF requires in each iteration a large number of matrix-matrix
and matrix-vector multiplications, and a matrix inversion.

We have shown in Chapter 3 that the exploration of parallelism and the
reformulation of the KF equations simplifies parallel implementations for the XF.
In this chapter, we present methods of simplifing the extended K¥ and the
extended SRCF. These mecthods not only reduce computational requirements but
also increase parallelism for parallel implementations.

It was found that the extended covariance KF can be simplified through
the use of a decoupling technique ([2], [8], [35]). The decoupling technique
results in the elimination of a computationally demnanding matrix inversion and
the propagation of three decoupled (%)-dimensional covariance matrices P(k)'s
instead of one couvpled n-dimen<innal covanance matrix for 3-imensional
tracking, where n is the nube- te elements in the coupled KF. The
propagation of three decoupled cover .u¢ matrices require less computation than
that of one coupled covariance matrix.

We have extended the use of the decoupling technique to the extended
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square Toot covariance filter (ESRCF) to simplify the ESRCF. The decoupled
ESRCF updates three decoupled (%—)—dimcnsional square ToOOts P”.2 (K)s of the
covariance matrix P(k), instead of 1 coupled n-dimensional Pln(k) for
3-dimensional tracking, where n it the number of state elements.

Further, propertics of the tracking KF can be used to simplify the
implementation of the KF. Specifically, a typical transition matrix is a band,
sparse matrix, and the measurement matrix is sparse. A band matrix is a matrix
whose nonzero elements are all concentrated near the main diagonal. A sparse
matrix is a matrix whith most of its elements equal to zero.

In Section 4.1 we discuss the decoupling technique, and in Section 4.2
we describe properties of the tracking KF. We then siraplify the Extended
Covariance KF (ECKF) and the Extended SRCF (ESRCF) by applying the
decoupling technique and special properties in Secticns 4.3 and 4.4, respectively.
In those two sections, we also discuss the computational reduction afforded by
the simplification. In Section 4.5, we compare the performance of the simplified
KF with that of the standard KF on the basis of tracking accuracy. Finally, in

Section 4.6, we summarize this chapter.

4.1 The Decoupling Technique

In this section, we explain how the stale estimate erfor covariance matrix
P(k) is coupled in one coordinates system and how it becomes decoupled in
another coordinate system. Then, we develop relationships between these
coordinate sytems. These relationships are used in decoupling the KF. We assume
a 2-dimensional tracking for simplicity without a loss in generality.

Before discussing the decoupling technique, we first define three different

coordinate systems: reference coordinate, line-ef-sight coordinate, polar coordinate



systems.

The reference Cantesian coordinate system is defined as a Cartesian
coordinate system with its origin at the location of a radar vsed for tracking, and
its x-axis set arbitrarily. The y-axis is set automatically perpendicular to the
x-axis, once the x-axis is set. This coordinate system is depicted in Figure 4.1.
In this system, the location of a target is expressed by a pair of numbers, (x,y).
This coordinate system does not vary over time as the target moves.

The line-of-sight (LOS) Cartesian coordinate system is defined as a
Cartesian coordinate system with the location of the radar defined as its origin
and the line of sight to the target defined as its x-axis. This coordinate sytem is
depicted in Figure 4.2, In this system, the location of the target is expressed by
a pair of numbers, (X ¥,)- However, Yo is always zero, because the target is
always on the x-axis. In contrast to the reference Cartesian coordinate system,
this coordinate system varies as the target moves.

The polar coordinate system is based on its origin set at the location of
the radar and the reference line coincides with the x-axis of the reference
Cartesian coordinate system, as shown in Figure 4.3. In this third coordinate
system, the locaticn of the target is expressed in terms of its distance r, known
as range, from the origin and the counterclockwise angle O, known as a bearing
angle, made by the line of sight and the reference line. This coordinate system
does not vary as the target moves. We have defined so far three different
coordinate systems for two-dimensional tracking. The coordinate systems for

three—dimensional tracking can be similarly developed.
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Figure 4.2 The line—of-sight Cartesian coordinates system
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Figure 4.3 The polar system
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We indicate the type of a coordinate system by a subscript. The
subscripts o and p denote LOS coordinate and polar coordinate systems,
respectively. However, we do not use any subscript to denote a reference
Cartesian coordinate system.

In a tracking system of interest, radar measurements are ordinarily made
in polar coordinates of range and bearing angle. If we assume that the
measurement errors in range and bearing angle are independent, which is valid,
then the measurement error covariance matrix Rp(k). in the polar coordinate form,

is
4.1)

where Gr2 and 0'92 are the variances of the range and bearing angle
measurement errors, respectively. Note that the subscript p denotes polar form.

The measurement error covariance matrix Ro(k) in LOS Cartesian coordinates is

defined as
2 2
R (k) = Co-x %o-xy (4.2)
o
2 o?
0-Xy o-y
2 2 2 . 2 2 -
where o, Co—xy’ and Oy-y Can be expressed in terms of G, Og, and

(where r denotes range). Note that the subsrcipt o denotes the LOS Catesian

coordinate system. The following relationship:

g =0 (4.3)
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2 _ 2
Coy = (1Gg) (4.4)
oxy =0 (4.5)
results in
2
o
Ro(k) - r 0 , (4.6)
0 (rce)

The term Gg—xy is zero, because 0‘3 and og are independent.

We now develop from Ro(k) the measurement error covariance matrix

R(k) in the reference Cartesian coordinates using the relation:

X = r cosO (4.7)

y =r sinf . (4.8)

where r and © denote the range and bearing angle of a target, as shown in

Figure 4.3, We first express o, and o, in terms of O, x 2nd © as follows:

o-y
ox dJx
Ox = ar o + 5609
= cosO 0'1_ -~ 1 sin® Oy (4.9
dy dy

Gy= or r * 38%

sin® G, +r sin® 0'9 (4.10)
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(4.9) and (4.10) may be expressed in a matrix form, as shown below:

o cos® -r sinf o]

x - I
g, sin®  r cos@ Sy
cos® - sin® c.
sin® cosB ‘ ICq
) cos@ - sin® [ Cyx 4.11)
sin@ cos@ | 0’0__y
. cos® - sind (4.12)
1 sin 8 cos@
% 1 _ F Co—x
= F, (4.13)
L % %oy

2 2
o
Rk)=| * X
0'2 0’2



X
[ox °Y]
Oy
c
0—X T
Fl [ 0~X Go—y ] FI.
oo_y
E o'zo-x 0 T
1 2 F
0 o 1
o-y
T
Fl R0 Fl

As a result, we find that

"o

<o

%y

It is important to note that R(k) has a nonzero cross product term @

0% cos26(k) + (k) sin%8(k) oq

of sin28(k) + r2(k) cos20(k) cg

3 5in26) [ o7 - k) of ]
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4.14)

(4.15)

(4.16)

(4.17)

. This
y

nonzero term indicates that in the reference Cartesian coordinate system the

measurement errors in the x-axis direction are related to those in the y-axis

direction. The measurement error covariance matrix R(k) is said to be coupled in

this case.

Note that in contrast to R(k), the measurement error covariance matrix
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Ro(k) for the LOS coordinate system has a zero cross product 0'2

oxy" That is,

Ro(k) is decoupled.

Similar to R(k), the stats error covariance matrix P(k) can also be
decoupled in the LOS frame. The relationship between the state estimate error
covariance matrix Po(k) for the LOS coordinate frame and that P(k) for the
reference coordinate frame is found in the same way that the relationship between

R o and R(k) is developed. This relationship is as follows:

- ; T
Fl(k‘) 0 0 Fl(k) 0 0 ]
Pk) = 0 Fl(k) 0 PO(k) 0 Fl(k) 0 ‘ (4.18)
0 0 F, (k) 0 0 Fl(k) I
J J
For 2-dimensional tracking, we have

s5in@ cos0

where @ denotes azimuth angle. 9 A and GE will be hereafter used to dencte
azimuth and elevation angles, respectively. For 2-dimensional tracking, 0, which
has been used to denote bearing angle, will be replaced by 6 A

For 3—dimensional tracking, we have

cos@ AcoseE -sinf AcosBE -cos8 AsinBE
F 1 k) = | sin® AcoseE cos8 AcosBE -51nG AsinGE (4.20)
[ inBE 0 cosBE
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It should be noted that P(k) and Po(k) are based on the rearranged state vector

Xk) = [ x(k) y() k) yk) x'(k) y&k) ], instead of [x(k) x(k) x'(k) y(k) y(k)

¥'() }. This is done in order to express P(k) in terms of Po(k) and Fl(k) in a

simpler form.

Similarly, the gain matrix K(k) for the reference Cartesian coordinates can

be obtained from the gain matrix Ko(k) for the LOS frame, using the coordinate

transformation as follows:

Kk)y =
£, (k) 0
= 0 Fk
0 0
Fg 0
= ¢ F
0 0
F1 (k) 0
= 0 F (k)
0 0

0 ]

0 Po(k)
Filo

o |

F (k)
0
0

PGk |k-1) HY(k) ( H@k) Pk|k-1) H (k) + R )
Pk) H (k) R™Hk)

T
0 0

Fj(k) 0 i R k)
0 Fk)

T -1
0 Po(k) Ho(k) R (k)

F, (k) |

0
0 Ko(k)

Fi(b) |

(4.21)

The decoupling technique discussed here requires that the LOS frame

does not vary significantly over time [35]. Fortunately, this condition is usually

met in typical radar tracking applications ([2],[8],[35]).

Time and measurement updates of the decoupled P (k) in the LOS frame
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can be performed scparately for each axis, whereas the updates of the coupled
P(k) in the reference Cartesian frame have to be performed together for all the
axes. The updates of P (k) separately for each axis are found to require less
computation than those of P(k). This computational reduction is discussed in
detail in Section 4.3. The fact that P 0(lv;) can be separately updated for each axis
indicates that the updates can be performed simultaneously on a parallel
architecture. Since the state of a target, such as its position and velocity, is
required in the reference Cartesian frame, X(k) should be expressed in this frame.
Hence, to simplify the computation of the KF, some of the KF equations should
be performed in the LOS frame, others in the reference Cartesian frame, and the
decoupling should be accounted for by the Jacobian transformation betvieen the
LOS and reference Cartesian frames, defined in Equations (4.19) and (4.20). This

separation is summarized below:

a) Processing in the LOS frame:
Time update of P (k)
Measurement update of P (k)

Calculation of the Kalman gaiu Ko(k)
b) Transformation of the Kalman gain:

.Fl(k) 0 0
K= 0 F® 0 | K&

0 0 Fl(k)

¢) Processing in the reference Cartesian frame:
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Estimate a state vector X(k)

Predict a state vector X(k+1|k)

4.2 Special Properties of the Tracking KF
A typical state vector X(k) for 3-dimensional tracking is defined in

Section 2.1 as follows:

[ x (k) ] [ x—position at time k |
x (k) x—velocity at time k
X (k) x—-acceleration at time k
y (k) y—position at time k
X(k) = | vy (k) | = | y-velocity at time k
y (k) y—acceleration at time k
z (k) z—-position at time k
z (k) z—velocity at time k
| 27 (k) | | z—acceleration at time k |

A typical transition matrix (k) which relates state vectors X(k) and X(k+1) is

found to be in Section as folicws:

(4.22)

;-‘6
]
\4—6—
il
h-‘e-
1]
[ I = T
S = ]
W -0

r

where T is the sampling period, the subscripts x, y, and z denote axes, and p is
a correlation coefficient for acceleration.

The correlation coefficient p for acceleration is used to specify the
acceleration characteristics of a target. For example, when the maneuvering of a
target at one sampling instant is highly cormrelated with that at the previous
sampling instant, the cormrelation coefficient p is set large. Hence, the transition

matrix defined above can be used to track a target with various acceleration
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characteristics by setting the correlation coefficient p accordingly. Note that the
transition matrix in Equation (4.22) is a band, sparse matrix.
The measurement matrix H(k) in the reference Castesian coordinate

system is defined in Section 2.2.4 for 3-dimensional tracking as follows:

x z ]
T ¥ ; 0 0 0 0 0 o
Hk) = —— 0 6 0 0 0 0 O
(x2+y2; x“+y©)
Xy -yz xz+y2
ZIoTE xronp Tz 0 0 0 0 00
r(x“+y“) r(x"+y®) T

In the LOS frame whose x-axis is defined as the line of sight to the target, the

measurement matrix H(k) beconies a sparse matrix as shown below:

1 0O 0 0 0 0 O

0 0
H@=0 0 0 rlo 0 0 o
0 0

0 (4.23)
0 0 0 0 rlo o
where r denotes the target range. This H 0(k) is much simpler than H(k).

The matrix Ho(k) can be divided for each axis, as foliows:

Ho—x=[1 0 0] , 4.2)
-1

Ho_y-[r 0 0] (4.25)

H =tr'0 0] (4.26)

oz
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43 Simplificati f the E fed Covari KE
4.3.1 Simplification using the decoupling technique

The application of the decoupling technique to the Extended Covariance

KF results in the decoupled extended covariance KF, summarized as follows:

a)

b)

¢)

Processing in the LOS frame computes K o), P (k) and P (k+l), as
shown by

_ T T -1
K ) = Pofk|k-1) H (k) (H &) P (klk-1) HI() + R () @.27)
Po®) = { - K () H ®) ) P Gkk-1) @.28)
PG+l ]k) = ¢0) P k) ¢ () + Q (k) 4.29)

Coordinate transformation computes K(k) fom Ko(k) by using the

Jacobian transformation:

Kk)=| 0 Ko(k) (4.30)

o Mo
T © ©

where F, is defined for 2- and 3-dimensional tracking in Equations
(4.19) and (4.20), respectively.

A
Processing in the reference Cartesian coordinate frame comgputes X(k) and

R(k+1[k), as shown by

A A A
X(k) = X(c|k-1) + K&) ( Z() ~ hX(k[k-1)) ) 4.31)
Rk+1|k) = o) X (4.32)
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The examination of the decoupled ECKF equation (4.27) reveals that the
decoupled ECKF resquires a scalar division, instead of a matrix inversion. The
elimination of a matrix inversion reduces the computational requirements
significantly, because a matrix inversion is computationally very demanding.

The decoupled ECKF requires the propagation of m decoupled
(r%-)—dimcnsiona] covariance matrices instead of one n-dimensional covariance
matrix, where n is the number of state elements in the coupled KF, and m is
two for 2-dimensional tracking, or three for 3-dimensional tracking. These m
decoupied covariance matrices for each axis can be propagated simultaneously; the
decoupling technique thus increases parallelisin.

Tables 4.1 (a) and 4.1 (b) list the number of operations required to
perform one iteration of each KF equation for the coupled ECKF. Table 4.1 (a)
is based on a general m-dimensional tracking with n state elements, whereas
Table 4.1 (b) is based on a typical 3-dimensional tracking with 9 state elements.
A matrix inversion, required for the coupled ECKF, is assumed to be
timplemented using an iterative algorithm [22]. Its coumputational requiremenis are
listed separately from the KF equation (2.20) to demonstrate the effects of the
decoupling technique more clearly. Note that the number of required operations
for Equation (2.20) which is one of the ECKF equations is not included in Table
4.1 (a), because it is not possible to be expressed in terms of m and n.

Equation (Z.21) requires a coordinate transformation from Cartesian to
polar coordinates, h(X(k}). The components of h(X(k)) for 2-dimensional tracking

are

k) = (&) + (yop* )2 (2.4
6,00 = tan ™ (y(ky/x(k)) @.5)
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These two equations indicate that the coordinate transformation requires a
square-root operation and an arc-tangent operation, However, these operations are
difficult to implement, and yet commonly required to be evaluated in various
digital signal processing applications.

Volder proposed the coordinate digital computer (CORDIC) algorithm and
its implementation in [49] to perform 2-dimensional coordinate transformation and
to compute trigonometric functions sin® and cos®, given an angle 8. Volder's
CORDIC algorithu: is very easy to implement because it requires only shifting,
adding, subtracting, and the recall of prestored constants. For more details, refer
to Appendix A. We have found that Volder's CORDIC algorithm can be extended
to 3—dimensional coordinate transformation by performing two CORDIC operations
in sequence with scaling. The various uses of the CORDIC have been suggested
by Walther [50].

In this thesis, we use the CORDIC operations to perform coordinate
transformations and to evaluate trigenometric functicns.

Tables 4.2 (a) and 4.2 (b) list the number of operations required to
perform one iteration of each KF equation for the decoupled ECKF. Table 4.2 (a)
is based on a general m-dimensional tracking with n state elements, whereas
Table 4.2 (b} is based on a typical 3-dimensional tracking with 9 state elements.

A comparison of Tables 4.1 (a) and 4.2 (a) shows that the number of
multiplications and additions required for the decoupled ECKF equations (4.27),
(4.28), and (4.29), excluding the requirements for a matrix inversion, is reduced
by approximately a factor of m2 over that for the corresponding coupled ECKF
equations (2.20), (2.22), and (2.22), where m denotes the number of tracking
dimensions.

The reduction factor of approximately m2 in the required number of
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multiplications for Equations (4.27), (4.28), and (4.29) can be easily estimated by
considering the matrix-matrix multiplications that are predominant in these
equations. When the size of a matrix is n-by-n, a matrix-matrix multiplication
requires n3 multiplications. Hence, when the dimension of a matrix decreases by
a factor m, the total number of required multiplications decreases by a factor of
m3. For the decoupled system, Equations (4.27), (4.28) and {4.29) have to be
processed m times. As a result, the decoupled system requires m times as many
matrix—-matrix multiplications as the coupled system. Nevertheless, since the matrix
dimension in the decoupled system is m times smaller than that for the coupled
system, the overall multiplication requirement for matrix-matrix multiplications
decrease by a factor of m? (--m3/m). Since the required number of multiplications
for the matrix-matrix multiplications which are prevalent in Equations (4.27),
(4.28), and (4.29) decreases by a factor of mz, the overall reduction in the
required number of multiplications in Equations (4.27), (4.28), and (4.29) by the
decoupling technique is close to m?.

Similarly, the decrease in the number of required additions for the
decoupled EKF Equations (4.27), (4.28), and (4.29) by approximately a factor of
m2 can be explained by considering the required number of additions in the
matrix-matrix multizlications which are predominant in Equations (4.27), (4.28),
and (4.29). The matrix-matrix multiplication of two n-by-n matrices requires
n3—n2 additions; n3—n2 is an order of n3 operations. It was shown above that an
order of n° multiplications required for the matrix-matrix multiplication is
reduced by a factor of approximately m2 by the decoupling technique. Hence, the
decoupling technique reduces the required order of n3 additions for the
2

matrix-matrix multiplication by approximately a factor of m~.

Since the coupled and decoupled EKF's use the same equations (2.21)
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and (4.31) to estimate state, and the same equations (2.24) and (4.32) to predict
state, there is no difference in computational requirements for a state estimation
and prediction. However, the decoupled ECKF requires the additional
transformation of the Kalman gain which is performed in Equation (4.30). It
requires m—-1 CORDIC operations plus either nm+2m-2 or nm+2m multiplications;
nm+2m-2 is for 3-dimensional tracking and nm+2m is for 2-dimensional
tracking. The additional calculations for Equation (4.30) represent a small price to
pay for the reduction in calculating the decoupled ECKF equations (4.27), (4.28),
and (4.29).

Table 4.1 (b) and 4.2 (b) indicate that for 3—dimensional tracking the
total reduction rate in the number of multiplication by the decoupling technique is

approximately 20, as shown by:

8538

a7 = 19.995 = 20,

and the total reduction rate in the number of additions is approximately [O:

2422

243 = 9.967 = 10.

However, for 3-dimensional tracking the decoupled ECKF requires 5 scalar
divisions and two more CORDIC operations than the coupled ECKF. These
additional computations by the decoupled ECKF are negligible compared to the

compu:ational reduction by the decoupling technique.



Table 4.1 Computational requirements for the coupled ECKF
(a) for m—dimensional tracking with n state elements
(b) for 3—dimensional tracking with 9 state elements

Table 4.1 (a)

Equation Number of operations per iteration

number Mult. Add. CORDIC.

2.20a 20%m+2an’ 2n%m—3nm 2nm’ 0

2.20b 8n° 2n3_n? 0

2.21 nm nm m—1

2.22 20%m 2n%m-nm 0

2.23 2n3 2113~—n2 0

2.24 n2 nz—n 0

Total ¥ 10n3+n2+4r12m 4n3—n2+n+4n2m m-1
+2nm2+nm +2nm2-3r1m

Mult. = Multiplication
Add. = Addition
CORDIC = CORDIC operations

2.20a
2.20b

2.20 without a matrix inversion

only a matrix inversion in 2.20

* The total does not include the number of operations for Equation
(2.19).
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Table 4.1 (b)

Equation Number of operation per iteration

number Mult. Div. Sq-Root Add. CORDIC.
2.19 6 8 1 1 0
2.2Ca 648 0 0 567 0
2.20b 5832 0 0 648 0
2.21 27 0 0 27 2
2.22 486 0 0 459 0
2.23 1458 0 0 648 0
2.24 8i 0 0 72 0
Total 8538 B 1 2422 2

Div. = Division

Sq-Root = Squar root operation



Table 4.2  Computational requirements for the decoupled ECKF
(a) for m—dimensional tracking with n state elements
(b) for 3—dimensional tracking with 9 state elements

Table 4.2 (a)

Equation Number of operations per iteration

number Mult, Div. Add. CORDIC.

4.27 20 /m+2n 2n-1 20° Im-n 0

4.28 2n%/m 0 2% /m-n 0

4.29 2n3lm2 0 n3/m2—n2/m 0

4.30" nm+(m-1)2 0 0 m-1

4.31 nm 0 nm m—1

4.32 n2 0 n“-n 0

Total * n2+2n+2n3 / m3 2m-1 n2—3n+nm 2(m-1)
+4n21 m+2nm+2m—2 +n3 / m2+3m2/ m

Mult. = Mutiplication

Div. = Division

Add. = Addition

CORDIC = CORDIC operation

* For 2-dimensional tracking with 6 state elements, the number of required
additions for Equation (4.30) is nm and the total number of required
additions for the decoupled ECKF is n2+2n+2n3/m3+4n2/m+2nm.

2l



Table 4.2 (b)

Equation Number of operation per iteration

number Mult. Div, Add. CORDIC.
4.27 72 5 45 0
4.28 54 0 45 0
4.29 162 0 54 0
4.30 31 0 0 2
4.31 27 0 27 2
4.32 81 0 72 0

.......................................................................
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4.3.2 Simplication using the special properies of the tracking KF
The decoupled ECKF equation (4.27) for the x—axis can be simplified by

exploiting the sparse nature of Ho—x(k)' as follows:

_ p- T T -1
K, (k) = P (k) H (k) ( B, (k) P (k|k-1) H (k) + R(k)) (4.27)
KO—X(k) =
[ Pex Prx Pry rl] [ Pex Prs Prge | [ 1]
- - - ~ - - 2,1
Pix Pix Paxr 0 (M O001]|p Py Pry 0 +o)
Py x Pxx Pi"x} 0 J Pex Prrx Pxog| | O
Pxx
_ - 2,-1
- pxx (Pxx'*' cl') ‘ (4.27—3!)
Px-x
The superscripts, “~", assigned to the elements of P(k{k-1} are used to denote

prediction hereafter. Similar to the KF equation (4.27) for the x-axis, the KF
equations (4.27) for the y and z-axes can be simplified. The simplified equations

for the y— and z-axes are as follows:

Pyy
K (ky=|Pp (. %+ a2 )¢ )] 4.27-y)
oy y YY/ GA ’
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Ko, 0 = | Py, | (o /% GSE) e )] (4.27-2)

This simplification eliminates matrix-vector muitiplications, and the simplified
equations require only scaling of the first column vector of P (k[k-1).
The decoupled ECKF equation (4.28) for the x-axis can be simplified as

follows, using the sparse nature of H_(k):

Pt = (I - K k) H (k) ) P_(k|k-1)

= PO(K|K“1} - KO(K) Ho(k) Po(k|k-l) (4.28)
pxx pr pxx er pKX Pxx Pxx .
Pox® = | Piy Pax Pig | = | K [0 00| b Py Pyy
Pix Pi-x Pxx kyr Pr x Px'x Px &
Pax Pxi Pxx | | Exr
=1 Pix Pax Prx | = | Kir | [ Pax Prx Prx}  (428-3)
Px-x Pxx Pxx kyr

Similarly, the KF equation (4.28) for the y- and z-axes can be simplified. The

simplified equations for the y- and z-axes are as follows:
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Pyy Pyy Pyy: kye |

Poy® = | Py Py Pyye | - ksg | [ Pyy Pyy Pyl (4.28-y)
Pyy Pyy Pyry| | Ky
p;z p;z p;Z' kze

Poz® = | Py Py Py | = | kyg | [Py, Py, Pyl (4.28-z)
Piz Pyz Pyy ky-g

This simplication again eliminates a matrix-vector multiplication; and the
simplified equations also require only a row—column vector multiplication and
matrix-matiix subtraction. The subscript 8 in Equation (4.28-y) denotes an
azimuth angle, while the subscript 8 in Equation (4.28-z) denotes an elevation
angle.

Table 4.3 (a) lists the reduced computational requirements of the
simplified extended covariance Xalman filter (ECKF) through the use of the
decoupling technique and special properties for a m-dimensional tracking with n
state elements, whereas Table 4.3 (b) lists the computational requirements of the
simplified ECKF's for a typical 3-dimensional tracking system with 9 state
elements.

A comparison of Tables 4.1 (b) and 4.3 (b) reveals that for
3-dimensional tracking the rate of reduction in the number of multiplications

from the coupled to the simplified ECKF is approximately 24:

8538
350

= 24.39 = 24,



and the number of additions is reduced by approximately 13:

2422
183

= 13.23 = 13,

Note that like the decoupled ECKF, the simplified ECKF requires 2 more
CORDIC operations than the coupled ECKF. These additional operations are
negligible, when compared to the computational reduction afforded by the use of

the decoupling technique and properties of the tracking KF.
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Table 4.3 Computational requirements for the simpified ECKF

(a) for m—dimensional tracking with n state clements
(b) for 3—dimensional tracking with 9 state elements

Table 4.3 (a)

Equation Number of operations per iteration

number Multe. Div, Add. CORDIC.

4.27 n+2m-2 2n-1 m 0

4.28 n2/m+m 0 nzlm 0

4.29 2n3 /m2 0 n?’ Im2—n2/m 0

4.30° w2 0 0 m-1

4.31 nm 0 nm m-1

4.32 n’ 0 n?-n 0

Total'  2n°/m3+ni/mn? 2u-1 n/oPnmn?nsn  20-2
2nm+2n+dm—4

Mult. = Muitiplication

Div. = Division

Add. = Addition

CORDIC = CORDIC operations

* For 2-dimensional tracking with 6 state elements, the number of required
additions for Equation (4.30) is nm+2m and the total number of required
additons is 2n° /a0 20+ 2nm 2n+4m-2,



Table 43 (b)

Equation Number of operation per iteration

number Mult. Div. Add. CORDIC.
4.27 13 5 3 0
4.28 36 0 27 0
4.29 162 0 54 0
4.30 31 0 0 2
4.31 27 0 27 2
4.32 g1 0 72 0

.......................................................................
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4.4 Simpiification_of the Exten R
4.4.1 Simplification using the decoupling technique

Using the relationship between the Kalman gain Ko(k) for the LOS frame
and the Kalman gain K(k) for the reference Cartesian frame, developed in the
previous section 4.1, the extended SRCF summarized in Equations (2.25 .. 2.30)
may be decoupled.

The Kalman zain is developed in the SRCF in terms of the matrices
developed during the measurement update of the square root S(k) of the state
estimate error covariance matrix P(k). Hence, the extended SRCF may be

decoupled as follows:

a) Processing in the LOS frame:
Time update of S,k
Measurement update of So(k)

Calculation of the Kalman gain Ko(k)
b) Transformation of the Kalman gain:

Fl (k) 0 0
Kk) = 0 l:"1 (k) 0 K 0(k)
0 0 F, (k)

c) Processing in the reference Cartesian frame:
Estimate a state vector X(k)

Predict a state vector X(k+1 |k)
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This decoupling is similar to that for the extended covariance KF, except that
S 0(ls:) is updated in the decoupled SRCF, whereas Po(k) is updated in the

decoupied extended covariance KF. The decoupled extended SRCF is summarized

in detail below: -
a) Processing in the LOS irame computes Ko(k), So(k) and So(k+l|k), as
shown by

S T T
STt k-1 ) [ sleen ¢Ten “@33)
=Q T
0 T
- ;
F& G k) V) 0
0 sTw sTeie-DET00 sTaelic-n)
_ Ty, T
K, &) = G (k) / Fi(k) (4.35)

The matrix Q1 derotes an orthogonal matrix that upper—triangularizes a

matrix on its righthand side.

b) Coordinate transformation computes K(k) from K (k) by using the

Jacobian transformation:

Fl o o
Ki=[0 F 0 |K( (4.36)
0 0 F
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where F1 is defined in Equations (4.19) and (4.20) for 2- and
3—-dimensional tracking systems, respectively.
c) Processing in the reference Cartesian coordinates frame computes f((k)

and X(k+1|k), as shown by

R(k) = Xk|k-1) + Kk) ( Z(k) - hXk|k-1)) ) (4.37)
K(k+1ik) = k) Xk) 4.38)

As in the ECKF, the decoupling technique, applied to ESRCF, allows the
ESRCF to propagate m (r%)—dimensional S C’(k)'s separately for each axis, instead
of one n—dimensional So(k), where m is 2 for 2-dimensional tracking, or 3 for
3—dimensional tracking. This decoupling technique not only reduces computational
requirements but also increases parallelism, because the propagation of m So(k)'s
can be performed for each axis in parallel.

Tables 44 (a) and 4.4 (b) present the computational requirements of the
coupled ESRCF; the former is based on a general m-dimensional tracking system
with n state elements, and the latter is based on a typical 3-dimensional tracking
system with 9 state elements. Simlilarly, Tables 4.5 (a) and 4.5 (b) present the
computational requirements of the decoupled ESRCF for the two above cases. In
these tables, the computational requirements for time and measurement updates are
separated into two parts to illustrate the effects of the decoupling technique more

clearly. For example, Equation (2.29)

sTk|k-1)
0

sTe—1) T k-1) (2.29)
uT ()
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is split into a matrix-matrix multiplication [ST(k—l) ¢T(k—1)] (2.29a) and an
orthogonal upper triangularization (2.29b). The QR decomposition is assumed to
be employed for an orthogonal upper triangularization. Furthermore, the ESRCF
equations (2.27) and (2.28) are assumed to be calculated in the following
sequence to avoid a matrix inversion of FT(k) using the method of backward

substitution:;

a) Perform CORDIC operation on f‘{(klk—l):
Z(k |k~1) = h(X(k|k-1))
b) Calculate a(k) = Z(k) — Z(k|k~1)
¢) Calculate b(k) = (FT(k))—la(k) by back substitution
d) Calculate x(k) = x(k|k-1) + G (k)b(k)

Note that the number of required operations for Equation (2.25) is not included
in Table 4.4 (a), because it is impossible to express it in terms of m and n.

We now examine how the use of the decoupling technique reduces
computational requirements. The time and measurement updates of S(k) in the
coupled ESRCF require a combination of an order of m3 {0(n3)} and an order
of n2 {O(nz)} operations. For example, as summarized in Table 4.4 (a), the
orthogonal upper triangularization for time update in Equation (2.29b) requires
4n3+n2 multiplications, 2n2 divisicns, n2 square root operations, and 2n3+n2
additions.

In Section 4.3, we have found that the decoupling technique decreases the
computational requirements of an order of o’ {0(n3)] operations by a factor of
m2, Similarly, the decoupling technique reduces an order of n? [O(nz)] operations

by a factor of m. When the coupled system requires n? operations, the decoupled



86

system requires (1'1.lrn)2 operations m times. Hence, the decoupled system requires
2

total n2/rn operations which is m times less than n
A comparison of Tables 4.4 (2) and 4.5 (a) confirms that the decoupling

technique reduces an order of n3 operations by a factor of m? and an order of

n? operations by a factor of m. For example, the decoupled ESRCF equation

(4.33b) which cormresponds to the coupled ESRCF equation (2.29b) requires
4n3/m2+n2/m multiplications, 2n2lm divisions, n2/m square root operations, and
2°/m%+n2fm additions.

Table 4.6 expresses the computational reduction for 3-dimensional
tracking by the decoupling technique as the ratio of the required number of
operations for the coupled ESRCF to that for the decoupled ESRCF. For
multiplications and additions, the reduction ratios are approximately 7.0 and 6.4
respectively. These reduction factors are between 9 (mz) and 3 (=m), as
expected.

The overall reducrion ratios of 7.0 and 6.4 for the ESRCF are less than
the ratios of 20 and 10 for the ECKF, respectively. This is mainly because in
the ECKF the computationally intensive matrix inversion is eliminated by the
decoupling technique, whereas in the ESRCF the matrix inversion is already
avoided by the use of forward substitution in the coupled ESRCF.

442 Simplification using the special properties

The sparse nature of the measurement matrix H (k) in the LOS frame
could be utilized in the multiplication of SL(k|k-1) and H) (k). For example, the
sparse measurement matrix Ho—x(k) for the x-axis turns the mulitiplication of

T

S'CI;_ x(k|k—1) and Ho_x(k) into the extraction of the first column from

sI_x(k[k_l).. That is, the multiplication of Sz_x(k|k-1) and HZ—x(k) does not
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require any multiplication or addition, as shown below:

S, SL) S,.&) 1
Sexkl-DHS =] 0 sLm s,.m |]o
0 0 S| |o0
ST (k) ]
=1 0 (4.39-x)
0

Note that there is only one nonzero element in the product of S (k|k 1) and
T

0—X

H (k)
Simlilarly, the multiplication of S (klk—l) and H (k) and that of

Sz_z(k|k—l) and Ho__z(k) are simplified, as shown below:

- - W(k) Syy(k) Syy (k) L/r

So-ylklk=D) H @) = | 0 Sy Sk 0
0 0 Sy.y.(k) 0
Syy(k)

(4.39-y)
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S;z(k) S;i(k) S;z.(k) l'l/r

T T _ - -
Sogklk-D HY = | 0 S5, S5,.(k) 0
0 0 $7-,-(k) 0
SZZ(k) .
=% 0 (4.39-z)
0

These multiplications are reduced to the extraction of the first column of

T T
So_yklk-1) and §

O_z(klk—l). followed by a scalar division. Note that as in

Bquation (439-%), the product of S,_(k|k-1) and Hz_y(k), and that of
] T
Sozklik-1) and HY |

The fact that the product of Sz(k|k—-1) and H;I;(k) has only one non-zero

(k) have only one nonzero element.

element may be used to simplify the orthogonal upper triangularization needed for

the measurement update in Equation (4.34):

FO G &
0 SZ(k)

T
) v, (k) 0

_Q1

T T T ] (4.34)
S1 (k|k-DH (k) s Ik |k-1)

The orthogonal triangularization for the measurement update in the x-axis is

expressed in detail below:

f11 811 812 813 o, 0 0 0
0 s § s o, S+y S~y S~
2 s o >< S ] (434-x)
0 0 ) S39 0 0 S99 S34
0 0 0 533 - 0 0 0 533
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This equation shows that only one element SII' marked by a cross X, is to be
nullified in this orthogonalization.
Similarly, only one element 15 to be nullified in the orthogonal

triangularizations for measurement updates in the y— and z-axes, as shown below:

For y-axis, we have

F11 811 &2 &3] [Og 0 0 0
0 s S 5 S: T Sty Sm: S
11 %21 531 | _ Q wt ot s 3 434y)
0 0 sy 85 0 0 55 83
For z-axis, we have
£l 811 812 &3 rogg 0 0 0
0 s ) s S../t S1, Sy S
11 21 %31 | _ Q utofinfar 3 4.34-2)
0 0 sy 359 0 0 sy 335
0 0 0 533 J _ 0 0 0 S33 J

The angle 0 in Equation (4.34-y) denotes 6 A+ Whereas 6 in Equation (4.34-z)
deonotes 0.

Table 4.7 (a) and 4.7 (b) present the computational requirements of the
simplified ESRCF through the use of the decoupling technique and special
properties in the KF; the former is based on 2 general m-dimensional tracking
system with n state elements, and the latter is based on a typical 3—dimensional

tracking system with 9 state eclements. Table 4.8 summarizes the reduction rates
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for the computational requirements of the ESRCF by using the decoupling
technique and properties of the tracking systems. The reduction rate for

multiplicztion is 8.4, and that for addition is 7.5.



Table 4.4

(a) for m—dimensional tracking with n state c¢lements
(b) for 3—dimensional tracking with 9 state elements

Table 4.4 (a)

Computational requirements for the coupled ESRCF

Equation Number of operation per iteration
number Mult. Div. Sq-Root. Add. CORDIC.
2.2¢a min{n+1)/2] 0 0 m(n-1)/2 0
2.26b [2+4{n+m) ]nm 2nm nm [1+2(n+m) Jnm 0
2.27 £ 2.28 nmn?/2-m/2  m 0 am-n+m+m/2 m-1
2.29a n2(n+1) /2 0 0 n?(n-1)/2 0
2.29 4n+n? 202 n? 2n+n2 0
2.30 n? 0 0 n(n-1) 0
Total gn3 +§n2+%n2m 2n2+2nm+m n2+nm 3n3+%n2—2n+2n2m m—1
2 2
-Is-,znm+4nm2+g - ; +§ru11+2nm2-|-ﬂz1
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Mult. = Multplication

Div. = Division

Sq-Root. = Square root operation
Add. = Addition

CORDIC.= CORDIC operations

* The total does not include the number of operations for Equation (2.25).



Table 4.4 (b)

Equation Number of operation per iteration

number Mult. Div. Sq-Root. Add. CORDIC.
2.25 6 8 1 1 0
2.26a 135 0 J 12 0
2.26b 1350 54 27 675 0
2.27 & 2.28 30 3 0 24 2
2.29a 405 0 0 224 0
2.29 2997 162 81 1539 0
2.30 81 0 0 72 0
Total 5004 227 109 2647 2

62
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Table 4.5 Computational requirements for the decoupled ESRCF
(a) for m-dimensional tracking with n state elements
(b) for 3—dimensional tracking with 9 state elements

Table 4.5 (a)

Equation NMumber of opsration per iteration

number Mult. Div. Sq—Root.  Add. CORDIC.

4.33a (n2/2m)(n/m+l) O 0 (n2/2m)(n/m-1) O

4.,33b anjo4nd/m 2%/ /o > /om0

4.34a (nf2)(n/m+l) m-1 0 (n/2)(n/m~1) 0

4.34b 4n? /m+5n 2n n 202 /2430 0

4.35 0 n 0 0 0

E ]

4.36 nm+(m-1)2 0 0 0 o |

4.37 nm 0 0 nm+n m-1

4.38 n? 0 0 n%-n 0

................ 322232
On” 6n°,1ln 2n n 5n” . 3n° 5n

Total m 4—2— —m—*’m o +n ;nm 2m-2
+n2+2nm+2m—2 +3n-1 +n2+nm

*  For 2-dimensional tracking with 6 state elements, the nuinber of required
multiplications for Equation (4 34) is nm and the total number of required

3 2
multiplications for the decoupled ESRCF is %:12 #0807  Un 2y oom,



Table 4.5 (b)

Equation Number of operation per iteration

number Mult. Div. Sg-Root. Add. CORDIC.
4.33a 54 0 0 27 0
4.33b 351 54 27 189 0
4.34a 18 2 0 9 0
4.34b 153 18 9 81 0
4.35 0 9 0 0 ¢
4.36 31 0 0 0 2
4.37 27 0 0 36 2
4.38 81 0 0 72 0

.......................................................................




Table 4.6 Computational reduction ratios for the ESRCF by the
use of the decoupling technique

Mult. Div. Sg—Root. Add. CORDIC.
7.00 2.73 3.03 6.39 0.5
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Table 4.7  Computational requirements for the simplified ESRCF
(a) for m-dimensional tracking with n state elements
(b) for 3—dimensional tracking with 9 state elements

Table 4.7 (a)

Equation Number of operation per iteration

number Mult. Div. Sg-Root.  Add. CORDIC.

4.33a (n2/2m)(n/m+1) O 0 (n%/2m)(n/m-1) 0O

4.33b 4n3 [/ m2+n2 /m 2n2/ o n2 /m 2n3 / mz-m2 /o 0

4.34a m-1 m-1 0 0 0

4.34b S5m+dn 2m m 3m+2n 0

4.35 0 n 0 0 0

]

4.36 nm+(m-1)2 0 0 0 o1

4.37 nm 0 0 Nm+1 i |

4.38 nZ 0 0 nZ-n 0

................ 322232
9n~ 3n 2n n 5n" . n

Total Z_mZ*E +4n T‘Hl P +m zm——z+B—+2n 2m—2
+n2+2nm+8m—3 +3m-1 +n2+nm+3m

* For 2-dimensional tracking with 6 state elements, the numbei of required
multiplications for Equation (4.36) is nm and the total number of required
9 2

3.2
multiplications for the decoupled ESRCF is _nfér% +4n+n
2m

+2nm+6m-1.



Table 4.7 (b)

Equation Number of operation per iteration

number Mult. Div. Sq-Root. Add. CORDIC.
4.33a 54 0 0 27 0
4.33b 351 54 27 189 0
4.34a 2 2 0 0 0
4.34b 51 6 3 27 0
4.35 0 9 0 0 0
4.36 31 0 0 0 2
4.37 27 0 0 36 2
4.38 81 0 0 72 0

-----------------------------------------------------------------------
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Table 4.8 Computational reduction ratios for the ESRCF by the
use of the decoupling technique and properties of the tracking
KEF

Mult. Div. Sq-Root. Add. CORDIC.
8.38 3.20 3.63 7.54 0.5
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4 imulation of the Simplified Kalman Fil

In this section, we compare the performance of the simplified extended
Kalman filter to that of the conventional coupled extended Kalman filter. We
showed in the previous sections that the use of the decoupling technique and
properties of the tracking Kalman filter reduces computational requirments and
increases parallelism significantly. However, these benefits would not be justified
if they were achieved at the cost of a significant degradation.

The tracking performance depends on target dynamics and- the accuracy of
measurements. A target that does not manoeuvre severely is easy to track and
accurate measurements help tracking. The tracking performance also depends on
the filter used, because the accuracy depends on the nature of the filter algorithm
and its numerical properties. The accuracy of the model of target dynamics and
measurement systems used in a filter also affects tracking performance. Inaccurate
models degrade performance, and sometimes lead to divergence (12], [38]).

A number of authors ([2],[8],[35]) have studied the performance of the
decoupled extended covariance Kalman filter through simulation. It was found in
[2] and [8] that the performance of the decoupled ECKF is generally comparable
to that of the coupled ECKF in typical tracking situations, while it was found in
[8] that the decoupling technique reduces the effects of truncation and round-eff
errors dve to finite word—ength arithmetic. However, the performance of the
decoupled ECKF was found to degrade somewhat, when the condition that the
orientation of a LOS frame does not vary significantly between filtering updates,
needed for the decoupling technique, does not hold well[35]. The rate of change
in the orientation of the LOS frame is determined by the characteristics of the
tracking environment such as the filtering interval and the direction of target

movement.
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In this section we investigate the effects of simplification, including the
decoupling technique, on the performance of the Precise Radar Aided Navigation
(PRAN) system. The PRAN system is being developed for ship's navigation in
confined waterways at the Communications Research Laboratory, McMaster
University, in conjunction with the Transport Development Center of Montreal,
Canada. The PRAN system utilizes passive polarimetric reflectors, strategically
placed along a confined waterway, as reference points to achieve accurate
positioning.

The passive polarimetric reflector, patented by A. Macikunas, S. Haykin,
and T Greenlay [33] changes the polarization of the incident electromagnetic
signal through 90°, whereas most natural and man-made objects reflect the
incident signal in the same polarization. As a result, in the PRAN system which
transmits a horizontally polarized signal and receives on a vertically polarized
antenna, the passive polarimetric reflectors are easily located in the presence of
clutter which does not rotate the polarization of the incident signal.

In the course of this project, a software package simulating the PRAN
system has been developed. This package rececives as input the PRAN system
configuration parameters such as the location of reflectors, a ship's path and
information on the ship's dynamics. It then generates measurements as it simulates
the ship's movement along the path. This package is designed to be flexible to
handle various configurations of reflectors and a multitude of ship’s dynamics. For
more details, see Appendix B.

Measurements generated by the PRAN system simulation package are
processed by the coupled and decoupled ECKFs. The results of filtering with
these two filters are compared to study the effects of decoupling. Note that the

coupled and decoupled ECKFs are employed to perform filtering, instead of the
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coupled and decoupled ESRCF's. It is because the effect of decoupling on the
reduction of numerical ill-conditioning was predicted to be more noticeable in

using the ECKF than using the ESRCF.

4.5.1 Simulation Configurations

Two typical sceiarios one would encounter in the PRAN system are: a) a
ship travelling in a straight line at a virtually constant speed, b} a ship tuming at
a virtually constant speed. The term, "virtally constant speed”, refers to a speed
which fluctuates around a particular predefined constant speed. This fluctuation is
represented as a random acceleration in the PRAN system simulation program.

A ship experiences pitching, rolling, ar;d yawing motions. However,
yawing motion is usually negligible, so that only pitching and rolling motions are
included in the simulation. Pitching and rolling motions do not affect the position
of a ship, but affect the orientation of an antenna, which introduces errors in
measurements. Pitching and rolling motions are simultated using a sinusoidal
function in the PRAN system simulation program, for pitching and rolling
motions can be approximated as sinusoidal motions [51].

Tables 4.9 and 4.10 show the ship's dynamics and the characteristics of
the measurements used in the simulation respectively. These characteristics are
obtained from the system specification set out for the PRAN system [7].

Two typical PRAN system scenerios used in simulation are shown in
Figures 4.4 and 4.5. Figure 4.4 shows a ship which is set to move in a straight
line at 45° from the x-axis in the reference Cartesian coordinates. In simulation,
the ship deviates a little bit from the path it is set to travel along, due to the
variations in the ships dynamics, random acceleration. The reason for choosing

45° is that the coupling between x- and y-axes in the measurement error
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covariance matrix R(k) and the state estimate error matrix P(k), expressed in the
reference Cartesian coordinate systerm, is greatest at this point. Hence, this
scenario is ideal to show how well the decoupling technique works. Furthermore,
the orientation of an LOS frame in this scenario does not vary greatly as the
ship moves, because the LOS remains close to 45°, as the ship travels. Hence,
the condition that the orientation of the LOS frame does not change significantly,
needed for the decoupling technique to be effective, is met.

Figure 4.5 shows a ship turning around a reflector. In this scenario, an
LOS frame rotates as the ship tums. Therefore we can study the effect of the
rotating orientation of the LOS frame on tracking performance.

As described in Chapter 2, a model of the target dynamics and that of
the measurement system are requirsd in the Kalman filter. The accuracy of the
models used in filtering affects tracking performance. We first use appropriate
models to see how che coupled and decoupled ECKF's will perform. Then we
gradually degrade the models to study the effects of inaccurate modeling on the
performance of the coupled and decoupled ECKF's.

The Kalman filter parameters, specifying appropriate models, are
summarized in Table 4.11. Inaccurate models are generated by varying Gy from
0.5° through 2.5° to 10.0°, with the other parameters unchanged as in Table 4.11.

o specifies the standard deviation of the errors in bearing angle measurements.



Table 4.9 Ship's dynamics
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Speed in a straight line motion
Random acceleration

Turning speed

Amplitude of pitching

Period of pitching

Ampilitude of rolling

Period of rolling

Sm/sec
0.00625mlscc2
0.1471°/sec
50
lisec
15°
29sec

Table 4.10 Measurement system Characteristics

Scan period

Pulse repetition frequency

Standard diviation of
range measurement error

Standard diviation of

bearing angle measurement error

2sec
800Hz

3.5m

0.5°
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Table 4.11 Parameters used in the Kalman Filter

Standard deviation of
range measurement error 3.5m

Standard deviation of
bearing angle measurement error 0.5°

Standard deviation of
target dynamics noise O.OIm/scc2

Correlation coefficient of
acceleration 0.778801
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4.5.2 Simulation Results

Figures 4.6 (a) and 4.6 (b) show the results of tracking with an
appropriate model specified in Table 4.11, for the scenario depicted in Figure 4.4,
Figure 4.6 (a) is for errors in x—position estimates, whereas Figure 4.6 (b) is for
errors in y-position estimates. Each figure plots two curves of ensemble-averaged
squared errors; the curve drawn in a solid line is for the standard ECKF, and the
curve drawn in a dashed line is for the simplified ECKF. These two types of
curves are used in all the plots to compare the standard and simplified ECKF's.
The ensemble-averaging is performed over 100 independent trials. No apparent
difference between the performance of the standard ECKF and that of the
simplified ECKF is observed. Actually, the two curves for the standard and
simplified ECKF's overlap each other, such that the only solid curve is shown. It
indicates that the decoupling technique does not degrade performance in this
scenario, when it is applied to the system with the greatest level of coupling due
to the ship's 45° travelling direction.

The tracking accuracy is found to improve as the ship appoaches the
reflector. This is due to the fact that the accuracy is a function of o, and 10,
and r decreases as the ship approaches the reflector. © , and Gg denote,
respectively, the standard deviation of the errors in range and bearing angle
measurements, and r denotes a range measurement.

Figures 4.7 (a) and 4.7 (b) show the results of tracking with the model
specified in Table 4.11, for a tuming scenario as depicted in Figure 4.5. Figures
4.7 (a) and 4.7 (b) plot, respectively, emors in  x-axis and y-axis position
estimates. These two figures with the two indistinguishable curves for the standard
and simplifitd ECKFs show that when appropriate models are used in both the
simplified ECKF and the standard ECKF, the decoupled ECKF performs as well
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as the coupled ECKF for a typical turning scenario as that in Figure 4.5. Since
the orientation of the LOS frame rotates as the ship turns, the comparable
performance of the simplified ECKF to that of the standard ECKF for a turning
scenario in the PRAN system verifies that the rotation of the LOS frame does
not degrade performance if the rotation rate is not significant.

In the scenario of the ship turning, the x-position estimates improve
while the y-position estimates degrade. This is because rog (= 10.0459 =
1154.7%0.0087, 0.0087 rad = 0.5 degree) is greater than c, (=3.5), and as the
ship turns the x-position estimate errors become more a function of o and less
function of 1Gy, whereas the y-position estimate errors become more a function
of roy and less a function of o This is depicted in Figure 4.8.

In summary, the simulations with scenarios in Figures 4.4 and 4.5 have
shown that the performance of the simplified ECKF is comparable to that of the
standard ECKF for tracking in the PRAN system, when appropriate models are

used.
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Ensemble-averaged square errors in position estimates for
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Figures 4.7a and 4.7b show simulation results with o5 = 0.5° Figure
49a and 4.9b are for Oy = 2.5° and Figures 4.10a and 4.10b are for Oy =
10.0°. They all correspond to the turning scenario shown in Figure 4.5. A
comparison of the simulation results shows that as the tracking model becomes
inaccurate, the performance of both the coupled and decoupled ECKF's degrades,
yet the former's performance degrades more than the latter's. To determine if this
phenomenon is due to differences in numerical properties of these two filters,
these simulations are repcated using double precision arinmetic. The increase in
the number of significant bits from a singie precision to double precision does
not change the simulation results. This indicates that this phenomenon is cansed
by the different effects of inaccurate models on these two filters. In other words,
the decoupled ECKF is more robust than the coupled ECKF. This can be
explained by the fact that the decoupling reduces tiie propagation of the effects

of inaccurate parameters in the ECKF.
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4.6 Summary

In this chapter, we first presented the decoupling technique which
simplifies the extended covariance KF, and then we extended the use of this
decoupling technique to the extended square root covariance KF.

We have shown how the use of the decoupling technique and special
properties of tracking systems can simplify the extended covariance KF and the
extended SRCF.

For the extended KF, the decoupling technique eliminates the need for a

matrix inversion and reduces the required number of operations for the
2

T

computationally demanding time and measurement updates by a factor ot m
where m is the dimension of a tracking system. This reduction is due to the fact
tﬁat the propagation of m decoupled (%)—dimensional covariance matrices P(k)'s
requires m? times less operations than the propagation of one coupled
n—dimensional covariance matrix P(k), where n is the number of state elements
and m is the tracking dimension..

We have found that in the extended SRCF the number of required

1/2

operations for the propagartion of m decoupled square roots P*/“(k)’s is less than

that for the propagation of 1 coupled Pll2 (k) by a factor of between m2 and m.

2

The reason for the reduction factor between m* and m is that the required

orthogonalization for the propogation of pl/ 2(1:) is a combination of an order of

n3 and n2 operations.

We have shown that the use of special properties of tracking systems
reduces computational requirements furthermore. The overall reduction ratios by
the use of both the decoupling technique and special properties are found to be
24 and 13 for the required numbers of multiplications and additions for the

extended covariance KF, respectively, when the number of state elements is 9 and



115

the dimension of a tracking system is 3. The overall reduction ratios are 8.4 and
7.5 for the required numbers of multiplications and additons for the extended
SRCEF, respectively.

The overall reduction ratios of 84 and 7.5 for the number of
multiplications and additions for the ESRCF are less than the ratios of 24 and 13
for the ECKF. One of the reasons for this is that in the ECKF the
computationally intensive matrix inversion is eliminated by the decoupling
technique, whereas in the ESRCF the matrix inversion is already avoided by the
use of forward substitution in the coupled ESRCF. Another reason is that the
decoupling technique reduces the computational requirements of the propagation of
P(k) more than those of the propagaton of Pln(k). The propagation of P(k)
requires an order of n3 operations, whereas the propagation of Pllz(k) requires a

3 and n2 operations.

combination of orders of n

The decoupling technique not only reduces computatonal requirements but
also increases parallelism. In the decoupled KF, the time and measurement
updates of the decoupled state estimate emor covariance matrices Po(k)'s can be
performed separately for each axis, whereas the updates of the coupled P(k) in
the coupled KF have to be performed together for all the axes. The fact that
Po(k)'s in the decoupled KF can be separately updated for each axis means that
the updates can be performed for each-axis in parallel. The parallel updates of m
decoupled Po(k)’s require m times less computational time than the serial update
of m ?o(k)'s. In the development of parallel architectures where parallelism is
explored to reduce computational time, the parallelism in the updates of Po(k)
may be utilized.

We have found that the performance of the simplified ECKF is generally

comparable to that of the conventional ECKF, using two typical tracking
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examples in a Precise Radar Aided Navigation system. Furthermore, we have
found that the simplified ECKF is more robust to errors in target modelling than
the standard ECKF, since its decoupled nature reduces the propagation of the

effects of inaccurate modelling.



CHAPTER 5
PARALLEL IMPLEMENTATION OF THE EXTENDED COVARIANCE KF

The computational requirements of the Kalman filter should be minimized
and parallelism should be maximized to reduce the required hardware and
computational timc for the parallel implementation of the KF. Parallel processing
decreases the required computational time by allowing more than one operation to
be performed simultaneously.

In Chapter 3, we have shown that the computational requirements of the
KF can be reduced by reformulating the KF equations such that the common
terms are calculated only once and reused whenever necessary, and we have
shown that parallelism can be doubled by separating the KF into two loosely
independent sets of the KF equations.

In Chapter 4, we have shown that the use of the decoupling technique
and special properties of certain matrices in the tracking Kalman filter reduces
significantly the computational requirements of the extended covariance Kalman
filter and increases parallelism by the separation of the state estimate error
covariance matrix P(k) into a number of smaller decoupled matrices. In the
decoupled KF, the updates of matrix P(k) can be separately performed for each
axis in parallel.

The reduction in computational requirements and the increase in

parallelism by the application of the decoupling technique and Special properties

117
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of certain matrices in the tracking KF are much greater than those by the
reformulation and separation of the KF equations, described in Chapter 3. Hence,
the simplified extended covariance KF through the use of the decoupling
technique and special properties is selected in the parallel implementation of the
extended covariance KF for iracking applications.

We develop a paralle! architecture for the simplified ECKF, bearing in
mind desirable characteristics for parallel architectures such as modularity,
regularity, local communication, and high degree of pipclinE and parallelism.
However, when a pipeline processing architecture with local communication has a
significant time delay and requires a large number of delay e¢lements to feed
input data in a skewed manner, a parallel system with global communication is
considered. In the parallel system with global communication, data are
broadcasted to all the necessary processing elements at the same time, so that the
time delay is minimal and additional delay elements are not necessary.

In Section 5.1, we first give an overview of the proposed architecture,
and then describe the architecture in detail. In Section 5.2, we examine how the
decoupling technique reduces hardware and computational time requirements to
gain insights into the effects of the decoupling technique on a parallel
architecture. In Section 5.3, we summpiize the required number of processing
elements and operations. In Section 5.4, we evaluate the proposed architecture in
comparison to other architectures. Finally, in Section 5.5, we present the summary
of this chpater.

Throughout this chapter, 2-dimensional tracking is employed for
simplicity in explaining implementaion, unless 2- and 3-dimensional

implementations are both needed to be described.
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1 Archi Descripti

The decoupled extended covariance KF, described in Equations

(4.27-4.32), consists ol 3 pans, as follows:

a) Processing in the LOS frame.
b) Coordinate transformation of the Kalman gain.

c) Processing in the reference Cartesian coordinate frame.

The architecture for the decoupled extended covariance KF which consists of 3

parts may be split into 3 parts correspondingly, as shown below:

a) The processor for the LOS frame computes K O(k), Po(k) and Po(k+1 |k),

as shown by

_ T T 1
Ko(k) = P(k|k-1) H (k) ( H (&) P_(k|k-1) H (k) + R (K) ) (5.1)

Po(k) =(I- Ko(k) Ho(k) ) Po(k]k—l) (5.2)
PG+1k) = ¢ P &) ¢T(k) + Q&) (5.3)
b) The processor for the coordinate transformation computes K(k) from

Ko(k) by using the Jacobian transformation:

K(k) = K 0(1:) - (5.4)

o o '
e mnm <
T © ©

1

For 2-dimensional tracking, we have
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coseA —sinGA
sinGA cos()A

where 0 A denotes azimuth angle.

For 3-dimensional tracking, we have

cosf AcosBE -sin@ AcosBE 050 AsinGE
F1 = | sin® AcosGE cos6 Acc»seE —-5in@ AsinGE
s inBE 0 cos GE

where 6 A and BE denote azimuth and elevation angles, respectively.

c) The Processor for the reference Cartesian coordinates frame computes

f((k) and f((k-i-l |k}, as shown by

R0 = Xk|k-1) + Kk) ( Z&) - hXek|k-1)) ) (5.5)
R(k+1 k) = d&) XK@ (5.6)

Figure 5.1 shows a block diagram of the tracking KF implementation. In
this block diagram, as described above, there are three processors. Data flows
among processors ate indicated by amrows. The three processors from the left to
right are referred to as Processor 1, 2, and 3, from now on. Processor 1, located
on the lefthand side in Figure 5.1, updates the state estimate error cevariance
niatrix Po(k) for the LOS frame, calculates the Kalman gain K o(k) for the LQOS
frame, and passes Ko(k) to Processor 2. After receiving Ko(k) from Processor 1,

Processor 2 computes K(k) for the reference Cartesian frame by applying the
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Jacobian transformation to K 0(lc). Processor 3 makes the state estimate )A((k) as a
combination of JA{(k|k—1) and Z(k), using K(k) from Processor 2. Note that
Processor 3 includes a coordinate transformation, h(}’\((klk—l )), of ﬁ(klk—-l) from
the reference Cartesian to polar coordinates, and the calculation of the correction

term, Z(k)-h(X(k [k-1)).
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Block diagram of the ECKF
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5.1.1 Processor for the LOS coordinates

The examination of Equations (5.1), (5.2), and (5.3) indicates that the
processor implementing these equations should be designed to perform
matrix-mairix and matrix-vector multiplications. The proposed processor for
Equations (5.1), (5.2), and (5.3) is shown in Figure 5.2. It consists of a
2-dimensional orthogonally connected systolic array and external multipliers. This
processor possesses desirable characteristics for parallel architectures such as
regularity, local communication, and high degree of pipelining and parallelism.
The 2-dimensional array is first initialized to PO(OI—I). and stores PO(k) and
Po(k |k—1) alternately.

We now describe how Equations (5.1), (5.2), and (5.3) are implemented
on the proposed architecture. Due to similarities between the processing for the
x-, y—- and z-axes, the implementations for only the x-axis is described.

Equation (5.1) for the x-axis
K (k) = P_(klk-1) HT(k) ( H (k) P_(k|k-1) HT(k) + K (k) )._.1 5.1)
0 0 o o o o (i}

seems very complex to implement, for this equation requires & number of
matrix-matrix multiplications and a matrix inversion. However, it was found in

Section 4.3.2 that Equation (5.1) for the x-axis can be simplified using the

sparse nature of H o x(l:) as follows:

Prx
- - 2-1 :
Ko, = | piy | @t 09 (5.1-x)

pX'x
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The simplified equation (5.1) above is implemented on the proposed architecture
by reading out either the first row or column of P(k|k-1), (pxx(k|k—l).

(p (k|k-1) + 62), as shown in Figure 5.3. Both the first column and the first

pi.x(k|k—1) ), stored in the systolic amray and dividing it by
row of P(k|k-1) store the same vector, because P(k|k-1) is a symmetric matrix.
Note that one of the most difficult KF cquations to implement, which requires a
large number of matrix-matrix multiplications, is implemented by reading out the
row of the processor and scaling it. This confirms that the simplified extended
covariance KF is much easier to implement than the standard extended covariance
KF.

The implementation of Equation (5.1) requires total 5 clock cycles: 1
cycle for reading out (pxx(k|k_l)' pix(k[k—l), px.x(klk—l) ) and 4 cycles for
calculation of (p, (klk-1) + ©2) and dividing (p_(k|k-1), p, (k|k-1),
Pyxk|k=1) ) by (p_(k|k-1) + o2).

Equation (5.2) which updates the state estimate error covariance matrix
Po(k) =(I-~ Ko(k) Ho(k) ) Po(k]k-l) (5.2)

requires a number of matrix-matrix multiplications, as it is. However, as
described in Section 4.3.2, the simplified equation (5.2) requires only a
row—column vector multiplication amd matrix-matrix subtraction. The simplified

equation (5.2) for the x-axis is shown below:

Prx Pxx Pxx' xr
Po—x(k) =

Pix Pix Pix: 0 1L Pxx Pxx Pxi) (5.2-x)
Pix Px-x Px"xJ [ kﬁ;'r‘
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Figure 5.4 shows the implementation of the simplified equation (5.2). In
Figure 5.4, Equation (5.2) is evaluated by an outer product multiplication of
vectors, (—p]Im P,y P xx.) and (k xr er k:t'r)’ and adding each product to what
has already been stored Po(kik-l). The former is fed in from the top, and the
latter from the left. It is worth noting that the processing of Equation (5.2) does
not require any vector fetch from the systolic array, because the required two
vectors are already available from Equation (5.1).

The implementation of the simplified equation (5.2) in Figure 5.4 requires
6 clock cycles from the time the vectors (-p,, —P.4 -—pxx.) and (k xr ko k:t'r)
enter the systolic array to the time of completion of Equation (5.2). This
computational time requirement of 6 clock cycles is small compared to the
computational time requirement for the implementation of Equation (5.2) without
simplication.

Equation (5.3)

P (k1K) = 06 Po) §T() + QMO

can be implemented in various ways ([28],[29]). For example, the term,
k) P 0(lt;) q)T(k), can be implemented in the sequence of two matrix—matrix
multiplications, described in Section 3.2.1. This method requires 3n-2 clock cycles
for each matrix-matrix multiplication. The total required time is thus 6n—4 clock
cycles for two matrix—matrix multiplications.

However, the properties of the band matrix ¢ can be exploited, as

described below:
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Property 1:
Property 2:
Ck) ¢k) =
cl ¢2 3 b11 0 0 b11c1+b21c2 I I
I I | ‘.:>21 b22 0 = I b22c2+b32c3 !
! | I 0 b32 b33 I | b33c3

Property 1 indicates that each row of the output matrix is a linear
combination of one or two rows of the matrix P(k). Therefore, this band matrix

multiplication can be performed as follows:

a) Move the clements of each row upward, as shown in Figure 5.5a.

b) Multiply the element already stored in a processing element by the
corresponding element of k), and multiply the element moved upward in
step (a) by another element of ¢(k) that corresponds to it.

c) Sum the results of the two multiplications in step (b).

Similarly, Property 2 shows that each column of the output matrix is a
linear combination of columns of Q(k). Consequently, it may be implemented in
the same way as property 1, except for the elements of each column being
moved to the left, as shown in Figure 5.5c. This scheme requires bidirectional
horizontal and vertical interconnections among processing elements. Figures 5.5b

ané 5.5d show the functionality of each processing element.
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This band matrix multiplication method is much more efficient than the
conventional method described in Section 3.2.1 for two reasons: (a) It does not
require that any matrix is read into the systolic array for the multiplication. (b} It
takes only an order of 1 steps, exactly 2 maultiplications and 1 addition, compared
to an order of n steps for the conventional method with an order of n?
processing elements, wher: n is the size of a matrix.

The addition of Q(k) to the output of 2 band matrix multiplications may
be easily realized by adding the element of the prestered former matrix to the
element of the latter matrix at each processing element. |

Note that {xk), ¢T(k),and Q(k) are prestored in the local memory of each
processing element. This can be easily realized because ¢Xk) and Q(k) are both
constant.

The total required number of clock cycles for Equation (53) is 5: 2
cycles for the multiplication of d&(k) and P(k), 2 cycles for the multiplication of
the product ¢k)P(k) and (j)T(k), and 1 cycle for the addition of the product
WP (k) and QUK).
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Figure 5.2 Processor for the LOS frame
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5.1.2  Processor for the Coordinate Transformation of the Kalman Gain

After receiving the Kalman gain K oK) for the LOS frame from Processor
1, Processor 2 which implements Equation (5.4) transforms the Kalman gain from
the LOS frame to the reference Cartesian frame, and passes the Kalman gain
K(k) for the reference Cartesian frame to Processor 3.

Equation (5.4) for 2—-dimensional tracking is expanded as follows:

ks r kaA [ Fy 10 10 [ ko—xr 0

kyr kyOA ! I 0 k _ y0,
Ko L k)"GA _ 0 I1F 1o k . O

ky . kK YGA | [ I 0 kO-YBA

k, " kY'eA 0o 10 | F| ko s 0

e kY'E‘A I I _ 0 ko—)'r'GAj

cosBA -5 inBA }

smBA coseA

This expanded form indicates that each component of the Kalman gain matrix
K(k) is a product of a component of matrix K,(k) and a component of matrix
FI(Ic). For example, the element er(lc) of matrix K(k)

er(k) = cosf A(k) k (k)

O—Xr

This means that the implementation of Equation (5.4) should consist of a set of
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multipliers and a CORDIC to evaluate sin® A and cos® A in Fl(k), given © A

The implementation of Equation (5.4) for 2-dimensional tracking is shown
in Figure 5.6; it requires 12 multipliers and 1 CORDIC. In this implementation,
the elements of the Kalman gain matrix Ko(k) for the LOS frame and the
elements of the rotation matrix Fl(k) are simultaneously fed from the left and
from the top respectively. The trigonometric functions, sin® and cos® of Fl(k) are
performed using a CORDIC. The implementation of a CORDIC is discussed in
Section 5.1.4. In this implementation, all the elements of the Kalman gain matrix
K(k) are generated at the same time.

The processing of Equation (5.4) requires 2 clock cycles from the
broadcasting of input data to the generation of K(k): one cycle to evaluate Fl(k)‘
and another cycle to muliiply FI(K) and K o(k).

The paraliel processing architecure with global communication for
Equation 5.4 is referred to as a broadcast processing architecture, since data are
broadcasted to all the necessary processing eclements. The parallel processing
architecture in Figure 5.6 may be modified to produce the gain matrix elements
in a pipelined manner, as shown in Figure 5.7. In Figure 5.7, the data, the
elements of Ko(k), sin® and cosO, are passed one element at a time through the
multipiiers. The architecture in Figure 5.7 is referred to as a pipeline processing
architecture. Generally, the pipeline architecture requires a simpler data bus
connection and fewer processing eclements  than the troadcast architecture.
However, the former needs to introduce a skew in input data streams to
synchronize incoming data streams at processing elements, and the former takes
more computation time than the latter,

For the implementation of Equation (5.4), the broadcast processing

architecture in Figure 5.6 seems more suitable than the one in Figure 5.7,
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because the former produces K(k) without any time delay, and it does not need
to introduce a skew in the input data streams for synchronization, requiring
additional hardware. Yet, the suitable implementaion should be selected on the
basis of design criteria.

Similar to Equation (5.4) for 2-dimensional tracking, Equation (5.4) for

3-dimensional tracking is expanded as follows:



K(k) =

Fpo 19 10
[ i
I |

¢ iF 10
I I
I I
I | F
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where
coseﬂcosﬁE -—sinBAcosﬂE —coseAsineE
F1 = sinGAcoseE coseAce:)seE -8 ineAsinGE

5 inBE 0 coseE

Similar to a 2-dimensional tracking application, the expanded form of Equation
(5.4) indicates that each component of the Kalman gain K(k) for 3-dimensional
tracking is a product of components of Ko(k) and Fl(k)' For example,

er(k) = (cos® A cosGE) k )

o-Xr
The only difference between 2~ and 3-dimensional tracking systems is that a
component of F,(k) for 3-dimensional tracking is a product of two trigonometric
functions, whereas that for 2—dimensional tracking is one trigonometric function.

A broadcast processing implementation of Equation (54) for
3—dimensional tracking is shown in Figure 5.8; it requires 28 multipliers and 2
CORDIC's. This architecture is similar to the architecture in Figure 5.6, except
that this architecture has 2 CORDIC's instead of 1 CORDIC, and more
multipliers. The 2 CORDIC's and 4 multipliers at the top of Figure 5.8
implerent trigonometric functions. sin€,, cosé A sinBE, and cosBE, given © A and
B, and the multiplications of these trigonmetric functions. This implementation
requires 3 clock cycles to evaluate Equation 5.4: 2 cycles to implement F (k)
and | cycle to multiply Fl(k) and Ko(k).

This architecture can be easily modified 0 be a pipeline processing
architecture in the same way the broadcast processing implementation for

2-dimensional tracking was modified to be a pipeline processing architecture.
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5.1.3  Processor for the Reference Cartesian Coordinates.

A processor for the reference Cartesian coordinates estimates and predicts
a statc vector using Equations (5.5) and (5.6). These two equations require a
coordinate transformation, matrix—vector multiplication, and vector—vector addition.

Equation (5.5) which estimates the state vector
A A A
X(k) = X(k|k-1) + Kk) (Z(k) - h(X(k|k-1))) (5.5)
may be separated into the following three parts:

) Z(k|k-1) = h(X(k |k-1))
b)  AZ = Z(k) - Z(k|k-1)
0 Xk = Xk]k-1) + K(k) AZ

The first part (a) is a coordinate transformation of )A((klk—l). It requires 1
CORDIC for 2-dimensional coordinate transformation, and 2 CORDIC's for
3-dimensional coordinate transformation, as explained in Section 5.1.4. The
computationzl requirements of the coordinate transformation are 1 and 2 clock
cycles for 2- and 3-dimensional tracking systems, respectively. Note that a
CORDIC operation is assumed to take 1 clock cycle.

The second part (b) calculates the correction vector AZ. It requires -
adders for 2-dimenstional tracking, and 3 adders for 3—dimenstional tracking.

The third part (c) of Equation (5.5) may be expanded as follows:
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A A
X(k) = X(k|k-1) + K(k) AZ

x@)] [xGleD ] [k kg
% () % (k|k-1) K, kg
x@ | o | ¥&kD |, k. k. [ Ar ]
y ® y (k|k-1) k, kg | |46
¥ ®) y (k|k-1) A
Ly® | vy ] [k, K
x(k|k-1) | k] kg
% (k |k-1) K, ko
= | XKD A | Ky |+ a0 ] Kxve
y Gk |k-1) oy kyo
 (k[k-1) Koy Ky
| k-1 | kg kg

where AZ is defined as fullows:

Ar

AZ = | Ag

[ correction factor in range

correction factor in azimuth angle

The expansion shows that the state estimate vector f((k) is a sum of the staie
prediction vector f{(k|k-l), the first column vector of K(k) scaled by Ar, and the
second column vector of K(k) scaled by A@.

Figure 5.9 shows a broadcast implementation of the part (c) of Equation
(5.5) for 2-dimensional tracking. The architecture in Figure 5.9 consists of two
columns of six multipliers and one column of six adders with memory. In this
architecture, Ar, A9, and the elements of K(k) from Processor for the coordinate

transformation of the Kalman gain are broadcasted to necessary multipliers. Six
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multipliers on the left implement the muitiplication of the first column of K(k)
by the broadcasted Ar, while six multipliers on the right implement the
multiplication of the second column of K(k) by A8. Six adders with memory in
the middle add two following vectors which are the results of the multiplications

at the two columns of multipliers:

er fkxe
ker kso
ar | %xr| and a0 | %o
kyr kye
k)'rr kYG
k.. k..
| YT | ¥y 6]

to f((k|k-—l). prestored in memory. The sum of this addition is f((k), and it is

stored in the memory of adders. The implementation of equation

A FA)

X(k) = X(kik-1) + K(k) AZ(k)
requires 2 clock cycles, since the multiplication of K(k) and AZ(k) requires 1
clock cycle using two sets of mutlipliers, and the addition of 'f((k]k—l) and the

product, K(k) AZ(k), requires another clock cycle.

The implementation of Equation (5.6), which predicts the state vector
A A
X(k+1 k) = (k)X(k) (5.6)

requires a matrix-vector multipication. However, the implementation of Equation

(5.6) may be simplified using the property of the band transition matrix ¢Xk) in
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the same way as in the implementation of Equation (5.3). Figure 5.10 illustrates
an implementation of Equation (5.6) for 2-dimensional tracking using the property
of the band transition matrix (k). This implementation consists of six processing
clements; each processing element alternatively stores an element of the state
vector X(k) and that of the predicted state vector X(k+l1 |k) and performs
additions and multiplications. The detailted implementation of Equation (5.6) is as

follows:

a) Move the elements of the state vector f((k). stored in processing
elements, upward.

b) Multiply the element already stored in a processing clement by the
corresponding element of (Xk), and multiply the element moved upward in
step (a) by another element ¢xk) that corresponds to it.

c) Add the resuits of the two multiplications in step (b).

The implementation in Figure 5.10 requires only 2 clock cycles on 6
processing elements to perform Equation (5.6). This requirement is very small
compared to that of a conventional implementation of a matrix-vector
multiplication. The conventional implementation requires an order of n (O(n)}
clock cycles on a systolic array of two orders of n {O(nz)l processing elements,
where n is the dimension of an array. Hence, the use of the property of ((k)
reduces the requirement of a matrix—vector multiplication by an order of
magnitude.

Note that (k) and J"“((k) are prestored in the local memory of each
processing element. This can be casily realized, because (¢k) is constant over

time, and ),s\f(k) was calculated and stored at the previous step for Equation (5.5).
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Structures in Figures 5.9 and 5.10 may be combined to form a single
structure shown in Figure 5.11. The structure in Figure 5.11 alternatively provides
the prestored f((k+l Ik} for the calculation of f((k) in Equation (5.5) at the end
of Equation (5.6}, and X(k) for the calculation of X(k+1|k) in Equation (5.6) at
the end of Equation (5.5).

Equations (5.5) and (5.6) can also be implemented in a pipeline manner
as shown in Figures 5.12 and 5.13, using ({28], [29]). The functionality of a
processing element in Figures 5.12 and 5.13 is shown in Figure 5.12 (b).
Processing elements in Figure 5.12 generate the elements of f((k) in a pipeline
manner, as they receive in a skewed manner the Kalman gain matrix K(k) from
the top, the predicted state vector }%(klk—l) from the right, and Ar and A® from
the left. Note that skew énd delay are introduced in input data streams for
synchronization. Similarly, processing elements in Figure 5.13 implement Equation
(5.6) in a pipeline manner. Figures (5.12) and (5.13) can be combined to form an
architecture in Figure 5.14.

The implementations of Equations (5.5) and (5.6) confirm that the
pipeline processing architecture in Figure 5.14 fequires a simpler bus con-.ection,
fewer processing elements, additional hardware to skew the input data stream, and
longer computational time than the broadcast processing architecture in Figure
5.11. In other words, each architecture has advantages and disadvantages over the
other. Hence, the selection of an appropriate architecture should be based on
design criteria. However, the comparison of the structures in Figure 5.11 and 5.14
shows that the broadcast structure in Figure 5.11 is preferrable in this particular
case, because it does not require significantly more hardware than the other

structure, and because it is faster and easier to control than the other.
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5.14 Coordinate Rotation Digital Computer

The matrix Fl(k) in Equation (5.4) requires the evaluation of
trigonometric function, whereas the function h(X(k|k-1)) in Equation (5.5)
requires a coordinate transformation from Cartesian to polar coordinates. The
evaluation of trigonometric functions and coordinate transformations are generally
difficult to implement. However, the coordinate rotation digital computer
( CORDIC ), proposed by Volder [49] and discussed in Section 4.3, is suitable
for a 2-dimensional coordinate transformation and the evaluation of trigometric
functions, since it requires only shifting, adding, subtracting, and the recall of
prestored constants. They are shown in Figures 5.15a and 5.15b respectively.

We have found that Volder's scheme can be extended to a 3—dimensional
coordinate transformation by placing two CORDIC's and 2 scalers in series, as
shown in Figure 5.15¢. Hence, the coordinate transformation, h(X(k |k-1)), for

3-dimensional tracking can be implemented using an architecture in Figure 5.15c.
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Figure 5.10  Prediction of the state X(k+1) in a broadcasting manner
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.2 _The Benefits of coupling T

In the previous section, we have deveioped an architecture for the ECKEF,
utilizing the decoupling technique and special properties in the tracking KF. In
this section, we examine how the computational reduction by the decoupling
technique, discussed in Chapterd, is translated into the reduction in hardware and
computational time requirements.

We consider a matrix-matrix multiplication which is predominant in the
time and measurement updates of the state estimate error covariance matrix P(k)
in the KF. The multiplication of two n-by-n matrices requires n3 multiplications.
In Section 4.3, we have found that in the decoupled KF a n-by-n matrix-matrix
multiplication is separated into m (n/m)-by—(n/m) matrix—matrix multiplications,
and that m (n/m)-by—n/m) matrix-matrix multiplications require m2 times less
number of multiplications than a n-by-n matrix-matrix multiplication.

If we assume that the systolic array, described in Section 3.2.1, is used
for a matrix multiplication, a n-by-n matrix-matrix multiplication requires 3n-2
clock cycles on a n-by-n systolic array, whereas m (n/m)-by-{(n/m) inatrix—matrix
multiplications require (3n/m - 2) clock cycles on m (r/m)-by—n/m) systolic
arrays. A n-by-n systolic array has n? processing tlements, whereas m
(n/m)-by—n/m) systolic arrays have n2/m processing el:ments. Hence, m small
matrix-matrix multiplications require m times less nuraber of processing elements
and approximately m times less number of clock cycles than one large
matix-matrix multiplication. Note that the product of the reduction ratio for the
number of required processing elements and that for the computational time is
m?. It is equal to the reduction ratio for the required number of multiplication,
found in Section 4.3. This means that the computational reduction of m2 is

translated into the reduction of processing elements and clock cycles by a factor
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of m.

Since a matrix-matrix multiplication is predominant in the time and
measuremnent updates of P(k) in the KF, we can apply the finding of this section
to the time and measurement updates of P(k). That is, the decoupling technique
reduces the hardware and computational time requirements for the time and

meausrement updates by a factor of m.

Requi f w tati Tj

In this section, we summarize the requirements of hardware and
computational time for the parallel implementation of the simplified extended KF,
using the decoupling technique and special properties in the tracking KF. We
have so far presented the hardware requirements for each processor separately, as
we discussed the implementation of each KF equation on the proposed
architecrure.

Table 5.1 (a) presents the hardware requirements for each processor and
the total requirements in terms of m and n, where m denotes the dimension of a
tracking system, and n denotes the number of elements in the state vector X(k).
Since this table expresses the hardware requirements in terms of m and n, it can
be used to find the hardware requircments for both 2- and 3-dimensional
tracking systems. The requirements in Table §.1 (a) are based on the assumption
that Equations (5.4), (5.5), and (5.6) are implemented using a broadcast processing
structure. The total hardware requirements are n2/m + m processing elements,
2nm + Zn + | or 2nm + 2n multipliers (2nm + 2n + [ is for 3—dimensional
tracking, 2nm + 2n is for 2-dimensional tracking), n + m adders, 2m - 2
CORDIC's. and n2/rn - n delay elemenis.

To obtain an intuitive understanding on the hardware requirements, the
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hardware requirements for 3-dimensional tracking system with 9 state elements
are presented in Table 5.1 (b). Processing elements in Tables 5.1 (a) and (b) are
much simpler than a boundary processing element in the systolic arrzy for the
QR decomposition described in Section 3.2.2.

The number of clock cycles needed to implement each KF equation is
summarized in Table 5.2 for 3—dimensional tracking. Here we assume that
Equations (5.4), (5.5) and (5.6) are implemented using a broadcast processing
structure, and that multiplication, division, CORDIC calculation, and addition are
all performed within 1 cycle

In Table 5.2, Equation (5.4) is divided into two parts and Equation (5.5)
is divided into three pants. Equation (5.4), which rotates the Kalman gain K (k)

for the LOS frame by the rotation matrix

F, 0 0
0 F, 0
{0 0 F

where F, is defined in terms of sin® and cos@, may be performed in two steps:

a) The calculation of sin® znd cos® in Fl(k) immediately after &k]k-1) is

computed.

b) The rotation of the Kalman gain Ko(k) by the rotation matrix Fl(k).

The precalculation of sin® and cos® allows the rotation of the Kalman gain Ko(k)
to be performed immediately after Ko(k) is available. It eliminates having to wait

for the calculation of sin® and cosO, after Ko(k) is available,
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Similarly, Equation (5.5) may be separated into the following three parts:

a) Z(k|k-1) = h(X(k |k-1))
b) AZ = Z(k)-Z(k|k-1)
¢) X(k) = Xk |k-1) + K(k) AZ.

The transformation of X(k|k-1) in Step (a) and the calculation of AZ in Step (b)
arc precomputed before K(k) is available.

In addition to the concurrent update of the state estimate error covariance
matrices P(k)s for each axis, some of the decoupled ECKF equations can be
performed simultaneously. For example, after K o i5 calculated, the processor for
the LOS coordinates can continue _computing Po(k) and Po(k+l |k) while the
processor for the reference Cartesian coordinates calculates )AC(k) and f((k+l[k).
Figure 5.16 shows how the equations can be performed in parallel according to
their interdependence, and it shows how many clock cycles are needed to
complete one iteration. We find that 16 clock cycles are needed for
3-dimensional tracking.

Figure 5.16 shows that Processor 2 and Processor 3 are left idle after
computing Equations (5.4a) and (5.5a) respectively. Hence, if the implementation
of Equations (5.42) and (5.5a) takes longer than 2 clock cycles each, actually
upto 5 clock cycles, the total computational time requirements would not increase.
Equation (5.5a) is a 3-dimensional coordinates transformation which requires 2
CORDIC operations and 1 scaling operation, and Equation (5.4a) evaluates the
rotation matrix F (k) using 1 CORDIC operation and 1 multiplication. As a
result, the increase in the required time for the implementation of a CORDIC

operation from an assumed 1 cycle to 2 cycles does not affect the total
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computational time required for an iteration of e ECKF. This means that the
CORDIC operation is no longer needed to be performed within one clock cycle,

as assumed before. It is now required to be implemented within 2 clock cycles.



Table 5.1  Hardware requirernents for the simplified ECKF

(a) for m-dimensional tracking with n state elements
(b) for 3—dimensional tracking with 9 state elements

Table 5.1 (a)

159

Equation
number PE. Mult. Add. CORPIC.  Delay
2 2
n n
5.1, 5.2, 5.3 5 o 2n 0 0 i
*

5.4 0 nm+4 m-1 0
5.5, 5.6 n nm-3 m-1 0
e, ‘ ........... n2 .......................................... n2 ..

Total g Hn+m 2nm+2n+1 m 2m-2 5 D

PE. = Processing element
Mult. = Multiplier

Add. = Adder

Delay. = Delay element

* For 2-dimensional tracking, Equation (5.4), and Equations (5.5) and (5.6)
both require nm multipliers, and the total number of required multipliers is

2nm+2n.
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Table 5.1 (b)
Equation
number PE. Mult, Add. CORDIC. Delay.
5.1, 5.2, 5.3 30 183 0 0 18
5.4 0 31 0 2 0
5.5, 5.6 9 24 3 2 0

-----------------------------------------------------------------------
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Table 5.2 Computational time requirements of the parallel implementation of
the simplified ESRCF for 3-dimensional tracking with 9 state elements

Table 5.2

Equation

number

-1
-
8

5.1
5.2
5.3
S5.4a
5.4b
5.5a
5.5b
5.5¢
5.6

NN = N RO
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5.2(6)  753¢4) 7

Processor 1B
(Egs. 51,52,5.3) 1

A
|
l
|
!
|
|
Processor 2 =2 =

(Eq. 5.4 0.44(2) S4b(l)
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f{oceggogg 575k(1) S5c 756 /558
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N

N

Figure 5.16  Parallel computation of the simplified ECKF
(numbers in brackets indicates the number of clock cycles
required for eacn step)
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5.4 _Comparisons

In Section 5.2, we have shown that the hardware and computational time
requirements of a matrix-matrix multiplication, which is predominant in the KF
equations, may be reduced through the use of the decoupling technique by a
factor of m, where m is the tracking dimension. In addition to the decoupling
technique, we have utilized special properties in the tracking KF to simplify the
implementation of the KF.

In this section, we study how effective the use of the decoupling
technique and special properties is in reducing hardware and computational time
requirements by comparing the proposed architecture in this chapter with others.
However, the proposed architecture is difficult to compare with other architectures
in the literature. The main reason is that the proposed architecture in this chatper
is the first parallel implementation of the extended¢ KF, while other parallel
architectures in the literature, including the ones reviewed in Chapter 3,
implement the standard KF.

Although the extended KF and the standard KF are different, they use
the same equations (5.1), (5.2), and (5.3) for the update of the state estimate
error covariance matrix P(k) and for the calculadon of the Kalman gain matrix
K(k). The comparison of architectures for thesee eguations can give an idea how
effective the use of the decoupling technique and special properties is. Equations
(5.1), (5.2), and (5.3) require more computation than the remaining equations.

We compare the proposed implementation of Equations (5.1), (5.2), and
(5..3) with the architecture for the standard covariance KF, developed by
Papadourakis and Taylor, and described in Section 3.3.1, since the proposed
architecture in this chapter is for the extended covariance KF, not for the

extended SRCE. Papdourakis and Taylor have simplified an implementation of the
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standard covariance KF by reformulating the KF equations. Their implementation
consists of n-by-n processing elements and requires more than 16n clock cycles

to update P(K) and to calculate K(k), where n denotes the number of elements in
X(k).

2
The proposed architecture in this chapter requires r% + m processing

elements and 16 clock cycles, where m denotes the dimension of tracking. A
comparison of the two architectures confirms that the decoupling technique
reduces the required number of processing elements by a factor of approximately
m, as described in Section 5.2. The use of special properties does not affect the
required number of processing elements, but it helps to reduce computational
time. The application of special propertics converts matrix—vector multiplications
in the KF equations into vector—vector multiplications which require much less
number of clock cycles to implement. The combined use of the decoupling
technique and special properties is found to reduce the computationa! time
requirements by a factor of greater than n.

A further comparison of the two architectures shows that the data flow in
the proposed architecture is much simpler than that in the Papadourakis-Taylor
architecture. This leads to simpler control logic requirements for the architecture
developed in this chpater.

In conclusion, the parailel implementation of the extended covariance KF
in this chapter is superior to the implementation by Padourakis and Taylor. This
superiority clearly indicates the benefits of utilizing the decouping technique and

special properties in the tracking KF.

2.5 __Summary
In this chapter, we have developed the first parallel implementation of the
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extended covariance Kalman filter for tracking applications. We have utilized ths
concepts of pipelining and parallel processing to minimize computational time and
hardware requirements, bearing in mind the desirable properties of parallel
architectures such as regularity, modularity, and local interconnection.

In designing the architectures of ECKF, we have made extensive use of
the decoupling technique and special properties in matrices encountered in the
tracking KF. The ECKF, simplified by the use of the decoupling technique and
special properties in the tracking KF, are well suvited for parallel architectures for

the follewing reasons:

a) Computationally demanding time and measurement updates of the state
estimate error covariance matrix P(k) for the ECKF are performed in
parallel for each axis.

b) Computational requirements of the ECKF are reduced

c) The transformation of the Kalman gain matrix from the LOS to reference
Cartesian coordinates, which cormpensates for the decoupling technique, is

casy to implement. as shown in Section 5.1.2.

The reduction in computational requirements is achieved by the separation. of a
coupled P(k) into a number of smaller decoupled matrices, the elimination of an
matrix inversion, and the simple evaluation of the measurement matrix Ho(k) for
the decoupled ECKF 2t each filtering timne instant

The sparse nature of the measurement equation H(k) reduces
matrix-vector multiplications in Equations (5.1) and (5.2) o vector-vector
multiplicaticns, which are easier to implement than matrix-matrix multiplications.

Furthermore, the use of the sparse, band nature of transition matrix (k) makes it
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possible to multiply two n-by-n matrices in Equation (5.3), which nomally takes
an order of n steps on an architecure with rx2 muitipliers and n2—n delay
elements, in an order of 1 steps. The letter n denotes the number of elements in
the state vector X(&k). In the proposed implementation, this simplified
multiplication does not require any additional hardware except for a bidirectional
internal bus connecting processing elements, as shown in Figure 5.5.

We have developed both pipeline and broadcast processing architectures
for Equations (5.4), (5.5), and (5.6), utilizing the sparse, band nature of transition
matris (k). The pipeline processing architecture where the data are passed
through processing elements one at a time is found to require a longer
computational time, more delay eiements, and fewer processing elements than the
broadcast processing architecture where the data are broadcasted to all the
necessary processing clements. The selection of 2n implementation should be
based on design criteria. However, the broadcast processing implementation seems
more suitable to achieve fast processing at a small cost of additional hardware.

The proposed implementation of Equation (5.6) in a broadcast processing
manner with the exploitation of the special properties of dik) requires an order of
1 clock cycles on an order of n processing elements. However, if Equation (5.6)
is implemented without using tne properties of $Xk), the implementation of
Equation (5.6) would require an order of n clock cycles on two orders of 1
processing elements. The use of the properties cf {(k) reduces the required
number of processing elements and that of clock cycles by an order of
magnitude.

The total hardware requirements for the implementation of the complete
extended covariance KF with Equations (5.4), (5.3}, and (5.6) being implemented

in a broadcast processing manner are n2/m+n+m processing elements, 2nm+2n+1
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multipliers, m adders, 2m-2 CORDIC's, n2/rn—m delay elements; specifically, for
3—dimensional tracking, the hardware requirements are 39 processing elements, 73
multipliers, 3 adders, 4 CORDIC's, and 18 delay elements. The computational
time requirement for cach iteration is 16 clock cycles.

We have shown that the decoupling technique reduces the hardware and
computational time requirements for time and measurement updates of P(k) by a
factor of approximately m. A comparison of the architecture developed in this
chapter with the Papadourakis-Taylor architecture shows that the combined use of
the decoupling technique and special properties in the tracking KF reduces the
hardware and computational time requirements for the time and measurement
updates and calculation of the Kalman gain by factors of m and greater than n,

respectively.



CHAPTER 6
PARALLEL IMPLEMENTATION OF THE EXTENDED SRCF

The computation of the Kalman filter equations with finite word-length
arithmetic may lead to numerical problems due to cumulative roundoff or
truncation errors. As described in Chapter 2, the KF has been reformulated in
terms of the square root of the state estimate error covariance matrix to improve
the numerical propertics of the KF [4] [25]. This reformulated KF is referred to
as the square root covariance filter (SRCF).

The SRCF has twice the effective precision of the standard KF, but it is
more computationally demanding than the standard KF. When the improved
numerical properties are needed and additional computational requirements are
acceptable, the SRCF has been chosen over the standard covariance KF in various
applications. Particularly, for a tracking application, the extended SRCF has been
chosen over the extended covariance KF. However, as in the extended covariance
KF, the higher computational dsmand of the extended SRCF has limited its use
to some extent.

In Chapter 5, we have developed a parallel implementation of the
extended covariance KF with the considg:ration of desirable characteristics for
parallel architectures such as high degree of pipelining and parallelism. In this
chapter, we develop a parallel architecture for the extended SRCF for tracking

applications. There is more pressing need for parallel implementation of the

168
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extended SRCF than that of the extended covariance KF, since the extended
SRCF requires more computation than the extended covariance KF.

As in Chapter 5, we develop a parallel architecture for the simplified
extended SRCF through the use of the decoupling technique and special properties
of matrices in the tracking KF. This simplified extended SRCF requires much less
computation than the standard extended SRCF. Furthermore, there is more
inherent parallelism in the simplified extended SRCF than the standard extended
SRCF. .

The decoupled extended covariance Kalman filter and the decoupled
extended SRCF differ in that the former updates the error covariance matrix
Po(k)' and the latter updates the square root of Po(k). However, they use the
same equations to rotate the Kalman gain K k) from the LOS frame to the
reference Cartesian frame, and to make a state estimation and prediction. As a
result, in developing an architecture for the decoupled extended SRCF, we use
processors developed in Chapter 5 for the equations common to both the
decoupled extended CKF and the decoupled extended SRCF, and we develop a
new processor for uncommon equations.

In Section 6.1, we describe the proposed architecture. In section 6.2, we
study the effects of the decoupling technique on the parallel implementation of
the QR decomposition to gain a better understanding on the benefits of the
decoupling technique in a parallel architecture. In Section 6.3, we summarize the
hardware and computational time requirements of the proposed architecture. In
Section 6.4, we compare the proposed architecture with others. Finally, in Section

6.5, we present the summary of this chpater.
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6.1 _Architecture Description
Like the extended CKF, the extended SRCF equations (4.33-4.38) split
into three parts in Section 4.4 by the decoupling technique. Comespondingly, the

architecture for the decoupled extended SRCF cquations may be split into 3 parns,

as follows:

2) The processor for the LOS frame computes So(k|k-1), So(k) and Ko(k).

as shown by
T T T
STt fie-1) } - q, | Stk=1) ot } (6.1)
0 U_(k-1)
)
[ T
F (k) G (k) V©(k) 0
o o
o sT | ™ ST (kjk-DH (k) ST(k |k-1) o
o o o/ )
_ T T
K, &) = G (k) / F &) (6.3)
b) The processor for the Coordinate transformation computes K(k) from

Ko(k) by using the Jacobian transformation:

1 0 0
Kk)y=|0 F1 0 Ko(k) (6.4)
0 o F,
c) The processor for the reference Cartesian coordinate framic computes f((k}

and X(k+1|k), as shown by
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X(k) = Rek [k-1) + K(k) ( Z(k) - 2Kk [k-1)) ) 6.5)
Rik+1 k) = dik) K(k) (6.6)

The processor for the LOS frame, that for the Coordinate transformation
of Ko(k), and that for the reference Cartesian coordinates will be hereafter
referred to as Processor 1, Processor 2, and Processor 3, respectively.

A block diagram of the proposed architecture is shown in Figure 6.1. It
consists of 3 processors whose functions were described above, and it is very
similar to the block diagram of Figure 5.1. However, differences will appear in
implementing Processor 1, due to functional differences between Processor 1 for
the ECKF and that for the ESRCF.

Processor 1 implements Equations (6.1) and (6.2) which require
orthogonal triangularizations, and Equation (6.3) which requires a division of a
vector by a scalar number. As a result, Processor 1 needs to perform two
orthogonal upper triangularizations and one division of a vector by a scalar
number. As discussed in Section 3.2.2, the orthogonal upper triangularization
which is referred to as the QR decomposition may be performed by using various
algorithms. However, the Givens rotation using the systolic array described in
Section 3.2.2 is preferrable for the QR decomposition because of its simplicity
and regularity,

Two QR decompositions can be implemented using one or two QR
systolic arrays. However, sharing one systolic array for two QR decompositions is
difficult, because the delay elements and multipliers necessary for Equation (6.1)
have to be somehow bypassed in calcuiating Equation (6.2).

A triangular systolic array for the QR decomposition, described in Section

3.2.2, assumes that an input matrix to be orthogonally upper triangularized enters



172

the systolic array from the top row to the bottom row. We find that this systolic
array can be easily modified to deal with an input matrix entering the systolic
array in reverse order, from the bottom row to the top row. Boundary and
internal cells of this modified systolic array have slightly different functionalities
than those in Section 3.2.2. The functionalities of these boundary and internal
cells are described in Figure 6.2.

Figures 6.3 and 6.4 depict a block diagram of Processor 1 using two QR
systolic arrays represented by triangles; systolic arrays in Figure 6.3 assume that
an input matrix enters the systolic array botton row first, whereas systolic arrays
in Figure 6.4 assume the opposite direction of data flow of an input matrix.
Since in Figure 6.3 the data enter the systolic array from the top and leave from
the bottom, the bottom of one systolic array is connected to the top of the other,
and the bottom of the latter systolic array is connected to the top of the former
systolic array; the two systolic arrays in Figure 6.3 are thus connected by two
unidirectional buses. In contrast to data flow in Figure 6.3, the data in Figure ¢4
enter the systolic amray from the top and leave from the top again, suv that only
one bidirectional bus is required to connect the tops of the twe systolic arrays.

An architecture, based on a unidirectional bus, requires longer
interconnection than an architecture with a bidrectional bus, because the former
needs two buses and the latter requires only one unidirectional bus. However, the
unidirectional bus is usually easier to control than the bidirectional bus. It should
be noted that an architecture, based on a unidirectional bus, requires a
unidirectioral interconnection among processing elements, and vice versa for an
architeccure based on a bidirectional bus. We wili call a processor with a
bidirectional bus Processor 1A, and a processor with a unidirectional bus

Processor 1B hereafter.
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We describe Processor 1A and Processor 1B in detail in Section 6.1.1
and 6.1.2 respcetively. We then describe the rest of the implementation for the

decoupled ESRCF in Section 6.1.3.
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Block diagram of the ECKF
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6.1.1 Processor 1A for the LOS frame

Processor 1A updates the square root So(k) of the state estirnate error
covariance matrix Po(k) and calculates the Kalman gain Ko(k) for the LOS frame
by implementing Equations (6.1), (6.2), and (6.3). As shown in Figure 6.3,
Processor 1A consists of two QR systolic arrays, where two systolic arrays are
designed such that an input matrix enters bottom row first. We use a systolic
array on the top for Equation (6.2), and one at the bottom for Equation (6.1) in
Figure 6.3.

Due to similarities among the processing for the x-, y-, z-axes, the
impiementation for only the x-axis is described. We first consider the
implementation of Equation (6.2), which is a measurement update equation of
So(kﬁk—l):

) T
Fo(l-.) Go(k) V0 (k) 0

= QI (6.2)

T T T T
0 So(k) S0 (k|k—1)H0(k) So(klk—l)

It is expressed in detail for the x-axis below:

f11 811 B2 &3 | o, 0 0 0

R R T P R O
0 0 S99 S37 1 0 0 s.-:,2 552
00 0 sy | 00 0 sp |

Figure 6.5 shows an implementation of Equation {(6.2) for the x-axis.
This implementation is based on a QR systolic array with 10 processing elements.

Figure 6.5 also shows the flow of an input data matrix; the input matrix enters
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the systolic array bottom row first in a skewed manner. Note that in the input
data stream nonzero elements are preceded by a number of zero elements,
corresponding to the zero elements at the bottom left side of the input matrix.
We may eliminate the first two rows of zeroes in the input data stream, if we
ensure that the elements 552, and 553 would be weated as if the two rows of
zeroes were not eliminated.

In the QR decomposition, a boundary cell in the systolic amray, used in
Processor 1A, generates 0 and 1 for cos® and sin® respectively and passes them
to the next cell on the righthand side, when it receives ¢ as input. Hence, the
first two rows of zeroes can be eliminated, if the cells receiving 552 or 353 from
the top somehow receive 0 and 1 from the left, when they recieve 352 and 553.
This can be achieved by making internal cells generate 0 and 1 for cos9 and
sinB, respectively, upon "reset” which takes place right before the input matrix
enters the systolic array.

If we assume that at the end of the calculation of Equation (6.1) the
matrix So(kjk—l) is stored in the systolic array for Equation (6.1), as shown in
Figure 6.6, then the data flow, shown in Figure 6.5, can be realized by
connecting two systolic arrays for Equations (6.1) and (6.2), as shown in Figure
6.7. Note that in Figure 6.7 three delay clements, maiked by dotted squares, are

added before the systolic amray for Equation (6.2). These delay eclements are

11’
352, 553) is fed intc the systolic array. A multiplexer is also added to feed a,

employed to feed the element SII to the systolic array before the row (G oS

into a processing element at ths top left comer.
Since the result of Equation (6.2) is stored in the systolic amray as in

Figure 6.8, we find that Eguation (5.3):
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T T
K& = Gy KI/F k),

can be performed by reading out GZ(k) and Fz(k) from the systolic array and
dividing G1(k) by F1(k). In other words, K (k) is calculated by reading out the
top row of the systolic array and dividing three right hand side elements of the
row read by the left most element. This process which requires 3 dividers is

shown in Figure 6.9.

We now consider the implementation of Equation (6.1):

ST+ | _ 2 sTa) 6T k)
0 Ul (k)

(6.1)

It consists of the matrix—matrix multiplication of S;I;(k) and q)z(k), followed by
the QR decomposition. A matrix-matrix multiplication can be performed in
various ways. We can use the band matrix property, as in Section 5.1.1. The

multiplication of S'(I;(k) and ¢T(k) is shown below in detail:

's“ o1 S3g 1 00
T...T _

So(k)d) k) =190 S99 S35 T 1 0
00 sy 01 p
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bj1 by b31]
= | by byy by,
bj3 by3 bsg

A column of the output matrix is a combination of two columns of SZ(k).
Hence, Sz(k) which is stored in the systolic array at the end of Equation (6.2)
can be multiplied by ¢T(k), as shown in Figure 6.10 (a). In Figure 6.10 (a), the
QR systolic array is connected to three delay elements represented by dotted
squares, and three arithmetic units represented by circles with a cross inside. The
delay elements synchronize the elements of SI(k) for a matrix-matrix
muitiplication, and the multipliers perform a matrix-matrix multiplication. The
functionality of an arithmetic unit is presented in Figure 6,10 (b). This
implementation requires an order of n less number of clock cycles and processing
elements than the conventional implementation for a matrix-matrix multiplicatior,
as shown in Section 5.1.1. The latter n denotes the number of state elements in
the state vector f((k).

After the multiplication of S1(k) and ¢T(k), the QR decomposition is

performed on a matrix shown in detail below:

by by by

b2 by by

sla) ¢Ta) bi3 by3 Dby
U'(I)‘(k) TR Y31

0 uy uy

-0 0 usq
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The elements of SI(k) ¢§(k) are denoted by bij's. This QR decomposition can be
implemented, as shown in Fig 6.11 where not only SI(k)¢T(k) but also Uz(k)
are fed into the systolic array.

However, we can use the upper triangular shape of U;l;(k) to eliminate
feeding U:(k) into the systolic array. When the QR decomposition is applied to
it, an wpper triangular matrix does not change, because it is already upper
triangular. Hence, we can prestore U;l;(k) at the beginning of filtering and feed
only the product of SI(k) and ¢T(k), as shown in Figure 6.12. It reduces the
computational time by three clock cycles. Note that UI(]:) is assumed constant,
which is usually valid in typica! tracking environments. However, if U'(];(k) is not
constant, jt has to be loaded at every filtering instant. This QR decomposition
requires 6 processing elements. _

At the end of the calculation of Equation (6.1), S\(k+1]k) is stored in
the systolic array, as shown in Figure 6.6. The assuraption made earlier in
describing the implementation of Equation (6.2) is validated.

We can now develop a complete implementation of Processor 1 by
combining architectures in Figures 6.7, 6.9, 6.10 and 6.12. Figure 6.13 shows the
resulting implementation. The systolic array for the QR decomposition in Equation
(6.2) is shown on the top of Figure 6.13, while the systolic array for Equation
(6.1) is shown at the bottom. The implementation of Equation (6.3) is also shown

besides the systolic array for Equation (6.2).
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Figure 6.5 Implementation for Equation (6.2)
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Figure 6.6 Contents of the systolic array for Equation (6.1) at the
completion of Equation (6.1)
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x5

Figure 6.7 Connection of two systolic arrays for Equation (6.2)



185

Figure 6.8 Contents of the systolic array for Equation (6.2) at the
completion of Equation (6.2)
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Figure 6.9 Caiculation of Ko(k). Equation (6.3)
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6.1.2 Processor iB for the LOS frame

Like Processor 1A, Processor 1B implements Equations (6.1), (6.2), and
(6.3) to update the square root S 0(k) of the state estimate error covariance matrix
Po(k]k—l) and to calculate the Kalman gain Ko(k) for the LOS frame. The
difference between Processor 1A and Processor 1B is that two QR systolic arrays
in Processor 1B assume that the top row of an input matrix enters the systolic
array first, whereas those in Processor 1B assume the opposite. We use a systolic
array on the top of Figure 6.4 for Equation (6.2), and one at the bottom for
Equation (6.1).

The implementation of Equation (6.2) below is first considered:

F_(k) vik) o |
=Q | T T T 6:2)
o sT S, (k[k-DH (k) S Lk |ke-1)

G, (k)

It is rewritten below in full for the x-—axis:

fi1 811 812 813 o, 0 0 0

0 s11 sy sy _q | fuofu osaos
0 0 sy s o0 s 53
0 0 0 sy 0 0 0 sy

Figure 6.14 shows an implementation of Equation (6.2) with the flow of an input
data matrix. This implementation which consists of 10 processing elements shows

that, in contrast to the implementation in Figure 6.5, the elimination of any row

of the input matrix from the input data stream is impossible, because of the

reversed direction of the input data flow.
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With the assumption that the systolic array for Equation (6.1) stores
S 0(k+l|k) at the end of Equation (6.1), as shown in Figure 6.15, the required
data flow, illustrated in Figure 6.14, is realized when systolic arrays for Equations
(6.1) and (6.2) are connected through 6 delay elements, as shown in Figure 6.16.
The validity of the assumption regarding S oL+l |k) will be shown later.

Since the systolic array for Equation (6.1) stores only an upper triangular
portion of S 0(l(+]l |k), as shown in Figure 6.15, we need to gencrate zeroes
corresponding to the zero elements at the bottom left of the matrix on the
righthand side of Equation (6.2). It can be accomplished by making boundary
cells generate zeroes after they pass out their contents.

As in Processor 1A, Eguation (6.3), the calculation of the Kalman gain
Ko(k) can be performed by reading out Fo(k) and Go(k) stored in the systolic
array for Equation (6.2) at the end of the calculation of Equation (6.2), and
dividing Go(k) by Fo(k). Its implementation which consists of 3 dividers is
illustrated in Figure 6.17.

We now consider the implementation of Equation (6.1):

sTaet1 |1y | sTa) 6T )
Q| T, 6.1)
(4]

0
Equation (6.1) has two phases: a matrix—matrix multiplication and the QR
decomposition.  The matrix-matrix multiplication in Equation (6.1) can be
performed by combining two columns of Sz(k) for each column of the output
matrix, as in Section 6.1.1. Figure 6.18 shows an implementation of the
multiplication of Sz(k) and ¢T(k). This implementation requires three arithmetic

units whose function is decribed in Figure 6.10 (b), but it does not require any
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delay elements, in contrast to the implementation in Figure 6.10 (a). The zero
elements in S'g(k). not stored in the systolic array, but needed in multiplying
Sz(k) and ¢z(k), can be generated by the boundary celis after the content of the
boundary cells are passed out.

Figure 6.19 shows an implementation of the second phase of Equation
(61), the QR decomposition. In Figure 6.19, the product of S.(k) and ¢ (k),
represented by the bij's, enters the systolic array before U;I;(k). because the
systolic array is designed to receive first the bottom row of an input matrix to
be triangularized. This means that Uz(k) has to go through the QR decomposition
after the product of SZ(k) and ¢E(k) goes through, and that U'(I;(k) carmot be
prestored in the systolic array for Equation (6.1). However, U;I;(k) can be
prestored in the systolic array for Equation (6.2), and be fetched after S?;(k) is
read from the systolic array. This means that U'(l;(k) will go through the
arithmetic units for the multiplication of Sz(k) and ¢(k), when U'(I;(k) is fetched
from the systolic array for Equation (6.2) to that for Equation (6.1). Hence, for
U'g(k) to go through the arithmetic units intact, the multiplication constants "a"
and "b" for arithmetic units in Figure 6.10 (b) should be set to 1 and 0
respectively, while U;l;(k) goes through the arithmetic units.

Note that Sz(k+1 |k) is stored in the systolic array at the end of
Equation (6.1), as shown in Figure 6.15. The assumption made ecarlier in
describing the implementation of Equation (6.2) is validated.

After studying necessary structures for all the pams in Processor 1B, we
can now present a complete implementation of Processor 1B by combining
Figures 6.16, 6.17, 6.18, and 6.19. The resulting implementation is shown in
Figure 6.20. The systolic array for Equation (6.2) is shown on the top of Figure

6.20, while that for Equation (6.1) is shown on the bottom. As mentioned earlier,
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this architecture requires bidirectional interconnections between two systolic arrays

and among processing elements in contrast to the architecture in Figure 6.13.
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Figure 6.15  Systolic array for Equation (6.1) at the completion of
Equation (6.1)
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Figure 6.17  Calculation of Ko(k), Equation (6.3)
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6.1.3  Processors for the Coordinate Transformation of the Kalman Gain and for
the Reference Cartesian Frame

The decoupled ESRCF uses the same equations as the decoupled ECKF
to compute a state estimate, a prediction and the Kalman gain K(k) from K oK)
In other words, Equations (6.4), (6.5), and (6.6) for the decoupled ESRCF are
identical to the corresponding cquations (5.4), (5.5), and (5.6) for the decoupled
ECKF.

In designing a parallel architecture for the extended SRCF, the same
design principles sheuld be followed as in designing a parallel architecture for the
extended covariance KF. The architecture for the decoupled ECKF- has been
developed to reduce the required hardware and computational time, bearing in
mind desirable characteristc for parallel architectures. Hence, the architecture for
the decoupled ECKF equations (5.4), (5.5), and (5.6) should be emnigyed to
implement the decoupled ESRCF equations (6.4), (6.5), and (6.6).

However, there have been two types of implementation for the decoupled
ECKF equations (5.4), (5.5), and (5.6): broadcast and pipeline processing
architectures. For Equation (5.4) which transforms the Kalman gain from the LOS
to reference Cartesian coordinates, Figure 5.6 shows a broadcast processing
implementation, whereas Figure 5.7 shows a pipeline processing architecture.
Similarly, for Equations (5.5) and (5.6), Figures 5.11 and 5.14 show broadcast
and pipeline processing architectures respectively. As discussed in Section 5.1.2,
the pipeline architecture requires a simpler data bus connection and fewer
processing elements than the broadcast architecture. However, the former
architecture needs to introduce a skew into data streams for the synchronization
of incoming data streams, and requires more computation than the latter. The

broadcast processing architectures in Figures 5.6 and 5.14 seem more suitable
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than the pipeline processing architectures, because the former architectures are
fast, easy to control, and do not require any time delay element. Yet, the

selection of type of processing should be based on design criteria.

.2 Benefits of th coupling Techni

In this section, we examine how the use of the decoupling technique
reduces hardware and computational time requirements for the QR decomposition.
The computationally demanding QR decomposition is a major part of the time
and measurement updates of the square root Pln(k) of the state estimate error
matrix P(k).

We assume that the QR systolic array, described in Section 3.2.2, is used
for the QR decomposition. The QR decomposition of a n-by-n matrix requires
3n-2 clock cycles on a n-by-n triangular array which consists of n(r+1)/2
processing elements: n boundary and n(n—~1)/2 internal processing elements. The
QR decomposition of m decoupled (n/m)-by—(n/m) matrices requires (3n/m)-2
clock cycles on m (n/m)-by—(n/m) triangular systolic arrays. Each systolic array
has (n/m)(n/m+1) processing elements: (n/m) boundary cells and (n/m)(n/m-1)
internal cells. The total number of processing elements in m systolic arrays is
n(n/m+1). It consists of n boundary cells and n{n/m-1) internal cells.

A comparison of the requirements for the QR decomposition of a n-by-n
array and those for m (n/m)-by—(n/m) arrays shows that the QR decomposition of
m decoupled matrices requircs approximately m times less processing elements
and computational time than that of 1 n-by-n matrix. However, the numbers of
boundary processing elements for the above two cases are the same.

The product of the reduction ratio for the number of processing elements

and that for the computational time is mz, and it is greater than the overall
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2andmi.n

computational reduction ratio which was found to be between m
Section 4.4.1. This can be explained by the fact that the deccupling technique
reduces only the number of intemal cells, not that of computationally intensive

boundary processing elements.

t w tati

In this section, we study the requirements of hardware and computational
time for the proposed parallel implementations of the extended SRCF. Tables 6.1
(a) and 6.1 (b), and 6.2 (a) and 6.2 (b) summarize hardware requirements for
Processors 1A and 1B respectively. Tables 6.1 (a) and 6.2 (a) are for a general
tracking environment where the dimension of tracking is denoted by m, and the
number of state elements is n, whereas Tables 6.1 (b) and 6.2 (b) are for a
3-dimensional tracking with 9 state eiements. In these tables, Equations (6.1) and
(6.2) are broken into two parts to separate the requirements for a multiplication
from those for the QR decemposition in each equation.

A comparison of Tables 6.1 (a) and 6.1 (b) shows that Processors 1A
and IB require the same number of arithmetic units except for delay elements,

2 2

. n .
Processor 1A requires e delay elements, whereas Processor 1B requires (—%—n—

+ _n2_) delay eclements. For a typical tracking where n=9, m=3, the former
architecture requires 27 delay elements, whereas the latter requires 18 delay
clements. The reason Processor 1A requires more delay elements than Architecture

2 1s twofold:

a)  The delay elements in Processor 1B are shared both in the time and
measurement updates due to the bidirectional bus.

b) The delay elements which synchronize S'g(k—l) for the multiplication
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S:‘E(k—l) and Q)E(k—l) in Processor 1A are not necessary in Architecture 2.

Tables 6.3 (a) and (b), and 6.4 (a) and (b) present the total hardware
requirements for the parallel implementation of the extended SRCF, using
Processors 1A and 1B respectively. Tables 6.3 (a) and 6.4 (a) express
requirements in terms of m and n, whereas Tables 6.3 (b) and 6.4 (b) are for a
3—dimensional tracking with 9 state elements. These tables assume that Equations
(6.4), (6.5), and (6.6) are implemented using a broadcast processing structure, as
shown in Figures 58 and 5.14. The implementations of the ESRCF using
Processors 1A and 1B require the same number of arithmetic units except for
delay elements, as expected.

We now determine computational time requirements for the
implementation of Equations (6.1), (6.2), and (6.3) on Processors 1A and 1B. It
may be carried out by counting the number of clock cycles it takes for the
elements in the top row of a systolic array to go through the QR decomposition
and to finally reach the bottom row of the other systolic array. This process is
shown in Figures 6.21 and 6.22 for Equations (6.2) and (6.1) respectively, The
numbers on the right hand side of Figure 6.21 indicate the number of clock
cycles needed by the elements in the top row of the systolic array for the QR
decomposition in Equation (6.1) to reach a particular row in the process of
computing Equation (6.2). Figure 6.21 shows that it takes 7 cycles to complete
Equation (6.2).

Similarly, the numbers in Figure 6.22 indicate the number of steps
required by the elements in top row of the systolic array for Equation (6.2) to
reach a particular row in the process of computing Equation (6.1). Figure 6.22

shows that Equation (6.1) requires 8 clock cycles to implememt.
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Equation (6.3), which calculates the Kalman gain for the LOS frame
using the results of Equation (6.2), can be performed while Equation (6.1) is
executed after the completion of Equation (6.2). Hence, no additional clock cycle
is required to implement Equation (6.3).

The numbers of clock cycles required to perform Equations (6.1), (6.2),
and (6.3) on Processor 1B can be determined in the same way as those required
to implement Equations (6.1), (6.2), and (6.3) on Processor 1A. They are shown
in Figures 6.23 and 6.24. Theses figures show that the implementation of
Equations (6.1) and (6.2) takes 10 cycles each. That is, Vavations (6.1) and (6.2)
take longer to implement on Processor 1A than on Processor 1B. This is due to
the fact that in the implementation of Equations (6.1) and (6.2) using Processor
1A the first two rows of zeroes are eliminated in an input data stream for the
measurement update, and that U(k), which takes 3 cycles to feed, is prestored in
the systolic array for the time update.

Since the decoupled ESRCF equations (6.4), (6.5), and (6.6) are the same
as the decoupled ECKF equations (5.4), (5.5), and (5.6) respectively, and they are
implemented on the same architecture as the decoupled ECKF equations, the
computational requirements for Equations (6.4), (6.5), and (6.6) are the same as
those for Equations (5.4), (5.5), and (5.6). Hence, Table 5.2 which summarizes
the numbers of cycles needed to implement Equations (54), (5.5), and (5.6) may
be used for Equations (6.4), (6.5), and (6.6).

In implementing the complete decoupled ESRCF, parallelism can be
further explored by implementing more than one independent operations
simultancously. For example, as in the parallel implementation for the ECKF, the
processor for the LOS coordinates can continue computing S 0(k) and S 0(1c+1 k)

after calculating Ko(k). while the processor for the reference Cartesian coordinates
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calculates X(k) and X(k+1 k).

Figures 6.25 and 6.26 show how the decoupled ESRCF can be performed
in paralisl on Architectures 1 and 2. In these two figures, Equations (6.4) and
(6.5) are assumed to be divided into two and three parts, respectively, in the
same way as Equations (5.4) and (5.5) for the simplified ECKF are divided in
Section 5.2. These divisions minimize computational time requirements by
reducing the waiting period. Figures 6.25 and 6.26 indicate that for 3-dimensional
tracking one iteration of the decoupled ESRCF requires 15 clock cycles on

Architecture 1, and 20 clock cycles on Architecture 2.
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Table 6.1 Hardware Requirements for Processor 1A
(a) for m—dimensional tracking with n state elements
(b) for 3-dimensional tracking wiht 9 state elements

Table 6.1 (a)

Equation Number of operations per iteration
number PE. Mult. Div. Mux. Delay.
n.n
n.n n.n
6.2.1 0 0 -1 0 0
6.2.2 st (@2) g 0 m n
6.3 0 0 n 0 0
e ST 5
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Table 6.1 (b)

Equation Number of operation per iteration

number PE. Mult. Div. Mux. Delay.
6.1.1 0 9 0 0 9
6.1.2 18 0 0 0 9
6.2.1 0 0 2 0 0
6.2.2 30 0 0 3 9
6.3 0 0 9 0

-----------------------------------------------------------------------
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Table 6.2 Hardware Requirements for Processor 1B
(a) for m dimensional tracking with n state elements
(b) for 3—dimensional tracking with 9 state elements

Table 6.2 (a)

Equation Number of operations per iteration

number PE. Mult. Div. Mux. Delay.

6.1.1 0 n 0 0 0

n.n n.n

6.1.2 E(E"'l) 0 0 0 Z(E-i-l)

6.2.1 0 0 m—1 0 0

6.2.2 s (&2) 0 0 m 0

6.3 0 0 n 0 0
.................. I
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Table 6.2 (b)

Equation Number of operation per iteration

number PE. Mult. Div. Mux. Delay.
6.1.1 0 9 0 0 0
6.1.2 18 0 0 0 18
6.2.1 0 0 2 0 0
6.2.2 30 0 0 3 0
6.3 0 0 9 0 .0

-----------------------------------------------------------------------
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Total Hardware Requirements for the ESRCF

(using Processor 1A)
(a) for m-dimensional tracking with n state elements
(b) for 3—dimensional tracking with 9 state elements

Table 6.3(a)

PE.

Mul.

Div.
Add.
Cordic
Mux.
Delay.

nz
= +2n4m
m

2am+n+1 (for 3-dimensional tracking)
2nm+n (for 2—-dimencional tracking)
n+m-1

2

Bl:’MB E’ E




Table 6.3(b)

PE.
Mul.
Div.
Add.
Cordic
Mux.
Delay.

48
64
11
12

4

3
27

213
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Total Hardware Requirements for the ESRCF

(using Processor 1B)

(a) for m—dimensional tracking with n state elements

(b) for 3—~dimensional tracking with 9 state elements

Table 6.4(a)

PE.

Mul.

Div.
Add.
Cordic
Mux.
Delay.

2
= +2ntn

2nm+n+l(for 3—dimensional tracking)
2nm4n (for 2-dimensional tracking)
n+n-1

n+a

202

m
2
n n
)




Table 6.4(b)

PE.
Mul.
Div,
Add.
Cordic
Mux.
Delay.

48
64
11
12

4

3
18
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6.4___ Comparisons

The two architectures developed in this chapter are efficient parallel
implementations of the extended SRCF. We now compare these architectures with
others. Since the architectures so far published in the literstare are for either the
standard SRCF or the standard covariance KF, and the architectures developed in
this chapter are for the ESRCF, it is possible to compare only the architectures
for Equations (6.1}, (6.2), and (6.3), which are common to both the ESRCF and
SRCF. Although, this comparison is still limited, it can still give a good idea
how efficient the architectures developed in this chapter are. Equations (6.1),
(6.2), and (6.3) require more computation than the remaining equations.

We compare the proposed architectures in this chapter with the Sung-Hu
architecture for the standard SRCF which has been reviewed in Section 3.3.2.
Sung and Hu have explored parallelism by separating the KF equations into two
loosely dependent groups. One of these two group performs measurement and
time updates on the square root of the state estimate error covariance matrix,
whereas the another group estimates state vectors )A((k) and f((k[k-—l). They have
employed for the time update a n-by-n triangular systolic amray. For the
measurement update, they have employed a trapezoidal systolic array of m rows
of processing elements with n+m processing elements on the top row, and n+l
clements at the bottom, utilizing the spars nature of an inpvi matrix. The letters
m and n denote the tracking dimension and the number of state eclements
respectively. In Sung and Hu's implementation, the processing of Equations (6.1)
and (6.2) requires 4n+m—1 clock cycles together.

The architectures developed in this chapter require m (n/m)-by—(n/m)
triangular systolic arrays for the time update, m (n/m + 1)}by—-(nm + 1)

triangular systolic amrays for the measurement update, and 15 or 20 clock cycles
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for 3-dimensional tracking depending on the type of an implementation.

A comparison between the Sung-Hu architecture and the architectures
developed in this chapter on the hardware requirements for the time update
confirms that the deccupling technique reduces the number of processing elements
by a factor of approximately m. However, for the measurement update, the
Sung-Hu architecture requires nm + m(m+1)/2 processing elements, and the
architectures proposed in this chapter require (n+m)(n/m + 1)/2 processing
elements. These requirements are difficult to compare, for their relationship
changes with m and n. Nevertheless, for 3-dimensional tracking with 9 state
clements, The Sung-Hu architecture is found to require 33 processing elements,
whereas the architectures developed in this chapter is found to require 30
processing elements. These requirments are comparable. This means that Sung and
Hu's use of the sparse nature of an input matrix in the measurement update is as
effective as the use of the decoupling technique in this chapter. For both the
time and measurement updates, the architectures developed in this chapter require
overall m/2 times less number of processing elements than the architecture of
Sung and Hu for the time and measurement updates. The reduction factor of m/2
is obtained as an average of the reduction ratio for the time update and that for
the measurement update. Specifically, for 3-dimensional tracking, the reduction
ratio is 3/2.

For computational time requirements, Sung and Hu's architecture requires
4n+m-1 clock cycles, which corresponds to 38 clock cycles for 3-dimensional
tracking with 9 state elements, whereas the architectures proposed in this chapier
require 15 or 20 clock cycles depending on the type of implementation. The less
computational time requirement for the architectures developed in this chapter is

due to the simplification by the use of the decoupling technique, the sparse
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nature of Ho(k), and the sparse, band nature of ¢K). The decoupling technique
allows m decoupled (n/m)-by—n/m) covariance matrices to go through the QR
decomposition in parallel. Since the required number of clock cycles for the QR
decomposition is directly proportional to the size of an input matrix, the parallel
QR decomposition of m small matrices requires less time than the QR
decomposition of one big matrix.

In sunmary, in comparison to Sung and Hu's implementation of
Equations (6.1) and (6.2), the use of the decoupling technique and special
properties in tracking systems reduces hardware requirements by a factor of m/2
and computational time requirements by a factor of 2.5 (=38/15) or 1.9 (=38/20)
for 3-dimensional tracking.

The extended SRCF is known to exhibit better numerical characteristics,
and to be more computationally complex than the extended covariance KF [4]
[25]. We compare the parallel implementations of these two filters. Table 6.5
summarizes the hardware requirements of the two parallel implementations on the
basis of Tables 5.1 and 6.1. We find that the parallel architecture for the ESRCF
requires overall slightly more arithmetic units than that for the ECKF: n more
processing elements, n less multipliers, n+m+1 more dividers, m more adders, m
more multiplexors, and n more delay elements.

In addition to the quantitative comparison, we compare the complexity of
processing elements in both architectures. The processing elements in the
architecture for the ECKF perform multiplications and pass data to neighboring
processing elements, whereas some of the processing elements, boundary cells, in
the architecture for the ESRCF perform square root operations. Since the square
root operation is much more complex than a simple multiplication, the processing

elements in the architecture for the ESRCF are more complex than those for the
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ECKF.

The square root operation not only increases the complexity of a
processing element implementing it, but also takes longer to implement it. The
actual length of one clock cycle in the parallel implementation of the ECKF,
which is defined as the longest time duration required to perform appropriate
operations by any type of arithmetic unit, is longer than the actual length of one
cycle in the parallel architecture for the ECKF. Hence, even though the parallel
implementations of the ESRCF require either 15 or 20 clock cycles for one
iteration, which is close to 16 clock cycles required by the parallel
implementation of the ECKF, the parallel implementation of the ESRCF requires
more time than that of the ECKF.

In summary, the parallel implementation of the ESRCF which is
numerically superior to the ECKF requires overall slightly more arithmetic units
than that for the ECKF. Processing elements in the implementation of the ESRCF
are more complex than those for the ECKF, and the actual duration of a clock

cycle in the implementation of the ESRCF is longer than that for the ECKF.
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Table 6.5 Comparison of the Hardware Requirements of the
ECKF and the ESRCF

ECKF ESRCF ESRCF - ECKF
2 2
PE. n n
E +n+m E +2n+m n
Mul. 2nm+2n+1 2nm4n+1 ~N
Div. 0 n+mo-1 n+m-1
Add. it n+m n
Cordic 2m-2 2m-2 0
Mux. 0 m m
2 2
Delay. n n m
m D m
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6.5__Summary

In this chapter, we have developed the first parallel implementations of
the extended SRCF for tracking applications. The ESRCF is numerically superior
to the ECKF, but it is computationally more demanding than the ECKF. We have
maximized the throughput rate of the architectures through the use of pipelining
and parallel processing, bearing in mind the desirable characteristics of parallel
architectures. We have employed for implementation the simplified ESRCF by the
application of a decoupling technique and special properties in matrices in the
tracking KF. The reason for choosing the simplified filter is that, as shown in
Chapters 4 and 5, in the simplified ESRCF, the computationally demanding time
and measurement updates of the state estimate error covariance T atrix may be
performed for each axis in parallel, and the computational requirements may be
reduced significantly by the use of the sparse nature of Ho(k) and the sparse,
band nature of gk).

The simplified ESRCF and the simplifed ECKF use the same equations to
transform the Kalman gain, and to make a state estimation and preditction. The
architectures developed for the ECKF in Chapter 5 have been designed with the
same design principles as the ESRCF. Hence, in this chpater, we have developed
architectures for only uncommon equations and have used architectures developed
in Chapter 5 for the common equations to both filters.

The uncommon equations, Equations (6.1), (6.2), and (6.3) require for
each axis two QR decompositions and one division of a vector by a scalar
number. We have found in Section 3.2.2 that the systolic array developed by
H.T. Kung [15] is an ideal parallel implementation for t's QR decomposition.
This systolic array assumes that the input mairix enters it from the top row to

the bottom row. We have found that the modifications on the functionalities of
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processing elements allow the input matrix to enter the systolic array in the
oppositie direction.

Based on these two types of systolic arrays, we have developed two
architectures for Equations (6.1), (6.2), and (6.3). These two architectures consist
of two QR systolic arrays for time and measurement updates, a number of delay
clements to synchronize input data streams, and a number of multipliers for
simplified matrix-matrix multiplications.

The architecture with H.T. Kung's systolic arrays requires two
unidirectional buses to connect two systolic arrays, whereas the architecure with
the modified systolic arrays requires only one bidirectional bus. The
interconnection using two unidirectional buses is longer than that using one
bidirectional bus, but the former interconnection is generally easier to control than
the latter. Furthermore, the architecture with two unidirectional buses is found to
require less clock cycles and more delay elements than the other architecture,
Hence, the selection of an architecture should be based on design criteria such as
the computational requirements, and implementational complexity.

We have shown that the use of the decoupling technique reduces the
hardware and computational time requirements of the QR decomposition in the
updates of the square root S(k) of the state estimate covariance matrix P(K) by a
factor of approximately m, where m is the tracking dimension. This reduction is
due to the separation of the updates of the coupled S(k) into the updates of m
decoupled So(k)'s.

In the development of architectures for Equations (6.1), (6.2), and (6.3),
the use of the sparse, band nature of the transition matrix (k) has simplified an
implementation of a multiplication of S.(I;(k) and q;{k) in Equation (6.1). The

required number of clock cycles for this equation and that of processing elements
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are reduced by an order of n { O(m) ). Similarly, the sparse nature of the
measurement matrix H 0(lv;) has reduced the number of elements to be nullified in
the QR decomposition for Equation (6.2).

A comparison of the proposed architectures for a time update in this
chapter with the Sung-Hu architecture confirms that the decoupling technique
reduces the number of processing elements by a factor of m. However, for the
measurement update, the proposed architecture and Sung-Hu architecture requires
a comparable number of processing clements, because Sung-Hu's use of the
sparse nature of an input matrix is as effective as the decoupling technique. For
the time and measurement updates the proposed architecture requires overall m/2
times less number of processing elements than the Sung-Hu architecture.

A comparison of the computational time requirements between the
proposed architecture and the Sung-Hu architecture shows that the former
architecture requires 2.53 or 1.9 times less computational time than the latter for
the updates of So(k) and calculation of K 0(lc). This is due to the simplification
by the combined use of the decoupling technique and special properties in the
tracking KF. Although the application of the special properties does rot contribute
to a reduction in the number of processing eclements, it decreases the
computational time by simplifying matrix multiplications.

We have found that the proposed architecture for the ESRCF which is
numerically superior to the ECKF requires slightly more arithmetic units than that
for the ECKF. Processing elements in the architecture for the ESRCF are found
to be more complex than those for the ECKF, and the actual length of a clock
cycle in the implementation of the ESRCF is longer than that for the ECKF.,



CHAPTER 7
CONCLUSIONS

The Kalman filter has been used in various applications such as
communication, control, and target tracking. However, its high computational
demand has limited its use to some extent. As digital integrated circuit
technology becomes more accessible and cost effective, interest in the parallel
implementation of the Kalman filter will continue to increase.

In this thesis, we have developed the first parallel implementations of the
extended covariance Kahuan filter end extended square root covariance filter for
radar tracking applications. The extended covariance KF expresses the accuracy of
iis state estimates in the form of the state estimate error covariance matrix P(k),
whereas the extended SRCF expresses the accuracy in the form of the square root
P”z(k) of P(k). The extended SRCF has better numerical properties than the
extended covariance KF, but the former filter is more computationally demanding
than the latter.

We have utilized the concepts of pipelining and parallel processing to
minimize computational time and hardware requirements with the consideration of
desirable properties of parallel architectures such as regularity, modularity, and
local interconnection. When the pipeline processing architecture has a significant
delay and requires a large number of delay elements, the parallel processing

architecure with global interconnection has been employed.
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We have made zxtensive use of a decoupling technique in designing the
architectures of the ECKF and the ESRCF, after we have extended the use of the
decoupling technique to the ESRCF.

The use of the decoupling technique reduces the computational

requirements of the ECKF and those of the ESRCF in the following ways:

a) Eliminate the need for a matrix inversion in the ECKF.
b) Decouple the time and measurement updates of the state estimate error
covariance matrix P(k) in the ECKF, and those of the square root

P24y of P(k) in the ESRCF.

In the decoupled ECKF and ESRCF, the transformation of the Kalman gain
matrix Ko(k) from the line-of-sight (LOS) to reference Cartesian coordinatc‘s is
required to compensate for the decoupling technique. We have found that the
transformation of Ko(k) requires a significantly small number of operations.

As a result of the decoupling technique, the number of operations for the
time and measurement updates of P(k) in the ECKF is reduced by a factor of

m2, and the number of operations for pl/2

(k) in the ESRCF is reduced by a
factor of between m2 and m, where m denotes the tracking dimension. The
reason for these different reduction ratios is that the decoupling technique reduces

3

an order of n~ operations by a factor of m2 and an order of n2 operations by a

factor of m. The letter n denotes the number of state elements in the state
vector.

In the development of a parallel architecture, parallelism is exploited to
reduce computational time requirements by allowing more than one operations to

be performed in parallel. In the decoupled KF, the updates of m deccupled
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Po(k)'s and those of m Pén(k)'s may be performed for each axis in parallel. The
use of the decoupling technique not only reduces hardware requirements but also
computational time requirements.

We have shown that the parallel implementation of the updates of m
decoupled Po(k)'s require approximately m times less processing elements and
clock cycles than that of the updates of one coupled P(k). The product of the
reduction ratio for the number of processsing elements and that for the clock
cycles is the same as the reduction ratio for the number of operations by tle
decoupling technique. This means that in the development of a parallel
architecture the computational reduction ratio of m2 is converted into the
hardware requirement reduction ratio of m and the computational time reduction
ratio of m,

Simlarly, we have found that in the parallel implementation of the
updates of pl/ 2(k) the decoupling technique results in the reduction of the
number of processing elements and that of the number of clock cycles by a
factor of approximately m. The product of the reduction ratio for the number of
processing elements and that for the number of clock cycles is m2. This product
is greater than the reduction ratio for the number of operations which has been

found to be between rn2

and m. This can be explained by the fact that the
number of only internal processing elements, not that of computationally intensive
boundary processing elements, is reduced by the decoupling techinque.

We have fourd that the transformation of the Kalman gain, which
accounts for the decoupling of the state estimate error covariance matrix Pk), is
easy o implement.

The performance of the decoupled extended KF is generally comparable

to that of the coupled extended KF in typical tracking situations, unless the
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condition for the decoupling technique does not hold well. The required condition
is that the orientation of a LOS frame does not vary significantly between
filtering instants. We have shown that the performance of the decoupled ECKF is
generally comparable to that of the conventional ECKF in two typical tracking
examples of the Precise Radar Navigation system. Furthermore, we have found
that the decoupled ECKF is more robust to errors in target modeling than the
standard ECKF in the Precise Radar Navigation system, since its decoupled nature
reduces the propagation of the effects of inaccurate modeling.

We have utilized properties of matrices in the tracking KF to reduce
computational requirements and to simplify implementations. The sparse nature of
the measurement matrix H(k) simplifies matrix—vector operations. For the extended
covariance KF, the overall reduction ratio for the required number of
multiplications and that of additions by the use of both the decoupling technique
and special properties are found to be 24 and 13 respectively, for 3-dimensional
tracking with 9 state elements. For the extended SRCF, the overall reduction
ratios are %4 and 7.5 for the number of multiplications and additions
respectively. One of the reasons why the reduction ratios for the ECKF are
greater than those for the ESRCF is that the decoupling technique reduces the
number of operations for the updates of P(k) in the ECKF by a factor of rn2
and that for the ESRCF by a factor of between m2 and m. Another reason is
that in the ECKF the computationally intensive mawrix inversion is eliminated by
the decoupling technique, whereas in the ESRCF the matrix inversion is already
avoided by the use of forward substitution in the coupled ESRCF. The simplificd
matrix-vector operation by the use of the sparse nature of H 0(k) is much easier
to implement than a standard matrix—vector operation.

The use of the sparse, band nature of the transition matrix e(k) simplifies
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matrix-matrix operations. The multiplication of two n-by-n matrices usually takes
an order of n steps on an architecture with n? multipliers and n®-n delay
elements. However, the matrix-matrix multiplication, q)(k)P(k)chT(k), in the ECKF
has been implemented using the sparse, band nawre of ¢(k) without any
additional hardware except for a tidirectional bus connecting processing elements.
The implementation of the multiplication, (PL2&)T¢T(k), in the ESRCF usir
the sparse, band nature of (k) requires an order of n multipliers and an order of
n? delay elements, which are still much less than an order of m2 multipliers and
delay elements.

The parallel implementation of the ECKF and that of the ESRCF,

developed in this thesis, consist of three processors:

a) Processor for the LOS coordinates.
b} Processor for the coordinate transformation.

c) Processor for the reference Cartesian coordinates.

Both the parallel architecture for the ECKF and that for the ESRCF use
the same processors for the coordinate transformation and the reference Cartesian
coordinates. In the implementation of the ECKF, the processor for the LOS frame
for each axis consists of a (n/m)-by-(n/m) systolic array, and a nuamber of
mulipliers and delay elements, whereas in the implementation of the ESRCF the
processor for the LOS frame consists of two QR systolic arrays, multipliers, and
delay elements. The reason for using a 2-—dimensional systolic array for the ECKF
and two QR systolic arrays for the ESRCF is that for time and measurement
vpdates the ECKF requires a number of matrix-matrix multiplicutions, whereas

the ESRCF requires two QR decompositions.
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We have developed two different architectures for the updates of P‘l)fz(k)
in the ESRCF. One of them is based on the QR systolic array developed by H.T.
Kung [14). This systolic array assumes that the input matrix enters the systolic
array in an order from the top row to the bottom. Another architectur is based
on the modified QR systolic array which assumes the input matrix to enter the
systolic array in the opposite direction.

The architecture with HT. Kung’s systolic arrays requires {wo
unidirectional buses, whereas the architecture with the modified systolic arrays
requires only one bidirectional bus. The interconnection using two unidirectional
buses is longer than that using one bidirectional bus, but the former
interconnection is generally easier to control than the lateer. Furthermore, the
architecure with two unidirectional buses is found to require less clock cycles and
more delay elements than the other architecture. The selection of an architecture
should be based on design criteria such as the computational requirements, and
implementational complexity.

The parallel implementation of the ECKF, developed in this thesis,
requires (n2/m)+n+m processing elements, 2nm+2n+1 mulitipliers, m adders, 2m-2
CORDIC's, and (nzlm)-m delay elements. Specifically, for 3-dimensional tracking
with 9 state elements, the hardware requirements are 39 processing elements, 73
multipliers, 3 adders, 4 CORDIC's, and 18 delay elements; the computational time
requirement for each iieration is 16 clock cycles.

The proposed parallel implementation of the ESRCF, using H.T. Kung's
systolic arrays, requires (n2/m)+2n+m processing elements, 2nm+n+1 multipliers,
n+m-l dividers, n+m adders, 2m-2 CORDIC's, n+m multiplexers, and n2/m delay
elements. For 3-dimensional tracking with 9 state elements, the requirements are

48 processing elements, 64 multipliers, 11 dividers, 12 adders, 4 CORDIC's, 12
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multiplexers, 27 delay elements; this architecture takes 15 clock cycles to
implement one iteration.

The parallel implementation of the ESRCF, using the modified systolic
arrays, requires the same number of arithmetic units except for delay elements. It
requires (n2/2m)+(n/2) delay elements, which is 18 elements for 3-dimensional
tracking with 9 state elements. This architecture takes 20 clock cycles to
implement one iteration.

A comparison of the proposcd parallel implementation of the ECKF and
those of the ESRCF shows that the former requires slightly less arithmetic units
than the latter. Processing elements in the architecture for the ESRCF, especially
boundary processing elements, are found to be more complex than those for the
ECKF. The architecture for the ECKF and those of the ESRCF take a
comparable number of clock cycles for an iteration of the KF. However, one
clock cycle in the implementation of the ESRCF is longer than that for the
ECKF. The selection of an implementation should be based on design criteria,
The ESRCF which is numerically superior to the ECKF is implementationally
more complex than the ECKF.

A comparsion of the proposed architecture for the ECKF and the
Papadourakis—Taylor architecture [36] confirms that the decoupling technique
reduces the number of processing elements for the time and measurement updates
of P(k) by a factor of m. The proposed architecture requires greater than n times
less computational cycles for each iteration than the Papadourakis~Taylor
architecture. This is due to the combinded use of the decoupling technique and
special properties in the tracking KF,

A comparison of the proposed architecture for the ESRCE and that of
Sung-Hu [47] shows that the proposed architecture for the time update of Pl"2 k)
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requires m times less number of processing elements than the Sung-Hu
architecture. This is due to the simplificaion by the decoupling technique.
However, for the measurement update, they require a comparable number of
processing elements. This means that Sung-Hu's use of the sparse nature of an
input matrix is as effective as the use of the decoupling technique. For
3-dimensional tracking with 9 state elements, the proposed architecture requires

2.53 or 1.53 tmes less computational time than Sung—Hu architecture for the

updates of So(k).



APPENDIX A
Cordinate Rotation Digital Computer

In this appendix, we discuss the Coordinate Rotation Digital Computer
(CORDIC) algorithm. It was developed in 1956 by Volder to perform coordinate
transformations and to compute trigonometric functions [49]. The CORDIC
algorithm is based on an iterative scheme for vector rotations.

A vector Xi' (xi,yi)T, having polar coordinates (ri,ei) may be rotated to a

T . .
new vector Xi +1° (X010 +1) , and scaled in magnitude as follows:

X = -0 | x. (A.1)

where the sign o; is either 1 or -1 based on the direction of rotation and Si is a
decreasing sequence of arbitrary positive constants representing the amount of
rotation at each iteration. The angular and radial components of X, ,, 6, , and
r.,p are related to the angular and radial components of Xi’ Gi and L, as

follows:

9i+1 = Bi + o (A.2)

L= * ki (A.3)
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where
o = tan_lsi (Ad)
ko= (1+ 5i2)1/2 (AS)

The n rotations of a vector X o With angular and radial components 8,

and T, result in a vector X " with @ h and I defined as follows:

Gn = 90 + o (A.6)
rn = rO * k (A.T)
where o is a total rotation ongle
n-1 n-l -1
o= Z—O oo = Z—O o; tan” (3,) (A.8)
1= 1=
and k is a known scale constant
n-1 n-1
K=T k=T 0 +38)? (A9)
i=0 i=0

We introduce an auxiliary variable z and update it at each iteration as

follows:

Z.1 =% + ciai (A.10)

After n iterations, z accumulates the sum of rotation angles:
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z, = z, + o (A.11)

To explain how the CORDIC alogrithm works, we now describe how to
evaluate tan—l(—yolxo). The computation of tan_l(—yolxo) is needed in a
coordinate transformation, as explained in Section 4.3. The value of tan'l(—yolx o)
is the negative of a bearing angle of (x o’yo) in the polar coordinates. Hence, we
can calculate the value of tan"l(-—y ofxo) by finding the amount of rotation
necessary for (x,:¥,) to lie on the y-axis.

The initial vector Xo‘ (xo,yo), is rotated through a sequence of angles Q
until X = (x,,0). The direction of rotation is decided at each step i such that
(% +1Yi+1) is closer to the y-axis than (xi,yi). At the end of n rotations, since
z,= 0 and z_ accumulates the sum of rotation angles, z q Stores the value of
tan” -y fx ),

The processing of Equation (A.1) seems to require mulitiplications.
However, if 5i is defined as the integral power of 2, the multiplication in
Equation (A.1) can be replaced by a shift operation which is much simpler than
a multiplication. The CORDIC algorithm with 8, defined as 2! requires only
additions and shift operations to perform  coordinate transformations and

trigonometric functions.



APPENDIX B

PRAN System Simulation Program

In this appendix, we describe a software package simulating the Precise
Radar Aided Navigation (PRAN) system. In the PRAN system, a ship rotates its
radar beam continuously at a constant speed as it moves along its path. The
radar measures the location of a reflector in terms of range and bearing angle
upon the detection of the reflector. These measurements are used to estimate the
position of the ship with the a priori knowledge of the position of the reflector.
The PRAN simulation software simulates the ship's movement along the path and
the radar's scan of a beam. When the reflector is located under the radar's beam,
the program reports the detection of the reflector and generates a set of
mesurements in terms of the range and beanng angle of the reflector.

The PRAN system simulation software is designed to be flexible to
handle verious configurations of reflectors and a multitude of ship's dynamics. It
receives as input the PRAN system configuration parameters such as the location
of reflectors, a ship's path, and information on the ship's dynamics. This
simulation package may be used in defining system parameters for the PRAN
system such as the optimal location of reflectors and in evaluating the
performance of tracking filters.

In Section B.1, we first describe how the ship's motion and the scan of a

beam are simulated, and then we present the way to reduce the number of
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sweeps of a beam. In Section B.2, we summarize the simulation program in the

form of pseudo code.

B.l Simuiation M
B.1.1  Ship's motion

There are generally two types of ship's path: straight line and tum. In a
straight line path, a ship either moves at a speed which fluctuates around the
predefined constant speed or accelerates with randomness around the predefined
constant acceleration.

The ship's motion along the straight line is simulated using the following
mathernatical models:

a) for a ship moving at a constant speed with fluctuation

[x(k)} [1 T T2 [x(k—l)J {OJ
Xk)= | %) | =|0 1 T x(k-1) | + {0 | ul=1)
x(k) 00 0 x(k—1) 1

where

velocity at time k

x (k)
Xk) = | %)
accelerationat time k

positionat timek
x'(k)

T is a state update period, and u(k~1) is a white Gaussian noise sequence

modelling the fluctuation of velocity.

b) for a ship moving at a constant acceleration with fluctuation

x(k)} 1 T T2 7] [ xk-1) 0
XK= |2k [=]0 1 T xk-1) | + | 0| uwk-1)
%°(k) 00 1 | [x‘(m) 1J
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where u(k-1) represents the fluctuation of acceleration.

Similarly, the tuming motion may be modelled as follows:

x(k) = R cos Bt

y(k) = R sin ot

where x(k) and y(k) denote the x- and y-positions in the frame of reference

whose origin is at the center of turn, R denotes the tumning radius, and 0 denotes

a turning speed.

B.1.2 Representation of a beam pattern

In this secﬁcn. we study th;: representation of a beam pattern and the
simulation of the rotation of a beam. The beam used in the PRAN system is a
fan beam. We assume that the slavation beamwidth of the beam used in the
PRAN system is 180°. Although the beamwidth cannot be infinitesmal in reality,
we assume that the beamwidth is infinitesmal for simplicity in representing a
beam pattern. We will explain in the next section how to account for this
assumption in sirnulation,

Figure B.1 shows a beam in the ship's frame of reference whose z-axis
is defined as the vertical axis going through the center of a ship , the x-axis is
defined as the line connecting from the stem of the ship to bow, and the y-axis
is the line going through the starboard to port. This beam may be represented by

two \;ectors, V1 and V2. as shown in Figure B.l.
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Figure B.1 Representation of a bean in the ship's frame of reference

The scan of a beam may be implemented in simulation by the rotation of
the two vectors, V, and V,, about the z-axis in the ship's frame of reference.
Simliarly, the effects of pitching and rolling are represented by the rotation of a

beam about the y~ and x- axes respectively.

B.1.3  Estimation of detection time

It would be time consuming if we simulate all the sweeps and check at
cach sweep whether the reflector is located. Instead, if we can exactly predict a
detection time, we would need to simulate a sweep only when the reflector is
detected. However, it is not possible to predict an exact detection time because
of the random nature of ship's motion and the effects of pitching and rolling.

Nevertheless, we have found the way to estimate the range of sweeps
where the reflector is lickely located using the knowledge of ship's dynamics and
radar characteristics. As a result, we nesd to look for a reflector only in the
limited area. This eliminates the need to simulate all the unnecessary sweeps and

consequently reduces the number of sweeps to be made.
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There are usually more than one beam sweep at which the echo signal
from a reflector has a significant amount of energy. The reason for this is that
the beamwidth is not in reality infinitesmal. It is contrary to the assumption in
the PRAN simulation program. The encrgy in each echo varies depending on the
beam direction with respect to the reflector. However, the echo energy is
maximal when the beam's boresight is closest to the reflector. For this reason, we
define in the PRAN system simulation program a detection time as the instant at

which the beam is closest to the reflector.



Psen 0

initialization
do i = 1 to total number of realizations
initialize the position and velocity of the ship

initialize the radar's viewing angle

do j = 1 to total number of scans

update the list of visible reflectors

do k = 1 to number of visible reflectors

detected = falsq

while detected = false

/* look for a reflector in the limited area */
update the position and velocity of the ship
generate the beam pattern

check if reflector is detected

if detected then

generate measurements (range, bearing angle)

detected = trye

update the position and veiocity of the ship

update the radar's viewing angle for the next reflector
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