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ABSTARACf

The fiJst parallel implementations of the extended covariance Kalman fIlter

(ECKF) and the extended square root covariance filter (ESRCF) for tracking

applications are developed in this thesis. The decoupling technique and special

properties in the tracking KF are explored to reduce computational requirements

and to increase parallelism.

The use of the decoupling technique to the ECKF ~liminates the need for a

matrix inversion, and results in the time and measurement updates of m

decoupled (njm)-dimensional state esimate error covariance P (k)'s instead of Io

coupled n-dimensional covariance matrix P(k), where m denotes the tracking

dimension and n denotes the number of state elements.

Similarly, the use of the decoupling technique to the ESRCF separates the

time and measurement updates of 1 coupled Pl/2(k) into those of m decoupled

Pl/2(k)'so .

The updates of m decoupled matrices are found to require less computation

than those of I coupled matrix, and they may be perfonned for :ach axis in

pwallel.

In the parallel implementation of time and measurement updates of P(k) in

the ECKF, the updates of m decoupled Po(k)'s are found to require approximately

m times less number of processing elements and clock cycles than the updates of

I coupled P(k). Similarly, the parallel implementation of the updates of m

decoupled P~/2(k)'s in the ESRCF requires approximately m time less number of
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processing elements and clock cycles than that for 1 coupled Pl/2{k).

The transformation of the Kalman gain which accounts for the decoupling of

P(k) and pl/2(k) is found easy to implement.

The sparse nature of the measurement matrix and the sparse, band nature of

the transition are explored to simplify matrix multiplications.
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CHAPTER 1

INTRODUCfION

1.1 Filtering and the Kalman Filter Alg?rithm

The concept of filtering is fundamental to all forms of communications

and signal processing. The signals which we receive are very often cOffilpted by

noise. For example, in a conversation over a noisy radio channel, the

communication is degraded by the high level of receiver noise. In this case, we

filter out the noise and estimate what has been said, based on the received noisy

voice. Filtering can be viewed as the minimization of the effects of noise

contained in a received signal. The term "filter" is lJsed to describe a device or

algorithm designed to extract a signal. It is implemented in the form of physical

hard.ware or computer software.

One type of filter is a circuit or system with frequency selective

behaviour [40], [46]. An example is a filter in radio receivers that amplifies

signals in one frequency band and attenuates unwanted noise in another. This

type of filter is based on the postulate that the useful signals lie in one

frequency band and unwanted noise lies in another.

However, the type of filter of interest in this thesis is the Kalman filter.

The Kalman filter (KF) is an algorithm that extracts information of interest from

a set of noisy data. It is based on the a priori statistical, linear, mathematical

representation of system dynamics and measurement equations
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