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ABSTRACT

This thesis presents new results in I.he researchareaofmultiple input/multipleoutput (MIMO) controller

design for chemical processes. The topics considered in titis work are: robustness properties oflinear MIMO

controller designs; the design ofapproximate inverses for linear MIMO controllers; disturbance prediction in

model predictive controller designs; and I.he development ofa :i<lnlinear inferential feedback control strategy

for semi-balCh copolymerization processes.

A review of robustness analysis procedures based on the use of norm bounded mismalCh region.:: in the

frequencydomain is presented. These theoriesareconsideredforuse in the assessmentoftherelativerobustness

trends of different MIMO Internal Model Controller designs. Based on I.hese theories, three approaches to

analyzing robustness properties are considered: the use ofa condition number and singular value analysis on

the approximate model inverse; singularvalue analysis assuming unstructured norm bounded uncertainty; and

new procedure based on disk uncertainties in each element of the transfer function matrix that requires the

use of structured singular value theory. The problems of conservatism with each approach as a result of

unrealistic uncertainty characterizations is discussed, :md new results are provided. The -approaches are

compared and evaluated with different MIMO Internal model controller designs. Compared to previously

proposed procedures for relative robustness assessment, new proposed procedure based on disk unr.ertainties

in each element of the transfer is shown to reduce conservatism in analyzing controller design robustness

trends.

A general method for oblaining least squares optimal inverses for multivariable Imemal Model

Controllers (IMCs) is presented. An analytical solution is arrived at using a well known method for optimally

factorizing discrete transfer function matrices. The procedure automatically hanctles unbalanced,

noninvertible, and nonsquare systems, and provides controllers with excellent performance and robustness

properties. These IMC designs are compared with some of the more traditional IMC designs where tunable

diagonal filters are combined with fixed but usually suboptimal inverses. Robustness properties are

investigated in simulated mismatch case studies, and with the robustness assessment procedures described

above.
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A general procedure is proPOfed for improving disturbance regulation in MlMO Dj'numic Mattix

ControUers (DMC). The method makes use ofautoregressive, integrated moving average disturbnr.ce models

to provide disturbance predictions, and requires only asimple modification to the DMCalgorithm. The method

proposed is far more computationally efficient and simple to apply relative to other procedures propesed.

Examples are presented were the proposed modification leads to a substantial improvement in D~iC

disturbance regulation.

Astrategy is proposedfor estimatingand controllingproperties ofstyrene!buLadiene rubber (SBR) latex

producedinasemi-balchreactor. The nonlinearcontrol strategy features 3 nonlinearstateestimator,3 nonlinear

open-loop feedforward compensator, and a linear feedback controller to conect for cnors in the fccdforwnrd

controlactions. Inamvingatanonlinearstateestimator. threeapproachcs. extended Kalman filtering, extended

Kalman mtering with global reiteration, and a nonlinear optimization approach were considered. The second

approach was found to be most effective and was therefore adopted. The importance of introducing sufficient

meaningful nonstationary states is discussed in order to have biased-frce state estimates when nonideal

conditions exisL Using the knowledge of modelled chemical reaction mechanisms, open-loop fccdforward

actions are proposed based on establishing conditions for maintaining fIXcd instantaneous copolymcr

properties. These open-loop/feedforward policies establish quasi-steady state conditions on the instantaneous

copolymer properties to be controlled. This allows for the application of simple feedback control stralegies

to correct for ~nors remaining after the open-loop/feedforward actions. The approaches considered for

feedback controller design were conventional paired PI. a dccoupling and linearizing mullivariable

transfonnation approach, and model-based optimal controller design. The second approach was found to be

the most convenient for use in the nonlinear inferential feedback control scheme. The pcrfonnance of the

overall nonlinear inferential feedback design strategy proposed in this work is demonstrated lO be robusllo

model mismatch, disturbances, and state irJtialization enors. In all cases investigated, copolymer properly

control is greatly improved over a fIXed operating policy determined off-line. The proposed strategy is simplc

and effective alternative to computationally intensive on-line optimization procedurcs, and has the potential

for greatly improving product reproducibility and quality control in polymer manufacturing industries.
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