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ABSTRACT

This thesis presents new results in the research area of multiple input/multiple output (MIMO) controller
design for chemical processes. The topics considered in tnis work are: robustness properties of linear MIMO
controller designs; the design of approximate inverses for linear MIMO controllers; disturbance prediction in
model predictive controller designs; and the development of a sunlinear inferential feedback control strategy
for semi-batch copolymerization processes.

A review of robustness analysis procedures based on the use of norm bounded mismatch regions in the
frequencydomain is presented. These theoriesare considered foruse in the assessmentof the relative robustness
trends of different MIMO Internal Model Controller designs. Based on these theories, three approaches to
analyzing robustness properties are considered: the use of a condition number and singular value analysis on
the approximate model inverse; singular value analysts assuming unstructured norm bounded uncertainty; and
new procedure based on disk uncertainties in each element of the transfer function matrix that requires the
use of structured singular value theory. The problems of conservatism with each approach as a result of
unrealistic uncertainty characterizations is discussed, and new results are provided. The approaches are
compared and evaluated with different MIMO Internal model controller designs. Compared to previously
proposed procedures for relative robustness assessment, new proposed procedure based on disk unceriainties
in each element of the transfer is shown to reduce conservatism in analyzing controller design robustness
trends.

A general method for obtaining least squares optimal inverses for multivariable Intemnal Model
Controllers (IMCs) is presented. An analytical solution is arrived at using a well known method for optimally
factorizing discrete transfer function matrices. The procedure automatically handles unbalanced,
noninvertible, and nonsquare systems, and provides controllers with excellent performance and robustmess
propertics. These IMC designs are compared with some of the more traditional IMC designs where tunable
diagonal filters are combined with fixed but usually suboptimal inverses. Robustness properties are
investigated in simulated mismatch case studies, and with the robustmess assessment procedures described

above.



A general procedure is propored for improving disturbance regulation in MIMO Dynamic Matrix
Controllers (DMC). The method makes use of autoregressive, integrated moving average disturbar.ce models
toprovide disturbance predictions, and requires only a simple modification to the DMC algorithm. The incthod
proposed is far more computationally efficient and simple to apply relative to other procedures propesed.
Examples are presented were the proposed modification leads to a substantial improvement in DMC
disturbance regulation.

A strategy is proposed for estimating and controlling properties of styrene/butadiene rubber (SBR) latex
produced inasemi-batch reactor. The nonlinear control strategy features a nonlinear state estimator, anonlincar
open-loop feedforward compensator, and a linear feedback controller to correct for errors in the feedforward
control actions. Inarmrivingatanonlinear state estimator, three approaches, extended Kalman filtering, extended
Kalman filtering with global reiteration, and a nonlinear optimization approach were considered. The second
approach was found to be most effective and was therefore adopted. The importance of introducing sufficient
meaningful nonstationary states is discussed in order to have biased-frec statc estimates when nonideal
conditions exist. Using the knowledge of modelled chemical reaction mechanisms, open-loop feedforward
actions are proposed based on establishing conditions for maintaining fixed instantancous copolymer
properties. These open-loop/feedforward policies establish quasi-steady state conditions on the instantancous
copolymer properties to be controlled, This allows for the application of simple feedback control strategics
to correct for ermors remaining after the open-loop/feedforward actions. The approaches considered for
feedback controller design were conventional paired PI, a decoupling and lincarizing multivariable
transformation approach, and model-based optimal controller design. The sccond approach was found to be
the most convenient for use in the nonlinear inferential feedback control scheme. The performance of the
overall nonlinear inferential feedback design strategy proposed in this work is demonstrated to be robust to
model mismatch, disturbances, and state iritialization errors. In all cases investigated, copolymer property
control is greatly improved over a fixed operating policy determined off-line. The proposed strategy is simple
and effective alternative to computationally intensive on-line optimization procedures, and has the potential

for greatly improving product reproducibility and quality control in polymer manufacturing industries.
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THESIS INTRODUCTION




1 THESIS INTRODUCTION

| The late seventies and early eighties represent an era in chemical process control research where a surge
of interest has emerged in approaches to designing multiple input/multiple output (MIMO) feedback
controllers. This has been due to both the significant increase in the availability of real-time computer systems,
and the economic benefits gained through the application of feedback control to chemical process plants.
Although much research has already been carried out in this area, there still remain important problems that
need to be addressed. In this thesis, new results are presented in three basic areas of MIMO controller design
research. These areas are: design and robustness of approximate inverses for linear MIMO controller design;
disturbance prediction in future horizon, model predictive controtler design; and nonlinear inferential feedback

control for semi-batch polymerization reactors,

L1 LINEAR MULTIVARIABLE CONTROLLER DESIGN:
ROBUSTNESS AND APPROXIMATE INVERSES

A plethora of different optimat and suboptimal model-based MIMO controller design strategies can be
found in the literature, However, only relatively few theories have been proven to be practical for use in
chemical process plants, Th.esc strategies are usually based on input/output transfer function cr impulse
response type of linear models. These models are convenient for practical use since little effort is ofizn required
for an empirical identification relative to the effort usually required to develop detailed mechanistic dynamic
models. Furthermore, for a vast range of continuously operating chemical plants, such as found in the
petrochemical industries, these model types provide adequate dynamic response prediction when operating
close to some optimal nominal condition.

The eighties also represent an era were there has been an increased awareness of the implication of
model uncertainty with respect to the performance of time invariant linear MIMO designs. It is often not
sufficient for a controller design to perform well at some identified nominal mode! operating condition. The
linear .MIMO input/output models traditionally used are low order and/or linearized approximations of the
dynamic process behavior of a plant at some nominal operating condition. Changed operating conditions,

large disturbances, or large set point changes to new a region of operation during implementation can intreduce



significant errors in the dynamic response prediction provided by the linear MIMO model used to design the
controller. It is well-known that the consequences of this could include seriously degraded performance and
controtler instability, Therefore, from a practical peint of view, an effective MIMO controller design is one
which best compromises nominal performance with robustmess to model mismatch.

lThe problem of analyzing the robustness properties of MIMO controller designs is a very difficult one.
The problem is somewhat open ended since any robustness analysis will require a description of the range of
possible perturbations from the nominal process model. In most circumstances this information will be
unimown, and therefore will have to approximated. Ideally, one would like to select a characterization for
MIMO model mismatch that is physically meaningful and at the same time allows a mathematically tractable
robustness analysis to be performed in order to avoid exhaustive model mismatch simulation studies.
Unfortunately, no theory has yei been proposed where both of these objectives can be met in a straightforward
manner,

In chapters two and three a review of different techniques that have been recently popularized for
analyzing the robustess properties of MIMO controller designs is presented. The stralegies to be investigated
are based on independent, norm bounded mismatch regions in the frequency domain, and require the use of
singular value (Doyle and Stein, 1981) and structured singular value theories (Doyle, 1982). The mismatch
characterization used in these approaches is chosen mainly for mathematical convenience. Unfortunately,
this class of uncertainty characterization lacks a clear physical interpretation relative to meaningful types of
MIMO model parameter mismatch, and therefore can introduce conservatism into the analysis. Neveriheless,
these theories may still be useful for predicting relative robustness trends between different MIMO controller
designs. The objective will be to review and evaluate different approaches for predicting relative robustness
trends of MIMO controller designs based on these theories. These procedures are used to evaluate the relative
robustness properties of different Internal Model Controller designs in the work that follows. New results
demonstrating the importance of the model mismatch characterization used in these theories to predict relative
robustness trends of MIMO Internal Model Controllers shall be provided. In addition, a new and
straightforward procedure for assessing the relative robusmess trends of MIMOC controllers is proposed. The
new measure of relative robusmess is based on a meaningful, single parameter disk uncertainty region in the
frequency domain. The methed leads to less conservatism in predicting relative robusmess trends compared
to other methods that have been previously proposed. The use of structured singular value theory (Doyle,
1982} is required.



One approach to MIMO controller design, based on linear input/output transfer function models, that
has been advocated by a large number of rescarchers and practitioners has been the Internal Model Control
(IMC) concept (Zames, 1979, 1981; Garcia and Morari, 1982, 1985a, 1985b). This concept has been
demonstrated to simplify both the design and analysis of the fecdback propertics of MIMO controllers, and
has been shown to posses favorable robustness propertics. One stage in the IMC design procedure requires
the specification of a stable and causal approximate model inverse. The purpose of the approximate model
inverse is to compute realizable and stable input manipulations to cance! observed errors in the outputs from
their set points in some optimal or suboptimal manner. A number of authers (Desoer and Chen, 1981; Holt
and Morari, 1985a, b; Garcia and Morari, 1985a, b; Morari et al,, 1987; Zafiriou and Morari, 1987) have
considered the design of IMC inverses. The results of their work demonstrate that the design of these
approximate inverses with desirable performance and robustiness properties is far from trivial. Because of
this, optimal design procedures were proposed only for special limiting cases. In chapter 4, a general and
simple method for obtaining analytical expressions for integraled squared error, or lincar quadratic optimal
(LQ) IMC inverses for any form of linear multivariable input/ouput process model is proposed. The nominal
performance and robustness properties of the LQ inverses will be demonstrated and compared 1o inverses
obtained from the more traditional procedures in simulation case studies and with the robustness asscssment
procedures described above. The proposed design procedure will be shown to provide IMC controllers with

excellent performance and robustness propertics.

1.2 DISTURBANCE PREDICTION IN DYNAMIC MATRIX CONTROLLERS

Another MIMO controller design procedure that has been found to be very useful for chemical process
control application is Dynamic Matrix Control (DMC) (Cutler and Ramaker, 1979), DMC is a finite future
horizon, LQ approach to MIMO controller design that makes use of discrete convolution process models. The
application of DMC requires that a prediction of the future disturbance trend be made at every control interval
to compute feedback control actions. Since the objective in chemical process control is often regulatory, the
performance of DMC can depend heavily on the assumptions made concerning the disturbances thal enter the
process. In the original formulation proposed by Cutler and Ramaker (1979), the assumption was made that
the disturbance computed at the current control interval will remain constant over future predicted responscs.
A number of authors (Garcia and Pren, 1986; Li et al., 1989; Clarke et al., 1987) have reported that such an

assumption can sometimes be very poor and seriously limit the performance of DMC. To address this problem.



Li et al. (1989) and Clarke et al. (1987) proposed major modifications to the future model prediction design
strategy so that improved disturbance prediction can be carried cut. Unfortunately, much of the simplicity
and transparency of DMC becomes sacrificed when these modifications are used. In chapter 5, a new and
general procedure based on autoregressive integrated moving average disturbance models is proposed for
obtaining improved disturbance prediction in DMC, The proposed procedure for disturbance prediction is
computationally efficient, and requires only a simple modification to the DMC algorithm. Examples where

the proposed modification leads o substantial improved DMC regulation are demonstrated.

1.3 NONLINEAR INFERENTIAL FEEDBACK CONTROL FOR
POLYMERIZATION REACTORS

The MIMO control design strategies described above are well suited for vast range of continuously
operating chemical processes. However, there exist importani types of chemical process control problems
where these strategies will be inadequate for obtaining high performance control. Included in this imporant
class of control problems is the control of semi-batch emulsion copolymerization reactions. These type of
processes still pose an imponant challenge for the application of feedback control. Difficulties include
significant nonlinearities, absence of steady state, inadequate dynamic models, lack of d.irect measurements
of the properties needed to be controlled, and initial disturbance and/or model mismatch error which must be
compensated for quickly during the finite period of batch/semi-batch operation. Relative to continuously
operating chemical processes, the design of feedback control strategies for these systems have been stodied
to a far lesser extent. Much of the research in this area has been focused on the design of off-line, optimal
open-loop operating policies. The usefulness of these policies in practice is very limited since no provisions
are made to compensate for process variability, model uncertainty, and disturbances. In the polymer
manufacturing industry, this problem isimportant since product reproducibility and copolymer property control
are essential (Taylor, 1988).

In chapters 6 through 10, an inferential feedback control strategy is proposed for quality control of
copolymer produced in semi-baich emulsion reactors. The production of industrially relevant
styrenc/butadiene rubber (SBR) copolymer is considered. For the first time, theories related to dynamic
polymer modelling, nonlinear state estimation, optimal open-loop policies based on instantaneous copolymer

property control, and feedback control are tied together to arrive at simple, yet effective production and



feedback control strategies for producing copolymer latexes meeting a wide range of property specifications.
The approach proposed will provide a useful alternative to computationally intensive on-line nonlincar
optimization approaches, which in many circumstances, will not be well-suited for industria! application.
The different stages of the development of the nonlincar inferential controller design strategy is divided
into 5 chapters. Chapier 6 provides a more complete introduction to the semi-batch control problem addressed
in this work. Chapter 7 presents the dynamic SBR reaction model used in this simulation study. Chapter 8 is
concerned with the design and evaluation of useful nonlinear state estimators to infer copolymer propenics
using limited indirect measurement taken from the semi-batch process during operation. The development
of practical open-loop operating policies for meeting a wide range of copolymer property specifications is
discussed in chapter 9. Finally the design of feedback controllers for the semi-batch problem is covered in
Chapter 10. Chapter 10 also ties together all the research from chapters 6 through 10, where the effcctivencss
of the proposed nonlinear inferential feedback control scheme under both ideal and nonideal simulated process
operating conditions is demonstrated. In chapters 7 through 10, new research contributions are also made in
the areas of polymer modelling, nonlinear state estimation, optimal open-loop operating policies for copolymer

property control, and feedback controller design.
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2 ROBUSTNESS OF LINEAR MIMO CONTROLLERS

2,1 INTRODUCTION

Transfer function models used 1o design multiple input/multiple output (MIMO) controllers for chemical
processes are almost always linear and/or low order approximations 10 the true¢ process dynanics at some
nominal operating region. Changes in plant operating conditions, large disturbances, or large set point changes
can often introduce significant error in the dynamic response predictions provided by these models. Therefore,
the usefulness of a time invariant, linear MIMO controller design for an application cannot be determined
through nominal performance alone. In general, one would like to choose a design that provides the best
cgmpmmisc between nominal performance and stability to model mismatch, As pointed out by Doyle (1987)
and Morari and Doyle (1986), a controller design which mosteffectively compromises hetween these propertics
will also exhibit superior performance at mismatch conditions,

This chapter provides a review of scme frequency domain technigues that have been recently advocated
by a large number of researchers for analyzing the robustness propertics of MIMO controllers, Some of these
approaches have been proposed as a useful alternative to extensive prior simulation with mismatch models
since a necessary and sufficient condition for stability can be determined for a range of plant mismatch,
Unfortunately, the range of plant mismatch is restricted to a special type of uncertainty characterization in the
frequency domain which is chosen solely for mathematical convenience, and may be totally unrealistic relative
to the true range of possible plants. Nevertheless, these theories may still be useful for predicting relative
robustness trends for a class of closely related MIMO controller designs. The objective in this chapter will
be to demonstrate straightforward uses of these theories for predicting relative robustness trends between
different MIMO designs in some general sense. The important limitations of each methed shall exposed in
order for reader to appreciate the new results that follow. The procedures proposed will be compared in chapter
4, where the relative robustness of different Internal Model Controller designs will be examined in case studies.
The work that follows in the next three chapters will provide new results demonstrating the importance of the

assumed uncertainty characterization in assessing the relative robustness of different MIMO designs,



The sections that follow in this chapter will provide theoretical background on three differentapproaches
to analyzing MIMO controller robustness. The first method is an adaptation of a well-known procedure used
innumerical analysis whereby controller robustness is assessed through a singular value and condition number
analysis on the approximate model inverse used in the design. The second approach makes use of a necessary
and sufficient condition for MIMO controller stability based on a multiplicative, unstructured norm bounded
uncerginty characterization (Doyle and Stein, 1981). The final method makes use of a frequency independent,
norm bounded block diagonal mismatch characterization for robusmess analysis, and requires the use of
Structured Singular Value Theory (1) (Doyle, 1982). Using this theory, a new index of relative robust stability
assuming equal percentage disk uncenainties in each element of the transfer function matrix is proposed. This
new index will be shown to provide a much more meaningful and less conservative assessment of relative

robustness than the index used in the second approach.

2.2 PRELIMINARY DEFINITIONS

The theory in this chapter concerns the properties of MIMO linear feedback controller designs shown

in Figure 2.1.

Figure 2.1: Standard MIMO Feedback Control Loop
In this figure, y is the output vecto: to be controlled, u is the vector of controlled inputs, y,, is the set point
vector, <! is the disturbance vector, P is the true matrix process transfer function, and C is a fixed linear MIMO
controllcr, The response of y to external inputs ¥, and d is given by

y =Ty, + 8d (2.1)



where §, the sensitivity matrix operator, is defined by
§ = (g+pCYy! (2.2)
and T, the complementary sensitivity matrix operator, is defined by
T = PCU+PC)?! (2.3)
A controller design displaying good disturbance rejection wil: have an § approximately equal to zero in some

norm sense across the entire frequency range or at frequencies where d is significant. Good set point tracking
results when 7 is approximately equal to / across the entire frequency range or at the frequencies where set
point changes are being made. Given a nominal process plant transfer function P,, the nominal sensitivity

operator (§,) and the nominal complementary sensitivity operator (T,) can simitarly be defined as
S, = (+rPC) (2.4)
T, = PCU+PC)" (2.5)
in order to evaluate MIMO controller performance and the size of a matrix operator response to a
bounded input at a specified frequency 5 = i, an appropriate matrix norm is required. Unlike single input/
single output (SISO) systems, directionality exists with both the inputs and outputs in MIMO processes, and

therefore upper and lower matrix norm bounds need to be defined. The most popular choice for an upper

bound norm of a complex matrix A is given by the spectral norm

oyld] = "rglafll [Ax]] = VAn[A'A] (2.6)
where oy[A] denotes the maximum singular value of matrix A, A [A"A] is the largest of the cigenvalues of
AA that are all real and greater than or equal to 0. [|x|| is the euclidean norm of x given by

fixil = ~x'x 2.7
with A" and x” referring to conjugate complex transposition of A and x respectively. Similarly, a Iower bound
norm of matrix A is defined according to the minimum singular value g, [A], given by

o.[A] = lMITlIiilII]Axll = ViglA"A] (2.8)

The physical interpretation of the spectral norm is discussed at great length by Postlethwaite et al. (1981). The

deterministic interpretation of the maximum singular value is the maximum ratio of the sum of the encrgy
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densitics of the outputs to the sum of the energy densities of the inputs at frequency 5 =i, In stochastic
systems, the maximum singular value can be interpreted as the ratio of the sum of the power spectral densities

of the outputs o the sum of the power spectral densitics of the inputs at frequency s = iw.

2.3 SINGULAR VALUE ANALYSIS: CONDITIONING OF
THE MODEL INVERSE

Singular Value Decomposition (SVD) is a technique commonly applied in numerical analysis for
predicting the sensitivity of the solution of a set of linear equations in the form

' Ax = b (2.9)
to perturbations in A and &, This technique can be useful for inferring the frequency dependant closed-loop
propertics of a MIMO feedback controller design. Figure 2.2 shows a MIMO feedback loop with the true
process response represented as

y = Pu + & 4 d {2.10)

where £ is a vector representing stable model mismatch between P and P,.

f |d
u y
_}Cp_;_._,_c » P pot ot
A P
+Y _n
-

Figure 2.2: Feedback Loop With Model M._smatch And Sensor Noise

For any controller design C, the control manipulation  with respect to d, y,,, mismatch &, and additive sensor

noise n can be shown to be given by

M=y, -d-8§ - n 211
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Relal.ive 1029, A=0Qandb = ¥p—d =& —n. Q™ is the approximation to the process model having a stable

and causal inverse in the model reference transformation of Zames (1981) or Internat Model Controller (Garcin

and Morari, 1985} (refer to chapter 4 for further details), Q is related to € and P, through
Q = cU+pPCY! (2.12)
The ultimate performance and robustness properties of C will depend on the frequency response

characteristics of u with respect to y,,, d, &, and #. Equation (2.11) shows that the frequency response of u
will depend on @™, and may be inferred from a frequency dependant SVD analysis on Q™. Practical
considerations ustally demand the following:

1)  Set point changes and disturbances are typically low frequency inputs to the feedback control loop.
Therefore, high performance demands exact model inversion in the low frequency range, which implics
that the singular gains of @ should be similar to P,.

2) Large loop gains in the high frequency range can lead to excessive input manipulations, and generally
poor performance when high frequency inputs such as n or £ enter the feedback loop. High frequency
loop gains are indicated by a small minimum singular gain of @ in the high frequency range, and sheuld
be prevented when specifying C.

3) The sensitivity of the control actions as a function of frequency with respect to small changes in y,,, d,

&, and n will depend on the condition number of @', defined as the ratio of the maximum singular gain
tothe minimum singular gain of @ . The sensitivity of u to model mismatch perturbations & is of particular
importance since this provides an indication of the robustness of the controller design. The control actions
will be very sensitive to these perturbations when the condition number of Q! is large. Usually process
mode! predictions become more uncertain with increasing frequency, and therefore an effective design
would be cne with a relatively low condition number in the high frequency range.

The SVD analysis proposed above is a useful and simple technique for a preliminary analysis of the
robustness and performance properties of a controller design. One limitation with the approach is the scale
depen{‘lency of SVD, making the resulis of this procedure difficuit to rely on from an absolute point of view.
However, the zesults from ¢this method may still be useful from the point of view of a relative analysis of
different controllers designed for P,. The usefulness of the results from this technique shall be demonstrated

in chapter 4 for comparing different IMC designs.
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2.4 ROBUST STABILITY

The multivariable generalization of the Nyquist stability criterion (Rosenbrock, 1974) requires that

det{I+P(s)C(s)} = 0 (2.13)
have no zeros in the right half piane, or similarly,

det{I+P(s)C(s)} = O (2.14)
for all real s. In an actual process environment, these conditions for stability must hold for a range of plants
defined by

P(s) € Region =(s) (2.15)
The scctions to follow will describe a mathematically convenient representation for region w{s) that will allow

the Nyquist MIMO condition for stability, as stated above, to be nonconservatively applied to n{s).

2.5 ROBUST STABILITY: UNSTRUCTURED UNCERTAINTY

An approach that has been recently popular for analyzing the robust stability of feedback controller
designs 1o a range of plants is through the use of an SVD analysis on independent nosm bounded perturbations
in the frequency domain. Consider the situation where all the uncertainty is lumped into a single, multiplicative
output perturbation block M,,, and the range of permissible plants is described by

P = (I+M,)P, (2.16)

where M,, is astable transfer function matrix belonging to the set @y, (M,,(i @)) < m,,(). This type of uncertainty

characterization may be used to represent modelling errors in P, and output sensor error, Using the results of
Doyle and Stein (1981), it can be shown that the necessary and sufficient condition for robust stability to the
range of perturbations described above is '

1

M) S ST o)

(2.17)

where T,, the complementary sensitivity function of the nominal ¢losed-loop system, is given by (2.5).

_If a setof possible process transfer functions

P € (PuPy.Py..uP) (2.18)

arc available through some exhaustive identification study, the bound on m,, (@) could be approximated through
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m(w) = max o, [(Piw)~P ()P (o)) (2.19)

and the stability condition (2.17) may be used to arrive at tuning parameters in a fixed controller, However,
taking such an approach can lead to extreme conscrvatism in the selection of tuning parameters. Violation of
(2.17) from the bound obtained by (2.19) does not imply that the MIMQ controller will go unstable, It simply
implies that in the set of matrices satisfying m, () < 6,,(M,,(i ®)) there exists a complex perturbation M., that
will make the feedback loop go unstable. If M,,,J does not correspond to some possible plant mismatch P;,
condition (2.17) is essentially meaningless. Investigations (¢.g. McDonald (1987), Palazoglu (1987),
McDonald and Palazoglu (1987), Mcdonald et al. (1988)) have shown that the regions of uncertainty mapped
out by these complex norm bounded uncertainty descriptions at each frequency were highly conscrvative
relative to the true range of plants encountered in their examples, The same result was also obtained by Bergh
(1987) on a catalytic reactor example, An additional, and important source of conservatism that arises from
norm bounded perturbation region analyses is the assumption of independence between the range of possible
perturbations at different frequencies.

When model mismatch information is not available, a very simple approach for comparing the relative
robust stability tolerances of different MIMO controller designs is to compute the frequency dependent upper
bound on the allowable mismatch m:, () from (2.17) for cach design, However, when using this measure of
relative robust stability tolerance, it is again very important 1o recognize the severe limitations imposed by
the uncertainty region characterization. If condition (2.17) is to be used to address relative robustness, the best
one can do is hope that, for a class of closely related controller designs, the relative robust stabifity trends will
at least be captured. However, as will be illustrated in the work presented in chapier 4, such hope does not
appear 1o be justified.

Stability conditions similar to {2.17) can be derived for other common forms of unstructurcd norm
bounded complex perturbations in the frequency domain that enter at one point in the feedback loop. For

exainple, the necessary and sufficient stability condition to additive mismatch of the form

P =P + M, (2.20)
with m, < o, (M,) is given by
m, S 1 (2.21)
? ou(Q) )

The necessary and sufficient conditions for stability when only multiplicative input mismatch of the form
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P = P(U+M,) (2.22)
with m,, ; < 0,(M,, ;) is given by

m, = 1
e 0u(CP.({ +CP.Y)

(2.23)

This type of uncertainty description may be useful when all the uncertainty exists in the actually implemented
value for 4. A more detailed discussion on the stability conditions of different types of unstructured norm

bounded complex perturbations occurring at one point in the feedback loop can be found in Doyle et al. (1982},

2.6 ROBUST STABILITY: STRUCTURED NORM BOUNDED UNCERTAINTY

The robustness analysis of section 2.5 requires that mismatch between P and P, be characterized through

one block with an upper bound placed on its norm. Mismatch in a real process environment is a result of
meaningful perturbations occurring at different locations in the process. When these important meaningful
sources of perturbations become lumped into one perturbation block with some arbiwary upper bound placed
on its size for mathematical convenience, much useful information about the structure of mismatch in the
process becomes lost in the robustness analysis, This makes the robust stability requirement in section 2.5
conservative relative to the real problem on hand.

. A currently popular approach to analyzing the robusmess properties of MIMO feedback controller
dcsigﬁs is through the use of Structured Singular Values (SS3V) (Doyle, 1982: Doyle et al., 1982). The SSV
approach allows for a nonconservative analysis of the robusmess properiies of controller designs to multiple
independent complex norm bounded perturbations. SSV can be used to reduce conservatism relative to the
previous method by allowing for more defined, and more meaningful, structured perturbationsin the robustness
analysis.

The work that follows will begin with an example to acquaint the reader with the recently developed
theory behind norm bounded block diagonal perturbations and the use of SSV to nonconservatively analyze
stability to this class of perturbations. The strengih and weakness of this method for analyzing relative
robustness properties of MIMO controllers shal! be exposed in order for the reader to appreciate the work that
follows. The aim in this work will be to use this theory to develop a more meaningful one parameter unceriainty
characterization relative to the nominal model than the form used in section 2.5 simply for mathematical

convenience to compare the relative robustness of different MIMO controller designs. Intuitively, an
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uncertainty characterization having a more clear meaning relative to the nominal mode! should provide a less
conservative assessment of relative robustness than a physically meaningless characterization chosen simply

for mathematical convenience,
SSV or y analysis will be introduced with a simple example where two independent, norm bounded

pertwi.i: tion blocks are present. Consider the situation where the permissible range of processes is characterized
by

P(s) = (I +L AR (ENP() U +L(5)A(5)R(5)) (2.24)
where L,, R,, L;, R;, A,, and A, are stable transfer function matrices, 0,(4,) <1, and a,,(4;) < 1. The block

dmgram for (2.24) is shown in Figure 2.3.

Figure 2,3: Feedback Loop With Unstructured Additive And
Multiplicative Uncertainty

In {2.24) and in Figure 2.3, the presence of both unstructured multiplicative input and output mismatch has
been assumed. The multiplicative input uncertainty and output unceriginty are given by L{s)A{s)R.{s) and
L,(5)A,(5)R, (s) respectively, L{s}), R/{s), L,(5), and R, (5) are fixed weighting transfer function matrices for
the uncertainty, These weights are suitably chosen 1o allow A, and A, at each frequency to independently take
on any complex matrix value satisfying ¢,,(4;) < 1 and 0,,(4,) < 1. The range of complex matrices A, and 4,
norm bounded by one defines the ranges of permissible plant perturbation through (2.24). The mismatch region
characterization was chosen to make the robustness analysis mathematically tractable. Unfortunately, the
mismatch region has no clear physical interpretation relative to parameter and order mismatch between matrix

transfer functions.
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The robustness analysis of section 2.5 is not well suited Lo analyze the robust stability of process (2.24)
with a fixed C since two perturbation blocks, A, and A,, are present. To get around this problem, cne might
propose to transform the two perturbation uncertainty block into one equivalent uncertainty block. Forinstance,
suppose the two block uncertainty structure is transformed into a one block multiplicative output uncertainty

description as given below

P = (I+M)P, (2.25)

Equating (2.25) to (2.24) 1o solve for M,, leads to

M, = [(I+LAR)IPI+LAR)-P]P] (2.26)

To apply the necessary and sufficient condition for stability on (2.25) based on (2.17},a bound on the maximuin

singular value of M,, must be assigned Lo characterize the range of matrix perturbations that M,, can take on.
This may be approximated through

.27

o, M) < ilzp O +LARIP (I+LAR)-PIP]N = m

with o,(A,) <1 and 0,(A;) < 1. However in doing so, conservatism is introduced since a single bound on

o,(M,,) will permit a larger range for M,, than (2.26) will allow when mapped out with the permissible A, and

A;. In other words, the region

M, € [(I+LARIP(+LAR)~PIP; | G, (A),0,A)<]1 (2.28)

is a subset of

M, ¢ 3™ | o,M)<m, (229

Therefore, through the transformation, one introduces more perturbations than actually exist, making the
stability condition (2.17) only sufficient for the assumed true range of uncertainty described by (2.24). This
is a limitation of the norm bounded, perturbation block approach, requiring that the theory be extended to
multiple perturbation blocks with norm bounds in order for necessary and sufficient conditions to be derived.

The: first step in the stability analysis of the feedback loop is the isolation of the norm bounded
perturbations from the fixed elements in the feedback loop. This is done through the transformation of the
feedback loop into an interconnection block diagonal structure (Doyle, 1982; Doyle et al., 1682). Retuming
to example (2.24), this is achieved by severing the feedback loop in Figure (2.3) at perturbation block A; and
A,. Defining y, &, 8, as loop outputs and y,,, d, 8,, and 3, as loop inputs, the following rclationships may be
derived:
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Yy = Ty, +8PLS+SLS+Sd
8 = RCS, Ve -RCS.P,L6,~RCS,L5,-RC S.d

8.! = Ropncsuylp + RaPn (l - CsuPu)Lxsl - RaTnLOat - RaTnd

- [

and transforming (2.30) to (2.32) into matrix form leads to

[J:] - [M:,l M1,2 Ml.i] J:;
8 M‘a‘.l Mz.z M:. &

Defining

with

-RCS,PL~ —-RCSL

Ml: - [RaPl (l - CSuPn)Li _RnTuLa ]

Using the relationship

with

S

{2.35) can be represented in the feedback diagram shown in Figure 2.4,
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Figure 2.4: Interconpection Stucture For Multiple Perturbation
Robustness Analysis

Figure 2.4 represents a general interconnection block diagonal perturbation feedback structure. The
penturbation matrix is given by A and is block diagonal with respect to independent norm bounded matrix
blocks A, with g,,(A) < 1. The interconnection matrix M, as indicated in (2.35), is a fixed function of C, P,,
and perturbation weighting matrices L,(s) and R;(s). This transformation can be similarly performed on any
feedback loop having any number of perturbation blocks and of different dimensions. Using equations (2.35),
(2.42), and (2.43), the closed-loop response of y can be shown to be given as

y=M Yo+ M d+M A -MLJA)“IM 21V T M A0 - M zsA)-lezd (2.44)
Since M, 4, y,,, and d are all assumed to be stable, stability of y will only depend on the stability of (f ~ M, ,A).

Suability of ({ - M, ,4)™ is equivalent to the requirement that the loop shown in Figure 2.5 also be stable.
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Figure 2.5: Interconnection Block Diagram For Robust
Stability Analysis

At this point, the robustness analysis requires a necessary and sufficient condition for the stability of the
feedba.,ck loop shown in Figure 2.5 with A block diagonal and each element norm boundod by 1. Unfortunately,
arriving at such a condition is no simple matter. The only situation where a very simple solwion for a
nonconservative condition for robust stability can be derived is the case where A is full, containing only one
perturbation block. In this case, the necessary and sufficient condition for robust stability with stable A and

M, 5 has been proven by Doyle (1987) to be
O M i) ST ¥V 020 (2.45)

Thisstability conditioncan be used to derive the results shown in section 2,5 for the cases of asingle unstructured
norm bounded perturbation block, where the appropriate M, 5 is chosen for the different locations of the
perturbation block in the feedback loop. However, when A is not full, but rather block diagonal as a resuit of
multiple perturbation blocks, condition (2.45) is only sufficient for robust stability. Therefore, the robustness
analysis requires the introduction of a different norm, other than the maximum singular value, that leads 10
necessary and sufficient conditions for a nonconservative robustness anilysis with norm bounded block
diagonal perturbations. Doyle (1982) has derived the properties of this norm and calle? it the Structured

Singular Value (SSV) or p. The mathematical definition of it as a function of a complex matrix A is given by

0 if no AeA’ solves det{l-AA} =0
or
mMA) = 1 (2.46)
' min Oy (A) satisfying det{I-A&} =0

.
-1 ¥-
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where A’ refers to the set of all block diagonal matrices of appropriate dimension in the problem with no limit

onthe uppernorm of A, (i.e. 0 (A;) < oo). The optimization problem posed in (2.46) todcfine pLis not convenient
toapply tocompute it Doyle (1982) has shown, using derived properties of j1, thata much more useful approach

to cstimating p is through

max p(UA) S WA) s inf 0,(DAD™Y) (247)
Unlf Ded*

where U” refers to the set of block diagonal uaity matrices U with block structure of appropriate dimensions

for A, D" refers to the set of real block diagonal matrices D of the form
D = Disg{di,dly...d, ]} (2.48)

where d; are real positive scalars and /; are unit matrices matching the dimensions of perturbation blocks A,

and m refers to the number of perturbation blocks. The left hand side of the inequality (2.47) is always an
equality but may involve multiple local maxima in the optimization problem. The right hand side of the
incquz;lity provides a tight upper bound for p and can be shown 10 be convex with respect to D. Use of the
right hand tnequality is the recommended approach since the optimization problem is far more simpie to solve.
It has been reported (Doyle et al., 1982) that this approach leads to good results and does not introduce
significant error for many cases tried. )

Using the norm defined above, it can be shown (Doyle et al., 1982) that the necessary and sufficient
conditions for robust stability to norm bounded perturbations with each block norm bounded by 1 is given by

WM (i0)S1 V¥V w20 (2.49)
Condition (2.49) isreferred to as the small p theorem. This theorem is applicable te feedback control problems
withoutany restriction on the number of diagonal perturbation blocks A, and the dimension of each perturbation
block. The only condition that needs to be satisfied is that both A and M, , be stable, which frequently will be
thecase. The extension of this theory to the case of unstable perturbations is addressed by Foo and Postlethwaite
(1988).

From a theoretical point of view, W analysis offers a very elegant appreach to the analysis of robust
stability of MIMO feedback controllers, It is one of the very few theories capable of addressing stability of
MIMO feedback loops to multiple perturbations in a nonconservative manner. Unfortunately, from a practical
point of view, the theory can only be applied conservatively lo real process control problems, The problem

with the theory is the region of permissible complex matrix perturbations for A; with an upper bound on its
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norm arose from mathematical convenience rather than from engineering physical significance, As was
previously stated in section 2.5, a range of matrix perturbations charactesized with an upper bound on jts norm
is yet to manifest itself as a realistic characterization of the range of mismatch that really can occur in a real
process control problem. To make this point more clear, consider the very simple exampic of a first order

SISO process with transfer function

k

P(s) = m (2.50)

Suppose error in both £ and p are known to exist, Let us represent the true & and p relative 10 a nominal &,

and p, as

by
|

(+rA)k, AeR  14]<1 (2.51)

]

) (+r,8)p, AR [pl<] (2.52)
where 7,(®) and r,(«w) are real frequency dependant weights. The true process respense is given by

1

P(s) = (+rA)P, o (2.53)
tors
where
k
= L 2,
Py pats @.3%)

The block diagram for this process is given in Figure 2.6.

Al d
) l
bl G =y Y.
+ ?' +
Y
Ap - l;)pn
S+p

Figure 2.6: Gain And Lag Mismatch Representation In A SISO Process
Condition (2.49) will only lead to a sufficient condition for stability for the robustness stability analysis in
this problem due to the fact that A, and A, can be complex in the ji analysis. This introduces more possible
perturbations than really exists, and therefore conservatism in the analysis.
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As mentioned in the introduction to this chapter, the aim of this work is to provide some meaningful
measure of relative robust stability of different MIMO contrallors, that will reduce some of the conservatism
of the results shown in section 2.5, The problem with SSV analysis is that some meaningful structure for model
mismatch perturbation must be proposed along with suitable perturbation weights R,(s) and L;(s) that are truly
indicative of the magnitude of uncertainty as a function of frequency. In a typical process environment, much
effort is usually required to arrive at a single nominal multivariable transfer function model. Such a model
will often be obtain: d empirically, and provide little insight to proposing a suitable characterization for model
mismatch. Even if oné would propose a simple characterization for the mismatch in each element, such as
ranges in gains, time constants, and delays in a first order structure, the number of perturbation blocks and
the uncertainty information needed to be specified would become excessive for pracucal use. The amount of
identification studies needed to gain sufficient information about the nature of the process mismatch would
practically never be achievable, If such information were available, one would argue that this information
would be betier served in designing a superior nonlinear or adaptive feedback controller, rather than in the
use of accessing the robustness of a fixed feedback controller. Nevertheless, the problem to be addressed in
this work, is can a more meaningful single parameter MIMO uncertainiy characlerization in terms of P, be
proposcdrelative tosection 2.5 tocompare the robust stability of different MIMO controllers insome qualitative
sense using [ theory. Intitively, an uncertainty characterization with a more clearly defined physical
interpretation relative to the nominal model should give a clearer and less conservative prediction of relative
robustness than a characterization lacking any physical significance.

Kouvaritakis and Latchman (1985) proposed that an additive element-by-clement disk uncertainty
regiom at each frequency, centered on the nominal model Nyquist plot of each transfer function element be
used to characterize MIMO mismatch regions. This corresponds io reducing the MIMO unsiructured
ﬁnccrmimy problem to individual SISO unstructured uncertainty regions. This uncertainty characterization is

shown in Figure 2.7 for element 7; ;.
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Figure 2.7: Disk Uncertainty Region For Transfer Function El¢ment

The range of possible process responses is given by
P =P + M, (2.35)

with the frequency response of M, ; restricted to a disk given by

M, i) = |Fi60)-P, G0 <m, (@) (2.56)

The range of process plants contained within (2.56) will stiil be very conseivative relative to possible
typesof mismatch that really can occur. Two important sources of conservatism are the restriction to acircular
disk shape region at each frequency, and the assumption that mismatch points in a disk region at one frequency
 are totally uncorrelated with those in disk regions at other frequencies. Nevertheless, it is assunied that the
introduction of more structure into the uncertainty description relative i the type used in section 2.5 wiil at
least provide some reduction in the degree of conservatism, and therefore provide a better indication of the
relative robustness trends of closely releted controller designs.

The element-by-element uncertainty approach requires one to specify m, ‘(m) bounds for each iand |

element of M, as a function of @. With this information almost always absent, some reasonable assumption
must be made. To address the relative robust stability tolerances of different controller desigas, the assumption
will be made that the size of the uncentainty disk in each element will be proportional to the norm of ils

corresponding nominal response at each frequency, that is



P, o)A, (@) (2.57)

i

M,“(i w) = x{w)

where x{w) (Kappa), is a positive real number at each frequency representing a multiplicative uncertainty
factor for the nominal process response, and 4, ; is a norm bounded complex number satisfying | A, (i9)] <1.
The maximum x(w), or the amount by which the % disk uncertainty in all elements of F, can be increased at
each frequency before the closed-loop system goes unstable may be used as a general index of robustness, No
claim js made thai this unicertainty characterization will predict the true relative stability sobustness of different
controlles designs. Hoviever, we believe that this Kappa uncertainty characterization will be much more
reasonable than the very conservative condition nf (2.17) for addressing this issue.

" The computation of the maximum k() at each frequency that may be tolerated before the closed-loop

system goes unstable will require a L analysis for robust stability. Tne feedback loop with the additive
clemeni-by-element disk uncertainty has been derived by Skogestad and Morari (1987), and is shown in Figure

2.8, where

A = Digg{A A0 By BBy, ) (2.58)
A eS™ g Iad<t (2.59)
L = I Y (2.60)
fa, 0 0 0]
0 g 0. 0
R = |+ = e (2.61)
0 00 a,l
-iP"u[
IP"MI
a, = | ° (2.62)
JP.n.il-u),
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(2.63)

R and L serve to transform the element-by-clement disk uncertainty representation into a block diagonal

structure and also to weight the perturbations as a function of frequency.
e

Yoo + + oy

Figure 2.8: Additive Mismatch Uncertainty

In arriving at (2.62) M,

u(im) = IP,,,l I(im)l A, ; has been assumed, and x(w) wilt be determined. The feedback

loop in Figure 2.8 can be transformed into the block diagonal interconnection structure of Figure 2.4, where

Yo
[g] = M| d (2.64)
L
&
T, S, S.L ] 2.65
M = |pcs. -RCS, -RCS,L -65)

Using the small p theorem, the necessary and sufficient condition for robust stability to the type of
uncertainty description above is given by

1

o) = WM, (i)

(2.66)

where
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M,, = -RCS.L (2.67)
In the work that follows, the computation of p(M, ,(iw)) is estimated from thc' upper bound of (2.47). The

optimization was carried out using an unconstrained conjugate direction optimization routine.
In the work to follow, ®{tw) will be used to evaluate the relative robusiness properties of different MIMO

controller designs. It will be demonstrated that this new index, although #till conservative relative to the real
unknown mismatch problem, will provide better prediction of the relative robustness trends of different MIMO

designs in some qualitative general sense relative to the stability condition presented in section 2.5,

2.7 SUMMARY

This chapter provided theoretical background on thres different frequency domain approaches to
analyzing robustness properties of MIMO controller designs. The objective of this chapter was to demonstrate
the use of these methods for assessing relative robustmess trends of different MIMO controller designs. The
use of these procedures shall be demonstrated and compared in chapter 4, were the relative robustness trends
of different Internal Model Controller designs will be examined,

The first relative robustness assessment strategy was based on a singular value and condition number
analysis of the approximate model inverse used in the controller design. It was shown that controller designs
having an approximate model inverse with a low condition number and high minimum singular gain at all
frequencics will display good robustness properties. By comparing the minimum singular value and condition
number of different MIMO designs, a general assessment of relative robustness can be carried out. The
limitation with this procedure is the scale dependency of the analysis, making it very difficult to rely on for
an absolute relative robustness assessment.

The second method of relative robustness assessment makes use of a singular value analysis on
independent norm bounded perturbations in the frequency domain. If one assumes a single, unstructured
multiplicative output perturbation block for the characterization of model mismatch, the results of Doyle and
Stein (1981) can be used to a provide a necessary and sufficient condition for robust stability, The condition
1o be satisfied may be used as an index for assessing the relative robustness of different MIMO designs. The
problem with this approach is that the uncertainty characterization lacks any physical interpretation relative
to meaningful types of process model mismaich, The unrealistic nature of the uncertainty characterization

may lead to conservatism when predicting relative robusiness trends.
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The final approach to robustness analysis described was based on an independent, norm bounded block
diagonal pertu:bation mismatch characterization in the frequency domain, and requires the use of structured
singular value theory (Doyle, 1982). By using this theory, a more meaningful and less conservative single
parameter uncertainty characterization than the one used in the second method was proposed. The uncertainty
characterization was based on equal percentage disk uncertaintics in each element at every frequency relative
tothe nominal transfer function matrix. The amount by which the percent disk uncertainty radii in all clements
of the model transfer function can be increased at each frequency and still maintain stability of the closced-loop
system was proposed as a measure of robustness. This new mcasure of relative robustness (k(w)) can be
obtained through a structured singular value analysis, By plotting k() versus o, the relative robustness of
various controller designs can be compared, The uncertainty characterization used in this approach may still
be very conservative relative to possible mismatch that really can occur in a control problem, However, the
it_ltroduction of a more meaningful structure in the uncertainty description relative 10 one used in the second
approach should provide some reduction in the degree of conservatism, and therefore provide a better indication

of relative robustness trends of closely related controtler designs.

2.8 NOTATION
A complex square matrix
b compiex vector
C multivariable feedback control block matrix transfer function
D diagonal similarity scaling matrix
D’ set of possible D matrices
d disturbance input to feedback loop
e output error from sat point
4 square root of -1
I unit matrix
k first order gain in SISO process
k, nominal first order gain in SISO process
L left perturbation weighting matrix for SSV analysis with equal percentage disk uncertainty in cach
MIMO transfer function element
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left pérturbau'on weighting matrix for unstructured input uncertainty
left perturbation weighting matrix for unstructured output uncertainty

number of perturbation blocks

upper bound index for stability with unstructured additive mismatch
maximum singular value of M,

upper bound index for stability with unstructured multipticative input mismatch
radius of disk uncertainty for element (i,j)

interconnection matrix for . analysis

additive uncertainty matrix transfer function

multiplicative output perturbation transfer function matrix

additive output sensor noise

first order pole location in SISO process

nominal first order pole location in SISO process

true process matrix transfer function

mismatch matrix process transfer function model

nominal process matrix transfer function

approximate model inverse in controller design

transfer function weighting for SISO gain error in [ analysis

transfer function weighting for first order SISO pole error in | analysis

right perturbation weighting matrix for SSV analysis with equal percentage disk uncertainty in each

MIMO transfer function element

right perturbation weighting transfer function matrix for unstructured multiplicative input uncertainty

right perturbation weighting transfer function matrix for unstructured multiplicative output

uncertainty

Laplace transform operator

sensitivity matrix operator

complementary sensitivity matrix operator

nominal complementary sensitivity matrix operator
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u manipulated process input vector

U unitary matrix

v’ set of unitary block diagonal matrices

X complex input vector

y process oufput vector

Yo output set point vector

Greek Letters

5 input or output vectors from a block diagonal perturbation block

A stable block diagonal perturbation matrix

A unstructured multiplicative input perturbation block norm bounded by 1
A, unstructured rultiplicative output perturbation block norm bounded by 1
K nominal model equal percentage element-by-clement disk uncertainty olerance
A minimum real eigenvalue

Acax maximum real eigenvalue

i3 structured singular value

E additive cutput model mismatch

G, minimum singular value

Oy maximum singular value

® radian frequency

Mathematical Symbols

3 complex numbers

R real numbers
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3 H*VERSUS H™ CONTROLLER DESIGN:

A REVIEW AND SOME COMMENTS

A well-known approach to MIMO controller design is through the minimization of the Lincar Quadratic
(LQ) performance objective

Min (VI3 = Mn [0 + woua @)

where e =y, —y, and @, and Q, are positive-semidefinite weighting matrices. Other forms of (3.1) are also

possible, such as a penalty on the velocity of the input movements instead of about some mean value, The
correct form of the input penalty weights to obtain no offset control depends on the process, and the nature
of the disturbance or set point change transfer function, Using Parseval’s thcorem, equation (3.1) foran optimal

regulation can be expressed in the frequency domain as

. 1 (e . .
Min (IJlI} = Min EJ. Trace{(s,0,dY0,S.D.d) + (PIT.DAYQPIT.D) do (3.2)
where P, is the nominal plant model, D, is the nominal disturbance transfer function, S, is the sensitivity

matrix operator, T, is the complementary matrix operator, and * refers to conjugale complex matrix
transposition. The solution for a specified P, and D, is well-known and simple to arrive at. The result can be
found in Johnson and Grimble (1987), Youla et al, (1976) for the continuous time case, Kozub (1986), Kozub
et al, (1987), Harris and MacGregor (1987), and Wilson (1970) for the discrete time control problem.

The minimization problem posed in (3.2) demonstrates that the LQ-optimal C is the design that leads
to the best compromise of weighted errors and disturbances across the entire frequency domain in 2 2-norm
sense for the specified P, and 5. The problem with this method is that the solution is limited to only onc
specified P, and D,, and does not extend to a range of plants and disturbances that might exist in a real process
environment. If a range of plants exists, a brute force formal or informal optimization needs (1o be carried out
to find P,, D,, and the set of tuning weights @, and @, that provides the best performance for all possible
p'lams. Because of this, some researchers (Morari and Doyle, 1986; Zames, 1981; Kwakemaak, 1985) have
arguéd that the LQ approach to MIMO controller design is not practically suited for real process control



problems, Nevertheless, the harsh criticism directed toward LQ design is surprising given that so much success
has been reported in a wide range of industrial applications with LQ approaches such as Dynamic Matrix
Control (DMC) (Cutler and Ramaker, 1979).

One of the most remarkable properties of i analysis that was presented in the previous chapter is that
this theory can be extended to allow both a specified performance and a stability requirement for a range of
plants to be addressed simultaneously (Doyle et al. 1982 Doyle 1987). Consider the block diagram

interconnection structure shown in Figure 3.1.

Ay

_>
Ao d . M e ol S,

Figure 3.1: Interconnection Sturcture For Robust Stabilit Analysis

D is the disturbance transfer function or disturbance weight and W is a specified performance weighting
transfer function for the output errors. For simplicity, let us assume that the MIMO controller design will be
designed specifically for disturbance rejection. The theory that follows extends easily to handle set point

change characteristics as well. For the block diagram in Figure 3.1

HEEH 03

Mll Mlj
M = [ o (34)
Mll MZ

where

The response of the weighted errors e, 1o d is given by

y = [WSDld (3.5)
where

S = My, + MAU + M A'M,, (3.6)
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Asan alternative to the LQ performance objective (3.2), suppose that the performance requirement is specified
as

mﬂxx ||WSDd||, = o,WSD) = 1 vV w20 3.7

N4,
Condition (3.7) represents an e=-norm performance or robust performance specification to be met by controller

design C for all the permissible plants described through the block diagonal norm bounded perturbation
structure inFigure 3.1. The performance index requires the specification of a frequency dependant disturbance
D and an output performance weight W. D is obtained from some knowledge of the frequency response of
disturbances entering the loop or from identified disturbance transfer functions. W is the specified performance
weighton e or y from input 4. Typically, W will be small in magnitude in the high frequency range were high
performance isnotdemanded and tc prevent excessive high frequency input manipulations, At low frequencics,
were disturbances usually predominate, W is specified to be large to lead to a design posscssing good
disturbance rejection. At zero frequency W typically would be set to infinity to ensure integral action in the
controller design. Once D and W are specified, tuning parameters p in some standard controller design, such
as for example proportional gains, reset times, and derivative terms in PID controllers, are determined so that
condition (3.7} is met, if possible. If tuning parameters in a controller design cannot be found s¢ that (3.7) is
satisfied some adjustment is made to W to relax the performance specification. Alternatively, an co-norm
optimal controiler design can be carried out (Doyle,1987).

The robust performance specification (3.7) for ranges of plants described through block diagonal nornm
bounded perturbations can be incorporated in the j analysis framework. It can be shown (Doyle ¢t al., 1982;
Doyle, 1987) that condition (3.7) will be satisfied if and only if

det{I +WSDA} # 0 v Re(s)>0 (3.8)

where A, a pseudo perturbation performance block, isastable transfer function matrix satisfying @, (4,(s)) < 1.

Condition (3.8} implies that the performance index (3.7) can be expressed as an additional robust stability
requirement on (/ + WSD A,)™. The added stability requirement can be represented by the addition of an extra
feedback loop, as shnwn in Figure 3.2,
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Figure 3.2: Transformation Of Performance Specification
Into Stability Analysis

In Figure 3.2, A, can be combined with A as an extra diagonal block in A, The fixed performance weights, D

and W, can be combined in M to form M. The transformation leads to Figure 3.3.

~J

A |-

= M

Figure 3.3: Robust Performance Interconnection Block Structure

With this transtormation, the robust performance specification (3.7) together with robust stability will be

satisfied if and only if
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WMGONST ¥V @20 (3.9)

Therefore, from (3.9), tuning parameters in some standard controller design should be sclected so that

HIM (G w)l | . is minimized and (3.9) is satisfied. Alternatively, a p-optimal controller design procedure can
be carried out (Doyle, 1987).

Atfirstglance, it would appear that this strategy offers a significant improvement over the LQ approach

because a range of plants can be considered in a formal manner in the performance specification to arrive at

tuning parameters in some controller design, It would also appear that this method would offer a nice formal

procedure to arrive at tuning weights in the LQ controller design carlier described. However, there are serious

weaknesses when taking this formal approach to designing controllers, These weaknesses are listed below:

1

2)

3)

4)

The frequency domain objective function (3.7) has no physically meaningful time domain interpretation
as does LQ, and is not uniquely related to any particular time domain response.

The design requires the specification of a frequency dependant performance weighting matrix W(s). The
selection of an appropriate W(s) for a particular control problem is by no means intuitive, mainly because
(3.7) lacks a precise time domain interpretation, and virtually no uscfu! guidelines have been proposed.
The consequence of a poor guess for W(s} simply to make a physically meaningless index | < 1 could
lead to an overly conservative controller design,

In order for the it methodology to provide a significant improvement over the standard LQ procedure it

is necessary that the true range of plants be accurately known and nonconservatively represented through
independent norm bounded complex perturhations. A physically meaningful cxample where this
requirement is satisfied is yet to be demonstrated. This issue is of extreme importance due 1o the e-norm
performance specification, which is focused on the worst case across the frequency domain, If the worst
case results from a perturbation that docs not exist in the real process because of a conservative mismatch
characterization, the controller design will also be conservative, requiring more detuning than necessary.
Inareal process environment uncertainty information will never be accurate and likely very difficult to
obtain. Therefore, extreme effort made to satisfy (3.7) with questionable mismatch information is
questionable.

Performance index (3.7} assumes that vector d can take on any complex value such that | }d]| < 1. From

the point of view of performance, this is a very conservative range of inputs since in the performance
analysis one is usually concerned with complex inputs of the formu  ¢°, Therefore, a much larger range

of input d are considered than are physically meaningful, introducing conservatism in the design.
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6) The H" design crifcrion finds the optimal feedback controller for the worst case disturbance at some

frequency entering into the process. The worst case may corresponds to an unimportant or infrezent
disturbance that may or may not be worthy of consideration, Because this design does not compromise
between disturbances at all frequencies, performance of the controller to disturbances that may be more
imponant at other frequencies could be severely degraded as a result of the worst case point.

The problems stated above essentially render the p robust performance approach inadequate for

addressing real world control problems in a straightforward and nonconservative manner, The main obstacle
with this approach is that the origins of this theory can be found in the domain of applicd mathematics rather
than from a practically posed engineering problem. For the sake of mathematical convenience, the approach
enforces specific types of uncertainty and performance specifications which are meaningless and not natural
for an application engineer 1o work with in a real world contro! problem, A more logical procedure for meeting
robust performance requirements in some sense would be to work with a meaningful time domain performance
criterion, such as ISE or IAE, for a range of plants with a more natural and nonconservative mismatch region
characterization for chemical process control problems. It is not known if any useful thcory can be developed
to meet this goal, but it can at lcast be stated, that a far greater effort needs to be made in finding more
meaningful uncertainty characterizations for nonconservatively analyzing MIMO controller design robustness.

The chapter that follows will examine robustness properties of L(Q controller designs in an Intemnal
Meodel Control IMC) framework. It will be demonstrated that the LQ procedure can be used to arrive atrobust
controller designs even though the procedure, at this point in time, lacks any formalism in addressing the

robustness issue in a nonconservative manner,
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3.1 NOTATION

controller transfer function matrix

disturbance vector

additive effect of disturbance response on output vector
disturbance transfer function matrix |

output eror vector

weighted output error vector

2 nom

infinity norm

quadratic performance index

interconnection matrix for structured singular value analysis
interconnection matrix for robust performance analysis
true process lingar transfer function

output error weighting matrix

input weighting matrix

sensitivity matrix operator

nominal sensitivity matrix operator

time

complementary sensitivity matrix operator

manipulai 4 input vector

output error weighting in /™ design procedure

output vector

output set point vector
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Greek Letters

o;

& > o

input vector from block diagonal perturbation block

output vector from block diagonal perturbation block

stable block diagonal perturbation transfer function matrix

block diagonal perturbation block for robust performance analysis
pseudo performance perturbation block

maximum singular value

radian frequency
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4 OPTIMAL IMC INVERSES: DESIGN AND ROBUSTNESS
CONSIDERATIONS

4.1 INTRODUCTION

The Internal Model Controller (IMC) structure in Figure 4,1 has been advocated recently as a very

useful structure for both the analysis and design of multivariable controllers.

d,

Figure 4.1; Internal Model Controller Block Diagram

In this structure the conventional feedback controller is decomposed into a model prediction block (P,),

and a controller or approximate model inverse block (Q). For a perfect model (P, = P) the closed-loop
system is equivalent to the open-loop system given by

y = PQU, — d + d (4.1)
The benefits of this decomposition into meaningful blocks are that stability and the prevention of steady
state offset are both guaranteed for a stable nominal plant (P,) by simply choosing a stable inverse block
(@) with a gain equal to the inverse gain of P,. Furthermore, the design of multivariable controllers by
directly choosing such a Q is generally much more direct and intuitively more appeating than the design

of a feedback controller in the conventional form.

41



The main theory behind the multivariable IMC structure was laid out by Zames (1979, 1981) who
referred to this structure as the model reference transformation, However, because of his use of the symbol
@ forthe controller block, this form became generally knownin the control literature as Q -parameterization.
Brosilow (1979) and Garcia and Morari (1982, 1985a, b) were largely responsible for bringing this structure
to .Lhe attention of the chemical process control community, and the latter authors coined the term "Internal
Model Control” to describe it. Since all model-based controllers can be expressed in the IMC structure, it
is to be expected that IMC design procedures are closely related to other commonly used designs such as
Linear-Quadratic (LQ) control using transfer functions (Harris and MacGregor, 1987), Dynamic Matrix
Control (DMC) (Cutler and Ramaker, 1979), Model Algorithmic Control (Richalet ct al, 1978; Rouhani
and Mehra, 1982) and Inferential Control (Brosilow, 1979).

The design of multivariable IMC controllers requires a procedure for choosing the control block Q.
As can be seen from the closed-loop control equation (4.1}, perfect control could theorctically be
accomplished by choosing Q to be inverse of the process plant mode! (P."). However, such a controller
may notbe realizable in practice since it may contain predictive terms, will not be stable if the plantcontains
RHP zeros, and will lack robustness if the modet is not a perfect representation of the plant (P). Therefore,
the choice of the controller Q can be viewed as the choice of an approximate model inverse which is stable
and causal, and which will provide a good compromise between performance and robustness under most
conditions of plant operation. A number of authors {Desoer and Chen, 1981; Holt and Morari, 1985a, b;
Garcia and Morari, 1985a, b; Morari et al., 1987; Zafiriou and Morari, 1987) have considered the design
of these multivarizble controllers, The results of their work demonstraie, in the gencral case, that the design
of an approximate model inverse (@) with desirable performance and robustness properties is not triviad,

The first objective of this section is to present a general and simple method for obtaining analytical
expressions for integrated square error (ISE) or LQ optimal IMC inverses for any form of lincar
multivariable process model. The process may be of arbitrary complexity including unbalanced time delay
structures, noninvertible transfer functions, and nonsquare systems. The method will not only allow one
to design stable, causal inverses leading to optimal output performance, but will also allow one to trade
off performance, the costof input manipulations, and robustness in a straightforward manner. The approach
requires one to specify a transfer function or impulse response model relating measured or inferred cutputs
1o the process inputs. The solution is directly arrived at using well known, computationally efficient and

simple methods for optimally factorizing polynomial matrices into invertiblc and noninvertible elements.
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The second objective of this work is to demonstrate some fundamental differences in the properties
of IMC designs obtained by different approaches tc selecting the controller @, To investigate the robusmess
of the controllers to modelling errors, the designs are analyzed using several methods: (i) examining the
conditioning of the invertible model approximation (Q™) using singular values and condition numbers;
(ii) performing a singular value analysis on the closed-loop system assuming unstructured norm bounded
uncertainty (Doyle and Stein, 1981); (iii) performing a structured singular value analysis (Doyle, 1982;
Skogestad and Morari, 1987) on the closed-loop system assuming equal percentage disk uncertainties in
each element of the transfer function matrix; aud (iv} performing simulation studies on two processes (2
catalytic reactor and a distillation column) for which some actual model uncertainties have been identified

. experimentally,

4.2 INTERNAL MODEL CONTROLLER DESIGN

The block diagram of the IMC or Q-parameterization structure is given in Figure 4.1, where P
represents the true process, P, the nominal model of the process, and Q the controller. Consider the

following discrete right matrix fraction representation of the multivariable process (Harris and MacGregor,

1987)
PEY = LEhREY @.2)
where L(z™) is a matrix polynomial and R(z™) is a diagonal matrix polynomial in the backward shift

operator z™*, We shall restrict oursclves to open-loop stable processes.

There are infinitely many ways of designing the IMC coatroller Q for the modet in (4.2). The only
restrictions are that { be stable and causal (i.e. contain no predictive elements). An optimization approach
can be used whereby some index of nominal performance, or some measure of robustness to a class of
uncertaintics can be optimized. Alternatively, various pole placement or decoupling approaches can be
used. Desoer and Chen (1981), employing the latter approach, presented an algorithm for designing Q
which yields a decoupled closed-loop system in which all the poles can be chosen by the designer as well
as the zeros (except of course the noninvertible zeros which must appear in the closed-loop response).
They presented some examples and discussed the limitations imposed by plant dynamics, uncertainties,

and noise.
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Garcia and Morari (19854, b), extending their univariate approach (1982), considered a convenicnt

two-stage design whereby they factored @ into two components

Q = PIF 4.3
where P! is an approximate model inverse and F is a unit gain tunable filter. The approximate model
inverse was taken as

Pl = plv @4
where P;! is the exact model inverse, and V is a polynomial matrix selected to eliminate predictive elements

that result from model inversion and replace unstable or ringing zeros in the process model. A very simple
method for designing a diagonal V was presented which leads to a decoupled closed-loop response. This
decoupled closed-loop IMC design provides an optimal integrated mean square error (ISE) inverse lor
step disturbances and set point changes if the process model is balanced with respect to time delays and
contains no noninvertible zeros, A multivariable process is said to be balanced with respect to Lime delays
if it is possible to manipulate the columns and rows of the process model transfer function such that the
minimum delay in each row appears on the diagonal. A process with the same number of inputs and outputs
is said to be invertible if the determinant | L] has no finite zcfos outside the unit circle in the z-plane. If
cither of these conditions is not met, the decoupled IMC design procedure will be suboptimal with respect
tothe ISE criterion. Holt and Morari (19852, b) have pointed out that in these latter situations ISE optimality
requires some interaction in the closed-loop response. Unfortunately, they also showed thatthe specification
of an optimal V is not straightforward. They presented solutions to the inverse only in the limiting case
where the weighting in the ISE criterion is placed on all but one ouiput. Zafiriou and Morari (1987) outline
a geometric control theory approach for obtaining V for a specificd nominal output response and provide
asolution for permissible Vs leading toastable and causal Q 's foraclass of square multivariable processes.
To evaluate the performance of inverses these authors also used an ISE output criterion. In this paper we
present a general solution to the problem of the optimal inversc design which includes some of the above
solutions as special limiting cases.

The proposed choice for the filter block was a diagonal (decoupled) first order exponential filter

1_ﬁ”} (4.5)

1 - ,-_,-z -

F = Diag{



where each filter parameter liesin therange 0 < £ ; < 1, When P and £, are not equal, closed-loop stability

cannot be guaranteed for the design with the nominal model. The filter factors are then determined to
provide the necessary degree of robusiness to model mismatch, and can be conveniently tuned on-line,
Increasing the filter factors dircctly reduces the bandwidth of the complementary sensitivity function P,@
and improves the robusiness of the controller design (Morari and Doyle, 1986). When the filter block (4.5)
is combined with a realizable and decoupled approximation of the approximate inverse (4.4}, this IMC
design can be shown (o be the multiple input/multiple output (MIMO) extension of Dahlin's algorithm
(1968). The filter factors can be used in a Dahlin sense to adjust the first order time constants of the nominal
closed-loop output responses. In this sense the design is also equivalent to that of Desoer and Chen (1981),

although conceptually the closed-loop poles f; ; arc arrived at from robustness considerations.

4.3 LQ OPTIMAL INVERSE DESIGN

The design of optimal IMC inverses for multivariable systems requires a general design procedure.
A trial and error approach of guessing different forms for V until a satisfactory result is realized becomes
unmanageable with complicated systems, especially if the process is not.invertible nor balanced with
respect to time delays, In addition, even if one can find an optimal P;! by simple reasoning, it may lead
ld unacceptable input performance and poor robustness properties.

Garcia and Morari (1985b) suggested that one approach to this problem is to transform it into a
future finite horizon, model predictive, linear quadratic (LQ) optimization problem. Such algorithms, for
example DMC (Cutler and Ramaker, 1979), have been used extensively in industry. This method yiclds
a very practical and easily implemented solution 1o the finite horizon LQ problem. However, it docs not
provide an analytical expression for Q that can be used for analysis of the feedback properties of the
controller. The objective of this section is to present a simple and general design procedure for direcdy
obtaining analytical LQ optimal IMC designs for Q. DMC will yield the identical solution to this procedure
if both the input and output horizons used in DMC are made large,

The following quadratic performance index will be used for the design of general IMC inverses

N
J = lim %E{‘% efQe, + Vu' QZVu,} (4.6)

Now
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where 0, and @, are positive semi-definite weighting matrices, ¢, =y, -y, V=1 ~z and E is the

expectation operator, In (4.6) we incorporate & penalty on the sum of squares of the velocity of input
manipulations to provide a compromise between output performance and the severity of the input
manipulations,

'The solution which minimizes the quadratic index (4.6) for the classical case of step disturbances
and set point changes with the process mode! (4.2) can be obtained directly from the spectral factorization

solution of the Wiener-Hopf equation (Harris and MacGregor, 1987), and is given by

Q = P} = RI™ (4.7)

I is an (nxn) polynomial matrix obtained as the unique invertible and causal solution to the spectral

factorization equation
rgr = L'QL + RVQUVR (4.8)
where I denotes the complex conjugate transpose of I(z ™) (i.¢. I (2)). Efficient algorithms for computing

matrix spectral factors, I, can be found in Wilson (1972), Kucera (1979), Jezek and Kucera (1985), Davis
and Dickinson (1983), and Harris and Davis (1989). These algorithms have been used to find inverses for
systems as large as 12x12. The spectral factorization solution can also be obtained by solving an associated
Riccati equation (Tuel, 1968; Georgiou, 1988). A solution for a stable approximate inverse will exist only
if the right hand side of the spectral factorization equation (4.8) is nonsingular. Equivalent conditions for
the existence of an inverse are given by Wilson (1972), Kucera (1979), and are summarized in Harris and
MacGregor (1987).

The design of the spectral factorization inverse (4.7) requires the specification of an output weighting
matrix Q,. O, is usually chosen to be diagonal with the magnitude of cach diagonat clement reflecting the
relative importance of a unit change in each ouiput. The input weighting matrix, @y, if taken to be diagonal,
can be used to tune the approximate model inverse by adjusting n input weights. Through each input penalty
weight, a trade-off between output performance and problems associated with input ringing or harsh input
movements can be achieved. This trade-off can be evaluated by simulation or by computing the expected
variances or ISE's of the inputs and outpuls until an acceptable solution is found. For disturbances entering
the feedback loop these variance matrices can be easily computed (Astrom and Wittenmark, 1984,

Kwakemnaak and Sivan, 1972) from

46



1 . dz
5, = g, (U-PORILW-PON) £ 49)
T = g, @vnevey £ (4.10)
where
d = ‘{’,(z")v, (4.11)

In the equations above, ‘¥, represents the disturbance transfer function and v, is a white noise vector with

variance matrix L,. Z, and Zy, are the nominal closed-loop output error and manipulated input velocity
variance matrices respectively. Altzrnatively, (4.9) and (4.10) could be used to compute the ISE’s for a

deterministic disturbance v, by setting Z, = v\

4.4 PROPERTIES OF SPECTRAL FACTOR INVERSES

4.4.1 Stabitity

The spectral factor inverse obtained from (4.7) will always be stable since by design I' is chosen as

the unique solution to (4.8) having all its roots inside the unit circle. Therefore, stability of the closed-loop

system will always be guaranteed for the nominal model (Zames, 1981).

4.4.2 Steady State Offset

The spectral factor inverse (4.7) satisfics the condition Q(z = 1) = P,(z = 1)™. This property ensures

that the closed-loop system will show no steady state offset to asymptotically constant disturbances or set

point changes (Desoer and Chen, 1981; Garcia and Morari, 1985a).

4.4.3 Performance

By minimizing the performance index (4.6), it can be shown that for a given weighted ISE of input

variations

1
lim —
Nom N

E {'}"fl Vu! QZVu,}

47



noinverse will give better performance for the nominal model in terms of the weighted ISE of the output

1[4
lim NE{Elelee,}

Nt

than the spectral inverse (4.7). With no penalty on the input variations (i.c. Q; =0}, the spectral foctor

inverse (4.7) gives the inverse having the smallest weighted cutput ISE among all stable inverses for the
nominal model.

4.4.4 Spectral Interpretations

From equation (4.8) the spectrum I”Q,I" is formed from the weighted process zero matrix spectrum

L"Q\L and the spectrum R *7°Q,VR which isaffected by input penalty weight Q,. This relationship suggests
that the method may be interpreted as a pole placement design, where I represents an invertible
approximation to L, and 0, is a tuning matrix vsed to shift the zeros of T,
An alternative form of the spectral factorization equation is obtained by premultiplying the terms
in equation (4.8) by R™"" and post multiplying by R to give
PP = PP, + VOV 4.12)

where @, has been taken, with no loss in gencrality, as the identity matrix I, and where £, = TR ™. The

approximate model inverse is given by Q = £;*. From (4.12) it can be scen that the spectrum of the
approximate model, £.£, is obtained by adding to the spectrum of the nominal model, 2P, the diagonal
spectral matrix V°Q,V. In the limit where @, =0, the approximate model £, will be equal to the nominal
model P,, but with all unstable zeros reflected inside the unit circle. When @, is nonzero the approximate
modelinverse P, will be a weighted function of twoterms on the right hand side of (4.12), Atlow frequencics
(z = 1), the first term dominates while at high frequencics the second term becomes important and forces
PP, to become diagonally dominant in this region. The consequences of this arc discussed later in the

section on robustness.
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4.4.5 Singular Values And Condition Number

Theeffectof the input weighting matrix 0, on the gains of the approximate model £, can be examined

by considering the following singular value analysis. Taking the square root of the cigenvalues (A;) of both

sides of (4.12) evaluated at z = ¢*“7 leads to

o (P () = VNP, + VOV (4.13)
where g;(P,(iw)}, j = 1,...,n are the singular gains of £,. Denoting the maximum and minimum singular

gains as 6,(F,) and 6,.(P,) respectively, we can define the condition number as

L]
a (P

(4.14)

A well-conditioned model has a small condition number at all frequencies. In general, such a model will
yicld an inverse with good robustiess properties. Furthermore, an approximate inverse that leads to small
variances of the input manipulations will result from an approximate model having a large minimom
singular gain atall frequencies. The spectrum of V°Q,V isdiagonat and its elements increase with frequency.
It is straightforward (o show that a nonzero Q, affects the condition number of P,, and can be chosen so
that the condition number is reduced at all frequencics @ > 0, An off-line singular value analysis can be
performed to check whether any inverse design is well-conditioned and has high minimum singular gains
across the entire frequency domain, Note that poor steady state conditioning of the process, is an inherent
property of the system and cannot be affected through the spectral factorization inverse design, nor with

any other controller design when integral action is required.

4.4,6 Sensitivity Norm Interpretations

The cost function (4.6) can be expressed in the frequency domain form (Kwakemaak and Sivan,
1972; Astrom and Wittenmark, 1984) as

.1 dz
Min % Do Trace {QP, +0;9¢.} 7 (4.15)

where ®, and Oy, are the spectra of e, and Vi, The nominal sensitivity matrix S, defined by
S, =1 - PO (4.16)

and the nominal complementary sensitivity matrix
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T, = PO ICRY))

can be used to express (4.15) as

Min[ 1@, Wt + (W, (4.18)
where
1
W1 = v (4.19)

is the transfer function of the assumed step disturbances or set point changes, and

W, = 0,F (4.20)
The cost function (4.18} is similar in form to the criterion used in designing controllers which compromise
between performance and robustness (Kwakernaak, 1985; Morari and Doyle, 1986). The difference is that
aH*-norm minimization criterion is used in this case as opposed to a //*-norm minimization, and in general,
will lead to a controller design with very different performance and robustness properties. In the weighted
H*-norm minimizations criterion (4.18) the weight W, on the sensitivity function is large over the low
frequency range where the disturbance spectrum is large. When P, is a typical low pass process, the weight
W, on the complementary sensitivity function is large at high frequencies where model mismatch is usuwally
the greatest. In general, these weightings are consistent with the trends advocated in the #™-norm

approaches based on robustness considerations (Kwakemaak, 1985; Doyle and Stein, 1981; Morari and
Doyle, 1986,

4.4.7 Nonsquare Systems

In many situations one has a different number of inputs (m) than outputs (n). In particular, with
more inputs one has a considerable degree of additional flexibility in designing control systems. Nonsquare
spectral inverses are easily obtained (Harris and MacGregor, 1987) by simply using thc oltemative spectral
factorization in (4.8) given by

rr, = ror (4.21)
where T, is a (mxm) spectral factor. The approximate {mxn) pseudo medel inverse to be used in the design

is then

Q0 = Rk 4.22)
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where K =I(z = 1)Lz = 1)Q, is the scaling factor ensuring no steady state offsct to asymptotically

constant disturbances or set point changes if m 2 n.

4.5 SIMULATION STUDIES: NOMINAL PERFORMANCE

{n this section we introduce two example systems with very differentdynamics; a pilot plant catalytic
reactor, and a pilot plant distillation column, for which models have been identified overa range of operating
conditions. In this section we consider the design of various IMC controllers and investigate their nominal
performances by computing their expected closed-loop variances using equations (4.9) and (4.10}, and by
performing simulations. In a later section we investigate how these designs based on a nominal model

perform in other operating regions where different models are used.

4.5.1 Example I: A Packed Bed Catalytic Reactor

The pilot plant packed bed reactor carrying out butane hydrogenolysis reactions over a nickel on
silica gel catalyst has Lsen described by Kozub et al. (1987). The outputs o be controlled are propane
production rate (»,) and % butane conversion (y;)- These outputs are controlled using hydrogen flow rate

{4, } and reactor hotspot temperature rise (). An identification study by Kozub et. al. (1987) led to the

model
1.827- 6.6z +5.2: 0.54z7*
O et PR
-0.75% 3427~ 23 mz‘_
where

%, =propane production {(mmoles/s)

¥: =% bulane conversion
w, =hydrogen flow rate ( x10™ cc/s)

i, = hot spot temperature rise (C)
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This process model can be shown to display an initial wrong way propane responsc with respeet to changes
inhydrogen flow rate. The mode! contains one noninvertible zero at -5.5, and a stable ringing zero located
at -0.58. One period of time delay imbalance is also present. A right matrix fraction description of this
transfer function is given in Kozub (1986).

The following three different IMC controller designs are compared:

Design 1 An i.Q optimal inverse obtained by spectral factorization (cquations (4.7) and (4.8)) and tuned
by adjusting the quadratic performance weights Q, to provide an accepiable compromise between the

output and input variances (Z, and Iy, in equations (4.9) and (4.10)). The output weighting Q, is set to /

reflecting equal importance on the two outputs,

Degign 2: An ISE optimal inverse (") again obtained by spectral factorization bui now with Q,=0, and
then combined with a diagonal first order fiiter (F) (equation (4.5)). The controller Q = F7IF is wned by
adjusting the diagonal filter parameters.

Design 3: The minimum settling time, decoupled closed-loop inverse design of Garcia and Morari (19852,
b) and Desoer and Chen (1981) given in equations (4.3) and (4.4). In this design the unstable pole resulting
from the noninvertible process model zero is reflected inside the unit circle, and the ringing pole arising
from the negative real axis zero is shifted to the origin. As with the second design, a diagonal first order

filter (4.5) is used to tune the controller,

These designs, together with their calculated nominal closed-lcop output and input change 1SE’s

for random step disturbances or set point changes, are summarized in Table 4.1.
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TABLE 4.1: NOMINAL PERFORMANCE OF IMC DESIGNS WITH
PACKED BED REACTOR MODEL
Variances
Inverse Design: (O)
e, e; Vu, Vi,
Design 1:
Q,=1, Q,=Diag(200,3) 5.0 50 0.0071 0.18
f11=0, f2=0
Design 2:
=1, ;=0 5.0 50 0.0090 1.03
fi=013, f,,=073
Design 3;
Decoupled 50 5.0 0.0234 2.36
£,.=03, f,=03

Note that in order to make comparisons all controllers were designed to give the same nominal performance
for the outputs, Although all these designs lead to the same output performance, it is cvident that the first
design using the diagonal elements of (0, as tunable parameters leads to significantly lower ISE’s for the
control actions. The design leading to the highest cost in terms of contrel actions was the decoupled design.
From a practical standpoint, one would generally prefer a design with the smallest control actions for the
same degree of performance. Intuitively, this design might also be expected 1o be more robust to model
uncertainty, since it will put less strain on the internal model’s ability to predict the output.

The nominal performance of the three IMC designs toan identical sequence of step set point changes

is shown in Figures 4.2, 4.3, and 4.4 respectively.
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FIGURE 4.2: Nominal Simulated Packed Bed Reactor Control: Design 1
Ql=li Q1=D£ag(m0:3)! j:'.i=0
Top, (-) propane production; (--) set point
Middle, (-) % butane conversion; (--) set point
Bottom, (-} hydrogen flow rate; (--) hot spot rise
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FIGURE 4.3: Nominal Simulated Packed Bed Reactor Control: Design 2
Q1=1v szo; f.'..'=0.73
curve identification as in Figure 4.2
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FIGURE 4.4;: Nominal Simulated Packed Bed Reactor Control: Design 3
Decoupled, f;;=0.3
curve identification as in Figure 4.2
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‘The first set point change is a 5 unit increase in the level of propane production (3’1.)' The second set point
change is a 5 % decrease in butane conversion (y%)‘ The third st point change is a simultaneous increase
and decrease of 5 units in y, and y, set points respectively, while the fourth set point change is exactly
the reverse of the third, Differences in both the closed-loop cutput and input responses can be observed
in these figures, even though all three controllers were designed for exactly the same output error variances.
Unlike the decoupled design, the nominal output response displayed by tiie first two designs shows some
interaction. The input manipulation of design 1 can be seen to be much smoother relative to designs 2 and
3.

This example clearly illustrates that the nominal closed-loop behavior of an IMC design is affected
differently by tuning with quadratic weighting matrix Q, as opposed to tuning with a diagonal filter. In
this particular example, tuning the approximate inverse with @, leads to a belter compromise between
nominal output performance and the cost of input manipulation than a design where a fixed ISE inverse

or decoupling inverse is used with a first order tunable filter.

4.5.2 Exaraple 2: A Binary Distillation Column

The second case study is concerned with the simulated control of overhead composition of water
() and bottom composition of methanol (y;) in a binary methanol/water pilot plant distillation column.,
The manipulated inputs for control are reflux flow rate (x, ) and steam flow rate (i) to the reboiler. A
detailed description of this pilot plant process is given by Hugo (1989). An identification study made by

Hugo (1989) at one region of operation led to a lincar continuous transfer function model

40 40
4455+1 604s5+1

604s5+1 4155+
where

», =% mole fraction water in overhead

Yy, =% mole fracton methanol in bottom
i, =reflux flow rate (ml/min}

u, = stcam flow rate (ml/min)
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In the control designs to follow, the model was discretized for a contro! interval of 10 min., corresponding
to the sampling frequency of the process gas chromatographs in the actual pilot plant system. When
discretized for this sampling interval, it can be shown that the process model is balanced with respect 1o
time delays and centains no unstable zeros.

The following two different IMC designs are compared;

Design 1: The LQ optimal inverse was obtained by spectral factorization and tuned by adjusting both

quadratic performance weights Q, and Q, to meet nominal output performance specifications,

Design 2 The minimum settling time, decoupled closed-loop inverse design procedure together with a
tunable diagonal first order filter was used to specify Q. Since the process model is both invertible and
balanced with respect to deadtime (no deadtime present), this decoupled design, when taking £, =0, is

identical to the spectral factorization design (4.8) with Q. =0, and any nonzero diagonal choice for Q,.

The two designs together with their calculated nomina! closed-loop output and input change

variances or ISE's for random step disturbances or set point changes are summarized in Table 4.2.

TABLE 4.2: NOMINAL PERFORMANCE OF IMC DESIGNS WITH
DISTILLATION COLUMN MODEL
Variances
Inverse Design (0)
€ &, Yy, Vu,
Design 1;
Q,=Diag(3.75,1) 2.8 28 0.059 0.019
Q,=Diag(15,15)
Su=0, f1,=0
Design 2:
Decoupled 28 28 0.136 0.034
fl.l=0'8' f2.2=0.8
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Both controllers were designed so that the nominal error variance of each output was the same, As was
previously observed in case study 1, the first design using quadratic performance weights to design @
through (4.8) leads to lower ISE's for the control actions for the same nominal output performance
specification,

The nominal performance of the two IMC designs to an identical sequence of step set point changes

is shown in Figures 4.5 and 4.6.

59



% MOL.WATER in OVHD
(@] —

% MOL. MeOH in BTMS

INPUTS

0 20 40 60 80 100 120 140 (60
SAMPLING INTERVAL

FIGURE 4.5: Nominal Simulated Distillztion Column Control: Design 1
@, =Diag(3.75,1), Q,=Diag(15,75), f.;=0
Top. (- % water in nverhead; () set point
Middle, (-) % methanol in bottom; (--) set point
Bottom, (-) reflux flow; {--) steam flow
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FIGURE 4.6: Nominal Simuiated Distilation Column Control: Design 2
Decoupled, £, =0.8
curve identification as in Figure 4.5
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The first set point change in these simulations is a unit increase in the water composition in the overhiead
(). The second set point change is a unit decrease in methanol composition in the bottom (2). The third
change is a simultaneous unit increase and decrease for », and y, set points respectively, while the fourth
set point change is exactly the reverse of the third. Figures 4.5 and 4.6 show that the response of cach
design is very different. The first design leads to some interaction in the closed-loop output respanse,

whereas the response of the second design is completely decoupled as expected. Only slight differences

can be seen in the closed-loop input responses.

4.6 ROBUSTNESS ANALYSIS

In the following sections we investigate the robustness propertics of different IMC designs in four
different ways: (i) examining the conditioning of the invertible model approximation (Q™") using singular
values and condition numbers; i) performing a singular value analysis on the closed-loop system assuming
unstructured norm bounded uncertainty (Doyle and Stein, 1981); (iii) performing a structured singular
value analysis (Doyle, 1982; Skogestad and Morari, 1987) on the closed-loop system assuming a onc
parameter equal percentage disk uncertainty characterization in the frequency domain in each element of
the transfer function matrix; (iv) performing simulation studics on the catalytic reactor and distillation

pilot plant examples using some experimentally identified mode! mismatch.

4.6.1 SVD Analysis On Approximate Model Inverses

In this section, the analysis technique cutlined in section 2.3 isuscd to compare the SVD properties

of the different IMC designs.

(i) Example 1: SVD Aralysis On Packed Bed Reactor Case Study

SVD analyses on the approximate models to be inverted (Q ) for the three IMC designs in Table

4.1 corresponding to the catalytic reactor example are shown in Figure 4.7.
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FIGURE 4.7: SVD of Q™*: Packed Bed Reactor Example
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A 5VD analysis on the nominal model p, is also included in this figurc as & base against whic!i to contrast
the various designs. The SVD of P, reveals that the nominal model is poorly conditiored at high frequencics
and has a small minimum singular gain at frequencies higher than 0,17, This suggests that using an
invertible ISE approximate inverse for 0 would lead to a design with poor robustness properties based on
the arguments in section 2.3, Figure 4.7 also reveals that the SVD properties of P, and @' for the three
IMC designs are similar in the frequency range below 0.15vT, and therefore good performance can be
expected from all three designs in that frequency range. However, very significant differences can be seen

in the frequency range above 0.1wT.
The second plot in Figure 4.7 shows the SVD of Q™" for the first (LQ optimal) design that was tuncd

by adjusting the quadratic performance weight Q, in (4.8). The cffect that the input penalty matrix @, has
on the effective model inverse relative to P, is to significantly increase the minimum singular gainof 07
at high frequency. The use of a non-zero @, can also be observed to substantially reduce the condition
number of @' at high frequency relative to that of the nominal model P,. This is an expected property of
spectral inverse designs as shown earlier in cquation (4.13),

The SVD of Q™! for the second design, arrived at with @, =1, 0, =0, and £ ; = 0.73 is shown in the

third plot of Figure 4.7. The effect of the filter in this design is to increase both the high {requency minimum
and maximum singular gains by the same factor relative to P,. This results in a reduction in the high
frequency loop gains but has no effect on the condition number of Q™ (This is true for all IMC designs
using common diagonal filters).

The SVD analysis of the decoupled IMC inverse design, shown in the fourth plot of Figure 4.7
shows a trend similar to the second design, in that the gains of Q™! are increased, but the conditioning is

unaffected by the diagonal filters.

(&) Example 2: SVD Analysis On Distillation Column Case Study

Figure 4.8 shows the SVD analyses of the approximate models 10 be inverted (0 ™) together with

the nominal model P, for the IMC designs in Table 4.2 corresponding to the pilot plant distillation column

example.
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Asinthe firstcase study, the minimum singular value of p, decreases with increasing frequency, indicating
that unacczptably high controiler gains at the high frecuency range may result if the exact model inverse
were used in Q. However, unlike the first case siudy, the condition number of Q! decreases slightly with
increasing frequency, suggesting that the approximate model inversion design will be less sensitive to high
frequency model perturbations. In general, the behavior of this process appears much better over the whole

frequency range than the previous reactor example.
The second plot in Figure 4.8 shows the $%'D of Q™' corresponding to the first (LQ optimal) design

arrived at by adjusting 0, znd 0, in (4.8). This design gives both a significant increase in the minimum
singular gain, and an improved condition number of the approximate model Q™ at high frequency comparcd

10 P,. No differences relative to P, can be seen at low frequencies,
The thivd plot in Figure 4.8 shows the SVD of Q! for the decoupled output response IMC design.

The effect that the filter has on the effective approximate inverse is, once again, to increase the minimum
and maximvm singular ghins by proportionally the sume amount in the high frequency range. The
conditioning of the effective model inverse relative to P, is unchanged. At low frequency no differences
between the SVD of P, and Q™! can be observed.

The resuits of this example are consistent with the trends observed in the firstexample. For the same
nominal output performance specification, the inverse arrived at through LQ penalty weights 0, and @,
leads to greatly impruved high frequency conditioning and better high frequency gains relative o an IMC
inverse design arrived at with a fixed inverse and a tunable diagonai filter. These results clearly demonstrate
some advantages in the employing spectral factor inverses (4.8) in IMC designs, and also demonstrate the
limitations of IMC dcsigns where fixed inverses ase combined with tunable diagonal filters. Admiutedly,
however, these latter designs are very appealing to use in practice because of their ability (o tunc them

on-line using diagonal filter elements,

4.6.2 Singular Value Analysis: Unstructured Uncertaiaties

In this section, the index for relative robustness based on multiplicative unstractured norm bounded
uncertainty m,, in seczion 2.5 is used to compare the relative robustness of the different IMC designs.

The upper bound on m_(t) for each of the designs in Table 4.1 is shown in Figure 4.9.
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FIGURE 4.9: Unstructured Muitiplicative Mismatch Tolerance m,_(w):
Packed Bed Reactor Example
)@ =1, Q,=Diag(200,3), f,;=0
-10,=1, 2,=0, [,;=073
(..) Decoupled, f;; =0.3

The results indicate that the second design, arrived at with a fixed ISE inverse and a tunable diagonal filter,
is more robust with respect to stability, except at very high frequency where the decoupled inverse IMC
design appears (o be slightly better, Robust stability of the first (LQ optimal) design, arrived at by adjusting
(; in (4.8), to this unstructured multiplicative uncer:ainty is predicted to be inferior to the second IMC
design., The decoupled IMC design is predicted to be slightly more robust than the first design in some
frequency regions but worse in others.

The relative robustness trends of the two IMC designs for the distillation column example in Table

4.2 to independent norm bounded unstructured multiplicative output uncertainty is shown in Figure 4,10,
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FIGURE 4.10: Unstructured Multiplicative Mismatch Tolerance m,_(w):
Distillation Column Example
(-) @, =Diag(3.75,1), Q,=Diag(75,75), f.i=0
(--) Decoupled, £, =0.8

At all frequencies, the decoupled IMC design appeass (o be significantly more tolerant 1o unstructured
muliplicative output uncertainty.

The results of the robust stability analyses from the two examples display a consistent trend. In
general, for the same nominal output performance specification, the design where Q was arrived at by
adjusting the quadratic performance index weights 0, and Q, in (4.8) appear significantly less robust to
independent unstructured norm bounded uncertainty than the Q designs using the ISE output optimal
inverses combined with a tunable diagonal filier. Again, it is important to stress that these trends only
pertain to the mismatch characterization described above, and may not provide a reliable indication of the
relative robustness of the controllers to the true range of plant mismatch, This will be illustrated in the

sections to follow.

4.6.3 Equal Percentage Element-By-Element Uncertainty Analysis

In this section the relative robust stability of the IMC designs arc compared using the Kappa (x)

index introduced in section 2,6. This Kappa index represents the amount by which cqual percentage disk
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uncertainty in all clements of the transfer function can be increased at cach frequency before the feedback
loop goes unstable, Structured singular value analysis is used to arrive at x(w} for the IMC designs
considered in this section.

Figure 4.11 shows the maximum « for closed-loop stability as a function of « for the packed bed

reactor IMC designs in Table 4.1,
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FIGURE 4.11: Element-by-Element Equal % Disk Uncertainty Tolerance x(w):
Packed Bed Reactor Example

(-)Q,=1, Q,=Diag(200,3), f,;=0
(=1, @=0, f;=073
(-.) Decoupled, f; ; =0.3

The relative robust stability limits of the three controller designs for this equal percentage
clement-by-clement disk uncertainty are significantly different from the trends previously shown for the
unstructured multiplicative case in Figure 4.9, In the high frequency range, the first IMC design arrived
at by tuning Q, in spectral factorization equation (4.8) now appears to be the most robust design. Only in
the mid frequency range, does this design appear to be slightly less robust than the second design where
Q was arrived at with an ISE optimal inverse combined with a diagonal filter. The decoupled design is
the least robust of all three IMC designs, except at very high frequencies where it appears to be more robust
than the sccond design. If one makes the assumption that model uncertainty will in general be greater at
higher frequencies, then based on thesc results, one would expect the first design to be the most robust to

model perturbations.

69



Figure 4.12 shows the maximum tolerable x{w) for both of the distillation column IMC designs in

Table 4.2,
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FIG'IRE 4,12: Element-by-Element Equal % Disk Uncertainty Tolerance x{w):
Distillation Column Example
(-) @, =Diag(3.75,1), Q,=Diag(75,15), f.;=0
(--) Decoupled, f;; =0.8

Relative to the results from the unstructured uncertainty analysis in Figure 4.10, the robustness trends once
aggin appear to be very different. For the equal percentage clement-by-clement, disk uncertainty
characterization, the LQ inverse design arrived at by adjusting Q, and @, in (4.8) appears to be significantly
more robust in the high frequency range, and only slightly less robust in the mid frequency range relative
to the design with a fixed decoupled ISE inverse combined with a tunable diagonal filter,

The trends observed in both examples appear to be consistent, in that IMC designs arrived at through
tuning O, and 0, in (4.8) were predicted to be much more robust in the high frequency range and slightly
less ro ustin the mid frequency range to the equal percentage element-by-element disk uncertuinty relative
to IMC designs with fixed inverses combined with tunable diagonat filters. Furthermore, the robustness
trends based on the Kappa analysis using SSV's for this element-by-clement uncertainty appear to be
almost opposite to those trends using SV’s on the much more conservative unstructured multiplicative

uncertainty characterization.
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The results clearly indicate the importance of the uncertainty characlerization in evaluating the
robustness trends of different controller designs, and that serious credibility should not be given to any
analysis unless the mismatch region characterization can be proven from fundamenial modelling

considerations Lo actually represent the forms of mismatch that might be encountered,

4.6.4 Simulation Studies: Robustness

In light of the above results, it may be argued that a more worthwhile approach to addressing relative
robustness of different designs is simply to evaluate their performance on identified mismatch models if
available, and avoid the problems of conservative disk uncertainty characterizations that existed in the
methods above. Of course this approach could lead to very erroneous results if the mismatch cases tested
are not indicative of the whole range of plants that will be encountered. In the following two sections, the
IMC designs for both the packed bed reactor and distillation column cxamples will be simulated with

different {mismatch) models identified experimentally in some different regions of operation.
(i) Example I: Simulated Packed Bed Reactor Model Mismatch

| An identification study by Onderwater {1985) on the same pilot plant reactor system led to three
different transfer function models describing the process dynamics in three very different regions of
operation. These three models were used in a simulated study to evaluate the performance of the three
different controller designs in Table 4.1 under conditions of model mismatch, The identified mismatch

model that led to the worst performance with all three designs was

s 09 te st 0.4
1-1""+ 04127 1-079 0.3
- 4.25)
Y 40 s o3u™ ' (
1-127 059072 1-07%"!

Figurcs 4.13,4.14, and 4,15 show the performance of the three IMC designs to the same sequence

of step sct point changes made in Figures 4.2 10 4.4 but with P set to (4.25) in the simulation.
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FIGURE 4.13: Simulated Packed Bed Reactor Control With Model Mismatch: Design 1
0,=!, 0,=Diag(200,3), f;=0
curve identification as in Figure 4.2
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FIGURE 4.14; Simulated Packed Bed Reactor Control With Model Mismatch: Design 2
0=1, 0,;=0, f;=0T73
curve identification as in Figure 4.2
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FIGURE 4.15: Simulated Packed Bed Reactor Control With Model Mismatch; Dusign 3
Decoupled, f;;=0.3
curve identification as in Figure 4.2
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The performance of cach IMC design can be obscrved 1o be significantly different. The design that was
least sensitive and performed the best under these conditions of model mismatch was the LQ inverse design
(#1), shown in Figure 4,13, The most sensitive design to the model mismatch was the decoupled design,
shown in Figure 4,15, which went unstable after the first set point change, Exactly the same trends were
observed when mode! mismateh simulations were performed using the other two models identified by

Onderwater (1985).

(ii) Example 2: Simulated Distillation Column Model Mismatch

An identification made by Hugo (1989) ata slightly different region led to the following approximate

linear model
3.7 42
0ds+1 3155+1
ys) = 6.6 00 | 4@ (4.26)

83.25+1 4945+

The same sequence of set point changes that were made in Figures 4.5 and 4.6 were repeated for both IMC

designs but with P replaced by (4.26). The results are shown in Figures 4.16 and 4.17.
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FIGURE 4.16: Simulated Distillation Column Control With Model Mismatch: Design 1
' @, =Diag(3.75,1), Q,=Diag(75,75), f.,=0
curve identification as in Figure 4.5
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FIGURE 4.17: Simulated Distillation Column Control With Model Mismatch: Design 2
Deccupled, £, ;=0.8
curve identification as in Figure 4.5
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Relative to the nominal output responses shown in Figures 4.5 and 4.6, both coitrolled responses of »,
are not seriously affected by this particular type of mismatch, However, some significant differences in
the responses of ¥, can be seen in these figures. The first IMC design arrived at by adjusting @, and Q, in
{4.8) led to a much better response in ¥,, than the decoupled IMC design.

Inboth examples considered above, the simulation results appear to be consistent with the robustness
trends predicted by the Kappa anaiysis using structured singular values, and yet again not consistent with

those trends predicted by the unstructured singular value analysis.

4.7 SUMMARY AND CONCLUSIONS

The design of Internal Model Controllers (IMC) consists of {inding stzble and causal approximate
model inverse block Q. A matrix spectral factorization approach has been proposed in this chapter as a
very straightforward and computationally efficient method for obtaining inverses which yield excellent
controller performance and robustr.ess propertics. The procedure allows one to arrive at LQ ur ISE optimal
inverses for any choice of output and input penalty weighting matrices. [t automautically handles
multivariable process transfer function matrices of arbitrary order, with unbalancad deadtime, with
noninvertible zeros, and nonsquare systems, The resulting inverses are shown to provide many desirable
properties in IMC controllers including guaranteed nominal stability, no steady siate offszt, optimal nominal
performance, desirable singular values and condition numbers, and excellent robustness propertics.

This spectral factorization design approach was compared against two other commonly used IMC
design methods: (i) the ISE optimal inverse (most easily cbtained via spectral {actorization) combined
with a tunable, diagonal first order filter, and (ii) the minimum settling time decoupled inverse combined
with a tunable, first order diagonal filter.

"~ Two simulaliqn casc studics were considered: (i) 2 multivariable packed bed catalytic reactor, and
(i) a binary distillation column, Tha results of the simulation studies nn nominal performance demonstrated
that the different IMC design appraches can lead to very different time domein output and input responsces,
even when designed 1o meet the same nominal output ISE performance specifications, As expected, the
LQ inverses designzd by spectral factorization provide the best nominal performance.

Analyziag the robustness propestics of the multivariable controllers is imuch more difficult. In this
work four approaches to robusiness analysis were employed to evaluate and compare these IMC designs,

Firstly, by examining the condit‘on numbers and singular values of the approximate modcls being inverted
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(@), it was shown that a fundamental problem with designs using diagonal filters is that the condition
numbers of the approximate models are not improved by tuning the filter constants. Detuning via diagonal
filters simply decreascs all the controller gains equally at higher frequencics, On the other hand, the spectral
factor inverses tuncd by adjusting weights (3, in the quadratic objective function are shown to not ouly
decrease the controller gains at high frequencies, but to greatly improve the condition numbers as well.

A second, commonly used approach to robustness assessment, based on a singuiar value analysis
of thc nominal closed-loop system and relying upon very conservative unstructured uncertainty
characierizations (Doyle and Stein, 1981), was shown to be at odds with all the other robustness assessment
methods investigated here. It did not even appear capable of ranking the designs in the correct relative
order. This was attributed to the unrealistic unstructured uncertainty characterization used by this method.

The third approach 10 analyzing the relative robustness of the different MIMO designs made use of
a more rcaningful and less conservative single parameter uncertainty characterization based on equal
percentage disk uncertainties in each element at every frequency relative to the nominal transfer function
matrix. The amount by which the percent disk radii in all clements of the model transfer function can be
increased at each frequency and still maintain stability of the closed-loop system was used as a measure
of robustness, This new measure of refative robustness (k(w)), introduced in chapier 2, was computed
using a structured singular value analysis (Doyle, 1982), By plotting x{®) versus w, the relative robustness
of the various controller designs was compared in the frequency range of interest. Performing this analysis
on the two examples of this paper showed the spectral factorization designs to be the most robust of the
designs considered, particularly in the higher frequency regions.

Finully the relative robustness of the different nominal IMC designs was eddressed by performing
simulation studics on the two example processes asing some mismatch models actually identified from
data cellected from these processes under different operating conditions. In both cases the simulation
studics confirmed the relative robustness rankings indicated by the Kappa index and the singular value
analysis on Q"',

In summary, assessing the relative robustness of various controller designs is very dependant upon
the modc) uncertainty used. Different characterizations can lead 10 totally contradictory results. It appears
that a much more thorough understanding of the nature of the uncertainties is necessary if one is to put

much faith in the conclusion of any robustmess analysis.
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4.8 NOTATION

output disturbance vector at ¢

output error from sct point

expectation

first order exponential filter factor for output i

IMC filter block transfer function

quadratic of 2-norm

infinity norm

square root of -1

quadratic cost function

scaling matrix for nonsquare approximate inverses

left polynomial matrix in process transfer function model
number of inputs

minimum singular value of A,

multiplicative output perturbation transfer function matrix
number of inputs

horizon in quadratic cost funiction

true process matrix transfer function

nominal process matrix transfer function

approximation to P, with causal and stable inverse
approximate model inverse in IMC design

output error penalty weighting matrix in quadratic cost function
input weighting matrix in quadratic cost function
Laplace transform operator

nominal sensitivity matrix operator

discrete time sampling period

sampling irterval
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T, nominal complementary sensitivity matrix operator

1 input vector at sampling period t

v, input vector to disturbance transfer function \ at period t
|14 rational matrix operator used to make exact model inverse causal and stable in IMC design
Y output vector at sampling period t

W, matrix transfer function weight on S,

W, matrix transfer function weighton T,

Yim, output set point at period ¢

z! backward shift operator

Greek Letters

Y condition number

r matrix spectral factor pelynomiat

I matrix spectral {setor for nonsquare processes

v backwards difference operator (1-2z7")

K nominal model equal percentage clement-by-¢lement disk uncertainty tolerance
A; j'th eigenvalue

g;° j'th singular value

G, minimum singular value

Oy maximum singular value

z, output error variance matrix

Zo, input move variance matrix

kY disturbance matrix transfer function

0] radian frequency
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INCORPORATION OF ARIMA DISTURBANCE MODELS
IN DYNAMIC MATRIX CONTROLLERS
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5 INCORPORATION OF ARIMA DISTURBANCE MODELS IN DMC

5.1 INTRODUCTION

Dynamic Mairix Control (DMC) or Quadratic Dynamic Matrix Control (QDMC) is a finite horizon,
linear quadratic (LQ) approach to multiple input/multiple cutput (MIMO) controller design. DMC appears to
have been first introduced by Cutier and Ramaker (1979), and later extended to QDMC by Garcia (1984) 1o
handle constraints on the feasible range of the inputs and outputs, In recent years, this approach has become
very popular and has been successfully applied toa wide range of chemical process applications. Its industrial
success can be attributed io conceptual simplicity (i.c. no Ricatti, spectral factorization, and/or Diophantine
equations involved), favorable robustness properties, and its ability to casily handle operating constraints.
DMC/QDMC is a model predictive controller design, and therefore is closely related to other future finite
t;oﬁzon, model predictive controller designs such as Medel Predictive Heuristic Control (IDCOM) (Richalet
et a.l.; 1978; Froisy and Richalet, 1986), Internal Model Control (IMC) (Garcia and Morari, 1982, 1985b),
Model Algorithmic Control (MAC) (Rouhani and Mehra, 1982), Generalized Predictive Control (GPC) (Clarke
etal., 1987a, b), and Multivariable Optima! Constrained Control (MOCCA) (Stripada et al., 1985). Thereforc
the results in this thesis will also apply to the enti:2 class of designs stated above.

The objective inchemical process control problems is often regulatory in nalure. Hence the effectiveness
of DMC depends heavily on the assumptions made concerning the disturbances that enter the process. The
usual assumpticn made in DMC is that the disturbance computed at the current sampling intervat will remain
constantover the future predicted responses. This isequivalent to assuming that disturbances enter as decoupled
deterministic steps or, in a stochastic sense, behave as independent random welks, This assumption can often
lead to poor disturbance regulation in a real process environment. This is especially true when operating under
very noisy process conditions or when a noticcable lag (high autocorrelation) can be observed in the
disturbances entering the loop. Garcia and Prett (1986) have found that the standard assumption on'y works
well when the measurement noise level is low and the disturbance dynamics are fast and infrequent. Clearly,

this is the trend that one would expect from the assumed random walk disturbance characterization.
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The importance of disturbance prediction in finite future horizon, model predictive controller designs
has been recognized by other researchers, Navratil et al. (1988) and Li et al. (1989) considered the incorporation
of a feedback disturbance prediction in the DMC strategy. To achicve this goal, they proposed that the DMC
strategy be transformed into a discrete time, state space form so that disturbance filtering and prediction could
be realized through the incorporation of a Kalman filter. This modified DMC approach, which they coined
Multivariable Optimal, Constrained Control Algorithm (MOCCA), was demonstrated to significantly improve
disturbance rejection in the presence of noisy measurements relative to the standard DMC approach in a
distillation column and level control example, The unfortunate consequence of their approach is that all the
transparency and simplification of DMC becomes lost in a meaningless, and often less well understood, state
space framework simply for the sake of improved disturbance forecasting. In addition, more complexity is
introduced into the DMC design since an effective disturbance model must be incorporated into the state spacs
process representation together with noise covariance matrices that are needed to tune the Kalman filter. The
authors have failed to provide general guidelines for addressing this imporiant latter issue.

Clarke et al. (1987a, b) have also included a feedback disturbance predictor in 2 DMC type design
which they coined Generalized Predictive Control (GPC). Instead of using convolution models, GPC makes
use of CARIMA (Controlied Auto-Regressive, Integrated Moving Average) models in the form

ceE™Y

ANy, = B, + =t
-2

(5.1

where A(z™Y), B(z™Y), and C(z™) are finite order polynomials in z™, the backward shift operator, and g, is a

Gaussian white noise random shock., These model forms have been popular in self tuning controller applications
(Astrom and Wittenmark, 1984). To make disturbance predictions in GPC, aseriesof p Diophantine equations,
where p is equal to the output prediction horizon, need to be solved to obtain p polynomial operators that
operate on the measured outputs to provide predictions of the disturbances over p future periods. A
computationally efficient procedure is outlined for obtaining these polynomial operators. The drawback with
their approach is that a large number of operator polynomials will need to be stored 10 generate forecasts,
especially when large output horizons are taken. Furthermore, their method is not computationally efficient
in generaiing forecasts since different forccasting polynomials are needed for the future disturbance prediction
at different future periods of time. Another criticism of GPC is the use of the CARIMA model form which
does explicitly separate the process dynamics from the disturbance dynamics. This is important when one

wishes to design a controller for a servo application, or for regulation of a disturbance other than the one
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identified. When this situation arises, it is crucial to be able to separate the process dynamic terms from the
CARIMA model. Surprisingly enough, the authors failed to do so in an example where a random walk
disturbance is assumed and they mistakenly choose C(z™) =1,

The objective in this work is to propose a straightforward approach to predicting disturbances in the
DMC/QDMC algorithm. The method of disturbance prediction shall be based on well-known techniques of
forecasting using ARIMA (Autoregressive, Integrated Moving Average) stochastic disturbance models (Tiao
and Box, 1981; Wilson, 1970). It will be demonstrated that the use of ARIMA models to predict future
disturbances requires only a trivial modification to the standard DMC/QDMC algorithm, and that disturbance
forecasts can be generated with computational efficiency.

The sections that follow will begin with a brief review of DMC/QDMC for the benefit of readers not
familiar with the concept. A general approach to predicting disturbances in DMC will then bé outlined, followed

by simulation studies showing the benefits of improved disturbance filtering and forecasting,

5.2 MODEL FORMULATION

The heart of DMC/QDMC is the discrete time, step response convolution model employed in the design,

This lincar model form is given by

oo = I 5aGi0VGi-) + aGimE I VuGi-h + d@n 6D

Jmll=n+l
where
y(i,t): i’th output at interval ¢
V: difference operator (1-z7")
u(j,t =1 j'th input at interval ¢ —/
a(i, j, 1) step response coefficient relating effect of ¢ —{ past move of the j'th input to ocutput i,
r: number of inputs
d(i,1); effect of process disturbances on output § at interval ¢

n: finite order approximation to step response convolution model
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This mode! form can be casily obtained from an open-loop step test identification on a process provided that
nodisturbances are present, and that the level of noise in the process is low. If process noise and/or disturbances
are present, weli-known time series and process identification techniques (Box and Jenkins, 1976; Tiuo and
Box, 1981; Wilson, 1970; Kashyap and Rao, 1976) should be used instead. The model obtained from the latter
approach can be readily transformed to the step response convolution form needed in DMC/QDMC, and in
addition, offer valuable information on the nature of disturbances entering the process that ultimately will lead

to improved disturbance prediction in the DMC algorithm,

5.3 DMC FORMULATION

The objective of the DMC/QDMC approach is to best match the prediction of the output over an output
horizon of p intervals into the future to a target set point using m future control moves. Using (5.2) we may

predict the ¢ + & future output from a current sampling interval ¢ by

yi,t+k) = "“ila(i.j.l)Vu(j.Hk-!) + YU, t+k) + d(i,t+k) (5.3)
A
where
Y, j+k) = .i“%a(i,j,i)v;;u.mk-l) + a(z‘.j,n)}iqu(j,:+k—I) (5.4)

In (5.3) it can be scen the prediction of output i at future interval ¢ + & consists of three components. Thz first
term represents the effect that unknown future input moves will have on y(i, £ + k). The sccond term represents
the effect on y({i, + &) of input moves already made on the process. In {5.4) il is shown that this term can be
compuicd through the step response convolution model. It is not necessary that this model form be used to
compute y (i, j +k). If a transfer function model or a state space representation (Navratil et al., 1988) of the
process is uscd to compute y (i, ¢ + k), it can be shown that the computational efficiency of DMC/QDMC can
be substantiatly improved. The final contribution to (i, £ + k) is the effect of the future unknown disturbance
d(i, £ +k). This term will also account for model mismatch, and if the process is nonlinear, mismatch due to
the linear representation of the process. The standard assumption taken ir DIAC is

dii,t+kit) = d{i,r1) (5.5
which indicates that the disturbance is assumed fixed at d(i, ) over the future output prediction horizon, In

section 5.6 a more general procedure shall be outlined 1o predict d(i, ).
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Having defined the prediction of one output at  future periods, we similarly proceed in predicting the

effect of r inputs over m future moves on w outputs over p future periods. These predictions are summarized
below:

e, = AVU, (5.6)
A: Dynamic matrix of MIMO system

(ALY ALY . . . AQ,)]
A AR . . . AR

A = . . e - 575

_A(W,l) A(le) L. A(w’r)'("'?)'("")

A(i, /): Dynamic matrix relating p future responses of output i to m future moves in input j

Al)) =
[a(i,j,1) 0 0 0. .. 0 ]
ali,j,2) a{i,j,1) 0 0. .. 0
ai,j.3) a(i,j,2) a@t,j,1) 0 . . . 0
: . . (5.8)
aGijom) aGjim-1) aG,jm-2 . . . . 0
-a(iij!p) a(iljup_l) a(ivjvp"'z) e e a(‘luj:p—m'i'l)-m

e(k +1): Projection of the error between the output and set point over p future periods if no further input

" moves are made
(¥, ()] [y D]
Y (2 Y'(2) D(2)
b = -1 - 59
W) R A1 - D Boupat

Y,.(i): Set point vector for output i over horizon p
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[y st +1)]
Yt +2}

Y () = ' (5.10)

Lyt +p)

Y°(i): Vector of the predicted cffect of past input moves on output i over p future intervals

[y, t+1)]
y' .t +2)

Y@ = ) (5.11)

BACHES )1

D{i): Vector predicting cffect of disturbances on output { over p future periods

(i, +110)]
dii, 0 +21)
D) = ) (5.12)
Ld(i, 1 +plt),,
VU, Vector of all future input moves
(vU)]
VU(2)
vu, = | ° (5.13)
Lvueryl ..
VU(j): Vector of m future input moves for input j
Vu@.h)
Vu(j,t+1)
VU() = ‘ (5.14)

-Vu(j" +m-— 1)—ml
At this point all that remains in the DMC/QDMC algorithm is an approach for computing VU, in (5.6)

which is optimal in some sense.
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5.4 CONTROL MOVE COMPUTATION

In DMC/QDMC the best sequence of control moves VU, is found through the minimization of the

linear quadratic (LQ) performance index
J = %{ ;g,g,(yw("vf*'k)—y(i,:+k))’wa,k) + éu@'wu.wk—l)’R(j.k) (5.15)
Relative to (5.6), equation (5.15) can also be expressed as
J = %{ (e,,,—AVUY W(e,,,—AVL) + VURVU, } (5.16}

w is a diagonal weighting matrix for the process outputs. W is typically used to scale the cutpuls or assign a

relative importance betwesn the outputs in a MIMO control problem. R is a diagonal input move peaalty
weighting matrix. This matrix is used to tune the DMC/QDMC controiler so that control actions are acceptable.

It can be shown that the minimization of {5.16) with respect to VU, can also be represented in the

standard QP form given below:

Min { %VU{(A”WMR)VU, - el WAV, } (5.17)
Uy

If no input constraints are present, the solition for VU, in (5.17) is given by

VU, = A (5.18)
k L+l

where A7, the pseudo dynamic matrix inverse, is given by

AT = (ATWA+RY'ATW (5.19)
If linear constraints are present, such as for examplc on the feasible range of the inputs as
U S u(it+k=1) S u(yn j=l4r k=1m {5.20)
the QDMC approach is taken whereby (5.17) is solved on-line using any constrained QP routine.
The optimal control action in DMC/QDMC is recalculated on-ling at every control interval ¢, and only

the control action called for at sampling interval ¢ is applied. In this way the controlier can adapt immediately
to unaccounted for disturbances and mismatch between the true process and the model by reforming the

projected error vector ¢; ,, at every sampling interval and recomputing VU,.
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5.5 MODELLING OF DISTURBANCES

The objective of this work is to extend the DMC/QDMC concept in a straightforward manner to handle
more general types of disturbances. To do so, information on the nature of disturbances entering the process
must be provided. A powerful, and well-known technique for identifying disturbance trends from discrete
process data is through multivariate time series analysis (Box and Jenkins, 1976; Tiao and Box, 1981; Kashyap
and Rao, 1976; Goodwin and Payne, 1977; Wilson, 1970). This technique may be uscd to identify MIMO
process transfer functions and disturbance models in many different canonical forms. The work that follows
will make use of ARIMA (Auto Regressive, Integrate Moving Average) disturbance models as suggested by

Tiao and Box (1981). The form of these disturbance madels is given by

d = 6" 6"V, (5.21)
where

8z = I + 6z + ... + 627 (5.22)
) = I o+ 927 4+ e 027 (5.23)

[d(1,1)]

d(2,1)
d = ) (5.24)

_d(u:',:)_

and 4, is assumed to be a vector sequence of random shocks, identically independent and normally distributed

with zero mean and covariance matrix I, . It is assumed that det {6(z"™")} and det {6(z"})} will have no roots in
z that lic outside the unit circle. Nonstationarity of d, is accounted for by the integer g > 0. Nonstationarity of
d, is essential if integral action is to be present in the DMC/QDMC design.

A left matrix fraction form is used in (5.21). This form was chosen over a right matrix fraction form
since the former offers advantages in computational efficiency. However, a right fraction form can also be
applied to the results that follow, and will only require slight modifications. The ARIMA disturbance model
form was also chosen over other MIMO disturbance model forms for basically two reasons. First the dynamics
of the disturbance transfer function are separated from dynamic terms associated with the process transfer
function. This is important when one chooses to design the controller for a disturbance that is different from

the type identified. This would likely be the simation when one identifies a stationary disturbance model and

90



would prefer a nonstationary disturbance model so that integral action will be present in the DMC/QDMC
design. The second reason for using the ARIMA structure is the computational cfficiency and simplicity that
the form offers in generating forecasts relative to other forms where soltutions to Dicphantine equations are
required (Clarke et al., 1987; Kashyap and Rao, 1976).

" The disturbance model given by (5.21) has been assumed to be stochastic. This assumption may be
relaxed in the results to follow by assuming that g, is zero mean but has a probability distribution cther than
Gaussian, The deterministic case would be represented by g, having a probability distribution which is zcro
mostof the timeand infrequently takes onsome nonzero value (MacGrgor, 1984). Any identified deterministic
disturbance model can be transformed into the form given by (5.21). However, when doing so, one must pay
strict attention to the assumption made on (5.21), mainly that 6(z"") is causai (i.c. inverse has no predictive
terms) and invertible (i.e. det {6{z™")} has no roots in z outside the unit circle). If the conditions on 6(z™") do
not hold, this polynomial matrix must be replaced by its invertible and causal least squares crror approximation.

The modification is obtained through the matrix spectral factorization equation (refer to chapter 4 for details)
0,z )05(z) = 6(z™)6'(z) (5.25)

where 0(z™") is the unique invertible and causal replacement 1o the deterministically derived 0,(27).

5.6 PREDICTION OF FUTURE DISTURBANCES

Given (5.21), the objective will be to outlinc a simple and computationally cfficient procedure for

generating d,,,, fork=1to p.
Suppose at sampling interval ¢ we wish to make a prediction of the disturbance at future interval £ +k
d,.s,). Using (5.21), 4, ,, is given by
4., = 66V a(+k) (5.26)

By performing simple long division on the rational elements of the polynomial matrix fraction, (5.26) can be
modified to

d., = ¥eha,, + O TV, (5.27)
where

WY = 1 o4 Wt o+ .+ W2 (5.28)
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TEY = T, + Tz? + .. + Tz2™ (5.29)

The first 1erm in (5.27) contains future unknown random shiocks which cannot be predicted. The second term
¢zvains present and past information and represents the minimum mean squared crror forecast of the

disturbance. Hence the tninimum variance prediction of 4,,,, is given by
by = 0 TEHV G, (5.30)
Equation (5.30) i only suited for generating a single forecast at & future sampling periods. When
generating forecasts for the DMC/QDMC projected emor vector ¢, .y, we require k =110k =p forecasts of
d, ., In general, T(z™*) changes with different & step ahead ferecasts. If (5.30) were used, p scparate finite
difference equations to forecast the disturbances would be required, as in the method of Clarke at al. (1987).
To avoid this, a more efficicnt method of generating a large number of forecasts based on the forecast update
cquation of Box and Jenkins (1976) is employed. Let (5.21) be instead represented in convolution form as
d = (I + ¥z + Y27 + .. ) (5.31)
We can express the 7 +k step ahead disturbance forecast at origing £ and £ ~ 1 as
dyw = Y + Vg, + ¥4, + .. (5.32)
Aoy = Vg, + Vg, + Y8, + . (5.33)

Subtraction of (5.33) from (5.32) leads to
dyyy = Gy + ‘WHig (5.34)
The first term in (5.34) represents the disturbance prediction at the previous interval. The second term is a
correction added to the old forecast from the new information made available, Note that g, is obtained through
g = d - d,, (5.35)
Equation (5.34) when combined with just one finite difference ~quation of ihe form (5.30) to forecast
d, , .1y Provides a simple method for generating p forecasts at successive intervals. Note tha! this method
requircs the storage of only three matrix polynomials, T(z™), W(z™"), and ®(z™") to generate all the disturbance
forecasts over p fure outputs. This approach is clearly far more efficient than that of Clarke at al. (1987)
were p matrix polynomials are required.
In summary, the recommended algorithm for generating disturbance forecasts in the DMC/QDMC
projected error vector e, ,; is outlined below:

1) Comnute g, from (5.35).
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2) Compute forecasts 4, ,, through 4, , ,, using (5.34).
3 Compute d, , , , , using (5.30) for next interval.

4) Update all storage information for next time through.

5.7 COMMON ARIMA MODEL FORMS

In this section three ARIMA disturbance model forms, that are commonly encountered in chemical
processes are discussed in terms of their effect on disturbance prediction in DMC/QDMC.
The first type of disturbance model that is often encountered is a random walk. Relative to (5,21), this
disturbance type is represented by ¢ = 1, &(z %) =1, 8(z") =/, leading to
4 = Vg, (5.36)
This model represents a dnmng disturbance with a changing mean level. This diswrbance trend would be
observed in processes where the dynamics of the disturbances are fast relative to the sampling interval and

the level of measurement noise is low compared the disturbances that enter. It can be shown that for this case

W, =1 k=1,p (5.37)
T(z") = 1! k=1,p (5.38)
and that
oy = 4, k=1p (5.39)

Note that the optimal forecast equation (5.39) is identical to the type used in the standard DMC/QDMC
algorithm proposed by Cutler and Ramaker (1979).
The second common disturbance model is an integrated moving average model of degree 1. Relative
to (5.21), this model form is given by ¢ =1, 8(z ™) =1, 8(z™") =/ + 6,2z, leading to
d = (+6z)WV'g (5.40)
This disturbance model form is well suited for represcnling processes where the dynamics of the disturbances
are fast 1clative to the sampling period and the measurements are highly corrupted by additive noise. The

optimal forecasts for this case are generated by

¥o= 1 o+ 8 k=1,p (5.41)

T, =1 + § k=1,p (5.42)
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or
don = U+0)U+027Y'd,  k=1p (5.43)
Note that for this case T(z™) is also a constant mat:ix, independent of p, and that forecasts of 4, arc the

same regardless of k. Hence the disturbance predictor given by (5.43) is a first order exponential filter of the
type used in the Internal Model Control (IMC) algorithm proposed by Garcia and Morari (1985b). This filter
form is also commonly used in SPC applications (MacGregor, 1988). The only difference between (5.43) and
the filter design used in IMC is that 8, in the former approach is permitied to be a full matrix, and thus has
the advantage of including multivariable disturbance interactions in the forecasts.

The optimal filtcr given by (5.41) to (5.43) only requires a very simple modification to the DMC/QDMC
algorithm. For a similar disturbance trend s (5.40), Navratil et al. (1988) and Liet al. (1989) instead chose a
roundabout approach whereby they reformulated the DMC concept in a state space framework and added on
a Kalman filter (o provide improved disturbance prediction. Clearly, the results from this section show that
the use of the ARIMA disturbance model form leads to far less effort and greater transparency compared to
the state space method,

The final disturbance form 10 be discussed will be the first order integrated autoregressive form with
g=1,0z"=1,0")=(+¢z™"), and d, given by

d = (U+4zY 'V, (5.44)
This model is well suited to representing the effect of random step disturbances with first order dynamics lags
that are commonly encountered in chemical processes. The poles of the lags are indicated by the ¢, matrix.
For this disturbance form, ¥, and 7(z™*) will be different for each k. The consequence of the forecasts for this

disturbance model would be to provide some phase lead to the DMC/QDMC desiga is order to track in more

rapidly to the exponential chasige in the output. This will be demonstrated in the examples that follow.

5.8 SIMULATION CASE STUDIES

_ The examples that follow were selected to show the benefits of the proposed forecaster in the
DMC)DMC strategy. All simulations that follow will be performed using a nominal SISO process transfer
function given by

-2
p 0.2z
" 1~0.827

(5.45)
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No constraints on the manipulated input were considered, and therefore, DMC was applicd. The output and

input horizons in all of the DMC designs that follow were selected to be 10 and 9 respectively.,

5.8.1 Stochastic First Order Integrated Moving Average Disturbance

In this case study the disturbance moedel was assumed to follow a stochastic, nonstationary first order

moving average trend given by

1-0.9z7
4 = —q (5.46)

with var{a} = 1. A very noisy and drifting trend is exhibited by this disturbance model.

Table 5.1 summarizes the simulated performance of two different DMC designs in regulating
disturbance (5.46).

TABLE 5.1: DMC PERFORMANCE WITH STOCHASTIC NOMNSTATIONARY
MOVING AVERAGE DISTURBANCE
Design Var{e} Var{Vu}
1: R=05[,W=I
1.07 0.03
Optimal Disturbance Prediction
2 R=UAW=]
117 04
Standard Disturbance Assumption

The table displays the calculated variances of the cutput error and the input moves in regulating the disturbance
over 200 points, The first design was arrived at by selecting a penalty weight of 1 on the output error, a penalty
weight of 0.5 on the input moves, and made use of the optimal disturbance forecaster modification of section
(5.6) in the design. The second design was arrived at using R =2/ and W =/, and made the standard DMC
assumption that d, 4, = d,. The results in Table 5.1 clearly show that the design 1 was significantly supcrior
to design 2. For the same output error variance, design: 1 required far less input action than design 2, even

though less penalty weighting was placed on the input moves of the former. A design with far less input action
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for the same level of performance would always be the preferred choice by plant personnel, and intuitively,
would be expected to be more robust since less demand will be placed on the model in predicting future

outputs.

§.8.2 Stochastic Nonstationary First Order Autoregressive Disturbance

In this case study, the disturbance is stochastic and follows an integrated, first order autoregressive

trend. The disturbance model is given by

1
d = —————4a, 5.47
! V(1-09z " 47
where var{a} =0.01. Unlike the previous disturbance model, this process follows a less noisy, smoother

drifting trend.
Table 5.2 shows the simulated performance of two different DMC designs from 200 data points.

TABLE 5.2: DMC PERFORMAMNCE WITH STOCHASTIC NONSTATIONARY
AUTOREGRESSIVE DISTURBANCE

Design Var{e} I Var{Vu}

1: R=051,W=1
0.1 0.22

Optimal Disturbance Prediction

\\

2 R=0,W=I
0.13 0.25

Standard Disturbance Assumption

The first DMC design used an input penalty weighting of R =0.57 and an output penalty weighting of W =1.
Disturbance model (5.47) was used to forecast the disturbance. The second design placed no penalty weight
on the input moves and makes the standard DMC disturbance prediction. The results in Table 5.2 show that
design 1 was superior to design 2 in both the computed output error and input move variances, Note that design
2, the most tightly tuned standard DMC design (R = 0), could not match the performance of a penalized DMC
design (design 1) with optimal disturbance prediction.
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5.8.3 Deterministic Integrated First Order Autoregressive Disturbance

In this section the performance of the two DMC designs presented in Table 5.2 are again considered
butwith g, in (5.47) assumed to be detceministic instead of Gaussian as insection 5.8.2, Throughout simulations
that follow, g, is fixed at 0 except at sampling period 10 where it takes on a value of 0.1. Hence the process
at sampling interval 10 becomes subjected to a step disturbance with a first order cxponential lag that
asymptotically will increase the process output by 1 unit if no feedback control is applicd.

Figures 5.1 and 5.2 show the performance of designs 1 and 2 respectively in Table 5.2 tothe deterministic
disturbance. The output performance of design 1 in Figure 5.1 with optimal disturbance prediction can be
clearly seen to out perform the most tightly tuned standard DMC design in Figurc 5.2 in regulating the
disturbance, Furthermore, it can be shown that variance of input moves taken by design 1 is lower than that

of design 2 even though design 1 displayed superior output performance,
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FIGURE 5.1: DMC Performance With Optimal Disturbance Prediction
Top: (-} output; {--) set point
Bottom: input response
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FIGURE 5.2: DMC Performance With Standard Disturbance Assumption
Top: (-) output; (--) set point
Bottom: input response
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5.9 CONCLUSION

In this work a straightforward addition to the standard DMC/QDMC algorithm has been proposed to
;irovidca general procedure to optimally forecast disturbances for future unknown output horizons. The formal
apprdach, in principle, should lead to improved regulatory control when the standard DMC assumption of
d.,,, =d, is suboptimal. The method makes use of well-known ARIMA disturbance models that can be
identified empirically from process data or from derived deterministic disturbance transfer functions. The
mathematics involved in generating the forecast equations is trivial, requiring nothing more than the division
of finite order polynomials, On-line computation of disturbance forecasts is computationally efficient, and
only requires the evaluation of one matrix finite difference polynomial operator together with one recursive
update equation p times, Only three matrix polynomial operators need to be stored.

The benefits of the proposed modification to the DMC/QDMC algorithm were demonstrated in three
case studies. Both stochastic and deterministic disturbances were considered. In all cases considered, the
modificd DMC/QDMC design out performed a DMC design with the standard disturbance assumption in

terms of both output error and cost of input manipulations,

5.10 NOTATION

a{i,j,1)  step response coefficient of input j on output i at lag 1

a, Gaussian white noise random shock vector
A dynamic matrix of MIMO process
At pscudo dynamic matrix inverse

AN dynamic matrix of output i with input j
Az finite order polynomial in 2™ in CARIMA model form (eq. 5.1)
B(z™) finite order polynomial in z™! in CARIMA model form (eq. 5.1)

Ciz™ finitc order polynomial in z™* in CARIMA model form (eq. 5.1)

dii,n effect of process disturbances on output i at interval t
d vector representing additive effect of disturbances on the outputs at interval t
D(i) vector holding disturbance effect prediction on output i over p future periods
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e(k+1)  vector containing the projected error in all outputs over p future periods if no control actions are

taken
J quadratic cost function
k future control interval
m number of future input moves to be made in DMC
n finite order approximation to step response convolution model
J future output horizon in DMC
r number of inputs
R matrix holding all input move weightings over future horizon p

R(i,k) t'th input move weighling at future period k

t control interval

Tz left matrix polynomial in minimum variance ARIMA disturbance forecaster
u(j,t—1) jthinput at interval t-1

vU() vector of m future input moves for input j

VU, vector holding all future inputs moves at t
w number of outputs
w matrix containing the weighting for all output errors over p future periods

Wi, k) output i error weighting at future period k

y i, response of output i at sampling period t

y o effect on output i of input moves alrcady made on future predictions

Y'(@) veclor of the predicted effect of past input moves on output i over p future intervals
Y () set point vector for output i over horizon p

2t backwards shift operator

Greek Letters

v difference operator (1-z™)

ez right matrix polynomial in z7! in MIMO ARIMA disturbance model
&z left matrix polynomial in z™* in MIMO ARIMA disturbance model

¥z infinite order matrix polynomial representating convolution form of ARIMA disturbance model
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6. STATE ESTIMATION AND CONTROL FOR SEMI-BATCH
COPOLYMERIZATION REACTORS:
INTRODUCTION

Semi-batch processes still pose an important challenge for the application of feedback control. This is
especially true when faced with semi-batch, emulsion polymerization reactors. Difficultics include significant
nonlinearities, absence of a steady state, inadequate dynamic models, lack of direct measurements of the
propel:ties needed to be controlled, and initial disturbance and/or model mismalch error which must be
compensated for quickly during the finite period of batch/semi-batch operation. These operating characteristics
essentially render useless much of the vast range of conventional and advanced lincar model-based feedback
control strategies, such as described in chapters 4 and 5, developed mainly for petrochemical continuous time
type of processes. Furthermore, open-loop optimal control policies developed specifically forbatch/semi-batch
reactors contain no provisions to compensate for process variability and uncertinty,

Limited work has been reported concerning the development of inferential feedback control strategics
for polymerization reaction processes. Often the focus is only on one particular aspect of the batch/semi-batch
control problem, The purpose of the remainder of this thesis will be to propose a nonlincar, inferential feedback
control strategy to improve quality control and product reproducibility of hot Styrene/Butadicne rubber (SBR)
latex produced from an initially sceded semi-batch reactor. SBR is an industrially important synthetic rubber
with widespread applications. The grade of SBR to be considered would find practical application in the
production of adhesives, tire cord, carpet backing, coatings for textiles, paper, wood, and leather, liguid floor
polishes, and as a fabric binder. Although this work pertains to the manufacture of SBR latex, it is cxpected
that much of the ideas to follow can be applied to other semi-batch problems.

The block diagram of the control structure proposed in this work is shown in Figure 6.1.
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Figure 6.1: Nonlinear Inferential Feedforward/Feedback Control Strategy

It is consists of a nonlinear state estimator to infer copolymer properties () to be controlled from the available
measurements (y), a feedforward control action block derived from some optimal instantanecus open-loop
copolymer property control policy, and a linear or nonlinear feedback controller to compensate for errors still
cxisting after the feedforward/open-loop actions are applied. The correct implementation of existing theories
related to nonlinear state estimation, optimal open-locp polymer property control, and feedback control to the
problem posed above are examined and evaluated. For the first time these theories are tied together to propose
simple, but yet effective, production strategies for meeting a wide range of copolymer property specifications
with limited variability from target specifications. The proposed control scheme will offer a simple alternative
to computationally intensive on-line nonlingar oplimization approaches, which in many circumstances, would
not be considered practical.

The presentation of the semi-batch control scheme will be divided into 4 chapters. In chapter 7, the
dynamic nonlincar SBR reaction model used in this simulation study is presented. Chapter 8 provides a
discussion and some new results on the correct design and evalpation of nonlinear state estimators for
copolymer property inference from limited, indirect measurements obtained from a semi-batch process. The
development of uscful open-loop operating policies for meeting a wide range of copolymer property
specifications is covered in chapter 9. Chapter 10 deals with the design of linear and nonlinear feedback
control strategics 1o compensate for errors in the open-loop optimal control actions when nonideal operating
conditions are encountered. This final chapter also ties together all the work on the semi-batch copolymer

control problem and demonstrates the effectiveness of the proposed scheme in Figure 6.1.
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DYNAMIC MODEL FOR THE EMULSION COPOLYMERIZATION
OF STYRENE/BUTADIENE

7. INTRODUCTION TO MODEL DEVELOPMENT

This chapter will provide a brief summary of the emulsion copolymerization styrene/butadiene rubber
(SBR) model developed in this work for the purpose of a nonlinear feedback control study. It is expected that
the reader is familiar with copolymer emulsion reaction modelling. Background material on emulsion
copolymer reaction modelling can be found in Hamielec and Hoffman (1986), Ugelstad and Hansen (1976),
and Rawlings and Ray(1988). A detailed study on the reaction modelling of SBR can be found in
Broadhead(1984) and Broadhead et al. (1985). The mode! to be presented is a subset of the more general
model proposed by Broadhead(1984) and Broadhead et al. (1985) with some modifications, and will pertain
ta the production of hot SBR latex using a thermal water soluble initiator in a semi-batch mode of operation.
The original SBR model proposed by Broadhead(1984) was completely redone. Corrcctions have been made
and more mechanistic detail has been added relative to the original work. Kinetic parameters and other

parcmeters used in the model can be found in Broadhead(1984).

7.2. INITIATION

This work will be concerned with the production of hot SBR latex using only one water soluble thermal
initiator. The thermal initiator has been assumed to be potassium persulphate. All radical initiation is assumed

to take place in the water phase. The molar balance on the moles of initiator is given by

dl,
== R - KLY, .1
7.3. PROPAGATION

The equations governing the reaction of each monomer to produce copolymer are given by
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aw, ANV,
=z = Fu,-‘b,[MJ,—NA—“ (1.2)
dM, NV,
L RO e (7.3)
dp, AR
& = %ML (7.4)
dp, N, V.
& = B, = (7.5)

where &, and @, are pseudo rate constants defined as

niM), + M),

D, = k. k '

f par’pbb ka,r,[M‘]p + kpu’bW.».],, (1.6}
M, + M,

D = kuk s s .7

pas”pbb kautsM]], +  kury[My],
In the equations above, it has been assumed that both long chain assumption I and II are applicable (Brash
and Hamielec, 1986). Property calculations bascd on a monodispersed particle size  distribution have also
been assumed. For conditions when nucleation time is very fast relative to particle growth time or when the
reactor is initially seeded, this simplifying assumption is not expected Lo introduce significant crror.

Thetotal conversion and conversion of each monomer are commonly specificd propertics for monitoring
reaction progress, and can be easily computed from the differential states defined above. These conversions
are defined below:

Styrene Conversion

P

R a7y {7.8)

Butadiene Conversion

Py

& = P oM, (7.9)

Total Conversion

X = At B (7.10)
TP+ P+ M, + M, '

An important property of the copolymer produced is its compoesition. The cumulative copolymer

compositions are computed from the monomer and reacted monomer material balances by
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+ TP¥ P, (7.11)
F, = E—}-}—P—b (7.12)
The instaniancous copolymer compositions are given by
F, = oM, (7.13)
O,M], + M),
F, = 1 - F, (7.14)

7.4, CHAIN TRANSFER AGENT

Asing!~chain transfer agent (CTA) or modifier is assumed to be present in the organic phases to provide

coatrol over molecular weight propertics. The differential equation corresponding 1o the depletion of CTA is

given by
dCTA naNV,
—_—— = - 41 — 2"
dt Fera ijTA[CT‘ ]p N, (7.15)
where
ker = Kaed, + Ko (7.16)
kpblfw
= —_—— 717
¢J kphfm + kp.rbfﬂp ( )
d, = 1 — ¢, (7.18)

In this work, the properties of the modifier pertain to n-dodecy! mercaptan,

7.5. WATER AND SOAP

Water and soap (emulsifier) are inert as far as the copolymerization reaction kinetics are concerned but
yet play an important role in the emulsion reaction progress. The presence of soap in the water phase leads to

the formation of micelles which, when stung by a water phase radical leads to the formation of a polymer
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particle. The parameter values used for the emulsifier in this study correspond to those of sodium lauryl
sulphate. The differential equations corresponding to the water volume and moles of soap for the semi-batch

mode of operation are given by

dv,
_df = FV' .1y
dE
@ Fg (7.20)

7.6. REACTIVE IMPURITIES

Huo et al. (1988) have demonstrated the significant, but different, effects of both water soluble and
organic phase soluble reactive impurities on the progress of emulsion polymerization. The presence of a
reactive impurity in both the water and organic phases has been added to the model 10 account for meaningful

disturbances for the purpose of this control study. The material balance equations for the organic and water

phase impurities are given by
dim, A
i F,m’ - k""f[[m’]!’-_ﬁ:- (7.21)
dim,
— = P~ km] RLY, (7.22)

The parameters for the organic phase reactive impurity in this work correspond to 4-ter-butyl catechol
{TBC) which is an inhibitor added to stabilize the monomer during stomge. Due to lack of data, parameters
for ihe water phase impurity were guessed at, and assumed 10 represent dissolved oxygen which inhibits the

reaction by consuming water phase radicals.

7.7. PARTICLE AND AVERAGE NUMBER OF RADICALS COMPUTATION

Significant modifications have been made in the particle generation and average number of radicals
per particle (z) calculations relative to Broadhead(1984). Huo et al. (1988) have demonstrated the significance
of impurities in both the water and organic phases on N, and . The cffect of impuritics on these terms have

been added to the model. The computation of n has been also modified to account for the effect of micellar
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nucleation on 7 which was neglected by Broadhead(1984) and Huo et al.(1988). The collision theory model
for particle generation assuming no significant radical desorption, presence of a single water phase reactive

impurity, negligible water phase radical termination, and no significant homogencous nucleation is given by

dwv.) NaRisAns
d T Ay + A+ knlm], 7.23)
where
_ % 224
£E = C,,. (' )
k
ki = & (1.25)
R, = Ukll), (7.26)
Ay = TSA — A, (7.27)
A A (7.28)
TSA = a,E - [E,.V.) (7.29)

The model takes two approaches to computing 7. The firstapproach makes the instantaneous termination

assumption where it is assumed that there only two types of pasticles: particles with a single radical (V, ) and

particles without a single radical (W, ). The differential equation for N, V,, is given by

d(V, V) N, - 2N,
i SO ey v - N, V., (), (7.30)
where
Pn = NCALR]L, (1.31)
p, = NCAR]L, (7.32)
Rl = ea éﬁ‘:m; b, (7.33)
With N, and N, determined from (7.23) and (7.30) respectively, n is computed as
n = ip—‘ (7.34)
NP
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Tt has been observed through simulation studies that the stationary state hypothesis on (7.30) can lead to some
significant error in computing 7. For this reason (7.30) has been added to model as an additional differentinl
equation.

Another well-known approach to computing 7 is through the Smith-Ewart equation (Ugelstad and
Hansen, 1976) where a balance is made on the number particles of aclass containing ¢ radicals, and a stationary
state hypothesis is applied assuming no particle nucleation. The gencral solution for n was first derived by
O'Toole(1965) and later extended by Hamielec and Hoffman(1986) to account for organic nhase reactive
impurities. Assuming a monodispersed particle population with property calculations based on the volume
average particle size D, and casz I emulsion kinetics, the solution for & is given by

- a I(a)

n = Z-—-"m (7.35}

where I, (a) is a modified Bessel function of order m and paramcler a and

a = 8o (7.36)
NV
o = p’T‘—" .37
NV, k,
Nk, Im] V,
o AMm ppr 38
" NV, (7.38)

Batch styrene homopolymerization studies were carried outto compare 7 predictions based on cquations

(7.34) and (7.35). Figure 7.1 shows conversion, N, and 7 with time for styrene produced in a batch mode

with particles produced through micellar nucleation. The recipe for the simulated batch run is given below:

M, 24.4 gmol

P 0.0 gmol

in: 0.03 gmol

E: 0.53 gmol
im,: 1.5x107* gmol
Im,: 0.0 gmol

V. 48 |

T. 55° C
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FIGURE 7.1: Effect of n Modelling on Batch Styrene Polymerization With Nucleation
Top: conversion; Middle: N,; Bottom: n
7 obtained from: (7.34) (--); (7.35) (..); hybrid (7.34) & (7.35) {-)
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In these figures, the response where n is computzd from (7.34) is indicated by (--), and the response where 7

iscomputed through (7.35) is indicated by (..). The plots clearly show that the two different models for i lead
to significant differe.x =s in X,, N, and n, The instantancous termination model (7.34) predicts a larger 7t in
the early period of the batch reaction because the effect of particle generation on » which leads to increased
n is accounted for in the model. The initial larger » leads to a higher initial conversion, as is shown in Figure
7.1(a). The instantaneous termination model predicts a smaller particle number than the Smith-Ewart modet
due to the initial higher 7 that leads to larger particles initially because of the higher conversion. The larger
particles adscrb more soap, leaving less free micelles for particle nucleation, At higher conversions, when no
nucleation is present, the Smith-Ewart model (7.35) led to higher ' predictions. This resultls because (7.35)
can allow for more than one radical to exist in a particle when diffusion controlled termination occurs at larger
particle sizes and conversions. These results suggest that neglecting the effect of micellar nucleation on a can
lead to significant errors in the prediction of n when nucleation is present.

Figures 7.2 shows the results of a simulated batch styrene homopolymerization where the reactor is

initially seeded, and no further nucleation takes place. The recipe for this batch run is given below:

M,: 244 gmol
P, 0.06 gmol
In: 0.03 gmol
Imy: 1.5x10*  gmol
Im,: 0.0 gmol

N, 210
V. 48 1

T 55° C
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FIGURE 7.2: Effect of n Modelling on Seeded Batch Styrene Polymerization
Top: conversion; Bottom:
7 obtained from: (7.34) (--); (7.35) (..); hybrid (7.34) & (7.35) ()
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The results in Figure 7.2 show that both models led to the same 5 and conversion predictions at low conversion,
However, at higher conversion and larger particle sizes, the Smith-Ewart model (7.35) leads to higher n
prediction due to the effects of diffusion controlled termination being accounted for. These results suggest
that the stationary state hypothesis used to compute 7 in (7.35) appears to be valid for the seeded case when
no nucleation is present.

Based on the results above, it was decided to compute both #'s in the computer model and choose the

larger of the two. Basically this meant that during carly stages of reaction when micellar nucleation is present
(7.34)is used tocompute n, and during high conversion stages of reaction when diffusion controlled icrmination
becomes significant (7.35) is used. The result of using this policy is indicated by (-) in Figures 7.1 and 7.2.
For the first simulation where micellar nucleation occurs, this policy led to significantly differcnt predictions
rélative to both (7.34) and (7.35), with the exception of the N, prediction that matched the prediction based
on (7.34). For the seeded case shown in Figure 7.2, the policy proposed meant using the Smith-Ewart model
(7.35) throughout the simulation.

7.8. MOLECULAR WEIGHT AND BRANCHING FREQUENCY

The differer =0 equations used by Broadhead(1984) for the prediction of zcro, first, and second
moments, and the tri and tetra branch frequencics, have been modified to include the effect of a reactive particle
phase impurity. The assumption in the molecular weight development are that transfer reactions and not
termination reactions are important, dead chains greatly outnumber live polymer chains, and that copolymer
composition drift is not significant. These assumptions are considered to be reasonable for the operating

conditions studied in this work. The differential equations used are

d(V,00 (CICral, Cim, C,'0
= et R)V 7.39)
d [ o, oo, o, [ Rl ‘
dai{V,
—-ﬁ-&“@ = kMl (RLY, (7.40)
142 Q’) (1 STy o Sl O Q‘)
d(v,0) T, \V o, Cm o, T,
dpl - CICTA, co, Cumliml, k1M1, [R1,Y, (7.41)
~aa, *Cntun, o,
diV, .
—(—"%B@ = C 0k, RLY, (7.42)
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d(V,QoBns) “
—Jr = C,'Qk,[RYV, (7.43)
where
k
c, = —k"-'-’i (7.44)
P
k
C. = & (7.45)
P
. ks,
c, = k—”’ (1.46)
P
C, = %ﬂ (7.47)
P
klm
Cm, = T (7.48)
P
by = 0,0k K fin) + O3 S+ s (7.49)
kw = Okuf T Gkaty (7.50)
ky = Okn + &k0F, (7.51)
ky = OF 007k, +083k,) + O,F,(0.17k,,,+0.83k,,) (7.52)
AR
[R]p = W (753)
A

Expressions for ¢, and ¢, are given are given by (7.17) and (7.18).

Assuming composition drift is not appreciable, the cumulative number and weight average molecular

weights are computed as

- = =y @
My, = (MW'F,-':-MW’F,) a‘ (7.54)
e
My, = (MW_T"',-kMW.E) ;g-’ (1.55)
i
Similarly, instanianeous number and weight molecular weight averages are computed as
a(v, Q)
My, = (MW‘F,+MW.F,) ﬁ (7.56)
P
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d
My, = (MyF,+MyF) dtvﬁgﬂ (7.57)

7.9, DISTRIBUTION OF SPECIES BETWEEN PHASES

The expressions above require information on the distribution of the species between water, particle,
and monomer phases that exist during an emulsion reaction. In the model developed, it has been assumed that
the reactor will be operated at high pressure under an inertnitrogen blanket. Thercfore the presence of monoiner,
particularly butadiene, in the overhead gas phase has been assumed to be negligible. Due to the lack of detailed
mass transfer and thermodynamic data, the model makes the simplifying assumption of an equilibrium

distribution of each species according to constant partition cocfficients of the form

(.
K, = T (7.58)
[,
K, = i, (7.59)
.

where K;; indicates the partition coefficient of species § between phases j and &. These partition coefficients

together with phase volumes can be used to determine the concentration of a specics in any of the three phascs
(refer to Broadhead(1984)). In this work the mode! of Broadhead(1984) has been extended toallow prediction
of the equilibrium swollen particle composition or monomer partitioning between the monomer droplet and
polymer particle phases(K,,,, & K.,) according the Flory-Huggins theory of polymer solutions (Ugelstad et
al., 1985) if requested. Using this theory, the unknown equilibrium volume fraction compasitions of styrenc
and butadiene monomer in the monomer droplet and polymer particle phascs, given by v, Vi, v, 20d vy,

respectively, is determined through the solution of nonlinear equations:

Styrene Monomer Balance
v, V.4, v..V.d, Vo d KoV,
= - M 4+ —— 71.61
M, M, : M, @7.61)
Butadiene Monomer Balance
ViV, dy View Vs Vipd,K s Vo
0 = + + M, + ———— (7.62)
MW» My, b My,
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Styrene Monomer Partial Molar Free Energy Balance
O=In(vy)+(1 = my )y, +V, + Ve, +VaX, + VY, (X, + X, = X,m,,)

aMy

_—t —(1- —y?
+ D,dRT In(v,,)=(1~-m,v,, =-vix,
Butadiene Monomer Partial Molar Free Energy Balance
0= (V) + (1 =my WV, +V,, +VExma + VX, + v,V (%, + Xy, =X i)

My T I _— s o
+DpdbRT - (vbm) - ( —-m, )vm - vanxab”‘lb

where
Volume Fraction Polymer In Particle Phase
Ve = 1 - Vo = Vi
Swollen Particle Volume
V = F »
d d.PvFP

Approximalte Partial Molar Volume Ratio
Mwldb
d My,

my =

Volume Average Swollen Particle Diameter

1f 6V,
D =
, v,

Interaction Parameters

My3,-8F W,
X = rre— e

® RTd

¥

MW.(sb - ap)l Wb

*w = T Rrd, R

M W'(ar = ab)z
RTd, -
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(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

(7.69)

(7.70)

(7.11)



Partition Coefficients

vn

K,y = — (7.72)
»
v

Ky, = — a.1)
Vip

The system of nonlinear equations is numerically solved. It is important to note that this theory only applics
when a monomer droplet phase is present, as is explained in the next section,

The solution of the monomer volume fractions according to Flory-Huggins requires a prediction of the
particle surface tension (t). In this work the surface tension is predicted according to the method proposed by

Hansen and Ugelstad (1979), where they suggested that particle interfacial tension be approximated using

T =1 - B -[-iliu] (7.74)
\

The concentration of soap in the water phase ([E], ), when below the critical micelle concentration (CMC), is

modelled by assuming a modified Langmuir adsorption isothern for adsorbance of emulsificr on the particles,

given by
O[E].
E, = ot (EL. {7.75)
where
A'(u.-rCM'C)
6 = 2,.CHC (7.76)

A molar balance on the moles of soap in the reactor leads to
E = [ElLV, + E,, (2.77)

From eqﬁations (7.75) and (7.77) [E], is computed for use in (7.74). The solution for [£], is given by

0+ V. —Ey) + VO+aV,—E, +40.E,,V,
E], = ~6+0, abs) '\[;V o, ass) TAE, (7.78)

Figure 7.3 shows the simulated results of conversion, monomer and particle volumes, and partition
coefficients X,,, and K,,,, respectively for a batch SBR run with operating conditions and the initial charge

as specified below:
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Figures 7.3(a) and 7.3(b) show that a monomer droplet phase will be present only at low conversion since the
Flory-Huggins model predicts a large degree of particle swelling based on the parameters that were obtained
from the literature (Ugelstad and Hansen, 1979; Billmeyer, 1984). The partition coefficients, shown in Figure
7.3(c}, can be observed to go through a moderate change during the course of reaction when V,, is present and
the particle size is still small. At high conversion very little change can be observed. The lack of expetimental
data to obtain a suitable semi-empirical fit for prediction together with the relatively small changes in the
partition coefficicnts over the course of the reaction still support the use of constant partition coefficients as
a reasonable simplification without introducing serious prediction error.

In the work in subsequent chapters, the assumption of constant partition coefficients will be taken.

7.10. PHASE YOLUMES

In the original model proposed by Broadhead(1984), ideal solution properties are assumed (volumes
are additive), and the solubility of the organic and water phases were assumed negligible for computing
moaomer droplet, particle, and water phase volumes. It is also assumed that density of copolymer produced
is approximately constant through the course of reaction. Differential equations for V, and V, were used to
compute these volumes. This approach was not taken in the model developed in this work because it was
considered inconsistent and unnecessary to introduce these two additional differeniial states when they can
be easily computed from previously defined differential states. The total organic phase volume is estimated
by

v MM, N MMy, . PMy +F My, 279
] A 7, (7.79)

If constant partitioning is used for K, and K,,.,., the swollen particle volume (V,} and monomer droplet phase

volume (V) is numerically computed using Newton's method from

P My +PMy, My MY,
0 = 4, M TUASAT T A B
* Moty (7.50)
G,V Ky *V Ko £V,
Ve =V, -V, (7.81)
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It has been found that this approach always gives a V,, that is greater thar or equal to zero, and hence offers

an advantage over the approach taken by Broadhcad(1984) where numerical discontinuities are encountered
due to the possibility of a negative V,, being calculated when the monomer droplet phase disappears, If
Flory-Huggin’s theory isused, V, iscomputed using (7.66),and V,, iscomputed from (7.81). If V,, isdetermined
t0 be less than zero from (7.81) then V,, and V,, arc instead given by

Vv, =V, (71.82)

vV, = 0 (7.83)

7.11. DIFFUSION CONTROLLED TERMINATION AND PROPAGATION

The Smith-Ewart equation described in section 7.7 requires an estimate of the termination rate constant.
Because of the high level of conversion in a polymer particle during a emulsion reaction, radical termination
is often diffusion controlled. At very high conversions monomer propagation can also become diffusion
controlled. The free volume theory of Haris et al. (1981), applicd to cmulsion polymerization, is used to

model diffusion ceatrolled termination when V, <V, as

1 1
ke = Kpu ex;{-—f‘\,[ﬁ—-ﬂ: (7.84)

and diffusion controlled propagation when V, <V, as

(11

k = k
U/I Vfrm

A 20 €XQ -8B,

(7.85)

where
V, = (0.025+a,(I =T, v, + (0.025+ay(T-Tyu)v, + (0.025+a,(T-T,)v, (7.86)
Unlike the model of Broadhead(1984) where a fixed glass transition temperature of the copolymer 7y, is used,

T,, is estimated using the semi-empirical model proposed by Bueche (1962)

r - T s+ Uy T = TVt
» 1+ (k, — Dvp

(7.87)

where k, is an experimentally determined constant.



7.12, ENERGY BALANCES AND TEMPERATURES

Energy balances on both the CSTR reactor and cooling jacket were made by Broadhead(1984) assuming
perfect mixing in both sections, The reactor energy balance Ieads to the differential equation
d(EMCp(T ~T.y)
dt

= _‘::',F,.,, CoT-T,) — RLAHLV,

- RLAHV, — UA(T-T); - O (7.88)

The summations in the equation above are taken over styrene, butadiene, waler, and ths copolymer. An energy

balance on the cooling jacket is given by

df; _ FuCp(Ta—T)+UAT-T)-0,
dt 4,V,Cp,

(7.89)

Temperature control of the reactor is achieved by a continuous time PI controller which adjusts 7}, of the

cooling jackel according to

KP
7 T, + Ke + -1 (7.90)

ain = e R, T

with [, determined from

dl
d:' =T, - T (7.91)

The implementation of the controller has been modified for correct handling of input saturation when it occurs.
When input saturation occurs, T}, is set 1o its bound and the integration of (7.91) is stopped only when the

resct action alone is the cause of saturation,

7.13. PARTICLE SIZE

Unswollen polymer particle size is ofien an important property of a copolymer latex and can be
determined on-line by turbidity and light scattering techniques (Kort, 1988). The model predicts the average
particle size according to a volume average, and is given by

'\3/6(PIMW'+P*MW')
Dr. = TNV,

(7.92)
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This average particle size would be consistent with the measurements indicated above for the case of
a particle size distribution which is approximately monodispersed, For batch reaction with a short period of

nucleation ur with an initially sceded reactor, a monodispersed assumption is expected to be reasonable.

7.14. NUMERICAL SOLUTION

The system of ordinary differential equations described above is solved numerically using a stiff

differential equation solver "LSODAR" obtained from ODEPACK.

7.15. NOTATION
a parameter in modificd Bessel function
a; difference in thermal e> pansion coefficients above and below the glass transition point for i
a, emulsifier surface covering potential
A constant in (7.74)
A, constant used in k,, prediction
Ay free micellar area
A, particle area
B, constant in diffusion controlled propagation rate constant prediction (7.83)
B constant in {7.74)
Bn, frequency of copolymer chains with tri branch points
Bn, frequency of copolymer chains with tetra branch points
C; ratio of i'th rate constant to k,,
C. collision theory rate constant for micelle radical capture
C collision theory 1ate constant for polymer particle radical capture
C, ratio of k; 0k,
c,’ ratioof &, to k,

cMC critical micelle concentration

Cp; heat capacity of i
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CTA moles of chain transfer agent

d; density of i

D, volume average particle size

e error from set point in PI temperature controller

E moles of emulsifier

E,, moles emulsifier adsorbed on particles

f initiator efficiency constant

fop molar fraction of butadiene monomer in monomer contained within the polymer particle phase
e molar fraction of styrene monomer in monomer contained within the potymer particle phase
Fy, molar feed rate of butadiene

Fe molar feed rate of chain transfer agent

Fy molar feed rate of emulsificr

F, molar fecd rate of initiator

Fy, molar feed rate of styrene

Fy instantancous butadicne copolymer composition

F, instantaneous styrene copolymer composition

F, cumulative butadiene copolymer composition

F, cumulative styrene copolymer composition

Fy volumetric feed rate of water

AH heat of polymerization of butadiene

AH, heat of polymerization of styrene

I (a) modificd Bessel function of order m and parameter a
Im, moles of organic phase reactive impurity

im, moles of water phase reactive impurity

I, moles of initiator

I, integrated error in PI temperature controtler
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kx 12

k.l‘l4

=TTanesd

AT

rate constant for bound butadiene radicals with 1,2 internal copolymer double bonds

rate constant for bound butadiene radicals with 1,4 internal copolymer double bonds

rate constant for bound butadiene radical transfer to butadicne monomer

pseudo copolymer rate constant of chain transfer agent

rate constant of butadiene bound radicals with chain transfcr agent

rate constant for radical transfer of bound butadicne radicals with copolymer

rate constant of styrene bound radicals with chain transfer agent

rate constant for radical transfer of bound styrene radicals to copolymer

pseudo copolymerization rate constant for radical transfer to monomer

overall rate constant for radical transfer to copolymer chains

pscudo copolymerization rate constant for radical reaction with internal copolymer double bonds
rate constant for bound styrene radical transfer to butadiene monomer

pseudo copolymerization rate constant of organic phase impuritics with particle phase radicals
pseudo copolymerization rate constant of water phase impurities with water phase radicals
ratio of &, 10 C,,

initiator decomposition rate constant

constant used to predict copolymer glass transition temperaturc in (7.87)

pseudo overall copolymerization propagation rale constant

constant used for diffusion controlled termination prediction in (7.85)
homopolymerization propagation rate constant of butadicne

propagation rate constant of bound butadiene chain ends with styrene

propagation constant of bound styrene chain ends with butadiene

homopolymerization propagation rat¢ constant of styrenc

rate constant for bound styrene radical reaction with 1,2 internal double bonds

rate constant for bound styrene radical reaction with 1,4 internal double bonds

overall copolymer termination rate constant
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termination rate constant of fully swollen polymer particles

partition coefficient of the concentration of species i between phascs jandk
proportional constant term in PI controller

order of modificd Bessel function obtained from (7.38)

partial molar volume ratio of i to j

moles of butadiene

moles of styrene

molccular weight of component i

cumulative i'th average molecular weight

average number of radicals per particle

Avogadro's number

number of polymer particles per volume unit of water

number of polymer particles containing a single radical

moles of reacted butadiene bound in copolymer

moles of reacted styrene bound in copolymer

i'th copolymer moment per volume polymer particle phase
reactor heat loss rate

copolymerization reactivity ratio of bound butadiene radicals
copolymerization reactivity ratio of bound styrene radicals

gas constant

resct constant in PI controller

radical concentration in phase i

rate of initiation

rate of polymerization of butadicne

rate of polymerization of styrene

moles of reacted styrene bound in copolymer
time
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T reactor temperature

Ty glass transition temperature of i

Ty glass transition temperature of polybutadiene
T, glass transition temperature of polystyrene

T feed temperature

T; cooling jacket temperature

T jacket inlet temperature

T temperature set point

TSA total micellar covering area

N volume fraction of polybutadiene in copolymer
Vi volume fraction of i in phase )

|7 free volume

Vi critical free volume for start of diffusion controlled termination
Via free volume of fully swollen polymer particle
17 volume cf phase i

W entropic contribution to x;

X; interaction parameter per molecular of compound i with compeund j
X overall monomer conversion

X, butadiene conversion

X, styrene conversion

Subscripts

b butadiene

cme critical micelle concentration

i jacket

m monomer droplet phase

N number average

0 organic phase
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P polymer or polymer particle phase

5 styrene
w water or water phase
weight average
Greek Letters
a expression obtained from (7.36)
o, adsorption parameter for emulsifier in (7.75)
8, solubility parameter of component i
£ radical capture efficiency
a adsorption parameter for emulsifier in (7.76)
Pm radicle entry rate to micelles
Pp radical entry rate to particles
T particle surface tension
T surface ension constant in (7.74)
LR fraction of bound butadiene radical ends
o, fraction of bound styrene radical ends
b, pseudo copolymerization rate constant for butadicne
&, pseudo copolymerization rate constant for styrene
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8. STATE ESTIMATION FOR SEMI-BATCH EMULSION
POLYMERIZATION REACTORS

8.1. INTRODUCTION

This chapter will be concerned with the first problem commonly encountered when faced with
controlling batch/semi-batch processes, namely the estimation of nonlincar internal process mode! dynamic
states from a limited set of related measurements. These state estimators are necessary for tracking and filtering
the states of the process and for computing on-line model-based feedback control actions. The problem of
state estimation in nonlincar systems has been covered extensively in the literature, A review of different
methods is beyond the scope of this work, and can be found in Seinfeld (1970), Ekyhoff (1974), Hsia (1977),
Young (1981), and Bekey and Saridis (1982). Three approaches to the state estimation problem are considered
in this work, and are illustrated and compared on simulations of the semi-batch emulsion copolymerization
of styrenc/butadicne rubber (SBR) using the semi-theoretical nonlinear model described in the previous
chapter,

The first approach to nonlinear state estimation is extended Kalman filtering (Jazwinski, 1970). A
limited number of applications of this theory in the chemical process industry can be found in the litcrature,
anda review of the applications of this method tovarious chemical processes can be found inGilles (1986,1987).
The theory behind extended Kalman filtering is well known and well understood. On the ather hand, the correct
formulation of the extended Kalman filter to make it uceful for application in a real process environment is
understood to a far lesser extent. The common error in judgement when formulating these filters is neglecting
the incorporation of the correct nonstationary disturbance and/or parameter states needed to eliminate bias
between the true and model predicted response when nonideal prediction mismaich situations arise. When
this mistake is made, the designer often attempts to mask the problem by increasing the noise associated with
the process states, with the unfavorable result of arriving at a noisy state estimator that hides the bias problem.
Examples where this mistake has been made are demonstrated in Hamilton et al, (1973) in a double effect
cvaporator problem and Wells (1971) in a stirred tank reactor problem. Examples with continuous processes

can also be found where unmeasured nonstationary states were correctly included in the extended Kalman
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filter formulation. Ahlberg and Cheyne (1976), in an industrial application of extended Kalman filtering to
the polymerization of butyl synthetic rubber, discuss the importance of accounting for unmeasured
nonstationary reactive impurity disturbances and parameter variations. Jo and Bankoff (1976) demonstrate
the application of extended Kalman filtering in an experimental study on the continuous solution
polymerization of vinyl acetate. In their work, meaningful nonstationary stochastic inhibitor distrbance and
model mismatch parameter states are incorporated in filter to provide bias [rce state estimalcs for the
experimental conditions considered. Hubbard and DaSilva (1982) and Allison and Taylor (1986) demonstrate
the necessary incorporation of unmeasured nonstationary feed disturbance composition states in cxtended
Kalman filter applications to continuous cement blending and pH control problems respectively. The same
considerations discussed above would be expected to be necessary in any real industrial application, where
imprecise models are usually applicd and unmeasurable disturbances cexist,

The incorporation of meaningful or fictitious nonstationary disturbance and/or paramelcr states in an
extended Kalman filter is not a sufficient requirement for it to be useful in a real process environment. It must
be demonstrated to be robust to any unaccounted disturbance, parameter, and structural types of mismatch,
and shown to contain sufficient nonstationary disturbance and parameter states so that model predicied
measured outputs will always be consistent with actual measurements in the region of operation. Parrish and
Brosilow {1988) have stressed that if the latter requircment is not satisfied, the state estimator may still lead
to biased estimates, preventing the possibility of integral action if feedback control is applicd. Therefore, from
a practical point of view, Kalman filters formulated and evaluated with a perfect model assumption and with
all disturbances information known fail to address the problems of state estimation in a real chemical process
environment. Even if some nonstationary disturbance and model mismatch states are included, the requirement
for consistency may not be satisfied.

Examples of the application of extended Kalman filtering to batch/semi-batch processes can be found
in the literature. Schuler and Suzhen (1985) and Schuler and Papadopoulou (1986) successfully applied
extended Kalman filtering to estimate properties of polystyrene in a solution batch reactor. In their work a
perfect model was assumed, and the effect of unaccounted reaclive impurities or model mismatch was not
considered. Dimitratos et al. (1980) applied extended Kalman filtering to a sceded scmi-batch emulsion viny!l
acetate/n-butyl acrylate copolymerization reactor. Sources of nonstationary disturbances or model parameter
mismatch were not considered. They assumed that the effect of process disturbances can be modelled as zero
mean white noise shocks added to the detsrministic model states. Such an assumption is unrcalistic in a real

process environment since model or disturbance mismatch will usually introduce a nonzero bias between the
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deterministic and true model states. MacGregor et al. (1986) applied extended Kalman filtering to infer state
properties in a batch polystyrene latex reactor where a reactive impurity was present and initially unknown,
A nonstationary state to compensate for the initially unknown impurity level was not included in their filter
formulation. Their results showed that the performance of the filter was sensitive to errors in the unknown
initial impurity disturbance level. Ramirez (1987) successfully applied a Kalman filter to a batch beer
fermentation problem. The Kalman filter was formulated according to a deterministic model without the
inclusion of any nonstationary disturbance or parameter states. Their Kalman filter was then combined with
a sequential parameter estimator 1o indirectly account for model mismatch in only a single model parameter.
Stephanopoulos and San (1984) propose a strategy for state estimation and filtering in batch, semi-batch, and
continuous biorcactors using extended Kalman filtering with a very simplified reactor model. In their
formulation, nonstationary prowth parameter states are included in the filter toaccount for all possible observed
responses. San and Stephanopoulos (1984) successfully applied this approach to a semi-batch fermentation
reactor over a wide range of operating conditions,

Unlike previously reported applications on Kalman filtering, the first objective in this work will be to
provide new uscful and practical results on the application of this theory to a semi-batch copolymerization
problem where the important issues of nonstationary disturbance and parameter variations, errors in the
initiatization of disturbances and parameter states, and consistency are formally addressed for evaluation in
a real process environment.

The second approach to the problem of state estimation arises from a problem of particular importance
to batch/semi-batch problems, Due o the finite time of operation of a batch or semi-baich process, rapid
convergence of the state estimates to their correct values from state initialization errors is necessary in order
for effective feedback control to be applied. A modification to the standard extended Kalman filter is proposed
where it is reiterated from the beginning at every sampling interval with new estimates of the initial unknown
state estimates in order to improve the convergence properties of the filter, The unknown initial states are
obtained by combining a sccond extended Kalman filter with the standard extended Kalman filter which
provides updated estimaies of the unknown initial states.

The final approach considered for nonlincar state estimation uses nonlinear optimization methods to
minimize some suitably chosen objective function. This approach was suggested by Jang et al. (1986) and
compared to extended Kalman filtering in a simple simulation study on a CSTR reactor carrying out a first
order exothermic reaction with a noisy measurement. They found the {ormer approach to be far superior in

terms of the speed of tracking, robustness in the presence of errors in modelling the system, noise statistics,
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and in terms of the ability to handle nonlinearities in the system, Unfortunately, their results are impossible
to critically evaluate because no information was provided on the formulation and tuning of the extended
Kalman filter used in their work, It is possible that such a poor formulation of the extended Kalman filter may
have been the cause of the drastically poorer relative performance. In this work, the on-line optimization
approach is once again compared to extended Kalman filtering, but in this case to the SER semi-batch problem
stated above, where the results will be demonstrated to be far different from those obtained by Jung ct al.
(1986).

The work in this chapter will be presented in three sections. The first scction will brictly review cach
of the state estimation procedures. The second describes the semi-batch nonlincar SBR polymerization process
that will be the case study used in this chapter. The third section will present results on the formulation and
relative performance of the state estimation approaches for the semi-batch SER estimation problem where it
will be assumed that the sources of nonstationary disturbance and parameter mismatch will be correctly
accounted for in the state estimation scheme. Finally, the issuc of consistency will be examined, where the
problem of unaccounted for mode! mismatch will be addressed through the incorporation of carefully selected

fictitious nonstationary mismatch states.

8.2. MODEL FORMULATION

The approaches that follow will be concerned with batch/semi-baich processes described by a set of

nonlinear ordinary differential equation states in the form

dx:f

— = e (8.1)
y = hx,u,l) 8.2)
X = x([:O) (8.3

where x represents the complete vector of internal states, x% is the modelled deterministic subset of the

differential state vector x described through (8.1), y is the vector of measured outputs that is related to x
through (8.2), and u is a time varying vector of known manipulated inputs. The state vector x is assumed to

be made up of a deterministic component x* and a stochastic componentx’, Included inx’ are model parameter
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and disturbance states that may vary with time in some stochastic manner and may be unknown initially, These
states are needed to eliminate bias in the state estimales when operating under nonideal model mismatch

situations. The dynamics of x’, given by

o= ey @.4)

are usually unknown, The common assumption of the dynamics of these states in the state estimation procedures
is f'(x, u, 1) = 0. This assumption will work well provided x" does not change substantially with time in some
correlated manner.

Generally stated, the state estimation problem will be to predict the internal states x(¢) from a limited
set of sampled measurements y(,). It is assumed that some elements of x, will be initially unknown, and that

some states will be time varying disturbances and/for fixcd parameiers that must be estimated.

8.3. NONLINEAR STATE ESTIMATION

Inthe sections to follow, the basic theory behind three different strategies for state estimation in nonlinear

processes will be reviewed,

8.3.1. The Extended Kalman Filter

The solution to the finite time optimal filtering and estimation problem for linear processes with
independent additive Gaussian white noise on the states and outputs is well known and was first laid down
by Kalman (1960). This theory has been extended 1o nonlinear systems (Jazwinski, 1970) to provide a
suboptimal filter with the same structure as that used for lincar systems. Only the resulls are summarized
below.

Given the current estimate of the state vector x(i, [ £,), the state vector prediction at £,  x{f,, 14 is
obtained by

alt) = @16 + e nd ®8.5)

X, 18 = @iy (8.6)
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In (3.6) f*(x,u, ) has been assumed to be zero according to the discussion in section 8.2, Performing a local

linearization and discretization of state models (8.1) and (8.4) at conditions x(1, ,, | f,)gives

X = Ax oW 8.7
where

o o= A+ Ay o+ oW (8.8)
Xy = KOt oW 8.9

x
5 = | (8.10)

Xy

Ad AI‘

A = [t *] 8.1
L 81

A, is the Jacobian mawix of f(z,u, 1) with respect 10 (), | 4,), and w, is a zero mean, Gaussian white noise

vector with covariance matrix R,.. This latter white noise vector w, is introduced to account for crrors in the
right hand side of (8.7) arising from modelling errors, and errors due to lincarization. The disturbance or
parameter states x* are shown in equation (8.9) to vary according to a nonstationary random walk where wy
represents the amount of change occurring between sampling intervals. R, is usually specificd to be diagonal
both for convenience and for lack of information regarding covariances. Its diagonal clements (variances) are
chosen to reflect the total possible error in each row of (8.7) over the interval 4, 10 4, , ,, or the amount of change
that can be expected between sampling periods for the case of disturbances and parameicrs.
The measurements are, in general, a nonlinear function of the states and controls, given by
Y, = hlxaunt) + v (8.12)

where v, is again assumed to be a zero mean Gaussian while noise vector of measurements errors with

covariance matrix R,. This covariance matrix is usually casily obtained from replicated measurement data.

When a new observation y, ,, becomes available at 7, ,, Jhe states are cs}imawd iteratively through Lhe

filter equation
Lo = G 7 KAl ettt N (8.13)
where K, is the Kalman gain at 1,. Given (8.7) and (8.12) with R, R,, 2 prior initial state cstimate x, having a

Gaussian distribution with covariance matrix Py in the initial estimation error, the Kalman gain K, isdetermined

so that the variance of the estimation error e = (x, —X;,,), denoted by
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Tr(P) = TrlE{(q—x)(x "xgu)r}] (8.14)
is minimized, For nonlincar systems, an approximate optimal solution for K, given R, R,, and P, is updated

with cvery new observation using the equations given below:

an = AxPuAAI + R, (8.15)
K, = P HIHP, WH] + R (8.16)
Pkdlltl = P&uu = KkHrth 8.1

In the equations above, f, represents the Jacobian matrix of A(x,u, ) with respect to x,,,,, and P, is the

covariance matrix of the estimation error in x|, att,.

Equations (8.13) and (8.15) to (8.17) define the extended Kalman filter. This set of update equations
provides a very simple approach toinfer nonlinear process states given alimited set of measurements corrupted
with added white noise, The main difficulty with this approach is that the filter is derived from the statistics
of the added Gaussian white roise terms wy and v,, and often this information is unknown, if a serious error
in judgement is made sclecting R, R,, and Py the extended Kalman filter could provide poor biased estimates
of the nonlinear states. Because of this much insight together with prior simulation is usually required to arrive

at an acceptable set of tuning parameters.

8.3.2. Reiterative Extended Kalman Filter

The extended Kalman filter described in section 8.3.1 closely approximates the true solution to the
nonlincar estimation problem for Gaussian w, and v, about a known nonlinear reference trajectory given by
(8.1), (8.2), and (8.4), provided that x, is known ¢xacily at the start. When x, is initially not known, Jazwinski
(1970) suggests that the extended Kalman filter be restarted from the beginning with each new measurement
using an updated estimate for xy, . This modification, although simple in principle, can lead 1o a substantial
increase in the computational effort in the state estimation procedure, depending on the difficulty of back
calculating x, given x,. When initially unknown states have no dynamics (i.e. dx/df = f(x,u,1) =0} the
modification is trivial since the extended Kalman filter is simply restarted with x; equal to the most recent
estimate of x(s|f). However, when the initially unkmown states have dynamic terms (i.e.
dxjde = fi(x,u, 1) = 0), the computational effort can increase substantially relative to the standard extended

Kalman filter, requiring the solution to a system of nonlinear equations with integral expressions to obtain
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%oy, Instead of a direct solution, a recursive nonlincar parameter estimation procedure can be combined with
the standard extended Kalman filter to estimate the initial unknown states using the results from well-known
sensitivity analyses. More details on this approach will be provided in the sections to follow,

If feedback control is to be applied toa batch/semi-batch process rapid convergence toinitially unknown
disturbance and parameter states is required due to the finite operation time, The modification proposed above
should lead to improved convergence relative to the standard extended Kalman filter provided disturbance
and parameter variations are not significant during the period whese the reiteration is to be camricd out. The
reiteration procedure would only be required during the carly stages of nonlincar estimation until convergence
to the unknown x, is achieved, and therefore, would not expected to lead to excessive computation relative to

the standard extended Kalman filter approach.

8.3.3, Nonlinear Optimization Aporoach

Jang et al. (1986) suggest an approach to nonlinear state estimation through a nonlinear optimization
of some specified objective function of the measured and predicted outputs with respect to unknown process
states over a finite horizon. The logica! choice for an objective function to infer states from would be the

minimization of
I = LI 2OL-%I0N IR, ¢ T T n e nd (), E8)
which provides maximum likelihood estimates of unknown state vector x; assuming measured outputs of the

form (8.12) with zero mean Gaussian v, having a specified covariance R,. In (8.18) ypand y;, referto the j'th
measured and model predicted output measurements at sampling intcrval t. The indices &, m, and s represent
the number of sampled periods, measurements, and states respectively. The vectors x, and x§ represent the
estimated and prior estimate of parameter and disturbance states that are unknown at time ¢ = 0. The second
term in (8.18) is included to allow for prior information on unknown stales x§ with covariance Pyto be included

in the state estimation problem.

The optimal solution for x, in (8.18) may be found using gradient based methods such as
Levenberg-Marquardt, quasi-Newton, and conjugate gradient approaches, The gradicnt of the objective
function with respect to x, may be estimated using finite difference approximations, or altematively, can be
estimated through sensitivity analysis. Using the chain rule for differcntiation, itcan be shown that the gradient

can be estimated by
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oJ(x) g % M -1 : -1
x, - ZEUEE][&‘_‘J(?»,:"}'a,.)(R.)j., - zaz_-l(xin_xb,u)u,n)m (8.19)
where
Ay, &fohx.un) o,
2 - 355 o
d axl,.r _ df(x,u,t) axa.l
a‘[a—] - 5[5 )(55.-.:] ®20)

Relative to extended Kalman filtering, the nonlinear optimization approach requires a much greater
computational effort, especially when a multivariable nonlinear estimation problem is invelved. The
computational procedures would make this approach impractical for many state estimation problems. It has
been argued by Jang et al. (1986) that the benefit of this approach relative to extended Kalman filtering is that
it can be applied with no prior knowledge of the process statistics, and that R, can be arbitrarily set to I for
convenience. Such a blind approach to selecting the weighting parameters could seriously degrade the state
cstimation procedure when the noise Ievel in the measurements are significantly different. In addition, multiple
measurements obtained from & similar sensor would be expected to display some correlation, and would not
be correctly accounted for in the parameter estimation procedure.

Anocther problem with the nonlinear optitnization approach is the assumption that unknown disturbances
or perameter are fixed during the optimization horizon, When time varying disturbances or rapidly changing
conditions are present, such an assumption could introduce serious error in the state estimates, This problem
can only be dealt with if prior knowledge is available concerning the unknown parameter trends, which rarely

would be the case.

8.4. CASE STUDY: STATE ESTIMATION FOR A SEMI-BATCH SBR
POLYMERIZATION REACTOR

The nonlinear state estimation approaches described in the previous sections will be used to estimate
the minimal internal model states in a semi-batch stirred tank reactor where the free radical emulsion
copolymerization of styrene/butadiene rubber (SBRY) is occurring. The reactor is assumed to be initially seeded
with polystyrene seeds, with no significant nucleation occurring during the reaction. In this study only styrene

and butadicne will be fed to the reactor, and the reactor will be assumed 1o be operated isothermally. This
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mode of operation was chosen for simplicity, with the results extending easily tb the more general case of
changing inlet flows of more components and changing operating conditions that may occur when feedback
control is applied.

In essentially all free radical polymerizations, the major source of disturbances ariscs {rom reactive
impurities. Huo et al. (1988) demonstrated that both water soluble and monomer soluble reactive impuritics
consume radicals in free radical polymerizations which in turn significantly affects all the material balance
states in the reactor. It will be assumed that reactive impuritics can be present in both monomer feeds, and
that the impurity level in the initial reactor charge is unknown. It is also assumed that there may be significant
error in the number of particle seeds (V,) in the reactor either duc to an initinl wrong starting estimale,
coagulation, or further nucleation at the start of the reaction. In this work errors in the initial estimates of the
reactive impurities in the reactor, reactive impurity inlet flow rates, and number of particles will be taken to
be the major cause of deviation between the true and model predicted process responsc.

Simulation of the SBR process requires the integration of deterministic ordinary dif ferential equation

(ODE) states listed below:

- M, :  moles of unreacted styrene

-M, :  moles of unreacted butadienc

-P, :  moles of styrene bound in copolymer

-P, :  moles of butadiene bound in copolymer

-1 . moles of unreacted thermal initiator

-CTA :  moles unreacted chain transfer agent

-V,Go :  product 0’th moment and particle volume
-V, :  product 1’st moment and particle volume
-V.Q: :  product 2'nd moment and particle volume

- V,QBn, :  product V,Q, and trifunctional branch frequency
- V,QoBn, :  product V,Q, and tetrafunctional branch frequency
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‘These states provide the minimal information needed to compute copolymer properties of interest for feedback
control, such as copolymer composition, conversion, branching and crosslinking, number and weight average
molccular weight, polydispersity, and average panticle size. Details on the model development and the form
of the differential cquations describing these states can be found in the previous chapter. The model also
includes differential states corresponding to a single impurity in both the water and organic phases, and are
listed below:

-Im moles of unreacted organic phase impurity

(4

~Im, :  moles of unrcacted water phase impurity

These states arc included in the model according to the discussion above, and are used to predict the effect of
impurity disturbances on the reactor progress. The inlet feed rates of the impurities and the particle
concentration, previously described as an imponant source of model prediction error, are included as
parameters in the SBR model.

A subset of the differential equation states described above will be used in the nonlinear state estimation

procedures (o follow. The subset of states will differ depending on the state estimation routine used.

8.4.1. State Observability

In order for a state estimation strategy to converge to the correct solution, itis necessary for the unknown
internal model states to be uniquely related to the limited set of sampled measurements. During operation,
periodic sampling from a small bleed taken from the reactor will be made to allow for some on-line

measurements. In this study, it wili be assumed that the following on-line measurements will be available:

-y M, moles of styrene in the reactor inferred from an on-line G.C. analysis on a sample
taken from the bleed

-y, M, moles of butadiene in the reactor inferred from an on-line G.C. analysis on a sample
1aken from the bleed

-y ¢ D, average unswollen particle size from dynamic light scattering

-y, : CTA moles of unreacied chain transfer agent obtained from on-line chemical analysis ona
sample taken from the bieed

The nonlinear relationship between average unswollen particle size D, and the model states is given by

2 [6PMy, +P M)
D, = 4 ——t (8.22)

"IN,V
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The assumption will be made that the blecd can be sampled every 10 minutes, with the results of the
measurement analyses provided only just before the next sampling interval, Accommodation must be made
in the state esimation approaches for the delav resulting from the measurement analyses, It will also be
expected that these measurements will be corrupted with significant sensor noise.

Schuler and Suzhen {1985) have shown thai polymer reaction models can be divided into two
subsystems, The first subsystem contains differential states and variable parameters related to material balunce
properties. In this case study, these states and parameters would refer to M,, My, P,, P,, CTA, I, Im_, Im,,
V00, ¥y, F,,,,’, and F,, . The second subsystem is made up of differential states associated with molecular
weight and branch frequency properties, and in this work would refer o V,Qy, V05, V, 0080, and V,QoBn,.

The two subsystems are shown in Figure 8.1.

SUBSYSTEM 1i STATES
0'th Moment
SUBSYSTEM 1 STATES 2'nd Moment
Trl Branches
Styrene Tetra Branches
Butadlene

Reacted Styrene
Observable Reacted Butadiene

Maodifier

1st Moment

Particles

Observable Crganic Impurity

Org. Imp. Feed
MEASUREMENTS
Initiator %

Open-Loop Water Impurity Styrene
Wat, Imp. Feed Butadiene

Particle Size
Modifier

FIGURE 8.1: State Observability In SBR Process

The figure indicates that states in the first subsystem effcct states in the second subsystent, but no feedback
exists from the states of the second subsystem to the first The measurements are also shown to provide
information only on the material balance states of subsystem I, and are not affected by the states in subsystem
I, Because no feedback on measured information is available on the states of the second subsystem, these
states are not observable. However, they may be predicted if the important states of the first subsystem arc

known, and the relationship between these states and their influence are modelled accurately. Unfonunately,
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sensors do not exist for polymer latex that would provide needed information of the states of subsystem IT 1o
meet observability requirements, forcing one to rely on conditional predictions based on the model in the state
cstimation procedure,

All states in subsystem I are not observable from measurements y, to y, alone, It can be shown that

sufficient information is available to estimate M,, M, P,, P, CTA, and V,0Q, together with parameter N, from
the measurements if anly a subset of the remaining states are included in the estimator. The problem is due
tostates im,, Im,, and /, together with inlet flow ratc parameters £, and F,,, whichdo not satisfy obscrvability
requirements when all terms are not known, It can be shown that a unique solution for these terms cannot be
found from the available measurements when unknown, Given this physical limitation, one subsct of these
states and parameters above must be either fixed a priori or inferred open-loop through the model, while the
remaining set will be estimated through the nonlinear estimation algorithm, This step may introduce significant
bias in some of the these state estimates, but still allow the important states that are needed for property
calculations for control to be free from bias. In the work that follows, the differential state /m, and disturbance
parameter F),, will be estimated. Im, was selected over Im, since the latter typically represents the effect of
oxygenpoisoning. This impurity usually causes an initial period of inhibition followed by the expected reaction
progress if no more of this impurity is added during the semi-batch run. Therefore, it will be assumed that the
state estimation routine will be started after any period of inhibition, and that the amount of oxygen in the
monomer feeds can be reasonably approximated from known solubilities.

The set of states M,, M,, P,, Py, CTA, Im

. V,0, together with parameters N, and F,, can be shown to
mect observability requircments, Observability would also be met if CTA was neglected as both a state and
measurement in the state estimation problem, The CTA measurement provides information on the radical
concentration in the reactor which is already obtained through the M, and M, measurements, and therefore
will only provide confirmation on the reaction progress if model mismatch is not serious. The CTA is included
to improve the prediction of the molecular weight propertics. The molecular weight propertics in the SBR
process are strongly influenced by radical chain transfer to CTA. Therefore, improved knowledge of the amount

of CTA should provide improved molecular weight property predictions.
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8.5. SIMULATION STUDIES WITHOUT MODEL MISMATCH

The first set of simulation studies will be concemmed with estimating the minimum number of
deterministic states specified in section 8.4 in order to compute copolymer properties for fecdback control. It
will be assumed that the model proposed in the previous chapier on modzliing is correct. The true recipe of

the initial charge and the operating conditions are listed below:

Initial Charge

M, : 0.1 gmol

M, : 0.1 gmol

P, : 0.04 gmol

P, : 00 gmol

I, : 0.03 gmol

E : 0,01 gmol

im, : 0.0 gmol

Im, : 125210 gmol

N, ;2107 !

V. 148 1

CTA : 0.0275 gmol

Operating Conditions

T : 55° C {constant)
Fy, + 0.00871 gmoll min (constant)
Fy, : 000871 gmol/min (constant)
Fin : 1.09x10°  gmol/ min (constant)

The state estimation algorithms to follow will be initialized with the same recipe and operating conditions

as above with the exception of three initialization errors:

Initialization In State Estimation Algornithms

Im, : 0.0 gmol
N, : k107
F. : 0.0 gmol

For convenience in the state estimation routines, the state variables in the work that follows shall be

scaled as indicated below:

Variable Scale Factor
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M, 01

M, 01

P, : 1

P, : 1
Im, : 1x10°
NV, : 1x107"
Fim, : 1x10°
CTA 1 100
A : 1000
V.0 ;1

v, G, 1 0.001
V,0Bn, ;10
V,QuBn, : 1x10*

The effect of the initialization errors in /m,, N, and F,, on the model predicted open-loop response
onstatesM,, M,,P,, P,,Im,,CTA,V, 00, V, O, V,0n, V, 0B, and V,Q,Bn, is shown in Figure 8.2, The results
clearly indicate that the three errors lead to a substantial deviation in predicting the progress of the reactor
states.

The measurements in a real process environment will be expected to be corrupted with noise. In the
simulationsto follow, the measurements wili be corrupted with additive Gaussian white noise with the variances

indicated below:

Output Variance

v, M, 0.002 gmol®

Y2 ¢ M, 0.002 gmol*
o2

»n D, 200 A
¥, : CTA 2x107  gmol®

The variances of y, and y, were deduced from limited data provided by experimental work performed by
Hoffman (1984} and Campbeli (1985), where an on-line G.C. was used for monomer conversion estimation.
The variance for y; was estimated based on data obtained from Korti(1989) where on-line dynamic light
scaticring measurements were used for polystyrene particle size measurements. Without any on-line sensor
currently available for CTA measurement, the variance listed above was simply a reasonable guess of what

one might hope 1o achieve. Due to lack of data, the covariances of the measurements have been assumed to
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be zero. In practice, this assumption would be expected to be poor for both y, and y,, since both of these
measurements are obtained from the same sensor {G.C.), However, replicate measurements on a few standard

mixtures could be used to estimate this,
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8.5.1. Extended Kalman Filter Formulation And Simulation

The objective of this section will be first to demonsirate the importance of the corrict incorporation of
nonstationary disturbance and parameter states to eliminate bias, and second, to tune and evaluate the extended
Kalman filter for SBR emulsion state estimation.

Asmentioned inthe introduction, acominon mistake thatis made when formulating an extended Kalman
filter is neglecting to include a reasonable set of nonstationary stochastic states that could explain the reasons
for deviations between the model and the process. Neglecting these nonstationary states will lead toa Kalnian
filter that has no integrating capabilities that can climinate these deviations. The sources of nonstationary bias
can be due to disturbances or incorrect mode] parameters. To demonstrate the effect of this error in the

estimation procedure, the extended Kalman filter will be formulated and applied using the minimal state vector
X7 = (M, My, P, Py, Im,, CTA,V 05, V, 00, V, 0, V, 2081y, V,0Bn)
necded for property calculations, and measurement vector

y' =(M,,M,,D,,CTA)

The extended Kalman filter was tuncd with

R, = Diag (0,001,0.001,0.001,0.001, 1,0.001,0.001,0.001, 0.001,0.001,0.001)
R, = Diag(0.00Z,0.002,200,0.002)
P, = Diag(0.01,0.01,0.01,0.07,10,0.01,0.01,0.01,0.01,0.01,0.01)
L and N, arc sct incorrectly in the extended Kalman filter as specified in the previous section. Figures

8.3() 10 8.3¢f) show the true (-) states compared to their one step ahead (xy);.-,) State predictions. Figures
8.3(g) to 8.3(j) show the true measurements compared 1o their filtered estimates y, . It is clearly evident in
these figures that the extended Katman filter leads toan unaccepiable bias problem.

The poor performance of this extended Kalman filter ¢an be easily explained. The deterministic states
used in the extended Kalman filter posed above assur~ - “hat each state and ouiput will be in error by only
zero mean white noise components wy and v, respect® : 2fore, the extended Kalman filter is unable to
account for the nonzero myan bias between the true si. & *.iered states due to the incorrect specification

ofim,,F, ,,,,’.:md N,.Often when this mistake is made, the . :csigner attempts to mask the problem by inroducing
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a very large R,. An example where this had been done is demonstrated in Hamilton et al. (1973). The
consequence of taking such action istoremove the significance of the contribution of the detenninistic madelled
component A,x; in the lincarized and discretized state space model
X0 = Ax + ow (8.23)
3 a result of the large covariance matrix associated with w,. This essentially reduces the state space model
(8.23)to
L1 5 Wy (8.24)
whichsimply models all states as random walks with very large variances, The extended Kalman filter becomes
a noisy state estimator in order to hide the bias problem, and provides poor present and future prediction of
the progress of the process since the modelled deterministic component of the states is lost. In the example
shown in Figure 8.3, the bias problem cannot be effectively removed with tuning of R, and &,

The results above clearly indicate that £, and N,V, must be included in the extended Kalman filter

as a nonstationary disturbance and parameter state respectively. These states are assumed to be [ixed
deterministically (i.e. f7(x,u, t) = 0} and vary as a random walk according 10 (8.9). With these states added to

the extended Kalman filter, the estimation problem becomes estimating

T = (M,,M,,,P,,P,,lmp,va,.F,,',cm, V,0,V,0,V,0,,V,08n, VFQuBn‘)
using measurements y* = (M,,M,,D,,CTA).

The next problem to be addressed is the selection of tuning matrices R, R,, and P,. For deterministic

states, the diagonal elements of R, were initially sclected 1o allow for approximaicly a maximum 10% crror
in the model predictions at each sampling period. For nonstationary states N,V, and . , the corresponding
diagonal elements of R, were initially selected 1o roughly represent the maximum change that would be
expected between sampling periods under real process operating conditions. These initial uning parameters
were only used as a first pass, and adjustments were made through repeated simulations until an acceptable
compromise between speed of convergence and state smoothing was found. It was found that

R =

Diag (5x107%,5x10°%, 5107, 5x10°%, 510, 1x10™, 12107, 5x10°°, 5x 107%,5x10°%,5210°%,5210°%, 5210 %)
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led to acceptable performance. R, was set to Diag (0.002, 0.002, 200, 0.002) in accordance with the discussion

in section 8.5. The diagonal elements of Py were chosen to reflect the expected variance in the initial error of
the state estimates. For Im,, N,V,,, and Fi, the variances in the initia! estimates would be based on the range
of the expected initial values from the history of past process operations, The variance of the initial ervor in
the deterministic states that are assumed known at the start are based on the expected accuracy of the
measurcment procedure used in computing these states at ¢ = 0. The vse of an arbitrarily large P, that is often
made in computing off-line Kalman filter gains for lincar systems was not found to he accepuable since such
a choice led to initial large excursions in the state predictions before converging. An acceptable choice was
found to be
P, = Diag(0.0001,0.0001,0.0001,0.0001,1,5,1,0.0001,0.0001,0.0001, 0.0001, 0.0001, 0.0001)

Figure 8.4 shows the performance of the correctly formulated extended Kalman filter, where in Figures
8.4(a) 10 8.4(h) the true states x, (-) are compared 1o x;y, _; (~-), and the true measurements y, (-) are compared
to the filtered measurements y, |, (--) in Figures 8.4(i) to 8.4(1). The results show that the extended Kalman
filter Icads 1o bias free estimales in all the states and measurements, After about 10 measurements, Im,, F, m»
and NV, can be obscrved to converge to their true values. All filtered state estimates can be observed to be
smooth and not severely influenced by the measurcinent noise,

In scction 8.4.1, the states V,Qs, V, 0, V,0,8Bn,, and V,0,Bn, were pointed out to be not observable

from the measurements. Nevectheless, these states were included in the extended Kalman filter in the work
above, Predictions of these states are improved by including them in the filier since the best estimates of the
observable states arc used in their prediction, and feedback information from errors in the observable states
is used to correct the prediction of nonobscrvable states through the associated Kalman gain. This strategy
differed from that used by Schuler and Suzhen (1985) where nonobservable states were left out from the
Kalman filter formulation and predicted open-loop with the filtered estimates of the observable states,
Intuitively, the approach taken here should be more effective since the error of integration of the nonobservable

states from initialization errors in the observable states will be corrected from the feedback information.
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8.5.2 Reiterative Extended Kalman Filter Formulation And Simulation

The results from the previous section have demonstraicd that the problem with the regular extended
Kalman filter is that it is slow to recover from poor guesses of the initial state vector x,. The reason for this is
that the extended Kalman filter is a purcly recursive estimator that never gocs back to reprocess past initial
data containing a lot of information on x,. In section 8.3.2, it was pointed out that the performance of the
extended Kalman filter to initialization errors in x, may be improved by adding an estimator for x, which
processes early data 10 gradually improve the estimate in x,, and reiterating the regular extended Kalman
filter from ¢ = 0 with ail past data when a new measurement point is available,

Recognizing that the major uncertaintics in the state estimation problem are the unknown initial values
for the states Im,, N, V,, and F,,_'. it would scem logical to try to estimate these from the incoming data. This
can be accomplished by defining a second extended Kalman filter with states x¥ = (lm,,o,N,V,o, F:...,n] and

dx?ldt = 0. The discrete form of the state space model with added stochastics becomes
2, = X+ w (8.25)
Since the state vector x? is initially unknown and assumed fixed throughout the entire semi-batch run,

the logical choice for R, would be 0. Ljung and Soderstrom (1987) has shown that the Kalman filier that
results from his formulation is essentially a recursive least-squares parameter estimator with no discounting
as a result of the specification R, =0,

Figure 8.5 shows a schematic of the reiterative extended Kalman filier approach.

¥ + Y- EKF Yo
o
2
Xon
Y:l Y‘. ...... Y: xi !.z:ﬂ ...... XL‘.
2 — EKF o -
+ 4 - 1
X

Figure 8.5: Reiterative Extended Kalman Filter



EKF 1 refers to the regular extended Kalman filter described in section 8.4.1, while EKF 2 refers to the second
extended Kalman filter that provides estimates of the unknown initial states. At the y? measurement, EKF 2

provides a recursive estimaie of the unknown initial states xg, Q= (Um, NV, F,,,,w) which is sent to EKF 1,

o
EKF 1 is reiterated {rom ¢ =0 with y{ to y; using the updated cstimate of x; to get x; ,.

In order 10 avoid excessive computations in the reiterative extended Kalman filter approach, only a
m:nimal number of measurements necded to satisfy the observability condition are used in EKF 2. The vector
of measurements was selected to be y? = (M,,M,,D,). The output vector is predicted from the integration of
the minimal number of SBR model differential equations required in order to speed up computation Lime,
These correspond to the states M,, M, P,, P, Im,, and /,. Atevery sampling interval the integration is reprated
from ¢ =0 with x, _, to obtain the predicted measurements y;,, _,. When the measurements are computed,
the Jacobian matrix of y},, _, with respect 1o 13, _, is also estimated using sensitivity equations (8.20) and by
adding additional differential equations defined by (8.21).

Figure 8.6 shows the performance of the proposcd reiterated extended Kalman filter. Throughout the
entire simulation, EKF 1 was restarted from ¢ = 0 with estimates of the unknown initial states at ¢ = 0 provided
at every sampling period by EKF 2, EKF 2 was tuned using R, =0, R, = Diag (0.002,0.002, 200), and
Py=Diag(1,25,1). The extended Kalman filter being reiterated (EKF 1) was exactly the same as in section
8.5.1 with the correct nonstationary states and the same tuning parameter matrices. As before, these plots
display the true states x, (-) against the ong step ahead filtered values x,,,_, (--}, and the true measurements
i (-) against their filtered values y,,, (--) obtained from the reiterated extended Kalman filter. The plots
clearly reveal that the reiterated extended Kalman filter converges significantly faster to the true states
compared to the regular extended Kalman flter shown in Figure 8.4. The reiterated extended Kalman filter
appears to be very close to the true states in about 5 sampling periods, whereas the regulur extended Kalman
filter wkes about 1N sampling periods. The results also indicate thar there appears to be very litde benefit in
reiteraiing after about 12 measurement periods, even through the estimates of the initial states, shown in Figure
8.6(i), do not appear to converge until 30 sampled measurements. Figure 8.6(i) shows that Im, NV, ,and
Fa, cventually converge to their true values of 1.12x107° gmol, 2x10"” [, and 1.09x10° gmol
respectively.

The computation time of the reiterative extended Kalman filter was much greater and not practical

relative to the standard extended Kalman filter, with mosi of the computing time being spent on the reiterations

160



of later sampled measurements. However, when the reiterations are applied only for the first few sampling
periods, thereby requiring only short integration times, the increased computational time was found to be

insignificant, making the approach uscful for practical purposes.
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8.5.3. Nonlinear Optimization Approach Formulation And Simulation

The nonlinear optimization approach of Jang ct al. (1987}, described in section 8.3.3 was applied to
the SBR semi-batch estimation problem. The objective function to be minimized with respect 10 unknown
initial states xJ =(Impn'NpV~,'F:m,°) is given by (8.18). In order to reduce computation time, enly a minintal
number of measurements are used to satisfy observability requirements. The measurements used in the on-line
optimization approach are y” =(M,,M,,D,), and arc computed from the model by integrating only the
differential equations corresponding to M,, M,, P,, P,, Im,, and I,. The gradicnt of (8.18) with respect 1o X,
was obtained using sensitivity equations (8.19) and (8.20). This approach was found to be faster than using
forward differencing to estimate the gradient and was also found to give a better estimate of the gradicnt at
the optimum in several test cases tried, Several quasi-Newton and conjugate gradientalgorithms were evaluated
for solving the opiimization problem posed above. From the results of several test cases, it was decided to use
the unconstrained optimization routine "CONMIN" obtained from the "TOMS" library that uses a Beale
restarted conjugate gradient algorithm, More computationaily efficient methods may exist for solving the
optimization problem in this work {Beigler, 1984). However, this issue is not the point of this section. The

main issue in this work is the potential performance of this approach to nenlincar state cstimation.

The weighting R;! on the squared diffcrences between the model predicied measurements and the

measured values was taken to be Diag(1/0.002, 1/0.002, 1/200), the inverse of the covariance matrix of the
measurements. This corresponds to the maximum likelihood weighting for the assumed statistics of the
measurements. The optimization problem wasresolved at ¢very sampling interval, and the optimization horizon
was taken from ¢ = 0 10 the most recent sampled measurements.

Figure 8.7 shows the performance of the nonlincar optimization approach with no pricr information on
the inirial estimates assumed (i.e. P3'=0). The x,,,., predictions from the oplimization ¢stimator can be
observed to converge to their true valucs. Relative to the standard extended Kalman filier, shown in Figure
8.4, the nonlinear optimization approach led 1o improved coavergznce since all the present and past data are
used in the latter approach. However, relative to the reiterated extended Kalman filter approach, shown in
Figure 8.6, the convergence of th¢ nonlinear optimization approach was slightly inlerior.

The optimal estimates for x, are shown in Figure 8.7(i). After about 25 samples the initial estimates can

be seen to converge to their correct values. The optimization routine ran into difficulty in the initial sampling
periods where an excessive number of function evaluations where encountcred to meet the convergence

specification on the gradient. During this time it was found that the Hessian at the solution was nearly positive
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semidefinite. The explanation for this can be found through an identifiability condition analysis on the
optimization problem posed at every sampling interval, The covariance matrix of x, can be shown to be given
by (XTR;'X)", where X is the matrix of sensitivity coefficients (Beck and Arnold, 1977; Jang et al., 1986)
whose elements are obtained from (8.20), Sinccl (XTR;'X )"[ = |(X7XY"'||R;'|, an indication of the size of
the covariance of estimates x, can be found by examining | (X7X)™ |. If this term is large, it is expected thata
nearly singular least squares error problem has been posed due to a lack of sufficient measurement points. A
plot of log{(X™X)™] vs. time is shown in Figure 8.7(j). In this figure it can be observed that 1 (X"X)™ | is
extremely large at the first measurement point and decreases rapidly by several orders of magnitude during
the first 5 sampling periods. Hence carly crratic behavior of the initial estimates together with the nonpositive
definite Hessian at the solution are explained from the results of the identifiability analysis. From a Bayesian
point of view, an improvement in the conditioning of the least squares error problem can be made by specifying
a nonzero Py to the prior estimate of x,, It was found that taking such action to improve the conditioning of
the least squares problem led to an unacceptable, very slowly converging nonlinear estimator.

The CPU time of the simulation on a Vax 750 without floating point acceleration of the nonlinear
oplimization approach was about 18 hours, which was tremendous and not practical relative to the reitcrative
extended Kalman filter time of about 5 hours and tie standard extended Kalman filter time of about 6 minutes.
For practical implementation, the on-line horizon approach must be speeded up by improving upon the
computation ysed above and by solving the optimization problem less frequently. Even if a substantial
improvement can be realized, such as through the approach suggested by Beigler (1984), it is doubtful that
the performance of the nonlincar optimization approach as a state estimator can be improved over the reiterative

extended Kalman filter method.
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8.5.4, Conclusion From SBR Estimation Study With No Model Mismatch

The purpose of this section was to evaluate three different approaches to the problem of nonlincar state
estimation in a semi-batch SBR emulsion reactor where some initial states were unknown, The approaches
considered have been extended Kalman filtering, a reiterative extended Kalman filter, and an on-line nonlincar
optimization approach, The three approaches were evaluated assuming the ideal situation of no structural and
parasneter model misinatch,

An extended Kalman filter with the correct nonstationary states accounted for was found to be a useful
and practical approach provided that nonstationary disturbance and parameter staies are correctly accounted
for in the formulation, and that considerable effort is made through repeated simulation to arrive at a suitable
set of tuning matrices. Relative to the sampling period of the measurements, this method provided very fast
filtered state estimates. The main drawback of the approach is that convergence tends to be slow because of
the recursive nature of the algorithm,

A modification was proposed whereby a second extended Kalman filter was combined with the one
above to provide recursive updating of the uncertain initial state estimates xo. By reiterating the first extended
Kalman filter with every updated x, estimate from the sccond filter, improved convergence can be obtained.
The second extended Kalman filter was formulated by defining the siates to be the initially unknown states
(xo) of the first filter. With this formulation, the second extended Kalman filter tumed out (o be the counterpart
of a nonlincar recursive least squares (or recursive prediction error) algorithm for these unkniown initial state
parameters. The modification was found to lead to a significant improvement in the convergence of the filtered
state estimates. A small increase in the computational effort would be required relative to the first approach
provided that tie reiterative procedure is terminated once no further improvement is found.

The nonlincar optimization approach of Jang et al. (1986) was used to find maximum likelihood
estimates of the unknown initial states for the purpose of state estimation. An advantage of this method over
the previous two approaches described above was that far fewer tuning parameters had to be specificd. The
optimization problem was performed when cach sampled measurement became available. The method was
found 1o be robust to the measurement sensor noise and converged 1o bias free state estimates. Convergence
of the nonlincar optimization approach was found to be significantly better than the first extended Kalman
filter but slightly worst than the reiterative extended Kalman filter. The major problem with this approach was
the significant computational effort required which was far greater than either of the methods above. The

nonlincar optimization approach may only be practically usable if the computational efficiency can be
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substantially improved and/or the optimization is salved less frequently. However, thers is litile incentive to
pursue this matter since there appezars 1o be no benefit with this method as far as convergence is concerned
relative to the reiterative Kalman filter approach. Another problem with the optimization approach is the
assumption that the unkncwn disturbance cr parameter states are time invariant over the optnnization horizon.
This can be a very poor assumption for the system investigated in a real process environment.

Based on the resuits of this section, it is reccommended that the most practical approach to the problen
of state estimation in a semi-batch SBR emulsion reactor is the proposed rziterative extended Kaliman {ilier

that has been demonstrated to offer the best compromise between computational effort and convergence.

8.6. SIMULATION STUDIES WITH MODEL MISMATCII

Tt may be argued that an estimation case study with no mode! mismatch is of limited practical value
since dynamic models of chemical processes are rarely accurate. For a nonlinear state estimation procedure
to be useful in a real process environment, it must be demonstrated to be robist to both parameter and structural
types of mismatch and shown to contain sufficient nonstationary disturbance and parameler states so that
model predicted measurements will always be consistent with actual measurements in the region of operation,
In general, these requirements cannot be met if the number of nonstationary stites is less than the number of
measurements. Parrish and Brosilow (1988) have stressed that if the latter requircment is not satisfied, the
state estimator may contain bias, and not be capable of tracking changing conditions. This has been a common
failing of almost all Kalman filtering applications described in the process control literature. The lack of
consistency in the state estimator would also prevent the possibility of control with reset action if feedback
control i tc be applied. Unfortunately, the modifications required to make nonlinear state estimaltors consistent
and effective are case dependent, requiring some understanding of the process mechanism and sources of
model deviation. Of course nonslationary states can always be arbitrarily added to the state estimator simply
to meet the consistency requirement. The consequence of such a blind approach would be a poorly performing
state estimator with poor prediction of the future progress of the process.

The following sections in this chapter will take a close look at the effect of different types of model
mismatch when inferring states using the extended Kalman filter for the SBR cxample. The aim will be w0

determine which type of model mismatch the previously described extended Kalman filter will be robust to,
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the types of mode! mismatch that will introduce bias, and to introduce medifications to the state estimation
algorithm by inwroducing a set of reasonable and hopefully meaningful parameler states in order to allow

consistent state estimation in the presence of model mismaich,

8.6.1. Mismatch Affecting Average Number Of Radicals Per Particle

In this scction, the effect of model mismatch where only n, the average number of radicals per particle,

is affected shall be investigated. In the SBR model, # appears in the reaction rate expression as

NV,
Ri = k.[AJ’ NAV (8.26)
P

where R, is the rate of reaction of some reactive species A; with radicals, and k; is the associated effective rate

constant. In a real process environment, factors such as errors in the specification of fm,, Im,, k,,,', and £, for
cxample, may be significant and will result in a bias in the open-loop prediction of x. Unfortunately,
obscrvability limitations will not permit the estimation of all the parameter and states affecting . If one would
suspect that many factors contribute significantly to deviations in 2 relative to the open-loop case, a simple
approach to the estimation problem would be to avoid detailed modelling of all the influences on n and

introduce 7 as a nonstationary random walk state

By = My + W (8.27)
to be estimated. This approach would also be very appealing if no mechanistic detail were available on the
effect of the important states and parameters that influence n. A strategy similar to this was adopted by
Stephanopoulos and San (1984) where detailed modelling of the relationship between parameters and states
wasneglected for simplicity by replacing these dependencics with noistationary parameler states at appropriate
locations in a bioreactor model. The use of the nonstationary parameler state described by (8.27) will satisfy
consistency requirements for any type of model mismatch that directly affects the prediction of n.

In the previous extended Kalman filter formulations, the deviation between the model predicted and
actual 7 was assumed 1o be only a result of an incorrect specification of the amount of reactive impurity im,
in the reactor. The effect of Im, on7 wasarrived at from adetailed mechanistic understanding of the relationship
between these terms. Bias-free compensation for errors in the specification of the reactive impurities was made
possible by including the meaningful nonstationary disturbance parameter F,,,’ in the filter formulation. Ina
real process application, the organic phase reactive impurities will be expected to be the most significant cause

of 7 deviations from the open-loop case. If the mechanism proposed for the variation of # based on /m, and
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F:..., iscorrect, the state estimates based on this modelling approach would be expected to be much more precise
than an approach based on (8.27) where no knowledge is assumed. The quality of future state predictions
would also be improved and the state estimates would be expected to be less noisy relative to (8.27) which
would likely requirc a significant noise component in wl 1o achieve acceptable convergence in order 0
compensate for the unmodetled dynamics of 7, This detailed modelling approach to incorporate meaningful
disturbances or parameter variations could have also been made if mismatch in fm,,, /, k., , or k;, for example,

were expected to be the major source of error in the prediction of n.

For the extended Kalman fitter, formulated with /m, and £, im 10 be useful ina real process environment,

it must be demonstrated to provide, through some fictitious adjustment, consistent compensation for any other
type of unaccounted mismatch error that directly affects 7. In this section, it will be demenstrated that the
extended Kalman filter formulated in section 8.5.1 will be robust to this particular class of model uncertainty.
‘The types of mismatch to be demonstrated will be errors in Fy,, , k., and f.

Figure 8.8 shows the performance of the extended Kalman filter when the true impurity flow rate 1o
the reactor is given by Fp, = 5x107 gmol/min and F, =5x107 gmol/min rather than
F imy = 1.09x10°  gmoi/minand F,, = Oasinthe previous studies. [tcan be observed that the extended Kalman
filter appears to provide biascd-free estimates of all the deterministic states needed for control. The effect of
the water soluble impurity in the true process was compensated by simply increasing the estimated amount
of ,,, to the reactorto allow 7 10 match the true 7 that results from the effect of both impuritics in the reactor.

Figure 8.9 shows the effect of Kim, being sct 30% too low in the model used by the extended Kalman,

As before, with the exception of Im, and F, imy» biased free cstimates appear to be evident in the observable
states. Mechanistically, this mismatch will only affect # and the rate of impurity depletion. The estimator
compensated for this by raising the level of F, m? and hence /m,, as can be scen in Figurcs 8.9(c) and 8.9(¢).
Figure 2.10 shows the effect of f being estimated 30% too low in the mode! used by the extended
Kalman tilter, The effect of the larger f will be to over estimate the radical entry rate to the particles and hence
over estimate 7. As with the other cases, the estimator compensates for this by assuming a higher fm,, level,
as is shown in Figures 8.10(c) and 8.10(¢). Unlike the previous two examples, a much higher fictitious level
for/m, is needed tocompensate for the modelling crror, This fictitious higher level for /m, leads toa noticcable,
but still small, deviation in the V,Qq, V, Qs and V,QcBm, and V. Q,Bn, predictions, shown in Figures 8.10(g)
and 8.10(h). Since these states are not observable from the property measurements, a bias in these states cannot

be avoided. At typical operating conditions, chain transfer to CTA dominates the molecular weight propertics.
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If the true impurity level is not expected to significantly affect the molecular weight moments in the region
of operation, it may be more cffective (o remove the effect of the impurity terms on these states in the model
uscd for state estimation. In this way excessively high or low fictitious impurity levels will not seriously affect
the predictions of the nonobscrvable molecular weight moments states V,0, and V,0Q;. However, if a large
amount of Im, rcally doces exist, this most certainly would be a bad move.

It can be shown that the extended Kalman filter used in this section will also be robust to similar types
of modelling errors associated with initiation, radical entry, the presence of multiple impurities, and diffusion
controlled termination effects. All of the modelling errors discussed in this section are considered to be
important in a real process environment, and the results have at least demonstrated that the extended Kalman
filter formulated in section 8.5.1 does have some favorable robustness properties with respect 1o these model

deviations.
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8.6.2. Mismatch Associated With Propagation And Chain Transfer

The following section will be concerned with mismatch corresponding to errors in rate constants
associated with propagation and transfer to modifier. The objective will be first o demonstrate that the extended
Kalman filter formulated in 8.5.1, in general, will not be robust to this imporiant class of model mismatch,
and can lead to biused state estimates, The second objective will be to propose modifications to the extended
Kalman filter of section 8.5.1 by introducing nonstationary model mismatch states that will eliminate bias in
some of the state estimates and provide improved estimates in others,

The first parameter model mismatch to be examined will be an error in the propagation rate constants
where both &, and k,, arc increased 30% in the model used in the exiended Kalman filier of section 8.5.1.
The simulated results are shown in Figure 811, The extended Kalman filter can be observed to perform poorly
under this type of model mismatch, where a significant bias problem can be observed io be present.

The poor performance of this extended Kalman filter can be easily explained. The rate of reaction of

each monomer to produce polymer, and the rate of depletion of CTA is given by the expressions below:

R, = @ eV 8.28
T J[ Jp NAVP (' )
HNPV, .
Ry = &), (8.29)
ANV,
Ran = kenlCTA), 55 (8.30)
P

where R,,, R, and Ry, refer to the rate of depletion of styrene, butadiene, and modifier respectively, In the

equations above @,, d,, and &, refer to the effective copolymer reaction rate constants for styrene, butadiene,
and CTA with radicals respectively. The effect of a 30% increase in both propagation rate constants, &, and
ky. Tcads to a 30% increase in both @, and &, pseudo copolymerization rate constants in (8.28) and (8.29).
To compensate for this error and make the extended Kalman filter model predictions consistent with measured
M, and M,, the estimator would have to decrease the estimated N, and/or n through a fictitious increase in the
impurity level, However, these modifications would be inconsistent with both the particle size measurement
and the CTA differcntial equation (8.30). No adjustment to both N, and 7 can be tolerated fur consistency
with the CTA measurement, since k-, is unaffected by both &,,, and k,,, and the D, measurement. Therefore
the biasisa result of the inability of the nonstationary disturbance and parameter states to fictitionsly reconstruct

the observed measurements.
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A similar mismatch problem as the one demonstrated above will be encouatered when the ermror is
present in the rate constan:s for the reaction of CTA with radicals. Figure 8.12 shows the simuluted results
when both ke, and kpcr, are increased by 30% in the model used in the extended Kalman fiiter. A serious
bias problem in all the state estimates is again cvident. The effect of the modelling ervor is o over estimate
kiera by 30% in (8.30). The unly way that the estimator could compensate for this in (8.30) is by cither or both
adecrease in N, and an increase in the levei of impurity. However, this adjustment would create inconsistencics
with model predicted and measured D,,, and M, and M, since in the rate expressions &, and , are not elfected
in (8.28) and (8.29).

The results above have demonstrated that the extended Kalman filter ‘ormulated in scction 8.5.1 will,
in general, not be robust to independent errors in propagation and chain transfer rate constants. However, there
isa special case where the filter will be robust to errors in these parameters. Figure 8.13 presenis the simulated
results where k,,, ks kyora, and Kpery are together estimated 30% too high in the extended Kalman filter
model, The results show that in this situation the performance of the extended Kalman filter is much improved.
The reason for this is that the simultaneous 30% increase in ®,, @, and kg, as a result of the mismatched
parameters can be compensated for in a consistent manner by reducing n through the same fictitious increase
in the level of impurity. The predictions of V,Qq. V,Qs, V,Q@oBny, and V,Q,Bn, are biascd due Lo crrors in the
estimated values of /m, and @ which must be known cxactly for these states to be predicted correctly,

A modification to the extended Kalman filter of section 8.5.1 must be made in order that it provide
consistent state estimates with the available measuremerts. The mismatch cases considered above showed
that a fictitious increase in 7 to account for independent errors in the propagation rate constants will be
inconsistent with the CTA material balance differential equation. To bring about consistency in the state
estimation algorithm, a fictitious mismatch parameter state, x*, is introduced as a multiplicaiive correction
factor for kg, [CTA], wherever it appears in the model. With this modiftcation, the rate expression for the

depletion of CTA becomes

o nN,V, 031
Repp = X kmA[CI'A]P—"-N 7 (8.31)
alp

With no information known about the dynamic variations of x™, x* is modelled as a stochastic nonstationary
random walk of the form
14

o= oW (8.32)

in order to eliminate the bias problem.
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Figure: 8.14 shows the simulated performance of the modified extended Kalman filter when both &,

and k,,, are assumed 30% too high. The tuning used in this filter was
R, = Diag

L

(5x10°,5x10°%, 5210, 5x10°%, 5210, 10, 1074, 5x 1075, 5x10°%, 5x107%, 521075, 5x10°%, 51074, 0.0001)
R, = Diag(0.002,0.002,200,0.002)
P, = Diag(0.0001,0.0001,0.0001,0.0001,1,5,1,0.0001,0.0001,0.0001, C.0001,0.0001, 0,0001, 0.01)
and x* was initialized 10 1. Relative to the former Kalman filter design shown in Figure 8.1, the bias problem

has been climinated in the obscrvable states, with the exception of Im, and F,,,,’, and reduced in some of the
nonobservable states, A similar improvement will also be observed when a modelling errcr is introduced to

kxera» OF €ither &y, or &, alone,

The introduction of x** parameter mismatch state has been shown to improve the consistency of the

extended Kalman filter when modelling discrepancies occur between the propagation and CTA material balance
expression. However, other types of rate constant errors can be introduced where the modiﬁgcl extended
Kalman filter proposed will still not be adequate. Figure 8.15 shows the simulated performance of the modified
extended Kalman filter when r, has been assumed 30% too high. A significant bias problem in some of the
observable states has been introduced as result of this error which cannot be accounted for though the impurity
disturbance state and x'*. The problem is again due to inconsistency in the state estimation algorithm as a
result of the model mismatch. The error in r, effects both &, and &, in (8.28) and (8.29) respectively, but the
effecton cach term is different. Hence a consistent fictitious correction ton througii Lie organic impurity level
cannot be found to account for simultancous unequal errors in @, and &,.

An additional modification to the extended Kalman filter can be made to make it consistent to the type
of mismatch as the one previously deczribed where an inconsistency exists between M, and M, material
balances. A second fictitions model mismatch state x** can be introduced as a multiplicative correction factor
to @, [M,], everywhere in the model used for estimation. With this modification, the rate expression for the
reaction of butadiene to produce polymer is given by

o ANV,
Ry = 5P, TE (8.33)

Again, without any knowledge about the dynamics associated with x'*, the assumption will be made that x**

can be modelled as a stochastic nonstationary random walk according to
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5y o= 5 o+ ow (8.34)
which should be effective in climinating the bias problem in the obsctvable states resulting from the class of

maodel mismatch described above.

Figure 8.16 shows the simulated performance of the doubly modificd extended Kalman filter when r,
is assumed 30% too high. The extended Kalman filter was tuned using
R, = Diag(5x1075x10°,

5x107%, 52107, 55107, 10™, 10°%, 52 10°%, 5x10°%, 5x10°%, 5107, 55107, 5x10°%,0.0001, 0,0001)
R, = Diag(0.002,0.002,200,0.002)
Py =Diag(0.0001,0.0001,0.0001,0.0001, 1, 5,1,0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.01, 0.01)

and initialized with x* = 1 and x** = 1. Relative (o the previous filter, shown in Figure 8.15, the prediction of

most of the states can be observed to be consistent with the state predictions.
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8.6.3. Structural Mismaich Associated With Mass Transfer

In this section we examine the consequence of a structural crror in modelling the distribution of
monomers between the particle and monomer droplet phases. The model used in the extended Kalman filter
assumes constant partitioning through fixed X,., and K, while the true process will be modelled assuming
particle swelling according to Flory-Huggins theory (sec previous chapter).

Figure 8.17 shows the simulated performance of the doubly modificd extended Kalman filier of section
8.6.2 when subjected to the type of uncertainty described above. The extended Kalman filter can be observed
to perform well, and leads to consistent state estimates with respect to the measurcments. The effect of the
mass transfer prediction error can be shown to affect ,[M,] ), M), and kg4 [CTA],. In gencrl, each of
these terms will be affected differenty. It can be shown that incorporation of the organic phase impurity
together with model mismatch states x and x* in the extended Kalman filter satisfics the necessary conditions
for consistency.

Modelling errors with respect 10 the partitioning of monomers between monomer droplet and particle
phases will often not be important in a semi-batch mode of SBR production. Usually, one would expect the
amount of each monomer to be sufficiently low so that no significant monomer droplet phase is present and
most of the unreacted monomer can be found in the particle and water phases. Nevertheless, the robustness
of the extended Kalman filter to these errors if present has been clearly demonstrated.

Other species distribution errors are also expected to be significant, but can be shown to be handled
consistently with the modified extended Kalman filter. Nomura (1988) has shown that modelling of the CTA
distribution assuming equilibrium distribution through constant partition coefficients can lead to significant
model prediction emror. However, the error appears to be most significant when both monomer droplets and
particle phases are present, and as discussed above, usually will not be present in the semi-batch mode of
operation. If a serious error in prediction is present, it can be shown that the nonstationary mismatch state x*°
will account for it.

The modified extended Kalman filter will also consistently account for errors associated with impurity
and initiator distribution, since these can be easily accounted for through modification to the fictitious impurity

level.
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8.6.4, Particle Size Uncertuinty

One important form of model mismatch is the assumption made about the particle size distribution.
The model assumes that the particle size distribution is monodispersed. In a real process environment some
statistical broadening will exist, and as aresult, the volume average particle size may not be in agreement with
the average obtained irom a dynamic light scattering instrument (Korti, 1989). The development of a dynamic
mcdel with population balances and the effect of statistical broadening accounted for is far from trivial,
Nevertheless, the effect on the doubly modified extended Kalman filter will be to adjust the estimated number
of particles and the impurity to allow for consistiency with the measurements and filtered states. The sume
effect would result if an error is made in estimating the density of copolymer produced. This type of mismatch

might be noticeable when a significant copolymer composition drift exists due to bad control.

8.6.5. Molecular Weight And Branching Uncertainty

The prediction of the molecular weight moments and branching frequencies is seriously vulnerable 1o
model mismatch since these states are not observable. Unfortunately, there is little hope as far as the state
estimation algorithm is concemed to solve this problem. The main difficulty is the lack of any on-line
instrumentation that measures properties of a polymer latex related to molecular weight and branching. All
that can be done in a practical process environment is to follow the progress of the model in predicting these
properties from subsequent off-line property analyses on secmi-batch runs and adapt the model when

appropriate.

8.6.6. Conclusion From Robustness Study

In this chapter, an exhaustive robustness study was carried out on the extended Kalman filter formulated
in section 8.5.1, and a modification of it. The aim was to determine if this nonfinear estimation scheme could
provide consistent state estimates when subjected to important types of mismatch, and to propose the necessary
modifications for consistency if needed. The requirement of consistency (Parrish and Brosilow, 1988) must
be met for unbiased tracking of the important states.

The results demonstrated that the extended Kalman filter of 8.5.1, in general, does not display
consistency to all the important types of model mismatch, However, two very simple modifications were

proposed to make the extended Kalman filter consistent and improve state predictions when all the important
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types cf model mismatch arc present. The modifications were the introduction of two fictitious nonstationary
model mismalch states x™ and x* at appropriate locations in the semi-theoretical model to satisfy consistency
requirements. The modifications were shown to lead to a very significant improvement in the performance of
the filter relative to the original formulation.

It is recommended that the modified extended Kalman filter he combined with the extended Kalman
filter of section 8.5.2 that iterates for unknown initial states Imy N V., ad Fy, assuming no model mismatch,
Although the iterated values of the for unknown initial states may not be correct when mismatch is present,
it is expected that the mismatch will not be scrious cnough to significantly degrade the convergence properties
of the reiterated extended Kalman filter relative to standard exiended Kalman filter alone. Alternatively, x¥
can be added to EKF 2 as an additional state to provide an improved initial starting estimates of this state in
the modificd EKF 1. When model mismatch becomes a serious concern, it may be much more logical to retune

the model using data from on-ling and off-line semi-batch runs in order to realize the potential for quality

congrol.
8.7 NOTATION
A state transition matrix of lincarized state space model
Al deterministic component of A,
Al stochas lic state component of A,
Bn; i"th branch {requency per copolymer chain
CTA moles of unreacted chain transfer ageat
d; density of i
D, unswollen volume average particle size
E moles of emulsifier
f initiator cfficiency

fx,u,t) nonlincar state space equation indicating time rate of change of x

il nonlinear state space equation indicating time rate change of x*
Fim, feed rate of /m,
Fi, feed rate of Im,,
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H,

Im,

Im,

feed rate of butadiene

feed rate of styrene

nonlinear equation relating outputs 1o x
output/state matrix of linearized state space model
moles of initiator

moles unreacted organic phase reactive impurity
moles of unreacted water phase reactive impurity
cost function in nonlineas optimization state estimation approach
sampling interval

copolymer pseudo rate constants {or CTA
extended Kalman filter gain at intervalk

moles of butadiene

moles of styrene

molecular weight of i

average number of radicals per particle

number of polymer particles per unit volume water
Avogadro’s number

covariance matrix for initial error in x

covariance matrix of state estimation ¢rror atk
moles of butadiene reacted to form copolymer
moles of styrene reacted to form copolymer

i"th copolymer moment conceniration

rate of CTA reaction

rate of polymerization of butadiene

rate of polymerization of styrene

covariance matrix of v,

covariance matrix of wy
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! time

T reactor temperature

u manipulated input vectnr

¥, additive ontput white noise vector at interval k

v, volume polymer particle phase

v, volume of water

W, additive Gaussian state white noise vector at interval k

x vector of modetled process differential states

X x at starting time

x! state vector corresponding to EKF 1 in reiterative extended Kalman filter
x? state vector corresponding to EKF 2 in reiterative extended Kalman filter
xt nonstationary stochastic state to compensate for modsl mismatch in Ry
x* nonstationary stochastic state to compensate for model mismatch errors in R,
x* deterministic componcnt of x

x* nonstationary stochastic component of x

X matrix of sensitivity coeflicienis

y measurcment vector

¥y actual process measurement vector

Greck Letters

b, copolymer pscudo rate constant for butadicne

D, copolymer pseudo rate constant for styrene
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OPEN-LOOP POLICIES FOR SEMI-BATCH
POLYMERIZATION REACTORS
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9. OPEN-LOOP OPERATING POLICIES FOR SEMI-BATCH
POLYMERIZATION REACTORS

9.1 INTRODUCTION

The purpose of this chapter is to propose open-loop operating policies for the production of SBR latex
in a semi-batch mode. Inorder for the results to be industrially relevant, the policies developed must not only
be demonstrated to yield a wide range of SBR latex property specifications but must also be shown to be well
suited for application in conjunction with on-line feedback control to compensate for state initialization crrors,
disturbances, and model mismaich. The latter issuc is often neglected in the development of open-loop control
policies, and is of extreme importance in SBR latex manufacture were quality control and product
reproducibility is of concurn (Taylor, 1988). The policies developed in this work will be specific to SBR latex
production. However, itis expected that much of the ideas from this work can be extended to other semi-batch
chemical process.

A wide range ol examples can be found in the chemical process control literature where finite Lime..
optimal open-loop policies were developed. A classical approach is often taken to a.rive at some solution to
the open-loop trajectory control problem in batch or semi-batch systems. Usually the problem is stated

mathematically as
b
M(HJ Ju@) = G&(@)) + LD(x,u,t)dr 9.1)

given the process model

X = flx,u,0n) 9.2)
and gencral operating constraints in the form

clx,u,8) = 0 (9.3}
In the equations above, u{t) is the vector of open-loop control actions to be determined, J is the gbjective
functional, G is an end point contxibution to J, D is an integrated contribution to J over period 0 to t;, and x

is the vector of intermal model states that changes with time according to the nonlinear state space model

defined by (9.2). A solution to (9.1) may be arrived at from the well-known maximum principle (Ray, 1981),
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or instead through the transformation of the dynamic optimization problem into an cquality constrained
nonlinear program (NLP) using an orthogonal collocation procedure (Bicgler, 1984; Cuthrell and Bicgler,
1987; Cuthrell and Biegler, 1989). For discrete time control problems, (9.1) to (9.3) can be expressed in an
equivalent discrete form and solved in an analogous discrete manner. In the gencral multivariable case, the
sclution to the problem posed in (9.1) to (9.3) will be quite involved, making the approach suited only for
off-line use, The consequence of thiscan be serious when disturbances and/ormodel mismatch arc encountered,
which requires the recomputation of the optimal solution once this information becomes known. In the case
of polymerization reactors, it would not generally be acceptable to simply apply a feedback control scheme
that would drive the states back to their precomputed trajectories.

Depending on the nature of the open-loop control problem, arriving at a suitable form for the objective
function may or may not be straightforward. For instance, in many petrochemical processes, 4 suitable form
for J is obvious. These operations are often concerned with yield maximization subjeet to constraints on the
feasible range of inputs. Hence, in the case of reactors, the logical choice for ] would often be in the form of
a batch time minimization or conversion maximization. When dealing with these processes there is often the
advantage that the quality control variables are well understood and measurable in terms of the end product
use, and therefore easily incorporated into (9.1). Unfortunately, polymer reactors represent a special class of
control problems. The main problem with polymer reaclors is arriving at a suitable form for {9.1) is by no
means trivial. The difficulty arises from the fact that polymer properties in terms of their ultimate end use are
very difficult to relate quantitatively to the chemical and macroscopic polymer propertics that the models
provide, Furthermore, depending on the end use of the polymer product, the important end propertics of the
polymer product can change significantly. As previously indicated, the expected end use of the latex would
be either a coating (paint) or an adhesive. Some propertics that are important in evaluating latex coatings
(Koenecke, 1967; Martens, 1981) are oxidation resistance, ultraviolet resistance, flexibility, loughness,
hydrophobic properties, chemical inertness, solubility, and so on. To evaluale latexes foradhesive applications
the important end properties of concemn (Autenrieth, 1977) would be tack, cohesive strength, shear adhesion,
peel strength, resistance to creep, and so on. Qualitatively, it is known that molecular weight, copolymer
composition, branching and crosslinking, and particle size properties contribuig significantly 1o the end usc
properties regardless of the polymer end use, Hence it is by no means clear how these modelled properties
should be effectively combined into an objective funciion in the form of (9.1} to allow a suitable diverse range

of latexes to be produced.
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Nevertheless, in light of the discussion above, examples can be found in the literature where a classical
multiobjective optimization approach was applied to arrive at some useful open-loop policies for
batch/semi-batch polymerization problems. Tirrel and Gromley (1981) derived conditions for constant
copolymer composition control of styrene/acrylonitrile through reactor temperature adjustments. This
composition control policy will only be applicable when certain conditions are satisfied on the activation
energics of the propagation rate constants (Ray and Gall, 1969). This policy cannot be applied to SBR since
in the temperature range of interest it is known that temperature has no influence on copolymer composition
(Miller, 1968; Tate and Bethea; 1985). The authors also derived discrete time policies for discrete temperature
manipulations via the discrete maximum principle. The objective was arbitrarily chosen to be the integrated
composition drift weighted by the polymerization rate, and the weighted final corversion.

Tsoukas et al, (1982) viewed batch/semi-baich polymerization control as multiobjective in nature. For
a final end point constraint on conversion and molecular weight their objective was to minimize both the
weighted composition drift and molecular weight distribution in batch/semi-batch copolymerizaton of
styrene/acrylonitrile. The manipulations to be made were temperature and/or the monomer addition rate. In
their work they recognized the importance of choosing the most effective weighting in the multiobjective
problem so that the best trade off in terms of the final desired polyrier properties could be found. To do so
they recommended a very involved procedure whereby all the noninferior or Pareto solutions be found for the
multiobjective problem posed so that the best trade off is found.

Cawthon and Knaebel (1989) also viewed the problem of batch/semi-batch open-loop trajectories as
multiobjective in nature. Anobjective function was formulated to find the best trade off between the integrated
composition deviations, polydispersity, and time. These authors also suggest that all noninferior solution be
computed to find the best trade off. Temperature and reactant flow rates were considered as manipulated
inputs to be determined via the maximum principle. The solution free radical polymerization of acrylenitrile
and styrene was considered,

Hicks et al. (1969) used the maximum principle to arrive at the best temperature and initiator policy to
optimize an objective containing the molecular weight distribution, final molecular weight, and the final
conversion. The free radical polymerization of styrene was considered.

Sacks et al. (1973) also used the maximum principle to arrive at temperature trajectories that minimize
and maximize the spread of the molecular weight distribution for chain addition polymerization in baich

reactors subject 10 a constraint on final conversion and molecular weight.
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Ponnuswamy et al. {(1987) developed open-loop and closed-loop policies for batch solution
polymerization of MMA, For a specified final conversion and number average molecular weight, three
optimization problems, two minimum time, the final a minimum polydispersity, were posed and solved via
the maximum principle. Optimal initiator or temperature trajectories were considered. The solution provided
optimal trajectories for properties to be monitored during reaction such as inferred conversion and molecular
weight. The authors, recognizing the importance of process disturbances, proposed that a feedback controller
be used to maintain the properties to be monitored along the computed off-line open-loop trjectory. No
consideration was made to the fact that following an off-line trajectory once unaccounted disturbances or
model mismatch becomes present may become suboptimal.

Farber and Laurence (1986) computed minimum time batch temperature trajeclorics for bulk
polystyrene production subject to a final conversion and final molecular weight constraint. The maximum
principle was used to obtain the optimal temperature trajectories.

Hsu and Chen (1988) determined minimum time policies subject to final conversion and molecular
weight constraints for solution free radical polymerization of styrene. Unlike the previous work, piccewise
initiator and temperature policies were computed via the maximum principle.

Jang and Yang (1989) developed and experimentally applicd minimum, semi-baich time initiator
addition policies subject to constraints concemed with heat removal and the maximum amount of initiator
that 1nay be added. The optimal policies were obtained off-line through a modification of the orthogonal
¢~ .ivcation approach proposed by Biegler (1984). The reported CPU times to arrive at the optimal trajectorics
would not be practical for on-line use.

Choi and Butola (1987), recognizing the drawbacks with classical approaches, proposed a simplificd
suboptimal scheme for arriving at open-loop trajectories in batch/semi-batch systems. A fictitious feedback
controller approach on the polymer properties that are to be controlled in an off-line simulation was used as
ameans to derive suboptimal open-loop input manipulations. Time varying monomer and reactor temperature
profiles were computed through the fictitious feedback controller approach to control copolymer composition
and molecular weight of styrenefacrylonitrile. The important issue of the design of the fictitious feedback
controller was not discussed in their work.

Rather than directly optimizing an objective function like (9.1) through some numerical scarch
algorithm, it is often possible from one's fundamental understanding of polymerization reactors to find an
exactly equivalent set of necessary and sufficient conditions that must hold if (9.1) is to be optimized. Such

a procedure will always be much more computationally efficient in arriving at an optimal trajectory than a
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more general search based technique. This idea has been used to develop simple procedures for oblaining
industrially useful optimal semi-batch policies based on the control of instantaneous rather than integral
polymer properties. Although these procedures can be shown to provide an optimal solution to some form of
(9.1) to (9.3), to a polymer reaction engineer, policics derived from specifications on instantaneous conditions
would be much more meaningful than ones derived from cumulative {integral) propertics. In general, it is
desirable to produce copolymer with a consistent sct of properties throughout the batch run. The production
of copolymer should not be viewed as blending problem, whereby off-specification copolymer made at one
point in time is compensated for by a different off specification copolymer made at some other point in time.
Therefore, a sufficient condition for producing a consistent polymer with certain desired final properties is to
ensure that the instantaneous polymer being produced at every instant of time throughout the batch has these
desired properties.

Using this idea above, Hamielec et al. (1987) and Broadhead et al. (1985) proposed policies for
copolymer composition control based on conditions for maintaining fixed instantancous copolymer
composition. Two different policies were proposed. Policy T consisted of adding all the slower reacting
monomer to the reactor at the beginning and some of the faster reacting monomer. The flow rate of the faster
reacting monomer is determined so that the condition for fixed instantaneous composition is maintained.
Policy II consist of charging the reactor with a small amount of each monomer at the beginning in a a suitable
ratio and then feeding each monomer so that the concentration of each monomer, and hence copolymer
composition, is fixed with time, In addition, an operating policy was also proposed in Hamielec et al. (1987),
termed calorimetric control, for on-kine application of copolymer control through the measurement of the
reaction heat flux. Arrival at the solution for the monomer flow rates in these policies was shown 1o be very
straightforward.

Beste and Hall (1966) also considered the control of free radical polymerization through the control of
instantancous properties. Analytical expressions were derived for molecular weight control based on initiator,
monomer, modifier, and chain stopper policies.

The method that will be advocated in the work that follows will be a generalization ¢Z the univariate
ideas of Hamiclec et al. (1987) and Beste and Hall (1966) to the multivariable case. Generally stated, SBR
semi-batch open-loop policies will be obtained from the solution of

P _p 0 (9.4)
d_t = (x,u,0) = .
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where p is a vector of instantaneous copolymer propertics and/or conditions 1o be kept uniform during the
semi-batch run. The solution for the open-loop control actions u(f) can be observed in (9.4) to only require
the solution of a nonlinear system of equations rather than the solution of a general optimization problem, and
therefore has the potential for on-line use in an open-loop/ffecdback control strategy. By defining different
copolymer properties in p, a vast range of SBR operating policies are possible for meeting o wide range of
SBR property specifications. This indirect procedure for arriving at optisnal policies is chosen over a more
general classical approach such as (9.1) because maintaining control over instantancous conditions would be
expected to be far more meaningful to a polymer reaction engineer even though (9.4) can always be cxpresscd
in the form of (9.1) to (9.3). Ancther advantage when working with condition (9.4), as will be discussed in
chapter 10, is that a trivial modification can be made 10 (9.4) 1o allow for the application of feedback control
actions to compensate for state initialization errors, disturbances, and mode! mismatch.

The sections to follow will present different SBR open-loop operating policies that can be obtained
through different choices for p. Policies that have alrcady propascd (Hamiclec et al., 1987; Beste and Hall,
1966) are generalized, and some new ones are also proposed. The implication of using the different palicics
in an on-line recomputation strategy is also addressed. The open-loop control of copolymer properties and
conditions such ascomposition, conversion, molecular weight, crosslinking and branching, and time optimality
shall be considered. Trade-off type policies are also presented.  Simulated results from some of the policics
proposed shall be presented.
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9.2 SEMI-BATCH REACTOR CONFIGURATION

The work that follows shall focus on developing policies for the simplified semi-batch reactor

configuration shown in Figure 9.1,

MGDIFIER

STYRENE
(IMPURITY)

BUTADIENE
(IMPURITY)

STEAM

WATER
BLEED
STYRENE PARTICLE MODIFIER
BUTADIENE SIZE

FIGURE %.1: SEMI-BATCH SBR REACTOR CONFIGURATION FOR CONTROL

The reactor will be initially seeded with SBR copolymer. The reactor will be operated isothermally, with
temperature control provided by the water coolant temperature through the reactor jacket, For the purpose of
copolymer property control, the feed rates of styrene, butadiene, and modifier shall be considered. The
remaining components of the copolymer recipe is initially charged to the reactor. The control over final
particle size and percent solids is addressed through the specification of the number of seed particles and the
volume of water to be charged respectively. Unless stated otherwise, the open-loop simulations to follow

shall be carried out with the following common initial and operating conditions:
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Common Initial Reactor Conditions

P, 032 gmol

Py 1.81 gmol

N, 2.5c10" 1
V2 4,72x107  gmol
V,0, 213 gmol
V.0, 9595.6 gmol
V,QBn 1.766x10™*  gmol
V,0s8n, 9.578x10* gmol
v, 4 1

E 0.122 gmol

I 0.03 gmol

Im, 0

Im, 0

Common Operating Conditions

T 55 C
v, 10 1
F, 0

Fy, 0

Fy 0

Fi, 0

Fi 0

Although the control strategies to follow shall pertain to the contro! configuration shown in Figure 9.1,
the theory will easily extend to tite more general case of nonisothermal operation and additional reactor feeds.
Practical considerations would demand a water and emulsifier feed in a pre-emulsification stage with the
monomess and CTA so that effective mixing is obtained. This detail, which is of no consequence as far as

the control theory is concemed, has been left out to simplify the presentation of the important contributory
results that follow.

9.3 COPOLYMER COMPOSITION

An important property of a copolymer is its composition (see section 7.3). For ¢xample, copolymer
composition can have an important influence in end use propertics such as suength, flexibility, and glass
transitiontemperature, A wide rangeof SBR latex properties may be obtzined through dif ferent SBR copolymer

composition specifications. The optimal SBR copolymer composition can change significantly depending on
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its end use. For instance, SBR used for making pressure sensitive adhesives might contain approximately
25% by weight styrene while SBR used in the manufacture of coatings might contain 60% (1:1 mole ratio)
styrene. |

In general, the objective for the open-loop policy is to maintain conditions such that a constant
composition copolymer is made throughout the batch/semi-batch run, The work that follows will present
three different open-loop strategies for copolymer composition control, All three strategies will achieve the
desired copolymer composition through manipulation of the monomer feed rate(s), The use of a temperature
trajectory for composition contro! (Ray and Gall, 1969) is not considered in this work since tzmperatore does

not have a significant effect on SBR copolymer composition (Miller, 1968; Tate and Bethea; 1985).

9.3.1 Copolymer Composition: Policy 0

To establish the necessary operating conditions for the production of copolymer with constant
composition, the instantancous copolymer composition with respect to styrene, given by

RP'VP

LT RT R, -

must remain constant with time. Hence, the first policy that we will be concemed with pertainstop =F,. If

onc inserts the expressions for RV, and R, V,, given by

RV = dM] —2—= 9.6
- o nNV, 9
RV, = b[114,,1‘,—7\,-‘:-- (9.7
into (9.5) one obtains
D,[M],
F, = (9.8)

' D), + D],
where @, and &, are given by (7.6) and (7.7) respectively. Equation (9.8) shows that instantancous copolymer

compasition is only a function of states M,, M,, P,. P,, V.., and T for the general copolymer case. Taking the
derivative of F, with respect to time, and application of the chain rule leads to

dF, _ F,aM,  F,dMy, F,dp, AP, AV, A
& T M, & T, a T wa Twa "W & wa OV

The desired condition is given by
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i 0 (9.10)
Substituting
am,
- = Fu, - RY, (9.11)
and
dM,
7l Fy, — RLY, (%.12)

into (9.9) and setting (9.9) to 0 gives the desired result

oF, Pl oF, oF, JF ar dr
= - L(Fy = RV.) 4t '
Fu, = Rals (BMJ [un <M J*ap RP‘V’+3P RoVotay Fvt5rar| O3

Therefore, to produce copolymer with constant compositicn F (¢ = 0), Fy, is specified, and £, is computed

through (9.13). This general composition control policy is referred to as Policy O in this work,
An alternative appreach may be taken to achieve the same objective as above by imposing conditions
on the ratio of monomers in the polymer particles. Hamiclec et al. (1985) have shown that (9.8) can also be

expressed as

) r-D2 + f,
b= CFnan s Zi-ry v n ©-14)

where r, and r, are the respective reactivity ratios for styrene and butadiene, and £, the mole fraction of

styrene in the particle monomer phase is given by

(M)

Tt
CAREETAS (9.15)

fo =

Assuming isothermal conditions, or that r, and 7, are temperature independent {good assumption with SBR),

equations (9.14) and (9.15) show that ¢n equivalent condition for constant copolymier composition is that £,
or equivalently, the ratio of [M,]P o [M,,]P remain constant. Hence, an equivalent condition for the production

of copolymer with constant composition can be obtained by maintaining constant p =([M.] )([M,] ). The

dfiM),)
E‘{[M’JPJ = 0 (9.16)

condition to be satisfied is given by

where
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M,
M), = yx T VK, + 7 ©.17)

g 3

M,

AR Vikoy + VKoy +

9.18)

Inserting (9.17) and (9.18) into (9.16), and application of the chain rule to obtain the required monomer feed

conditions leads to

M, ALY
Fu = RV, + [EC - [EJEF&]

S CATA . LA & %
(G~ (@ - 20+ [@)@nn S+ $0)) o

where

VKiy + ViKp + V,
VKo + VK, + V,

(9.20)
Application of (9.19) to obtain Fy, with Fy, specified (or vice versa) will maintain (M, /[M,], constant at

(M,],/IM,] ), _, and therefore maintain the necessary condition for constant copolymer composition.

From the point of view of an off-ling policy computation, it makes no differencc whether F, or F, is

obtained from (9.13) or (9.20). However, if the composition control policy is to be applied on-line with state
estimation being carried out as discussed in chapier 8, a serious difference may arise. Thisis due todifferences
in obscrvability of the instantaneous property being controlled. Provided that Ry, = x''®,[M,] &N,V /N, is
used in the state estimator (refer to section 8.6.2) and in the monomer flow rate computations, the estimator
should converge to the correct F, in the presence of initialization errors, model misinatch, and disturbances.
This is duc to the M, and M, measurements that provide sufficient information to observe RP;VP and R,,V,.
This condition does not hold for [M] /[M,] , because both [M,] ) and [M,]  are not observable. If errors are
present in the modelled predictions [M,]p and [M,] , the estimator wili fictitiously compensate for this by
adjusting # and x™* in order to match the observed R,,V, and R,;V,. The consequence of an error in the
prediction of the monomer concentrations in the particle would be a bias in the monomer feed rate computation

from its correct vatue that can only be corrected though the application of feedback control. Hence (9.13)

would be the preferred condition to apply since the computed monomer feed rate when operating on-line at
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nonideal conditions will at least provide a correct monomer feed rate to maintain copolymer composition at
the estimated level. Procedures for correcting the open-loop monomer flow rates once error are encountered
on-line shall be discussed in chapter 10,

Figure 9.2 shows the results from a policy O simulation. The reactor was initially charged with
M, =0228 pmol,M,=09 gmol,andCTA =8 gmol.The fced rate of styrenc and CTA was fixed at 0,018
gmol/min and 0 gmel/minrespectively. Whenthe maximum amount of styrene that can be added, as determined
by the seactor volume constraint, was reached Fy was set to 0, In Figure 9.2(b) the cumulative copolymer
composition (seeds not included) can be observed to be constant at all time. The required flow rate for £,
to maintain constant copolymer composition is shown in Figure 9.2(d). The effect that the policy has on other
properties {seeds not included) such as conversion (9.2(a)), % solids (9.2(c)), cumulalive weight average
molecular weight (9.2{¢)), camulative number average molecular weight (9.2(f)), cumulative polydispersity

(9.2(g)), and cumulative degree of branching and crosslinking (9.2(h}) is also shown,
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9.3.2 Copolymer Composition Control: Policy I

Broadhead (1984) and Broadhead et al. (1985) proposed a composition control policy whereby all the
slower reacting monomer (styrene) is charged to the reactor at the start along with some of the faster reacting
monomer (butadiene) in the correct ratio needed to obtain the desired F, at t=0. The feed rate of butadiene is
determined so that (M,] /[M,]_,and hence copolymer composition is fixed with time. This method of copolymer
composition control was referred to as Policy I. Policy I is just a special case of Policy 0 with Fy, settozero,
and therefore (9,13} or (9.19) may be used to cbtain Fy, when applying Policy I. In the work of Broadhead
(1984} and Broadhead et ai. (1985) a simplifying assumption was made that the amount of monomer in the
water phase is negligible and no monomer droplet phase exists. These assamptions were found to introduce
some ¢rror in the computation of F, and therefore the use of (9.13) or (9.19) where these simplifying
assumptions are not made is recommended.

Figure 9.3 shows a simulated application of Policy I. In the simulation, 12.5 gmol of styrene and 47.5
gmol of butadiene were added to obtain the desired initial monomer ratio, All the CTA (0.115 gmol) was
charged initially. The fixed instanianeous (and cumulative) copolymer composition is shown in Figure 9.3(b)
and the required butadienc flow rate is shown in Figure 9.3(d). Information on other properties and conditions
are also provided. Relative to Figure 9.2, very different copolymer properties are obtained.

Although Policy lis useful as far as copolymer composition control is concerned, it posses some inherent
problems as far as reactor operation is concerned. The first problem is that a large quantity of monomer is
initially charged to the reactor. If error is made concerning the reactor operating conditions the potential exists
for producing a significant quantity of off specification polymer before an appropriate corrective action can
be taken. If the error is scrious enough, the batch may have to be terminated and necessitate a costly waste
of raw materials or recovery procedures. The second problem with the policy is that the initial high level of
monomer concentration would require a high heat removal rate that might not be possible to maintain and
lead to a reactor runaway. Finally, by charging a large quantity of monomer at the beginning, the reactor
operating conditions will more closely resemble true batch conditions where conditions within the reactor
can change significantly with time. The consequence of this is important when one would like to indirectly
influence other copolymer properties while making constant composition copolymer. Although there are

problems with applying Policy I through the semi-batch run, it is still very useful when applied as a finishing
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off stage after the application of a different composition control policy once the maximum amount of the
slower reacting monomer as been added because of the reactor volume constraint, This procedure was taken

in the example shown in Figure 9.2 where Policy 0 was initially applied.
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9.3.3 Copolymer Composition Control: Policy II

In section 9.3.1 it was shown that the condition for producing copolymer with constant composition
can be satisfied indirectly by maintaining fixed (M, /IM,] ’ with time. One way of ensuring this is to specify
that both [M,]  and (M,] » Femain constant with time, From the point of view of instantaneous property control
this would correspond to the selection of pJ = ([M) p[My],). Broadhead (1984) and Broadhead et al. (1985)
proposed a solution for the necessary monomer feed rates o maintain constant (M,], and [M,] . The policy
that was derived was referred to as Policy II. In their work, the assumption was made that the amount of
monomer in the water phase is negligible and that no monomer droplet phase exists. The results to follow
will relax these assumptions,

The necessary conditions that must be maintained when applying policy I are given by

dim),
p = ( (9.21)
and
CIZAR
Qi = { 9.22)

where expressions for [M,], and [M,], are given by (9.17) and (9.18) respectively. Substituting (9.17) and

(9.18) into {9.21) and (9.22) respectively and solving for Fy and F, leads to

F, = R.V +[ 11.3% (4 8 11, 2% )}y 3% 3
, = RV, o, + "3M, ‘Eid—, o, + béE 3M,

[(M';_;J[ %t Mo, gM J M.,B, ‘M.B,] (9.23)

oo, o0,
FM. = prvp - l: '.éﬁd_b] [(at+ :a J(F. -R V)+MJBJ] (9'2’1)
with

do, oo, oo,
B, = a—P,R“'VP + }:Rﬁvp + a_V,,FV" (9.25)

oo, day, dory
Bb = .a?RNVF + anRPbVP + ava. (5.26)

1

o = 9.2n
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1
% = Ve + VK, TV, (9.28)

The advantage of Policy II over Policy I and 0 is that the former maintains a steady state condition
within the polymer particle with respect to monomer and polymer concentration. By maintaining this quasi
steady state condition it is possible that other properties other than copolymer composition may also be kept
constant, as shall be shown in section 9.5. Another advantage of policy I is that by feeding in both monomers
heat transfer limitations can be met by placing an upper bound on [M] p~ Finally by introducing less raw
material into reactor to start, we are less susceptible to producing a high percentage of off specification polymer
during the initial period of operation when sufficient measurement information to apply feedback action is
not available.

Although Policy Il is a very useful approach to copolymer composition control, the disadvantage with
it is that the instantaneous properties to be controiled, [M,), and [M,],, are not observable from the
measurements, as has been discussed in section 9.3.1. The consequence of this may be a bias in the observed
copolymer composition from one might expect for the estimated (M}, and [M,] . As stated before,
accommodation with have to be made to the feedforward open-loop monomer flow rates through application
of feedback control on the observable F, estimate.

Figure 9.4 shows a simulated application of Policy II. The reactor was initially charged with
M,=0114 gmol, M,=045 gmol, and CTA=0.003 gmol. Fipurc 9.4(b) shows that both the
instantaneous and cumulative composition is maintained at about 15%. The feed rates of F u, and Fy, are
shown in Figure 9.4(d). Itcan be observed that both feeds are approximately constant when Policy [! is applied.
When the maximum amount of styrene was fed, as determined by the reactor volume constraint, Policy IT was

terminated, and the reactor operation was finished off with Policy L.
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9.4 CONVERSION CONTROL: POLICY X

In sec ion 9.3.3 it was stated that the advantage of Policy II compared to Policy I was that some steady
statc operaring condition was maintained at all time within the polymer particle. By maintaining sume fixed
conditica indirect control over other copolymer properties might be achieved. An alternative to maintaining
fixed monomer concentration within the particle would be to chose p; =X, where X, the over conversion level
in the reactor, is given by

X B+ B 9,29
T M, + M, + P, + P, (929)

A big advantage when using X as opposed to policies based on maintaining fixed monomer concentration

conditions within the polymer particles is that X is observable when the state estimator is applied on-line
(provided that R .V, = x"*[M,] ®,iN,V,/N,is used in the estimator). Therefore the progress of a policy based
on X ¢an be monitored on-line and errors due deviations from ideal conditions may be compensated for.

The required condition to be satisfied to maintain overall conversion at X (¢ =0) is given by

aX

& = 0 (9.30)
Ttis trivial to show that (9.30) will be satisfied when
Fy = 2 % g, (©9.31)

This expression shows that X may be controlled using either one or both monomer feed rates. Alternatively,

reactor temperature may be used if the monomer flow rates are used for the control of other properties or
conditions. The temperature trajectory isdetermined so that (9.31) is satisfied atall time. The usc of temperature
to control conversion would be expected to be less effective than using monomer flow rate since perfect
temperature control along some trajectory can only be approximated in practice. In some copoiymer systems
initiutor feed rate might be considered for maintaining condition (5.31). However, since seeded SBR follows
case II emulsion polymerization kinetics, the level of initiator in the reactor theoretically has no cffect on

conversion unless high impurity levels exist or a strong gel effect is encountered.

A useful policy for the production of copolymer would be obtained through p™ = (F,, X), where (9.13)

and (9.31) are used to obtin Fy, and F. In this work, the policy is referred to as Policy X. A simulated
application of Policy X is shown in Figure 9.5. The reactor was initially charged with 0.114 gmol #,, 0.45
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gmol M,, and 0.003 gmol CTA. In Figure 9.5(b) overall conversion (sceds included) can be observed to be
maintained just below 80%, while Figure 9.5(c) shows the fixed cumulative and instantancous composition
at 15 mole percent styrene. The required feed rates for Fy, and £, arc shown in Figure 9.5(c).

At first glance it would appear that Policy X might be equivalent to Policy 11 under conditions where
V.. =0. If we assume absence of the monomer droplet phase and apply Policy 11 it can be shown that

ViKnp t V)M, + (VK + V)M,
VKot V) [M,]Po + (VKppt+V,) [Mdh + [Pl,Y, (9.32)

where
[P],,o = P, + P, (9.33)

In (9.32) [M’]p.,' iM,,]m. and [P] », 1€ constant due to the conditions required for the application of policy 11.

A close examination of (9.32) will show that the application of Policy II will lead to constant X only when
both K, and X;,,, are equal to zero (both monomers completely water insoluble). In many cmulsion systems,
and particularly with SBR, VX, and V K, will usually be small relative to V. Therefore the application
of Policy X should closely approximate the conditions for Policy II. Note that the approximation error will
be largest at t=0 where ¥, has its lowest value. The importance of this result is that, unlike Policy 1i, the
conditons that must be maintained constant can be observed on-line with the state estimator. Therefore there

are practical advantages for approximating Policy II with Policy X.
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9.5 CONTROL OF BRANCHING AND CROSSLINKING

The degree of branching and crosslinking affects important copolymer properties such as, modulus,

clongation, and swell. An industrial relevant (Taylor, 1988) specification for the degree of branching and

crosslinking would be given by the number of branches and crosslinks per reacted monomer units or carbons.

Hence, in this work, the cumulative degree of branching is defined as

— 4
B = QoBn - Total Branches . 934
V.0, Total Reacted Monomer Units
and the cumulative degree of crosslinking as
¥ = V,QuBn, _ Total Crosslinks (9.35)
L7 V@ Total Reacted Monomer Units )
Similarly, instantancous degree of branching can be defined as
d(V,QoBry)idr
Br — = 9.36
d(V,Q,\ydt 9.36)
and the instantancous degree of crosslinking as
d(V,QoBn)dt
X, = —d(V, oid (9.3D)

The production of copolymer with a specified degree of branching or crosslinking can be obtained by

maintaining conditions for fixed Br or X;. Therefore, the objective is to establish the necessary conditions

for maintaining fixed instantancous branching (Br) and crosslinking (X,).

If ong inserts the expressions for d(V,QoBn.)/dt, d(V,Q,Bn)dt, and d(V,Q,)/d: (refer to section 7.8)

into (9.36) and (9.37) onc obtains

)
Br = o,
_Ga
%= o,

(9.38)

(9.39

where the expressions for C, and C,” are given by (7.46) and (7.48) respectively. If the assumption is made

that an isothermal composition conirol policy will be applied and that the cumulative copelymer composition
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of the seeds is at the desired instantaneous level it can be shown that both ¢, and ¢," remain fixed with time.
Therefore, a policy that maintains a fixed degree of branching and crosslinking is one where Q,/[#],, is fixed
with time. Given that

P, + P
Q = % = (P, (9.40)

4

the necessary condition to maintain fixed 0,/[M],, is that [M], remain constant. Since copolymer composition

control isbeing applied (M) and [M,], will also have to be constant, and therefore, according to the discussion
in section 9.3.3, indicates that the control of branching and crosslinking together with copolymer composition
is achieved (hrough the application of Policy II.

A simulated application of copolymer Policy II followed by Policy I was previously shown in Figure
9.4. Figure 9.4(i) shows Br and X, with time, As expected, during the phase where Policy 11 was applied,
constant Br and X, can be observed. A drift in the degree of branching and crosslinking can be observed
when Policy 1I is terminated and replaced with Policy I as a result of the reactor volume constraint. 1f the
subsequent drift in the degree of branching and crosslinking cannot be tolerated, the reaction must terminated
when Policy IT can no longer be applied. Such action may nccessitate a subsequent monomer stripping
procedure to eliminate residual monomer.

Insection 9.4 it was suggested that Policy II be approximated by Policy X due to the advantage offered
by the latter approach when applied on-line. Although Policy X, in general, does nol maintain constant [M,]
and {M,], with time, these conditions should be clesely approximated, and thercfore some control over
branching and crosslinking should be exercised. The results from a simulated application of Policy X has
already been shown in Figure 9.5. Figure 9.5(j) shows the cumulative degree of branching and crosslinking
with time. During the period where Policy X was applied only a very a slight drift in Br and X, can be
observed, showing that the Policy X approximation does not introduce serious crror.

If the previously assumed conditions are not valid, it can be shown that the general ceadition to be

satisfied for constant crosslinking (fixed (9.39)) will be provided by

oX oX, oX oX oX aX, \dI
o = e (G (G o (B (i (] 0

Condition (9.41) may be satisfied through the use of monomer flow rate or alternatively, through a reactor
temperature trajectory. The application of (9.41) will require that the cumulative butadiene copolymer

composition in the seeds not be equal to zero (styrene seeds not permitted) since in this situation at t=0 it

236



impossible to form any crosslinks. It styrene seeds are to be used, condition (9.41) should only be applied
once the cumulative degree crosslinking has reached its desired level. The same procedure used above can

also be applied for controlling the degree of branching.

9.6 TIME OPTIMAL SEMI-BATCH POLICY

Sometimes the production of copolymer in the minimum amount of time would be the economical
choice. Intuitively, a time optimal policy would be one where the monomer concentration in the polymer
particles is set to its maximum and the temperature of the reactor is set to its highest acceptable level. This
would provide the necessary condition for the highest rate of polymerization. In other polymer systems, the
level of initiator in the reactor might also be considered to obtain time optimality, However, in a seeded SBR
latex polymerization, initiator theoretically has no effect on the rate of polymerization under ideal operating
conditions. Bascd on the discussion above, an operating policy such as Policy I or Policy 0 with particles
maintained at maximum swelling, will provide the necessary conditions for time optimality since the amount
of monomer in the reactor will always be at a maximum. Unfortunately, the high rate of reaction obtained
when applying such a policies will demand high heat removal rates that may not be provided by the reactor
cooling system. Therefore, unless the maximum possible monomer concentration within the particles can be
maintained without reactor runaway, a time optimal policy will be one where the reactor is operated at its
maximum cooling capacity.

By carrying out a heat balance on the reactor at some steady operating condition, the condition for time
optimal copolymer production subject 1o the heat wansfer constraint can be determined, The time optimal
conditior is given by
Fulp+FuCpy+Fy d.Cp)(T,,-T,) =

R CAHLY, + Ru(-AHL)V, - UAT,.-T ) - O (9.42)

where T; ., is the lowest possible temperature for the coolant fed to the reactor. At isothermal conditions,

time optimality may be maintained through the monomer flow rates according to (9.42) (p,=T). Since two
monomer flow rates are available, a copolymer property such as composition (9.13) may also be combined
with the time optimal policy. Altemnatively, if both F,, and F, are needed to controi other properties or

conditions, reactor set point (T,,) may be used. The maximum reactor operating set point is determined so
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that (9.42) is satisfied. In practice, the use of reactor set point will only provide an approximate solution since
perfect reactor temperature is not possible, especially when working with large reactors having large volume
to heat transfer surface ratios. The use of a temperature time optimal policy would be useful to apply during

a Policy I finishing off stage where the polymerization ratc can be very low due to the high level of conversion.

9.7 MOLECULAR WEIGHT PROPERTY CONTROL

Molecular weight and molecular weight distribution affects important end-use copolymer propertics
such as viscosity, elasticity, strength, tack, toughness, and solvent resistance for example. In this section we
consider policies for controlling both a single and a trade-off betwcen different molecular weight propertics.
The optimal molecular weight property or propertics (o be controlled will depend on the SBR end-use, and

should be determined from experience or through laboratory studies,

9.7.1 Control Of A Single Molecular Weight Property

In some situations it may be sufficient to obtain the desired molecular weight properties through the
control of one molecular weight property. Comman molecular weight propertics that one may be interested

in controlling are listed below:

Number Average Molecular Weight

= Q
My, = (MW‘F, + M,,,f,,) 5‘2 (9.43)

Weight Average Molccular Weight

My, = (MyF, + MyF) g—f (9.44)
Polydispersity
M
P = —= (9.45)

Other possibilities such as viscosity average molecular weight, or higher moment molecular weight averages

might also be considered. To provide control at all times over any one of the above cumulative molecular
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weight propertics, it is necessary to maintain operating conditions whereby their respective instantancous
molecular weight property is constant at all times. The instantancous molecular weight properties
carresponding to the cumulative ones above are listed below:

Instantaneous Number Average Molecular Weight
My, = (FMy, + FMy) »p, (9.46)
Instantancous Weight Average Molecular Weight
My, = (FMy, + FMy) r, (947)
Instantaneous Polydispersity

p = 948)

where

ClCTAl, Cwllm), — Cro
= |ZLZ e L - 9.49
& [ [M]p ¥ CM ¥ [M]P [ ”P ( )

co CICTA] ce, c'p
» =3 ) » <l » %3
_ Z(”un,)(” o, +C"'+IH1,+[HI,,)

. 9.50
ClCTAl, C cg  Cuwmlm, (3.50)
i, T Cnt g o,

Tw

In (9.49} and (9.50), ry and ry refer to the number and weight average copolymer chain lengths respectively.

Suppose one were interested in maintaining control over weight average molccular weight. Such a
policy would be uscful if one were interested in producing a copolymer with alow ge! content. The assumption
shall be madc that a copolymer composition control policy will be applied. The necessary conditions for
constant My, will be provided by choosing p; = ry, and requires at all time that

-dg =0 (9.51)
The molecular weight properties of SBR are strongly influenced by radical chain transfer to modifier. Hence
a suitable manipulated input for controlling molecular weight properties would be the feed rate of CTA given
by Fera. The optimal Fgp, trajectory for ry control can be obtained by inserting (9.50) into (9.51),
differentiating, and applying the chain rule. The optimum F, is given by

ory 1!

FCTA = RCTAVp - [ﬁ) l'w (9.52)
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My (o _ ory ary arw
Ty = a_AZ(F”' Rp-vp)"‘a_m(FH —RP*VP)+B_R'.RPIVP+B_P;R75VP+
ory dim, dry ory dV,0, Ory dV,Q, drydl
S, @ vy w0 d Tv,a a tora O
_ A
Re¥y = keralCTAL, =5 (9.54)

Alternatively, one may attempt to follow a temperature trajectory such that ry remains constant. A big

advantage of F, over temperature or monomer flow rate to control ry is that the control of molecular weight
properties with flow rate of modifier is completely decoupled from the other propertics or conditions that have
been considered. ‘This feature can lead to simplification when feedback control is to be applicd.

Figure 9.4 showed a simulated application of Policy II followed by Policy 1. In the run shown r,, was

also controlled using Fer,. In Figure 9.4(f) constant cumulative weight average molecular weight can be
observed. The computed CTA feed rate is shown in Figure 9.4(¢). The effect of this policy on pand M_w" can
be seen in Figures 9.4(h) and 9.4(g) respectively. As the computed £, and £, shown in Figure 9.4(d}, the
flow for Fz, is almost constant with time during the application of Policy I1. This implics that of one does
not plan to apply feedback control the monomer feeds and modificr may be premixed in the appropriate flow
rate ratios. An r,, control policy was also used in the simulation previously shown in Figure 9.5 with Policy
X (7= (X, Fpuri) w7 = (Fy . Fry,s F ) followed by Policy 1 (p7 = (F, r)o u" = (Foy. Fera)). Since the same
initial conditions existin both Figures 9.4 and 9.5, 2lmost identical molecular weight propertics can be obscerved.

Instead of controlling weight average molecular one may choosc o control the number average
molecular weight. This choice would be appropriate if one were producing a highly gelled SBR copolymer
such as used for coating applications, where theoretically, ry is infinite. Again, assuming a constant
composition control policy will be applied and Fer, will be used for control, it can be shown that the necessary

condition to maintain

dno_ g (9.55)
dar )
is given by
or, Y
Fagrn = RV, - (BC;A) Ty (9.56)
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ar,, - arﬁ S arN arN
Iy = pY ,,'(J u, vap)+"a'—' : ,,b@ H, prvp)+a—R'RpVP+'§'EprVp+
ory dim, ory . Ory dV,Q1+6r,,.¢ﬁ“ ©57)

Slm, di Vy WOV,0 df T dr
As was the case with ry,, following a temperature trajectory may also be possible for controlling ry.
Figure 9.6 shows the application of Policy II followed by policy I with r, control, The initial condition

for this simulation is the same as for the simulation shown in Figure 9.4 where r,, control was applied instead
of ry. Comparing Figures 9.4 and 9.6, it can be observed that very different molecular weight properties are
obtained. The constant cumulative number average molecular weight can be observed in Figure 9.6(g), and
the required F7, is shown in Figure 6(¢). Figure 9.6(f) shows that this Policy Ieads 1o infinite weight average
molecular weight, and therefore indicates the production of a gelled copolymer. As with the Policy Il/ry, case,
this policy requires almost constant monomer and modificr feed rate. If no feedback control is expected, the
feeds may be premixed in the correct ratios,

Polydispersity is influenced by the molecular weight distribution of the polymer chains and may have
important implications on the end-use properties of SBR. It is known that the ease of processing of SBR is
affected by its polydispersity. The polydispersity of SBR is very important when used to make pressure
scnsitive adhesives. In this case it is important to find the correct balance between the high molecular weight
chains which provide long term strength and the short molecular chains that are needed for quick stick.
Therefore, if one would like to control the molecular weight distribution and also produce a low gel copolymer
(p is infinite at gel point) a constant instantaneous polydispersity policy may be of use. Taking the same
assumptions as above, the necessary condition for controlling instantaneous polydispersity can be obtained

from (9.51) to (9.54) with p replacing r,, everywhere it appears.
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9.7.2 Trade-Off Molecular Weight Policies

In some situations it wouid not be adequate to control only one molecular weight property us was shown
in section 9.7.1. Sometimes one would prefer a trade-off between different molecular weight propertics that
one would ideally like to obtain, A trade-off is usual necessary since molecular weight properties, in general,
are not independent. For example, suppose that one would like to manufacture SBR with a specific My, ond
p. Knowing that it may not be possible to meet both specifications, one may wish to find an optimal wrade-off

between properties. Suppose that an optimal trade-off is to be determined through
Jow = Wiltw,u—r W+ Wilp,,—pY (9.58)
where W, and W, are weighting parameters, and ry,,,, and p,,, are the desired ry and p respectively. The

assumption will be made that a constant composition control policy will be applied. As discussed in the
previous section, a useful input trajectory for minimizing (9.58) would be Fer,. If one inserts expressions
for ry (9.50) and p (9.48) into (9.58), it can be shown that J,y is a function of [CTA],. Therefore, the

minimization of (9.58) at all time during operation will require that the concentration of modifier in the polymer

particles at all time satisfy
Ay
il LA .
sicra, - O (9.59)
where
Oliw n dary 3p (
a[C?.A]P = _Lwl(rw,ul - rw) a[CTA]P 2Wz(p",| - p) a[CFA]P ()_60)
- (9.61)
ACTA}, ~ rydlCTAl,  rZOCTA], -
ory C,
= 9.62
o(CTA), M, ri (9.62)
C.l C,
a’w ;-E]jrw Er‘w
a[CTA]P = [1 + ClCTA), +C +% +E;'&) - FCFA]' +C +£_;_Q_I . C‘.'Uu’]’) (9.63)
(], m M, M, i, - i, - _[HI,

Condition (9.59) is used to compute the optimal {CTA], att=0. Once {CTA], att=0is determined, the required

initial CTA charge can be computed. For t>0 the condition for optimality (9.59) must be maintained and will
require that
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Hence, the fixed instantancous pseudo property to be held constant in this cxample would be p; = 8J,,/8(CTA] ,,

the gradient of the objective with respect to the concentration of chain transfer agent in the particle. By
inserting the expression for p; = 8/,,/0{CTA],, into (9.64), one obtains required trajectory for Fer, to maintain
constant 8/,,/d[CTA),. The result is in the form of (9.51) to (9.54) but with /,,/d(CTA], replacing ry
wherever it appears,

Other policies like the one above can be developed for trading-off molecular weight properties such as
ryand p, or ry and ry. As an alternative to CTA, one may also choose to use temperature.

A a trade-off policy like (9.58) might be very useful during a finishing off stage where Policy I may
be applied. The combined ry, Policy Il approach in Figure 9.4 did notlead to very large change in polydispersity
with time, However, when Policy II was stopped and replaced by Policy 1, a very large drift in p can be seen.
In this sitvation it may be worthwhile to swiich from a ry, policy to a trade-off one to prevent excessive changes

in the different molecular properties.

9.8 TRADE-OFF POLICIES IN GENERAL

The ideal of trading-oif different instantaneous copolymer properties or conditions, as was demonstrated
in section (9.7.2) for molecular weight properties, may be extended to the general case. Let p, represent a
vecior of instantaneous properties or operating conditions that are to be traded-off in some objective functior:
J(p,). The instantancous property vector p, may be effected by a different set of instantancous operating
conditions c,. The first derivative of ¢, with respect to time can be controlled through manipulated inputs u,.

The optimal trade-off condition is given by

_ 9J(@de)

b peauds P c,

=0 [ t=0 (9'65)

dppuuda
= 0] >0 (9.66)
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where p,,,.., is gradient of the objective with respect to controtlable operating conditions ¢,, One can view

Praunas 35 @ Pseudo instantaneous property vector that must be equal to zero all times. At t=0 (9.65) is solved

for ¢,(t = 0) to establish starting optimal conditions. At (>0 u, is determined so that condition (9.66) is satisfied
at all time,

9.9 IMPLICATION OF CONSTRAINTS

The policies that have been outlined in the previous section make no accommodation for operating
constraints on the manipulated inputs. When arriving at a suitable instantancous policy ii is expected that a
preliminary simulation will be carried out beforchand to detect if operating constraints will be violated, If
constraint violations are detected, several courses of action can be taken. First, one can simply recognize that
the operating conditions and copolymer specification are not attainable and determine through & simulation
study areasonable set of alternatives that will not violate the operating constraints, However, sucha procedure
may not be adequate, especially if the off specification copolymer cannot be sold. If the desirable copolymer
properties must be obtained in order to meet end-use specifications it may be preferable, if possible, to make
changes to the design of the reactor system, For example, if monomer flow rates arc determined (o be 100
high it may be much more economical to replace pumps and/or valves, change reactors, adjust the sced
specification, or reduce the batch size,

Another procedure that may prove effective for addressing operating constraints would be the
transformation of the constraint problem to an equivalent instantancous condition that must be satisfied during
operating. This procedure has already been demonstrated in section (9.6) where a time optima policy subject
to heat removal constraints was proposed. This same idea can be extended to other types of operating
constraints.

Finally, if all of the above suggestions prove to be inadequate, a formal optimization problem such as
(9.1)t0(9.3) may have to be solved to provide a useful trajectory for u(f). The drawback with such an approach
is that the computational effort required may restrict it to only off-line use. When applying such a procedure
off-line one should always be on the look out for properties or conditions that are nearly constant using the
optimum input trajectory. This would allow the optimal sclution to be approximated by some equivalent

constant property policy which may be computed in some on-line control strategy. Note that it would be
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impossible to propose that a constrained optimization be solved at all time based on some cost function of the
instantancous propertics or conditions, The reason for this is that at time t the manipulated inputs only affect,

at best, the first derivative of the instantancous properties cr conditions.

9,10 RANGE OF COPOLYMER PROPERTY SPECIFICATIONS

Since many different operating policics have alrcady been described at this point, it would useful to
provide some indication of the range of SBR property specifications that onc might obtain by combining some
molecular weight control policy with some composition control policy. Consider combining a constant r,
control policy with Policy X followed by Policy I, as was shown in Figurc 9.5. The three tables shown below
provide information on the cffect of changing the initial level of conversion (X,), CTA charge, and iscthermal
operating temperature on the cumulative branching, crosslinking, and molecular weight properties. The time
required to reach the termination point of 98% conversion with about 55% solids has also been provided.
Additional information concerning the reactor operator conditions can be found in section (9.2). Inall of the
results below, copelymer compositior was specified at 15 mole percent styrene.

Table 9.1 shows the effect of changing the level of conversion during the application of Policy X. The
reactor was initially charged with 0.003 gmol of CTA and operated isothermally at 55° €. Itcan be observed
that conversion affects all of the properties shown. With the exception of number average molecular weight,
increascd conversion levels fed 1o increased property values. Increased conversion level also leads to a very

significant increasce in reaction ime.
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Table 9.1: POLICY X/ry,.

Effect Of Conversion On Copolymer Propertics

X, Bn, Bn, My, My, ? Time (min.)
60% 4,19x10° 2.27x10™ 4.84x10° 1.57x10* 30.8 159
70% 4.63x10°7 2.50x10™ 4.67x10° 1.54x10* 30.2 812
80% 5.77x10° 3.13x10™* 4.92x10° 1.32x10* 37 960
90% 9.77x107 5.30¢10* 6.53x10° 6.40x10° 101 1496

Table 9.2 shows the same information but with changes made to the initial charge of chain trnsfer
agent. All runs in Table 9.2 were carried out an 80% initial conversion. The results clearly indicate that the

CTA level affects molecular weight properties but not branching, crosslinking, or the reactor operation time.

Table 9.2: Policy X/ry
Effect Of CTA On Copolymer Properties

CTA,.o (gmol) Bn, Bn, My, My, p  Time (min.)
; 0.007 5.77x10°? 3.13x10™ 2.16x10° 1.92x10* 113 960
0.005 5.77x107 3.13x10™ 3.00x10° 1.72x10 174 960
0.003 5.77x10° 3.13x10° 4.92x10° 1.32x10* 37 960

Table 9.3 demonstrates the effect of reactor temperature operation on copolymer propertics. In all of

the runs shown, initial conversion was set to 80% and 0.003 gmol of chain transfer agent was present in the
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initial charge. Temperature can be observed to influence all of the variables shown. Increasing temperature
decreases branching. number average molecular weight, and reactor operation time, and increases

crosslinking, weight average molecular weight, 2nd polydispersity.

Table 9.3: Policy X/ry,

Effect Of Temperature On Copolymer Properties

T (C) Bn, Bn, My, My, p  Time (min)
50 7.19x10°* 2.79x10™* 4.18x10° 1.68x10* 249 1205
55 577x107? 3.13x10% 4.92x10° 1.32x10* 37.0 960
60 4,66x107* 3.50x10™* 5.81x10* 1.01x10* 57.8 778

To investigate the influence of the instantancous molecular weight control policy on the copolymer
propertics, a simulation was carried out with number average molecular weight control instead of weight
average. Table 9.4 shows the same information as was shown in Table 9.2 for this Policy X / ry run. As
vefore, different initial chain transfer charges will only infiuence molecular weight properties. Comparing
Tables 9.2 and 9.4, it can observed that the number average molecular weight policy can lead (o significantly

different molecular weight properties relative to the weight average control policy.

Table 9.4; Policy X/ry
Effect Of CTA On Copolymer Properties

CTA,., {(gmol) Bn, Bn, My, My, P Time (min.)
0.007 5.77x10° 3.13x10™ 1.57x10° 2.63x10* 5.96 960
0.005 5.77x10° 3.13x10™ 8.07x10° 3,88x10* 20.0 960
0.003 5.77x10° 3.13x107 o 7.23x10* oo 960
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9,11 SUMMARY

This chapter essential provides a catalog of different semi-batch operating policies for the manuflacture
of SBR latex. All of the policies discussed can generalized in the form

dp _
% = Paxwp = 0 (9.67)

where p is a vector of fixed instantaneous copolymer properties or reaction conditions 10 be held constant, x
is the vector of internal model states, « is the manipulated input tajectory to be determined. The solution for
u can be observed in (9.67) to only require the solution of a nonlincar sct of equations, and thercfore may be
applied in some on-line computation scheme, These policies would be very meaningful to a polymer reaction
engineer whose main concern would often be to operate the reactor so that consistent copolymer properties
are obtained at all time. A big advantage when applying these policies is the quasi-state established on some
conditions within the reactor. Intuitively, this should provide sorie simplification to the design of a feedbuck
controller if required. The open-loop polices based on (9.67) can always be shown to be optimat with respect
to some classical optimal contro! problem in the form of (9.1) to (9.3). The procedure used in this work to
obtain the optimal trajectory for u(r) would be recognized by optimization expects 1o be the most numerically
efficieni approach,

In this work several useful policies related to open-loop control of copolymer propertics and operating
conditions have been discussed. Instantaneous control policies that were previously proposed (Hamiclec ¢t
al,, 1987; Beste and Hall, 1966) have been extended, and new ones have been added. Open-loop policies
related to the control of copolymer propertics and operating conditions such as copolymer composition,
conversion, particle monomer concentration, branching and crosslinking, molecular weight, polydispersity,
and time optimality are proposed. In addition, a simple procedure for trading-off different instantancous
specifications was also shown. The policies proposed would be expected be very uscful for many different

industrial applications, and would allow a wide range SBR latex specifications to obizined for its different

end uses.
9.12 NOTATION
A; heat transfer area for reactor cooling jacket
Bn; i'th branch frequency per copolymer chain
Br instantaneous degree of branching
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cumulative degree of branching
nonlincar matrix expression defining operating constraints in trajectory optimization problem

ratio of organic impurity rate constant 1o pseudo copolymer propagation rate constant

ratio of pscudo copolymer rate constant for transfer to monomer to pseudo copolymer propagation
rate constant

ratic of pseudo copolymer rate constant for branch formation to pseudo copolymer propagation
rate constant

ratio of pscudo copolymer rate constant for crosslink formation over pscudo copolymer
propagation rate

heat capacity of i

ratio of pseudo copolymer chain transfer rate constant to pseudo copolymer propagation rate
constant

moles of unreacted chain transfer agent

density of i

integrated contribution to objective functional
moles of emulsifier

nonlinear matrix describing time rate of change of x

mole fraction of styrenc in monomer contained in polymer particle phase
instantancous butadienc copolymer composition

cumulative butadicne copolymer composition

feed rate of emulsifier

feed rate of organic phase reactive impurity
feed rate of water phase reactive impurity
feed rate of initiator

feced rate of butadiene

feed rate of styrene

instantancous styrene copolymer composition

cumulative styrene copolymer composition
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feed rate of water

end-point contribution in objective functional

moles unreacted organic phase reactive impurity

moles of unreacted water phase reactive impurity

moles of unreacted initiator

heat of polymerization for butadienc

heat of polymerization of styrene

objective functional in classical optimal control approach
trade-off cost function for instantancous moiecular weight property control
pseudo copolymer rate constant for chain transfer agent
ratio of concentration of i in phase j to phase k

moles of unreacted butadiene

moles of unreacted styrene

molecular weight of i

instantaneous number average molecular weight
instantancous weight average molecular weight
cumulative number average molecular weight
cumulative weight average molecular weight
Avogadro's number

number of polymer particles per unit volume of water

instantaneous copolymer property vector to be controlled

total amount of £, and P,

nonfinear matrix expression describing the time rate of change of p
moles of butadiene

moles of styrene

concentration of i'th moment
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X
X,

X,

Subscripts

b

m

butadiene copolymer reactivity ratio

styrene copolymer reactivity ratio

number average copolymer chain length

weight average copolymer chain length

rate of reaction of chain transfer agent

rate of butadiene polymerization

rate of styrene polymerization

time

stop time

temperature

temperature of reactor feed

lowest temperature for coolant feed to reactor jacket
reactor temperature sct point

manipulated input vector

overall heat transfer coefficient for reactor cooling jacket
volume of phase i

weighting parameters in optimization cost function
modelled diffecential state vector

overall monomer conversion

instantancous degree of crosslinking

cumulative degree of crosslinking

butadicne
monomer phase
polymer phase
styrene

water phase

253



Greek Letters

o, expression given by (5.28)

o, expression given by (9.27)

Bs expression given by (9.26)

B, expression given by (5.25)

Iy expression given by (9.57)

Ty expression given by (9.53)

L expression given by (9.20)

p instantaneous polydispersity

p cumulative polydispersity

@, pseudo copolymer copolymerization rate constant for butadicne
D, pseudo copolymer copolymerization rate constant for styrene
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10. FEEDBACK CONTROLLER DESIGN FOR SEMI-BATCH
COPOLYMER REACTORS

10.1 INTRODUCTION

Open-loop operating policies, such as described in chapter 9, provide useful operating trajectories for
optimally producing copolymer in some sense. Unfortunately, the optimal trajectorics that these procedures
provide are only valid when the assumed initial operating conditions are correct, no diswrbances enter the
process, and the dynamic model provides perfect prediction of the dynamic response of the actual process.
The implication of these assumptions is serious when producing copolymer latex. The existing models of
these processes have limited accuracy, and therefore one can expect that an optimal trjectory arrived at from
these models will contain some significant error, Furthermore, it is known (Huo ct al, 1988; Ahlberg and
Cheyne, 1976) that the dynamic response of these systems is highly sensitive to race levels of reactive
impurities that would be encountered in an industrial operation. Hence the operation of copolymer reactors
based solely on these off-line computed trajectories may nol be very economical since one will determine
only after the batch/semi-batch operation if the desired copolymer property specifications have been met. This
could lead to a costly waste of raw materials in spoiled batches that may not be possible to scll or have to be
sold at reduced profit. One would also expect the operating procedure described above Lo yield poor product
reproducibility if variations in the process operating conditions exist.

Examples of the application of feedback control to improve batch process operating conditions can be
found in the literature. Relative to continuously operating processes, the application of feedback control in
this circumstance has been studied to a far lesser extent. General review papers on the application of feedback
control to polymer reactors are provided by Amrehn (1977}, Juba and Harmer (1986), and Elicabe and Meira
(1988). Many examples of the application of feedback control for controlling batch reactor temperature can
be found (Kiparissides and Shah, 1983; Jutan and Uppal, 1984; Garcia, 1984; Juba and Hamer, 1986). The
application of linear quadratic state space control for controlling conversion and molecular weight in MMA
polymerization using temperature as a manipulated input was demonstrated by Ponnuswamy et al. (1987).

Kiparissides et al. (1987) used the same control problem to compare the performance of linear quadratic state
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space control with DMC and an extended STR control strategy. Inall of the literature cited above, the fecdback
control strategies described are used to control some variable(s) along some precomputed on-line trajectory.
The fecdback control is used to correct the off-line input action for disturbances and/or model mismatch.
Although the feedback controller will allow the process to closcly follow the precomputed off-line optimal
trajectory in these approaches, there is no guarantee that such a strategy will maintain optimality since
disturbances and model mismatch, in general, affect the optimal off-line trajectory to be followed. To maintain
optimal operating conditions, the optimal trajectory must be recomputed on-line making use of the available
measurements provided during operation. The computational effort required to do so may not be practical in
practice, Kravaris et al. (1989), rather than apply control along some precomputed cumulative property
trajectory, considcred the design of a feedback controller for t:¢ control of an instantaneous copuiymer
property. In their work the conirol of copolymer composition using temperature and monomer feed rate was
considered. A global input/output lincarizing wransformation was used in their application so that standard
linear feedback controller designs may be applied. The approach was demonstrated tomeet copolymer property
specifications in the presence of initialization errors, model mismatci:, ana disturbances, but required an
unrealistic a direct property measurcment for these features to be realized.

The purposc of this chapter is to propose a {xedback centrol strategy to correct for errors mad.e in the

a~sumed operating conditions for the instantancous open-loop control policies discussed in chapter 9. The

v

block dingram of the proposed siructure is ~hown in Figure 10.1.

ot FEEDBACK y
- PIOCESS -
CONTROLLER
OPEN-LOOP STATE
. =
CONTROLL_ER ESTIMATOR

K

Figure 10.1: Semi-Natch Feedforward/Feedback Control Block Diagram
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It consists of a nonlinear state estimator to infer instantancous copolymer propertics (g) to be controlled from

the available measurements (y™ = (M,, M,, D,,, CTA)). The state estimator in Figure 10.1 will be the reiterative
extended Kalman filter proposed in chapter 8. The open-loop controller represcnts some open-loop
instantaneous control policy discussed in chapter 9. This open-loop controller provides a feedlorward control
action u,, 10 maintain fixed g, as determined through £, and thus establishes near quasi-steady state conditions
on the instantaneous copolymer properties to be controlled. If the current value of g is not at the desired sct
point, a feedback correction must be added to the open-loop/leedforward input to climinate the deviation from
set point. This is the purpose of the feedback block in the contro! scheme of Figure 10,1, Several different
possibilities for the design of the feedback controller block shall be discussed, such as conventional PID
control, a decoupling global input/output linearizing transformation approach (Freund, 1973, 1975, 1982),
and model-based optimal feedback control. Simulation results will be presented for PID conwrol and the
approach based on the decoupling global input/output linearization. The robustness of the latter approach to
state initialization errors, model mismatch, and unaccountzd for disturbances is also examined.

This chapter is essentially the climax of all the chapters related to the semi-batch polymerization control
problem. For the first time, procedures related to dynamic polymer medelling, nonlincar state estimation,
open-loop operating policies, and feedback control are effectively tied iogether 10 arrive at an optimal, or
suboptimal, nonlinear inferential feedback controller that would be well-suited for application to
batch/semi-batchindustrial polymerization processes. The proposed scheme will offer a very simple alicrnative
to computationally intensive on-line optimization approaches that, in gencral, would not be practical w apply.
The economic advantage and improvement in reactor operation when applying the proposed strategy would
definitely be appreciated by polymer manufactures, where quality control and product reproducibility is a
main concern (Taylor, 1988). The results also demonstrate, from the point of view of rfuality control, the
advantage of using operating policies based on instantancous properties rather than cumulative ones where
time varying trajectory tracking provided by some off-line solution is often required. As will be demonstrated,
the former policies when combined with state estimation and feedback control, can be easily driven to optimal

operating conditions during on-line application when nonideal operating conditions are encountered.
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10.2 FEEDBACK CONTROL CASE STUDY

The simulations to follow shall be concerned with the process operation configuration shown below:

o~
MODIFIER STYRENE
{IMPURITY)
BUTADIENE .

{IMPURITY) +—

& &

A
{
]
]
ESTATOR
CONTROLLER
BLEED PO W |
E_{E l
— Cam MG W
STYRENE PARTICLE MODIRER
BUTADIENE

SRE

Figure 10.2: Closed-Loop SBR Process Configuration

As was the casc in chapter 9, the reactor will be operated isothermally and only styrene, butadiene, and modifier

shiall be fed to the reactor. Unless stated otherwise, the following actual process operating conditions are to
be assumed:
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Initial Conditions For Feedback Controtter Simulations

M, 0.07 gmol
M, 0.27 gmol

P, 032 gmol

P, 1.81 gmol

1, 0.03 gmol

E 0.122 gmol
CTA 0.005% gmol
Im, 1.25x10°  gmol
Im, 00 gmol

N, 1.75x10" I
V. 40 !

VoQo 4722107 gmol
V.0 2,13 gmol
V.22 9.6x10° gmol
V,QBn, 1.77x10"  gmol
V,0uBin, 9.58x10™* gmol

Common Qperating Conditions

T 55 C

V. 10 !

F, 0.0

Fy 0.0

Fy 0.0

Fim, 0.0

Fra, 5x10°F, + 4.5x107°F,

In the operating conditions shown above, the organic impurity is assumed to be present in the menomer feeds.
Since butadiene would be expected to contzin more impuritics than styrene, the amount of impurity in the
butadiene monomer feed was set to a higher level,

The operating policy that will be used as a case study for the application of feedback control will be
concemned with the control of insianianeous copolymer composition, conversion, and irstantancous weight
average molecular weight (p” =(F,. X, ry)). This mode of operation was referred to as policy X/ry, in chapter
9, This policy wili be applied until the maximum amount of styrene, as detcrmined by the reactor volume
constraint, is reached. Thereafter, the flow rate of styrcne is set to zero, and the operating policy will be
reduced to the control of instantaneous composition and weight average molecular weight (Policy /ry,.
pT =(F,,ry)). The op:a-loop control actions provided by these policies (u,) are computed during the feedback
control run using estimates of the internal medel states (£) provided by the nonlincar estimator blcck. Model

mismatch states, x™* and x** (refer to section 8.6.2) are also incorporaled into the open-loop calculations.
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To evaluate controller design performance, the model used in the estimator and in the control action
computations is initialized with the assumption that no impurity is present (im,, F,,,’ = (), and with the
number of polymer particles seeds over estimated by 30% (N, = 2.5x10"®), An over estimation in the particle
count can occur in practice when polymer particle coagulation occurs. Figure 10.3 shows the consequence
of applying the instantancous open-loop policy without the mode: states corrected by the cstimator and without
feedback control when the initialization error is made. These figures provide information on the actual
instantancous response (-), desired instantancous set point (--), and the estimated instantaneous response
provided by the state estimator (..). Under idcal operating conditinns, instantancous composition {10.3(2)),
conversion (10.3(b)), and instantancous molecular weight (10.3{c)} should be constant at the indicated set
points during the application of Policy X/ry. The initialization error clearly leads 1o a significant deviation
from the expected copolymer properties under ideal operating conditions. The purpose of the feedback control
willbe tocorrect the monomer and modifier feed rates so that these deviations, once detected, can be eliminated
as quickly as possible. The use of a conservative control strategy, such as is often found to be acceptable in
continuously operating petrochemical processes, would not be suitable since one would not want a high
percentage of off specification polymer that cannot be removed to be present in the final product.

As mentioned earlier, the nonlingar estimator to be used in this study will be the reiierative extended

Kalman (ilter proposed in chapter 8. The first extended Kalman filter is formulated using internal model states

o= (M,,M,,p,.P,,lmp,Nv Finy CTAV, 00,0V, 00 V, 0B, V, 08 ny x5

piwtliim,?
and measurement vector
y = (M,M,,D,CTA)
The measurements will corropted with Gaussian  white noise having a covariance matrix

Diag(0.002,0.002,200,0.002). For the operating conditions discussed above, the following tuning parameters

for the scaled model states (refer to section 8.5 for scaling) was found to lead 1o accepiable performance:

R, = Digg{107,10%,10%,10%,10%,1,10%,10%,10% 10,10, 10,10, 107,10}

w

-

R, = Diagg{0.002,0.002,200.0,0.002}

P, = Diag{107,107107,1071,500,1,107 107 10%,107%,107,107,10%, 107
The second extended Kalman filter which is used to estimate unknown initial states was formulated using

£ = (’m».,- Moy Fin, xé’)
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as the states and with the measurement vector
y' = (M,M,D,)
The tuning parameters that led to acceptable results for the operating conditions described are given below:
R, = Diag{0,0,0,01,0}
R, = Diag{0.002,0.002,200}
P, = Diag{l,500,1,0,01}

The first extended Kalman filter was reiterated only for the first 10 sampling intervals with improved unknown
initial state estimates provided by the second extended Kalman Filter. After the first 10 sampling periods,

only the first extended Kalman filter was used to provide state estimates in the conventional recursive muanner,

262



COMP.

WT. AVE., MWio

INST.

cOoPOLY.

INST.

TOTAL CONVERSION

034 T 1
0.2}
0.0}
0.28¢
0.26
0.24
0.2+
.20
o.18
0.18
944

0.12

0.5
0.8}
0.1}
0.6p
0.5}
0.4}

0.3 s

.+ 0 oS g

250.0

200.0

150.0

100.0}

50.0}

0.0L

T0.0 0.2 0.4
TIME (MIN.)

0.6

&

263

0.8

.0

1.2

1.4



2.5 v Y

2.0

1.5¢

1.0}

0.5}

INST. X-LINKS16 S

0.0 n == n A

70.01
€0.0}
2.0t
40,0}
30.0}
0.0t

10.0¢ \ \"~.

0.0

.

2.5¢
2.0}
1.5}
1.01 4

0.5¢

3
CTA FEED (16 3MOL/MINFEED (16 MOL/MIN.)

Y

.0 - " " i
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
TIME (MIN.) 10
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10.3 PAIRED PID CONTROL

If one is concerned with a single input/single output control policy or can find suitably decoupled
input/output pairings in a multivariable control policy, a classical, non-model based PID feedback control
strategy may prove to be adequate, Taking this approach in the strategy proposed in Figure 10.1, the j'th

manipulated input u; used to control i'th instantancous property p; can be determined by

W = Uy, + Uy, (10.1)
i+ o

Up; = K“ e + Y edt + Ty (10.2)

ef = (pl'.nr = p") (10-3)

In (10.1}, 4, , represents the feedforward/open-loop action that attempts to maintain constant §;. The feedback

control action uy, ; in (10.1) provides a correuiion to this feedforward term to allow the specified instantaneous
conditions f; to be reached when an error is estimated.

The effectiveness of the PID approach will depend on the amount of multivariable interaction between
the different pairings and on the process nonlinearities. If the dynamics of the process change considerably
with time, a considerable effort in prior simulation studies will have to be carried out to specify the large
number of PID tuning parameters. When these situations are encountered, the use of paired PID control will
far less convenient than the methoeds to be discussed in the sections to follow,

Figure 10.4 shows the simulated performance of a paired PI feedback design when applied to the
operating conditions described in section 10.2. In the run shown, the Pl inputs were used to correct the

open-loop conirol actions according to

F, u T F M, = “Ho.x(Fﬂ. FH.)W,, toop (10.4)
Fy, Fu, 05
— = oy i} ‘
F u, FID2Y ¥ )open toop
Fop = upps(F, cm),,,,,,. Loop (10.6)

during the phase where Policy X/ry was applied. The feedback inputs, upp ;. lpyp, 2 and upyp 5 were paired

with controlling conversion, instantaneous composition, and ry, respectively, These pairings were found to
lead to minimal interaction. After an exhaustive simulation study, the following PI tuning parameters were

found to be acceptable:
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PI Tuning Parameters During Policy X/ry

K, =-1 T, =30 min,
K, ==2 T,= 1000 min,
K. =-1 T, =400 min.

During the finishing off phase where Policy I/ry, was applied, the feedback corrections were changed to

F, = umD"(F,,Jm. o (10.7)
Fen = UppofF, c:m),,,.. loop (10.8)
where up; , and ugyp, ; Were paired with the control of instantancous composition and ry, respectively, The Pl

tuning parameters that were used are listed below:

PI Tuning Parameters During Policy I/Ry,

K, =-1 7, =30 min.
K, =-1 T, =400 min.

Figures 10.4(a) to 10.4(c) provides information on the actual (<), desired (--), and estimated (..)
instantaneous copolymer composition, conversion, and instantancous molecular weight respectively, Inall
cases reasonably tight contro} can be observed. Figure 10(d) also provides information on the instantancous
degree of crosslinking. In section 9.5, the use of Policy X was suggested for indirectly controlling crosslinking
since a constant conversion condition closely approximates the required condition for constant instantancous
crosslinking. In Figure 10(d) the controt of instantancous degree of crosslinking can be observed to be very
good even though significant initialization errors were present. Figure 10(¢) shows the actual feed rate of
styrene (-) and butadiene (--) during the controlled run. The flow rate of modifier is shown in Figure 10(f).
The inputs can be observed to be well behaved during the entire control run, and respond quickly to establish
the desired instantaneous operating conditions once the ctfect of the initialization crror was detected. Relative
to Figure 10.3, where only open-loop flow rates were applied, the application of this feedback control strategy
leads to a tremendous improvement in copolvmer property control. The only drawback with the this Pl
feedback control approach, from the point of view of controller design, was the substantial effort required in

simulation runs to arrive at suitable choice for the six PI tuning paramelers.

266



0.470 ,

0.165}
0.160
0. 155 i
0.150
0.145
0.140
0.135
0.130}
0.12%

COMP,

COPOLY.

INST,

0.95¢

0.30}

o.mTf‘“

0.80

0.75

i 4
INST. WT. AVE., Mwic TOTAL CONVERSION

0.0 0.5 {
TIME (MIN.)> 10

0

267

2.0

2.5



50 Y

2.5}

2.0

1.5}

{0

0.5¢

0.0

70.0%

50.0p

10.0}

(I

. 1
Nt AW T I Y S P ) b )
3.0 ::‘" ASLALUAL MO O TR ‘ap‘.“.

'|
20.0p

]
(]
10.0 N
P -

0.0

1.8}
$.6¢
1.4
1.21 4
1.0}
0.8¢
0.6}
0.4} ]

0.2 L'

o.o " i i "
0.0 0.5 1.0 1.5 2.0 2.5
TIME (MIN.) 1C

= _
cTA FEED (16 3MOL/MINFEED (10 ~MOL/MIN.)  rnsT, X-L INKS 16>

FIGURE 10.4: Instantaneous Property Control With Paired PI Design
curve identification as in Figure 10.3

268



104 GLOBAL INPUT/OUTPUT LINEARIZATION

The use of input/output linearization transformations for simplifying nonlinear control probiems is
well-known. This approach will only be useful if a straightfor ward input/output transtormation can be found
to obtain a linear space with respect to transformed variables. If a ransformation czn be found in a nonlincar
control problem all well-kne-wn control theory developed for lincar systems can be conveniently applied to
the transformed linear space.

Freund (1973,1975,1982) provides a general input/output transformation ior lincarizing aad decoupling
nonlincar multivarigble control problems of the form

¥ = A@,n) + Bx,nuln {10,9)

pi) = Plx) + Dix,tu(t) (10.10)

Dynamic polymerization models in general will exist in the form of (10.9) and (10.10). In \his approach, the
input variable u(¢) is transformed to fictitious input variable v(¢) through the relationship

u(t) = Flx,1) + Glx1v) (10.11)

Expressions for F(x,t) and G(x,) can be found in Freund (1973,1975,1982). Use of (10.11) leads to the

linear decoupled output/transformed input space

4}

)
PO+ 8O 4+ S = ) (10.12)
where index i refers (o i'th decoupled fictitious input/output pairing, and d; is the derivative order of output i

with respect to the input. The parameters 3;; and 6; can be arbitrarily specified to establish the poles and gain
respectively in the linear decoupled input/output space. To make use of this transformation in a feedback
control strategy one would design fixed linear multiloop controllers to control p; with v; based on model
(10.12). Once the feedback action for v;(r) is obtained, the actual input to the process is determined through
{10.11).

‘The transformation procedure described above is well-known in robotics controller design applications
(Asada and Slotine, 1986; Spong and Vidyasagar, 1989). Kravaris and Chung (1987), apparently unaware of
the earlier work by Freund (1973, 1975, 1982), have rederived the results shown above for the special case
of SISO nonlinear control problems. In their work they referred to this procedure as global input/output
linearization synthesis. Kravaris etal. (1989) reported of a successful application of this theory in acopolymer

composition control problem, Lee and Sullivan (1988a,b) advocate a special case of the gencral procedure
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outlined by Freund (1973,1975,1982) and Kravaris and Chung (1987) for controller design which they have
coined Generic Model Control (GMC). Boye and Brogan (1986) have also proposed a similar transformation
approach to nonlinear control design, Unlike the work above, their paper was more concemed with a less

meaningful first derivative trajectory tracking problem,

The order of p; (d; in (10.12)} is determined by the differential order of the nonlincar system with respect

to the inputs. In previous chapters it was shown that the manipulated flow rate inputs to the SBR semi-batch
polymerization process affects the first derivative of the instantancous properties to be controtled. This implics
thatd; = 1. Inmost batch/semi-batch reactor control problems the manipulated inputs will affect first derivative
of the outputs being controlled and therefore the case were d; = 1 would be most common. This is especially
true for batch/semi-baich copolymerization process. However, adifferential order of 1 would not be expected
for differcat pclymer reactor configurations, such as reactor trains. In this case the differential order of input
manipulations made to the first reactor with respect to outputs in the final reactor in the reactor train would

be at least equal the number of reactors in the train.

Given that d; = 1, a convenient selection for &, and 8, must be made. The most simple choice which

leads to the least computational effcrt to arrive at feedback control actions is given by
8, = 0 (10.13)
9 = 1 (10.14)

This choice simplifies the multivariable control problem to designing SISO controllers for a decoupled set of

integrating linear processes with time domain dynamics

~

pi = Plxut) = v{t) (10.15)
and Laplace transfer function
@ = ! (10.16)
vi(s) 5

Virually any continuous time nonlinear contreller design procedure can be applied to (10.16) in a
straightforward manner. In this work it was considered convenient to select a SISO design procedure that is
simple to tune with meaningful tuning parameters in terms of a desired closed-loop outpul response. Hence
a Dahlin (1968) or Internal Model Control (Garcia and Morari, 1982) pole-placement design specification
given by
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a0

P B 1 + T“S (10'17)

was taken, This specification will lead to a first order step response to step set changes or set disturbances at
the process output. The only design parameters that have to be specified are the closed-loop first order time
constants of each output (z, ). Itcan be shown that the Dahlinclosed-loop specification will lead to the feedback

controller

vit) = Tle,-(:) (10.18)

gl

where ¢,(¢) is given by (10.3). Inscrting (10.18) into (10.15) will lead to

pdt) = Plxu,t) = Tle(!) (10.19)

This is the final form of open-loop feedforward/feedback control action 1o be applied on-line, If we recall
back 1o the open-loop control strategics proposed in chapter 9 that were in the form
p) = Pxud) = 0 {10.20

we can observe that the only difference between (10.19) and (10.20) lies on the righ: hand side where O is
replace by 17'e(t) when feedback correction is applied. Hence the nonlinear pole-placement procedure based
on the input/output lincarization transformation uliimately leads to only a trivial modification to the open-toop
input control action.

The form of the control law given above can be modified to correspond with control block diagram
proposed in Figure 10.1. it can be shown that process model (10.9) and (10.10) can be rearranged into the
form

p() = Px,0) + Pyx,nu() (10.21)
Inserting (10.19) into (10.21) and solving for u(t) leads to
ut) = P;‘(x,x);:-e(z) - PyMx,OPfx, 1) (10.22)

The first term of the right side of (10.22) is the feedback control block contribution to u(t) (1s(t)). This term

can be observed to be a product of a time varying nonlinear term and the linear control action. The second
term on the right hand side represents the feedforward open-loop control block contribution to u(f) (x,)

provided from some instantaneous operating policy.
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The literature reporting the use of global input/output lincarization svathesis have taken a different
approach to the design of the feedback controller in the linear space. Kravaris and Chung (1987), Kravaris

et al, (1989), Lec and Sullivan (1988a,b) proposed the usc of a PI controller in form

1
v = Kﬂ{e(r) " ;je.-(r)dr} (10.23)
i
that leads to the closed-loop transfer function response
pls) 2 ls + 1 1024
Putils) TSt o+ 2 ls o+ 1 (10.24)
where
_ 1
Yt T (10.25)
B
K,
£ = - T (10.26)

This type of feedback design is also used in robotic control applications (Spong and Vidyasagar, 1989; Asada
and Slotine, 1986). Relative to controlter design procedure previously described, their design approach vrould
be considered by many process control engincers to be far less appealing. By adding the integral term in
{10.23) relative to (10,18) they have doubled the number of tuning parameters that need to specified. The
resulting closed-loop response, given by (10,24} is much less meaningful and more difficult to specify than
(10.17). Itis difficult imagine why anyone would desire to work with such an unusual closed-loop response
design. Their justification in adding the integral term to (10.23) relative to (10.18) has to do with model
mismatch, Without much reflection on the matter, their argument does seem plausible. When model mismatch
is present, the open-loop feedforward term in (10.22) and the linearizing transformation between u(f) and v(1)
may become binsed. If model mismatch causes this bias to persist or increase with time, the proporiional
feedback term in (10.22) will not be capable of eliminating this emor in an asymptotically constant sense.
Hence the use of the integral term in (10.23) was suggested as a simple ad hoc approach for climinating a
persistent bias due to model mismatch. Of course their procedure will only be valid for the simple case where
one can directly measure the outputs to be controlled.

Based on arguments above, one would expect the computation of feedback control through (10.18) to
beinadequate for practical process implementation since noaccommodation is provided in the feedback design

for model mismatch. However, this will not be true when using (10.18) in the control scheme of Figurc 9.1.
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The model mismatch problem iu the overall conuroi strategy proposed by the authors above was not an inherent
difficulty in the control design procedure. The problem was rather due to the fuct that they failed to design a
consistent output estimator (refer to chapter 8.C for a discussion on state estimator consistency). In their work
no nonstationary disturbance or model mismatch states were introduced in the raodel to account for observed
differences between the ideal model predicted responses and observed ones. Hence they had no choice but
to resort to the ad hoc feedback design specification (10.23) since no use i3 made of the information on the
deviatic « between model predicted outputs and the observed ones to adapt the model, and climinate bias in
the feedforward and feedback control actions. As stated above, this ad hoc approach for compensating for
model mismaich in the feedback control design will only work when a direct output measurcment is available,
One might consider their a approach vseful alternative in this case since the design of a state estimator may
be avoided. On the other hand, if one invests a considerable effort in a arriving at a mechanistic or
semi-theoretical nonlinear dynamic procass model for high performance control, it would make little sense
to fall short of identifying meaningful sources of disturbances and/or mode! mismatch, Intuitively, by
incorporating more knowledge about distances and sources of model uncertainty into the overall controller
design scheme, one would expect improved convergence of the control actions 1o desired values, and hence
overall improved control. The consequence of not mecting the consistency requiremen: will be very serious
when outputs must be inferred using a state estimator, as is the case with thiz SBR semi-batch proglem. Not
meeting the consistency requirement in the estimator will led tobiaszd output predictions that will be impossible
to correct with feedback control since in this casc one has ne actual property measurement. As was discussed
inchapler8, the state estimator used in tiis work meets the consistency requirement on the important observable
state that are necded for property predictions. Therefore, the use of the use of the much more convenient
control law (10.18) is adopted in this work.

Figure 10.5 shows the simulated application of the proposed nonlinear pole-placement feedback design.
The controller shown was tuned with all T, set to 20 minutes. The operating conditions are the same as the
PI simulation run shown in Figure 10.4. The same instantaneous property and flow ruce information as was
shown in Figure 10.4 is also provided. Relative to the open-loop policy shown in Figure 10.3, a tremendous
improvement in copolymer property control can be observed in Figure 10.5, The quality of control relative
to the PI design in Figure 10.4 is approximately the same, A slight improvement can be obscrved in the
instantaneous copolymer composition response to the intialization error with the nonlinear pole-placement
design. The flow rate manipulations, shown in Figure 10(¢), respond quickly to the initialization error once

detccted and are well-behaved during the entire run. In Figure 10.5(c), a small bias can be observed between
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the actual instantancous molecular weight (<) and its estimated level (). This problem is not the fault of
feadback control but rather due to the estimator, since the estimated instantancous molecular weight can be
observed to be controlled quite well at its set point. The bias is due to moleculir weight propertics not being
observable from the available measurements used in the state cstimator. Even through some error was
encouniered, the deviation was not very significant, and much improved over the open-loop run response in

Figure 10.3.
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As discussed earlier, the statc estimator used in this work meets consistency requirements. By incorporating
the nonstationary stochastic states x*" =(N,,.F ;...,.xl‘.x“) (refer to chapter 8 for details) in the state estimator,
it was shown that the important observable states needed for property calculations can estimated without bias
even in the presence of model mismatch, During the control run, these nonstationary state estimates together
with the estimated deterministic ones are used in both the feedback and feedforward control runs. Thercfore,
convergence to the desired closed-loop response, even in the presence of model mismatch, should be achicved
for the observable properties.

Figure 10.6 shows the performance of the proposed nonlinear pole placement design when unaccounted
for model mismatch is introduced. In the program used to simulate the true dynamic respense of the process,
the previously used inlet organic impurity feed £, , given by 5x10°°F,, +4.5x10°°F,,, was replaced with
3x10°F,, +2.7x10"°F,, , and an inlet water phase impurity feed F,,_equalto 1x10(F,, +F,, ) was introduced.
In section 8.6.1, it was pointed out that this type of model mismatch can be shown to introduce crror in the
prediction of s, the average number of radicals per particle. The control of the observable properties copolymer
composition and conversion, shown in Figures 10.6(a) and 10.6(b) is stilt quite good and without offsetin the
presence of this specific type of model mismatch. The observed closcd-loop response of the controller when
the result of the initialization error was detected in these properties is still very good compared to the nominal
response shown in Figure 10.5. The input manipulations, shown in Figures 10.6(¢) and 10.d(f) do not go
unstable and are well-behaved during the run. The control of copolym=r composition can be observed to be
alittle more noisy about the set point relative to the nominal case. A small -rift in copolymer conversion can
be observed to occur at the time when the styrene feed was stopped. By comparing actual copolymer
composition (-) with its estimated value (..), it can be observed that the problem is not due to the controller
but rather a convergence problem in the estimator that requires some time for convergence to a new suitable
fictitious level for F,, once operating conditions are significantly changed. Unlike the control of copolymer
composition and conversion, a small off-set in the control of molecular weight can be observed in Figure
10.6(c). This can expected since molecular weight is not observable. Nevertheless, the observed bias is not
very large, and much closer to set point that one would obtain through the application just an open-loop
operating policy. The control of crosslinking, shown in Figure 10.6(d), can be observed to be very good in
the presence of model mismatch since constant monomer concentration in the polymer panicles was
approximately maintained. The required conversion level of controfling instantancous degree of crosslinking
was shown in section 9.5 to be independent from the level of impurity. The observed favorable robustacss

properties of the proposed design will extended to other types of model mismatch where the prediction of the
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average number of radical per particle is affected, such as important model mismaich associated with initiation,
multiple impurities, radical entry, and diffusion controlled terniination eftects for example. Fora more detailed

discussion refer to section 8.6.1.
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Figure 10.7 shows the performance of the nonlinear pole-placement design to a completely different type of
model mismatch. In this run, the propagation rate constant for butadicne (k) and its copolymer reactivity
ratio with styrene (r,) were increased by 30% in the model uscd to simulate the actual process. Relative to
the nominal model response in Figure 10.5, the control of the copolymer composition and conversion is still
good and free from offset when subjected to this significant type of model mismatch, The controlled molecular
weight response to the initialization error, shown in 10.7(c), has degraded relative to the nominal casc, but
does eventually converge to the desired set point in a reasonable period of time. The result is still very
impressive given that this output is not observable, and that the mismatch introduced does influcnce the
molecular weight. In Figure 10.7(d) an offset from the desired degree of crosslinking can be observed, cven
though the estimator provided biased-free predictions. It can be shown that the mismatch introduced does
influence the required monomer concentration in the polymer particles for a specified degree of crosslinking,
Hence, the problem can only be corrected by changing the conversion level, If oneis really more concemed
with controlling crosslinking the use of a direct crosslinking control policy, such as described in section 9.5,
would prove to be more effsctive in this case. The closed-loop performance of the maniputated inputs in
Figures 10.7(e) and 10.7(f) are stable and well behaved. Based on the discussion in chapiers 8.6.2 and 8.6.3,
the results from this mismatch case study can used to infer that the robustness properties of the proposed design
will also perform well for the important class of model mismatch associated propagation, chain L.mnsfcr, and
mass transfer. This mismatch case study, along with the previous one provides sufficient evidence that the
control strategy procedure posses favorable robustness propertics with respect Lo important model mismatch

that one would encounter during implementation.

281



0.£7 r r T

0.46}; -

COMP.

o.15 [}
o0.14

013

COPOL.Y.

0.2

INST.
(=]

0.10

0.95
0.90}
0.85
0.50
0.75

0.7

INST. WT. AVE. MW1O° ToTaL CONVERSION

.0 .
0.0 0.2 0.4 0.6
TIME (MIN.> &

0.8

282




INST. X-LINKS15=

3.
cTA FEED (16 3MoL MINFEED (15 MOL/MIN.)

FIGURE 10.7: Control With Linearized Decoupled Design:

2.2 T T . r

2.0t
1.8¢
1.6p
f4r
1.2f
Lo}
0.8}
0.6}
0.4
0.2
0.0

0.0
60.0
50.0
40.0

A - 1) '

F 1 ’ LN non hY

hWTARRARY "\h,\"n“l.,'" ISR e
v A A AL

iy

30.0
20.0

» oy S R EE L EE

:O'OWWW\M\L
]
o_o i . "

f.2r
1.0}
0.8}
O.Gl-
0.4}

0.2

0.0 -

0.0 0.2 0.4 Q.6 1.2 1.4

TIME (MIN.)> 1

0.8 1.0

Rate Constant And Reactivity Ratio Model Mismatch
curve identification as in Figure 10.3

283

1.6

1.8



The previous two mismatch case studies were concerned with prediction errors present in the dynamic process
model. A different type prediction mismatch which is also important has to do with unaccounted for state
initialization error. Recall that the state estimator used in this work focused on initializations errors in /m,,
N, and £, . Inan actual industrial implementation of the control strategy proposed an error can also be
introduced in the remaining model states as a result of a late detection in the start of reaction. Figure 10.8
shows performance of the controller design for the extreme case where the estimator and controller is started
one full sampling interval too late (10 minutes). During the undetected period, the monomer level in the
reactor dropped from 0.07 and 0.27 t0 0.031 and 0,083 gmoles of styrene and butadiene respectively, Relative
to the nominal run in Figure 10.5, control of copolymer composition, conversion, and degree of branching are
not seriously degraded by the intialization error. However, Figure 10.8(c) shows that the initialization error
leads to a significant loss in performance for molecular weight control. Performance is still much improved
over the open-loop case shown in Figure 10.3(c). The only possible improvement that one might try to reduce
the problem would to take a measurement from the process at t=0, and use the measurement to improve some
of the starting model state estimates. Notmuch more can be done because of the lack of a suitable measurement

that would allow one 1o observe molecular weight,
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The results of this section have denionstrated that global nonlincar input/output linearization approach of
Freund (1973,1975,1982) is very well-suited for applying nonlinear multivariable feedback in the nonlincar
inferential contro! scheme shown in Figure 10.1. The application of feedback control when taking this
procedure requires only a trivial modification to the open-loop policies described in chapter 8. ‘The inodification
required, in terms of prior programming effort, is even more trivial than the in the PID design approach of
section 10.3. A feedback controller in the lincarized space based on a Dahlin (1968) closed-loop specification
was found to be very effective in controlling instantanous propertics at both nominzl and important model
mismatch conditions. The use of the Dahlin (1968) closed-loop specification only requires the specification
of one meaninzful tuning parameter for ¢ach controlled output. This is an improvement over the suboptimal
PID design procedure where much more, less meaningful tuning parameters need to specified. The Dahlin
design specification inthe overall approach taken in Figure 10,1 isalso far more meaningful and more generally
applicable than other reported approaches using inputfoutput linearizations (Kravaris and Chung, 1987,
Kravaris et al., 1989, Lee and Sullivan, 1988a,b) where no account for disturbances or model mismatch was
taken in the estimation procedure. The only restrictions with the input/output lincarization approach are that
it is not well-suited for general nonsquare control problems, systems with deadtime, and control problems
with constraints. The case of ;nore outputs that inputs may b indirectly handled through the trade-off policics
discussed in section 9.7.2. Even though these limitations exist, the approach will still be expected to be useful
for & wide range of industrially relevant problems, and therefore the simplicity offcred by this method should

not be overlooked.

10.5 MODEL-BASED OPTIMAL FEEDBACK CONTROL

If the simple contral strategies in sections 10.3 and 10.4 are not well-suited for high performance
feedback control, one might consider instead the use of some modcl-based optimal feedback design. In the
control literature, there exists a plethora of different optimal model-based design procedures. No attempt shall
be made to cover all the different approaches that one might try. Only a brief outline on the method for using
the more popular optimal and optimal designs at quasi-lincarized conditions shall be discussed. The main
issue is the method for incorporating model based design procedures in the strategy proposed in Figure 10.1.
This main idea should be conveyed in the designs to be discussed below.,

A commonly used objective function for determining optimal feedback control moves Vu is given by
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In (10.27), k refers to the future output horizan, a is the number of outputs to be controlled, m is the number
of future control moves (o be made, 7 is the number of inputs, and Q;; and W; ; are weighting parameters. All
of these parameters are specified to design the controller. The inputs in (10.27) are taken to be pieccwise
continuous for simplicity. The number of piccewise control actions to be taken between the measurement
interval must also be specified. Logically, the future output horizon # would extend to the time of the next
measurement interval, or multiples of it, and the optimization problem posed in (10,27} would be resolved at
every measurement interval, General operating constraints may also added to problem posed above that must
be satisfied at the control intervals,

The level of difficulty in arriving at optimal feedback control actions in {10.27) depends heavily on the
type of process mode! to be used in (10.27), and of course the nature of operating constraints if present.
Consider the case where one makes use of a process model in the form

2 = f@a,0) (10.28)

p o= B@,n (10.29)

to arrive at nonlincar optimal control actions. The nonlinear model above is presented in deviation form about
some feedforward/open-loop trajectory provided by some instantancous control policy. If this nonlinear model
is used, an on-line nonlincar optimization search approach will have 1o be carried out to arrive at the optimal
input actions. Several researchers have advocated the use of this type of on-line optimization procedure for
computing nonlinearcontrol actions inclosely related classof nonlinear controller designapproaches. Included
in this class are Nonlincar Internal Model Control (NIMC) (Economou and Morari, 1986; Li and Biegler,
1988), Nonlinear Model Predictive Control (NMPC) (Patwardhan et al., 1988), Nonlinear Inferentiai Control
(Parrish and Brosiiow, 1988), Universal Dynamic Matrix Control (UDMC) (Morshedi, 1986), and an on-line
optimization using a two phase approach (Chen and Joseph, 1987; Jang et al., 1987). The use of these
approaches will involve a tremendous prior programing effort for implementation relative to the strategies
described in sections 10.3 and 10.4. During implementation, a significant computational effort will have to
be made relative to the previous approaches, even when adopting computationally efficient solution procedures
that some of the authors above have suggested. Depending on the size of the control problem posed, the
on-line computational effort required may not be practical. Much of the success that the authors above have

reported were based on much more simple nonlinear problems than the SBR semi-batch problem considered
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in this work. Another important potential problem that one must face when adopting this approach is that
there is no guarantee of convergence to a solution during application since a general nonlinear problem is
involved. When applying a controller to an industrial profit making process, integrity is a very important
concerm, '

Often the level of detail provided by the dynamic model would not justify the application of the brute
force approach described above., This would certainly be true for the SBR model used in this work, Also, in
many circumstances, the optimal solution for (10.27) can be approximated reasonably well through a
quasi-linearization of the process at each control interval. If the deviation nonlinear process model about the

open-loop/feedforward trajectory is linearized and discretized at control interval k, one obtains

£, = Ax, + Ba, (10.30)

Pia = P, (10.31)
Given (10.30) and (10.31), a future horizon, lincar quadratic (LQ) model-based design, such as Dynamic
Matrix Control (Cutler and Ramaker, 1979), can be easily applied. The approach has the advantage of being
capable of handling linear operating constraints. Background material on DMC can be found in chapter 5.
During on-line implementation, the step response coefficients needed Lo obtain the dynamic matrix can be
obtained recursively through (10.30) and (10.31) by setting y=1 The future projected error vector without
control, e, ,, (refer to chapter 5, in the DMC algorithm can be obtaincd by recursively solving (10.30) and
(10.31) forward in time with #, set to 0. Alternatively, a hybrid procedurc could be applied whereby ¢, , is
computed by integrating the nonlinear model forward in time. This hybrid approach was used by Garcia
(1984) when applying DMC to control temperature in a baich polymerization reaction, Relative to a formal
nonlinear optimization feedback controller design, the use of DMC would be expected to substantially reduce
the on-line computation effort. A big advantage of DMC is that convergence lo a unique solution can be
guaranteed, provided that singular control problem has not be posed.

If process operating constraints are of no concern, one may want to make use of an analytical design
procedure for computing LQ optimal feedback actions. Linear quadratic state space feedback control is
well-known and is often found to be useful when working with state space process models. Givena lincarized
and discretized model in the form (10.30) and (10.31) at some control interval k, a control law in the form

4, = L (10.32)

can be found that will minimize
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A-1
Jpo= FQP + LUIQA + &WE) (10.33)
The solution for L, is well-known, and can found elsewhere (Astrom and Wittenmark, 1984; Kwakemaak and

Sivan, 1972). The use of this feedback control strategy has been successfully applied to batch polymerization
applications (Ponnuswamy et al,, 1987; Kiparissides et al., 1987). Unfortunately, for the feedback control
strategy being considered in this work, the control law given by (10.32) will not be useful. The form of (10.32)
is only suitable for controlling the process model states along some predetermined open-loop trajectory. In
this work we wish to modify the state trajectory so that the desired p is obtained. An estimated deviation in
an instantaneous property g cannot be uniquely related to % since P is nonsquare. Therefore, the use of an
input/output control law is required.
Using (10.30) and (10.31), the pulse transfer function relationship between i and g at contro! interval
k is given by
pz) = Gy2)a) (34
with
Gz) = P U-AzY'E, (10.35)
This process transfer function model can used to obtain a LQ optimal control law in the form
a4, = Cp-p (10.36)
for the special case of (10.33) with h =, The LQ optimal solution for C,(z) can be found in Harris and

MacGregor (1987). Alternatively, (10.35) can instead by used in IMC design procedure presented in chapter
4, The solution for C,(z) can be recomputed on-line at every control interval. When taking this approach,
one should consider the vse of some fixed average C(z) over the operating conditions to be expected. This
simplification, if found acceptable, would lead to a significant reduction in on-line computation.

The methods described above can be uscful for correcting the open-loop/feedforward inputs for errors
due to nonideal operating conditions. The drawback with these approaches is that they will all require a
considerable prior programming effort and a substantial computational effort during on-line application relative
to both the PID design strategy in section 10.3 and the input/output linearization approach of section 10.4.
Hengce, there is no incentive to apply these procedures in such a clumsy fashion to the control strategy in Figure
10.1, especially when both the PI design and the input/output linearization approach performed so well, The

only situations where one would benefit by taking these approaches is when a serious constraint problem is
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encountered or when process deadtime is significant. Since both of these problems are not considered 1o be
important in the semi-batch SBR problem, the use of these optimal model-based control strategics were not

considered in this work.

10.6 SUMMARY AND CONCLUSIONS

In this chapter, the design of the feedback controller block in the nonlincar inferential control scheme
of Figure 10.1 was addressed. Three different basic design approaches were considered, and two were
evaluated. Controller designs were evaluated in a simulated application of a semi-batch operating policy
where copolymer composition, conversion, and weight average molecular weight were controlled using
monomer flow rate and modifier flow rate as manipulated inputs. Performance of the controller designs to
initialization errors in the level of organic reactive impurity and particle number with noise corrupted
measurements was investigated.

The first approach to controller design considered was classical PID input/output pairing control, This
method is simple to apply in strategy of Figure 10.1, and for the case study considered, led Lo good control
once suitable decoupled input/output pairing and PI tuning parameters were found, Copolymer property control
was greatly improved compared to the case where a fixed off-linc computed policy was applicd. The drawback
with the approach is that large number of optimal PID parameters for the range of operating conditions that
need to be determined by exhaustive prior simulation,

The second approach considered made use of a global decoupling input/output lincarization
transformation proposed by Freund (1973, 1975, 1982). The procedure was shown to lead 1o a very trivial
modification of open-loop control policy computation suggested in chapter 9 for obtaining input trajectories.
The linear feedback controller design proposed for decoupled output/linearized input space was based on the
Dahlin (1968) response specification. This closed-loop design specification was considered far more
convenient and meaningful relative to previously proposed design strategics (Kravaris and Chung, 1987,
Kravaris et al, 1989, Lee and Sullivan, 1988a,b). It was pointed out that the Dahlin closed-loop specification
was only possible because of the presence of the nonlinear estimator in Figure 10.1 which meets consistency
requirements. This approach provided good copolymer property control in the simulation case study

investigated. The performance of this design was also demonstrated to be robust to model mismatch,
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disturbances, and initialization errors. Performance of this multivariable design relative to the PID approach
was about the same. This approach was preferred over the PID design since less prior program effort is
required and tuning is far more straightforward,

Finally, model-based optimizing feedback control strategies were considered. Relative to the designs
discussed above, these approaches require a far greater programming effort and on-line computation, For the
semi-batch SBR problem in this work, optimal feedback control design offers little or no advantage over the
methods proposed above, and therefore its use was not investigated in this work.

The resuits of this chapter also provided the completion of the work on the development of a nonlinear
inferential control strategy for a semi-batch copolymerization process. In this chapler, concepts related to
dynamic polymer modelling (chapter 7), nonlinear state estimation (chapter 8), open-loop optimal operating
policics (chapter 9}, and feedback control design (chapier 10} are tied together, for the first time, to arrive at
a simple and yet very effective, infercntial nonlincar feedback control strategy for application to industrial
semi-batch polymerization control problems. The proposed strategy is a much more simple alternative to
computationally intensive on-line optimization procedures which would not be practical to apply in many
circumstances and which would often not be considered acceptable by plant operating personnel, The
performance of the overall design strategy was demonstrated in this chapter to be robust to process model
mismatch, state initialization errors, and disturbances. In all cases investigated, copolymer property control
was grealy improved over a fixed operating policy determined off-line. The results clearly demonstrate that
use of the operating policies and control strategies advocated in this work have the potential for greatly

improviag product repreducibility and quality control in polymer manufacturing industries.

10.7 NOTATION

A(x,t) nonlinear stal¢ transition matrix in nonlinear state space model (10.9)

A, linearized state transition matrix at control interval k along open-loop trajectory
B(x,t} nonlincar input matrix in nonlinear state space modei (10.9)

B, linearized state space input matrix at interval k along open-loop trajectory

; i'th branch frequency per copolymer chain

CTA  moles of chain transfer agent

d disturbance vector
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unswollen volume average particle size

error vector of instantaneous properties p from set point
moles of emulsifier

expression for derivative of £

molar feed rate of chain transfer agent

molar feed rate of emulsifier

molar feed rate of organic phase impurity
molar feed rate of water soluble impurit).{
molar flow rate of initiator

molar feed rate of butadiens

molar feed rate of styrene

instantaneous styrene copolymer composition

volumetric feed rate of water

linearized input/output transfer function matrix at control interval k

future output horizon for discrete feedback control

moles of unreacted organic phase impurity

moles of unreacted water phase impurity

moles of unreacted initiator

cost function for model based feedback control

proportional term in PID controller for j'th input

proportional gain matrix at interval k in state space optimal fecdback design

future input horizon in model predictive feedback controller design
moles of styrene
moles of butadiene

number of outputs

number of polymer particles
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estimated instantancous property vector

instantaneous property vector set point

instantaneous property vector in deviation form about open-loop trajectory
matrix expression representing the derivative of p with respect to time
nonlinear matrix relating g to £

linearized output/state matrix at interval k along open-loop Irajectory
moles of reacted butadiene in copolymer

initial covariance matrix of x in extended Kalman filter

moles of reacted styrene in copolymer

output weighting for model prediction controller design

number of inputs

weight average copolymer chain length

covariance matrix of y in extended Kalman filter

covariance matrix of x in extendcd Kaiman filter

Laplace transform

reactor lemperatyre

i'th molecular weight moment concentration

manipulated input vector

deviation input vector along open-loop trajectory at interval k

feedback contribution to 1

open-loop/feedforward contribution to u

fictitious input vector obtained after decoupled global input/output linearization
volume of polymer particle phase

reactor volume

volume of water

input move weighting in model predictive controller design

model state vector
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estimated model state vector

b4 model state vector in deviation form about open-loop trajectory

xH nonstationary stochastic mismatch state to compensate for model errors in rate of CTA reaction
x¥ nonstationary stochastic mismatch state to compensate for model errors in rate of M, reaction
X overall monomer conversion

y measurement vector

2! backward shift operator

Greek Letters

8 j'th degree coefficient of pole polynomial for i’th output in lincarized decoupled space

L 2'nd order damping factor for closed-loop output response of i

8 i'th output gain in linearized decoupled space

T, closed-loop time constant specification for output i

T, derivative term in PID controller for j'th input

T reset term in PID controller for j'th input
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11, THESIS SUMMARY AND CONCLUSIONS

This section provides a summary of major results and conclusions made in this thesis, The summary
is presented according to the three areas of in MIMO controller design rescarch considered in this work, as

described in the thesis introduction.

11.1. LINEAR MULTIVARIABLE CONTROLLER DESIGN:
ROBUSTNESS AND APPROXIMATE INVERSES

Chapters 2 and 3 provided a review on currently popular frequency domain approaches for analyzing
the robusmess properties of linear multiple input/multiple output (MIMO) transfer function controller designs.
The purpose of this work was to both evaluate and apply these popular approaches for predicting relative
robustness properties of linear MIMO Internal Model controller designs in some general sense. Using these
theories, three approaches lo relative robustness assessment were considered. The first approach was based
onasingular value and condition number analysis of the approximate model inverse used in the linear controller
design. The second method made use of a singular value analysis where a single norm bounded, multiplicative
output perturbation block in the frequency domain is used to characterize model mismatch (Doyle and Stein,
1981). The final approach investigated was a new method of relative robustness assessment proposed in this
work. This approach was based on an equal percentage disk uncertainty radii in all elements of the nominal
model transfer function at each frequency. The amount by which the equal percentage disk uncertainty radii
at each frequency can be increased before the closed-loop system goes unstable was used as a measure of
relative robustness. This new measure of relative robustness (k) was introduced Lo reduce conservatism in
the uncertainty characterization relative to the second approach. The computation of x was shown to require
the use of structured singular value theory (Doyle, 1982). In two model mismatch simulation case studics
with different controller designs it was found that the prediction of relative robustness trends provided first
and third approaches were always in agreement with the observed trends. The second approach was shown
to always be at odds with the other robustness assessment methods and the observed simulation trends. The

results showed that assessment of relative robustness is very dependent upon the model uncertainty
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characterization used. Different characterizations can lead to totally contradictory results. It appears that a
much more thorough understanding of the nature of the unceriainties is necessary if one is to put much faith
in the conclusion of any robustness analysis,

The design of stable and causal approximate inverses model inverses for Intemal Model Controllers
(IMCs) was addressed in chapter 4. A linear quadratic optimal, matrix spectral factorization approach was
proposed as a straightforward and computationally efficient method for obtaining inverses which yield
excellent controller performance and robusmess properties. Unlike any other approach proposed, this
procedure automatically handles multivariable process transfer function matrices of arbitrary order, with
unbalanced deadtime, with noninvertible zeros, and nonsquare systems. Intwo simulation case studies, it was
shown that these inverses lead to improved nominal performance and robustness properties compared to the
more traditional IMC designs where tunable diagonal filters are used with fixed, but usually suboptimal,

inverses.

11.2, DISTURBANCE PREDICTION IN DYNAMIC MATRIX CONTROLLERS

In chapter §, a new, and straightforward modification 1o the standard Dynamic Matrix Control (DMC)
algorithm was proposed to improve to disturbance regulation, The optimality of DMC for disturbance
regulation was generalized for all types of MIMO disturbances. The formal approach will lead to improved
disturbance regulation when the standard DMC assumption that disturbances enter as decoupled deterministic
steps at the process outputs is suboptimal, The proposed procedure makes use of autoregressive, integrated
moving average disturbance models to predict the future response of disturbances, and is more computationally
efficient and straightforward to apply relative to other approaches that have been reported. Three simulation

case studies showing the benefits of the modification 10 the DMC algorithm were presented.

11.3. NONLINEAR INFERENTIAL FEEDBACK CONTROL FOR
POLYMERIZATION REACTORS

Chapters 6 through 10 dealt with the different stages of the development of an inferential nonlinear
feedback control strategy for a semi-batch copolymerization reactor. The strategy proposed featured a
nonlinear state estimator to infer copolymer properties from limited indirect noisy measurements, a nonlinear

open-loop feedforward compensator to maintain fixed instantaneous copolymer properties, and a linear
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feedback controller to correct for errors in the feedforward control actions. In this work, the control of
styrene/butadiene rubber (SBR) latex copolymer properties was considered, The strategy was evaluated in
simulation study using a semi-theoretical SBR copolymerization model described in chapter 7.

The first problem examined was the design of a uscful ncnlincar state estimator, The nonlincar state
estimator is required to infer copolymer propertics to be controlled irom limited, indircct noisy process
measurements taken from the process during operation. Three approaches, extended Kalman filtering,
extending Kalman filtering with global reiteration, and state esimation using an on-line nonlincar optimization
approach were examined. The second approach was found to be most effective for semi-balch SBR state
estimation, and was therefore adopted. The new results showing the relative performance of cach strategy
disputes the work of Jang et al. (1986), where performance of a nonlincar gptimization approach was claimed
to be far superior 0 extended Kalman filtering. The results of this work also demonstrate the importance of
introducing sufficient meaningful nonstationary states in order to have consistent, biased free state estimates
when nonideal process operating conditions are encountered. This important issuc had been neglected in
previously reported work where state estimators were developed for batch/semi-batch polymerization reactors,
operating under ideal conditions,

Using the knowledge of the modelied chemical reaction mecheaisms, open-loop/fecdforward operating
policies were proposed based on establishing conditicns for maintaining fixed instantancous copolymer
properties. Well-known univariate approaches for instantancous copolymer property control were extended
to the multivariable case, and new policies were proposed. These optimal operating policies are very
meaningful to polymer reaction engineers. The instantancous control policies offer the advantage of
computational simplicity in arriving at feedforward manipulated input trajectorics, and because of this, can
be recomputed on-line wil: improved state estimates provided by the nonlincar state esimator, The
open-loop/feedforward actions provided by these policies serve to establish quasi-steady statc conditions an
the instantaneous copolymer properties to be controlled. This feature is shown to greatly simplify the
subsequent feedback controller design. It is shown in this work that the use of instantancous copolymer
property or reactor condition control policies can allow one to produce copolymer with a wide range of property
specifications.

The final subproblem of the semi-batch control strategy addressed was the design of a useful feedback
controller. Three approaches, conventional paired Pl, a multivariable decoupling and linearizing
transformation approach, and model based optimal feedback control were considered. The second approach

was found 1o be most convenient for use in the semi-batch control scheme. This approach was demonstrated
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10 provide excellent control over copolymer properties. The performance of the design was demonstrated to
be robust to state intialization errors, disturbances, and model mismatch, In all cases examined, control over
copolymer propertics was far superior to the case where an off-tine computed open-loop policy was applied.
The results of this work demonstrate that the simple, but yet effective, semi-batch control strategy proposed
in this work is a very useful alternative to computationally intensive on-line optimization approaches, which
inmany circumstances, would not be practical. This work also clearly demonstrates that the use of the operating
policics and control strategics advocated in this work have the potential for greatly improving product

reproducibility and quality control in polymer manufacturing industries.
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