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ABSTRACT

The present research investigates, both theoretically and experimentally,

transport phenomena in reverse osmosis (RO) membranes.

In order to properly describe and predict RO membrane performance, and to

properly design RO units, a good understanding of the fundamentals of the membrane

transport is needed; this means that a strong transport model needs to be developed.

This research is concerned with the development of s~ch a model. As well, the effects

of system pressure, concentration, and temperature on the performance of thin-film

composite, aromatic polyamide RO membranes with sodium chloride and some other

sulls arc examined both experimentally and theoretically.

The present research investigates the development of a powerful, novel

transport model for reverse osmosis, which does not have the serious shortcomings of

the previous models, and an experimental evaluation of this model. As a result, a

mechanistic model, called the Modified Surface Force-Pore Flow (MD·SF-PF) model,

has been developed. The model assumes that transport through the membrane takes

place in very fine pores, and the pores are modeled as perfect cylinders. In this two­

dimensional model, a balance of applied and frictional forces acting on the solute in a

pore is given as a function of radial and axial positions. The model incorporates a

potential field inside the membrane which is responsible for the partitioning effect (at

the two sides of the membrane) and, in part, determines the membrane performance.

A computer code has been developed, based on the "orthogonal collocation" method of

weighted residuals, which has proven to be very efficient and precise to solve the

complicated differential equations of the transport models.
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Three models have been developed during t.he present. research: i) t.he

Modified Surface Force- Pore Flow (MD·SF-PF) model, briefly described above, which

is appropriate for solvent-membrane affinit.y systems (such as salt-water systems); a

temperature-extended version of this model has also been derived; ii) t.he Extended

MD-SF-PF model (a generalized form of the MD·SF·PF model) which can be used to

describe or predict any type of RO system, that is, both solvent-membrane affinity

systems, such as sodium chloride-water system, and solute-membrane affinity

systems, such as toluene-water system; and iii) the .Modified Finely Porous Model

(MO-FPM) which is a one·dimensional transport model, and can describe simple

systems.

Experimental data are used to determine model parameters. Also, experi·

mental data can be compared to model predictions. The following experimental plan

wa~ undertaken using aromatic polyamide (FilmTec) FT30 membranes: i) experi­

ments with 2000 ppm aqueous solutions of sodium chloride (brackish water concentra·

tion) in the range 350-7000 kPa and 5-60°C (a few experiments at 25°C and 500u.

10 ODD, and 15000 ppm sodium chloride solutions were also performed (Phase 1));

ii) experiments with 2000 ppm potassium chloride, lithium chloride. and lithium

nitrate at 25°C and 500-4000 kPa (Phase 11); and iii) experiments with 35 000 ppm

sodium chloride (sea water concentration) at 4000-7000 kPa and 5-60°C (Phase III).

Model parameters were determined from the data of Phase I at 25"C, using a

nonlinear optimization routine. The average pore radii for the SW30HR and BW30

types ofFT30 membranes were determined at about 1.0 and 1.2 nm, respectively. All

the experimental data at other pressures and concentrations are well predicted by the

MO-SF-PF model. Somewhat fortuitously. the MO·SF-PF model also predict.s well for

the other 1-1 electrolytes.
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Temperature effects ace reasonably predicted by the temperature-extended

MD·SF-PF model. The apparent activation energies for pure water permeability for

the SW30HR and BW30 membranes are about 25400 and 22500 kJlkmol at 5-40°C,

respectively, and about 18100 and 13 000 kJ/kmol at 40-60°C, respectively.

Compaction, which becomes more severe as temperature or pressure is increased, has

no effect on predicting the membrane separation or flux ratio (the ratio of total

solution nux Lo pure solvent nux). An empirical model for compaction has also been

developed and used to correct the flux ratio to the absoJute values ofpermeation fluxes.

The Extended MD-SF-PF model has been found to well describe the difficult

case of strong solute-membrane affinity, in which sciute molecules are attracted

toward the membrane rather than being rejected. 7.'he model implies that once the

solute is rapidly sorbed into the membrane the solute molecules creep slowly adjacent

Lo the wall of the membrane pores.

Overall, the family of the MD-SF-PF models has been found to predict RO

membrane performance over a wide range of operating conditions. The agreement

bet.ween the experimental data and model predictions supports, but does not prove, the

proposed transport mechanism. In principle, the family of the MD-SF-PF models can

be used for different research purposes including membrane development and RO

module design.

"
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