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ABSTRACT

Necessary conditions are found for the existence of
graph designs on cubic multigraphs. It is shown that, with
a few given exceptions, these conditions are sufficient for
all connected cubic multigraphs on six or fewer vertices,
and for four of the five disconnected ones. Partial results
are obtained for the remaining multigraph, which consists of
a K; and a 3K2 component. Necessa»y and sufficient
conditions for the existence of resolvable designs on all
bipartite cubic multigraphs on six or fewer vertices are
found. Graceful labellings are given for all cubic graphs
on eight or ten vertices, and for all prisms on eighteen or
fewer vertices. These are used to find some designs on
these graphs, including some infinite classes. In addition,
some small designs are found for the S5-prism and the

Petersen graph, and socme results are given for cubes.
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INTRCDUCTION

A graph design (or G-design) is a generalization of
a balanced incomplete bleck design (BIBD) in which a
structure is imposed on each block. In graph theoretic
terms, a G-design is a partitioning of the edges of a
complete multigraph into copies of a given multigraph 6.
BIBDs then correspond to G-designs where 6 is a complete
graph. A graph decomposition is more general than a graph
design; it is a partition of the edges of any multigraph
(not necessarily a complete multigraph) into copies of a
given multigraph 6. A (v,k,\) G-design is defined to be a
decomposition of the complete multigraph kKU into copies of
a given graph G, where G has kR vertices. Graph designs were
first introduced in 1972 by Hell and Rosa [(19], who were
interested in the case where G is the path Pa. Since then,
classes of G-designs which have been studied include designs
on paths, stars, cicuits, complete bipartite graphs and

cubes. (See [6] for a survey.)

Although Wilson [36] has proved that asymptotically
the necessary conditions for the existence of a G-design are
sufficient, the exact c¢onditions for small designs must
still be determined. To do this we must look at values of

v and XA satisfying the necessary conditions for the



existence of a design on a given graph &G, and either
demonstrate that a design with thege parameters exists, or
prove that it does not. Generally, we must find smaller
designs by direct construction, and for larger ones we can

use recursive techniques.

In this paper we look at designs on cubic graphs and
multigraphs. First we find necessary conditions for the
existence of a G-design when G is a cubic multigraph. The
gmallest cubic multigraph is 3Kz, and designs on this
multigraph exist trivially when the necessary condition 3|A
is satisfied. Bialostocki and Roditty [8] have in effect
shown that the necessary conditions are sufficient for the
two disconnected multigraphs consisting of two and three
triple edges respectively. Designs on K‘ are BIBDs, and
Hanani ([17) has shown that they exist whenever the necessary
conditions are satisfied. Huang [(21] has demonstrated that
the necessary conditions are sufficient for the existence of
Kaia—designs, except when v=10 and A=1, and when w»=6 and
A =3 or 15 (mod 18). We go on to show that, with one
exception, a design exists on each remaining connected
cubic multigraph on six or fewer vertices whenever the
necessary conditions on v and XA are satisfied. This

exception is the multigraph on four vertices we have called



Cy (for cylinder). We prove that a (5,4,3) Cy-design does
not exist. Then we examine the question for the remaining
two cubic multigraphs on six or fewer vertices, which are
both disconnected. For the first one, S8 in Fig. 3.1, we
show that the necessary conditionz are gufficient except
when v = 6 and A = 3, where we prove a design does not
exist, For the second, S, in Fig. 3.1, which consists of a
K4 and a SKE component, we present partial results, and

state which designs are still needed to settle the question.

When constructing a design directly we most often
find a set of base blocks which generate the whole design
under a given auvtomorphism. The recursive methods we use
usually involve “"gluing together” smaller designs to get
larger ones, using as '"glue" decompositions of complete
bipartite multigraphs. 1In the case where G is not bipartite
but tripartite we must use instead decompositions of
complete tripartite multigraphs, and use results on triple
systems to build the designs. If 6 is not tripartite., but
quadripartite, we must use decompositions of complete
guadripartite multigraphs, but we look at only one such
multigraph and have been unable to completely determine the
conditions for the existence of a G-design for this

multigraph. From Theorem 1.8 the existence of a (v,h,hﬂ



and a (v,h,xz) G-degsign implies the existence of a
(v,h,rx1+sxz) G6-design for all integers r.,s =z 0, so we need

only look at designs with minimal values of A.

b G-design is resolvable when the hPlocks can Dbe
partitioned into parallel classes. We look at resolvable
designs in Chapter 8. We start by deriving necessary
conditions for the existence of resolvable designs on cubic
multigraphs. Huang [21] has shown that the necessary
conditions for a resolvable Ka.a design to exist are
sufficient except when v = 6 and A = 0 (mod 3. We show

that the necessary conditions are sufficient for all other

bipartite connected multigraphs on six or fewer vertices.

In Chapter 9 we present some results on larger cubic
graphs, specifically cubic graphs on eight and ten vertices,
prisms, and cubes. We find graceful labellings on all cubic
graphs on eight and ten vertices, from which we can find
some designs using the results in [(31] and [26]1. Similarly,
we can find some designs, including an infinite class, from
the graceful labellings on prisms given by Frucht and
Gallian [14]. Next we examine more closely the prism on ten
vertices, Ds, and give some small designs on this graph. We
also find some small designs on the Petersen graph. Lastly

we present some results due to Kotzig(24], who has used [31]



and [26) to find two infinite classes of designs on cubes.

In the conclusion we summarize our results, and
identify certain open problems and directions for further

research.



CHAPTER 1

BASIC CONCEPTS

§1.1 Preliminaries

A combinatorial Cblockd design is a pair (¥,2) where
¥ is a set of elements (or points, or varieties) and B is a
collection of subsets of ¥ which we call blocks (or lines}.
The design 2 = (¥,8) can be represented by an incidence

matrix M = {"ij} of dimension v x » where

v o= |7,

& = | B,
Yo (aay ),
=B (81.32; ----- JBv)l

and M is defined by

1 if a. B,
i J
m, . o=
L,J

0 otherwise;

e.g., ¥ = {0,1,2,3.4;}.
B = {((0,1),(1,2,3).(0.3.4)}.

[
OO0,
O PP O
PPRPOoOOR

Definition 1.1 Let ﬁis(ql,31) and Ig=(q;,32) be two

designs. Then a bijection
TR G 4
1 2

6
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is an i{somorphism if the induced mapping., i, from B into 7,

given by
4(B) = {i(a):aeB}

is also a bijection from 31 onto 32. In this case m‘ and 1%

are isomorphic, and if IL-IE then { is an automorphism.

In terms of the incidence matrices of 31 and 12, say
A and M, D is isomorphic to mz if there exist row and
column permutations which transform A& into ”2- or
equivalently there exist permutation matrices »? and Q such

that PA&Q-J%. The set of all automorphisms of a  design

forms a group, denoted Aut D.

A pairwise balanced design (PBD) is a design in
which each pair of elements is contained in the same number

A of blogks.

Definition f£.2 A design D=(¥,RB) is a Balanced Incomplete
Block Design, or BIBD, with parameters v,kR,A if it satisfies

(1) 7] = v,

(ii) |B| = k for all BeB,

(iii) I{B:{x,y}cB,x®y,x,yeV}| = X

(iv) =k < v
(i.e., all blocks have the same size k and any pair of
distinct elements of ¥ occurs in the same number A of
blocks. Condition (iv) is needed to exclude the possibility

that B = ¥ for every BeR.)



Definition {.3 A graph G is a pair (%,8) where ¥=%(G) is a
get of points or vertices , and %=8(G) is a set of edges or
lines, each of which corresponds to a unigue unordered pair
of distinct vertices and is said to join these two vertices,
and no two of which correspond to the same pair of vertices.
If there is an edge joining each pair of vertices then G is

the complete graph on v vertices, K , where v=|¥%(G)].

Definttion f.4 A multigraph is a generalization of a graph
in which repeated edges are allowed — i.e. two vertices may
be joined by %wo or more edges. The complete multigraeph on v
vertices AKU is the graph on v vertices in which every pair
of distinct vertices is Jjoined by exactly A edges. A
multigraph ¥ is a submultigraph of a multigraph 6 if
V(H)SV(G) and S(H)<8(G). An n vertex cligque of a graph
(v.%8) is a subgraph of G which is isomorphic to the complete

graph on n vertices.

Definttion {.5 A G-decomposition of the graph H = (¥.¥%) is
a partition of ¥ into subgraphs Gi = (WE,Ei), i=1,....q,

{(where U 5. =8, 3inzj = @ for i#j) such that each G, is
i

isomorphic to a given graph G. We shall call these
subgraphs G-blocks, When W is the complete multigraph RKU
these decompositions are known as sraph designs or Dbriefly

G-designs,



Graph designs can be viewed either in terms of
graphg or in terms of block designs. (Copies of the graph ¢
in a graph design correspond to blocks in a block design.)
Cases where G is a complete graph Kk cor?espond to balanced
incomplete block designs (BIBD's) with blocks of size k.
When G is not a complete graph, G-~designs are
generalizations of BIBD's in which a structure is imposed on
each block - a~pair of elements occurring in a block is
"linked" in that block only if it is joined by an edge in
the corresponding copy of G.

A parallel class in a design 2 = (¥,8) is a set of
blocks P € 8 which partitions the set of elements ¥; i.e.,
if P m {Bi,Bz,....Bn} is a parallel class then Bi N Bj - 0

‘n
for i#;, and U B, = 7.
=1

A graph design is said to be resolvable if the
blocks can be partitioned into parallel classes.

In Fig. 1.1 we see two examples of a graph design.
The first is a decomposition of ZK‘ into Ka's. This
corresponds to a type of BIBD called a Twofold Triple
System. (Each pair of distinct elements occurs in exactly
two triples.) Here any two elements occurring together in a
block are linked in that block since G in this case is a
complete graph. Note that each element occurs in exactly
three copies of Ka and thus in three blocks of the block

design. In the second example we have a decomposition of K‘
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N NI\ N

(1,2,3)

(1,2.4)

(1,3,4)

(2,3.4)

(i) (te)
Fig. 1.1

into Ps's {paths with three vertices). P3 is Kﬁ with one
edge removed, and since it is not a complete graph, this is
not a BIBD and not every pair of elements occurring in a
block is linked in that block. In this particular case,
where G is Pa' we have listed the blocks in such a way that
only adjacent elements in a block are linked (i.e. not first
and last). In general, when listing blocks in a G-design,
we must specify the relationship between the block listing
and the correspnding copy of 6 ~ i.e. which elements in a
block are linked and by how many edges. This latter example
with G = Pa was the first generalization of BIBD's to graph
designs, and in the resolvable case is Kknown as the
Handcuffed Prisoner's Problem (Hell and Rosa [(19]). Note
that in this case not every element occurs in the same
number of blocks — three occur in two blocks and one occurs

in three blocks.
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We call a G-design on AK  where G is a graph on R
verticezs a ¢Cv,k,\> G-design. If each vertex of Kv occurs in
the same number of copies of G (each element occurs in the
same number of G-blocks) then the G-design is said to be
balanced. The second example above, where G is PB, is a
case where the design is not balanced. 1In the case where G
is a regular graph (all vertices have the same degree as in
the first example above) it can easily be seen that the
G-design is automatically balanced. Here 1is the main
question regarding G-designs: Given a graph 6 on k
vertices, for which values of v and N does a G-design exist?

Some types of graph G which have been looked at with
a view to finding G-designs are the following:

(1) the complete graph on kR vertices Kh

(2) the star Sh

(3) the path Ph {with k vertices and k-1 edges)

(4) the cycle C,

(5) the conplete bipartite graph Km‘n
(6) small graphs with k vertices where 3 = k = 3

(7) the cube Qd‘

When G is a complete graph Kh a G—-design is the same
thing as a BIBD. A lot of work has been done on these, see
for instance Hanani [17]. Designs on cubes have been looked
at by Kotzig {24]. For results on the other categories

above see the survey by Bermond and Sotteau (6].



We shall be looking here only at G6-designs on
regular graphs, specifically at those on cubic graphs. of
the above, only complete graphs, cycles, and cubes are
necessarily regular. (Categories (5) and (6) include some

regular graphs.)

gi.2 Elementary Relations

First we derive necessary conditions for a (v,k.,\)

G-design to exist when G is a d-regular graph on k vertices.

Theorem 1.6 ' Necessary conditions for a (v,k,A) G-design to

exist when G is a d-regular graph on kR vertices are

Av(v—-1) = 0 (mod kd) (1)
Av=-1) = 0 (mod d) (2]
AZn (3)
v 2k (4)

(where m is the greatest multiplicity of edges in G).
Proof The number of edges in G must divide the number of

edges in AX so
(Av(v=1)/2)/(kd/2) = Av(v-1)/kd

must be an integer. which means we must have

Av(v=1l) = 0 (mod k4),.
Also, since the design must be balanced, we have that each
vertex of ka appears in the same number, say r, of
G-blocks. Therefore A(v-1)/d must alsoc Dbe an integer,

which means
Alv=1) = 0 (mod d).
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It is obvious that if G has multiple edges we must
have AZm where m is the greatest multiplicity of edges in 6
(1=m=<d), and of course we cannot have a block size greater
than the number of points so we must have vzk,
Corollary If 6 is a cubic multigraph on &k vertices with
greatest multiplicity of edges m, then the necessary

conditions for a (v,k.,\) G-design to exist are

Av(v-1) = 0 (mod 3k) (1)
A(v-1) = 0 {(mod 3) (2)
AzZnm (3)
v =k (4).

Lemma 1.7: The number of blocks in a (v,k,\) G-design 1s

given by
b = Av(v-1)/kd,

Proof The number of blocks must equal the number of edges
in ka divided by the number of edges in a G-block which is
the number of edges in G. So we have

b = [Av(v-1)/2]1/{kd/2] = Av(v-1)/kd.

Given a multigraph G, and values of v and A
satisfying the above necessary conditions, we must try to
find a G6-design on AKU {(or prove there is none) .
Asymptotically (for v sufficiently large) the necessary
conditions are always sufficient (Wilson [36]). Therefore
the real problem is to determine the exceptions 1in each

case.
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81.3 Designs on 1-regular and 2-regular Multigraphs

The only connected l-regular graph is the single
edge ( I ) and all (v,2.,x) designs exist on this graph

trivially. Disconnected l-regular graphs are of the form

so consist of m disjoint edges. If m=v/2 then such a
G-design is equivalent to a partition of AKV into 1-factors
or matchings. For the case of arbitrary m, see for example

Rees [29].

Connected Z2-regular graphs are cycles Cu (Ck is the
cycle on k vertices with k edges). The smallest of these is
C3 which is the same as Ka. Designs on this graph
constitute the well Kknown class of BIBDs called triple
systems. These are known to exist whenever the necessary
conditions of Theorem 1.6 are satisfied (Hanani [18]). For
example, in the case A=1, a (v,3,X\) Ca-design, or Steiner
Triple System, exists whenever v = 1,3 (mod 6) and v23. it

has been shown that a (v,k,A) Ch-design exigts if

k = 0 (mod 4) and v=2pk+l (Kotzig [25])
k= 2 (mod 4) and v=2pk+l {Rosa [331)
k odd and w=2pk+l or v=2Z2pktk (Rosa [(32)).

The necegsary conditions of Theorem 1.6 have been
shown to be sufficient for small values of k: by Huang and
Rosa (34) for R = 4, 5, 6; and in [3! {41, and [5] for

k =4, 5, 6, 7, B.
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Disconnected 2-regular graphs are collections of
disjoint cycles. The case where k=v is equivalent to
partitioning the edges of AKv into isomorphic 2~factors., If
A=1, this is known as the Oberwoljfach problem and is
unsolved in general. (The Oberwolfach problem can be stated
as follows: Given n participants and tables (Ti). each
acommodating ti people (tiza) where the total number of
people who can be accomodated is n, is it possible to seat
these n people on m occagions so that each pair of
participants are seated next to each other exactly once?)
The smallest disconnected 2-regular graph is that consisting
of two disjoint triangles, and among other configurations of
pairwigse disjoint triples has been looked at by Horak and
Rosa [20]. Note that there are none of these on fewer than

gix vertices.

The next class of regular graphs 1is 3-regular or

cubic graphs. The only examples of cubic graphs covered in

the seven categories above are K‘, Ks a and the cube on
eight vertices, Qa. (The other cubes are all regular, but
this is the only one which is cubic!} In this paper we

shall look at G-designs on all cubic multigraphs on s8ix or
fewer vertices and we shall also consider some additional

cases.
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1.4 Methods of Construction

The methods used to find G6-designs fall into two
general categories: direct and recursive. Typically we must
find some designs directly for small values of v, and use
recursgsion for larger wvalues of wv. We now give some
definitions that will be needed in order to describe the
techniques we use to find designs directly.

1f & is an automorphism of a balanced G-design 2
with v elements, then two elements x and y of 2 are said to
be in the same ordit of elements if af(x) =y for some t=1.
Two blocks &  and B of D are in the same orbit of blocks if

S (B ) = B for some s>1.
™m ia]

The property of being in the same orbit is an
equivalence relation, so the elements and blocks ¢of a design
are partitioned inte disjoint orbits by an automcrphism & of
D. An orbit of blocks (or elements}) can be generated by any
one of its members. Therefore we need only give one block,
which we shall call a base block, to represent each orbit of
blocks in a design. A degign with a given automorphism can
then be completely determined by a set of base blocks,

congisting of one block from each orbit.

To find a small design directly we first
calculate (from Lemma 1.7) the number of blocks & that such

a design would have. This tells us what type of design to
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look for. If v|b we look for a cyclic design on Zv, and if
(v-1) |b we look for a design on (2, U o (Z = plus a
"point at infinity", so called because it is fixed under all
automorphisms). If (v/2)|d but vib then we try for a cyclic
design on Z with one short orbit of blocks of length wv/2

and the remaining orbits of length v,

The erder of a basea block B in a design under
automorphism « is the smallest positive integer m such that
A" (B)=B.

A G-design ® = (¥,B) is said to be cyeliec if its
automorphism group Aut ® contains an element congisting of a
single cycle of length v = |¥]|, 1In this case we take the
elements of the design to be the elements of Z , and as
differences use the values

<5,L'j = min(|t=J|, v={i=J])

where t,J € ZU. and 6£ . 1s called the edgelength between t

and y. There are Lv/zj edgelengths in ZU, corregsponding to

the edgelengths in K,

It can easily be shown that the order m of a Dbase

block in a c¢yclic design must satisfy the conditions

1< m=< v, mha 2 u and m|

In a cyclic design all differences are pure
differences. A pure difference X =V, is defined to be the

difference between two distinct elements which are in the
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same orbit k of elements. In general the designs we
construct will have more than one orbit of elements, and
therefore Dbesides pure differences we will have mixed
differences, which are defined to be differences %=V,
between elements which are in different orbits & and ! of
elements. The differences between the o element and other
elements belong to a special class of mixed differences. In
constructions where we use an @ element, we have one "o
difference", labelled w, . between the orbit consisting of

the ®© element and each other orbit k of elements.

To find a design on Zv we must construct base blocks
on Z  which between them use each edgelength from 1 to |v/2]
A times. If v is even the largest edgelength »/2 is needed
only A/2 times because it occurs half as often as the other
edgelengths in Kv. Edgelenths occuring in a base Dblock
which generates a half orbit of length v/2 are counted once
for every second time they occur in this block. If the
element set is Zvd_u o the differences we must find are the
edgelengths in Kb-x plus the difference with wvalue w,
Sometimes we have to use more complicated element sets for

our base blocks -~ in general they will be of e form

th
Z - -
{ px{O.l....,q 1}} or {(pr {0.,1,....9=1}y v m} where
pxg = v or v—1 respectively. 1In these cases we have mixed
differences between each two copies of Zp as well as pure

ones within each copy.
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For a design on { pr(D,l....,q—l}} the differences

we must find are the |p/2]q pure differences defined by

&, ; = min(lt=Jl, p=l2-JD1, L& Z,, e
k =0,1,...9-1

and the [E]p mixed differences defined by

K,
i,

= [(i=)) mod pl, | i,] € zp

R,L = 0,1,...9-1, k*l.

If the element set is {(pr {0.1,...,9~1}) v w} we need all
the above differences plus the g "w differences" given by
H, = o, 1 & ZP

k=0,1,...g-1.

Once we have found a set of base blocks which between
them use each difference in the element set A times, the
required design is the set of all blocks contained in the
orbits generated by these base blocks. Unless otherwise
gpecified, the automorphism & used to generate a whole
design with element set Zp, Zp U o, pr{o,l,....q—l} or
(pr{O,l....,q—l}) U w from a set of base blocks will be

that which adds 1 (mod p) to each element.

Thus, essentially, the method we have just described
is a variation on Bose's method of 'symmetrically repeated

differences" (see for example [16]).
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When we have found the first few cases directly, we
can usually find the rest using recursion. The recursive
method we shall be using most commonly in this thesis
involves finding decompositions of complete bipartite or
tripartite multigraphs into G-blocks, and using these to
"glue together" smaller designs to make bigger ones. This
will be explained in more detail when we come to an example
of this in Chapter 2. We need only find designs with
minimal values of A since we can find ones with larger A's

using the following lemma.

Lemme 1.8 Given (resolvable) (v,k,A) graph designs on a
multigraph 6 for A=A and A=XA,, Wwe can find (resolvable)
(v, kR, oA _+s\) G-designs for all integers r,s = 0.

Proof The set of edges in the multigraph (rl1+sx2)KU is the
union of the edge sets in the two multigraphs rk]KU and
sszv. The edges in rhiKu can be covered with r copies of
the given decomposition of LiKv, and the edges of sxzxu
with s copies of the given decomposition of thv. This
covers all edges in (rk1+skz)KU and thus gives us a
(v, Rk, T +sX_) G-design. If the (v.,k,A) and (v, R,A)
designs were resolvable then so is the (v,k.rk1+ak2) design
since the parallel classes are preserved.

Corollary If a (v,k,A) G-design exists then a (v.k,s\)

G-design exists for all positive integers s.
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When finding decompositions of complete bipartite
multigraphs we shall make use of the following result.

Lemma 1.9 If there exist decompositions of AK and AK
n,n m,n

¥ *

into G-blocks for a given graph G, then there also exists a

decomposition of sAK into G-blocks for all positive

pntgm, rn
integral values of p,q.,r,s.

Proof The edge set of sAX is the union of the edge

ontqQin, rn
sets of Skxpn,rn and squm,rn, gc if we can decompose each
of these into G-blocks we are through. AKPn rn  CaR be

decomposed into pr copies of A and we are given that

»

each of these can be decomposed into &G-blocks. Therefore
kan,rn is also decomposable into G6-blocks, Similarly
Kqu,rn can be decomposed into G-blocks. To get.
decomposgitions of_skan‘rn and squm,rn take s timeg the
decompositions of prn,rn and Aqu,rn.

Given a multigraph G for which we wish to examine
the existence of G-designs we proceed as follows: First we
find the necessary conditions for such designs to exist from
Theorem 1.6. This gives us necessary conditions in tefms of
X and v. Next we find the necessary conditions on v for
different values of A, and work out which wvalues of A we
need to look at. If 6 is a simple graph, for instance, then
we start with A=1, but otherwise we must start with Xi=m (m
is largest multiplicity of edges in G). The multigraphs we

shall be considering all have m = 1, 2, or 3 since they are
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cubic graphs. Once we have finished with the smallest A, we
proceed to the next for which all OG6-degigns caﬁnot be
derived from this using Lemma 1.8. We continue looking at
new A's until all larger designs can be derived from the
ones we have. Usually thia is when we hit a A for which

there are no necessary conditions on v other than v 2 X,

If 6 has no multiple edges we start with A=1. If we
can solve the A=1 case entirely, then we have solutions fof
all other cases with the same necessary conditions. so that
for higher A's we need only look at cases with weaker
necegsary conditions, and for these only at those v not
covered in the A=1 case. If G has m>l, then we must look
first at the case A=m, and then at cases where mf{x and/or
the necessary conditions on v are weaker. We continuse until
designs with all subsequent A's can be derived from the ones
we have, which is usually at the smallest X with no

necessary conditions on v (except vzk),

Once we have decided which values of A we need to
look at, we take the first and try to find all (v.k,\)
G-designs for this A, starting with the smallest v for which
the necessary conditiong are satisfied. Then we do the
gsame for the other A's. If there are any designs which
cannot be found, we must alsc look for those designs with
larger A which we could otherwise have derived from these

using Lemma 1.8. Usually the designs in the first few cases
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must be found directly.

When dealing with tripartite decompositions, which
we must do if 6 is tripartite but not bipartite, we make use
of some results on Steiner Triple Systems, and other related
designs, to "glue" the designs together. 1In the case k=6,
A=9 we use some results on Latin Squares and Transversal

Designs, and the more general result of Lemma 1.10 below.

Lemma 1.10 Let Gi, Gz, G3 be three multigraphs with
[¥(G)1=]7(G,) [ENACTO R
13(61)I5I3(62)I513(63)|-

If there exists a (resolvable) decomposition of G3 into

Gé—blocks. and a (resolvable) decomposition of G2 into

Gi—blocks.there also exists a (resolvable) decomposition of

63 into Gi—blocks.

Proof To find such a decomposition, take the decomposition

of G, into G_-blocks, and cover each Gz—block with the

decomposition of Gz into G‘—blocks. It can be shown that

resolvability is preserved here.



CHAPTER 2
DESIGNS ON CUBIC MULTIGRAPHS WITH FEWER THAN SIX VERTICES

2.1 Introduction

There are only four cubic multigraphs on fewer than

3ix vertices, as shown in Fig. 2.1:

() (Z1)

(ttd) (tv)

Fig. 2.1

The first case is trivial — a G-design exists on
this graph whenever each edge multiplicity of the complete
multigraph is a multiple of three — i.e. when 3|A. There is
no restriction on v other than v>l. The second has, in
effect, been solved by Bialostocki and Roditty {8], who have
shown that the necessary conditions of Theorem 1.6 are

sufficient. The third is K, ., and here it has been shown by

24
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Hanani {17] that the necessary conditions are sufficient.
Therefore the smallest unsolved case for cubic multigraphs
ig the fourth graph, which we shall call the Cylinder,

abhreviated Cy.

Lemma 2.1 When G is a cubic multigraph on four vertices,

the necessary conditions for the existence of a G-design are

A (v-1) = 0 (mod 12) (1)
A(uv-1) = 0 (mod 3} (2)
Az 2 (3)
v = 4 (4)

and the necessary conditions on v for all the differept

possible values of A are as follows:
v=1,4 (mod 12) if X =1, 5 (mod 6}
v =1 (mod 3) if A = 2, 4 (mod 6)
v=0, 1 (mod 4) if x = 3 (mod 6)
v =24 if A =0 (mod 6).

Proof These results follow from Theorem 1.6.
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2.2 Cy~designs with A=2

For the cylinder Cy we shall list blocks as shown

below (Fig.2.2):

(a,b;c,d)

Fig. 2.2

The first two elements, separated by a comma in the block
listing, are joined by a double edge in the G-block, as are
the last two. The middle two elements are separated by a
semi-colon in the block listing and are joined by a single
edge in the G-block. The first and last elements in the
block listing are also joined by a single edge in the
G—-block. The remaining pairs of edges in the block (i.e.

non consecutive onesg) are not joined by an edge at all.

If we can find Cvy-designs in the cases A=2, A=3 and
A=6 then the designs for all other A can be derived from
these using the result of Lemma 1.8. We start with the
smallest value A = 2. The three smallest designs in this
case, which have v = 4, 7 and 10 respectively, are found by

direct construction.
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Lemma 2.2 A (4,4,2) Cy—-design exists.
Proof (by construction) The number of Dblocks in such a

de=sign is 2 from Lemma 1.7. A design of this type is shown

in Fig. 2.3.

Fig., 2.3

We can represent this design by listing the two

blocks

(0,1:;3,2) and (1.,2:0,3),

or since this is in fact a cyclic design on Z_ with cycle of
length two, we could just give one of the Dblocks, say the

first one:

{0,1:3,2).

The second can then be obtained by acding 1 to each element
in.the first (mod 4). Adding 1 to each element in the
second gives wus the first again, so this base block

generates a half orbit of length 2.
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Lemma 2.3: A (7.4,2) Cy-design exists.
Proof 'The number of blocks & iz 7 in this case. A cyelic
design on Z, is generated by the block
(0,1:6,2).
This can be verified by checking that each of the

differences 1,2 and 3 occursg twice in this block.

Lemma 2.4: A (10,4,2) Cy—-design exists,
Proof: Here b = 15. A design of this type is generated on

2 by the blocks
10

(0,8:7,1)
{(0,3:8,5) (half orbit).

The designs in the remaining cases can be found
recursively. To do this we must find decompositions of some

complete bipartite multigraphs into Cy—-blocks.

Lemma 2.5 The complete bipartite multigraph 2K33 can be

decomposed into submultigraphs isomorphic to Cy.

Proof The required decomposition is shown in Fig. 2.4:




29
The elements here are the vertices of the bipartition
(00.10.20:01.11.21).

and the blocks are
(00'0].;20‘11)' (00’21;10111)- (10001:2012‘)-

Lemma 2.6 The complete bipartite multigraphs 2K = and

2K, , can be decomposed into Cy-blocks.

()

Proof Follows from previous lemma and lLemma 1.9.

Theorem 2.7 For a (v,4,2) Cy-design to exist it is

necesasary and sufficient that v = 1 (mod 3).

Proof This condition is necessary from Lemma 2.1. To sheow
it is also sufficient, we must find (v,4,2) Cy-designs for
all » =1 (mod 3). Designs on ZK‘. 2K7, and ZKu: have been
found directly in Lemmas 2.2 to 2.4. All remaining (v,4,2)
Cy—designs can be constructed recursively using these three
designs plus the decompositions of 2K¢o and ZKQG into
Cy-blocks which exist by Lemma 2.6. We sgseparate them into

those having v = 1 (mod 6) and those having v = 4 (mod 6},

[

and show how to construct a design in each case.

Case I: v = { Cmod &2.
Let » = 6ém + 1. Split the v points (or vertices)
into m rows of 6 and one "point at infinity". Cover each

row plus infinity point with the 2K? Cy—design from Lemma
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2.3 and each set of mixed differences (edges between rows)
with the 2K decompogition from Lemma 2.6. This takes

care of all the edges and so gives us a (v,4,2) Cy—design.

Case II: v = 4 Cmod 62

Let v = 6m + 10. Split the points into m rows of
6, one row of 9 and a point at "infinity". The row of 9
plus infinity point can be covered with the (10,4,2)
Cy—~design from Lemma 2.4, and each.row of 6 plus infinity
point can be covered with the (7,4,2) Cy-~design (as in
previous case). This leaves the edges between rows, Those
between rows of 6 can be covered by the 2K¢6 decomposition,
ags above, and those between the row of 9 and each row of 6
can be covered using the decomposition of ZKQG into

(]

Cy—blocks from Lemma 2.6,

&2.3 Cy-designs with A=3

We now proceed to the case A = 3, where we show that
the necessary conditions for the existence of a Cy-design
are sufficient, except when v = 5, We first find designs in
all other cases satisfying the necessary condition, and then
give a proof of non—-existence for a (5,4,3) Cy-design. The
smallest designs to be found here (excluding the case v = 3)
are those with v = 4, 8, 9 and 13. We find these four

designs directly, and all larger ones using recursion.
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Loemma 2.8 A (4,4,3) Cy-design exists.

Proof Such a design, which must have 3 blocks from Lemma

1.7, is shown in Fig. 2.5:

0 1 0 1 0 1
3 2 3 2 3 2
(0,3:2,1) (0,1:3,2) (0,2;1,3)
Fig. 2.5

Lemma 2.9 BAn (8,4,3) Cy—-design exists.
Proof The number of blocks here is 14. A design on
{2, VU o} is generated by the two blocks

{0,1;2.95) and (0,2;m,4).

Lemma 2.10 A (9,4,3) Cy—design exists.
Proof 'The number of blocks & is 18. A cyclic design on Z
is generated by the two blocks

(0,1;:;8,5) and (0.5:8,1).

Lemma 2.11 A (13,4,3) Cy—design exists.

Proof Here b=39. A cyclic design is generated by the three
blocks

(0,3:;8,4), 1(0.,5:6,7), (0,6;8,10).
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Now that we have found designs in these small cases,
we need some decompositions of complete bipartite
multigraphs for recursion, as in the A = 2 case.

Lemma 2.12 There exists a decomposgition of BK‘,‘ into Cy
blocks.

Proof The number of blocks here is 3x4x4/6=8. A
decomposition on Z x{0,1} is generated by the two blocks

(0°,01:20,11) and (00,11,20,01).

Lemma 2.13 There exist decompositions of 3Kaa and BKQZB
into Cy-~blocks.

Proof Follows from Lemma 1.9 and previous lemma.

Next we show, using recursive methods, that (v,4.,3)
designs exist whenever v = 0 or 1 (mod 4), and v = 3. We
cannot use the obvious construction for values of v

satisfying v = 1 (mod 4) since we do not have a design for v

= 5, Therefore we must split this case into the two sub

cases v = 1 {(mod 8) and v = 5 (mod 8).

Lemma 2.14 There exists a (v,4,3) Cy-design whenever v = 0
(mod 4).
Proof Let v = 4m. Arrange points in m rows of 4. Cover

each row with the (4,4,3) Cy-design from Lemma 2.10 and
edges between each pair of rows with the decomposition of

3K from Lemma 2.12.
4,4
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Lemma 2.15 There exists a (v,4,3) Cy-design whenever v s 1

(mod 8),

Proof Let v = 8m + 1. Arrange the points inm rows of B

plus 1 point at "infinity". Cover each row plus o point

with the (9.4.3) Cy-design from Lemma 2.10, and edges

between each pair of rows with the decomposition of SKmB

from Lemma 2.13.

Lemma 2.16 There exists an (v,4,3) Cy-design whenever v = 5

(mod 8) and v z 13.

Proof Let v = 8m +13. Split the points into m rows of B8,

one row of 12, and a point at "infinity". Cover each row of

8 plus o point with the (9,4,3) Cy-design from Lemma 2.10,

the row of 12 plus o point with the (13,4,3) Cy-design from
Lemma 2.11, all edges between rows of 8 with the

decomposition of SK&B from Lemma 2.13 and edges between the

row of 12 and each other row with the decomposition of

SKQma from Lemma 2.13. This covers all edges and =0 gives

us a (v,4,3) Cy—-design.

Now we have shown that a (v,4.3) Cy-design exists for all

values of v satisfying the necessary condition v 0, 1 (mod

1]

4), except for v = 5. To complete the case A = 3 for the
multigraph'cy, we must find a Cy-design with x = 3 and v = 5

or prove that one does not exist.
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Lemma 2.17 A (5,4,3) Cy-~design does not exist.

Proof We shall show that such a design cannot exist by
finding certain conditions that it would have to satisfy,
and then looking exhaustively at all ways of constructing it
so as to satisfy these conditions. First we note that there
are six different ways we can find a copy of Cy in 3K5. {We
consider the Cy-blocks to be different only if one cannot be
obtained from the other by rotation.) These are shown 1in
Fig. 2.6, and indicated below for each is the number of

edges with difference 1 and the number with difference 2.

v} 1 0 1 0 1
4 2 4ﬁ[:;%7 2 4 25 2
o o o
3 3 3
Difference 1: 5 1: 4 1: 4
2: 1 2: 2 2: 2
(a) (b) (c)
0 1 0 1 0 1
q 2 4 2 4 2
) o [=]
3 3 3
Difference 1: 2 1: 2 :
2: 4 2: 4 2: 5

(d) (e) (f)

Fig. 2.6
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If this design existed, then the number of Dblocks
would be 5 from Lemma 1.7. Each of these blocks must be cne
of types (a) to (f). Let the number of blocks of type (a)
be a. the number of type (b} be & and so on. Since 3K, has
a total of 30 edges of which half have difference 1 and half
difference 2, we know that a,b,c.,d,e,f must satisfy the
following three equations.

(1) a+db+ct+d+e+ f=235
(2) Sat+ 4(b+c)+ 2(d+e)+ f = 15

(3) a + 2(b+c)+ 4(d+e)+5f = 15,
Let b+c = g, d+e = h. Then we can rewrite these as
follows:
(1) a+ g +h+ f=5
{(2) BSa + 4g+ 2h+ f = 15

(3) a + 28+ 4kh+ 5F = 15,

We need only consider solutions to these equations
in which a 2 f; any design with a < f could be tranformed
onto one where @ > f since there exists an isomorphism
taking (a) blocks to (f) blocks. The only solutions to

thegse equations having a« =z f are:
c1o a=1, g=1, h = 3, f =0,

ClI> a =2, g =0, h =2, f=1.
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Any (5,4,3) Cy-design would be balanced, since Cy is
regular. Therefore each triple edge of 3K5 must have two
edges in one block and one in another. (It is easily seen
- that we cannot have one in each of three different blocks.)
Bearing this in mind, we try to construct a design first
with the number of each kind of block specified in (I), and
then with those specified in (II). We can put the first
block anywhere we want W.L.0.G. so we cﬁoose to put as first
(a} block {0,1;3,4} in each case.
cI> a=1,b+c=1, d+e =23, f=0,

Put (a) as specified above. Next we can add either a
(b) or a (¢). There are two nonisomorphic ways to add (b)
and only one way up to isomorphism to add (c), shown in
Figs. 2.7(i), (ii), and (iii) respectively. In (i) a (d)
and an (e) configuration can each be added only once, and in
(ii) neither (d) nor {(e) will fit. In (iii) (d) can be added
only once and (e) not at all. Therefore none of these work,
and a design of type (I) cannot exist since we have

exhausted all the possibilities for it.

O ——

(te)
Fig. 2.7
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CII> a=2, b+c =0, d+e=2, f=1,

Put first (a) as above. There is only one place up
to isomorphism to put a second (a), and then only one way to
add a (d). Having done this (Fig. 2.8) there is nowhere we
can put an (e) or an (f). Therefore a design of type (II)
cannot exist either, and since the existence of any (5.4,3)
Cy—design implies the existence of either one of type (I) or

one of type (II) we can conclude that no such design exists.

a——u—

Fig. 2.8

Theorem 2.1(8 An (v,4,3) Cy-design exists whenever the
necessary condition v = 0, 1 (med 4) from Lemma 2.1 is
gatiafied, with the single excepticn of the case v = 5,

Proof This follows from Lemmas 2.8 to 2.17.

52. 4 Cy-designs with A=6 and 9

Next we look at (v,k,A) Cy-designs with A= 6,
Here the only necessary condition iz v z 4. All designs

with » = 1 (mod 3) or v = 0, 1 (mod 4) (except v = 3) can be
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derived from the designs found with A=2 and A=3
respectively. Therefore we need look only at those with
v =2, 3, 6, 11 (mod 12) and the one with v = 5. We give
direct constructions for the three smallest of these

designs, namely those with v = 5, 6, and 11.

Lemma 2.19 There exists a (5,4,6) Cy-design.
Proof The number of blocks is 6x5x4/12 = 10. A cyclic
design on 25 iz generated by the two blocks

(0,1;3,4) and (0,2:4.1).

Lemma 2.20 There exists a (6,4,6) Cy—-design.
Proof The number of blocks here is 15. A deszign on
{(z, v w} is generated by the three base blocks

(0,1:;3,4), (0,2;w,4), (0,2;:4,m).

Lemma 2.2¢1 There exists an (11,4,6) Cy-design.
Proof The number of blocks is 55. A cyclic design on 2;1 is
generated by the blocks

(0,1;3.8) taken twice,

and (0,2;7,10), (0.,2:6,10), (0,3:8.4).

Now that we have found these small designs directly,
we need some decompositions of small bipartite multigraphs

in order to construct the rest using recursion.

Lemma 2. 22 There exists a decomposition of 6K32 into

Cy—-blocks.
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Proof Such a decomposition on (0,1,2;«,b} is shown in Fig.

2.9:
0 1 2 0 1 2 0 1 2
o b a b a b
(0,2:1,%) (a,1:5,2) (0,a:2,b)
(L) (£) {(iid)
0 1 2 0 1 2 0 1 2
a b a & b
{(0,5;1,a) (1,b;2,a) . {0,5;2,a)
{(iv) (v) (vi)
Fig. 2.9
Lemma 2.23 There exist decompositions of 6K3 5 and 6K66

into Cy-blocks.

Proof TFollows from Lemmas 1.9 and 2.5.

Lemmna 2. 24 There exist decompositions of 6K __, 6K,
6K and 6K into Cy-blocks.
&,8 0,0

s

Proof Follows from Lemmas 1.9, 2.22 and 2.23.

Lemma 2.25 There exists a (v,4,6) Cy-desiqn whenever v = 2
(mod 12) and v = 14.

Proof Let v = 12m + 14. Arrange points in 2m+l rows of 6
plus one row of 8. Cover edges in the row of &8 with the

(8,4,6) Cy—design which can be found from Lemmas 2.9 and
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1.8, and rows of 6 with the (6,4.6) design from Lemma 2.20.
Cover edges joining each row of 6 to the row of 8 with the
61<‘5,B decomposition from Lemma 2.23 and edges between rows
of 6 with the GKQG decomposition which exists by Lemma

2.24.

Lemma 2.26 There exists a (v,4,6) Cy-design whenever v = 3
(mod 12) and v = 15.

Proof Let v = 12m + 15. Arrange points in 2m+l rows of 6
and 1 row of 9. Cover edges in the row of 9 with the
(9,4,6) Cy—-design from Lemmas 2.10 and 1.8, and rows of 6
with (6.4,6) design from Lemma 2.20. Cover edges Jjoining
each row of 6 to the row of 9 with 6K¢p decomposition from
Lemma 2.24 and edges Dbetween rows of 6 with 6K

&6,6

decomposition from Lemma 2.23.

Lemma 2.27 There exists a (v,4,6) Cy-design whenever v = 6
(mod 12).

Proof Let v = 6(2m+1). Arrange points into rows of G.
Cover each row of 6 with the (6,4,6) Cy—-design from Lemma
2.20 and edges between rows with the Gan decomposition

from Lemma 2.23.

Lemma 2.28 There exists a (v,4,6) Cy-design whenever n = 11
(med 12).

Proof Let v =6(2m+1l) + 5. Arrange points in 2m+l rows of 6
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and one row of 5. Cover the row of 5 with the (5,4,6)
Cy-design from Lemma 2.19, the edges between each row of 6
and the row of 5 with the 6de decomposition from Lemma

2.24 and remaining edges as in the proof of the previous

lemma .

Theorem 2.29 There exists a (v,4,6) Cy-design for all

v 2z 4,

Proof Follows from Lemmas 2.19 through 2.28 and Lemma 1.8.

We can now derive designs for all other values of w

and A satisfying the necegsary conditions, except for those

with v = 5, and A = 3 (mod 6). These could have been
derived from a (5,4,3) Cy-design, except that we have proved
one does not exist. Therefore we use instead a
(5,4,9)-design, for which a direct construction is given

below.

Lemma 2.30 There exists a (5,4,9) Cy-design.
Proof Here b = 15, A cyclic design on Z5 iz generated by

the blocks
(0,1;2.4), (0,2;1,3), (0,1:3,2).

Theorem 2.31 Tor the multigraph Cy (the '"cylinder") a graph
design exists whenever the necegsary conditions are
satisfied, with the exception of the cagse A=3, v=5 where no
(5,4,3) Cy-design exists.

Proof This follows from Theorems 2.7, 2.18, 2.29 and Lemmas

1.8 and 2.30.
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CHAPTER 3
DESIGNS ON CUBIC MULTIGRAPHS WITH 6 VERTICES:
Bipartite Connected Multigraphs

§3.1 Introducticn

Having looked at all cubic multigraphs on four or
fewer vertices we now proceed to those on six vertices,
First we find the necegsary conditions on v and A for a
G-design to exist when 6 is a cubic multigraph on six

vertices:

Lemma 3.{ When 6 is a cubic multigraph on six vertices, the

necessary conditions for the existence of a G-design are

Av(v=1) = 0 (mod 18) (1)
A (v-1) = 0 (mod 3) (2)
AEZm (3)
v b (4)

Putting in values for A we get necessary conditions

cn v for each A:

v =1 (mod 9) - for A=1 or 2 (meod 3)

v=0or 1 (mod 3) for A = 3 or 6 (mod 9)

v =6 for x = 0 (mod 9).

Proof This result follows from Theorem 1.6.

43
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There are nine cubic multigraphs on six vertices

altogether, as shown in Fig. 3.1:

.
e}

S!. 52 53
(t) (Z1) (2i¢)
S-t SS 56
(tv) (v) (vi)
57 Sa SD
(vii) (wiit) (i)
Fig. 3.1

We shall divide these multigraphs into three
categories as follows: Category I contains all connected

bipartite multigraphs, Category II c¢ontains all connected
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noﬁ bipartite multigaphs, and Category III contains all
disconnected muitigraphs. The first three multigraphs in
Fig.3.1 fall into the first category, the second three into
the second, and the last three into the third. In this
chapter we look at those three in Category I. Categories Il

and III will be examined in Chapters 4, S5, 6 and 7.

e graph S is the complete bipartite graph X _.

and the necegsary conditions from Lemma 3.1 are
v =1 (med 9) for A=1 or 2 (mod 3)

v=0o0or 1 (mod 3) for A 3 or 6 {mod 9)

]

v =6 for A

[l

0 (mod 9).

Huang [21] has established the nonexistence of (v,k,A)
Si—designs for

(v,k,\) € N = {(10,6,1)} L {(6,6,6t+3) : t=0)
and has shown that in all other cases the necessary
conditions are sufficient. Note that there is no (6,6,3)

Sg—design.

£3.2 Sz—designs with A=2

This leaves Sz and 53, both of which have maximum
edge multiplicity m = 2, so the first possibility for a

G-design to exist in either case is when A = 2 and v = 10.
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We start with Sz, for which we shall use the notation
(a.b;r ,d;e,f) to describe a block, as illustrated in

Fig.3.2:

f2
o

e d

(a,b:c,d;e,f)

Fig. 3.2

Lemma 3.2 There exists a (10,6,2) S;-design.
Proof For such a dcsign, the number of blocks & = 10. A
cyclic design on Z“) i3 generated by the block

(0,2;7,4;5,9).

To find Sz—designs with A=2 for larger wvalues of w
we use a recursive construction, for which we need a

decomposition of the complete bipartite multigraph 2K9 o'

Lemma 3.3 There exists a decomposition of 2K99 into
Sz—blocks.

Proof The number of blocks here is 2x9x9/9 = 18. A design
on Z x{0,1}, generated by two base blocks, is shown in Fig.

3.3.
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60 70 80
o (-] -]
o o ©
6 7 8

1 1 1

Base block: (Oo,4t;2°,5‘;3°.01)
()

Og 1 25 30 % S bo 7a 80
=] 1= =4 =] f=2 <
(= (= o (=] o o
0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1

Base block: (10,21:40.01;20,11)
(Lt)

Fig. 3.3

Thecorem 3.4 There exists an (v,6,2) Szudesign for all v = 1
{mod 9), v = 10.

Proof Arrange the v = 9m + 1 points into m rows of 9 and 1
peint at . Cover each row plus o with the (10,6,2)
Sz-design from Lemma 3.2, and all edges between each pair of
rows with the decomposition of ZKQQ found in Lemma 3.3.
This covers all edges of 2Kn and thus gives us an Sz—design

on 2Kv.
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§3.3 S%-designs with A=3

Next we must look at Sé—designs with A = 3. From
Lemma 3.1 we Know that the necessary condition here is
v =0, 1 (mod 3). Therefore the first designs to look for

here have v = 6, v = 7, v = 9, and v = 10,

Lemma 3.5 There exists a (6,6,3) Sz—design.
Proeof In this case b = 5, and a design 1is denerated on
(25 U ) by the block

(0,1;w,3;4,2).

Lemma 3.6 There exists a (7,6,3) Sz-design.
Proof Here b = 7. A cyclic design on 27 is generated by
the block

(0,1;3.5:2.6).

Lemma 3.7 There exists a (9,6,3) Sz—design.
Proof Here & = 12. A design on {ZB U o} 1is generated by
the blocks
(0,1;5,4:7.3) and (0,2;0,4:3,6)
where the first block generates an orbit of length 4 (half

orbit) and the second an orbit of length 8 (full orbit).

Lemma 3.8 There exists a (10.6.,3) Sé—design.
Proof Here b = 15. A design on st{O,l} is generated by

the three blocks
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(0,.1,:3,.0,:3_,1)
(0,.2,:3,,3,:2,.0,)

(0_,1,:4,.3,:2.3,) .

Lemma 3.9 There exists a decompostion of SKBS into copies
of Sz.

Preof The number of blocks is 3. A decomposition on
ng{O,l} is generated by

(0,.0,51,.2,:2,.1,) .

Lemma 3.10 There exists a decomposition of 3K s into

L3

copies of Sz.
Proof The number of blocks & = 4. This design on

{0,1,2,3;a,b,c} is illustrated in Fig.3.4.

0 1 2 3 0 1 2 3
E : U (=] [=] 6 q f
a b c a b C

(0,b;2,c;1,a) (1.b:;3,c:2.a)
(L) (Le)
8] L 2 3 0 1 g 3
a b c a b c
{2,5;0,c;3.,a) (3.5:1,¢:0,a)
(L) {twv)

Fig. 3.4
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Lemme 3.1f{ There exists a decomposition of SKGG. BKOG and
SK“LG into copies of Sz.

Proof Follows from previous two lemmas and Lemma 1.9.

Theorem 3.12 There exists a (v,6,3) Sé-design whenever
v=20, 1 (mod 3) and v = 6.

Proof We split wvalues of v satisfying the necessary
conditions into the four cases » = 0, 1, 3, and 4 (mod 6)
and construct a design for each case.

Case I: v =0 (mod 6). Then v = 6m for some m =2 1. Split
the v points into m rows of 6. Cover each row with the
(6,6,3) design from Lemma 3.5, and edges between each pair

of rows with the decomposition of 3K66 from Lemma 3.11.

',

1l

Case IlI: v =1 {(mod 6). Here v = 6m + 1 for some m 2 1.
Split the » points into m rows of 6 and one point at o.
Cover each row plus o with the (7,6,3) Sz—design from Lemma
3.6 and edges between each pair of T'OWS with the

decomposition of 3K66 as above,

'

Case III: v = 3 (mod 6). Then » = 6m + 9 for some m = 0.
Split the v points into m rows of 6 and one row of 9. Cover
each row of 6 with the (6,6,3) Sz—design from Lemma 3.5 and
the row of 9 with the (9,6,3) Sz-design from Lemma 3.7.
Cover edges between each row of 6 and row of 9 with the
decomposition of San into S;—blocks from Lemma 3.11, and

ones between rows of 6 with the decomposition of 3K
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Case IV: v = 4 (mod 6). Then v = 6m + 10 for some m 2 0.
Split the v points intom rows of 6 and one row of 10,
Cover row of 10 with the (10,6,3) Sz—design from Lemma 3.8,
edées between each row of 6 and the row of 10 with the
decomposition of SKuma into Séwblocks from Lemma 3.11, and

all remaining edges as in the previous case.

§3. 4 S,-designs with A=g

_The only remaining Sz—designs we must find are those
with A = 9. Designs with all other values of A can then be
derived from those with A = 2, 3, and 9 by Lemma 1.8. For A
= 9 there are no necessary conditions on v except that we
must have v 2 6. Designs with v = 0, 1 ‘(mod 3) can be
derived from the corresponding designs with A = 3 Dby the

corollary to Lemma 1.8, so we need only look at those with v

2 (mod 3). The smallest example is v = 8.

Lemma 3.13 There exists an (8,6,9) Sz—design.
Proof: The number of blocks & is 28. A design on {Z7 U o}
is generated by the blocks

{(0,5:;4,1;®,6) 3 times,

and (0,1:;3,5:2.,6).

Lemma 3.14 There exists an (11,6,9) Sz-design.

Proof The number of blocks is 55. A cyclic design on Z

is generated by the blocks
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(0,1;10,2:9.4) 3 times,
(0,1;3,8:5,9),
(0,9:;5,8:3,1).

Lemma 3.15 There exist decompositions of 9Kdd, 9K96 and

9I<“'d into Sz—blocks.

Proof Follows from Lemmas 3.9, 3.10 and 1.9.

Theorem 3.16 There exists a (v,6,9) Sz-design for all
u Z 6,

Proof 1f v =0, 1 (mod 3) then a (v,6,3) S -design exists
from Theorem 3.12, and therefore a (v,6,9) Sé#design exists

by Lemma 1.8. For designs with v

]

2 (mod 3), we look
geparately at those with v = 2 (mod 6) and those with » = 3
{mod 6).

Case 1: v = 2 (mod 6). Therefore v = 6m + B for some m 2
0. Split v into m rows of 6 and one row of 8, and use a
{6,6.,9) Sz-design (see above), the (8,6,9) Sz—design from

Lemma 3.13 and decompositions of QKGG

i

and 9X from Lemma
11,6

3.15 to cover edges in each row and between rows as in the

case where A = 3.

Case 1I: v =5 (mod 6). Then v = 6m + 11 for some = > 0.
Split the v points into m rows of 6 and one row of 11l. Use
the (6.6,9) S, -design from above, the (11,6.,9) Sz—design

from Lemma 3.14, and decompositions of QKG and 9K11 as

-

.

in Case ] above to cover all edges.
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Theorem 3.17 The necessary conditions for the existence of
an Sé—design are also sufficient.

Procf Follows from Theorems 3.4, 3,12, 3.16, and Lemma 1.8,

§3.5 Sg-designs with A=2

The only other multigraph in this category
(connected, cubic, and bipartite on six vertices) is 5, from
Fig. 3.1. We shall use the block labelling system shown in

Fig. 3.5 below for this multigraph.

b,

b c d

(a,b;c;d,e;f)

Fig. 3.5

We must find exactly the same designs on this graph
as in the previous case, since all the parameters are the
same. First we look at those with A =~ 2, where the

necessary condition on v is v = 1 {(mod 9).

Lemma 3.18 A (10,6,2) Sa-design exists.
Proof Such a design (cyclic on Zio) is generated by the

block
(0,2:3:8.5:9).
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Lemma 3.19 There exist decompositions of 21’<I:_L3 and ZKQQ
into Sn—blocks.

Proof A decompogition of ZKES iz shown in Fig.3.6. It
follows from Lemma 1.9 that a ZKQP decomposition also

exists.
0o lO 2o 0o 1o 20
0 1 2 Q 1 2
1 i i i 1 i
(10.11;0 ;2 ,20:01) (10.21:00:11.20:01)

Fig. 3.6

Theorem 3.20 A (v,6,2) Sg—design exists for all v = 6
satisfying the necessary condition » = 1 (mod 9).

Proof We have a (10,6,2) Sa—design and a decomposition of
ZKQD into Sa—blocks. so we can construct a (v,6,2) design

for all v

1 (mod 9) exactly as we constructed the
corresponding Sz—designs in Theorem 3.4 — that is by gluing
together copies of the (10,6,2) Sa—design using the

decomposition of ZKQQ.
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£3.6 Sg-designs with A=3

The next value of A we must look at here is A = 3.
The necessary condition for the existence of an (v,6,3)
Sa—design isv =0, 1 (mod 3), zo the first designs to find

are those with v = 6, 7, 9, 10. We find these small designs

directly, and then find decompositions of 3K, =~ and 3K
into Sa—blocks for our recursive construction of all

remaining Sa—designs with A=3, exactly as we did for Sz.

Lemma 2.2! There exists a (6,6,3) Sa-design.
Preof The number of blocks is & = 5. A (6,6,3) Sa—design
on {Z U o} is generated by the block

(0,1;4;2,;3).

Lemma 3.22 There exists a (7,6,3) Sa—design.

Proof Here & = 7. A cyclic design on Z7 is generated by

the block
(0,2:;3.1.5:4).
Lemma 2.23 There exists a (9,6,3) Sg—design.
Proof Here b = 12. A design on {ZB L' @}ig generated by the
two blocks
(0,2:3:4,6:7) (half orbit}

(0,3:5;0,7:4) .

Lemma 3.24 There exists a (10,6,3) Sa—design.

Proof Here b = 15. A design on Z5 x {0,1} is generated by

the three base blocks
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(00'10530’01’11;31)

(0,.2,:4,:0,,2 :4)

(00.1‘:20:31,40:21).
Lemma 3.25 There exists a decomposition of 3K33 into

S -blocks.,
3

Proof The number of blocks is 3. Such a decomposition on

{0,1,2;a,b,¢} is shown in Fig. 3.7.

0 1 2 0 1 2 8} 1 2
a b c a b c a b c

(0.a;1;c,2;0) (0,e:;1:d,2;a) (0,b:2;c,1;a)
Fig. 3.7
Lemmao 3.26 There exists a decomposition of BK‘ a into
Sa-blocks.
in Fig.

Proof A decomposition on {(0,1,2,3;a.b,¢c2) is shown

3.8.
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0 1 2 3 0 1 2 3
E ﬂ ﬂ o o E E p
a b c a b c

(1,5;0;c,2;a) (2.5;1:;¢,3;a)

(L) (1)

Qo 1 2 3 0 1 2 3
[ (=] % ,p [ ; o ﬂ
a b c a b c

(0,c;2;0,3;:a)

(0,b:3;c,1;a)

(i)

(tv)
Fig. 3.8

Theorem 3.27 There exists an (v,6,3) Sa—design for all

values of v gatisfying the necessary condition v = 0,

= 1 (mod
3.

Proof From Lemma 1.9 and the previocus two lemmas we have

decompgs1t1ons of Ban' Bqu and 3K“Ld into Sa-blocks.

Using these and the designs we have found on 3K°. IK_, 3K

»

and BK;O we can construct designs for all v =0, 1 {(mod 3)

exactly as we did for S2 in Theorem 3.12.
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£3.7 Sa—designs with A=9

Lastly we must locok at Sa-designs with A = 3, Here
the only necessary condition is » Z 6, and we can derive all
designs with v = 0, 1 (mod 3) from those with A = 3, g0 we

start by looking at small values of v where v 2 (med 3).

Lemma 3.28 There exists an (8,6,9) S —design.
Proof The number of blocks is & = 28. A design on {(Z_ U w}
is generated by the four base blocks

(0,5;2:3,6;1)

(0,4;3;6,m;2)

(0,2:3;0,5;4)

(0,4;3;6,1;2).

Lemmzt 3.29 There exists an (11.6,9) Sg—design.
Proof The number of blocks is 55. A cyclic design on 2&1
is generated by the three blocks
{(0,4:6:;7,10;1) 3 times,
(0,8;2;6,1:7)

(0,1;8;6,4;3).

Theorem 3.30 A (v,6,9) Sa-design exists for all v 2 6.

9K and 9X

Proof We can get decompositions of 9K, .6’ 14,6

RN
into Sa—blocks from the corresponding decompositions with A
= 3 and Lemma 1.9. Then proceed exactly as in the procf of
Theorem 3.16 only substituting "59" and corresponding lemmas

for "s_".
2
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Theorem 3.3f{ The necessary conditions for the existence of
an Sé~design are also sufficient.

Proof This follows from Theorems 3.17, 3.27, 3.30 and Lemma
1.8,



CHAPTER 4
DESIGNS ON CUBIC MULTIGRAPHS WITH 6 VERTICES:

Non-Bipartite Connected Graphs

4.1 Preliminary Results

In this chapter we look at the first multigraph in
the second category from Fig. 3.1., non bipartite connected
cubic¢ wultigraphs on @ix vertices. This graph, S‘, is the
only simple graph in this category and is sometimes called

the envelope,

Before we look at the graph S‘ we introduce some
results on partial triple systems, which we will need to
find graph design. in the general case for the three
multigraphs in this category - S‘, Ss and 56. As mentioned
pefore, a Stiz2iner triple system is a decomposition of Kv
into tr.angles, or a (v,3,1) K -design. A Steiner triple
system exists whenever v =1, 3 (mod 6}. A partial triple
system is a set of triples such that each pair of points is
contained in 2t most one triple (covers some of the edges of
K, but not necessarily all). A partial triple system is a
saxtimal partial triple system (MPTS) if no more triples can
be added - i.e. there are no triangles left uncovered in Kv.
The leave of a MPTS is defined to be the complement of the

subgraph of K which is covered by the triples of the MPTS.

60
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It is well known that for a MPTS with the maximum possible
number of triples, called an MMPTS, there are only four
possible types of leave, and that which type we get depends
only on the value of v (mod 6) (see for example ([12}).

These are shown in Table 4.1:

v (mod &) Leave of MPTS (v) Description

0 1 I I ....... 1 (v/2) K,'s

2 T 1 3.-.--- i (v/2) K,'s

Table 4.1
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4.2 S‘-designs with A=l

The labelling system we shall use for the envelope

s, is shown in Fig. 4.2:

(a,b,c;d,e,f)

Fig, 4.2

Since 5 is a simple graph we can start with the
case A = 1, in which we have the same necessary conditions
for the existence of a G-design as in the case A = 2 for the
two multigraphs we have just looked at - i.e. v = 1 (mod 9).
First we find all S‘—designs with A = 1 up to the one with

v = 46 by direct construction.

Lemma 4.1 A (10.6,1) S‘—design exists.
Procof The number of blocks & is 5. A cyclic design on 2m

is generated by the block
(0,1,8:6.5.3) (half orbit).

Lemma 4.2 A (19.6,1) S _-design exists.
Proof The number of blocks is 19. A cyclic design on Zm

is generated by the block

(0,2,9:6,5.1).
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Lemma 4.3 There exists a (28,6,1) S‘ﬁdesign.

Proof Here b = 42, 1A cyclic design on 2zn is generated Dby

the blocks
(0,1.6;15,17,26)

{(0,3,7:14,21,17) (half orbit).

Lemma 4.4 There exists a (37,6,1) S‘—design.
Proof Here b = 74, A cyclic design on 237 ig generated Dby
the two blocks
(0,1,3:5,32,14)
(0,7,20;33,19.4).

Lemma 4.5 There exists a (46,6,1) S‘-design.

Proof Here & = 115, A cyclic design on 246 is generated by

the three blocks
(0,1,3:36,43.8)

(0.13,30:21,33.,6)

(0.6,14:;37.29,23) (half orbit).

Now that we have found this type of design for the
smallest orders, we must use a recursive method to show that

such a design exists on any wvalue of v satisfying the

necessary condition v 1 {mod 9). We cannot use the same
method that we used for the previous two multigraphs, since
they were bipartite and thus decompositions of bipartite
multigraphs could be used. The graph 5, is, however,

tripartite, so we first find a decomposition of the complete
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tripartite graph K

0.0.0 into S‘—blocks. This decomposition

was found with the aid of a computer.

Lemma 4.6 There exists a decomposition of Kgop into
S —-blocks.
+
Proof The number of blocks in such a decomposition is
3x9x9/9 = 27. A design on Z  x {(0,1,2} is generated by the
three base blocks

(00.01,02;32,10.2‘)

(0,.2,.4,:6,.5,.8,)

(00,41.12:51,02.20)

Using the above results we can find S‘—designs for
all values of v satisfying the necessary condition » = 1
{mod 9), although the procedure is more complicated than in
the case of the bipartite multigraphs S3 and s, which is

why we had to find so many designs directly.

Theorem 4.7 There exists an (v,6,1} S;—design for all v = 1
(mod 9).
Proof We divide the values of v satisfying the necessary
condition into four cases, and demonstrate how to construct
such a design for each one.
Case I v = 10, 28 (mod 54>,

Split the v points into m rows of 9 and a point at
®. The number of rows m will then satisfy the condition

m=1, 3 (mod 6). Therefore there exists a Steiner Triple
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System on m elements (see for example Hall (16]). Take such
an STS(m) where here each element in the STS is a row of 9
points. Each triple in the STS then corresponds to three
rows of points, and every pair of rows iz in exactly one
triple. Therefore if we cover the edges between each pair
of rows in each triple with the decomposition of .
found in Lemma 4.6, we will have covered every edge between
each pair of rows once. The edges within a row can be
covered by taking each row plus the infinity point and
covering it with the (10,6,1) S4—design from Lemma 4.1. In
this way we can find a (v,6,1) S‘~design whenever v = 10, 28

(mod 54).

Case 1I: v =1, {9 Cmod 542.

Split into m rows of 9 and an « point as above. In
this case m = 0, 2 (mod 6). From Table 4.1 we see that the
ieave of a MMPTS(m) in this case consists of Kz's, or single
edges. Take an MMPTS(m) where each of the m elements is a
row of 9 in our configuration of the v points. Then we can
find an S4—design on the v points as follows. For each
triple in the MPTS cover the edges between the three rows 1n
the triple with the decomposition of X from Lemma 4.6.

9,090,090

Cover each pair of rows which corresponds to a K, in the
leave of the MPTS plus the infinity peoint, including edges
within as well as between rows, with the (19,6,1) S‘-design

from Lemma 4.3.
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Case I1Il: v = 37 Cmod 540.
Arrange the points into m rows of 9 plus an « point.
In this case m =4 (mod 6). The leave of a MPTS(m)

in this case is of the form

\l/" 1 1 1 e 1

We cannot use this directly since we cannot decompose the
gtar graph Kha into S"s. However, if £ = 5 (mod 6) we c¢an
partition the edge set of Kg into one K  and the rest K 's
(cf. e.g., [37]). 1If we then remove one of the points in
the K5. we have a partition of qu into a K‘, Ka's and some
K,'s. This tells us that we can take a MMPTS(m) where m = 4
(mod 6) with the above leave, and delete one triple from the
MPTS in such a way that the leave of the new PTS(m) has a K4
instead of the star with 3 edges in the leave of the MMPTS.
We can then cover the X plus the infinity point with the
{37.6.1) S‘-design from Lemma 4.4, each Ké + o with the
(19,6.1) S‘—design from Lemma 4.2. This leaves only edges
between rows where the rows occur together in a triple of
the PTS(m). These can be taken care of by covering each

triple with the Koog decomposition from Lemma 4.6.
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Case IV: v = 46 Cmod 542

This time we get m 5 (mod 6}, and from the
discussion in the previous case we know that we can
partition the edge set of Km into a unique K5 and Ka‘s.
Thereicore there exXists a PTS(m) with leave consisting of a
K5 and isolated points. Again, cover edges between rows
occurring together in a triple in the PTS with the 0.0.0
decomposition of Lemma 4.6 and each row plus infinity point
with the (10,6,1) S‘~design from Lemma 4.1. Then the
remaining edges can be taken care of by covering the rows in

the K5 plus the infinity point by the (46,6,1) S4~design

from Lemma 4.5.

4.2 S‘-designs with A=3

The next class of S‘—designs we must locock at ig the
one containing those with A = 3, Here the necessary
condition is v =0, 1 (mod 3}). As in the case X = 1, the
recursive technique used is more complicated than that used
for the bipartite multigraphs S2 and 53. and we must find
many designs directly, up to and including the one with
v = 40, We first construct all these designs which must be
found directly, as well as a decomposition of 3K3.3.3 into
S‘—blocks, and then explain how these can be used to find

all other S‘—designs with A=3.
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Lemma 4.8 There exists a (6,6, 3) S4—design.
Proof A design on {(Z U o} is generated by the block
(0.1,3:4,2,m).

Lemma 4.9 There exists a (7,6,3) S‘—design.
Proof Here b = 7. A cyclic design on 27 is generated by
the block
(0.1.3:5.4.2).

Lemma 4.10 There exists a (9,6,3) S4—design.
Proof Here b = 12. A design on {2, U @} 1is generated by
the two blocks

(0,1,3:4.7,3) (half orbit)

(0.1,3;2,5,2).

Lemma 4.11 There exists a (10,6,3) S —design.
Proof A design of this type can be obtained from the

(10.6,1) S‘—design of Lemma 4.1 by Lemma 1.8.

Lemma 4.12 There exists a (12,6,3) S4—design.
Proof Here & = 22, A design on {Zﬂlu o} is generated Dby

the two blocks
(0,1,3:6,2,8)

(0.4,8:;10,2,0) .

Lemma 4.13 There exists a (13,6, 3) S‘—design.
Proof Here b = 26, A cyclic design on %ﬁ is generated Dby

the two blocks
(0,1,3:8,5.7)

(0,1,5;6,8,11).



Lemma 4.14 There exists a (15,6,3) S‘-design.
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Proof Here b = 35. A design on (2 x{0,1}) U = i3 generated

by the five blocks
(00.01.11:20,40.31)
(0,.1,.3,:3,.2,,0,)
(0,.1,.5,:0,.5,.3,)
(0,.1,.0,:»,4..3,)

(0,.2,.9:2 .5,.3,) .

Lemma 4.15 There exXists a (16,6,3) S‘-design.
Proof Here b = 40. A cyclic design on Zusis generated
the three blocks
(0,2,10:12,6,15)
(0,5,9:1.4.11)
(0,1,3:11.,9.8) (half orbit).

Lemmna 4.16 There exists a (18,6, 3) S‘—design.
Proof Here b = 51. A design on {Zﬂ U w} is generated
the three blocks

(0.3.8:14,4,10)

(0,4,11:9,14.5)

(0,1,3:«,6,5).

Lemma 4.17 There exists a (21,6,3) S‘—design.

by

by

Proof Here b = 70. A design on Z_ x {0.,1,2}y 1is generated

by the blocks



(00,31,60:21,30.41) twice
(0,.3,,6,:2,,3,.4,) twice
(0,,3,.6,:2,.3,.4,) twice
(0,.3,,1,:1,.5,.5,)
(0,.3,,1,:1,.5,,5,)
(0,.3,:6,:5,.2,.1,)
(0,.2,.3,:0,,5,.,2,}.

Lemma 4.18 There exists (22,6,3) S‘—design.

70

Proof Here & = 77, A cyclic design on 2;2 is generated by

the four blocks
{(0,1,7:4,2.3)
(0,5,15:9,14,17)
(0,6.14:;13,18,2)

(0,3,7:18,14,11) (half orbit).

Lemma 4,19 There exists a (33,6.,3) S4—design.
Proof Here & = 176. A design on {232 U @} is geherated

the six blocks
(0,4,5;8,m,7)

(0,6,11:3,10,13)
(0.13,20:5.6.8)
(0.8,19:14,23.1)
(0,10,16:8,25.2;

(0,9,21:;16,5,23) (half orbit).

by



71

Lemma 4.20 There exists a (34,6,3) S‘—design.

Proof Here b = 187. A cyclic design on 234 is generated by

the six blocks
(0.1,8;2.4'3)

(0,4,10:9,13,16)
(0,2,5;8,14,28)

(0,7.23:14,25,4)

(0,4,19:13,21,31)

(0,9,22:5,26,17) (half orbit).

Lemma 4.21 There exists a (39,6,3) S‘ﬁdesign.

Proof Here b = 247. B design on (2 U o} is generated by

the seven blocks
(0.4,0;1,2,7)

(0.1,7:;3,5.,10)
(0,2.8;29,5,18)
(0,12,21:5,28,17)
(0,10,20:14,27,5)

(0,8,21:18,26.2)
{0.12,23:31,19.4) (half orbit).

Lemma 4.22 There exists a (40.6,3) S —design.

Proof Here & = 260. 1A cyclic design on 240 is generated by

the sewven blocks
{(0.5,7:1,4.3)

(0,4,11:6,14.8)
(0,3,15:86,12, 20}
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(0,5,23:15,31,2)
(0,13,22;10,27,3)
(0,10,23:24,30,2)

(0,15,29;9,35, 20) (half orbit).

To summarize the above, we have found (v,6,3)
5 ,~designs directly for v - 6, 7, 9, 10, 12, 13, 15, 16, 18,
21, 22, 33, 34, 39 and 40. To find the remaining s;—designs

for A = 3 we need the following bipartite decomposition:

Lemma 4.22 There exists a decomposition of 3K333 into
S -blocks.

4

Proof Here & = 3x3x3x3/9 = 9. A desgign on Z3 x {0,1,2} is
generated by the three blocks

(0,.0,0:1 .1 ,1.)

(0,.1,.2,:2,.0,.1.)

Before we give a recursive construction for all
other S‘—designs with A = 3, we need some results due to

Rees (29].

Definition 4.24 A Unijformly Resolvable Pairwise Balanced
Design (URPBD) is a PBD (see Chapter 1) in which the blocks
can be resclved into parallel classes in such a way that all

blocks in a given parallel class have the same size.
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Definition 4.25 A URD(p,r) is & uniformly resoivable PBD on
p points with repetition number »r, in which each block has
size 2 or 3 - i.e. a resolution of KP into t 1l-factors and
r—t triangle factors, where a triangle factor is a 2-factor

consisting of triangles.

Theorem ¢.26 I1f p =0 (med 6) and
p/2+1 S r £ p-2
then there exists a URD(p.r). Furthermore, the replications

congigst of t l-factors and r-t triangle factors where r and

t satigfy the relation
2r =t = p - 1,
Proof Rees {29].

Theorem 4.27 There exists an (v,6,3) S;-design whenever the

necegsary condition v = 0, 1 {(med 3) is satisfied.

Proof We divide the orders v satisfying the necessary
condition into five cases and deal with each in turn,

Cuase I: v=0, {, 6 7 Cmod 182

Arrange the v points in rows of three, with a point

at infinity if v = 1 or 7 (med 18). Then the number of rows
m satisfies m = 0 or 2 (mod 6), and therefore from Table 4.1
we know that a MMPTS(m) has a leave consisting of Kz‘s.
Take an MMPTS(m) where each element 1is a row of three.
Cover all mixed edges (edges between rows) in each triple in

the MPTS with the decomposition of BKBBB into ¢ _-blocks
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from Lemma 4.23. This covers all mixed edges except those
between pairs of rows not occurring in a triple - i.e. those
in the leave of the MMPTS. Cover each pair of rows in the
leave with the (6,6,3) S4-design from Lemma 4.8 (6r each
pair plus infinity with the (7,6,3) S*—design from Lemma 4.9
if v=1or 7 (mod 18} ). This takes care of all pure edges
(edges within rows) and remaining mixed edges, and thus

gives us the required (v,6,3) S4—design.

Case 17: v =9, {0 Cmod (82

|

Arranging into m rows of three we get m = 3 (mod 6).
Therefore there exists a KTS(m), or resolvable §STS(m} (see
Hall{16]1). Take one parallel class of the KTS(m) (set of
triples covering each point once, or in this case each vrow
once) and cover each triple in it with a (9,6.3) or (10,6.,3)
S‘-design from Lemma 4.10 or 4.11 respectively (using
infinity point if v = 10 (mod 18)). This takes care of all
pure edges. Remaining mixed edges can be covered using the
32(,3.3'3 decomposition of Lemma 4.23 on all remaining triples
in the KTS.

Case III: v = 12,13 Cmod 182,

Arrange points in m rows of three, with a point at
infinity if v = 13 (mod 18). This time m =4 (med 6), so
the leave of a MMPTS(m) is a single KLB plus Kz's. As  in

the case N = 1 we can use the result by Wilson[37] to show
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that this MMPTS(m) can be reduced to a PTS{m) having K4 and
Kz's as leave, by deleting one triple from the MMPTS(m) (and
thus adding a triple to the leave). Then we cover the K‘
{four rows of three points if » = 12 (mod 18) and four rows
rlus infinity point if v = 13 (med 18) ) with the (12,6,3)
or (13,6.,3) S‘—designs from Lemmas 4.12 and 4.13
respectively. Each X, in the leave can be covered by the
(6.6,3) or (7,6.3) s‘—designs from Lemmas 4.8 and 4.9
respectively. All remaining edges in KU can be taken care
of by covering each triple in the PT3(m) with the

decomposition of 3K&33

4

into S‘—blocks from Lemma 4.23.

Case IV: v = {5, 16 Cmod 182

Again, arrange points in rows of three, with a
point at infinity if v = 16 (mod 18). Here we get m = 5
(mod 6}, and from Wilson(37] we know there exists a
PBD(v, [3,5%],1) (partition of the edge set of Km into a
unique K5 and Ks's). In the » = 1 case this was enough. but
in this case we have rows of three instead of rows of nine,
so that we cannot cover a single row with an S‘—design as it
has fewer than 6 points. Therefore, in order to cover all
the pure edges, the above PBD must have a parallel class
containing the unique Ks. Let m = 6g + S, and p = €g, SO wWe
have m = g + 5. Then by Theorem 4.26 we can find a URD(p,k)
on p vertices where p=m - 5 = 0 (mod 6), and as long as p

> 12 wa can take ¢ = 5. Then we construct an S4—design as
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follows. Match each of the S5 i-factors with one of the 3
points excluded from the URD. Cover the resulting triangles

(triples of rows) with the éK decomposition from Lemma

3,3,3
4.23. Cover the 5 poincts with the (15,6,3) (or (16.,5,3), as
appropriate) S‘-design from Lemma 4.14. We are left with
triangle factors. Cover one of these with copies of the
(9,6,3) S‘—design {(or the (10,6,3) S4—design in case v =
16(mod 18)) and the rest with the BK&Bﬁ decomposition of
Lemma 4.23. In this way all edges within and between rows
are covered, so we have the required (v,6,3) S‘-design.
This works for all v = 15;16 (mod 18) except for v = 15, 16,

33, 34. Designs on these values have been found directly,

so we have S -desiyns for all v = 15, 16 (mod 18).

Case V: v = 3, 4 Cmod 18D,

Arrange in rows of three as above to get m =1 (mod
6). Procred exactly as in previous case except this time
take p = m - 7, and the number of l-factors t to be 7. Use
the (21,6,3) 5 —-design (or the (22,6,3) S5 -design in the
case v = 4 (mod 18)) to cover the K. The remaining edges
can be covered as above. This covers all v = 3, 4 (mod 18)
except v = 21, 22, 39, 40 where designs have been found

directly.
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§4.4 S‘-designs with A=9

Now that we have looked at S‘-designs with A = 1 and
A = 3, to settle the existence gquestion for designs on this
graph we need only find when they exist with A = 9. This is
hecause S‘—designs on all other values of A can be derived
from these three cases by Lemma 1.8, excepting only any
cases where a design with A = 1, 3, or 9 does not exist when
the necessary conditions on v are satisfied. We have
already determined (Theorems 4.7 and 4.27) that there are no
such exceptions for A = 1 or 3, so now we look at S‘—designs

with A = 9,

With » = 9 the necessary conditions {(of Theorem 1.5}
for the existence of an S‘~design are reduced to the single
condition: v 2 6, If v» = 0,1 {(mod 3) then a (v,6,9)

S4—design can be derived from smaller designs.

Lemma 4.28 A (u,6,9) S4-design exigts whenever v =z 6 and
v=0, 1 (mod 3).
Proof From Theorem 4.24 we have a (v,6,3) S‘—design. and

from Lemma 1.8 we can therefore find a (v,6,9) S‘—design.

We are left with those values of v gatisfying v = 2
(mod 3). The smallest designs we must find are therefore

those with v = 8 and 11.
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Lemma 4.29 An (8,6,9) S _-design exists,
Proof A design on {2; U w} is generated by the two blocks
(0,1,5:4,3,6)
and (0,5,0:;4,6,3) 3 times.,
Lemma 4.30 An (11,6,9) S4-design exists.
Proof A cyclic design on Z“ is generated by the three

hlocks
(0,5,6:;2,8,7) twice,
(0a317;911'5) tWice,
(0,1,7:3.4.6).
In fact we did not need to find the above design

directly, since an (11,6,9) S4—design exists by the

following theorem:

Lemma 4.3 A (v,6,9) S‘—design exists whenever v 2 6 and v
is prime,

Proof The number of blocks in such a design is v(v—-1)/2.
If v is prime then {ZU+. % } is a cyclic group. The number
of base blocks in a cyclic design on Zv would Dbe (v-1)/2.
We can find a set of base blocks by taking any S4-block in
9KU and multiplying it successively by any primitive element
a of ZU until we have all (vw—1)/2 base blocks. (A primitive
elemont a in a group is one which generates the whole group
under the group multiplication, so that each group element

, t .
can be written as a where 1 < t2 v-1.) Each difference

occurs the same number of times {(nine) in these blocks since
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multiplying any difference in the first block by a (v-1)/2
times must take us through each possible difference once
(the differences come in pairs, *1, *2,..., (v-1)/2, and we
consider differences in a pair to he the same since they
represent the same edgelength in KU. 30 we get all required

differences with only (v=1)/2 base blocks).

For example, an alternate (11,6,9) S‘—design on Z“
can be found by taking the first base block to be
(0,1,2:3,4.5). Then the remaining four base blocks are
found by successively multiplying the elements cof this first
one by 2, which ig a primitive root of {21:. X }. This

gives a cyclic (11,6.,9) S‘—design on 211 with base blocks
(0,1,2;.,3.4.3)
{(0,2,4:6,8,10)
(0.4,8:1,5.9)
(0,8,5:2,10.,7)
(0,5.10:4,9.,3).

We will use a result involving transversal designs
and Latin Squares to find all remaining (v,6,9) S‘—designs
with v = 50, but this method does not work for smaller
designs. Therefore we must use direct methods to find

designs on all v = 2 (mod 3) where v < 50 and v 1i=s not

prime, i.e. for v = 14, 20, 2&, 32, 35, 38, and 44.

Lemma 4.32 There exists a (14.3.,9) S‘—design.

Proof Here b = 91. Such a Gesign is generated on {2;3LJ o}
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(0,1,8:;3,6,10) 4 times
(0,1,0:4,3,2)
(0,3,4:9,5,m)
(0.2,7:4,w,5).

Lemma 4.33 There exists a (20,6,9) S4-design.

Proof Here b = 190. A design on {2‘9 U w} is generated
the blocks .
(0,1,16:2,13,7) 7 times
(0,8,13:7.,%,3) twice
(0,1,3;,2,9)

Lemma 4.34 There exists a (26,6,9) S‘-design.

Proof Here b = 13x25 = 325. A cyclic design on 225

generated by the blocks
(0,.6,13:4,20,3) 8 times
{0,3.5:11,6,8)
(0,2,5:;9.6.4)
(0,2,0:;17,7.,5)
(0,2,7;w,3,10)
(0,3,5:;2,8,m).

Lemma 4.35 There exists a (32,6.9) S4—design.

Proof Here b = 16x31 = 456, A design on ({Z U o}

generated by the blocks

(0.3,20:16.,26,7) 9 times
(0,1,7;4,6,11) 4 times
(0,6,7:;0,11.13)
(0,1,2:6,m,8)
(0,2,4:6,,3).

80
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Lemma 4.36 There exists a (35,6,9) S -design.
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Proof Here b = 17x35. A design on Zas is generated by the

blocks
(0,10,18;11,26,4) 9 times
(0,4,9;12,16,7) 4 times
(0,3,6:1.4.,7) twice
(0.1,2:6,4,8)
(C¢,6,12;9,8,14),

Lemma 4.37 There exists a (38,6,9) S‘—design.

Proof Here = 19 x 37. A design on {Zm,u w} is generated

. by the blocks
(0.,10,19:22,27, 35) 9 times

(0.4,11:14,16,17) 7 times
(0.4,11;12,18,w) twice
(0,1,3;®,2.5).

Lemma 4.38 There exists a (44,6,9) S‘—design.
Proof Here b = 22 x 43. A design on {Z‘3 U w} 1S
by the blocks
(0,15,27;17,36,7) 9 times
(0,13,18:11,5,14) 8 times
(0,11.,18;7.,6,5)
(0,2,9:7,3,1)
(0,1,2;7,0,9) twice
(0,1,2:7,0,4).

generated

Lemma 4.39 There exists a (v,6,9) S‘—design for all v = 49,

Proof This result follows from Lemmas 4.28 to 4.38.

Next we look at (v,6,9) S‘—designs with v =z 50, but

first we need some more theory.
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A Latin square of order n is an n x n matrix on n
symbols such that each symbol occurs exactly once in each
row and once in each column. Two Latin squares 4 = cﬂj},
B = {md} are said to be orthogonal if the n? ordered pairs
{C:‘,b_J]PA are all distinct. A set of ¢t MOLS(n) ig

L) L. 1,)=4
a set of ¢t Latin squares of order n where each pair is

orthogonal.

Theorem 4.40 If n is a prime power there exist n-1 MOLS(n).

Proof See Dénes, Keedwell [13].

Defintition 4.41 A Transversal Design TD(r,n}) is a triple
(¥,€,B) where ¥ is a set of v elements, B is a collection of
subsets of ¥ called blocks, and ¥ is a collection of subsets
of ¥ called groups such that
CiLD |b] = r for all b e B, i1 = r

|lgl = n for all g € ¥, |¥| = nr.

(t¢) beB, g% =» |bng| =1.

(cee) If x, vy € 8. for scme ¢, they are not contained in
any block.
(tv) If xe 3., ye€ gj ey then the pair ({x,y} Iis

contained in exactly one block.

Theorem 4.42 There exists a set of r—-2 MOLS(n) if and only
if there exists a TD(r,.n).

Proof See Hanani [16].
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Theorem 4.43 For n Zz 63 there exigts a TD(7.n).
Proof There exist 5 MOLS(n) whenever n263 (see ([6]), and
therefore by Theorem 4.42 there also exists a TD(7,n).

We can usge the above results to find all remaining
required S4—designs. If v = nr wheren, r =2 6 and there
exists a TD(r,n) then we can decompose 9K into copies of
QKh and 9)<r using the TD(r,n), and ‘then provided we have
S‘—designs on 9K and 9K we have a (v,6,9) S ~design Dby
Lemma 1.10. If v does not satisfy these conditions we must
find m such that vtm = nr satisfies the conditions and such
that we can delete m points from the TD(r.,n) in such a way
that each block and each group still have a number of
elements éatisfying the conditions on n and r above. For w
> 384 we can use the result in Theorem 4.43 to find a
(v.,6,9) S{—design, but for smaller values we must show the

existence of suitable parameters n, r, and m.

Lemma 4.44 For all w26, either there exists a (v,6,9)
S‘—design or there exist n, r, m satisfying

(L) n, rz26, -1=m= (n-6)(r-6)

(L) VvV = nr —m

(Lei) Thére exist r-2 MOLS(n).

(Note (tii) = n = r-1 since #{(n) = n-1).

In order to prove this result, we first need the results of

Lemmas 4.45 to Lemma 4.47.
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Lemma 4.45 For all v = 384 there exist n, r, m satisfying
the conditions of Lemma 4.44.

Proof Take r = 7. We know from Theorem 4.43 that for n63
there exists 5 MOLS(n). When n = 63 we have v = 441 - m
where m £ (n—6) (r-6), so the smallest value of v we can have
here corresponds to the largest wvalue of m. Substituting 63
for n and 7 for r this gives us m £ 537. Therefore we must

have v 2z 7x63-57 = 384,

Lemma 4.46 For all 50=v=83 not satisfying the conditions ou
Lemmas 4.28 or 4.31 there exist n, r, m satisfying
the conditions of Lemma 4.44.

Procof These values are shown in Table 4.4 below.

v n r m
50 7 7 -1
56 8 7 0
62 9 7 1
65 8 8 -1
68 9 8 4
74 11 7 3
77 11 7 0
80 9 S 1

Table 4.4
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Lemma 4.47 For all 84=5v=384 there exist n, r, m satisfying
the conditions of Lemma 4.44.

Proof For 84 < v < 182 put
n = 13,
r = [b/n] - ru/l3],

m = nr-v = 13r-v.
Since 13 is prime there exists 12 MOLS(n) by Theorem 4.40,
and m as defined above is always non negative,. Therefore

the conditions of Lemma 4.43 reduce to conditions on r and

m:
6 = r £ 14, (1)
m s 7(r-6}. (2}
The smallest v we are considering here is v = 84. In this

case we get
r = [84/13] = 7,
m = 13x7 - 84 = 7,

Therefore the condition r26 is satisfied for all v = B4.
Similarly the condition r<14 is satisfied for all v = 182.
Condition (2) is satisfied whenever r z 8 since in this case
it suffices that m < 13, which condition always holds from
the way we have defined m. And when r=7, the largest m is
obtained when v is B84 where we get m = 7, and equeiity 1in
condition (2). Therefore the conditions of Lemma 4.44 are
satisfied for all 84 = v = 182,

For 180 < v £ 384 proceed as above with n = 29

instead of 13. Since 29 is prime there exists 28 MOLS(29; by
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Theorem 4.40. Here conditions‘(l) and (2) become:

6 = r < 30, (1)

m £ 23(r-6). (2)
These are satisfied whenever 180s5v2870, and therefore also
for 182=v=384.
Proof of Lemma 4.44 There exists a (v,6,9) Sg-design for
all 65v=49 by Lemma 4.39, and for v=0,1 (mod 3) or v prime
by Lemmas 4.28 and 4.31 respectively. For all other v there
exist n, r, m satisfying conditions (%), ({{) and (iitif) by

Lemmas 4.45, 4.46, and 4.47.

Theorem 4.48 There exists (v,6.9) S -design for all vz6.
Procof Use recursion on v. From Lemma 4.39 we know that
such a design exists for all w = 49, This gives us the
first step of the recursion and also enables us to assume
that v 2 49 in the remaining step. For all v = 49 either a
(v,6.9) Sp—design exists or there exist n, r and m which
satisfy conditions (t) to (ifii) of Lemma 4.44. Assume the
theorem is true for w=g¢-1l, then we can find a (4,6,9)
S‘~design as follows:

Take n, r, m satisfying the conditions of Lemma
4.44. Since there exists r-2 MOLS(n), by Theorem 4.42 there
exists a TD(n.r,1l}. Take each row and column of this
TD(n,r,1) nine times., If m = 0 then @ = nr so we have a TD

on ¢ points and can proceed as follows:
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Cc.er each block of the repeated TD(n,r,1l) with an
(r.6.,9) S, —design, and each row with an (n,6,9) S -design.
These S‘—designs exist by assumption of recursive proof
since n, r { g. We have then covered all edges in QKQ and

therefore have a (g¢,6,9) S4—design.

If m = -1 then ¢ = nr + 1. Take the above TD{(n,r,1)
and add a "point at infinity" to bring the total number of
peints to g@. Put this o point in each vow. Then multiply
all rows and columns by nine and proceed as above, the only
difference being that now each row has size n+l instead of
n. An (n+1,6.,9) S‘—design must exist by assumption since
n+l is certainly less than ¢, so we can use it to cover each

row of the repeated TD(n,r,1).

The remaining possibility is that 1=m<(n-6)(r-6).
In this case we must delete m points from the TD(n,r.1l) to
bring the total number of points to @. Proceed as follows:
(t) If m £ n-6, delete m points from the first row,
otherwise deletz n—-6 points.
(i) If we have deleted m points we are finished.
Otherwise continue deleteting points from each row 1in
succescion as in (i) until we have deleted m points.

Since ms{n-6)(r—-6) we must be able to delete points
in this fashion and be left with at least six points in each

row and six points in each block. Then take each row and
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each block nine times and cover all resulting rows and
blocks with the appropriate S‘-design. Since each row and
block must have size s where 6 = s { g we have such a design
in each case ({.e. an (s5,6,9) S‘—design) by our induction
hypothesis. We have thus covered all edges of 9K and

f=]
therefore we have found a (g.6,9) S4—design as required.

Theorem 4,49 There exists a (v,6,A) S‘—design for all v and
A satisfying the necessary conditions of Theorem 1.5.
Proof This follows from Theorems 4.7, 4.27, 4.48, and

Lemma 1.8.



CHAPTER 5
DESIGNS ON CUBIC MULTIGRAPHS ON & VERTICES:

Non-Bipartite Connected Multigraphs

£5.1 Sg—designs with A=2

Now we look at the remaining two multigraphs in
category II of Fig. 3.1, 55 and Sd. Both these multigraphs
have maximum edge multiplicity m = 2, so we must first 1look
for designs with A = 2, then for ones with A=3 and A=9, and
if we can find these whenever the necessary conditions are
satisfied then we are finished by Lemma 1.8. We can use
exactly the same constructions that we used for the envelope
S, So that all we need to find are some small designs and

some decompositions of complete tripartite multigraphs.

We start with the multigraph Ss. For this

multigraph we use the labelling system shown in Fig. 5.1:

(Cl.b,C;d.e,f)

Fig. 5.1

89
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For A=2 the necessary conditions for the existence

of an Ss—design are v = 1 (mod 9) and v = 6. We can use

[

exactly the same constructions that were used for S;
with A=1, the only difference being that since A=2 now all
edges in the complete multigraphs we must decompose are
double edges. From Lemma 1.8, since the necessary
conditions are the same in both cases, the techniques used
with A=1 are also valid with A=2. Therefore we must find S
designs directly for the same values of v for which we had
to find S;—designs directly with A=1 - i.e., v = 10, 19, 28,
37, and 46.

Lemma 5.1 There exists a (10.6,2) Ss-design.

Proof Here b = 10. A cyclic design on Z10 is generated by
the block
(0,7,8:1,2,93).

Lemma 5.2 There exists a (19,6,2) Ss—design.

Proof Here b = 38. A cyclic design on 2“:15 generated Dby

the twec blocks
(0,16,4:13,7.14)

(0,16,5:13.7,15).

Lemma 5.3 There exists a (28,6,2) Ss—design.

Proof Here & = 84. A design on 22El is generated by the
three blocks

(0,24,9;12,25,19)

(0,22,23:;15,5,17)

(0,17,3:;11.,7.19).
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Lemma 5.4 A (37,6,2) Sg—design exXists,
Proof Here & = 148. A cyclic design on 237 is generated by
the four blocks
(0,20,2:26,13,35)
(0,21,3:4,28,14)
(0,12,1:3,24,7)
(0,15,29;25,20,31).

Lemma 5.5 There exists a (46.6,2) S_-design.
Proof Here & = 230. A design on 246 is generated by the
blocks

(0,25,3:;34,17,45)

(0,26,4;18,34,19)

(0,21,41:37,7,39)

(0,17,7:;29,11,38)

(0,36,13;3,30,15}

In order to find all Ss—designs with A = 2 we now

need only find a decomposition of 2K; o o

’ ’

into Ss—blocks:

Lemma 5.6 There exists a decomposition of 2K9 o o into
5 —-blocks.

=

Proeof Here & = 54, A decomposition on pr {0,1,2}y 1is

generated by the blocks
(21’00'52;30'11'72)
(2,.0,,5,:3,.1,.7)
(20.0é,51;32.10,71)
(00,22,01:71,30,62)
(01,20.02;72.31,60)

(02,21,00;70,32,61).
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Theorem 5,7 There exists a (v,6,2) S -design for all values
of v satisfying the necessary condition v = 1 (mod 9).

Proof Take Lemma 1.8, and the proof of Theorem 4.7 with
"s " replaced by “S " and Lemmas 4.1 to 4.6 replaced by

Lemmas 5.1 to 5.6 respectively.

g5.2 Ss-designs with A=3

Next we must look at Ss-designs with A=3, The
necessary conditions here are v = 0, 1 (mod 3) and v = 6,
Here we can use exactly the same constructions as we did for
the envelope, 5,- Therefore we must find designs directly

for the same values of v as we did for the envelope. We

must also find an Ss-design directly for v = 10. ( For S

-+

designs on v points where v = 1 (mod 9) could be derived
from the corresponding (v.,6.1) S‘—designs. but for S5 they
cannot, since 55 has double edges and therefore 55 designs
exist only Qith Az2. The only such value of v which is too
small to be found using recursion is v = 10,) Altogether,
we need direct constructions of (w,6,3) Ss—designs for v =

6. 7, 9, 10, 12, 13, 15, 16, 21, 22, 33, 34, 39, and 40.

Lemma 5.8 There exists a (6,6,3) Ss—design.

Procof Here b = 5. A design is generated on {Zsu o} by the

block
(0,3.1;2,4,0} .

Lemma 5.9 There exists a (7,6,3) Ss-design.
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Proof Here b = 7. A cyclic design on Z7 is generated by

the block
(0,4,1;3,2,5).

Lemma 5.10 There exists a (9,6,3) S_-design.
Proof Here & = 12. A design on {Z;J o} is generated by the

two blocks
(0,5,6:2,1,4) {(half cycle)

(0,1,o;3,5,6).
Lemma 5.11 There exists a (10,6,3) Ss—design.

Proof A design on st{O.l} is generated by the three blocks
(00'10'20;01’11'21)
(11'Oo'20:1o'01‘21)
(0,.4,.2,:0 .4 .2.).

Lemna 5.12 There exists a (12,6,3) S_-design.

Proof Here & = 22. A design on {Z, v =} 1is generated hy

the two blocks
(0,2.10;1,7,5)

(10,0,7;4,6,0m) .,
Lemma 5.13 There exists a (13,6,3) Ss—design.
Proof Here & = 26. A cyclic desiyn on Zﬁ is generated

by the two blocks
(0,4,12;5,11,8)

(0,2.11:4,8,9).

Lemma 5. 14 There exists a (15.6,3) Ss—design.
Proof Here & = 35. A design on (2?x{0,1}) U @ is generated

by the five blocks
(00'21'01:50'30'61)
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(00'40'21:50'41‘60)
(0°.31,So;01,41.51)
(00.30,00;50.6:’,2‘)
(6‘,50,21;51,41,00) .
Lemma 5.15 There exigts a (15.,6,3) Ss—design.

Pruof Here & = 40, A design on Z s 13 generated Dby the

three blocks
(0,3.7:;15,11,8) {half orbit)
(0,10,3;7,2,13)

(0,.5.4;6,7.8).
Lemma 5.16 There exists a (21.6,3) S_-design.

Proof Here & = 70. A design on {220 U w} is generated by

the four blocks

’ (0,4,15:5,14,10) {half orbit)
(0,9,6:2,19,10)
(0,15,7:4,2.8)

(0,3.2:5,4,m).
Lemma 5.17 There exists a (22,6,3) Ss—design.

Proof Here b = 77, A design on Z22 is generated by the

four blocks
(0,10,6;11,21,17) {half orbit)
(0,15,10:12,4,21)
(0,17.8:7.11,14)
(0,3,2:9,7,10).

Lemma 5.18 There exists a (33,6.,3) Ss—design.

Proof Here b = 176. A design on {Z U =} is generated by

the six blocks
(0,24,15:;16.8,31) (half orbit)
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(0,22,14:17,6,30)
(0,12,25;3,29,15)
(0,4,11;22,26,31)
(0,10.6:9,11,14)
(0,3,2:7,4,m).

Lemma 5.19 There exists a (34,6,3) Ss—design.
Proof Here b = 187. A design on 2,  is generated by the

six blocks
(0,9,16;17,26,33) (half orbit)

(0,26,15:3,9,24)
(0,26,14;12,6,24)
(0.10,11:21,18,31)
(0,4,9;3,32,30)
(0,5,4:9,8,11).

Lemma 5,20 There exists a (39.6,3) Ss—design.
Proof Here b = 247. R design on {Z Y o} is generated by

the geven blocks
(0,8,18:;19,27.,37) (half orbit)
(0,28,17:18,9,34)
(0,18,15;13,35,20)
(0,28,14;:8,16,21)
(0,8,12;13,15,24)
(0,9,6:20,15,19)
(0.3.2;12,7,m).

Lemma 5.21 There exists a (40,6,3) s —design.

Proof Here & = 260. A design on 24° is generated by the

seven blocks
(0,10,19;20,30,39) (half orbit)
(0,36,18;10,16,33)
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(0,32,16;3,13,28)
(0,28,14;7,1,34)
(0,7,12;12,18,23)
(0,7,37;14,15,23)
(0,5,4:8,7,10).
Lemma 5.22 There exists a decomposition of 3K into
ss—blocks.
Proof The number of blocks here is 9. A decomposition on
2a %X {0,1,2} is generated by the blocks
(00.02,01;21.20.22)
(06'22'11’01'20'12)
(21,00.12:10,22.0:[) .

Theorem 5.23 A (v,6,3) Ss-design exists for all values of v
satisfying the necessary condition v = 0, 1 (mod 3).

Proof Take the proof of Theorem 4.27 (page 73), replace
"s," by "s_"., and Lemmas 4.8 to 4.23 by Lemmas 5.8 to 5.21

respectively.

§5.3 Ss—designs with A=9

For A=9, we can use exactly the same methods to find
Ss—designs as we did to find S‘-designs. Therefore all we
need do is find S&—designs directly for the same values of v
as was done for the envelope 54 - t.e. for wvalues of w
satisfying v =2 (med 3), v ¢ 50, and v 1is not prime.
These values are v = 8, 14, 20, 26, 32, 35, 38 and
44,
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Lemma 5.24 There exists a (8,6,9) Ss-design.

Proof Here b = 28. A design on {Z;U w} is generated by the

blocks (0,4,1;3,2,5)
(0,4,1:3,w,5) 3 times.

Lemma 5.25 There exists a (14,6,9) Ss—design.
Proof Here & = 91. A design on {Ziau w} 1is generated Dby

the blocks (0,4,10:7,9,m)

(0,2,12;3,5,m)
(0.2,12:3,4,m)
(0,1,5:3.12,9) 4 times.

Lemma 5.26 There exists a (20,6,9) Ss-design.
Proof Here & = 190. A design on {Zapu w} is generated Dby

the blocks (0,5.8:2.,17,11) 4 times

(0,6,1:8,18,10)
(0,13,7:5,18,12)
(0,1,4:13,15,18)
(0,0,2;12,16,13) 3 times.

Lemma 5.27 There exists a (26,6,9) Ss—design.
Proof Here b = 325. A design on {2;5u w} is generated by

the blocks
(0,18,12;8.3,19) 4 times
(0.9.4:;13,3,21) 4 times
(0,10,3:14,2,16)
(0.5,3;15,9,18)
(0,3.1:6,4,m) 3 times.

Lemma 5.28 There exists a (32,6,9) Ss—design.
Proof Here & = 496. A design on {ZafJ w} is generated Dby

the blocks



(0,24,15:5,11,19)
(0,21,11:5,30,17)
(0.3,5:4,11,8)
(0,20,1;16,2,18)
(0,23,2:21,14,m)
(0.6,1;9,5,m)
{(0,3,1:;5,4,m).

4 times
4 times
4 times

Lemma 5.29 There exists a (35,6,9) Ss—design.

Proof Here b = 595,

blocks

A design on 235 is

(0,11,20:5,30,22)

(0,10,21:19,26,32)

(0,9,4;10,17,22)
(0,19,32;21,1,22)
(0,9,1:30,20,32)
(0,3,6:;11,10,13)
(0,4,6;12,7,13)
(0,3.2:7.6.9).

generated by

4 times
4 times
4 times

Lemma 5.30 There exists a (38,6,9) Ss—design.

Proof Here & = 703,

A design on {ZSJJ w} is generated

the blocks
(0,11,21;:1,28,19) 4 times
(0,25,13;16,8,31) 4 times
(0,3,7:22,17,28) 4 times
(0,5,2;17,9,19) 3 times
(0,26,9;15,5,23)
(0,25,3;20,18,n)
(0,2,4;20,25,w)
(0,32.1;18,19,m) .

Lemma 5. 31

Proof Here b = 946.

A design on {24;J w} is

There exists a {44,6,9) Ss—design.

generated
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the blocks
(0,10,22;20,29,43) 4 times
(0,24,13;15,41,33) 4 times
(0.31,16:11.3,17) 4 times
(0,11,7:25,21,30) 4 times
(21,0,24;37,20,38)
(9.0,11;25,33,26)
(5,0,6:36,39,m)
(14,0,16;25,13,28)
(2.0,3:;38,41,w)
(0,1,41:39,42,o) .

Lemma 5. 32 There exists a (v,6,9) Ss—design whenever

v =0,1 mod 3, v is prime, or v=49,

Proof This result follows from Lemma 1.8 and Theorem 5.23
(v=0,1 mod 3), Lemma 4.31 with S4 replaced by 55 (v prime)

and Lemmas 5.24 to 5.31 (all remaining v»<49).

Theorem 5.33 There exists a (v,6.,9) Ss—design for all
v satisfying the necessary condition v = 6.
Proof Take Theorem 4.48, replace "s," by "s_", and Lemmas

4.28, 4.31 and 4.39 by Lemma 5.32.

Theorem 5.34 There exist a (v,6,A) Ss—designs for all v and
A satisfying the necessary conditions of Theorem 1.6.
Proof This result follows from Lemma 1.8, Theorems 5.7,

5.23 and 5.33.
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§5. 4 Sd-designs with A=2

Now we look at the final multigraph S, 1in category
IT of Fig. 3.1: connected non-bipartite cubic multigraphs on
six vertices. Here we need only find the same small designs
directly that we did for the other two multigraphs in this
category: S4 and Ss. Then we can use the same techniques
exactly to show the existence of all larger cases satisfying
the necessary conditions. For S, we use the block labelling

system 3hown in Fig. 5.2 below.

D
v

f e d
(a.b.c:d,2,/)

Fig. 5.2

For A=2 the necessary conditions for the existence
of an Sd-design are v = 1l(mod 9), v = 6. We must find
direct constructions for v = 10, 19, 28, 37, 46, and we must

also find a decomposition of ZKmpp into Sd—blocks.

Lemma 5.35 There exists a (10,6,2) Sd—design.
Proof Here b = 10. A design on Z“D is generated by the

block
{0,1,9:6.4.5).
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Lemma 5.36 There exists a (19,6,2) Sd-design.
Proof Here & = 38. A design on Zap ig generated by the two

blocks
(0,18,14:11.,7.6)

(0,14,4:2,11,6).

Lemmz 5,37 There exists a (28,6,2) Sd—design.
Proof Here b = 84. A design on Z29 is generated by the

three blocks
(0,14,2;15,5.8)

(0,10,1:;12,24,2)

(0,9,10;3,1.,4).

Lemma 5.38 There exists a (37.6,2) Sﬁ—design.
Proof Here b = 148, A design on 2;7 is generated by the

four blocks
(0,13,31;11,29,22)

(0,15,29;8,14,27)
(0,12,22:33,4,3)

(0,9,4;2,36,3).

Lemma 5.39 There exists a (46,6,2) Sd—design.
Proof Here b = 230. A design on 2;6 is generated by the

five blocks
(0,23,2:;24,32,11)

(0,19,38:;12.17,32)
(0,17,33:5.40,10)
(0,12,27;36,3,10)

(0,6,44;2,3,1).
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Lemma 5. 40 There exists a decomposition of ZKS s 3 into
Sd—blocks.
Proof The number of Dblocks here is 6. A design on

23 x {0,1,2} is generated by the two blocks
(00.12,10:01.22.11)
(00,02.21:20,12.11).

Lemma 5.4f,. There exists a decomposition of ZKDDQ into

S ~-blocks.
(=3

Preoof This follows from Lemma 5.40 and Lemma 1.9.

Theorem 5.42 There exists a (v,6,2) Sé-design for all
values o0f v gatisfying the necessary conditions v =1
(mod 9) and » 2z 6.

Proof Take the proof of Theorem 4.7. renlace "54" by "Sd"

and Lemmas.4.1 to 4.6 by Lemmas 5.35 to 5.41 respectively.

§5.85 Sd-designs with A=3

For » = 3 we must find direct constructions for v =
6, 7, 9, 10, 12, 13, 15, 16, 21, 22, 33, 34, 39, 40, and we

must also find a decomposition of 3K3 2 3 into Sdﬂblocks. as

»

we did for S and S,
L 3 =1

Lemma 5.42 There exists a (6,6,3) Sd—design.
Proof A design on (Zsu w} is generated by the block

(0,3,2;20,4.,1).
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Lemme 5.44 There exists a (7,6,3) Sd—design.
Proof A design on Z7 is generated by the block

(0,1,6:5,2,4).

Lemma 5.45 There exists a (9,6,3) Sd—design.
Proof Here b = 12. A design on {Z U o} iz generated by

the two blocks
{(0,1,6:;2,5,4) (half orbit)

(0,2,2;4,6,7).

Lemma 5.46 There exists a (10,6,3) Sd—design.
Proof Here & = 15, A design on Z10 is generated by the two
blocks
(0,2,1:6,7,3) (half orbit)
(0,1,4:2,6,7).

Lemma 5. 47 There exists a (12,6,3) Sa-design.
Proof Here & = 22. A design on {ZaJJ w} 1s generated Dby

the two blocks
(3,0,4:9,5.8)

(23,1,0;10,0,5).

Lemma 5. 48 There exists a (13,6,3) Sé—design.
Proof Here b = 26. A design on 2&3 is generated by the two

blocks
{(0,6,11;2.7.10)

(0,5,6:4,1,12).
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Lemma 5.49 There exists a (15,6,3) Sd—design.

Proof Here b = 35. A de=ign cn (27x{0,1)) U o ig generated
by the five blocks

(20’31‘41;61'30'01)

(20’30'40;60’31'01)

(1,.6,.3,:5,.3,,0,)

(3,,0,.0,;0,4 ,4)

(3,.0,,:4,.2,.3,) .

Lemma 5.50 There exists a (16,6,3) Sa—design.

Proof Here b = 40. A design on .2“s is generated by the

three blocks
(0,6,1;9,14,8) (half orbit)

(0.5,1:13,6,15)

(0,1,15;12,5,2)

Lemma 5.5¢ There exists a (21,6,3) Sd—design.
Proof Here = 70. B design on {2,V =} is generated by

the four blocks
(0,7.,15;25,17.,10) (half orbit)

(0,7,6:17.,8,2)
(0,5,1:15,7,3)

(0,1,2;0,3,9).

Lemma 4.52 There exists a (22,6,3) Sé—design.

Proof Here b = 134, A design on Z22 i1s generated by the

four blocks



105

(0,7,17;6,18,11) (half orbit)
(0,5,3:15,6,9)
(0,5,14;21,16,8)

(0,3,5:;4,8,2).

Lemma 6.82 There exists a (33,6,3) Sd—design.
Proof Here b = 176. A design on (23;; w} i3 generated Dby
the six blocks
(0,11,25:9,27,16) fhalf orbit)
(0,12,25;8,18,27)
(0,11,23;4,22,2)
(0.4,26:18,7,30)
{(0,1,7;14,6,5)
(0,3,m;7,4,1).

Lemma 5.54 There exists a (34,6,3) Sd-design.
Procf Here & = 187. A design on 234 is generated by the
six blocks
(0,12,25:8,29,17) {thalf orbit)
(0,14,29;11,26,32)
(0,12,25;5,15.3)
(0,8,29:6,10,1)
(0,.8,19:26,2,33)
(0,3,8:2,4,33).,

Lemma 5.55 There exists a (39,6,3) Sa—design.
Proof Here b = 217, A design on {€,5Y @} is generated Dby

the seven blocks
(0,12,28;9,31,19) (half orbit)
(0,17,33;13,29.,11)
(0,15,29:8,23,12)
(0,13,27:2,14.,4)
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(0,9,20:30,37,7)
(0,5,11;3,35,2)
(0,5,m0;6,2,1).

Lemma 5.56 There exists a (40,6,3) Sd—design.
Proof A design on 2;0 is generated by the seven blocks

(0,13,30;10,33,20) (half orbit)
(0,12,28;7,17,26),
(0,11,30;:8,26,15)
(0,13,30;6,15,295)
(0,12,25;33,3,11)

(0,6,15:;8,3,2)

(0,5,11;9,6,1).

Lemma 5.57 There exists a decomposition of 3K into

S -blocks.
[~

Procof A decomposition on 2.’:_I x {0,1,2} is generated bhy the
three blocks

(0_,0.,1 ;2_.1,0.)
0’ 1’0’ %2 "1 V2
(1,.2,.2_:1,,0,,2)

(1,.1,,2,:2,.2,.0,).

Theorem 5.58 A (v,6,3) Sé—design exists for all values of v
satisfying the necessary conditions v = 0,1 (mod 3) and vz6.
Proof Take the proof of Theorem 4.27. Replace “54“ by “Sd”

and Lemmas 4.8 to 4.23 by Lemmas 5.43 to 5.57 respectively.
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§55.6 Sd-designs with A=0

For A=9 we need to find ¢the same small designs
directly as we did for the previous two multigraphs S and

S,. that is for v = 8, 14, 20, 26, 32, 35, 38 and 44.

Lemma 5.59 There exists an (8,6,9) Sd-design.
Proof Here b = 28. A design on {ZU o} is generated by the

blocks
(0,1,00:2,5,6) twice

(0,1,6;4,3,m)
(0,2,5:1,4,6).

Lemma 5,60 There exists a (14,6, 9} Sﬁ—design.
Proof A design on {Za;J w} is generated by the blocks
(0,4,9;2,5,3) 4 times
(0,4,:7,11,2)
(0,6,0;8,4,1)
(0,2,w;11,12,1).

Lemma 5.6f{ There exists a (20,6,9) Sd—design.
Proof Here & = 190. A design on U%pu o} is generated by

the blocks
(0,6,15:4,14,2) 4 times

(0,6,9:10,7,2) 3 times
(0,5,w:;3,9,2)
(0,7,2;13,5,1)

(0,3,0;5,4,1).
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Lemma 5.62 There exists a (26,6,9) S -design.

Proof Here & = 325. A design on {2,V ®} is generated by

the blocks
(0,9,19:6,11.,4) 4 times
(0,6,17;9,19,22) 4 times
(0,9.,8:;1,12.2)

(0,8,12:;10,7.,1)
(0,4,0;1,3,8)
(0,4,0;2,3,5)
{0,4,0:;1,3,5).

Lemma 5.62 There exists a (32,6, So-design.

Proof Here b = 49, A design on {sz'm} is generated Dby

the blocks
(0,13,21:5,24.6) 4 times
(0,11,23:6,26,5) 4 times
(0,10,14;5,3,2) 4 times

(0,15,4:7,13,1)

(0,10,=;4,8,1)

(0,4,m:;5,2,1)
(0,4,2;9,5,1).

Lemma 5.64 There exists a (35,7,9) Sd-design.

Proof Here b = 595. A design on 255 is generated by the

blocks (0,12,25:7,26,20) 4 times
(0,13,28;7.16,23) 4 times
(0,6,16;5,8,1) 4 times

(0,4,9:7,3,34) twice

(0,17,2;4,14,8)
{(0,16,3:6,11,4)
(0,3,4:;2,33,34).
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Lemma 5.65 There exists a (38,6,9) Sd—design.
Proof A design on {Za;J w} i3 generated by the blocks

(0,14,30;11,20,26) 4 times
(0,13,30;3,8,6) 4 times
(0,16,28;13,26,30) 4 times
(0,9,12;11,3,5) 4
(0,18, w:2,17,8)
(0,16,0:26,12,3)
(0,6,0;16,3,2).

times

Lemma 5.66 There exists a (44.,6,9) Sé—design.

Proof Here & = 940, A design on {Z;EU o} is generated by

the blocks
(0,17.,31;10,19,32) 4 times
(0,16,26:;3,9,33) 4 times
(0.16,31:6,37,30) 4 times
(0,12,1:9,4,5) 4 times
(0,16,37:40,17,31)
(0,19,37:39.7.9)
(0,4,17:14.6.1)
(0,4,0;5,3.,2)
(0.4,20;5,3.,1)
(0,4,00;6,2,1).
Lemma 5.67 There exists a (»,6,9) Sg—design whenever

v =20,1 mod 3, v is prime, or wv=49.
Proof This result follows from Lemma 1.8 and Theorem 5.57
(v=0,1 mod 3), Lemma 4.31 with S‘ replaced by S‘:s (v prime)

and Lemmas 5.58 to 5.65 (all remaining v=<49),.
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Theorem 5.68 There exists a (v,6,9) S,-design for all
v gatisfying the necessary condition v 2z 6.
Proof Take Theorem 4.48, replace "S‘" by ”Sﬁ", and Lemmas

4,28, 4.31 and 4.39 by Lemma 5.67,.

Theorem 5.69 There exist (v,6,)\) Sd-designs for all v and »
satisfying the necessary conditions of Theorem 1.6.
Proof This result follows from Lemma 1.8, and Theorems

5.42, 5.58, and 5.68.



CHAPTER ©6
DESIGNS ON CUBIC MULTIGRAPHS ON 6 VERTICES:

Bipartite Disconnected Multigraphs

£6.1 S7-designs

Now we 1loock at the final category of cubic
multigraphs on gix vertices, disconnected ones. The first
multigraph in this category, S% in Fig. 3.1, consigts of
three triple edges. This case has been solved in effect by
Bialostocki and Roditty (8], who have shown that a (v,6,A)
S;—design exists whenever the necessary conditions of

Theorem 1.6 are satisfied.

§6.2 Ss-designs with A=3

The next multigraph, SB, consists of the cylinder Cy
from Chapter 2 along with a triple edge. This multigraph is
bipartite, and we shall use the same methods that were used
for the other bipartite multigraphs S, and Sa. In this
case, however, we have m = 3, so that the smallest A we need
consider is A=3, and we must therefore look separately at
designs with A = 4 and A = 5 since we cannot obtain these
from designs with smaller X as we could when we were looking
at S2 and Sa. The block labelling system we shall use for

this multigraph is shown in Fig. 6.1.

111
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>

& c f
(a,b;c,d) (e, £)

Fig. 6.1

For » = 3 the necessary conditions of Theorem 3.1
are v 2 6 and v =0, 1 (med 3). The smallest v satisfying
these conditions is » = 6. We were unable to find a (6,6, 3)
Sﬁ—design and in fact such a design cannot exist by the

following lemma.

Lemma 6.1 There is no (6,6,3) Sa—design.
Proof Here the number of blocks & = 5. Therefore in order
to find the required design we must put five copies of Sn on
3Kd in such a way that each edge is covered exactly once.
We shall try to o this one copy at a time and show that it
is impossible.

For our first copy, we can obviously choose any

position we want. Therefore W.L.0.G. choose the first block

to be
(0,1:2,5)(3.4).

This leaves ten triple edges, eight of which are adjacent to
the first copy of 3KE - that is, contain vertex 3 or wvertex

4. 5Since we need four more copies of 3K2. we must use at at
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least two of these as 3K 's. Therefore we can choose the
triple edge in the next Sn—block to be (2,3) W.L.0.G. Then
there are two ways to choose the remaining component (up to
symmetry) :

(i) (0,5:;4,1), which has two edges in common with the
first block
or (ii) (0,5:;1,4), which has one edge in common with the
first block.
(Note that we cannot choose the remaining component *to be
(0,4:1.5), since a triple edge in 3K¢ obviously cannot De
contained in three diiferent S;—blocks.)

Fig. 6.2 shows the edges remaining 1in each case.

Fig. 6.2

Now we shall try to fit in three more copies of Sy
first for (i) and then for (ii). For (i) we look at all the
different ways in which we can use the double edge (4,5).
There are only three Sa—blocks which fit on (i) and contain

this edge, namely
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(a} (1,2:;5,4)(0,3),
{b) {(1.2;4,5)(0,3),
(c) (0,2;5,4)(1,3).

{The Sg—block (1.3;5,4)(0,2) also fits but gives the same
thing as (¢) up to automorphism.)

We now look at each of these in turn and show that
in no case can we find two more Sa-blocks. The edges

remaining are shown in Fig. 6.3:

The configuration in (a) is {3K3 U 3K3} on which
there cobviously cannot exist an Sﬂmdesign. In (b) the only
way to use the single and double edges would be to make the
first component of the design (1,5;2,4), but then we need
the triple edge (0,3) which has already been used. For (c)
we must use the S -block (0.4:;1,2)(3.,5) since this 1is the
only way we can cover the single and double edges. But this

leaves three triple edges which clearly cannot be covered by

an Sa—block.
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Having shown that we cénnot find three more
S,~blocks in (i), we now examine (ii). Here we look at the
different ways we can cover the (single) edge (0,1). There
are four ways we can choose the first component so that it

contains this edge, three of which also contain the double

edge (1,5):
(a) (0,2;5.,1),
(b) (0,4:3,1),
(c) (0,3;5.1),
(d) {(G,4:2,1).

We cannot have (a) or (b) because the triple edges
(3.4) and (2,3) have already been used. If we choose (c¢)
then one of the last two S,~blocks must have (1,2:;5,4) as
first component in order to use the double edge (1,2), but
then we need the triple edge (0,3) which is not available.
With (d) we would be forced to have (1,5;2,4)(0,3) as our
fourth block which leaves three triple edges. This exhausts
all the possibilities, so +we conclude that a (6,6,3)

Sa—design does not exist.

The next wvalue for v satisfying the conditions
necessary for an s,~design to exist is 7. We shall give
direct constructions for » = 7, 9, 10, 12, 13, 15. 16, 18,

and 19,
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Lemna 6.2 There exists a (7,6,3) $ -design.

Proof Such a design is given by the blocks
(0,1:;6,5)(2,3)
(0,6;5,1)(2,4)
(0.2:6,4)(1.,3)
(0,4;6,2) (3,5)
(0,5:1.,6)(3.4)
(1,2:5,4)(0,3)
(1,4:5,2)(3,6).

Lemma 6.3 There exists a (9,6,3) Se—design.

Proof A design on {Zsu w} ig generated by the blocks

(0,6:;4,2)(1,3) (half cycle)
(0,1:;4,5)(2,m) (half cycle)
(0.5:;4,1) (6,x) (half cycle).

Lemma 6.4 A (10,6,3) S;—design exists.,
Proof Here b = 15. A dewign on Z_x{0,1} is generated by

the blocks .
(10.21.40.31)(00,01)

(00.30:2‘.1‘) (0,.3,)
(0,.2,:1,.3,) (1.2,
Lemma 6.5 There exists a (12,6,3) Sa~design.

Proof Here b = 22. A design on {Z“glan is generated Dby

the blocks
(0,7:10,9)(1,o)

(0,3:2,4)(1,6).
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Lemma 6.6 There exists a (13,6,3) Ss~design.

Proof Here b = 26. A cyclic design on %m is generated Dby

the blocks
(0.3:;12,1)(4,9)

(0,1;12,3)(4,10).

Lemma 6.7 There exists a (15,6,3) Sé~design.

Proof Here & = 35, A design on (Z;X{O,l}) U {ew} is

generated by the blocks
(10'20;31'01)(40’60)
(10’31:01’20)(41'51)
(lo,51:01.40)(6°.61)
(10,40;01,51){5°,m)
(1,.0,:2,.,3,) (4 ,@).

Lemma 6.8 There exists a (16,6,3) S —design.

Proof Here & = 40. A desigu on 2;6 is generated by the

blocks
(2,6:10,14)(4,12) {(half orbit)

(1,14;11,6) (3,4)
(0,2:8,14)(4,11) .

Lemma 6.9 There exists an (18,6,3) Sﬁ—design.

Proof Here b = 51. A design on {ZQJJ w} 1is generated Dby

the blocks
(0,1:16,3) (4, ™)

(2,16:4,15) (6,14

(0,2;13,1) (4,11).
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Lemma 6.10 There exists a (19,6 3) Sn—design.

Proof Here & = 57. A design on Z“'is generated by the blocks
(0,1;18,3)(7,14)
(0,3;18,5) (8,16)

(0,5:18,1)(7,16).

We now need some decompositions of complete
hipartite multigraphs in order to settle the question of the
existence of Sa—designs when A = 3, just as we did for the

other bipartite multigraphs S2 and Sa.

Lemma 6.11 There exists a decomposition of SKS s into

S =blocks.
a

Proocf Such a decomposition (on Zax{O,l}) is given by the
three blocks
(0,.0,:1,.1.3(2,.2)
(0,.1,:2,.00(1_,2))
(1,.0,:2,.1)(0,.27.

Lemma 6.12 There exists a decomposition of BK‘ a into

Sa—blocks.

Proof Such a decomposition is shown in Fig. 6.4.

X X7

(¢} (11)
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== @ =%

(tid) {iv)
Fig. 6.4
Lemmg. 6.12 There exist decompositions of 3K12,1z, 3-’(15'12,
3Kw'12, and 3K16.12 into Se—blocks.

Proof Lemmas 6.11, #.12 and 1.9.

Since we could not find an Sé—design on SKG we
cannot use exactly the same constructions as we did for the
multigraphs Sé and 53, but must use larger components, or

building blocks. The general idea, however, is the same.

Theorem 6.14 There exist (v,6,3) Sé—designs for all w
satisfying the necesary conditions »26, v = 0,1(mod 3), with
the single exception of the case v = 6.

Proof A (6,6,3) 5,-design does not exist from Lemma 6.1.
For v>6 we divide the v satifying v = 0,1{mod 3) into four
cases, and give a construction for each.

Case I: v = 0,1 Cmod 12). Then » = 12m, or 12m+1 for some
mzl. Split the v points into m rows of 12, with a point at
o if v=1 (mod 12). Cover each row of 12 with the (12,6,3)
S5,~design from Lemma 6.5 if v = 0 (mod 12), or each row plus

infinity point with the (13,6,3) SB—design from Lemma 6.6 if
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v =1 (mod 12). Then cover edges between each pair of rows
with the decomposition of Bﬁmiz into Sn—blocks which we

have from Lemma 6.13.

Case II: v =6, 7 (mod 12). A (7.6,3) Sa-design exisgtis
from Lemma 6.2, so we can assume » 2 18. Then v = 12m+6, or
12m+7 for some m = 1, Split the v points into one row of 18
and m-1 rows of 12, with a point at infinity if v = 7 (mod
12). Cover rows with the (18,6,") Sa-design from Lemma 6.9
and the (12,6,3) Sa—design from Lemma 6.5 if v = 6 (mod 12),
or rows plus o point with the (19,6,3) and (13,6,3)
Sé—designs from Lemmas 6.10 and 6.6 respectively if v = 7
(mod 12). Cover edges between each pair of rows with the
decompositions of 3Km'12 and 3K12'12 into Sa—blocks which
we have from Lemma 6.13.

Case IIl: v = 3,4 (mod 12). Here v = 12m+3, or 12m+4 with

m= 1. Split the » points into one row of 15 and m-1 rows

of 12, with an o point if m = 4 (mod 12). Cover rows with

(15,6,3) or (12,6,3) Sa—designs from Lemmas 6.7 and 6.5, or
rows plus @ with (16,6.,3) or (13,6,3) Sﬂ-designs from Lemmas
6.8 and 6.6 respectively. Then edges between rows can be
covered with the decompositions of mg542 and 3K12'12 into
S,~blocks from Lemma 6.13.

Case IV: v = 9,10 (mod 12). Here v = 12m+9, or 12m+10 for

mz0. Split into one row of 9 and m rows of 12, with an o

point if v=10 (mod 12). Cover row of 9 with the S, —~design
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from Lemma 6.3, or row of 9 plus o with the (10,6,3)
S;—design from Lemma 6.4. Cover remaining edges exactly as
in the previous case, except that here we need a

decompogition of 3K
2,42

into S;—blocks, which also comes

from Lemma 6.13.

§6.3 Sg-designs with A=4 and A=5

Next we must look at S;-designs with A=4 énd A=35.
The necessary conditions here are w=l1 (mod 9), v=26,. For
both cases we find the smallest design, with wv=10, and a
decomposition of 4K° o directly, and then all the others can

»

be found using recursion.

Lemma 6.15 There exists a (10,6,4) Sa—design.

Proof Here & = 20. A design on Zuo is generated by the two

blocks (0,3:9,2)(4.8),

(3,4:;9,8)(5,7).
Lemma 6.16 There exists a decomposition of qu o into
Sa—blocks.

Proof A decomposition on pr{O,l} is generated by the

blocks
(00,21:30.01)(40.31),

(0,.3,:5,.0,)(7,.5,) .
(0,.2,:6,.0,)(8_.4,),
(0,.4,:3,.0,) (4,.5,) .
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Theorem 3. 17 There exists a (v,6,4) So—design for all w

satisfying the necessary conditions v=1 (mod 9) and v=6.

Proof If v =1 (mod 9) and v26 then v=9m+l for some m=1.
Split the v points into m rows of 9 and a point at w. Cover
each row+w with the (10,6,4) design from Lemma 6.15, and all
edges between rows with the decomposition of 4K9.9 into
S,~blocks from Lemma 6.16.

Lemma 6. 18 There exists a (10,6.5) Sh—design.

Proof Here b = 25, A design on st{O.l} is generated by

the five blocks
(10.20:31.01)(00,21)

(1,.2,:3,,0,) (4_.4)
(1,.0,53,2.)(1,.2)
(0,.3,:2,.1)(1,.4,)
(1,.3,:3,.1,)(2,.4,).

Lemma 6.19 There exists a decomposition of 5K, o, into

»

S;—blocks.

Proof Here b = 45, A design on pr{O,l} is generated by

the five blocks
(00.11:30.21)(20.61)

(0,.4,:7,.3,)(8,.8,)
(0,.2,:2,.0,)(7,,3,)
(0,.3,:5,.2,)(6,.7,)

(0,.3,:5,.2)(7,.6).
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Theorem 6.20 There exists a (v,6,5) Sa-design for all w
satigfying the necessary conditions v=l (mod 9) and v=6.
Proof Let v=9m+l. BSplit the pointg into m rows of 9 and a
point at . Cover each row+w with the (10,6,5) Sa—design
from Lemma 6.18, and edges petween rows with the
decomposition of SKp o from Lemma 6.19.

’

£6.4 S;-designs with A=6 and A=g9

We can derive all but one Sa-design with A=6 from
the corresponding designs with A=3, but since a (6,6,3)
Se-design does not exist, we must find a (6,6,6) Se-design

by direct construction.

Lemma 6.21 There exists a (6,6,6) Sa—design.
Proof Here & = 10. A design on {ZSU w} is generated by the

blocks
(0,1;2.4)(3,m) and (0,2:1,4)(3,00),

Finally we look at Sg—designs with A=9, where the
only necessary condition is w26, If v = 0, 1 (mod 3) then a
(v,6,9) 5,~design can be derived from the (v.6,3) sa-design
of Theorem 6.14 by the Corollary to Lemma 1.8, except for
when v=6, as there is no (6,6,3) S;—design. We give direct
constructions for v = 6, 8 and 11, then a recursive method

for finding the larger designs.
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Lemma 6.22 There exists a (6,6,9) S —design.

Proof Here b = 15. A design on {Zsu w} is generated by the

three blocks
(0,4;3,1)Y(2,m)

(0,1;4,3)(2,m)
(0,3:1,4)(2,m) .

Lemma 6.23 There exists an (8.6,9) Sn—design.

Proof Here b = 28, A design on {Z;U w} is generated by the
four blocks

(0,6:3,1)(2,m)

(0.6:4,1)(2,m)

(0,3;2.6)(3,m)

(0,6:4.2)(1.5).

Lemma 6.24 There exists an (11.6,9) S,~design.

Proof Here b = 55. A cyclic design on Zuiis generated by
the five blocks

(0.1:;10,3)(4.8)

(0,2:10.4) (5.8)

(0.3;10.5)(7.8)

(0.4:10,2) (7.8)

{(0.5;10,1)(7.9)

Lemma 6.25 There exist decompositions of QKG <’ 9Kn o and

QKH'G into Ss-blocks.

Proof This result follows from Lemmas 6.11, 6.12. and 1.9.

Theorem 6.26 There exists a (v,6,9) S ,~design for all w

satisfying the necessary condition w6,
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Proof For v = 6 we have a design from Lemma 6.21. All
other designs with v = 0,1 mod(3) can be obtained from
Theorem 6.14 and Lemma 1.8. We have direct constructions
for v=8 and v=11 from Lemmas 6.23 and 6.24 respectively.
For the remaining designs with v = 2 (mod 3) we proceed as
follows:

Case I: v =2 (mod 6). Then v = 6m + 2 for some m = 1.
Split the v points into m~1 rows of six and one row of
eight. Cover row of 8 with the (8,6,9) S,—design from Lemma
6.23, each row of six with the (6,6,9) Sa—design f.om Lemma
6.22, and edges between rows with the decompositions of

9K and QKB

5.5 s into Sa—blocks from Lemma 6.25.

Case II: v =35 (mod 6). Then v = 6m + 5 for some m 2= 1.
Split the v points into m-1 rows of 6 and one row of eleven.
Cover row of eleven with the (11,6,9) S5,—design from Lemma
6.24, each row of six with the (6,6,9) Sa-design from Lemma

6.22, and edges between rows with the decompositions of

1214 and 9K
S, 1,4

into Sa—blocks from Lemma 6.25.

Theorem 6.27 .There exists a (v,6,A) Sa—design for all v and
A satisfying the necessary conditions of Theorem 1.6 except
for v=§, A=3,

Proof This result follows from Theorems 6.14, 6.17, 6.20,

6.26 and Lemma 1.8,



CHAPTER 7
DESIGNS ON CUBIC MULTIGRAPHS ON 6 VERTICES:

Non-Bipartite Disconnected Multigraphs

§7.1 Intreduction

There remains one cubic multigraph on six vertices -
S, in Fig. 3.1. This multigraph is K\ 3K2, and is the most
difficult of these multigraphs to find graph designs on,
especially in the general case, since it is not bipartite
nor even tripartite. In fact we have not been able to solve
the general question of the existence of G-designs for this
multigraph, so we present here the partial results we have

been able to establish and indicate which designs are still

needed to settle this casgse completely.

For Sp we shall wuse the block 1labelling system

shown in Fig. 7.1.

d c f
(a.b,c.d) (e, f)

Fig. 7.1

126
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For this multigraph some of the designs we shall
find will have the first component (K4) repeated with
different copies of the second component (SKQ). (Since the
first component has no multiple edges and the second is a
triple edge, we can take each first component three times,
with three different labellings for the second component.)
For the sake of brevity, when the same first component
occurs with different second components we shall list the
first component only once, and list the accompanying second
components in the same row. The first example of this

occurs in Lemma 7.4.

§7.2 Sp—designs with A=3

As with the previous multigraph SB Wwe must start
with A=3, and the necessary conditions for the existence of

a (v,6,3) Sp—design are v = 0, 1 (mod 3) and v =2 6.

Lemma 7.! There exists a (6,6,3) Sg—design.
Proof Here = 5. A design on {ZSU o} is generated by the

block
(0,1,2.3)(4,).

The next wvalue of ~ satisfying the necessary
conditions for the existence of a (v,6,3) Sg—design is
ve7. A (7,6,3) Sg—design does not exist, as we prove in

the following lemma.
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Lemma 7.2 There does not exist a (7.6,3) Sp-design.

Proof 1If such a design existed it weuld have 7 blocks. Try
to find such a design on 25. Arrange the seven points as a
column of four points (00,10,20,30) on the left and & column
of three points (D‘,ll,zi) on the right. Assuming that
there is a (7,6,3) Sg—design. let one of the So—blocks be
(00.10,20.30)(01,1‘). Consider the K‘ components of the
other S_-blocks. Each of these must contain at least two
points on the left since one of the triple edges on the
right is in the given S°~b10ck, 80 we cannot have all 3
points on the right in one of the remaining K4 components,
Let ¢, &, ¢, be the number of K4's that contain precisgely
4, 3, 2 respectively, of the vertices on the left. Then
since there are six remaining blocks, and twelve remaining
edges on the left which must all be contained in a K4
component, we have

a+ b +c = 6
6a + 35 + ¢ = 12

These equations have only one solution in nonnegative
integers, namely, @ = 0, & = 3, and ¢ = 3. Therefore, 3 of
the 6 remaining K‘ components must contain 3 points on the
left, and the other 3 contain 2 points each. We can assume
WLOG that the first 3 contain points (00,20.30). (00.10.30).
and (10,20,3°) respectively. The 3 containing 2 points must

all contain the same *wo points on the right 1in order for
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the joining edée to be used exactly 3 times. Therefore we
can assume WLOG that these are

(00,10.01,11)

(00'20'01'11)

(10.20.01.11)
Now we try to complete the K‘ components containing 3 points
on the left by adding a point on the right to each. They
must contain distinct points on the right since otherwise
one of the mixed edges would be used 4 times, or if all
three contained the point 21 there would not be enough
triple edges left over for the remaining SKz components.
But there is no way to do this and be left with only triple
edges as required. Therefore it is impossible to find a

(7.6.3) Sp—design.

We have been wunable to find, or to prove the
nonexistence of, a (v,6,3) Sp—design with the next
admissible value of v, v=9. The difficulties we encountered
when trying to find such a design do however lead us to make

the following conjecture,

Conjecture 7.3 There does not exist a (9,6,3) S;—design.

We were able to find (v,6.3) Sp—designs for all
other v = 19 satisfying the necessary conditions., and

these are given in the following seven lemmas.
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Loemma 7.4 There exists a (10,6,3) s_—~design.
Proof Here & = 15, A design on Z2,x{0,1} is generated by
the blocks

(0,.1,.0,.2) taken 3 times,

with (3..1,), (2,.4,), (3,.4).

Lemma 7.5 There exists a (12,6,3) Sp-design.
Proof Here b = 22, The obvious thing here would be to look
for a construction on {2, W o}, but we can show that one
does not exist. Instead we found a design on Z‘x{O,l,Z}
which is generated by the six blocks

(0,-2,+0,.2,)(0,.2)) (half orbit)

(0,.1,.2,.2,)(3,.3))

(00‘10'11’21)(30‘22)

(01'21'02’12)(10‘32)

(0,,1,.0,,1,)(2,.3,)

(01,11,22,32)(30,21).

Lemma 7.6 There exists a (13,6,3) Sg-design.
Proof Here b = 26. A cyclic design on 2;3 is generated Dby

the two blocks
(0,2,4.,11)(5,10),

(0,3.6.,10)(7.,8).

Lemma 7.7 There exists a (15,6, 3) So—design.
Proof Here b = 35. A design on Z?x{O,l} U o 1s generated

by the five blocks



(0,.3,.1,.2,) (4,,6)
(0,.3,.1,.2,)(3,,6,)
(0,.2,.4,.2,)(6,.3,)
(04,14.0,,1)(3 )

(0g. 1424 @) (3,,6,)

Lemma 7.8 There exists a (16,6,3) Sp-design.
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Proof Here & = 40. A design on Zax{O.l} is generated by

the blocks

(20.40,01.11)(10,50) (half orbit)

(00.60.41.51}(21,61) (half orbit}

(0,.1,.2,.7,)(3,.6,)
(0,.24.3,-4,)(0,.2)
(04.3,.1,.2,)(4,.7,)

(00‘30'41'51)(60’61)‘

Lemma 7.9 There exists an (1§,6,3) Sp—design.
Proof Here & = 51. A design on (21¢J o} 1s generated
the three blocks

(0,3,7,15)(5.6)

(0,3,7.15)(8,14)

(0.3,7.15)(4,o).

Lemma 7.10 There exists a (19,6,3) Sp—design.

Proof Here b = 37. A cyclic design on Z1 is generated

=]

the blocks
(G.3.7.17)(4.5)

(0.3.7,17)(8,16)
(0.3.7,17)(9.153).

by

by
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Lemma 7.11 There exists a decomposition of SKG 6 6 o into
Sp—blocks.
Proof The number of blocks here is 72. A decomposition on
2,2{0,1.2,3} is generated by the 12 blocks
(00,21,52.23) 3 times, with (50.51), (01.02). (22.03)
(00,31.12,03) 3 times, with (40,42). (50,48), (32.59)
(00,11,22,33) 3 times, with (20.52). (40,53), (3$.43)

(50,4*,32,33) 3 times, with (30.11). (01.22), (21,03).

Lemma 7.12 There exists a decomposition of BK; o o o into

S =blocks.

=]

Proof A decomposition on 29x{0.1.2.3} is generated by the
eighteen blocks

(00.01,02.09) 3 times with (50,1‘). (80.51). (52,1]

3

(0,-1,.2,.3) " " (7..3,), (8,.4,). (8,.7)
(0,.2,.4,.6) " " (3,,6,). (6,8, (8.7
(0,.3,.7,.1) " " " (6,.5,)., (B,.7). (B,.5)
(0,.4,.1,.5) " " " (5.8). (6.,2). (8,.6,)
(0,.7,.6,.4,) " " " (2..0)). (0,.3). (8.7).

We do not have enough to solve this case completely,
but using the above decompositions we can find some infinite

ciasses of S;—designs with A=3.

Lemma 7.13 There exist (v,6,3) Sg—designs for all v = 6, 24

{mod 72).
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Proof §Split the v points into g rows of si:: points, then we
have g = 1, 4 (mod 12). From Hanani ([17] there exists a
Steiner system S(2,4.g), that is, a (g.,4,1) K4—design. Take
each block from this, which contains four rows of six
points, and cover all edges between rows using the
decompogition of 3K¢qdﬁ from Lemma 7.11. Then each row
can be covered using the (6,6,3) Sp—design from Lemma 7.1.
Note that the previous lemma could have been used to
give S_-designs when v = 7, 25 (mod 72), by adding a point
at infinity, but for the fact that we do not have a (7,6,3)

Sg—design, as was proved in Lemma 7.2.

Lemma 7.14 There exists a (v,6,3) 5,-design for all v 12,
13, 48, 49 (mod 72}.

Proof §Split the v points into g rows of six, with a point
at infinity if v = 13 or 49 {(med 72). Then from
Brouwer [11] there exists a dense packing of K4's into Kg
which covers all edges in Kg (that is, pairs of rows of gix)
except for zg disjoint pairs. Therefore we c¢an take each
block from this packing, which is a set of four rows of six,
and cover all edges between rows with the decomposition of
3K¢¢bﬁ. We are left with the edges within rows, and the
edges between each of the disjoint pairs not cerred by the

packing. These pairs must include each of the & rows

exactly once, so we <can cover all remaining edges by
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covering each of these pairs with the (12,6,3) Sp—design
from Lemma 7.5, or if v = 13 or 49 (mod 72) then cover each
pair plus the infinity point with the (13,6,3) Sp-design

from Lemma 7.6.

Lemma 7,15 There exists a (v,6,3) Sp—design whenever

v

I

10, 37 (mod 108).

Proof BSplit the v points into g rows of 9 plus an infinity
point. Then & = 1, 4 (mod 12) and there exists a
decomposition of Kg into K"s as in Lemma 7.1i4. Take such a
decomposition, where each point is a row of 9 of ¢the v
points, and cover all edges hetween the 4 rows of 9 in the
block with the decomposition of aKgqpp into So—blocks

from Lemma 7.12. Then cover each row plus infinity with the

(10,6,3) Sg—design from Lemma 7.2.

]

Lemma 7.16 There exists a (v,6,3) Sp-design whenever v
18, 19, 72, 73 (mod 108).

Proof Arrange points into g rows of nine as above, then g

it

2, B8 (mod 12) and there is a packing of K4's into Kg with a
l-factor left over as in Lemma 7.14. Cover the K"s, which
are each four rows of nine, with the 3qup;> decomposition
from Lemma 7.12, and each pair of rows from the 1-factor

with the (18,6,3) Sg—design from Lemma 7.9, or if v = 19 or

73 (mod 108) with the (19,6,3) Sg—design from Lemma 7.10.
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Combining the above results we get the following:

Lemma 7.17 There exists a (v,6,3) Sg—design whenever v = 6,
10, 12, 13, 18, 19, 24, 37, 48, 49, 72, 73, 78, 84, 85, 96,
i1, 120, 121, 126, 127, 143, 150, 156, 157, 168, 180, 181,
192, 193 (mod 216).

Proof This result follows from lLemmas 7.13 to 7.16.

The above gives us designs for 30 of the 144 wvalues
of v satisfying the necessary conditions (mod 216). We have
been unable to construct designs for the remaining ones. 1If
we could findla decomposition of SKESJJ into Sp—blocks we
would be able to find contructions for larger infinite
classes, but it does not look as if such a decomposition
exists., Similarly we would have more if we could fihd a
{(7,6,3) Sp—design or a (9,6,3) So—design, but we have proved

the nonexistence of the former &and conjectured the

nonexistence of the latter.

7.3 Sp-designs with A=4 and A=5

Next we look at Sp—designs with A=4, where the

necessary conditions are v = 1 (mod 9) and v 2 6.

Lemma 7.18 There exists a (10,6,4) S —design.
Proof Here & = 20. A design on Zm is generated by the two

blocks
(0,1.,3.8)(4,5),

(0,2,4,7)(1,5).
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Lemma 7.19 There exists a (19,6,4) Sp-design.

Proof Here b = 76, A cyclic design on Z“,is generated by

the four blocks
(0,3,8,13)(1.,2),

(0,1,10,13)(2,9),
(0,4,6,14)(1,3),
(0,3,6,11)(12,16).

In order to find an infinite <c¢lass of So—designs
with A=4 we need a decomposition of a complete quadripartite
multigraph - 4Kampp would be best - but 80 far we have
been unable to find any.

For A = 5 , where the necesgsary conditions are the

same as for A = 4, we have the following results,

Lemma 7.20 There exists a (10,6,5) Sp—design.
Proof A design on st{o.l} is generated by the blocks
(00.10.01,31)(40.41)

(0g:14:2,.2,)(3,.4)

(1,.3,.0,.2,)(3,.4,)
(2,.3,.0,.1)(2,,4)
(3,.4,.1,.2)(0_.2).

Lemma 7.21 There exists a (19,6,5) s_-design.

Proof Here & = 95, A cyclic design on Zi is generated Dby

o

the blocks
(06,2,2.10)(13,17)

(0.2,5,10)(11,17)
(0¢,1,5,7)(10,17)



137

(0,3,6,7)(9.17)

(0,1,2,3)(8,17}.
As with A=4, we were unable to find any
decompositions of complete quadripartite multigraphs with
A=3, and therefore do not have any infinite classes here but

only the above small designs.

§7. 4 Sp—designs with A=6 and A=9

For A=6 we need find only designs that did not exist
with A=3 when the necessary conditions were satisfied, since
the rest can be derived from the A=3 designs by Lemma 1.8.
The smallest values for which we could not find a design
with A=3 were v = 7 and v = 9., We were unable to find, or
prove the nonexistence of a (7,6,6) Sg-design. but are led

to make the following conjecture:
Conjecture 7.22 There does not exist a (7.6,6) Sg—design.

We were, however, able to find a (v,6,6) S, —design with v=9,
as shown in the following lemma.

Lemma 7.23 There exists a (9,6,6) Sg—design.

Proof Here b = 24. A design on {2B v o} is generated Dby

the blocks
(0,2.4,7)}(1,w) twice,

(0,2,4,7)(5.6).
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Finally we look at designs on S, With A=9, where the
only necessary condition is wv26, If we had completely
gsolved the question of existence with A=3 then we would need
only look at values of v where v=2 (mod 3), but since we
have not we shall try to find designs for all wvalues v26.
Of course, we can still use the results that we do have with
A=3, and we can find designs with v = 2 (mod 3). exactly as
we did for the other non bipartite cubic multigraphs on six

vertices, such as 54, the envelope.

Lemma 7.24 There exists a (9.6,9) Sp—design.

Proof Here & = 36. A design on Zg is generated by the
blocks .

(0,1,7.8)(2.6)

(0.2,5,7)(3.4)

(0,1,4.,5)(6,8)

(0,.1.4,7)(3,6).

Lemma 7.25 There exist (v,6,9) So-designs for all v = 9, 36
{mod 108).
Proof GSplit the » points intec g rows of nine. From

Brouwer [11] there exists a packing of K, 's 1into Kg when
g =1, 4 (mod 12). Take such a packing on the rows of nine.
Cover each block with the decomposition of 3Kgp;;o from

Lemma 7.12 and each row of nine with the above (9.6,9}

Sp—des1gn.
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Lemma 7.26 There exist (v,6,9) Sp—designs for all v = 6, 9,
10, 12, 13, 18, 19, 24, 36, 37, 48, 49, 72, 73, 78, 84, 85,
96, 117, 118, 120, 121, 126, 127, 144, 145, 150, 156, 157,
168, 180, 181, 192, 193 (mod 216).

Proof This result follows from Lemmas 7.26, 7.17 and Lemma

1.8,

Lemma 7.27 There exists a (v,6,9) S —design whenever v 2 6
and v ig prime,
Proof TaKe the proof of Theorem 4.31 and replace “S‘" by

ng u.
o

Next we give direct constructions for some designs
on S; with A = 9 and v = 2 (mod 3). These are the game
designs as we found on s, with A = 9, that is, designs with

v = 8, 14, 20, 26, 32, 35, 38, 44.

Lemma 7.28 There exists an (8,6.,9) Sp—design.
Proof Here & = 28. A design on {Z;u w} is generated by the

four blocks
(0,1,3.6) (4.5
(0,1,3.6)(2,m)
(0,1.3,w)(2,5)
(0,1,3,m)(4,6).

Lemma 7.29 There exists a (14,6,9) S;-design.

Proof Here & = 91, A design on {2&;4 w} 1is generated by

the blocks
(G,3,7.,11Y(8,10)

(0.3,7.,11)(9.10)
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(0,3,7.11) (2, )
(0.1,3,0) (6,12}
(0.1,4,2)(6,12)
(0,1,3.4)(6,11) twice.

Lemma 7.30 There exists a (20,6,9) Sp—design.
Proof Here & = 190. A design on (Z“}Jm} is generated by

.the blocks

(0,4,10,12) (11,16) 3 times

(0,4,10,12) (5,14)

(0,4,10,12)(6,14)

(0,4,10,12)(7.,14)
{(0,1,.3,4)(9,15)
(0,1,3,4) (15, w)
(0.1,4,0)(12,15)
(0,1,3,w}(6.7).

Lemma 7.3f There exists a (26,6,9) Sp—design.

Proof Here b = 325. A design on {2 5 @} i3 generated Dby

2
the blocks
(0,6,13,17)(12,21) 3 times,
(0,6,13,17) 3 times, with (19,21) twice, and (20,21)
(0.5,10,13) 3 times, with (14,19), (14,20), and (14, m)
(0.1.3,4)(10,20) twice
(0.1,4,)(6.13)
(0.1,3.,w)(10,21).
Leryng 7.32 There exists a (32.6.,9) Sp—design.

Proof Here b = 496. A design on {ZaﬁJ w} is generated Dby

the blocks
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(0,8,15,21)(14,28) 3 times
(0,8,15,21)(16,28) twice
(0.8,15,21)(17,28) twice
(0,8,15,21)(19,28) twice

(0,1,3,12)(15,20) 3 times

(0,1,3.4)(5,9)
(0,1,3,4)(5,m)
(0,1,3,2}(5.7)
(0.1,4,w)(5,9).

Lemma 7.33 There exists a (35,6,9) Sp-design.
Proof Here & = 595. A design on 2;5 is generated by the

blocks
(0,2,6,15)(17,27) 3 times
(0.2,6,15)(19,27) 3 times
(0,2,6,15) (24, 27) 3 times
(0,1,12,17) 3 times, with (10,27), (10,26), (10,22)
(0,1,12,17) 3 times, with (10,21), (10,15), (10,1%)
(0,7.14,21) twice, with (10.24), (10,17).

Lemma 7.34 There exists a (38.6,9) Sp—design.

Proof Here & = 721. A design on {Zé;J @} is generated by

the blocks
(0.9,19,26)(6,22) 3 times
(0.9.19.,26)(7,22) 3 times
(0.9,19,26)(8,22) 3 times
(0,2,3.8)(9,22) 3 times
(0,4,6,12) 3 times, with (10,22) twice, and (13, m)
(0,1,3.,4)(10,15) twice

(0.1.4,0)(10,18)
(0,1.3,)(10,14).
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Lemma 7.35 There exists a (44,6,9) Sp—design.

Proof Here b = 946. A design on {Z;QJ(n} is generated by

the blocks
{0,8,18,27) (10, 31) 3 times
(0.8,18,27)(10,25) 3 times
(0.8,18,27) (10, 24) 3 times
(0,5,11,31)(10,23) 3 times
{(0,5,11,31)(10,17) 3 times

(¢,5,11,31)(10,14) twice
(0,5,11,31) (10,
(0,1.3,4) (6,8) twice

(0,1,4,0)(7,10)
(Oillalm) (4"5) .

To show that (v,6,9) S —designs exist whenever the
necessary conditions are satisfied, we would need to find
designs with v = 22, 25, 27, 28, 29, 30, 31, 33, 34 and 40.
We could find these either by constructing a design with A=9
directly, or by constructing one with A=3 and deriving one

with A=9 from Lemma 1.8.



CHAPTER 8

RESOLVABLE DESIGNS

£8.1 Preliminary Results

In this chapter we shall look at resoluvable designs
on small cubic multigraphs. As defined in Chapter 1, a
resolvable design is one where the blocks can be partitioned
into parallel clasges, that is, sets orf Dblocks containing
each of the v vertices exactly onice. First we derive the
necessary conditions for the existence of a resclvable

design.

Lemma 8.{ In order for a resolvable G-design to exist on v

points the necessary conditions of Theorem 1.6 must bhe

gatisfied, and in addition v, k, must satisfy the condition
v= 0 (moed k).

Proof Obvicusly the necessary conditions from Theorem 1.6

must be satisfied, and we must have k|v since otherwise it

would be impossible to partition the bklocks into parallel

classes.

We now look at each multigraph G for which we have
already examined the question of the existence cof G-designs
in general, that is, all cubic multigraphs on 6 or fewer
vertices, and try to determine when a resolvable design

exist=,

143
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For the smallest cubic multigrabh. BKZ. a resclvable
design exists on XKU whenever 3|X and v=0 (med 2). This is
because when v is even there exists a decomposition of Kv
into i1-factors (see for example [9]) which immediately gives
us a resolvable decomposition into Kz's, and from this we
can obtain a decomposition of AKv into 3K2's if 3| (Lemmas
1.8 and 1.10). We now give the necessary conditions for the

existence of a resolvable G-design if G is a cubic

multigraph on 4 vertices.

Lemma 8.2 The necessary conditions for the existence of a
resolvable G-design when & 1is a cubic multigraph on 4

vertices are

(a) Az m,

(by v =z 4,

(¢} v =0 (mod 4) if A =0 (mod 3)
v = 4 (mod 12) if A =1, 2 (mod 3).

Proof The necessary conditions (from Chapter 2) for a

G-design to exist on a cubic multigraph on 4 vertices are

Av(v-1) = 0 (med 12) (1)
A(v-1) = 0 (mod 3) (2)
v 2 4 (3)
AzZm (4)

For a resolvable design we have the added conditior that
v = 0 {(med 4) (3).

Note that (3) = (1), and if x =1, 2 (mod 3) then combining
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(2) and (5) we get v =4 (mod 12). If X =0 (mod 3) then
condition (2) always holds, and we are left with (3), (4).
and (5},

Recall from Chapter 2 that there are 3 cubic
multigraphs on 4 vertices: 3K2u BKQ, K‘ and the cylinder
Cy. Resolvable K‘—designs exist whenever the necessary
conditions are satisfied [(17], as do resolvable G6-designs

where G is 3KEU3K2 is].

g8. 2 Resolvable Cy-designs

We shall now show that the necessary conditions are
also sufficient for the existence of resolvable designs on

the remaining cubic multigraph on 4 vertices, the cylinder

Cy.

Lemma 8.2 There exists a resolvable (4,4,2) Cy-design.
Proof Here b = 2. A design on Z‘ is generated by the block

{(0.1;3.2) (half orbit).

Theorem 8.4 There exists a resolvable (v,4,2) Cy-design for
all v satisfying the necessary condition v=4 (mod 12).

Proof From the previous lemma, we have a (resolvable)
decomposition of 2K4 inte Cy~-blocks, and therefore from
Lemma 1.10. there exists a resolvable (v,4,2) Cy-design
whenever there exists a resolvable (v,4,2) K‘~design. But a

resolvable (v,4,1) K‘—design exists whenever the necessary
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condition v=4 (mod 12) is satisfied (Hanani [17]), and the
necessary condition remains the same for A=2 as for A=l,.
Therefore from Lemma 1.8 a resolvable (v,4,2) Cy-design

exists whenever the necessary condition is satisfied.

Lemma 8.5 There exists a resolvable (4,4,3) Cy-design.
Proof A design on £ is given by the blocks

(0,1:2.3),

(0,2;3.1),

(0,3:;1,2).

Note that a G-design on xxh, where R is the number
of vertices in G, must always be resolvable since in this
case each block constitutes a parallel class. Therefore we
could have deduced the existence of the resolvable designs
in Lemmas 8.2 and 8.4 from the fact that we found Cy-designs

with these parameters in Chapter 2.

Lemma 8.6 There exists a resolvable (v,4,3) Cy-design
whenever v=4 (mod 12).

Proof If v=4 (mod 12) then a resolvable (v,4,1) 3K, ~design
exists from Hanani [17]). Therefore using the above result
plus Lemmas 1.8 and 1.10 we can find a resolvable (v,4,3)

Cy—design.

We cannot use the results on resolvable K4—designs
for the remaining wvalues of v satisfying the necessary
conditions (that is, for v = 0, 8 (mod 12)), so we proceed

to find some of these directly.
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Lemma 8.7 There exists a resolvable (8,4,3) Cy-design.
Proof Here & = 14, A resolvable design on {Z7u o} is
generated by the two blocks

(0,6:4,1),

(2,0;3.,5).

Lemma 8.8 There exists a resolvab}e (12,4.3) Cy-design.
Proof Here b = 33. A design on {z, v o} is given by the

blocks
(0.2:4.8),

(3,9;10.,7},
(1,0;5,6).

Lemma 8.9 There exists a rescolvable decomposition of 3Kz 2

into Cy-blocks.

Proof A design on Zéx{o,l} is given by the blocks
(00.01:10,11). (00.11:10.01)

where each block is a parallel class, since v = k,

Lemma 8.10 There exists a decomposition of KU into
l-factors whenever » is even.

Proof See for example [9].

Theorem 8.11 There exists a resolvable (v,4,3) Cy-design
whenever the necessary condition v=0 (mod 4) is satisfied.

Proof Since v=0 (mod 4), v=2¢ for some g

Hl

0 (mod 2).
Split the v points into g rows of 2. Then from the previous

lemma there exists a decomposition of Kq into 1-factors,
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Take such a decomposition, and cover each pair of rows in
the first l-factor with the resolvable (4,4,3) Cy-design
from Lemma 8.5. This gives us the firat parallel c¢lass.
Then all pairs in all remaining 1-factors can be covered
with the (automatically resolvable) decomposition of BKZ’Z

into Cy-blocks from Lemma 8.9, thus covering all edges in

BKU and giving us a parallel class for each 1-factor.

Theorem 8.12 There exists a resolvable (v.,4,)\) Cy—-design
whenever the necessary conditions of Lemma 8.1 are
satisfied.

Proof From Theorems 8.3 and 8.10, the necessary conditions
are sufficient when A=2, and A=3. Designs with all. other

values of A can be derived from these two by Lemma 1.8,

§8.3 Resolvable Designs on Cubic Multigraphs on 6 Vertices

Next we try to find resolvable designs on the nine
cubic multigraphs on six vertices from Chapter 3. We start
with the first three multigraphs, which are all bipartite,

but first we derive the necessary conditions,

Lemmna 8.12 Tne necessary conditions for the existence of a
resolvable G-design when G is a «cubic multigraph on six

vertices are

(1) X 0 (mod 3)

(2) » 0 (mod 6).

i
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Proof Combining the conditions for the existence of a
G-design when G is a cubic multigraph on six vertices from
Chapter 3 with the added requirement for resolvability that

v = 0 (mod R), we find that a resolvable design can exist

Il

only if A = 0 (mod 3). In this case the conditions from
Chapter 3 are satisfied whenever the resolvability condition

v = 0 (mod 6) is satisfied.

For the graph 51’ which is Ka 5 Huang [21] has
shown that a necessary and sufficient condition for the
existence of a resolvable (v,6,X) Sl—design is

v

0 (mod 6), v = 6, for A =0 (mod 3)

v

i

0 (mod 6) for A~ = 0 (mod 6).

§8. 4 Resol vable Sz-designs

The next multigraph on our list is Sé from Fig. 3.1:
Lemma 8.14 There exists a resolvable (6,6,3) Sz—design.
Proof We have a (6,6,3) Sz-design from Lemma 3.5, and since
v = kR this design is automatically resolvable.
Lemma 8.15 There exists a resolvable decomposition of 3K3

,3

into Sz-blocks.

Proof From Lemma 3.8 there exists a decomposition of 3K3 a

into Sz—blocks. and since v=k here, this decomposition must

be resolwvable.
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Thecrem 8.16 There exists a resclvable (v,6,3) Sz—design
whenever the necessary condition v = 0 (mod 6) is satigfied.
Proof Split the v points into ¢ rows of 3. Then we have g

= 0 (mod 2), and therefore there is a decomposition of Kq
into 1-factors. Cover pairs in one 1-factor with the
resolvable (6,6,3) Sz~design from Lemma 8.14, and pairs in
all remaining l-factors with the resolvable decomposition of
3K3 3 into Sz—blocks from Lemma 8.15. Each 1-factor gives a

*

parallel class and we obtain a resolvable (v,6,3) S, —design.

Theorem 8,17 There exists a resolvable Sz—design whenever

the necessary conditions A = 0 {mod 3) and v = 0 (mod 6) are

satisfied.

Proof This result follows from Theorem 8.16 and Lemma 1.8.

£8.5 Resolvable Sa-designs

We can solve the question of resolvable designs on

the remaining bipartite multigraph 53 in exactly the same

way we did for Sz.

Lemmz 8.18 There exists a resolvable (6,6,3) Sa—design.
Proof We have a (6.,6,3) Sa—design from Lemma 3.21, and
since v = k this design is automatically resolvable.

Lemma 8.12 There exists a resolvable decomposition of 3K3 s

into Sa—blocks.
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Proof From Lemma 3.25 there exists a decomposition of BKE 5
into Ss-blocks, and since w=k here, this decomposition must

be resolvable.

Theorem 8.20 There exists a resgolvable S5 -design whenever

I}

the necessary conditions A = 0 (mod 3} and v = 0 (mod 6) are
gatisfied.
Proof From Lemmas 8.18 and 8.19 we have resolvable

decompositiong of SKG and SKE s

’

into S_-blocks. Therefore
we can find a resolvable Sa—design whenever A=3 and v=0 (mod
6) from Theorem 8,16 with S, substituted for Sz, and Thence
for all cases satisfying the necessary conditions by

Lemma 1.8.

§8.6 Resolvable Designs on S‘, Ss' and Sa

We now look at resolvable designs on the three
multigraphs in the second category of cubic multigraphs on
six vertices, connected non-bipartite ones. Here we cannot
obtain all the required resolvable decompositions from
results in the non-resolvable case since we do not have

decompositions of 3K Instead we must look for

3,3’
decompositions of complete tripartite multigraphs, such as
3K6,o,o’ in order to solve the question in general. We can,
however, use the reéults previously obtained to find the
smallest resolvable design for each multigraph (that is, the

one on 3K6), since this design again has v = k,
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Lemma 8.21 There exists a resclvable (6,6,3) S‘—design.
Proof We have a (6,6,3) S‘—design from Lemma 4.8, and since

v = k this design is automatically resolvable.

Lemma 8.22 There exists a resolvable (6,6,3) Ss-design.
Proof We have a (6,6,3) Ss—design from Lemma 5.8, and since

v = k this design 1is automatically resolvable.

Lemma 8.23 There exists a resolvable (6,6,3) So—design.
Proof We have a (6,6,3) $_-design from Lemma 5.41, and

gince v = k this design is automatically resolvable.



CHAPTER 9O

DESIGNS ON LARGER CUBIC GRAPHS, PRISMS, AND CUBES

§9.1 Preliminary Result=z

In this chapter we shall give some results on larger
cubic graphs and also look at designs on cubes and prisms.
From now on we confine our attention to simple graphs, that
is, finite undirected g-aphs with no multiple edges. (We
are no longer looking at the more general category of
multigraphs as we were in previous chapters.) First we
explain what graceful labellings are and how they can be

used to find graph designs.

A valuation, or labelling, £5; of a graph 6 with &k

vertices and e edges is a numbering of the vertices v, of G

k

by distinct natural numbers {at}twi. with induced edge

umberi f t h = s i S - .
n ering for the edge 5 {vp uq} given bv bJ Iap aq|

Denote the set of numbers a, in the valuation £. of G by Vfa

G
and the set of edge values bi by Hra'

Definition 9.1 A graceful labelling, or f3-valuation, of a
graph 6 with v vertices and ¢ edges is a labelling €5 of G
satisfying the conditions

(1) Vrac (0.1,....2};

2) H,m (1,2,....e}.

153
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A graceful labelling is called an oa-labelling if

there exists a natural number x so that for each edge
. < < .

(vp,vq) either aP < x < aq or aq £ x < ap. It can easily be

shown that this number x must be the smaller of the two

vertex labels ap and aq which yield the edge label 1.

Lemma 9.2 If G is a gruaph with kR vertices and e edges which
has a graceful labelling, then there exists a cyclic
(2e+1,k,1) G-design. If in addition 6 has an a-labelling,
then there exist cyclic (2ce+l,k,1) G-designs for all
pesitive integers c.

Proof These results are proved in [32].

Lemma 9.2 1If G is a graph with k vertices and e edges which
has a graceful labelling, then there exists a
cyclic(e+l,k,2) G~-design.

Proof This is proved in [26].

Next we give graceful labellings for all ¢ bic
graphs on eight or ten vertices, and thus prove the
existence of a cyclic (2e+1,k,1) and (e+1,k,2) G-design on

each one,.
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59.2 Designs on Cubic Multigraphs on 8 Vertices

First we derive necessary conditions for
the existence of a G-design when G is a cubic multigraph on

8 vertices:

Lemma 9.4 The necessary conditions for the existence of a
(v,Ak,N) G-design when G is a cubic graph on 8 vertices are

v =1, 16 (mod 24) if A = 1,5,7.11 (mod 12)

1]

v =1, 4 (mod 12) if A 2,10 (mod 12)

v =20, 1 (mod 8) if A= 3,9 (mod 12)

v =1 {mod 3) if X\ = 4,8 (mod 12)
v=0, 1 (mod 4) if A =6 (mod 12)
v =8 . if A =0 (med 12).

Procf This result follows from Theorem 1.6.

Lemma 9.5 There exists a graceful labelling for every cubic
graph on eight vertices.

Proof From [2] there are exactly five cubic graphs on eight
vertices. A graceful labelling for each is shown in Fig
9.1. These graphs are presented in the same sequence as

they are given in [2]. and with the same numbering.
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0 ‘ ;1
12 3 6 4
2 10
(1)
3 7
9 1 6 3
0 & 12 0 -l
7 2 9 " 12
6 2
(2) (3)
12 5 3 €

(4) (3)

Fig. 2.1
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Theorem 9.6 For every cubic graph G on eight vertices there
exist (25,8,1) and (13,8,2) G-designs.

Proof Thig result follows from Lemmas 9.2, 9.3 and 9.5.

£9.3 Designs on Cubic Graphs on 10 Vertices

Next we find necessary conditions for a G-design to
exist when G is cubic on 10 vertices. Then we give graceful
labellirng - for all cubic graphs on 10 vertices, and indicate

wnich designs can be derived from these.

Lamma 9.7 The necessary conditions for the existence of a

G~design when G is a cubic graph on ten vertices are

v =1, 10 (mod 15) if X = 1,2,4,7.8,11,13,14 (mod 15)
v =0,1 (mod 35) if A = 3,6.9,12(mod 15)

v =1 (mod 3) if A = 5,10 (mod 15)

vz 10 if A =0 (mod 15).

Proof This result follows from Theorem 1.6.

Lemma 9.8 There exists a graceful labelling for every cubic
graph on ten vertices.

Proof From (2] there are exactly nineteen cubic graphs on
ten vertices. These are shown below in the same order as in

(2] and with a graceful labelling for each one.
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13 5
0 14
1 12
10 6
13 8
S (1)

15 0 14 4 13
11 3 1 8 7
(2)

15 0 14 1

7 2
0 3 13 4
(3)
13
15 3
] 119 4
4 7.- 12
0 14
1

(4)
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(3)

(6)

11

15

13

(7)



0 15 4 12
13 1 10 5
(8)

15 0 8
5 14 3 13
(9)

{(10)
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(13)
15 2 8 5
6
14 0 9 1
(14)
15
5 1
2 10

(15)



15 2 12 4 9
0 14 3 8 7
(17)

(18)
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(19)

Fig. 9.2

Lemma 9.9 For every cubic graph 6 on ten wvertices there
exist (31,10,1) and (16,10,2) G-designs.

Proof This result follows from Lemmas 9.2, 9.3 and 9.7.

§S.4 Designs on Prisms

The prism Dn is the cubic graph obtained by taking the
Cartesian product szCn of the path of length 2 and the
cycle of length n. The smallest prism D3 is the same graph
as the envelope 5,. and we have of course completely solved
the question of the existence of designs on this graph in
Chapter 4. We showed that these designs exist for all v and
A satisfying the necessary conditions. The second prism D4
is the same graph as the cube Qa, which is graph number (4)
in our list of cubic graphs on B vertices in Fig.9.1, and

has been looked by Kotzig (24] along with the other cubes.
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Frucht and Gallian ([14] have shown that if n is evern, the
prism b has an a-labelling. This means that for all prisms
Dn with n even there exist cyclic (6en+l,2n,1) (where ¢ is
any positive integer) and (3n+l,2n,2) Dn—designs from Lemma
9.2. Gallian and Prout[l15] have further shown that all
vertex deleted and edge deleted prisms are graceful. (By
vertex deleted and edge deleted prisms we mean the graphs
obtained by deleting one vertex or one edge respectively
from a prism.) It should be noted that only a bipartite
graph can have an a-labelling. Therefore the prism Dn with
n odd, which is not bipartite since it contains cycles of
odd length, cannot have an a-labelling. It can of course
still be graceful (have an 3-labelling) and we shall in fact

give graceful labellings for all prisms with n=9.

Lemma 9.10 There exist graceful labellings for all prisms
D with n £ 9,
mn

Proof These labellings are shown in Fig. 9.3 below:

12 3

11 8
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Lemma 9.11 There exigts an a-valuation for all prisms Dn
where n is even.

Proof This result is proved by Frucht and Gallian in [14).

Lemma 9.12 For all prisms D, with 3=ns9 there exist
(6n+1,2n,1) and (3n+1,2n,2) Dn—designs.

Proof This result follows from Lemmas 9.2, 9.3 and 9.10.

Lemma 9.12 For all prisms Dn with n even there exists a
(6en+l,2n,1) Dn-design for each positive integer c.

Proof This result follows from Lemmas 9.2 and 9.11.

£9.5 Designs on the S5-.. ism

The existence of prism designs in general i3 an open
question. We do however have a few results on the prism D_.
which is also graph number (15} in our listing of cubic
graphs on ten vertices in Fig.9.2. We will list blocks for

05 as shown below:

d <

{a,b,c.d,e:f,g,h,t,]))

Fig. 9.4
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The smallest deasign to look for on b, is a (10.10,1)
design. We prove that such a design cannot exist.
Lemma 9.14 A (10,10,1) Ds-design does not exist.
Proof (By contradiction). If such a design existed the
number of blocks in it would be 3. Assume the design
exists, and let the element set bhe Z_ x {0,1). WLOG let the
first block 8, be

(00,20,40,10.30:0‘,21.41,11,31).

Then the remaining edges in KMD, or the complement of B1 in
Kuo (see Fig. 9.5 below), must be deccmposable into two more

copies of D . Call these two remaining blocks E; and 8_.

Fig. 9.5

Clear'y, both B2 and B3 must use for each pentagon
either 5 or 3 or 1 edges of the pentagons (00,10,20,30,40)
and (01'11'2;‘31'41)' We now look at each of these
possibitities for B2 separately.

Case I Graph B, uses all 5 edges of (0,.1,.2,.3,.4,) for
its first pentagon, and therefore necessarily all edges of

(0.1 .2 .3 .4 ) for its second pentagon. But then B is
177175107 7y 3

bipartite, a contradiction.
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Case II One of the pentagons in B, uses 3 edges from the
two pentagons (00,10,20,30,40) and (01.11,21,3‘.4‘). Then
WLOG there are six possibilities for the first pentagon:
(i) (00,10.21.30.40)
(1i) (00.10.01.30,40)
(iii) (00.10,20,31,2‘)
(iv) (00.10.20.31.4:)
(v) (00,10,20.41.3‘)
(vi) (00,10,20.0‘.11).
We look at each of these separately to see if we can
complete the design.
(i) In this case the two pentagons of B, must Dbe
(00.10.21.30,40) and (0£.11.2°.31.41)“
Clearly, the remaining edges in Bz must include either the
edge (1,.2,) or the edge (2,.3_)) (but not both). Assume
WLOG that they include the edge (10.20). Then the other
edges in Bé must be (Oo,lil. (30.41), (40.01) and (21,3t).
The edges remaining constitute the last G-block Bs. But B3
then ccntains a triangle, which is a contradiction.
(ii) Here the two pentagons of Bz must be
(00,10,01,30,40) and (20,11,21,31,41).
Clearly one of the edges (1_.2)),. (2,.3,). (2,.0 ) must

belong to Bz. There is one way to complete Bé using each of

these so we have the following three possibilitites for Bz:
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(a) (00,1°,01,3°,4°;41,20,11,21,31)

(b) (0,.1,.0,.3,.4,:3,.4..2,.1,.2)

(c) (0,.1,.0,.3,.4,:2.3,.4,.2,,1).
For (a) and (c) the edges remaining for B, form the graph
shown in Fig. 9.6 below, which is 7;6 of Fig. 9.2, and

for (b) they contain a triangle, so in no case do they form

1;5 (or Ds) as required.

Fig. 9.6
{iii¥ The pentagons in B2 must be either
(a) (00,10.20.21,31) and (3_.4,.1.0 .4)
or (b) (0,.1,.2,.2,.3) and (3,.4,.,0.4 .1).

If (a) then clearly Bz must contain either the edge (30,20)
or the edge (3°.21). But if the former then Bé must contain
either (1 .1) or (2,5 ), a contradiction and if the
ratter then it must contain (0,.0,) or (10,11), also a
contradiction.

If the pentagons are those in (b) then B2 must again contain

either (30.20) or (30.2‘). If the former vien it must also
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contain (10.11 or (11,31). and if the latter (11.31) or
(10,40). In either case we have a contradiction.

(iv) The pentagons in B} are (00.1 .20.31,41) and one of

(o]
(a) (3,.44.2,.1,.0))
(b) (3,.4,.0,,1.2)
(c) (3,.0,.1,.4,.2)
(d) (3,.1,.0,.4,.2)
(e) (3,.0,.4,.1,.2)
(£) (3,.0,.4,.2,.1)).
Clearly Bé must contain either the edge (10,01) or the edge
(10,21). A close examination reveals that it is impossible
to complete B2 without using an edge from B1 when the second
pentagon is (a}, (c), (d), (e) or (f}. With pentagon (b)
there are two possibilities for Bé:
(0,.1,-2,.3,,4,:4,.,0 .1 ,2,3))
and (6,.31,.2,.3.4:1 .2.3 .4 ,0).
In either case B2 contains a triangle, a contradict.on.
{v) The pentagons in B2 are (00.10.20.40,30) and one of
(a) (3,.4,.2,.1,.0))
(b} (3,.4,.0,.1.2)
(c) (3,.0..1.4,.2)
(d) (3,.1,,0,.4 .2))
(e) (3,.0,.4,.1.2)

(£) (3_,0.4.,2,.1).
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As in (iv) Bé must contain either the edge (10.01) or the
edge (10.2‘). Further examination shows that we c¢an
complete B2 only when the second pentagon is (b), and in
this case there are two possibilities for Bé:
(00.10.2°.3‘.41:40.0‘.11.30.21)
and (00.10,20.3*.41;11,21,30.01,40).
In either case Ba contains a triangle, a contradiction,
(vi}) Here the pentagons in B, are (0,1,2,0,1) and either
(30,40.21.31.41) or (30.21.40.3£.41).
There are four ways to complete Bz. three using the first
pentagon and one the second, to obtain the following
possibilities for B, :
(a) (00,10,20,01.11:40,21.31.41.30)
(b} (Oo.lo.20,01.11:21,31.41.30,40)
(c) (Oo,10.20,01,11;3‘,41.30,4‘).21)
(d) (00.10.20,01.11:40.31.41,30,21L
For (b) and (d) B, contains a triangle, for (a) B is T

3 1o

from Fig. 9.2, and for (c) B3 is T;B, so in no case is B3

isomorphic to T;s (or D_) as required.

Case I1II Graph Bz uses one edge from the two pentagons in
B;' gay from (00,10,20,30.40), for its first pentagon. Its
second pentagon must then use one edge from the other
pentagon (01.11.21,31.41), since we have already dimissed

Case II, and it is impossible for both to use just one edge
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from the same pentagon since they would then both contain 3
vertices from this pentagon. The same argument applies to
Ba. Therefore the remaining three edges in the pentagon
(0°,1°,2°,30,40) must be used as joining edges in B2 and Bn,
two in one and one in the other. Assume two of them are
used as connecting edges on Bé. Let the edge used in the
first pentagon in B} be (0°,4°). Then we can assume WLOG
that the two connecting edges are (10,20) and (30,40). since
if they were for instance (00,10) and (30.4o). then (10,30)
woﬁld have to be included in EE as well, which 1is a
contradiction.

There are then six possibilities for B2 (found by

exhaustive examination):

(1) (0,.4,.0,,1_.4,:2.3_.1,.2,,3)
(ii)  (0_.4,.0,.1_,2:4 .3_.1..,2_.3,)
(i) (0_.4_.3,.2_.1:4..3_.2.,1_.0,)
(iv)  (0_.4,.3,,2_,4,:1.3,.2.,1,.0,)
(v) (0,.4,.0,.2_,3:1,.3,.4,.1,,2)
(vi)  (0_.4_.1.2_ .,4.:2.3 .01 ,3).

In (i), (ii), (iii) and (iv) the graph B, (what is
left) contains a iriangle, a contradiction. In (v) the
graph 83 is the graph T13 from Fig. 9.2 and in (vi} it is
the graph 7;5‘ Therefore there is no decomposition of K:o

into D Dblocks in either case, and none in general.
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Lemna @.f4 There exists a (16,10,1) b ~design.
Proof Here b = 8. A design on 216 is generated by the

block
(0,14,9,3,15;7,11,1,6,8).
Lemma 9,15 There exists a (31,10,1) Ds—design.

Proof This result follows from both Lemma 9.9 and Lemma 9.12.

Lemma Q.15 There exists a (10,10,2) Db—design.
Proof Here b = 6. The required design is generated on
25 % (0,1} by the two blocks
(OD.10.20,30.40;01.11.21,31.41) (1/5 orbitl= 1 block)
(0,.15.3,.1,.3,:0,.,2 .4 .2 .4).
Lemma ©.17 There exists a (16,10,2) Ds-design.

Proof This result follows from Lemma 9.9 or Lemma 9.12.

Lemma 2.!18 There exists a (10,10,3) D5—design.
Proof Here d = 9. A design on {Zp U w} is generated by the
block
(0.2.5,8,4;,3,1,7.6).
Lemma 9.19 There exists an (11,10,3: Ds—design.
Froof Here b = 11. A design on Z11 is generated by the

block
(0,1,6,2,8:9.5.4,7,10}.

These are 211 the Ds—designs we have so far. We

cannot prove that a (10,10,1) Ds—design does not exist as we
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do for the Petersen graph below, but have not been able to
find one either. This graph is not bipartite, but it is
tripartite, 30 we could try to find decompositions of
complete tripartite multigraphs, such as Ks‘g's, into
Ds-blocks, in order to find some infinite classes of
D;—designs by recursion. Also open is the question of the

existence of Dﬁ—designs when . = 0, 5, 6r 10 (mod 15), and v

0,1 (med 5).

£9.6 Designs on the Petersen Graph

We have also found a few designs on the Petersen
graph, which is number (19) in our list of cubic graphs on
ten vertices. We shall therefore call it T;p. The Dblock

labelling system we shall use for the Petersen graph is

shown in Fig. 9.7.

[><)

d c

(a.b,ec,dyve;f.g h, 1, J)

Fig. 9.7



177

The diameter of a graph & 1is defined to be the
maximum distance between two vertices of G, The following
result relates the diameter of a graph 6 to the existence of

designs on G.

Lemma ©.20 If K 1is decomposable into three factors of
diameter 2, then n = 12.

Proof This result is proved in [10}.

Lemma 9.2¢ There does not exist a (10,10,1) ?19—design.
Proof The Petersen graph has diameter 2, therefore such a

design cannot exist by the previcus lemma.

Lemma ©,22 There exists a (16,10.,1) I;p-design.
Proof Here b = 8, A design on (Z_ x (0,1,2}) v {w} is

generated by the four blocks
(00'11'20'41'32‘31'00'42’12‘40)

(0g.1,.24.3,.4,:0,.1,.2,.3,4,) 1 block
(0‘.11.2‘.31.4‘:02.12.22.32,42) 1 block
(0,.1,.2,.3,.4,:4_.0_,1_.2_.3,) 1 block.

Lemma 9.23 There exists a (31,10,1) T  -design.
Proof This result follows from Lemma 9.9.
Lemma 9.24 There exists a (10,10,2) T;p—design.
Proof Here b = 6. A design on Z5 x (0,1} is generated by
the two blocks
(OD,10,20,39,40;11,21.31,41,01) 1 block only

(0,.1.2_.4,.3.:2.1_.4,.0,,3.).
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Lemma 9.25 There exists a (16,10,2) T;p-design.

Proof This result follows from Lemma 9.9,

Lemma .26 There exists a (10,10,3) T;p-design.
Proof Here b = 9. A design on {2, U o} is generated by the

block
(0|20506l8;117'm44|3) *

Lemma 9.27 A (10,10,X) I;g—design exists if and only if A22,

Proof This regult follows from Lemmas 9.24, 9.26 and 1.8.

Lemma 9.28 There exists an (11,10,3) T}p—design.
Proof Here & = 11. A degign on 211 is generated by the block

(0,2,1,7,3;6,10,8,9.,4}.

Lemma 9.29 There exists a (15,10,3) T;g design.
Proof Here b = 21, A design on (27 x {0,1}) U {w} is
generated by the three blocks
(00.11,20.41.60:2‘.30.51,50,31)
(00.11,00,41,60;31,21,30,51,50)

(0,.2,.5,.6,.3,:2,.0,.5,,®.6).

These are all the designs we have been able to find
on the Petersen graph to date. This graph is not Dbipartite
but is tripartite, so, as in the case of D, we could look
next for some decompositions of complete tripartite
multigraphs such as Ks,s,s' We could also look for designs

with different values of A.
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§9.7 Designs on Cubes

Finally we should like to mention some results which
have been obtained regarding designs on the cube Qd. which
is defined by

Qd - K;xK;x...sz (d times).

All cubes are bipartite, and they therefore form a
class of graphs on which graph designs can be found
relatively easily. Because of this, they offer a promising
direction for future research. As mentioned before, the
only cube which is cubic is the 3-dimensional cube 03 which
is also the prism D,. and is graph number (4) in our list of
cubic graphs on eight vertices in Fig. 9.1. We already Kknow
that thigs graph has an a-lahelling and therefore there
exists a (13,8,2) Qa—design, and a (24¢+1,8,1) Qa—design for
each positive integer ¢ (Lemma 9.11). Kotzig {[24] has shown
further that every cube Qd has an a-labelling so we have the

following.

Lemma 9.30 An (n.2d.1) Q,~desigr exists if and only if
n =1 {mod dZd).
Proof This result is due to Kotzig [24].

Lemma 9.30 For any positive integer d, there exists a

d—l+

(d2 1.2d,2) Q -design.
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Proof From Kotzig (24} every cube Qd has an a-labelling.
The number of edges e in a cube is dzd-l, and the number of
vertices k is 2d. Therefore the required designs exist by

Lemma 9.3.



CONCLUSION

In this thesis we have taken multigraphs from
several different categories, and for each multigraph G,
where G has k vertices, have tried to find the values of w
and A for which a (v,k,A) €-design exists. Complete results
have been obtained for all cubic multigraphs on six or fewezr
vertices with one exception, this being the disconnected
multigraph X U 3K , which we have also called S,- We Thave
further obtained partial results fer all simple graphs on
eight and ten vertices, and for all prisms on eighteen or
fewer vertices. For each of these we have found a graceful
labelling, from which some designs can be found by {32] and
{10]. Some additional designs have been found for the prism
05 and the Petersen graph. Partial results on all prisms Dn
with n even, and on all cubes, have been similarly obtained
by Frucht and Gallian [(14] and Kotzig [24] respectively.

The existence of a (5,6,3) S -design 1s an open
question, so is the existence of most So—designs with A=3,
and A=9. We could, however, find all Sp—designs with A=9 if
we could find those with v = 22, 25, 27, 28, 30, 33, 39, 36,
40 and 42. Finding these designs with Xx=3 would also
suffice since their existence would imply the existerce of
the corresponding designs with A=9. Further research into

the existence of grapn dezigns on cubic graphs couid include

181
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the existence of graph designs on cubic graphs could include
looking for more complete results on the cubic graphs on
eight vertices, and those on ten vertices. The Dbipartite
graphs are probably the most hopeful candidates in this
respect. It would be of great interest to fipd all designs
on the 5-prism and the Petersen graph. For prisms the next
step is to show that all prisms, not just those with n even,
have a graceful labelling. Then one could try to find those
prism designs which cannot be derived from the graceful
labellings, and this could also be donc for designs on

cubes.
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