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ABSTRACT

A fast, simple photodetector which is compatible with optical integration
techniques can be produced uriag = design consisting of an interdigital metal —
semiconductor — metal (MSM) photodiode. The general operation of these devices
is discussed with emphasis placed on basic device characteristics such as IV, CV,
and steady state and pulsed light response. Ideas and models are presented to allow
predictions of generic device performance as well as design and optimization of
specific devices. These theoretical aspects are validated through comparison with

experimental results.
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INTRODUCTION

The development of high speed photodetectors has been driven by a
variety of concurrent developments in other areas. Much of the early work can be
attributed to needs which developed as a result of progress in short pulse lasers.
With the introduction of room temperature diode lasers, and low loss glass fibers,
optical communications became the principal driving force in the development of
both fast diode lasers and fast, sensitive optical detectors. As these systems
progressed both in speed and complexity, it became clear that in order to optimize
performance, it would be necessary to integrate the optical and electrical
components in the form of opto—electronic integrated circuits (OEICs).

OEICs incorporate optical, opto—electronic, and electronic devices on the
same semiconductor substrate. The reduction in the parasitic reactances, which are
a consequence of the interfacing of discrete devices, facilitate a major improvement
in both speed and noise performance. The monolithic integration of many elements
on a single chip also reduces the total number of components required for a complete
system, producing a simpler, cheaper assembly procedure, and a more compact,
reliable system (Wada 1986a).

One of the challenges of OEICs is the integration of optical devices,
usually with vertical structure, and planar electronic devices such as FETs. The
simplest solution involves the development of optoelectronic planar structures.

Fast, sensitive photodetectors have many uses beyond OEICs. There is a
large demand for discrete devices of this type in optical communications. Other
uses include monitoring short pulse lasers and other high speed optical components

and phenomena.



Presented in this thesis is the study of a fast photodetector design
consisting of a metal—semiconductor—metal (MSM) interdigital photodiode. The
structure is of interest because it is fast, simple, easily integrated, and has a small
capacitance. The purpose of this study is to understand the device well enough to
allow straight forward modeling of its characteristics. Predictions and optimization
of the device performance can then be made.

The MSM interdigital photodiode consists of two sets of interdigital metal
fingers on the surface of a semiconductor. With the proper choice of metal and
semiconductor, a pair of back—to—back Schottky barriers are formed. When a bias
voltage is applied across the device, one set of digits is reverse biased creating a
region of electric field between the digits. The extent of this region is a function of
the applied voltage and the semiconductor parameters. It is this electric field region
which separates and collects the photocarriers generated in this reeion. The other
set of digits is forward biased and, to a simple first approximation, behaves as an
ohmic contact.

Much of the appeal of these devices lies in having both contacts on the top
surface. This allows the use of semiconductor—on—insulator (SOI) materials, which
have several advantages. The depletion capacitance of the device is greatly reduced
by limiting the semiconductor to a thin film thereby reducing the total capacitance
to the structure capacitance of the digits. This inherently small capacitance is an
important consideration in the response time of the device when connected to an
external circuit. In addition, the use of a planar structure on a low carrier
concentration { < 1019 ¢S ) SOI material without the use of pn junction
technology makes these devices compatible with MESFET technology (Wada 1986).

As a result these devices are dircctly compatible with optoelectronic integration



techniques.

An added advantage of having both contacts on the top surface is the
creation of an electric field parallel to, and at the semiconductor surface. As a
result the photocarriers generated at the surface are collected, giviug these devices
enhanced sensitivity in wavelength regions where the absorption coefficient is large
(generally greater than 104 cm_l).

Initial work on interdigital devices was done in the early 1980°s. For
example Sugeta et. al. (1980) put interdigital photodiodes in striplines on
semi—insulating and epi—layer GaAs. They demonstrated a frequency response up
to their measurement limit of 1.5 GHz. Slayman (1981) and Figueroa (1981) put a
simple interdigital structure on semi~insulating GaAs, and a more complicated
interdigital structure on epi—layer GaAs. They found a pulse response of 90 psec,
and a flat frequency response to 2.5 GHz. Seymour et. al. (1984) presented a
preliminary investigation of an interdigital device on silicon — on — sapphire (SOS)
for use as a fast ultraviolet detector. Roth et. al. (1985) made a small area device
which exhibited a bandwidth of 18 GHz and a quantum efficiency of 25%. These
authors have demonstrated that interdigital structures can make fast, sensitive
photodetectors, but they limited themselves to doing a few simple measurements on
the devices.

Since 1986 interest in interdigital devices has increased as the desire for
planar structures for OEIC has increased. Different designs have been studied. For
instance, Jackson (1986a) has examined an interdigital p—~i—n structure with a
measured frequency response of 8 GHa. Wojtczuk (1987) has done comparative
studies of interdigital n—p—n, n—p—metal, and photoconductor devices giving

FWHM response times of 53 psec, 72 psec and 450 psec respectively. Further work



has been done on MSM interdigital devices with Schumacher (1988) reporting a
response time of 55 psec and a quantum efficiency of 44 percent, and Zeghbroeck
(1988) reporting an impulse response less than 5 psec and a bandwidth of 105 GHaz,
Preliminary investigations of the operation of these devices using GaAs were
performed by Boudebous (1985) who considered capacitance, Ito (1986) who studied
capacitance and dark current, and Jackson (1986b) who studied dark current.
Seymour (1986, 1988) presented measured and modeled results of interdigital
photodiodes on SOS, and a discussion of factors affecting the response time of
interdigital photodiodes, including a model of the capacitance.

The bulk of this work contained very little modeling or analysis beyond
the immediate device under test. With the increased demand for photodetectors for
OEIC applications, there is a definite need to know what these structures are
capable of, and to be able to design and optimize these devices to meet specific
operation parameters. This thesis presents a series of models designed to meet
many of these needs. The models cover a range of complexities, and have been
tested through comparison with each other, and with experiment. With these tools,
general and specific predictions of structure characteristics can be made.

The layout of information in the text is as follows: Chapter 1 introduces
the various numerical finite differences models used and gives some basic results of
these models. Chapter 2 discusses the experimental devices used, the material
properties, and some of the basic DC measurements made. The measurement and
modeling of capacitance is discussed in chapter 3 and chapter 4 compares the
experimental and theoretical pulsed response of sample interdigital devices on
silicon and GaAs substrates. The final chapter, chapter 5, will be devoted to several

sample applications of the work presented.



CHAPTER 1: DEVICE MODELING

Most semiconductor photodetectors operate on similar basic principles.
These principles may be summarized as follows. Incident light interacts with the
semiconductor to produce électron —~ hole pairs. The electron — hole pairs act as
nrrent carriers and are transported through the semiconductor. Finally, they
interact with the external circuitry to produce an output signal. The exact form of
these processes is dependent on the type of photodetector.

The detector discussed in this thesis belongs to the group of
photodetectors known as photodiodes. Photodiodes have a depleted semiconductor
region with a large electric field that separates and transports photogenerated
electron — hole pairs across the depletion region. They operate in the wavelength
region where absorbed photons excite electron — hole pairs through energy level
excitation (usually band to band). Since the diode absorbs only photons whose
energy exceeds the bandgap energy, it exhibits a long wavelength cutoff beyond
which no photons are detected. Electron — hole pairs which are created in the
depletion region are separated by the electric field and drift in opposite directions
through the depletion region resulting in net current flow. Electron — hole pairs
created outside the depletion region will diffuse until they recombine and are lost, or
reach the depletion region and contribute to the net current. A review of different
types of photodiodes and their operation can be found in Sze (1981).

To aid in the study of interdigital photodiodes, a numerical model was
developed. Numerical modeling is a powerful instrument for the analysis and design
of semiconductor devices. Early semiconductor device modeling was done

analytically by dividing the device into regions, and applying various simplifying



assumptions to each region. As semiconductor technology developed, the devices
became more complex and the need for in—depth theoretical analysis grew.
Previously neglected effects became important and it was desirable to solve the
basic semiconductor equations with a minimum number of simplifying assumptions.
In general this required a form of numerical solution.

The first practical application of a numerical solution was given by
Gumme! (1964) and developed further by DeMari (1968a,b). From these
beginnings, driven by complementary growth in the semiconductor industry and the
development of high speed computers, numerical modeling has become a necessary
part of the understanding, design, and optimization of semiconductor devices.
Accurate simulation of device operation for a variety of device parameters
eliminates much of the trial and error in device processing. A good review of key
papers in the development of this field is given in chapter 1 of Selberherr (1984).

The starting point of a numerical model is a reasonable mathematical
model.  Semiconductor device modeling is generally based on the foliowing
differential equations, usually referred to as the basic semiconductor equations.

Poisson’s equation:

(1.1) djvgrad¢=%(n—-p—C)
Continuity equations:

(L.2) divio-qP=qR

(1.3) divip+q®=-qRr



Current equations:

(1.4) 3n=qnunfi‘.+angradn

Cd

(1.5) p=qpupf3—qugradp

Total current:
. - _ -+ - 6 -
(1.6) J;—Jn+.1p+af(cE)

where 9 is the electrostatic potential
E is the electric field vector
qis the elementary charge ( = 1.602 x 10-19 Coulombs)
€ is the absolute permittivity
n, p are the electron and hole concentrations
C is the net fixed ionic charge
j 1 J - 3; are the electron, hole, and total current densities
R is the net carrier recombination/generation rate
fn, ip are the electron and hole mobilities
Dn, Dy, are the electron and hole diffusion coefficients

t is the time

Although often treated as exact, there are various assumptions inherent in the
derivations of these equations. A review of their development as well as a brief

discussion of the assumptions made can be found in chapter 2 of Selberherr (1984).



For the applications to be outlined here, as well as in general, the assumptions are
reasonable.

The typical layout of an interdigital detector is shown in figure 1.1,
Various simplifying assumptions have been made to streamline the model. The
device has been assumed to be two dimensional as illustrated in the lower part of
figure 1.1. This is justified as long as the digit's length is much greater than the
digit width, allowing the effect of the end of the digits to be ignored. The extent of
the model is further reduced by considering only one unit cell. This greatly reduces
the amount of computation and computer storage required and simplifies the
boundary conditions at the edges. The symmetry of the device about this unit cell
justifies this simplification.

For the computer model to be described here, the solution of these
equations was broken into three major sections, each represented by an individual
program. Each section represents a natural step in the process of achieving a
complete solution as well as being a solution to a useful simplified problem. A
general discussion of these three sections and their uses follows. A more complete
discussion of the programs as well as the numerical implementation of the various
physical parameters can be found in appendix Al.

The first section consists of a program to solve the potential distribution
over the unit cell. The general model represented by equations 1.1 through 1.6 is
simplified by assuming zero current flow. Zero current flow is a reasonable
approximation for a reverse biased Schottky barrier, and is dependent on the
current being small enough that the carrier distribution in the device is not
significantly perturbed. This approximation ignores the effects of generation and

recombination and allows the majority carrier density to be approximated using
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Boltzmann's equation.

(1.7) n=ngexp(qy/kT)
where  ng is the thermal equilibrium carrier density
q is the elementary charge
k is Boltzmann’s constant, and

T is the absolute temperature.

These simplifying assumptions uncouple Poisson’s equation from the continuity
equations and produce a single differential equation to be solved, thereby permitting
the implementation of a fast and simple program to solve the putenti~l distribution.

The potential distribution solution has several uses. These include
qualitative and quantitative analysis of the electric field distribution, an important
parameier in photodetector operation. Also, the spatial charge distribution can be
calculated using Gauss's law. By finding the change in charge distribution due to a
small change in voltage, the capacitance is simply calculated.

The potential distribution combined with the majority carrier distribution
calculated using Boltzmann’s equation also acts as the initial guess for the complete
steady state solution calculated by the steady state routine. The steady state
routine uses all of the basic semiconductor equations to solve for the potential
distribution and the electron and hole concentrations (n and p respectively) in a self
consistent manner. The steady state solution allows for the effects of current flow
as well as generation and recombination and is obtained by setting the time

derivatives in the continuity equations to zero.

The validity of the approximations used in the potential routine can be
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tested by comparing its solutions with the solutions obtained from the more exact
steady state routine. A sample comparison in figure 1.2 shows equipotential plots
obtained from both routines. A qualitative comparison of these two plots shows no
apparent differences. A quantitative comparison of the two solutions yields a
maximum voltage difference of less than one part in 5 x 10° of the applied voltage
and a maximum electric field difference of less than one part in 3 x 104, This
agreement is very good.

The average electron densities as a function of position as calculated by
the steady state routine, and by the potential routine using Boltzmann’s equation
are compared in figure 1.3. Agreement is good in the low field region, but poor in
the high field region due to thermal generation of carriers in the depleted
semiconductor. Thermal generation is neglected in the potential solving routine,
but the effect is small in absolute terms. The largest change on the grid is less than
0.00025 of the doping density.

The examples shown in figures 1.2 and 1.3 illustrated only one particular
case, but are representative of all cases tested. The results of these comparisons
attest to the validity of the approximations used in the potential routine and
illustrate the accuracy of the resulting potential calculation when applied to
interdigital Schottky diode structures.

The steady state program is principally used to calculate the initial
conditions for the time dependent calculation. Unlike the potential routine which
provided 2an initial guess for the steady state solution, the output of the steady state
routine is the t =0 starting point for the time dependent calculation. Thus, the
convergence criterion should be as good as, or better than that desired in the time

dependent routine. The steady state routine is also used to model the D.C. spatial
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response of silicon — on — sapphire devices. This calculation involved solving the
photocurrent for a Gaussian shaped spot of light incident on the semiconductor as a
function of the incident spot position.

The final section of the model is a complete time dependent calculation.
This program solves equations 1.1 through 1.6 as a function of time. Generally the
output is current as a function of time for a user specified temporal optical
generation rate.

This numerical model has two principal uses. The first involves the study
of device operation. It is possible to obtain parameter values from the model which
are difficult or impossible to measure directly. Understanding of how the device
operates can be simplified in this way. The second use involves predicting the
device performance. The ultimate aim in producing a semiconductor device is to

meet a set of design criteria. Use of this model will allow the performance to be

optimized before the manufacturing stage.



CHAPTER 2: STEADY STATE CHARACTERISTICS

Interdigital diodes were manufactured on three sample materials;
Semi~insulating GaAs, epi—layer GaAs, and silicon — on — sapphire (SOS). These
materials represent a variety of the options available for interdigital device design.
To allow effective device modeling, basic knowledge of the appropriate
semiconductor parameters is required. A brief description of the materials used is
followed by a discussion of some of the steady state characteristics of interdigital
photodiodes. Both modeling and experimental results are presented.

GaAs and related alloy materials such as InGaAs and AlGaAs are
favoured material for use in opto — electronic integrated circuits. Semi—insulating
GaAs has the advantage of being simple, readily available, and relatively
inexpensive. Wafers were purchased from Cominco Inc.. They were nominally
undoped, with a sheet resistance of 5x10® ohm/o and a mobility of 6x103
cm3/volt—sec.

Epitaxial GaAs on GaAs can be obtained with almost any specified doping
profile. This gives the designer a great degree of freedom in specifying material
properties, but the increased complexity generally results in significant increase in
cost. A standard n/n-/i VPE wafer was purchased from Sumitomo Electric as an
example of an epi—layer GaAs substrate. The nominal properties were as follows.
The top layer was 0.58 um thick and was S doped n—type to 1.8x10'" cm-3. The
middle layer was 3 to 4 microns thick, undoped and was n—type with a doping
density less than 10" cm-3. The substrate was a 409 um thick semi—insulating CrO
doped wafer with a resistivity greater than 107 ohm—m. 7Tms material was

prepared for use by etching off the top layer using 2 timed (approximately 4

15
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minutes) 1% Br:CH3;OH etch resulting in a thin low doped n- layer on a
semi—insulating substrate.

Silicon - on ~ sapphire (SOS) is a commercially available semiconductor —
on — insulator material. SOS has been extensively discussed in the literature, and
uses silicon processing techniques which are well understood. SOS wafers were
purchased from Union Carbide. The silicon was nominally a 1 um thick n—type film
with a resistivity between 12 ohm—cm and 50 ohm—cm and a carrier concentration
between 10'° ¢m-3 and 3x10% e¢m-3.

Thickness of the silicon film was experimentally determined using a Taly
Surf 4 mechanical step profiler as well as optical interference measurements. The
results were 0.96 £ .10 um and 1.0+ .1 ym respectively. 1.0 um was used as the
thickness in all calculations.

Electrical characteristics of the silicon film in SOS can not easily be
determined due to poorly defined material properties, particularly close to the
silicon — sapphire interface. Properties such as electron density and mobilities are
known to be functions of distance from the silicon ~ sapphire interface, and are
influenced by the significant concentration of deep impurity and trap states which
exist near the interface. Although various authors have presented methods of
measuring these parameters, their methods are beyond the scope of this thesis (sce
for example Dumin 1970, Hsu 1978, Chen 1981, Grivitskas 1984).

Lack of information about the distribution of charge in the SOS film
makes exact modeling difficult. However, it is possible to obtain good results using
reasonable approximations. One of the principal factors which limit the response
time of a photodiode is the transit time of photogenerated carriers across the

depletion region of the semiconductor. The depletion region is defined as that
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region where the electric field is large enough to remove or deplete the free charge
carriers. Transit time is limited by the width of the depletion region and the
magnitude of the electric field in the depletion region. By using an appropriate
average doping density in the silicon film, a good approximation of the depletion
width and electric field distribution can be obtained. This permits a meaningful
time dependent calculation to be made.

Use of an average doping density allows the effects of trap states on
depletion width to be neglected, but the interaction of the trap states with the
charge carriers is also neglected. This is justified for SOS by the exponential
decrease in mobility at the silicon — sapphire interface where the majority of the
traps are located (Hsu 1978). The very small mobility and poor material quality in
the region containing the bulk of the traps means the contribution of carriers in this
region to the fast time response is negligible.

As a first step in obtaining average values for film characteristics, Hall
effect measurements were made on the SOS film. Cullen (1978) points out that Hall
effect results on SOS must be interpreted with care due to the influence of charges
trapped at the silicon — sapphire and silicon — silicon dioxide interfaces which can
deplete the silicon of charge carriers. This effect is most pronounced in thin (< 1
um), low carrier concentration (< 10'% cm-3) silicon which is precisely the region of
interest for detector fabrication. As a result, only general conclusions will be drawn
from the Hall effect results.

The temperature dependence of the average electron density measured by
the Hall effect is shown in figure 2.1. At room temperature the average electron
density was measured as (5 1)x10'* ¢cm-3 and the mobility was measured as

400 + 10 cm/V-sec. The strong dependence of electron density on temperature near
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room temperature supports the existence of deep impurity levels and trap states in
the silicon film. Thus the relatively small average carrier concentration measured
indicates only that the average doping density is small enough { < 10'® ¢cm-3) that
the carrier concentration ‘will be affected by the trapped charge.

Since the primary objective of finding an average doping density is to
obtain a good approximation of the depletion width, an experiment to measure the
depletion width of interdigital photodiodes was devised. (Details on the processing
techniques used to manufacture interdigital photodiodes can be found in appendix
A2.) This experiment involved scanning a small spot of light between the digits and
measuring the photoresponse as a function of position. If the collection efficiency of
photogenerated electron — hole pairs in the depletion region is sufficiently larger
than the collection efficiency of photogenerated electron — hole pairs in the
undepleted region, then the depletion region can be delineated by this measurement.

To validate the scanning experiment as a method of measuring depletion
width in SOS interdigital photodiodes, the photoresponse as a function of position
was simulated using the steady state routine. Figure 2.2 shows the predicted spatial
dependence of the photocurrent for two values of carrier lifetime. The longer carrier
lifetime, 7= 10"% sec, is consistent with values found in high quality crystalline
silicon and results in a significant photocurrent from the undepleted region due to
carrier diffusion. The short carrier lifetime, T = 4x10-!9 sec, will be shown to be a
good approximation of the value expected in these SOS films. A good
approximation of the average depletion width, (3.9 um for this example), is given by
the full width at half maximum (FWHM) of the curve for the short lifetime carriers.
The FWHM measurement is an approximate deconvolution of a rectangular window

representing the depletion region from a scanned Gaussian light spot. (The actual
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depletion region is assumed to start when the electron density has fallen to et of its
equilibrium value. This represents a convenient measure since the electron density
decreases by several orders of magnitude in a very short distance beyond this point.)

To justify the short carrier lifetime used in these calculations, the
photoresponse of the depleted and undepleted regions of an interdigital photodiode
was measured. The output of a fast laser diode (FWHM = 70 psec) was focused
near the reverse biased digit (on the depletion region) and ther near the forward
biased digit (on the undepleted region) when the device was approximately half
depleted. The observed response for these two cases is shown in figure 2.3. The
response in the depleted region is very fast as expected. In the undepleted region,
the response is relatively slow and much smaller (signal averaging was used, and the
vertical scale multiplied by approximately two orders of magnitude) as anticipated
for diffusion dominated photoresponse (the initial fast signal arises through a small
fraction of the light pulse which directly illuminates the depletion region).
Measuring the decay time of this pulse yields a carrier lifetime of 400 + 50 psec,
which is consistent with the value of average carrier lifetime of 410 psec measured
by Grivitskas (1984) for a 1 um thick SOS film.

The experiment to measure the depletion width in SOS was performed as
follows. A tightly focused laser beam (having a beam diameter of 1 to 2 microns})
was incident on the device which is mechanically scanned across the beam. To
measure the distance travelled accurately and to eliminate any nonlinear effects in
the drive system, an interferometer was used. The system is illustrated in figure
2.4. The diode under study was mounted directly on the moving mirror mount of a
Michelson interferometer, with the surface parallel to the direction of movement and

the digits perpendicular to the direction of movement. (The angle of the device was
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Figure 2.3 Pulse response of the (top) depleted region, and (bottom)
undepleted region of an interdigital detector on SOS.
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set by reflecting the laser beam from the diode surface and aligning the interference
pattern from the digits). The mirror and the diode were driven through a 5 times
reduction lever by a differential micrometer (50 um/rev) which was rotated by a
stepping motor. The distance travelled by the mirror, and thus the diode, is
accurately measured by recording the fringes at the output of the interferometer
using an auxiliary photodetector. Each fringe is indicated by a valley on the
recorded output and represents a distance traveled of one half wavelength of the
light incident on the inierferometer. In this experiment a He—Ne laser with a
wavelength of 632.8 nm was used.

The scanning beam was passed through a spatial filter — beam expander
to improve the spatial coherence, and then through a microscope objective to be
focused down to a very small spot on the dicde. A removable beam splitter was
placed in the beam to reflect light scattered back through the objective to a
microscope eye piece to allow visual alignment. (The beam was attenuated for
safety during this procedure.) During scanning, the photocurrent of the device
being measured and the output from the interferometer were recorded on a dual
trace chart recorder. Samples of the output of this experiment are shown in figures
2.5 and 2.6. Distances on the scans are measured by counting the number of peaks
(or valieys) on the interferometer output and interpolating as required.

Figures 2.5 and 2.6 represent sample scans of interdigital device on SOS
and bulk single crystal silicon respectively. The shape of these curves can be
compared with the modeled results of figure 2.2. The scan on bulk silicon shows
characteristics which are consistent with those shown by the long lifetime material,
as expected. The scan on SOS shows the same rapid decrease in photocurrent at the

depletion edge as demonstrated by the short lifetime calculation. As a result, it is
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reasonable to expect that a good approximation of the average depletion width of
SOS interdigital photodiodes can be obtained by measuring the FWHM of the
scanning curve.

Values of depletion width as a function of bias voltage obtained from this
experimental setup are shown in figure 2.7. Also shown are results obtained using
the potential solving model with a doping density of Ng = 5x10'8 cm3. The
agreement between experimental and theoretical results is good. Figure 2.7 depicts
the results of measurements on a single device. Measurements on other devices
yielded similar results, but the doping density used to obtain the best theoretical fit
varied from sample to sample due to variations in material properties across the
substrate. The average doping density from these measurements was (5 + 2) x 10%
em-3. This value of doping density is consistent with the Hall effect data presented
earlier and was used in all time dependent calculations on SOS.

D.C. photoresponse measurements as a function of wavelength give an
indication of the wavelength range over which a devices can be expected to operate.
Figures 2.8 and 2.9 show typical measurements of the responsivity of interdigital
photodiodes on semi - insulating and epi— layer GaAs, and SOS devices
respectively. These resuits can be understood approximately using the following
simple model. The responsivity is the ratio of the photocurrent to the incident

optical power, and is given by
(2.1) R=_1 A amps/watt
1.24

where  7is the quantum efficiency, and

A is the wavelength in pm.
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The quantum efficiency is the ratio of collected charge carriers to the number of
incident photons. It depends on the fraction of the light entering the semiconductor

which is absorbed and can be expressed as
(2.2) 7a (1 — exp(—at))

where a is the absorption coefficient, and

t is the thickness of the absorbing region.

The absorption coefficients for GaAs and silicon are presented in figure 2.10.

Devices manufactured on semi — insulating and epi — layer GaAs show
similar response characteristics. For wavelengths where the photon energy is
greater than the semiconductor band energy (band edge) the absorption coefficient
is very small, so that almost no light is absorbed and the responsivity is effectively
zero. At the band edge, the absorption coefficient increases quickly producing a
corresponding increase in responsivity. Below the band edge, the absorption
coefficient is large enough that the majority of the light entering the semiconductor
is absorbed within a micron of the top surface, well within the active region of the
photodetector. As a result the responsivity shows only slow variation. Below 5000
A the semi — insulating GaAs response falls off quickly unlike the epi — layer GaAs.
This is probably due to increased surface recombination as a greater portion of the
light is absorbed close to the surface with increasing absorption. Increased surface
recombination is consistent with a roughness of the semi — insulating GaAs surface

which developed during processing. It is interesting to note that the Tesponsivity
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curve for semi — insulating GaAs is similar to the equivalent curve for a junction
diode on GaAs. The responsivity of a junction diode shows a similar short
wavelength fall off due to the absorption of the majority of the input light in the
thin top layer of the junction and recombining before it is collected (Garside 1082).

The responsivity of the SOS device illustrated in figure 2.9 shows
Fabry—Perot fringes due to multiple reflections of the light through the thin silicon
film. These fringes disappear at about 4500 A where the absorption coefficient is
large enough to absorb approximately 95 % of the incident light on the first pass
through the silicon. The noise in the signal below this wavelength is due to small
probe light source intensity below 4500 A. A steady increase in average responsivity
as wavelength decreases is shown in figure 2.9. This is due to an increased
percentage of the input light being absorbed in the thin silicon film as the
absorption coefficient increases.

The measurement of steady state responsivity of interdigital photodiodes
as a function of wavelength shows that the relative responsivity can be understood
using simple absorption considerations. These results also show that, in general, the
responsivity of interdigital photodiodes remains good in regions of very large
absorption such as the near UV where junction photodiodes generally show a sharp
reduction in responsivity.

For the semi — insulating GaAs the thickness of the absorbing layer is
equal to the thickness of the substrate, unlike the other two materials used in this
thesis where the absorbing layer is limited to a thin semiconductor region. Using
equation 2.2, the majority of the light is absorbed in a region approximately 1 um
thick for most wavelengths of interest. Thus, to make best use of computer

resources, semi — insulating GaAs was modeled as a layer of semiconducting GaAs
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about 1 um thick on an insulating substrate of GaAs.

Absolute responsivity measurements were made on the GaAs devices at a
wavelength of 6328 A. Figure 2.11 shows a responsivity versus bias voltage curve of
an epi—layer interdigital device. All GaAs devices yielded similar curves, but the
absolute values varied significantly from device to device. Typical values at 10
volts were on the order of 0.51 amps/watt, which represents an external quantum
efficiency of 100 %. A simple calculation including losses of 50% due to blockage of
incident light by the metal digits, and a further 30% due to reflection of incident
light from the GaAs surface results in an internal quantum efficiency much larger
than 100% indicating the existance of a low frequency internal gain mechanism.
This is further suggested by the continuous increase and slight upward curve of the
responsivity at larger voltages in figure 2.11. Wada (1986) and others (Ito 1986,
Schumacher 1988) have obtained similar results. Various suggestions have been
made to account for this internal gain, but no specific mechanism has been
established thus far. The variation in absolute responsivity from device to device
suggests that the gain mechanism may in some way be associated with the Schottky
barrier and the interface between the metal and the semiconductor since this is very
sensitive to processing.

The measurement of absolute responsivity in SOS interdigital devices is
complicated by the presence of Fabry — Perot fringes. Additionaily, results
fluctuate greatly between otherwise similar devices. Generally the results indicate
peak quantum efficiencies at lower wavelengths between 10 % and 20 %. These
numbers are not large enough to demonstrate the existence of a gain mechanism,

but the lack of reproducibility of results between devices suggest a mechanism

similar to that in GaAs may exist.



0.50

0.30

0.20

RESPONSIVITY (amps/watt)

0.10

0.00

Figure 2.11

34

BIAS VOLTAGE (volts)

Responsivity as a function of bias voltage for an epi — layer
interdigital detector.

12



35

Figure 2.12 shows a measured I-V curve of an interdigital diode. The
back — to — back Schottky diode nature of the device is clearly illustrated by the
overall symmetry of the curve. Note the slight asymmetry in the curves for positive
and negative bias voltage arising from a different set of digits dominating the
current process in each case.

The theory of current transport in one dimensional metal —
semiconductor — metal (MSM) structures has been studied by Sze et. al. (1971).
They have broken the operation into three distinct phases, as illustrated in figure
2.13, and presented the current equations for each phase using thermionic emission
theory for Schottky barriers. Sze’s notation for a symmetric MSM structure on
n—iype material is illustrated in figure 2.14 { ¢y = ¢n2 = ¢n and Vqy = V42 =V4 ).

In the first phase of operation the depletion regions of the two Schottky
barriers are not in contact. In general the current is dominated by the emission of
electrons over the reverse biased barrier. If the hole current is neglected, the

current in this phase is given as;

(2.3) J = Jns exp(f 6¢n1) (1 —exp(-4 V1) )

where Jng = Ay T2 exp(—0 ¢q1) is the electron saturation current density,
A} is the effective Richardson constant for electrons,
6¢ny is the barrier lowering due to image force effect,
B=q/ kT,
T is the absolute temperature and
Vi is the applied voltage drop across the reverse bias barrier.

As the applied voltage is increased, the depletion regions of the two
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Figure 2.12

Typical I-V characteristic of an interdigital detector (vertical scale
10 pA/div, horizontal scale 30 V/div).
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Figure 2.13 Operation phases of a one dimensional MSM device, (a) V < Vpy,
depletion regions not in contact, (b) V = V4, depletion regions just

in contact, (c) V = Vyy,, the electric field at the forward bias digit
equals zero. (d) V > Vg,



Figure 2.14

Notation used to describe 2 symmetric one dimensional MSM
structure, ( $n1 = Pn2 = ¢n , Va1 = Va2 = Vy )
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Schottky barriers will come into contact. This is referred to as the reach — through

voltage, and is given by;

2
(2.4) Vo= SNalt_ ) 29N (y, v, )

where Vy is the reach through voltage, and

L is the thickness of the semiconductor.

In the second phase of operation, increasing the applied voltage beyond Vi, results
in the lowering of the minority carrier barrier at the forward biased contact by the
field from the reverse biased contact. This causes the minority carrier current to
increase rapidly as a function of increasing applied voltage.

The third phase of operation begins when the applied voltage is large
enough to cause the clectric field at the forward bias barrier to go to zero. This is

referred to as the flat band voltage, Vi, where

2
(2.5) Vip = —qENLESL—

For bias voltages greater than the flat band voltage the electron and hole currents
are given by their saturation values, with corrections for image force barrier

lowering, until the avalanche breakdown field is reached. This current is given by

(2.6) J =Jns exP(ﬂ 6¢nl) + Jps exP(ﬁ 5¢p2)

where Jps = Ay T2 exp(—f ¢p2) is the hole saturation current
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The preceding discussion applies to a one dimensional device, but
interdigital diodes are two dimensional devices. The nonuniformity of the electric
field distribution along the digits result in nonuniform electron and hole barriers and
thus nonuniform current distribution. To study this effect requires a two
dimensional model. There are two fundamental models used to describe current
transport in Schottky barrier contacts. The first is based on drift and diffusion in
the semiconductor and uses fixed boundary conditions at the contacts. Thermionic
emission theory was developed to correct some obvious problems with drift -
diffusion theory. Both these models have their limitations and in fact the actual
solution is generally a compromise as evidenced by the number of hybrid models in
existence (Henisch 1984). Henisch also points out that these models have both been
successful because in general only the coarse predictions of a model can be
experimentally tested, and most models have these in common.

The steady state routine discussed in chapter 1 is a two dimensional
numerical implementation of the drift — diffusion model. This model can be
compared with the one dimensional thermionic emission based analytical analysis of
Sze and used to study the current voltage characteristics of an interdigital device.
The validity of this comparison is illustrated by comparing the results of the
analytical model with a one dimensional numerical model (Levy, 1987). An
example is shown in figure 2.15. Although the two models calculate different
absolute values of current for any given voltage, the results are qualitatively the
same. The three phases of operation discussed by Sze are clearly demonstrated by
the numerical model, although the transition between phases is not as sharp. The
sharp transitions in Sze's model are probably due to the approximation of an abrupt

depletion edge inherent in his equations.
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The I-V characteristic of an equivalent interdigital device calculated
using the 2—D steady state routine is shown in figure 2.16. Comparison of figure
2.16 with figure 2.15 illustrates the qualitative similarity of the results with two
notable differences. Due to the two dimensional nature of the interdigital device,
the transition region between V4 and Vpy, occurs at a different bias voltage. This is
further illustrated in figure 2.17 which compares Vi, for a one dimensional silicon
MSM device with a two dimensional SOS interdigital device. The values for the
interdigital device were calculated iteratively using the potential solving routine.
Unlike the one dimensional device curves, the interdigital device curves are not
unique, but are functions of the silicon thickness and the ratio of digit width to digit
separation.

The second notable difference involves the saturation of the current for
V> Vip.  The interdigital device saturates very slowly due to the continued
changing of the nonuniform hole barrier height across the width of the forward bias
digit as the bias voltage increases.

Current in interdigital devices can thus be divided into the same three
regions of operation Sze has used to describe one dimensional MSM devices. The
behavior of the current in each of the three regions is qualitatively similar for both
types of device. As a result, Sze's analytical expressions can be used to make
general observations, but locating the bias voltages over which these regions exist in
an interdigital device requires the use of a two dimensional model.

Practical interdigital devices can be divided into two groups. Those which
operate at V < Vy, and those which operate at V > V. For devices operating
with V < V;;, the maximum current is given approximately by the electron

saturation current of the reverse biased digit. Examination of the saturation
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current in equation 2.3 shows the exponential dependence of the electron barrier
height to be the dominant factor. Thus the dark current in such a device can be
theoretically minimized with a large electron barrier height, ¢n, , as in any standard
Schottky barrier device.

For interdigital diodes operating with V > Vy, the limiting case of
V > Vi can be considered. Equation 2.6 shows that in this region of operation the
current is dominated by the larger of the electron saturation current from the
reverse bias barrier or the hole saturation current from the forward bias barrier. To
obtain a minimum theoretical dark current requires that “oth the reverse biased
electron barr'er, ¢y, and the forward biased hole barrier, $p2, be maximized. One
way of doing this is to use different metals for the forward and reverse biased
barriers. This is a straight forward solution in principle, but finding metals with a
large hole barrier may present a problem. It also increases the complexity of the
manufacturing process.

If the same metal is used for both barriers, the best solution is a

compromise between the electron and hole barrier heights. Assuming that

(2.7) Eg = 6+ 6

then to a first approximation, the best solution is given by
1

(2-8) ¢n = ¢p=2-Eg.

This was shown experimentally for GaAs by Ito (1986). He measured the dark
current of an interdigital device as a function of electron barrier height using
different metals as Schottky contacts. The resulting curve plotted on a semi-log
scale had a V shape with a minimum close to 0.71 eV, the center of the band gap for
GaAs. This is consistent with equations 2.4 and 2.5.

[to obtained a dark current on the order of nanoamps using a barrier
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metal of WSix, (x = 0.64), with ¢, % 0.75 eV. He claims that this result is better,
or as good as an AlGaAs/GaAs pin photodiode, and thus, that interdigital devices
can be made on GaAs with dark current comparable to conventional photodetectors.
Extending this idea to materials with smaller band gaps will result in larger dark
currents. As an example, the theoretical minimum dark current in silicon is several
orders of magnitude larger than in GaAs. In materials with band gaps suitable for
detectors operating at 1.3 um or 1.5 um the theoretical minimum dark currents
would be orders of magnitude greater than silicon. For this rcason it may not be
possible to obtain low enough dark currents in small band gap materials if the

device is operated with the bias voltage greater than the reach through voltage.



CHAPTER 3: CAPACITANCE

The capacitance of a photodiode is of interest as one of the factors limiting
its response time. The capacitance of the device coupled with the internal and
external load resistances creates an RC low pass filter which limits the maximum
bandwidth of the device. Since R is fixed for most high speed applications
(generally 50 ohms in this work), the capacitance is the parameter of interest. As a
result, the ability to calculate capacitance quickly and easily is necessary to allow
design and optimization of device parameters to meet specific design objectives.

The capacitance of an interdigital photodiode can be broken up into
constituent compenents and modeled using a finite differences method. The results
of such a model are compared with experiment, which leads to a simplifying
assumption. This allows the use of two simple, fast models for quick evaluation of
capacitance. A comparison of the models with each other, and with experiment is
done, and the range of applicability of the various models discussed.

A simplified equivalent circuit of the capacitance is shown in figure 3.1 .
Of principle interest is the capacitance due to the digits. It is the digits which give
these devices their properties, and it will be the digit parameters which are adjusted
to give a required design performance. The values of interest in figure 3.1 are the
interactions of the digits with each other, Cp, with the semiconductor, Cyr and Cg,
and with the ground plane, C;. The capacitance of the pads to ground has been
included in this circuit, but because they are not an active part of the photodiode,
and will depend very much on the type of interconnection being used, they will be

referred to only in passing. Note that it is assumed that there is no interaction

between the two pads.
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As discussed in chapter 2, the numerical solution of Poisson’s equation can
be used as a tool to determine capacitance. A change in charge (6Q) resulting from
a change in voltage (0V) can be found by calculating two potential distributions,
one for each voltaze. The resulting §Q and &V are used to calculate the capacitance.
Numerically this necessitates taking the difference of two similar numbers and
requires some care. For example, if §V is too small, the resulting change in charge
will also be very small, resulting in a large error in its calculation. If &V is too
large, the nonlinearity in the capacitance will produce an error. Through trial and
error it was found that §V's in the range of 0.1 percent to 1.0 percent of the initial
voltage gave reasonable results.

Another consideration in reducing the error is the number of terms used in
the calculation of the boundary potential using Green's formula (see appendix 1).
In order to keep the net charge in the numerica! system as close to zero as possible,
thereby minimizing the error in the total charge, it was found that the larger the
number of terms the better. Thus, while only a small number of terms were
necessary to get an accurate potential distribution ( generally six terms were used )
a greater number of terms were required to get good accuracy in the charge
calculation.

The procedure for calculation of capacitance was as follows. The built in
voltage on the digits was calculated using the appropriate parameters. The applied
voltage was added to the reverse biased digit, and the potential distribution solved.
The: charge on each digit was then calculated using Gauss’s law, and the charge in
the semiconductor summed. Then new potential distributions were solved with a
small 6V applied to each of the reverse biased digit and the forward biased digit.

Once again, in each case the charge values were calculated. Using these values the
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various capacitances could be evaluated. As an example, the capacitance between
the digits was calculated by using the change in charge on the forward biased digit
when 6V was applied to the reverse biased digit. Where possible, capacitances were
calculated two ways, and the results compared to ensure that the error was
maintained at an acceptable level. An example of this is to calculate the
capacitance between the digits by using the change in charge on the reverse biased
digit when the voltage was changed on the forward biased digit, and comparing it
with the value obtained as described above.

Using this numerical model, the components of the capacitance due to the
digits were calculated for an interdigital diode on SOS. Shown in figure 3.2 are the
normalized depletion capacitance, Cq, interdigital gap capacitance, Cn, and the
total interdigital capacitance as a function of bias voltage. Also shown for reference
is the interdigital structure capacitance. This is the capacitance which would resuit
if the semiconductor were replaced by an equivalent insulator and represents a
minimum value for the total interdigital capacitance.

The deviation of the total interdigital capacitance from the structure
capacitance as a function of voltage is illustrated in figure 3.2. As the bias voltage
is increased the difference between the total interdigital capacitance and the
structure capacitance decreases until the two values become equal. At this point
the semiconductor is totally depleted (Cq = 0) and the situation is equivalent to
that found in semi — insulating GaAs. Of greater interest for the operation of SOS
devices is the capacitance at the reach through voltage, a practical operating
voltage. For this example, the reach through voltage is approximately 85 volts.
Although there is still significant depletion capacitance, the difference betveen the

total interdigital capacitance and the structure capacitance is less than 5 percent.
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Even at bias voltages as low as 60 volts the difference is only 10 percent making the
structure capacitance a good approximation of the total interdigital capacitance for
devices which are operating near their reach through voltage.

This is further illustrated by the experimental CV curve reproduced in
figure 3.3. These data were acquired using an HP 4280A 1MHz capacitance meter,
as were all the capacitance data obtained in this chapter. Figure 3.3 shows the total
capacitance (including bonding pads) of an interdigital device on SOS. Its
parameters are approximately equivalent to those used to calculate the values found
in figure 3.2. Although reach through voltage is never attained (due to high leakage
currents causing errors in the capacitance measurement), this clearly shows that
there is only a small variation of total capacitance at larger bias voltages.

Thus it has been shown that when an interdigital photodetector is near
full depletion, the capacitance of the interlocked digits is dominant. Since this is
the practical mode of operation for these devices, it is the structure capacitance
which is of principal interest in the design of these uevices. The finite differences
model which can be employed to determine the structure capacitance is functionally
exact, but requires a great deal of execution time. Therefore, two other models
which are useful for structure capacitance calculations will be discussed. These
models allow quick and simple evaluation of the structure capacitance.

When a device structure which is equivalent to these interdigital
photodiodes is placed on a dielectric substrate, it forms an interdigital capacitor of a
type frequently used in microstrip integrated circuits. The properties of these
devices have been studied by several authors (Gaudreault 1985, Alley 1970, and She
1986). Many of their results draw on earlier work which was done to study the

interaction between coupled microstrip lines. In one paper, Smith (1971) has
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Figure 3.3 Sample of the measured capacitance of a 6 digit diode on SOS
(digit width and separation of 10 um).

53



54

presented an algorithm in the form of a fortran program for the rapid calculation of
the even and odd mode fringing capacitances for coupled lines, assuming a periodic
array of lines. The even mode corresponds to the case where the voltage on all the
digits is the same, and the cdd mode has the voltages on all the digits equal in
magnitude, but alternating in sign. Smith's algorithm is based on capacitance
formulas derived from variational series based on conformal transformations. These
series are easily evaluated after conversion to finite forms.

The geometry which Smith used is shown in figure 3.4, where ¢, and ¢, are
fixed as the relative dielectric constant of air, and ¢, is the relative dielectric
constant of the substrate, and is variable. By setting G, to zero and G, to a very
large number this model can be used to calculate the capacitance between a periodic
array of digits, as in an interdigital capacitor, on a single dielectric substrate.

Smith’s equation 12, (based on work by Yamashita (1968)), is

{1+etanh (mg,)coth(md,)} o,

31) ¥, =

)}
m{coth(mg,)(1+¢,tanh (mg,)coth(md,) ) +

+¢€, (€,tanh(mg,)+ coth(md,)})}

where  pq are fourier series coefficients for the charge density, and
the remaining variables are defined in figure 3.4.
However, Yamashita treated a more general case which left the dielectric constants

of all three layers as variables and obtained the equation;

(32) v, - {e,coth(mg,)+e,coth(md,)} pq

m{ecoth(mg ,}( € coth(mg,)+¢,coth(md,))
+¢€ 2 ( €2+ €3c0th(mga)coth(md,))}
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Figure 3.4 Geometry used by Smith for calculating the even and odd mode
fringing capacitances of coupled lines.
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where the variables have been changed tu match Smith’s notation. It can be easily
shown that if ¢, and ¢, are set to 1.0 then equation 3.1 will result,

Using equation 3.2 in place of equation 3.1, and following the analysis of
Smith, his results were generalized to include a two layer substrate. These changes
were implemented in a fortran program using Smith's algorithm. The program
calculates the even and odd mode fringing capacitances, which he has designated Cy,

and Cp, respectively. Using this notation, the capacitance of the gap between two

sets of digits is

(3.3) Cm=(N“—1)l(Cfo_Cfe)

and the capacitance of a single set of digits to ground is

(3.4) Ce=(F(2Co)+2(N=1)Cre+2C)

where N is the number of digits,

€g X € X
2C = + is the total parallel plate
Gy (G [/ e+D [/ ¢)

capacitance between 2 single digit and the two ground planes,

x is the digit width,

Cs is the asymptotic value of fringing capacitance for a large gap,
representing the effect of the end digit, and

lis the Jength of the digit.

Notice that only C, is corrected for the effect of the end digits.
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A direct approach to the calculation of the capacitance of interdigital
capacitors on a homogeneous substrate was taken by She and Chow (1986) who have
presented a series of simple analyiical expressions. What follows is a brief
discussion of their analysis, and the relevant equations which they obtain. Their
starting point is the calculation of the distributed capacitances of N microstrip
digits for both the even and odd mode. For the even mode, they have shown that
when the finger width, x, is comparable in size with the finger separation, d, and
both are much smaller than the substrate thickness, h, then the array of digits can
be considered 1o be a wide ribbon of width W, without any gap between the digits,
where W is simply the width of the array of digits. For this case the characteristic

impedance is simply that of a microstrip line, which is given as

[ 60 8 h W W
— In ( T+ TT ) for --H- < 1
(3.5) Zw = 4 eff _1
120 7 w W
TPy v+ 1393 +0.667 In( T+ 1.444)

w
for 71_21

where eS¢ is the effective dielectric constant for the even mode,

( ) fr + 1 fr -1 ( h )__,}
3.6 Ceﬂ' = + 1+ 10 .
€ " 5 w

where ¢, is the relative dielecitis ¢ -+ of the substrate.

The average distributed capacita.. . r.git for the N digit array is then
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WAL
(3-7) Ce = N 4WT

where ¢ = 3 x 10° m/sec is the velocity of light in free space.

For the odd mode, the digits are assumed to be in a homogencous
dielectric medium. This assumption is justified by the large field cancellation due
to the alternating positive and negative charge which results in the "distant" ground

plane having a very small effect on the field of the digits. In this case the effective

dielectric constant for the odd mode is

&€ + 1

(3.8) € =

The distributed capacitance per digit for an infinite number of digits in a

homogeneous space is given as

(3.9) Ct = W_

For the more general case of a finite number of digits, N, in the array, the
digits at the ends of the array experience edge effects which tend to decrease the odd

mode capacitance in these digits. Thus the average capacitance per finger is given

as

(3.10) Co=C°3(1-§)
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where A is a correction constant, for which an approximate expression was given as

4.5 +155 In( &)

373 +48.7 In($ ) + 12,6 (In( $ )

(3.11) A=

The above expressions for even and odd mode capacitances are used to
calculate the mutual capacitance per meter between two digits, and the capacitance

per meter of each finger to ground using

(3.12) Ci=g5(Co—C)
(3.13) C; = Ce

where C, and C are defined in figure 3.5. For an array of N digits there are N/2

unit cells of two digits each. Thus for digits of length I, the total capacitances are

given by
(3.14) Co=3Cil
(3.15) Cq = g. )1

where Cqp and Cy; are defined above.

She and Chow point out that a terminal pad can be approximated as a
single microstrip line. The capacitance of a terminal pad can thus be calculated
using the dimensions of the terminal pad in equations 3.5, 3.6, and 3.7 with N = 1.

This approximation can also be implemented using Smith’s model using

(3.16) Ci=(2C, + 4Cp) &
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Figure 3.5 Definition of capacitances C, and C, calculated in equations 3.12
and 3.13.
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where 2C,, and Cy are calculated using the width of the terminal pad, Wy, and |, is
the length of the terminal pad.

To summarize, three models for the calculation of interdigital capacitance
values have been introduced. For simplicity they will be referred to as follows: the
finite differences model will be referred to as the numerical model, Smith's modified
algorithm will be referred to as Smith's model, and She and Chow’s analytical
expressions collectively will be referred to as the analytical model. These three
models are based on different solution methods, and have very little in common.
The numerical mode! is a functionally exact solution for an infinite number of digits.
Any errors result from the numerical implementation of the solution, and can be
controlled with reasonable care. The major drawback of this approach is the
amount of computer time required for a solution. Smith’s model uses a variational
series analysis to obtain a solution which can be evaluated quickly and easily on a
computer. The analytical model obtains simple approximate analytical expressions
by using various simplifying approximations. The resulting formula are easily used
and provide a basis for simple general analysis.

Depicted in figure 3.6 are values of C,. the intergap capacitance, as a
function of digit width for various digit separations. The values were calculated for
a 10 digit device on a 500 micron thick sapphire substrate using all three models.
They have been normalized by assuming digits of unit length and dividing by the
number of gaps, (N-1).

The agreement between Smith’s model and the numerical model is very
good, having a difference of less than one percent at all points. It is convenient to
compare either of these iwo models with the analytical model in two regions. The

first region has a digit separation greater than the digit width ( %2 1, %2 2), and
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the second region has a digit separation less than the digit width ( % <1, %< 2).

This is a practical distinction to make since most photodetectors are in the first
category to maximize the exposed semiconductor. The agreement between the
analytical model and the other two in the first region is generally good to within five
percent. In the second region, the analytical model begins to deviate significantly
from the other two as the digit width increases, although the results are still
reasonable, with less than ten percent error, for values of Ex;- down to 0.5. Figure 3.6
represents a specific case, but the results are representative of those over a wide
range of parameters.

Figure 3.7 compares the values of Cy calculated using Smith’s model and
the numerical model for a 10 digit diode on a substrate consisting of 1 micron of
insuiating silicon on 500 microns of sapphire. Once again the agreement is generally
better than one percent for a large range of device parameters.

A comparison of the values of Cgz, the digit capacitance to ground, is
shown in figure 3.8 for a 1000 digit diode on a 500 micron thick sapphire substrate.
The capacitance values have been ncrmalized to one digit by assuming digits of unit
length and dividing by half the number of digits, %I- Good agreement is found
among all three models, with very little dependence on digit separation or digit
width. Figure 3.9 illustrates that this is only true for devices with a very large
number of digits. These curves were calculated assuming a 10 micron digit width
and a 10 micron digit separation with a 500 micron thick sapphire substrate but are
representative of the general relationship.

Although the difference in calculated values of Cgis as large as 30 percent
for small N, the effect on the total capacitance will generally be small, as illustrated

in figure 3.10. With the exception of small h, Cp is much larger than Cg,
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minimizing the effect on the total capacitance of any error in the calculation of Cy -

The dependence of Cgz on N is the result of edge effects. The numerical
model does not correct for edge effects as indicated by its lack of dependence on N.
Both Smith’s model and the analytical model account for edge effects, but in
different manners. Smith’s model calculates the fringing capacitance due to an
isolated digit, whereas the analytical model uses a single line with width equal to
the width of the device. It is felt that in general the analytical model slightly
overestimates the fringing capacitance by completely neglecting the effect of gaps,
and Smith’s model underestimates the fringing capacitance by ignoring the effect of
the other digits. Unfortunately it was not possible to determine which gave a better
estimate.

The above discussion shows that the effect of the edge digits on C, can be
significant. A review of the models shows that only the analytical model corrects
for the effect of the edge digits on C,. Therefore, this model can be used as an
indicator of the error which may be incurred by ignoring this effect. Figure 3.11
shows values of Cq for a 10 micron digit separation on sapphire substrate. This
clearly illustrates that the effect of the edge digit is very smalil unless the substrate
is very thick.

Important aspects of these two models can now be reviewed and their
range of applications summarized. Smith’s model is generally in good agreement
with the exact numerical model in regions of the latter’s applicabil’*~. While
Smith’s model also requires a computer, the actual computational effort is very
small. The flexibility of this model allows performance of capacitance calculations
for two layer substrates, and a broad range of device parameters. Cp is not

corrected for edge effects, but these effects have been shown to be small except waen
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h is very large. The speed of calculatio - and the flexibility of Smith's model make
it a practical method for specific calculations.

The analytical model is in reasonable agreement with the more exact
numerical model in the region of most practical interest where %2 1. It can only
deal with a single layer substrate, and the effect of the approximations which were
required to obtain its simplified form are apparent in the region where %< 1. Its
principal advantage rests with its analytical form. Use of these expressions enables
immediate observations and conclusions in any general analysis.

As a further test of the models, a limited comparison with experiment was
performed using the device structures described in table 3.1. Three different
substrates were used. Two of these, sapphire and semi—insulating GaAs, are
dielectric substrates. As expected the capacitance of structures on these substrates
showed no voltage dependence. The other substrate was epilayer GaAs, with a
nominal 3um thick epitaxial layer doped < 1014 cm_3 on a semi-insulating
substrate. Structures on this substrate showed a very small voliage dependence
indicating nearly complete depletion at zero bias voltage.

All of these devices were measured in two configurations, one with the
ground plane floating relative to both terminals, Cy, and the other with the ground

plane shorted to one of the terminals, C5. The resulting capacitances are given by
(3.1?) Ca = Cm + Cg + Cl.
(3.18) Cb=Cp+5(Cy+Cr).

It follows that the gap capacitance can be calculated as



DIODE
#

[ - I ]

Table 3.1

DIGIT
WIDTH

x (pm)

10.
10.
10.
10.

DIGIT

G (um)

10.
15.
20.
10.
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NUMBER DIGIT TERMINAL
OF LENGTH WIDTH
DIGITS { (um) W, (um)
16 300. 100.
14 300. 100.
12 300. 100.
6 100. 100.

The dimensions of the experimental devices fabricated.
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(3.19) Cg = 2Cy —Ca

The measured results are listed in table 3.2 The values calculated using
Smith’s model are shown in table 3.3. The differences between calculated and
measured values for C, and Cy, are greater than the standard deviation in almost all
cases. The measured values are generally larger than the calculated values,
probably due to stray capacitances involving the bonding wire. Stray capacitance
would also accoun* for the much larger differences associated with smaller
capacitances of diode #4.

The calculation of Cn from the experimental data allows a partial
canceling out of errors due to stray capacitance. A comparison of experimental and
theoretical values show the majority are within the standard deviation of the
experimental values. The large devices with the correspondingly iirge capacilances
generally agree to better than 10 percent. The small devices still show a large
relative difference, indicative of the larger error in their measurement.

This illustrates the agreement between calculated and experimental values
of the intergap capacitance, Cn. As previously indicated, the ability to calculate
Cn is important because it is the dominant capacitance under the designers control.
In view of the error associated with taking differences it is not possible to draw
specific conciusions about the calculation of Cg and Gy ; it is clear, however, that

the model gives reasonable approximations of their value.
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DIODE Ca= Cp= Cn=2Cy—C,
# Ca+Cy+Cr Cat (Cg+Cy) (PF)
(pF) (pF)
SAPPHIRE
1 0.289 + .016 0.244 + 014 ¢.199 = .020
2 0.228 + .012 0.180 = .014 0.133 £ .011
3 0.198 + .003 0.153 + 006 0.107 = .004
4 0.076 + .005 0.047 + .004 0.018 + .007
SEMI — INSULATING GaAs
1 0.362 + .009 0.316 £ .008 0.270 = .008
2 0.284 + .004 0.233 + .005 0.182 + .008
3 0.231 = .003 0.183 + .004 0.135 = .005
4 0.082 + 003 0.052 + .00} 0.022 + .004
EPI — LAYER GaAs
1 0.378 £ .009 0.325 = .010 0.273 £ .011
2 0.261 £ .006 0.238 £ .006 0.186 + .009
3 0.23 + 013 0.198 £+ 014 0.158 £ .018
4 0.073 £ .011 0.056 £ .001 0.039 + .010
Table 3.2

Measured capacitance values for interdigital capacitors on sapphire
(h = 44v pm), semi — insulating GaAs (h = 500 zm), and Epi — layer
GaAs (h = 410 um).



DIODE Cu+Cg+Cr Ca+y (Cg+C) Ca
# (pF) (PF) (pF)
- _
SAPPHIRE
1 0.251 0.228 0.205
2 0.198 0.174 0.149
3 0.161 0.136 0.111
4 0.035 0.028 0.021
SEMI - INSULATING GaAs
1 0.323 0.295 0.266
2 0.255 0.225 0.194
3 0.206 0.175 0.145
4 0.045 0.036 0.028
EPI — LAYER GaAs
1 0.327 0.296 0.265
2 0.259 0.226 0.193
3 0.210 0.177 0.144
4 0.046 0.037 0.027
Table 3.3
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Values of capacitance calculated using Smith’s model for the devices

shown in table 3.2, (sapphire ¢; = 9.9 and GaAs ¢, = 13.1).



CHAPTER 4: PULSE RESPONSE CHARACTERISTICS

A time dependent model to calculate the temporal response of an
interdigital detector to a given incident light pulse was discussed in chapter 2. In
all practical applications the detector will be part of an external circuit, so the
actual output of the detector will be the combination of the device response with the
external circuitry response. In this chapter, the factors affecting the actual output
of the detector system used will be discussed. These factors will be used to calculate
the response of the detector system and the results will be compared with
experimental values. A brief comparison of the two dimensional model with a
computationally faster and simpler one dimensionai model will also be included.

The time response of experimental devices was obtained by mounting the
devices in a suitable mount and displaying the response to an approximately known
input light pulse on a sampling scope. Figure 4.1 shows a simplified equivalent
crcuit of the total system, the output of which is the observed response. The time
response of this system can be broken into four main factors.

The inherent response of the device is given in simple terms by the
average time it takes the carriers to travel from the point of creation (by the
absorption of an incident photon) to the point of collection. This is generally
referred to as the transit time. The inherent response as a function of time can be
obtained using the time dependent model with an impulse light input. The response
of the device to an arbitrary light pulst input is represented by the interaction of
the light palse with the inherent device response. This is calculated using the time
uependant model and is represented by the current source in the equivalent circuit.

A low pass filter is formed by the resistance and capacitance combination
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Tigure 4.1 Simplified equivalent circuit of the photodiode time response
measurement system.
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of the detector and the external circuitry and can further limit the system response
time. Referring to the equivalent circuit, generally the device is designed to have R4
very large and Ry very small so the contribution of the device to the total load
resistance is small compared to the external load resistance and is assumed
negligible. This will generally be true of the interdigital devices discussed here. For
most applications the load resistance is fixed, usually at 50 ohms for high speed
applications. In the system used here, the mount had a load resistor of 50 ohms,
which when combined with the 50 ohm input impedance of the coaxial mount and
system gave a net load resistance of 25 ohms.

Total capacitance is the sum of the diode capacitance, C;, (see chapter 3)
and any parasitic capacitance, Cp, which exists in the system. Every attempt is
made to minimize the parasitic capacitances so the device capacitance will be the
dominant effect in a well mounted diode. The capacitance of the system will be
assumed to be that of the device in these calculations. Included in the equivalent
circuit is a parasitic inductance. Again, every attempt is made to minimize the
inductance due to mounting, but it will be shown that in these devices the
inductance can be significant. As a result this is more properly modeled as an KLC
circuit.

The inherent, or transit time response of the diode combined with the RC
response of the diode capacitance and external load resistor represent the
fundamental limits for the device response. Other limits to the device response are
generally application specific. This includes the mount which has its own inherent
frequency response as indicated by the transfer function H(f) in figure 4.1. In these
measurements the mount was made of an SMA stub connector with the load resistor

and biasing system attached directly using chip components. The diodes were
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mounted using bonded wires and silver paint, with the length of bond wires
minimized by using gold ribbon as part of the mount. SMA connectors are rated to
operate at frequencies up to 18 GHz and it is assumed that these mounts are not a
limiting factor in this system.

A Tektronix 7409 oscilloscope was used to display and measure the out put
pulses. This scope was equipped with a Tektronix S—4 sampling head which has a
nominal rise time of 25 psec. Experience has shown that the response of this
sampling head to an impulse has a full width at half maximum (FWHM) of about
30 psec. This is consistent with the observation of Bowers (1987). The temporal
response of the sampling head is assumed to be Gaussian in nature with a FWHM of
30 psec (although this is inconsistent with a step function response rise time of 25
psec indicating that this is an approximation at best) and is represented by the
transfer function Ha(f). The sampling head limits the frequency response of the
system nominally to 14 GHz.

The observed output response is a convolu.on of all these factors.
Modeling the output response requires that the impulse response of each of the
sections discussed above be calculated and convolved together with the diode
response. The diode response is calculated for the given incident light pulse using
the numerical model. The impulse response of the RC (or RLC) circuit can be
found in most basic electrical circuits books (see for example, Scott 1965). The
effect of the mount has been assumed to be negligible and the sampling head
impulse response has been assumed to be a 30 psec FWHM Gaussian. A fast
Fourier transform (fft) routine was used to do the convolution (the inverse Fouricr

transform of a product of Fourier transforms is the convolution of the original

function, Arfkin 1970).
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Experimental data on mounted devices were obtained using two different
lasers. One was a PLS10 Ultra High Speed Diode Laser with a nominal pulse width
of 70 psec (FWHM) at a wavelength of 820 nm. This pulse width is slower than, or
on the order of the response time of the devices being tested. The other was a
pulsed dye laser with a nominal pulse width of 4 psec at a wavelength of 600 nm. 4
psec is much faster than the response time of any of the devices being tested, and for
the purposes of discussion can be considered an impulse excitation. The output
response of the device under test was displayed on the sampling scope, and the
FWHM and rise time were measured using an SE10 Signal Enhancer from Optn —
Electronics Inc. These two numbers are generally used to characterize pulse
response time. Also measured was the period of any ringing which was present.
This was characterized by the period between the primary response peak, and the
first ringing peak. This number was designated 74 and was measured visually from
the scope display.

Experimental devices are defined in table 4.1 and include devices
manufactured on SOS and semi ~ insulating GaAs. Devices on epi — layer GaAs
were also tested using the 70 psec laser, but the results duplicated the results of
devices on semi — insulating GaAs and were not included. Table 4.2 lists the
measured and modeled results for the devices in table 4.1. A sample of the
measured and modeled responses are shown in figure 4.2. The capacitance and
inductance values are the ones used in the model. Capacitance values were those
measured in chapter 3 and the parasitic capacitance was assumed to be negligible.
The parasitic inductance was unkaown and could not be ignored, so inductance was
used as a fitting parameter. This was accomplished by choosing the inductance, to

the nearest 0.5 nH, which gave the best fit to the three parameters measured.



CURRENT (arb)

Figure 4.2

0 100 200 300 400 300

TIME (psec)

The measured (inset photo) and modeled photoresponse of device 4
10 a 4 psec incident light pulse. (Time Scale 50 psec/div.)
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DEVICE MATERIAL* DIGIT DIGIT NUMBER
4 WIDTH SEPARATION OF
(1em) (#m) DIGITS
1 GaAs 10 20 12
2 . GaAs 10 15 14
3 GaAs 10 10 16
4 GaAs 10 10 6
5 GaAs S ] 6
6 SOS 10 10 6
7 SOS§ 5 5 6

*(GaAs, semi — insulating; SOS, Ng = 5 x 1015 cm-3)

Table 4.1 Experimental devices used in response time measurements.
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4 psec INPUT 70 psec INPUT
MEASURED MODELED MEASURED MODELED

Device 1 V = 15 voits C=10.23 pf L=25nH

Rise 37 45 68 67

FWHM 66 69 92 87
Td 160 161 160 167

Device 2 V = 20 volts C =0.28 pf L =20nH

Rise - - 72 68

FWHM - - 92 92
Td - - 170 169

Device 3 VY = 15 volts C=036pf L=25nH

Rise - - 72 71

FWHM - - 98 94
Td - - 190 198

Device 4 V = 15 volts C = 0.085 pf L=25nH

Rise 24 33 59 59

FWHM 43 48 78 80
Td 110 98 110 101

Device 5 V = 10 volts C =10.05 pf L =3.0nH

Rise 27 29 55 55

FWHM 36 38 72 73
Td 90 81 - -

*

Device 6 V = 50 volts C=10.075 pf L =230nl

Rise 26 32 59 57

FWHM 37 44 66 73
Td 110 99 120 107

Device 7 V = 50 volts C = 0.045 pf L =35nH

Rise 26 28 55 55

FWHM 37 38 68 71
T4 - - - -

*
Approximately half depleted.

Table 4.2 Measured and modeled response time results for devices listed in table
4.1.
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Comparing the sample measured and modeled responscs in figure 4.2, the
primary pulses are similar, but the modeled oscillations are significantly larger than
the measured results and do not attenuate as quickly. This was generally true for
all the devices, with the difference Jarger for results obtained using the 4 psec laser
than the 70 psec laser. Additionally, the oscillations in the measured results do not
appear to be purely sinusoidal as the modeled results suggest. This was true in
varying derrees for all the measurements made.

Comparing the measured and modeled results in table 4.2, there is good
agreement between most numbers, generally to within 10 %. The good agreement
between theory and experiment for these sample devices indicates the ability of the
two dimensional model to approximate the diode response to a given input pulse.
(These devices, and fast photodiodes in general, are usually operated at high fields,
making the saturation velocity a dominant factor in determining transit time
response. The saturation velocity in most semiconductors is limited by optical
phonon scattering which is relatively independent of material and processing
properties (Garside 1982), making the time response relatively insensitive to errors
in these quantitics.)

The values of inductance found for these devices and shown in table 4.2
are larger than might be expected fiom just the bonding wires and mount. This
suggests that there is a contribution to the total inductance from the device itself.
This is a reasonable suggestion since the digits themseives will act as inductors. It
is also probable that at the high frequencies involved in these measurements (on the
order of 10 GHz) the RLC model used is simplistic. This is suggested by the
differences in the ringing oscillations found between the measured and modeled

results. Although the model discussed above is a good approximation, {requency
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dependent effects such as microstrip line dispersion, and conductor and dielectric
losses may have an effect on the device response. Other possible shortfalls of the
model include the mount response which was assumed to have no effect, and the
Gaussian approximation of the sampling head response.

Each run of the two dimensional model used in table 4.2 took at icast 5
days, and in some cases considerab'y longer, to run on a 8 MHz IBM XT
compatible. Although this time can be substantially reduced using more powerful
computers, a considerable amount of computing power is required. Another possible
solution is the use of a simpler model. Tables 4.3 and 4.4 show results obtained
using the two dimensional model and equivalent runs using a onc dimensional model
(Levy, 1987). The one dimensional calculations were done in a slightly different
manner on the two materials. Since the GaAs devires were depleted all the way
through, the parameters used in the one and two dimensional calculations were the
same. SOS devices were only partially depleted, so in order to make the
calculations equivalent, the voltage in the one dimensicnal calculation was adjusted
to obtain a depletion length which was equivalent to that obtained from the two
dimensional calculation.

Figure 4.3 shows typical examples of one and two dimensional response
calculations. The curves are physically similar, with the exception of the tails. A
larger tail is predicted by the two dimensional model, possible due to the greater
distance some slow charge carriers must travel in the two dimensional device. The
abiiity to predict the basic response shape is important for calculations involving
autccorrelation.  Autocorrelation measurements involve convolving a pulse with

itself, and the size and shape of the output pulse is dependent on the shape of the

input pulse.
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DIGIT APPLIED 4 psec

G, x VOLTAGE RISE FWHM

(um) (volts) 2D 1D 2D 1D
GaAs (semi — insulating)

5 5 10.0 4.10 4.16 33.9 29.4
10, 10 15.0 4.17 4.24 58.1 54.4
15, 10 20.0 4.20 4.28 79.3 76.0
20, 10 15.0 4.27 4.27 72.2 67.6
20, 10 25.0 4,21 4.31 96.3 97.4

SOS (Ng = 5x 105 cm-3)

5 5 10.0 6.10 4.79 18.7 13.1

5 5 30.0 .86 4.45 25.6 19.8

5 5 50.0 4.95 4.25 33.5 25.4
10, 10 50.0 7.40 4.91 41.3 29.7
10, 10 120.0 4.85 4.26 68.6 50.3

Table 4.3 Comparison of results from a two dimensional model and a one

dimensional model calculating the response to a 4 psec input light

pulse of several different interdigital photodiodes.
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DIGIT APPLIED 70 psec

G, x VOLTAGE RISE FWHM

(um) (volts) 2D 1D 2D 1D
GaAs (semi — insulating)

5 5 10.0 55.1 54.4 83.5 79.8
10, 10 15.0 59.1 58.8 83.5 79.8
15, 10 20.0 61.9 61.6 113. 117.
20, 10 15.0 60.7 60.6 103. 108.
20, 10 25.0 63.8 63.5 129. 136.

SOS (Ng = 5 x 105 cm-3)

5 5 10.0 53.2 51.8 80.3 75.1

5 9 50.0 54.9 53.2 82.1 76.0
10, 10 50.0 56.3 54.0 88.9 78.5
10, 10 120.0 60.3 58.0 in4. 91.3

Table 4.4 Comparison of results from a two dimensional model and a one

dimensional model calculating the response to a 70 psec input light
pulse of several different interdigital photodiodes.
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Tables 4.3 and 4.4 allow a specific comparison of the FWHM and rise time
calculated by the one and two dimensional models. Table 4.4 shows results for a
Gaussian input pulse with a FWHM of 70 psec. In general, when the input pulse is
longer than, or on the order of, the device response time, the input pulse length will
be the dominant factor in determining the output pulse length. This is true of the
results shown in table 4.4, and the relatively good agreement between the models for
the examples shown follows from this. Thus, if the input pulse is the dominant
factor in determining the output response, a lesser degree of accuracy in the model
can be tolerated.

Table 4.3 shows results for a gaussian input pulse with a 4 psec FWHM.
For each device listed, the output response is dominated by the device response.
This gives a true comparison of the response time calculated by the one and two
dimensional models. For the SOS device calculations shown the agreement is poor,
on the order of 30%. Agreement is much better for the GaAs device calculations,
generally better than 10%. These results suggest that the one dimensional model
can be used in place of the two dimensional model in many instances, depending on
the degree of accuracy required.

Fundamentally, the ability to use the one dimensional model in place of
the two dimensional model is dependent on the degree to which the two dimensional
effects in the interdigital diode can be neglected. A simple example of this can be
illustrated using the impulse response calculations for GaAs devices in table 4.5.
For these examples, 90% of the incident light was absorbed in the first 0.5 um of
semiconductor. Using 0.5 um as the effective semiconductor thickness, the data in
table 4.5 show that as the ratio of digit separation to effective semiconductor

thickness decreases, the relative difference between the FWHM calculated by the
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DIGIT APPLIED Tt FWHM PERCENT
G x VOLTAGE (psec) 2D 1D DIFFERENCE
(pm) (volts) 2D, 1D

GaAs (semi — insulating)

1, 1 3.0 5 1.72 5.78 25%
2, 2 5.0 10 14.0 11.1 21%
5, 5 10.0 25 33.9 20.4 13%
10, 10 15.0 50 58.1 54.4 6.2%
15, 10 20.0 75 79.3 76.0 4.2%
20, 10 15.0 100 72.2 67.6 6.4%
20, 10 25.0 100 96.3 974 1.1%

SOS (Ng = 5 x 1015 cm3)

5 5 10.0 6.4 18.7 13.1 30%
5, 5 30.0 15 25.6 19.8 23%
5, 5 50.0 21 33.5 254 24%
10, 10 50.0 24 41.3 29.7 28%
10, 10 120.0 48 68.6 50.3 26%

Table 4.5 Difference between the FWHM calculated by the two dimensional
model and the one dimensional model for several different interdigital
photodiodes assuming an approximate impulse response. Also shown
is a commonly used approximation for transit time defined in
equation 4.1.
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one and two dimensional models increases. Thus as effective thickness, the
dimension ignored by the one dimensional model, becomes comparable to the digit
separation, the error in the one dimensional model incresses. Additionally, the
pulse shapes predicted by the one and two dimensional model shows increasing
difference for the 1 um device suggesting that in the extreme, the one dimensional
model is unreliable.

For the SOS devices shown in table 4.5, the agreement between the one
and two dimensiunal models is uniformly poor. This indicates a more significant
two dimensional nature in these devices. The existence of a discontinuity in
dielectric constant and a layer of doped semiconductor all make contributions which
are ignored by the one dimensional model.

This discussion has demonstrated that the one dimensional model can give
a reasonable approximat.on for the time response of an interdigital photodiode in
many instances. The range of applicability of the one dimensional model is
dependent on the application, but for initial calculations where computational speed
is often more important than accuracy, the one dimensional model presents a
practical compromise.

In many cases all that is required for the time response of a device is a

valuc for the impulse FWHM or transit time. A commonly used approximation for
this value is given by

(4.1) o= %% (Garside 1982)

where  d is the length of the high field region in the photodiode, and

vs 15 the carrier saturation velocity (approximately 107 cm/sec in most cases).
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Use of equation 4.1 is dependent on the electric field being large enough
(approximately 10 volts/em for silicon and GaAs) that the majority of
photogenerated carriers travel at the saturation velocity. Values calculated using
equation 4.1 are presented in table 4.5 for comparison with values calculated by the
one and two dimensional models. An example of improper use of equation 4.1 is the
GaAs device with a 20 um digit separation and a 15 volt bias shown in table 4.5. In
this example equation 4.1 gives a very poor approximation of the transit time
because the average field in the device (approximately 7500 volts/cm) is too small.
The agreement between the results obtained using equation 4.1 and the one
dimensional model are otherwise good, due to the one dimensional nature of
equation 4.1. Thus the applicability of this equation to interdigital photodiodes is

similar to that of the one dimensional model, provided the conditions for use are

met.



CHAPTER 5: SAMPLE APPLICATIONS

In the preceding chapters, various models have been presented which can
be used to predict general interdigital photodiode performance as well as to design
and optimize specific devices. This chapter describes two examples of how these
models might be applied. The capacitance of an interdigital device is compared
with a standard device, and an example of the design of an interdigital device for
insertion in a microstrip line is discussed.

It is interesting and imstructive to compare the capacitance of an
interdigital photodiode with that of an equivalent p—i—n photodiode. P-i—n
photodiodes are one of the most common types of photodetector in use and
represent an appropriate standard for comparison. The comparison will include only
the active areas of these detectors, since bonding pad area is specific to the
implementation and can in fact be eliminated by using a microstrip line.

An analytical model which calculates the capacitance of interdigital diodes
was introduced in chapter 3. The principal advantage of this model is its analytical
form. By applying several simplifying assumptions, it is possible to reduce this
model to a single analytical exprzssion which can be directly compared with a
similarly simplified expression for p—i—n photodiodes.

Consider an interdigital device which is completely (or nearly) depleted
between the digits. If it is assumed that the ground plane capacitance is much
smaller than the interdigital gap capacitance (which can be arranged by having h,
the substrate thickness, much greater than W, the width of the device), and
corrections for edge effects are ignored (which corresponds to a device having many

digits), the capacitance is given approximately by equations 3.8, 3.9, 3.12 and 3.14.
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Substituting and simplifying these equations yields

(5.1) Cs=w L 7 e (er+])
44 1n[3g]

T X
where N ¥ W/d was used to approximate the number of digits (valid for large N).

For the purposes of comparison, a p—i—n photodiode can be approximated
as a parallel plate capacitor with the intrinsic region acting as the dielectric between

heavily doped p and n layers. This capacitance is given by

& €0 A
(52) Cn=
L

where A is the area of the device, and

L is the thickness of the intrinsic region.

A comparison of equations 5.1 and 5.2 shows they have a similar general form. The
capacitance varies directly as the area and inversely as the primary structure

parameter (d and L respectively).

If the areas of the two devices are assumed to be equal (W I = A), the

ratio of the capacitances is given by

(5.3) Cg_ (er + 1) =
C € 8 d
] r 4dln[7r x]

Equation 5.3 is further simplified by assuming that the carrier transit times must be

equal in each device as a requirement of being equivalent devices. To a first
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approximation this requires that the thickness of the intrinsic region in the p—i-n

device, L, must be equal to the digit separation, G. The resulting ratio is

(5.4) Cog_(er + 1) (1 — )
" €r 4 lanJ

where the substitution d = G + x has been used.

For the common case of %:2, and assuming ¢ >> 1, equation 5.4
reduces to 0.24 or approximately one quarter. Thus for this particular case a
standard p-i—n photodiode has a capacitance which is four times larger than an
equivalent interdigital device with a digit width equal to its digit separation.

As a specific example of the comparison, the capacitance of a 20 digit
interdigital device has been calculated using Smith’s model. The active area of the
device was assumed to be square (W = [) and the digit width was set equal to the

digit separation ( % =

2). Figure 5.1 illustrates the results of these calculations as a
function of digit separation for several different substrate thicknesses. Also shown is
the capacitance of an equivalent p—i—n photodiode as previously defined.
Comparing the capacitances of the interdigital device on a thick substrate with that
of the p—i—n device gives a ratio of 0.26. This is in good agreement with the value
of 0.24 found previously. For the interdigital device on a very thin substrate the
agreement is poor due to the large ground plane capacitance, but as long as the digit
separation is much less than the substrate thickness, the ratio of 0.25:1 is a good

approximation.

As another example of the application of these tools, the design of an
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Figure 5.1 Capacitance of a 20 digit interdigital diode on semi — insulating

GaAs for several substrate thicknesses (h). Capacitance of a p—i—n
diode is included for comparison.
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interdigital photodiode built into a microstzip line will be discussed. The basic

design parameters will be as follows. The impedance of the microstrip line will be

50 ohms to match the standard coaxiai cable used in these applications, and semi —

insulating GaAs will be the substrate material ( - =13.1). To keep the design

simple, the detector width will be the same as the width of the microstrip line, the

detector wili be square ( W =1{) and the digit width will be equal to the digit

separation ( g— =2).

(5.5)

where

The width of the microstrip line can be calculated using a simple relation

given by Gupta (1979).

AW = qexp(h') ~ gexp( )

) — Zom fr — 1 0.120
W= 1‘0—+E—r-—+—r 0.226 + =

Zon is the characteristic impedance of the microstrip line
h is the thickness of the substrate
W is the width of the microstrip line

¢r is the relative dielectric constant of the substrate.

Using the given parameters this reduces to

(5.6)

W =0.702 h.

W <h

Tke width of the microstrip line, and thus the width of the device are fixed by the

thickness of the substrate.

As stated in chapter 4, the temporal response of a photodetector is limited
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by two fundamental factors, the RC time constant and the transit time. A very
simple analys. s shows that the RC time constant varies approximately inversely as
the digit separation, and the transit time varies approximately dirzctly as the digit
separation. The result is a trade off between these two factors. To optimize the
design it will be -:ccessary to calculate the responsc time as a function of digit
separation. In chapter 4, the response time was calculated by modeling the transit
time response using a numerical model, and then numerically convowving this with
the RC response. This is unnecessarily complicated and time consuming for a first
design step. Instead a simplified model will be used.

If it is assumed that the transit time response to an impulse input takes
the form of a right triangle (this is approximately true {or devices operating at high
fields as illustrated by figure 4.3), then this can be convolved with tha RC response

using Laplace transforms. The resulting convolved device response is given by

(5.7) i(t) =a(1+§a—r)(1—exp[——;])—§2?t (t < 27)

=_aexp[2t5] (1 +§°’—T(1—exp[2—a1])) (t 2 27)

where  7is the FWHM of the right triangle giving the transit time, and
a= RC.

The peak current value is found by setting the first derivative to zero for t ¢ 27

(where the peak will always occur) and solving.

. 2
(5.8) imax = a (1 +2arln la'{- ;/21' ])
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Using equations 5.7 and 5.8, the FWHM of the response can be found by solving
i(t) = % imax for t. In general this can not be done analytically, but can be done
simply using numerical methods such as bisection, Newton’s method, or the secant
rule (Shampine 1973).

The results of solving for the FWHM as a function of a and 7 is
summarized as a general curve in figure 5—2 which plots FWHM/« as a function of

21/a. A least squares fit on this data yields the equation

2
2 T 27
T] + 0.652 l:—a—] + 0.711)

2 T
T<20.

(5.9) FWHM = a (~0.00489 [

0.1 <

which is accurate to better than 2 % over the range indicated.

Equation 5.9 can be used along with Smiths model for the capacitance to
calculate the response time as a function of digit separation. (Note that She’s model
could be used if an analytical calculation is required.) As a first step, a good
approximation of the transit time in high field is given by 7 = %?—5 , where vs is the
carrier saturation velocity (assumed to be 107 cm/sec). Examples of these
calculations are shown in figure 5-3 which plots response time versus digit
separation for several substrate thicknesses. These curves illustrate that due to the
trade off between mirimizing the RC time constant and the transit time, for each
substrate thickness there is an optimum digit separation to obtain the minimum
response time. If the curves in figure 5.3 are plotted with FWHM/h versus G/h, a
single 'universal’ curve results. Thus, in the range tested (100 pm < h € 1000 um) a

single minimum value can be used to represent the optimum digit separation to
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obtain a minimum response time for arbitrary h. The resulting expressions for this

example are given by equations 5.10 and 5.11.

(5.10) G = 0.009333 h
(5.11) FWHM = 0.1193 h
where his in ym, and

FWHM is in psec.

These results allow very general design and analysis of interdigital devices
in a microstrip line. As a specific example of an application, consider the possible
design of a device with a required response time of 50 psec. To begin, a 10 percent
safety margin will be built in by designing for a 45 psec response. Using equation
5.11, the substrate thickness is calculated to be 377 um, which is rounded to 375 um.
The microstrip line width is 263 um by equation 5.3, and the digit separation is 3.50
pm by equation 5.10. These parameters can now be used in conjunction with the
one dimensional model and the convolution routine to calculate the form of the
response. The resulting curve is shown in figure 5.4 and has a rise time of 14.9 psec
and a FWHM of 46.3 psec. Further analysis could be done using the two
dimensional model or by experimental techniques to lead to a final design, but the
results given here represent the necessary first steps in designing and understanding
the device.

Although the design of an interdigital photodiode in a microstrip line on
GaAs is a very specific example, the methodology used is generally applicable.
Another example of a problem which could be solved in a similar manner would be

finding the minimum response time, given the device area and substrate thickness,
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Figure 5.4 Impuise response of a 38 digit interdigital photodiode in a 50 ohm

microstrip line. The device is on a 375 ym thick semj — insulating
GaAs substrate and biased at 20 voits.
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using epi — layer InGaAs; some preliminary analysis of this problem is discussed by
Seymour (1988). These techniques can be used to solve a range of problems
involving minimizing the response time, given specific design constraints, and this

represents only one example of the possible applications of the models developed in

this thesis.



SUMMARY

A fast, simple photodetector design consisting of an interdigital metal —
semiconductor — metal (MSM) photodiode has been discussed. Initial work by other
authors on these devices was limited to demonstrating their feasibility as fast
sensitive detectors. This thesis has presented a variety of models and analysis which
allow predictions of general device characteristics as well as the design and
optimization of specific devices.

A two dimensional finite differences model based on Poisson’s equation,
and the continuity and current equations for semiconductors, was developed to
allow numerical analysis of interdigital photodiodes. This two dimensional model
was the basis of much of the theoretical analysis presented.

Experimental interdigital MSM photodiodes were fabricated on three
sample materials, Semi — insulating GaAs, epi — layer GaAs, and silicon — on —
sapphire (SOS). These materials represented a variety of the options available
when choosing a material for interdigital photodiodes.

A discussion of the steady state characteristics placed the emphasis on
photoresponse, current — voltage (IV), and capacitance — voltage (CV)
characteristics. The photoresponse was measured as a function of wavelength and
was discussed as a function of photon absorption. These results showed that
interdigital photodiodes can operate in wavelength regions where the absorption
coefficient is very large and most standard junction diodes exhibit a large reduction
in photoresponse. Measurement of the absolute responsivity confirmed the existence
of a gain mechanism at high bias voltages as reported by other authors.

A theoretical analysis of the IV characteristics of interdigital MSM diodes

104
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was based on Sze’s analytical model for one dimensional MSM diodes and the two
dimensional numerical model for interdigital MSM diodes. The result was a system
which allows general qualitative analysis of the IV characteristics of interdigital
MSM diodes.

Particular emphasis was placed on the calculation of capacitance due to
its importance as a factor in determining the measurable time response of a given
device. Using the two dimensional numerical model, it was demonstrated that the
total capacitance of an interdigital diode operating at a voltage equal to (or greater
than) its reach — through voltage is approximated by the interdigital structure
capacitance. Three models for the calculation of the structure capacitance were
discussed. The two dimensional numerical model is functionally exact, but requires
substantial computer resources. The modified version of a model due to Smith also
requires a computer to run, but is fast and in good agreement with the numerical
model. She's analytical model is useful for general analysis but gives reasonable
numbers only when the digit separation is larger than the digit width. All three
models were compared with experiment and shown to be in generally good
agreement.

The pulse response of interdigital photodiodes was measured and
compared with theoretical results. The measurement system used a sampling scope
to displaying the response of the photodiode to an approximately known light pulse
( 70 psec FWHM diode laser or 4 psec FWHM dye laser ). The factors affecting the
observed time response were discussed. They were the device response, RLC circuit
response, and sampling head response. The theoretical response was obtained by
convolving the device response calculated using the two dimensional numerical

model with the RLC circuit response and the sampling head response.
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The parasitic inductance in the RLC circuit was unknown and was used as a fitting
parameter. There was good agreement between the theoretical and experimental
results.

As an alternative to the computationally siow two dimensional numerical
model, the time dependent response was also calculated using a faster one
dimensional model. It was demonstrated that in many instances the one
dimensional model is a reasonable alternative to the two dimensional model. This is
dependent on the error which can be tolerated and on the extent of the two
dimensional nature of the interdigital device being modeled.

Two specific examples of the application of the tools developed in this
thesis were presented. It was demonstrated that an interdigital diode could be
designed to have approximately one quarter of the capacitance of an equivalent
p—i—n diode. This illustrated one advantage of these devices. A sample design of
an interdigital photodiode to be built into a 50 ohm microstrip line was also
presented. The design was optimized for minimum response time. These two
examples illustrate the capabilities of the models and analysis presented in this
thesis to make general predictions of interdigital photodiode performance, as well as

to design and optimize devices with specific operating parameters.



Appendix 1: NUMERICAL MODEL

The numerical methods used in this work are based on equations 1.1 through

1.6. These equations are known as the basic semiconductor equations and are

reepeated here.

Poisson’s equation:
(A1.1) divgrad ¥ =3 (n-p-C)
Continuity equations:
. dn
(A1.2) divJa—qzr =qR

(A1.3) divJp+ g+ =—qR

Current equations:

(Al.4) Jn = anunE + g Dpgrad n

(A1.5) Jp = qppE — q Dpgrad p

Total current:

(AL.6) Jo=do+ 3+ 3eE)
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¥ is the electrostatic potential

E is the electric field vector

q is the elementary charge ( = 1.602 x 1019 Coulombs )

¢ is the absolute permittivity

n, p are the electron and hole concentrations

C is the net fixed ionic charge

i n ] P J ¢ are the electron, hole, and total current densities
t is the time

R is the net carrier recombination/generation

Hn, #p are the electron and hole mobilities

Dy, Dy, are the electron and hole diffusion coefficients

Al.1 Potential Routine

The potential solving routine calculates the potential distribution using only

Poisson’s equation. This program is also responsible for defining the structure of

the device to be modeled as well as the discretized mesh used in this and the

following routines. Figure Al.l shows a general form of the structure modeled.

Dashed lines represent the boundaries of the model domain.

The domain contains a rectangular mesh of points on which a solution of the

semiconductor differential equations is sought using the finite differences method.

The mesh is set by the programmer during initial setup of the program and varied
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to suit the application. Best results were obtained using the following guidelines.
Extra vertical grid lines were added close to boundaries AF and BE where Neumann
boundary conditions are used. Extra vertical grid lines were also added at the edge
of the digits to minimize local truncation error due to the singularity represented by
thig point (Laux, 1981.) By redistributing the existing grid points in these areas the
transition in grid spacing was done smoothly.

All other regions of the domain used a uniform grid with constant though not
necessarily equal, vertical and horizontal grid spacings. Some attempts were made
to optimize the grid spacing in regions of rapidly varying potential or carrier
concentration, but the results were inconclusive. In general, the resuits obtained
using the quasi — uniform grid were as good or better, and had the added advantage
of simplicity.

Solution of Poisson’s equation in isolation from the other basic
semiconductor equations requires several simplifying assumptions. For any doping
concentration large enough to significantly perturb the potential distribution, the
majority carrier density will be much greater than the minority carrier density.
Thus only the ionized doping density and the majority carrier density need to be
considered in calculating the total charge. Calculation of the majority carrier
density is based on two assumptions. It is assumed that there is no current flow in
the device and no generation or recombination. Although this is a simplification,
the current flow in a reverse biased diode in thermal equilibrium is generally much
smaller than the current which would be required to significantly perturb the
majority carrier distribution. It is also assumed that Boltzmann statistics apply to

the carrier densities. This is a valid approximation of Fermi — Dirac statistics as
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long as the material is not degenerately doped. These conditions combine to yield

the Boltzmann relation for the majority carrier density which, assuming n —type

material is
(AL1.7) n=ne exp ( q¥ / kT )
where N, is the thermal equilibrium carrier density and is set equal to

the net doping density

q is the elementary charge

k is Boltzmann'’s constant

T is the absolute temperature.

The total charge density can be written as
(AL.8) p=—qNg[1—exp(q¢p/kT)|

where Ng is the net doping density. In this application ¥ must be negative to

obtain the required reverse biased contact. Thus the form of the differential

equation to be solved is
(AL9) divgrad = "3R4 [ 1 —exp (qy / kT )

This expression contains nonlinear functions and was linearized using a Taylor scries

expansion with the higher order terms neglected.

(A1.10) b= o+ Ay
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(Al.11) divgradw-f-g-zb-[l—exp[%“} [l-i-]?%('l/)—%)” =0

Equation Al.1l is solved in an iterative fashion by calculating a new ¥ using %,
from the previous iteration.

Discretization of equation Al.1l into a form suitable for finite differences
solution was done using the box method as discussed by Bank et. al. (1983) with

the appropriate difference approximation for the first derivatives. For example,

d v Yisnj = Vi
(A1.12) T3y =
(A1.13)
Yisnj - Piyj Yiri - Yi-nj Yirjer = Yiyj Vij = Phj-t
hj B hi. k; + K.y
T I
gy (hia + hi) 5 ( ki1 + ki)

"‘Q%T%Texlj [1%1: ?ﬁi?j]
___@ [1—exp [ET Tﬁ’j] [1—%-1-71’%]]

where the indexing scheme is illustrated in figure A1.2. The form of this equation
used in insulator materials is obtained by setting Ng4 to zero.

Equation A1.13 is solved over the closed domain bounded by the rectangle
ABEF shown in figure Al.1 The foliowing boundary conditions are used over this

domain. Along lines AF and BE Neumann boundary conditions are used to reflect
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Figure A1.2 The indexing scheme used to discretize the semiconductor
eguations.
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the symmetry of the device about these lines. Neumann boundary conditions can be

stated generally as

(AL.14) 9 _ -0

]
=13

where 1 is the normal vector. Implementation of these boundary conditions is

illustrated by

(AL.15) v(0y)=9(0y)

Lines HI and JC represent reverse and the forward biased digits respectively. At
points on these lines the potential is fixed and Dirichlet boundary conditions are

used, as represented by ;

(A1.16) Y(xy )=

AB represents a line in air above the device. For an infinite thickness of air the
potential along this line is related to the potential along the grid line Jjust below it

by Green'’s formula (Wasserstrom 1970):

(A1.17) Wx,y+4y) = %XJ: (if;,ﬁb%";’{,&y)z '

The discretized form of this equation is
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(A1.18)
1
Vy,j = E im%x Vm,j-[[tan'l [beimax - xi + (%xn + 3 hi )]
bl-p me| kj-l

— tan-! [2bximnx — Xji +( Xm — % hm-t )}
kj-l

+ tan~ [2bximax - Xi — (xm - é’ hpa )}

_ tan_l{2bx1'max - Xj - (Xm + % hm )jl}

where xp = x, + i!jlz hi, x;=0.
The limits of this summation, p and —p, represent the extension of this expression
over multiple unit cells.
EF represents a line equivalent to AB in the substrate material. If the substrate is
of finite thickness, then line EF represents a rround plane with a fixed p'otentia.l. If
the substrate is of infinite thickness, or if the effects of the ground plane can be
neglected, then Green’s function is used to calculate the potential along this line.
Lines IJ and GD represent interface boundaries between materials with
different dielectric constants. At these interfaces the following conditions must be
true {Lorrain 1970): the potential must be continuous across the interface; the
tangential component of the electric field must be continuous across the interface;
and the normal component of the electric displacement must be continuous across

the interface if there is no surface charge. These conditions result in a modified
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form of equation A1.13 for use along the interfaces.
(A1.19)

Pienj — Yhj _ ¥hj - Vi ey jo—¥i,3) _ €21, ~¥ij41)
h;j hi.; k; ki

! (hi-[ + hi) 1( Egkj-l + €1kj )
2 2

—kj.1a Na prrexp [ETW?,;'] 8
= —ki. q [ Qint + Ny [I-exp [%Tﬁaj] [1+]%T¢?:j]] }

where it is assumed the top layer is an insulator,

€, €2 are the dielectric constants of the insulator and semiconductor

respectively, and

Qint is the interface charge, if any.

Combining equations A1.18 and Al.19 with the boundary conditions over the
entire grid results in a large system of algebraic equations. This system of equations
is solved iteratively using Successive Line Overrelaxation {(SLOR). Horizontal lines
are used and the resulting tridiagonal matricies are solved with a special form of

Gaussian elimination (see for example Kurata, 1968). Convergence of the solution is
max
tested by finding the largest change in potential for a complete iteration, ¢5,;. If

max
6%1,j is less than a prescribed limit, the solution is considered complete.
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Al.2 tin

The steady state condition is satisfied when the time derivatives in equations

Al.2 and A1.3 are zero, yielding the steaady state continuity equations.

(A1.20) div I, = qR

(Al.21) div]p = —qR

The steady state routine simultaneously solves the steady state continuity equation
as well as Poisson’s equation and the current equations in a self consistent manner.
It is necessary to start by defining models for the various physical
parameters. One of the more important quantities with regard to photodetectors is
the field dependence of the carrier mobility. Mobility is dependent on carrier type
and material. It was modeled using the following empirical formulas from the

literature, with minor modifications. For silicon (Reisler, 1973):

(A1.22) tn = 2 fno
1 + 1 + [ 2no| B ]2
Vsat
(A1.23) b = 2in o
1 + J 1+ [255,,0”73] ]2
Vsat

For GaAs (Gammel, 1980)
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3

255  py,+ —LE[® | Vsat
(A1.24) i = (3600)¢
2.55 + [ LEL ]‘

3600

(A1.25) ip » —

where pno and ppo are the respective low field mobilities,
|ﬁ}| is the magnitude of the electric field and
vsat is the saturation velocity (= 107 cm/sec for GaAs and Silicon ).
It is customary to replace the diffusion coefficients, Dy and Dy, using the

Einstein relationships:

(A1.26) D, =Eg,un
kT
(A1.27) Dy = X2 4

These relationships are consistent with the current relations used and are vatid for
nondegenerate semiconductors.

Generation and Recombination have been broken up into four processes. The
first process is the generation of carriers due to optical excitation. This generation
rate is an input parameter which is modulated through the depth by an absorption

coefficient according to the standard absorption formula
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(A1.28) G(x) = Geexp (—a x)

where Gy is the input generation rate
a is the absorption coefficient, and

x is the depth.

If @ = 0 then the generation rate is uniform through the depth. It is also possible to
choose a uniform horizontal generation rate, or a Gaussian shaped spot of arbitrary
width and location.

The standard fundamental generation/recombination process is generally

modeled using a Shockley ~ Read — Hall (SRH) recombination model. The form

used here is

h—_ pPn — n;?
(A1.29) Rsth = T(0n 4+ p+ 2ny )

where n; is the intrinsic carrier concentration and
T is the carrier lifetime.
Equation A1.29 assumes single erergy level traps located at the centre of the energy
band with equal hole and electron capture cross sections.
The second generation/recombination mechanism considered was Auger

recombination. The general form given by Selberherr (1984) is
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(A1.30) Rau = (CR'n+ Cp"p) (np—nyi?)

where Cav = 2.8 x 10-3 cm?¥/sec and

CBY = 9.9 x 10-32 cm¥/sec are the Auger coefficients for bulk silicon.

Order of magnitude comparison of Rat with Rsth for bulk silicon shows that the
Auger term is negligible until the excess carrier concentration is on the order of 1018
ecm-3, This is generally not the case, so this term is included only in cases of very
large optical generation.

The final recombination process considered is surface recombination. It is
generally considered to have a form which is equivalent to the Shockley — Read —
Hall expression. However it is customary to use surface recombination velocities in
place of carrier lifetimes, although this is just a matter of interpretation. The form

of surface recombination used here is

\ — : 2 O
(A1.3l) Rsurf = 1 np ni 6( X "xsurf)
5 (n+ p+ 2n3)

where s is the surface recombination velocity and

& X ) is the Dirac delta function.

The domain over which the basic semiconductor equations are to be solved is
defined by the potential routine in step one and is illustrated in figure Al.1. For
Poisson’s equatior the boundary conditions on the edge of the domain are identical
lo those used in step one. Along lines AF and BE Neumann boundary conditions
hold, and along lines AB and EF Green’s formula is used. More details can be

found in the discussion of the potential routine above.
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For the current and continuity equations, regions ABCH and GDEF have
been defined as insulators. As such these regions can have no free carriers and the
current equations are identically zero, Thus the current and continuity equations
need only be solved over the subdomain HCDG bounding the semiconductor region.

Symmetry can again be invoked to allow the use of Neumann boundary

conditions along the lines HG and CD. Mathematically this is expressed as

(AL32) %: 0 and i;% =0
where 1 is the unit normal vector.

On the digits which are represented by lines HI and JC Dirichlet boundary
conditions are used. The exact values depend on the type of contact represented by

the particular digit. For Schottky barrier contacts, the values given by Yoshii

(1982) were used.

(A1.33) n = ng exp [I%T ws]
(A1.34) p=ni?/n
where Ny is the thermal equilibrium carrier density and

s is the built in voltage due to the Schottky barrier.

For Ohmic contacts the common assumption of thermal equilibrium is used to

obtain

(A1.35) n=ng

(A1.36) P=1n¢/1n,=po
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The interface between the semiconductor and the insulator are represented
by lines I¥ and GD. No current can flow through this interface, so the only current
component through the interface is due to surface recombination. This is

represented by

(A1.37) J -1 = - qReyrt

where 1 is the normal vector.

For the purposes of improved numerical stability, it is common practice to
scale the dependent variables to have maximum values of order one. Scaling was
accomplished using the method of DeMari (1968) with modifications suggested by
Selberherr (1984). Table Al.1 lists the values used.

Scaling the variables also affects the semiconductor equations, producing the
following scaled equations.
(A1.38) A divgrady—(n-p-C)=0

where Al = —Yﬂgq—ec—
] 4]

This equation has been multiplied by _q_EC_
0
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Quantity Symbol Value
X,y Xo max |x|
'/ Yo max | |
n,p,C Co max | Nq(x)|
Dn,D, Do max | k_'(lll o |
Hn,fip Do / %o

R DoCq / x42
t Xo? / D,

Table Al.1 Values of scaling factors



(A1.39) Jn = pn n grad ¥ — Dy grad n
(A1.40) jp = pip p grad ¥ — D, grad p
where E=- grad 1 has been substituted

: - Xo
These equations have been multiplied by PR
(A1.41) div ( =Jn )—-R:%%:o
(A1.42) div(jl,)—n=glt’_=o

These equations have been multiplied by :0 2
D CD
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Discretization of these equations begins with the current equations.

Numerical instabilities result with the standard difference approximation when the

voltage difference between adjacent mesh points exceeds

. This is unnecessarily

restrictive, so an alternative method is used. Scharfetter and Gummel (1969)

showed that a more general stability could be achieved by using an integral form of

the current equations, as follows.

(A1.43)

Jnlihi = M (B(¥1,j— ¥ivn5 , Ue)miyj + B(%i,j — Wiansj , —Ur)Rienj]

1

(A1.44)
bp| i vhij

Iplivhi = —7— [B{#uj — dionj s ~Ud)Pirj + B(%ij — dieni U)Pienj]
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(A1.45) B(x,Uy) = X

where Uy = k_‘i‘ is the thermal voltage.

Before discussing the final discretized form of Poisson'’s equation and the
continuity equations, it is useful to discuss their solution. As a result of the
nonlinear form of the discretized continuity equations, a multistep process known as
Newton’s method is used. Using the formalization of Selberherr (1984), the
continuity equations for electrons and holes are represented by F; and F,
respectively and Poisson’s equation by F;. The complete nonlinear system is then,

n,pnl)E }
F2 nsprw

F:l n:pl’llb

(A1.46) F(n,p,¥) = [ P

A correction vector for the kth Newton step is defined as

dnk nk*t — nk
6 k| = kt1 _ pk
(A147) [ «sfbk] [ P - 5»*]

Newton's method at the kth step is defined as the solution of

(A1.48) g2 | | k| = - | F (akpk)

%3 Y R P
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This is solved iteratively utilizing, for the mth iteration;

(A1.49)
%o o [*fame]™  [Paxpkeny] [o 5§ %‘l “[ fa |
g 0| ok =-|F@e.w|-lo ol | o
bR LEY R Finp.99)) [0 0 o |y

Equation A1.49 represents three decoupled equations to be solved. The
discretized form of these equations can be obtained by applying the box method to
equations A1.38, Al.41 and Al.42 and using the discretized form of the current
cquations given by A1.43 and Al1.44. The reculting equations are linearized by
making the substitution represented by equation A1.47, using a Taylor expansion
and neglecting higher order terms. Thus the final form of the equations used in this

program are:

(A1.50)
/\2 (hi-l + h)) /\2 (kJ -1 + kj)
ij " wi:j -+ 2hi., wi-lnj

) hi-; + hy ki + kj ki1 + kj hi.; + hj
Bl rai i) ey vl Vi

A? (ki + kj) A? (hi.; + hj)
+ oh; Tf’)i'l:j + 2k] ¢i:jol
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(hi-s + hy) (ki + k)

- p) ] (ni:j —Piyj— Ci:j ) =0

(A1.51)

2 hi-1 + 0ni,j.
—ﬂ'nl ilj'* B(whj-l - wi:ja Ut) k]-l(k] o+ k]) ( Nij-1 + bhj-l )

3 T h])( Ni.q,j + 6ni-hj)

- unl i-*:j B(V’i-hj - wi’j’ Ut) hi-l (h

2
+ [—ﬂnli,j-i B(#1,j-1 = %15, —Uy) Ko (Ko + &)

2
= bl b B(¥ieui = ¥y ~Ue) i)

2
+ #Illi!‘i’)j B(wh] - wiﬂ.ljl Ut-) hi (hi-l + hi)

dR;,
2 is] 6 "‘ + I 6n’j
* b2t Bl = i U iy | (o o) + g O

2 ir + 6n't ']
+ gl iy B(¥1,j — $ianj, Ur) B (hie + 03 {nin,; iehj)

2 hije1 + 6“'.'0
+ #n|i,jo§ B(T,bi,j = Pijoiy Us) K (ki + &j) ( i i +l)

2 DNii*:j (6¢i0hj - &bl:]) 2 DNi-*:j (6¢i-11j "61pi|j)
B hi (R + hy) - hi (B + 1)

2 DNi,jub (8¢5, — %) 2 DNy,j 4 8Yij-0 - 69y)
B ki (kj.1 +kj) B ki (kjo+ kj)
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(A1.52)

2
- ﬂ'pl i) '* B(wi’j -1 '/’i,j, _Ul) kj-l (kj‘-l ¥ kj) (pi:j-l + 6pi|j-l)

2
= tiplihj B(%1-0j — 9,5, =Us) R (R F By (Pi-vi + EPienj)

2
+ [—upli.j-i B(%1)j-1 — ¥irj» Us) Ka (K1 T K

2
_'.upl i-*:j B('wi-hj - ¢i,j, UI‘.) hi-l (hi-l + }ﬁ)

2
= pp{ivhsj B(¥i5 — %inj, —Uv) B (R F )

OR,;

2
+ tipl it B(thij — %150, —Uy) G (5.1 F kﬂ] (Puj + Op1,j) + Tpi; P

2
+ ul)lit*!j B(‘wl:j - w'ﬂhj: UL) hi (hi-[ + h‘) (piﬁhj + 6Pi¢l:j)

2
+ .u-pl i;j& B(wi:j - ";bi,jth UL) kj (kj-l F kj) (piyj a+ 6pi:j*l)

2 DPivk,j (8% e1,j — B¢s,5) 2 DPi4,j (69501, - 8i,g)
i (hioy +hy) B b (B + 1)

2 DPijub (691,70 — 8¢,5) 2 DPi,j4 (890 -1 - 69iy5)
ki (kj-1 +Kkj) B ki (kj-1 +kj)

IR,

ény,j + Ri,j =0
an;,;
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(A1.53)
Bnlivhj _
DN, = hij [( 1 +((IZ— e)lcp)ze:)cg 7 )m'j
+ (1 =01+ 2) exp ( _Z))nimj]
{exp ( 277 -1T7)7
(Al.54)

I"’p' i**lj ] — 1 7 -7
DPinkj = —x; [( E ex; ( 2ZeJ)cp--(l )2))pi'j

1+ (Z-1 Z
+ (+1(_ = Z))f;dtp )Piu,j]

here 7 Yii - Pienj
wiere ——-—-—Ut—_—

srh au
R‘i:_] = Riyj + Ri'rj - Gi:]

srh
OR)j (pi,j— 7 Riyj ) _ \
= - = Cn (2n3,pi,j — ni?) - Cp pil;
Bni,j 7 ( Ni,j 4+ Pi,j + 2n;? )

(A1.56)

R, ( mij — TRYTY )

+ Cp ( 2n4,jpij — 0i2) + Cu nij
dps,j 7 ( ny,j + pi,j+ 2ni?)
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Numerical implementation of these equations requires care in the evaluation
of equation A1.45. To prevent a divide by zero error in evaluating this function
near zero, it is necessary {0 use a series expansion form of the expression in this

region. This problem as well as possible overflow are avoided using the following

implementation.
(AL.57)
=x (x/U)<—x,
=1—expx(x/U;) _x'<é§<_x2
B(x,Uy) = = Us x> %:

1+ ﬁ: + III!l %(R ]2 + %![%HJ3+---+ %‘B—J?

x x
“T=exp (x] U ) szUZSx'
=—xexp(—x/U) x1¢(x/Ue)

where the values of x; and x; depend on the computer and compiler used. The
number of terms in the series expansion is also dependent on the implementation.
These values were chosen to achieve a smooth transition between regions. In this
application, eight series terms were required to allow a large enough value of x, to
eliminate oscillations in the calculated value of the exponential for small x.

Solutions of the discretized equations A1.50 — A1.52 were found using two
methods. Equation A1.50 was solved using SLOR as described for the potential
routine. Equations Al1.51 and A1.52 were solved using an iterative pentadiagonal

matrix solving routine described by Stone (1968). Convergence was tested by



131

comparing the largest change of each of the three dependent variables for a complete

Newton iteration with their respective preset error values.

Al.3 Time Dependent Routing

The time dependent rcutine solves the basic semiconductor equations as they
are listed in equations Al.l through Al1.6. The major difference between this
routine and the steady state solving routine discussed above is the inclusion of the
time derivatives in the continuity equations. For this reason, only the
implementation of the time derivatives will be discussed here. For other
information, the reader is referred back to section A1.2 of this appendix.

Assuming scaled variables, the time derivatives are approximated using the

standard difference formula (using n for example).

on  Mhj = DY
where At is the interval between time steps

nj,j is the electron density at this time step

n;fj is the electron density at the previous time step

Estimation of the derivatives at the midpoint of the time step interval is achieved

using the method of Crank — Nicholson (see for example Kurata, 1982). ‘This can

be summarized as:
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Ng,j = ni?.i 1 . 1 .
(A1.59)  ———— =g [ div(=Jn) = R ]y, + 5 [ div (—Jn®) = RO Js);

where the superscript, 9, indicates values taken from the previous time step, and the
scaled form of the continuity equations are used.

Poisson’s equation, which has no time derivatives, is identical in both the
steady state and time dependent applications. As a result, the form of Poisson’s
equation used in the time dependent solving routine is the same as equation Al.49
used in the steady state solving routine. The form of the continuity equations
described in equation A1.59 is implemented in the same manner as the steady state

continuity equations, producing the following equations:

(AL.60) _ 2 pnluj-4 B(¥i,ge1 — %15, Ub) (Riyjr + &0ij-1)
ki1 (kjar + k)

2!-"41' i-4,j B('wi-laj - wisj :Ut)
- (ni-j + 6y, )
his (hia+ hy)

4 [ 2palni4 B(¥i,j-0— iy —Ud)  2unli-dhj B(%ia,j - i ~U0)

ki1 (kj-1 +kj) hi. (hio+ hi)

+ Maliohi B, - %iaj 5 U 2mlujd B(¥uj - dija , Uy
R (R + B * ki (Kj1+ Kj)

2 aRi:j
— B_t] (nj,j + fniy5) + o5, fnj,j

+ 2ﬂn|i¢*,j B("l’i,j —¢i+1.j ]

—Ut) ( Njapyj + 6ni0hj )
hi(hi.  + hy)
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3 2linid By - Yuja s U0 (0 dng)
kj (kjo1+ky)

2 DN|iukyj (65 01,5 — Oy5) 2 DN| 4,5 (61,5 — 6¢i,5)

hi (hi-y + hy) hiq (hia + hy)

2 DN| 508 (8%1,501 - 8%1,5) 2 DN|i,5-4 (05,5 -1~ O9uy5)

- kj (kj.1 + kj) kj-1 (kj .1+ kj)

dR.,;
- m“‘( Ri,j + Rifj )

— 24} 1,4 B(¥i, 51— ¥, U N0y — 2ufidy B(#i%,5- ¥i%5; U)

Kj1 (kj-1+ k;j) hio(hig + hy)

0, .
“1-51]

. [—Q#SIi,j-i B(9i%5 -1 - %%, =U)— 2el]i4,j B(#i%.,j -9 , —Uy)
kij-1 (kj-1+kj) B (hi-) + hy)

2uliodj B(¥i%; - %% » =Uy) 288|454 B(¥id5 - ¥iljn , =Ub)
+ hi(hi-; + hi) + kj (kj.1 +kj)

9,01, . 0. a0 . —
+ 2 ]ni?j + 2!1:1':“},13(11’1,1 T.bulu ) Ut) niel.j
t hi (hi-y + hy)
268 0j o BO¥S; = iju, —Ud po. g

kj (kj-1 + ki)
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(AL61)

2 pplij-d B(¥i,j-1 — g -Uf-)(

Pisj-1 + p1,j-1)
Kj -1 (kj. + Kkj)

2pp| 14,5 B(tie1, j — Yuj
hip (hj-g + hy)

—U) (Pi-nj + 0Pi-1,j)

+ [‘2ﬂpliu‘-i B(¥i,i-1— ¥, U 2pli-hj B(%ier,j - %y » UL
ki (kj -1+ Kj) - Dy (hy. +1h5)

2up]10dyi B(¥i,§ - Yienj,=Ut) 2p|y544 B(¥i,§ — P1jo1,=Uy)
hy (b~ +hy) * kj (kj-1+ k)

+ E (phj + 0py,j) + 'amfspnj

+ 2ﬂp|i'*:j B(whj "'wimj ) Ut)(

i Pisthj + 8Disnj )
h (hi—-1 + i)

+ 2Mpliged B(¥i,j - dija U ¢

Pisjst + 6Diyjor)
k; (kj -1 + kj)

— 2 DPI i**rj (le thj — 6¢1|j) 2 DP,i-*:j (6wi-hj - 61,[}1”)
ki (hi-y + hy) - hiy (hiy + )

2 DPliyjed (805,50 — 6¥sj) 2 DN|i,jb (6,51 - 6hi,;)
kj (kj-1 +kj) - ki1 (ki1 + k)

OR;,j
= 7mg; T (Rij + Rilj)
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2pp| 1,54 B(Pij-1- Pij , ~Ub)

Pijj-i
kj.1 {kj.1+k;)

_ 2pli-4j B(¥ih,5 - 919, U

piehj
hiq (hi.y+hy)

+ [-2ﬂ3|i,j-§ B3 -1 - 905 5 Ue) _ 288154 B(¥i2 0,5 - 913, Uy)
kj-1 (kj.1 + kj) by (hi.; +hy)

+20plivh B(#i%5 - %0 o U 2uBlug i B(¥9; - 1%, ~Uy)

Dy (Ri-1 + ) * ki kgt )
_3-] Pi% 4 2up]idj B(¥i3) —¥ity,i , Uy Pi1j
At hi (hi-y +hy)
+ 2681550 BOYS ) = %iju s U poi = g

ki (kj-1 + kj)

Equations A1.60 and Al.61 are functionally equivalent to equations Al.51
and A1.52, so the same solution routines can be used in both steady state and time
dependent routines. Stone’s (1968) iterative pentadiagonal matrix solving routine
was used in general for all three systems of equations in the time dependent routine.
The SLOR method was also used for Poisson’s equation in a few cases.

The principal quantity of interest from this routine is the total current at

each time step. This is obtained by integrating the total current density through

any surface which encloses one of the digits.
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(A1.62) §t(3n+3p+a E)y, a

where %f—E)- is the displacement current, and

{is a closed path which encloses one digit.

The displacement current term in equation A1.62 makes the total current
sensitive to small errors in the potential at any time step. These errors will tend to
average out over the grid, so their effect on the total current can be minimized by
calculating the total current for each vertical set of grid lines and using the average
value.

The sensitivity of the current to different parameters varies through the
device. This makes it difficult to choose general convergence criteria based on the
dependent variables. Instead, convergence was based on the largest change in total
current across the device per Newton iteration. When this change was less than a

prescribed limit, then that time step was assumed to have converged and the

program moved on to the next step.



APPENDIX 2: DEVICE FABRICATION

The materials used in device fabrication were semi — insulating GaAs, epi —~
layer GaAs, and silicon — on — sapphire wafers. These materials were described in
detail in chapter 2. The general fabrication techniques are the same for all three

materials and will be described below in step form with the details for each material

specified.

(1) The wafers were scribed and broken into pieces approximately 1.5 cm on a
side. These pieces were then used in the fabrication process.
(2) Each piece was organically cleaned by agitating in the following baths
—Deionized water (DIW)
—Methanol
—Acetone
~Trichloroethylene
—Acetone
—Methanol
—Rinse with flowing DIW.
(3) The SOS wafer were cleaned further using Hydrogen Peroxide based
cleaning solutions (Kern 1970).
~10 min. in 5:1:1 : H;O:NH;0H:H,0, (759C — 85°C)
—Rinse in DIW
—10 min. in 5:1:1 : H;O:HCLH,0, (75°C — 85¢C)
~Rinse in DIW
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(4)

(14)
(15)
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Surface oxide was removed from each of the three wafers using different
methods.
~Epi — layer GaAs : the oxide etch was replaced by the etch to
remove the top layer of n* GaAs.
1:100 : Br:CH;OH (4 min.)
This removed approximately 2 um of material.
—Semi — insulating GaAs :
6:1 : Buffered HF (2 min.)
(buffer solution was 40% by weight NH,F with water)
S0S:
6:1: H,O:HF (2 min.)
Rinse in DIW.
Blow dry with clean N,.
Load into an e-beam evaporator (base pressure = 10 torr).
Evaporate a layer of Gold onto the surface. The thickness of gold was not
routinely measured, but was always greater than 0.1 um.
Spin on positive photoresist.
Soft bake at 90°C for 30 minutes.
Expose to device mask.
Develop.
Etch the gold using
400 gm : 100 gm : 400 ml : KIL.Ix:H,0
diluted 1 part to 4 parts water.
Remove photoresist in Acetone.

Rinse in Methanol.
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(16) Rinse in H;0.
(17) Blow dry with clean N,
(18) Scribe and break into individual devices.
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