NON-LINEAR DYNAMIC EXTENSION OF CONSISTENT SHELL

ELEMENT AND ANALYSES OF LIQUID-FILLED CONICAL TANKS

by
ASHRAF EL DAMATTY, B.Sc., M.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University
Hamilton, Ontario, Canada

March 1995



TO MY DEAR WIFE

DINA



DOCTOR OF PHILOSOPHY (1992) McMASTER UNIVERSITY
(Civil Engineering) Hamilton, Ontario

TITLE : Non-Linear Dynamic Extension of Consistent Shell Element and Analyses
of Liquid-Filled Conical Tanks

AUTHOR  : Ashraf El Damatty, B.Sc. (CAIRO UNIVERSITY)
M.Sc.  (CAIRO UNIVERSITY)

SUPERVISORS : Dr. R.M.Korol and Dr.F.A.Mirza

NUMBER OF PAGES : Xxxiil, 248



ABSTRACT

Conical steel shells are fairly widely used as elevated water tanks. However, the
current code of practice in North America for the design of such reservoir structures
provides an obsolete method for ascertaining their adequacy to resist hydrostatic loadings.
Moreover, there are no provisions available for handling liquid-filled conical tanks
subjected to seismic forces. The lack of appropriate design methods could not have been
demonstrated more vividly when in December of 1990, an elevated conical water tower
failed by buckling when being filled for the first time. The steel vessel, located in
Fredericton, New Brunswick, is claimed to have "exploded" by eyewitnesses.

The work of this thesis, then, was motivated by this failure. It involves non-linear
stability analysis of liquid-filled conical steel vessels possessing geometric imperfections
and residual stresses, and which can be subjected to hydrostatic and seismic loading. To
achieve this, a finite element formulaticn is developed based on a consistent shell element
which is free from spurious shear modes known to exist in the isoparametric shell
elements. The consistent shell element employed also exhibits excellent performance in
the analysis of plates and shells in the small displacement range. This element is extended
to include both geometric and material non-linearities as well as non-linear dynamic
analysis. The non-linear finite element model developed is general and can be applied to
any thin or thick shell problem. Numerical testing of the non-linear model through static

and dynamic analysis of different plate and shell problems indicates the continued
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excellent performance of the consistent shell element in the non-linear range.

Hydrostatically loaded conical steel vessels are modelled using the consistent shell
element. Static stability analyses of conical shells with different geometric imperfection
patterns are undertaken and the results indicate that the presence of axisymmetric
imperfections leads to the lowest limit load for the structure. The sensitivity of the
hydrostatically loaded conical vessels to geometric imperfections and residual stresses is
investigated by considering three cases: (i) analysis of perfect vessels, (ii) same as case
(i) but with axisymmetric geometric imperfections of the order of the thickness of the
shell, (iii) same as case (ii) but with the addition of residual stresses due to welding. The
results from these analyses indicate that the liquid-filled conical shells are significantly
sensitive to geometric imperfections, and that yielding precedes elastic buckling for tanks
having practical dimensions.

The non-linear dynamic (stability) analysis of elevated liquid-filled conical vessels
subjected to both horizontal and vertical accelerations, but free from rocking motion, is
then considered. The boundary integral method is used to formulate the fluid added-mass
matrix resulting from the impulsive component of the hydrodynamic pressure. This is
added to the mass matrix of the shell structure to perform free vibration as well as non-
linear time history analyses for elevated liquid-filled conical tanks treated as either
perfect or axisymmetrically imperfect. Tanks with different dimensions and imperfection

levels are subjected to an appropriately scaled real input ground motion. Some of these



elevated structures exhibit inelastic behaviour and generally develop a localized buckle
near the bottom of the vessel which leads to the overall instability of the <iructure. In
general, time history analyses indicate that liquid-filled conical tanks, often possessing
apparently adequate safety factors under hydrostatic loading, may not be safe under
seismic loading. Therefore, a proper modelling procedure along with time dependent
analysis must be followed in order to design such tanks safely. The finite element model

developed in this thesis is a means provided for such a purpose.
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CHAPTER ONE

INTRODUCTION

1-1 Motivation of the Study
Conical steel tanks with cylindrical upper section caps are widely used as

containment vessels for elevated water tower structures. A typical cross section of an
elevated conical tank is shown in Figure 1.1 where the conical steel vessel is typically
welded to a steel circular plate at its bottom, with the latter anchored to a reinforced
concrete slab which in turn is supported by a reinforced concrete tower. The steel vessel
is normally constructed from cylindrical panels, butt welded together along
circumnferential and longitudinal edges.

In December 1990, a conical shape water tower built in Fredericton, New
Brunswick, Canada, failed when it was filled with water for the first time. As reported
by Korol (1991) and then by Dawe (1993), the failure of the tank was due to the
buckling of the wall of the steel vessel as a result of inadequate thickness for the shell.
Current standards of practice for water containment structures in North America are
generally based on the AWWA D-100 (1984) specification. Unfortunately, this code does
not provide a rational and up-to-date design methodology for these types of structures.
A consequence of this shortfall in appropriate guideline information may have played a

role in the demise of the failed structure. The designer of the Fredericton tank relied on
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a formula for the buckling strength of axially compressed and internally pressurized
closed conical vessels given in Roark and Young (1989), obviously for a different loading
type from the case of hydrostatically loaded shell. In addition, the design formula given
in Roark and Young (1989) assumes that the conical shell has a near perfect shape as
might be expected in the aerospace industry. It neither takes into account the geometric
imperfections of a large civil engineering type of structure, nor the residual stresses due
to welding. Clearly, there is also the issue of tolerance limits, which are usually more
restrictive in the aerospace engineering sector than in civil engineering construction due
to cost factors. As such, it seemed imperative that an extensive research investigation be
undertaken to study the stability of liquid-filled conical tanks which have both geometric
imperfections and residual stresses due to on site welding. Although the Fredericton tank
failed under static conditions, it was also decided to incorporate a seismic analysis of
elevated liquid-filled conical tanks to broaden the scope of the project. This is important
when attempting a rational design in 2 seismically active region.
1-2 Current Codes of Practice for Design of Liquid-Filled Conical Tanks

The current codes of practice for the design of water structures do not directly
specify the design rules for liquid-filled conical tanks. Some European codes, like the
Danish standards DNV (1982) and the German code DAST (1980), as well as the
industrial standards in North America based on the AWWA D-100 (1984) specifications
suggest the use of an equivalent cylinder when studying the stability of conical tanks
subject to hydrostatic pressure. According to these codes, the safety of liquid-filled

conical vessels against instability can be checked by calculating the compressive strength
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of an equivalent cylinder which is then compared to the maximum compressive stresses
induced in the liquid-filled conical shell. These design methods, although simple, are not
based on any rational experimental or analytical studies. Recently, the Turopean
recommendations related to shell buckling, published by the Convention for
Constructional Steel Work (1988), incorporated some design equations based on an
extensive experimental investigation of buckling of small scale conical shells filled with
liquids (Vandepitte et al.,1982). While the current codes of practice provide some
suggestions for the design of conical tanks against hydrostatic forces, there is no
proposed method for handling earthquake-type loads.

1-3 Literature Review

1-3-1 Shell Elements and metric Non-Linearities

It is decided to use the finite element method to study the stability of liquid-filled
conical tanks under static and seismic loads. Of course, this involves the choice of a
suitable finite element to model the shell structures. A survey of shell elements in the
literature shows that a considerable number of these have been developed since the late
sixties. Such shell finite elements can be categorized according to the basic concepts used
in the formulation; (i) shell elements based on membrane and bending actions, (i) the
degenerated shell elements derived from a three dimensional continuum, (iii) transitional
finite element, (iv) stress, mixed and hybrid elements. A complete survey of shell
elements is given by Gilewski and Radwanska (1991) and Mackerie (1993).

The degenerated shell elements obtained from a three dimensional continuum
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represent a simple and general approach to solve plate and shell problems. The simplicity
of this category of shell elements arises from the fact that it requires only C, continuity.
This simplicity has great merit when dealing with non-linear problems. The idea of the
degenerated shell element was first introduced by Ahmad et al. (1970) through the eight
and the nine node shell elements which are based on the Mindlin plate bending theory
(1951). These elements resulted in overly stiff solutions when used to model thin plates
and shells. Meanwhile, the predicted transverse shear stresses were found to be very
large for both thin and thick plates and shells with arbitrary magnitudes. This behaviour
is also referred to as the "locking phenomena”, and is actually due to the presence of
spurious transverse shear modes in the elements formulation. To overcome these
problems, a reduced integration technique was proposed by Zeinkiewicz et al. (1971)
which employs a lower order integration scheme to integrate the stiffness matrix. As
reported by Parish, (1979), the use of the reduced integration technique leads to the
presence of zero erergy modes different from the rigid body modes which the elements
have to produce. Different attempts have been made to suppress these zero energy modes
as given by Briassoulis (1988), Belytschko et al. (1989) and Vu-Quoc and Mora (1989).
None of these methods have been successful in their general applications, Furthermore,
these are usually complicated, hard to implement and their accuracy in the non-linear
range is highly doubtful.

A consistent subparametric triangular shell element has been recently formulated

by Koziey (1993). One of the main features of this shell element is that it is free from
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the spurious shear modes associated with the isoparametric shell elements. This has been

achieved by approximating displacements using the cubic interpolation functions, while
the rotations are approximated by the quadratic shape functions. The consistent element
consists of thirteen nodes, ten nodes of which are used to achieve a complete cubic
polynomial for the displacements, and six nodes are used to obtain a complete quadratic
polynomial for the rotations. The geometry of the shell is interpolated quadratically,
therefore, the element is subparametric. Another specific feature of this shell element is
that it includes special rotational degrees of freedom which lead to cubic vanation of the
displacements through the thickness of the shell. As such, the quadratic distribution of
the transverse shear stress can be accurately represented by the element and hence, the
shear correction factor x is not needed. In fact, these special rotational degrees of
freedom are important when modelling thick plates or shells where the shear deformation
is significant, The small displacement formulation of this element was presented by
Koziey (1993), where a convergence study was carried out showing the excellent
performance of the element. The behaviour of a number of plates and shells using the
consistent shell element was presented in the same study and compared to those available
in the literature proving its superior performance in the small displacement range. In the
present study, the task has been undertaken to extend the formulation of this element to
include geometric non-linearities as well as non-linear dynamic analysis. Once these are
included in the formuiation, together with an appropriate plasticity model for steel, the

non-linear stability analysis for conical steel tanks under static or seismic loading can be
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undertaken. It should be mentioned that the special rotational degrees of freedom which

provide a cubic variation of the displacement through the thickness might not be
important when studying the performance of thin conical vessels. However, the non-
linear formulation of the element is kept general and includes these degrees of freedom,
so that it can be applied for the non-linear static and dynamic analysis for both thin and
thick shells. A detailed description about the large displacement formulation and the non-
linear dynamic analysis using the finite element method in general can be found in Bathe
(1982).
1-3-2 Stability of Liquid-Filled Conical Tanks

Several studies concerning the stability of conical shells under different load
combinations have been reported in research conducted in the field of aerospace
engineering. However, none of these studies dealt with hydrostatically loaded conical
tanks. The first known attempt to estimate the buckling strength of a simply supported
cone under compressive force was conducted by Seide (1956). This analysis predicted
that the buckling load of the cone is the same as that of a cylinder having a thickness
equal to the projection of the cone thickness in 2 plane perpendicular to the longitudinal
axis of the cone. The elastic stability analysis of conical shells under combined internal
pressure and the axial compressive force was also investigated by Seide et al. (1965).
The increase in buckling strength due to the stabilizing effect of the internal pressure was
obtained analytically and then verified by a number of tests. It should be noted that the

formulae for buckling of internally pressurized conical tanks, which were used by the
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designer of the failed Fredericton tank, and were incorporated in Roark and Young

(1989), are based on the work of Seide et al. (1965).

The most relevant research investigation concerning the stability of hydrostatically
loaded conical tanks was conducted at Ghent University in Belgium, after the collapse
of a conical steel water tower. An extensive experimental study was carried out by
Vandepitte et al. (1982), in which hundreds of model cones were tested. The
imperfection shapes existing in the cones were determined before loading. The cones
were classified as "good" or "poor” according to their imperfection level. The model
cones were filled with water until they collapsed and the height of water at which each
model buckles was detected. A numerical study restricted to the elastic stability of the
perfect cones was also conducted in the same study using a large displacement finite
difference analysis. Based on a lower bound of the test results, design curves were
suggested for hydrostatically loaded cones having different imperfection levels. As was
mentioned by Vandepitte et al. (1982), the suggested design curves are applicable under
the assumption that the behaviour of the vessel is purely elastic. Also noteworthy is the
method of construction of the models tested by Vandepitte et al. (1982). This includes
only one longitudinal seam, which is quite different from the method of construction of
conical vessels in practice which includes longitudinal and circumferential welding of
cylindrical panels. As such, the imperfection patterns in the models reported by
Vandepitte et al. are different from those expected in practice,

A stability analysis of a liquid-filled conical vessei, clamped at its base, was
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carried out by Bornscheuer et al.(1983) using a degenerated shell element to model the

vessel. The investigation shows that the axisymmetric imperfections have a larger effect
in reducing the buckling strength of the structure than do the non-axisymmetric ones.
Their study also shows that by including an elasto-plastic material model, yielding
precedes the elastic buckling resulting in an inelastic limit load for the cone. As stated
by the author, additional studies are needed to generalize the above statements.
Recently, an investigation of the collapse of the Fredericton tank has been carried
out by Dawe et al. (1993), which involves an assessment of different components of the
structure. According to the National Building Code of Canada NBCC (1990) and the
Canadian Portland Cement Association CAN3-A23.3 (1985), the foundation, the
reinforced concrete supporting shaft and the floor slab have been found to be safe. The
thickness of the storage vessel has also been checked and evaluated according to the
different practical guidelines presented in Section 1-1-2. The predicted factors of safety
for the storage vessel have been found to be all less than unity. Therefore, it has been
concluded that the collapse was a buckling failure in the lower cone of the tank due to

inadequate thickness.

1-3-3 Geometric Imperfections and Residual Stresses due to Welding

Geometric imperfections have been identified as the main cause of the large
discrepancies between the experimental and the theoretical buckling or limit loads for
both cylindrical and conical shells subjected to either pure compression, or a combination

of compressive force and an internal pressure. It has been observed experimentally that
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the higher the internal pressure, the less sensitive is the shell to geometric imperfections.
Early work on imperfect cylindrical shells was done by Koitter (1963). This
study assumed an imperfection in the form of the axisymmetric first buckling mode of
the cylinder under pure compression. Subsequently, an asymptotic relation for buckling
loads of imperfect cylinders was derived. Localized imperfections were considered by
Hutchinson et al. (1971) and Amazigo and Budiansky (1972); their conclusion was that
a dimple-type profile superimposed onto the perfect shape would cause a lesser amount
of reduction in the buckling load of cylinders having an imperfection wave similar to the
first buckling mode extending over the entire length. Recently, attempts have been made
to obtain realistic patterns of imperfection in aerospace structures. As far as is known,
two initial imperfection data banks exist, one at Delft University of Technology prepared
by Arbocz and Abramovich (1979), and the other at the Technion in Haifa given by
Singer et al (1978). It should be noted here that such imperfection data are representative
of small shells and depend on the method of construction of these shells. Therefore, these
data banks are not applicable to liquid-filled conical tanks. In civil engineering
construction, silos and tanks are constructed from rolled steel plates which are joined
together by longitudinal and circumferential welding. Bornsheuer and Hafner (1983)
made some measurements to investigate the shape adjacent to a circumferential weld and
concluded that the weld joint depressions occurring in practice are of the order of one
wall thickness. Rotter and Tang (1989) modelied the axisymmetric weld depression by

two different shapes which represent the upper and lower bounds for the expected
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depression. However, their model has not been verified through field measurements.

Conical steel vessels are usually constructed from steel cylindrical panels welded
together using circumferential and longitudinal welds. Residual stresses are expected as
a result of the welding process. These stresses develop due to the cooling of the
weldments and heat affected zones of the parent material. During this cooling, the welds
tend to shrink while the material remote from the weldments remains cool and prevents
shrinkage. This process introduces tensile stresses in the vicinity of the weld zone and
compressive stresses away from the weld. Based on some experimental results, the
residual stress distribution around a weldment in a cylindrical shell was idealized by
Bornscheuer and Hafner (1983) using three different mathematical models. With some
modifications, one of these models is used in the present study to represent the expected
residual stresses arising from welded conical shells. Furthermore, the lack of geometric
imperfection data for large civil engineering steel shell structures necessitated selecting
a suitable model without reasonable undue complexity. As such, it has been decided to
take Koitter’s approach in this study, and to assume imperfection shapes having the same
wave length as that of the first buckling mode of the perfect shell. This assumption is
expected to r;asult in a conservative estimate of the actual buckling or limit load for the
structure.
1-3-4 Seismic Analysis of Liquid-Filled Conical Tanks

A large number of studies concerning the seismic analysis and design of liquid-

filled cylindrical tanks can be found in the litcrature. The performance of cylindrical
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tanks during actual earthquakes was recorded in a number of investigations, e.g. Niwa
and Clough (1982), Manos and Clough (1985) and Manos et al. (1989). One of the
common forms of damage found to occur in cylindrical tanks after a seismic event is
buckling of the walls of such cylindrical shells near their bases. This phenomenon was
described as "elephant foot buckling" because the buckling was found to be localized in
a shape having such an appearance. This localized instability is mainly due to the
overturning moment which is exerted by the hydrodynamic pressure resulting from the
horizontal component of an earthquake motion. Early analytical work concerning the
evaluation of the hydrodynamic pressure developed inside such tanks was conducted by
Housner (1955). In this study, the hydrodynamic pressure was divided into two
components; the impulsive component resulting from the movement of the walls of the
tank, and the convective component due to the surface wave developing at the top of the
tank. Assuming that its walls are rigid, a mechanical model representing both components
of the fluid’s hydrodynamic pressure was developed for different shapes of the container.
Based on Housner’s model, the typical procedure for designing cylindrical tanks has
usually been to first estimate the maximum overturning moment induced by the
components of the model due to a horizontal ground acceleration. The axial stresses due
to this overturning effect are then calculated and compared to the classical buckling
strength of the cylinder divided by an appropriate factor of safety.

Now, it has been recognized that the flexibility of the walls of such tanks has an

important effect on the impulsive component of the hydrodynamic pressure. As such, a
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large number of numerical and analytical studies have focused on the interaction between
flexible walls and the contained fluid. An analytical approach of including the fluid-
structure interaction for flexible tanks based on the assumption of a prescribed mode of
deformation of the tank wall was developed by Velestos (1974). Balendra et al. ( 1982)
interpolated both the displacement of the sﬁell structure and the dynamic pressure using
the finite element method. The coupled system was then solved to obtain some design
charts which can be used to estimate the base shear, the overturning moment and the
required free board for cylindrical tanks subjected to horizontal acceleration and which
are free from rocking. The displacement finite element method to model both the
structure and the fluid was used by Barton and Parker (1987). The latter was treated as
a solid having a very small shear resistance. Since the early eighties, a considerable
number of studies have been conducted by Haroun and his co-authors to study the
response of flexible cylinders under seismic loading. These investigations led to a
significant improvement in the design of flexible cylindrical tanks. Tanks subjected to
horizontal acceleration and free from rocking motion were considered by Haroun (1980).
In this study, the cylindrical shell was modelled using the axisymmetric shell element
with harmonic oscillations. Meanwhile, the boundary integral method was used to derive
the fluid added-mass resulting from the hydrodynamic pressure. The natural frequencies
and the mode shapes resulting from a cos #-type vibration, i.e. vibration in which the
cylinder remains circular, were obtained for the liquid-shell system. The influence of the

cos nf-modes of the dynamic pressure which can be excited in a tank having
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circumferential imperfections was also investigated. In the same study, Haroun also
considered the effect of sloshing on shell vibration. One of the conclusions in Haroun’s
study (1980) involves the decoupling between the shell vibrations and the sloshing modes
as a valid assumption when studying the behaviour of the shell. A vibration test of a full
scale liquid-filled cylinder showed good agreement between the natural frequencies of the
liquid-shell system and those obtained from Haroun’s numerical study. Also, in that
investigation, Haroun studied the dynamic buckling of a scaled model vibrating on a
shake table. The dynamic test showed that the stability of the tank depends mainly on the
cosf component of the fluid pressure. Shortly afterwards, Haroun and Housner (1981)
suggested a mechanical model simulating the hydrodynamic pressure developing inside
a flexible cylindrical tanks subjected to a horizontal excitation without rocking. The
formulation was based on the boundary integral method and the fundamental mode shape
of vibration of cylindrical tanks. This mechanical model was extended by Haroun and
Ellaithy (1985a) to account for the rocking motion at the base. The extended model was
then used by Haroun and Ellaithy (1985b) to study the response of elevated cylindrical
tanks. Two examples were considered in their study; a small capacity tank resting on a
cross braced frame and a larger tank supported by a pedestal tower. The periods of the
structures, the maximum displacements, the base shears and the overturning moments
were all calculated using both the response spectrum and the time history analyses. The
effect of different parameters, tank flexibility, sloshing modes, and the rotation of the

base of the vessel were all investigated in this study. Results of the analyses show that
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the flexibility of the tank is important for large capacity cylindrical tanks. Analyses also

indicate that the rotation has an important effect on the behaviour of the pedestal type
supported tanks.

The effect of the vertical ground acceleration on the behaviour of liquid-filled
cylinders was also investigated about the same time by Haroun and Tayel (1985 a-b-c).
In the first two studies, the natural frequencies and the corresponding mode shapes due
to the axisymmetric vibrations, caused by this type of ground motion, were considered
both through a closed form analytical solution and numerically, followed by complete
response (Haroun and Tayel, 1985c). In this latter investigation, it was concluded that
the axial stresses induced by the vertical acceleration component can be neglected
compared to those resulting from the horizontal acceleration. However, they also
mentioned that the increase of hoop stresses due to the vertical acceleration would be
important when accounting for material non-linearity. It should be pointed out here that
all of the above described investigations concerning liquid-filled cylindrical tanks were
limited to the linear elastic range of behaviour.

The dynamic instability of liquid-filled cylindrical tanks under horizontal, vertical
and rocking motion was studied by Liu and Uras (1989 a-b). The fluid structure
interaction was taken care of using the concept of added-mass, and the structure was
modelled using ring finite elements with harmonic oscillations. An eigen value analysis
limited to small deformation elastic response was carried out to determine the critical

mode shapes resulting from different types of excitations. Their analyses show that the
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horizontal component of the ground acceleration is responsible for the dynamic buckling
of the structure. Zhou et al. (1992) used the non-—linea: shell theory to predict the
elephant foot buckling of liquid storage cylindrical tanks under horizontal excitation. The
boundary solution technique was employed in the fluid region, while ring finite elements
with fourier oscillations were used to discretize the structure. In their study, the effect
of the cos(nf) modes of the shell vibration on the elastic stability of the liguid-filled
cylindrical vessels was investigated.

To the best of the author’s knowledge, no attempts have been made to study the
seismic response of liquid-filled conical tanks. As would be the case for cylindrical tanks,
the horizontal ground accelerations are expected to cause significant overturning moment
at the base of the vessel. This overturning moment will have an amplified effect on the
stability of conical vessels due to the small radius at the bottom part of the cone. Also,
due to the inclination of the walls of the cone, vertical accelerations are expected to
induce both axial and hoop stresses in the shell. As such, the vertical component of the
ground acceleration may have an important effect on the tank stability, and hence needs
to be considered in any seismic analysis.

It should be noted that previous studies have shown that the stresses at the base
of cylindrical tanks resulting from seismic motion are usually less than the yield stress
of the steel. As such, it seems reasonable to consider only the linear response of such
structures in seismic analysis. However, for the case of liquid-filled conical steel tanks,

the axial stresses due to hydrostatic pressure, when added to those resulting from
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seismic excitation, may indeed lead to yielding of steel. This yielding, together with a -

localized large deformation near the base, may cause premature local buckling near the

bottom of the tank, followed by an overall instability of the structure. It seems prudent,

therefore, to include geometric and material non-linearities when performing seismic

analysis on liquid-filled conical tanks.

1-4 Objective and Scope

The objectives of the present study, then, are as follows :

Extend the formulation of the consistent shell element to include geometric non-
linearities as well as non-linear dynamic analysis to solve thin and thick shell
problems in general. |

Use the consistent shell element to model hydrostatically loaded conical tanks and
study the state of instability of such structures including the influence of
geometric and material non-lineanities, the geometric imperfections and the
residual stresses due to welding

Employ the non-linear formulation of the consistent shell element together with
the boundary integral technique to investigate the stability of liquid-filled conical
tanks, as a part of elevated water tower structures, under the effects of both the
horizontal and the vertical components of a seismic motion.

In Chapter Two, the formulation of the consistent shell element is extended to

geometric non-linearities. A strain hardening plasticity model, capable of simulating the

loading and unloading behaviour is also included. The formulation is general and can be
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applied to any thin or thick plate or shell problems. Several examgles are presented and

comparisons are made with the available numerical and experimental results in the
literature to evaluate the performance of the element in the non-linear range.

In Chapter Three, liquid-filled conical steel vessels are modelled using the
consistent shell element. Two categosies of tanks are considered. These are specified as
tall or broad tanks according to the ratio of height to bottom radius of the conical vessel.
Elastic stability analyses are first performed on perfect shells and the results are
compared to the numerical results available in the literature. Tanks with different
imperfection patterns are then elastically analyzed to determine the imperfection shape
which leads to the lowest limit load. Then, material non-linearities are included in the
analysis. Here, the effect of both hoop and meridional residual stresses on the inelastic
stability of liquid-filled conical shells are studied. Following that, the sensitivity of the
liquid-filled conical shells to geometric imperfections and residual stresses are
investigated by performing inelastic analyses for: 1) perfect tanks, 2) tanks having only
geometric imperfections, and 3) tanks with both geometric imperfections and residual
stresses due to welding. Finally, the tank that failed in Fredericton, Canada, is analyzed
and the results are compared with those obtained from design checks employing different
codes and with other independent investigations.

In Chapter Four, the formulation of the consistent shell element is extended to
non-linear dynamic analysis. The mass matrix and the linear stiffness matrix of the

consistent shell element are incorporated into an eigen value analysis to solve for the
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natural frequencies and mode shapes of shells. The non-linear dynamic and the free

vibration analysis models are verified using the analysis of different plate and shell
problems. The boundary integral technique is then used to obtain the fluid added-mass
due to the impulsive components resulting from both the lateral and vertical excitations
acting on a liquid-filled conical vessel which is prevented from rocking at its base. The
fluid added-mass is added to the mass matrix of the structure to perform free vibration
and non-linear dynamic analyses of the liquid-shell system. In this context, the added-
mass formulation is verified by performing free vibration analyses on liquid-filled
cylindrical tanks.

Finally, a number of conical tanks, supported on rigid frames, are considered.
Both free vibration and non-linear time history analyses are performed on these elevated
tanks using the horizontal and the vertical accelerations of a real earthquake chosen to

have frequency content matching the fundamental frequencies of the tanks to be analyzed.
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CHAPTER TWO

NON-LINEAR FORMULATION OF CONSISTENT SHELL ELEMENT

2-1 Introduction

The excellent performance of the consistent shell element for small deformations
has encouraged the author to use the element in modelling of conical shells in order to
study their stability. The consistent subparametric triangular shell element was formulated
by Koziey (1993). The element employs cubic polynomials for approximations of
displacements and quadratic polynomials for approximations of rotations. This ensures
a consistent formulation and eliminates the spurious transverse shear modes and the shear
locking phenomenon found to exist in both eight node and nine node isoparametric shell
elements when used to model thin plaies and shells. Thus, the consistent shell element
does not require the use of the reduced integration technique as used in the isoparametric
shell elements. The consistent element employs two types of variations in rotations. The
first is constant through the thickness and the second varies quadratically. The latter gives
a parabolic distribution of the transverse shear strains through the depth of the element
and, as such, the shear factor x which is usually required to correct the assumption of
constant shear strain across the depth, is not needed in the consistent shell element

formulation.

20
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The buckling of liquid filled conical shells is expected to be associated with large

displacements and large rotations. This behaviour necessitated an extension of the
consistent shell element to include geometric non-linearities. The total Lagrangian
approach is first applied to a three dimensional finite element formulation to obtain
expressions for the non-linear stiffness matrix and the unbalanced load vector. These are
then used in the large deformation formulation of the consistent shell element degenerated
from a solid element. The material non-linearities are also included through isotropic
strain hardening, the Von Mises yield criterion and an associated flow rule. The
incremental load method is employed for the non linear analysis and uses the Newton-
Raphson method for iterations within each load increment. The extended formulation is
verified through use of various examples. These include the large deformation analysis
of a simply supported square plate, a cylindrical panel and a shallow arch. The results
obtained from the analyses are then compared with those available in the literature and
show excellent agreement, thus confirming a superior performance. Finally, the non-
linear formulation of the consistent shell element is verified using experimental results.
This is done by modelling W-shaped cantilever steel beams using the consistent shell
element and performing inelastic stability analysis for such beams. The limit loads
obtained from these analyses are then compared with those resulting from an
experimental investigation carried out by Daali and Korol (1954).
2 Element ipti
2-2- ina nd met

The coordinate systems employed in the formulation of the consistent shell
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element as used by Koziey (1993) are shown in Figure 2.1. These are defined in the

following manrer:

1. x, y and z are the global cartesian coordinates.

2. T, s and t are the curvilinear coordinates, where r and s are tangent to the
surface at t=constant while t may be so disturbed to waive the
requirement of normality to the r-s tangent plane.

3. x°, ¥y and z” are the local cartesian coordinates used to define local
strains and stresses, with z° always normal to the surface at t=constant
and x” and y* tangent to the surface.

A curvilinear transformation in terms of the parent r and s coordinates and a
linear transformation in terms of the t coordinate are employed for geometric distortion.
The following interpolation can then be used to determine the location of any point within
the element in terms of the coordinates of the nodal points (x,, y, and z,) and the vector

V,, at each node:

n

=N, a +EN,,3‘—‘V3,, (2.1)
Z

Zn

where the interpolation functions N, are quadratic and are presented in Appendix A. The
thickness vector V,, is obtained via the top and bottom global coordinates of the nodal

points as:
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n n
Vin=Va - n . (2.2)
Za) rop Zn) porrom
2-2-2 Displacement Field

In non-linear analysis, solutions are normally carried out incrementally using a
time step AT, where the time T for static analysis is only a convenient variable which
represents different intensities of the load applications and correspondingly different
configurations. Iterations within each load increment are performed until an equilibrium
state is achieved. The displacement u™ ® at the k™ iteration of the configuration T is
related to the displacement u™ ® at the previous iteration of the same configuration in

the following manner:

uf B oy T e gy (0 (2.3)
In the non-linear formulation of the consistent shell element, the incremental
displacement Avu; is expressed using the incremental global displacement degrees of
freedom AU,, AV, and AW, directed along axes x, y and z, respectively, together with
four incremental rotations Aca,, AS,, A¢,, and Ay, about the local axes. Rotations A
and A¢ are about the local y~ axis and rotations A8 and Ay are about the local x * axis.
The consistency of the formulation is achieved by interpolating the displacements using
cubic polynomials and the rotations using quadratic polynomials. To obtain cubic

approximations for AU, AV and AW, the incremental displacement degrees of freedom

at the comer, one third side nodes and the center node are used. Quadratic
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approximations for Aa, A, A¢ and Ay are achieved using the incremental rotational
degrees of freedom at the corner and mid-side nodes as shown in Figure 2.1. The
number of degrees of freedom are not the same for all nodes. The total number of
degrees of freedom per element is fifty four. However, the formulation of the consistent
shell element is performed by assuming that each node has all seven degrees of freedom,
and that the interpolation function which corresponds to a non-active degree of freedom
1s equal to zero. It should be noted that the rotations A« and AS are constant through the
depth of the element while rotations A¢ and Ay vary quadratically. Therefore, A and
Af lead to a linear variation of Au, Av and Aw, while A¢$ and Ay provide a cubic
variation of Au, Av and Aw across the thickness.

The incremental global displacements (Au, Av, Aw) can now be written in terms

of the nodal incremental degrees of freedom as

U 13 Ua| 1, €, & Ad,
W n=l Wn n=1 Bn n=1 lpﬂ

where N and N are the quadratic and cubic shape functions, respectively. These are
presented in Appendix A. The matrix [V.] is given by vy, and v,, as [V ]={[Via,-V2l
where the unit vectors v,, and v,, are directed along the x * and y ” axes, respectively and
are orthogonal to the unit vector v,, at the n® node.

The procedure for construction of the orthogonal basis (v, Va,, Vi) due to Koziey
(1993), appears in Appendix C. The shape functions M,, and M,, are used for

approximating displacements through the depth due to both the constant and the quadratic
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rotations, respectively, and are of the following form:

h. t h_ t{1-t?)
Map=—+ Mpp=———— (2.5)

where h, is the thickness of the shell at the node n.

The details of the through thickness displacement approximation due to quadratic
rotations A¢ and Ay, as derived by Koziey (1993), are presented in Appendix B. It has
to be noted that the consistent shell element is a subparametric element because of the
cubic displacement field and quadratic geometry transformation.

The transformation matrix for relative direction cosines between the local and the
global axes at the point where a displacement is to be transformed is also needed. This
matrix {#] can be established using the Jacobian matrix as given below

111 112 113

(0] =[1y; I, Iy, (2.6)

131 132 133

The derivative of [6], by Koziey (1993), is presented in Appendix C. Using this
matrix and the global incremental displacements in Equation 2.4, the local incremental

displacements can be written in terms of the nodal incremental degrees of freedom as

loas Un 13 o, 22 Ad,
Av/i=Y" N, [0){AV+Y N, M, [C,] A +3 N, M, 1C) A (2.7)
Wl a7 w i ol Bo] & ¥a

n

where [C,] takes the following form
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(c,] =181 [V,)

or

it c?| | (1, 13+42,,23+2,,1,3) (-1,,10~1,,13-1,,1,3)
[Ca) ={Ca" CR%|e (Laa2ai+15p 13+ 1y 13) (=Ipn1ai=1pp1a3-15133) | (2-8)
Cht Co7| | (232 2i3+ 235 a2+ 15313) (=110 -15, 15514, 153)

Note that for large displacement problems, the components of the matrix [6]
change with the displacement history. Therefore, the components of matrix [C,] will also
change due to incremental loading. For a detailed description of the consistent shell
element and its small displacement formulation, the reader is referred to Koziey (1993).
2-3 Stress and Strain Tensors

In large displacement analysis, the current configuration of the structure is
different from its initial configuration. As such, it is not possible to use the Cauchy stress
tensor and the corresponding engineering strain tensor. A suitable stress measure for

total Lagrangian formulation is the second Piola-Kirchhoff stress tensor S; which is

related to the Cauchy stress tensor 7., by the following relation (Bathe, 1982)

_Po 9%, 0%, 2.9
515 p, 0%, aanM' (2.9)

In the equation above, p, and p, represent the mass densities at the initial and current
configurations, respectively; X and x are the coordinates in the initial and current

configurations, respectively. The second Piola-Kirchhoff tensor can be physically defined

as the internal force per undeformed unit area directed along the current axes.
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The corresponding strain tensor is the Green-Lagrangian strain tensor which is
defined as follows:

du; du; du, du,

= =k 2.10
€11 X, *ox, 9%, ox, ( )

where u; is the displacement vector in the initial configuration.

It was proven by Bathe (1982) that the second Piola-Kirchhoff stress tensor is the
energy conjugate of the Green-Lagrangian strain tensor because of the following internal
virtual work equality, i.e.

fsija(eij) dv=[t, 6 (e ) dV (2.11)
v, v

where V, and V are the volumes of the structure in the initial and the current
configuration, respectively; e_, is the engineering strain tensor while & denotes the virtual
quantities. The virtual work on the left hand side of Equation 2.11 is in fact the basis of
the total Lagrangian formulation. The difficulty with the right hand side lies in the
determination of the current volume V for the domain integration.

It was also proven by Bathe (1982) that both the second Piola-Kirchhoff stress
tensor and the Green-Lagrangian strain tensor are invariant under rigid body motion.
This implies, as stated by Bathe, that "any material description which has been developed
for infinitesimal displacement analysis using engineering stress and strain measures can
directly be employed in large displacement and large rotation but small strain analysis,
provided that the second Piola Kirchhoff stress and the Green-Lagrangian strain are

used”. More details-about the stress and strain measures in non-linear analysis can be
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found in Bathe (1982) and Crisfield (1991).

2-4 Total Lagrangian Non-Linear Formulation

The non-linear formulation of the consistent shell element is based on the total
Lagrangian approach. A detailed description of the total Lagrangian in the finite element
context is presented by Bathe (1982). The formulation is based on incremental loading
and an iterative technique employed until equilibrium is reached within each load
increment. The equilibrium solution at a prescribed time (T-AT) as well as the kinematic
variables corresponding to the (k-1)* iteration at time T are assumed to be known. The
solution then proceeds to the next iteration (k¥*) of the same time T. The following steps
are applied in order to obtain a piecewise linearized equation of motion corresponding
to the k™ iteration of the time T.
(a) Equation of Motion;

According to the virtual work principle, the virtual work form of the equation of

motion can be written as:
[ 558 €%y av=w* (2.12)
VO

where S; and ¢; as described in Section 2.3 are the second Piola-Kirchhoff stress tensor
and the Green-Lagrangian strain tensor, respectively and W is the virtual work done by
the external forces. Note that the superscript T corresponds to the value of the variable
for the equilibrium solution at the time T.

{b) Incremental Stresses and Strains

As the stress tensor S; and the strain tensor ¢, refer to the original configuration,
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incremental versions of both tensors can be applied as follows:

where AS; is the incremental second Piola Kirchhoff stress tensor; Ae; and An; are the
linear and non-linear parts of the incremental Green-Lagrangian strain tensor,

respectively, and are given by the following:

Aeij=% (Au; j+Auy g+ug F M Au, +ug 5V Au ) (2.15)

). (2.16)

The superscripts T (k-1) and T (k) used with the variables above denote evaiuated
magnitudes at the (k-1)® and the k™ iteration at time T, respectively.

C) Linearized Equations of Mgtion
In order to linearize the equations of motion, the non linearities in Equation 2.14

are assumed negligible for the virtual strain increment to give
84 (ey;) =8 (Aeyy) . (2.17)

Also the incremental stresses are assumed to be related to the incremental strains by the

following incremental constitutive equation

ASij=CijrsA €re (2.18)
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where C;, is a fourth order material tensor.

Substitution of Equations 2.13, 2.14, 2.17 and 2.18 into Equation 2. 12 yields the

following linearized virtual work form of the equations of motion

[Ciseeeta™ 8 (Aeyy) dv+ [s5 %8 (An ;) dv=wT-[s;* V8 (Ae,,) av.
Vo Vo Vo

(2.19)

Assume the following general finite element discretization:

Au;=¢ AU/ (2.20)
where Au; is the incremental displacement in the i® direction; AU®, is the incremental
degree of freedom of the node n in the i* direction and y, is the interpolation function
for the node n.

After substituting 2.20, 2.15 and 2.16 into Equation 2.19, the linearized equation

of motion (Equation 2.19) can be written as

_[.C'ijml.l.t‘.hi (6jq+ug,}k'” Yy, . (63t+u§:;k"1)) AUf b (AUZ)dv +
)y [85¥n, 5 Vs s AUSS (AUD) @V -
W~ [sh %y, [ajq::z;jj“"”] & (AU dv.
" (2.21)
Realizing arbitrary 6(AU"), Equation 2.21 then leads to the following equations of

motion in the matrix form:
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[Kf (k-1) +K§ uc-n] {AA=(RT}-{FT tk-1}) {(2.22)

where [K,] is the sum of the linear and the initial strain stiffness matrices; [Ks] is the
initial stress stiffness matrix; {F} is the unbalanced load vector; and {AU} is the load
vector which includes the incremental degrees of freedom. The [K.], [K] and {F}
matrices and the other associated matrices are evaluated in the following manner.

[kf ¥ V1= 1B V)™= p] [B] ¥V ]dv (2.23)
v,

o

[Kg(k-l)]=I[Bs]m[sf(k-1)] (B, dV (2.24)
v

o

(FT (k-l)}=f [BI (k1) ] TRANS (g7 (k-1)}qy (2.25)
14

-]
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2.27)

0

0

T(k-1)
Sta

o
0
Tik-1
523‘ )
0

0
T(k-1}
Si3 3

(2.28)

2.29)

where N in Equations 2.26 and 2.27 is the number of nodes per element.
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Matrix {D] is a general three dimensional constitutive matrix which relates the

incremental strain vector {Ae} to the incremental stress vector {AS}

{As}=[Dl{Ae). {(2.30)

Meanwhile, the incremental stress and strain vectors are of the following form:

{As}™%={As), AS,, AS,; AS,; AS,, AS,,} (2.31)

(Ae)=[BF *1{agh. (2.32)

2-5 Degeneration to the Consistent Shell Element

2-5-1 Expressions for [D], [S]), {S} and {AS} Matrices

The formulation of the consistent shell element is referred to the local axes x°,
y“ and z°. According to the usual assumption used in shell theory, the stress component
normal to the surface can be neglected and hence AS,.,.=0. The corresponding elasticity

matrix [D ] for a linear elastic material is of the following form:

1 v O 0] 0
1 0 0 0
_1_'.2'_‘1 0 0
[p]=—= : (2.33)
1-v Symmetry 1;’ 0
1l-v
| 2

Here, E and » are the elastic modulus and Poisson’s ratio, respectively. It should
be noted that the shear correction factor x is not required in [D°] because of the

parabolic approximation of the transverse shear strains through the thickness.



35

Ezxpressions for the matrix [ST*"] and the stress vectors {ST*P} and {AS} for
the consistent shell element formulaiion are given in Appendix D1 and can in fact be
used for any other shell finite element.

2-52 ions for and

Because the effect of the strain component normal to the surface of the shell has
been incorporated into the constitutive equation through imposition of zero stress normal
to the surface, the calculation of this normal strain is not required and hence is ignored.
Therefore, the matrix [B,] has five rows instead of six.

In order to obtain expressions for both the [B,] and [Bs] matrices, the derivatives
of the incremental local displacements with respect to the local axes are required. Using
Equation 2.7, the derivatives of the incremental local displacements with respect to the

parent coordinates (r, s, t) can be obtained by the following:

(AU
Ava
Au’y | . AW,
Au'; (=Y [a,){Aay} (2.34)
Au’; , i AB,
Ad,
A,
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where

ry T AT i i 1 1
lian,.r lian,.r luNn,.r Cn:Nn.rMm —cnzNu.er Cnan.xﬂzn -C.nan.rMZn

’T T v 1 1 $
[AII] lilND.J J'J.ZND.S 113Nﬂ.8 CHINE.SMI.D —cﬂan. sM:ln C;INH.‘MZQ _anND. I“MZJI
0 0 0 CPNaM,, -CH3NdM, CHNdM,, -CPNdM,,

2.35)
u=u",u%=v ", u’;= w” and the functions dM,, and dM,, are the derivatives of the
through thickness interpolation functions M, and M,, with respect to the coordinate t.

The partial derivatives with respect to local X, y“, z” coordinates can be written

in terms of derivatives in the curvilinear coordinate system using:

(3)[ar as atlfs (3

ax'| | ax’ a&x’' o&x'||or qr

o _ or ds dt __a_ _ M -1 _a_ (2.36)
iaylr_ ay’ ay’ ayﬂasb_[J] <as}

3 dr 9s dt|| 8 9
|9z’) | 8z’ a9z/ az'|\ ot | at]

where the Jacobian matrix [J “] relates the derivatives in the curvilinear coordinate system

to the derivatives in the local coordinate system and is given by:

ax’ oy’ oz’
or o©or or

n_| ox! 8y’ oz’ (2.37)
W=3s 3 =)
ax’ ay! az'
|3t "ot ot

The components of [J ‘] are determined using Equation 2.1, the matrix of direction

cosines [0] and the chain rules as:
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fa'y_oxda'y ayodaly azdaly ; 0% 11,201, 22
dr 9r dx or ay Y3r 3z 41gr tiagr 43y
oa’, _Ox da’, ay da’ .90z da’; -7, 9x +] oy el oz
ds Os ax ay T 9s 0z < 113g ‘1235 4335
da’y ox0a'y aydal; 8zdali ; ox +1..97 0z (2.38)

or ot ox '8t gy at az Ligg i2gg Hugg

where 2a";= x°, a’,= y” and a“y;= z’. Since the components of the inverse of the
Jacobian matrix wilt be used in a later derivation, the components of this inverted

Jacobian matrix are taken as I, i.e.

Ji1 Iz I
T AR AN Thl {2.39)
Ji Jxz Jay
From Equations 2.34 and 2.37, the derivatives of the local incremental

displacements with respect to the local coordinate system can be obtained from the

following equations:

(AU )

n

AV

n

/
AU i,x’ 13 AWn

Au'y =¥ (a7 1{Aa,} (2.40)
Au’i‘zl i Apn
A,
A

where [A°,] and its components are given by the following:
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Iiohyy 15h,, 1hy, C'H -Ci°H, cie) -c¥G;
[Aln]=li1hn.z 12,2 1358, C'zle;f “C';sz,",’ C;,“G,f —C'.-sz; (2.41)
loghn,y 1goh, 5 15k, 5 C2'Hy ~CaHy Ci'G; -C,sz:J

By, 12011 Np, ;+Ji2 Ny s (2.42)
Ha= (I3, Ny,  *+Jiz Ny, o) My, +d5s N, dMy, (2.43)
G;,i= (Ji‘I Nﬂv1'+J;2Nn.s) Mzn+J:i.3 Nn dMZn' {2.44)

Using matrix [A “] above and the general three dimensional expression for the
matrices ¢{B;] and [Bg] in Equations 2.26 and 2.27, the corresponding [B.] and [Bs]
matrices for the consistent shell element are obtained. This is achieved by replacing , ;
in Equations 2.26 and 2.27 with a corresponding row from [A °,] according to the

following table:



39

Column Position of y,; in Equations 2.26 and 2.27 ﬂ

First Column

Second Column

Third Column

Vot First row of [A°,] | First row of [A"] | First row of [A".]
with i=1 with i=2 with i=3
Voo Second row of Second row of Second row of
[A°] withi=1 [A°.] with i=2 [A ] withi=3
Va3 Third row of [A"] | Third row of [A "] Third row of
with i=1 . with i=2 [A°] with i=3

After the above mentioned substitutions and multiplications with the bracketed

factors for the initial strain terms, e.g. (1 + u' ®P,)), the corresponding columns

according to the same degree of freedom are added (i.e. 1 and 8, 2 and 9, 3 and 10, etc.)

to obtain a matrix resuiiag in seven columns for Equations 2.26 and 2.27. The above

operation leads to a five by seven matrix for a single node. After repeating the procedure

for all thirteen nodes, the final size of the [B,] and [B] matrices will be five by ninety

one. Expressions for the matrices {B;] and [Bs] of the consistent shell element are given

in Appendix E.

2-5-3 Evaluation of Initial Strains_

The matrix {B,] inc'udes terms consisting of partial derivatives of the local

dispiacements (uT &P, vT &) wTED) with respect to the local axes (x“,y",z”). These
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derivatives represent the components of the local initial strains at the k* iteration of the
configuration T. In order to evaluate these local strains, expressions for the total global
displacements (uf &1, vT&D T &D) 4t the (k-1)® iteration at the time T have to “e first
obtained by considering the following.

The effect of the incremental global displacement degrees of freedom AU,, AV,
and AW, on the total global displacements uf &V, vT & and w™-" can be obtained
through the total global displacement degrees of freedom U,T®V, VT &Y and W I &1
respectively. These are obtained by a simple vector addition of the incremental
displacements occurring during different iterations which precede the k® iteration of the

configuration T, as given by the following equations:

AT

U;;F (k-l)=z AUn (2-45)
AT

V]?; (k—1)=2 AVH (2.46)
AT

Wg (k-1)___2 AW,. {(2.47)

The contributions of the local rotational degrees of freedom (Aw, and AB),
occurring at different iterations to the total accumulated global displacements uf &V |
vI®D wT ®D can be expressed using the terms ax,” ™, ay, ™" and az,"*", respectively.
These terms represent special rotations which when multiplied by the shape functions M,,

lead to the components of the through thickness accumulated displacements in the global
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x, y and z axes, respectively, and are evaluated using the following equations:

AT

ax; 5V =E 15Aa ~17AP, (2.48)
AT

ay;' (k=~1} =E llgAan_lngpn {2.49)
AT

ezy V=¥ 1340a,-1348,. (2.50)

Similarly, the contributions of the local rotational degrees of freedom (A¢, and
Ay,) occurring at different iterations to the total global displacements u® &9, yT&D w7
®D | can be expressed using the terms 8x,"*Y, By,T &P, 8z T®D respectively, which are

evaluated using the following equations:

AT
Bx, V=¥ 140,-13A, (2.51)
T (k-1) _AT n n (2.52)
Bya —2 124¢,-1AY, :
T(k-l)_AT n n (? 53)
Bz, -): 1y34¢,-1;:AY,. -

In view of the above considerations, the total global displacements at the (k-1)®

iteration at time T can be given by:
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3T (k1) Ug‘(k—l) Nee T(k-l} B T{k-1)
- = T{k-1) T(k 1) T{k-1) .
T (k-1) EIN A +21N +2N M, SBya . (2.54)
T (k-l) n= _ o= _ n=1 _
W T D) azg(k 1) B zTU-)

Using the transformation matrix [0] defined in Section 2-2-2, the total loca! displacements

at the ( k-1)* iteration can be obtained from the following equations:

L rtke) U T BTk
V’T”"“LLN [8] {yTx-1) *EN 18] {ay TV "'ZN M, [8]{By Ttk
/Ty [ 772 - A=l oz T nl Bzr(k-n’

(2.55)

Using Equation 2.55 and the same procedure described in Section 2-5-2, the
derivatives of the total local displacements with respect to the local axes can be obtained

and are given in the following form:

[ U,T (k-1) )

vT (k-1)

WT {k-1}

urf;k 1) exT tk-1)

“T ;r.i;—l) =§: [B ] {ayT %1} (2.56)

u'T (k2 =1 wzT D)
BxT {k-1)

Byr {k-1}
Bzr (k—l)J



43

where u”;=u”, u’,=v” and u’;=w" and

Iyhy 1iphy oy lishy,, 15,Ha 1. Hy 1Hy 1,,Gp 1,,Ga 1,4G;
(B )=\1;h, 5 10k, 5 Lish,, 1;Hy 1,Hs 1,:H: 1,,GE 1,,G5 1,,G2
Dby 1iohy 4 15k, 5 1oHy 1Ha 15.Hy 1,62 1,.G3 1,,G3
2.57)
Noie that h,; , H} and G, are defined by Equations 2.42 to 2.44.

It should be pointed out that a simple algebraic summation for the incremental
displacement degrees of freedom obtained from all incremental solutions can be
performed since these degrees of freedom are all directed along the same axis. However,
an algebraic summation of the incremental rotations resulting from the incremental
solutions is not possible because the direction cosines of the axes, about which these
rotations are taken, vary because of the large deformations. This explains why Equations
2.48 to 2.53 have been considered in calculating the contributions of the incrementat
rotational degrees of freedom to the total displacements at time T.

Although a Total Lagrangian approach is used in this formulation, it is necessary
to update the geometry. Therefore, the direction cosines between the local and the global
axes l; are updated after each iteration. This ensures that the rotation degrees of freedom
are always about the local axes which inturn are tangent to the middle surface during the
iterations performed for each load increment.

2-6 Strain Hardening Plasticity Model
To perform inelastic analyses of liquid-filled conical steel tanks under both static

and seismic loads, it was decided to incorporate a plasticity model for structural steel
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which is able to simulate both the loading and the unloading behaviour. The non-linear

behaviour for steel can be realistically described through the use of a bilinear isotropic
strain hardening constitutive model and a yield criterion which is independent of the
hydrostatic pressure. Using the Huber/Von-Mises yield criterion and its associated flow
rule, non-linear behaviour of the material, as given by Chen and Han (1988), can be
modelled using the following steps:

1) The effective plastic strain ¢, is equated to zero at the Srst iteration of the first

load increment.
2)  The stress deviator S; and its second invariant J2 are calculated using the

following equations:

= 1
Sij=sij__3'6ijskk

s

iie

-y
J2=25,5

3) Using the uniaxial stress-strain relation, the effective stress is dependent on the
effective plastic strain in the strain hardening region and is given by the following

relation:
E,. E
0,76, (=) +0,.
° P E-E,

4) Both the yield surface F and the variation d(J2) of the second invariant J2 are

calculated using the following equations:
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F=g2-—=2

d(J2) =5;;A8;;.
Three possibilities may occur here depending on the calculated values of F and
d(J2). These are presented below.
2 F<0
The material is still in the elastic range and the constitutive relation can be
described by the elasticity matrix [D ] given by Equation 2.33.
b) F>0and dI2<0
The material is subjected to unloading and the constifutive relation is still given
by the stress reversal matrix [D “] given by Equation 2.33 for elastic increments.
c)F>0and dJ2>0
The yield surface is reached and the material is under a plastic loading condition,

hence the constitutive matrix is given by:

[Dgre) = [D] +[D'))
where [D ;] is the inelastic constitutive matrix which results as a consequence of
plastic deformations. Using the three dimensional expression for the elasto-plastic
matrix [D,] given by Chen and Han (1988), the corresponding matrix {D “p] for
a shell element is presented in Appendix D2. The incremental plastic strain tensor
and the effective incremental plastic strain are then calculated using the following

expressions:
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p_ 1 2
deij—‘;—H,p Os Sij dJgjgz

‘ 2
d€p= ?de?_., defj

where H, is as defined in Appendix D2.

This effective incremental plastic strain is then used to update the total effective

plastic strain as:
e =€, +de,.

Steps 2 to 4 are repeated at each iteration of the time step AT until a convergent solution
within a certain tolerance is achieved.
2-7 Solution Technigque

The matrices [B, T ®"], [Bs" ®V], [ST®"], {ST%®"} and the appropriate constitutive
matrix ([D ] or [D "] are substituted into Equations 2.23 to 2.25 to evaluate the stiffness
matrices [K;T®"] and [K,"*"] and the unbalanced load vector {F™ *"} at the k™ iteration
at time T for each element. The external load vector {RT}, which depends on the type
of the applied external load, can also be evaluated using the expression for the work done
by the external loads. It should be noted here that the dimensions of the stiffness matrices
and the load vectors are 91 by 91 and 91 by 1, respectively. However, these dimensions
include a large number of zero terms which correspond to the inactive degrees of
freedom at certain nodes as explained in Section 2-2-2.

The stiffness matrices and the load vectors are obtained through numerical
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integration using the Gaussian Quadrature scheme. Seven integration points in the r-s
plane (tangent plane) and five integration points along t (perpendicular to the tangent
plane) are used. Note here that all terms in the matrices [B,* ®V] and [BsT V] which
have either a superscript or a subscript n are evaluated at the nodal points, while the rest
of the terms are evaluated at the integration points.

The frontal solution method (Irons 1970, Hintin and Owen 1977) is used to
assemble the stiffness matrices [K,” V] and [K;"™"] and the load vectors {F™®®} and
{RT} for all elements. These are then substituted into Equation 2.22 to solve for {AU}
using the Newton-Raphson method. During each load increment corresponding to 2 time
interval AT, the external load vector {R} is kept constant. However, both the stiffness
matrices [K;] and [K;] as well as the unbalanced load vector {F} are updated during each
iteration in this time interval until a convergent solution within a specified tolerance is
achieved.

To update the stiffness matrices and the unbalanced load vector for the k®
iteration, the following steps are performed.

1) The incremental displacement and rotational degrees of freedom obtained from

the solution of the (k-1)® iteraticn are used to update the global coordinates (x,,

Y. and z)) and the vector V,, at each node of the element.

2) The updated nodal coordinates and vectors are used, as described in Appendix C,
to obtain the updated components of the matrices {#] and [V,] which represent the
relative direction cosines between the local and the giobal axes at the integration

points and at the nodes, respectively. These are then used to update the matrix



3

4

3)

6)
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{C.] given by Equation 2.8.

The incremental degrees of freedom corresponding to the solution from the (k-1)®
iteration are also used to update Equations 2.45 to 2.57 in order to obtain the
components of the initial strains u’;;T ® prior to the k® iteration. These, together
with the updated matrix [C_], are used to update the matrix [B,* ®"] which is
given in Appendix E.

The incremental stresses at the integration points resulting from the (k-1)®
iteration are obtained using Equations 2.30 to 2.32 and are used to update the
matrix [ST*P] and the vector {ST "} given by Equations 2.28 and 2.29.
Using both the updated total and the incremental stresses, and following the
procedure given in section 2.6, the appropriate constitutive matrix [D ] for elastic
behaviour or [D 4] for inelastic behaviour is determined.

The appropriate constitutive matrix, the updated matrices [B,” *"], [ST®"] and
stress vector {ST®D} as well as the constant matrix [Bs] are substituted into
Equations 2.23 to 2.25 to obtain both the updated stiffness matrices [K.™"] and
[KsT® and the updated load vector {F™"}, These, together with the external
load vector {R’}, are substituted into Equation 2.22 to solve for the incremental
displacements corresponding to the k™ iteration.

The solution proceeds in an iterative manner until a convergent solution within

a specified tolerance is reached. The energy tolerance, as described by Bathe (1982), is

employed to check the convergence of the solution and uses the ratio of the work done

during the iteration to the work done during the first iteration.
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Assume that M iterations are needed to reach equilibrium, within a specified

tolerance, at the configuration T. The equilibrium solution {U"} at time T is obtained
using the equilibrium solution {UT%T} at the previous time (T-AT) and the solutions

resulting from those M iterations as follows:

{UD={uT-27)+ (AU H{AU @ }+, +. +. AAauw)) |

This equilibrium solution {U} is then used to obtain the initial strains and stresses
for the first iteration of the following configuration (T+AT). The solution then proceeds
in the same iterative manner to achieve equilibrium at time (T+AT).

2-8 Numerical Examples

2-8-1 Large Deflection of Simply Supported Plate Under Uriform Load

A square plate with simply supported edges and subjected to a uniformly
distributed load is analyzed using the consistent triangular shell element with large
displacements. The elastic properties of the plate are: the Modulus of elasticity
E=71020.0 MPa and the Poisson ’s ratio »=0.316. The plate dimensions are taken as
16" * 16" * 1/2" (406.4 * 405.4 * 12.7 mm) as shown in Figure 2.2. Due to the double
symmetry in geometry &~ 1 loading, only one quarter of the plate is considered in the
analysis. It should be noizd that for this particular plate problem, the local x“ and y~
axes coincide with the global x and y axes, respectively. For the simply supported
boundary conditions of the quarter plate, the following boundary conditions result for
edge displacements and rotations consistent with the physical constraints of the problem.

u=v=w=g=y=0 along AB
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u=v=w=a=¢=0 along BC
u=a=¢=0 along OC
v=8=y=0 along OA.

The central deflection w resulting from the analysis, using thirty two consistent
shell elements to model one quarter of the plate, is plotted against the load intensity q
in Figure 2.3 using the dimensionless parameters (qa*/Eh*) and (w/h). Here, a and h are
the length and the thickness of the plate, respectively. The corresponding load-deflection
curves resulting from an analytical solution by Lin et al. (1972) and a finite element
study carried out by Ostrowski (1984), using the non conforming plate bending element,
are also presented. A comparison of the load-deflection curves indicates good agreement
between the results of the analysis carried out using the consistent shell elements and the
other finite element and analytical solutions. Two grids, one with eight elements and the
other with seventy two elements, are used in the analysis using the consistent shell
element. It is interesting that the eight element (2*2) grid yields about identical results
as those obtained by Ostrowski using thirty six non conforming plate bending elements.
Of interest, also, is that the eight, thirty two and seventy two consistent shell element
grids result in almost identical curves which indicates excellent efficiency of the element
in handling elastic plate bending problems.
2-8-2 Large Deflection of a Shallow Arch

The elastic stability analysis of a clamped shallow arch due to a point load at its
apex is carried out by performing a largs deflection analysis of the arch, again using the

consistent shell element. The arch dimensions and its material properties are shown in
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Figure 2.4. The apex deflections resulting from the analysis using twenty consistent shell
elements to model one half of the arch are plotted versus the point load intensities in
Figure 2.5. Alternative solutions given by Bathe et al.(1975) using eight nodes
isoparametric shell element and by Mallet and Berhe (1966) employing four "equilibrium-
based ’ element, are also plotted in the figure. Excellent agreement in the magnitudes of
the apex deflections resulting from the consistent shell element analysis and those
obtained by Mallet et al. and Bathe et al. can be observed. It can also be concluded from
Figure 2.5 that the limit of the buckling load obtained from the analysis using the
consistent shell element and the one given bv Mallet et al. are almost identical. An
experimental study for the same arch was carried out by Gjelsvik and Bodner (1962).
They obtained a buckling load which is about 10% lower than the predicted value by the
consistent sheil element. However, it should be noted that there would have been
imperfections in the experiment which are not considered in the finite element analysis.
Therefore, the author believes that the results obtained in this study are satisfactory.

2-8-3 Large Deflection of a Clamped Cylindrical Panel

Large displacement analysis of a cylindrical panel, subjected to uniform normal
pressure and clamped at all four boundaries, is also being undertaken. The panel is
assumed to have a thickness of 0.125" (3.175 mm) while the other dimensions of the
shell are shown in Figure 2.6. The elastic material properties used in the analysis are:
Modulus of Elasticity E=450,000 psi and the Poisson’s ratio »=0.3. Due to the double
symmetry in geometry and loading, only one quarter of the panel is considered in the

finite element analysis. The quarter panel is modelled using eight and thirty two
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consistent shell elements. The boundary conditions along the four edges of the gquarter
panel are described by displacements along the global axes and rotations about the local
axes in the following manner:

u=v=w=a=£=¢=y along AB and BC

u=a=¢=0 along OC

v=8=y=0 along OA.

Central deflection resulting from the consistent shell element analyses is plotted
versus the normal pressure intensity in Figure 2.7. It should be mentioned here that the
eight and thirty two consistent shell element analyses yield identical results for the central
displacement. This problem was also studied by Brebbia and Connor (1969) in which
they used sixty four non-confirming rectangular plate bending elements to model one
quarter of the panel. Comparison of the results obtained from the consistent shell element
analyses with those given by Brebbia and Connor shows a very good agreement in the
load deflection curves. Again, it is important to note that fewer consistent shell elements
give either comparable or perhaps even a more accurate response compared with the non
conforming rectangular plate element analysis.

2-9 Comparison of the Consistent Shell Element Analysis with Experimental
Results

In an experimental program conducted by Daali and Korol (1994), test specimens
were fabricated as cantilever beams and had the geometric properties as given in Table
2.1. These specimens were subjected to a downward tip loading as shown in Figure 2.8.

The limit load, at which the stiffness of each specimen vanishes, was recorded. The
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stiffness degradation in this problem results from the spread of plasticity in the region

adjacent to the support and also due to the geometric effect in the form of local large
deformations at both the bottom part of the web and the bottom flange in the form of
local buckling.

Daali and Korol’s specimens are again modelled using the consistent shell
element. The finite element mesh used is shown in Figure 2.8. The double node concept
is used at the intersections between the web and the top and bottom flanges where
compatibility in the displacements and in the rotations about the common axis between
the flange and the web (y-axis in Figure 2.8) are imposed. The rotations about the other
in plane local axes of the web (z) and the flange (x) are assumed independent. The initial
geometric imperfections which existed in the beams before loading were measured by
Daali and Korol. These have been incorporated into the finite element analysis as initial
strains,

As was obtained in the experiments, the finite element results also show that the
limit loads for the specimens are reached after spread of plasticity near the support. The
limit loads obtained from the finite element analysis are tabulated in Table 2.1 and are
compared to the corresponding values obtained from the experiments indicating very
good agreement. The localized buckling of the bottom flange near the support, as
observed in the experiments by Daali and Korol, are also obtained in the finite element

simulations.
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Specimen Cross Section Length Limit Loads Limit loads‘,’
(mm) (KN) (KN) lv
l (Experiment.) (Analysis)
11 A0 W 310%21 2100 48.16 50
Pi W 310*3% 2100 113.5% 116 N
BO W 310*21 1200 86.29 96

Table 2.1 Comparison Between Numerical and Experimental Results

for the 1.imit Loads of Cantilever Beams.
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Figure 2.1 Consistent Shell Element Coordinate Systems and Nodal

Degrees of Freedom.
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CHAPTER THREE

STABILITY OF IMPERFECT LIQUID FILLED CONICAL TANKS

3-1 Introduction

The consistent triangular shell element presented m Chapter Two, is now used to
model the liquid-filled conical tanks and to study the stability of such tanks under static
loading. The ensuing finite element model includes geometric and material non-linearities
and is capable of modelling both initial geometric imperfections and residual stresses due
to welding.

The finite element model is first used for elastic stability analyses of liquid-filled
perfect tanks and the numerical results obtained are then compared with those available
in the Hiterature. Because of geometric imperfections usually present in shell structures
and which appear in some random pattern, it has been decided to determine the
imperfection shape that would lead to the lowest limit load. As such, tanks with different
imperfection patterns are analyzed to determine the critical imperfection shape. Limit
loads resulting from the elastic stability analyses of tanks with critical imperfection
shapes are then compared with the results obtained from the experimental study for a
large number of model cones loaded hydrostatically (Vandepitte et al. 1982).

A strain hardening plasticity model is employed and the resulting limit loads from

the inelastic stability analyses undertaken are predicted for perfect tanks. To study the

39
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sensitivity of liquid-filled conical tanks to geometric imperfections and welding residual

stresses, these limit loads are compared to those resulting from the analyses of two
different cases; the first is the case of tanks with only geometric imperfections, and the
second case involves tanks having both geometric imperfections and residual stresses due
to welding. Finally, inelastic stability analyses are performed for the tank which failed
in Fredericton, and both the limit loads and transverse meridional deflection resulting
from the analyses are compared to those given by Vandepitte (1990) in a special report
written in response to study the collapse of the structure.
3-2 Cause of Failure of Conical Tanks

As was mentioned in Chapter One, this study was motivated by the failure of a
liquid-filled elevated water tank in Fredericton, New Brunswick, Canada in December
1990. It was reported by Korol (1991) and then by Dawe et al. (1993) that the collapse
of this structure was precipitated by a buckling failure in the lower cone of the steel
water storage cell. This was as a result of inadequate thickness of the steel containment
cell. In order to understand the cause of failure, consider a conical shell with a vertical
axis and radius r; at the lower end which is simply supported. (See Figure 3.1). The
upper 1im of the shell is assumed to be free. The cone is partly filled with a liquid of
specific weight . Considering the toroidal volume bounded by the wall of the shell and
the cylindrical surface defined by the vertical generators 1-2 and 1 -2, the weight of the
liquid in this volume of revolution is equilibrated by the compressive meridional stresses
0. acting along the circle 1°-1 as shown in Figure 3.1. Since the weight of the toroidal

volume increases and the perimeter of the horizontal circle decreases at progressively



61

lower sections, very high meridional compressive forces develop near the base of the
shell, It should be also noted that there are tensile hoop stresses in the circumferential
direction. When the level of the liquid in the conical vessel is elevated, large compressive
stresses will develop and may cause the bottom part of the shell to buckle despite the
stabilizing effect of the circumferential tensile stresses. The geometric imperfections,
usually present in real shell structures, will induce more bending in the structure. This
in conjunction with large compressive meridional stress may precipate instability of the
tank at a lower level of liquid than for the case of a perfect tank. It should be also noted
that for the case of strain hardening material behaviour, yielding may precede buckling.
In this case, the residual stresses due to welding will also contribute to inelastic buckling
and hence reduce the limit load of the shell even further,
3-3 Practice Design Codes for the Stability of Conical Tanks

As previously mentioned in Chapter One, the current codes of practice for the
design of water structures do not directly specify design rules for liquid-filled conical
tanks. Some design codes like the Danish standard DNV (1982) and the German code
DAST (1980), as well as the industrial standards in North America based on the AWWA
D-100 (1984) specifications, suggest the use of an equivalent cylinder when studying the
stability of conical tanks subject to hydrostatic pressure. A brief description about the
DNV code is given by Ellinas et al. (1984). In all of the above-mentioned codes and

specificatons, the geometry of the equivalent cylinder shell is given by:

r =—.r1+r2 h =_—h
°? 2cosb,’ °? cosB,’ 7
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where 1, is the radius at the base of the cone; r, is the radius at the top of the cone;
is the radius of the equivalent cylinder; 6, is the inclination of the wall of the cone with
the vertical; h is the height of the cone; h,, is the height of the equivalent cylinder; t is
the thickness of the cone and t,, is the thickness of the equivalent cylinder.

According to the DNV code and the AWWA standards, the maximum permissible
compressive stress of the equivalent cylinder ¢,,, can be calculated using the equations
presented in Appendix F. Note that these equations incorporate the effect of instability,
plasticity and imperfections.

For liquid-filled conical tanks, the maximum membrane meridional stress can be

calculated using the foliowing equation:

- P
2nr,t cosf,

UECC

where P is defined as the sum of the vertical forces acting on a section at the base of the
vessel.

The stability of the liquid-filled conical tank can be studied according to any of
the above mentioned codes, by comparing the above calculated meridional compressive
stress o, to the maximum permissible compressive stress o, of the equivalent cylinder.
According to this method, the tank is presumed safe against instability if o,, < o,
3-4 Experimental Study at Ghent University

An extensive experimental investigation of buckling of conical shells filled with
liquids was carried out by Vandepitte et al. (1982). This experimental study led to design

guide lines in the form of diagrams and design formulae which czn be used directly in
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the design of such shells. These diagrams are used for comparison with the results
obtained from the numerical analyses carried out in this study.

In their experimental program, hundreds of model cones covering 2 wide range
of the parameters 6, and r,/(t cosf,) were tested. Initial imperfections had been measured
for each specimen by Vandepitte et al. before testing. They classified the specimens as
good or poor cones according to the deviation from perfect geometry ratio (w/L,) as noted
in Figure 3.2, where 1, is the lower radius of the cone; t is the thickness of the wall of
the cone; 6, is the angle of inclination of the wall of the cone with the vertical axis; I, is
the mean calculated total meridional wave length of the buckle adjoining the support of
the cone based on numerical analysis and w is the largest inward amplitude of any dent
or depression.

Following the analysis of Vandepitte et al., the average buckling wave length was
found to be given by

_ It (3.1)
1,736 (kg

In their assessment, when :
w < 0.008 1, the shell is considered a good cone.
0.021. > w > 0.008 1, the shell is classified a poor cone.
Each specimen was wradually filled with water until it collapsed with the height
of water h at buckling recorded. The results of the experiments were presented through

use of two dimensionless parameters, ¥ and w, where



= O, L s;lne‘,:_g; (14 h tane,,) ( h t:anB,,)2 (3.2)
le 2 31'1 r1
3 a2 3
©=1000 (-2YFIVIY" , 3 (3.3)

Et?sin(20,)
E and » are the modulus of elasticity and the Poisson’s ratio, respectively, for the
material used. In the equations above, o, is the meridional stresses at the bottom of the

cone, given by

v h? (rﬂ-ft_gn&) tano,

act™

(3.4;

’

g
2r,t cosB,

Figure 3.3 shows the Vandepitte relation between the dimensionless parameters
« and  expressed in logarithmic form. The upper dashed straight line (short dashes)
represents results of finite difference analyses for perfect cones using the program
BOSOR4 (Bushnell, 1974). This program assumes linear elastic behaviour for the
material and takes account of the non-linear relationships between deformations and

displacements. The lirg itself is described by the following equation:

¢=43400m—1.945. (3.5)

The dots represent the experimental results of Vandepitte at al. (1982), while the
lower solid straight line represents the lower limit of the experimental results such that
¥ has a 99% probability of being surpassed by the experimental points. The lower dashed
line has the same description as the previous straight line except for 99.9% probability

of experimental results surpassing it. Also, based on these experimental results, the
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following expressions rel=t..3 w and  were suggested:

Y=37500w"1-710 (poor cone) (3.6)

P=37900w 1686 (good cone) (3.7

Vandepitte et al.(1982) suggested the use of Equations 3.6 and 3.7 to design
liquid-filled conical tanks which have a certain degree of expected initial imperfections.
As a matter of fact, these equations are incorporated in the European Recommendations
relating to shell buckling, published by the Convention for Constructional Steelwork
(1988). It must be realized that the meridional stresses o, calculated by Equation 3.4,
just before the collapse of the models, were found to be less than half the yield stress of
the material (g, /2). The investigators (Vandepitte et al.) predicted that the meridional
stress and the hoop stress together will give an effective stress which is less than o,.
Therefore, it is incumbent that they assumed elastic buckling for the collapse. This
particular point will be - iborated upon later in the light of the finite element model
results.

3.5 Geometric Imperfections

Geometric imperfections play an important role in determining the limit load
capacities of real shells. The initial imperfection pattern depends on the method of
construction of the sheil. As was mentiored in Chapter One, the reported measurements
of imperfections in civil engineering shell structures are quite rare. To be on the
conservative side in the design, the imperfection pattern can be assumed as a wave

having the same wave length as of the first buckling mode of a perfect tank. This is



expected to lead to the lowest limit load for the corresponding imperfect tank.
In this study, two imperfection patterns are assumed. The first shape is an

axisymmetric imperfection described by the following equation:

21‘3)

I

w'=w, sin(

(3.8)

where w” is the imperfection perpendicular to the tank surface; w, is the amplitude of the
imperfection wave; S is the distance measured along a generator of the tank; I, is the
wave length of the imperfection and it is assumed equal to the wave length of the first
buckling mode of the perfect tank. (See Figure 3.4).

The second shape consists of a circumferential imperfection wave superimposed
on the above described axisymmetric imperfection. The resulting deviation pattern is

described by the following equation:

2nS
)

w'=w,sin ( ycos (nB) . - (3.9)

I

Here, n is the circumferential wave number of the assumed imperfection shape.

These imperfections are intrecduced into the finite element model through the
terms u”;; which are included in the non-linear stiffness matrix and represent the initial
strain after each iteration. Using equations 3.8 and 3.9, the initial strains, before applying

the load, are given by:
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w/ =0 axisymmetric (3.10)

w’.y1=wo—?£ cos ( 2_?3) axisymmetric (3.11)
I I

w"’xf=-—%€£sin( Zis) sin(nB) asymmetric (3.12)

w"yf=wo-‘?1-7f-cos ( 2_;‘:5 ) cos (n8) asymmetric (3.12)

where R is the radius of the cross section at which the circumferential imperfections are
located; w* is the displacement normal to the surface; x” and y * are the components of
the local coordinate system as defined in Section 2-2. Note here that in the finite element
analysis the vertical axis 7" “he tank is taken as the global y-axis. As such, the local axis
y  coincides with the direction S.

It should be also noted here that the above imperfections amplitude w,
corresponds to (W/2) where W is the imperfection measure given by Vandepitte et
al.(1982) and presented in Section 3-4. Therefore, according to Vandepitte’s
classification, a conical tank can be considered as a "good cone" if w, < 0.004 ], and
as a "poor cone” if 0.004 1, < w, < 0.01 L.

3-6 Residual Stresses Due to Welding

Conical steel vessels are usually constructed from steel cylindrical panels which

are welded together using circumferential and longitudinal welds. Residual stresses are

expected as a result of the welding process aad will generally induce an inelastic response
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and hence necessitate an inelastic instability analysis of the structure. Such stresses
develop as a result of cooling of the weldments and heat affected zones of the parent
material. During this cooling, the weld tends to shrink, while the material remote from
the weldments remains cool and prevents shrinkage. This process introduces tensile
stresses in the vicinity of the welding zone 2and compressive stressez away from the weld.
From statics, both the tensile and compresiive stresses are self equilibrating. A
mathematical model describing the distribution of residual stresses o, around the weld
line of a cylinder has been given by Bornscheuer and Hafner (1983). As shown in Figure
3.5, the assumed distribution is parabolic with maximum tensile and compressive stresses
equal to two third and one third of the yield stress, respectively. These stresses are
localized over a width (transverse to the weldment) equal to sixty times the shell
thickness, Based on the above residual stress distribution, the residual stresses arising in
conical tanks due to circumferential and Jongitudinal welding are assumed according to
the descriptions below.

3-6-1 Residual Stresses due to Circumferential Welding

Circumferential welding will introduce hoop stresses in the conical shell. These
stresses are axisymmetric in magnitude and vary along the tank generator. The stress
model proposed by Bomnscheuer and Hafner (1983) will not be sclf-equilibrated if it is
assumed to act on conical tanks. This is due to the variation of the surface area along the
generator. To overcome this, the proposed stress model is multiplied by a weight
function f(y) which decreases with the increase in the surface area. As such, self-

equilibrated stresses can be obtained. The resulting residual stresses o, and the weight
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function are shown in Figure 3.6.
2 Residual St due to Longitudinal Weldi

Longitudinal welding will induce meridional stresses in the conical tank. These
are localized over a small circumferential width about the longitudinal weld line. The
Bornscheuer model can be used here without modification as shown in Figure 3.7.

Both hoop and meridional stresses are introduced in the finite element model in
the form of initial stresses present in the structure before loading.
3-7 Modelling of Conical Tanks

Elevated conical tanks are usually steel vessels consisting of a cylinder
superimposed on a cone which is supported by a steel plate resting on a heavily
reinforced concrete slab supported in turn by a reinforced concrete tower. (See Figure
3.8). Since the focus of this study is the stability of the steel vessel, the finite element
modelling is limited to consideration of the inclined walls of the tank. The reason for this
limitation is to confine the study to conical shell behaviour. However, if one were to
simulate the response of the cylindrical capped conical shell, the cone could serve as a
basis for a conservative design. Consider two vessels having the same height, the first
being a full cone and the second consisting of a cylinder superimposed on a cone as
shown in Figure 3.9. If the two vessels are filled with the same liquid, it is clear that the
volume of the liquid supported by section 1°-1° in the first vessel is larger than the
volume supported by section 1-1 at the same elevation for the second vessel. Hence, it
implies that the expected compressive meridional stresses generated in the second vessel

will also be larger, However, the tensile hoop stresses will remain the same.
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Nonetheless, it can be concluded that the full cone is more critical to buckling.

The bottom of the steel cone is usually welded to a circula:r steel plate which is
anchored to a heavily reinforced concrete slab. Because of rigid diaphragm action, the
horizontal displacements at the cone bottom are ignored. The weldments also provide
some partial rotational restraint which may be ignored. As such, the cone is assumed
simply supported at the base. This assumption also tends to be conservative and leads to
lower limit loads.

The top of the cone is assumed free in spite of the presence of a circular rim at
the top of the vessel. This assumpticn is employed because of the fact that the hydrostatic
load acting near the top of the cone is very small, which leads to a negligible horizontal
movement of the top. Therefore, it is believed that the results of the analysis will not be
significantly affected whether the top of the tank is assumed to be free or restricted. As
will be seen later, this assumption is justifiable.

For the analyses of tanks which have either axisymmetric or an even wave
number n of circumferential imperfections, only one quarter of the cone is modelled
because of the double symmetry of geometry and loading. However, for tanks which
have an odd wave number n, only single symmetry in geometry exists, and hence one
half of the tank must be modelled in the finite element analysis. Typical finite element
meshes for the one quarter and the one half of the cone are shown in Figures 3.10(a) and
3.10 (b), respectively, where 128 elements are used to model both the quarter and the
half regions of the cone. A finer mesh at the bottom of the tank is used because of

expected higher stresses. The element length 1, is taken less than one quarter of the wave
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length 1. as defined in Section 3-4. This is to ensure that the lowest buckling mode which

is localized near the bottom of the tank is not missed in the analysis.
3-8 Method of Analysis

The inclusion of geometric non-linearities in the shell element formulation allows
non-linear stability a.nalys.is of a liquid-filled conical tanks in both the elastic and the
inelastic ranges to be performed. This is achieved by gradually increasing the load acting
on the tank wall. The stiffness of the tank will correspondingly decrease with the increase
in load until the limit load is reached, i.e. the stiffness vanishes. The load acting on the
walls of the liquid-filled conical tank is due to hydrostatic triangular pressure having a
maximum value of yh at the bottom, where + is the specific weight of the fluid and h is
the height of the fluid in the tank.

In this study, the structure is assumed to be filled with water. To start the
numerical analysis, the hydrostatic pressure is multiplied by a load factor p which is
increased until the structure reaches its limit load at p=p,,. (The latter being defined as
the critical load factor). As such, p,, =1 corresponds to the real situation of a tank filled
with water and on the verge of failure. If p,, is less than unity, then the structure cannot
sustain the hydrostatic load. When p,, is larger than unity, this signifies that the
hydrostatic load acting on the tank can be multiplied by any value up to p,, prior to the
tank becoming unsafe. Hence, p,, is a measure of the factor of safety for the tank when
it is filled with water. It should be mentioned here, that it is very difficult to determine
exactly the limit load in a load control nou-linear analysis. However, a very careful

attempt has been made to determine the limit load by choosing reasonably small load



increments in its vicinity.
3-9 Tank Layouts

To study the behaviour of conical-shaped tanks, seven different geometries are
considered. Four of these are taken as broad tanks (B1-B2-B3-B4) and the other three as
tall tanks (T1-T2-T3). Ali dimensinns are shown in Tables.3.1 and 3.2 and Figure 3.11,
Material properties for all containment vessels are taken as follows:

Modulus of Elasticity, E=2¥10° (MPa)

Tangent Modulus , E;= 6*10° (MPa)
Yield Stress , a,= 300 (MPa)
Poisson’s Ratio , y=0.3.

It has to be noted here that the 45° degree angle between the generator of the tall
tanks and the vertical is a common value in practice. It is also important to clarify that
the dimensions of the category of tall tanks are close to those of the Fredericton tank to
achieve a practical range of values. The reason behind the choice of the broad tank
category having a wider generator angle 6, and a smaller height h, is that these cases
provide a high compressive meridicnal force at the bottom relative to the induced
stabilizing pressure. As such, the result could lead to a critical situation in terms of the
tank stability and infer the need to use caution when contemplating an increase in
generator angle,

The following notations are used to describe the results for the different types of
analyses undertaken :

EP= elastic analysis of perfect tanks,



73
PP= inelastic analysis of perfect tanks,

El= elastic analysis of tanks with axisymmetric imperfection,
PI= inelastic analysis of tanks with axisymmetric imperfections,
PIR= inelastic analysis of tanks with axisymmetric imperfections and axisymmetric

residual stresses.
3-10 Elastic Analysis
3-10-1 Perfect Tanks

Non-linear stability analyses (EP) are performed for all seven liquid-filled tanks.
The critical load factor p., corresponding to the limit load of each tank is obtained. In
order to compare these critical load factors with the numerical analyses performed by
Vandepitte et al. (1982), parameters r;, t, h, 6,, E and » for each tank are substituted into
Equations 3.2, 3.3 and 3.5 to obtain a corresponding value for . The limit load factor
P.: is Obtained by dividing the above calculated v by the specific weight of water v,,. The
calculated critical load factors p,, based on both analyses are then compared and tabulated
in Table 3.3. Excellent agreement, generally within 5%, can be observed for each case.
The buckling modes resulting from the analyses are all axisymmetric. Figures 3.12 to
3.14 show plots of the meridional transverse deflections for all tanks near buckling (at
the last load increment which corresponds to a convergent solution) versus the distance
S measured along the generator. A localized buckling pattern near the support, having
a small wave length 1, can be observed. The buckling wave lengths resulting from the
analyses are measured and are compared in Table 3.3 to those calculated from Equation

3.1 (Vandepitte et al. 1982). The comparison indicates good agreement. The horizontal
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deflections of tanks T2 and B2, near buckling, are plotted in Figures 3.15 and 3.16.

These plots show that the horizontal deflections at the top of the tank are very small.
This observation justifies the assumption made in Section 3.7 that the tanks can be
assumed to be free at the top.

3-10-2 Influence of Imperfection Shapes

The stability of thin shell structures may be greatly affected by the initial
geometric imperfections which are usually present in real shell structures. These
geometric imperfections can have random shapes and magnitudes. In order to determine
the critical imperfection shape, i.e. the shape which leads to the lowest limit load, non-
axisymmetric imperfections of different wave numbers n as well as axisymmetric
imperfections (n=0) are considered for two tanks (B1 and T1). For purpose of this
comparison, imperfection amplitudes equal to 0.01 1, are employed, where I, is the
buckling wave length of the perfect tank as obtained in Section 3-10-1. The load factors
resulting from the analyses (EI) are tabulated in Tables 3.4 and 3.5. It can be concluded
from these results that the elastic stability analysis of hydrostatically loaded conical shells
is more sensitive to axisymmetric than to the non-axisymmetric imperfections.

In order to explain this conclusion, consider the bottom part of a conical tank
bounded by the lower end and a horizontal section having the ordinate § equal to 1/2,
as shown in Figure 3.16. It is clear from the buckling mode of the perfect cone that this
region is the location where most of the energy is dissipated when the buckling forms.
For tanks having an axisymmetric imperfection of wave length 1, this part of the

structure can be treated as an assembly of cylindrical panel having a vertical axis and a
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concave inward curvature in the longitudinal direction as shown in Figure 3.17. Each
panel can be thought of as subjected to a compressive vertical force P, and a radially
outward pressure P,. It is clear that both forces will tend to deflect the panel outwardly
with respect to the vertical axis. Now consider a tank with ncn-axisymmetric
imperfections. The same portion of ihe tank, as considered for the axisymmetric
imperfecticns, is now treated as a combination of partial panels with concave inward
curvature as shown in Figure 3.17 and partial panels with concave outward curvature in
the longitudinal direction as shown in Figure 3.18. When these outward panels are
subjected to the vertical force P, and the radially outward pressure Py, the bending effects
are in opposite directions. The vertical force will tend to bend the panel in the inward
direction while the pressure has the tendency to bend it outwardly. The effects of both
forces tend to cancel each other and as a consequence, less energy is dissipated in this
partial nanel as opposed to the adiacent one. This explains why less energy is dissipated
in the non-axisymmetric mode resulting from the non-axisymmetric imperfections and
hence means that the axisymmetric mode associated with the axisymmetric imperfections
is more critical.

Figure 3.19 shows the transverse meridional displacements for the broad tank B1,
at a location coinciding with maximum amplitude section (S =0.235 m), for n=2,4 and
8, respectively. Meanwhile, in Figurc 3.20 the transverse meridional displacements for
the tall tank T1 at a similar section (located at a distance S =0.22 m), are zlso plotted
for n=2,4 and 8, respectively. Note that these transverse displacements are measured

relative to the perfect circumference of the tanks. It can be concluded from these figures
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that the buckling modes are approximately the same shape as those of the imperfection

patterns. The deflection magnitude indicates that the regions where the imperfections
have a concave shape, the deflections are larger than those in the regions where the
imperfections have a convex shape.
3-10-2 Cones with Axisymmetric Imperfections
Because the presence of axisymmetric imperfections leads to the lowest limit loads
for liquid-filled conical tanks, tanks T1, T2, Bl and B2 are elastically analyzed with
axisymmetric imperfections nf the same wave length as obtained for the buckling modes
of their perfect counterparts. The amplitude of imperfections w, is taken equal to 0.01
1., where L is the buckling wave length obtained from the analysis of a perfect tank.
Therefore, the tanks can be considered to be poor cones (with respect to fabrication)
according to the classification given by Vandepitte et al. (1982). The critical load factors
P., obtained from these analyses are compared to the corresponding values which were
found from the tests results by Vandepitte et al. (1982). The critical load factors, based
on the experimental results by Vandepitte, are obtained for each tank by applying the
following steps:
a) Using Equation 3.2 and the tank dimensions r, ,h and 8,, the dimensionless
parameter i is calculated.
b) Using Figure 3.3 and the above calculated parameter , values for w which
correspond to the upper and lower dots are obtained as w ., and wy,
respectively.

c) Substitution of w,, and wy,, into Equation 3.3 yields two values of v, i.e. y,, and
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d) Dividing +,,, and ., by the specific weight of the water «,, results in the load
factors p., which represent upper and lover limits.

The values of p,, obtained from the finite element analyses for the four tanks are
tabulated in Table 3.6 and compared to the corresponding upper and lower p,, limits of
the experiments. It can be observed from the table that the numerical results are within
the limits of the experimental range. However, it is also noted that the lower limits from
the experiments underestimate the elastic buckling of liquid-filled conical tanks. The low
values of the experimental results may have been due to an early plastification that might
have occurred before the elastic buckling could have been reached. This certainly would
lead to limit loads lower than the elastic buckling loads. It was previously mentioned in
Section 3-4 that Vandepitte et al. (1982) assumed that elastic buckling took place for all
tested specimens. This assumption was based on a comparison between the induced
membrane stresses and the yield stress of the material. However, from the plots of the
meridional deflections of tanks B1, B2, T1 and T2 obtained from the finite element
analyses and given in Figures 3.21 to 3.22, large local bending effects near the bottom
of the tanks can be easily noticed which were ignored by Vandepitte et al.(1982). The
bending stresses induced, when added to the membrane stresses may indeed cause
yielding in the material, especially in the extreme fibre near the bottom of the tank.
Another possible cause for diminished limit load values of the experimental results is that
the bottoms of the specimens might not have been sufficiently restrained against lateral

movement during the tests. Since buckling is localized near the support, any small lateral
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movement of the support itself could have caused a noticeable reduction in the buckling
capacity of the experimental tested models. Therefore, it appears reasonable that the limit
loads obtained from the noz-linear elastic stability analysis using the finite element model
tend to be larger than those obtained from the experimental investigation.

3-11 Ioelastic Analysis

In all of the previous analyses reported so far, the material has been assumed to
be elastic. There are two objectives for performing the non-linear elastic stability
analysis. The first is to compare the results of the finite element analysis with the
numerical and the experimental results available in the literature. The second objective
is to determine the critical imperfection shape.

By including a realistic strain hardening constitutive equations in the finite element
model, a non-linear stability analysis including both geometric and material non-
linearities can be performed for a liquid-filled conical tank. However, the effects of
different residual stress distribution are first studied, before a complete non-linear
inelastic analysis is undertaken. The material properties used in all the subsequent
analyses are listed in Section 3-9.

3-11-1 Effect of Residual Stresses

As was mentioned in Section 3-6, two types of residual stresses can be present
in a shell structure - hoop stresses resulting from a circumferential weld with the stress
distribution shown in Figure 3.6, and/or meridional stresses resulting from a longitudinal
weld with the distribution shown in Figure 3.7. The effect of these stresses on the limit

loads of liquid-filled conical tanks is determined by performing inelastic stability analysis
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for the following cases.
a) Tank T3 Without Residua! Stresses

Tank T3, free from iritial residual stresses is treated first. It is found that a
critical load factor p,, of 2.4 is obtainzd from the inelastic analysis. This result compares
with the value of 3.9 for the purely elastic case (Table 3.3), thus showing a considerable
reduction in strength when material non-linearities are accounted for. The inelastic
analysis indicates that material yielding precedes the attainment of the limit load.
b) Tank T3 with Meridional Residual Stresses Onl

Two longitudinal weld lines are considered to exist in one quarter of the tank.
Two meridional stress distributions, similar to the one given in Figure 3.7, are located
along each weld line. The total residual stress distribution due to the weld lines, acting
on one quarter of a circular cross section is shown in Figure 3.23. Note that these
stresses act along the entire height of the tank. A critical load factor p,, of 2.5 is obtained
from the finite element analysis. The small increase in the critical load factor compared
to case (a) above, may be explained by the presence of high tensile stresses about the line
of weldment which reduces the compressive meridional stresses resulting from the weight
of the water. On the other hand, added compressive residual stresses of lower intensity
and further away from the weld area would tend to reduce the vessel’s strength capacity.
¢) Tank T3 with Hoop Residual Stresses Only

Two circumferential welds 3m apart are considered. One of the weldments is
located near the base of the tank and has an ordinate S =30t, where t is the thickness of

the tank. Two hoop stress distributions similar to the one given in Figure 3.6 are
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assumed around each weld. The total initial stress distribution acting on a vertical
(meridional) cross section of the tank is shown in Figure 3.24. Note that these stress
distributions are axisymmetric. A critical load factor p,, of magnitude 2.1 results from
the finite element model. Comparison with case (a) indicates that the initial hoop stresses
resulting from the circumferential welding réduce the limit load of the liquid-filled
conical tank by about twelve percent. In this case, the initial large tensile hoop stresses
amplify the tensile hoop stresses resulting from the water pressure alone and thus cause
yielding of the material at a lower load factor. The same analysis is done by considering
only the bottom weld. The critical load factor is found to be unchanged, i.e. 2.1. This
result indicates that the residual stresses further away from the bottom region of the tank
have little or no effect on the staﬁility of liquid-filled conical tanks.

From the results of the above analyses, it is clear that » conservative load factor
for a liquid-filled conical tank can be obtained by assuming only initial hoop stresses at
the bottom of the tank.

3-11-2- Sensitivity of Conical Tanks to Geometric and Material Imperfections

Following the inelastic analyses of the above three cases, inelastic stability
analyses are performed for all the seven tank geometries. For each tank, three cases are
considered. These are the perfect shell (PP), the tank with axisymmetric imperfections
with the same wave length as the buckling wave length of the corresponding perfect tank
(PI), and the case of self-equilibrated residual hoop stresses (material imperfections) at
the bottom of an axisymmetrically imperfect tank (PIR). The maximum amplitude of the

imperfections w, is assumed equal to the thickness of the tank. Such tanks can be
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considered as poor cones according to the Vandepitte classification (1982).

The analyses above indicate that all of the seven tanks buckle inelastically, i.e.
yielding precedes buckling. Figures 3.25 and 3.26 show the variation of the critical load
factor p,, with the thickness for both the tall and broad tanks, respectively. It can be
concluded from the figures that a unit thickness imperfection can reduce the limit load
by about 35% to 40% and that the residual stresses can introduce an additional reduction
of about 5% to 10%.

Figure 3.27 shows the axial deflection, the transverse deflection, the axial
(meridional) stress and the hoop stress at the middle surface for the perfect tank T1
versus the distance S measured along the generator. Similar deflection plots and stress
distributions for the other six tanks, that include both the perfect (PP) and imperfect (PI)
cases, are shown in Figures 3.28 to 3.40. Results of the inelastic analyses for perfect
tanks indicate that the tall tanks can sustain larger compressive meridional stresses than
the broad tanks. This observation can be interpreted due to the effect of the stabilizing
tensile hoop stresses which are relatively larger in the case of tall tanks. Comparison
between the responses of a perfect tank and the similar imperfect one indicates that the
imperfections lead to an increase in the values of the transverse displacements and a
reduction in the axial displacements at the limit load. Also, it can be concluded that the
presence of imperfections decreases the resistance of the tanks to the compressive
meridional stresses. Meanwhile, these imperfections introduce extra hoop stresses. The
percentage in reduction of the strength of the tall and broad tanks due to the presence of

a unit thickness imperfection are tabulated in Table 3.7. It clear from these results that
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the tall tanks are more sensitive to geometric imperfections than the broad tanks. It can
be also concluded from the table that tanks which have small thickness are generally
more affected by geometric imperfections than those which have larger thickness.

Considering the magnitudes of the meridional stresses at the limit loads of the
imperfect tanks, and knowing that plastification precedes these limit loads, it can be
concluded that yielding of the material occurs when the meridional stresses are less than
o,/2. This observation indicates that the stress level (o, < 0,/2) which was found at the
middle surface of the experimental models during the tests performed by Vandepitte
(1982), does not ensure elastic buckling. This confirms the present author’s belier that
during testing of the models, early plastification would have occurred prior to buckling.

As mentioned previously in Section 3-10-3, upper and lower values for the load
factor of tanks T1, T2, B1 and B2, can be obtained using the results of the experimental
investigation carried out by Vandepitte el al.(1982). These values can now be compared
with the corresponding critical load factors obtained from the inelastic stability analysis
of the imperfect tanks using the finite element model. The comparison is given in Table
3.6 and shows that the critical load factors from inelastic analyses are very close to the
lower bound values obtained from the experimental studies.
3-12 Discussion about the Design of the Fredericton Tank

As previously mentioned in Chapter One, this study was motivated by the failure
of an elevated conical tank in Fredericton, New Brunswick, Canada on December 19,
1990. The vessel of the failed tank consisted of a steel cylindrical shell superimposed on

top of a steel conical shell of variable thickness. The dimensions of the tank and the
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variation of the thickness along a generator of the tank are shown in Figure 3.41. The
designer of the tank claimed that these thicknesses provided a safe design for the tank
when the tank is filled with water and that a factor of safety of 4.12 was provided against
instability.

In the following sections, the stability of the failed tank is checked using different
methods. First, the results of an investigation undertaken by Vandepitte (1992) to study
stability of the tank are presented. Then, the results of a numerical stability analysis
using the consistent shell elément are given, followed by an assessment undertaken with
the Danish code DNV (1982) and the American AWWA D-100 (1984) specifications. In
all these checks, the stability of the tank is studied at section B’-B“ (critical section)
shown in Figure 3.41. The vertical downward forces acting on section B'-B” are
assumed the same as those given by the designer of the tank and presented in the design
report of the tank (Connors, 1990). The pertinent data applicable to the Fredericton water
tower are given as follows:
the weight of water = 16399 kN,
snow load = 489 kN,
the weight of the roof and steel shell = 650 kN.

The material properties of the tank are taken as:
Modulus of Elasticity E=2*10° (MPa)
Yicld Stress 0,=250 (MPa)
3-12-1 Study of the Tank by Vandepitte

As a response to the collapse of the tank, a report was written by Vandepitte
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(1992) in which he discussed the correctness of the calculations used in the design of the

tank. In the same report, Vandepitte questioned tiie value of the factor of safety given
by the designer using the following methods:
a) Design Formulae

The buckling strength of the failed tank was calculated using the design formulae
obtained from the results of the experiments carried out by Vandepitte et al. (1982) and
presented in Section 3-4. Two different levels of imperfections were assumed to exist in
the tank before loading and the buckling strength of the tank was calculated for each.
According to the classification given in Section 34, the tank having the first level of
imperfections was a "good cone”, while the tank having the second imperfection level
was "a poor cone". The calculated buckling strength o,, for each case was given as:
o= 70.6 MPa (good cone)
o= 65.8 MPa (poor cone)

The meridional membrane compressive stress ¢, acting on section B -B” is given

by the following equation:

0,cc= P
act 2xnr,t cosl,

where P is the sum of the vertical forces acting on the section; r, and t are the radius of
the cone and its thickness at section B“-B~, respectively; and 6, is the inclination of the
wall of the tank with the vertical.

Using the tank dimensions and the sum of the vertical forces acting on section B -

B’ as given by Connors (1990), the meridional compressive stress g,, at the same section
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was found to be: g,,= 103.8 MPa.

From the above calculated stresses, it is apparent that the values of the buckling
strength of the tank would be considerably lower than the acting compressive meridional
stress. As such, employing the design formulae suggested by Vandepitte at al. (1982),
would indicate that the design of the tank was unsafe against instability.

b) Computer Analysis Done by Vandepitte

Vandepitte also presented in his report the resuits of a numerical stability analysis
done at the University of Ghent. Details of this analysis are given in a report prepared
by Van Impe (1992) indicating that the calculations were performed using the computer
program FO4BOB developed by Essingler et al.(1984). This program is based on the
finite difference metﬁod and includes geometric non-linearities, an elasto-plastic material
model and injtial axisymmetric imperfections. Three cases were considered in the
analysis; these are: the perfect tank, the tank with “"good cone" axisymmetric
imperfections, and the tank with "poor cone” axisymmetric imperfections. Critical load
factors resulting from these analyses are given in Table 3.8.

All these analyses show that yielding of the material occurred before the limit load
had been reached. Also, the critical load factor obtained from the analysis of the third
case indicates that if the initial imperfections existing in the tank were large enough, thus
classifying the shell as a poor cone, the design of the tank would be unsafe against
stability.

3-12-2 Numerical Analysis of the Tank Using the Shell Element

The failed tank is also modelled using the consistent shell element. The variation
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in thickness along the generator of the tank is properly considered in the modelling. The

tank is first analyzed elastically to give a buckling wave length (,=1.40m). Following
that, three inelastic analyses are performed: 1) perfect tank, 2) tank with axisymmetric
imperfections of maximum amplitude equal to 0.04 1 (good cone), 3) tank with
axisymmetric imperfections of maximum amplitude equal to 0.01 1, (poor cone}. The
critical load factors obtained, and those resulting from the numerical analyses carried out
by Van Imp (1992) are tabulated in Table 3.8. It can be observed from the table that
excellent agreement in critical load factors between the two sets of znalyses is achieved.
It has to be noted that, like the results of the finite difference analysis, the limit loads
obtained from the finite element analysis are reached after yielding of the material has
happened. In Figure 3.42, the meridional transverse deflections prior to the limit load
resulting both from the finite element and the finite difference analyses (Van Imp, 1992)
of the perfect tank are presented. The deflection patterns show that both analyses lead
to the same buckling wave length localized at the bottom of the tank. From the finite
element results given in Table 3.8, it can be concluded that if the imperfections in the
tank were high enough to classify the tank as a poor cone, the corresponding critical load
factor in this case is equal to 0.9. This load factor is expected to be reduced by 10 % by
inclusion of the residual stresses due to welding. Hence, the critical load factor in this
case would approximately be 0.8. Therefore, it can be stated that the design of the tank
would be unsafe against instability if a high level of imperfections and residual stresses

were present in the tank before filling.
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3-12-3 Check for the Design of the Tank Using Different Codes

The Danish code DNV (1982) and the industry standards in North America based
on the AWWA D-100 (1984) specifications are herein used to check the safety of the
design of the failed reservoir against instability. The maximum compressive strength of
liquid-filled conical tanks, according to both the DNV and the AWWA, is based on the
buckling strength of an equivalent cylinder under compressive force as described in
Section 3-3.

Based on each code, the maximum compressive strength of the equivalent cylinder
6., is calculated. Then, this buckling strength is compared to the meridional compressive
stress o,,, induced in the conical tank at section B"-B ", This stress was shown earlier to
be equal to 103.8 MPa as calculated by Vandepitte (1990).

Following the equations given in Section 3-3, the dimensions of the equivalent
cylinder are obtained. The maximum compressive strength of this cylinder, based on the
DNV (1982) and the AWWA (1984), are calculated as follows:

o, = 16.57 (MPa) (DNV)
o, = 12.74 (MPa) (AWWA)

Comparison of the above calculated buckling strengths of the equivalent cylinder
0., with the actual membrane meridional stress o, indicates that according to both the
DNV code and the AWWA specifications, the Fredericton tank was vastly unsafe against
instability .

According to each design method, a load factor can be calculated by dividing the

actual membrane meridional stress ¢, by the buckling strength of the cone o,,. This load
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factor means that the hydrostatic load acting on the tank can be multiplied by any value
up to this load factor prior to the tank becoming unsafe. The lower the load factor, the
more conservative the design method used to obtain this load factor. Three load factors
are calculated and are presented in Table 3.9, These correspond to the buckling strengths
of the tank based on the following:

a) Design formulae suggested by Vandepitte et al. (1982) when the cone is

considered "poor".

b) The buckling strength of the equivalent cylinder as defined by DNV (1982).

O The buckling strength of the equivalent cylinder as defined by AWWA D-100

(1984).

Comparison of the load factors with those resulting from the finite element
analysis given in Table 3.8 indicates that although the DNV (1982) code and the AWWA
D-100 (1984) design formulae are not based on any numerical or experimental modelling
for liquid-filled conical tanks, they both provide overly conservative designs for this type
of structure. On the other hand, the design formulae svggested by Vandepitte et al.

(1982), which are based on a ra“snal basis, provide a reasonably conservative design.



,=3.0m h=4.5m 0,=60°

rl'ank Thickness (m-;n)
Bl 7.0
B2 8.0

| B3 9.0
B4 10.0

Table 3.1 Dimensions of the Broad Tanks.

r;=3.0m h=9.0m §,=45°

Tank | Thickness (mm)

Tl 8.0
T2 10.0
T3 12.5

Table 3.2 Dimensions of the Tail Tanks.

* Please refer to Figure 3.11 for the notations description.
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L (m)

TANK Pe Per L (m)
| Analysis (Vandepitte) Analysis (Vandepitte)
Bl L5 1.55 0.94 0.74
B2 1.9 2.02 1.05 0.78
B3 2.4 2.56 1.08 0.83
B4 2.9 3.16 1.150 0.88
T1 1.8 1.62 0.88 0.66
T2 2.6 2.53 1.05 0.74
T3 3.9 3.95 1.17 0.82

Table 3.3 Results of the Elastic Analyses of the Perfect Tanks.




o1

0 1.0
1 1.2
2 1.2
4 1.25
8 1.5

Table 3.4 Limit Load Factors for Different Circumferential

Wave Numbers n for the Tall Tank Bl.

n Per ]
0 1.3
1 1.5
2 1.4
4 1.45
8 1.6

Table 3.5 Limit Load Factors for Different Circumferential

Wave Numbers n for the Broad Tank T1.



Tank Per Per Per |
(Elastic Analysis) | (Inelastic Analysis) | Vandepitte (1982)
T1 1.3 0.7 0.72-1.1 I
T2 1.9 1.0 1.2-1.85
Bl 1.0 0.9 0.8-1.29
B2 1.2 1.1 1.04-1.68

Table 3.6 Results of the Analysis of Tanks Having Axisymmetric Imperfections.
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Tank Percentage of Tank Percentage of “
Reduction in Reduction in
Strength Strength
Bi 19.6 Tl 40
B2 16.0 T2 34.7
B3 19.0 T3 28.5
e ]
B4 15.0

Table 3.7 Percentage of Reduction in Strength Due to Unit Thickness Imperfection.
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Case _ P.. (Analysis) p.. (Vandepitte)
Perfect Tank 1.7 1.8
Imperfect "Good Cone" 1.3 1.31
Imperfect "Poor Cone” 0.9 0.957

Table 3.8 Results of the Inelastic Analysis of the Fredericton Tank.

Design Method

Limit Load Factor

Vandepitte et al. (1982) 0.634
DNV Code (1982) 0.160
AWWA (1984) 0.122

Table 3.9 Limit Load Factors for the Fredericton Tank

Based on Different Design Methods.




94

n
\
1M

N

. I N S,

v -

o e e e e e e e T W I

Figure 3.1 Cause of Failure of Conical Tanks.
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Figure 3.2 Vandepitte's Measure of Imperfections
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(a) Axisymmetric Imperfections through the Generator.

(b) Non—axisymmetric Imperfections

in the Circumferential Direction

Figure 3.4 Ass med Imperfection Patterns for Conical Tanks.
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Figure 3.5 Bomscheuer’s Model for Residual Stresses in Cylinders.
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Figure 3.6 Hoop Residual Stress Distribution for Conical Tanks
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Figure 3.7 Meridional Residual Stress Distribution for Conical Tanks
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Figure 3.8 Cross Sectional Elevation of Elevated Conical Tanks.

Figure 3.9 Comparison Between Full Cone and Cylindrical Capped Cone.
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Figure 3.10 (a) Finite Element Mesh for Static Analysis (Quarter Cone).






102

14 14 14
12 12 12
10 10 10
G G E
~ 8t o B o 8
o © 3
o o o
5 5 o
- w6 26+
It a o
4 - 4 - 4 -
2 2+ 2 r
0 0 ! t J 0 L |
0O 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Displacement (mm)

(c) Tank T3

Displacement (mm)

(b) Tank T2

Displacement {(mm)

(a) Tank Tt
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Figure 3.13 Transverse Displacements of Tanks B1,B2 Near Buckling.

( Elastic Perfect Cose~EP)



104

9 r 9 ~
8 8+
7F 7
6 6 |-
8 E
N o n S
o [++]
Q g
5 4 5 4t
@ R
o a
3 3+
2 I 2 F
1 F 1k
0 ) 4 ' —J 0 4 } |
0O 4 8 12 16 20 0 4 8 12 16 20
Displacement of Tank B3 (mm) Displacement of Tank B4 (mm)

Figure 3.14 Transverse Displacements of Tanks B3,B4 Near Buckling.
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Figure 3.15 horizontal Displacements of Tanks T2,,82 Near Buckling.
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Figure 3.16 Critical Region in Conical Tanks.

P R
— —
R
f _y
[ L /i "
R 1
3 | v

Figure 3.17 Concave Inward Panel. Figure 3.18 Concave OQutward Panel.
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Figure 3.23 Meridional Residual Stresses due to Two Longitudinal Weldments.

Figure 3.24 Hoop Residual Stresses due to Two Circumferenticl Weldments.
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CHAPTER FOUR

SEISMIC ANALYSIS OF LIQUID-FILLED CONICAL TANKS

4-1 Introduction

The design of elevated liquid-filled conical tanks, which are located in an active
seismic zone, has to account for the dynamic instability which might occur during a
strong earthquake. In this chapter, the seismic response of a liquid-filled conical tank is
studied using the consistent shell element to model the structure and the boundary integral
method to mode] the fluid.

The formulation of the consistent shell element, presented in Chapter Two, is first
extended to non-linear dynamic analysis. This is achieved by deriving the mass matrix
for the consistent shell element using the virtual work done by the inertia forces. The
mass matrix is then incorporated into a non-linear time history analysis which uses
Newmark’s method to perform time integration and the Newton-Raphson method to
iterate within each time step until dynamic equilibrium is achieved. A procedure for free
vibration analysis is also formulated using the mass matrix and the linear stiffness matrix
of the consistent shell element. The dynamic formulation is then verified by performing
the free vibration and the non-linear time history analyses of a simply supported plate and
a cylindrical shell. The results of the analyses are then compared with those available in

the literature.
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Two components of the hydrodynamic pressure develop inside a liquid-filled

vessel that is subjected to a seismic excitation. These are the impulsive pressure which
results from the vibrations of the walls of the tank and the convective pressure due to the
free surface motion. Based on the previous investigations concemning liquid-filled
cylindrical tanks, the convective component of pressure due to the free surface motion
is neglected and only the impulsive component is considered in the analyses reported in
this thesis. The hydrodynamic pressure distributions resulting from horizontal and vertical
excitations acting on a liquid-filled tank, prevented from rocking at its base, are obtained
using the boundary integral formulation. This leads to a fluid added-mass which when
multiplied with the acceleration of the structure gives the inertia force resulting from the
dynamic pressure. The fluid added-mass is combined with the mass matrix of the
structure to perform both free vibration and non-linear time history analyses for a liquid-
filled tank. The fluid added-mass formulation is verified by performing free vibration
analyses of liquid-filled cylindrical tanks under both horizontal and vertical excitations.
The resulting natural frequencies from the analyses are compared to those given by
Haroun (1980) and Haroun and Tayel (1985b).

In order to study the sensitivity of liquid-filled conical tanks to seismic motion,
free vibration analyses are first performed for seven elevated liquid-filled conical tanks
which are supported on rigid frames and have different dimensions and magnitudes of
axisymmetric imperfections. Following this, a real earthquake, which includes the natural
frequencies of the liquid-filled conical tanks in its dominant frequency content, is applied

as an input ground motion to perform non-linear time history analyses of all seven liquid-
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filled elevated conical tanks.

42D ic Extension of the istent Shell Element Formuiation
4-2- rivation of the Consistent Mass Matrix

The consistent mass matrix of the subparametric shell element is derived using
the virtual work quantity V,, done by the inertia forces. In the mass matrix formulation,
the rotationary inertia involving the rotational degrees of freedom «,8,¢ and ¢ is

neglected. Therefore, the virtual work gquantity V,, at a time T can be given as
fopsh(s) [475 (Au) +V78 (Av) +wTs (Aw) 1dsS (4.1)
S

where p, is the density of the shell material; h(s) is the thickness of the shell; 0T, V7, wT
are the components of the acceleration at time T along the global coordinates x, y and
z, respectively; 8(Au), 6(Av) and 6(Aw) are the components of the virtual incremental
displacements along the global directions x, y and z, respectively. Due to the assumption
of negligible rotationary inertia, the rotational degrees of freedom can be ignored in the
expressions for the incremental and total displacements of the consistent shell element
given by Equations 2.4 and 2.54, respectively. Therefore, the components of the virtual
global incremental displacements and those of the total global accelerations can be given
by the following equations:

13
5(Au) =Y N5 (AU,) (4.2)

n=1

13
8 (Av) =Y N 8 (AV,) (4.3)

n»l
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13
3 (Aw) =) N8 (AW,) (4.4)
n=1
13
d M=y N, U7 (4.5)
=1
3
vD=¥" N, VT (4.6)
a1
13
wn=Y" N W (4.7)

Pt

where ﬁn are the cubic interpolation functions as given in Appendix A; AU, , AV, and
AW, are the components of the incremental displacement degrees of freedom of the n®
node along the global directions x, y and z, respectively; U, V,T and V-‘.J,,T are the
components of the total acceleration of the n® node along the global directions x ,y and
z, respectively, at time T. Substituting Equations 4.2 to 4.7 into the expression of the
virtual work done by the inertia forces given by expression 4.1, leads to the inertia force

F, of the consistent shell element and is given by the following:

NEL
{FI}=E [Ms] 5145, {80554, (4.8)

where NEL is the number of elements.
The components of the mass matrix Mg¥ can be obtained by relating the indices

i and j to the variables k,, 1, ,k; and L, in the following manner:
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i=7#=(k,-1)+1, (4.9)

F=T*(k,~1) +1, (4.10)

In the equations above, k; and k, can take on values from 1 to 13, while 1, and
1, take on values from 1 to 7. The numerical values 13 corresponds to the number of
nodes per element while 7 relates to the number of degrees of freedom per node. Any
combination of k;, k,, 1, and 1, corresponds to certain values of i and j and defines M’
according to the following:
For 1,=4 to 7 and/or l,= 4 to 7 the corresponding Ms" =0; otherwise, the component

of the mass matrix is given by
uP=[N, B, 8(1,1,)p, h(s)ds (4.11)
S

where 8(1,1,) is the kroneker delta function, i.e. 8(l;1;) = 1 forl; = 1 and éQ,1) = 0 for
1, # 1,. The integration of Equation 4.11 is performed numerically by employing the
Gaussian Quadrature scheme in the r-s plane as given in Section 2-7.
4-2-2 Vibration Analysis using the Consistent Shell Element

The linear stiffness matrix of the shell element [K] is obtained by omitting the
terms which are multiplied by the initial strains u”;;* ® from the non-linear stiffness
matrix [K,] given in Chapter Two. Both the linear stiffness matrix [K,] and the mass
matrix [M,] are used to calculate the natural frequencies of a shell w, and the

corresponding mode shapes {q,} by solving the following equations:
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(LK, ~w?[M,]){gi={o}. (4.12)

The non-trivial solutior: of Equation 4.12 exists if the determinant of the coefficients

vanishes, i.e.

| [K,] -~ [M,] |=0. (4.13)
This is solved to obtain the natural frequencies of the shell and subsequently the mode
shape {q,}, typically for a limited number.

4-2-3 Non-Lirear Time History Analysis using the Consistent Shell Flement

In view of Equation 2.22, the incremental equations of motion for the non-linear

dynamic analysis which include both the inertia and the damping forces is given by

(M) {00+ () oD+ [kF D akD SV {A =R D-(FT k-12) (4.14)

where [C] is the viscous damping matrix; [K;] and [K;] are the non-linear stiffness
matrices; {F} is the unbalanced load vector as given in Chapter Two and {R} is the
external load vector. The implicit time integration of Equation 4.14 is performed using
Newmark’s method (see Bathe, 1982) with the implicitness parameters known as 8(=0.5)
and «(=0.25). Iterations are performed using the Newton-Raphson method within each
time step AT, until equilibrium is reached. Following the procedure described by Bathe
(1982), the incremental solution {AU} which corresponds to the k® iteration during the

time step AT, can be obtained by solving the following equation:
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[K*7 (k-1)] {AU=(rT}-{FT k-12}_ [Ms] (AT tk-12} [l {BT (k-1)}, (4.15)

The matrix [K'T*?] is an effective stiffness matrix of the following form:

[K-T (k-l)] = [KIT" (k—l)] + [Kg‘ {k-l}] + 4 [Ms] +

TOE icl. (4.16)

—2
(AT)
The vectors {AT ®"} and {B™ "} are updated after each iteration during the time step AT

and are obtained by the following:

-0y 4 -1)}_{rrT __4 (rT-Any_{rT-4
{Ar(kn}_ATz ({pT -1} (gT-a7}) AT{U -{g™4% (4.17)

{BT (K-n}="52'i'" {UT (-3 {gT-a7y] {gT-87) (4.18)

where {UT %1} is the vector which includes the total displacement degrees of freedom
after the (k-1) iteration for the current time T; {UT4T}, {U™7} and {U™T} are the
vectors of the total nodal displacement, the total nodal velocity and the total nodal
acceleration at the equilibrium configuration corresponding to the time (T-AT). Based on
the trapezoidal rule, the vectors {UT4T} and {U™T} are evaluated using the
displacements {UT%*T}, the velocities {UT27} and the accelerations {UT2T} which

correspond to the equilibrium solution at the previous time step (T-2AT) as follows:
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{U™-87)= [{yr-a7)-{yT-247)] %‘ ~{[jT-247) (4.19)

{O74%= (400287 2. (G724 . (4.20)

Similar to the solution procedure for the non-linear static analysis in Section 2-7,
the solution of Equation 4.15 proceeds iteratively duﬁng the load increment until
equilibrium is reached within a specified tolerance. The convergence criterion is based
on the energy tolerance which uses the ratio of the work done during the current iteration
to the work done during the first iteration.

4-2-4 Numerical Examples
4-2-4-1 Simply Supported Plate under Uniform Step Pressure

The simply supported square plate shown in Figure 4.1 has the following material
properties: Modulus of Elasticity E=10 psi (68950 MFa), Poisson’s ratio »=0.3 and
mass density p, =2.588*10* 1b sec¥/in* (2765.8 Kg / m® ). Using double symmetry, eight
consistent shell elements are used to model one quarter of the plate and the boundary
conditions along the edges of the quarter plate are described by the following equations:
u=v=w=a=¢=0 along AB
u=v=w=8=y=0 along BC
u=a=¢=0 along OA
v=B=y=0 along OC.

The mass matrix [M,] and the linear stiffness matrix [K.] of the quarter plate are

evaluated and incorporated into a free vibration analysis as described in Section 4-2-2,
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to give the fundamental period of the structure equal to 0.00108 sec. The vertical

fundamental mode shape zlong the centre line of the plate is displayed in Figure 4.2. The
same plate was analyzed by Saigal and Yang (1985) using a 48 D.O.F curved shell
element and the quarter plate was also modelled using four elements. The free vibration
analysis carried out by Saigal and Yang predicted a fundamental period equal to 0.00111
seconds which is very slightly higher than the consistent shell element result.

Using the consistent shell element, a large deformation dynamic analysis of the
plate subject to a uniformly distributed transverse step pressure of 300 psi (2.0685 MPa)
is carried out with a time step AT of 22.3 usec. The variation of the central deflection
of the plate with time is plotted in Figure 4.3. The corresponding deflections obtained
from a large deformation dynamic analysis carried out by Saigal and Yang (1985) using
the 48 D.O.F curved shell element are also given in the figure. From both the free
vibration and the non-linear time history analyses, excellent agreement of the results
obtained using both shell elements can be observed.
4-2-4-2 Cylindrical Shell under Impulsive Load

The cylindrical panel shown in Figure 4.4 has two free straight longitudinal edges
and two circular edges which are supported on diaphragms. The elastic material
properties of the shell are; Modulus of Elasticity E=3*10° psi (20685 MPa), Poisson’s
ratio »=0.3 and the weight density y,=37.5 psf (1.795 KPa). Again, using double
symmetry for the cylindrical panel, one quarter of the shell is modelled using eight
consistent shell element as shown in Figure 4.4, The rigid diaphragms and the double

symmetry lead to the following boundary conditions on the edges:
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u=w=a=¢=0 along BC

u=a=¢=0 along CD
v=8=y=0 along AD
while AB being a free edge involves no restraint condition.

A free vibration analysis is first performed for the panel using the consistent shell
element and the results are given in Table 4.1 and are compared with those obtained by
Clough and Wilson (1971) using a conforming plate element. Good agreement in natural
frequencies between the two analyses can be observed. The fundamental vertical mode
shapes along the two centre lines of the shell, which are obtained from the consistent
shell element analysis, are plotted in Figures 4.5 and 4.6.

The cylindrical panel is then subjected to a uniformly distributed half-sinusoidal
wave with a peak intensity 90 psf (4.3 KPa) as shown in Figure 4.4, The large deflection
dynamic analysis of the panel under the applied dynamic load is carried out using eight
consistent shell elements and a time step AT of 0.025 sec. The vertical deflection at point
A (see Figure 4.4) versus time are plotted in Figure 4.7. An alternative solution was
provided by Saigal and Yang (1985) using four 48 D.O.F. curved shell elements to
model one quarter of the cylindrical panel. The deflections of point A resulting from
their analysis is also presented in Figure 4.7. It can be observed that the two results are
very close indeed.

4-3 Hydrodynamic Pressure due to Seismic Excitation
Hydrodynamic pressure develops inside liquid-filled tanks when they are subjected

to a seismic excitation and acts as a dynamic force on the walls of the tanks. The
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dynamic pressure P, which results from an earthquake motion can be viewed as the sum
of two components as follows, i.e. Py;= P, + P;, where P, is the long period component
(convective) due to sloshing at the free surface of the fluid and P, is the impulsive fluid
pressure which varies in phase with the vibrations of the walls of the tank.

Previous studies concerning seismic analysis of liquid-filled cylindrical tanks
indicate that the fundamental sloshing frequencies are much lower than those of the
vibrating walls of the shell and, as such, the coupling between vibrations of the walls and
the sloshing action was usually neglected. In this study, the same assumption is employed
for liquid-filled conical tanks. Therefore, the surface waves at the top of the fluid are
neglected and only the impulsive hydrodynamic pressure P, is considered in the dynamic
analysis. The fluid inside the tank is assumed to be inviscid, incompressible and
irrotational, i.e. ideal fluid. This assumption is very reasonable for the case of a tank
filled with water. Previous studies on liquid-filled cylindrical tanks also indicate that the
flexibility of their walls has a major contribution to the impulsive pressure P;. The base
of the conical vessel is usually resting on a rigid diaphragm. Assuming that this base is
restricted from rocking, the displacements and consequently the accelerations will be
constant at all points on the base during a certain time T.

In view of the assumptions above, the hydrodynamic pressure P, resulting from
vibrations of a flexible conical vessel filled with water (see Figure 4.8), is governed by

the following set of equations and boundary conditions:
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V2p,(r,0,z, T} =0 inside the fluid volume @ (4.21)
an(r:ai, z D =-p, U(r,0,2,T).n  at the surface S,  (4.22)
P=0 at the surface 8§, (4.23)
aP;;T) =-p. U, (T).n at the surface S, (4.24)

where P, is the hydrodynamic pressure exerted in the tank in access to the hydrostatic
pressure; ii(r,8,z,T) is the acceleration vector at any point of the tank’s walls; n is the
unit vector normal to the surface of the tank; pp is the fluid density and u,(T) is the
acceleration vector at the base of the vessel. Surfaces §,, S, and S, are as shown in
Figure 4.8. The boundary condition given by Equation 4.24 implies that the dynamic
pressure at the surface S, (z=0) does not vary with the coordinates r and 6.

It is clear from the set of equations above that the fluid hydrodynamic pressure
P, depends on the acceleration of the walls of the tank. In turn, this pressure acts as a
force on the walls of the tank and hence affecis the acceleration of the structure.
Therefore, a fluid-structure interaction results and has to be considered to obtain a
reasonzble estimate of the seismic response of the liquid-filled tanks.
4-3-1 Boundary Integral Method to Obtain Hydrodvnamic Pressure

The boundary integral method was used by Haroun (1980) to obtain the
hydrodynamic pressure acting on the walls of a cylindrical tank due to a seismic

excitation. A similar approach is used here to obtain the hydrodynamic pressure for the
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case of liquid-filled conical tanks subjected to a seismic movement.

The general idea is to interpolate the dynamic pressure using shape functions
(modes) which satisfy the partial differential equation governing the initial value problem
and also the time-independent boundary conditions as applicable to the problem. The
amplitude of each mode is then obtained by satisfying the rest of the time-dependent
boundary conditions in an integral sense.

The solution of the partial differential equation given by Equation 4.21 was
derived by Haroun (1980), and is presented in Appendix G as a series solution.
Considering the terms which satisfy both the free surface boundary condition, given by
Equation 4.23, and the condition of constant dynamic pressure at the base resulting from
Equation 4.24, the hydrodynamic pressure can be interpolated using the linearly

independent functions H,, as follows:

N N
Pylzr,0,2z,T) =Y. ¥ A;, (D H, (x,0,2) +B(T) (z-h) . (4.25)

n=0 1=1
The shape functions H,,, a combination of Bessel’s function and transcendental

functions, are given in Appendix G as
Hip(r,0, 2z) =I (a;r) cos (a;z)cos (nd) (4.26)

where I are the modified Bessel’s functions of the first kind and the coefficients o;

depend on the height of the fluid in the tank h as
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_(2.1 1)5 (4.27)

The variational functional J for this initial value problem described by Equations

4.21 to 4.24 is given by

Jg=

T E—

[ [(¥P,.YP,) dv+[p, i1 Py dSIdt (4.28)
Q s

where {1 is the volume of the fluid inside the tank and S is the sum of the surfaces S,,

S, and S; which are shown in Figure 4.8.

Green’s Formula is applied to the first term on the right hand side of Tquation

4.28 to give the following expression:
= 1 apP
= = —d - ¥l 4.29
J't[[z{lpd - ds£pdvzpd dV}+£pFI_1.I_1 P, dSldt. (4.29)

Since the shape functions and consegquently the dynamic pressure P,, given by Equation
4.25, satisfy Equation 4.21 and the free surface boundary condition in Equation 4.23, the

variational functional J can be reduced to the following

J=Z[% f Pd——dS+ f p-d.n P, ds] dt. (4.30)

(5 +5,) (5,+5,)

Equation 4.25 is substituted into Equation 4.30 to obtain the variational functional
J as a quadratic equation in amplitudes A, (T) and B(T). The first variation of the

functonal J is taken for the extremum condition which leads to a satisfaction of the
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boundary condition on the surfaces S, and S,, given in Equations 4.22 and 4,24, in an
integral sense. This results in determination of the amplitudes Ay (T) and B(T) in terms
of the acceleration of the walls of the tank u(T). These amplitudes are then back
substituted into Equation 4.25 to obtain the dynamic pressure P, as a function of the
coordiziates r, 8, z and the acceleration u(T).

Assuming virtual displacements {8(Au)} and using the consistent shell element to
interpolate both the virtual displacements and the accelerations of the walls of the tank,
the virtual work done by the hydrodynamic pressure 8W can be expressed in the

following manner:

& w=5{A 0}™aNs [ pM) {TTT} (4.31)

where [DM] represents a fluid added-mass matrix which results from the fluid
hydrodynamic pressure. Its elements include both the interpolation functions used in the
consistent shell formulation and the mode shapes employed to interpolate the dynamic
pressure in the boundary element formulation.

In the following subsections, the fluid added-masses due to the horizontal and the
vertical seismic accelerations acting on the liquid-filled conical tanks are obtained, and
the effect of each added-mass on the stability of liquid-filled conical tanks is discussed.
It should be noted here that because the static analysis of liquid-filled conical tanks shows
more sensitivity to axisymmetric imperfections, the seismic study is also limited to

conical tanks which are either perfect or have axisymmetric deviation in geometry.
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4-3-2 Horizontal Excitation

4-3-2-1 Fluid Added Mass due to Horizontal Excitation

Due to horizontal excitation acting on a liquid-filled conical tank which is
prevented from rocking, the base of the tank has no movement in the vertical direction.

As a consequence, the boundary condition on surface S, is given by

8P,
——d- 4.32
3n ( )
To satisfy this boundary condition, the coefficient B(T) given in Equation 4.25
must vanish and hence the hydrodynamic pressure distribution can be simplified to the

following:

N, N

Py(r,0,z,T) =Y Y A, (T)H,;,(z,0,2). (4.33)

p=o i1

Also, the preliminary analyses have shown that only the cosf-type modes are excited due
to the horizontal acceleration applied to either a perfect tank or a tank with axisymmetric
imperfections. This result agrees with the numerical studies in the literature for liquid-
filled cylindrical tanks subjected to horizontal excitation. It should be noted that the
cos(nf) modes can be excited for tanks which have non-axisymmetric imperfections.

Hence, the expression for the dynamic pressure can be simplified tc the following:

R
Py(r,8,z.7)=Y A; (TVH;(£,8,2) (4.34)

i=1

where
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H,(r,8,2) =I, (a;r)cos(a;z) cos (8} (4.35)

The first four mode shapes (H;; to H,,) along the generator (§=0) of typical tall
and broad tanks, as described in Section 3.9, are plotted in Figure 4.9 and 4.10. The
resulting fluid added-mass matrix [DM]y due to a horizontal acceleration, based on
Equation 4.34, is derived in Appendix H.
4-3-2-2 Effect of a Horizontal Excitation on Comnical Tanks

As mentioned above, a horizontal excitation along the x-axis (see Figure 4.11)
results in a cosf-type variation of the hydrodynamic pressure in the circumferential
direction. This dynamic pressure distribution is symmetric about the x-axis. Its variation
about the y-axis leads to two resultant forces, P, normal to the surface of the tank. The
first resultant acts downward at a certain location on the generator defined by 8=0 and
the second resultant acts upward at a similar location on the generator defined by 6=180
as shown in Figure 4.11. These two forces exert a base shear and an overturning moment
at the base of the conical tank which might lead to plastification or to dynamic instability
of the tank.

4-3-3 Vertical Excitation
4-3-3-1 Fluid Added-Mass due to Vertical Excitation

When a liquid-filled conical tank is subjected to a vertical acceleration, the
expected motion of the tank and the resulting hydrodynamic pressure are axisymmetric.
Accordingly, the dynamic pressure given by Equation 4.25 can be simplified to the

foliowing:
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Ny
Pylr,z,T) =Y A;{T)H;,(x, 2) +B(T) (2-h) (4.36)

i=1

where the shape functions H,, are given by
H; (r,z)=I,(a,r)cos(a;z). (4.37)

The distribution of the first four shapes for H, (H,, to Hy, ) along the generator
of the tall and the broad tanks are shown in Figures 4.12 and 4.13, respectively. These
mode shapes are used to derive the fluid added-mass [DM],, resulting from a vertical
acceleration, as given in Appendix L.

4-3-3-2 Effect of a Vertical Excitation on Conical Tanks

A vertical acceleration acting on a liquid-filled conical tank is expected to lead to
an axisymmetric dynamic pressure distribution as shown in Figure 4.14. Due to this
dynamic pressure, upward and downward vertical accelerations will exert added
compressive and reduced compressive meridional forces on the tank, respectively. Thus,
unlike the case of liquid-filled cylindrical tanks, the vertical acceleration is expected to
have an important contribution on the dynamic stability of a liquid-filled conical tank
and, therefore, it is important to consider the vertical component of an earthquake when
performing seismic analysis of liquid-filled conical tanks.

4-4 Dynamic Formulation of the Liquid-Shell System
4-4-1 Free Vibration Formulation of the Liquid-Shell System
The natural frequencies w, and the corresponding mode shapes {q,} of the liquid-

shell system can be obtained by solving the following matrix equation:
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([X,] -w? M ){g={o} (4.38)

where the matrix [M] is the effective mass matrix of the liquid-shell system and is given

by the sum of the mass matrix of the structure [Ms] and the fluid added-mass matrix

[DM] as
[M] = [M]) + [DM] . (4.39)

Now, the fluid added-mass [DM] is either [DM]; or [DM]y depending on whether lateral
or vertical natural frequencies are sought, respectively. An evaluation of these mass
matrices is described in Sections 4-3-2-1 and 4-3-3-1.

The solution of equation 4.38 proceeds as described in Section 4-2-2. It should
be noted that the free vibration analysis is based on the linear stiffness matrix [K.] and,
as such, it does not take into account the change in the stiffness of the tank due to the
effect of both the stresses resulting from the hydrostatic pressure and the geometric
imperfections. However, the free vibration results give an insight into the time step
which can be used to perform time history analysis. They also provide a guidance in
choosing an input ground motion which contains the liquid-filled tank fundamental
frequencies in its dominant frequency range. It is pointed out here that a free vibration
analysis can be performed through usc >f the total mass matrix, i.e . [M] + [DM], +
[DM},. However, the purpose here is to determine a reasonable range of the frequencies
of the liquid-shell system. Therefore, a decoupled analysis in terms of the mass matrix
for horizontal and vertical motions, as described earlier, seems reasonable and hence is

employed here,
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4-4-2 Non-Linear Time History Analysis of Liquid-Shell System due to Seismic

Motion

The non-linear dynamic equations of motion for a liquid-shell system subject to
both horizontal and vertical components of a ground motion are given by
[ {0+ () (0D [&F * D ok F 0 {A g =(RD-{FT *-V}- (M) (H)af- (M {VIa]l.

(4.40)
The effective mass matrix [M] is the sum of the structure’s mass and the fluid added-

mass matrices due to both the horizontal and vertical accelerations, i.e.
[M] =[M] + [DM] ,+ [DM] ,,. (4.41)

The sum of the matrices [K, + K] represents the tangential stiffness matrix
K1l The damping matrix [C] appearing in Equation 4.40, is obtained using the
Rayleigh method, as a linear combination of the effective mass matrix [M] and the
tangential stiffness matrix [Kq,], i.e.

[C] =a (M) +B (K] . (4.42)

The coefficients « and £ are obtained by solving the following equations:

a+foi=2w E, (4.43)

a+fwi=20,E, (4.44)

where w,, §, and ,, £, are the frequencies and the damping ratios for the first and the

second mode shapes, respectively, of the liquid-filled tank. Other terms in Equation 4.40
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are the vectors {AU}, {UT} and {U"} which represent the incremental nodal

displacements, the total nodal velocities and the total nodal accelerations relative to the
ground motion. The load vector {R"} results from the hydrostatic pressure acting on the
walls of the tank while the terms a,* and a," are the components of the ground
acceleration in the horizontal and vertical directions, respectively, at time T. Finally, the

vectors {H} and {V}, which correspond to the consistent shell element, are given by

(51 00 00001000000. ..10000 0 0}(4.45)
(V¥ (01 000000100000, . .01000 0 0}{4.46)

In view of equation 4.15, the incremental solution {AU} corresponding to the k*

iteration of a time step AT can be obtained by solving the following equations:

[K°T -1 | {A ph=RT-FT k-1~ [M]{AT -0} [0]{BT 50} (M) {H}a - [M] {Waf.
(4.47)
Note that the vectors {AT®V} and {B"®"} are defined by Equations 4.17 and 4.18 while
the effective stiffness matrix [K™™ ®¥] can be obtained from Equation 4.16 by replacing
the shell element mass matrix [Mg] by the effective mass ma‘rix [M].
In order to obtain the non-linear time history of a liquid-filled tank subject to
seismic motion, the following procedure is followed:
nstant Quantities at of Solution
The following quantities are evaluated at the beginning of the solution and are

kept constant through the subsequent time steps.
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The fluid added-masses [DM], and [DM], are evaluated using the procedure

described in Appendices H and I and are added to the mass matrix of the tank
[Ms] to obtain the effective mass matrix [M].

The load vector {RT} due to the hydrostatic pressure acting on the walls of the
tank, is calculated when it is filled with water, i.e the load vector corresponding
to a load factor p=unity as described in Section 3.8.

Using the first two frequencies w; and w,, obtained from the free vibration
analysis of the liquid-filled tank, the coefficients o and 8 are evaluated by solving

Equations 4.43 and 4.44.

Quantities Updated at each Time Step

The components of the input ground acceleration ay and ay are updated at each
time step according to the time history of the applied earthquake. The
accelerations a,T and a,” are multiplied by the quantities [M]{H} and [(M]{V},
respectively, to obtain the load vectors resulting from the ground motion at time

T.

Quantities Updated at each Iteration

a)

b)

The stiffness matrices K,T ® and K™ ®? and the unbalanced load vector F* %"
are updated at each iteration as described in Section 2-7.

The vectors {AT ®P} and {BT "} are also updated at each iteration using
Equations 4.17 and 4.18, respectively. -

The stiffness matrices K, T ®? and K ' ®? are added together to obtain the

tangential stiffness matrix Ky, " which is substituted in Equation 4.42 to obtain
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the damping matrix [C].

The solution of Equation 4.47 proceeds iteratively during each load increment
corresponding to the time step AT until equilibrium is achieved as described in Section
4-2-3. A non convergent solution at any iteration during the time history of the
earthquake is an indication of dynamic instability due to the stiffness deterioration caused
by yielding of the material and/or localized buckling. This means that the design of the
tank being analyzed is expected to be unsafe under the applied seismic excitation.

4-4-3 Free Vibration Analysis of Liquid-Filled Cylinders

The natural frequencies of a number of cylindrical tanks which are filled with
liquid and subjected to both cosf-type and axisymmetric vibrations were determined
numerically by Haroun (1980) and Haroun and Tayel (1985b). The numerical model used
by Haroun had been verified by comparison with tests results (Haroun 1980). Since
cylindrical tanks can be viewed as spscial conical vessels having equal top and bottom
radii, the boundary integral formulation vsed for the analysis of liquid-filled conical tanks
can be checked by evaluating the fluid added-mass matrices [DM], and [DM]y for the
cylinders considered by Haroun using the procedures outlined in Appendices H and I,
respectively. These matrices are then incorporated into the eigen value analysis as
described in Section 4-4-1 to evaluate the natural frequencies of such liquid-filled
cylinders due to cosf-type (horizontal excitation) and axisymmetric (vertical excitation)
vibrations. Results of the free vibration analyses are presented in the following

subsections.
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A cylindrical tank with radius (R) and height (H) equal to 24" (7.32 m} and 72°
(21.95m), respectively, is assumed tc be filled with water (p,=0.94*10"* ib.sec? /in,
1000 Kg/m? ). The tank is made of steel with p, = 0.733*10° Ib.sec¥in* (7833 Kg/m?),
E=30*10° 1b/in? (2.068*10° MPa ) 2nd »=0.3. Three different values for the thickness
(t) of the tank are assumed as given in Table 4.2. The fundamental natural frequencies
of the cosf-type vibration of the cylinders are obtained by modelling the wall of the tank
using the consistent shell element and evaluating the fluid added-mass [DM], as given
in Appendix H. The calculated natural frequencies are tabulated in Table 4.2 and are
compared to the corresponding frequencies given by Haroun (1980). Excellent agreement
can be observed, thus verifying the formulation of the added-mass matrix [DM],.
4-4-3-2 Natural Frequencies of the Axisymmetric Vibration of Cylin

Three steel cylindrical tanks of the same material properties described above and
having the dimensions given in Table 4.3, are assumed to be filled with water and
subjected to an axisymmetric vibration. The steel shells are also modelled using the
consistent shell element. Meanwhile, the fluid added-mass resulting from the
axisymmetric vibration [DM]y is evaluated as presented in Appendix I and added to the
mass matrix of the shell. The eigen value analyses of the liquid-filled cylindral tanks
lead to the fundamental natural frequencies given in Table 4.3. In addition, free
vibration analysis results are piesented for the empty cylindrical tanks. These are
compared, once again, to the corresponding values given by Haroun .and Tayel (1985b).

Again, excellent agreement can be observed which then verifies the accuracy of the
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formulation of the added-mass matrix [DM]y,. It should be mentioned here that for this

particular example, the base of the tank is assumed to be restrained from any vertical
motion. This leads to the requirement that the coefficient B(T) in Equation 4.36 must
vanish in order to satisfy the condition of zero acceleration normal to the base of the
tank. |
4-5 Seismic Analysis of Elevated Liquid-Filled Conical Tanks
4-5-1 Modelling of Tanks

As previously mentioned in Section 3-7, elevated conical tanks usually consist of
a steel vessel which is supported by a circular steel plate resting on a heavily reinforced
concrete slab supported in turn by a reinforced concrete tower. In practice, the steel
vessel usually consists of a short cylinder superimposed on a cone. Similar to what was
done in the static analysis, the cylindrical part is omitted in the dynamic analysis and a
full cone steel vessel is considered in the finite element modelling. This simplification
is reasonable since the critically stressed area is near the bottom of the tank. Due to the
presence of a heavily reinforced concrete slab underneath the steel vessel, the base of the
vessel can be assumed infinitely rigid and hence can only tilt as a rigid body rotation due
to differential axial deformation between the extremities of the concrete tower. For this
study, the conical vessels are assumed to be resting on four rigid frames. (See Figure
4.15). The tilting at the base of the vessel can be neglected due to the rigidity of the
frames in the axial direction relative to the lateral direction. As such, the supporting
tower can be replaced by horizontal and vertical springs as shown in Figure 4.16. The

stiffness of the horizontal spring k, is obtained by applying a horizontal force F, at the
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top point of one of the rigid frames and using a plane frame program to calculate the

corresponding lateral deflection A, at that point. The stiffness k, is then given by

X
k,= . (4.48)
Meanwhile, the stiffness of the vertical spring k, is directly given by
_4FEA
k=== (4.49)

where E is the modulus of elasticity of the concrete; A is the cross sectional area of the
columns of the frames and L is the height of the frames.

In the dynamic analysis, both the walls and the base of the tanks are modelled
using the consistent shell element. For the free axisymmetric vibration analysis, double
symmetry exists and therefore twenty six elements are used to model one quarter of the
tank as shown in Figure 4.17. For the cases of non-linear time history and lateral free
vibration analyses, only symmetry about the axis of excitation exists. As such, one half
of each tank is modelled using fifty twe elements, forty eight of which are needed to
model the walls and four elements for the base. The finite element mesh employed is
shown in Figure 4.18. It can be observed from the figure that a finer mesh is used at the
bottom region of the tank where buckling is anticipated for the case of uniform thickness.
The element lengths at the bottom region are chosen to be smaller than one quarter the
buckling wave length resulting from the static analysis.

Due to the rigid dia» '‘ragm action of the reinforced concrete slab, the

displacement degrees of freedom of different nodes at the base of the tank are all
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assumed to be equal, when directed along the same axis. The rotational degrees of
freedom at the base are resiricted because of the bending rigidity of the underlying
reinforced concrete slab. As was thic case for the static analysis, the rotational restraint
at the weld between the base plate and the wall of the tank is neglected and hence the
wall of the tank is assumed to be free to rotate at its connection to the base.

It should be also noted that in the stiffness formulation of the structure, the
stiffnesses of the horizontal and vertical springs, simulating the supporting rigid frames,
are added to the stiffness terms which correspond to the horizontal and vertical nc;dal
displacements at the base plate.

4-5-2 Stiffness Values for Supporting Towers of Tall and Broad Tanks

In order to perform seismic analysis for both the tall and the broad tanks
described in Section 3.9, it is necessary to determine the stiffness of the springs k, and
k, which simulate the supporting tower as described in Section 4-5-1. The preliminary
analyses show that the fundamental frequencies of both the tall and the broad tanks are
relatively high. This means that such structures will be more excited when subjected to
an earthquake having a high peak acceleration to peak velocity ratio (a/v). According to
the National Building code of Canada NBCC (1990), Quebec city is located in an active
seismic zone which can expect such an earthquake type of motion. Based on this, it is
assumed that the tall and broad tanks are located there. Consequently, the reinforced
concrete supporting frames of both tanks have to be designed to withstand the flexural
stresses resulting from either the seismic load or the wind pressure intensity for that

location, and in accord with the NBCC (1990). In addition, they must resist direct



155

compressive stresses due to the weight of the liquid, the self weight of the shell and the
snow load on the roof. The heights of the supporting towers for tall and broad tanks are
assumed to be 10 m and 6 m, respectively.

Some preliminary analyses show that for both the tall and broad tanks, the
induced flexural stresses due tc the seismic motion are much larger than those resulting
from the wind pressure. The dimensions of the reinforced concrete frames for each tank
are chosen based on the maxim::m compressive strength of concrete, assumed to be 13.3
MPa (based on 33.3% of a 28 day nominal compressive strength of 40MPa). Using the
moment of inertia and the cross sectional area values that confirm safe design for the
supporting rigid frames, the stiffnesses of the horizontal and the vertical springs for
modelling are calculated for each tank as described in Section 4-5-1 and are given by:
For Tall Tanks
k, = 0.708*10° N/m, k,= 2.33*10'° N/m
For Broad Tanks
k= 0.220*10° N/m, k,= 0.765*%10'° N/m
4-5-3 Free Vibration Analysis of Tall and Broad Tanks

Constant thicknesses of 12 mm and 9.6 mm are chosen for the tall and broad
tanks, respectively. The other dimensions of the tanks (r,, h and 8,) as well as the
material properties are the same as given in Section 3-9. The tanks are assumed to be
filled with water (p,= 1000 kg/ m* ). To perform the free vibration analysis, the two
tanks are modelled using the consistent shell element as described in Section 4-5-1, while

the stiffnesses of the horizontal and vertical springs, replacing the supporting frames, are
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given in Section 4-5-2. Also required are the fluid added-masses [DMJy and [DM]y

which are obtained for each tank following the procedures described in Appendices H
and I. Each added-mass is then individrally incorporated into the free vibration analysis.
to obtain the natural frequencies of the tanks due to horizontal and vertical vibrations.

The results of the free vibration analyses show that considering only the first four
modes of the pressure functions H, and H;;, i.e. i=1 to 4, gives sufficiently accurate
values for the natural frequencies of the first four modes of vibration. This has been
confirmed by considering only the first three pressure modes in the free vibration
analysis, since the results remained almost the same as those obtained by including the
fourth pressure mode. The natural frequencies from the free vibration analyses of both
tanks using four pressure modes are shown in Tables 4.4 and 4.5. The horizontal and
vertical components of the fundamental mode shapes for both the cosf-type and the
axisymmetric vibrations are plotted along the generator of the tall tank in Figures 4.19
and 4.20, respectively. The fundamental mode shapes along the generator of the broad
tank are presented in Figures 4.21 and 4.22. Although there are no results available in
the literature for comparison, the mode shapes appear very reasonable.

4-5-4 Time History Analvsis of the Tall and Broad Tanks

4-5-4-1 Choice of an Input Ground Motion

Non-linear time history analysis of both the broad and tall conical-shaped
reservoirs filled with water are performed using the San Fernando, California, Feb. 1971
earthquake as the input ground motion. In this study, the S21W component of the

earthquake which was recorded at Lake Hughes St.4, is used as a horizontal excitation
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along the x-axis (Figure 4.11), while the vertical component of the same record provides
vertical accelerations for the tanks. The reason for choosing this particular record as an
input ground motion for the tanks is that the dominant frequencies of this earthquake
contain the fundamental modes of vibrations of the tanks which are given in Tables 4.4
and 4.5. The acceleration time histories as well as the response spectra for this record
are given by Naumoski et al. (1988).

The two components of the acceleration records of the San Fernando earthquake
are scaled down such that the maximum velocity of the input record is equal to the zonal
velocity of Quebec city as specified in the NBCC (1990). This leads to a maximum
horizontal and vertical accelerations equal to 0.28 g and 0.167 g, respectively, where g
is the acceleration due to gravity. Only the strongest six seconds of the records are used
in the analyses because of the very long computer time associated with this type of time
history analysis problem. The response spectra of the earthquake as well as the scaled
horizontal and vertical accelerations are shown in Figures 4.23 to 4.25.
4-5-4-2 Non-Linear Time History Analysis

Non-linear time history analysis of seven elevated conical tanks filled with water
and subjected to the horizontal and the vertical components of the San Fernanado, 1971
earthquake are performed. The dimensions of the seven tanks (DB1 and DT1 to DT6)
as well as the magnitudes of the axisymmetric imperfections, assumed to exist in the shell
structures before loading, are given in Table 4.6. The wave length of the imperfections
is taken equal to the buckling wave length of the perfect structure resulting from the

elastic static analysis as shown in Section 3.10. This is deemed to result in a conservative
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estimate of buckling resistance for the shell.

Based on the static analysis described in Chapter Three, the prescribed dimensions
listed in Table 4.6 provide safe designs for these tanks under hydrostatic load. The static
analysis yields a critical load factor p., which implies that the hydrostatic pressure can
be multiplied by any value up to this value prior to the tank becoming unsafe. The load
factors p,, are tabulated in Table 4.6 from which it can be observed that p,, depends on
both the tank thickness and the magnitude of imperfections existing in the tank.

The seven tanks are modelled using the consistent shell element as described in
Section 4-5-1. The spring constants which simulate the supporting shaft of the broad tank
(DB1) and the tall tanks (DT1 to DT6) are as given in Section 4-5-2. The fluid added-
mass matrices [DM),; and [DM], for both the broad and tall tanks, are calculated
following the procedures in Appendices H and I, respectively. Both [DM]y and [DM]y
are added to the mass matrix of the shell to obtain the effective mass matrix [M]. To
evaluate the damping matrix [C] as a linear combination of the tangential stiffness matrix
[K:] and the effective mass matrix [M], the frequencies of the first two modes of
vibrations must be known. For tanks DB1 and DT1 to DT3 the first two frequencies can
be obtained from Tables 4.4 and 4.5, respectively. The free vibration analyses are
performed for tanks DT4, DT5 and DT6 resulting in the following values for the first
two frequencies:
f;=2.63 (cps), f,=3.52 (cps), (for tank DT4)
f;=2.68 (cps), f,=3.50 (cps), (for tank DT5)

f,=2.83 (cps), £,=3.47 (cps), (for tank DT6).
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Assuming a 2% damping for the first two modes of vibration, the coefficients o
and S are evaluated for each tank through Equations 4.43 and 4.44 and then the matrix
[C] is obtained using Equation 4.42.

A time step At of 0.02 sec is used in the analysis and at each time step the
horizontal acceleration a, and the vertical acceleration a, of the ground motion are
obtained according to Figures 4.24 and 4.25, respectively. It should be noted that a AT
of 0.02 sec is much smaller than any of the fundamental periods of the tanks. As
mentioned previously, the external load which is acting on the tank at each load
increment consists of the inertia force due to the ground acceleration as well as the
hydrostatic pressure (with multiplication of a load factor equal to unity).

4-5-4-3 Discussion of Results of Analyses

Results of the time history analysis are presented at different horizontal cross
sections at the location shown in Figure 4.26. At each cross section the response at three
points corresponding to §=0°, §=90° and 6=180° are coasidered. (See Figure 4.26). It
should be noted here that in the time history plots, the response at T=0 corresponds to
the effect of the hydrostatic pressure before applying any seismic load to the structure.

In Figure 4.27 horizontal, vertical, transverse meridional and axial displacements
of tank DT1 along the generator (#=0°) of the tank are displayed. In this figure, the
dotted plots represent the displacement shapes resulting from the static load while the
solid lines show the displacements just prior to dynamic instability. From the plots it can
be observed that the dynamic buckling which is localized at the bottom of the tank has

the same pattern as that of the static displacements. Also to be noted, are the large
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horizontal and vertical movements at the upper region of the tank due to the seismic
motion. In Figure 4.28, the same displacements are plotted along the generator (§=18(F)
of the tank. The displacement plots show no evidence of buckling along that generator.
This means that the buckling is localized near the base and is confined to the region
subjected to high compressive axial stresses resulting from the overturning moment.
The response of the tall tank DT5, which survived the earthquake without any
inelastic behaviour is presented in Figures 4.29 to 4.43. The relative displacements along
the x-axis at sections 1-1, 2-2 and 3-3 are displayed in Figures 4.29, 4.31 and 4.33,
respectively, for §=0°, 6=90° and #=180°. It can be noted from these plots that the
horizontal displacement takes the cosé-type variation, i.e. no out of roundness effect is
noticed at any section of the tank. In Figure 4.30, 4.32 and 4.34, the vertical
displacements relative to the ground motion are also presented at sections 1-1, 2-2 and
3-3, respectively, foi ¢=0°, §=90° and 6=180°. It is ir.portant to point out that the
response at §=90°is only due to the vertical acceleration, while the response at 6=0° and
6=180° results from both the vertical and the horizontal accelerations. It can be seen
from the figures that the vertical displacements resulting from the horizontal excitation
are larger than those resulting from the vertical excitation, especially at the top section
of the reservoir. It is also interesting to note that the vertical displacements at section 2-2
(6=90°) are slightly larger than those at section 1-1 (§=90°). This is in correspondence
with the fundamental mode shape resv:*ing from the vertical acceleration which has a
peak value in the middle region of the tank as shown in Figure 4.20. Also, the plots of

the vertical displacements at §=0° and 6=180° show the coupling effect between both the
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vertical and the horizontal excitations especially at sections located in the bottom region
of the vessel. The meridional stresses at section 4-4 (bottom section of the vessel) are
plotted in Figure 4.35 for 6=0°, §=90° and #=180°. Similar to the plots for vertical
displacements, the results for stresses at §=90° are only affected by the vertical
acceleration, while the stresses at #=0° and §=180° are due to both the vertical and the
horizontal components. From the plots of the stresses, it can be observed that the
maximum stresses induced at the bottom section of the tank by the vertical acceleration
are almost 32% of the maximum stresses induced at the same section by the horizontal
accelerations. It can also be observed from the plots that the stresses in the critical region
due to the seismic motion are larger than those resulting from the hydrostatic pressure.
In Figure 4.36, the time history of the base shear, normal force and overturning moment
at section 4-4 (the base of the tank) are plotted. The normal forces are due to the effect
of the vertical acceleration, while both the base shear and the overturning moment result
from the effect of the horizontal acceleration. By simple calculation, the absolute base
shear Q_,,, normal force N,,, and overturning moment M_,, are found to be related to
the maximum ground horizontal acceleration (a; = 0.28 g) and the maximum vertical
acceleration {(ay = 0.167 g) through the mass of the fluid inside the tank Mg as follows:
Q.. = 0.53 Mg a, and N, = 2.70 M; a,. These resuits suggest that more than half
the fluid acts as a rigidly connected mass causing base shear and overturning effects.
Meanwhile, a factor of 2.7 amplifies the fluid mass under vertical acceleration thus
adding the equivalent of about 45% (2.7*0.167) to the hydrostatic effect at the base of

the cone.
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The effect of the flexibility of the supporting tower in amplifying the ground

motion is shown by plotting the relative displacements at the base of the vessel (section
4-4) in Figure 4.37. It can be concluded from the plots that the relative vertical
displacements are very small which means that the supporting frames are very rigid in
their axial directions. The relative horizontal and vertical accelerations at different
locations for the tank DTS5 are plotted in Figures 4.38 to 4.40, from which it can be seen
that maximum horizontal and vertical relative accelerations of about 0.50 g and 0.75 g
are obtained.

The time history of the dynamic pressure resulting from the horizontal excitation
is plotted in Figure 4.41 at §=180" for different sections of tank DTS. In Figure 4.42,
the time history of the dynamic pressure due to vertical excitation is plotted at the same
sections. Comparison of the numerical values indicates that the absolute value of the
dynamic pressure resulting from the vertical acceleration is larger than the one resulting
from the horizontal acceleration. Figure 4.43 shows the pressure distribution along the
generator of tank DTS5 (#=180°). Figure 4.43(a) shows the distribution of the absolute
dynamic pressure resuiting from the norizontal acceleration (at T=5.46 sec), while the
absolute dynamic pressure due to vertical acceleration (at T=35.1 sec) is displayed in
Figure 4.43(b). In Figures 4.43(c) and 4.43(d), the absolute total dynamic pressure
resulting from both the horizontal and the vertical excitations are plotted at T=5.46 sec
and T=5.1 sec, respectively. It should be noted that in the last figures the dotted lines
represent the hydrostatic pressure distribution. From these figures, it can be concluded

that the value of the total dynamic pressure is always less than the hydrostatic pressure,
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This means that no suction pressure is expected to happen at any point of the structure.

Despite the occurrence of early plastification in the broad tank DBI, it has
survived the six seconds of the ground input acceleration. The results are presented in
Figures 4.44 to 4.51. Similar response observations are found for DBI as noted above
for tank DT5. The former has sstained noticeably smaller values for displacements and
stresses due to the seismic motion. However. the behaviour of the tark is not affected
by the plastification which is localized at the very bottom region of the tank. Based on
the absolute values for the base shear, the normal force and the overturning moment
given in Figure 4.44, equivalent mass values of 0.25 M; for Q_,, and 2.52 Mg for N,
are obtained. It is obvious that the broad tank is subjected to somewhat less vertical force
from the acceleration component a, than does the tall tank, However, the base shear is
very much reduced.

The results from the time history analysis are summarized in Table 4.6. The last
column denotes the most critical state experienced by the structure during the six seconds
of record. The term "safe" denotes that the tank has survived the earthquake motion,
while the tanks which have suffered from dynamic instability during the six seconds of
the input ground motion are described by the term "failed”. Tn the same column, tanks
which have a complete elastic response during the record are described by "elastic”,
while the term "plastification” denotes the tanks which have an inelastic response during
the seismic motion.

In light of the static limit load factor p,, tabulated in the seventh column of Table

4.6, the following observations can be concluded from the dynamic analysis:
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Broad tanks are much less critical to seismic load than tall tanks. This is

concluded from the fact that a limit load factor of 1.5 provides a safe design for
the broad tank DBl under the input ground motion, in spite of the early
plastification which occurred in the tank. Meanwhile, the same seismic excitation
applied to the tall tank DT3 leads to dynamic instability of the tank, despite a
high load factor of 2.25.

The results of the analyses of tanks DT4, DTS5 and DT6 show that under 2
seismic excitation which has the frequency content of the fundamental modes of
the tall tank and has a maximum acceleration equal to 0.28 g, a load factor under
static conditions of 2.8 has to be provided to assure the safety of the structure
from dynamic instability, with a full elastic response. Meanwhile, a load factor
of 2.65 leads to a safe inelastic response of the tall tank under the same
excitation. These load factors can be achieved either by increasing the thickness

of the tank or assuring a lo. = level of imperfections in the tank.
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Mode 2 3 4
Present Solution 9.974 24.00 36.06 50.3
9.777 24.09 34.08

ll Clough (1971)

45.95 H

Table 4.1 Natural Frequencies w (rad/sec) of a Cylindrical Panel

Thickness t f (cps) f (cps)
(mm) Present Analysis Haroun (1980)
25.4 5.35 5.31
10.92 3.609 3.56
7.32 3.00 2.93

Table 4.2 Cos 8-Vibrations for Cylindrical Tanks

(R=7.32 m , H=21.95 m)
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F e —
Tank Empty Empty Full Full
Dimensions Current Study Haroun and Current Study Haroun and

(m) Tayel (1985b) Tayel(1985b)

“ f (cps) f (cps) f (cps) f (cps)

R=7.32 57.19 57.8 6.92 6.86

H=21.95

R=7.32 83.58 83.96 10.26 10.11

H=14.64

R=18.29 44.0 44.41 6.442 6.40

H=12.19

(t=25.4 mm)
Table 4.3 Axisymmetric vibrations for Cylindrical Tanks.
r, (m) h {m) 6, t (mm) | Model | Mode Mode 3 | Mode 4
3.0 9.0 45 12 2.51 3.54 6.67 12.04
3.0 4.5 60 9.6 3.21 4,37 7.61 10.35

Table 4.4 Natural Frequencies f (cps) of Conical Tanks due to Horizontal Excitation.
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r, (m) h (m) 8, t(mm) | Model | Mode2 | Mode3 | Mode 4
3.0 9.0 45 12 7.44 14.95 19.06 24.46
3.0 4.5 60 9.6 8.12 13.52 15.46 31.35

Table 4.5 Natural Frequencies f (cps) of Conical Tanks due to Vertical Excitation.

Tankm r,(m) | h(m) 6. t (mm) | Imperf. Pee Re,s:;_-sm=====
(mm) description.
DBI1 3.0 4.5 60 9.6 9.6 1.5 Safe (plastic)
DT1 3.0 9.0 45 12.0 12.0 1.4 Failed (plastic)
DT2 3.0 9.0 45 12.0 3.0 2.1 Failed (plastic)
DT3 3.0 9.0 45 12.0 0.0 2.25 Failed (plastic)
DT4 3.0 9.0 45 13.5 0.0 2.65 Safe (plastic)
DTS5 3.0 9.0 45 14.0 0.0 2.8 Safe (elastic)
DTé6 3.0 9.0 45 16.0 7.0 2.8 Safe (elastic)

* Please Refer to Figure 3.11 for the Notations Description.

Table 4.6 Results of the Time History Analyses for Conical Tanks.
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Figure 4.1 Simply Supported Plate Subjected to Uniform Step Load.



169

®

Figure 4.2 Fundamental Vertical Mode Along Centre Line
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Figure 4.3 Central Displacement of a Simply Supported Plate
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Figure 4.4 Cylindrical Panel Subjected to a Sinusoidal Load.
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Figure 4.8 Coordinate System for the Hydrodynamic Pressure Formulation.
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Figure 4.11 Effect of the Horizontal Acceleration on Conical Tanks.
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Dynamic Pressure Distribution

Figure 4,14 Effect of the Vertical Acceleration on Conical Tanks.
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Figure 4.15 Frames Supporting the Steel Conical Vessels.

Figure 4.16 Springs Simulating the Supporting Frames.
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Mesh for the Base

Figure 4.17 Finite Element Mesh for Dynamic Analysis (Quarter Cone).
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Mesh for the Base

Figure 4.18 Finite Element Mesh for Dynamic Analysis (Half Cone).
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Figure 4.26 Sections at which Dynamic Results Are Displayed.



—
'
1

[\ V]

—
(=]
-..__'__L..-.-l

Distance S (m)
m

0 6 12 18 24

(a) Horizontal displacement (mm)

Static.

—_
F-N
-1

-
(&
T

o
T

Distance S (m)

L R Y Y § L L

0 o ] 1 ]
0 8 16 24 32 40

(c) Transverse displacement (mm)

188

o P »~
T 1 1

Distance S (m)

¢
T
il L T, ___....--O""..

e

N
1
EPLL™

0 sre 1 ] | J

0 -6 =12 —-18 -24 -30
(b) Vertical Displacement (mm)

Fallure due to Dynamic.

Distance S (m)

(d) Axial Displacement (mm)

Figure 4.27 Displacement shapes Along the Generator (6=0°) of Tank DT1

at Failure.



E-N

N
vy

-
o,

Distance S (m)
B,

'.-u.....mo.--

|
-
r

1

|

(a) Horizontal displacement (mm)

s a —
s w0 jo) 38 +
T I I i 1

Distance S (m)

Y
1

0

5

10

15

—————

-
Rmmammaa

-
== ]

-24 -18 -12
(c) Transverse displacement {mm)

-6

6

— -t -
o K ~

FPLPETT L CTTTr

Distance S (m)

o

189

resa.

-
.

=

-6 0 6 12

(b) Vertical Displacement {(mm)

14

12

-
O

Distance S (m)
(o]

Failure due to Dynamic.

(d) Axial Displacement (mm)

Figure 4.28 Displacement shapes Along the Generator (9=180°) of Tank DT1

at Failure.



|
% /\/\f\vl\vnvf\v \f/\ | /\/\” | M\ o
i

Figure 4.29 Time History of the Relative Displacements Along the X-—Axis



191

o
£ 'oF | |
£ T W ﬁ m {\ ﬂTime (sec)
E 0_/\[\/\ 1 [\ 1 L
(TR L v i A I L A W A W A W . "
£ 10‘ U vV Y U
@ _yp}-
JUVVVY
2 20 b
-25 & 6 = 180°
5.0 ¢

2.5

! - ! 1 Time (sec)

Displacement (mm)
=]
(=]

15
fé\ 10
=0 Time (sec)
~ ime (sec
E 0-' /\/\[\f\l/\/\/\ il 1 ]
o -5 !Il;\l\UIAQJ\IU-Il L, | | 1
ENATATA J
o -15F U
w
5 -20

-25tL g=0

Figure 4.30 Time History of the Relative Vertical Displacements
at Section 1—-1 for Tank DT3.



192

15
’g 10 k-
E
T °T
@ .
g ° 1/\\ !\1‘ A —rA\V/:\ At . . InéTlme (sec.)
AV VVY
a
2 -0t
_ys L 6 = 180°
15
E 10}
S
~ s
c
g 0 Time (sec.)
@ ! 6
8 -S5r
o
2 1o b
8
-1s L 6 = 90°
15 (
E 1o}
L 5 s
s /\ [\ AW A=) /\ N .
£ 0 O A A W WA . B 7 B gttt Time (sec)
o ¢ V 2V Vb U USV v 6
Qo
o -5t
&
2 —10f
s L 6 =0
Figure 4.31 Time History of the Relative Displacements Along the X—Axis

at Section 2—-2 for Tank DT5.



193

T [\ | Tim'e (sec)

r"AnAAAnﬂ\w/ +

Displacement {mm)

PO
=15 = g = 180°
T

Time (sec)

Displacement (mm)
(=

IR TV N R
VAT e

Displacement (mm)
ﬂo
—
=
< |
)
»
>
>

~15 &

Figure 4.32 Time History of the Relative Vertical Displacements

at Section 2-2 for Tank DT5.



194

5.0
T 45
E s0f
= s}t n ﬂ
E 0.0 ANA_ A ! L Time (sec.)
5 A ANAW \VI\VA\VI \\/\\f ] -
QO —-1.5
O
'g -3.0 |- V v d J U
a -45} U

-6.0 L

8 = 180°

6.0
’é‘ 4.5 -
E 30
= 1.5
g 0.0 Time (sec.)
) { 6
o -1.5F
8
% -3.0 |-
a -4.5F

-6.0 L g = 90°
N s.or
£ 4.5 -
= i
E1~5-/\[\[\ﬂn/\ﬂ _
g 0.0 VAN N AT\ T ATV T LY Y T Time (sec)
o g VY 7 2V VY U UJsVVs
o -1.5 F :
=)
T -3.0}
%4}
O ~4.5F

6 =0°
-6.0 L

Figure 4.33 Time History of the Relative Displacements Along the X—Axis
at Section 3—3 for Tank DTS.



5
~
€
E
S 0
-
c
Q
£
S
g -s
Q.
2
(m]
-10
5.0
L)
£
£ 25
-
I
Lo
=
Q
Q
L
Q.
0
[a]

5
P
£
€
~ 0
=
D
£
o
g s
Q.
R
[}

—-10

[

195

A A ooa n_yTime (sec)

f/\/\'r\/\}\/\nﬁ AWATAVINANANK
VAV

MAAARTATAVA'AVAVAY

§ = 180°

Time (sec)

A A ,Time (sec)

VAVAVA ALY

N A A AR LA e
VAV

Figure 4.34 Time History of the Relative Vertica! Displacements

at Section 3-3 for Tank DT5.



196
150 -

100

w
o
T

) Time (sec)

Stress (MPa)
!
gﬂo

[
S
S|
[ >

N o L
>
>
e
"]
——

b

be

<

(e

<

<

'

<.

<]

Sl

]

|
1 1

=250 - 6 = 180°

S0 [

-50

Stress (MPa)
|

o

o

L 6 = o0

—-150

150
100 |-

13,

= =

T

[
[~
-
[43]
e
(%]
[4]
(9]
P —

=t

-100
=150 |-
=200 -
=250

Sress (MPa)

I
b4

>

D

D

>

I

—

[ ——

ol

ey

<]

'

q

<

g
<____1
T

e

<

< |

Figure 4.35 Time History of the Meridional Siresses at Section 4—4
for Tank DT5.



197
3000

oy L hahon |
“A A\/Av’é‘v%'\v/\ \ /\ ﬁ A'“ -
=

-3000 L

P

Force (kN)

(a) Base shear

10000 F

5000 -

Time (sec)

<

Force (kN)

-5000

-10000 & (b) Normal force

36000

—~ 24000 |

:3;? - ; AVI\VAVAV?VAVAV/\ ; p {\ /\6 Time (sec)
F HTY

(c) Over turning moment

.m

Figure 4.36 Time History of the Base Reactions at Section 4-4
for Tank DTS.



k3
e 2
E
=
o 0 |
E
S -1
o
& -2
Fa)
-3
1.0

b
n

Displacement (mm)
(=]
o

Figure

198

Time (sec.)
6

Displacement Along the X—Axis

1 1 1 1 1 , Time (Sec.)

1 2 3 4 5 6

Vertical Displacement

4.37 Time History of the Relative Displocements at Section 4-4

for Tank DT5S.



199

. 6.0
o~ 8 4.5 |
741
~ =0
) | UAAAN N
= 15
g O'OH A [\ h\ ’AU A U 1 | lTime (Sec.)
= 1 4 5
AR AR
Q
3 ~30F \J
E -45 |
o Section 1—1
L) s [~
[3 IS 4 -
é 3
E 7
c Time (sec.)
)
= g 4
0
3 -2
s il
< 4T
-5 L Section 2-2
5 -
NA 4
Q
s 0
2
E T
c o W’Vl’" Time (sec)
2 ;4 1 2 3 4
g o
5 -3F _
I Section 3-3
< L

Figure 4.38 Time History of the Relative Accelerations Along the X—Axis
at #=180" for Tank DT5.



200

! | ‘ _

g “.ll"ll]lllll'lll!l"'.“}llllll|ll‘|"lll’l""li!&‘l'l|lllll||!l!l"l"l'll Time (sec.)
:E :;c: ) ? 4 f" '

< :i: Section 1-1

ti: ;;ﬂvhvf\uhun huﬂvnv.unvnunuf\v@vnuﬂuﬂ AVI\M MA\%"‘ HMMI n ﬂnMS Time (sec.)
Bl

< :i : Section 2-2

Figure 4.39 Time History of the Relative Vertical Accelerations
at =90 for Tank DTS,



201

— 8 r
~ 9 6
[
~ 4|
E .t
€ Time (sec.)
- q 4 6
S 0
s AT
& ]
Qo =-6F
<
8- Section 1—1
~~
~NO
[1i]
[%2]
~
£
S
| e
2
°
|
2
[44]
Q
Q
<
-8 L Section 2-2
8 —_
Voo
No 6 |-
b3
~ 4T
E af
c 0 ALA: Time (sec)
: A
2 () 1 2 :
o ~2r
—
s T
S -6} Section 3-3
< Ll
-8

Figure 4.40 Time History of the Relative Vertical Accelerations

at =180 for Tank DTS.



2)

Dyniamic Pressure (N\m

5

Dynamic Pressure (N/m

2

Dynamic Pressure (N/m )}

20000
15000
10000

5000

{
-5000

=10000
-15000
—-20000

20000
15000

10000
5000

~5000
-10000
—15000
—-20000

20000
15000
10000

5000

-5000
-10000
-15000
-~20000

202

Time (sec.)

Section 1-1

o AAAAAAﬂAmmmﬂ

TAaa: VT

Seciion 2-2

MAA AR DAL L e o
g/

Section 3-3

Figure 4.41 Time History of the Dynamic Pressure Resulting from

Horizontal Excitation, for Tank DTS, at 8=180.



2
(N/m") Dynamic Pressure (N/mz) Dynamic Pressure (N\mQ)

Dynamic Pressure

30000
24000 -
18000 -
12000 |-
6000 |

0

-6000 T+
-12000 |-
-18000 |-
-24000 |-
-30000

30000 -
24000
18000

12000
6000

0
-6000
~-12000
-18000

—24000 |-

-30000

30000
24000
18000 |-
12000 |-

6000

0
-6000
-12000

~18000
~-24000 |-

-30000

Figure

;nwﬂ»\,ﬂunu@v"vf\uﬂuﬂvnv";,ﬂvﬂvnuW\% MVAUAVAVM} AUAUAUW VAM wuﬂ e e

L Seclion 2-2

WWWVMUAUAUA"A'}A“AVAVAUAVAvA Uhvnunvnuﬂvﬂ Em -

L
Section 3-3

4.42 Time History of the Dynamic Pressure Resulting from

Vertical Excitation, for Tank DTS.



204

12

-
o] (=]

Distance S (m)
=4}

Distance S (mm)

~

0 ! 1 1 o 1 L 1 1 1
0 5 10 15 20 0 -6 -—-12 -18 -24 -30

(a) Absolute Dynamic Pressure (KPa)  (b) Absolute Dynamic Pressure (KPa)

Due to Horizontal Acceleration Due to Vertical Acceleration
....... - Static Pressure.
14
Dynamic Pressure.
= g
n " "
5 o
: ‘l‘ 0 .Q
o . g "
R “ ] “
O ‘.. a
1 1 1 l{ I 1 y]
0 15 30 45 60 75 90 -3 0 30 60 90
(c) Total Pressure (KPa) (d) Total Pressre (KPa)
(at T=5.46 sec) (at T=5.1 sec)

Figure 4.43 Dynamic Pressure Distributions Along the Generator of Tank DT5.



(mm)

Displacement

ement (mm)

(mm)

ement

:f AAAAAAAP

-F VPVVRVY

6 = 180°

éAAAﬂAAAAﬁ

/)

f ﬂ
/\j\[\[\/\[\/\/\[‘ /A[\ﬂ /\Tlme(sec)
VVVVV’"VV\FHMV“‘ K



206

L2 =
!

OAAL Lﬂ.n

STV A A AN T Al fisTime (sec)
MATAA'AY,

Rl

Displacement (mm)
I
=

-25 8 = 180°

5.0[-
g 2.5
g 0.0 I I 1 H ” ﬂ AM Time (sec)
£ q 1 2 !
£ s m,\nnnnnnnm_ml\ﬁ W\ |
O ML T 11

R 6 = 90°
g I\ll\f\/\zl\ I\Hs LT A TR Time (sec)
: TV U\\ 7

-25 L g=0°

Figure 4.45 Time History of the Relative Vertical Displacements

at Section 1-1 for Tank DB1.



207

T .l
E 4T
';c; z-_f\'ﬁ_[\-ﬂ_f\_frﬂ ﬁ !\j\ .ﬂ mJ\JTime (sec.)
5 N ANANIVINIWEINANIT
TE.:Z: UVVVVVVV\J\J\/\jVV\JV\

R # = 180°
£
E’ Time (sec.)
5 -6

6 =90°

— 6 I
¥ Liaaa/
= AAAAAAND AL
2 \/ V.\/U\j.\l\l\l. T HATY MY A Time (sec)
s q 1 2V V Vs Uw SJ 5
o "ir
& -4
° -6

Figure 4.46 Time History of the Relative Displacements Along the X-—Axis
at Section 2—-2 for Tank DB1.



208

TR TN LIS T TR
yuvvvvvvv\\\vvv\vt

Displacement (mm)
I
- 1
(=] wn

1
W
@
il
o
o0
=]

, Time (sec)

Displacement (mm)

!
o
o

)
Il
=)
Q

ok ! . LA ! : y Time (sec)

LA A AL )
\U

Figure 4.47 Time History of the Relative Vertical Displacements

at Section 2—-2 for Tank DBI1.

I
—_
(=]

T

Displacement (mm)
<
el
<}
<
e
ul
=]
]
<]
= ]
-
<
s |

|
w
T



209

4
E
E s}
E 0 Time (sec.)
o g 1 2
Q
o]
a -2}
0
P
T 6 = 180°
4 ~
€
E
g Time (sec.)
L+1]
Q
[}
o
b
o
T 6 = 90°
4 —
B
£
g Time (sec)
£
©
Q
5]
a
i
o

Figure 4.48 Time History of the Relative Displacements Along the X—Axis
at Section 3—-3 for Tank DB1.



210

5 -

£
E o , \ , . . , Time (sec)
T ¢ 5 6
Q
E
o
s °r
o
9
a

-10 6 = 180°

5.0 ~
L
£
£ 25}
p—
3 o0 . . ; ) . , Time (sec)
£
[}
(&
RS,
(o
e
a

-5.0 & 8 = 90°

5

- [
\-E/ 0 ] L ] 1 1 |.I-‘irr]e (Sec)
= q 1 2 5 6
Q
£
o
s 7
[+ 8
@
(]

—to L g = o

Figure 4.49 Time History of the Relative Vertical Displacements

at Section 3—-3 for Tank DB1.



211
50 -

0FE 1 L 1 1 1 1

STVRTTIN Ty Mvﬂuf“” N

Stress (MPa)
&
=
—
>
2
B

1

<]
<
]
<
]
<]
gy
|
]
]
<]
]
-

-150 F
8 =180
50
0 ; ! ! L 1 __1 Time (sec)
q 1 2 3 4 5 6

Stress (MPa)

50

0k t ! 1 ! IH J

N/\ ?Time (sec)
W

=50

Sress (MPa)
I
S

f
(2
[=]

Figure 4.50 Time History of the Meridional Stresses at Section 4—-4
for Tank DB1.



212

mheee” (a) Base shear
R 2000 \ ” ﬂ
% 0 p‘\ﬂ ,nﬂnﬂﬂnnnnﬂpﬂ AA_AAnm ﬂ nn Time (sec)
E_moﬂv KRBT e wwuw | 5

:iz:z : (b) Normal force “
27 LA
:E: OCV[\ /\ AV[\V[\VA /\ [\ : [\V V/\ [\ Time (sec)
RV

(¢) Over turning moment

Figure 4.51 Time History of the Base Reactions at Section 4—4
for Tank DBT.



CHAPTER FIVE

CONCLUSIONS

$5-1 Introduction

The research work accomplished and reported in this thesis consists of three parts.
The first part involved extension and verification of the consistent shell element to large
displacement static and dynamic analyses. The second part focused on the application to
solve the problem of inelastic stability of perfect and imperfect hydrostatically loaded
elevated conical tanks. The third part of the study involved applications, again to study
the inelastic stability of liquid-filled elevated conical tanks, subjected to seismic motion
with proper fluid-structure interaction accommodated through the boundary integral
method to include the hydrodynamic effect.
5-2 Summarv and Conciusions

2-1 istent Shell Element

The formulation of the consistent shell element is extended to include geometric
non-linearities as well as non-linear dynamic analysis. The results of large displacement
static and dynamic analyses of a number of plate and shell problems using the consistent
shell element are compared with the numerical and experimental results available in the
literature. These comparisons reveal superior performance of the consistent shell element

in all examples, even with very small number of elements used to model such structures.
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Therefore, this modified consistent shell element, which is free from spurious shear

modes that exist in the isoparametric shell elements, provides an excellent tool to handie
the non-linear static and dynamic analyses of thin and thick plates and shells.
5-2-2 Stability of Hydrostatically Loaded Conical Tanks

The stability investigation of liquid-filled conical vessels under hydrostatic loading
is undertaken using the consistent shell element with geometric non-linearities included.
Elastic stability analyses of perfect vessels show localized buckling near the bottom of
the shell due to the effect of high compressive meridional stresses. The limit or buckling
loads are found to be in excellent agreement with the corresponding numerical results
available in the literature. The elastic analyses of conical vessels, with different
imperfection patterns, indicate that the presence of an axisymmetric imperfection shape
leads to the lowest limit load for hydrostatically loaded conical vessels.

By including a strain hardening plasticity model, the inelastic stability analyses
reveal that for tanks which have practical dimensions, yielding precedes the elastic
stability limit. Therefore, the inelastic behaviour has to be considered when studying the
stability of such structures. The effect of the meridional and the hoop residual stresses
due to welding is investigated. It is found from the inelastic stability analyses undertaken
that the limit load of hydrostatically loaded conical shells is reduced by the presence of
hoop residual stresses resulting from circumferential welding. Longitudinal welding has
no appreciable effect on the limit loads. A comparison of the results from the inelastic
stability analysis of perfect liquid-filled conical tanks with those which have axisymmetric

geometric imperfections show significant reduction in capacity. For the case where the
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initial displacements are of the order of one thickness, the shell’s limit load is reduced

by about 35% to 40%. When residual stresses are included, there is a further reduction
of 5% to 10%. Comparison of the results of the inelastic stability analyses for the
imperfect tanks with those obtained from the experimental investigation carried out by
Vandepitte at al. (1982) shows very good agreement in terms of the limit load. Analyses
also show that the reduction in the buckling strength due to the presence of the geometric
imperfections is more pronounced in a tall tank than in a broad one. Furthermore, the
smaller the thickness of a conical tank, the more sensitive is the structural response to
geometric imperfections.

Inelastic stability analyses, employing 128 consistent shell elements to model the
tank that failed in Fredericton, New Brunswick, are carried out. Two degrees of
geometric imperfection are assumed - one having a small amplitude (good cone) and the
other with a large amplitude (poor cone). It is found that the load factor for the small
imperfection case is about 1.3, whereas the value dropped to 0.9 when the larger
imperfection values are used. The larger values used are reasonable estimates of the
imperfection states in civil engineering shell structures. Furthermore, an additional 10%
reduction can be anticipated when residual stresses are included. Therefore, the author
believes that the Fredericton tank, which had a design not complying with the code
requirements, was unsafe and would very likely collapse under full tank conditions. A
comparison of the limit loads obtained from the analyses above, indicates that the codes
recommendations are in general overly conservative. Meanwhile, a comparison with the

design formulae given by Vandepitte suggests that they provide a more reasonable margin
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The seismic analysis presented in this thesis represents the first attempt, to the
best of author’s knowledge, to study the stability of liquid-filled conical tanks under
earthquake loading. In this investigation, the consistent shell element is used to model
the steel vessel, while the boundary integral method is employed to obtain the impulsive
component of the hydrodynamic pressure resulting from the horizontal and the vertical
components of an earthquake. The free vibration analyses of a number of liquid-filled
cylindrical tanks show very good agreements with the published results, thus, also
confirming the accuracy of the boundary integral method.

The towers supporting liquid-filled conical tanks are modelled using horizontal
and vertical springs. The free vibration analyses of these elevated tanks indicate that the
fundamental modes of vibration arise from the horizontal excitation. Thereafter, the non-
linear time history analyses of tall and broad conical tanks, using the horizontal and the
vertical components for the San Fernando 1971 earthquake scaled down to meet the code
specification for Quebec City, Canada, are carried out. These analyses reveal that, for
a number of tall tanks, the inelastic behaviour sets in during the earthquake record. This
is followed by localized inelastic buckling near the base of the tank. This dynamic
instability state occurs for tall tanks which are designed under a static load factor less
than 2.65. Therefore, it can be concluded that the liquid-filled conical tanks, especially
the tall superstructures, are very sensitive to seismic loading and must be designed for

large static load factors in order to survive strong seismic motion. Meanwhile, the broad
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tank, designed for a static load factor of just 1.5, survived the earthquake in spite of an

early plastification. The compressive meridional stresses, which are the main cause of
instability of conical tanks, are mainly caused by three effects: the horizontal
acceleration, the hydrostatic pressure and the vertical acceleration. The numerical results
indicate that the largest contribution to these stresses comes from the overturning moment
resulting from the horizontal acceleration. The second most important factor is the
hydrostatic pressure. However, ali three factors are important. The ratio of the maximum
meridional stresses resulting from the vertical acceleration to the maximum stresses due
to the horizontal acceleration is approximately one to three. Therefore, it is concluded
that the vertical acceleration does contribute signiﬁcantly to the dynamic instability of
liquid-filled conical vessels and cannot be ignored in a seismic analysis of such
structures.

5-3 Recommendations for Further Research

The consistent shell element model with geometric and material non-linearities,
which also includes the geometric imperfections and the residual stresses, can be used
to develop charts and/or formulae for the design of water filled conical tanks under
hydrostatic loads for possible implementation in the codes for design of such structures.
In addition, the static analysis should be extended to study the stability of stiffened liquid-
filled conical tanks. To achieve this, a curved beam element compatible with the
consistent shell element can be used to model the stiffeners. The analysis formulated in
this work can be easily extended to include the effect of the non-axisymmetric

imperfections on the dynamic stability of conical tanks to confirm some of the
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assumptions used. The model may also be extended to include the effects of the free

surface sloshing and the rocking motion of the bass of the vessel. The rocking of the

base is expected to be significant when studying the dynamic stability of conical vessels
resting on cylindrical shafts,
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APPENDIX A
INTERPOLATION FUNCTIONS FOR CONSISTENT
SHELL ELEMENT

Quadratic Interpolation Functions:

NyL1.Ly L) = Ly(2Ly-1) Ny(Ly,Lo,Ls) = L,2Ly-1)

Ny(Ly,Lp,Ls) = Ly(2Ls-1) Ny(Ly.LyLs) = 0

Ny(Ly,Lp,Ls) = 4L,L, Ny(Ly,L,.Ls) = 0

Ny(Ly,Lp,Ls) = 0 No(Ly, Ly L) = 4L,L, (A.1a-m)
Ny(Ly, Ly, Ly) = 0 Nio(Ly Ly, Lo) = 0

Nu(Li,Ls L) = 4L,L, NioLy,Lo,Lg) = 0

Ni@L,, L, L) =0

Cubic Interpolation Functions:

N,(L,,L,,Ly) = %L, (3L-1)(3L;-2) N(Ly,L,,L5) = %L,(3L,-1)(3L,2)
Ny(Ly, Lo, L) = V6La(3Ls-1)(3Ls-2) Ny, Lo,Ls) = 9{%AL,L,(3L,-1)}

Ns(Ly,Lo, Ly} = 0 Ny(Ly,Lp,Ls) = 9{1AL,\Lo(3L-1)}
No(Ly, Lo, Lo) = 9{%4L,L,(3Ly 1)} Ny, Ly L) = 0 (A.2 a-m)
No(Ly,L,Lg) = 9{44L,L,(3Ls- 1)} Nyo(L1,La,Ls) = 9{AL,L(3Ls-1)}
Ny(Ly,La,Ls) = 0 N, Lo, Ls) = 9{ALL,3L-1)}

lﬁllr.Ll!I-Q,lﬂ) = 27-[-'1]-’.!1’3
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APPENDIX B
DERIVATION OF THROUGH THICKNESS

INTERPOLATION FUNCTION M,

Rotation ¢ is allowed to vary quadratically through the thickness and is

approximated by

$(Z) = a + bz + c2 B.1)

where Z is the dimensional coordinate in the thickness direction and a, b and ¢ are
constants, yet to be determined. The inplane displacement u,, due to ¢ can be calculated

by

u,(z) = j ¢ (2) &z. (B.2)

Substituting ¢(z) given by Equation B.1, into Equation B.2 and integrating yields
u (z) = az + == + ZZ 4 d (B.3)
The boundary conditions used for determining the constants above are as follow:
u¢(g) -0 ué(-g) S0 w0 =0  $(0) = ¢, (B.4,2-d)

where ¢; is the additional rotational degree of freedom used in the consistent shell

element. The use of the boundary conditions above when applied to the expression for
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u and ¢ (Equations B.1 and B.3), respectively gives the following four equations for the

unknowns:
h h? m _
a 3 + b 5 + C >3 + d =0
h h? h?
-a — = - . = 0 (B.5,ad)
a 5 + b 3 c 7 + d
d = 0 a = ¢,

a= ¢, b=0 c=-—= d=0. (B.6,a-d)

The constants above are then substituted into the approximations for ¢ and u, in Equation

B.1 and Equation B.3, respectively, to give the following:

8@ = [1 _%;m
u(z) = [z - -;-:'3? 14 (B.7,a-b)

At the same time, the non-dimensional coordinate t and the dimensional coordinate z are

related by
;7 - h¢ (B.8)
‘T3

which allows re-writing Equations B.7 in terms of t as
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d’(t) = (1 - 3t2) ¢.'

u,(r) = % A-26, = M, (B.9,a-b)

The through thickness interpolation function M, yields the displacement variation across

the thickness due to rotation ¢.



APPENDIX C

CONSTRUCTION OF ORTHOGONAL BASIS

The Jacobian matrix can be written as

[J] =§ {(C.1)

where the vectors R and S are tangent to the surface defined by t = constant . A normal

vector V, to this surface can be obtained by applying the following cross product:
Vi=R % § (C.2)

The other two vectors V, and V, of the orthogonal basis are obtained from the following

equations:
V=3 *¥ (c.3)
i=¥; *1; (c.4)

where j is the unit vector along the global y-axis. It should be mentioned here that in
case that the vector V; is parallel to the global y-axis , the unit vector k along the z axis
can be used instead of j in Equation C.3.

The normalization of the vectors V,, V, and V, then leads to the unit vectors v,,

v, and v; which can be used in the transformation matrix as follows:
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APPENDIX D1
STRESS MATRIX AND VECTORS FOR THE

SHELL ELEMENT FORMULATION

[T o o sZFY o 0 SsI%M o 0
o STV 9 o SIEY o o sSIEY o
T{k-1) T{k-1} T{k-1)
0 0 Sx’x’ 0 0 leyf 0 0 Sx‘:’
sit o o SIEY o o sIEY o 0
[s7¥1) 4 o SIFY o o siFY 0 o sIY o
0 o SsIEY o o SIEFY o o siEY
sIY o o siFY o 0 0 0 0
o SIFY o o s 0 0 0 0
0 o sI¥Y o o sIFY o 0 0
D1.1)
{k-1)} TRANS_ [ oT(k-1) T(k-1) T(k-1) T{k-1) T(k-1)
{ST } —{Sx’x’ Sylyl leyl Sx"z’ Syfzr }
(D1.2)
{A 5} TRANS Z{A Syotyet A Sylyf ASny: ASxfz.r ASyrz.r}
(D1.3)
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APPENDIX D2
PLASTIC CONSTITUTIVE MATRIX FOR

STRAIN HARDENING MATERIALS

The inelastic constitutive matrix for isotropic strain hardening material used in a

shell element formulation is of the following form.

-?x;x: Symmetryq
r1_ 1|l = s o o2 (D2.1)
[D p] =5 Sxfylsxle x.ry.-Syfyr Sx’y’ .
-g_zthE;IxI S_'zrxJS_y.ryr S_zlxls—'xlyl E:E’x’
'Syrzrsxfxr Sy.rzlsy!yl Sy.rz:Sx:_,,; SytzrSptes S;’z’

The parameter H is obtained from the following set of equations:

h
= D2.2
36G2 ( )
h=4 (3G+H.} 0 ? (D2.3)
EE
== D2.4
i E~-E, ( )

where E, E; and G are the elastic, the tangential and the shear modulii, respectively, and

o, 1s as given in Section 2.6.
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APPENDIX E

[B,] AND [BJ MATRICES

In order to obtain expressions for the matrices [B,] AND [Bs] which can be easily

coded for a computer program, the components of these matrices are related to the

components of two other matrices [By,] and [By,] which are as follows:

lllhn. 1 l:.zhn. 1

1l,.h I..h
13 214*n,2 22°°n.2

n=l

lnhn.:! llz‘hn.:i
_121hn,3 lzzhn.B

1aB,. CilHy -CRiH: C

21,2 22 7.2
23hn,2 Cr"Hp -Cy Hj C

1

1
[301]5-91=Z lnhn.z 1128,,, 113852 er:'leza ‘CnnH: C
1,,h, , C3HY -CX*H G
1

21,,.3 22
zahn,3 Cn Hn _Cn H::; G

111
2 Gh

21 2
I2 n

11 ~2
n n

11 -3
n n
21 3
n G

0 0] 0 0 0 0

0 0 o] 0 0 0
13 21..1 22,1 21 ~1
[502]5‘91=E lz:l.hn,l 1,0,y 13k, CiHy -CoHy GG,
21k, s LBy, iR, Ca'Ha ~Ci’Hp CR'Gp
1218, 2 3B, Laahy, ChlHE -Ca’Hi C3'Gi

-CG;
-c3g?
-CXG:

~C3'Ga

-C32Gy)

0
0

-Cci%G,
-CG;

-c6}

(E.1)

{(E.2)

where J; are the direction cosines between the local and the global set of axes and are

given in appendix C. The functions C, h, H and G are defined by Equations 2.8, 2.42,

2.43 and 2.44, respectively. The sum of the above two matrices leads to the [B] matrix
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used in the linear analysis of the consistent shell element.

234

The components of the matrix [Bg] can be related to the components of the

matrices in Equations E.1 and E.2 in the following manner:

[Bslgasq=

| 13,h

First

Third

Fourth

Third

Second

Fifth

Fourth

Fifth

n,3

Iow

Irow

IOowW

Iow

IOow

IOwW

Iow

Iow

1,,h, 5 13k, , CHHY -C2PHE C2'6l -

of

of

of

of

of

of

of

of

[By,]
[Bo.]
[By,]
(Boal
[By,)
[Bg.]
[Bo, )

[Bg,]

a2
Cn

G,’;_

(E.3)

It should be noted that for the last row of the matrix [B,], n takes values from 1 to 13

to give the 91 columns of the [Bs] matrix.

The components of the matrix [B,] can also be related to the components of the

matrices [By] , [Bg] and [Bg] through the local initial strain terms u”, ; as follows:
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[0/, o(row 1 of [By,])+v/, s(row 3 of [By,]l)+w/, s(zow 4 of [Bg,]) ]

u’, s(row 3 of [B,])+v/, ,((xow 2 of [B,,])+w/,i(xrow S of [Bg,])

u’, r(row 1 of [B,,]}+v/, s(xow 3 of [By,])+W/,,/(row 4 OF [B,,])

+

u’, s(zow 3 of [By,1)+v/, s(zow 2 of [Bg,])+w/, /(xow 5 of [B,,])
[B]se:=

u’, /(xrow 1 of [By,])+v/, /(xow 3 of [By,])+w/, /(xow 4 of [B,,])
+

u’/, (row 4 of [B,]1)+v/, {row 5 of [B,,])+w/, /(xrow 9 of [Bg])
x [*h 0l x 5

u/, 1(xow 3 of [By,])+v/,/(xow 2 of [By,])+w/,,/(row 5 of {Bg,])
+

| u/, i(row 4 of [By,])+v/, /(zow 5 of [B])+w/, /(xow 9 of [Bg])

(E.4)

The matrix [B.T "] which is used to update the stiffness matrix [K.” V] at the
beginning of the k® iteration for the load increment corresponding to the time T, can be
obtained by replacing the terms (u”;;) in Equation E.4 by the initial local strains for the k®

iteration (u”;;* ®?) which are derived in Section 2-5-3.



APPENDIX F
COMPRESSIVE STRENGTH OF THE EQUIVALENT

CYLINDER ACCORDING TO DIFFERENT CODES.

The maximum compressive strength of an equivalent cylinder o,, can be obtained,
according to the Danish code DNV (1982) and the AWWA D100 (1984) specifications,
by applying the following set of equations.

a) DNV Code

A geometric parameter M, is first calculated as

1

M =22, (F.1)
Togl

Based on the value of M., a buckling coefficient C, and a knock-down factor p

accounting for imperfections can be obtained from the following equations:

0.605 for M, 2 1.73
= (F.2)
€171 8:204 45 101302, for M, < 1.73
\ eq
( r
o.3s-o.oooz—§‘i for M,, 2 4.58
p‘.‘.‘ T . (F-3)
0.76—(0.615+0.00031—§i) logM,, for M, < 4.58

The elastic buckling o stiess may then be calculated from
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L. (F.4)
eqg

o=pCE(

The compressive strength o, can then be calculated as

_UL (F.5)

where o, is the yield stress, E is Young’s Modulus and A is the reduced slenderness

o

parameter given by

A=l 2y (F.6)

b) AWWA D100-84 ifications

According to AWWA D100 (1984) specifications, the maximum permissible

compressive strength in psi of a cylinder can be calculated from the following equations:

O = XY (F.7)
2 (100t ) f2-(2) (100-L-)1  for -t <0.015
3 oq 3 Loq Teq
Y = (F-B)
1.0 for £ >0.015
req
X= 18000 and X s 15000 psi.
L3, (F.9)
[+ Deg ]
18000r°<,.

where L., and r?_ are the effective length and the radius of gyration of the equivalent,

respectively.



APPENDIX G
SOLUTION OF THE LAPLACIAN EQUATION

IN CYLINDRICAL COORDINATES

The impulsive component of the hydrodynamic pressure P, ,developed inside a

liquid-filled tank due to seismic excitation is governed by the Laplacian Equation, i.e.
V2p,= 0. (G.1)

Using the separation of variables technique, the solution of the Laplacian Squation

in the cylindrical coordinates (r,8,z) is given by (for details see Haroun 1980)

7., (ir)cosh(iz))
T, (ir)sinh(iz)
Ihz
pa(z,0,z,T)=4,,(T) cos (nd) e r (G.2)
I (ir)cos(iz)

| Ip(ir) sin(iz) |

where J, and L, are the Bessel’'s and the modified Bessel’s functions of order n,
respectively; i is a separation constant and n is the circumferential wave number. It
should be noted that the terms in the solution to the Laplacian Equation, which lead to

singularity at r=0, are not present in Equation G.2.
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APPENDIX H
DERIVATION OF THE FLUID ADDED-MASS

MATRIX RESULTING FROM HORIZONTAL EXCITATION

The hydrodynamic pressure P, resulting from a horizontal acceleration acting on
a conical tank, as presented in Section 4-3-2-1, can be assumed as
Nl
p(r.6,2,T) = Y A4,(D) H, (r,6,2). (H.1)
i=]

The functions H;; are given by
H,(r,8,z) = I(a,r) cos(az) cos(f) (H.2)

where I, («;r) is the modified Bessel’s function of the first kind, o; = (2i~1)%/(2h), and
h is the height of the fluid in the vessel.
Following the procedure described in Section 4-3-1, the variational function for

ihe dynamic fluid pressure is given by

L
oP
J = J[%IPd_éFdds+)[pF§T§Pdds]dt (H.3)

3 1 1

where surface S, is as shown in Figure 4.8 and n is the unit outward rormal to the
surface.

The first term on the R.H.S of Equation H.3 can be written as
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1 dP, _1 s .
3 j Pogy s = gD} 1C7 1 {4u(D) 3 ®.4)
where
dH,
C,” = 1 H, a: ds. (H.5)

|3

The derivative dH,,/n can be evaluated using the chain rule as follows:

OH, _ %H, or  0H; 3z (H.6)

an ar on dz on

For conical tanks, (3r/3n) and (82/3n) are equal to ( cos 6,) and (- sin 6y), respectively,
where 6y is the angle of inclination of the generator of the tank with the vertical
direction. The derivatives (3H,,/8r) and (9H,,/dz) can be obtained from Equation H.2.

The derivatives above are substituted into Equation H.6 which leads to

d é;'::i: =a, I (o;7)cos (e;2) cos () cos (B,) + o, , (e, P) sin («,2) cos (8) sin (6,). H.7)

Equations H.2 and H.6 are then substituted into Equation H.5, and the integration is
performed by discretizing the surface S, using triangular elements and the Gaussian
quadratic scheme for numerical integration to obtain components of the matrix [C")y, ;.
Note that [C’] is a symmetric full matrix. It is also pointed out here that 79 Gaussian
integration points are used to achieve the numerical integration. This integration order
insures an accurate numerical integration of polynomials of the 20® degree and is found
to be sufficient for the discretization employed.

The second integral I on the R.H.S of Equation H.3 is given by
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I = Ip,,pdg._rids. (H.8)

The rotatory inertia is neglected and the acceleration @' at any point on the surface S, is

approximated using the cubic interpolation functions N of the consistent shell element to

give:
M Trans -
I = pe3 A, (D) 3 xLt‘z’,-,(r,ﬁ,z) fn* ) as (U} @.9)
i=] Elem 1+39 K XD
where
{n=3r = {1, I, I, L, I, L,} H.10)
(U Y= < (NOT NV NW . . . . NJU, NV, N W, } @ID

I,; are the direction cosines of the unit outward normal to the surface; Elem is the number
of consistent shell elements and SEL is the area of each shell element used to discretize
the surface S,.

Substituting Equations H.4 and H.9 into Equation H.3 and taking the first

derivative with respect to the amplitude function A;(T) gives the following:

-1

, = - . i 12
(4D} = -eplC” ] 3 IF ] AT ) (H.12)

L * N, lem N,*39 91

where matrix {Fly .9 is given by
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SLNllslHuds LNllzands S[;LNllssHud‘ .

[F]1 =

N, %39

ELNIIMHNJJJ &LN,InHN‘Idf LN,I”HM@

= = Y 1
rLN,,I,,H,,ds sszl,z_,,,za,,as :LNBI”H“(B

SLN,,,,I,,HN.Ids &[lNuInHNl,ds LN,,I,,H,,J:L;

(H.13)

and {U7},,., is the vector which includes the accelerations of the nodal displacements of
the shell element (excluding the rotational degrees of freedom). The integration of the
components of the matrix [F] is also carried out numerically using the 79 Gaussian
integration points.

It is important to note that before carrying the multiplication [C]' I[F], the
matrices [Fly,«y; of all elements on the surface S, have to be assembled into the global

matrix [F,], i.e.
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[Fllv,-u = EEM {F]N‘-39 (H.14)

where M is the total number of degrees of freedom due to the shell elements employed
to discretize surface §,.

Let the matrix [F'] result from performing the multiplication pe [C']! [Fy], i.e

[F-]N,‘.Il = Pp [C.N,!N-l [FIN,!M (H.15)

Then, in view of Equations H.1, H.12 and H.15, the hydrodynamic pressure on any

point on the surface of the tank is given by

TRANS o
Pu(r,0,z2,T) = - {H(T)I.}N [F‘]N,,” {U'u}-: (H.16)
where
(HDOY™= = {H(T) H, () . . . H,(D} (H.17)

and the vector { U," } is the global vector which includes the acceleration of all degrees
of freedom of the surface (excluding the rotational degrees of freedom). Now the virtual
work ., by the hydrodynamic pressure can be obtained as follows:

13 _
Ve = X LP.,(r,e.z.n YN, {3(a)} .n ds (H.18)

il

or
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Ve = 2 {aAU} L{G} {Hm} [F* 1 dS{ U, } ds (H.19)

N M M=l

where

{a(AU) } {5(AU) 8(AV) (AW) . (AU, 5(AV, s@W,)} H.-20)

TRANS - -
{Gl_}39 = {Nlliﬂ N, ‘Nll33 LI N13131 I, (H.21)

13 3]}

From Equation H.19, it can be concluded that the fluid added-mass [DM], is

given by

[DM], = ;L (G} {HD } [F* 1 ds. (H.22)
After having evaluated [Fhyeq using Equation H.15, it is substituted into
Equation H.22. The integration is again carried out numerically using the 79 Gaussian
integration points. It is important to note here that the added-mass matrix [DM], can be

obtained only globally and, furthermore, it is a fully populated matrix.



APPENDIX I
DERIVATION OF THE FLUID ADDED-MASS

MATRIX RESULTING FROM VERTICAL EXCITATION

The hydrodynamic pressure P, resulting from a vertical acceleration acting on a
conical tank, as presented in Section 4-3-3-1, can be assumed as

N,
Py(r,0,2,T) = Y. Ay(T) Hy(r,2) + B(:) H*(2). .1

=]

The functions H,y and H" are given by

Hy(r,2) = I(ar) cos(a,z) , H'@ = (z-h) 1.2)
where (o) is the modified Bessel’s function of the first kind, o; = (2i-1)=/(2h), and
h is the height of the fluid inside the tank.

Following the procedure described in Appendix H, the fluid added-mass matrix
[DM]y due to vertical acceleration is given by
oM, = ¥ [ {6) ) F ] as @3
Eem 39e1 1eN, NyoM
where N,=N,+1; the vector {G} is as given in Equation H.21; Elem is the number of
consistent shell elements and SEL is the area of each shell element used to discretize the

surfaces S, and S, (see Figure 4.8). The vector {H}™A"S and the matrix {F"] are as follows:
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TRANS ’
{H} = {HoD Hy(D . .. Hy"h H(D]} 1.4)
-1
[F* 1 = p[C" 1 I[F 1 a.5)
N M N+ N, N M
where
[F‘N,]-.u = ﬂ% [FN:!”. 1.6

and the matrix [Flype is of the following form:
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.LH’,IHH,DG'J J:LNIISZH,Ods SLN'I”H"’dS e e e o

[F1 =
N, +39

LN,IHHNIOds Lngzﬂ,,lods SLN,I,sﬂmds N

iLITI,lMH'ds JIK’IInH'ds SLITI,IBH'ds

[NISI‘.iiHlDdg .L'NBISZHIOdS SLLNBI%H]DdS
SEL
a7

jLVNBIB‘lHNOds SLLNl'.’oIﬂHNOdS LN13133H d.S'

rLN,?,IMH ds sL.NB H'ds xLlr\r“,gﬁ}al ds

where N, are the cubic interpolation functions for the shell element; l; are the direction
cosines of the unit vector normal to the surface and M is the global number of degrees
of freedom of the shell elements (excluding the rotational degrees of freedom)

The matrix [C' )y, is partitioned in the following way:

[Cll ] [clz ]
. _ N 2N, N1 (18)
b T e 1em

1+¥, 1e1
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a
|
—
N
=
=
R,
tn

% " an @9

o (1.10)

?

LH' OH" 45 1.11)
an

S is the sum of the surfaces S, and S, shown in Figure 4.8 and n is the unit outward

normal to the surface.

The derivatives of the functions H;, and H" with respect to the normal direction

n are obtained by following the same procedure described in Appendix H to give

%%9 = a; I/(a,r) cos(oz) cos(®) + o I(er) sin(e;z) sin(f,) (1.12)
93%‘ = - sin(8y) a.13)

where 6y is the angle of inclination of the generator of the tank with the vertical
direction.

Note that when the integration of Equations 1.9 to 1.11 is carried out over the
surface S,, fy is replaced by zero in Equations 1.12 and 1.13.

In the above formulation, all integrations are carried out numerically, using 79

Gaussian integration points within the triangular elements used to discretize surfaces S,

and S,.



