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ABSTRACT

A corotational finite element formulation for flexible multibody systems which are
' subjected to frictional impact is developed in this thesis. The formulation can predic: the
motion of the system, the contact forces, the velocities, the accelerations, the duration
of impact and the associated deformations.

First, a corotational finite element formulation is developed for the dynamic
analysis of flexible multibody systems without impact. A numerical algorithm is
developed along the lines of the incremental-iterative method of the Newmark direct
integration and Newton-Raphson methods.

Frictional impact is then included in the formulation. The prediction of contact
establishment and separation is achieved using an event predictor. Point impact is
assumed and Coulomb’s friction law is used to model the friction forces.

Two multibody-oriented approaches are used to model the frictional impact. The
first approach is based on a modified momentum balance model. An energy-based
method is developed to resolve the problem of energy mismatch which arises with the
use of Newton's impact law or Poisson’s hypothesis. The concept of the coefficient of
restitution is used and a new technique is developed to calculate the contact forces in

some special cases. In general, it is assumed that multiple impulses occur during the

iii



contact period. An automatic time stepping algorithm is developed for numerical
solutions.

The second approach is based on the Lagrange multiplier method. The model exactly
satisfies the geometric compatibility conditions during contact. It also allows the direct
evaluation of the contact forces. Both sliding and sticking modes are considered. The
proposed scheme overcomes the problem of high dimensionality in the traditional
Lagrange multiplier models in structural dynamics.

The applicability and accuracy of the formulation and the numerical technique are
demonstrated. Simulation of various mechanical systems, which are subjected to impact

loads, are presented.
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CHAPTER 1

INTRODUCTION

1.1. BACKGROUND

The increasing demand for higher productivity has forced many industrial
machines to operate at higher speeds. Therefore, machine members are required to be
made as light in weight as possible to reduce the inertial forces and , consequently, the
driving torques. However, light members are normally associated with undesirable
flexibility and deformation under inertial and external forces. In the same time tighter
tolerances are called for to achieve better accuracies in the output characteristics.
Consequently the design procedures which are based on the traditional rigid-body
assumption are no longer adequate to predict a machine’s performance. The flexibility
of the members should be taken into account,

Some of these machines are subjected to impact loading during their functionai
operations. Impacts give rise to high forces which, in the presence of flexibility, can
cause loss of precision, vibration and noise. Impact appears due to the presence of
clearances in the joints of the moving parts or due to mass-capture or release. It may also
be generated by sudden imposition or release of kinematic constraints or because of the
interaction with the environment. Typical examples of this class of machines are

encountered in production lines, walking machines, devices for grasping objects and in
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particular in the new generation of cooperative robots.

The bodies in contact are generally not smooth and tangential frictional
components for the impacts appear at the contacting surfaces. In many practical
situations, these frictional forces cannot be ignored. The impact with friction phenomena
is complex and is not clearly understood. Because of the lack of satisfactory mathematical
models for the impact with friction and the lack of adequate solution methods, many
misleading results were obtained in the past. In some cases, the use of Newton’s impact
law and Poisson’s hypothesis lead to conclusions which were inconsistent with the
principles of conservation of energy.

It is obvious that there is a need to develop better models as well as solution
methods which account for the friction forces during impact on flexible multibody
systems. This enables one to design better systems which minimize, or at least tolerate,

the degrading dynamical effects mentioned above.

1.2. MODEL TYPES FOR MULTIBODY SYSTEMS

A multibody system is an aggregate of bodies connected by different types of
joints. The bodies, individually rigid or flexible, are allowed to undergo large
translational and rotational displacements. A wide class of mechanical systems as
spacecraft, mechanisms, robots and vehicles can be posed as multibody systems. In this
section, a brief review is given for the different mathematical models which were
developed and used to investigate multibody systems.

The governing equations for multibody systems normally take the form of coupled
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differential equations together with algebraic equations which describe the initial and
boundary conditions. Analytical solutions are only available for some simple cases. The
majority of the solutions rely on efficient numerical techniques.

Multibody systems can be classified as multi-rigid-body systems and mult-
flexible-body systems. Modelling the rigid multibody systems is well established.
Schiehlen (1990) presented a number of general-purpose software packages which were
developed by several authers for the automatic formulation and the numerical solution
of large ¢ .aplex models. These models normally contain hundreds or even thousands of
differential equations.

Modeiling of flexible multibody systems draws heavily on three different fields,
namely, rigid body mechanics, structural dynamics and continuum mechanics. In rigid
body mechanics, the interest is focused on the gross motion of the body while elastic
deformations are neglected. In structural dynamics the deformation is the main interest
and large rotations, in general, are not allowed. In continuum mechanics the previous
two aspects are combined and consequently highly nonlinear models with large
dimensionality are obtained.

The models for flexible multibody systems are classified as continuous or discrete.

A brief discussion of each is given after.

1.2.1. CONTINUOUS MODELS
In this class, the links are treated as continuous members and the model consists

of a family of nonlinear coupled partial differential equations which are given together



4
with their associated boundary and initial conditions. The classical Rayleigh-Ritz, the

weighted residual or perturbation methods are applied to the nonlinear model to obtain
an approximate solution.

Jasinski et al. (1971) studied the longitudinal and transverse vibrations of an
elastic connecting rod of a high-speed slider-crank mechanism. The nonlinear partial
differential equations were linearized and reduced to a family of first order equations
which allowed the development of an approximate analytical solution. The same problem
was studied by Chu and Pan (1975) where the resulting equations were solved
numerically. A similar problem was studied by Kohli et al. (1977). These approaches,

though powerful, are limited to simple, small size systems.

1.2.2. DISCRETE MODELS

In this class, the elastic links of the mechanical system are idealized by a finite
number of subsystems. Generally, this has been facilitated by the finite element method.
In the finite element method the subsystems are called elements and they are connected
at certain nodal points. The behaviour of each element is specified by a finite number of
generalized coordinates. Equilibrium is enforced at the nodes and inter-element
compatibility is required. The finite element method provides a precise and systematic
technique for establishing tractable mathematical models for elastic multibody systems.

Huston (1990) and Schiehlen (1991) proposed an approach which is analogous to
the finite element method. It was referred to as the "finite segment” method. In this

approach, modelling is achieved by assuming that the continuum is composed of rigid
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individual segments which are connected among themselves by linear or nonlinear
springs and dampers. This strategy allows the constructed model to be handled using the

conventional techniques of multi-rigid-body systems,

1.3. PROBLEM FORMULATION AND FRAMES

Researchers in the area of flexible multibody systems approached the modelling
problem, using finite element method, in different ways. Shabana (1990) used generalized
Newton-Euler equations. The formulation was presented in terms of a set of time
invariant scalars and matrices that depend on the spatial coordinates as well as on an
assumed displacement field. He also investigated recursive dynamic formulation. Turcic
and Midha (1984a, 1984b) developed both a linear and a geometrically nonlinear finite
element formulation for linkage mechanisms based on Lagrange’s equation. Their results
were validated experimentally (Turcic et al. 1984). Book (1984) developed a recursive
formulation of the equations of motion for the dynamic analysis of flexible manipulator
arm. Simo and Vu-Quoc (1986} derived the equations of motion for flexible beams under
large overall motions using the Hamilton’s principle. Kane’s theory of generalized
speeds, which is based on the Lagrange-d’Alembert principle, was used by Kane et al.
(1987), and by Xie and Amirouche (1994) to establish the equations of motion for
general flexible multibody systems.

Consistent-mass formulation is used by Shabana (1990) and Simo and Vu-Quoc
(1986) to construct the mass matrix. The mass matrix can also be constructed using the

"lumped-mass formulation® as was demonstrated by Sadler and Sandor (1973).
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Formuiation of the damping matrix can be achieved in one of several ways depending on
the solution procedure employed. In the modal-superposition approach, damping is
assumed to be uncoupled and is given in each mode as a percentage of the critical
damping. In the direct integration approach, the complete damping model for the system
must be established. Yang and Sadler (1990) assumed a damping matrix proportional to
a linear combination of the mass and stiffness matrices (Rayleigh damping).

Figure (1.1) shows the typical frames used to describe the motion of a two
dimensional element j in body i. These frames are as follows:

(a) A "global" system (X,Y) with origin at a fixed point O. It is referred to as the
inertial frame and is fixed in time and space. It provides a single standard inertia frame
for the entire assembly of bodies and as such serves to express the connectivity of all
bodies in the system,

(b) A "body" system (X',Y) with origin Q' on the i’th body. It is referred to as the
floating frame. The floating frame follows the rigid body motion of the i'th body. It
provides a reference for the elements in the i’th body and as such serves to express the
connectivity of all the elements in this body.

(c) An "element-fixed" system (X%,Y") with origin O on the j’th element of the i'th
body. The element-fixed system is rigidly attached to the element. Consequently, it
deforms with the element.

(d) An "element-reference” system (X% Y% with origin rigidly attached to the floating
frame origin at O' for the j’th element on the i'th body. The initial orientation of the

element-reference system is parallel to the initial orientation of the element-fixed system.
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Figure (1.1} Frames of Reference for a Two-Dimensional Beam Element
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Two approaches are usually used to construct the finite element models for the
flexible multibody systems, namely, the floating frame and the inertial frame methods.
In the remaining part of this section, a review is given for both methods. An assessment
of the corotational formulation, which is fairly new in the field of multibody systems, is

also presented.

1.3.1. FORMULATION IN THE FLOATING FRAME

In the floating frame approach, the displacement of any point in the i'th body is
viewed as the result of the superposition of a rigid-body displacement and a local
deformation displacement. FErdman and Sandor (1972), Sadler and Sandor (1973),
Shabana (1989, 1990) and Song and Hang (1980) are but few researchers who used this
type of formulation.

The location of an arbitrary point on element j of body i is defined using the
previously described coordinate systems. The deformation and the strain are measured
relative to the element-reference " :ime and then transformed to the fioating frame.
Consequently, expressions for the strain and kinetic energies can be developed.

The resulting equation of motion of the i'th body takes the following form

(Shabana 1989):
(k] (mi] ] [a% {0 0_} din| | Fab| _ Fi (1.1)
[mi] (mfe) ||@5) O lkeel]|dd| |rd

dy = vector of coordinates of the origin O of the i'th body with respect to the

where



inertial frame

dn = vector of the nodal deformation of the i’th body with respect to the floating
frame

FG;' = the generalized force vector

F, = vector of the generalized forces associated with rigid body motion

Fy' = vector of the generalized forces associated with elastic deformation

[m.] = inertia sub-matrix associated with the rigid body motion

[mg] = inertia sub-matrix associated with the elastic deformation

[m], [mg] = coupling inertia sub-matrices between the rigid body motion and the
elastic deformation.

The generalized force vector Fg' can be written as:

Fy = Pl + P} +F} (1.2)
where
F/! = external forces
F, = quadratic velocity force vector
F! = forces of constraints.

It should be noticed that F,!, which results from the translation and rotation of the
floating frame with respect to the inertial frame, contains the Coriolis and centrifugal
force components. The sub-matrix mg' in equation (1.1) is time invariant. The other
matrices depend on the system's generalized coordinates and consequently are implicit

functions of time.
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One should notice that measuring the deformation relative to the floating frame
means that the relative rigid body motion between the elements within the body is
neglected. This means that the approximation of the displacements and strains is carried
out at an early stage of the analysis and consequently some significant coupling terms
between the centrifugal forces and the deformation are lost.

The system of coupled differential equations, given by equation (1.1), is highly
nonlinear. The inherent nonlinear character is in the inertia part due to the presence of
Coriolis and centrifugal effects and due to the effects of the rotation of the floating
frame. It is worth mentioning that in structural dynamics all the sub-matrices of the mass
matrix will vanish except [mg]. In rigid body mechanics the non-vanishing sub-matrix
is [m,]. Quite often both the deformations and the relative displacements in the i'th body
are assumed small. Consequently, the stiffness matrix [Xr] becomes linear and time
invariant.

The early researchers in the field of flexible multibody dynamics simplified the
previous system of equations of motion. They assumed that the elastic deformation of the
links does not influence the rigid body motion. In this case, equation (1.1} can be

uncoupled to read:
[mzl:] a,_i = -F,_:tb {1.3.a)
(mé) di + (k&) di = P2 - (md) 42 (1.3.b)

This way, the coupling term [m,] Ei,' which should appear in the left hand side of
equation (1.3.a) is neglected. Equation (1.3.a) is solved for the rigid body motion and

the results are used to handle the second. The last term in the right hand side of equation
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(1.3.b) is visualized as a forcing term.

Winfrey (1971), Erdman and Sandor (1972), Sadler and Sandor (1973) and Turcic
and Midha (1984a,1984b) are among the researchers who used this linearized theory of
elasto-dynamics. However, the approach is not valid for high-speeds, light weight
mechanisms and for manipulators with motors at the joints. Yigit (1988) showed
theoretically and experimentally, that uncoupling could lead to erroneous solutions in
some cases. Later Bakr and Shabana (1986), Kane et al. (1987), Nagarajan and Turcic
(1990) and Shabana (1989,1990) took into account the coupling term [m,] d/ on the left
hand side of equation (1.3.a) which means that they included the effect of the elastic
deformation of the links on the rigid body motion.

A considerable difficulties appear when using this method for cases with large

relative displacements within a single body or for cases contain large rotational velocities.

1.3.2. FORMULATION IN THE INERTIAL FRAME

This method was introduced by Simo and Vu-Quoc (1986) and used by Yang and
Sadier (1990), Carddona (1988), Jonker (1989), Avello et al. (1991) and others. In this
approach the combined elastic and rigid components of the body displacement are not
separated. Only the inertial and the element-fixed frames are used to describe the body

motion. The equation of motion for a multibody system takes the following form:

(M &+ [Cld + £(d) = F (1.4)
where

[M] = system mass matrix obtained by assembling the element mass matrices [M].
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[C] = system damping matrix.
F = vector of the applied forces and moments.
f(d) = vector of elastic forces due to deformation. f(d) is assembled from element

vectors f{d).

It should be noticed here that [M'] is a constant matrix and £(d) is not linear. In general
it is a cubic function of the nodal coordinates.

This method is based on large displacement and finite rotation beam theories.
Therefore, the method could be applied for the investigation of nonlinear effects due to
deformation and in cases where coupling effects between axial forces and bending
deformations are significant. The essential steps needed to develop the model in this case
require the use of nonlinear beam theory which is capable of treating finite rotations and
finite strains. The approach has the advantage of avoiding the complex coupling terms
in the inertia matrix. The expense is shifting the inherent nonlinear character of the
problem to the stiffness part of the equations of motion. Therefore, the method is
computationally costly.

It is obvious from the presentation given in this subsection and in the previous one
that high nonlinearity is unavoidable in the formulations based on either the floating or
the inertial frame, This fact motivates a research for an alternative way to avoid this

complexity. Corotational formulation seems to offer an answer.

1.3.3. COROTATIONAL FORMULATION

The corotational elements and theories were introduced to the area of structural
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dynamics. They were used, for example, by Belytschko and Glaum (1979), Oran and

Kassimali (1976) and Crisfield (1990). The term "corotational” is used to refer to the fact
that a specific element frame is used for the formulation. This element frame translates
and rotates with the element but it does not deform with it,

The corotational formulation offers a framework in which gross nonlinearities are
accounted for via the rotation of the corotational frame. Belytschko and Glaum (1979)
used a corotational formulation to solve some structural dynamic problems. They
described the equilibrium of the element in reference to the corotational coordinate
system i.e., to a moving frame. The justification is that the rigid body motion in
structural dynamics is small enough to be ignored. This approach fails in case of flexible
multibody systems where the elements undergo high-speed large rotations.

Chan (1990) extended the corotational method to the dynamic analysis of
muitibody space structures. His approach generated highly nonlinear coupling terms in
the Inertia matrix. Hsiao and Jang (1991, 1994) developed numericai algorithms to use,
without analytical justification, the corotational model in the analysis of flexible

multibody systems.

1.4. CLASSICAL AND FINITE ELEMENT IMPACT ANALYSIS

Impact forces and the associated deformations depend on the relative velocity of
approach of the impacting parts. For speeds from, say, 1 to 15 m/sec the impact
behaviour is associated with the vibrational characters of the bodies. Local indentations

are strongly related to the overall deformation of the structure. Vehicles involve in
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coilisions belong to this class. Beaudry et al. (1989) reported that the Canadian Motor

Vehicle Safety Standards, state that passenger cars must be able to pass a 13.33 m/s
barrier impact test without significant deformation of the space frame. Impacts
imparted to the majority of multibody systems, during their functional operations, also
belong to this class.

On impact, stress waves are generated at the contact point. These waves
propagate into the interior of the bodies with finite velocities and their reflections at the
bounding surfaces produce vibrations in the solids. Peak stresses are reached during the
first few reflections of the stress waves. As time progresses geometric and material
dispersion of the waves occur and consequently the peak diminishes. Unless the contact
surfaces are perfecily plane, additional deformations will occur in the vicinity of the
contact point.

Among the factors which affect the impact response is the mass ratio between the
colliding bodies, their vibrational characteristics and the duration of contact. The
difficulties in analyzing impact loading are basically due to the lack of information
regarding: the geometry of the contacting surfaces Curing impact, the force-deformation
relationship, the dissipated energy in the form of vibration and heat, the time of contact,

the time for separation and the time history of the contact forces.

1.4.1. CLASSICAL THEORIES
One can find a good survey for the classical theories of impact in the works of

Goldsmith (1960), and Zukas et al. (1982). Every one of these theories is based on some
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particular assumptions to simplify the impact problem. Each theory can give reasonable
results for a specific class of problems and fails for others.

The stereomechanical impact theory involves a minimum .of mathematical
difficulties. For that theory, the applied forces and moments are neglected compared to
the impuisive forces. The configuration is assumed to undergo no change during impact.
The plasticity of the impact is accounted for by employing the coefficient of restitution
e. The coefficient of friction f is used to calculate the frictional forces. The dissipation
of energy due to vibrations and noise is neglected.

The impulse-momentum law and the Newton impact law are used to evaluate the
incremental changes in the translational and angular velocities of the bodies in the
system. However, the theory is incapable of describing the transient stresses, forces, or
deformations produced. The approach is limited to the specification of the terminal
velocity states of the objects.

In the stereomechanical treatment, bodies are assumed rigid and rigidly connected
and consequently the impact is assumed to take effect instantaneously and simultaneously.
In reality, the disturbance generated at the contact point propagates in the interior of
the bodies with a finite velocity, and its reflection at the boundary surfaces produces
vibrations in the solid at a later instant. Thus sections of a given body, subjected to
impact loading, are not simultaneously exposed to the same force action. The local
transient deformations and stresses created by this disturbance may be determined by
using of the theory of wave propagation.

Saint-Venani's principle accounts for the vibrational aspects of the impact.
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However, the principle has many limitations. It demands that the colliding surfaces to
be ideal smooth planes which are located exactly normal to the direction of the
relative velocity of approach to insure instantaneous contact. It also neglects the local
deformations in the vicinity of the contact point and demands that the contacting bodies
have simple geometry.

In many practical cases, the contacting bodies have curved boundaries at the
contact location. In this case the two bodies suffer a relative indentation in the
vicinity of the impact point in addition to the overall deformation of the bodies as a
whole. This phenomenon, which was neglected in Saint-Venant’s principle, is rectified

in Hertz law which is given by:

3
= 2 {1.5)
F_{q = ﬂhz a 2
where
F,, = impact force
o = indentation
Ny, = Hertz constant which is a function of the geometry and the material propertics

of the two colliding bodies.
Hertz law is restricted in many ways. It neglects the effects of elastic vibration. It
is not applicable to cases where the contact is over a large area, or in cases where a
considerable amount of energy is transformed into vibration. It is also noticed that the
contact force model given by equation (1.5) assumes that no energy is dissipated in the

process of impact. Therefore, it is only applicable in cases of perfectly elastic impact.
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1.4.2. FINITE ELEMENT ANALYSIS IN STRUCTURAL DYNAMICS

No single theory can account for all aspects of impact dynamics. Many
researchers were attracted to bridge these limitations. A considerable attention is focused
towards the use of the finite element formulation to solve contact-impact problems in
structural dynamics. Recently, a number of efficient algorithms have been developed
for solving some contact-impact problems in the field of structural dynamics involving
striking, frictional sliding and separation between solid bodies. General-purpose
computer routines were developed for the solution of large-deformation contact-impact
problems. In these software the system is discretized and elasto-plastic analysis with
sophisticated contact algorithms are used to solve for the local deformations. Zukas et
al. (1982) evaluated some of the well known packages. Some of this packages use
"explicit” methods and others use "implicit” methods. A typical example of the former
is the DYNA3D introduced by Hallquist et al. (1985). The NIKE3D is a typical example
of the implicit type.

Contact displacement constraints can be enforced by applying conditions to
prevent the structural or the continuum domains from overlapping. This is known as the
principle of impenetrability. The contact conditions should also include provisions to
control the surface contact sliding. The Lagrange multiplier and The Penalty techniques
are the most two commonly used approaches to enforce the finite element contact
displacement constraints. The displacement constraints to prevent the two bodies to

occupy the same space at the same time may be expressed as

(61 d=8 (1.6)
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[G] = surface contact displacement constraint matrix
b = vector of nodal gaps

Hughes et al. (1976) and Hallquist et al. (1985) introduced the Lagrange

multiplier into the equations of motion as follows:

M d+ [C] d+ £(d) + [G]TA="P (1.7)
where
d = velocity vector.
d = acceleration vector.
A = Lagrange multiplier vector.

The components of the Lagrange multiplier vector are simply the surface contact forces.
The method treats the Lagrange multiplier vector as an unknown variable and solves
equations (1.6) and (1.7) simultaneously.

In the Penalty method, a large penalty of energy is associated with committing an
error in reaching an admissible solution. The penalty is set up in such a way that nodal
motions towards an admissible solution will result in decreasing the penalty function.
Minimizing the energy of the problem tends to lead to acceptable results. There are
two approaches to apply these penalties, namely, the "filled-gap” and the
“penetration” approaches. Ayari and Saouma (1991) applied the filled-gap techniques
by filling the space between the bodies with a fictitious material. After evaluating
the displacements due to impact, a thin sheet of this material remains between the
bodies. Hallquist et al. (1985) presented a penetration method. In this method corrective

forces are applied. These forces are proportional to the depth of penetration. After



19

displacement, only small penetrations are left because large forces prevent greater
violation of the compatibility constraints.

The effect of friction is of great importance in some contact-impact problems.
However, a lot of difficulties arise when friction is considered. One should identify
whether there is slipping or not between the two bodies in contact. The nature of the
problem, and consequently the solution, is not the same in the case of slipping and
sticking. The choice of the friction law which would be used in the analysis is another
concern. Hallquist et al. (1985), Hughes et al. (1976) and Ko and Kwak (1992a) are
among the researchers who used Coulomb’s law of friction to evaluate the tangential
traction using the normal component of the contact force. Some researchers used
different friction laws, which take into account the local micro-mechanical phenomena
within the contact interface. Wriggers et al. (1990) proposed a finite element formulation
for frictional contact problems based on elasto-plastic formulation of a proposed frictional

interface law.

1.5. ANALYSIS OF IMPACT FOR MULTIBODY SYSTEMS

Though the previously mentioned structural dynamic contact-impact packages are
very sophisticated, they are not quite fit to handle multibody systems with impact
loading. Not only do they call for extensive computational requirements but, also, they
cannot model the rigid body motion which is expected from multibody systems. One way
to soltve this problem is to superimpose a structural dynamic contact-impact model to a

conventional multibody model. This will generally result in a complex model which is
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computationally costly and inefficient. This technique was implemented by Ko and Kwak
(1992b). They modified their previously developed structural dynamic contact-impact
algorithm (1992a) to be used with multibody systems. Though the authors assumed that
the normal components of the contact forces did not dissipate energy, they themselves
admitted that the method is computationally costly.

Multibody-oriented models, which are more simple and computationally efficient,
should be used to model impact in these mechanical systems. Two multibody-oriented
methods are widely used in literature for modelling the impact problem: namely, "the
momentum balance" and "the spring-dashpot” models. The remaining part of this section
is dedicated to discuss each model briefly. The complexity which results from the

inclusion of friction contact forces in the analysis is also discussed.

1.5.1. MOMENTUM BALANCE MODEL

The "momentum balance model", quite often referred to as piecewise analysis,
has long been used to model the impact between rigid bodies. In fact, this method is an
extension to the stereomechanical theory which assumes that the impact is instantaneous.
The dynamic analysis of the system is achieved by balancing the system momenta before
and after impact. To model the process of energy transfer during impact the coefficient
of restitution is introduced. Newton’s impact law defines the coefficient of restitution

"ex" as follows:
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ey = -2 (1.8)

where
V.i,Va, = normal relative velocities at the beginning and at the end of the impact
period, respectively

In contrast, the Poisson’s hypothesis defines the coefficient of restitution "e," as follows:

Pﬂ

z
B, (1.9)

c

€p =

where

Pe,Pe = normal components of the impulse during the restitution and during the
compression periods respectively.

Newton’s and Poisson’s approaches for the impact problem become equivalent if the

collision is collinear or the friction forces are neglected.

Kane (1962) developed a generalized impulse-momentum principle for the
determination of the changes of the generalized velocity vector of a system by the action
of impulsive forces. Wehage et al. (1982) extended Kane’s model to be applied to a
constrained system of rigid bodies. Haug et al. (1986) extended this method to treat the
cases with constraint addition-deletion and joint friction and stiction. In addition to the
use of the momentum equations to calculate the jump in the vzlocities, they used
Coulomb’s friction law to represent the friction in the joints.

Chang (1990) used the momentum balance model to study the impact aspects in

open-tree and constrained multibody systems for both holonomic and nonholonomic
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constraints. The impulsive constraints in multibody systems have been considered also.
The frictionless direct collision was the only type of collision which was treated in that
study. Lankarani et al. (1992) developed a canonical form of the equations of motion in
terms of the time derivatives of the system’s modified momenta, They reported that their
numerical solution was found to be more stable in comparison with that obtained from
the conventional forms.

Zheng and Hamami (1985) studied the impact aspects in the robot’s joints and in
the end effector due to impulsive forces and abrupt velocity changes. Walker (1990)
generalized the method of Zheng and Hamami (1985). He studied a case of kinematically
redundant manipulator. He succeeded in selecting some specific configurations for the
manipulator which reduce the undesirable effects of the impact.

In all the cases discussed before the flexibility of the links was not taken in
consideration. Khulief and Shabana (1986a) investigated the flexible body systems under
impact loads. They showed that the governing equations in this case, can be written in

the following form:

ds

(M) -198)

) ad [Aa} =[ (10 | r] (1.10)
8 x - +te
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with
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I [—ad] {£7) {1.11)

where

s = relative displacement between the points of impact.
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x = vector of the generalized impulse.

il( t ) = vector of the nodal velocities just before impact.

Yigit (1988) used the momentum balance model to predict the motion of a radially
rotating beam with impact. The momentum balance method was also used to model the
dynamics of flexible multibody systems with variable kinematic structure. Khulief and
Shabana (1986b) developed a piecewise model which accounts for the change in the
topology of the spatial system due to the variations in the connectivity between the
bodies.

The validity of the use of the momentum balance method for impact analysis on
flexible multibody systems was assessed by Rismantab and Shabana (1990). They showed
that the series solution obtained for the generalized impulse momentum equations is
convergent. Yigit (1988) investigated analytically and experimentally the validity of using
the momentum balance method. His experimental results were in good agreement with
the numerical results obtained using the impulse momentum equations. He concluded that
the generalized impulse momentum equations, with the coefficient of restitution, can be

used with confidence to study impact problems in constrained deformable bodies.

1.5.2. SPRING-DASHPOT MODEL

While the momentum balance analysis offers the advantage of relatively low
computational effort, it is not able to predict the values of the forces and deformations
during impact. These values are needed and are important in some applications. The

spring-dashpot model, quite often referred to as the "continuous analysis model”,
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assumes that the collision forces act in a continuous manner. Hence, the impact analysis
of the system is performed in the usual way of dynamic analysis. Simply by adding the
contact forces to the family of equations of motion during the contact period. One can
visualize this model as a modification to Hertz law in the sense that the law implies that
the two impacting bodies are restricted to move in the direction of impact with spring
buffers. All deformations occur in the springs, the inertias of which are neglected. The
spring-dashpot model accounts for the energy dissipation by using a dashpot in paraliel
with the spring. This spring-dashpot element is implanted between the prescribed pair of
contact nodss in the short period of impact. The equation of motion of the multibody
system can then be adapted to account for impact simply by including an additional force
vector in the equations of motion. This force vector accounts for the deformation of the
sprig and the dashpot. Different models have been proposed to represent the additional
forces induced at the surfaces of the two bodies in contact. A wide class of these models

can be written as

F() if F(n>0 (1.12)
F@ = { 0 if F)s0
F @) =ks®+cTs)s (1.13)
where
c = damping factor.
k = spring constant-

n = constant.
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T = damping function.
It should be noticed that T is chosen to predict a zero damping force at the beginning as
well as at the end of the impact period.

Models differ in the way n and T are selected. Hunt et al. (1975) used a Hertzian
law to represent the surface compliance and a damping term to represent the material
damping, the damping term was expressed as a linear function of the elastic penetration
between the two impacting surfaces. Dubowsky and Freudenstien (1978) experimentally
tested mechanical joints with clearances. In their analytical model they represented the
surface compliance by a Hertzian spring and the material damping by a linear viscous
damper. That model was based on the assumption that the coefficients representing the
matenal compliance and damping are known given constants,

Lankarani and Nikravesh (1990) developed a continuous contact force model for
- the impact analysis of two spheres having a direct-central impact. A variation of Hertz
law was developed to account for the energy losses during impact. The model accounted
for the dependence of the contact force on the geometry of the bodies in contact, their
material properties, the coefficient of restitution and the initial relative velocity of
approach. The model was then generalized for the analysis of the impact between two
bodies of a multi-rigid-body system.

In all of the previous models the flexibility of the links were not considered.
Dubowsky and Moening (1978) studied flexible planar systems with both joint clearances
and compliancies. They modeled the impact forces and damping in the joints by Hertzian

force-displacement and viscous damping laws respectively. The material compliance and
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damping coefficients were assumed to be known constants. The model was verified
experimentally.

Khulief et al. (1987) estimated both the damping and the stiffness coefficients of
the spring-dashpot model from energy balance relations and impulse momentum
equations. They compensated for the existence of, and changes in, the joint forces by
using an effective mass compensation,

In general, the spring-dashpot model can be considered as a variation of the
penalty function method. Although there are no additional variables introduced to the
former model, the accuracy of the solution was found to be strongly dependant on the
selection of the parameters of the spring-dashpot system. Poorly selected coefficients for

the spring and/or dashpot's constants can result in poor results and/or ill-conditioned

stiffness matrices.

1.5.3. FRICTIONAL IMPACT

The area of "impact with friction on a single rigid-body" has drawn the atizntion
of several researchers in the past. It is still the subject matter of current research. Adams
and Tran (1993), Brach (1984, 1989), Dupont (1993), Ivanov (1992), Keller (1986),
Stronge (1990, 1991a, 1991b) and Wang and Mason (1992) are but few researchers who
contributed to that area. Most of these researchers used either Newton's impact law or
Poisson’s hypothesis. While Kane (1985) was solving the problem of a compound
pendulum striking a fixed surface he noticed that for some values of the problem’s

parameters the results showed an increase in energy. This was attributed to the fact that
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the slip velocity reversed its direction during impact. Newton’s impact law, as is, can not
handle this situation correctly.

Other alternative methods were sought to correct the violation of energy
conservation. Brach (1984, 1989) proposed a new definition for the coefficient of friction
to prevent energy gains. Keller (1986) developed a method, based on Poisson’s
hypothesis, that takes into account the change of direction of the sliding velocity. Wang
and Mason (1992) applied a geometrical technique, based on Poisson’s hypothesis, to
identify the contact mode of impact and to determine the impuls component due to
friction

Stronge (1990, 1991a, 1991b) showed that both of Newton’s impact law and
Poisson’s hypothesis are energetically inconsistent in the case of frictional collision
which is non-collinear and with slip that stops before the end of the impact period. He
proposed an alternative definition for the coefficient of restitution as the square root of
the ratio between the internal energy of restitution and the energy gained during
compression. In this way he satisfied the energy conservation requirements.

All of the previous investigations were restricted to the collision between particles
or between free rigid bodies. If one of the impacting bodies or both of them s
kinematically connected to other components of the mechanical system, the effects of the
reaction forces, which appear due to the constraints, should be taken into account. Batlle
and Condomines (1991) used a Lagrangian formulation to study rough collision in a
system of rigid bodies in which the continuity of several generalized velocities is kept

by means of impulsive drivers. A coefficient based on the work done by the normal
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forces during restitution and compression was introduced.

1.6. SOLUTION PROCEDURES

Direct-numerical integration methods, such as the Runge-Kutta algorithm or the
Newmark method are widely used to solve the equations of motion. They can be readily
applied to determine nonlinear elasto-dynamic responses, and adequately simulate systems
which are subjected to complex loading, or loads containing significant high frequency
components such as impulsive loads. The algorithms used for the direct-integration
methods are classified as explicit or implicit. Typically, high accuracy is achieved by
employing high order explicit algorithms. A classical example is furnished by the family
of Runge-Kutta methods. It is well known that the main draw back of explicit schemes
is the severe limitation on the time step to guarantee numerical stability. Implicit schemes
possess very robust numerical stability. Classical examples are found in the stiffly stable
methods of Gear (1971), and the family of algorithms devised by Newmark (1959).

In order to reduce the size of the problem, many researchers, in the general field
of flexible multibody systems, are using the "component-mode synthesis". Prior to the
time integration, a change of basis is carried out, namely from the finite element nodal
displacements basis to the basis of a set of modes: rigid body, reference and normal
modes. Rigid body modes define the location and orientation of a selected body
reference. Reference modes are the result of imposing the kinematic constraints on the
boundary of each body. Normal modes define the deformed shapes of the body with

respect to the body reference. A reduced order model can be obtained by considering
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only the significant normal modes. The component-mode synthesis is most efficient in
case the essential features of the dynamic response are contained in the first few modal
combinations.

In the presence of impact, using the component-mode synthesis may result in
misleading solutions. Impact is often characterized by high-frequency components. This
generally requires a solution based on many modes in order to predict the response of
the system. Difficulties are encountered in the selection of the adequate set and number
of normal modes. The inadequate selection of modes may lead to erroneous solutions.
As the kinematic constraints change during impact, the reference modes change.
Consequently, one may need to adopt a new set of normal modes. This results in a
fairly complicated dynamic model.

Despite the previously mentioned shortcomings and restrictions on the use of
component-mode synthesis in the analysis of flexible multibody systems subjected to
impact, the method is widely used in practice. The high nonlinearity in the formulation
based on either the floating or the inertial frame forced a lot of researchers to use this
technique to reduce the problem dimensionality and consequently the computational
efficiency. Dubowsky and Moening (1978), and Khulief and Shabana (1986a, 1986b,
1987) are but some of the researchers who used this method.

The use of finite element nodal displacement basis eliminates the difficulti=g
encountered in the use of the component-mode synthesis. To be able to implement this
approach, a strategy should be used which is different from the floating or the inertia

frame approach. The suggested strategy should be computationally efficient to
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compensate for the additional efforts which arise from the use of the nodal displacement
basis instead of the component-mode synthesis method. The "corotational formulations”

are believed to have the potential to meet these requirements.

1.7. OBJECTIVES OF THESIS

It is observed from the previous review and discussions in this chapter that there
is still a need for a satisfactory strategy which handles flexible multibody systems
subjected to impact with friction. The objective of this work is to derive an adequate,
computationally efficient and energetically consistent multibody-oriented frictional impact
model. The model should be able to predict the motion of the system, the contact forces,
and the associated deformations during impact.

A corotational finite element formulation of the nonlinear constrained differential
equations of motion is developed in this thesis. A numerical algorithm is developed,
tested and used. The use of the corotational formulation is fairly new in the field of
multibody systems even in the absence of impact loads. In this thesis, a mathematical
model is derived starting from the basic principles. This development enables one to
assess the range of applicability and the degree of accuracy of the corotational
formulation.

In this research two approaches are used to model impact with friction. The first
approach is a modified momentum balance model for the flexible multibody systems.
This modified model eliminates a number of constraints and limitations which are

inherent in the previously developed models. The approach leads to an energetically
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consistent model which accounts for the presence of frictional forces. The approach
allows for the prediction of the contact forces and the deformation of the contact area
during the impact.

The second approach is based on a realistic continuous frictional impact model
instead of the widely used spring-dashpot model. The new model makes use of the
Lagrange mulitiplier method. The literature is void, to the best of knowledge of the
author of this thesis, of any multibody-oriented model which is based on the Lagrange
multiplier approach. In this approach, the Lagrange multiplier guarantees that the
geometric compatibility conditions during contact are satisfied.

The applicability and the accuracy of the formulations and the numerical
procedure presented in this thesis are illustrated by performing dynamic analysis of some
mechanical systems which are subjected to impact. Friction is considered in some of
these cases.

The models developed in this work can be used to model and predict the motion
of a wide class of mechanical systems. These systems could be subjected to impact even
in the presence of friction. The developed models can be used to conduct analysis of
existing mechanical systems or to simulate the behaviour of a wide range of alternate

designs prior to building and testing a prototype.

1.8. THESIS ORGANIZATION
Corotational finite element formulation is developed in chapter (2) for the

dynamic analysis of flexible multibody systems which are subjected to continuous forcing
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functions. The nodal coordinates, velocities, accelerations, incremental displacements and
the equations of motion are all defined in terms of the inertial frame. Strains are
formulated in terms of the corotational coordinate system. The model describing the
motion is derived using Lagrange’s equations. A numerical algorithm is developed along
the lines of the incremental-iterative method of the Newmark direct integration and
Newton-Raphson methods. Some typical mechanical systems are studied and the results
are compared with those obtained by other researchers using other techniques as well as
with published experimental results. The results obtained in this chapter confirm the
applicability, efficiency and accuracy of the formulation and the associated numerical
algorithm of the proposed method.

In chapter (3), the corotational finite element procedure is extended to include
impact with friction in the formulation. A contact predictor is introduced for monitoring
the instant in time at which impact takes place. The contact predictor is expressed in
terms of the system states. A modified momentum balance model is developed. The
problem of energy mismatch which arises with the use of Newton’s impact law or
Poisson’s hypothesis is resolved by developing an adequate method based on Stronge’s
approach to model the process of energy transfer between the bodies in contact during
the impact period. The coefficient of restitution is used to describe the degree of
plasticity of the collision. The model accounts for the frictional forces at the contacting
surfaces using Coulomb’s law. A new technique is adapted to calculate the contact
forces, the local deformation during impact as well as the gross motion before and after

impact.
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Chapter (4) introduces the strategy of using the Lagrange multiplier for the

solution of flexible multibody systems which are subjected to frictional impact. The
Lagrange multiplier method guarantees that the kinematic impenetrability constraints are
satisfied. It also allows the direct evaluation of the contact forces. No additional
parameters are required as in the case of the spring-dashpot model. A set of equations
is constructed to satisfy the impulise-momentum requirements at the beginning of the
contact. The proposed scheme is shown to be very efficient both in terms of storage and
computing time.

The applicability and the accuracy of the corotational formulation and the two
impact models are demonstrated by performing the dynamic analysis of some mechanical
systems which are subjected to impact with friction. In chapter (5), the results of the two
impact models are compared to each other as well as to available theoretical solutions and
published experimental results. The developed methodology is used to investigate some
practical engineering problems which evolve impact loading in flexible multibody
systems. The problem of the flexible beam attached to a moving rigid body and
undergoing impact has been simulated. This particular problem has its implications in
some engineering areas like: helicopter rotors, turbine blades, robot arms and space
satellites with flexible appendages. The second case-study is that of a slider-crank
mechanism with a flexible connecting road. The impact between the slider and a free
moving mass is simulated. This example provides a better understanding of some
practical problems which arise in cold forging. The problem of a rod colliding with an

immobile surface has been investigated. The problem has its application in areas like
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robots and walking machines. This problem was used by other researchers (Brach 1984,
1989 and Wang and Mason 1992) to illustrate the paradoxes in rigid body mechanics.
The use of Newton’s impact law might lead to misleading results for this problem, which
might violate the energ{n conservation principal. The results of the simulation of these
study-cases demonstrate the feasibility and computational efficiency of the formulation
proposed in this thesis.

Summary and recommendations for future work in this area of research are

presented in chapter (6).



CHAPTER 2

DYNAMIC ANALYSIS OF FLEXIBLE MULTIBODY SYSTEMS

In this chapter a computer-oriented method is developed for the formulation and
the solution of nonlinear mathematical model for flexible multibody systems with large
displacements and rotations.

Corotational finite element formulation is used to describe the dynamics of
flexible multibody systems. An inertial frame is used to define the nodal coordinates,
velocities, accelerations, displacements, and rotations. The equations of motion are
developed in the inertial frame, while strains are measured in a corotational coordinate
system of each element. This elemental coordinate system rotates and translates with each
element but does not deform with it. The equations of motion are derived using
Lagrange’s equations. The numerical solution is obtained by employing an incremental-
iterative method based on the Newmark direct integration algorithm and Newton-Raphson
method. The general formulation is exemplified by considering a two-dimensional beam
element.

The applicability and the accuracy of the method is demonstrated by studying
some nonlinear flexible mechanical systems. The flexible links are modeled using the
planar beam elements.

The kinematics of motion are developed in section 1. The potential and kinetic

35
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energies for the general case are formulated in sections 2 and 3. Lagrange’s equation is
used to derive the equations of motion as shown in section 4. The solution procedure is
demonstrated in section 5. Both the stiffness and mass matrices for the special case of
planar beam element are constructed in section 6. Examples, results and comparisons are

reported in section 7. Summery and conclusions are presented in the last section of this

chapter.

2.1. KINEMATICS OF MOTION

Figure (2.1) shows the reference frames. The inertial frame is denoted by
(X,Y,Z). A corotational frame (X,¥,Z) is attached to the i’th element. The corotational
frame rotates with the average rigid body rotation of the element.

The global position of a generic point p on the i’th element is given by:

r,=R'+u (2.1)
where
r, = position vector of point p in the i'th element
R = position vector of the origin O' of the i’th element
u = position vector of point p with respect to O

One should notice that r,, R' and u are expressed in the inertial frame. One can also

write

%= [Q] u @2

where
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u = position vector of point p with respect to 0 referred to the corotational frame

[Q1 = 3x3 rotation matrix which consists of the direction cosines of axes X, ¥ and Z
with respect to X, Y, and Z

One also notices that [Q,7] is time dependent. Combining the previous relations, one

obtzins:

r,"R' + [Q" u 2.3)

Due to the flexibility of the bodies, vector & can be written as

u=u,+ i, 2.4)
where
u, = position vector of p in the undeformed state with respect to ¢
u; = deformation vector of p with respect to (¢

Both of u, and u, are expresssed in the corotational frame. The movement of the i'th
element with respect to the inertial frame can be expressed as a rigid body motion of the
element’s corotational frame with respect to the inertial frame and a deformation with

respect to that corotational frame. Therefore, the nodal displacements of the i’th element

can be expressed as:

d'=d, +[QTd @.5)
where d', d and d' are time dependent vectors defined as follows:

d' = vector of nodal displacements with respect to the inertial frame

dri

vector of rigid body-motion nodal displacements with respect to the inertial
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frame
d' = vector of elastic nodal displacements with respect to the corotational frame
while
[Q] = time dependent rotation-of-axis transformation matrix

For elements with two nodes [Q] can be written for the two dimensional case as

_ [red o
[0 = ' (2.6)
¢ [Q]
while for the three dimensional case [Q] is a 12x12 matrix defined by

Q0 0 o0
i
y-| 0, ° @.7)
0 0 Q0
0 0 0 Q]

The finite element displacement shape functions relate the deformation vector u;

to the nodal displacement vector d' as follows:

{"} - [N'] ‘? (2.8)
where

[N{ = finite element displacement shape functions matrix

2.2, THE POTENTIAL ENERGY

The potential energy for the i'th element reads:
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nl’ = Ul _ Wl (209)
where
IT = potential energy of the i'th element
Ut = strain energy of the i’th element
W' = work done by external forces applied to the i'th element

2.2.1 THE STRAIN ENERGY

The strain energy of the i'th element is given by:

i 1 T i
Ut = of 8l edv (2.10)
where
Vi = volume of the i’th element
€ = strain vector at p in i'th element
o, = stress vector at p in i'th element

Since the rigid body motion does not have any effect on the state of strain, one can write

the strain displacement relations in the following form

€ = [D] Ef (2.11)
where
[D] = a differential operator matrix

Combining equations (2.8) and (2.11), ¢ can be written in terms of the

generalized nodal coordinates as follows:
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e = [D] [N d (2.12)
In the case of linear isotropic materials, the constitutive equations can be written

in the following form

g, =[Ee (2.13)
where
[E] = symmetric matrix of elastic coefficients for the i'th element
Combining the previous two relations one can express the stress at a generic point in

terms of the nodal displacements:

g, = [EN DI N] & (2.14)

Combining equations (2.10), (2.12) and (2.14), one can write:

Uls [ (EYDI N ST (D1 VY &) d v 2.15)

Recalling that [E] is symmetric and d' is independent of Vi, the previous relation

simplifies to:

Ut = % Fky & 2.16)
where
K] = symmetric stiffness matrix for i’th element referred to the corotational frame.

[KT is defined by:

(K] = [, @D} N (£ (D) [N) dV' @.17)



Substituting (2.5) in (2.16) one obtains:

Ul = %[ Q1@ - d N K' [0 (d - &Y 2.18)

Equation (2.18) can be written in the following compact form:

Ut = 2 (@-a)T 1KY (@-dh 2.19)
where
[K] = stiffness matrix of i’th element referred to the inertial frame
(K7 is defined by:
K = Q7 K [Q1 (2.20)

2.2.2, WORK DONE BY APPLIED FORCES

The work done by the concentrated applied forces on the i’th element is given by:

Wi = FiT dl (2.21)
where

F = vector of the applied nodal forces on the i'th element

2.3. THE KINETIC ENERGY

The kinetic energy of i'th element can be written in the following form:
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1 T .

- i

T = 2 Iy pr, T, dv (2.22)
where

() = differentiation with respect to time t

T = kinetic energy of i'th element

r, = velocity of p in the i'th element with respect to the inertial frame

Jo = mass density of the material in the i’th element at point p

Making use of the property:

[Q17 (@] = [ (2.23)
where
[I1 = identity matrix
One can write
T - % yi P (@ #)" (@1 #,) av’ (2.24)

Considering an element-oriented frame (5{,?,2) which has the same origin as the
(X,Y,Z) frame and its axes parallel to those of the (X,¥,Z) axes. The absolute velocity

of point p with respect to this frame can be written as:

F = Q1 , 2.29)
the nodal velocities of the i’th element with respect to the (5(,{[,2) frame can be

expressed as:

ai - [Q‘] ‘il (2.26)

Referring to the (f(,?,i) frame, one can interpolate the absolute velocity of point p in
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terms of the nodal velocities of the i’th element as follows:

7, = N7 d @.27
Using the last four equations, the kinetic energy T' can be written as follows:
i _ 1 3T aT AT . g ; "
ri= 2 [ e dT QY VT V] Q1 d' av 2.28)

Utilizing the fact that neither d' nor [Q7 is a function of Vi, the previous expression for
T' simplifies to

T - 2 &Y 1 104 d

2.29)
where

M] = symmetric mass matrix of the i’th element defined with respect to the element’s
corotational frame

[M] is given by

M= [, 0 NI N7 V'

(2.30)
Also one can write
i - L My g (2.31)
2
where
[M] = the symmetric mass matrix of i’th element defined with respect to the inertial
frame

[M] is given by



45

M7 = [QT [# ] [QF 2.32)

2.4, EQUATIONS OF MOTION
Lagrange’s equation as reported by Goldstien (1960) and Shabana (19&Y) are used
to derive the equations of motion in this section. This leads to a set of differential
equations with Jow degree of nonlinearity in both the inertia and stiffness terms.
Treating the nodal displacements d' as the generalized independent coordinates,

Lagrange’s equation takes the form

4Ty _ (yr , (OUyr (W

. ' (2.33)
at ad ad ad* ad

Using equation (2.31), one can write the first twe terms in the left hand side of the
previous relation as:
dar
at 3f

Using equation (2.19), the last term in the left hand side of equation (2.33) can be

) - (%")T= (M Ad' (2.34)

written in the following form:

Wy Lk (di - & (2.35)
(aa‘) [K'] ( r)

Substituting equation (2.5) into the previous relation, one obtains:
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LELAS e 2.36)
(ad") X9 107

From equation (2.20), and making use of the property

[RII =1 2.37

equation (2.36) can be written as follows

LR I (2.38)
(ad") f

where f is a function of d' and is given by

fi - [Q :']Tf‘ (2.39)

and

.F - [Ei] e (2.40)
The vectors f and £ are force vectors for the i'th element due to the deformations

defined with respect to the inertia! and to the corotational frames, respectively.

Also, one can write

W

= F'o 2.41)

Substituting equations (2.34) to (2.41) inclusive in equation (2.33) one obtair:s:
[Ml] J' + f‘= Fl(t) (2.42)

which is the equation of motion for the i'th element defined in the global inertial frame

(X,Y,Z). Expanding this equation of motion to system size and combining all the element
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equations, the equation of motion for the system can be written in the following form:

Ml d +f = F) (2.43)
where
fM] = global symmetric mass matrix of the multibody system
d = generalized nodal acceleration vector in inertia frame
f = system force vector due to deformation which is depending on d
d = generalized nodal displacement vector in inertia frame
F(t) = time dependent vector of the applied forces and moments

One can introduce Rayleigh damping in relation (2.43) to read

¥ = M3 + [Cld + f - FQ) @49
where
¥ = out of balance force
d = generalized nodal velocity vector in inertia frame
[C] = global symmetric damping matrix of the multibody system defined by:
[Cl= « [M] + DB [K] 2.45)
where
[K:] = global symmétric tangent stiffness matrix of the multibody system
o, B = coefficients which can be obtained from the vibration modes of the system.

Relations (2.44) and (2.45) constitute the governing model. They have the
following features:

a) Equation (2.44) is general and is applicable to any two or three dimensional



48

multibody systems provided that the appropriate stiffness and mass matrices are used.

b)

d)

The [M] and [K;] matrices are assembled from element matrices [M'] and {K'].
Since these element matrices are functions of [Qf] which is itself time dependent,
one concludes that [M], [K;] and {C] are, also, time dependent.

Vectors d, d, d, f and F(t) are assembled from element vectors d, d, d', f and
F(t) which are also functions of time.

Though the deformation force f is a function of d yet

fid) K. d (2.46)
because d contains the displacements and rotations due to both the deformation
and the rigid body motion. The rigid body motion does not yteld deformation
forces.

While the mass matrix [M] is positive definite, the tangent stiffness matrix [K;]
may be positive semi-definite due to the existence of rigid body modes.
Commeon nodal points are used to model the connection between the elements. At
these nodal points the elements share some or all the degrees of freedom of these
points. In this way one can model the connection of the links without using
constraint equations as is usual in other multibody approches.

The major source of nonlinearities in this set of equations of motion are embedded

in the coordinate transformation when element assembly is performed. These nonlinear

equations of motion are evaluated for a general flexible body with large displacements

and/or angular rotations. However, these equations represent the motion of a flexible

multibody system subjected to any type of continuous prescribed displacements and/or
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forcing functions.
The solution of this kind of discrete nonlinear differential equation with time

depzndent coefficients will be illustrated in the next section.

2.5. SOLVING THE EQUATIONS OF MOTION
Assuming that dy, &N, ::iN, [M]y and [C], are the values of d, ci, ii, [M] and [C]

at t = ty, the out of balance force reads:

¥y = [Mly dy + [Cly dy + fy - Fy 247
where fy= f(dy) and Fy = F(ty).

For t = ty,,, one can, write:

¥y = Mgy dyy + (Clyey dysy * fyg = Fiya (2.48)
il,m and (-iNH can be expressed using the Newmark time stepping algorithm (Newmark

1959 and Simo and Vu-Quic 1986) as follows:

- d -d (i 1 - 49
d. = Swa ¥y _ 9N _ -nd (2.49)
N+l h2 v h v (2 . ) N
dyg = dy + B [(1-7) dy + <dy,] 2.50)
where
h = time step
v,7 = Newmark algorithm parameters.

Through out this thesis Newmark parameters are selected to be (v = 0.25) and
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(r = 0.5) unless other values are mentioned. With this choice the algorithm is
unconditionally stable for linear analysis. Substituting equations (2.49) and (2.50) in

equation (2.48) and making use of (2.47) one can show that:

Ml +h[Cl,,
¥ram— lhz\, Py tfyn-Fya My AyICL,. By,  (2.5D
where
W A AR WY d, (2.52)
hiv hwv 2v
B, = Ty + (Z-1)d rh(—-1)d (2.53)
N hv v N 2v N

Equations (2.51) can then be solved for dy,, by employing the classical Newton-
Raphson iterative method. One can define:
d'y,;, = value of dy,, at iteration J
A dy,, = correction for dy,, to obtain &'y, incremental nodal displacements

As an initial guess one chooses d’,, equal to dy, i.e., equal to the same value
of the converged value in the previous step. The approximate initial values for d°y,, and
5°N+1 can be obtained from the Newmark scheme of equations (2.49) and (2.50).

At the J'th iteration using the Newton-Raphson scheme, the linearization of the
system’s algebraic equations about d'y,, yields:

¥rr = - [a"'”“l‘ Ady,, (2.54)
ad,,,‘l

where
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[a*n'u]_r _ [MI:M . T[C]},Jol . [ade]J (2.55)
ody,., kv hv Oy

Using equations (2.5), (2.20), (2.39) and (2.40), on= can write

f = BIKd'-4) 2.56)

Consequently, the last term in equation (2.55) can be written as:

a.fN +1
adN +1

[=22Y = (BK D =K 2.57)

Equation (2.54) can now be rewritten as:

¥ia = - (K., Ad, (2.58)
where
Ty = — : I 2.59)
[Km*l - [MI;’*I * _[C];*'Hl + Ky 2.
Y hv

As mentioned before, while [M] is positive definite matrix [K;] may be positive
semi-definite. The [f(] matrix is banded, symmetric and positive definite. Consequently,

one can solve for A d’*!y,, to obtain:

Adyy = = (RN Wi (2.60)

The displacement vector for the (J+1)’th iteration is given by

duit = dyu + Adyy 2.61)
Newmark scheme, (2.49) and (2.50), can be used to update to obtain the values of

vecolity and acceleration vectors at the (J+1)’th iteration as:
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oS | 37 T J

d;.l =dy, + ‘h_Ade {2.62)
v

T NS 4 1 J .

i —-ady, (2.63)

The iterations are continued until convergence is achieved by satisfying the following

inequality:
Waal s & Byl (2.64)
where
|.1 = Euclidean norm
g = error tolerance which is a preassigned small positive value

The strategy is shown in figure (2.2) with i standing for the number of time steps.

2.6. PLANAR BEAM ELEMENT
In this section the stiffness and mass matrices of a nonlinear planar beam element
is developed. The element is subjected to axial, flexural and torsional deformations. the
element can be used to model the flexible links in planar multibody systems. The beam
element is shown in figure (2.3}, and the following assumptions are made:
a) the shear deformation effects are negligible compared to the lateral and axial
deformations,
b) the material properties are linear.
c) the element has a uniform cross section,

d) the unit extension of the centroid axis is uniform.
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e) the noulinear strain terms are included to account for large deformation.

f) the rotary inertia terms which resulted from the finite rotation within the element
are included.

It is worthwhile to mention here that the dominant factor in the geometric nonlinearity

of the system is attributed to the finite rotation of the links. Expressions for the stiffness

and mass matrices of this beam elemen are given in appendix A.

The stiffness and mass matrices are calculated in the element’s corotational
coordinate system. They should be transformed to the global inertial coordinate system
for assembly. This is achieved by using equations (2.20) and (2.32) respectively. The
assembled stiffness and mass matrices in the global frarie are the ones to be used in the
model given by (2.44) and (2.45).

It is noticed that the vector of elastic deformation d' can be expressed in the

corotational frame in the following form:

d'=[uy 0 6 ub 0 6] (2.65)
where
8,,6;' = slopes at the nodal points of the beam element with respect to the corotztional
frame as shown in figure (2.3)
Un',Ug'= axial translations of the nodal points of i’th element
During the iteration process of the numerical solution of relations (4.44) and
(4.45), as descriped in section (2.5), one obtains d' which can be used to calculate the

force vector £ using (2.40) and (2.39).
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2.7. NUMERICAL EXAMPLES

Some typical cases are studied and reported here to illustrate the accuracy and

applicability of the formulation and the numerical procedures presented earlier in this

chapter.

Example i Flexible Robot Arm

A flexible beam is rotating in a horizontal plane about a vertical axis passing
through its end. The beam under study has a length L=10, an axial rigidity EA =10000,
flexural rigidity EI=1000, and inertia constants pA =1 and pI=10 (in consistant units).
The input rotational angle ¥ (t) is defined as a linear function of time as shown in figure
(2.4). The beam is discretized by five beam elements. Deflected shapes for several values
of time t, during the repositioning stage, are depicted in figure (2.5). The vibrations of
the beam after freezing the rotation angle at 1.5 rad. are shown in figure (2.6). A
comparison between the results of the present work and those of Simo and Vu-Quoc

(1986) is shown in figures (2.5) and (2.6). The results are in close agreement with the

published ones.

Example 2 Flying Flexible Beam

A free-free flexible beam, initially placed in an inclined position as shown in
figure (2.7), is sat into motion by applying a constant force F(t)=20 together with a
constant torque T(t)=80 at one end. This beam has an axial rigidity EA=10,000,

flexural rigidity EI=500, and inertia constants pA=1 and pI=10 (in consistent units).
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The applied loads are removed at t=2.5, and the beam is allowed to undergo free flight

thereafter. The beam is idealized using 5 beam elements. The motion of the beam in the
first two revolutions is shown in figure (2.8). The results are in agreement with those

reported by Simo and Vu-Quoc (1986) as illustrated in figure (2.8).

Example 3 Multibody System in Free Flight

A multibody system is considered. It consists of two flexible links which are
connected by a hinge. The two links are initially aligned in the position shown in figure
{2.9). The two links have the same length=>5 and matesial properties: EA=1,000,000,
EI=10,000, and pA=1 in consistent units. Link A has a value pI=1 and link B has
pI=10. The system is subjected to a force F(t)=40 and a torque T(t)=160 which are
applied simultaneously at the free end of link B for a specific period of time equal to 2.5
and then removed. The finite element mesh consists of four elements; two for each link.
The sequence of motion are shown in figure (2.10).

The results are identical to the results ottained by Simo and Vu-Quoc (1986). The

naked eye cannot see the deference between the two results shown in figure (2.10).

Example 4 Transient Response of a Slider Crank Mechanism

The slider crank mechanism shown in figure (2.11) consists of a rigid crank OA
of length 0.15 m, an elastic connecting rod AB of length 0.3 m and a slider block at
B. The block has a mass equal to that of the crank shaft which is half the mass of the

connecting rod. The crank is driven with a constant angular speed of 150 rad/sec. The
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connecting rod has a circular cross section with a diameter of 0.006 m and is made of
steel having density of 7870 kg/m’ and a modulus of elasticity of 0.2*10" N/m?. The
motion is assumed to start when points O, A and B are collinear with A between O and
B. The damping effects are neglected and the initial elastic deformation are assumed to
be zero. The deflection of the midpoint of the connecting rod, measured perpendicularly
to a straight line connecting points A and B, is calculated and then divided by the
length of the connecting rod itself. Figure (2.12) shows the variation of this
dimensionless deflection with the rotation angle of the crank for the transient response
of the motion. The analysis is done by idealizing the crank using one beam element, the
connecting rod using two beam elements and one lumped mass element for the sliding
block.

This practical flexible multibody problem was examined before by Bakr and
Shabana (1986) and by Jonker (1989). The results of their analysis is compared to the
results of the present one. A good agreement is found between the results of this
formulation and that presented by Jonker who used his well known program SPACAR
based on the inertial frame method. However, some differences are found between the
present results and that of Bakr and Shabana who used a nonlinear beam element in a
formulation based on the floating frame method. They did not include the effect of rotary
inertia in their analysis. They, also assumed that the line connected the two ends of the
connecting rod has the same average rigid body motion of the rod. Consequently, the
deflection of the rod with respect to this line is assumed to be due to elastic deformatinn

only. This assumption neglects the fact that a part of this deflection is due to the rigid
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body motion of the elements of the rod. The present analysis gives a better compensation
for this fact. For that reason the differences are more pronounced in positions of large

deflections.

Example 5 Steady State Response of a Four Bar Linkage

The four bar mechanism shown in figure (2.13) is considered. This particular
mechanism was studied extensively, analytically and experimentally, by Turcic and
Midha (1984c). The same mechanism was examined by Yang and Sadler (1990) using
computer algorithms which they developed. The mechanism has the following aspects:

Link OA: crank

length = 0.108 m, area = 1.07*10* m?
area momente = 1.616*10'® m*, cross section height = 0.424*10?2 m.

Link AB: coupler

length = 0.2794 m, area = 0.406*10* m?
area momente = 8.674*10""2 m*, cross section height = 0.16*10? m
Link BC: follower
Length = 0.2705 m
area, area moment and cross scction height same as link AB.
Link OC: ground link
length = 0.254 m
All of the three moving members of the mechanism are assumed to be deformable. The

modulus of elasticity and the dersicy of the material are taken to be 7.1*10'° N/m? and
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2.71*10° kg/m respectively. Two masses are assuined to represent the pivots at each ends
of the coupler link. The masses are 0.042 kg each. The damping effects are considered
with ¢ = 0.0 and 8 = 0.00023 in equation (2.47). The finite element mesh consists of
seven beam elements: (1) to model the crank and (3) to model each of the coupler and
the follower. Two lumped mass elements are used to idealize the pivots. The steady state
response for a constant crank angular velocity of 308.48 rpm clockwise is examined.
This has been achieved by running the numerical simulation until transients disappeared
and an essentially periodic response remains. The curves in figure (2.14) show the strain
time-history of the midspan point of the coupler for a full cycle starting from the position
wherein the crank OA coincides with the ground link OC and A is between O and C.

Reasonable agreement is found between the analytical results of the present work
and the published experimental results. The discrepancies in the results are attributed to
the high nonlinearity of the system. Also the chosen operating speeds of the crank lies
in the critical speed range. Turcic and Midha ('J84c) reported that during their
experimental investigations a small increase in the crank speeds (3-5 rpm) caused the
vibration amplitude of the coupler and/or follower to double or triple, and then just as
quickly return to the lower values as the speed is increased. Because of this sensitivity
of the system, any small misrepresentation of the physical parameters of the system in
the mathematical model can cause discrepanceis in the resuits. A more refined choice,

of the damping and the lumped masses at the pivots, can narrow the discrepanceis.
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2.8. SUMMARY AND CONCLUSIONS

In this chapter the use of corotational finite element formulation for the dynamic
analysis of flexible multibody Systems was examined. The mathematical derivation of the
equations of motion as well as typical numerical examples were presented to illustrate
the applicability and accuracy of the formulation and the associated numerical algorithms.

In addition, the numerical simulations demonstrated that the method can handle
complex nonlinear problems. The approach can be applied to systems with specified input
motion or specif . 4 input loads. The method has been illustrated for the case of planar
multibody systems modeled with nonlinear beam elements. However, the approach can
be readily extended to accommodate three dimensional cases as well as other types of
elements,

The approach presented here is computationally superior to the traditional

approaches because the equations of motion have a much simpler structure.



CHAPTER 3

MOMENTUM BALANCE IMPACT MODEL

A momentum balance impact model is derived in this chapter. The model is
combined with the corotational formulation presented in the previous chapter to perform
dynamic analysis of flexible multibody systems subjected to impact loading. The
frictional forces are taken into account. An energetically consistent formulation is used
to describe the process of energy transfer. The model accounts for cases where relative
sliding either ceases or changes its direction during the impulse period.

In the proposed model the coutact between the colliding bodies is considered to
be a point contact. The model is constructed ~esuming that the friction forces are
adequately described by Coulomb's law and that the tangential stiffness is infinite.
During the contact period multiple impulses are allowed to occur. Impulse is an
instantaneous event that causes an incremental change in the velocity vector of the
system, It is assumed that any change in the configuration of the system during the
impulse is negligible.

An algorithm, based on the proposed model is developed for numerical solutions.
The algorithm allows for the occurrence of multiple contact and separat’on periods within

a short time, which is a peculiar characteristic of impacts involving flexible systems.
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3.1. CONTACT-IMPACT PREDICTOR

In this section, the conditions for establishing the contact are specified. The step
size during the contact period is defined. Conditions for maintaining contact as well as

conditions for the occurrence of impulses are, also, specified.

3.1.1. CONTACT PREDICTOR
A predictor is used to define the instant in time at which contact staris. The
candidate contact pairs are chosen as nodes in the finite element discretization. A relative

displacement vector s for the pair of contact nodes P, and P, is defined as:

g(t) =rP_(t) 'rp,(t) (3.1)

where the vectors in (3.1) are reported in the (X, Y, Z) frame as shown in figure (3.1).
One can assume that there is no contact at (t-At). Let the following inequality be

satisfied at the next instant (t):

g{t)T g(t-b8¢E) <0 (3.2)

Contact is said to be established at t if the impenetrability condition is satisfied:

le(t)] < TOL; (3.3)

where
TOLy, = small pusitive number which rompensates for the inevitable presence of
numerical errors in the simulation.

If (3.2) is satisfied while the impenetrability condition (3.3) is violated, then one

infers that At is too large and that the instant for the contact has been surpassed.



Impactor

5

24

4

Figure (3.7) Impact between Two Bodies in a Multisody System

69



70

Integration should be started again from the previous time value (t - At) with a smaller
At. If t,. is the instant at which contact is established, then s(t,) = 0. One can expand

s(t) about ¢, using Taylor’s expansion and can retain the first two terms to obtain:
8(tz) = 8(8)- (t-t) 8(0)+3 (£-t,)%8(E) =0 (3.4)

The second order polynomial in (3.4) is solved to find an approximate value for t, at
which contact starts, i.e., the new value for At.
The procedure is repeated until both conditions (3.2) and (3.3) are satisfied.
Figure (3.2) shows the strategy used for the contact predictor, where:
L = a flag for establishing the contact: -1 penetration, 0 no contact and 1 contact.
During contact an impact-time step is used to advance the solution. This time

step is chosen according to the foliowing relation (Zukas et al. 1982):

k 1
;o= 3.5

(AE) tmp Z ( )
where
k = constant which is between 0.6 and 0.9
1 = element characteristic length which is the smallest element length
c = impact wave speed in the material which can be calculated from

c = E_ (3.6)
p

The time step At is less than the time required by the wave front to cross the smallest

element in the finite element mesh. This guarantees that the wave front propagation will
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be accounted for in each element.

3.1.2. MULTIPLE IMPULSES AND SEPARATION

Contact persists so long as condition (3.3) is satisfied. During the contact period
if the two impacting points are moving away from each others another impulse is not
considered to occur. On the other hand, another impulse is assumed to occur if the two

impacting points are moving towards each other i.e.,:

Ve Vi 2 0 (3.7)
provided that L=1, where
Vo', V' = normal refative velocities just at the beginning of the contact period and at the
current time step within the contact period, respectively.
Inequality (3.7) should be satisfied to avoid considering another impulse to occur while

the bodies are bouncing back.

If condition (3.3) is no longer satisfied separation between the two colliding

bodies is assumed to occur.

3.2. IMPACT ALGORITHM

Equations of motion (2.44) for the flexible multibody systems can be integrated
forward in time until the impact predictor defines a point in time at which contact starts.
At this point, an impulse is assumed to occur. The momentum-impulse equations are
constructed and solved for the jump in the velocity vector of the system as will be

presented in future sections. The terminal conditions after the impulse are the initial
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conditions for the motion and integraticn can be started again using equations (2.44) with
the new initial conditions. Whenever condition (3.7) is satisfied another impulse is
assumed to occur. For the contact period, the impact-time step given by equation (3.5)
is used.

Atter the cessation of contact as determined by the violation of condition (3.3) the
integration algorithm is started again with the time step originally used before the starting
of the coniact. The contact predictor is r=activated to define the next peint in time for the

next contact-impact. The strategy of the impact model with multiple impacts is given in

figure (3.3).

3.3. MOMENTUM BALANCE-IMPULSE EQUATIONS

When contact is established between two bodies a normal force acts along their
common normal. Friction creates another component in the tangential plane. Figure (3.1)
shows two colliding bodies and the contact forces between them. The (n, t,, t,) frame
defines the normal and tangential directions. The origin of this local frame is considered
at the contact point on the ’target body" with n taken in the direction of the outward
normal to the target body at the point of contact. The target and the impactor should be
specified prior to the analysis.

Each impulse consists of two periods: the period of compression and the period
of restitution. The compression period starts from the beginning of the impulse until the
maximum compression is reached. This is achieved when the relative normal velocity

becomes zero. The restitution period then begins and persists until the end of the
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impulse. The impulse duration is assumed to be small enough to consider it as an
instantaneous process which causes a discontinuous change in the velocity vector. No
configuration changes are assumcd to occur during the impulse duration.

The equation of motion (2.44), for a flexible multibody system with m degrees

of freedom, can be integrated over the impact period to obtain:

f“'° [M}&du["““ [C]ddt+ft

t t t

o £de = f”“ P de (3.8)

t

where

7o is the impulse duration. The last term in {3.8) can be written in the form:

trrg . pten t+tq
I e S e
where
F.. = m-vector of generalized external forces
Fi., = m-vector of generalized force due to contact forces at the impact point.

One can evaluate the integral in relation (3.8) as 7, tends to zero using the integral
mean value theorem. Assuming of no configuration changes during impulse, the limits
of the second and the third terms on the left hand side of (3.8) are identically zeros.
Since F,,, is a continuous function, the limit of its integration over the impact period is

also zero. Recalling that the velocities are bounded during the impulse, equation (3.8)

reads:
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x = [T F de- (M Ad (3.10)

[

where

x is the m-vector of generalized impulses. It is noticed that the m-vector F,, is referred
to the (X,Y,Z) frame while the 3-vector f,, of the contact force at the point of contact
is referred to the (n,t,t,) frame. The work done "W" by both of them should be the

same, which implies:

W= Fipd= £, [A,] & (3.11)
where
[Amp] 18 @ transformation matrix relating the same generic vector when expressed in the

(n,t,,t,) frame and the (X,Y,Z) frame. Differentiating {3.11) with respect to d and taking

the transpose, one obtains:

Pro = 101 T £y (3.12)
where
(i) = (Asnp) [25) (3.13)
Relation (3.10) reads:
x = [M Ad = [Q,]7P (3.14)

where

£+t
= 3.15
P= (7 £ dt (3.15)
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P is the impulse between the colliding bodies referred to the (n,t,,t,) frame, It is cbvious
that the relative velocity v of the colliding bodies, expressed in the (n,t,t,) frame is

related to the d vector according to the following equation:

v=10,] d (3.16)

Both [Qy,] and v can be written in a partitioned form as follows:

vi=[v, | vl]

(3.17)
[Qump! "= [ &t [B] ]
Combining the last two equations to get:
v,=a%d (3.18)
and
v, = [BlTd (3.19)

where v, is a scalar quantity representing the normal velocity and v, is the relative
tangential velocity in the (1, t,) plane. Because the positive direction coincides with the
separation direction, v, will be referred to as the normal separation velocity. The m-
vector o and the m x 2 matrix [3] are obtained by partitioning the [Qup) matrix in the
manner shown in equation (3.17).

Relation (3.14) can be written in the form:

M Ad=[a! [p] ] |--- (3.20)
Pt

where P, is a scalar representing the normal component of the impulse vector and P, is
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the component of the impulse vector in the (t;,t,) plane. In an expanded form, the last

relation can be written in the form:

(M Ad=a P, + [B] P, (3.21)

Equation (3.21) is the momentum balance-impulsive equation of motion. The
objective in the rest of this chapter is to solve this equation for the three unknowns A d
P, and P,. Two more independent relations between the three unknowns are required.
Restitution law provides one of them and the friction law yields the other. Because the
friction law deals with forces, equation (3.21) can not be used directly. Instead, its

differential version is used. One can thus write:

[M dd = a dB, + [B] dP, (3.22)

which is the required equations of motion, for a multibody system subjected to oblique

impact, in its differential impulsive form.

3.4. FRICTION LAW

Coulomb’s law of dry friction is adopted to determine the contact force in the
tangential direction due to friction. The law expresses the frictional force as a function
of the normal force and the coefficient of friction u. Where y is a constant depending on
the materials and the nature of surface of the bodies in contact. In this work the same
value for g is assumed for both the static and dynamic friction. Coulomb’s law

distinguishes between two modes: sticking and sliding. For the sliding mode it reads:
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IdP,] = p dP, (3.23)

and for the sticking mode it reads:

IdP,l < p dP, (3.24)

One notices also that the relative tangential velocity, v,, vanishes in the sticking case.

3.5. GOVERNING RELATIONS FOR SLIDING MODE

When sliding occurs between thz contacting bodies, Coulomb’s friction law

reads:
dp, = -p dP, a (3.25)
where ¢ isa (2x1) vector which defines the sliding direction. Under the assumption of

infinite tangential stiffness, ¢ is given by:

g = ¢ (3.286)

It is noticed that ¢ can vary during the impulse period because v, is a function of the
generalized nodal velocity vector d which is generally not constant.

The equation of motion (3.22) can now be written, for sliding, as follows:

[M] dd =dpP, (@« - p(B]la) (3.27)

which yields:
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dd = dP, Y, (3.28)

where

Yor = (M7t {« - p[Bla) (3.29)

Ys. 1S an m-vector representing the proportionality between the generalized
differential velocity vector and the differential normal impulse. One notices that g is

generally not constant during the impulse period because it is dependant on .

3.6. GOVERNING RELATIONS FOR STICKING MODE

Equation (3.19) can be written in a differential form as:

dv, = [B]1T dd (3.30)

For sticking, and under the assumption of infinite tangential stiffness, dv, is identically

zero. One can thus write:

Pre-multiplying both sides of equation (3.22) by [8]"[M]", one obtains:
(BT dd = [P17[M 7« dP, + ([PIT[M *(B]) dP,
From condition (3.31), the previous relation yields:

dP, = - ([BIT[M *[B])? [P]TIM *a dP, (3.32)

Substitution of equation (3.32) in equation (3.22) gives the equation of motion for

sticking mode as follows:
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[#4] dd = dp, (a - [B] [P]la) (3.33)

where [8] is a 2 x m matrix given by

[BI = C((BIT(M*(B1) " {P]T [a] (3.34)
In general, for the sticking mode one can write:

dd = dP, Y, (3.35)

where

Yor = (M7 {(« -~ [B][P]e) (3.36)

Equation (3.36) shows that s is constant for the sticking mode. The ratio between the

tangential differential impulse and the normal can be obtained from equation (3.32) as

follows;

dp
He = Idp"ﬂ = |{B] «l (3.37)

n

Sticking continues and persists as long as

. < (3.38)

3.7. RESTITUTION LAW
Generally, the restitution law is written in terms of the so called coefficient of

restitution e. The coefficient e is considered to be dependent only on the materials of the

colliding bodies. A velocity-dependant € is also used.
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One can define the following events during an impulse:
(P, = 0; v, = v,) at the beginning of the impulse period.
(P, = P; v, = 0) at the end of the compression phase.
(P, = P;; v, = v,) at the instant the tangential relative velocity v, vanishes.
(P, = P,; v, = v,) at the end of the impulse period.

As discnssed in chapter 1, Poisson’s hypothesis postulates that e is the ratio
between P,-P, to P,. Newton impact law expresses e as the negative of the ratio between
V., and v,;. To avoid the problem of inconsistency of the energy balance associated with
both Newton impact law and Poisson’s hypothesis an energy-based definition of the
restitution coefficient is adopted in this thesis. The definition makes use of the amount
of energy dissipated by the normal contact force. The square of the coefficient of
restitution is considered equal to the ratio of the negative work done by the normal

component of reaction during restitution, Wy, to the work done by the normal component

of reaction during compression, W,. In other words, e should satisfy:

g2 - - _R (3.39)

wher.

W, = fo Fe v, dP,
(3.40)
W, = f:' v, dP

n

To evaluate W, and Wy a relation between the normal separation velocity and the

normal impulse is required. In a differential form, equation (3.18) reads:
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dv, = e’ dd

Using the previous relation and (3.28) or (3.35) one can write:

dv
dP, = —~ (3.41)
a’y

where y plays the rcle of g or ysr depending on the associated case. Equation (3.41)
can be substituted into equation (3.40) to evaluate We and W,

One notices that the integrations in (3.40) are readily evaluated for a period of
unidirectional slip. If the slip velocity vanishes before the termination of the impulse,
then y changes. Consequently, the integrations of We and W, must be divided into
separate periods before and after slip vanishes.

If v is constant within the impulse period, equation (3.41) can be substituted in

(3.40) to obtain;

0 vn vnl
W = dv, = -
f"-' «"y " 24"y
(3.42)
2
ve VY, v
Wy = fo - dv, = ':
a ¥ 2ay
Consequently, equation (3.39) yields:
PR (3.43)
Yni

which is the same as Newton’s impact law.

If v is constant, P, and P, can be evaluated by integrating relation (3.41) as to

obtain:
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P, dP =f0 an

0 Yy GTY
which yields
V.
PC = - ™ (3.44)
a’y

Also, one can perform the integration as follows;

dv
Jor om - L

which, using (3.44), yields:

p =_" n (3.45)

Substituting equations (3.44) and (3.45) in the definition of e given by (3.43)

one obtains:

e = 5 (3.46)

which is the same as Poisson’s hypothesis. Relations (3.43) and (3.46) imply that the
energy-based restitution law, Newton impact law and Poisson’s hypothesis all give the
same e in the case of constant v.

It should be noticed that y defined in equations (3.29) and (3.36) can be constant
in the following cases:
a) the contacting surfaces are frictionless i.e u = 0

b) the relative tangential velocity is identically equal to zero during the impulse
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period i.e., for continuous sticking.

c) the relative tangential velocity does not vanish during the impulse period.

It should be noticed that + is not generally constant over the impulse period
because the relative tangential velocity can vanish or change direction during the impulse
period. In this case, the energy-based restitution law, Newton impact faw and Poisson’s
hypothesis, generally, do not give the same results. Newton impact law results in || W,
that can exceed |W,|; i.e., the law can assume a gain in the energy due to the impact.
Although Poisson’s hypothesis could not result in a gain in energy due to impact yet it
yields an absolute value of || W, | that might be less than |W,] even when elastic
impact (e=1) is assumed. Hence the Poisson’s hypothesis is also energetically
unsatisfactory. The energy-based restitution law, presented in this section, is the only

one, among the three laws, which is energetically consistent.

3.8. TYPES OF IMPULSE

At any instant during the impulse period, the bodies in contact can be sticking to
each other or sliding relative to each other. In this thesis, it is assumed that the impulse
starts with sliding, Consequently, there are two possibilities: the sliding relative
tangential velocity does not vanish within the impulse period or it does vanish. For the
second possibility, if the friction force is not enough to keep the non-sliding situation the
sliding restarts immediately but in a new direction. Otherwise sticking is maintained.

One notices that the relative tangential velocity can vanish during either the

compression phase or the restitution phase. Consequently, five different types of impulse
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could be reported:
(S) slip
(SCS) slip followed by compression stick
(SRS) slip followed by restitution stick
(SCD) slip followed by direction change in compression
(SRD) slip followed by direction change in restitution.

To identify the type of the impulse one should specify whether the relative
tangential velocity vanishes within the impact period or not. If it vanishes, one should
identify whether this happens in the compression or the restitution phase.

One of three possibilities may occur:

a) if P,>P, v,=0 does not occur at all within the impact period
b) if P4<P, v,=0 occurs in the compression period
<) if P,>P,>P, v,=0 occurs in the restitution period.

If v, vanishes during the impulse period one should use relation (3.38) to verify
the condition to maintain the sticking until the end of the impulse period otherwise sliding
will restart in a new direction. Table (3.1) summarize the types of impulse and the
conditions required for each case.

P, is a function of the relative tangential velocity. One can use equations (3.28)

and (3.30) to write:

dv, = [BI7 v, dP, (3.47)

Equation (3.47) can be integrated, between the starting of the impulse until the tangential



Table (3.1): Contact-Impact Types

B> e p< p

P, > P, Slip (S)

P.<P;<P, Slip Followed by Restitution Stick Slip Followed by Direction Change
(SR3) in Restitution (SRD)

P, < P, Slip Followed by Compression Stick Slip Followed by Direction Change
(SCS) in Compression (SCD)

velocity becomes zero, to obtain:

Py =~ [B]TYSLPd
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(3.48)

v
P, = - r_‘d?u__
o [B]" vg
where
\ = relative tangential velocity at the beginning of the impulse.

It should be noticed that P, in table (3.1) is evaluated assuming that the relative

tangential velocity does not vanish before reaching the maximum compression, This is

also true for P, which represents the impulse at the end of a continuous sliding impulse.

Accordingly, P, and P, are given by equations (3.44) and (3.45), respectively.

Equations (3.44), (3.45) and (3.48) give P,, P, and P, respectively in terms of

the coefficient of friction g, the known initial relative normal and tangential velocities

vy and vy and the configuration parameters « and [3] which are kept constants during
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the impuise period. At the beginning of each impulse, one can specify the impulse type

according to table 3.1,

3.9. GOVERNING RELATIONS FOR TYPES OF THE IMPULSE

Once the type of the impulse is specified , the impulses and the jump in the
velocity vector can be evaluated. The remainder of this chapter is used to define v,,, P,,,
A d and P, for the different types. Where P, is the tangential impulse at the end of the
impulse period. It should be noticed that P, and P,, in the following treatment, are given

by equations (3.44) and (3.48) respectively.

3.9.1. Slip (S)
This type belongs to the case of constant v and equations (3.43), (3.44) and (3.45)

can be used, with y = v, to evaluate v,, and P, to obtain:

v = -g Je? v2 {3.49)
ns n m
and
V.V
p = == (3.50)
& Yor

where
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g, can be either 1 or -1.

Relation (3.23) can be integrated over the impact period to obtain the tangential

impulse at the end of impact period as follows:

[ ap,

P -k P a

L L

—p.fp‘ dP_ o
0 n
(3.51)

1

One can also integrate equation (3.27) to obtain the jump in the velocity vector

during impact period:

P P
Ad = fo * v dP, (3.52)

which yields

Ad = Py (3.53)

3.9.2. Slip followed by Stick in restitution (SRS)
One should distinguish between the sliding phase and the sticking phase in this
type. The instant at which the sticking period is identified by v,= 0. One can evaluate

V. by integrating equation (3.41) from the start of the restitution period until the

tangential velocity vanishes. This yields:
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Ve = Py - P) a” vy (3.54)
Consequently, the integral in (3.40) can be evaluated. Distinction should be done between
the equations used for the sliding phase and the sticking phase. The results can be

substituted in equation (3.39) to obtain:

2 2 2
ezv i . A4 (3_55)

The normal impulse P, at separation can be evaluated by integrating relation (3.41) to

obtain:

v -_— —
p, = 2ot IuTh (3.56)

T T.
C Y. @ Ysr

One can also use equations (3.25) and (3.32) to obtain:

P,=-pPia-[fl(P,-P)a 3.57)

Equations (3.28) and (3.35) can be integrated to obtain:

Ad =Py, + (P

s

- P)Yer (3.58)

3.9.3. Slip with direction change in restitution (SRD)
To find the new direction of the relative tangential velocity o, one can write

equation (3.47) after the change of direction as follows:
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dv, = dP_ [pI” {4, (3.59)

where g, is given by:

Yo =M (a - u[pld) (3.60)

After v, reaches zero dv, takes the same direction as & and one can write:

dv, = (dv) & 3.61)

where (dv) is a positive scalar quantity. This can be introduced into equation (3.59)

through a vectorial product to obtain;

& x (P17 ¥5) = 0 (3.62)
This equation can be solved for o. More than one solution exists for &. The only
acceptable one is that which leads to a positive (dv,).
Once ¢ is known, one can follow a methodology similar to the one used in the

previous type to obtain:

Vo = (P, - Pc) a’ Yo (3.63)
evi-vi 2
Ve = -0, | @Tig(—m T G649
T Y5 @ Y5

+ MM (3.65)




52

[}

P,=-pP,o-p(P -P)a (3.66)

and

Ad = Pyyg + (P, - P)ig (3.67)

3.9.4. Slip followed by stick in compression (SCS)

A similar strategy, as in the previous type, can be used to obtain:

Ve =Py & yg + v, (3.68)
Wiy 2
V= ~€ 0, |alrgl dr "y r"" ) (3.69)
a YS.L [+ 4 YST
p, < talu T (3.70)
' Ysr & Ysr
P,=-pP,a-[fl(P,-P)«a @3.71)

and

Ad = Pyyg + (P, - P)Ysr (3.72)

3.9.5. Slip with direction change in compression (SCD)

In this case, one could get:
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vM = " ar YSL + vlﬂ (3-73)
2 2 2
vi-v v
Voo o, |agg it tu .79
C Y &Y
A R
P, = :; + :, (3.75)
Ys YsL
P,=-uP,a-pu(P,-P)i (3.76)

and

Ad = Pyygy + (P, - Plig @.77)

where g and 4 is given by equations (3.60) and (3.62) respectively.
Figure (3.4) shows the strategy presented in this section and in the previous one
to identify the impulse type and to evaluate the jump in the velocity vector and the rest

of conditions at the end of the impulse.

3.10. SUMMARY AND CONCLUSION

An impact model, using the momentum balance method, is developed in this
chapter. The model is combined with the corotational finite element formulation for the
dynamic analysis of flexible multibody systems. The model accounts for the frictional
properties of the contact surfaces through the use of a coefficient of friction in Coulomb’s

law. The coefficient of restitution is used to describe the degree of plasticity of the
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collision. An energetically consistent theory is used to model the process of energy

transfer between the impacting bodies.

The mathematical derivation of the equations governing the motion is presented
as well as the combined computer algorithm for the numerical solutions. A predictor is
used to determine the point in time at which impact starts and the time of separation. In
general, multiple impulses are assumed to occur during the impact period. The algorithm
satisfies the impenetrability condition which does not allow material overlap during
contact. The time step is adjusted during the impact phase to accommodate the travelling
waves.

From the computational standpoint, the substantial advantage of the approach

presented in this chapter lies in the fact that the governing equations have a much simpler

structure.



CHAPTER 4

LAGRANGE MULTIPLIER IMPACT MODEL

A multibody-oriented finite element impact formulation based on Lagrange
multiplier approach is developed in this chapter. The model is applicable to flexible
multibody systems which are subjected to impact with friction.

The corotational formulation developed in chapter 2 is utilized. The geometric
compatibility conditions due to contact are imposed by the use of the Lagrange
multiplier. The coefficient of friction and Coulomb’s law are used to account for the
frictional properties of the contact surfaces. The contact between the colliding bodies is
considered to be a point contact. Infinite tangential stiffness and continuous impact are

assumed.

4.1. CONTACT AND RELEASE PREDICTOR
The logical contact predictor described in chapter (3) to predict the starting of the
contact is used in this chapter.Separation is considered to occur when the normal contact

force changes from compression to tension.

4.2. EQUATIONS OF MOTION

Equation (2.44) can be written during the impact period as follows:

96
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[Mld + [C}Jd + f = F + [Q,,17 4.1)
where
A = the Lagrange multiplier vactor.
By definition, the Lagrange multiplier is essentially equivalent to the contact force

referred to the (n, t,, t,) frame:

A=f,, 4.2)
[;mp can be written as follows:
[
t
where
F, = normal component of the contact force.
F, = tangential component of the contact force.

Consequently, equations (4.1) can be rewritten as follows:

(Md +[Cld +f=F + a F, + [B] F, .4
Equation (4.4) is the equation of motion of a multibody system subjected to
frictional impact. It should be noticed that [,  and [B] are functions of d and that F is
a known quantity. Taking the view that (4.4) should be satisfied for every instant t=ty,
then the list of variables in (4.4) is given by: d, &, Li, F, and F,. One should seek four
relations in addition to (4.4) to be able to advance the solution. Newmark’s scheme

furnishes two independent relations between a, d and d. The friction law and the contact
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kinematical constraints furnish the other two.

4.3. FRICTION LAW AND CONTACT MODES

Coulomb’s law of dry friction is used, as in the previous chapter, to determine
the tangential contact forces due to friction. The same value for  is used for the static
and dynamic friction. Coulomb’s law assumes that at any instant, during the contact
period, there is only two possibilities: sliding between the bodies in contact or sticking.

The tangential force in the sliding mode can be expressed as:

F,=-uF ¢ (4.5)

while in the sticking mode the following inequality should be satisfied:

IFl <p F, 4.6)

where o is given by:

. @7

It is noticed that ¢ can change direction during the impact period and that the relative
tangential velocity, v,, vanishes in the sticking mode. Coulomb’s law provides a relation
between the normal and tangential contact forces in the sliding mode and also gives a
condition which should not be violated in the sticking mode.

Sliding contact is assumed to persist during the first iteration after contact is
established. The sliding mode continues so long as the relative tangential velocity at the

contact point is non-zero. Numerically, v, vanishes whenever it becomes very small. The
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condition for terminating the sliding mode and entering the sticking mode is given by:

G vt <o (4.8)

or

1 = e (4.9)
where ¢ is a predetermined tolerance ( =107 for this investigation). Condition (4.8) can
be applied in case of straight line contact path and it means that, numerically, v, changes
direction during the time step. The sticking mode persists so long as the condition (4.6)
is satisfied. If this condition is no longer satisfied, equations (3.62) can be used to
determine the new direction of sliding in the subsequent sliding mode. Modes and

transitions between the sliding mode and sticking mode will be covered in some details

in a future section.

4.4, THE CONTACT CONSTRAINTS

The gap between the pair of contact points, 8, is given by:

5 = [Q,,] 4 (4.10)

3
. [ ] @)
60‘

Recalling that:

one can write:
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3, =a’d @4.12)
and

3 =[p)fd 4.13)
where
8, = the normal component of the gap at the candidate contact points
8, = the vector of the tangential components of the gap.

The following kinematical constraint is applied for the sticking mode:

3=0 4.14)

where
0 = a null 3-vector

The kinematical constraint for the sliding mode takes the following form:

5, =0 4.15)

4.5. SOLVING THE GOVERNING EQUATIONS FOR SLIDING MODE

Substituting equation (4.5) in equation (4.4), One can write:

¥ = [Mld +[Cld + f- F - n F, @.16)

where

"=« - p[pla @.17)

The kinematical constraint (4.15) can be written using (4.12) as follows:
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aTd=0 (4.18)

Equations (4.16) and (4.18) are the governing equations for a flexible multibody system
subjected to sliding frictional impact loading when it is in the sliding mode.

Assuming that dy, &N, éi,,., M1y, [Cln, v and 8,y are the values of d, ii, Ei, (M1,
{C], n and §, at t=ty, respectively, the out of balance force ¥y and the normal gap 8,y

reads:
¥y =[Mly @y + [Clydy + fy - Fy - (M F)y = 0 (4.19)
5, =aydy =0 (4.20)

N

where fy= f(dy) and Fy = F(ty). For t=ty,,, relations (4.19) and (4.20) can be

written as:
*Nﬂ = [mN&l d-N+1 + [E]Nq J,vq +f~q_ - FN+1 - (1‘[ Fu)!hl 4.21)
and

T
8, = Exa dyy (4.22)

Newmark scheme provides two additional equations. The scheme is used in
conjunction with Newton-Raphson iteration methed to obtain an iterative numerical
solutions. The technique is similar to that presented in chapter 2 and the details are given

in appendix B. The method leads to:
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Fl - (aT[Kj-l; -3, _;M (4.23)
et «T[K] " n
and
Ady, = (KI™'WF, - K1), (4.24)
where
¥t = Waa + (VF (4.25)

Equations (2.61) and (2.62) can be used to obtain the values of displacement,
velocity and acceleration vectors at the (J+1)'th iteration. The iterations are continued

until convergence is satisfied, i.e.,:

Waal < & 1l (4.26)

4.6. SOLVING THE GOVERNING EQUATIONS FOR THE STICKING MODE

The kinematical constraint (4.14) for the sticking mode can be written as:

CT d=0 (4.27)

and

[ﬁ]rd — 0 (4.28)

Equations {4.4) can be written as:

¥ = [Md+[Cld+f-F- aF,- [pIF, .29)
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Assuming that dy, dy, dy, [MJy, [Cly, a, (8} and 8,y are the values of d, d, d, [M],

[C], e, [B] and &, at t=ty, the out of balance force ¥y reads:
¥y =[m~ JN + [C]N dN "'fN = FN - (a F,')N + ([B]FJN

The normal gap is given by:

together with:

3, = [Blydy =0

For t=ty,,, one can write:

WUy = ([Mlti)m + ([C}d.)yq + fya - Fy,g - (“F,.)Nq - ((B1F),.,

The gap relations are given by:

T
66}(,[ - GN"l dN"l

and

amq - [ﬁ];*l dN‘l

(4.30)

4.31)

4.32)

4.33)

4.34)

(4.35)

Newmark scheme provides two additional relations. Newton-Raphson iteration

method is used to obtain iterative numerical solutions. The details of the computing

algorithm are given in appendix B. The contact forces and the incremental displacement

are given by:
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F)t = (4,-¢ B ¢! (Dl‘Clr[BI]_:H1+C1T[Bl]-lar_aﬂ));m (4.36)

. - - - - J
(Fz)':.ulx = ([B]- €, AII er) ' H, - C 4 101 + € Allbn - 5:)))14 4.37)

d
i Ady, = (IR1aF, + [KI'[PIF, - R1'$)h., (4.38)
where
¥ = ¥t + (@F b + (BIF )k
A=K«
[B,] = [BITIK]'[P]
C, =[BT K] «
D, -=a"[K]" ¥
and
H, = [pI"K]"' ¥

4.7. CONSERVATION OF MOMENTUM

The lagrange muitiplier methed, as presented in the previous sections, does not
guarantee conservation of the momentum. The impact conditions require the contacting
points to have the same velocity in the normal direction. Hughes, et al. (1976} used the

wave propagation theory to enforce the impact conditions. The method is motivated by,
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and applicable to, one dimensional problems. Laursen and Simo (1993) tried to adjust
the Newmark parameters to achieve impact conditions. It is quite difficult to decide on
the adequate values of these parameters in each problem,

In the Lagrange multiplier approach, in this thesis, the momentum conservation
is enforced directly. The momentum balance model, presented in the previous chapter,
is applied when contact is established the first time. This guarantees the normal velocity
compatibility at the contact points at the beginning of the impact phase. The contact
constraints preserve the displacement compatibility during contact. Consequently, the

compatibility of the normal velocity is also preserved during contact.

4.8. SIMULATION STRATEGY FOR THE LAGRANGE MULTIPLIER MODEL

The equations of motion for flexible multibody systems (2.44) can be integrated
forward in time until the contact is established, as indicated by the contact predictor, The
momentum balance model is applied once to enforce the momentum conservation. The
new time step At during the impact period, as determined by equation (3.5), is used.
A sliding mode is assumed and the equations of motion are solved according to section
(4.5). The relative tangential velocity is monitored. If it vanishes, according to the
criteria given by equation (4.8) or equation (4.9), sticking mode is assumed to start. In
the sticking mode, the method presented in section (4.6) is used to solve the equations
of motion. If condition given by equation (4.6) is violated the sliding mode is assumed
again and equation (3.62) is used to determine the new direction of the sliding.

The normal contact force is monitored during the contact period. If it changes
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direction, from compression to tension, the contact is considered terminated as mentioned
in section (4.1).

After the termination of the contact phase the original time step is restored. The
method presented in chapter (2) is applied again. The contact predictor is activated to
predict any further contact.

The strategy is as given in figure (4.1). Where m is a flag for the contact mode:

1 for sliding and 2 for sticking.

4.9. SUMMARY AND CONCLUSIONS

A multibody-oriented impact model based on the Lagrange multiplier method is
developed in this chapter. The corotational finite element formulation in chapter 2 is
modified. The coefficient of friction and the Coulomb’s friction law are used to describe
the frictional properties of the contacting surfaces. Both the sliding and the sticking
modes are considered. The kinematical constraints due to contact and the contact forces
are expressed in terms of Lagrange multiplier vector and system configuration functions.

The computing algorithms for both the sliding and sticking cases are presented.
They are based on the Newmark direct integration method and Newton-Raphson
algorithm, Formulas are developed for updating the contact forces and the displacement,
the velocity and the acceleration vectors.

The momentum is conserved at the beginning of the contact period. A computer
algorithm is developed for the numerical simulation. The algorithm accounts for the

possibility of having multiple contact-impacts within a short interval.
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The numerical scheme proposed in this investigation overcome the high
dimensionality problem, appears due to the presence of frictional component, in the

traditional Lagrange multiplier formulation in structural dynamics.



CHAPTER 5

RESULTS AND APPLICATIONS

The finite element corotational formulation models for flexible multibody systems
were presented in chapter 2. Two strategies were developed in chapter 3 and chapter 4
to account for frictional impact. The applicability and accuracy of the models and the
associated numerical techniques are examined here in this chapter. Some typical examples
of mechanical systems with impact loads are considered, A brief discussion of the results
is presented after each example.

In some of these examples, to compensate for energy dissipation, numerical
damping was introduced. This damping can be acheived through the Newmark
parameters, 7 and ». By assigning values to r greater than 0.5, one forces the amplitude

of vibration to decay. The corresponding values of » can be obtained from the following

relation (Bathe and Wilson 1976):

v =0.25(1 +0.5)% (5.1)

3.1. FINITE ELEMENT FORMULATIONS VERSUS WAVE PROPAGATION
THEORY

In this section, the two impact models are tested. Two axial-impact problems are

considered. The theoretical solutions, of these two cases, are already known using wave
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propagation theory. The numerical solutions are obtained using both the momentum
balance model and the Lagrange multiplier model. The numerical results are compared
with the analytical results,
5.1.1. LONGITUDINAL IMPACT OF A BAR WITH A RIGID MASS
Problem Data

A flexible bar fixed at one end is subjected to an impact, The bar is impacted by
a rigid mass at the free end as shown in figure (5.1). The modulus of elasticity, the mass
density and the length of the bar are 100 N/m?, 0.01 kg/m® and 10 m respectively. The
mass ratio between the striking body and the bar is 1. The rigid mass is moving towards
the bar with a velocity of 0.1 m/sec from an initial position 0.01 m away from the free
end. Equation (3.6) can be used to evaluate the wave velocity in the bar. The wave
velocity is found to be 100 m/sec. Thz bar is discretized using ten beam elements. The
time step is chosen, according to relation (3.5), to be 0.009 sec. Numerical values of 0.5
and 0.25 are assigned to Newmark parameters r and », respectively.
Impact Mechanism

As impact occurs a compression wave is created at the contact point and travels
along the rod with the previously mentioned wave velocity. The wave is reflected at the
fixed end as a compression wave. It reaches the contact point after (0.2 sec) counted
from the instant when contact is first established. At this instant the contact force

between the rod and the rigid mass reaches its maximum value. After that, the contact
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Flexible Bar Rigid Mass

0m-————~ 4——v=0.7m/sec

Figure (5.1) Longitudinal Impact Between a Bar and a Moving igid Mass



112

force decreases gradually until it vanishes at separation.
Results and Discussion

Impact causes deformation at the free end of the bar. Figures (5.2) and (5.3) show
the time histories of the displacements of the contact points for both the bar and the
rigid mass for the momentum balance model and for the Lagrange multiplier model,
respectively. The two impact models give identical results. The figures show that these
finite element results coincide with the wave propagation solution as obtained by Johnson
(1972).

For the momentum balance model, the deformation of the bar at the free end is
used to evaluate the contact force. Figure(5.4) shows the contact force as determined by
this strategy compared to the theoretical solution. Figure (5.5) is a plot for the time
history of the contact force as calculated by the Lagrange multiplier model and the
analytical one. As depicted by figures (5.4) and (5.5) reasonable agreement is found
between the two numerical resuits and the analytical solution except at t=0.3 sec. The
maximum contact force as predicted by the momentum balance model is 0.1825 N
compared to 0.2135 N for the analytical solution. The Lagrange multiplier model predicts
a maximum contact force of 0.19 N. It is interesting to know that Wu and Haug (1990),
using another finite element impact model, predicted a maximum of 0.15 N.

The momentum balance model estimated the duration of the impact to be (0.307
sec), which is the time counted from the starting of the first impulse until the release
condition is satisfied. The release condition corresponds to the violation of condition

(3.3). Almost the same result is obtained by using the Lagrange multiplier model. In the
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latter model the duration of impact is defined as the time from the establishing of contact
until the contact force vanishes. The wave propagation theory predicts (0.3068 sec) of
contact duration.

The momentum balance model is able to define the velocity of the rigid mass for
the duration of the impact as shown in figure (5.6). The mode! is also able to correctly
predict the velocity of the free end of the bar at the end of the contact period. However,
the momentum balance model is unable to correctly predict the velocity of the free end
of the bar during the entire period of contact. The analytical solution assumes that the
two points which are in contact have the same velocity during the contact period. The
momentum balance model allows the occurrence of multiple impulses during the contact
period. The latter assumption explains the reason for having different velocities for the
contacting points as shown in figure (5.6).

On the other hand, the time history of the velocities of the contacting points as

predicted by the Lagrange multiplier model almost coincide with the wave solution as

shown in figure (5.7).

5.1.2. LONGITUDINAL IMPACT OF TWO DISSIMILAR BARS
Problem Data

A 1.0 m elastic bar is travelling with constant speed of 10.0 m/sec when it
collides with the free end of another 2.0 m elastic bar fixed at the other end, as shown
in figure (5.8). The cross sectional area of each of them is 0.01 m?. The two bars have

the same material properties. The modulus of elasticity is 1.0 x 10*' N/m? and the mass
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Figure (5.8) Longitudinal Impact Between Two Dissimilar Bars
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density is 4.0 x 10° kg/m’. Uniform meshes of 10 and 20 elements are considered for the
moving and stationary bars respectively. The time step during impact period is 0.18 x
10% 5. A slight numerical damping is introduced through choosing r = 0.505 and »
=0.2525. This choice helps in damping the spurious oscillations due to numerical errors.
Impact Mechanism

As the two bars come to contact, two compression waves, one in each bar,
propagate with a speed equal to 5 x 10° m/sec as given by equation (3.6). The wave in
the moving bar is reflected at its right free end as a tension wave while the wave in the
other bar is reflected at the fixed end as a compression wave. The tension wave in the
moving bar diminishes the contact force as it reaches the contact point at 0.4 x 10?
seconds from the start of the contact. One should notice that the vanishing of the contact
force does not mean the two bodies are separated. As the compression wave in the fixed-
end bar reaches the contact point it causes the contact force to rise again.
Results and Discussion

The wave propagation can be seen in figure (5.9). Figure (5.9) shows the
variation of the contact force with respect to time as evaluated using the momentum
balance model. The numerical result is compared with the analytical solution obtained
by using the theory of wave propagation (Goldsmith, 1960 and Johnson, 1972). One
notices small discrepancies in the predicted contact forces in the second rise. The reason
is that the momentum balance model solution allows for bouncing during the period of
zero contact force. The bouncing is noticed in the displacement time history shown in

figure (5.10).
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Despite the discrepancies mentioned above, the momentum balance model predicts
almost exactly the separation velocities at the end of the contact period. Figure (5.11)
shows that the left end of the moving bar has a velocity of 10 m/sec at the end of the
impact period which coincides with the prediction of the analytical solution.

The Lagrange multiplier model correctly predicts the time history of the
velocities at the contact point. Figure (5.12) shows that the two points of contact move,
with the same velocity of 5 m/sec, towards the fixed end during the compression phase.
The velocity of the contacting points vanishes when the reflected tension wave in the
moving bar reaches the contact zone. The two points remain at zero velocity until the
reflected compression wave in the fixed-end bar reaches the contact zone. At that instant,
the contact points move away from the fixed end with a common velocity of 5 m/sec
until separation is achieved. After separation the free end of the fixed-end bar goes to
rest while the left end of the free bar continues to move with a velocity equal to 10 m/sec
in the direction opposite to the direction of initial motion.

The contact force history, as determined by the Lagrange multiplier model, is
displayed in figure (5.13). The enforcement of the contact constraints results in an
overshoot in the predicted contact force at the beginning of the contact period. The 18%
overshoot is damped very quickly. Only very small variations around the analytical
solution value are noticed in the second rise.

The Lagrange multiplier model correctly predicts no bounce during the zero
contact force period as shown in figure (5.14).

One notices that, the two finite element solutions, near the points of sudden
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changes in contact forces, fail to converge uniformly to the analytical solution. Finer

finite element meshes did not result in better convergence.

5.2. FINITE ELEMENT FORMULATION VERSUS EXPERIMENTAL RESULTS
In this section, the validity and the accuracy of the two impact models are

demonstrated by comparing the finite element results with published experimental results.

A TRANSVERSE IMPACT OF A ROTATING FLEXIBLE BEAM WITH A RIGID
SURFACE
Problem Data

A radially rotating flexible beam collides with a small semi-cylindrical rigid
surface. The beam is made of aluminum and has the following dimensions and
properties: length = 0.530 m, diameter = 0.0063 m, mass density = 2700 kg/m® and
modulus of elasticity = 6.895 x 10" N/m?. The flexible beam is driven by a rigid root
of length = 0.012 m, as shown in figure (5.15). The total inertia of the rigid root is
0.0014 kg.m?. The impact pointis 0.515 m from the pivoted end of the root. In order
to ensure numerical convergence of the Newmark method, numerical damping was
introduced by choosing + = 0.6. This numerical damping resulted in material damping
as shown in figures (5.18) to (5.21).
Experiment Results

This particular example is tested by Yigit (1988) and Yigit et al. (1990). In their

experiment, the beam was allowed to fall freely from an initial angle 6, to hit the rigid
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surface. The strain is measured at a location "P" 0.46 m from the pivoted end. The strain
history at this point in the beam is presented in figure (5.16). The velocity of the rigid
shaft, during the entire motion, was measured and was found to be as shown in figure
(5.17).
Finite Element Results

The results of the momentum balance model, developed in this work, are shown
in figure (5.18) and figure (5.19). The time histories of both the strain at the previously
mentioned location and the angular velocity of the rigid shaft were also evaluated using
the Lagrange multiplier model and are as shown in figure (5.20) and figure (5.21). The
numerical values of 0.6 and 0.3025 were chosen for the two Newmark parameters = and
v, respectively.
Discussion

The two finite element results are found to compare well with the experimental
findings. Multiple impacts occur with short separation periods between them. There is
a difference between the numerical solution and the experimental measurements regarding
the starting of the first contact-impact. This is mainly because the initial inclination angle
f, was not reported by Yigit (1988) or Yigit et al. (1990). In the present analysis the
beam is assumed to start from almost the vertical position i.e., 6, = x/2.

The peak strain agrees well with experimental results. However, the finite element
models predict a higher angular velocity at the initial time of contact compared to that
observed experimentally. One reason may be due to the limitation of the measuring

devices used to conduct the experiment. As mentioned by Yigit (1988), the angular
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acceleration at this instant exceeded the limit of the encoder which he used.
Figure (5.22) shows the variation of the contact force with time. It shows the
occurrence of multiple contact and separation periods. Yigit (1988) and Yigit et al.

(1990) did not provide one with a similar figure.

5.3. DISCUSSION

In the previous two sections the two impact models were assessed and compared
with published experimental results. Both cases of axial and transverse impact were
treated. It was shown that the two impact models are capable of predicting, with
reasonable accuracy, the displacements in the impact zone, the contact forces and the
velocities after impact. It was also shown that the Lagrange muitiplier model can predict
the velocity history during the impact period with more accuracy than that offered by the
momentum balance model.

Consequently, one can use the two impact models combined with the flexible

muitibody system corotational model presented in chapter 2 to study some practical

problems.

5.4. IMPACT OF A SLIDER-CRANK MECHANISM AND A SLIDING BLOCK

The slider-crank mechanism shown in figure (5.23) is considered. The
mechanism was studied before in chapter 2 and its data can be found there. During the
forward stroke, the slider collides with a free moving block. The free block is five times

the mass of the slider and is inertially driven towards the slider at a constant speed of 15
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Figure (5.23) Impact Between a Free Block and a Slider-Crank Mechanism
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m/sec. The crank maintains a constant speed of 150 rad/sec during the entire motion. 7
= 0.6 and v =0.3025 were selected for Newmark parameters to introduce numerical
damping to the system.
Results and Discussion

The deflection of the midpoint of the connecting rod, measured in a direction
perpendicular to the straight line connecting A and B, is calculated and then divided by
the length of the connecting rod itself. Figure (5.24) shows the variation of this
dimensionless deflection (6/L) with the rotation angle of the crank in the presence and
absent of impact. Significant difference is shown between response for the non-impact
and impact cases. This difference is attributed to the excitation of higher modes. This
excitation can also be detected in figure (5.25) which gives the velocity of the slider
versus the crank angle with and without impact. Figure (5.26) shows the high contact
force which appears in the short period of time of contact. The time histories of the
velocities of the two colliding bodies just before, during and just after the contact period
are displayed in figure (5.27). The velocity of the free mass changes, during this short
peried, from -15 m/sec to almost 40 m/sec. The effect of impact on the slider manifests

itself in the appearance of oscillations of the slider which start just after separation.

5.5 COLLISION OF A ROD WITH AN IMMOBILE OBJECT

Problem Data
The rod shown in figure (5.28) has a 1 kg mass and a 1 m length. Its initial

orientation is # = 45°, The rod starts the motion towards the immobile surface when its
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lower tip is 0.3 X 10? m from the surface. Initially, the rod has linear velocity
components and zero initial angular velocity. The system was investigated by other
researchers (Brach, 1989, Wang and Mason, 1992 and Ivanov, 1992) to illustrate the
paradoxes in rigid body mechanics of frictional impact using Newton’s impact law.

The Newmark parameters v and v, the modulus of elasticity and the mass
density are chosen to be 0.6, 0.3025, 2.0 X 10" N/m® and 7870 kg/m?, respectively. The
time step for the impact period is chosen to be 0.4 x 10* sec. The gravity forces are
included. Equation (3.37) predicts that the critical coefficient of friction is 0.6. Some
case studies are reported here to assess the roles played by the coefficient of friction and
the initial conditions of motion.
Results and Discussions

First the frictionless case is studied with v,=-1 m/sec, v,=0 and x=0.0. Figures
(5.29) to (5.34) show the time histories of the normal velocity, vertical displacement,
tangential velocity and horizontal displacement of the lower tip of the rod. The figures
also show the time histories of the normal and tangential contact forces. The rod’s tip
starts to slip in the negative direction as soon as the contact is established as shown in
figures (5.32). Figure (5.30) shows that a small bouncing occurs at the very beginning
of the contact. Due to the reflections of the contact wave, the tangential velocity starts
to fluctuate, as can be seen in figure (5.31). Another small bounce occurs after about
0.425 x 107 sec from the beginning of the motion. The slower tip of the rod leaves the
rigid surface after about 0.77 x 107 sec from the starting of the motion. Figure (5.29)

shows that after separation, the normal velocity of the rod’s tip starts to increase in the
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Figure (5.30) Vertical Displacement of Rod’s lower tip. v, = -1, v, = 0, u =0
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positive direction and then decreases again until the lower tip of the rod collides with the
surface again. Figures (5.33) shows the time history of the normal contact force. The
normal force decreases to zero very shortly after the establishment of the impact but the
contact is not lost. Figure (5.34) shows the tangential force during the contact period. It
is identically zero due to the absence of the friction.

The second case which is investigated considers that x = 0.8. Figures (5.35) to
(5.40) show the time histories of the same variables presented in the previous case and
in the same sequence. Figure (5.37) shows that the tangential velocity decreases at a
higher rate compared to the previous case and that it vanishes before the termination of
the impact. The friction is high enough to keep the sticking mode until the small
bouncing at 0.4 x 102 sec occurs as can be seen in figure (5.38). Figure (5.36) shows
that the rod’s lower tip goes into a free flight period which starts at almost 0.77 x 107
sec and ends at 1.5 x 107 sec. The maximum height reached by the rod’s lower tip, in
this period, is less than that reported in the frictionless case as can be noticed by
comparing figures (5.36) and (5.30). The lower tip of the rod strikes the surface after
the free flight period with a normal velocity that has an absolute value less than unity as
can be seen in figure (5.35). Figures (5.39) and (5.40) show the proportionality between
the normal and the tangential forces in the first period where the sliding mode is active.
They also show the changes in direction of the tangential force during the sticking mode.

The third case which is investigated assumes that the initial horizontal velocity is
given by: v, = -1 m/sec and p equal to 0.7. It is found that the impulse P, required for

the tangential velocity to vanish can not be reached within the contact period.
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Consequently, the rod’s lower tip continues to slip in the negative direction. Results are
as shown in figures (5.41) to (5.46).

The further and last case which is investigated assumes that g is increased to
0.95. The results of simulation are as shown in figures (5.47) to (5.52). The absolute
value of the sliding velocity instead of increasing at the beginning of contact, as in the
previous cases, it decreases here very rapidly as shown in figure (5.49). The rod’s lower
tip leaves the rigid surface in a short time and a free flight mode starts as illustrated in
figure (5.47). When the lower tip comes back to contact with the rigid surface it
smoothly slips upon the immobile surface. Figures (5.51) and (5.52) show that the initial
contact force is high compared to the previous cases and lasts for a short period. This
case can be ideally presented by an impulse.

Wang and Mason (1992) gave an analytical solution for this example using rigid
body mechanics assumptions. The reported results made use of both the Newton’s
impact law and Poisson’s hypothesis.

Using this example, Wang and Mason showed that Newton impact law can
wrongly predict a gain in the rod’s energy instead of losing energy. One can also use
their results to show that Poisson’s hypothesis can also wrongly predict a nonfrictional
energy dissipation even when elastic impact (e = 1) is assumed. This means that e of
Poisson hypothesis depends on g which is in contradict with the basic assumption about
e. This problem is not encountered in the present formulation. The energy-based
restitution law used in conjunction with the momentum balance model distinguishes

between the dissipation of energy due to frictional forces and that due to non-frictional
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forces. In the Lagrange multiplier model there is no dissipation of energy due to the non-

frictional fsrces.

5.6. SUMMARY AND CONCLUSIONS

The two impact models and the associated computer algorithms developed in the
previous two chapters combined with the corotational formulation of chapter (2) have
been used in this chapter to obtain numerical solutions for some problems of flexible
multibody systems subjected to impact loading. The models have been demonstrated to
be capable of accurately predicting the dynamics of flexible multibody systems
undergoing impact. This has been achieved by comparing the current simulation with the
corresponding analytical and published experimental results.

The momentum balance model has long been criticized as it can not predict the
contact force, the contact duration and the displacements. The numerical results in this
chapter not only demonstrate the capability of the method to handle complicated
nonlinear impact problems but also, they show that the method can be applied with
confidence to predict the deformation within the impact period, the duration of the
contact and the jump in the velocity vector due to the impact. The model can also be
used to predict the contact forces during the impact period in some cases of axial impact
loading. The strategy adopted to evaluate the contact forces can be improved to apply for
a wider range of systems. In general, momentum balance model allows the occurrence
of multiple impulses during the impact period. Consequently, it fails to correctly predict

the time history of velocities of the points of contact during the impact period.
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The substantial computational advantage of the momentum balance model lies in
the fact that the governing equations have much simpler structure. Some researchers
(Lankarani and Nikravesh, 1992) assume the occurrence of instantaneous impact-contact
i.e., only one impuise which happens in a point in time. Although this assumption could
work well with impacts involving rigid systems it can predict incorrect results if it is
used with flexible systems,

The use of the Lagrange multiplier in the analysis of flexible multibody systems
under impact is a new approach. The new model, developed in the previous chapter,
which utilized the Lagrange multiplier technique is examined in this chapter. The
numerical results obtained uzing the L2grange multiplier model confirm the applicability
and the accuracy of the model and the associated algorithm. The deformation within the
impact period, the duration of the contact, the contact forces and the velocities of the
points of contact during the impact period can all be predicted with high degree of
accuracy using the developed Lagrange multiplier model.

The numerical algorithm employed, with the Lagrange multiplier model, not only
overcomes the difficulties due to the presence of frictional force and Lagrange multiplier
but also is very efficient in terms of storage and computing time requirements.

The impact models were used in this chapter to solve some practical engineering
problems. They have been used to simulate the problem of a flexible beam attached to
a moving rigid body and undergoing impact. This particular problem has its implications
in some engineering areas like: helicopter rotors, turbine blades, robot arms or space

satellites with flexible appendages.
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The problem of a slider-crank mechanism with a flexible connecting road
subjected to impact has been considered. This example provides a better understanding
for some practical problems which arise in cold forging. Lankarani and Nikravish (1992)
investigated this mechanism. They ignored the flexibility of the connecting rod. The role
played by flexibility in the impact process can be seen by comparing both results. The
amplification effect of flexibility in the responses is significant and can not be ignored,

One of the most controversial problems in mechanics is that of a rod colliding
with an immobile surface. The problem has its application in areas like robots and
walking machines. The misleading results for this problem, ‘which might violate the
energy conservation principal, were discussed by other authors ( Brach, 1989, Wang and
Mason, 1992 and Ivanov, 1992). An energetically consistent solution, for this problem,
is obtained by the methods presented in this thesis. This example shows the roles played
by initial conditions and friction in the impact process. The cases studied showed that
changing the value of the coefficient of friction can change the mode of impact from
sliding to sticking or vice versa. It might also lead to a change in the tangential force
direction. The contact duration and the value of the maximum contact forces can be

strongly altered due to the change of the coefficient of friction.



CHAPTER 6

SUMMARY AND RECOMMENDATIONS

6.1. SUMMARY AND CONCLUSIONS

The study of flexible multibody systems under frictional impact was the subject
of this dissertation, Two multibody-orient_ed impact models were developed. The motion
of the system before, during and after impact was modeled. The method presented in.this
work can be used for the performance analysis of existing mechanical systems or to
simulate the behaviour of a wide range of alternate designs prior to building and testing
a prototype.

A corotational finite element formulation was developed for the dynamic analysis
of flexible multibody systems. The corotational frame iranslated and rotated with the
element but it did not deform with it. The objective of using the corotational formulation
was to separate the small strains from the rigid-body motion. The model describing the
motion was derived using Lagrange’s equation. An incremental-iterative numerical
algorithm was developed along the lines of the Newmark direct integration and
Newton-Raphson methods.

A planar beam element was used to model the planar multibody systems. The
element had uniform cross section. The shear deformation effects were neglected. Linear

material properties were assumed. The effects of the finite rotations and strains within
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the element were taken into account. Some typical mechanical systems were studied and
the results were compared with those obtained by other researchers using other
techniques as well as with published experimental results. The results obtained in this
part confirmed the applicability, efficiency and accuracy of the corotational formulation
and the associated numerical algorithm.

The corotational finite element procedure was then extended to include impact
with friction in the formulation. A switching function was introduced for monitoring the
instant in time at which impact takes place. An automatic time stepping algorithm was
developed for this reason. In general, point impact was considered. Coulomb's law was
assumed to adequately describe the friction forces. An infinite tangential stiffness was
assumed. Two approaches were used to model the frictional impact.

The first approach was a modified momentum balance model for flexible
muitibody systems. The model eliminated a number of constraints and limitations in the
previously developed models. The approach leaded to an energeticaily consistent model
which accounted for the presence of frictional forces. The degree of plasticity of the
contact was accounted for by the use of the coefficient of restitution. The approach
allowed for accurate prediction of the duration of contact, the post impact velocities and
the deformation due to impact. A method was adopted to calculate the contact forces for
a wide class of problems. During the contact period multiple impulses were assumed to
occur. Impulse is an instantaneous event which causes an incremental change in the
velocity vector. Any change in the configuration of the system during impulse is

negligible. The assumption of multiple impulses caused multiple discontinuities in the



156

velocities of the contact peints during the contact period. Therefore, the method failed
to correctly predict the time histories of the velocities of the points in contact during the
contact period.

The second approach was a continuous frictional impact model. The new model,
which was more realistic than the widely used spring-dashpot model, made use of the
Lagrange multiplier method. In this approach the Lagrange multiplier exactly satisfied
the geometric' compatibility conditions during contact. It also allowed the direct
evaluation of Ithe contact forces. No additional parameters were required as in the case
of the spring-dashpot model. During contact the velocities of the points in contact must
be the same in the two bodies. A set of momentum balance equations was used to enforce
this condition. Conditions for entering and leaving the sliding and sticking modes were
derived. The Coulomb's friction law was used in the sliding mode to give relation
between the normal and tangential components of the contact force. For the sticking
mode the kinematical constraint in the tangential direction, at the contact point, was used
to develop an additional equation. The proposed scheme was shown to be very efficient
both in terms of storage and computing time.

One should emphasize the fact that the use of the corotational formulation allowed
one to use finite element nodal displacements basis in impact analysis. Consequently, one
avoided the difficulties inherited in the use of the component mode synthesis. The latter
may force one to adopt a new set of modes whenever the system changes its

configuration.

The appiicability and the accuracy of the tvo impact models were demonstrated
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by performing the dynamic analysis of some mechanical systems which were subjected
to either an axial or a transverse impact. The models successfully follow the propagation
of the impact-induced wave through the flexible multibody systems.

In general, the choice between the momentum balance model and the Lagrange
muitiplier model is problem-oriented decision. If the interest is in the post impact
conditions then the momentum balance model is more computationally efficient. 1f one
is more concerned about the contact force and the velocity history during the impact
period, then Lagrange multiplier model should be the one's choice. Though the two
models consider the dissipation of energy, due to damping and friction, the momentum
balance model, through the use of the coefficient of restitution, offers a more reliable
way to model any other from of energy dissipation. The degree of plasticity of the impact
is an example,

Some practical impact problems involving flexiblz multibody systems were
investigated. The problem of flexible beam attached to a moving rigid body and
undergoing impact was simulated. A slider-crank mechanism with a flexible connecting
road was considered. The slider cotlided with a free moving mass. A dynamic analysis
for the motion has been performed. The interaction between the flexibility and the impact
was obviously shown in this example. The well known problem of a rod colliding with
an immobile surface was investigated. Parametric studies were conducted to assass the
roles played by the coefficient of friction as well as the initial velocities. [t is known that
the solution of this problem using Newton's impact law or Poisson’s hypothesis might

violate the energy conservation principal.
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6.2. RECOMMENDATIONS

It is t:lieved that the computer-oriented dynamic modelling developed in this

thesis represents an adequate base to study more complicated problems, The following

are some examples:

a)

b)

c)

d)

Muitiple degrees of freedom robots and their interaction with their environment.
This is essential as the cooperative robots are finding their way to production
lines. Also, the future space-based manipulator systems are required to work
cooperatively in the construction of space stations and maintenance of satellites.
In these cases contact is unavoidable.

The spinal cord and the effect of rout obstacles or car accident on it.

Landing of small light weight airplanes and the associated impact between their
land gears and the runway.

Walking machines and the unavoidable impacts during their functional operations.

The present analysis methods have also the potential to be extended and further

investigations are required. The following are suggested:

a)

b}

Though the corotational formulation and the two impact models have been
derived for the general three dimensional case, the beam element which has been
developed is a two dimensional one. A spatial beam element needs to be
developed. This will open the door for solving spatial practical problems.

Point impact has been assumed. In real life bodies collide on common surfaces.
An assumption of surface contact would decrease the computational efficiency,

which is essential to simulations involving multibody systems. A model which



d)

g)

h)
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could assume surface contact without highly reducing the computational

efficiency is required.

Nonlinear material properties could be considered. Consequently, plastic impact
could be treated.

Coulomb’s friction law has been assumed and same value has been given to static
and dynamic coefficients of friction. Different values could be assigned for these
coefficients and sophisticated laws for friction could be employed and examined.

The coefficient of friction has been treated as a given value. Experimental studics
are required to evaluate the value of that coefficient and to investigate whether
the flexibility has an effect on it or not.

In the momentum balance model, the developed method for calculating the
contact force can not be used for transverse impact, This is because the shear
effects has been ignored in the developed beam element. Including the effect of
shear deformation would solve this problem.

Rayleigh damping was not used to account for energy dissipation in the presence
of impact. A proper way is required to assign proper values for the Rayleigh
coefficients, o and 3, in this case,

Numerical damping was introduced through Newmark parameters. An
investigation is needed to assess the role played by these parameters as damping
factors. In the same time, a comparison between the numerical damping and the
Rayleigh damping is recommended.

Additional research is required te study other types of intermittent motion like
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addition or deletion of masses or kinematical constraints.
i) Looking to the problem from the a control viewpoint is the next step to the

modelling analysis presented in this investigation.
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APPENDIX A

TWO DIMENSIONAL BEAM ELEMENT MATRICES

For the two dimensional case, the z axis of the i'th element is always coincident

with the Z axis of the inertial frame. Therefore, the rotation matrix Q' reads:

cos &' sin @ 0O

Q/ =|-sin ® cos @ 0 a.1
0 0 1
where
P! = angle measured counterclockwise from the X to the X axis.
Under the assumptions mentioned in section (2.6), one can write
vl - 2f ol cavi
2 (A.2)
- L E ] B dat ax
where
€ = longitudinal strain at the generic point "P" on the i’th element in the direction
of the X axis
L = length of the i’th element

One may notice that the matrix [E') is reduced to z scalar constant which is the modulus

of elasticity. The strain can be defined by:
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that:

where
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Ou
e =

& e A
™

;) (A.3)
S i W

+

1
2

= x and y-components of u;

= distance from the generic point on the cross section of the element to the axis

passing through its centroid

Performing the integration over the cross sectional area a', and taking into account

f‘da=a‘, ¥ da =0,
a a
{A.4)
. ou
L yhda =T, ,E'Ex&da=rj

= scalar representing the axial force in the i'th element , positive in tension

cross sectional area of the i'th element
= second moment of area of the i’th element

= modulus of elasticity of the material of the i’th element

The expression for U' can be written as follows:

T ‘auﬂz,,_ i, Sy (A.5)
U—;f0 [ ENE? + T BN 1k

which can be expanded to read:
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. . & 1“"5 09 aT
l'=_1. L i3 5 uﬂ i _J?
szo[axaxafJOTo_ = | 4% (A0
0 0 E'fl.,
B'uﬂ
| ax?]

Assuming a cubic polynomial for the shape function, one can show that the strains, in

terms of nodal displacements, are given by:

|_€‘JuJSE Ot 82u'6j|r=m;] 7t (A.7)
& &

where ()" refer to differentiation with respect to x and [N] is given by:

N, O ON 00
INT=|0 N, Ny 0 N N, (A.8)
0 K, N, 0 K, A,

where

Ny=1-¢,  Ny=1-30%+ 203,  N,= x(1-2{+ (%)

(A.9)
Ne=0,  Ng=30-20,  Ng=x(-(+ (%)

and
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= X (A.10)
Ll

accordingly U' can be written as follows:

vi= 2 [H @t @ B dx

(A.11)
- % F K & dx
where
K1 = fo LINT [H [N dx (A.12)
and
et 0 0
H1-1 0 T 0 (A.13)
0 0 ET

performing the integration in the expression for [K'], the element stiffness matrix reads:

K7 = K]} + [K) (a.14
where

[KY] = the consistent stiffness matrix for axial and bending loading, defined as

follows:
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PL 0 0 -af 0 0 |
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1 : i
L'|-a 0 0 af 0 0
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and
[I_(zi] = stress stiffness matrix of the element given by:

0 0 0 0 0 ]
36 3L' 0 -36 3Lf

0
0
T, |0 3LY 4@y 0 -3L1 -(Liy (A.16)
0
0

0 0 0 0 0
-36 -3LY 0 36 -3L!
0 3L -(LH 0 -3L' 4L

e

Making use of the assumption of uniform unit extension, one can evaluate the integral

relation for T, which is given by (A.4) to obtain:

(d, - d)
Li

T = E'qg

3

(A.17)

The stress stiffness matrix, as given by relation (A.16), represents the coupling between
the axial and transverse displacements. Large axial forces are known to occur in

mechanisms. The stress stiffness matrix accounts for the fact that a compressive axial
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force tends to increase the iransverse displacement of the beam while a tensile axial force

has the opposite effect. The inclusion of the stress stiffness matrix is very critical if the

beam is subjected to axial impact loading.

The kinetic energy of the i’th element can be written as follows:
T = % [Feial G2+ i+ o 1 $d x (A.18)

which can be written in a matrix form as:

Lpeet i : oo
T'=2fy 7 QT IGT 1014, dx (4.19)
where
fx
F, = 7 (A.20)
¢
and {G'] is given by:
plat 0 0
[Gh=| 0 piat 0 (A.21)
0 0 it
Using the same interpolation strategy as in section (2.3), one can write
T! - % & QT MY Q1 & (A.22)

where



M7 = [, NV 167 V] dx

which is equivalent to relation (2.30). This yields

M7 = M3+ M)

where [M,'] is the mass matrix for translational inertia defined as

[ 140
0

- lpip i 0
Mh = P4 L

(] 420 | 70
0

| 0

0 0
156 22L°
22LF LY
0 0
54  13L!
-13LY -3(L%?

70 0 0 7
0 54 -13L!
0 13L7 -3(LH?

140 0 0
0 156 -22L°

0 -22L' 4(LY* |

and [M,] is the mass matrix for rotational inertia given by:

0
0
- piIi G
¢
¢

0

0 0
35 3Lt
LY 4(L)?
0 0
-36 -3L!
LT -(L)?

0
0

0
0

0
0

0 0
-36 3Lf
=34 (LYY
0 0
36 -3L!
-3L" 4(LY ]
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{A.23)

(A.24)

(A.25)

(A.26)

The rotational inertia mass matrix represents the resistance for changing the slope of the

beam due to angular acceleration. At high angular accelerations, as is the case in high

speed mechanisms and robots, this resistance becomes considerable.



APPENDIX B

NUMERICAL SOLUTIONS FOR LAGRANGE MULTIPLIER MODEL

B.1. THE SLIDING MODE SOLUTIONS

The Newmark time stepping scheme provides the following two independent relations:

u _ dy, — dy &N 1

L B2y —hv_(2v

[~%

- 1) d

(B.1)
dyy = dy + B {1-1) dy + <d, ]
Substituting equation (B.1) in equation (4.21) yields a system of nonlinear algebraic

equations in terms of dy,, . The out of balance force vector can be written as:

¥N+1=h—1;([M] +h T[C])qunq +fN+1 _FNq _(Tan)Nq '[A“I]N*IAN"[C]NHBN (B.2)

where

d d 1 -
Ay =X+ X (=14
¥ hiv hv " (2\‘ ) N
(B.3)
td T . T -
B, = X + (Z-Dd +h(Z--1)d
Noohv ' (v My (2v Jdy

Employing the classical Newton-Raphson iteration method, relation (B.2) can then be
solvsd simultaneously with equation (4.22) by em. One can define:

d'y,, = the value of dy,, at iteration J and
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A dy,; = the incremental nodal displacements.

As an initial guess for the new time step, one chooses d’, to be equal to dy,
i.e., the same as the converged value in the previous time step. The initial values for
d’y,, and d°,, can be obtained from the Newmark scheme of equation (B.1).

At iteration J of the Newton-Raphson scheme, the linearization of the system

algebraic equations about d'y,, yields:

f;rq = - [%5]}:'4 Ady., (B.4)
and
ad
6!:;’;‘1 = _(Taj)}{hl Ad;*l (B.5)
One can define:
d 1 d(nF
[él}(’q = E [MTAIM + hLv [C]-:m + [%{L{Jq - [_—""'ad n)]}{hl (B.6)
and
dd
(S = @l (B.7)

Using equations (2.5), (2.20), (2.39), (2.40)and (4.4), one can write:

f = K-}y (B.8)

Consequently, the term conceming f in equation (B.6) can be written as:
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[-j-gm = (ZIKT Yoy = KTl (B.9)

Equations (B.4) and (B.5) can now be rewritten as:

¥ = - [RTna Adyy + [6(";:");;,*1 Ady, (B.10)
and
8,0 = —aTy Ady, (B.11)
where [f(] is given by:
[Rly., = hzlv[MK"*l * htv [Cl *+ (Kl (B.12)

To write the equations in a compact form, one can define:

Wit = Wt + (VE ) (B.13)
Noticing that:
- nF,)
MF)v = MF ) + [ ~ Tt (B.14)
one can write:
(MVF )Ny = ¥t + [KTja Adpy (B.15)

One can solve equations (B.11) and (B.15) simultaneously to obtain the required solutions

for the normal contact force and the incremental displacement.
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B.2. THE STICKING MODE SOLUTIONS

Substituting equation (B.1) in equation (4.33) yields a system of nonlinear

algebraic equations in terms of dy,, . The out of balance force vector can be written as:

1
a1 2—“—" 5 (M) +ht(CDy. Ay g #fyay ~Fyg ~(@F Dy
v (B.16)

‘([ﬂ]F,)N.l ‘[M]NHAN'[C]NABN

where Ay and By are as given in equation (B.3). This system of algebraic equations can
then be solved by employing the classica! Newton-Raphson iteration method. The
converged value in the previous time step is chosen for d°%, ,. The initial values for él"NH
and a"N“ can be obtained from the Newmark scheme of equation (B.1).

Linearization of the system algebraic equations about d'y, ,, for the I'th iteration

of the Newton-Raphson scheme, yields:

3

*-;hl == [af]:{m Ad}{"cl (B.l?)
a3

M i J (B.18)
N+] ( ad )N+l AdN‘l
and

s S

By = (51 Adiy (B.19)

where



d(aF O(BIF,
[%T#f;i—vihfﬁwfglcrfmtgm—[ ;")r,’m—[ sd')lim

[ V4 _orJ
( )JN*I = a N+1

od

and

o8
(571 = BT
The term conceming f in equation (B.20) can be written as:
(L5 = G D= KD
Equations (B.17) to (B.19) can now be rewritten as:

HaF,) H[B1F)

5 J J
*{m = [K]}{M Ad;\"d +[ 3 B'm Adya+([ 3d ]}{m Adyy
J J
By = "% By

and

8 = ~((B1y.; Ady.

fvel

where

KTy = —— My + ——[CThuy + (KT

h% v hv

To facilitate the calculations one can define:
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(B.20}

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(8B.26)

(B.27)
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¥va = W + (@F )0 + (BIF)S., (B.28)

noticing that:
(&F ) = (@F )y + [a(g:ﬂ)]jm (B.29)

and
. F.

IBIF)L = QBIF Y, + [a([i], v (B.30)

one can write:
(@F )y + (BIF)NY = W * [RTh. Adig (B.31)

Solving equations (B.25), (B.26) and (B.31) simultaneously gives the required solutions

for the contact forces and the incremental displacement.



