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Abstract

Prediction of a signal is synonymous with modeling of the underlying physical mechanism
responsible for its generation. Many of the physical signals encountered in practice exhibit
two distinct characteristics: nonlinearity and nonstationary. Consider, for example, the im-
portant case of speech signals. The production of a speech signal is known to be the result
of a dynamic process that is both nonlinear and nonstationary. To deal with the nonsta-
tionary nature of signals, the customary practice is to invoke the use of adaptive filtering.
Unfortunately, the nonlinear nature of the signal generation process has not received the
attention which it deserves in that much of the literature on the prediction of speech signals

has focused almost exclusively on the use of linear adaptive filtering schemes.

This thesis is aimed at the study of nonlinear adaptive prediction of nonstationary
signals using neural networks and its application to real-time speech communication. In
this thesis, three basic questions are answered: 1) What kind of neural networks are suited
for real-time adaptive signal processing? 2} How can an adaptive ncural network predictor
be designed? 3) Can a neural network predictor be used for the application of real-time

communicationa?

In this thesis, a new Pipelined Recurrent Neural Network (PRNN) is designed. The
PRNN is composed of M separate modules. The modules are identical, each designed as a
recurrent neural network with a single output neuron. Information flow into and out of the

modules proceeds in a synchronized fashion.
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A new scueme for the nonlinear adaptive prediction of nonstationary signals is pro-
posed. The nonlinear neural network-based filter, which consists of 2 PRNN and a linear
filter, learns to adapt to statistical variations of the incoming time series while, at the same
time, the prediction is going on. The dynamic behavior of the pipelined recurrent neural
network-based predictor is demonstrated in the case of several speech signals; for these
applications it is shown that the nonlinear adaptive predictor outperforms the traditional
linear adaptive scheme in a significant way. It should however, be emphasized that the
nonlinear adaptive predictor has a much wider range of applications such as the adaptive

prediction of sea clutter.

The PRNN-based adaptive predictor is applied to the adaptive differential pulse
code modulation. In the encoder and decoder parts of an ADPCM system, the predictor
is successfully incorporated with an adaptive quantizer for low bit-rate speech communica-
tion. The research work involves a novel combination of pipelined recurrent neural network
and a robust linear adaptive filter, and the design of a new 4-, 8- or 16-level adaptive
quantizer. The nonlinear adaptive differential pulse code modulation algorithm is tested
with different speech signals. The new algorithm is compared with a linear ADPCM al-
gorithm, recommended by CCITT, from several aspects such as time Vdoma.in, frequency
domain, and listening tests. Speech experiments show that nonlinear adaptive differential
pulse code modulation provides a promising new approach for high-quality communication

at low bits rates.
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Chapter 1

Introduction

1.1 Purpose of the Research

Prediction, filtering, and smoothing are three basic information-processing operations. Pre-
diction is the forecasting side of information processing. The aim is to derive information
about a quantity of interest at time ¢ + 7 for some r > ¢ by using information up to and
including time ¢. The carrier of information is referred to as the signal, examples of which
are speech, image and radar returns. The case of speech signals will serve as a main case

study in this thesis.

Prediction of a signal is synonymous with modeling of the underlying physical mech-
anism responsible for its generation. Many of the physical signals encountered in practice
do indeed exhibit two distinct characteristics: nonlinearity and nonstationary. Consider, for
example, the important case of speech signals. Presently, the production of a speech signal

is known to be the result of dynamic process that is both nonlinear and nonstationary.

To deal with the nonstationary nature of signals, the customary practice is to invoke
the use of adaptive filtering. Unfortunately, the nonlinear nature of the signal generation

process has not received the attention which it deserves in that much of the literature on

1



1.1. PURPOSE OF THE RESEARCH 2

the prediction of speech signals has focused almost exclusively on the use of linear adaptive

filtering schemes.

In principle, a neural network is ideally suited for the nonlinear processing of nonsta-
tionary signals because of two inherent characteristics: Nonlinearity and Adaptation. The
key challenge is how to design a neural network for the nonlinear processing of nonstationary
signals. The traditional method of supervised learning is unsuitable because of its off-line

training requirement.

This thesis is aimed at the study of nonlinear adaptive prediction of nonsta-
tionary signal by using neural networks and its application to real-time speech com-

munication.

In this thesis, three basic questions are answered:

1. What kind of neural network is best suited for continuous adaptive signal process-
ing? The neural network needed should be able to learn in an on-line fashion (i.e.,
rcal-time), in which case the network learns to adapt to statistical variations of the

incoming time scries while at the same time it performs its filtering role.

2. How can an optimal neural network predictor be designed? By choosing neural net-
work theory as the basis for nonlinear adaptive prediction, an attempt is made to find
an optimal neural network system and corresponding algorithms for on-line learning
and processing. The system and algorithm is based on both neural network learning

theory and linear adaptive filtering theory.

3. Can the neural network predictor be used in real-time communication application?
The answer to this question examines the characteristics of the neural network pre-

dictor and introduces a new speech processing system to modern communication.
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1.2 Linear Adaptive Filter

The term “filter” is often used to describe a device, in the form of a piece of physical
hardware or computer software, that is applied to a set of noise data for the purpose of
extracting information about a prescribed quantity of interest. In all cases, the filter is used
to perform three basic information-processing tasks: prediction, filtering and smoothing.
When the filter is used to perform prediction, it is called a predictor. In a linear filter the
filter output is a linear function of the observations applied to the filter input. A nonlinear
filter, on the other hand, is characterized by an output that is a nonlinear function of its

input. Clearly, the design of a nonlinear filter is more demanding than that of a lincar one.

Much has been done on the classical approach to the linear optimum filtering (pre-
diction) problem, assuming the availability of second-order statistical parameters (i.c., mean
and covariance functions) 7] of the useful signal and unwanted additive noise. In this sta-
tistical approach, an error signal is usually defined between some desired response and
the actual filter output. The filter is designed to minimize a cost function defined as the
mean-squared value of the error signal. For stationary inputs, the resulting optinum filter
is commonly known as the Wiener filter. A more general solution to the linear optimum
filtering problem is provided by the Kalman filter [6]. Compared to the Wiener filter, the

Kalman filter is 2 more powerful device, with a wide variety of engineering application [73].

The design of Wiener filters and Kalman filters requires a prior knowledge of the
second-order statistics of the data to be processed. Therefore, these filters are optimum in
their individual ways only when the assumed statistical model of the data exactly matches
the actual statistical characteristics of the input data. In most practical situations, how-
ever, the statistical parameters needed to design a Wiener filter or Kalman filter are not
available, in which case the use of an adaptive filter is required. Such a device is one that

is self-designing in the sense that the adaptive filter relies on a recursive algorithm for its
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operation. A recursive algorithm makes it possibic for the filter to operate satisfactorily in
an environment where knowledge of the relevant signal characteristics is not available. The
algorithm begins from some prescribed initial conditions that represent complete ignorance
about the environment; thereafter it proceeds to adjust the free parameters of the filter in a
step-by-step fashion, such that after each step the filter becomes more knowledgeable about
its environment. Consequently, an adaptive filter is time varying with data-dependent pa-
rameters. This, in turn, means that an adaptive filter is in reality a nonlinear device in the

sense that it does not obey the principle of superposition.

Notwithstanding this nonlinear property, adaptive filters are commonly classified
into linear and nonlinear adaptive filters. In alinear adaptive filter the estimate of a quantity
of interest is computed at the filter output as a linear combination of the available set of
observations applied to the filter input. The ubiquitous least-mean-square(LMS) algorithm
is an important example of linear adaptive filtering. Indeed, the LMS algorithm is the
work horse of traditional forms of the ever-expanding field of adaptive signal processing.
Another important example of the linear adaptive filter is the recursive least-squares(RLS )
algorithm, which may be viewed as a special case of the Kalman filter. The LMS algorithm
is “ctochastic”, providing an approximation of the Wiener filter formulated in accordance
with the method of steepest descent. On the other hand, the RLS algorithm is “exact,”
providing a recursive solution to the linear filtering problem formulated in accordance with

the method of least squares that goes back to Gauss.

The LMS algorithm offers simplicity of implementation and a robust performance
in tracking statistical variations of a nonstationary environment. The RLS algorithm, on
the other hand, offers a faster rate of convergence (defined below) than the LMS algorithm,
at the expense of increased computational complexity. Various schemes, known collectively
as “fast algorithms”, have been devised to improve the computational efficiency of recursive

least-squares estimation. In any event, a major limitation of all linear adaptive filtering
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algorithms is the inability to exploit higher-order statistics of the input data, which, in
turn, narrows the scope of their practical applications. In contrast, nonlinrear adaptive
filters involve the use of some forms of nonlinearity, which makes it possible to exploit
the full information content of input data. However, the presence of nonlinearity makes
it difficult to analyze mathematically the behavior of nonlinear adaptive filters in a way

comparable to their linear counterpart.

The contribution of this thesis is the development of a nonlinear adaptive filter,
based on neural network theory, for the prediction of nonstationary signals. The procedure

consists of the following steps:

Studying the dynamical neural networks.

Constructing new neural networks.

Developing a nonlinear predictor and the corresponding adaptive filtering algorithm.

Testing the new nonlinear prediction with nonstationary signals.

Introducing the new nonlinear prediction to real-time speech communications.

1.3 Scope and Outline of the Thesis

Chapter 2 looks at the model of human speech generation. The chapter is begun by re-
viewing the human speech production process from the point of view of biolngical science.
The discussion confirms that speech signals do indeed exhibit two distinct characteristics:
nonlinearity and nonstationary. The chapter focuses on artificially linear and nonlinear
mathematical models of the speech-production. Recent research suggests that the model
of speech production may be a time-varying dynamical system. One of the approximation

methods for such a dynamical system is to build a dynamical nonlinear predictor, which



1.3. SCOPE AND QUTLINE OF THE THESIS G
can model the speech generation.

Chapter 3 will provide a thorough summary of the principle and application of
neural networks. The discussion is concentrated on neural networks for adaptive signal
processing. A thorough investigation of the dynamical recurrent neural network and its
real-time training algorithm is made. These reviews lay the foundation for the next four

chapters.

Chapter 4 and Chapter 5 represent the core of the thesis. In Chapter 4, the Pipelined
Recurrent Neural Network is developed. The design of the pipelined structure follows some
important engineering and biological principles. The mathematical model and the real-time
learning algorithm of the new neural network are deduced in this chapter. The Pipelined
Recurrent Neural Network is a powerful dynamical system. It enhances the ability of the

conventional recurrent neural network and overcomes its deficiency.

In Chapter 5, a new scheme for the nonlinear adaptive prediction of nonstationary
signals, whose generation is governed by a nonlinear mechanism, is described. The adaptive
predictor consists of two subsections, one of which performs a nonlinear adaptively mapping,
and the other performs a linear, adaptively mapping. The nonlinear subsection consists of
a Pipelined Recurrent Neural Network (PRNN) that operates in on-line fashion. The linear
subsection is a linear adaptive filter. In this chapter, the algorithm of nonlinear adaptive
prediction is thoroughly discussed; and the process of choosing adequate parameters of a

nonlinear predictor is carefully analyzed.

The dynamical behavior of the predictor is demonstrated for the case of a speech
signal; for this application it is shown that the nonlinear adaptive predictor outperforms
the traditional linear adaptive scheme in a significant way. Notably , the application of

PRNN-based prediction for the adaptive prediction of sea clutter is also examined.

Chapter 6 and 7 present the research of the low bit Adaptive Differential Pulse-Code
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Modulation of speech signals. The nonlinear adaptive predictor designed in Chapter 4, is
introduced to the real-time speech coding algorithm. A PRNN-based robust adaptive filter
and a new 4-, 8-, and 16-level adaptive quantizer are developed. To round off the chapter,

a nonlinear Adaptive Differential Pulse-Code Modulation algorithm is developed.

In Chapter 7, a series of subjective tests with several speech signals (a male speech, a
female speech and a four-person conversation) are taken to evaluate this nonlinear ADPCM
algorithm. The test results demonstrate that nonlinear adaptive predictive coding provides
a promising approach for the low bit-rate adaptive differential pulse coding modulation of
speech signals in high-quality communication. This is indeed a remarkable achievement,

made possible by the use of neural networks to the real-time predictive coding,

Finally, Chapter 8 concludes by summarizing results and important conclusions

arising from the research work, and highlights the significant contributions.



Chapter 2

Mathematical Model of Human
Speech Generation

As indicated in the first chapter, the focus in the thesis is on the adaptive prediction of
nonstationary signals. A speech signal is a typical nonstationary signal. Before proceeding
it, a review of the basic model of generating a speech signal is in order. It is important
to discuss the mechanics of producing speech in human beings, and show the complex
physiological process of generating a speech. A more general view of mathematical models
of speech production is given by considering a linear AR model and nonlinear dynamical

models.

2.1 The Process of Speech Production in Human Beings

The human vocal mechanism is shown in Fig. 2.1 [1]. Air enters the lungs via the normal
breathing process. As air is expelled from the lungs through the frachea (windpipe), the
tensed vocal cords within the larynz are caused to vibrate (in the mode of a relation os-
cillator) by the air flow. The air flow is chopped into a quasi-periodic pulse which is then

modulated in frequency by passing through the pharynz (throat cavity), the mouth cavity

8
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Figure 2.1: The human vocal mechanism.

, and possibly the nasal cavity. Depending on the positions of the various articulations (i.c.

jaw tongue, velum, lips, mouth), different sounds are produced.

A simplified representation of the complete physiological mechanism for creating
speech is shown in Fig. 2.2 [1]. The lungs and the associated muscles act as the source
of air for exciting the vocal mechanism. The muscle force pushes air out of the lungs and
through the bronchi and trachea. When the vocal cords are tensed, the air flow causes them
to vibrate, producing so-called voiced speech sounds. When the vocal cords are relaxed, in
order to produce a sound, the air flow either must pass through a construction in the vocal
tract and thereby become turbulent, producing so-called unveoiced sounds, or it can build
up pressure behind a point of total closure within the vocal tract, and when the closure is

opened, the pressure is suddenly and abruptly released, causing a brief transient sound.

Speech is produced as a sequence of sounds. Hence the state of the vocal cords, as

weil as the positions, shape, and sizes of the various articulators, change over time to reflect
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Figure 2.2: Schematic view of the human vocal mechanism.
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Figure 2.3: Fundamental process of speech production.

the sound being produced.

In summary, a speech waveform is produced by three actions: sound source genera-

tion, articulation by sound propagation through the vocal tract, and sound radiation from

lips or nostrils, as shown in Fig. 2.3

2.2 Mathematical Model of the Speech-Production Process

Scientists and engineers want to build a model to describe the process of speech production.

The mechanism of speech-production shows that the model should be a physiclogical one.
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But, in the case of artificial speech processing, the physiological model is too complex.

Building an ideal mathematical model of the speech-production is an active research

area. There should be two important objectives in mind.

Initially, the model must realistically represent mutual dependency between source
generation and articulation action. A source-generating mechanism must be developed as
an aerodynamic model of vocal-cord vibration and airflow turbulence. One example is a
two-mass model of vocal-cord vibration to replace the present simple pulse train. Loading
action of the vocal tract upon vocal-cord vibration, termination action of the vocal tract
by the voice source, and format bandwidth widening of a consonant caused by an increase
in loss of turbulence generation are all complex phenomena that should be treated and

naturally in the nonlinear model.

It is essential to realistically account for losses due to speech wave propagation in
the vocal tract. These includes heat loss, air resistance loss, leakage loss from the vocal
tract wall {which is not an ideal hard wall}, and turbulence loss. The loss must be described
as a function of frequency and a nonlinear function of sound intensity. Bandwidth should

be realized naturally and realistically by this loss.

2.2.1 Linear Model

A linear independent equivalent-circuit model of the speech-production was suggested by
Atal in 1970s [61, 62]. The model is shown in Fig. 2.4(a). Two kinds of exciting sources
have already been mentioned: the vocal tract to a periodic excitation for voiced speech,

and a noise-like excitation for unvoiced speech.

Assume that the source spectrum is ((w), the articulation is described by /f{w),
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Figure 2.4: Model for linear speech production mechanisms.
and the radiation spectrum is R(w). Then, the output speech waveform spectrum §(w) is

S(w) = Gw)H(w)R(w) (2.1)

In order to simplify the model, Atal [61] assumed the speech signal to be stationary.
Under this assumption, the articulation by vocal-tract shape was simulated by all-pole or
pole-zero time-unvarying linear filters, which has a transfer function H{z)1.

1

() = 1— 3y akz™*

(2.2)

or
1

Hw)= 1 - Y Fa; aredvk

(2.3)

Suppose coefficients {a} are time invariant and R(w) is equal to 1. According to
the theory of stationary signal processes and models, the speech wave s(n) is assumed to

satisfy a difference equation of the form

'In theory, an all-pole model of the vocal tract can approximate the effect of antiresonance on the speech
wave in the [requency range of interest to any desired accuracy [55)
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s(n) = E ars(n — k) + u(n) + e(n) (2.4)

k=1

where u(n) is the input excitation to the system and e(n) represents the modeling error in
considering the speech generation process as the output of an all-pole system excited by
a simplified source. The predictor coefficients {ax} account for the filtering action of the

vocal tract, the radiation, and the glottal flow, and p is the number of poles.

Using this mathematical model, the representation for the speech signal is illustrated
in Fig. 2.4(b). The results based on speech synthesis experiment indicate that, in most cases,

a value of p equal to 12 is adequate at a sampling frequency of 8 ~ 10 kHz.

2.2.2 Nonlinear Model

Although the linear model of the speech production is widely used, there is a basic question
regarding the assumption of this model. Is the speech signal a nonstationary signal? If not,

is the linear all-pole model an exact model?

The description of Sec. 2.1 presents that speech generation as a complex physiological
process. The air flow, which is controlled by the movement of muscles, may not be described

simply as a delta pulse. As well, the position of various articulators is indeed time-variani.

In recent years, many experiments have discovered the following facts:

¢ The voiced and invoiced signals do not correspond to the single impulse and pure
white random noise as sources of excitation respectively. For different voices, the
period and amplitude of the impulse signal should be different. Speech signals, in
common with many of the physical signals encountered in practice, do indeed exhibit

two distinct characteristics: nonlinearity and nonstationary.

o The all-pole or poia-zero model of an articulation is only suitable for short-time signals.
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In fact, the speech signal is a long-time and continuous time series. There is a serious

error in using a linear filtering model to describe a continuous speech signal.

The more efficient approach developed to deal with the statistical variations of
speech (in both the frequency and temporal domains) consists of modeling the constituent
speech units by Hidden Markov Models (HMMs), which was presented by Baker [3] in 1975.
Baker indicated that a speech signal was a non-stationary process, but it was assumed to
be “quasi-stationary”. That is, it is assumed that over a short period of time the statistics
of the speech do not differ from sample to sample. For example, an utterance is modeled
as a succession of discrete stationary states, with instantaneous transitions between these

states.

Essentially, a HMM is a stochastic finite state machine with a stochastic output
process attached to each state to describe the probability of occurrence of some feature
vectors. Thus there are two concurrent stochastic processes: the sequence of HMM states
modeling the temporal structure of speech; and a set of state output processes modeling the
(locally) stationary character of the speech signal. The HMM is called “hidden” because

the sequence of states is not directly observable, but affects the observed sequence of events.

Under the “quasi-stationary” assumption, a preprocessor can extract statistically
meaningful acoustic parameters (feature vectors) at regular intervals from a sampled speech
waveform. Typically the original speech is sampled at 8 kHz to 16 kHz. The features
are commonly extracted once per 8-16 millisecond, and are calculated from a 20 to 30

millisecond analysis window.

Recent progress in the understanding of nonlinear physical system opens an alter-

native route to the speech modeling. Tishby [4, 5] presented the mathematical model of
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speech-production as a stochastical dynamical model. The speech signal is supposed to
be the output of this complex dynamical system. A complete description of this system
requires the solution of the nonlinear fluid mechanical partial differential equations with the

highly varying boundary conditions of the vocal cords and the vocal tract cavities.

Nonlinear dynamical systems exhibit a dramatically richer behavior than linear sys-
tems, making it possible to model features of the signal that are totally absent in the
traditional linear approach. Obtaining the complete time dependent solution of these equa-
tions is beyond the capability of present computational resources. As a result, a considerable
reduction in the complexity of the dynamical system is required. The all-pole linear model
and the HMM model of speech-production are two kinds of reduced models for the nonlinear

dynamical system.

Moreover, the discovery of the universality of many nonlincar dynamical systems
suggests a reduced dynamical description restricted to a locally low dimensional {correla-
tion dimension) manifold, known as the attractor of the dynamics, on which a simple set
of nonlinear maps can replace the high dimensional complex description of the complex
dynamical system [63]. Tishby takes a series of experiments to calculate the corrclation di-
mension of a speech signal. Carrying out the experiment for 20 segments of a voiced speech
systematically reveals a correlation dimension between 3 and 5, across several speakers,
independent of the uttered vowel. Similar measurements for an unveiced speech result with

higher correlation dimensions (5 ~ 8).

It should be emphasized that the low correlation dimension in itself is not a sufficient
indication for a true deterministic underlying dynamics, or a dynamical system. Such a
conclusion must be verified through the construction of an effective vector field, an accurate

predictor of signals.

In general, we often face the problem of reconstructing the dynamical equation or
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model, which describes the physical dynamical system, fromayp*  .tion of a given empirical
signal such as a speech signal. This is an “inverse probiem~ in dynamical systems which
is equivalent to the problem of nonlinear signal prediction. Designing a good dynamical
predictor for a speech signal may thus be viewed as equivalent to building a dynamical

physical model of the speech production.

2.3 Summary

In this chapter, the model of human speech generation is reviewed. First, a brief discus-
. sion of the human speech production process from the point of view of bioclogical science
is presented. The discussion clarifies that speech signals do indeed exhibit two distinct

characteristics: nonlinearity and nonstationary.

Then, the chapter focuses on artificially linear and nonlinear mathematical models of
speech-production. Recent research suggests that the model of speech production may be a
time-varying dynamical system. The all-pole model is an approximation of the complex dy-
ramical model under the assumption that speech is a stationary signal.The Hidden Markov
Model is the approximation under another assumption—that speech is a “quasi-stationary”

signal.

It is not easy to describe the dynamical model by solving some differential equa-
tions with highly varying boundary conditions. A better way lies in designing a dynamical

predictor which has the same ability to model the speech signal.

The analysis of Sec. 2.1 presents the human understanding of speech through the
use of biological neural networks. Therefore, if an Artificial Neural Network is used to be a
dynamical predictor, the result of modeling the speech signal should be better than linear

or nonlinear engineering systems that are less analogous to biclogy.



Chapter 3

Neural Networks for Adaptive

Signal Processing

Much of the current knowledge of adaptive signal processing is built around linear adaptive
filters [7]. Linear adaptive filters are limited in their capacity to extract information from
input data [73, 8]. This limitation is exemplified by the fact that they respond to second-
order statistics of the input data, but no higher! It restricts the scope of their practical

applications.

The significant points to note from much theoretical analysis and experiment are:

o Conventional adaptive filtering algorithms are usually phase blind. That is, they yield
minimum phase solutions in the sense that they do not respond to phase information
contained in the input signal in excess of a minimum phased amplitude characteristic.
This points to a major limitation of conventional adaptive filtering algorithins which

have their design based on second order statistics.

¢ To exploit the full information content of the input signal, nonlinear signal processing
techniques need to be used. To be of practical value, the input signal may have a

non-Gaussian distribution.

17
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Figure 3.5: A model of an artificial neuron.

3.1 Neural Network

A neural network [9] is a massively distributed processor that has a natural propensity for
storing experiential knowledge and making it available for use. It resembles the brain in two

respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the

knowledge.

A neural network is also a machine that is designed to model the way in which the
brain performs a particular task or function of interest [40]. It involves the use of some form
of nonlinearity, which makes it possible to effectively extract more information content from

environment for processing the particular task [39].
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3.1.1 Models of an Artificial Neuron

The basic processor is called a neuron. Fig. 3.5 shows a simple construction of an artificial
neuron (neuron k}. It consists of a linear combiner followed by an activation functioi.
The linear combiner itself consists of a set of synaptic weights {w} connected to respective
input terminals {s}, and whose weighted outputs are combined in a summing junction. An
external bias by plus the linear combined output constitute the net input of the activation

function f(-).

]
e = f(Q_ wijs; + bi) (3.5)

3=l
Four basic types of artificial neurons could be distinguished, depending on the exact

description of the activation function:

o Linear model: in this model the nonlinear unit is replaced by a direct connection,
with the result being that the output of the neuron is a weighted sum of its inputs

Fig. 3.6(a).

s McCullough- Pitts model: in the second model of a neuron the nonlinear unit is char-

acterized by a threshold function as depicted in Fig. 3.6(b).

¢ Piece-wise linear model: the input-output characteristic of the nonlincar unit for this

model of a neuron is described in Fig. 3.6(c).

¢ Sigmoidal model: this last model of a neuron unit is by far the most widely used
in practice. It is referred to as such because the input-output characteristic of the
nonlinear unit is S-shaped. Let this characteristic be denoted by the nonlinear function
F(-). A highly popular form of sigmoidal noulinearity is defined by

P
1
b 3.6
Ye = f(,'E 1: WhjS; k) 1 + exp(— E?..l Wkj8j + by ) (46)
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Figure 3.6: Four nonlinear functions.

Fig. 3.6(d) shows a depiction of the sigmoidal nonlinearity.

3.1.2 Classification of Neural Networks

Interest in artificial neural networks may be traced back to the pioneering work of Mec-
Cullough and Pitts {10]. During the past eight years or so, interest in the theory and
design of artificial neural networks and their applications has intensified. Indeed, there are
now a number of journals and many international conferences devoted exclusively to neural

networks.
Depending on how the desired response (target signal) for the learning process is

provided, three basic classes of neural networks are identified.

¢ Supervised learning: in this form of learning, an external teacher is built into the

design of the neural network for the purpose of providing the desired response. The
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back-error propagation algorithm is an example of supervised learning algorithms.

¢ Reinforcement learning: in the second form of learning, a critic is built into the design
of the neural network [18]. The critic helps the neural network to learn about its
environment through a punish and reward mechanism. The network is rewarded for

making a correct decision and punished for making a wrong decision.

o Self-organized learning; in this final form of learning, the neural network has no
teacher. Instead, the network is designed in such a way that it can learn about
its environment (i.e discover new classes automatically) without external supervision.
To do this, the network usually requires a greater volume of data than a supervised

one.

3.2 A New Tool for Adaptive Signal Processing

3.2.1 Nonlinearity and Learning Ability

Neural networks offer valuable characteristics that are, elsewhere, unavailable together [17).

For example:

¢ A neuron is basically a nonlinear device. Consequently, a neural network, made up of
an interconnection of neurons, is itself nonlinear. Nonlinearity is a highly important
property which makes it possible for the network to account for the nonlinear behavior
of the pnysical phenomenon responsible for generating the input data. That is, neural
networks can solve some complex problems more accurately than lincar techniques
do, particularly if the underlying physical mechanism resporsible for the generation

of an input signal is inherently nonlinear.
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¢ A neural network can learn from the training examples representative of the working
environment. The network is presented an example picked at random from the en-
vironment, and the synaptic weights of the network are modified so as to minimize
the difference between the desired response and the actual response of the network
produced by the input signal in accordance with an appropriate statistical criterion.
Notably, the neural network can infer subtle, unknown relationships from data. This

characteristic is useful because gathering data does not require explaining it.

o The neural networks have the ability to generalize, The generalization refers to the
neural network producing reasonable outputs for inputs not encountered during learn-
ing. In this ways, neural networks can respond correctly to patterns that are only
broadly similar to the original training patterns. Generalization is useful because

real-world data is noisy, distorted, and often incomplete.

¢ A neural network can provide a universal approximation. In other words, after learn-
ing examples, the network can approximate an input-output continuous mapping to

any desired accuracy.

These four information-processing capabilities make it possible for neural networks
to solve complex problems that are currently intractable. For speech signal processing,

there is a special reason for using neural networks:

Humans understand a speech through the use of biological neural networks; therefore
arlificial neural networks, which are models of the speech generation, should be able to
approzimale to the original processes betler than engineering systems that are less analogous

to biology [21].
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Figure 3.7: Block diagram of the adaptive system of a neuron level.

3.2.2 Self-Organized Adaptation

Neural networks have a built-in capability to adapt their synaptic weights to changes in the
surrounding environment. When a neural network operates in a stationary environment,
the essential statistic of the environment can, in theory, be learned by the network under the
supervision of a teacher. In particular, the synaptic weights of the network can be computed
by having the network undergo a training session with a sct of data that is representative
of the environment. Once the training processes is completed, the synaptic weights of the
network should capture the underlying statistical structure of the environment, which would
justify “freezing” their value thereafter. In particular, a neural network trained to operate
in a specific environment can be easily retrained to deal with minor changes in the operating

environment conditions.

Frequently, the environment of interest is nonstationary. A ncural network can be
designed to adapt its behavior to the temporal structure of the incoming signals in its

behavior space [9]. This ability of a neural network is called self-organized adaplation.
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The discussion of self-organized adaptation follows Mead [67). To be specific, con-
sider the elementary level of a multi-level processing system, the essential structure of which
is described by the block diagram shown in Figure 3.7. The system is composed of many
self-organized levels. In this figure, the box labeled “model” is a predictor, although per-
haps a crude one, which is equipped with a2 model of the world. The predictor is given an
input over time, and it is designed to compute what is likely to happen next, just before the
actual input sample arrives. Then, when that particular input sample becomes available, it
is compared to the prediction made by the network. If the two sample values are exactly
the same, no new information is produced because the system already knows what is about
to happen. In such a situation, the result is what is actually expected, and therefore no
information is sent up to the next level of processing. But when something unexpected
occurs, there is a difference or innovation, which is sent to the next level for interpretation.
If this operation is repeated at each level of the system, the information will progressively
be of higher quality, because one level processes only the information that could not be
predicted at levels lower than the one of interest. From the point of view of a given level of

the system, all lower levels may be viewed as preprocessing stages.

Learning at each level of the systemn is provided by the adaptation feedback from the
comparator output to the model. If the model is making predictions that are systematically
different from what actually occurs in the outside world, the ongoing corrections based
on the individual differences will cause the model to learn what actually happens. It is
only those events that are truly random, or that canrot be predicted at a particular level
and therefore appear random, that will average out in an ensemble sense. The system
parameters thus will undergo a local random walk; however they will be centered on the

average of what the outside world provides as input.

The most important property of this kind of system is that the same mechanism

that adapts out errors and mismatches in its individual components also enables the system
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Figure 3.8: A recurrent neural network.

to build its own model of the outside world through continued exposure to information fed
to it by the world. Therefore, the many-level system described herecin is self-organized in

the most profound sense [67].

3.3 Dynamic Recurrent Neural Networks

3.3.1 Nonlinear Dynamics of a Recurrent Neural Network

A recurrent neural network distinguishes itself from a feedforward neural network [9] in that

it has at least one feedback loop. Fig. 3.8 presents a recurrent neural network.

We may distinguish two distinct layers in the network: a concatenated input-output
layer and a processing layer. In the processing layer, there are output and hidden neurons.
The output neurons send out the information y of this neural network. The outputs of all
neurons are fed back to the concatenaied input-output layer. All of the inputs consist of the
external inputs s and feedback signals sy3. The feedback loops involve the use of particular

branches composed of unit-delay elements (denoted by z7'). The I presents the group of
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external input lines; and the U is the group of feedback lines.

The presence of feedback loops has a profound impact on the learning capability of
the network, as well as on its performance. As a result of the delay and feedback, “time” is
added to the network state. Inputs, outputs and the state of recurrent neural networks are
functions of time. Therefore, the network has a nonlinear dynamical behavior by virtue of

the nonlinear nature of the neurons.

In Fig. 3.8, suppose the network has N units, with P external input lines. Let
y(t+ At) denote the N—tuple of outputs of the units in the network at discrete time £+ At
and let s(¢) denote the P—tuple of external input signals applied to the network at time t.
The one-step delay output y(2) is presented as the sp(¢). The s and sy, are concatenated

to form the (P 4+ N)—tuple z(1):

s{t) iflel
z(t) = (3.7
Sﬂ,l(t) ifteU
Let W denote the weight matrix of the network, with a unique weight between every pair of
units and also from each input line to each unit. By adopting the indexing convention just

described, all the weights are incorporated in their single N x (P 4+ N) matrix. To arrange

each unit to have a bias weight, simply include one input which always has the value of +1.

To suppose that the network consists entirely of semilinear units, let

() = Z Wi (2)zi{1) (3.8)

leUur

denote the net input the &** unit at time ¢, with its output being
ys(t + At) = dr(vi(t)) (3.9)

where ¢y is an activation function. It is important to note, however, that as indicated in
Eq. 3.9, the external input vector s(t) at time point ¢ does not infiuence the output of any

neuron in the network until time ¢t + Af. The Af is the processing time of a network.
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The recurrent connections, which result in important capabilities not found in feed-
forward networks, include both attractor dynamics and the ability to store information for
later use. Of particular interest is their ability to deal with time-varying input or output

through their own natural temporal operation.

Eqgs. 3.8 and 3.9 describe the entire dynamics of the recurrent neural network. The
general property making such networks interesting and potentially useful is that they man-
ifest highly nonlinear dynamical behavior. One such type of dynamical behavior that has
received much attention is probably that of greater importance both biologically and from

an engineering viewpoint are time-varying behaviors.

The recurrent nzural network can provide another important characteristic. Funa-
hashi {26] proves that any finite time trajectory of a given n-dimensional dynamical system
can be approximately realized by the internal state of the output units of a continuous time
recurrent neural network with n output units, some hidden units, and an appropriate initial

condition. Funahashi’s theorem of approximation is:

Let #(:) be a strictly increasing C* —sigmoidal function such that ¢(R) = (0,1)
(where R is an Euclidean space), and g: I = [0,7] — (0, 1)" be a continnous
curve, where 0 < T < oco. Then, for an arbitrary ¢ > 0, there exist a recurrent

neural network with n, output units and n hidden units such that
ntlealxlg(t) -yl <e (3.10)

where y(t) = [11(), ..., ¥, (2)]7 is the output of the recurrent network with the

sigmoid output function ¢ of every neuron.

The recurrent network, which has the nonlinear dynamical behavior, is suitable for
spatio-temporal information processing. Specifically, the character of the approximation

of dynamical system gives the possibility of on-line approximating a time trajectory using
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a recurrent network. It means that a recurrent neural network may be used to model a
nonlinear dynamical system. Jerome has shown that the recurrent neural network is a
special case of nonlinear auloregressive moving average model (NARAM) [34]. This being

the case, recurrent networks are well-suited for time series analysis.

3.3.2 Real-Time Temporal Supervised Learning Algorithm

In 1989, Williams and Zipser [47] proposed a new learning algorithm of recurrent neural net-
works in the case of discrete time systems, which enjoys the generality of the backpropagation-
though-time approach while not suffering from its growing memory requirement in arbitrar-

ily long training sequences.

Williams’s algorithm is designed for training the network described in Fig. 3.8, in a
“temporal supervised learning” task, meaning that certain of the units’ output values are

to match specified target values at specified times.

Suppose that n = ¢t and At = 1, and rewrite Eq. 3.7, 3.8 and 3.9 as

s(n) iflel
zi(n) = (3.11)
sp(n) ifleU
and
vn) = Z Wii(n)z(n) (3.12)
telulf

denote the net input the &** unit at the n** time point, with its output at the next time

step being
yk(n + 1) = di{wi(n)) (3.13)

where ¢ is an activation function.

Let di(n) denote the desired response of neuron k at time n. Let y denote the

set of neurons that are chosen to act as “visible” units in that they provide externally
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reachable output; the remaining neurons of the processing layer are hidden. Then define a
time-varying N — by — 1 error vector e(n) whose kth element is by
di(m) — ye(n) Mk € X

ex(n) = (3.14)
0 otherwise

Define the instantaneous sum of squared error at time n as

J(n) = % S ew(n)]? (3.15)

kex
The objective is to minimize a cost function, obtained by summing J{n} over all time n;

that is

Jiotat = Z J(n) (3.16)

To accomplish this objective the method of steepest descent may be used, which

requires knowledge of the gradient matrix, written as

_ J1otal
VWJtatul = oW

- _ aJ(n)
= LW

= Z Vwd(n)

where wJ(n) is the gradient of J{n) with respect to the weight matrix W. llowever, in
order to develop a learning algorithin that can be used to train the recurrent network in
real time, an instantaneous estimate of the gradient must be used, namely, wJ(n}, which

results in an approximation to the method of steepest descent.

For the case of a particular weight w;;(n), the incremental change Aw;;(n) made at

time n is defined as follows:

dJ(n)

Bt = g0

(3.17)

and 7 is a fixed positive learning rate.
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We note that

aJ(n) Z (n) Oyr(n)

3.18
" Gui(n) guij(n) (318)
The problem is how to derive the % Differentiate Eq. 3.12, yielding
du(n) 32;
= + bikzi(n)] (3.19)
dw;j(n) ‘EZU w;; ’
By using the chain rule for differentiation,
dyr(n +1) due(n)
wi;(n) ¢ (v(n)) dw;;(n) (3.20)
and using Eq. 3.11
0 otherwise
3z (n) _ (3.21)
dwij(n) el ifleU
the result is
dyr(n + 1) dyx(n)
———— = ¢.(v(n wi(n 4 8ipz:(n 3.22
oty = AT wadm) g + s o) (3:22)

where 6;; denotes the Kronecker delta equal to 1 when ¢ = k and zero otherwise.

It is natural to assume that the initial state of the network at time n = 0, say, has

no functional dependence on the weights; the assumption implies that

dy.(0)

B (0) =10 (3.23)

These equations hold forall k€ x,t € U,and je U U .

We may now create a dynamical system described by a triple indexed set of variable
{P.L,} forall ke x,i€ U,and j € UUI, where

_ Ou(n)

pi(n) = By () (3.24)

For every time step n and all appropriate 1, 7, and &, the dynamics of the sysiem so

defined are governed by

pi(n+ 1) = g (ve(m)[D wei(n)pi(n) + bixzi(n)] (3.25)
e
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with initial conditions
k
pi;(0)=0 (3.26)

In the case when each unit in the network uses a logistic squashing function (a kind

of sigmoidal model), the derivative ¢, (-) is given by

Su(v(n)) = y(n + D[1 = ye(n +1)] (3.27)
in the calculation.
Finally, we write
Lawii(n) = 7Y ex(n)p(n) (3.28)
kex

and so update the weight w;; in accordance with

wii(n + 1) = wij(n) + Awj{n) (3.29)

The use of the instantaneous gradient ZwJ{n) means that the real-time recurrent
learning algorithm described here deviates from a non-real-time one based on the true
gradient ZwJiorer. While the real-time recurrent learning algorithm is not guaranteed to
follow the precise negative gradient of the total error function Jig (W) with respect to the
weight matrix W, the practical differences between the real-time and non-real-time versions
are often slight; indeed, these two versions become more nearly identical as the learning-rate
parameter 7 is reduced. In general, we use the 5 small enough to make the time scale of

the weight changes much smaller than the time scale of the network operation.

Learning algorithms which employ the steepest descent method for the modification
of recurrent network weights have been proposed by Pearlimutter [30], Pinda [23] and Sato
[31] for continuous time systems. The complex real-time recurrent learning algorithm was

deduced by Kechriotis {35] in 1993.
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3.3.3 Two Problems

As the recurrent neural networks are used for signal processing, there are two problems to

be considered:

e The recurrent neural network is a nonlinear dynamical system. The “stability” of
system should be emphasized. Specifically, the feedback loops may cause the insta-
bility of the system. According to Atiya [29], the necessary condition for a recurrent
neural network of any kind to converge to a unique fixed-point attractor is to satisfy

the condition
1
(maz|¢'])?

where ¢ is the derivative of the nonlinear activation function with respect to its

IWI? < (3.30)

argument, and ||W)|| is the Euclidean norm of the full synaptic weight matrix of the

network. The latter quantity is defined by

Wl = (3 wi)'? (3.31)

where w;; denoted the synaptic weight of neuron i connected to neuron j. In Eq. 3.30
it is assumed that all the neurons use the same kind of activation function, which is

the most common case encountered in practice.

In general, if more neurons are used in a recurrent neural network, the ||W]] is larger,

which make it more difficult to satisfy the stability criterion of Eq. 3.30.

¢ The computational requirements of the real-time recurrent learning algorithm arise
from the need to store and update all the pf‘j values. In the general case of a fully
interconnected network with a total of N neurons and P external input connections,
there are a total of N{N? 4 N P) values of the dynamic variable pf‘J to be considered
at any time n. The triple indexed set of values {pf‘j(n)} may be viewed as an (N? +

N P) - by — N matrix, each of whose rows correspond to a weight and each of whose
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Figure 3.9: (2) The process of Williams’s algorithm. (b} The process of Thierry’s algorithm.

columns correspond to a neuron in the network. So that, when the network is fully
connected and all weights are adaptable, the algorithm has space complexity in O(N %)

and average time complexity in O(N1) at each time point.

3.3.4 Improved Version of the Real-Time Temporal Supervised Algo-

rithm

In 1993, Thierry {32] proposed a method for improving the Williams’s algorithm; the idea
behind the method Thierry proposed being that in some cases knowledge about the time
dependencies of input and output is available. What he wanted to show is that using this as
an advanced temporal knowledge can speed up the learning algorithin. The fact that some
input parameters have an effect on the output for T time units, and the fact the change of
the weights during the learning process is dependent on what happens at the heginning of

that process scems contradictory. For this reason, Thierry altered the real-time supervised
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learning algorithm in such a way that the weights change at the time when n is mostly
dependent on whz* happened less than T times ago. In fact, Thierry re-initialized real-time
supervised learning algorithms after a certain number of cycles. He calls this number of

cycles 7 (7 < T, and maltiples of a sampling cycle)

Fig. 3.9, (2) shows the process of Williams’s algorithm. The impact p{-‘j is set to
zero at the beginning of the learning phase and is updated at each sampling cycle. W is
also initialized at the beginning of the learning phase and updated at each cycle. Fig. 3.9
(b) shows the process of Thierry’s algorithm, after 7 cycles the impacts pf‘j are set to zero.
It is obvious that one obtains the same results with a 7-value of oo as with the original

algorithm of Williams.

Thierry demonstrates that the new method can speed up the learning phase. The
proposed change, based on a re-initialization of the Williams’s algorithm, causes the weight
update to follow more precisely the true gradient of total error. This 7—value is dependent
on the problem and on the network size. Thierry has shown that the results of a learning
session are less influenced by the starting values of the weights if the proposed algorithm is
used. The networks trained with the proposed algorithm are less likely to get stuck in local

minimal, so it is possible to use higher learning rates and speech up the training.
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Figure 3.10: (a) RC model of an artificial neuron. (b) RC medel of a filter with impulse
response h(t).

3.4 New Versions of Recurrent Neural Network and Learn-

ing Algorithms
3.4.1 Spatio-Temporal Recurrent Neural Network and its Algorithm

Spatio-temporal model of a neuron

To extend the usefulness of the model of a neuren in Fig. 3.5 for temporal processing, a
general method of representing temporal behavior is to introduce a lincar, time-invariant

filter, as shown in Fig. 3.10. The model is called the spatio-temporal model of & neuron,

The spatio-temporal model may be described with the following two equations:

du(t At 1 <& q e
Cvdk—t() + _v%(e_) = 7 gwklsl(t) (3.32)
$r(vi(t}) 1 (3.33)

1 4 exp(—ve(t) + be)
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These equations can be written in discrete form.

vk(n + 1) (1 = 1/7)ox(n) + (1/7) 3 wrsi(n) (3.34)
=1

1
T+ ezp(—vs(m) + b8

Gr(vi(n)) (3.35)
where 7 = RC.

In introducing the spatio-temporal model to the recurrent neural network presented

in Fig. 3.8, the spatio-temporal recurrent neural network is obtained.

Vectors s and sy are concatenated to form the (P + N)—tuple z(n).

si(n) iflel
z(n) = (3.36)
s_,rb,(n) ifleU

Let

ve(n+1) = (1= 1/7)vg(n) + (1/7) Z wiizi(n) (3.37)
leUuf

denote the net input on the A" unit at time n, with its output at the next time step being

ye(n + 1) = ¢{vi(n)) (3.38)

Real-time learning algorithm

The real-time learning algorithm is similar to the algorithm of recurrent neural network.

The difference between them is caused by the time constant 7.

Update the weight w;;{(n) in accordance with
wij(n + 1) = wij(n) + Swyj(n) (3.39)

where

Auyi(n) = 1)2 e;,.(n.)pf-‘j(n) (3.40)
kex
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Figure 3.11: Partial recurrent neural network.

For every time step n and all appropriate ¢, j, and k, the dynamics of the system so

defined are governed by

ph(n+2) = (1= 1/m)pfj(n + 1) + d(wa(n)) (/7)Y wia(m)pfi(n) + &isz5(n)] - (341)

el
with initial conditions
k — 0 oA«
p;(0) = 0 (3.42)
Pi(1) = @O wr(0)pi(0) + bixz; (0)) (3.43)

ley

In the case when each unit in the network uses a logistic squashing lunction (a kind

of sigmoidal model), we use
Su(v(n)) = p(n + V{1 - ye(n + 1)) (3.44)

The principle of the algorithm is the same as the real-time supervisor learning
algorithm. But the update of pf-‘j(n) is related to both one-step delay ;)f-‘}-(n—- 1) and two-step
delay pfj(n — 2). Rewrite Eq. 3.41 as

mpf(n+2) = (r - Upfi(n + 1) + bl o)D" wrr(n)pfi(n) + 6;52;(n)] (3.45)
leU

Suppose T — 0, Eq. 3.45 is equal to Eq. 3.25. In fact, the linear time-invariant filter

RC adds a momentum item on the update of p:-‘j(n) and w;j(n).
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3.4.2 Partially Recurrent Network

Now, some changes on recurrent neural network structure are considered. In 1991, Robinson
and Faillside [28] proposed a partially recurrent neural network. This structure, shown on

Fig. 3.11, may be viewed as a simplified version of the recurrent network.

The partially recurrent network consists of an input layer of source and feedback
nodes, and an output layer of computation nodes. Moreover, the computation nodes are
split into two groups: K output neurons, and L context neurons. The output neurons
produce the overall output vector y(n + 1). The context neurons produce the feedback
vector r(n) after a delay of one time unit applied to each of its elements. The network
operates by concatenating the current external input vector s(n) and the feedback vector

r(n) as follows:

[s(n), s55(n)]”

= [s(n), r(n)]¥ (3.46)

z(n)

where sg(n) = —1 or +1 is included in s(n) for the provision of a threshold applied to each
neuron in the network. The concatenated input vector z(n) is multiplied by a matrix of

synaptic weights, W{n), to yield an internal activity vector defined at time n as

V(H) = [Vo(n)a vc(n)]T

W(n)z(n) (3.47)

il

Let ¢(-) denote the activation function, assumed to be the same for all the neurons in the

network. Accordingly, the output vector, computed at time n + 1, is defined by

y(n+ 1) = ¢(vo(n)) (3.48)

Similarly, the feedback vector (before delay) is defined by

r(n+1) = @(_.yc(n)) (3.49)
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Finally, the output vector y(n + 1) is compared with a desired response vector
d(n + 1) in accordance with a cost function of interest. In the original description of
the partial recurrent network presented in Robinson and Fallside, the network outputs are
treated as probabilities. Specifically, the relative entropy is used to define the cost function
as follows:
K

Hyy(n+1) = Z(dk(n + Dlogyx(n + 1)
k=1

~[(1 ~ daln + 1))log(1 — yi(n + 1)) (3.50)
where yr(n + 1) is the kth element of the output vector y(n + i}, and di(n + 1) is the

corresponding value of the desired response. The objective is to adapt the synaptic weight

matrix W{(n) so as to minimize the relative entropy of Eq. 3.50.

Robinson and Fallside describe the application of the partial recurrent network as
the basis of speaker-independent phoneme and word recognition system. Leerking and Jabri
[33] use the network as an adaptive world model to provide an evolving state for temporal

difference learning applied to continuous speech recognition.

3.5 Summary

This chapter describes the principle of neural networks for the adaptive signal processing.
First, the basic structures and learning processes of neural networks are introduced. The
sigmoidal model of an artificial neuron is used as the element model of following nenral
networks. Then, the nonlinearity and learning ability of neural networks are discussed,
Because of two abilities, neural networks are able to outperform conventional adaptive
filters. The self-organized adaptation of a neural network is the basis of buiiding many-level

neural network system, which has stronger learning and approximation ability.

Particularly, we have made a thorough investigation of the dynamical recurrent
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neural network and its real-time training algorithm. Recurrent neural networks exhibit
highly nonlinear dynamical behavior. They have the ability to deal with time-varying input
or output through their own natural temporal operation. The real-time learning algorithm
gives the recurrent neural network an on-line (in-situ) learning fashion: So that, for a
nonstationary signal, a recurrent neural network may learn to adapt to statistical variation

of the incoming time series while performing its filtering role at the same time.

Unfortunately, the number of neurons needed for a recurrent neural network as a
adaptive predictor is often so large that the cost of computation is too excessive. Also, it
may be hard to control the stability of a larger recurrent neural network. These deficiencies

block application of recurrent neural network on real-time signal processing.

We have also introduced an improved version of real-time temporal supervised algo-
rithm, and new versions of the recurrent network. These new structures may improve the

characteristics of recurrent neural network.



Chapter 4

Pipelined Recurrent Neural
Network

As mentioned in the last chapter, real-time recurrent neural network can provide on-line
(continuous) learning. A practical limitation of the real-time recurrent network, however is
that its computation complexity increases exponentially with the number of neurons in the
network. In order to develop a learning algorithm that can be used to train the recurrent
network in real time, an instantaneous estimate of the gradient is introduced, which results

in an approximation to the method of steepest descent.

In this chapter, we will begin by developing a Pipelined Recurrent Neural Network
{(PRNN). The design of the pipelined structure follows the important engineering principle
of divide and conquer and biclogical principle of neural network modules. Then, the real-
time algorithm of Pipelined Recurrent Neural Network is derived. The Pipelined Recurrent
Neural Network enhances the computational ability of the conventional recurrent neural

network and overcomes its deficiency.
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Figure 4.12: A pipelined neural network.

4.1 Construction of Pipeuned Recurrent Neural Network

In 1993, a pipelined neural network structure was proposed [38], which is depicted in
Fig. 4.12. This pipelined structure involves a total of M levels of processing. Each level has

a module [44] and a comparator, and a module consists of a recurrent neural network [46].

Figure 4.13 shows the details of Level i . 1n every module, there are N neurons and
a single output neuron. In addition to the p external inputs, there are N feedback inputs.
To accommodate a bias for each neuron, besides the p + N inputs, we include one input
whose value is always +1. N — 1 outputs of each module are fed back to itself input, and

the remaining output is applied to the next module.

In fact, Module i (1 € i < M — 1} is a partially recurrent neural network, described

in Sectior 3.4. In the case of module M, a delayed version of the output is also fed back to
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Figure 4.13: The construction of Level i.

the input. It is an “original” recurrcnt neural network.

All the modules operate similarly in that they all have the same number of external
inputs and feedback nodes. Morcover, they are all designed to have exactly the same weight
matrix. In making this design option, we are influenced by an important neurobilogical
principle of modularity that suggests the repeated use of a modules of prescribed structure

[44].
The activation function of every neuron in each module is a logistic function:

1
U+ capl{—vix{n)}

yik(n+ An) = (vix(n)) = i=1,..,M; k=1,...,N (451

where v; x(n) is the net internal activation of the kth neuron, and Yik is the output of the
k'* neuron of the i** module at the =!* time point. The An is the processing time of a

network.

Let W denote the synaptic weight matrix for each module (N —by — (p+ N + 1))

th

The element wy represents the weight of the connection to the £* neuron node from the
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the I** input unit. The weight matrix W can be written as:

W o= [wy, o, Wiy oo, wh]?
where wy, is a vector defined as

Wi = [Wer, Wh2y* * * s Whip4N41))

This pipelined structure is referred to as a Pipelined Recurrent Neural Netwer

(PRNN).

4.2 Neurobilogical Considerations of PRNIN

This pipelined neural network structure is originated from the principle of self-organized
adaptation described in last Chapter. The {ully neural network is itself built in the form of
multiple-level processing. Every level basically consists of a comparator and a small neural
network. The small neural network is a module, which provides a dynamical sub-model
of the outside world. The multip'e-level structure enhances the learning ability of a fully

network.

According to Van Essen [45], the same principle is also reflected in the design of the

brain, as follows:

o Separate modules are created for different subtasks, permitting the neural architecture

to be optimized for particular types of computation.
e The same module is replicated several times over.

e A coordinated and efficient flow of information is maintained between the medules.

Thus, the design of the pipelined structure follows an important engineering princi-

ple, namely, the principle of divide and conguer
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To solve a complex problern, break it into a set of simpler problems.

All of the three elements of the principle of divide and conquer, viewed in a biological

context, feature clearly in the Pipelined Recurrent Neural Network, as described here;

¢ The PRNN is composed of M separate modules, each of which is designed to perform

a one-step nonlinear prediction on an appropriately delayed version of the input signal

vector.

¢ The modules are identical, each designed as a recurrent neural network with a single
output neuron. The last module in the chain is wired slightly differently from the rest
in that its output is delayed by one time unit and then fed back to its own input,

thereby ensuring that all the modules have the same size of input layer.

o Information flow into and out of the modules proceeds in a synchronized fashion.

4.3 Mathematical Model of PRNN

Suppose that a set of time series consisting of observation samples s(1),8(2),...,8(n) is

given. M input vectors are formed using subsets of this time series:

si{n) = [s(u—1),s(n—2),---,3(1:—;;)]7'

s2(n) = [s(n—2),8(n—3),-,5(n—(p+1))T

sm(n) = [s(n—-M)s(n—(M+1)), -, s(n—(M+p- 1))]7'

At the n** time point, the external input of Module i is the p — by — | veclor

si{n) = [s(n—i),s(n = (4 1)), -, s(n—(i+p- 1" (4.52)
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where p is the prediction order. The M input vectors are sequentially sent to M modules.

The other input is the N — by — 1 “feedback vector”

ri(n) = [ria (), rea(n)y -, min(m)]” (4.53)

At the nt® time point, the outputs of neurons in Module i are denoted as a vector:

vi(n) = [yia(n),- -, vig(n)y e -+, mn ()" (4.54)

where the y; x(n) is the output of neuron k of module i. If the processing time of a network

An is far smaller than the sampling period of the signal s(t), we suppose

yik(n) = yir(n+ An) = ¢(vik(n)) (4.55)
P p+N+1

vik(n) = Z wis(n — (i +1 = 1)) + wppgy + Z Wi - (p+1)(7) (4.56)
=1 {=p+2

For convenience of notation, the vector y;(n) is denoted as follows:

yvi(n) = O(W,si(n),ri(n)) (4.57)
[6(wa,si(n),ri(n)), -+, S(wii si{n), 1i(n)),

o dw, si(n), n(n))) (4.58)

1l

where & denotes a vector and the nonlinear function ¢ represents the activation function of

a neuron.

As mentioned previously, the output of the first neuron y;;(n), which is the real
cutput of Module %, is fed directly to the following comparator and Module 7 — 1. Each

level computes an error signal or innovation defined by

ei(n) = s(n - i+ 1) —yi1{n) (4.59)

where the signal sample s{n — i + 1) is the desired response of Module <.
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Table &1: Summary of the inguts and outpuss of the modules

in the pipelined recurrent neural etwork
Module Modue Module
1 I<i <M M
o) el oh
Exernal ! : :
Inpes :
sop) inepl)) SoMpl))
! [ 1
L 1o Wl
U (@
y U‘n—l] ya[a-l) Wy
Opis| 40 4 W

The feedback inputs of Module i consist of the first neuron’s output of Module i 41
and the one-step delayed output signals of Neuron 2,..., N of Module ¢ fed back to itself.

Thus, the N — by — 1 feedback input vector r;(n) of the i** module is defined as:

ri(n) = [pra(n),ri@)]” (4.60)

[gis1a(n), giz(n = 1), yin(n = )T

where r';(n) denotes the part of the feedback inputs, originating from Module  itself.

The modules operate in a lighly pipelined manner. Table 4-1 presents the relation
of inputs and outputs on each module of PRNN. There are some special assumptions on

the models of Module M and Module 1, that should be noted:

¢ Module M operates as a standard real-time recurrem neural network [46]. The output
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vector yas(n) of this module is fed back to itself input as feedback input vector after 2
delay of one time unit. At the same time, the output signal yas,1(n) is also fed directly
into Module M ~ 1. At the n** time point, the feedback input vector of Module M is
defined as:

rp(n) =ym(n-1) (4.61)

e The outputs of neurons in Module 1 are denoted as

yi(n) = [d(wi1,s1(n),r1{n)), -+, B(Wn, s1(n), 11 (n))]T (4.62)
where
s1(n) = [s(n—1),8(n=2),--,s(n—-p)]¥ (4.63)
rl(n) = [y'z,l(ﬂ), yl,?(n =1),---, vi,N(n - 1)]T (4.64)
WE = [wg, e, wpen4n))T (4.65)

The corresponding desired signal of Module 1 is s(n).

The output of visible(first) ncuron of Module 1 is the overall output of the pipelined

recurrent network y(n) as shown by

y(n) = ma(n) (4.66)

@(w1,s1(n), r1(n))

where wy is a function of the signal sample s(n).

The PRNN differs from the conventional real-time recurrent neural network in that
it is characterized by a nested nonlincarily. Specifically, we may express the functional
dependence of the output y(n) of the network in Figure 4.12 on the external inputs as

follows:

y(n) = ¢(wy,s1(n),ri(n)) (4.67)
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d(w1,s1(n), r' 1(n), $(w1,52(n), r2(n)))
= qb(w;,sl(rz),r',(r:),d)(wl,rg(n),r'g(n),qS(wl,sa(n),r':;(u),
-y @(wiysa(n), yar(n — 1)), )
where r;(n) (i = 1,---,M — 1) is a function of the weight matrix W.
It is also important to note that the desired response needed to perform the con-
tinuous training of the PRNN is in fact derived from the incoming time series itself. Thus,

the nonlinear adaptive predictor described here embodies a self-originated learning process

as described in Section 3.2.2.

4.4 Real-Time Learning of PRNIN

The training process of PRNN aims at finding the optimal weights of the network and the

output signal y(n) with the input signal series {s(n)}.

At the instant n*® time point, according to the analysis of Section 4.3, the output

of the k* neuron (1 <k < N)at Module ¢ is defined by

Gik(n) = ¥(Dix(n))
P p+N+1

ﬁi'k(ﬂ) = Z ‘(.UHS(R - (1 +i-1)) + Wip+1) + Z w;;l‘r""u_(,,_'_l”(n)
i=1 I=p42

s(n—(i+1)) = #i1(n)

n

ei(n)
where §; x(n) denotes the pricr prediction output of the A** neuron during the training

process.

After every module of PRNN finishes its prior prediction calculation, a series of error
signals are obtained e;(n) (I < ¢ < M). An overall cost function for pipelined recurrent

network of Figure 4.12 is thus defined by

M
e(n) =Y A1ed(n) (4.68)
1=1
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where A is an exponential forgetting factor that lies in the range 0 < A < 1. The A1 s,

roughly speaking, a measure of the memory of the pipelined recurrent network.

A gradient estimation algorithm, is used to calculate the AW along the negative of

the gradient Ywe(n) [48):

The change applied to the k/** element in the weight matrix can be written as

JANTIY,

0 i
_"_(QTU—..‘ZA ei{(n))

i=1

_an Ai-le; a;;ﬁ:) (4.69)

where 7 is a fixed learning-rate parameter, |l < k< Nand 1 <1< (p+ N +1).

The real-time supervised learning algorithm, described in Sec. 3.3.2, is used to cal-

culate %%%1 on every neural network module in the pipelined structure. We thus write

dei(n) _ Odialn)
Bww | Juwy (4.70)
dgia(n)

& (Bi1(n)) *
Z W at+p+1}) " qo

where ¢'(;1(n)) is the derivative of the nonlinear function ¢(-) for the output neuron of

dwyy

01‘, a("’) + 6gs(n — i+ (1~ 1))

the it* module at the nt* time point, and r; 4{n) is the feedback input of input Unit a in

the ith module at the n*® time point.

It is hard to calculate ﬂ—'*—h@ directly. The recursive algorithm presented in Chapter

3.3.2, is introduced. Let,

(4.71)

B0 = & (aIY wigosy i (0 = D)4 Srasiln =1 =i+ (= 1)) (472)

a=1
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As the si(n — 1) is equal to the s;4;(n), and modules are sequentially calculated, we

suppose:
P (n = 1) = i (n) (4.73)

where 1 <i< M - 1.

pf_;'“(n -1)= pﬁ{'“(n) (4.74)

This supposition is certified in the adaptive calculation of the PRNN-based prediction,

which is described in Chapter 5.

So Eg. 4.72 is rewritten as

. , N .
pi(n)=¢ (v,—_a(n))[z w1(0+p+1)(1z)p;\,}']'a(11) + Spast(n—1—i4 (1= 1)) (4.75)
o=1

where 1 <i< M -1,

N
2% (n) = ¢ (U0 Wi spsn) (P (0 = 1) + Spast(n = L — i+ (1= 1)) (4.76)

a=l

Asn=0,

pat(0) =0

The notation 8 denotes the Kronecker delta

1 k=1
bt =
0 k£l
and
¢ (Bi1(n)) = ¢l ()[1 — e di1(m))]; (1<i< M)
Sequentially, the supervised training is taken on every module and each ')Jw::

i £ M) is obtained. So the Awyy is calculated from Eq. 4.69.
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Figure 4.14: A simplified model of the pipelined recurrent neural networks.

Finally, the weight matrix is updated as

W — W+ AW (4.77)

The learning process of the PRNN is completely different from the back-propagation
through timc of training a recurrent neural network. For the process of PRNN, the real-time
recurrent learning is taken on each module (small recurrent network). However, the latter
uses a trick to turn an arbitrary recurrent network into an equivalent feed-forward network

(52).

4.5 Simoplified Pipelined Recurrent Neural Networks

The pipelined architecture of Figure 4.12 follows naturally from the self-organized adaptive
system of Figure 3.7. We may reduce ils storage requirement using the simplified model
[9], shown in Figure 4.14. This configuration is the same as that of Figure 4.12, except for

the fact that the feedback input of cach module is different with that of Figure 4.12. Except
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for Module M, in Module i (1 £ i < M —1), all of the feedback inputs are obtained directly
from the previous Module # 4+ 1. The memory, which stores the output vector of Module
i, is in effect saved. We may define an N — by — 1 “feedback input vector” r;(n) of the it

module as:

ri(n) = yin(n) (4.78)
= [ypra(n) gir1.20)y - viprn(m)]T

where 1 <i< M -1.

Being the same as described in Section 4.1, Module M operates as a standard real-
time recurrent neural network. After a delay of one time unit, the output vector ya(n) of

this module is fed back to itself as a feedback input vector.

ra(n) = ym(n—1) (4.79)

Correspondingly, the functional dependence of the output y(n) of the network may

be expressed as follows:

y(n) = @(wi,si(n),r1(n)) (4.80)

d(wi,si{n), P{W,sa(n},r2(n)))

il

= (wi,s1(1), $(W, s2(n), $(W,sa(n), -+,

S(W,sar(n),ya(n = 1)),--}))

4.6 Summary

The pipelined recurrent neural network offers thie following attributes.
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s Nested nonlinearity. The overall input-output relation of the PRNN exhibits a form
of nested nonlinearity, similar to that found in a multilayer perception. The nested
nonlinearity is described in Eq. 4.67. This characteristic has the beneficial effect of

enhancing the computing power of the PRNN.

e Smoothed cost function. The cost function of the PRNN is defined as the exponentially
weighted sum of the squared estimation errors computed by the individual modules
as shown in Eq. 4.68. Hence it may be argued that the cost function £(n) so defined
is “closer” to that used in deriving the more elaborate steepest descent version of the
learning algorithm originally formulated for recurrent neural networks by Williams

and Zipser.

¢ QOverlapping Data Windows. From Eq. 4.67 it is readily apparent that the individual
modules of the PRNN operate on data windows that overlap with each other by one
sampling period. Specifically, at cach iteration the PRNN processes a total of p+M —1
input samples, where p is the order of each vector s and it is the number of external

inputs each module.

o Improved Stability {convergence). The necessary condition for a recurrent neural net-
work of any kind to convergence to a unique fixed-point attractor is described in
Eq. 3.30 and 3.31. Typically, the PRNN uses two or three neurons per module,
which is much smaller than the corresponding number of neurons in a single recurrent
rietwork for solving « difficult signal processing task. This means that the Euclidean
weight matrix W of each module in the PRNN is usually smaller than the correspond-
ing value of a single recurrent network of comparable size (i.e., the same number of
neurons). Accordingly, the PRNN is more likely to satisfy the stability criterion of

Eq. 3.30 than a single recurrent neural network of comparable size.
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o Weight sharing. Another importan: v:v-te of the PRNN is that all of its modules share
exactly the same synaptic weight matrix W. Thus, with M modules and N neurons
per module, the computational complexity of training the PRNN is O(M N*). On the
other hand, a conventional recurrent structure of the same size has A N neurons, and
its computational complexity is therefore O(MIN1). Clearly, for M > 1 the PRNN
has a significantly reduced computational complexity compared to a single recurrent
neural network of the same size; the reduction in computational complexity becomes

more pronounced with increasing Af.



Chapter 5

Nonlinear Adaptive Prediction of

Nonstationary Signals

In this chapter, we describe a computationally efficient scheme for the nonlinear adaptive
prediction of nonstationary signals whose generation is governed by a nonlinear dynamical
mechanism. The complete prediction consists of two subsections, one of which performs a
nonlinear mapping from the input space to an intermediate space with the aim of linearizing
the input signal, and the other subsection performs linear mapping from the new space
to the output space. The nonlincar subsection consists of a pipelined recurrent neural
network, and the linear section cunsists of a conventional tapped-delay-line filter. The
prediction is an adaptive system, with adjustments to the free parameters of the network
being made in on-line fashion while Lhe signal processing is being performed. Then, we
discuss thoroughly the algorithm of adaptive nonlinear prediction. The discussion includes
the initialization, convergence and computational requirement of the adaptive prediction
algorithm. Finally, the dynamical behavior of the PRNN-based predictor is evaluated via

the adaptive prediction of various nonstationary signals.
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5.1 Nonlinear Adaptive Predictor

5.1.1 Principle of Operation

Consider 2 nonstationary time series made up of a set of uniformly spaced samples s(n), s(n—

1),...,5(1). Generally speaking, one-step prediction can be described as

§n+1) = Fls(u)s(n - 1), -+, (1)) (5.81)

where F is a nonlinear function as the generation of the signal is governed by a nonlinear
dynamical mechanism. As mentioned in the Chapter 1, as there is not a linear relation
between the 3(n + 1) and s(n), s(n - 1),...,s(1), serious errors could be produced as using

some classical and practical (such as LMS, RLS) algorithms for the nonlinear prediction.

For solving this nonlinear prediction of nonstationary signals, we proposed a new
nonlinear prediction scheme. Suppose that signal samples s(n),s(n = 1),...,s{1} are in
an input space. The principle of the new way is to build an intermediate space. The
intermediate space is constituted with the variance y(n) and some past values of it y(n —
1),y(n—2),... which are obtained with a nonlinear mapping from the input space. In the
new intermediate space, there is a linear relation between the predicted value &(n + 1) and
variances y(n},y(n — 1),y(n — 2),.... Then. many classically linear prediction algorithms

could be used on the intermediate space,

Therefore, the complex noulinear prediction is divided into two relative calculation
steps: a nonlinear mapping between the input space and the intermediate space, and a
linear mapping from the intermediate space to the final output space, which contains the

predicted data. Both of these operations are performed adaptively on a continuous basis.

The principle of the new method is illustrated in Fig. 5.15, and we may write,

y(n) = d(s(n). s(n=1),---s(1)), (5.82)
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Figure 5.15: Dllustrating the principle of the adaptive nonlinear prediction.

where ¢ is a noniinear function. Each dotted curve expresses that all of information included
in past signal samples are used for the nonlinear mapping. For example, the dotted curve

of Point n, presents the information of past samples s(n}),s(n — 1),s(n — 2),- -+ to support
the nonlinear mapping at the time point ».

=1
(5.83)

Hu+1)= wa,ky(n - k)
k=0

where g is the number of necessary variances on the intermediate space, and wyg, w1, ..., Wy (g-1)

constitute a set of linear weights.

Based on the principle, a nonlinear adaptive filtering system is designed. Fig. 5.16

shows the block diagram of the system. The pipelined recurrent neural network (PRNN),
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Figure 5.16: Block diagram of the new nonlinear adaptive predictor.

consisting of many levels of recurrent signal processing, constitutes the nonlinear subsce-
tion of the system. In addition, the system includes a linear subsection represented by
a conventional fapped-delay-line(TD1L) filter. These two subsections perform two distinct

functions:

» The PRNN performs the noulinear mapping from the input space to the intermediate
space with the aim of lincarizing the input signal. It does so by filtering a set of
samples of the input s(t), which represented by s(n),s(n - 1),s(n — 2),... These
samples extend into the “infinite past” for varying discrete-time n by virtue of the
feedback built into the design of each module of the PRNN. Thus, the PRNN has

infinite memory of a fading nature.

e The TDL filter performs a lincar mapping {(calculation) from the new intermediate
space to the output space. Specifically, it uses a linear combination of the sample
y(n),y(n—1),...,y(n — g + 1) derived from the output of the PRNN to produce a
prediction 3(n + 1) of the original signal, one step into the future. In contrast to the

PRNN, the TDL filter has finite menory.

Of course, both of these operations are performed adaptively on a continnous basis.

Thus, the cascade combination of the PRNN and the TDL filter may be used to perform
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Figure 5.17: Linear subsection: a tapped-delay-line filter.

the nonlinear adaptive prediction of a nonstationary signal.

5.1.2 Construction of a Nonlinear Adaptive Predictor

The detail of nonlinear subsection is showed in Fig. 4.12 or in Fig. 4.14, which is the
simplified PRNN as explained later. The linear subsection of the neural-network based-
predictor is a tapped-delay-line filter, shown in Figure 5.17. The weight vector of the linear

filter is denoted as [7)

wi = {wio, w1,y wyg1]” (5.84)

The pipelined recurrent neural network of Fig. 4.12 performs a nonlinear mapping
that is coarse-to-fine, depending on the number of modules M used and the size of each
module. The PRNN differs from the conventional recurrent neural network in that it is

characterized by a nested nonlinearity, as described in the previous chapter.
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The inputs of this filter consist of the present output y(n) computed by the pipelined
recurrent network and ¢ — 1 past values y(n — 1),y(n - 2),...,y(n — g + 1). During the
actual calculation, the input of the linear subsection is the output of PRNN y(n) at a
filtering process step. For expressing clearly, we describe the output as yyi:(n); more will

be said on the computation of ysi:(n) in Section 5.2. So,
ysi(n) = rien) yra(n = 1), ygan(n - g+ 17 (5.85)
The output of a linear filter is defined as
dn+1)=wT *yri(n) (5.86)
The tapped-delay-line filter fine-tunes the final result. The estimate §(n + 1) is a

nonlinear adaptive prediction of the actual sample s(n + 1) of the input signal, which is

computed in an on-line fashion for varying time n.

The pipelined recurrent nenral network and tapped-delay-line filter can be trained in
an on-line fashion. So the nonlinear predictor described here is called PRNN-based adaptive

filter (predictor).

5.2 Algorithmic Design of Adaptive Predictor

For adaptive processing of a nonstationary signal, the operation of adaptive estimation

involves two basic processes:

¢ An adaptive learning process. The purpose of the process is to provide a mechanism
for on-line training of a nonlinear subsystem and the adaptive control of an adjustable

set of weights used in the linear subsystem.

o A generation process. The process is designed to produce an output in response to a

sequence of input data.
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These two processes work interactively on each signal sample. Thus the computation per-
formed by the PRNN at time n is procersed in a self-organized manner in three stages as

follows:

1. Prediction. Given the nput vectors s;(n},sz,...,sp(n) and the desired responses
s(n),s(n —1),...,8(n — M + 1), the individual modules of the PRNN compute the

one-step prediction errors e;(n), e2(n),.. ., em(n) respectively.

2. Weight updating. The prediction errors are used to compute the matrix of local

gradients, ?ai(‘%l, and therefore the correction AW applied to the old weight matrix

W of each module. Accordingly, the updated value, W, is computed.

3. Filtering. The updated weight matrix W, and the vectors s1(n), s2(n),...,sp(n) are
used to compute the filtered output yyi(n) as the output of first (visible) neuron in
module 1 of the PRNN. This is done by proceeding through the M modules, one by

one.

Turning next to the linear subsection, the output §(n+1) of the TDL filter, produced
in response to the sequence ypi(n), ysie(n — 1),...,ypie(n — ¢ + 1), is compared against
the desired response s(n 4+ 1). The well-known least-mean-square(LMS) algorithm is used
to adjust the tap weights of the TDL filter. This is done in an attempt to minimize the

error signal (i.e. the difference between s(n + 1) and $(n + 1) in a “mean-square sense”).

Algorithm for the on-Line Training and Nonlinear Prediction

1. Adaptive Caleulation of Nonlinear Subsection

¢ Prediction Process

At the instant n‘* time point, the input vectors si(n),...,sp(n) are obtained

from the input data. The prior prediction is taken from Level M in stages to
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Level 1. The output vector of Module i and the error signal of Level ¢ are defined

by, respectively,

yi(n) = &(W,si(n),ri(n))
ei(n) = s(n—~it+1)=~gia(n)
where the sample s(n — i + 1) of the input signal s(¢) is the desired response of
module 7.
After every module of PRNN finishes its prior prediction calculation, a series of
error signals is obtained, namely, e;(n}, ea(n),...,ex(n).
¢ Updating the Weight Matrix of Modules

An overall cost function for the pipelined recurrent network of Figure 4.12 is

defined by
Mo
g(n) = Zz\"le?(n) (5.87)
=1
By minimizing the cost function e(n), the gradient estimation algorithm is used
to calculate the change AW to the weight matrix W along the negative of the
gradient QYwe(n).

The change applied to the k{** element in the weight matrix can be written as

8 M
Awyy = —nm(z At (n)) (5.88)

i=1
where 7 is a fixed learning-rate parameter, 1 < k< N and 1 <1< (p+ N +1).

Finally, the weight matrix is updated as
W, — W+ AW (5.89)

where W, is the updated weight matrix.

¢ Filtering Process
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Using same input signal and the updated weight matrix W, the filtering cal-
culation of a module is the same as the prediction process. For example, the

filtering process of Module ¢ is defined by,

yi(n) = ®(Wy,si(n), ri(n)) (5.90)

The vector yi(n) is stored as the feedback input r;(n+1) at the time point n+1,
and

W =W, (5.91)

Sequentially, the filtering operation is executed from Module M to Module 1. The
output y;1(n) of Module 1 is sent to the tapped-delay-line filter as an overall

filtering output ygin(n).
2. Adaptive Operation of Linear Subsection

¢ Outputting the Final Estimate

The standard Least-Mean-Square algorithm is used to produce the optimum

estimate of prediction §(n + 1).
8(n+1) = wiT «ygi(n) | (5.92)

s Updating the Weight of the Linear Filter

Input the new sample of signal s(n + 1) as the desired signal. The estimation
error or residual e(n+1) is defined as the difference between the desired response

$(n+1) and the estimated output. as shown by
e(n+1)=s(n+1) - wiT xypn(n) (5.93)
The updated weight vector of the tapped-delay-line filter is written as:

Wi e Wi+ pysin(n) * e(n + 1) (5.94)
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where p is the step-size parameter.

3. Recursive Calculation

Let n = n 4+ 1 and return to Step 1. Repeat the on-line adaptive prediction until the

input stops.

5.3 Adaptive Nonlinear Prediction of Speech Signals

In thic section, the performance of the nonlinear continuous adaptive predictor developed
in last sections is tested with real speech signals. The prediction of continuous speech data

is a difficult task.

Criteria used to evaluate the nonlinear predictor are:

¢ The approximation of waveform of the predicted signal to that of the original signal.
o The value of prediction gain. Prediction gain is defined as
R,=10= 10310(63/63)

where 62 is the mean-square value of a speech signal, and 62 is the mean-square

prediction error of the corresponding signal.

¢ Spectrum of the prediction errer. According to the theory of innovation process 53],
the whiteness of the spectrum of prediction errors means that the (linear or nonlinear)

predictor has removed most of the information contained in the original signal.

¢ Histogram of the prediction error.

We present highlights of the experimental work based on three speeches, They are

records from several different male and female speakers. The audio files of these speech
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Table: 5-1

. Sample | Sample
Speech Signal Frequency Poixlljts 6S

Male Speech | 8kHz | 10,000 | 0.3848

Female Speech| 8kHz | 63,000 | 0.2521

Conversation| 8kHz | 74,000 | (2525

signals, sampled at 8 kHz, are stored in the Sun station sparc 2. Table 5-1 gives the

description of these audio files.

For processing these speech signals, the nonlinear predictor has the following pa-

rameters:

» Nonlinear Subsection:
Number of modules, M = 5.
Number of neurons per module, N = 2,
Nonlinear prediction order, p = 4.
Learning rate, n = 0.0001.

Forgetting factor, A = 0.9,

¢ Linear Subsection:
Length of tapped-delay-line filter, ¢ = 12.

Learning rate, g = 0.3.

* A male speech: when recording audio data.... This speech signal is originated
from the reserved audio file of the Sun sparc workstation. The recorded time series

corresponding to this speech signal, sampled at 8 kHz, is made up of 10,000 points.
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Figure 5.18: Adaptive nonlinear prediction of a speech signal. Continuous curve: actual
speech signal; dashed curve: overall nonlinear prediction (including tapped-delay-line filter-
ing). Specific : arameters: number of modules M = 5, number of neurons/module N = 2,
and number of taps in the linear subsection ¢ = 12.

There is no any apparent noise accompanying the speech signal.

The experimental results are as follows:

1. Figure 5.18 displays the actual speech signal (solid curve) and the nonlinear
prediction version {dashed curve). Figure 5.19 shows the linear prediction result
of the same speech, which uses only a 12-tap FIR linear filter. The results
described in Figure 5.18 and 5.19 clearly show that the prediction of a signal
using the PRNN-based adaptive predictor provides a much better approximation
to the actual speech signal than using the linear predictor. Figures 5.18 and
5.19 only show the prediction results of first 800 sample points (about 0.1 second)

of this male speech.

2. The mean-square value §* of 10,000 samples of the male speech is approximately
0.3848. The mean-square prediction error 63 is about 1.2 + 107 by using the

PRNN-based nonlinear predictor, yielding R, = 25.06dB; by using the linear
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Figure 5.19: Adaptive linear prediction of a speech signal. Continuous curve: actual speech
signal; dashed curve: overall linear prediction. Specific parameters: number of taps in the
linear filter ¢ = 12.

FIR filter, the corresponding mean-square linear prediction error 6,? is about

2.5% 1073, yielding R, = 22.01dB. This provides a quantitative demonstration of

the superior performance of the nonlinear predictor over the linear predictor.

3. Tigure 5.20 shows the power spectrum of the resulting nonlinear prediction error.
The solid line presents the average power spectrum density on each frequency
point. The distance of two dashed lines is the 95 percent confidence range. The

power spectral density is fairly constant across a band from 200Hz to 3000 Hz.

4. Moreover, Figure 5.21 shows the histogram of the prediction errors. The x-
axis presents the prediction error and y-axis presents number of samples. It is
apparent that prediction errors of most samples are very small. According to the
Pearson system theo:y [50], the distribution of nonlinear prediction errors is a

p-distribution,

¢ A female speech: this is a record of « female telephone operator. T'he speech signal
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Figure 5.20: Power spectrum of the resulting overall nonlinear prediction error. Continu-
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Figure 5.21: Histogram of the resulting overall nonlinear prediction error.
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Figure 5.22: Adaptive nonlinear prediction of a female speech signal.

is provided by Bell Canada Company. The recorded time series corresponding to this

speech signal consists of 63,800 points.

1. Figures 5.22 and 5.23 display the actual speech signal (solid curve) and those
nonlinear and linear prediction versions (dashed curves). Compared with the
results described in Figures 5.18 and 5.19, the results clearly shows that the
prediction of a signal using the PRNN-based nonlinear on-line adaptive predictor
provides a much better approximation to the actual speech signal than the linear
predictor. In a manner similar to the figures of the previous male speech, Figures
5.22 and 5.23 only show the prediction results of first 800 sample points(about

0.1 second) of the female speech.

2. The mean-square value 62 of 63,800 speech samples is about 0.2521. By using the
PRNN-based nonlinear predictor, the mean-square orediction error 6;‘; is about
0.6 * 1073, yielding R, = 26.2dB; by using the linear FIR filter, the mean-square
prediction error 6,3 is about 1.4 + 103, yiclding R, = 22.55dB. This provides a

quantitative proof of the superior performance of the nonlinear predictor over
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Figure 5.23: Adaptive linear prediction of a female speech signal.
that of the linear predictor.

3. Fig. 5.24 shows the power spectrum of the resulting nonlinear prediction errors.

It is apparent that power spectral density is fairly constant on a wide frequency

band from 500Hz to 3200 Hz.

4. Figure 5.25 shows the histogram of the nonlinear prediction errors. The distri-

bution of the error is a S-distribution (the mean value of this distribution is near

0).

¢ Three-person (two males and one female) short conversation. The recorded time series

corresponding to ihis speech signal, sampled at 8 kHz, consists of 74,000 points.

1. By using the PRNN-based nonlinear predictor, the prediction gain 2, is 22.88dB;

by using linear FIR filter, the prediction gain 7, is 16.69dB.

2. Figure 5.26 shows the power spectrum of the resulting nonlinear prediction
errors. The power spectral density is fairly constant across a band from 30012

to 3600 Hz. Moreover, Figure 5.27 shows the histogram of the prediction errors,
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Figure 5.25: Histogram of the resulting overall nonlinear prediction error for a female speech.
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Figure 5.26: Power spectrum of the resulting overall nonlinear prediction error for a con-
version signal.

LI

which distribution is also a #-distribution.

The results of the nonlinear prediction of the three speech signals used as test signals

clearly illustrate that:

o The results of Fig. 5.18 and Fig. 5.22 show that the prediction of speech signals by
using of a PRNN-based nonlinear predictor provides a much better approximation to

the actual speech signal than the linear predictor.

s The calculation of the prediction gain also gives a quantitative proof of the superior
performance of the nonlinear prediction over that of the linear predictor. In general,

the nonlinear predictor provides 3 to 5dB prediction gain.

¢ The histograms of three prediction errors show that the distribution of nonlinear
prediction errors is a §-distribution. The nonlinear prediction errors of most samples

are very small (near 0).
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Figure 5.27: Histogram of the resulting overall nonlinear prediction error for a conversation
signal.

o The power spectrum of nonlinear prediction error is almost constant for a wide fre-

5.4

quency band (300K z to 3500H z). The conclusion to be drawn is that the nonlinear
prediction error may be closely modeled as a white and 3-distribution noise process.
This is testimony to the efficiency of the neural network-based predictor in extracting

the information content of the speech signal almost fully.

Selection of Parameters of a Nonlinear Predictor

Number of Modules

As mentioned in Chapter 4, the global nonlinear mapping performed by the pipelined
recurrent neural network is coarse-to-fine, depending on the number of modules M
uses. In principle, the more modules used, the more accurate the prediction obtained.
Figure 5.28 shows the relation between the mean-square prediction error of a speech
signal and the number of modules in the PRNN, assuming that N = 2, p = 4, and

g = 12. For a sufficiently large number of modules, the decrease in error is almost
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Figure 5.28: Illustration of the relation between the mean-square overall prediction error
and the number of modules for the case of a male speech signal.

directly proportional to the number of modules. If M is larger than 6, the mean-square

prediction error is almost constant.

¢ Number of Neurons

The linearization of the input space may also be improved by increasing the number
of neurons in each module. Figure 5.29 illustrates the relation between the mean-
square prediction error of a speech signal and the number of reurons N, assuming
M =5,p=4and ¢ = 12. As we increase the number of neurons in each module, the
overall mean-square prediction error is gradually reduced. However the computational

requirement increases sharply with the addition of each new neuron.

¢ Number of external inputs

The number of the external inputs is also called the prediction order of PRNN-based
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Figure 5.29: Illustration of the relation between the mean-square overall prediction error
and the number of neurons in each module for the case of a male speech signal.

nonlinear adaptive predictor. According to the discussion of the approximation prob-

lem in Chapter 5, every module is a dynamical sub-model of the outside world:

yl(n) = ¢(3(n - 1)1 ' -,.s(n "P)a yl(n - 1)1 . 'ny(n - 1)): n=p+1,p+2,---
(5.95)
In general, the number p is a function of the correlation dimension, which could be

used to describe the dynamical model of the outside world.

o Number of Taps Intuitively, we expect the accuracy of the one-step prediction
performed by the linear subsection to be enhanced by increasing the number of taps
g. This is borne out by the results shown in Figure 5.30. where the mean-square
prediction error is plotted versus ¢ for M = 5, N = 2 and p = 4. As the number of
taps increase from 2 to 12, the prediction error decreases sharply, and once ¢ is over
12, the error is only reduced of a small amount. The result is in keeping with choosing

the orders of AR model for a speech signal'. The speech signel used in this section is

VAt a sampling Irequency is about 8 kHz, a 12-order linear AR model of a speech wave is considered to
be adequate [55]



5.5. DISCUSSION OF ADAPTIVE NONLINEAR PREDICTION ALGORITHM 7

Mean-Square Prediction Emor

(=]

8 10 12 14 18 18
Number of Taps

Figure 5.30: Dlustration of the relation between the mean-square overall prediction error
and the number of taps in the linear subsection for the case of a male speech signal.

the same as the male speech of Section 5.3

5.5 Discussion of Adaptive Nonlinear Prediction Algorithm

5.5.1 Initialization of Nonlinear Prediction Algorithm

To proceed with the on-line learning and filtering of the PRNN-based predictor, it is nec-
essary to initialize the tap-weight vector w; of the tapped-delay-line filter, and synaptic
weight matrix W of every module in the pipelined neural network. Moreover, the initial

feedback signal input vector r of every module should be specified.

Initialization of the weight vector w; follows the customary practice of setting it
equal to the null vector or a randomly distributed set of small values. However, initial-
izations of the synaptic weight matrix W and the feedback signal vector r require special
attention. For this initialization, we may use the traditional epochwise training method of

recurrent neural networks, which is applied to one module operating with N, samples of
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input signal. The module is the same as that described in Section 4.3.

The training principle is summarized as follows:

1. Input first N, samples of a signal, and obtain an input vector s(i) and a desired signal

d(i), when 1 < i < n’ and n =N,—p.
s(i) = [s(i + (p= 1))+, ()T
d(@) = s(i +p)

2. The pre-training procedure begins from ¢ = 1. Choose a random set of small values

for weight matrix W and feedback input r(1).

3. Input the s(i), r({), and d(¢) to a module. The following calculation is then executed:

w(i) = é(w()
P p+N+1

wl(i) = D was(i+(p—i))+ Wkper) + D Whr-(p—1)(i)
=1 I=p+2

(i) = s(i+p)-nli)

4. Leti=i+1,
r(i) = y(i—1)

and return to Step 3.

5. Repeat the calculation of Steps 3 and 4 until { = n'. If the average error E(n') is less

than a permitted error ¢, the pre-training procedure is stopped; E(n') is defined by
o 1 n 2.
E(n) = Ee (4) (5.96)

6. The AW is obtained by using the gradient estimation algorithm along the negative

of the gradient vwE(n'), and then used to update weight matrix.

We— W+ AW (5.97)
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Figure 5.31: A plot of mean-square prediction error versus the number of pre-training
samples.

7. Set i=1, and r(1) = y(n'), and return to Step 3.

It is important to choose the permitted error € and adequate number of pre-training
samples Np. Roughly speaking, the permitted error ¢ is about one percent of the mean-value

of the input time series.

In general, if the number Ny is too small, the epochwise training method of the
recurrent neural network could not determine the adequate initial weight matrix for adap-
tive on-line processing. An inadequate initial weight matrix may cause the PRNN-based

nonlinear predictor to diverge.

The main purpose of pre-training is merely to determine an adequate set of initial
weights. To economize on pre-training time, the number of pre-training samples Ny is

limited to about several hundreds.

Fig. 5.31 shows a plot of the mean-square prediction error of the male speech (ahont
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10, 000 samples) versus the number of pre-training samples by using the PRNN-based non-
linear predictor. When the number of pre-training samples is less than 50, the mean-square
prediction error is huge and the prediction system tends to diverge. As the number is over
50, the mean-square prediction error decreases graduallv. It is apparent that this decrease

is slow!

5.5.2 Computational Requirement

The computational requirement of the continuous adaptive prediction process with the
PRNN-based filter consists of computational requirements of both a noniinear subsection

(pipelined recurrent neural network) and a tapped-delay-line filter.

For the pipelined recurrent neural network, the computational requirement of a
learning procedure is O(M N*) arithmetic operations, where N is the number of neurons in
each module and M is the number of modules. Correspondingly, the computational require-
ment of the estimation procedure is O(M * N?). So, the total computational requirement
of processing a signal sample in the nonlinear subsection is O(M N4+ M *(N?)) arithmetic

operations.

Compared with computational requirements of the PRNN, that of a tapped-delay-
line filter is much less. For example, the computational requirements of the LMS algorithm
arc only 2¢+3 multiplications for calculating one point and ¢ addition: per iteration, where
¢ is the number of taps. So, the total computational requirement of processing a signal

sample is O(MN? + M « (N?)} + 3(¢ + 1)) arithmetic operations.
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5.5.3 Convergence of Real-Time Nonlinear Prediction Algorithm

The traditional method of supervised learning is performed in an off-line manner. In the
off-line case, the training procedure of a neural network (such as multilayer and rational
bases function neural network) has two independent steps: supervised learning and testing.
After the desired learning process is accomplished, the performance of the neural network is
tested with another set of target responses. If the errors measure, such as the mean-square
errors between the desired target responses and the corresponding outputs of the network,
is lower than a determined threshold, the training procedure is siopped and the weights of

the neural network are “frozen”.

In contrast, the pipelined recurrent neural network is a2 dynamic system. The train-
ing produce of the PRNN is a continuous learning process. Every learning step is also
a testing step of the previous learning processed. In fact, the squared error is obtained

between the actual and predicted signal on evcry step.

A nonstationary signal is a time-varying signal. For instance, a speech signal includes
different frequencies and amplitude sinusoids, which change with time. Here the squared

error curve of a continuous learning or prediction process versus time is indeed fluctuating.

Thus, as a measure of converge performance we may use the tendency of average
squared prediction errors on a series of sample blocks of a speech signal. Each block includes
several thousand sampling points. If the adaptive prediction is convergent, the average
squared error versus the number of blocks should gradually decrease, tending toward some

constant value.

Fig. 5.32 shows a plot of the average squared prediction error of block of speech
samples for a male speech, versus the number of blocks. The first sentence of the male

speech is “As recording audio signal...”. But the continual period of this male speech
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Figure 5.32: A plot of average squared errors of block of samples.

is about 40 seconds. So that, the corresponding time series of this speech consists of about
320,000 samples. Each block includes 100,000 continuous samples. Fig. 5.32 shows that
the value of average squared prediction error decreases quickly as the number of blocks
of samples is increased. The difference of average squared error between the first block of
samples and the second one is larger than the difference between the second and third block,

and so on. This shows that the nonlinear adaptive prediction is indeed convergent.

5.5.4 The Computation Ability of a Simplified PRNN-Based Predictor

Using the simplified pipelined recurrent neural network as the nonlinear subsection, we get
a simplified PRNN-based adaptive predictor. The adaptive algorithm for the simplified
predictor is almost the same as the algorithm of PRNN-based predictor described in the
Section 5.2, The difference is that all of feedback signals of every module are originated

from the outputs of the previous module except Module M.

ri(n) = yin(n), 1<i<M-1
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Figure 5.33: Comparison of the feedback inputs at the 2" node of module 1 obtain by

the PRNN-based predictor (continuous curve), and the simplified PRNN-based predictor
(dashed curve).

ri(n) = yi{n-1), i=M (5.98)

In the simplified PRNN-based predictor, experiment results show that the feedback

input r;(n) is:

ri(n) = Yyin(n)

~ [giy11(n) yia(n = 1),y n(n — 1);71 {5.99)

where 1 < i < M — 1. The vector [yiy1,1(n), %i2(n = 1)y, yin(n — D] is the feedback

input vector of Module 7 in primary PRNN-based predictor.,

The prediction of the male speech described in Section 5.3 is still used as an example,
In the simplified PRNN-based predictor, there are 5 modules (M = 5) and 2 neurons
(N = 2) in each module. Fig. 5.33 shows the continuous feedback signal applied to the
2" input node of Module 1 r2(n) by using the model of Fig. 4.12 (dashed line) and its

counterpart computed by Fig. 4.14 (continuous line), both of them acting on the male
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Figure 5.34: Adaptive nonlinear prediction of a male speach signal with the simplified
model. Continuous curve: actual speech signal; Dashed curve: overall nonlinear prediction
(including tapped-delay-line filtering). Specific parameters: number of modules, M = 5;
number of neurons per module, N = 2; and number of taps in the linear subsection ¢ = 12.

speech signal. An observation is the feedback input 7, 2(n) of the primary PRNN-based

prediction and that of simplified version are almost the same. It means that

y22(n) = y12(n - 1)
Otherwise, in two madel, both of r; ;(n) are originated from the previous module.

r‘1.1(71) = yQ.l(n)

So that the feedback input vector ri(n) of Module 1 in two versions, are almost
equal. The same results can be found in Modules 2, 3 and 4. Figure 5.34 displays the
nonlinear prediction of the male speech signal with the simplified PRNN-based predictor.
Compared with Fig. 5.18, it is apparent that the simplified model can obtain the same good

prediction results.

The simplified predictor has the same computational ability as the Figure 4.12. In

the case of speech signals consider in the previous sectior, the mean-square overall prediction
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error of the simplified model is only 5% higher than that of the original model.

5.5.5 An Updated Improvement on the Algorithm

Before finishing the thesis, we made an updated improvement on the algorithm, which was
described in Section 5.2. In the original algorithm, on the filtering process of PRNN, the
updated weight matrix W and a set of input vectors sy(n),sa(n),...,sp(n) are used to

calculate the filtering output yysi(n). These input vectors are the same as those input

vectors of the prediction process.

si(n) =[s(n—1),s(n = (i +1)), -+, s(n - (i+p~ 1)), i=1,...,.M
and
yrie(n) = paln)

= @(wy,s1(n)r1(n))

Sl(n) = [s(n - 1)33(71 - 2)! vt -,8(1’1 - p)]T

In fact, in the filtering process, the information representedly s(n) is partly contained in

the updated weight matrix W.

In the improved algorithm, during the filtering process, the input vectors are also

updated:
si(n) = [s(n—i4+1),8(n—-(G+1)+1), -, s(n=(i+p-1)+1)}7, i=1,...,M (5.100)

and

yrin(n) y,1(n) (5.101)
= ¢(wi,s1(n)r1(n))

sin) = [s(n),s(n—-1),- -, s(n—p+ 1) (5.102)
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In the filtering process of the improved algorithm, the input sample s(n) is directly used in
the filtering calculation. Therefore, the new filtering process uses the information of s(n)

more effectively.

The updated version introduces two improvement in the prediction calculation:

1. Increasing Prediction Gain. Because of more effectively using the information of
the latest signal sample, the one-step nonlinear prediction scheme provides a slight
increase in prediction gain. The prediction of the male speech described in Section 5.3
is still used as an example. With all of same parameters in the PRNN-based predictor,
the mean-square prediction error of the updated version 6, is 1.18 x 1073, yielding

R, = 25.134dB. The prediction gain increases by 0.07dB.

2. Decreasing Computational Requirernent. The updated input vectors of the filtering
process at the nt* time point, presented in the eq. 5.100, are also the input vectors
of the prediction process at the (n + 1)** time point. Therefore, the outputs of M
modul;es at the filtering process can be used to calculate the cost function of PRNN
directly at the next time point. In the updated algorithm, the filtering process of
processing present sample is equal to the prediction process for next sample point.
In the improved version, the computational requirement of an additional filtering
proceeding is not necessary. Therefore, the computational requirement of the adaptive
processing of PRNN is O(M N4); the total computational requirement of processing

a signal sample is O(M N* + 3(¢q + 1)) arithmetic operations.

1t is possible that the new version would improve the quality of the nonlinear ADPCM,

which is presented in Chapter 6.
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5.6 Nonlinear Adaptive Prediction of Sea Clutter

The PRNN-based network has a wide range of applications. Here, an example of adaptive
prediction of radar sea clutter is shown. In this example, we use the simplified nonlinear
subsection in the PRNN-based adaptive predictor. The simplified predictor has the same
computational ability as the original PRNN-based one. In the case of speech signals consider
in the previous section, the mean-square overall prediction error of the simplified model is

only 5% higher than that of the original model.

In 1989 and 1993, the radar group of the Communications Research Laboratory
collected a larger data base of sea clutter by means of an instrument quality (IPIX) radar
at a site on the East Coast of Canada. The solid line of Figure 5.35 presents 300 continual
samples of a particular realization of sea clutter. To model the sea clutter, we use an
adaptive PRNN-based nonlinear filter consisting of 10 modules (M = 10). For every module,
the number of external inputs is chosen to be seven (p = 7), which is slightly greater than
the correlation dimension of the sea clutter used in this study (estimated to be between 6.3
and 6.7). Three neurons are used in the upper layer (N = 3). The linear subsection is a

seventh order FIR adaptive tapped-delay-line filter.

The adaptive prediction results of sea clutter, using the PRNN-based adaptive filter,
are shown on Figure 5.35. The dashed curves present the nonlinear prediction version; and
the solid curves present the actual sea clutter. The value of every point is normalized with
respect to the maximum valve of the sea clutter. Figure 5.36 presents the corresponding
prediction result for the sea clutter using a linear seventh order tapped-delay-line filter
(using the LMS algorithm) under similar conditions. Comparison of Figure 5.35 and 5.36
clearly shows that the prediction performance of a nonlinear filter is superior to that of a

linear filter for predicting sea clutter.

For comparison in quantitative terms, the prediction gain is used to evaluate the
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Figure 5.35: Nonlinear Adaptive prediction of sea clutter. Specific parameters: number of
modules, M = 10; number of neurons per module, N = 3; and number of taps in the linear
snbsection, ¢ = 7.

performance of prediction. For the 60,000 sea clutter samples, the mean-square value 62 of
sea clutter samples is about 0.2387. The mean-square value of the prediction error &3 is
3.2 = 10~* by using the PRNN-based nonlinear prediction, and is 9.1 10~ by using the
linear filter with the LMS algorithm. The corresponding prediction gain R, of the former
is about 28.75 dB, and the latter is about 24.2dB. These results show an improvement of

over 4dB in prediction gain in favor of the nonlinear prediction approach.

5.7 Summary

In this chapter, we have described a novel pipelined recurrent neural network (PRNN)
which, together with a linear subsection in the form of a tapped-delay-line (TDL) filter,
provides a powerful device for the nonlinear adaptive filtering of nonstationary time series.

The adaptive predictor is called PRNN-based predictor. The coefficients of this predictor
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Figure 5.36: Linear adaptive prediction of sea clutter.

are determined experimentally, using real-life data.

The algorithm of the adaptive nonlinear prediction is carefully studied. In fact, if the
required computational time of this PRNN nonlinear prediction on processing each sample
is smaller than the sample period of a continuous signal, the on-line nonlinear prediction
can be called real-time nonlinear adaptive prediction of this signal. However, the length of
requirement computational time is related to the software of the adaptive algorithm, and

the corresponding hardware.

The adaptive signal processing capability of this predictor has been demonstrated by
studying the continuous one-step prediction of various speech signals. Wu(1993) proposed
that a recurrent neural network (including 1 output neuron and 8 hidden neurons) could he
used for the prediction of the speech [51]. Wu did not present whether his prediction was
used in a continuous fashion. However, the on-line (continuous) prediction of speech signals
is a more challenging job. In this chapter, the adaptive nonlinear prediction results show

that the PRNN-based predictor could be used in the continuous processing of speeches.
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In this chapter, we have used an additional example, the adaptive prediction of a
sea clutter, to demonstrate the wide applicability of the PRNN-based adaptive predictor.
Moreover, results present the nonlinear adaptive prediction outperforms the traditional

linear adaptive scheme in a significant way.



Chapter 6

A Nonlinear Adaptive Differential
Pulse-Code Modulation System

In the previous chapters, a neural network-based nonlinear adaptive predictor was devel-
oped. Its dynamical behavior is demonstrated for the case of nonstationary signals, such as
speech signals. Herein, as the computational time of such a predictor satisfies the require-
ment of processing a speech signal in a real-time communication system, the PRNN-based

predictor could be used in the real-time communications system.

The conventional form of Adaptive Differential Pulse-Code Modulation (ADPCM)
relies on the use of a linear predictor, yet, it is widely recognized that the biological mech-
anism responsible for the generation of speech signals is in fact nonlinear. In this chapter,
a nonlinear Adaptive Differential Pulse-Code Modulation is introduced. The PRNN-based
nonlinear adaptive predictor is proposed for the adaptive prediction of speech signals in an
encoder and a decoder. Correspondingly, a 4-, 8- or 16-level adaptive quantizer is designed

for the nonlinear ADPCM. Finally, the algorithm of this nonlinear ADPCM is derived.

91
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Figure 6.37: A predictive residual PCM system (generalized differential PCM).

6.1 Adaptive Predictive Coding System of Speech Signals

A standard method of digitizing speech signals for transmission over a communications
channel involves the use of pulse-code modulation (PCM), which operates at the standard
rate of 64 kb/s (sampling frequency being 8,000Hz and representing each sample with 8
bits). This high bit rate demands a higher channel bandwidth for its implementation.
However, in certain applications (e.g. secure communication over radio channels that are
of low capacity), channel bandwidth is at a premium. In applications of this kind, there is
a definite need for speech coding at low bit rates, while maintaining an acceptable fidelity
or quality of reproduction. One of the low rate waveform coding methods is Differential

Pulse-Code Modulation (DPCM).

A differential pulse-code modulation system is depicted in Fig. 6.37, which involves
the use of a predictor. The predictor is designed to exploit the correlation that exists
between adjacent samples of the speech signal, in order to realize a reduction in the number

of bits required for the transmission of each sample of the speech signal and yet maintain a
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Figure 6.38: Encoder of an ADPCM system.

prescribed quality of performance [61]. This is achieved by quantizing and then coding the
prediction error that results from the subtraction of the predictor output from the input
signal. If the prediction is optimized, the variance of the prediction error will be significantly
smaller than that of the original signal. Equivalently, for a quantizing error of prescribed

variance, DPCM requires a smaller number of quantizing levels (and therefore a smaller bit

rate) than PCM.
The reconstructed speech signal in Fig. 6.37 is

c(n) = &(n)+d(n)=3n)+ [d(n) + e(n)] (6.103)
= 3(n) + [(s(n) ~ 3(n) + e(n)] = s(n) + &(n) (6.104)

where s(n) is the original speech signal, d(n) is the prediction error and e(n) is the quanti-

zation noise and transmission error at time point n [57].

A further reduction the transmission rate can be achieved by using an adaptive
quantizer together with an adaptive predictor of a sufficiently high order. This type of
waveform coding is called Adaptive Differential Pulse-Code Modulation (ADPCM), where
the adaptive predictor is used in order to account for the nonstationary nature of speech

signals. The encoder of ADPCM is shown in Fig.6.38.
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In June 1983, International Telephone and Telegraph Consultative Committee (CCITT)
chartered 2 small seven-expert group to recommend a 32 kb/s ADPCM coding algorithm as
a candidate for international standardization. They proposed several key constraints that

should be observed in designing such an ADPCM algorithm:

» For simplicity, the algorithm should not rely on side information, for example, param-

eter transmission.

e For minimal transmission delay, all adaptation processes should be backward-acting

in time.

e Particular attention should be paid to encoder/decoder mistracking recovery in the

presence of quantization and transmission errors, for example, bit errors and slips.

The group embarked on an eighteen month work program that resulted in an ADPCM
algorithm defined as a digital transcoding technique from 64 kb/s PCM. CCITT formally

approved the algorithm as an international standard in October 1984 [58, 60].

The traditional form of ADPCM uses a linear adaptive predictor in encoder and
the decoder (3G, 57]. As mentioned in Chapter 2, the production of a speech signal is
known to be the result of a dynamic process that exhibits two distinct characteristics:
nonlinearity and nonstationary. The conventional form of ADPCM takes into account of
the nonstationary but not the nonlinearity. It should rot therefore to surprising to find that
the use of a nonlinear predictor in the construction of an ADPCM may provide a significant

improvement in its performance.
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Figure 6.39: A nonlinear ADPCM system,

6.2 The Nonlinear Adaptive Differential Pulse-Code Modu-

lation

In this section, we address this issue by investigating the use of the pipelined recurrent
neural network as the basis for the design of a nonlinear predictor of ADPCM system
[56]. The new system is called Nonlinear Adaptive Differential Pulse-Code Modulation. We
suppose that the time of computational requirement of this system is still lower than the
time needed for real-time speech communication. Thus, the nonlinear predictor is called o

real-time adaptive predictor.

A block diagram illustrating the principle of the nonlinear ADPCM is shown in
Figure 6.39, which consists of an encoder and a decoder separaied by a communication

channel. The encoder, located at the transmitter, uses a feedback scheme that includes
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an adaptive quantizer and a PRNN-based adaptive predictor in the feedback path. The
nonlinear predictor, acting on reconstructed signals ¢(n), forms an one-step estimated value
§(n + 1). A prediction error §(n + 1), defined as the difference between the input signal
s(n + 1) and one-step prediction 3(n + 1), is in turn quantized and encoded by using an
adaptive quantizer. The encoded version I(n + 1) constitutes the transmitted wave. At the
same time, I(n + 1) is also fed to the inverse quantizer. The inverse quantized signal §(n)
and the reconstructed signal é(n), which is the sum of 3(n) and 5(n), are operated upon by

a PRNN-based adaptive predictor.

The decoder, located at the receiver, employs an exact replica of the PRNN-based
adaptive predictor used in the encoder. The transmitted signal I{n + 1) is decoded, and

added to the estimated 3(n + 1). The sum is the reconstructed speech signal ¢(n + 1).

In this nonlinear ADPCM system, a 4-, 8- or 16-level adaptive quantizer is adopted
to quantize the difference signal. One sample of the corresponding quantized different signal
is coded with two, three of four binary digits. So, the output I(n + 1) forms the 16, 24, or

32kb/s transmitted signal.

6.3 Adaptive Prediction of Speech Signal in Nonlinear AD-
PCM

6.3.1 Adaptive Predictor of the Nonlinear ADPCM

The real-time nonlinear adaptive predictor of the nonlinear ADPCM system originates
from the adaptive PRNN-based predictor. However, the choice of a suitable neural network
predictor architecture for such an application is constrained by the fact that the predictor
has to perform its learning in an on-line fashion as *:e speech signal is being continuously

processed, and that the stability of the encoder and decoder of ADPCM should be assured.
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Figure 6.40: A nonlinear adaptive predictor.

In a manner similar to the PRNN-based nonlinear adaptive predictor described in
Chapter 4, the predictor of the nonlinear ADPCM system consists of two parts: a nonlinear
subsection and a linear subsection, as shown in Figure 6.40. The model of the nonlinear
subsection of this nonlinear adaptive predictor is a pipelined recurrent neural network. A
detailed structure of the nonlinear subsection is shown in Figure 6.41, involving M ncural
processing levels. Each level has a module and a comparator of its own. Every module is a

dynamical sub-model, consisting of a recurrent neural network with N neurons.

From the Module M —1 to 1, the N feedback signals consist of their delayed output
and the output of the previous module. The last module in the pipeline operates as a
standard real-time recurrent neural network. The output vector yas(n) of this module is
fed back to its input as an input vector after a delay of one time unit. Thus, the M modules
operate similarly in that they all have the same number of external inputs and feedback
nodes. Moreover, they are designed to have exactly the same weight matrix. Let W denote

the synaptic weight matrix for each module((p+ N + 1) — by — N); and be written as:

W = {wy}, k=1,...,N; I=1,...,p+ N+1

The linear subsection uses an infinite impulse response filter. It is similar to the lin-

ear predictor of CCITT 32 kb/s linear ADPCM system [58]. The linear subsection, depicted
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Figure 6.41: The nonlinear subsection of an ADPCM predictor: pipelined neural network.

in I'ig. 6.42, is composed of two structures, a six-order section that models zero points in

the input signal and a second-order section that models pole points in the input signal.

The final choice of this structure resvits from the investigation of several factors: perfor-

mance for narrowband and broadband speech signals, stability, encoder/decoder tracking

with transmission errors and computational efficiency.

It is important to note that any side information (e.g., the weights of the neural

network) of the encoder cannot be transmitted to the decoder. So, the real-time learning

¥(n-1)

5(n-5)
* . Pole-zero
L ] -
°_ % | linear predictor
S(n)

y(oj

L S(n+1) J_l\'s\(““)
S

Figure 6.42: The linear subsection of a PRNN-based predictor.

s(n+1)
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of the nonlinear predictor of the decoder can only use the information contained in the
quantized differential signal I(n + 1). The mistracking with transmission errors may cause
the decoder system to become unstable. Especially, the stability of the on-line training and

processing procedure of pipelined recurrent neural networks is sensitive to the input and

calculation error.

6.3.2 The Calculation Procedure of the Nonlinear Section

The input of the nonlinear subsection is the reconstructed speech signal ¢(n). At the ath

time point, the external input of Module i is a p — by — 1 vector
ci(n) =[e(n —i),e(n—(i+1)), - e(n—(i+p—1))T (6.105)
where 1 < i < M.
The other input is a N ~ by — 1 “feedback vector”
ri(n) = [ria(n),- -+, rin(n)]7, i=1,...,.M (6.106)

At the nt* time point, the output vector of Module 7 is defined by:

vin) = [gia(n),- -, () (6.107)
P p+N+1

yik(n) = ¢(Zwklc(’ﬂ—(i+l*1))+wk(p+1)+ Z WyTy t—p-1(n)) (6.108)
=1 l=p+2

where ¢ presents the activation function of a neuron, which is presented in Eq. 4.51.

The feedback vector of Module ¢ (1 < i < M - 1) is described as:
ri(n) = [girra(n), i2(n = 1), gin(n - 1), (6.109)
The feedback vector of Module M is defined as

rm(n) = [yma(n— 1), yarn(n ~ )7 (6.110)
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As mentioned previously, the outputs of the first neuron ir- &' modules are fed

directly to individual comparators, which compute the error signal§ defined by
ei(n) = e(n—i+1) — yia(n); (6.111)

where the reconstructed signal samples ¢(n—i+1) (i = 1,..., M) are the desired responses
from Module 1 to M at the n*® time point, respectively. It is important to note that
the desired response needed to perform the training of the nonlinear subsection is in fact
derived from the incoming time series often reconstructed speech signal. Thus, the nonlinear

adaptive predictor described here embedies a self-organized, in-situ learning prccess.

The output of visible (first) neuron of Module 1 is the overall output of the pipelined

recurrent network y(n) as shown by

y(n) = y1,1(n) (6.112)

On the filtering process, the output of the pipelined recurrent network y(zn) is expressed as

yyin{n), and sent to the linear subsection.

6.3.3 Mathematical Model and Calculation Procedure of the Linear Sub-

section

The pole-zero structure of the linear subsection originated from the IIR filter studied by
Nishitani and Cointot [65, 66]. Nishitani proved that such an IIR filter is more effective

than a structure employing only adaptive zeros when complexity is considered.

Figure 6.42 describes the input-output relation of the linear subsection. At the
nth time point, the input of this linear subsection (filter) consists of the output vector of
the nonlinear subsection ys(n) and the inverse-quantized transmitted signal vector A(n).

The vector ysi:(n) contains present output ysin(n) of the pipelined recurrent network and



6.3. ADAPTIVE PREDICTION OF SPEECH SIGNAL IN NOKLINEAR ADPCM 101
one-time delay past value ysin(n — 1)

Yrin(n) = [ygae(n), yrin(n — 1)]7 (6.113)
and the inversely quantized transmitted signal vector A(n) is

IS(R) = [é(n)’s(n = 1), S(TL - 5)]T

The output of this linear filter is defined by
3(n+ 1) = aT (n)ysi(n) + bT(n)A(n) (6.114)
where the coefficient vector a is a 2 — by — 1 vector, and bis a 6 ~ by — 1 vector.

a(n) = [@(n),ax(n)]T (6.115)

b(n) = [bi(n), -, be(n))¥ (6.116)

For minimizing the mistracking behavior of the nonlinear predictor, a novel coeffi-
cient update algorithm (a simplified sgn().sgn() gradient algorithm) is used to update both

vectors of linear subsection coefficient a and b [65].

ar(n) = (1-2"%ax(n — 1)+ 3 %2 %sgn(p(n))sgn(p(n ~ 1)) (6.117)

(1 ~2"Naz(n — 1) + 27 (sgn(p(n))sgn(p(n — 2)) - (6.118)

I

" ag(n)

flar(n — 1))sgn(p(n))sgn(p(n - 1)))

where
p(n) = 6(rn) + b(n — 1)A(n - 1) (6.119)
_ - -1
Han-1)) =1 ‘@1 lar(n - 1) < 2 (6.120)
2sgn(ai(n - 1)), lai(n-1)| > 27!
1, t>0
sgn{t)=4¢ 0, t=0 (6.121)

-1, t<0
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Figure 6.43: Squared prediction errors using the linear and nonlinear adaptive predictions.

with the stability constraints on ¢;(n) and az(n):
|az(n)] € 0.75 (6.122)
lay(n)] € 1—27% = q,(n) (6.123)
The i* element of vector b is computed in accordance with the relation:
bi(n) = (1 ~ 27bi(n — i) + 27" sgn(6(n))sqn(6(n — 1)) (6.124)

wherei=1,...,6

The dynamical processing ability of PRNN-based predictor (consisting of PRNN
and the pole-zero linear filter) is demonstrated for the case of real-time prediction of speech
signal. The speech signal is the male speech described in Section 5.3, (when recording
audio data...). The recorded time series corresponding to this speech signal, sampled at

8 kHz, is made up of 10,000 points.

Fig. 6.43 shows the squared prediction errors of nonlinear and linear methods. The
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solid curve pertains to the squared prediction error of the speech signal produced by using

the PRNN-based predictor. The nonlinear predictor has the following parameters:

e Number of modules, M = 4.
¢ Number of neurons yer module, N = 2.

o Number of external inputs, p = 4.

The dashed curve pertains to the squared prediction error produced by using only
the pole-zero linear predictor on its own. The results described in Fig. 6.43 clearly show
that the one-step prediction of a speech signal using a nonlinear real-time adaptive predictor

provides a much better approximation to the actual speech signal than the linear predictor.

For 10,000 speech samples, by using the PRNN-based nonlinear predictor, R, is
about 25.9dB; by using the linear FIR filter, R, is about 23.01dB.

6.4 Adaptive Quantizer

A 4-, 8-, or 16-level non-uniform adaptive quantizer is used to quantize the different signal
d(n + 1). Fig. 6.44 shows details of the adaptive quantizer. In the adaptive quantizer,
adaptation speech control, and scale adaptation are important parts, which adjust the input
of the quantizer in real time. The outputs Io(n+1), H{n+1),2(n+1),[s(n+1) or J4(n+1)
are bhinary digits. Jfq expresses a sign bit. I, Iz, I3 express the the absolute transmission

value,

In order to maintain a wide dynamic range and minimize complexity, prior to quan-
tization, 6(n + 1) is converted to a base 2 logarithmic representation. In order to take
advantage of the distortion masking ability of the human ear and a constant signal-to-

distortion ratio over a range of input signal levels, the logarithmic conversion is necessary
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Figure 6.44: The detail of an adaptive quantizer.
[59].

The difference between the logz|6(n+1)| and the scale factor v(n+1) is input to the
quantizer. The v(n+ 1) is an adaptive scale factor, which is updated in the scale adaptation
block continuously. The basic principle used in updating the scale factor v(n + 1) is bimodal

adaptation, which is described as follows:

¢ It is desirable for v(n+1) to change quickly for different signals with large fluctuations

(e.g. arising from speech).

e It is desirable for v(n+1) to change slowly for different signals with small fluctuation

(e.g. arising from tones, voiceband data) [69].

The fast and slow control of change is managed by the adaptation Speed Control.
It outputs a fast factor v,(n) and a slow factor v/(n). Bimodal adaptation is realized by

forming a linear combination of fast and slow adaptive scale factors.

The fast scale factor vy(n) is recursively computed from the resultant scale value of
v(n):
vy(n) = (1 - 27%)v(n) + 27 W([I{(n)] (6.125)

where v,(n) is limited by 1.06 € v,(n) < 10. The leak factor (1 — 275) introduces finite
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Table: 6-1-1
Normalized quantizer Normalized quantizer
og S+ 1w 1Y L | 1og15@e1-vins1)
(-,60) 4] -85
[-60,- <) 1 5.5
Table: 6-1-2
I ' 0 | 1
Wﬂll 1.76 I 28.02
Table: 6-2-1
Normalized quantizer Normalized quantizer
input range I output
log ! S{n+1)l-v{n+1) log} s(n+1)-v{n+1)
(- 00-8.0) 0 -9.0
[-8.0,-6.0) 1 -7.0
[-6.0 ,-4.0) 2 5.0
[-4.0, 00) 3 -3.0
Table; 6-2-2
o | o] 2] s
W[lll 025 I 1.88 | 8.56 I 36.38

memory to aid encoder/decoder tracking recovery following transmission errors. For 2-bit,
3-bit and 4-bit (including 1 sign bit) operation, the corresponding discrete function W{I]is

defined in Table 6-1-2, Table 6-2-2, and Table 6-3-2, respectively.

A slow scale factor is then derived from v,(n) with a delayed slow scale factor:

u(n) = (1= 2"%v(n - 1) + 2 %0, (n) (6.126)
In the scale adaptation, the fast and slow scale factors are combined to form the

factor v(n + 1):
v(n+ 1) = a(n+ Dvu(n) + (1 - @n+ 1))w(n) (6.127)

where @;(n + 1) is a controlling parameter.

The control parameter &;(n+1), produced in the adaptation speed control block, can

assume a continuous range of values between 1 and 0. It tends toward unity for speech signals
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Table: 6-3-1
Normalized quantizer Normalized quantizer
| log! ?fr‘fi F)T-g\s(ﬂ*' 1) ! log| 5(?1uﬁu)tl-v(n+l)
(- 00, 9.0) 0 -10.0
[-9.0 , -8.0) 1 -85
(-80, -7.0) 2 75
[-7.0 , -6.0) 3 -6.5
[-60, -5.0) 4 -5.5
[-50,-40) |5 45
[-40,-30) |6 35
[-3.0 ,- ©0) 7 2.5
Table: 6-3-2

o a]2]s|a]s]s]o
W[I]|-0.75| 0.25[ 1.69' 3.13| 6.13| 11.5 |21.25|ﬁ9.25

and toward zero for voiceband data signals and tones. Thus the quantizer speech control
‘transition between fast and slow modes is a smooth process, avoiding limited cycles arising
from mistracking between scale factors in the encoder and decoder following a transmission

Crror.

Finally, a;(n) is obtained from a symmetrical limiting of @,(n) to eliminate prema-

ture transitions for pulsed input signals (e.g. switched carrier voiceband data):

1, ap(n) > 1
a(n+1) = (6.128)

ap(n}), ap(n) <1
The intermediate variable &,(n) is defined by:

1-2"Ma,(n-1)+23, v(n)<3

oy d (20D (n) 129
(1-2"%a,(n - 1), otherwise

As the diflerent signal between the logs}é{n+1)| and the scale factor v(n4-1) is sent

to the quantizer, the quantized output decimal value I is obtained from Table 6-1-1, Table
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6-2-1 and Table 6-3-1. The quantizer assigns 1, 2, and 3 binary digits to the value I, and

forms the binary output [I1(n + 1)), [fi(n + 1), Jo(n + 1)], or [li(n + 1), fo(n + 1), Ls(n + 1)).

The inverse quantizer computes an inversely quantized version &(n + 1) of the dif-
ferent signal using the transmitted bits J(n + 1), the scale factor v(n -+ 1) and Tables 6-1-1,
6-2-1 and 6-3-1.

6.5 Main Procedure of Nonlinear Adaptive Differential Pulse-
Code Modulation Algorithm

1. Real-time Prediction:

e Training: At the instant n** time point, the output vectors and error signals of

M modules are defined by, respectively,

$i(n) O(W, ci(n), ri(n)) (6.130)

ei(n), = ¢én—1i+1)—gii(n), i=1,....,.M (6.131)

where @ denotes a vector-valued function, y:(n) presents the prediction output
vector of the i** module during the training process, and ei(n) is the correspond-
ing error signal. An overall cost function for the pipelined recurrent network of

Fig. 6.41 is defined by
M

e(n) =Y ATed(n) (6.132)
i=1
where A is an exponential forgetting factor that lies in the range (0 < A < 1).

The cost function e(n) is minimized by using the gradient estimation algorithm of

PRNN, described in Chapter 4, to calculate the change AW along the negative
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of the gradient ywe(n), Finally, the weight matrix is updated as
W, — W4+ AW (6.133)

where W, is an updated weight matrix.
o Qutputting: The filtering action of M modules is defined by,

yi(n) = (W, ci(n), ri(n)), i=1,...,.M (6.134)

The vector y;(n) is stored as the feedback input r; at time point n+1, yri(n) =
Y1,1{n) and W = W,
o Adaptive operation of the linear subsection:

The output y,(n) of nonlinear subsection and the diffe-ant signal §(n) are input

to the linear subsection. The output of the total nonlinear predictor is:
§(n+1)= aTyf;u(n) + bTﬁ\(n) (6.135)

where

y(n} = rn(n),ypmn - 1))7

n

An) = [¥(n),---,8(n-3)7

The weight vectors a(n) and b{n) are updated by using the adaptive algorithm,

which is described in section 6.3.

2. Real-Time Quantization and Coding:

At the (n + 1)** time point, the new speech sample s(n + 1) is input to the quantizer.
The differert signal §(n + 1) is obtained and then adaptively quantized, which is
discussed in Section 6.4. The quantized output I(n + 1) is encoded with binary
digits. With the 8,000H z sample frequency, the 2-bit [, [;] , 3-bit {fo, I, I2] or 4-bit

(1o, f1, I3, I3) output codes form the 16. 24 or 32 kbit/s output signal for transmission
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over the communication channel. At same time, the I(n + 1) is sent to the adaptive
inverse quantizer. The estimated difference §(n + 1) is delayed and sent to the linear

subsection of the adaptive nonlinear predictor.

3. Real-Time Decoding;:

At the decoder, the received signal is sent to the adaptive inverse-quantizer of the
decoder. The delayed different signal §(n) and reconstructed ¢(n) are fed to the
nonlinear adaptive predictor, which operates similarly to that in the encoder. The
nonlinear predictor has to perform on-line learning with the information of the dif-
ferent signal 4(n), and produce the 3(n + 1). Finally, the reconstructed speech signal
¢(n + 1) is obtained by summing the predicted signal 3(n + 1) and inverse-quantized

signal é(n + 1).

4. Recursive Calculation:

Let n = n + 1, and return to Step 1.

6.6 Summary

In this chapter, a nonlinear Adaptive Differential Pulse-Code Modulation algorithn is de-
veloped. The PRNN-based predictor is employed as the nonlinear predictor for adaptive
differential pulse-code modulation of speech signals. It may overcome the shortcomings of
the conventional ADPCM, which uses the linear predictor. In keeping with the nonlinear

predictor, system (including the 4-, 8- and 16-level adaptive quantizer) is redesigned.

Before the real-time coding procedure may begin, there is a pre-training procedure
for the nonlinear predictor. The pre-training determines the initial weight matrix of the
nonlinear predictor. The procedure is fairly short in that it needs the initial use of 100-200

samples of the speech signal. The pre-training procedure is performed only once during a
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continuous speech signal (including the different voice and silence periods).

In next chapter, the performance of nonlinear Adaptive Differential Pulse-Code

Modulation algorithm is evaluated, and compared to the standard linear form of the system.



Chapter 7

Quantitative Evaluations of the
Nonlinear ADPCM Algorithm

In the previous chapter, the nonlinear Adaptive Differential Pulse-Code Modulation algo-
rithm is proposed. The nonlinear pipelined recurrent neural network-based predictor is used
in the ADPCM, and the operating part of the system is redesigned. In this chapter, the
nonlinear ADPCM algorithm is evaluated with a series of subjective tests. The subjective
tests include the calculation and analysis in the time- and frequency- domains, and listening
tests. Also, this nonlinear ADPCM is compared with the 32 kb/s linear ADPCM algorithm,
designed by AT&T Bell Labs.

A clear statement about processing delay of the nonlinear ADPCM is presented in
this chapter. Finally, the sensitivity of the nonlinear ADPCM to noise in the input speech

is examined, including the use of several subjective tests.

111
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7.1 Experimental Equipment and Speech Signals

7.1.1 Audio Experimental Equipment and Software

For testing the nonlinear adaptive differential pulse coding modulation algorithm, 2 set of
audio experimental equipment is built. The hardware equipment includes a SUN worksta-

tion (Sparc 2), a two-deck cassette tape recorder (Luzman), an earphone and a microphone.

The Lurman tape recorder is directly connected to the SUN workstation. It sends
the original speech signal to the computer, and receives the correséonding reconstructed
speech signal from the computer. The input Sensitivity/Impedance of the tape recorder is
100mv/47kQ; the Output Level/Impedance is about 500mv/2.4k$2. With a normal tape,

its effective frequency response band extends from 20Hz to 16kHz.

The Sparc workstation is the center of this audio experiment system. It has several

auxiliary audio parts, such as a speaker and a input/output audio signal jacket.

Three kinds of audio softwares (“Soundtool”, “Audiotool” and “Xwave”) are used
to support the ADPCM experimental system. Using these softwares, samples of an audio
signal are translated to differently encoded data files which can be read by the ADPCM
algorithm, and vice versa. An audio signal could be translated to a decimal-code data
file using “Audiotool” software, or to a binary-code data file using “Xwave” software. A
decimal-code data file could be translated to a p—law compressed audio file using the

“Soundtool” software.

To simplify the software of the PRNN-based nonlineai ADPCM algorithm, the input
and output files are the normalized decimal-code data files. So, the input p—Ilew compressed
audio files or binary data file may be converted to the linear decimal code file by using

“Sountool” and “Matlab” software.
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7.1.2 Speech Signals

The nornlinear ADPCM algorithm has been tested with manifold speech signals. In this

thesis, the highlights of three speech signals are presented:

* A male speech, beginning with: When recording an audio signal, .... The speech file
continues for about 40 seconds. With 8,000Hz sampling frequency, the corresponding
time series of the speech file consists of 320, 000 samples. The quality of the speech is

high, and there are little noises in it.

e A female speech, being a recording of a telephone operator. A time series correspond-

ing to the speech file consists of 63,800 samples.

*» Four-person (two females and two males) conversation, being one of standard audio
files for testing speech coding systems at the AT&T Bell laboratory. The conversation
continues for 7 seconds. There are about 52,000 samples in the time series of this
speech. The conversation is a high quality audio file, and there is no apparent noise

in it.

7.2 Nonlinear ADPCM Quantitative Evaluation

7.2.1 Index of Evaluation

In evaluating the performance of a predictive coding system, it is most important to examine
the quality of a reconstructed speech and compare the reconstructed speech with the original

one. The following indexes of evaluation are presented:

¢ Waveform Approzimation. It evaluates the approximation of the waveform of a re-

constructed speech signal to that of an original one in the time domain.
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Table 7-1: A subjective measure for listening quality

- Score  Quality  Impairment

4 Excellent Imperceptible

3 Good Just perceptible but not annoying
2 Fair Slightly annoying

l Poor Annoying bt sot too objectionable
0 Bad Very annoying

* Segmental Signal-to Noise Ratio Track. The segmental Signal-to-Noise Ratio (SNR)
or Signal-to-Distortion Ratio (SDR) {59] track curve evaluates the quality of a recon-
structed continuous speech signal. Each segment consists of 80 continuous samples of

a reconstructed signal. At segment 4, the Signal-to-Noise Ratio(SNR) is defined as

321 8(80 x (i ~ 1) + j)?
30.(s(80 x (= 1)+ 7) = (80 x (i — 1) + 7))?

SNR(i) = (7.136)

where {s} is the time series of an original speech signal, and {c} is that of a corre-
sponding reconstructed speech signal. In general, a SNR track consists of 600 ~ 800
segments. According to the recommendation of G.712 (CCITT,1988), the average

segmental Signal-to-Noise (distortion) should be higher than 25dB.

¢ Coherence Function. This function evaluates the correlation between an original
speech and a corresponding reconstructed one in the frequency domain. At one fre-
quency point, the value of a coherence function displays the relation between the

original and reconstructed speech sigrals for a specific frequency.

¢ Listening Test. The user’s opinion about the listening quality of a speech communica-
tion system is a crucial parameter which a designer must take into account. According
to the paper of Kitawaki and Nagabuch (1988) [71], the listening quality of a recon-

structed speech is awarded a score from 0 to 4, as given in Table 7-1.
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7.2.2 Subjective Tests of Nonlinear ADPCM Algorithms with a Male

Speech

1. Figures 7.45, 7.46 and 7.47 describe the male speech waveforms reconstructed by the
32 kb/s, 24 kb/s and 16 kb/s nonlinear ADPCM algorithm. The continuous curves
pertain to the origiral male speech signal depicted in Section 7.1, and the dashed
curves pertain to the reconstructed versions measured at the output of a decoder. In
these plots, only the first 800 samples of the original and reconstructed speech signals
are drawn. Table 7-2 summarizes the mean-square values of the error between the
original and reconstructed speech (320,000 samples) using three bit-rate nonlinear

ADPCM algorithms. The results presented herein clearly show that:

(a) The speech signal reconstructed by a nonlinear ADPCM algorithm may provide

a good approximation to the original speech.

(b) In making a comparison among these three figures, it is apparent that the 32

kb/s nonlinear ADPCM algorithm provides the most accurate approximation.

2. Fig. 7.48, Fig. 7.49 and Fig. 7.50 show the segmental SNR. track curves of these speech
signals reconstructed by the 32 kb/s, 24 kb/s and 16 kb/s nonlinear ADPCM algo-
rithms respectively. Fig. 7.48 is the segmental SNR track curve of the reconstructed
male speech using the 32 kb/s nonlinear ADPCM; and the average segmental SNR
of 800 segments is 46.1dB. The average values of segmental SNR, corresponding to
the 24kb/s and 16 kb/s ADPCM nonlinear algorithms, are 39.64B8 and 33.8dD re-
spectively, All three average segmental SNR (even that obtained from the 16 kh/s
nonlinear ADPCM) are higher than 25d5.

3. The coherence functions between the original male speech and reconstructed ones are
shown in Fig. 7.51, Fig. 7.52 and Fig. 7.53. From these figures, we may make the

following observations:
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(2) The value of the coherence function between the original and reconstructed

(b)

speech, using nonlinear 32 kb/s ADPCM, is higher than or equal to 0.9 on a
wide frequency band (100Hz-1,600Hz), and is higher than 0.7 between 1,500Hz
to 3,400Hz. This means that the reconstructed speech preserves the infon-:nation
of the original speech signal on the main frequency band, and partially preserves

the information on the higher frequency band.

In using the lower bit nonlinear ADPCM algorithm, the frequency bandwidth, on
which the value of a coherence function is higher than 0.9, is shortened. For the
24 kb/s algorithm, the corresponding frequency band stretches from 100Hz to
1,000Hz; for 16 kb/s algorithm, the corresponding frequency band extends from
100Hz to 700Hz. However, on wider frequency bands (100-2,600Hz, for the 24
kb/s algorithm; 100Hz-1,500Hz for the 16 kb/s one), the values of two coherence
functions are still higher than 0.5. These results demonstrate that the output of
a lower bit-rate nonlinear ADPCM may adequately represent the original speech.
The difference between the original and reconstructed signals is increased as the

bit-rate is decreased.

4. Some colleagues in our research laboratory were invited to listen to the male speech

signals reconstructed by the nonlinear ADPCM algorithms. They gave the following

evaluations:

There is little difference between the original speech and the speech recon-
structed by using the 32 kb/s nonlinear ADPCM algorithm (the estimeiad
quality score of the reconstructed speech > 3.5). There are slight noises
in the speech reproduced by the 24 kb/s nonlinear ADPCM (its estimated
quality score > 3.0). In using the nonlinear 16 kb/s ADPCM system, some
annoying noise is heard in its reconstructed speech (the estimated quality

score 2 2.5).
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Figure 7.45: Reconstruction of a male speech using the 32 kb/s nonlinear ADPCM algo-
rithm. Continuous curve: original speech signal; dashed curve: reconstructed speech signal.
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Figure 7.46: Reconstruction of a male speech using the 24 kb/s nonlinear ADPCM algo-
rithm.

7.2.3 Subjective Tests of Nonlinear ADPCM Algorithms with a Female
Speech

1. The second test speech is the female speech depicted in Section 7.1. Figs. 7.54,
7.55 and 7.56 show, respectively, the waveforms (800 samples) of the original speech
and these speech signals reconstructed by 32 kb/s, 24 kb/s and 16 kb/s nonlinear
ADPCM algorithms. The dashed curves pertain to the reconstructed speech signals
obtained at the decoder. The continuous curves pertain to the original female speech
signal. Table 7-3 shows the values of mean-square error between the original sprech

(60,000 samples) and the corresponding reconstructed one by three nonlinear ADPCM
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Figure 7.47: Reconstruction of a male speech using the 16 kb/s nonlinear ADPCM algo-
rithm.
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Figure 7.48: The segmental SNR track of the male speech reconstructed by the 32 kb/s
nonlinear ADPCM algorithm.
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Figure 7.49: The segmental SNR track of the male speech reconstructed by the 24 kb/s
nonlinear ADPCM algorithm.
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Figure 7.50: The segmental SNR track of the male speech reconstructed by the 16 kb/s
nonlinear ADPCM algorithm.
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Figure 7.51: By using the 32 kb/s nonlinear ADPCM algorithm, the coherence function
between the original and reconstructed male speech.
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Figure 7.52: By using the 24 kb/s nonlinear ADPCM algorithm, the coherence function
between the original and reconstructed male speech.
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Figure 7.53: By using the 16 kb/s nonlinear ADPCM algorithm, the coherence function
between the original and reconstructed male speech.
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algorithms. These results clearly show that:

(2) The errors between the reconstructed signals and the original signal are very

small.

(b) The more levels are used in the quantization, the more accurate is the approxi-

mation to the original speech obtained from the nonlinear ADPCM.

2. Segmental Signal-to-Noise (or Distortion) Ratio track curves of the reconstructed
female speeches are shown in Figs. 7.57, 7.58 and 7.59. Fig. 7.57 shows the curve
of the signal reconstructed with 32 kb/s nonlinear ADPCM, and the average segment
SNR of these 800 segments is 37.4dB. The average segmental SNR values of speech
signals reconstructed by the 24 kb/s and 16 kb/s ADPCM algorithms are 33.7dB and

29.5dB, respectively.

3. The frequency-domain coherence function curves are given in Fig. 7.60, Fig. 7.61 and

Fig. 7.62. Relevant observations are summed up as follows:

{2) The value of the coherence function between the original and reconstructed fe-
male speech, using nonlinear 32 kb/s ADPCM, is higher than or equal to 0.9 on a
wide frequency band (100Hz-1,900Hz), and is higher than 0.8 between 1,500Hz to
3,400Hz. This means that this reconstructed speech may wlmost exactly preserve

the information content of the original speech signal inside the main frequency

band.

(b) In using the lower bit-rate nonlinear ADPCM algorithm, the frequency band-
width, on which the value of a coherence function is higher than 0.9, is short-
ened. For the 24 kb/s algorithm, the frequency band stretches from 100Hz
to 1,400Hz; for 16 kb/s algorithm, the frequency band extends from 100Hz to

1,000Hz. However, on wider frequency bands (100Hz-3,200Hz, 24 kb/s algorithin;
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Figure 7.54: Reconstruction of a female speech using the 32 kb/s nonlinear ADPCM al-

gorithm. Continuous curve: original speech signal; dashed curve: reconstructed speech
signal.
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Figure 7.55: Reconstruction of a female speech using the 24 kb/s nonlinear ADPCM algo-
rithm,

100Hz-1,700Hz, 16 kb/s algorithm), the values of the two coherence functions are

still higher than 0.5.

(¢) Compared with the coherence function for the previous male speech, at the same

frequency point, the value of the coherence function for the female speech is

higher.

4. Listening evaluations of the reconstructed female speech are summarized as follows:

There is little difference between the original and the reconstructed female

speech by the 32 kb/s nonlinear ADPCM algorithm (the estimated quality
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Figure 7.56: Reconstruction of a female speech using the 16 kb/s nonlinear ADPCM algo-
rithm.
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Figure 7.57: The segmental SNR track of the female speech reconstructed by the 32 kb/s
nonlinear ADPCM algorithm,
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Figure 7.58: The segmental SNR track of the female speech reconstructed by the 24 kb/s
nonlinear ADPCM algorithm.
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Figure 7.59: The segmental SNR track of the female speech reconstructed by the 16 kb/s
nonlinear ADPCM algorithm.
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Figure 7.60: By using the 32 kb/s nonlinear ADPCM algorithm, the coherence function
between the original and reconstructed female speech,
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Figure 7.61: By using the 24 kb/s nonlinear ADPCM algorithir, the coherence function
between the original and reconstructed female speech.
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Figure 7.62: By using the 16 kb/s nonlinear ADPCM algorithm, the coherence function
between the original and reconstructed female speech.
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Figure 7.63: Encoder block of an AT&T 32 kb/s linear ADPCM algorithm.

score of the reconstructed speech > 3.5). There is a little click noise in
the female speech reconstructed by the 24 kb/s nonlinear system, and the
estimated quality score is not lower than 3.0. In using the lowest bit rate (16
kb/s) ADPCM algorithm, some annoying noise is heard in the reconstructed
female speech; and the estimated quality score may be somewhat higher

than 2.5,

7.3 Comparison with the Linear ADPCM

In January 1994, AT&T Bell laboratory provided us the software of linear ADPCM algo-
rithm, which was recommended by CCITT as a standard 32 kb/s ADPCM algorithm [72].
The schematic encoder block and the decoder block of the 32kb/s linear ADPCM are shown
in Fig. 7.63 and Fig. 7.64.

The predictor used in AT&T algorithm is a linear adaptive predictor, which has a

construction that is similar to the linear part of an adaptive predictor described in Section
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Figure 7.64: Decoder block of an AT&T 32 kb/s linear ADPCM algorithm.

6.3.3. The primary function of the adaptive predictor is to compute the signal estimate
from the quantized difference signal. Two adaptive predictor structures are used, a sixth
order that models zeros and a second section that models poles in the input signal. This

dual structure effectively caters to the variety of input signals which might be encountered

in practice,

Compared with the ADPCM system described in {36, 2], the 32 kb/s linear ADPCM
algorithm of AT&T company is a much more complex system. Several auxiliary parts are
used in the encoder and decoder, exploiting prior knowledge about the speech signal. In
the encoder part, Tone and Transition Detector, and Reconstructed Signal Calculator are
added. In the decoder, with the exception of the above added parts, Synchronous Coding
Adjustment is used. The primary function of Synchronous Coding Adjustment is to prevent
cumnulative distortion and improve the quality of the reconstructed speech. In addition, a
feed-forward path is included to reproduce the speech signal in the decoder. One of reasons
to build such a complex system is to overcome weaknesses that may arise in using a linear

predictor model of a speech signal.
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In order to further evaluate the performance of our nonlinear ADPCM algorithm, we
compare the features of speech signals reconstructed by ours and the AT&T linear ADPCM

algorithm. The comparison items are included here:

¢ Time domain:
1. Approximation of the reconstructed speech waveforms to the corresponding orig-
inal speech wave.
2. Segmental SNR track curve of reconstructed speeches and the average segmental
SNR (4B).

¢ Frequency domain:

1. Power spectrum plots of reconstructed speeches,

2. Coherence functions between the original speech and corresponding reconstructed

ones.

¢ Listening Tests.

The test speech is the four-person conversation described in section 7.1.

7.3.1 Reconstructed Speech Waveforms

Fig. 7.65(a) presents the waveform of the speech reconstructed by the AT&T 32 kb/s linear
ADPCM algorithm. The continuous curve pertains to the original speech signal wave, and
the dashed curve pertains to the reconstructed versions measured at the output of the
decoder. Fig. 7.65(b) is the plot of the corresponding squared error between the original
and reconstructed speech. Figs. 7.66(a), 7.67(a)and 7.68(a) show respectively the speech
waveforms reconstructed by the nonlinear 32 kb/s, 24 kb/s and 16 kb/s ADPCM algorithm,
and Figs. 7.66(b), 7.67(b) and 7.68(b) show the plots of their squared errors. In Fig. 7.69,
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the dashed line is the squared error plot of 32 kb/s linear ADPCM algorithm, and the

continuous curve presents the plot of the 32 kb/s nonlinear ADPCM algorithm.

These figures show that the 32 kb/s nonlinear ADPCM algorithm provides a better
approximation to the original speech than that of the 32 kb/s linear ADPCM algorithm,
even though the linear system has many auxiliary parts. However, the approximations
provided, respectively, by the 24 kb/s, and the 16 kb/s nonlinear ADPCM are slightly
poorer than that of the 32 kb/s linear ADPCM algorithm. These results use only 800

continual samples of the conversation signal.

7.3.2 Segmental SNR Track Curves

The segmental SNR, track curve of the conversation reconstructed by the 32 kb/s lincar
ADPCM system is given in Fig. 7.70. The average segmental SNR of 600 segments is
26.024B.

Three segmental SNR track curves, which correspond to those speech signals repro-
duced by nonlinear ADPCM algorithms, are shown in Fig. 7.71, Fig. 7.72 and Fig. 7.73.
The values of the average segmental SNR for the 32 kb/s, 24 kb/s and 16 kb/s nonlinear
ADPCM, are 38.2dB, 34.4dB and 30.5dB respectively.

From these figures, we make the following observations: Though its average seg-
mental SNR is the lowest, the segmental SNR track curve of the AT&T ADPCM algorithin
is the most stable. The fluctuation of this curve is lower than 548; those of the segmental

SNR track curves with nonlinear ADPCM algorithms are over 10 dB.
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7.3.3 Power Spectrum of Output Signals

The power spectrum plots are drawn in Fig. 7.74, Fig. 7.75, Fig. 7.76, Fig. 7.77 and Fig. 7.78.
Fig. 7.74 is the estimated power spectrum of the original conversation. Fig. 7.75 is the
estimated power spectrum of the conversation reconstructed by the AT&T"s 32 kb/s linear
ADPCM algorithm. Correspondingly, Figs. 7.76~ 7.78 present the estimated spectrum

plots of these conversations by three different forms of the nonlinear ADPCM algorithm.

From these power spectrum plots, we may make following observations:

1. There is a definite difference between the power spectrum of the original speeck and
that of speech signals reconstructed by a linear or nonlinear algorithm. The difference

confirms that some information is lost in the process of coding and decoding.

2. Power spectrum plots of two speech signals reconstructed by the linear and nonlinear
32 kb/s ADPCM algorithms are similar to each other. Their power density distri-
bution at low frequency is the same as that of the original conversation, and the
distributions at high frequency are different when compared with that of the origi-
nal one. This means that the reconstructed errors concentrate mainly at the high

frequency end.

3. As the quantization levels decrease, the power spectrum of these reconstructed speech
signals at the high frequency end differs greatly from that of the original speech signal.
7.3.4 Coherence Functions

We show plots of the coherence functions between the original conversation and recon-

structed ones in Fig. 7.79, Fig. 7.80, Fig. 7.81 and Fig. 7.82. We see that:
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Figure 7.65: (a) Reconstruction of the conversation with the 32 kb/s linear ADPCM algo-

rithm. Contiruous curve: original speech signal; dashed curve: reconstructed speech signal.

(b) The plot of the corresponding squared reconstruction error.

1. The coherence functions corresponding to the two kinds of 32 kb/s ADPCM algo-
rithms are similar to each other. From 200Hz to 1,850Hz, the values of two coherence
functions are over 0.9; from 1,850Hz to 3,000Hz, the values of two functions are over
0.7. However, in the higher frequency region (3,000Hz-3,500Hz), the value of the co-
herence function corresponding to the nonlinear algorithm seems to be higher than

that of the linear algorithm.

2. It is apparent that there are some differences between the coherence function cor-
responding to the 24 kb/s nonlinear ADPCM algorithm and the coherence function
corresponding to the 32 kb/s linear ADPCM algorithm. The frequency band on
which the coherence value corresponding to the 24 kb/s nonlinear ADPCM algorithm
is higher than 0.9, stretches from 200Hz to 1,850Hz. Between 1,850Hz to 3,500z,
the average value is about 0.55. It seems that there are more higher frequency errors

in the speech reconstructed by the 24 kb/s nonlinear ADPCM algorithm.

3. Using the 16 kb/s nonlinear ADPCM algorithm, between 200Hz to 1,400Hz, the av-

erage value of the coherence function between the original and reconstructed speech
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Figure 7.66: (2) Reconstruction of the conversation with the 32 kb/s nonlinear ADPCM
algorithm. (b) A plot of the corresponding squared reconstruction error.

is about 0.9. Beyond that band, the average value is only about 0.25. Compared with
that of the 32 kb/s linear ADPCM algorithm, speech reconstructed by the 16 kb/s

nonlinear ADPCM algorithm exhibits a greater loss in information content.

7.3.5 Listening Tests

The final item of comparing the linear and nonlinear ADPCM algorithms is the listening
quality of their reconstructed speeches. Several colleagues in our research laboratory, who

were invited to listen these reconstructed conversation, gave the following comments:

o The quality of the conversation reconstructed by the 32 kb/s nonlinear ADPCM al-
gorithm is superior. There are few background noises and clicks in the reconstructed

speech.

» There is a slight random background noise in the speech signal reconstructed by the
decoder of the 32 kb/s linear ADPCM algorithm. The voice quality of this recon-

structed conversation is more gentle as compared with that speech reconstructed by
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Figure 7.67: (a) Reconstruction of the conversation with the 24 kb/s nonlinear ADPCM
algorithm. (b) A plot of the corresponding squared reconstruction error.
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Figure 7.68: (a) Reconstruction of the conversation with the 16 kb/s nonlinear ADPCM

algorithm. (b) A plot of the corresponding squared reconstruction error.
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Figure 7.69: Comparison of squared reconstruction errors. Continuous curve: the plot of
squared error using the nonlinear algorithm; dashed curve: the plot of squared error using
the linear algorithm.
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Figure 7.70: A segmental SNR track curve of the reconstructed conversation in using the
32 kb/s linear ADPCM algorithm.
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Figure 7.71: A segmental SNR track curve of the reconstructed conversation in using the
32 kb/s nonlinear ADPCM algorithm.
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Figure 7.72: A segmental SNR track curve of the reconstructed conversation in using the
24 kb/s nonlinear ADPCM algorithm.
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Figure 7.73: A segmental SNR track curve of the reconstructed conversation in using the
16 kb/s nonlinear ADPCM algorithm.
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Figure 7.74: Power spectrum of the original conversation. Continuous curve: typical result;
dashed curves: upper and lower bounds representing 95 percent confidence.
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Figure 7.75: Power spectrum of the conversation reconstructed by the 32 kb/s linear AD-
PCM algorithm.
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Figure 7.76: Power spectrum of the conversation reconstructed by the 32 kb/s nonlinear
ADPCM algorithm.
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Figure 7.77: Power spectrum of the conversation reconstructed by the 24 kb/s nonlinear
ADPCM algoiithm.
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Figure 7.78: Power spectrum of the conversation reconstructed by the 16 kb/s nonlinear
ADPCM algorithm.
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Figure 7.79: Coherence function between the original conversation and reconstructed one
by the 32 kb/s linear ADPCM algorithm.

the nonlinear algorithm. This may be due to the inclusion of the Synchronous Cod-
ing Adjustment in the linear system, which decreases the fluctuation of segmental
SNR track curve. The quality score of the speech signals reconstructed by using both

nonlinear and linear 32 kb/s ADPCM algorithm is estimated to be over 3.5,

» Although the conversation reconstructed by the 24 kb/s nonlinear ADPCM is still
clear, there are apparent clicks and noise in the decoded speech. The estimated

quality score of this speech is about 3.0.

¢ In addition to the clicks and whistles, there is background noise in the conversation
reproduced by the 16 kb/s nonlinear ADPCM algorithm. The quality score of this

reconstructed conversation is estimated to be somewhat higher than 2.5.
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Figure 7.80: Coherence function between the original conversation and reconstructed one
by the 32 kb/s nonlinear ADPCM algorithm.
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7.4 Discussion

7.4.1 Processing Delay of the Nonlinear ADPCM

In principle, the processing delay of a linear ADPCM is caused by the linear predictor. The
linear predictor is an infinite impulse filter, which is composed of two structures, a six-order
section that models zero points in the input signal and a two-order section that models pole

points in the input signal. The function of the linear predictor is described as
8(n+1) = ay(n)s(n) + azs(n — 1) + bT (n)A(n)

where a(n) = [a;(n), a2(n)]7 and b(n) are coefficient vectors, and A is the inverse-quantized

transmitted signal vector.

Therefore, in using the linear predictor, there is a two sampling-unit delay between
the input signal sample and corresponding output sample. The two same predictors are used

in the encoder and decoder of the ADPCM system. The total processing delay between an
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original speech sample and the reconstructed speech sample at the decoder output is four
sampiing units. With 8,000Hz sampling frequency, each sampling unit is 0.125ms. In the

linear ADPCM, the processing delay of one signal sample is over 0.6ms.

In addition to using the infinite impulse filter as the linear subsection, the adap-
tive predictor of the nonlinear ADPCM system also use the Pipelined Recurrent Neural
Network as the nonlinear subsection. The PRNN introduces more processing delay in the

reconstructed speech signal.

According to the mathematical model of PRNN system presented in Section 4.3,
thereis a p + M — 1 sampling-unit delay between an input sample and the corresponding
output one; p is the number of external inputs on each module and M is the number of
modules in the PRNN. The total processing delay of a PRNN-based predictor consists of the
processing delay in its nonlinear subsection plus the processing delay in its linear subsection,

which works oout to be p-++ M — 1 4 2 sampling units.

With two PRNN-based predictors used, one in the encoder and the other in the
decoder of a nonlinear ADPCM system, the total processing delay is 2p + 2M + 2 sampling

units.

The nonlinear ADPCM system used in our subjective tests consists of four modules
(M = 4), and each module has four external inputs (p = 4). With a sampling frequency of
8,000H z, the total processing delay produced by the nonlinear ADPCM is about 2.25ms.
This processing delay is higher than the processing delay produced by the linear ADPCM
(0.125ms).

Ideally, for telephone communications the processing delay should be zero for AD-
PCM, and 25ms for adaptive sub-band coding {64]. In the ADPCM studies considered in
this chapter, the processing delay of 2.25ms for our nonlinear system is larger than that for

the corresponding linear system, but it is considered to be small enough for practical use.
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7.4.2 Sensitive to noise in the input speech

In Section 6.3, we mentioned that the stability of the on-line training and processing
procedure of the pipelined recurrent neural network is sensitive to the presence of input
noise and calculation error. The presence of noise may cause divergence of the nonlincar
predictor. For a complete assessment of the performance of the new nonlinear ADPCM

system, we therefore need to evaluate the effect of noise in the input signal on system

performance.

In evaluating the sensitivity of our nonlinear ADPCM 1o noise in the input speech
signal, a series of subjective tests are performed on the nonlinear ADPCM with different
noisy test speech signals. These noisy test speech signals consist of the “pure” four-person
conversation and white noise of different levels. The signal-to-noise ratio (SNR) values of
the resulting speech signals are estimated to be 30dB, 253d85 and 20d B respectively. The

indices of evaluation are:
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For comparison, the same subjective tests are made on the AT&T linear ADPCM

system.

Figure 7.83 shows the segmental SNR tracks of these noisy conversation signals
reconstructed by the 32 kb/s nonlinear ADPCM. Figure 7.84 describes the corresponding
ones produced by the linear ADPCM system with the same inputs. The solid lines describe
the segmental tracks of the reconstructed signals by nonlinear and linear 32kb/s ADPCM
in two figures for the case of noiseless speech signal. The dotted lines present the segmental
tracks of reconstructed speech signals for the two systems for 30d B SNR. The dashdot lines
arc the segmental tracks corresponding to 26dB SNR. Finally, the star lines describe the

segmental SNR tracks of the reconstructed speech signals in the two systems for 20dB SNR.

From these two figures, we may make the following observations:
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* As the noise power in the input speech signal is increased, the level of output segmental

SNR tracks is progressively reduced.

¢ In using the linear ADPCM system, the average segmental values of the solid track,
dotted track, dashdot track, and the star track are 26.02dB, 25.5dB, 24.2dB, and
21.6d B respectively.

e In using the nonlinear ADPCM system, the average segmental value of dotted track
(input SRN being 30dB) is 34.5dB. As the the number of segments is larger than
200, the output segmental SNR track (dotted lires) of the nonlinear ADPCM tends
toward the solid track, with an average value of 38.2dB. This behavior is not found
in the segmental tracks of the linear system. The implication here is that the learning
and generalizing ability of a neural network help the nonlinear system to gradually

recover its normal performance when the input speech signal is only slightly noisy.

* As the noise in the input speech signal is increased further, the performance of the
nonlinear ADPCM system appears to break down quickly. The average value of the
dashdet segmental track (input SNR being 25dB) is 29.04dB. When the input SNR
is 2043, the average output segmental value is dramatically reduced down to 20.5d 1.
This means that the nonlinear ADPCM system is notoriously sensitive to the presence

of a strong noise composed in the input signal.

Evaluation of the listening test for reconstructed speech signals is summarized as

follows:

¢ When the noise level in the input speech is relatively low (e.g. its SNR is on the order
of 30dB), the quality of conversation reconstructed by the nonlinear 32 kb/s ADPCM
remains fairly good. There is some random background noise and clicks in the re-

constructed conversation. However, it is not difficult to understand the conversation.
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The quality score may be 2.

¢ When the noise power level is high, quality of the reconstructed speech by the noa-
linear ADPCM is poor. There is strong background noise and apparent clicks in the
reconstructed conversation. In particular, when the noisy input has 20dB SNR, the
reconstructed conversation is not at all clear. Listeners are annoyed by the presence

of a strong background noise. The quality score is lower than 1.

e For the linear 32kb/s ADPCM system, the quality of conversations reconstructed is
gradually decreased as the noise power level in the signal is increased. For an input
SNR of 30dB, the reconstructed conversation is still clear, but the background noise
is quite apparent. The quality score of this reconstructed conversation is lower than
2. When the input SNR is reduced further down to 25dB or 20dB, the reconstructed
conversations are not at all clear. The quality of the corresponding reconstructed

conversations is assessad to be poor.

7.5 Summary

In this chapter, the performance of the nonlinear ADPCM algorithm is evaluated with

subjective tests. The conclusion drawn from the evaluation may be summarized as follows:

¢ Subjective tests with three entirely different speech signals show that nonlinear adap-
tive differential pulse-code modulation provides a promising appreach for high-quality

speech communication at 32 kb/s bits rate.

¢ By using nonlinear prediction in the encoder and decoder of the ADPCM system,
we have been able to produce a performance superior to that attained by the linear
version of the system, designed by AT&T Bell Labs. This improvement in performance

was achieved in spite of the fact that the linear system includes many auxiliary parts
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designed to exploit known characteristics of speech signals, and the fact that these

auxiliary parts were absent from the nonlinear system.

o Thereis a slight click and background noise in the speech reproduced by the 24 kb/s or
16 kb/s nonlinear ADPCM system. These imperfections are caused mainly by quan-
tization noise. If some auxiliary parts (such as the synchronous coding adjustment)
are included in the nonlinear system for decreasing the accumulated noise, it should

be possible to further improve the performance of the nonlinear ADPCM system.

¢ The nonlinear ADPCM system appears to be notoriously sensitive to noise in the input
speech signal. As the noise power level is slight, the quality of the reconstructed speech
signal remains fairly good, and is better than the quality of the speech reconstructed
by the linear ADPCM system. However, as the noise power level in the input speech
signal is made higher and higher, quality of the reconstructed speech by the nonlincar

ADPCM system is sharply degraded.



Chapter 8

Summary of the Thesis

8.1 Summary of this Research

The objective of this thesis is the investigation of the nonlinear adaptive prediction of non-
stationary signals whose generation is governed by a nonlinear dynamical mechanism, and
its application to speech communications. We concentrated our investigation on dynamical
neural networks, the relation between the neural networks and traditional adaptive filters,

and the application of neural networks to real-time communications.

First, we asked ourselves three questions: 1) What kind of neural networks are
suited for adaptive signal processing? 2) How can an adaptive neural network predictor
be designed? 3) Can a neural network predictor be used for the application of real-time

communications?

After having done a thorough review of the principles and applications of neural
networks, we found that the recurrent neural network could provide a dynamical nonlinear
model for nonstationary signals. The real-time recurrent learning (RTRL) algorithm pro-
vides an on-line (continuous) training method for recurrent neural networks. A practical

limitation of the RTRL algorithm is that its computation complexity increases exponentially

148
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with the number of neurons in the network.

Based on the engineering principle of divide and conquer, and the biological principle
of neural network modules, a pipelined structure of recurrent neural networks (PRNNY) is

proposed. The features of PRNN are:

¢ The PRNN is composed of M separate modules, each of which is designed to perform

nonlinear adaptive filtering on an appropriately delayed version of the input signal

vector.

e The modules of the PRNN are identical, each designed as a fully recurrent neural

network with 2 single output neuron.

¢ Information flow into and out of the modules proceeds in a synchronized fashion.

In the thesis, the mathematical model and the real-time learning algorithm of the PRNN
are discussed. The pipelined recurrent neural network enhances the computational ability

and stability of the conventional recurrent neurai network.

In order to study the nonlinear adaptive prediction of nonstationary signals, a com-
putationally efficient scheme is described. The complete prediction consists of two subsce-
tions, one of which performs a nonlinear mapping from fhe input space to an intermediate
space with the aim of linearizing the input signal, and the other subsection performs linear
mapping from the new space to the output space. The nonlinear subsection consists of a
pipelined recurrent neural network, and the linear section consists of a conventional tapped-
delay-line filter, The nonlinear predictor, called PRNN-based adaptive predictor, exhibits

the following characteristics.

o The neural network-based predictor learns to adapt to statistical variations of the

incoming time series while, at the same time, the prediction is going on.
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o The adaptation of the nonlinear prediction follows a self-organized learning method,

with the desired signal being derived from the incoming time series.

The signal processing capability of this new adaptive prediction has been demon-
strated by studying the one-step adaptive prediction of speech signals, and the adaptive
prediction of sea clutter. For these applications, it is shown that this nonlinear adaptive
prediction outperforms the traditional linear adaptive scheme in a significant way. In gen-
eral, the nonlinear predictor provides 3 to 5 dB more prediction gain than linear ones.
However, an important attribute of the new neural network-based adaptive predictor is its
high computational efficiency. This attribute makes it possible to use dynamical neural

networks in the real-time speech communications.

Turing to the task of communication, the speech waveform coding has been studied
in detail. In the traditional Adaptive Differential Pulse Code Modulation (ADPCM), an
adaptive linear predictor of a sufficiently high order is used to account for the nonstationary
nature of speech signals, In this thesis, a new nonlinear adaptive predictor has been success-
fully applied to the encoder and decoder of an Adaptive Differential Pulse-Code Modulation
system. The nonlinear adaptive predictor originates from the adaptive PRNN-based pre-
dictor. The nonlinear subsection is still a pipelined recurrent neural network; the linear
subsection is an infinite impulse response filter. However, the choice of a suitable neural
network predictor architecture for such an application is constrained by the fact that the
predictor has co perform its learning in an on-line fashion as the speech signal is being con-
tinuously processed, and that the stability of the encoder and decoder of ADPCM should

be assured.

In keeping with the nonlinear predictor, all of ADPCM systems (including 4-, 8- or

16-level non-uniform adaptive quantizer) are redesigned. Correspondingly, a new nonlinear
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adaptive pulse-code modulation algorithm is developed. The performance of the new algo-
rithm is evaluated with subjective tests. Test results show that nonlinear ADPCM provides
a promising approach for the high-quality speech communication at low bits rates. The
weakness of the nonlinear ADPCM are the longer processing delay and the notoriously sen-
sitivity to noise in the input speech. We have compared the performance of this nonlinear
algorithm to that attained by the linear ADPCM algorithm from several aspects, such as
some evaluations in the time domain, in the frequency domain, and listening tests. Speech
experiments show that the nonlinear Adaptive Differential Pulse-Code Modulation is able

to produce a superior performance.

8.2 Contributions of this Research

The theoretical investigation, deduction, and subscquent simulation performance in this
thesis provide several important contributions to the field of the theory of neural networks,
nonlinear adaptive prediction of nonstationary signals, the application of neural networks

to real-time speech communications. These contributions? are briefly summarized here:

1. A new pipelined recurrent neural network (PRNN) is designed. Its continuous learning
algorithm makes a breakthrough in the on-line (continuous) training of recurrent

neural networks in a computationally efficient manner.

2. A new scheme for the nonlinear adaptive prediction of nonstationary signals is pro-
posed. The nonlinear neural network-based filter learns to adapt to statistical varia-
tions of the incoming time series while, at the same time, the information-processing

operation is going on.

In addition to the contributions described in this thesis, a2 nonlinear modified Kalman filtering was
proposed. The new algorithm augments the standard Kalman filteting with a2 model mismatch function. It
is effective in decreasing estimation errors and overcoming the divergence problem in Kalman filtering,
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3. The new nonlinear neural network-based adaptive predictor has been successfully
applied to Adaptive Differential Pulse Code Modulation (ADPCM) of speech commu-

nications.

4. Publication of several conference papers and journal papers which report on the re-

search results [8, 38, 48, 49, 54, 56, 73).

8.3 Conclusion

In this thesis, highlights of the results of our study on the dynamical neural network, the
nonlinear adaptive prediction of nonstationary signals and their applications on the speech
communications were presented. The research results have given exact and positive answers

to the three questions posed previously.

As always, any attempt to steer a study along all possible paths, while at the same
time exhausting all courses of action is futile, especially with limited time and resources.
It is important therefore, to focus on a few issues, with enough depth so that meaningful
results may emerge, leaving all the other issues for another time, or another researcher.
However, it is only after our methods are validated in the real world, that we may be

invited to take a bow.
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