ADAPTIVE NEUROCONTROL AND ITS APPLICATION TO ROBOTS

by
FENG LIANG, B.Eng., M. Eng.

A Thesis
Submitted to the School of Graduate Studies
In Partial Fulfillment of the Requirements

For the Degree

Doctor of Philosophy

McMaster University
May 1995

©Copyright 1995 by Feng Liang. All rights are reserved.

ADAPTIVE NEUROCONTROL AND ITS APPLICATION
TO ROBOTS

Dedicated To

My wife and son

DOCTOR OF PHILOSOPHY (1995) McMASTER UNIVERSITY

(Mschanical Engineering) Hamilton, Ontario
TITLE: Adaptive Neurocontrol and Its Application to Robots
AUTHOR: Feng Liang

B. Eng. (Beijing University of Aeronautics and Astronautics)
M. Eng. (Beijing University of Aeronautics and Astronautics)

SUPERVISOR: Dr. Hoda A. EIMaraghy
Professor and Director of Flexible Manufacturing Centre
(till June 30, 1994)
Dean of Engineering, The University of Windsor
(since July 1, 1994)

NUMBER OF PAGES: xiv, 234

ABSTRACT

This thesis is devoted to investigating adaptive neurocontrol of nonlinear systems with
uncertain or unknown dynamic models. Novel theoretical synthesis and analysis of neuro-
control systems have been conducted, and applied to the control of flexible joint robots with
experimental tests. The contributions of this thesis fall into the following three areas: (1)

neural networks, (2) adaptive neurocontrol and (3) control of flexible joint robots.

The aim of my research in the neural network area is to search for fast and global con-
vergent learning algorithms with reduced computation burden. The localized neural net-
works with competitive lateral inhibitory cells were introduced. The developed extended
Kalman filtering algorithm with UD factorization can make the localized polynomial net-
works and localized pi~sigma networks possess fastleaming convergence and less computa-
tion. The multi-step localized adaptive learning algorithm was derived for RBF networks
which leads to about 10 fold improvement in the speed of learning convergence., New neural

network models of nonlinear systems were introduced to facilitate neurocontroller design.

In the adaptive neurocontrol area, theoretical issues of the existing backprop-based
adaptive neurocontrol schemes were first clarified. Then new direct and indirect adaptive
neurocontrol schemes, with better performance, were proposed. Itis noticed that the system
stability of many existing neurocontrol schemes cannot be proved. In addition, few stabil-
ity-based adaptive neurocontrol schemes are available and can only be applied to feedback
linearizable nonlinear systems. The thesis provides two major contributions to the stability—
based adaptive neurocontrol approach. The first contribution is extending the classical self-
tuning control methodologies for linear systems to the self—tuning neurocontrol of nonlinear

systems by using localized neural networks. This extension greatly enriches the neurocon-

ii

trol algorithms with guaranteed system stability. The second contribution is proposing the
variable index control approach, which is of great significance in the control field, and apply-
ing it to derive new stable robust adaptive neurocontrol schemes. Those new schemes pos-
sess inherent robustness to system model uncertainty, which is not required to satisfy any
matching condition. They do not impose any growth condition and infinite differentiability
assumption on the system nonlinearity. They can also be applied to nonlinear systems which

are not feedback-linearizable.

As applications and extensions of the above theory, three different robust adaptive
neurocontrol schemes for general flexible joint robots were derived with proven system sta-
bility. All three schemes are able to incorporate a priori information about the robot dynam-
ics into the neurocontroller design to simplify the neural network design. No acceleration
and jerk signals are required in these control laws. Moreover, arbitrary joint stiffness is al-

lowed in the control algorithms.

To demonstrate the feasibility of the proposed learning algorithms and adaptive neuro-
control schemes, intensive computer simulations were conducted based on different nonlin-
ear systems and functions. Different types of adaptive tracking problems and regulation
problems were considered. Furthermore, the proposed adaptive neurocontrol schemes were
experimentally tested using an existing experimental flexible joint robot. Both the simula-

tion and experimental results confirm the practicability of the proposed schemes.

The thesis concludes that the neurocontrol approach, along with the development of
neural computers and large scale parallel distributed processors, is capable of solving the

complex control problem of nonlinear systems with uncertain or unknown dynamic models.

iii

ACKNOWLEDGEMENTS

The author would like to express his deepest appreciation for the valuable support pro-

viaed by his supervisor, Dr. H.A. EIMaraghy.

Specizl thanks are extended to systems analyst Todd Pfaff for his programmin g assis-
tance. Many thanks are due to all the supervisory committee members. Many thanks are

also due to friends and colleagues for their advice and encouragement.

The financial support from Dr. H.A. EIMaraghy’s research funds, including IRIS and
NSERC, from McMaster University, in the form of Cliffton Sherman Graduate Scholarship
(1991-1993), and from Ontario Ministry of Education, in the form of Ontario Graduate

Scholarship (1993-1994 and 1994-1995), are greatly appreciated.

This work is dedicated to my wife, whose confidence and full support made it all pos-

sible.

TABLE OF CONTENTS

DESCRIH‘IVE NOTE * 8 9 % & 0 9 0 s Pt s e s RS i
ABSTRACT ... iiiiiiiiiiitttettenscecsconans ceeaes di
ACKNOWLEDGEMENTS ...t iiieriierececerscennns iv
TABLE OF CONTENTS LK B B BN I I N B B NN R I R N NN N R R N I T N R I BN NN K BN) v
LISTOFFIGURES ... ciiitiiiiineeetenennsonnnconans Xi
LIST OF TABLES & 20 88 s e Xiv
Chapter 1 INTRODUCTION ...uiviievrnrranensanancennnsenas 1
1.1 Neural Networksooviveeinrerensarennssassroscasonosonnness 1

1.2 Neurocontrol and Robotic Controlccciiviiiivinnnnnnnnnes 4

1.3 Motivations for Adaptive Neurocontrolc.cvivvnivnnneens 8
1.3.1 Challenges in robotic controlc.oovviiiiiiiinnnnnnnnes 8

1.3.2 Difficulties in dealing with nonlinearity and uncertainty 10

1.3.3 The potential of the neurocontrol approachc.0..... 1

1.4 Organizationof the Thesisc0iiviiiiiiieiiiiiieennnnennns 12

Chapter 2 LITERATURE REVIEW............... ceerenanes ... 14

21Introductionco0inenenn.. .e

......... S 7 |
2.2 Literature Review on Neurocontrol cearsssrans cassraseass 14
2.2.1 Relevant work and problems tereestenens Cererraaes 18
2.2.2 Need for research Creeeceteansasesttateteennnnanaan 23
2.3 Literature Review on Neurocontrol of Robots sesacvs 25
2.3.1 Relt;vant work and problems000... teetaarees 25
2.3.2 Need for research theecesteataatsrerennaa Piesenann 28
2.4 Objectives and Scope of the Thesis Conressrrrttriasererenans 29

Chapter 3 NEW DEVELOPMENTS ON NEURAL NETWORKS .. 33

J1Introduction.......ovviiiiiieiininnnnnnn.n. e veres 33
3.2 Localized Neural Networks with CLICells Ceeennsanas 35
3.2.1 Review on polynomial neural networks Ceeeranaes 36
3.2.2 Localized polynomial networkscccvvvevennnn. Ceennns 38
3.2.3 The optimal Kalman filtering learning algorithm 42
3.2.4 Extenston to localized pi-sigma networksc0cvvvvnenn. 46
3.2.5 Simulation evaluation vesesssaaanns Ceeerrenacitsanas 47
3.3 Multistep Localized Adaptive Learning of RBF Networks 50

3.3.1 Adaptive learning algorithm with optimal learning rates
3.3.2 Localized adaptive l-arning algorithm for Gaussian networks 54

3.3.3 Multistep learning algorithms

vi

3.34 Simulation evaluationcvveeveecnasccenss eeieasenaa 60

3.4 Neural Network Models for Nonlinear Systems Crertrersaraaes 62
3.4.1 Four neural networkmodelsccciivvirnnrrinnncnaes 63
3.4.2 Generalization ability of neural networks Cretrerinannnas 68
3.4.3 Simulation tests Ceeehiiaesaraanan R 4 |

35 Summaryiiiiiiiiiricnieas Cetsesessaasanes erassssssness 15

Chapter 4 BACKPROP-BASED NEUROCONTROL APPROACHES

............ e

A1 Introductionveveniiieetainniirerron vecrnssaserssnceassannans 71
4.2 Indirect Adaptive Neurocomtrolcoeeeeviriercncrerranranees 79
4.2.1 Existence of indirect adaptive neurocontrollers 80
4.2.2 Structure of indirect adaptive neurocontrollerscvvu... 87
4.23EXIensionscevvviiiniiiiieeieasas cerrians sessiecsnnnnnne 96
4.2.4 Simulationtestsc00000n Ceesasissnetesntraeananns 97
4.3 Direct Adaptive Neurocontrol Ceeheansraarateseteenaaransan 97
4.3.1 Existence of direct adaptive neurocontrollersco0vveenn. 99
4.3.2 DANC with estimated gradientsoieviiinnenenncenns 100
4.3.3 DANC using optimization without using derivatives 107
4.4 Summary Gt bt eteceeteseeetatttaatctttentananny ... 108

Chapter 5. SELF-TUNING NEUROCONTROL APPROACHES . 111

vii

5.1 Introduction Caresesesesatanns Ceesversana cresesacsanns R § § |

5.2 Structure of Self-Tuning Neurocontrol Systems N T
5.3 STNC Using Localized Linear Networks Caessssssenasnass vena 116
5.4 STNC Using Localized Higher Order Polynomial Networks veens 120
5.5 Self-Tuning Sliding Neurocontrol Scheme ceees 123
5.6 Simulation Test reeeisans Ceeeerrarsesiacanaans veees. 125
S7Summaryc0hiiiinnnn ceesanns teessseseesraenceaas .o 128

teasteaennnanaas S veree.ss 129
6.1 Introduction tertasseaiiatenasateae arnnaans 129
6.2 Variable Index Contro! Theory fetieeeraeeareraanarenaas 131
6.2.1 Preliminaries Crreraieeetireanetetettnetnaans o131
6.2.2 The worst—case approaching control strategy 133
6.2.3 Existence of feasible multiple error indices 136
6.2.4 Stability theorem of variable index control systems 139
6.2.5 Simulation example Ceeteisaresactrenaenas .. 147
6.3 Extension to General Nonlinear Systemsc000euu.... cevans 150
6.4 Adaptive Neurocontrol of General Systems Cerraeseaes 152
6.4.1 Neural network representation.............. Ceesaasasrsaenns 153
6.4.2 The new adaptive neurocontrol algorithm 154
6.4.3 Global stability proof Cereteeecararenn e ierrantrreeens 155
6.5 Summary000000n Ciressarnns Ceesersnearsrtastsiaereaans 157

viii

Chapier 7. ROBUST ADAPTIVE NEUROCONTROL OF FLEXIBLE
JOINTROBOTS ...viviiiiiiiiiiarrennnaeneas. 159

7.1 Introduction Cetteeitssatacsteannnanaenns ceeneees. 159
7.2 The Direct Adaptive Neurocontrol Schemeccoeevievriennnes 163
7.2.1 The neurocontrol algorithm teersirestarannans Ceseanes 163

7.2.2 Simulation teSt ... iiiiuieiiirrrrarrrretttonntcestnasaenns 171

7.3 Model Reference Adaptive Neurocontrolciiveivvnnenennnen 177
7.2.1 Re-formulating the dynamic modet of flexible joint robots 177

7.2.2 Model reference adaptive neurocontrol atgorithm 179

7.4 Summary Cemveesessesssesvssesrnsnasasanas creneassenass 182
Chapter 8. EXPERIMENTAL TESTS cetsecsnransessss 184
81Introduction..........coviiiiieiiiinna, Ceetrseseieenrasanaans 184

8.2 Experimental Robot Descriptioncoiiiiiiiinniinnnnns 185
8.2.1 Structure of the experimental robot P .

8.2.2 Experimental system modelingooviiiiieinrianrranennns 187

8.2.3 System precision of the experimental setupcccvuun.. 189

8.3 Control Algorithmsccovviiiinieneeennnnns vesseecnsanss 190

8.4 Experimental Results ceresean teretretecteatnene 191

8.5 DiSCUSSIONS . oo vvevivirrrransererrereansaaanes Ceeeenraseranaaas 201
Chapter 9. CONCLUSIONS Certetsieirrenenaas ceaess 202

9.1 Summary of Contributionscco.... veesen sesesecarenas 202

9.2 DiSCUSSIONS .4 evvvvernsocessacecsoannan certrannanea tereerssaans 206
9.2.1 Utilizing a priori informationc.c0veevennnnn. cesess 206

9.2.2 Neurocontroller implementationco000enaans ceeess 207

9.2.3 Neurocontroller structure determinationcc0ceeeenns 207

9.2.4 Neural network model vs. first-principle model 209

9.2.5 Neurocontrol and adaptive control tereeraessaaanss 209
93Future Workco0000 Cieierebsecstrecarastaastranne vees. 210
BIBLIOGRAPHYiitiritiecnrncnncocanscrasnssnancanns 212
APPENDIX Acvivvuennnen Ceseessstessssatsrnsnaenns .. 227

Fig. 1.1:
Fig. 2.1:
Fig. 2.2:
Fig. 2.3
Fig. 2.4:
Fig. 2.5:
Fig. 2.6:
Fig. 3.1:
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10

Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16

Fig. 3.17
Fig. 3.18
Fig. 3.19
Fig. 4.1
Fig. 4.2

LIST OF FIGURES

An illustration of neural networks ool iiiiiiiiiiiii, 2
Block diagram of teacher-replacing neurocontrol systems 15
Block diagram of inverse neurocontrol systemsc..ocvn... 15
Block diagram of indirect adaptive neurocontrol systems 16
Block diagram of direct adaptive neurocontrol systems............... 17
Block diagram of robust neurocontrol systemsc00.nn 17
The outline of the thesis objectives ottt iiniinnanannn 30
The structure of polynomial neural networks ..ot 37
Illustration of localized receptive fields and localized representatio 39
Localized receptive field division using CLIcells 41
The structure of localized polynomial networks with CLIcells 41
Single layer Pi-Sigma networks oo il o 46
Approximation of z=sin(x) sin(y) /xy using the new neural networks 48
Approximation error mesh of z=sin(x) sin(y) /xy 49
Gaussian RBF networks i i i it 51

Active RBF nodes and connections in localized adaptive RBF networks . 56

Approximation of sin x using RBF networks with the new learning

1 F0)11 1)+ P 61
The block diagram of system identification 62
The block diagram of inverse system identification 62
Cascaded RBF networks for system model (3.4.1)and (34.2) 64
Mapping relations between training sets and workable sets 69
Introduction of filters to neural networks o0 inen. 70
The time responses of the neural network model output versus the actual one
.. 71
Comparison of the actual and the network output during training 73
Fast convergent training error curve vs. iteration (J=50) 73
Convergent training error curve vs. iteration (J=10) 74
The block diagram of the adaptive inverse system neurocontrol 78

The schematic diagram of the indirect adaptive neurocontrol systems ... 79

xi

Fig. 4.3
Fig. 4.4
Fig. 4.5

Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig.54
Fig. 5.5
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5

The model reference indirect adaptive neurocontrol systems
The detailed structure of the indirect adaptive neurocontrol systems 88

The schematic diagram of the indirect adaptive neurocontrol system with

adefaultplantmodel il i e 96
Incorporating a conventional controller into the neurocontroller 97
The schematic diagram of hybrid neurocontro! and fuzzy conmwol 97
Time response of a neurocontrol system 98
Backprop-based direct adaptive neurocontrol scheme 98
The backprop-based model reference direct adaptive neurocontrol systems 99
Conventional controller enhanced by direct adaptive neurocontrol 108
A schematic diagram of the self-tuning neurocontrol systems 113
The specified structure of self-tuning neurocontrol systems 115
A schematic diagram of the self-tuning neurocontrol systems 119
The control system time responses under trajectory (5.6.3) 126
The control system time responses under trajectory (5.6.4) 127
Ilustration of the singularity sets of example 3 146

Time responses of the two-link robot under joint stiffness uncertainty .. 149
Time responses of the two-link robot under link dynamic uncertainty .. 150

Trajectory tracking responses of the two-linktobot 151
General nonlinear systems with stable dynamic compensators 152
Block diagram of the direct adaptive neurocontrol system 171
Straight line trajectory tracking: learning stage 173
Straight line trajectory tracking: workingstage 174
The circle trajectory tracking: learningstage 175
The circle trajectory tracking: working stage 176
The rectangle trajectory tracking: learning stage................... 176
The rectangle trajectory tracking: working stage 177
The overall structure of the experimentalrobot 185
The mechanical composition of the experimental robot 186
The mechanical relationship of the experimental robot 186
The control system setup of the experimentalrobot................. 187
The actual tip trajectory of the experimental robot (line) 163

xii

Fig. 8.6 The actual tip mjectory of the experimental robot with c block (line) .. 194
Fig. 8.7 The actual tip trajectory of the experimental robot (circle) 195
Fig. 8.8 The actual tip trajectory of the experimental robot with < block (circle) 196
Fig. 8.9 The actual tip trajectory of the experimental robot (rectangle) 196

Fig. 8.10 The actual tip trajectory of the experimental robot with < block (rectangle)
... 197

xiii

LIST OF TABLES

Table 8.4.1 Summary of the experimental resultscuvvennn... 197
Table 8.4.2 Comparison of the experimental and simulationresults 198
Table 8.4.3 Experimental results from Carusone, etal. 198
Table 8.4.« Experimental results from Tarn, etal. 199
Table 8.4.5 Experimental results from Am,etal.ooiiniinrneenn.n. 200

xiv

CHAPTER 1

INTRODUCTION

This chapter gives a brief introduction to neural networks and neurocontrol, and
forms the motivation of the thesis. Section 1.1 presents a brief overview of neural networks
and their applications. Section 1.2 presents the definition of neurocontrol and its applica-
tions to nonlinear systems, including robots. Section 1.3 presents the motivation of the thesis
and tries to answer these questions: why neurocontrol? Why not others? Section 1.4 over-

views the organization of the thesis.

1.1 NEURAL NETWORKS

Artificial neural networks (or, briefly, neural networks) are computational systems,
either hardware or software, that mimic the computational abilities of biological neural net-
work systems by using large numbers of simple, interconnected artificial neurons (ﬁg. 1.1).
Artificial neurons are simple emulations of biological neurons; they take in information from
sensor(s) or other artificial neurons, perform very simple operations on these data, and pass
the results on to other artificial neurons by synapses. Neural networks operate by having
their massive, interconnected artificial neurons process data in this manner. They use both

logical parallelism and serial operations.

Artificial neural network research was one of the early emerging branches in artifi-
cial intelligence in the 1950s. It has been developed into a multi-disciplinary science, in-
volving neuroscience, biology, psychology, computer science, and engineering. The three
main characteristics which describe a neural network, and which contribute to its functional
abilities, are: structure, dynamics, and learning. In order to show the difference between
biological and artificial neural networks, we use the terms units or nodes instead of neurons

and connection weights instead of synapses in some contexts.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

Inputs

connection lines
with weights

neurons

Fig. 1.1 An illustration of neural networks

Neural network research is often thought to be a recent development. However, this
field was established before the advent of computers. Work in the field began in the 1940s
(Hebb, 1949). Rosenblatt (1958) stirred considerable interest and activity in the field when
he designed and developed the Perceptron, which was computationally precise and a true
learning machine. The ADLINE (ADaptive LINear Element) network was developed short-
ly after the Perceptron, by Widrow and Hoff (1960). The Least-Mean—-Squared learning
rule, also known as the Delta rule, was introduced then. The research progressed for about

ten years afterwards and declined in the late 1960s, due to a mistakenly generalized conclu-

sion about multilayered systems. The research re-surged around 1986, attributed to the dis-
covery of the well-known Backpropagation algorithm for multilayer perceptrons, which
was independently developed by Werbos (1974), Parker (1985), LeCun(1986) and Rumel-
hart and McClelland (1986). Now, neural network research has become one active area of
artificial intelligence (AI) and the results have been applied to many science and engineering

disciplines (Haykin, 1994).

The distinguishing features of neural networks are: 1) content-addressed memory:
they provide fast information retrieval / matching, and the storage of the information is dis-
tributed; 2) learning ability: they can learn todo tasks based on training data or initial experi-
ence, and can adapt to environmental changes; 3) parallel processing: they can perform fast
information processing; 4) distributed processing: they are fault—tolerant with graceful deg-

radation; 5) arbitrary function approximators: they can be applied to modeling and classifi-

cation problems.
There are many different types of neural networks. The intensively studied types are:
» Feedforward multilayer perceptrons
* Associative memory networtks (including auto—associative, hetero-associative)

* High order feedforward multilayer percepwrons (Sigma-Pi, Pi-Sigma and

MARS)
¢ Radial basis function (RBF) networks (Gaussian, and other types)
* CMAC networks (BMAC, PCMAC)
* Recurrent neural networks (arbitrary and specified connections)
* Self-organized neural networks (single- and multi-layer)
* Fuzzy neural networks

* Hybrid and complex networks (hierarchical and hybrid)

Generally speaking, leamning is a process of change in a system that enables that Sys-
tem to do similar tasks more efficiently and more effectively the next time. In other words,
learning is the generalization of experience. There are two basic activities of learning:
knowledge acquisition and skill refinement through practice. Human learning uses both of
them. The types of learning used in neural networks are: 1) supervised learning, 2) unsuper-

vised (including competitive learning and self-organized learning) and 3) reinforcement

learning.

Itis worth mentioning that there are different approaches and methodologies in neu-
ral network research, because of the multi~discipline characteristic of this field. There is no
doubt that researchers who are interested in neural networks are attracted by their cognitive
and computational properties. However, researchers from neuroscience, biology and
psychology tend to favor experimental approaches, and draw their conclusions based on ob-
servation and generalization. On the other hand, researchers from computer science, phys-
ics, and engineering tend to favor logical and mathematical approaches, and specialize the
functions of neural networks in their applications. Therefore, some conclusions about neural
networks are generalized without theoretical proofs, and some neural networks with solid

mathematical basis lack biological support. As research progresses, such problems will

surely be solved.
1.2 NEUROCONTROL AND ROBOTIC CONTROL

Neurocontrol can be defined as functional emulation of the learning and adaptation
mechanism, and the representation ability of biological neural networks into the design of
control systems. The studied systems are mainly nonlinear, though neurocontrol can be ap-
plied tolinear systems. The corresponding neurocontrollers can be implemented on comput-
ers or neural net chips. A neurocontroller and the controlled plant form a neurocontrol sys-

tem. Neurocontrol is also named in the literature as neural network based control,

neuromorphic control or neural control. It can be further classified into weight-fixed neuro-
control, adaptive neurocontrol and robust neurocontrol. A neurocontrol system is said to be
adaptive if it can adjust its neurocontroller weights according to the changes in the system
dynamics and environment. A neurocontrol system is said to be robust if it can tolerate the
changes in the system dynamics and environment, and the neural network modeling errors
that are confined by known upper and lower bounds. Due to the distinguishing features of
neural networks, the neurocontrol appraach is suitable for complex nonlinear systems with
uncertain and time—varying factors, and can be further extended to autonomous control with
environment recognition, decision making and skill acquisition. They belong to the scope
of intelligent control in systems theory, and the related research work has grown rapidly in

recent years, both in theory and applications.

Neurocontro! may also seem to be a new area started in recent years. However, its
origin dates back to the 1960s and it is among the first few applications of neural networks.
Widrow and Smith (1963) proposed a scheme of pattern recognizing control systems using
ADLINE, which is the first known neurocontrol scheme. Albus worked a long time to set
up a model to mimic the function of cerebella. He succeeded in building a cerebellar model
articulation controller (CMAC) and applied it to the robotic control problem (Albus, 1975).
Due to the overall decline of neural network research, these successes attracted little atten-
tion. After the revival of neural network research and the confirmation that neural networks
are universal approximators, neurocontrol research grew rapidly into an active research area
in control. A.G. Barto, S. Grossberg, M. Kuperstein, K.S. Narendra, D. Psaltis, R.S. Sutton,
P.J. Werbos, and B. Widrow, to name a few, are among the people who started the recent ap-

plication of neural networks to the control area.

Neurocontrol research belongs to the scope of intelligent control (Bavarian, 1988,

Narendra and Mukhopadhyay, 1992). At present, neurocontrol theory is still in its infancy.

The research objective and studied systems are the same as intelligent control. Therefore,

an overview of intelligent control is helpful to the understanding of neurocontrol,

Intelligent control systems are control systems that can functionally emulate some
of human inteiligence into their design and implementation. Intelligent control is mainly
aimed at the nonlinear complex dynamic systems which contain uncertainty. By applying
intelligent control, these systems are expected to function optimally according to the changes
of task, environment and systems themselves without failure. There are numerous intelli-
gent control schemes and different approaches at present. One can categorize intelligent

control along many different dimensions. The following are some acceptable categoriza-

tions,

(a) categorization according to the type of intelligence:
(1) Self-learning intelligent control
(2) Self-optimizing intelligent control
(3) Self-adaptive intelligent control
(4) Self-reproducing intelligent control
(5} Self-organizing intelligent control

(6) Self-repairing intelligent control

(b) categorization according to the underlying paradigms:
(1) Expert control (1985)
(2) Fuzzy control (1978)
(3) Learning control (1983)
(4) Neurocontrol (1986)

(5) Autonomous control (1980).

(c) categorization according to the application systems:

(1) Intelligent process control systems

(2) Intelligent robotic control systems
(3) Intelligent weapon control systems
(4) Intelligent flight control systems

(5) Imtelligent vehicle control systems

(d) categorization according to the structure of intelligent systems:

(1) Centralized; (2) Decentralized; (3) Hierarchical; (4) Multi-level

These categorizations can be combined together to give different names, as in the
published papers. For example, self-organizing fuzzy control, or, adaptive neurocontrol.
As Shirai and Tsujio (1985) stated, it appears that it is the fate of artificial intelligence that
when techniques in a given field become established and are put into practice, they cease to
be part of artificial intelligence. This is because the underlying principles of human intelli-
gence have not yet been well understood, and most existing artificially intelligent systems
only approximate partor a single aspect of human intelligence by means of conventional log-
ic or mathematics. A similar case happens for intelligent control, including neurocontrol.
Therefore, when we assess an Al system, the following questions should be answered: In

which aspect(s) does the system emulate human intelligence? Is (are) this aspect(s) essential

to the solution of the problem?

Robotics is another fast growing research field. Robots find more and more applica-
tions in manufacturing, hazard environments, aerospace, medical instruments and even do-
mestic households. Robotics consists of many research areas. This thesis will deal with one
of them, the robotic control area, especially the control of flexible—joint robots. 'f'he dynam-
ics of a robotic system is highly nonlinear with uncertainty, and a robot may work under un-
known and changing environments and execute different tasks. The control problem of ro-
bots is not solved completely. Neurocontrol may provide a new solution to this complex

problem, since it is natural to attempt to give a robot a brain-like controiler and decision

maker. In fact, the human brain—eye-arm control loop is an excellent example to emulate

for robot control.

According to the applications, robots can be classified into industrial robots, univer-
sal robots, and telerobots. According to their flexibility, robots can be classified into rigid—
link rigid—joint robots, rigid-link flexible—joint robots, flexible-link rigid—joint robots, and
flexible-link flexible—joint robots. Their degrees of freedom can be redundant or non-re-
dundant. The bases of robots can be fixed or mobile. Their actuation strategies can be indi-
rect or direct drive. The actuators can be electromagnetic, pneumatic, or hydraulic. The
common sensors used to measure robotic states are encoders, strain gauges, sonar sensors,
laser sensors, or even computer vision systems. Robotic controllers are implemented by ¢i-
ther analog circuits or digital computers. The common control tasks are: position and
orientation control, trajectory control, force/moment control, constrained motion control,

and coordination control of multiple robots.
1.3 MOTIVATIONS FOR ADAPTIVE NEUROCONTROL
1.3.1 Challenges in Robotic Control

A general trend in designing robot manipulators is to make them lightweight relative
to their loads, able to work at higher speed with high precision, adaptable te different tasks,
cost-effective and efficient in applications. The dynamics of these advanced robot manipu-
lators cannot be simply modeled as rigid bodies. The dynamic modeling errors due to ne-
glecting the structural flexibility of various components in mechanical manipulators have
a significant effect on the performance of robot systems, and sometimes even lead to system
instability if they are not accounted for in the controller design. It has been observed that
joint flexibility, which is more common in industrial robots than link flexibility, plays a sig-

nificant role in determining the end deflection of robot arms. Joint flexibility results from

power transmissions, such as shafts, gear trains, and belts. The actuators themselves also
exhibit some electrical, hydraulic, or pneumatic “flexibility”. Joint flexibility can be mod-
eled as a lumped torsional spring, although stiffnesses may be nonlinear and difficult to de-
termine exactly. The overall dynamic models of flexible joint robots can be descrited asa
nonlinear matrix differential equation set, and their control problems are more difficult than
rigid joint robot ones. Control designers often face a trade—off between the robustness of

the control systems and the necessity of measuring joint accelerations and jerks.

A practical dynamic model of an n-link flexible joint robot manipulator usuatly con-
tains structural and parametric uncertainty. Parametric uncertainty may arise from the irreg-
ular geometric shapes of the robotic components, non—uniform materials, non-symmetric
motor or transmission installation, part worn-out and end-effector load changes. Structural
uncertainty may result from neglected actuator dynamics, internal moving parts, friction and
backlash, calibration errors and external disturbances. Sudden control action may excite un-
modeled high frequency characteristics, such as link flexibility. Non-symmetric motor
axes, for example, result in coupling between link dynamics and motor dynamics. There are
different approaches to designing controllers for flexible—joint robots. They can be classi-
fied into: (1) exact model-based control, (2) robust control, (3) adaptive control, and (4)
fuzzy control. Compared with these approaches, the neurocontrol approach requires the

least a priori information about the robot dynamics.

Industrial robots were introduced to increase production flexibility and avoid ma-
chine tool and fixture redesign. Intelligent robots play an important role in modern flexible
manufacturing systems. In addition to dynamic control, intelligent robots should be able to
recognize their environmental and internal changes, make decisions, and perform task—plan-
ning, trajectory—planning, contact force—planning and coordination—planning based on ex-

ternal command and sensed information. The information could be qualitative, quantitative,

10

fuzzy and uncertain. Artificial neural networks, along with some adaptive and leaming

mechanisms, may provide solutions to these problems.
1.3.2 Difficulties in Dealing with Nonlinearity and Uncertainty

With the rapid development of science and technology, and the strong requirement
for automation, many large—scale and complex systems have come into use and require auto-
matic control technology. The conventional control theory, which depends completely on
the mathematical models of the controlled plants, increasingly exhibits limitations on han-
dling such systems. Most actual dynamic systems are nonlinear, and often time-varying
with uncertain factors (parametric, structural, dynamical), which make it very difficult to
obtain accurate mathematical models for those systems. Even for nonlinear systems with

exact mathematical models, general and effective control design tools are still under devel-

opment.

In recent years, the adaptive control approach was widely applied to solve the para-
metric uncertainty problem. Itcan be applied to linear systems and some linearly parameter-
izable nonlinear systems. Variable structure control is a popular robust control scheme for
nonlinear systems with uncertainty (Utkin, 1976, Slotine and Li, 1991). However, it is diffi-
cult to choose a suitable sliding surface for a nonlinear system or a general linear system,
especially when the number of control inputs is much less than that of the system states. The
feedback linearization approach (e.g., Isidort, 1989) represents a major breakthrough in non-
linear control field. Its adaptive and robust modifications were also proposed. Its main idea
is to find a nonlinear diffeornorphism that transforms a nonlinear systeminto a linear system.
Only a small class of nonlinear systems can be transformed into linear systems. For high
order nonlinear systems, the outer—loop linear feedback gains, which become the coeffi-
cients of characteristic polynomials, are too large to realize if fast convergent error dynamics

are required. This is because the canonical form of equivalent linear systems is in cascaded

11

integrator form. Also, the inverse nonlinear transformation may not be global. The require-
ment that the nonlinearities in system dynamics be infinitely differentiable, or form the so—
called “smooth vector field”, excludes most of the practical nonlinear systems which coniain

dead-zone, saturation, hystereses, backlash, etc.

Moreover, the pure mathematical analytical structure of conventional control theory
cannot handle qualitative information and make use of human empirical knowledge, skill
and heuristic reasoning. Therefore, it is difficult to satisfy the design requirements of com-
plex control systems using such theory (Astrom, 1991). In summary, the control problem

of general nonlinear systems with uncertainty is still unsolved.

1.3.3 The Potential of the Neurocontrol Approach

As stated before, neural networks are universal approximators. Therefore, they can
be applied to model nonlinearity in dynamic systems. Since they have the ability to learn,
neural networks can be trained to emulate human skills, and qualitative control rules, and
to adapt to environmental and system internal changes. Therefore, the main advantages of
neurocontrol approach are that (a) quantitative system models are not required to design a
neurocontroller; (b) it is easy to incorporate any a priori information about controlled sys-
tems into neurocontroller design; (c) neurocontrollers can adapt to environmental and sys-
tem dynamic changes; (d) neurocontrollers can be developed by on-line or off-line learning;
and (e) the neurocontrol approach is applicable to both linear and nonlinear systems (which

are not necessarily linearly parameterizable).

Neurocontrol has been applied to many control problems at the simulation level.
Among many reported applications are rigid and flexible joint robot control, inverse kine-
matics and dynamics, chemical process modeling and control, vehicle steering control, flight

control, underwater vehicle conaol and nuclear reactor control. Werbos (1989), Narendra

and Parthasarathy (1990), Widrow (1990), and Sanner and Slotine (1992) have discussed the
basic theoretical issues of neurocontrol and system identification. The above preliminary
results show the high potential for applying neural networks to control systems, and provide
us with a hope of constructing universal models and controllers for general nonlinear sys-
tems. As Narendra and Mukhopadhyay (1992) stated, it has been demonstrated that neural

networks are ideally suited to cope with the difficulties in control, i.¢., complexity, nonlin-

earities, and uncertainty.

Compared with conventional approaches, the neurocontrol approach needs the least
a priori information about the controlled system models, Therefore, it is more robust to mod-
eling errors. Compared with the iterative learning control approach, neurocontrol does not
require the desired trajectories to be repetitive. Compared with the fuzzy control approach,
neurocontrol can be applied to more general nonlinear systems, and does not require a set

of fuzzy control rules, which are difficult to obtain for general complex dynamic systems.

Adaptive neurocontrol is a short term for adaptive control using neural networks.
Since the network weights can be obtained through on-line learning, this approach is more
suitable for systems that are difficult to model and have time-varying factors. Based on the
existing problems of nonlinear control, the potentials of neurocontrol, and incapability of

the existing approaches, this thesis proposes to research adaptive neurocontrol and apply it

to control flexible joint robots.
1.4 ORGANIZATION OF THE THESIS

The remaining chapters of this thesis are organized as follows. Chapter 2 presents
literature reviews on neurocontrol and its application to robotic manipulators, with emphasis

on the classifications, the state—of—the—art, and the existing problems of the current re-

13

searches. Based on the review, the objectives and scope of the thesis are proposed and de-

fined.

Chapter 3 presents some new learning algorithms for neural networks. Localized
neural networks are introduced to speed up the learning and reduce computation. New neural

network models for nonlinear systems are also presented.

Chapter 4 presents new extensions of the backprop-based adaptive neurocontrol

schemes. Little knowledge on control theory is required to apply these schemes.

Chapter 5 extends self-tuning control theory for linear systems to the self-tuning
neurocontrol of nonlinear systems. This contribution greatly enriches the stability-based

neurocontrol schemes.

A variable index control theory is proposed in Chapter 6. It can be applied to solve
the control problem of general nonlinear systems, while the currently available nonlinear
control schemes can only be applied to feedback linearizable systems and some nonlinear
systems with special structures. As a result, a global stable adaptive neurocontrol scheme

is derived for unknown nonlinear systems.

In Chapter 7, two robust adaptive neurocontrol schemes are presented for the trajec-
tory control of flexible joint robots. The global stability of these neurocontrol systems are

proved theoretically.

Experimental tests were performed on an existing flexible joint robot to evaluate the

real-time performance of the neurocontrollers. The results are presented in Chapter 8.

The thesis concludes with Chapter 9, where a summary of the achievements, discus-

sions and suggestions for future work are given.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter reviews the major results and important work in neurocontrol and neu-
rocontrol of robots that have been done in recent years. The thesis tries to classify the current
research trends, and reviews some representative work in each direction and summarizes the
problems in existing works. Section 2.2 presents the review on neurocontrol. Section 2.3
presents the review on neurocontrol of robots. The reviews show that neurocontrol theory
is stillin the early stage of development., Basic problems, such as the stability and optimality
of general neurocontrol systems, the global convergence of the learning algorithms, the
structure of neurocontrol systems and neurocontrollers, and neural network model validity
tests, are still under investigation. Much work has yet to be done in the neurocontrol area.

Based on the literature reviews, the objectives and scope of the thesis are defined in section

24,
2.2 LITERATURE REVIEW ON NEUROCONTROL

It is difficult to categorize one neurocontrol scheme into a specific class and cover

all the existing neurocontrol approaches now, because the neurocontrol area is still not well

14

15

developed and new ideas are still emerging. Based on the conventional control concepts and
the major existing results in neurocontrol, the neurocontrol schemes are categorized into the

following:
(1) Teacher-replacing neurocontrol scheme:

In these schemes, neural networks are trained to copy an existing “teacher controller”
of adynamic system, then replace the teacher and work alone to control the system (fig. 2.1).
The teacher can be other controllers, human operators, or heuristic control rules. Some re-

searchers call this kind of neurocontroller copying a teacher controller.

Inputs
0 H teacher - Outputs
B o= plant -
N.N. AR
confroller
'

Fig. 2.1 Block diagram of teacher—replacing neurocontrol systems

(2) Inverse neurocontrol scheme:

Inputs ; fOutputs

N.N.
+ fiiter Inverse Syst.

Fig. 2.2 Block diagram of inverse neurocontrol systems

This scheme is based on the inverse system theory. The neural networks are trained

to model the inverse of the original systems, and then used to cancel the plant dynamics (fig.

16

2.2). The filter is used to limit the band-width of the systems. Here, the learning ability of

neural networks is utilized for off-line design, not for on—line adaptation to system dynamic

changes.
(3) Indirect adaptive neurocontrol scheme:

This scheme is one of the popular neurocontrol schemes and has been studied inten-
sively. It consists of a neural network emulator of system dynamics and a feedforward neuro-
controller (fig. 2.3). The neural network emulator is trained based on the modeling error ;.
The neurocontroller is trained by back—propagating the output tracking error e through the
neural network emulator and the neurocontroller. It can perform on-line learning and adapts
to systemmodel errors. If the neural network structure and its initial weights are set properly,
and the learning algorithms are efficient enough, a stable neurocontroller may be obtained,

but the system stability is difficult to prove theoretically.

4+ -

[

U
Ya 1 NN Plant Aj’
Controller
\ A
N.N. A N
Emulator - Q

N M
Fig. 2.3 Block diagram of indirect adaptive neurocontrol systems

(4) Direct adaptive neurocontrol scheme:

This is one of the neurocontrol schemes proposed at the beginning of neurocontrol
research. There is only one neural controller, which is tuned using the output tracking error

e (fig. 2.4). Since the desired value of u or the dynamics of the plant are unknown, the stan-

15

+

-

u
Yd N.N. Plant g
Controller

\

Fig. 2.4 Block diagram of direct adaptive neurocontrol systems

|

dard back-propagation strategy cannot be applied to this scheme directly. Many neurocon-

trol schemes derived from stability theorems belong to this approach.
(3) Robust neurocontrol schemes

This approach combines conventional robust control schemes with neural network

models. The neural network models can be obtained by off-line or on-line training. The

N.N.
Modeling [
Input -
puts S - Robust Ou=tputs
plant
- controller

Fig. 2.5 The block diagram of robust reurocontrol scheme

robust neurocontrollers are designed based on the neural network models. Since there are
usually modeling errors using finite numbers of neurons, robust neurocontrol is more attrac-

tive. Few robust control schemes can be applied to design the neurocontroller due to the

complexity of neural networks.

There are also reinforcement neurocontrol, adaptive critic neurocontrol, optimal

neurocontrol, fuzzy neurocontrol, fault tolerant neurocontrol, hybrid and hierarchical neuro-

18

control, etc. The structures of those neurocontrol systems are similar to the above schemes.

However, their learning algorithms may have great differences. We will not discuss them

since they are beyond the scope of this thesis.

The learning strategies of neurocontrol schemes can be classified into pure on-line
learning, pure off-line learning, and hybrid on-line and off-line leaming. Pure off-line
trained neurocontrollers cannot adapt to the system dynamic changes, and the systems per-
formances are dependent on the quality of generalization of the neurocontrollers. Pure on—
line trained neurocontrollers have bad initial control performances. The system stability is

difficult to guarantee. Hybrid on-line and off-line trained neurocontrollers share the merits

and demerits of both.

Most existing neurocontrol schemes can also be classified into backprop-based neu-
rocontrol and stability—based neurocontrol. Both of them can be in direct and indirect forms.
Backprop-based neurocontrol schemes refer to those whose learning algorithms are based
on the back—propagation strategy. Stability—based neurocontrol schemes refer to those

whose learning algorithms are based on stability theorems. The former is conceptually sim-

pler.

In the following, the existing important inverse neurocontrol schemes, indirect adap-
tive neurocontrol schemes and direct adaptive neurocontrol schemes are reviewed. Their

improvement, extension and innovation form the achievements of the thesis,

2.2.1 Relevant Werk and Problems

(1) Inverse neurocontrol schemes:

This approach (fig. 2.2) was studied and applied widely by researchers in robotics
and process control areas. The general and preliminary idea of inverse neurocontrol schemes

can be found in Psaltis, Sideris and Yamamura (1987a, b).

19

Gu (1990) gave a theoretical proof for the existence of inverse systems expressed by
eqgs. (2.2.1) and (2.2.2). Then an inverse neurocontroller was constructed and compensated
by a feedback controller. According to the theorem, higher order derivatives of the outputs
are needed to complete the inverse control.

x = f(x) + B(x)u 2.2.1)
y = h(x) (2.2.2)

Levinetal. (1991) constructed an inverse neurocontroller with a Hamming net as the

error—correcting output layer. Fukuda et al. (1991) constructed an inverse system neural

feedforward controller compensated by output error constant gain feedback.

Although there is a class of nonlinear systems that are invertible, some problems exis:
for this scheme, such as the necessity of feedback compensation, instability of the inverse
systems of the non-minimum phase nonlinear systems, and trainability of the neural network
inverse system models without high order derivatives of the system outputs. Also, the ap-
proach allows little adaptability to model uncertainty. Most of the given schemes are suitable

for off-line trained neurocontrollers only.
(2) Indirect adaptive neurocontrol systems:

The structure and basic principle of indirect adaptive neurocontrol can be found in
Psaltis, Sideris and Yamamura (1987a and b), and Guez, Eilbert and Kam (1988). Jordan
and Jacobs (1989) applied this approach to control an unstable system with successful simu-
lation. Wu, Irwin and Hogg (1991) applied the indirect adaptive neurocontrol scheme to the

regulation problem of a nonlinear system.

Hunt and Sbarbaro (1991) used the indirect adaptive neurocontrol system structure
to implement the inverse model control (IMC) scheme for discrete nonlinear systems. The
condition for invertibility of discrete nonlinear systems was given and Gaussian RBF net-

works were used as system models.

Kasparian and Batur (1992) gave a neurocontrol scheme with its structure similar to
fig. 2.3, The difference is that the model based prediction control strategy (k—step) is applied
to the feedforward neurocontroller, and the Daviden’s least—-squares minimization technique

is used as the learning algorithm.

Narendra and Parthasarathy (1990) proposed four different neural network models
for discrete nonlinear systems. They reformulated the neural networks with backpropagation
algorithms from a control point of view, and indicated the relationship between neurocontrol
and conventional adaptive control. Multilayer perceptrons are used in their indirect adaptive

neurocontrol schemes. Thus, system stability may not be proved.

The indirect neurocontrol approach is closely related to the self-tuning adapiive con-
trol approach for linear systems. Just like the development of adaptive control for linear sys-
tems in the 1960s, adaptive neurocontrol is at the point where the stability of the control sys-
tems cannot be proved theoretically, though many papers have reported that it works. The
convergence speed of the learning processes is very important to the control systems. Anoth-
er question is how to determine the input variables to the neurocontrollers to make sure that

the neurocontrol systems are stabilizable,

Direct adaptive neurocontrol scheme (fig. 2.4) is simpler in structure and its on—line
computation is less compared with the indirect scheme. The existing direct adaptive neuro-

control schemes can be classified into backprop-based and stability—based.
(3) Backprop-based direct adaptive neurocontrol systems:

Psalus, Sideris and Yamamura (1987a) tried to give a training algorithm for direct
adaptive neurocontrol by using the Euler formula to estimate the partial derivatives of out-
puts with respectto inputs. For multi-input, multi~output systems, this scheme leads to erro-

neous results, because it is difficult to determine how much output change is caused by a spe-

21

cific input. Also, the change of a control input is not small enough to guarantee an accurate

estimation.

Kuperstein and Rubinstein (1989) developed a sensor-based robot learning control
scheme. Although the building of controllers is more like learning control through trial and

e1:or, the scheme works similar to the way direct adaptive neurocontrol systems do.

Bar-Kana and Guez (1990) suggested an adjustable linear feedback contro! law for

the following system:
X =AX) + B(x)u (2.2.3)
y = Cl)x + D(x)u (2.2.4)
A Widrow-Hoff learning algorithm was used to adjust the gain matrix. Though the paper
claimed that the scheme worked well, the stability of the control system and its training algo-

rithm are questionable.

Cui and Shin (1991) tried to derive a training algorithm based on the qualitative in-
formation about the system input-output relations for direct adaptive neurocontro! systems.

However, it only works for SISO systems whose input—output partial derivatives are of fixed

sign.
Hoetal. (1991) derived a direct adaptive neurocentrol scheme for the following sys-

tem:
x(k + 1) = A(x(k)) + B(Ru(k) + w(k) (2.2.5)
y(k) = Clk)x(k) + v(k) (2.2.6)

where w(k) and v(k) are stochastic disturbances; B(k) and C(k) are known. The backpropaga-
tion-like learning algorithm is adopted. The scheme can only adapt to the change in A(x(%)),
so it is partially adaptive. However, this scheme can only be applied to systems where

C(k)B(k) is not equal to zero matrix, which means thar the minimum relative degree of the

systems is one. It is difficult to extend this approach to continuous—time systems, because
ay() : " X : : :
U cannot be defined analytically (it is determined by differential equations).

Sadegh (1992) attempted to give an alternative solution of direct adaptive neurocon-
trol. To guarantee stability, some a priori information about the gradients of the input-state
relationship of the plant is required. The analytical controllability theory of sampled-data

systems is used to obtain this information based on a nominal model of the plant.

The main obstacle of backprop-based direct adaptive neurocontrol scheme is that the
output errors cannot be backpropagated through the unknown nonlinear systems, and the
leaming algorithms are only locally convergent. Most reported schemes suffer from slow
convergence. Similarly, itis not clear how to determine the input variables to the neurocon-

trollers to make sure that the control systems are stabilizable.
(4) Stability-based direct adaptive neurocontrol systems:

A representative ¢xample of stability-based direct adaptive neurocontrol systems
was given by Sanner and Slotine (1992). They combined the sliding mode control methodol-
ogy with neural network modeling to guarantee the stability and convergence of the training

process, in spite of possible modeling errors. The result can be applied to eq. (2.2.7).

2+ fox, ..., x"h = bu (2.2.7)

Chen (1991) gave a stable neurocontrol scheme for an SISO system (2.2.8)

Yer1 =S 0k -+ o Vhont1r Wmpr - o o Upp) F
80k -+ o Ykons1 Up—ts + oo Upmdlly (2.2.8)

A dead-zone was introduced to guarantee the robustness to network approximation errors.

Chen (1991) used neural networks to identify the model of SISO linearizable nonlin-
ear systems (as described in egs. (2.2.1) and (2.2.2)), and formed a simple robust control

law based on the identified dynamics. System stability is guaranteed.

23

Xuetal. (1991) considered the synthesis of feedback linearization and variable struc-
ture control for uncertain systems with a neural network as feedforward compensation.
Feedback linearization provides a systematic approach such that an appropriate coordinate
system can be found where that system can be linearized. The variable structure control is
designed to produce a desired overall behavior in spite of system uncertainties. By combin-
ingthe neural network as a generalized feedforward compensation, the high gain of variable

structure control near equilibrium can be greatly reduced.

A robust error-feedback tracking controller is constructed with a neural network as
the identifier of the inverse of the input-output Jacobian of the controlled plant (Tseng and

Hwang, 1991). If the reference signal is slowly varying, system stability can be guaranteed.

Levin and Narendra (1992} tried to stabilize a dynamical system around an equilibri-
um point using neural networks. They applied the concept of controllability to stabilize sys-
tem states to a set point. However, the result is local and the robustness of the controller de-

pends on the accuracy of the neural network model.

The impressive aspect of the stability-based adaptive neurocontrol approach is that
the stability of the control systems can be proved theoretically. It also shows the close rela-
tionship between adaptive neurocontrol and the modern adaptive control theory. Due to the
limitations of existing nonlinear control theories, this approach can currently be applied only
to feedback linearizable nonlinear systems and some systems with special dynamic struc-

tures,

2.2.2 Need for Research

Neurocontrol research restarted around 1986, developed steadily during 19861989,
and boomed afterwards with many application tests and some theoretical analyses. The

methodology was mainly experimental, that is, drawing conclusions based on one example.

p2

As pointed out by Antsaklis (1992), there were many hopes, but few accomplishments, The
consensus was reached around 1992 that neural networks can be used to model general non-
linear systems and there is a close relationship between adaptive control and neurocontrol.
Now research has switched from intuitive applications of large neural nets to theoretical is-

sues and applications to more specific problems.

In short, there are still many problems to be solved in neurocontrol. Among them

are:

1) Some basic problems in the control field, such as stability, quantitative robustness

evaluation, applicability to general nonlinear systems, constraints on system dynamics, are

still open areas for research.

2) How to design the structure and input variables of a neural network to make the

control systems stabilizable is also an open question.

3) The comprehensibility of the neurocontrol laws is still not clear, This is related

to the analysis problem of control systems.

4) Most of the applications to date are confined to multi-layer feedforward neural
networks with the back—propagation algorithm or its variations as the learning algorithms.
In recent years, some new neural network architectures were proposed which are more suit-

able for system dynamics. Therefore, new extensions with better results are expected to be

achieved.

5) The neural networks are mainly used for function approximation at present. The
recognition ability, decision making ability and skill acquisition ability of neural networks

should also be utilized to design control systems with higher level of intelligence.

6) Much work is required to test neurocontrol schemes experimentally and apply

them to practical systems.

25

2.3 LITERATURE REVIEW ON NEUROCONTROL OF ROBOTS

Robotic control research has a longer history, compared with neural networks. It
started in the middle of the 1970s, and developed fast after 1985. There are many control
approaches for robotic manipulators, including: PID control, computed torque or inverse dy-
namics control, self—tuning, model reference or parametric adaptive control, variable struc-
ture control, feedback linearization control and Lyapunov-based control. Recently, leaming
control, fuzzy control, expert control, autonomous control and neural network based control

have also been proposed and tested for some robots.

According to the type of control task, robotic control can be classified as: position
forientation control, trajectory control, force control, hybrid force/position control,
constrained motion control, and multiple robot coordination control. There are many ap-
plications of neural networks in robotic control. Among them are: inverse kinematics map-
ping, inverse image data mapping, inverse dynamics, modeling uncertainty, teacher-replac-
ing neurocontrol (learn from other controllers), force control, trajectory control, and hybrid
intelligent robotic control. As indicated in Chapter 1, the control problem of flexible joint

robots is more complex than that of rigid robots.

2.3.1 Relevant Work and Problems

Neurocontrol of robots started when the neurocontrol research began, although most
work was theoretical. This is natural since the initial and final goal of building robots is to
make them function like human beings. Possessing a brain-like controller will make this
goal closer. The papers by Guez, Eilbert and Kam (1988), Sidelis, Yamamura and Psaltis
(1987a), and Tsutsumi and Matsumoto (1987) are some of the early works on robotic neuro-

control.

(1) Inverse kinematics and dynamics

Guoand Cherkassky (1989) investigated the inverse kinematics representation using
neural networks. Eckmiller et al. (1989) did similar work for a redundant robot arm. Guez

and Ahmad (1989) trained a neural network to learn the inverse kinematics of PUMA 560.

Kosmatopoulos et al. (1991) identified a neural network model of a two—link ri gid

robotic system by using the dynamic backpropagation algorithm.

Herve, Sharma and Cucka (1991) noticed that a small calibration error in a vision
system would result in large error in the complex inverse kinematic computation. Therefore,
a neural network was used to approximate the mapping from th= space of configurations of

robots directly onto a space of measurable image parameters, and to realize hand/eye coor-

dination without calibration.

In sumrmnary, these results confirm that neural networks can solve coordinate trans-

formation problems and arbitrary input—output relation mapping problems.

(2) Modeling uncertainty

When there is partial uncertainty in a robotic system, a neural network can be applied
to model it and used to compensate for such uncertainty. Leahy, Johnson and Rogers (1991)
modified the inverse dynamics control scheme for robots working under unknown load con-
ditions by using neural networks to estimate the dynamic parameters of the unknown load

and to compensate for the uncertainty.
(3) Teacher-replacing neurocontroller

Asada and Liu (1991) proposed a teacher—replacing scheme to transfer the skill of
human operators into a neural network and use the generalization ability of the network to
build the skill-based controller. This scheme can find wide applications in industrial

manufacturing.

27

Lee and ElMaraghy (1992) constructed a neurocontroller for a walking robot by
learning a set of linear control laws at different working points. Here the neurocontroller

generalizes the linear controllers into a nonlinear controller.
(4) Force control

Neurocontrol has also been tested by executing force control of robotic manipula-

tors. For example, Fukuda et al. (1991) applied a direct neurocontrol scheme to the impact

control of a one-DOF manipulator.

Pei, Leung and Zhou (1992) proposed a novel learning strategy which decomposes
the whole task into several parts. The scheme is demonstrated with an example of robotic

manipulator position/force learning control.

There are also neurocontrol schemes for position/force control of multiple robots

(Tao and Luh, 1993).
(5) Trajectory control

Trajectory control using neural networks was studied by many researchers. Bassi
and Bekey (1989) applied a neural network to identify the inverse dynamics of a robot, and
then used the identified model to construct a feedforward and feedback controller for trajec-

tory control.

Hosogi (1990) studied the trajectory control of rigid robots by emulating the function
of the cerebellar Golgi cell system. A Hebb-type learning rule was used as the self-orga-

nized mechanism.

Fadali et al. (1990) gave a minimum-time control scheme of robotic manipulators

using a backpropagation neural network.

Leung, Zhou and Pei (1992) applied a stable neurocontroller to a rigid robot. The
controller combined variable structure control with neural network feedforward control to

guarantee system stability.
(6) Hybrid intelligent robotic control

Handelman, Lane and Gelfand (1989) tried to integrate knowledge-based systems
and neural networks for autonomous robots. Lane, Handelman and Gelfand (1990) dis-

cussed the possibility of robot intelligence and some schemes to realize it.

Rabelo and Avula (1991) proposed a hierarchical neurocontroller architecture con-
sisting of two neural network systems for the manipulation of a robotic arm. The higher level
neural system participated in the coordinates transformation and motion decision making.

The lower one provided the control action sequence.

Fukuda and Shibata (1991) and gave aconcept and strategy of hierarchical intelligent
control for robots. Basically, they regarded the hierarchical intelligent control system as a
hybrid system of neural networks, fuzzy logic, and Al, and divided the systeminto three lev-
els: learning level, skill level and adaptation level. The adaptation level is realized by a neu-
romorphic controller in an uncertain environment. The skill level consists of trained fuzzy
neural networks which emulate the human operation skills. The fuzzy logic works as the
intermediate connecting neural networks and symbolic reasoning systems. The learninglev-
el recognizes the environment and the manipulated objects and makes decisions based on the

sensed information. Detailed implementation is still under development.

2.3.2 Need for Research

The ultimate goal of intelligent robots is to possess high level intelligence and mimic
human activities (Saridis, 1983, and Lane, Handelman and Gelfand, 1990). To achieve this

goal, intelligent robots should have an artificial brain, amultiple redundant movement mech-

29

anism with efficient control systems, and a set of intelligent sensors that provide vision, hear-
ing, contact force, touching and approaching information. Neural networks can play roles
in all the three parts of intelligent robots. At present, PID control is still the main choice of
most industrial robots, due partly to its simplicity and the unavailability of reliable substi-

tutes.

The conventional robotic control schemes usually require mathematical models of
the controlled robots, and are sensitive to model errors, disturbances and noises. When a
rcbot’s task is changed, control algorithm adjustment and related tedious planning are re-
quired to make the robot execute the new task. The decision making, planning, sensor in-
formation processing and control are separated into different subjects, which makes their in-

tegration difficult. The level of achieved robot autonomy is very primitive at present.

Currently, the theories of neural network based modeling and control are still under
development. Their applications to robotic control were preliminary. The main problems
are the slow learning convergence of neural networks, and intuition-based neurocontrol al-
gorithms, How to determine an appropriate size (number of layers and neurons) of a neural
network is another problem. Most existing adaptive neurocontrol schemes are difficult to
imblemem in real-time due to their complexity. Solid theories which deal with the neuro-

control system structures and stability have yet to be developed.
24 OBJECTIVES AND SCOPE OF THE THESIS

The objectives of my thesis are: (1) to develop new adaptive neurocontrol schemes
with better learning performance and guaranteed system stability for general nonlinear sys-

tems, and (2) to apply them to the trajectory control problem of flexible joint robots.

Based on the above objectives, the scope of the thesis is defined as follows.

30

THEORY APPLICATIONS EXPERIMENTS
Neurocontrol
Robotic On the FMS
Two-Link Flexible
Control
] Joint Robot Arm
Neuromodeling

Fig. 2.6 The outline of the thesis objectives

1) to develop new backprop-based adaptive neurocontrol schemes using new

learning algorithms and new neural networks

The convergence speed of the learning processes is very important to the stability and
tracking errors of backprop—based adaptive neurocontrol systems. With new learning algo-
rithms and new neural network structures introduced, better backprop-based adaptive neu-
rocontrol schemes can be obtained. At the same time, the problem of determining the input

variables to the neurocontrollers to make sure that the control systems are stabilizable will

be addressed.
2) to develop self-tuning adaptive neurocontrol schemes

It is a general perception that neural network models of nonlinear systems are not
useful for analytical controller design. This is still rue for complex multilayer neural net-
work models and some recurrent neural network models for nonlinear systems. With the
introduction of new neural network models for nonlinear systems and the localized neural
network concept, analytical design of neurocontrollers becomes possible. This research may

greatly enrich the neurocontrol algorithms with guaranteed system stability, and establish

31

a relationship between self—tuning control theory for linear systems and self-tuning neuro-

control for nonlinear control systems.

3) to develop new stability-based adaptive neurocontrol schemes for general

nonlinear systems

There are only few stability-based adaptive neurocontroi schemes available current-
ly, and they can only be applied to some feedback linearizable nonlinear systems. This is
because there are few control schemes for nonlinear systems. The thesis proposes a new ro-
bust control theory for general nonlinear systems. Then a new robust adaptive neurocontrol
scheme is derived with theoretically proved stability. Compared with the existing adaptive
control schemes for nonlinear systems, the new neurocontrol scheme can be applied to non-

linear systems which are not necessarily linearly-parameterizable and/or feedback lineariz-

able.

4) to develop robust adaptive neurocontrol schemes for flexible joint robots

Due to the existence of modeling errors, most conventional control schemes for flex-
ible joint robots result in limited control precision. There is no stability-based adaptive neu-
rocontrol scheme for flexible joint robots yet. Theoretically, all the neurocontrol schemes
developed in the thesis may be applied to the control of flexible joint robots. Using a priori
information about the dynamics of flexible joint robots, simpler neurocontrol schemes can

be derived. These observations lead to the research reported in chapter 7 of the thesis.

5) totest the real-time features of neurocontrol schemes by an experiment using

the available two-link flexible joint robot.

There are few experimental results on neurocontrol reported in the literature to date.

To check the effects of real-time finite accuracy computation, discretization and measure-

32

ment noises, an experiment was conducted using an available two-link flexible joint robot

arm.

CHAPTER 3

NEW DEVELOPMENTS ON NEURAL NETWORKS

3.1 INTRODUCTION

There are two distinct approaches in neural network research. One is the biological-
ly-motivated approach. The goal of this approach is to make the functions and behaviors
of neural networks resemble those of the brain. Mathematics is secondary in this approach.
The other is an application-oriented approach. The computation ability of neural networks
is applied in different aspects according to different applications. Optimization techniques,
approximation theory (Braess, 1986), and computational learning theory (Anthony and
Biggs, 1992) are also applied to the development of neural networks. The thesis adopts the

application—oriented approach.

The topological structures of neural networks can be classified into networks with
one hidden layer, two hidden layers, # hidden layers, and irregular neural networks. The neu-
rons can be fully connected or partially connected to each other, and the flow direction of

signals can be feedforward only, or both feedforward and feedback (recurrent).

There are many different neural networks proposed in the literature. Their topologi-

cal structures are the same as those classified above. The major difference among those neu-

33

M

ral networks is their activation functions. The common activation functions are: 1) sigmoi-
dal functions (hyperbolic functions), 2) Gaussian functions, 3) thin—plate-spline functions,
4) multi-quadratic functions, J) polynomial functions, 6) rational functions, 7) step func-
tions, 8) spline functions, 9) trigonometric functions, 10) cosig functions, 11) wavelet func-
tions, 12) orthogonal functions (Legendre, Chebychev, and Jacobi polynomials), 13) feature
functions (box, CMAC), etc. These activation functions can be further classified into monot-
onous, sermi~monotonous and non-monotonous, which may lead to global mapping, hybrid

mapping, and local mapping networks at neuron level.

Cybenko (1989) proved that sigmoidal neural networks (i.e., multilayer perceptrons)
are universal approximators. Poggio and Girosi (1990) proved that RBF networks are uni-
versal approximaiors. Cotter (1990) proposed several activation functions satisfying the
Stone—Weierstrass theorem, and built the corresponding networks. The most excitin gresult
was given by Leshno, Lin, Pinkus, and Schocken (1993). They proved that multilayer feed-
forward networks with a non—polynomial activation function can approximate any function.
The differences in approximation performances using different activation functions are in
their smoothness constraints (regularization theory). Also, different numbers of neurons are
required for a given problem, if different activation functions are used. The selection prin-

ciples of different activation functions are: (a) it fits the problem; (b) it is easy to realize by

hardware.

The remainder of this chapter is organized as follows. Section 3.2 introduces the con-
cept of localized neural networks to speed up the leaming convergence and reduce the com-
putation. An adaptive extended Kalman filtering algorithm is also presented to achieve fast
learning. Section 3.3 introduces the multistep localized adaptive learning algorithm with
optimal leamning rate for Gaussian networks. Fastconvergence and reduced computation are

also achieved by using this algorithm. Section 3.4 presents some neural network models for

35

nonlinear system, and discusses some issues about generalization and leamability. Section

3.5 gives a summary.
3.2 LOCALIZED NEURAL NETWORKS WITH CLI CELLS

Itis difficult and time—consuming to train a large size artificial neural network, espe-
cially in areal-time application. This is due to the globally interconnected structures of arti-
ficial neural networks, which make the connection weights dependent on each other and
make their updating very inefficient when the number of neurons reaches a certain level.
Although biological neural networks do consist of a massive number of neurons, it is doubt-
ful that every neuron can respond to all outside stimulations in the same manner, and all the
synaptic weights are adjusted at the same time for a specific stimulation. Bioanatomy re-
search proved that different areas of the cerebellar cortex correspond to different functions
of the brain (microzones and microcomplexes), and that there are functionally different
kinds of neurons, such as Purkinje cells, Golgi cells, granule cells and basket cells (Ito,
1984). These facts suggest that the brain possesses a functional localization property, and

that neural networks can contain different types of neurons.

The localized feature function concept has been applied by many researchers. For
example, Michie and Chambers (1968) built the “Boxes” system, which stored information
in alookup table form. The locationofa piecelof information was determined by its localized
feature functions. The CMAC proposed by Albus (1975, 1979) is a more general lookup
table, using feature functions that aggregate the values of underlying variables into overlap-
ping regions instead of disjoint regions. Information is stored by spreading each item to be
stored over neighboring table entries according to weighting profiles given by the feature
functions. This approach is simple and guarantees fast learning convergence (Wong and
Sideris, 1992), but the generalization ability of CMAC is limited by the fineness of the dis-

cretization. Moody and Darken (1988) investigated two—layer neural networks based on Al-

36

bus’ model of the cerebellum with radial basis function (Gaussian) activation units in the
single hidden layer. The Gaussian functions possess a localized receptive field property.
There were many extensions along this line. All the above reviewed work is limited, howev-

er, to the localization of the receptive field of a single neuron,

In the following, competitive lateral inhibitory (CLI) cells are introduced to localize
the function of a neural network according to the receptive fields of its sub-networks. The
CLI cells can be regarded as the functional emulation of the biological Golgi cells (Keeler,
1991). Asaspecial case, the localized polynomiaﬂ neural networks with competitive lateral
inhibitory (CLI) cells are introduced. The advantages of the new networks include: 1) fast
learning and global convergence property, which is essential for applications that need real-
time or fast learning; 2) modular and additive structure, which makes the overall network
structure easy to determine; 3) extendibility to new input space without affecting the learned

relationship; and 4) graceful degradation.
This section is based on two papers by Liang and EIMaraghy (1993b and c¢).

3.2.1 Review of polynomial neural networks

Let f(x;, ..., xy) be a real function continuous on the bounded region 2 C RV,

Then the Weierstrass approximation theorem guarantees that there exists a real polynomial

P(x,, ..., xy)that can approximate f(x;, ..., xy) with given precision, where:
Px;, ..., xy) =ay+ Za,xj + Zajkxjxk'I' Zajuxjxkxl+ R < B
i ok hkl
Define
x=1[x;, ..., (3.2.2)
D(x) = [P)(x) . .. ¢p(x)]T =[1x...xy xf X)Xpe oo XXX L U (3.2.3)

w=lw, ..., w) =laga,...avay ay,..apway 1 (3.2.4)

37

where:

SN +i-1
p= Z(i) and L is the order of the polynomial (3.2.5)
i=0

Then eq. (3.2.1) can be reformulated into the following form:

P
POy, ..., Xy) = P() = WD) = > w; ¢x) (3.2.6)
=1

The polynomial neural networks are structured based on eq. (3.2.6). Assume thatthe
inputs and outputs of a polynomial neural network are x,, ..., Xyandy;, ..., Yy ,Trespec-

tively. Then its input—output relations are

Hidden layer: z; = @£x) =1 ...,p (3.2.7)
P

Output layer: Ym = Zanz, m=1, .., M (3.2.8)
=1

where p determines the number of the hidden nonlinear neurons; z;is the output of the [-th

hidden nonlinear neuron.

Fig. 3.1 The structure of polynomial neural networks

Fig. 3.1 shows the structure of the polynomial neural networks. Actually, this struc-

ture is valid for any function basis { ¢,(x), . . ., @p(x) },forinstance, the Chebyshev ort-

38

hogonal polynomial basis, the Fourier trigonometric function basis, the Gaussian function
basis and so on. Here we only discuss the case of polynomial neural networks defined by
egs. (3.2.7) and (3.2.8). The resuits in this paper can be directly applied to other cases by
simply changing the definition of ¢,(x), . . ., @p(x).

Assume that there are unknown mappings between x,, . . ., xyand y‘f e e yﬁ,,

which are expressed as follows:

Yo = fmlxys o oy XN m=1, ..., M (3.2.9)
where the functions are continuously differentiable. If there are enough training data
{ x,(k), . .., xpn(k); y‘f(k), e ,yﬁ,(k) k=1, ...,K } which can represent the
mapping relations between x,, . . ., Xyand y‘f v o o ny, and the hidden neuron number

p is unlimited, then the polynomial neural network shown in fig. 3.1 can approximate the

unknown mappings (3.2.9) with arbitrary precision.

The backpropagation learning algorithm is commonly adopted to train the networks.
Although the polynomial neural networks are more efficient in learning than conventional
neural networks, such as multilayer feedforward percepirons, the networks are more sensi-
tive to the input noises and computational errors due to the direct product of inputs in the
hidden layer, especially when the orders of the networks are high. Also, the efficiency of
learning will be affected by massive weight coupling when the orders of the networks are
high, which leads to a large scale optimization problem. In the following, the demerits of
the polynoinial neural networks are remedied by introducing the competitive lateral inhibi-

tory cells and the localized representation.
3.2.2 Localized polynomial networks

For the function approximation problem stated in section 3.2.1, if the bounded work-

ing region 2 C RV is divided into J smaller subregions, 2,, ..., £, thenf(x) can be repre-

39

sented in each subregion £2;by a much lower order polynomial with the same given preci-

sion.
p
flx) = P(x) = sz Px) = f{2) x€EQ (3.2.10)
=1
Define an input receptive field selection function for each subregion as follows:
1 x €Q;
5i{x) = {O c¢ 2 (3.2.11)

Then f(x) can be expressed in the following localized representation:

J r J
f) = D 5@ O wief)) = s (3.2.12)
j=1 =1 j=1
@‘— localized representation
localized TN [
receptive field :
\// N S S
TR 7
Ny /

i
Ll L S L LS

Fig. 3.2 Ilustration of localized receptive fields and localized representation

Fig. 3.2 illustrates the localized receptive fields and localized representation of a giv-
en nonlinear function. It can be seen that although a nonlinear function can be very complex,
in a small region, i.e., a localized receptive field, the function is still simple enough to be
approximated by a low order polynomial, whose order can often be set to less than 3 in many
cases. Such low order polynomial neural networks are very easy and fast to train. Therefore,
if we canrealize eq. (3.2.12), the localized representation of a given nonlinear function, then
a new efficient neural network can be generated in which only a small size sub—neural net-

work is needed to be trained and responsible for output at each step. Also, efficient forward

10

computation and fast leaming convergence are guaranteed. Since each localized representa-
tion can be approximated by a low order polynomial neural network, the remaining problem
is how to realize the localized receptive field divisions and join them together. This is done

by introducing a set of competitive lateral inhibitory (CLI) cells:

The localized receptive fields can be represented at least in two ways: 1) as a set of
superboxes and 2) as a set of Gaussian potential functions. Such realizations define the func-
tion of the CLI cells, which resemble the function of biological Golgi cells in the cerebellum.

Take the case of using Gaussian potential functions.

The inputs to the CLI cells are x = [x, ..., xy)7 €2 C R", as shown in fig. 3.3.

The CLI cells perform the following computation:

(1) Gaussian potential function computation to determine the potential of the current

inputs in each localized receptive field:

N 2
(Xn = Cjp)
plx) = exp(= > ——rt—

n=1 mn

Yooi=1L .0, (3.2.13)
(2) Competitive lateral inhibition to select a unique excitatory receptive field:

1 if pi(x) = max {py(x), ..., p,(x)}
5i(x) = { (3.2.14)

0 if px) < max {p;(x), ..., pyx)}
Because only one s,(x) is allowed to be nonzero for each input vector x, randomly select one
si{x) 10 be excitatory and set the other 5,(x) to be zero when there is a tie. This reflects the

lateral inhibition property.
The receptive field center of a CLi cell, ¢; = [cjl, oy ch]T, can be determined by
random or deterministic selection, unsupervised learning and statistical estimation.

It can be proved that if all the g}, are set to be equal, then the receptive fields

£,, ..., £;defined by the CLIcells are compact and disjoint except on the field boundaries,

41

and their union forms the whole working region W. This is an important property of the

Gaussian potential function.

Fig. 3.3 Localized receptive field division using CLI cells

Based on the CLI cells, the structure of the localized polynomial neural networks

with CLI cells is defined as shown in fig. 3.4 to realize the representation (3.2.12), where

Fig. 3.4 The structure of localized polynomial networks with CLI cells

jj-(x) is changed into f}-m(x) in the multi~output case and realized by a low—order local poly-

nomial neural network, and 5,(x) is realized by the CLI cells. The interconnection lines be-

tween different CLI cells are omitted in the figure. The outputs of the overall multi—output
network are:
J
Ym = D S{EN) m=1 .., M (3.2.15)

i=1

The number of the CLI cells for each output, J, is related to the order of each sub—
polynomial neural network, L. When J is large, L can be small. When the input space is not

fixed, i.e., 2 C RMischangeable, the following heuristic algorithm can determine the num-

ber of the CLI cells for each output during the training.

(D If max (p,(x), ..., pyx)} <B,,add a new sub-polynomial neural network

and let the center of its CLI cell locate at x.

(2) If there are several j such that pix)> By, delete one sub—polynomial neural

network that is redundant.

B; and B, are the lower and upper boundaries chosen by the designers. In the next

section, the optimal Kalman filtering algorithm is applied to train the localized networks.

3.2.3 The optimal Kalman filtering learning algorithm

The backpropagation—like learning algorithm for the localized polynomial neural
networks with CLI cells is easy to derive. However, it is slow in convergence. The extended
Kalman filtering (EKF) algorithm is one of the fast training algorithms for neural networks
in use (Singhal and Wu, 1989). Its drawbacks are the intensive computation, suboptimality
and possible filtering divergence. Inthis paper, the trained network size is small ateach train-
ing step due to the localized renresentation. Therefore, the EKF learning algorithm can be
applied directly without intensive computation. Due to the special structure of the polyno-

mial networks, the EKF learning algorithm is actually the optimal Kalman filtering algo-

43

rithm, so global learning convergence of the network weights and thresholds can be achieved
regardless of their initial values. Furthermore, the recursive UD factorization algorithm is
applied to the optimal Kalman filtering algorithm to improve its stability of numerical com-
putation. Thus, the proposed new networks with the new learning algorithm can remedy all

three drawbacks stated above.

For the m—th output, if the j—th CLI cell is inhibitory, or sj(x) =0, then the j—th subnet-
work weights and thresholds remain the same; if the j—th CLI cell is excitatory, or 5,(x) =1,
then the j~th subnetwork weights and thresholds can be updated using the following learning

algorithm.

To apply the adaptive optimal Kalman filtering algorithim, the neural network input—
output relations with unknown weight vectors are expressed in state space form as:

Witk +1) = W (k) m=1..,M (3.2.16)

Yal) =y + v k) = e WL + VW m=1,.., M (3217
where W{n(k) is the weight and threshold vector of the j-th sub—polynomial neural network
for the m—th output; yZ(k) is the desired m~th output; yfn(k) is the actual m—th output of the
overall neural network, which is equal to the output of the j-th sub—polynomial neural net-
work; vfn(k) is the approximation error between the desired m~th output and the actual m-th
output, {v’,'n(k)} can be regarded as a white noise process, but not necessarily zero—mean,
Let

E(v (k) = ri (k) Cov{v (k), vi (D) = RE(KS, (3.2.18)

In the following, an adaptive optimal Kalman filtering (or AOKF) algorithm (Liang, Zhang
and Li, 1988) is applied to egs. (3.2.16) and (3.2.17), which gives:

Wik + 1) = Wi k) + K (el (b m=1,..,M (3.2.19)

e (k) = yi(k) — DEERNT WLk — k) m=1,..., M (3.2.20)

Ki®) = PLROEE)/L Rnl) + OERNTPLERPE®)) (3.2.21)
Pi(k + 1) = PL(k) — K ()P (x(k))TPi (k) (3.2.22)
Mk + 1) =) + ARl) (3.2.23)

Bok + 1) = ﬁf,,(k) + A0 [€ (k) — ﬁf,,(k) ~ PP (P(x(k)) 1(3.2.24)

where
Ay = (1 = b)/(1 — bY 0<b<l (3.2.25)
and the initial values of the above equations are
W (0) = W, Fm(0) = 0 (3.2.26)
, nf
PL0)y=Py>0 Ru(0) = Ry > 0 (3.2.27)

, af . . . ‘
P! (k)and R (k) are the parameter variance matrix and output error variance matrix
respectively, and are symmetric positive definite. Due to computation error, P{n(k) com-

puted from eq. (3.2.22) can easily lose its positive definite property, which results in filtering

divergence. Here, the recursive UD factorization is adopted to compute egs. (3.2.21) and
(3.2.22). Let

Pi (k) = URDKUT(RY Uk = [Uk, Usth), . . ., Up(k) 1 (3.2.28)

D(k) = diag{ d,(k), dy(k),dpk) } 0<C<dgk)<Cy (3229

where p is the dimension of W{'ﬂ(k) and is defined by eq. (3.2.5); U;(k) € R?; C; and Cy,are
the lower and upper boundaries of 4, (k) which can guarantee P{n(k) to be positive definite
and not to diverge. Let U(0) =1, and D(0) = W (u>0). U(k) is an upper triangular matrix
with diagonal elements equal to one. Then the AOKF algorithm with recursive UD factor-
ization is:

(1) Compute forward the excitatory sub~polynomial neural network;

(2) Compute scalar variables:

45

fi=UTRoEk) v; = deky; i=1...,p (3.2.30)

GYLetag = Rnk) . Lo = (00 . .. 0)Tand fori=1, ..., p, compute:

a,=a; +fl'vl' d‘(k +1)= d,-(k)a‘-_l/a,- (3.2.31)
L;=L,_, + Uk, Bi= - fla;_, (3.2.32)
Uk + 1) = U + BLi_, (3.2.33)

(4) Change the gain vector defined in eq. (3.2.21) into:

Ki (k) = Ly/a, (3.2.34)
and change eq. (3.2.24) into:

Rootle + 1) = Rol) + A0 [&0 — @,] (3.2.35)
with egs. (3.2.19), (3.2.20) and (3.2.23) remaining the same.

Repeat the above steps until W{n(k) is convergent. The UD-AQKEF algorithm needs

the same computation amount (the order of complexity is O(p?)) and storage as the standard
Kalman filtering algorithm without UD factorization does, but possesses much better nu-

merical convergence than the standard Kalman filtering algorithm.

The storage for the p, weights of a localized polynomial network isequal to /X p,
and might be larger than that for the p, weights of a global polynomial neural network.

However, if both the localized and global polynomial neural networks are trained by the UD-
AOKEF algorithm, in which the storage for P{n(k) in eq. (3.2.22) or for U(k) and D(k) in eq.
(3.2.31) and (3.2.33) is also of the order of O(p?), then the overall storage required by the
localized networks is equal to J X [p,+0(p%)], which is no more than that of the global net-

works, p,+O(pd), since p; < < p,.

3.2.4 Extension to localized pi-sigma networks

Eq. (3.2.1) can be reformulated into the following form:
@ N
POy, s =[] (D wita + 6,) (3.2.36)
I=1 n=1

which determines the structure of pi-sigma networks, and clearly explains the term pi-sig-

ma.

If the inputs and outputs of a pi-sigma network are X, ..., xyand y;, .., Yy ,re-

spectively, then the input—output relations of the single layer pi-sigma network are:

N
I=1,...L
2 = > Wy Xn+ 0 SRR 3.2.37
fm ;”"”x" fm m=1,..,M (G237
L
Ym = | | 2t + Om m=1 ..., M (3.2.38)
=1

where L determines the order of the pi—sigma networks. L =1 gives linear input—output rela-
tion. z,,,is the output of /~th summing unit for the m—th output. The threshold 8,, is added
in eq. (3.2.38) to extend the representation ability of the pi-sigma networks to include the

case of real polynomials with complex roots for low order pi-sigma networks.

Fig. 3.5 Single layer pi-sigma networks

47

Fig. 3.5 shows the structure of a single layer pi-sigma network. Eq.(3.2.38) can also
include nonlinear activation functions to avoid large amplitude outputs during training,
which may lead to training divergence. The number of hidden neurons in a network is LM.
Usually, we can make the number of weights to be learned, [L{N+1)+11M, smaller than pM,
where p is defined in eq. (3.2.5) for the same orders L, M, N.

Similarly, f(x) can be represented in each subregion £2; by a polynomial witii order

L in pi-sigma format:

L N
f@=T] O wxa+6) = fix) x € 2 (3239
I=1 n=1

By using input receptive field selection functions (3.2.11), f(x) can be expressed in the fol-

lowing localized representation:

J L N J
f@ = s QO wxat8) = sxfi (3.2.40)
1 =] n=1 f=1

i= =

Thus, localized pi-sigma networks can be constructed similarly.

Compared with localized polynomial networks, the localized pi-sigma networks re-
quire much fewer weights to be learned for a problem with a large number of inputs. The
cost is that the global convergence cannot be proved theoretically, although the locally con-

vergent regions are fairly large for many problems if the UD-AOKF leaming algorithm is

used.
3.2.,5 Simuiation evaluation

The performance of the localized polynomial neural network with CLI cells is tested
by performing function approximation, because function approximation is one of the strict-
est applications of neural networks. The UD-AOKF algorithm is used as the learning algo-

rithm to learn the following function:

48

=252 xye[-2n 2 (3.2.41)
LetL=2,J=25. Thenthe number of hidden neurons in each sub—polynomial neural network
is p =6. Before training, the initial weights and thresholds are set randomly and the network

output is quite different from the actual one (fig. 3.6 (a)). After 500 iterations of training

(b) after training

Fig. 3.6 Approximation of z=sin(x) sin(y) /xy using the new neural networks

49

using random data, the average error is 0.017; after 1000 iterations of training using random
data, the average error is 0.01, and the result, shown in fig. 3.6 (b), is very close to the real

function. The actual error mesh is shown in fig. 3.7. Similar results were achieved with dif-

Fig. 3.7 Approximation error mesh of z=sin(x} sin(y) /xy

ferent initial values. This proves the fast and global convergence and insensitivity of the
UD-AOKEF algorithm to the initial values of the network weights, if J is properly deter-
mined. The result is also not sensitive to the location of the CLI cell centers as long as J is
not too small. The same problem was solved using localized pi-sigma networks, and similar

results were obtained.

If the same problem is solved using the global polynomial neural networks without
CLI cells, the order of the network has to be larger than 7 to obtain a satisfactory approxima-
tion and the number of the hidden neurons has to be p 2> 36, which requires intensive com-
putation, since the number of multiplications per iteration required to train the network is
of the order of O(p?). Compared with the case of the localized polynomial neural network
with CLI cells (p = 6), we can see that significant reduction in compuiation is achieved with-

out losing the global optimality. The overall storage required by the localized networks is

50

equal to J X [p;+0(p?)] = 150 + 25X O(35), which is less than the overall storage, p, +

O(pd) = 36 + O(36?), required by the globa networks.

More examples can be found in Liang and ElMaraghy (1993c). In section 3.4, the
localized networks are also applied to nonlinear system modeling. The superior perfor-

mance of localized networks is demonstrated again.

3.3 MULTISTEP LOCALIZED ADAPTIVE LEARNING
OF RBF NETWORKS

Radial basis function (RBF) networks are becoming more popular as substitutes for
multilayer perceptrons for function approximation and control applications due to their sim-
plicity, faster convergence and well-developed mathematical background. There is a brief
review of RBF networks, the existing problems and their applications in Liang and EIMarag-
hy (1993d). There are several radial basis functions, e. g., Gaussian, thin-plate~spline, and

multi-quadratic, that can be used to construct RBF networks. Here, we only consider the

Gaussian RBF networks.

In the following, a new learning algorithm is derived which can determine the Gaus-
sian RBF centers and widths adaptively. Thus, off-line clustering of the RBF centers is not
needed. The learning rate is determined by one-dimensional optimization algorithms. In
addition, the multistep error index is introduced to speed up convergence and to remove the
requirement of randomly feeding the training input data. The locality of Gaussian RBF net-
works is discussed and applied to reduce the training computation and lower the interference
between different training data sets. Itis also utilized to determine the number of RBF nodes
for a given problem through adaptation (there was no on-line algorithm in the literature for
such a purpose, to the best of this researcher’s knowledge). The result is extended to cas-

caded RBF networks as well. The multistep error index is a general concept and can be ap-

51

plied to other classes of networks and other learning algorithms, for example, the conjugate
gradient method and the variable metric method, to achieve the same benefit. The results

in this section have been applied by several researchers in universities or research centers.
3.3.1 Adaptive learning algorithm with optimal learning rates

A Gaussian RBF network with N inputs, L RBF nodes, and M outputs is shown in

fig. 3.8. The input—output relations of a Gaussian RBF network can be defined as follows:

Fig. 3.8 Gaussian RBF networks

Qutput layer:
L
Y = D Wiy m=1,...,M 3.3.1)
=1

Hidden RBF layer:
N 2
- C
z,=cxp[—~zu} 1=1,...1L (3.3.2)

2
n=1 Uln

where x, (n = 1, . . ., N)isthe n-th input variable; o), is the standard deviation of the
I-th RBF node for the n-th input; [c;; . . . cjy]” defines the center vector of the /~th RBF

node; z, is the output of the /I~th RBF node; y,, is the m-th output; and w,,, is the weight

connecting the m-th output with the /-th RBF node.

52

Assume that there are unknown mappings between x, . . . xy and y‘l’ Ce yj,f,,

which are expressed as follows:

Y = fulXys o o o5 Xp) m=1,..., M 3.3.3)
If there are enough training data {x,(k) .. . xplk); y‘f(k), A yﬁ,(k)
k=1, ...,K) whichcanrepresentthe relations betweenx; . . . xyandy? . . . y4,,

and L is unlimited, then the RBF network shown in fig. 3.8 can approximate the unknown

mappings (3.3.3) with arbitrary precision (Moody and Darken, 1988).

The choices of the centers ¢, and the standard deviations oy, of the Gaussian func-
tions are very important for achieving good approximation. There are two popular methods

for their determination. Assume that [x,; . . . xN]T belongs to a compact subset X of RN,
The first method is to position the centers of the RBF functions evenly spaced out along all
dimensions of the input space. The standard deviations are set to given constants. The meth-
od is simple, but suffers from the dimensionality. Moreover, it is difficult to determine the
number of the RBF nodes which can guarantee the approximation precision. The second
method is to use Kohonen’s self-organized learning to cluster the training input data, and
then position the centers of the RBF functions at the clustered centers cf the self-organized
network. The standard deviation is set to the shortest distance between the corresponding
center and its neighboring centers. This method is very useful for classification problems,
However, for function approximation problems, the input data are assumed to be evenly dis-
tributed over a given compact subset X. Therefore, the clustering result from self-organized

learning is similar to that obtained from the subset division.

It has been observed that if the centers of the Gaussian functions are located at the
extremum points an(! inflection points, and the standard deviations correspond to the abso-

lute values of the derivatives or smoothness of the functions (3.3.3) around the centers, then

53

a very high training precision approximation can be achieved with fewer RBF nodes and less
training effort. Although these characteristics are difficult toacquire when the approximated
functions are unknown, this observation tells us that evenly distributed centers may not be
the best solution. In order to approximate the above characteristics and determine ¢y, and
@), accordingly, we derive an adaptive learning algorithm for the RBF networks by optimiz-

ing the output errors with respect to w,;, ¢, and oy,

The instant output error index is defined as:

M
o) = 2 > ek enk) = YA — ym(k) (334)
m=1

Now the problem becomes determining a learning algorithm for w,,, ¢}, and 0, that mini-

mizes £(k).
(1) The learning algorithm for w,,

Using the gradient—descent method, we have:

Wtk + 1) = w, (k) + dw, (k) (3.3.9)
where:
_ de(k)
Awp k) = — ﬂl(k)m (3.3.6)
and
de(k) _ dem(k) dymk) _
-éw_mj = em(k) a}’m(k)m = em(k)z,(k) (337)

(2) The learning algorithm for ¢, and oy,

Similarly, for the RBF layer, we have

ek + 1) = () + Aey®) (3.3.8)
O’In(k + 1) = U!u(k) + AO'In(k) (3.3.9)

where

de(k)

dey® = —mW Gl Aoy = — nh e

aoy,

and

M
as(k) _ 0em(k) Bym(k) 9z/(k)
s, = 2 e 32/k) dcy,

Xu(k) — ¢ (k)
Uln(k)z

M
= —2 Z {em(K)w(K)) z((k)

m=1

9R) _ X, dem(k) 3ym(h) 92K)
T~ 2 O 00ty 5240 0,

M
= —2 {em(k)wml(k)] z (k)

mn=1

[xa(k) = €1 (012
Oln(k)B

(3.3.10)

(3.3.11)

(33.12)

Combining egs. (3.3.5)-(3.3.12) gives the adaptive learning algorithm for RBF neu-

ral networks. Here, the momentum terms can be added to the learning algorithm, and the

learning rates #,(k) (i=1, 2, 3) can be determined by a one dimensional optimization algo-

rithm (e.g., Polak, 1971), or by some empirical formula.

3.3.2 Localized adaptive learning algorithm for Gaussian networks

Next, we explore the locality of the RBF functions. For simplicity, let us consider

a simple Gaussian function:

(x — ¢)?
02

z=¢exp{ —

}

where z, x, ¢, 0 € R!. It can be seen that

(1) lim exp{ —(";—2“)2} = d(x — ¢)

o-+0

where é(x — c) is the Direc delta function. 6(0)=1.

(3.3.13)

(3.3.14)

5

(x = ¢)?

) allrr; exp{ —) }=1 (3.3.15)
(3) If k—cl>30, 0<2<123% (3.3.16)

Property (1) shows that if some of the oy, (n=1,2,...,N) are very small, the output
of the I-th RBF function (3.3.2) is approximately zero for most inputs. This implies that if
ali of the ;s are too small, the RBF networks purely memorize the input data, and thus are
of poor generalization ability. Property (2) indicates that if all of the o, (n=1,2,...,N)
are very large, the output of the /-th RBF function (3.3.2) is virtually equal to 1 for any input,
which can be replaced by changing the thresholds of the output neurons. In this case, the
RBF networks are of poor discrimination ability. To make RBF networks possess good gen-
eralization and discrimination ability, some upper and lower bounds on oy, should be set.
Property (3) shows that the Gaussian RBF nodes are of local receptive fields, and respond

to the inputs located in their local receptive fields only.

The weighted distance between an input vectorx = [x; . . . xN]Tand the /-th RBF
center vector ¢; = [cyy - . . ¢y’ is define as follows:
N
(xn — C[n)z
dx, cp= [> e (3.3.17)
n=1

From property (3), we know that if d(x,c;) > 3, the output of the /~th RBF function (3.3.2)

is approximately zero. This reflects the locality of the Gaussian RBF nodes in RBF net-

works.

Given any input vectorx, if the output of the /-th RBF node, z,, is greater than a given
small constant o, then the /-th RBF node is said to be active at the input excitation x. ¢ can
be chosen to be 2% or larger. Fig. 3.9 illustrates the locality property of RBF networks,

where the solid lines and circles represent the active RBF nodes and connections.

Fig. 3.9 Active RBF nodes and connections in localized adaptive RBF networks

For the /-th RBF node, when the input x satisfies d(x,¢p > 3, the updating of w,,,
¢y, and oy, for corresponding / can hardly reduce the approximation errors of function

(3.3.3). On the contrary, their adjustments may affect the learned input—output relations
around the neighborhoods of other RBF center vectors. Also, alarge amount of computation

is required by this fruitless updating.

We present the following localized adaptive learning algorithm for RBF networks

to synthesize the above analysis.

Wen(k) + Aw,, (k) if the /-th RBF node is active

wk+ 1) = 3.3.18
i) W, (k) otherwise ()
o (k) + Ay (k) if the /-th RBF node is active
c(k + 1) = 3.3.19
i) € k) otherwise ()
oK) + Aoy k) if the /-th RBF node is active
ok + 1) = 3.3.20
il) 01,k otherwise ()

where the incremental terms in egs. (3.3.18) through (3.3.20) are the same as those in egs.
(3.3.5), (3.3.8) and (3.3.9). The initial values of ¢, and @,, can be determined randomly,

or by applying a priori information about the approximated functions. The learning rates

57

1n{k) (i=1, 2, 3) are determined by a one—dimensional optimization search. The algorithm
- isnotsensitive to inexact searches. Itcan be seen that the computation amount of the learning
algorithm is mainly related to the approximation accuracy requirement, rather than the prob-
lem dimensions. This property makes the above new algorithm applicable to very large RBF

networks.

In the aspect of weight updating, the localized learning algorithm is similar to CMAC
networks (Albus, 1975), but the forward computation of localized RBF networks is still

global and they possess much better generalization compared with CMAC networks.
Assume that the number of active RBF nodes for an input vector x is L;(x). The larg-
er L,(x) is allowed to be, the more accurate the function approximation at x will be. Let the

upper and lower boundaries on L,(x) for any x be LM and LI2X respectively. Then the

number of the total RBF nodes, L, can be adjusted according to the following principles:

(@) If Ly(x) < L™" thenadd LI — L ,(x) RBF nodes to the network based on Heu-

ristics 1, and let L(k + 1) = L(k) + L™ — L (x), where L(k) is the number of the total

RBF nodes at iteration k.

(b) If La(x) > L then delete L,(x) — LT RBF nodes from the network based
on Heuristics 2, and let L(k + 1) = L(k) + LJ* — L,(x) .

() If LM < £.(x) < LM then L(k + 1) = L(k).

Heuristics 1: The centers of the added RBF nodes can be randomly distributed
around vector X, or are simply set to X. Their standard deviations are set to the user—supplied
default value. The weights connecting the new RBF nodes with the output nodes are set to

small random numbers.

Heuristics 2: Among the active RBF nodes for input vector X, it is preferable to

delete those whose standard deviations are very small.

58

If toth the input and output data of the RBF networks are bounded, then the number

of hidden RBF nodes, L(k), determined from the above algorithm, will stabilize to a constant
number, or a small range, depending on whether the given LTn and LD are chosen prop-

erly or not. In either case, the determined RBF networks can approximate a given function

with user-specified precision.
3.33 Multistep learning algorithms

The instant output error index (3.3.4) is a commonly used error index in neural net-
work research. However, it is one of the major causes of inefficiency of all the back propaga-
tion-like leamning algorithms. That the current output errors are minimized does not mean
the global function approximation error is decreased. It is crucial to make sure that the al-
ready leamed input-output relations, reflected by the current weight vector, are not affected
by the continuing learning process. That is why small learning constants, momentum terms,
and randomized input sequences are so important to the convergence of existing leaming
algorithms of neural networks. In formal optimization problems, the given function index
totally determines the optimal parameters, but the instant output error index (3.3.4) does not.
If we want to achieve a similar convergence property by applying the optimization strategy,
we should use the following error index (3.3.21) instead, and also choose a better descent
direction than the steepest descent, for example, the conjugate gradient. Thatis, E is related

to all available training data and is a function of w,;, ¢, and oy, .

K K M
_ 1 = 1 2
E= ?kz_ls(k) = _—2Kk§-1 E_le,,,(k) (3.3.21)

Therefore, to update w,,;, ¢, and 0,,, we pass all the training data to the RBF network in
order to calculate E and its gradients w.r.t. wy,;, ¢ and oy, . This is the so—called batch
processing strategy. If thereislittle noise in the training data, fewer training data are required

to obtain the same approximation precision compared with the ordinary backpropagation.

59

The batch processing strategy may make the learning processes very intensive in
computation, thus is not practical for on-line applications such as system identification. By
examining eq. (3.3.21), we observe that each training datum works as one constraint in defin-
ing an unknown function. If we have some a priori information about the smoothness of the
unknown function, then fewer training data are needed to fully define the unknown function,
which means that X in eq. (3.3.21) does not need to be the number of all the training data.
For example, if we know that the unknown function is a straight line, then two training data
can totally define the function. The reason why we need more training data is because the
learning processes can not converge in one step using a constant learning rate, and the data

may contain noise. This observation is further confirmed by the nonlinear sampling theory.

By making use of a priori information about the smoothness of the unknown func-

tion, we can change eq. (3.3.21) into the following multistep error index form:

k k M
EW =4 > &) =L# Z > €20 (33.22)
j=k—p k-pm=1

where g is the number of steps used to evaluate £ at each time instant and is related to the

smoothness of the approximated function or system.

Similarly, we can get

k k
%_i@ -1 g_fg = -1 > ez (33.23)
™ ke j=k=n
k k ,
dE(K) _ 1 () 2 xn(f) = ()
=L e _2 (emiWpi)) 20y
%in ,quZ_p “In ,uJ:;mel WD) 20 0 (3:3:24)
BE(k 3e(j :) [EaG) = ()2
...E&Q =,(l¢ —a‘;ﬁ ‘% > Z tem(Wm)} 2N— (D;" (3.3.25)
In jek—p In jek—pm=1 In

Applying eqgs. (3.3.23) through (3.3.25) to egs. (3.3.18) through (3.3.20) provides the multi-

step localized adaptive learning algorithm for Gaussian RBF networks.

&N

Compared with the existing learning algorithms for RBF networks, the new leamin g

algorithm has the following advantages:

a. It is simple, and has faster convergence due to the muliistep constraints, which
make the approximated functions less uncertain, and localized learning, which eliminates

much unnecessary computation.

b. It can determine adaptively the centers and standard deviations of the RBF nodes,

which saves much tedious off-line work.

c. It can determine the number of the RBF nodes adaptively, for a given precision.

d. It converges even fasier if the learning rates ,(k) (i = 1, 2, 3) are determined by

a suitable one—dimensional optimization algorithm (e.g., Polak, 1975).

The multistep error index is a general concept and can also be applied to the other
classes of networks and thz other learning algorithms, for example, the conjugate gradient

algorithm and the variable metric algorithm for the multilayer feedforward perceptrons, to

achieve the same results.
3.3.4 Simulation evaluation

To compare the new multistep localized adaptive learning algorithm with the con-
ventional one for RBF networks, y = sin x is approximated by one input, 20 RBF nodes and
one output Gaussian RBF network for x € [— 10, 10]. Let # =7, and x(k+1) = x(k) + 0.5
as the training input. is related to the sampling interval. 400 iterations are executed for
the new learning algorithm. The result is shown in fig, 3.10, where the solid line represents
the true function curve, and the dotted line represents the output of the RBF network. It can
be seen that the approximation precision is high within the interval [— 10, 10]and not guar-
anteed outside {— 10, 10]. This demonstrates the locality of RBF networks, which indi-

cates that they possess good interpolation but bad extrapolation abilities, especially when the

61

scale of the networks is limited. The computation effort is increased as ¢ increases. On the
other hand, the conventional learning algorithm cannot converge for arbitrary numbers of
iterations in this case, even with an RBF center and variance adaptation (without such
adaptation, more RBF nodes are needed). Only when the input sequence {x(k)} is random-
ized does the approximation converge, but after many more iterations. This proves the use-
fulness of the multistep error index. Also, the updating of all the weights causes more com-

putation.

1.2 |-

a3 -

P I PR BRI BRI o

actwal - ---- model

Fig. 3.10 Approximation of sin x using RBF networks with the new learning algorithm

The simulation results verify the correctness of the new learning algorithm and dem-

onstrate its usefulness,

62

3.4 NEURAL NETWORK MODELS FOR NONLINEAR SYSTEMS

As indicated before, neural networks are universal approximators. By introducing
dynamics into neural networks, they can also be applied to model nonlinear systems. Ac-
cording to the inputs and outputs of neural network models, the modeling problems can be

categorized into (original) system identification (fig. 3.11) and inverse system identification

(fig. 3.12).

Inputs Actual outputs
=~ plant
B +
I S—)
. N-Nv
» Model outputs

Fig. 3.11 The block diagram of system identification

Inputs Actual outputs
plant >
to

O -
l_ NN/

- Modet
Moadel outputs
pus =

4

Fig. 3.12 The block diagram of inverse system identification

Most existing neural network models for nonlinear systems are based on recurrent
network models and hybrid neural network models. The efficiency of neural network mod-
eling depends on that of learning algorithms and the network structures. The commonly used
learning algorithms for neural networks ar>: 1) gradient based learning algorithms, 2) ex-
tended Kalman filtering algorithms, 3) optimization based algorithms (CG and VM), 4) ge-

netic learning algorithms, 5) statistical learning algorithms, and 6) fuzzy learning algo-

63

rithms, These learning algorithms can be enhanced by pre-processing, post-processing and

incorporating a priori information into the neural network models.

The theoretical problems of neural modeling include algorithm convergence, global
optimality of the learning algorithms, determination of neural network structures for a given
problem, optimal training data design, and model validity tests. Also, the identifiability is-
sue should be addressed.

3.4.1 Four neural network models

Most existing dynamic systems are actually nonlinear. There are various representa-

tions of nonlinear systems. The four main distinct forms are summarized as follows;

(1) Continuous-time state-space form:

x = fl,u) + wo) (3.4.1)
y = h(x,u) + v(1) (3.4.2)

wherex € X C R", u € U C R™and y € Y C R"are the system state vector, input vec-
tor and output vector, respectively. f(.,.) and A(.,.) are continuous real function vectors.
w(t) and v(z) are input and output noises. Systems (3.4.1) and (3.4.2) are observable in the

working region X and U. The system orders, n, m, and r, are known.

(2) Continuous-time input-output form:

YO =00, Ly u®, L, e, e e (3.43)
where u € U C R™andy € Y C R"are the system input vector and output vector, respec-

tively. e € R" is the measurement noise. The system orders, g and p, are known.

(3) Discrete-time state-space form:

x(k + 1) = f(x(k), utk)) + wik) (3.4.4)
&) = h(k), u(k) + vik) (3.45)

where x € X C R",u € U C R™and y € Y C R” are the system state vector, input vec-

tor and output vector, respectively. w(k) and v(k) are input and output noises. Systems
(3.4.4) and (3.4.5) are observable in the working region X and U. The system orders,

i, m, and F, are known.

(4) Discrete-time input—output form:
yk) = gtk — 1,. . .y — @i ulk),. . ulk — p)etk — 1),...e(k —) + ek)
(3.4.6)

whereu € U C R™andy € Y C Rare the systeminput vector and output vector, respec-

tively. e(k) is the measurement noise. The system orders, g and p, are known,

For the continuous-time state—space form described by eqs. (3.4.1) and (3.4.2),

JCx,u)and h(x,u) can be approximated by two cascaded neural networks as shown in fig. 3.13.

I NN2
, for — Y
U NN 1 X X h(x, u)
- for I .
1 fxu)

Fig. 3.13 Cascaded RBF networks for systern model (3.4.1) and (3.4.2)

The overall input vectors to neural networks 1 and 2 are:

xV =32 =l)7 (3.4.7)

For instance, given sampling data of an unknown system, we can use the multistep localized

adaptive learning algorithm of eqgs. (3.3.18)—(3.3.20) to train the network shown in fig.
3.13.

For the discrete—time state—space form described by eqgs. (3.4.4) and (3.4.5), if the
integrators in fig. 3.13 are replaced by one—step time delays, then the identification proce-

dure is similar to the continuous—time case.

65

For the continuous—time input—output form described by eq. (3.4.3), the systems are
not directly identifiable if the high order derivatives of inputs and outputs are not available.

Thus, we introduce the following filtered variables to circumvent such difficulty:

Y0 = >O/FyD) uft) = u(®/FuD) efn) = e(d/FD) (34.8)

where
FyD} =D% +f, D" '+ ... +f, \D+fn (3.4.9)
FuD)=D™ +f, D14 . . +f _\D+f, (3.4.10)
FeD) =D" +f D" 1 + ... +f, D+f, (3.4.11)

where D = %is the differentiation operator; ny = q,n, = p,n, = g — 1,andeqs. (3.4.9)

- (3.4.11) are stable polynomials. Then the model (3.4.3) can be replaced by eq. (3.4.12).

W =g e vl ugedTD, L e (3412)

After g{ -) is identified, we can derive the g(-) in eq. (3.4.3) using the following rela-

tion:
YO = o@Dy oy w® L wel, L g, e)
= Fy(D)gf(y(‘?'”/Fy(D), oo s YIFYDY, uPFD), . .., u/F D)
e9"VIFAD), ..., e/F.D)) (3.4.13)

For the discrete-time input—output form described by eq. (3.4.6), we assume that §
and pin eq. (3.4.6) are known. Then only one simple neural network can approximate the

system dynamics with the input vector to the network as:

x(t)y =[yk =0T, ...,y —-% u, ..., uk-p7 7 (3.4.14)
and N = rg + m(p + 1). If there is strong measurement noise, the input vector (3.4.14)

has to be extended to include the prediction errors £(k), in order to obtain unbiased models

(Chen. Billings, and Grant, 1992).

x(h) = [ytk — DT,. . Lytk — L u®)T,. . . uk — etk — DT,. . etk — T
(3.4.15)

In eq. (3.4.1), if all the state variables are measurable, then the nonlinear state equa-
tion (3.4.1) can be identified using single-hidden layer neural networks with a global con-
vergent leamning algorithm. First, eq. (3.4.1) is rewritten (w(r) is neglected) as:

x=fO,u) = —Ax + glx,u) (3.4.16)
where A = diag(A,,. . .,A,} is a positive definite matrix, and
gt uw) = flx,u) + Ax (3.4.17)

where g(x,u) can be represented and learned using neural networks.

To guarantee the global learning convergence, we use single-hidden layer neural net-
works with linearly parameterizable output weights. Assume that the inputs to these neural
networks consist of vectors x and u, the output vector of the hidden layer is denoted by
@(x,u) € R?, and P(x, u) is pre-determined and known. The output weight matrix is de-
noted by W& RP*" Then g(x,u) can be approximated as:

g0, 1) = Wid(x,u) + d(r) (3.4.18)
where d(r} is the neural network representation error vector, due to finite number inclusion
of neurons in the networks. ld () < dy (i=1,2,.. ., n), where d,is a small positive constant
and is reducible by proper network structure design. Let X stand for the estimation of the

state vector x, and W stand for the estimation of W, Then the neural network model for the

nonlinear system (3.4.1) is:

i=—A% + Wk u) (3.4.19)

Define e, = £ —x, W =W — W, and

67

e.:
ey =1ley - - et with ey =eA isat(A—’f) (3.4.20)
i
where sat(.) is the saturation function; A; = dy/4;. e, is continuous. Synthesizing egs.
(3.4.16), (3.4.18) and (3.4.19) gives:
éx = — Aex + WId(x,u) — dt) (3.4.21)
Let the learning algorithm of the neural network be
V= — ydx, el | (3.4.22)
where y is the learning rate. Then e 4, the state estimation error vector with dead-zone 4,

converges to zero asymptotically. If @(x, u) satisfies the persistent excitation (PE) condition,

then the neural network weights also converge to their optimal values (W — 0).
This assertation is proved as follows. Let V be the Lyapunov function candidate:
V= %[eze s+ (W TW) (3.4.23)
where #r(.) is the matrix trace function. Differentiating V gives:
V=elé, +y (W Ty = eléx + y (W T W)
= el[—Aey + WTP(r,u) — d] — r(W T d(x,)el)
Notice that:

AW T o, u) = W T d(x, el]

ehl—Aex — d)] = Y eyl — Afen; + A satte/4)) — (o))

i=1

il

- egAed + Z[— AJAE!‘-’A;‘] - emd,-(t)]
i=1

n
s —eldey + D[dylegd + legld)] < — elfde,

i=1

Since &, is hounded and continuous, we conclude that e , converges to zero asymptotically.

In addition, if P(x, u) satisfies the PE condition, it can be proved using eq. (3.4.22)

that the neural network weights also converge to their optimal values (W — 0).

The identified neural network model (3.4.19) can be used for either prediction or

control applications. If sysiem (3.4.1) is unstable, then an outer-loop stabilizer is required

to make the modeling possible.

In summary, neural networks can be applied to solve the nonlinear system identifica-
tion problem, if the system order is known. In the following, we discuss some issues related

to neural network modeling.
3.4.2 Generalization ability of neural networks

There is a general model for linear cystems, because the structure of the linear system
family is known. However, there is not a general model for nonlinear systems with a known
unique structure. There are so many families in nonlinear systems that it is impossible to
choose a correct system family in which only lumped parameters are unknown, without in-
tensive deduction based on the underlying scientific laws. The model derived from the un-
derlying scientific laws governing a nonlinear system is called the first—principle model.
Because most actual dynamic systems are complex and affected by many unknown factors,
it is difficult to build a first—principle model for many dynamic systems. Therefore, most
nonlinear system identification algorithms are derived based on non-first—principle models.
Usually, the first—principle models are minimally parameterized, and non-first-principle
models are over—parameterized. Neural network based models for nonlinear systems are one

type of non-first-principle models.

69

From the feature of machine learning (Kodrtoff and Michalski, 1990), we conclude
that non—first—principle models are valid in the training set and the set that is represented or
implied by the training set, but are uncertain beyond them. In other words, these models can
interpolate well, but extrapolate with uncertainty, and badly in most cases. Neural network
models are local. This reflects both the power and weakness of the non—first—principle mod-

els. Fig. 3.14 illustrates this characteristic, where X is the definition set of true mapping f;

Xy and Y, are input and output training sets; f is the neural network approximation of f.

Then,
Y={yly=f(), xEX) Y={yly=fx), x€X}] (3429
f&p =fXp = ¥p (3.4.25)

Usually, ¥ = Y.

Fig. 3.14 Mapping relations between training sets and workable sets

Therefore, to make ¥ = Y, the training sets Xpand Yy should be representative of
the approximated functions or systems, and the working region X and U should be admissi-
ble. For sequential learning, the identified systems should also be excited persistently (Ljung
and Soderstrom, 1983} to ensure the learning convergence and uniqueness. Otherwise, a
neural network cannot approximate well on the working region X and U, even with an infi-
nite number of neurons. Representativeness and persistent excitation are two necessary

conditions to be satisfied for any nonlinear function approximation or nonlinear systemiden-

70

tification problems using neural networks. This is different from linear cases, in which iep-

resentativeness is not needed since the linear models are global.

Although many papers claim that neural networks are robust to input noise, no
theoretical proof is available. The claimed robustness could be due to the sign function-like
activation functions, the redundancy of the networks, and the average effect of massive train-
ing data. For RBF networks, replacin_g xp with x,; + v, in eq. (3.3.2), where v, is the input
noise, gives

N

R Xn + Vn — €y)?
Z;=exp{ — Z(- ;2 i } =agz (3.4.26)
n=1 In
where
2 4 ~
a=expl — > = v"g" Gy 4 >0 (3.4.27)
n=1 In

Therefore, if no sign function-like activation function is introduced to the output layer of

RBF networks, strong input noise does affect the approximation precision of RBF networks.

One effective way to attenuate the input noises to the neural networks is to introduce
input signal filters for pre-processing, as shown in fig. 3.15, especially when some a priori
information about the noise is available. Also, it can be seen from eq. (3.4.27) that increas-
ing the overlapping (determined by oy, of the receptive fields of the RBF functions can re-
duce the affects of the input noises. This means that for each input vector x, there are more

active RBF nodes and the contribution or weight of each RBF node is lowered.

x by Neural y
Filter Network

Fig. 3.15 Introduction of filters to neural networks

71

3.4.3 Simaulation tests

The first example is modeling an input—output model of a discrete-time nonlinear
system using Gaussian RBF networks and the multistep localized adaptive learning algo-
rithm (3.3.18) through (3.3.20). For the following discrete-time nonlinear system,

u(k)

¥ = 08°y = 1) + 0

(3.4.28)

15 hidden RBF nodes are used, and the multistep is chosen as u = 8. After 100 iterations
of learning, the system (3.4.28) is identified using the training input u(k) = sin(kT) and T =
0.1 sec. The test signal is u(k) = sin(0.5kT) + 0.1sin(4*kT), and the test result is depicted
in fig. 3.16. Here, the output time response of the RBF network model {dotted line) is
approximately the same as the true output time response (solid line). The learning process

converges very fast.

actual - - model

Fig. 3.16 The time responses of the neural network model output versus the actual one

2

The second example is modeling a state—space nonlinear system using localized
polynomial networks. Identification speed is very important to the on-line system identifi-
cation problems. At present, most training algorithms for neural networks are not fast
enough for practical system identification applications. Here, a localized polynomial neural
network with CLI cells is applied to identify the following discrete—time nonlinear system
(Ungar and Narendra, 1992) in state space form:

x,(k)

xy(k + 1) = (5 0

+ 1)sin (x,{(k)} (3.4.29)

x%(k) + x%(k)
Xk + 1) = xy(k) cos [x5(k)} + x;(B)exp{ — ————

8
(k)
1 + u2(k) + 0.5c0s {x,(k) + x,(k)} (3.4.30)
_ x,(k) X5 (k)
YO = T3 o5 (x;(0)) 1+ 0.5sin {x,(k)) (3.4.30)

where x,(k) and x,(k) are the state variables; u(k) is the input variable; and y(k) is the output

variable. Now the problem is to make the following input—output model (3.4.6):

Yl + 1) = N[y(k), y(k = 1), ulk), utk ~ 1)) (3.4.32)
represent the input—output relation of the actual system. Here, function M . | is realized by

a localized polynomial neural network with CLI cells, which has 4 inputs and one output.

Let the order of each sub-network be L = 2, and the number of the CLI cells be ./
= 50. The centers of the CLI cells are randomly distributed in the interval [-2.8, 2.8]. The
number of hidden neurons in each sub-polynomial neural network is p = 15, which corre-
sponds to modest computation at each iteration. Before training, the initial weighis and

thresholds are set randomly between —1 and 1. The training input is:

(k) = sin {%} + sin{zz"—s"] (3.4.33)

73

Fig. 3.17 shows the training process of the neural network output compared with the

[+.]

actual output
- network output

i

Py

Ei=t
3
JPuN

output
_2—. H " l u
1 ! 1! X
1%
¥ b ! /
—a]i
5 ’
-8B — . : , ,
Q 30 BO [=]s] 120 150 180 210 240 270 300

iteration &
Fig. 3.17 Comparison of the actual and the neiwork output during training
actual system output under the same training input (3.4.33). Itcan be seen that after 90 itera-
tions of training, the neural network output is able to approximate the actual system output.
In other words, after 90 iterations of training, the network model has learned the input-out-

put relation of the actual system under the training input. Fig. 3.18 clearly shows that the

B‘ +
6- ‘
a- H
CITOT 2‘|A Iﬂ |

Vil

0] |['fl Alfatl lil:,g,,zuu P oy
ETY "l; !

i
—_2 | ¢ !
% ‘
—6-0— 3’0 '5‘0 9’0 léG 'l.r;O 1é0 210 240 270 300

iteration &

Fig. 2.18 Fast convergent training error curve vs, iteration (/=5u)

training error converges and remains smali .nd stable in spite of continuing training. Such

74

a property is very useful for on-line system identification and output prediction, and seif-
tune adaptive control. This as well verifies the fast and global convergence of the UD-

AOKEF algorithm applied to the localized polynomial networks with CLI cells.

If system (3.4.29) — (3.4.31) is identified using a 4-20-10-1 multilayer feedforward
perceptron trained by the backpropagation algorithm, then much more training iterations are

needed to obtain similar precision. If the global polynomial neural network is adopted, in-

tensive computation is unavoidable.

Just as in the function approximation case shown in section 3.2, the identification re-
sults are not sensitive to the number of the CLI cells as long as J is larger than 10. For exam-

ple, fig. 3.19 shows the curve of training error vs. iteration when J=10, which is also fast

CITor

e reb——

!'\In‘ln'ﬂ‘l‘,l‘ﬂl | L;f'-u LA dat 'Y .".‘11

AR N

o 30 60 90 120 150 180 210 240 70 s00
iteration &

Fig. 3.19 Convergent training error curve vs, iteration (/=10)
convergent. The more there are CLI cells, the better the generalization of the trained network
is. For example, for J=50, the network is trained by random inputs uniformly distributed
in [-3, 3] for 500 iterations and then tested by input (3.4.33). A good prediction result was

achieved. Certainly, the training inputs should be persistent excitation and represent the sys-

tem characteristics.

75

3.5 SUMMARY

This chapter presents the localized neural network concept, the multistep localized
adaptive algorithm for Gaussian RBF networks and the adaptive extended Kalman filtering
algorithm for localized polynomial networks. For both localized polynomial networks and
Gaussian RBF networks, on—line heuristic algorithms are given to determine the network
structure adaptively. The localization concept can be extended to any neural networks. The
multistep error inidex can also be extended to other learning algorithms to speed up the learn-
ing convergence. A brief discussion about the neural network based modeling is also pro-

vided.

The main problems in neural networks from an application point of view are the de-
termination of the network size for a given problem and the global iearning convergency.
Some solutions to these problems for Gaussian RBF networks and polynomial networks are

presented in this chapter. For other neural networks, there are some off-line learning algo-

rithms for structure determination (constructive or destructive methods). Global conver-.

gence is difficult to obtain for many neural networks, due to their nonlinear parameterization
and the difficulty in satisfying the representative persistent excitation condition. Since neu-
ral networks are not first—principle models, over—parameterization is one of their character-
istics. There is redundancy in the weights, which produces multiple optimal solutions for
a given problem. For neural networks with nonlinear parameterization, choosing good ini-
tial values of the weights ard introducing some “shaking” mechanisms help the learning con-
vergence. One feasible approximation of the representative persistent excitation is using
random training data that cover the whole working region. Proper scaling of training data

*3 another effective way of improving the speed of convergence.

76

The practical implementation of nem :l networks is another concern. Neural network
chips are still being tested. Large scale neural networks are not suitable for some real-time

applications when implemented using single digital processors.

It can be seen from the following chapters that linear parameterization of neural net-
work weights is important to the global stability proofs of neurocontrol schemes. Lian gand
ElMaraghy (1994b) indicated that single—hidden layer sigmoidal neural networks can be for-
mulated into lineatly parameterizable networks, if the input-to-hidden weights are deter-
mined beforehand using approximation theory. The conclusion can be extended to single—

hidden layer neural networks with any feasible activation functions.

CHAPTER 4

BACKPROP-BASED NEUROCONTROL SCHEMES

4.1 INTRODUCTION

Backprop-based neurocontrol systems refer to the systems whose neurocontrollers
are updated by the back propagation principle, whether the learning algorithm is the delta~
rule, or the conjugate gradient method. The typical structures of backprop—based neurocon-
trol systems are shown in figs. 2.2, 2.3 and 2.4, which represent the inverse (adaptive) neuro-
control systems, the indirect (adaptive) neurocontrol systems and direct (adaptive)
neurocontrol systems respectively. They can be developed by on-line learning, off-line
learning, or hybrid leamning. The neurocontrol systems are called adaptive if they are devel-
oped by on-line learning. By introducing an on-line copying mechanism, the common in-

verse neurocontrol systems can also be made adaptive as shown in fig. 4.1,

Backprop-based neurocontrol differs from stability-based neurocontrol, reinforce-
ment-based neurocontrol, and adaptive critic-based neurocontrol in the construction of

learning algorithms.

The backprop-based neurocontrol schemes aim at solving general nonlinear system
control problems, in both continuous-time domain and discrete-time domain. Recently, it

was found (Gu, 1990, Liang and EIMaraghy, 1993a) that they could only be appiied to invert-

77

78

L =/

Copy N. N. Inverse | Y
o -___: Model
k +{ e 7
] —
_.-yd__.. N. N. 4 Plant)
Controller _'

Fig. 4.1 The block diagram of the adaptive inverse system neurocontrol

ible minimum-phase nonlinear systems with known system orders. Controllability is anoth-

er prerequisite.

The advaniages of the backprop-based neurocontrol approach are thatitis conceptu-
ally simple and that many different schemes have been tested for different applications.
Little background in control theory is required to design such a neurocontroller. The disad-
vantage of this approach is the slow and local convergence of the learning processes, which

makes the development of backprop-based neurocontroller time—consuming.

In this chapter, some theoretical issues regarding the backprop—based indirect and
direct adaptive neurocontrol schemes are clarified. The existence conditions and the struc-
ture determination of backprop-based neurocontrollers are presented. New extensions are
also provided. Section 4.2 discusses the backprop-based indirect adaptive neurocontrol
schemes. The input—output representation of sampled-data nonlinear systems is estab-
lished. It converts the system invertibility problem into the existence problem of implicit
functions. Due to the usage of localized polynomial neural networks, fast learning conver-
gence is achieved. Section 4.3 presents some new extensions of the backprop~based direct
adaptive neurocontrol schemes with better performance. By introducing optimization algo-

rithms without using derivatives, the output tracking errors can be back—propagated to the

79

neurocontrollers without using neural network emulators. Section 4.4 gives summary and

discussions,
4.2 INDIRECT ADAPTIVE NEUROCONTROL

Backprop-based indirect adaptive neurocontrol schemes are one of the widely-stu-
died neurocontrol schemes (Miller, Sutton, and Werbos, 1990, and Hunt et al,, 1992). Liang

and EiMaraghy (1993a) gave a brief review of the related work. Fig. 4.2 shows the block

+ =
e
Yd »| Neuro-— § Plant _;y
Controller
L. N
NN | YT
| Emulator -
€y

Fig. 4.2 The schematic diagram of the indirect adaptive neurocontrol systems

diagram of an indirect adaptive neurocontrol system. It consists of a neural network emula-
tor modeling the controlled plant and a feedforward neural network as the controller. Its ba-
sic working principle is to use the modeling error ey, to tune the neural network emulator
and back—propagate the tracking error e through the neural network emulator to tunc the neu-

rocontroller, in order to make both ey and e tend to zero.

From the above principle, we know that the neurocontrollers aim at maintaining y(f)
=y ,(f) all the time. This can only happen if the equivalent dynamics of the neurocontroller
and the plant is identity, or the plant dynamics is completely canceled out by the neurocon-
oller. Therefore, the neurocontroller must be equal to the inverse of the plant dynamics.
This requirement is unrealizable sometimes, especially for systems with high relative de-

grees. Therefore, the backprop-based model reference indirect adaptive neurocontrol

scheme as shown in fig. 4.3 is proposed. In this case, the equivalent dynamic of the neuro-

Reference| _*, e

MOdel e
Yd N.N. b Y
Controller . Plant o
LY A
NN | ¥ 1T

Emulator| —
L M

Fig. 4.3 The model reference indirect adaptive neurocontrol systems

controller and the plant is equal to the reference model, instead of identity. Thus, simpler

neurocontrollers are required.

Most of the existing backprop-based indirect neurocontrol schemes are only feasible
for off-line training. Fewer papers investigated the existence conditions for the indirect neu-
rocontroller, and an efficient structure with defined input—output relationships. Moreover,
the slow convergence of the widely-used backpropagation algorithm confined the efficiency
of the indirect adaptive neurocontrollers. This section first presents the input—output repre-
sentation of the sampled—data nonlinear systems and investigates the invertibility of continu-
ous—time, discrete—time and sampled data NLS. Then the localized polynomial networks
with the competitive lateral inhibitory (CLI) cells presented in section 3.2 are used to realize
the neurocontrollers. Due to the localized networks, fast learming and oi-line adaptation of
both neural network models and neurocontrollers are possible. Therefore, the enhanced
scheme possesses better adaptation ability to system changes. The ideas of combining a neu-

rocontroller with a fuzzy controller and/or a conventional controller are also introduced.
4,2.1 Existence of indirect adaptive neurocontrollers

(1) Discretization and invertibility

81

Consider the continuous—time nonlinear system:
x = f(x,u) (4.2.1)
y = h(x,u) 4.2.2)
where x € R™, u € R™ and y € R™ are the system state vector, input vector and output

vector, respectively. f(...) and h(.,.) are unknown. The system (4.2.1) and (4.2.2) satisfies

the following assumptions:

(1) it is controllable and observable in the working region £ of x and u.
(2) f(.,.) and A(.,.) are continuously differentiable.
(3) the system orders, n;, mg, and r;, are known.

The control problem for this unknown system is to design a controller that can make
the system outputs track a given desired trajectory or remain at the zero state. The former
is called the output tracking control problem. The latter is called the regulation problem,

which can be regarded as a special case of the output tracking control problem.,

To design an inverse controller, the system must be invertible. Gu (1990) presented
atheorem that showed the existence of inverse systems of the affine—in-inputs nonlinear sys-
tems. According to the theorem, higher order of derivatives of the outputs are needed to
complete the inverse control, which implies difficulty in practical applications. For the gen-
eral system (4.2.1) and (4.2.2), it is still not easy to demonstrate its invertibility. If the state—
space model of a nonlinear system can be transformed into an input-output inodel, then its

invertibility is easy to determine.

Differentiating (4.2.2) gives:

T T
5 = [ahg;u)] Foou) + [ﬂ’%"tz_“)] = gy(x, u, i) (4.2.3)

¥ = golx,u, i,) (4.2.4)

82

......

Y9 = g un, .., uD) (4.2.5)
Since the system is assumed to be observable, there exists a minimum number ¢ so that equa-

tions (4.2.3}—(4.2.5) have solutions:

X =05 . ¥Yua, .. 0P psgq (4.2.6)
Substituting (4.2.6) into (4.2.2) gives the input-output representation of eqs. (4.2.1) and
(4.2.2): |

y = h(g,w) (4.2.7)

or

09D, . L 3y w0, W =0 (4.2.8)
Eq. (4.2.8) is called the input-output model of a nonlinear system. The following are the

two special cases of eq. (4.2.8):
y(q) = w(.y(th)’- LIS |)}! J’s u(p)’ AR ¢ l.l, u) (4‘2'9)

YO 4 a9 D Ly W =bu®?, L W 4.2.10)

The above derivation is not strictly equivalent, since the observability of system
(4.2.1) and (4.2.2) is not well defined, and eqgs. (4.2.3)~(4.2.5) may have many solutions of
x. In addition, eq. (4.2.8) cannot represent the internal dynamics which are not 2bservable
with respect to the selected outputs. Therefore, systems described by eq. (4.2.8) belong to
a subset of those described by eq. (4.2.1) and (4.2.2). However, this subset is rich enough
to cover many engineering systems. As for linear systems, the input—output (I0) model
(4.2.8) is very useful for both analysis and design. If systems described by eqs. (4.2.1) and
(4.2.2) are completely observable with respect to the selected outputs, then model (4.2.8) is
their input-state representation without internal dynamics. If systems described by egs.

(4.2.1) and (4.2.2) are not observable with respect to the selected outputs, but their internal

83

dynamics are bounded—input bounded-state (BIBS), then rmodel (4.2.8) is their input—output

representation and useful for control design. Similarly, the relative degrees can be defined.

Lemma 4.2.1: For continuous—time nonlinear sysiems represented by (4.2.8),

a) Their inverse systems have the same input—output representation (4.2.8) as the
original systems do.

b) Assume that ¢(+) in eq. (4.2.8) satisfies the iniplicit function theorem. Then,
if a nonlinear system can be represented by eq. (4.2.8), then the system is invertible; If a

nonlinear system is invertible and minimum-phase, and the measurements of

V... - Y97V are available, then an inverse controller can be constructed.

Proof: it is straightforward.

In the backprop-based indirect adaptive neurocontrol scheme (shown in fig. 4.2),
both the neuroconwroller and the neural network emulator of the controlled plant are in dis-
crete—time form, while, in practice, most controlled engineering plants are continuous in
time. Therefore, the corresponding indirect adaptive neurocontrol systems are sampled-
data control systems. To analyze the control systems, the input-output models are discre-

tized. Take the case of eq. {4.2.9) for simplicity.

There are several methods to discretize a NLS (see section 4.3). Assume that y(1),

< YD) and i), . . ., u®(#) atr= kT can be estimated numerically, based on the sampled
data {y(kT), y((k — 1DT), - » -, Yk —p)D)} and {u(kT), w(k — 1)T), - -+,

u((k — v)T)}, respectively. Here, T is the sampling period and determined by the system
dynamics, the band widths of the actuators and the control performance requirement. # and

v are determined by the orders q and p of ¢q. (4.2.9), and the estimation precision require-

ment.

Substituting the numerically estimated y(), . .., y@(2) and &(), uP(Dats=

kT into eq. (4.2.9) gives its discretized input-cutput form:
YUK = POtk — DD, . .., Yk — T wkD), ..., w(k—»T)) (A2.11)

where y € R and u € R™. The discretized input-output representation (4.2.11) pos-

sesses the same advantage as its continuous-time counterpart (4.2.9).

Due to the meclianical orelectrical ine;'tia, practical dynamic systems always possess
some time delay from input action to output response, which leads to a weak connection be-
tween y(kT) and u(kT) in eq. (4.2.11). This observation suggests the use of the d——stcp ahead
prediction input-output model, where the integer d is determined by the system dynamics.
If the system dynamics are of finite order, then { y((k + d4-1)T), y((k + d-2)T),

++ +, Y(k + 1)T)) can be represented by {y(kT), y(k — 1)T), - - -, y((k =)D}
and {ukT). w(tk — D), * + + , u(tk —)T)}. This leads to the following d-step ahead

prediction input—output model:

Yk + dT) = KT, . . ., y(k — @)T); ulkT),. . ., w(k —)7)) (4.2.12)

Lemma4.2.2: If(+ Yineq.(42.11)or §(-)ineq.(4.2.12) satisfies the condi-
tion of the implicit function theorem, then the system represented by eq. (4.2.11) or eq.
(4.2.12) is invertible. Since the discretized model (4.2.11) or (4.2.12} only contains the cur-

rent and past sampled data, the inverse controller is always realizable if the system is also

minimum-phase.

Next, we will prove the existence of the indirect adaptive controllers and give a
theoretical solution of the inverse controller for the sampled—data nonlinear system (4.2.11).
This solution is very important for determining the inputs and structures of the neurocontrol-
ler and the neural network emulator shown in fig. 4.2, which were seldom discussed in the

published literature.

85

(2) The theoreticat solutinn of itz verse controllers

Consider the nonlinear system (4.2.1) and (4.2.2) which can be discretized into the
input—output model (4.2.11). It is a well known fact that the number of outputs able to track

arbitrary given trajectories is limited by system structures, and orders m; and r,. This fact

is clarified by the following definiiion.

Definition 4.2.1: For nonlinear systems described by eq. (4.2.11), there exists a
number r; < min (rs, mg} sothatwhen y, € R, selectedfromy,eq.(4.2.13) has bounded
solution(s) of u(kT) for arbimrary { y(T), y,((k — DI), - - -, y,((k —p)T) } and
past—determined { u(tk — DT),+ + + , u((k ~ T}); when y, € R"*!, eq. (4.2.13)
does not. Then r,is called the maximum number of the independently-controllable outputs.

kD) = gtk — DD),. .., Yk —@)D); ukD),. . ., ultk—»T) (4.2.13)

Only r;independently—controllable outputs can be designed to track arbitrary trajec-
tories. If more system outputs are expected to be able to track arbitrary trajectories, one has

to change system structures, and/or add more external inputs to the systems.

For example, r; =1 for system S/ and S2, and r; =2 for system S3.

(1D _ 29 = DD + ukT)
| k0] [u@n + wden
52: Ly;(m = | uw&n + ug(m] (4:2.15)

. [y ;(m]) [1 uz(k%) + (k-) 2 } (4.2.16)

Theorem 4.2.1: For minimum-phase nonlinear systems described by eq. (4.2.11),
if P(+)in eq. (4.2.11) satisfies the condition of the implicit function theorem and the

(rs — r;) non—independently—controllable outputs are BIBS, then there exists a realizable

inverse controller able to make the r; indeperdently—controllabie outputs track arbitrary

given trajeciories asympiotically.

Proof: Lety = [y{ yg]T, where y, € R"istheindependently—controilable output
vector, and y 4, (kT) is the given desired output vector of the independently—controllable out-
put vector at r=kT. Thatthe (rs — r;) non-independently—controllable outputs are BIBO im-
plies that for any bounded || y,(kT) || and || ukT) || (¥=0, 1,2, ...), || yo(kT) || determined
by eq. (4.2.17) is also bounded.

yokT) = P(y(k = D), . . ., Yk —OT);, ukD), . .., u(k — 1)) 4.2.17)
Define the error vectors e,((k —)T) = yu((k — DT — yy((k —)T) and let

Y0k — DD, ..., Yk —)T ukD, ..., wk—1))
= yu(kT) — Ae,((k — 1)T) (4.2.18)

where U is less than 1. Since {(-)in eq. (4.2.11) satisfies the condition of the implicit

function theorem, there always exists a solution u(kT) which can be expressed as follows:

u(kT) = U(yyykT) — Aey((k = DT, Yk — DD, . . ., Ytk — @)T;
(k= DT, .., u(tk —=»)D) (4.2.19)

Substituting (4.2.17) into (4.2.11) gives:

e (kT) — Aey(tk — D7) =0 (4.2.20)
Due to ! being less than 1, || e;(kT) || = Oas & — «. Since the system is minimum-
phase, the control law (4.2.19) is stable and realizable. This proves the existence of an in-
verse controller for system (4.2.11), which can make the r;independently—controllable out-

puts track arbitrary given trajectories asymptotically and the non-independently

~controllable outputs are bounded.

Remark 4.2.1: when r;= mg, there is a unique solution of u(kT); when r;< my, there
are multiple solutions of #(kT) and one can define the best solution according toa given crite-

rion. The solution(s) can be analytical or numerical.

87

Remark 4.2.2: The explicitanalytical solution (4.2.19) is difficuit to obtain for com-

plex nonlinear systems. Therefore, the significance of this theorem s that it shows the exis-

tence of the asymptotical inverse controllers.

Remark 4.2.3: The right-hand side of eq. (4.2.18) can contain more terms or even
nonlinear functions of e,((k —)T) (i=1,2,...7), as long as they can guarantee that the
tracking error equations are asymptotically stable. The larger the number 7 is, the more ro-
bust the controller is to the errors of model (4.2.11); at the same time, the more complex the

controller and the tracking error equations are.

Remark 4.2.4: The control law (4.2.19) is dynamic. Therefore, when a system de-
scribed by egs. (4.2.1) and (4.2.2) is non-minimum-phase, control law (4.2.19) is unstable
and notrealizable. In fact, no asymptotic tracking can be achieved for non-minimum-phase

systems {Slotine and Li, 1991).

In practice, accurate system models are usually not available, especially the accurate
parameters. Therefore, the above inverse controllers have to be robustified when applied
to unknown or uncertain systems, which is beyond the scope of this paper. Nevertheless, it
can serve as a theoretical basis for the construction of the indirect adaptive neurocontrol sys-

tems. The structure of the indirect adaptive neurocontrol systems is defined in the following.
4.2.2 Structure of indirect adaptive neurocontrollers

In the following, we assume that 1) the nonlinear system model represented by eqs.
(4.2.1) and (4.2.2) is not available except for its order, and is minimum-phase; 2) the nonlin-
ear systern model represented by eq. (4.2.1) and (4.2.2) can be approximated by a sampled-
data input—output model (4.2.11), which implies that it is invertible; and 3) the asymptotical
inverse control law (4.2.19) exists and is stable. Then two neural networks are adopted to

approximate the model (4.2.11) and the control law (4.2.19). This determines the structure

g8

of the indirect adaptive neurocontrol systems, which is shown in fig. 4.4. Here, MSD repre-
sents the multi-step delay operations; V represents the vectorization of its inputs; C repre-
sents the matrix that selects the independently—controllable outputs; A/D represents the ana-
log-to-digital converter; D/A represents the digital-to—analog converter. The input vector

to the neurocontroller, determined by eq. (4.2.19), is

xc(kT) = [[y k) — Aey(tk — DI y'(k — D)
VG- k-1 ... WG -vD T (d2.21)

The input vector to the neural network emulator, determined by eq. (4.2.11), is

xykT) = [Yk = DT . .. YTk — T (D) . . . ¥k — D 1T (42.22)

The two neural networks in fig. 4.4 can be any kind of efficient neural networks.

_ Ref. F e -
- Mgdeln - ¢
....... e
u(r) ¥()
Xc | Neuro- | 4G
-\ D/A ™™ Plant A/D
¥ g1 (kT) controller

y(kT)
r \ MSD \

- X N. N.)A’(kT)
-V Emulator i

["MSDl«

Fig. 4.4 The detailed structure of the indirect adaptive neurocontrol systems

Here, the localized polynomial networks with CLI cells, presented in section 3.2, are applied
as the neurocontroller and the neural network emulator. When these networks are trained
by ihe adaptive optimal Kalman filtering algorithm with the recursive UD factorization, their

training processes are fast convergent.

89

To apply the adaptive optimal Kalman filtering algorithm with the recursive UD fac-

torization, the input-weight—output relationships of the networks have to be set up. Forthe

neural network emulator in fig. 4.4, we have
YmKkT) = 3, (KT) + vplkT) m=1,...r; (4.2.23)
FKT) = @L(xy) WigyuKT) m=1,. .. r (4.2.24)
where y,,(kT) is the m—th output of the actual system; y,_(kT)is the m—th output of the neural
network model; @ (kT) € RP is defined similar to eq. (3.2.3) and p), is determined by

the dimension of x;; and the network order; Wy, (KT) is the weight and threshold vector of

the neural network emulator for the m—th output; v,,(kT) is the approximaticn error between
ym(kT) and y“m(kT). {vm(kT)} can be regarded as a white noise process. Let

E{vm(T)} = rykT) Cov{Vm(kT), Vm(iT)} = Ryym(kTIS; (4.2.25)

For the neurocontroller in fig. 4.4, we have

Y kT) = 3,(kT) + e,(kT) = hy(xc W) + e (RT) € R" (4.2.26)

WekT) = [WEKT) . .. W, (D) 1T (4.2.27)
where v (KT) is the desired output vector of the system; ¥,(kT) is the output vector of the
neural network emulator and corresponds to the independently—controllable output vector
y1(kT); W, (kT) € RPc is the weight and threshold vector of the neurocontroller for the
m~th control input #,,(kT); pcis determined by the dimension of xand the network order;
e,(kT) is the approximation error between Y41(kT) and ﬁl(kT). [e,(kT)} can be regarded
as a white noise process vector, and

E{e,(kD)} = r(kT) Cov{e,(kT), ¢,(iT)) = Rc(kT)oy, (4.2.28)
To apply the adaptive extended Kalman filtering algorithm, H(kT), instead of P(KT) in egs.

(3.2.20) - (3.2.24), is required. It can be computed using the fellowing formulae:

mEeWo = [hyxaWeo) - .. B, oW 1 (4.2.29)

hi(xc \We) = Pylxs)Way, r=1,..,r7 (4.2.30)

Un(kT) = PLx)W, (KT) m=1,. .. ms (4.2.31)
u, i < e Wo) _ 3h,(Xc \We) dun(kT)
oW, (KT) U (kT) oW, (KT)

= [%%n“(i,f%)]"wﬁ,,qbc(xc) (4.232)

HnkT) = [Hi,KT) . . . HywK)] € RPEXT (4.2.33)

H(m =[H4n ... HLGD 1T € RMPc*n (4.2.34)

Then the neurocontroller and neural network emulator in fig. 4.4 can be trained by
the adaptive extended Kalman filtering algorithm. Based on whetherW, (kT) (m=1, 2, ..

., mg)is updated as a whole or separately, the backprop-based indirect adaptive neurocontrol
algorithm can be classified into the coupled one and the decoupled one. The latter is more

efficient in computation and storage, but is suboptimal.

The coupled backprop-based indirect adaptive neurocontrol algorithm can be stated

as follows:
a. Set up the initial values: W (0), W;(0), x(0) and x,,(0).
b. Perform the forward computation of the neurocontroller based on eq. (4.2.31).

. Apply the control input vector u(kT) to the plant and measure its output vector

y(&T).

d. Perform the forward computation of the neural network emulator based on eq.

{4.2.24).

e. Backward update Wy, (kT) (m = 1,. . ., rs) based on the adaptive optimal Kal-

man filtering algorithm with the recursive UD factorization.

91

f. Backward update W(kT) based on the adaptive extended Kalman filtering algo-
rithm with H(4T) defined in eq. (4.2.34).

g. Setk=k+1, and go to step b.

The decoupled indirect adaptive neurocontrol algorithm is the same as the coupled

one except that step f is changed into the following:

f.form = 1,..., ms,backward update W, (kT) based on the adaptive extended
Kalman filtering algorithm with H,,(kT) defined in eq. (4.2.33), and perform the forward
computation of the neural network model based on eq. eq. (4.2.33) with newly updated

We (b + 1)T).

‘When the order of the localized polynomial networks with CLI cellsis L = 1, the neu-
rocontroller becomes a set of linear controllers integrated by the CLI cells. So does the neu-

ral network emulator. In this case, global convergence can be achieved under some condi-

tions.

Assume that the controlled plant model (4.2.11) belongs to a class M of operators,
and its corresponding inverse controller belongs to a class € of operators. The neural network
model in fig. 4.4 defines an input-output function relation N, and the neurocontroller in fig.

4.4 defines an input—output function relation N.

Theorem 2.2:

For a structure-and-parameter-unknown nonlinear system which is described by

eqs. (4.2.1) and (4.2.2) and can be represented by the discretized input-output model
(4.2.11), if

1) the controlled plant is BIBS, invertible and minimum-phase in the working region

2) Ny €M and N EC.

3) the desired outputs y 4, ,,(kT) are persistently exciting during the training phase

of the neurocontrol system;

Then the indirect adaptive neurocontrol algorithm above can make its ryindepen-
dently~controllable outputs track arbitrary given trajectories asymptotically for some initial

values W (0).

Proof: Since condition 1) meets the requirement of Theorem 4.2.1, there exists,
theoretically, a realizable asymptotical inverse controller able to make the r;independently—
controllable outputs track arbitrary given trajectories asymptotically. Now the problem be-
comes whether there exists an indirect adaptive neurocontroller that functions as the asymp-

totical inverse controller.

Condition 2) guarantees that the neural network emulator can approximate the con-
trolled plant, and the neurocontroller can approximate the asymptotical inverse controller,
both with arbitrary precision. Then since the controlled plant described by eqs. (4.2.1) and
(4.2.2) is time—invariant and the adaptive extended Kalman filtering algorithm is fast con-

vergent, the indirect adaptive neurocontrol algorithm can guarantee that
5161 — y,(kT) and y,(kT) = y4,(KT) as k — % (4.2.35)
for some initial values W ~(0), and arbitrary initial values W(0) and y(0) € Q2. Therefore,
we have:
y1(kT) = y 1 (kT) as k— (4.2.36)
which proves ths theorem. The tracking error convergence speed is determined by the train-
ing algorithms of the two neural networks, in this case, the adaptive extended Kalman filter-
ing algorithm. Therefore, the tracking errors are also fast convergent. Condition 3) guaran-

tees that the indirect adaptive neurocontroller will be valid in the whole working region of

the system.

93

The definition of persistent excitation can be found in Narendra and Annaswamy
(1989). Assume that there is an input—output relation: y(r) = @(u(r),)8, where u(s) is the
input vector; y(f) is the output vector; ¢(u(), 1) is a vector function; and @ is a constant para-

metric vector. Then u(r) is called persistently exciting if the following inequality holds for
any T and ¢t € [0, =):

1+T

J @), I)pu(r), 7)ldr > M

t

where & is a positive real number.

Remark 4.2.5: If the controlled plant is BIBS in the working region £2, whether
the learning processes are globally or locally convergent does not affect the system stability.
Locally convergent learning may imply large tracking errors, but not instability. These
tracking errors can be made uniformly bounded by proper neural network design. However,
if the neural network weights are allowed to change freely, then the neural network emulator
may lose its minimum phase, stabilizability/controllability during leaming, just as conven-
tional adaptive controllers. In those abnormal cases, the tracking errors may not be uniform-
ly bounded. These phenomena have been observed in neurocontroller training. Therefore,
constraints on the weights and control inputs have to be imposed. This is still an open area,

even for adaptive control of linear systems,

Remark 4.2.6: Theorem 4.2.2 assumes that the controlled plant described by eqs.
(4.2.1) and (4.2.2) is time—invariant. If this is not true, but the structure or parameter change
speed of the controlled plant is much slower than the leaming speed of the neural network
emulator and the neurocontroller shown in fig. 4.4, then Theorem 2.2 is still valid. In fact,
fast linear system model changes are quite possible because most linear system models are
derived by linearizing nonlinear andfor time-varying systems. [ast system state changes

can often lead to fast linear system model or parameter changes. However, most nonlinear

system models can be regarded as time-invariant or slow-varying, although there do exist
some sudden changes (which can be regarded as exi=mal impulse disturbances) when the
systems come into contact with their environments. Therefore, the above assumption about
slow—varying nonlinear systems can often be satisfied. The slow system changes along with

fast neural network leamning can guarantee system stability.

Remark 4.2.7: Condition 2) implies that the neural network emulator with specified
structure can approximate the controlled plant model (4.2.11) and the neurocontroller with
specified structure can also approximate the inverse controller (4.2.19). The more knowl-
edge there is about the controlled plant model, the more confident we are in determining the

structures of the neurocontrollers and the neural network emulators.

Remark 4.2.8: The training phase can be regarded as part of the system design phase.
If the desired outputs y ,,(kT) are not persistently exciting, then the indirect adaptive neuro-
controller also works, but are only valid for the trained desired outputs. For new different
desired output commands, the neurocontroller will learn to track them due to its continuous
learning mechanism. If u(kT) is persistently exciting, then the identified neural network
emulator is valid in the whole working region €; If u(kT) is not, then the identified neural
network emulator is valid only in a local working region the control inputs u(kT) have cov-
ered. In the indirect adaptive neurocontrol systems, #(kT) cannot be specified to be persis-
tently exciting. Fortunately, we do not care if the identified neural network model is global
or local, as long as the r;independently—controllable outputs can track given trajectories as-

ymptotically.

Remark 4.2.9: Using different neural networks and/or different learning algorithms

results in different neurocontrollers with different convergent speeds.

As for neural networks, it is known now that RBF networks, higher order polynomizi

networks and CMAC are more efficient in learning than the multilayer feedforward percep-

95

trons (MFP), though the latter was more popular. It was proved in section 3.2 that localized
networks, in which only a small size sub-network is trained and responsible for output at
each iteration, are much more efficient in learning than global networks in which all the net-

work weights are updated together.

The widely applied learning algorithms are the backpropagation (BP) algorithm,
various modified BP algorithms (MBP), the simulated annealing algorithm (SAA), genetic
algorithms (GA), the variable metric methods (VMM), the conjugate gradient methods
(CGM), and the extended Kalman filtering (EKF) algorithm. BP and MBP algorithms are
relatively simple. SAA and GA are designed to achieve global convergence. However, all
these four are slow in convergence. VMM, CGM and EKF algorithms are among the best
in the sense of learning speed. However, for global networks, the EKF algorithm suffers
from intensive computation. When VMM and CGM utilize one-dimension—optimization
procedures to determine step lengths (or learning constants), the amount of computation is

large; When VMM and CGM adopt fixed or ad hoc step lengths, their convergent speed will
be lowered.

The advantages of localized polynomial networks include: 1) fastlearning and global
convergence property, which is adequate for applications that need real-time or fast learn-
ing; 2) modular and additive structure, which makes the overall network structure easy to

determine; 3) extendibility to new input space and graceful degradation.

In summary, the localized polynomial networks with CLI cells trained by the AEKF
algorithm are some of the most efficient neural networks in the sense of learning speed and
computation amount. Also, they are not sensitive to the initial values of the network weights.
Therefore, the indirect adaptive neurocontrollers based on these networks are among the
best. The system output tracking errors converge rapidly. If localized linear networks are

used, then the learning processes of the neurocontrollers are globally convergent.

4.2.3 Extensions
(1) Incorporating a nominal model into the neural network emulator:

If it is available, a default model of a controlled plant with finite precision can be used
to a) pre—train the neural network emulator and the neurocontroller to obtain better initial
values W ,(0) and W ~(0) and to avoid large initial tracking errors; b) construct indirect adap-
tive neurocontrol systems with default models and neural network error (NNE) models

(shown in fig. 4.5).

. — E
iel
Ydi Neur ‘£, Plant .7
controller
N
Default
Model
LY A
NNE | 41 %+
Model |+ = e
_ M

Fig. 4.5 The schematic diagram of the indirect adaptive neurocontrol system
with a default plant model

(2) Incorporating a conventional control’er into the neurocontroller

If there is a conventional controller for the plant, then the backprop-based indirect

adaptive neurocontroller can be used to improve the control performance, as shown in fig.

4.6.
(3) Hybrid fuzzy and neurocontrol

If the controlled plant is not BIBO in the working region, then a supplementary con-
troller is needed to stabilize the system within the working region £2, and thus make the con-
trolled plant BIBO. For example, a fuzzy controller can be constructed as a stabilizer (fig.

4.7). When the system outputs are outside the working region, the fuzzy controller works

97

0= -
€
Ya1 Neuro— “ oo 4
controller 5{ Plant -
N . L
Convent. JoNN | Y)
Controller Model T ey,

Fig. 4.6 Incorporating a conventional controller into the neurocontroller

£6-= I
€
Ydi Neuro- i | R
controller —o’éc o ant
N
Fuzzy
Controller

Fig. 4.7 The schematic diagram of hybrid neurocontrol and fuzzy control

and confines the system outputs to be in the working region £2, within which the neurocon-

troller works.
4.2.4 Simulation tests

The indirect adaptive neurocontrol scheme was first tested by making a two—input
two—output continuous-time linear system track sine signals. We let T =0.1 sec. The order
of the localized polynomial networks was set to 1. The initial values of the two nctworks
were set randomly. Without any information about the system parameters and without pre—
training of the neural network model, very good tracking control was achieved after only 60
iterations (see fig. 4.8 for one input and output). it was also tested by controlling a single—in-
put nonlinear system. The fast convergence of the neurocontrol system was again demon-

strated in this case. However, good initial values of the neurocontroller weights were re-

98

0.6 actual output 1

------ tracking error 1
0.4
0.2
H
[B VR
-o23 s \/ \/
0.4
33

—0.65-

18 21 24 27 3c

| ”Mhn TN = > =
I V‘s'WUW\Mﬁ/ S~ S~

i 1I
tirr21e (sec?

control action 1

0000

ONPOD =
Lot b
e

-0.2- 1
0.4 |
—0.64
—0.84 l
-1

12 3 18 2l1 I4 2'7 30
time (sec? 2

Fig. 4.8 Time response of a neurocontrol system

quired. This reflects the locally convergent property of the indirect adaptive neurocontrol

scheme.
4.3 DIRECT ADAPTIVE NEUROCONTROL

Fig. 4.9 shows the structure of a backprop-based direct adaptive neurocontrol sys-
tem. Its basic working principle is to use the tracking error vector e to tune the weights of
the neurocontroller. Similar to the indirect adaptive neurocontrol, the direct adaptive neuro-

controller is an inverse controller of the plant.

.t_ _—

ml?

Yd Neuro— " Plant VY
Controller

N\

Fig. 4.9 Backprop-based direct adaptive neurocontrol scheme

The backprop-based model reference direct adaptive neurocontrol scheme can also

be constructed as shown in fig. 4.10.

Referencel ¥ p e
Mgdel | e
Yd Neuro— u Plant __y
Controller -

Fig. 4.10 The backprop-based model reference direct adaptive neurocentrol systems

The direct adaptive neurocontrol scheme is simpler, but more difficult to train, due
to the unavailability of the partial derivatives of y w.r.t. u. The existing training algorithms
for direct adaptive neurocontrol schemes are: 1) a backpropagation algorithm when the sys-
tem models are known; 2) reinforcement algorithms; 3) u random search algorithm; and 4)
a simple estimated gradient algorithm. When system models are unknown, approach 1) is
not applicable. Approaches 2)and 3) are slow in learning convergence. The available meth-
od for approach 4) is too rough, since the Euler formula was used to estimate the gradient.

Several representative direct adaptive neurocontrol schemes are reviewed in section 2.2.1.

In the following, two new extensions of the backprop-based direct adaptive neuro-
control are presented. The first one is based on accurate estimation of the input—output gradi-
ents. The second one is based on the optimization algorithm without using the derivatives,

which gives fast learning convergence.
4.3.1 Existence of direct adaptive neurocontrollers

Since direct adaptive neurocontrollers (DANC) are inverse controllers, the existence
of direct adaptive neurocontrollers is the same as that of indirect adaptive neurocontroilers.
Therefore, all the conclusions and discussion in section 4.2.1 apply to backprop-based direct

adaptive neurocontrol systems.

100

4.3.2 DANC with estimated gradients

Analyzing the leaming algorithms of the indirect adaptive neurocontrol schemes, we
can see that the function of the neural network emulatorin fig. 4.2 is only to supply an estima-
tion of the input—output Jacobian matrix of the controlled plant. Therefore, if an accurate
estimation of the input—output Jacobian matrix of the controlled plant can be obtained
through other approaches, the neural network emulator in fig. 4.2 is not necessary. When
the neural network emulator in fig. 4.2 is removed, the indirect adaptive neurocontrol

scheme becomes the direct one.

Psaltis, Sideris and Yamamura (1987a) tried to use the Euler formula to estimate the
partial derivatives of system outputs with respect to inputs, which form the input-output Ja-
cobian matrix. However, such an estimation can be quite erroneous, since the change of con-
trol inputs from the neurocontroller is not always small. This problem is solved here by
introducing some numerical analysis techniques for estimating the input—output Jacobian

matrix of the controlled plant with high precision.

The nonlinear systems considered here are described by egs. (4.2.1) and (4.2.2).
They can be approximated by a sampled—data input-output model (4.2.11). The indepen-
dently—controllable output vector is y,. The desired trajectory of y, is y4. All the assump-
tions about the systems are the same as those iz section 4.2.1. The direct adaptive neurocon-

troller is designed to approximate eq. (4.2.19), and its input vector is defined by eq. (4.2.21).

Assume that the neurocontroller in fig. 4.9 is realized by the localized polynomial
networks introduced in section 3.2. To apply the adaptive optimal Kalman filtering algo-
rithm with the recursive UD factorization, the input—weight-output relationships of the neu-

rocontrollers have to be set up. For the neurocontroller in fig. 4.9, we have

Y (k1) = yi (kD) + e kT) = hy(xc \W¢) + e;(kT) € R” 43.1)

101

WckT) = [WEKD) . . . WE, (kD) 1T (43.2)
where y,,(kT) is the desired output vector of the system; y,(kT} is the output vector of the
plant; W,(kT) € RPcisthe weight and threshold vector of the neurocontroller for the m—th
control input u,(kT); pcis determined by the dimension of x- and the network order; and
e1(kT) is the measurement noise. Assume that { e,(k7)} is a white noise process vector, and

E{e\(kT)) = rc(kT) Cov{e,(kT), €,(iT)} = R(kT)dy (4.3.3)
To apply the adaptive extended Kalman filtering algorithm, H(kT) instead of @(kT) in eqs.
(3.2.20) — (3.2.24) is required. It can be computed using the following formulae:

oh (xc, W) ay (KT) qu(kT)

= = rpXmp
H(kT) W, Su(kT) W, € R" c (4.3.4)
oukT) ¢
__BWC = ®L(xp) (4.3.5)
ay,(kT)
where @-(x.) is known (defined by eq. 3.2.3). If the input—output Jacobian matrix ———=- (D)

can be estimated, then the adaptive optimal Kalman filtering algorithm with the recursive

UD factorization can be used to train the direct adaptive neurocontrollers.

If the backpropagation algorithm is used for the neurocontrollers, it is easy to show

dy(kT)

that the training algorithm is always related to the input—output Jacobian matrix Tk

ay(k)
du(k)

Thus, the values of the elements of do affect the descent directions of the training pro-

cess, although small errors are tolerable.

ay (kT)
du(kT)

If the system model equations (4.2.1) and (4.2.2) are known, then ———=-can be cal-

culated as follows:

8y() _ ahox 4+ 8h

ou(t) Oxou = ou t=kT (4.3.6)

102

dox _ Sox I

drdu oxou = ou 4.3.7)

Therefore, the above neurocontroller can be easily applied to control invertible nonlinear

systems with exact models.

However, f(x,u) and h(x,u) are unknown in most practical problems, so estimating

ay,(k
;,ul_((kT)Tz from egs. (4.3.6) and (4.3.7) is not a feasible solution. In the following, we apply

3y, (kT)
ukn)’

numerical analysis techniques to give sufficiently accurate estimation of

. oykT) 8y, . .
The entries of mﬁare 571; (i=1,2,...,rand j=1,2,..., ms). The problem

. . ay; . . .
is how to estimate a—i‘ at 1=kT with sufficient accuracy, for given sampled data :
J

(WD), yTY: wl(k — D), yi(tk = DD; « + sk = @), yltk = D) (4.3.8)
where x is a given positive integer and is related to the precision of the approximation.
Since it is difficult to tell which control input causes the change of the outputs, the

numerical estimation approach can only be applied to single-input nonlinear systems, or

multiple-input nonlinear systems trained using one input at & time.

The simplest method is the backward Euler formula (Psaltis, Sideris and Yamamura,

1987a):

[gﬂ _ 2D = y{& = 1D (439)

duj| .o WD —uik = D)
Because lu(kT) — u((k — 1)T)lis changing and not necessarily small, the accuracy of for-

mula (4.3.9) cannot be high.

103

Noticing that 4;and y; are both time functions, we have:

-l
= |5 (4.3.10)
[auj T uj(r) -

Therefore, if we can obtain high precision estimations of #,(,T) (j=1,2,..., ms) and Y{kT)
(i=1,2,..., rp, the problem is solved. For simplicity, we consider the estimation of y(z)
for 1 &€ [(k—u)T, kKT], based on sampled data { y(kT), y((k — DT); - * -,
y((k — @)T) }. Then we can apply the formulas to Lij(kT) (j=1,2,...,m)and y kT (i=1,
P o2

Assume that y(z) € C**! and T < 1. Three different high precision methods for

estimating the derivatives of y(z) based on sampled data are given in the following.
Method 1 : Direct Multistep Approximation

The Taylor series expansion of y(f — iT) at time instant £ i§

2
¥ =i = y0 - 150 + Gy + -+ 500 4o @an
wherei=1,2,..., g and
(= i .
8l = oyt TE LEli—in t] (43.12)
If u+1 steps of y(¢—iT)are used, multiplying eq. (4.3.11) by b; and summing them together
gives:
—_ T .
Soye—m =3 biw - 50+ g + - - -+ 0 + 6]
i=1 i=1 (4.3.13)
Letting the coefficients of 5(r) , . . . , y¥Xr) be zeros, we obtain:
u .
—inm '
> b =0 m=23 - u (43.14)

104

u
or > =0 m=23, -°"-u (4.3.15)
i=1
(22 32 . W7
b b
3 3 3 2 i
2 3 . H QS b]
“l=-1: (4.3.16)
/ol S u# b b

Because the coefficient matrix in eq. (4.3.16) is always invertible, we can find b; (i =1, 2,

+1

..., i) to make the approximation error of y(¢) proportional to -@I%-T),

Fromeq. (4.3.13),

we have

M u #
¥ =D by — > bye~iD))T ib;} +80) (4.3.17)

i=1 i=1 i=1

and the approximation error is

H u
) = (D beilny /1 T ib;)« O (4.3.18)
' i=1

i=1

From egs. (4.3.17) and (4.3.18), we can see that if y(z) is a n—th order polynomial of
t, then direct (n+1)-step approximation gives an exact estimation of y(z), regardless of the

value of T.
For u = 3, we have
(1) = 317:[11):(:) —18y(t — T) + 9y(r — 2T) — 2y(¢ ~ 3D)] (4.3.19)
For it = 4, we have
(1) = —I-;T,[zsy(:) — 48y(r — T) + 36y(t — 2T) — 16y(t — 3T) + 3y(t — 4T)] (4.3.20)
Example: lety(r) = £3, y(r) = 3t%. Assume that we know the samples att=1,2, 3,

4 (T=1), whichare y(1) = 1, y(2) =8, y(3) =27, y(4) = 64. Then applying formula (4.3.19)

gives

105

$@) = [11y(4) — 18y(3) + 9(2) — 2%(1)] = 48 (43.21)

The estimated y(4) is equal to the exact value. This verifies our claim and the power of the

formula.
Method 2 : Polynomial Interpolation

By applying the interpolation polynomial in the Lagrange form, we have, for

t € [(k —)T, KT,

u
¥y = > itk = DT) 1)) + &) (43.22)
i=0
where
(Te-g—pr
_ t— k- T
I = TGP (4.3.23)
j=i

!
€0 = e l_[l[: — k= DTl &E[k—pT, kT (4324)

where £(¢) is the approximation error. If function y() is smooth, then high precision can be
achieved by increasing # and decreasing 7. Fromeq. (4.3.22), we can obtain the approxima-

tion of its derivative:

B
o) = > Yk~ DT io) (4.3.25)
i=0
<]
PN t— (k— T
i = mZO R G D= o (4.3.26)

Method 3 : Least-Squares Chebyshev Approximation

The Chebyshev polynomials are defined recursively as follows:

Tox) = 1 T,(x) = x (4.3.27)

106

Tp () = 2T0) — T, 1(0) (4.3.28)
and { To(x), T;(x), - - -, Talx)) is an orthonormal system for x € [—~ 1, 1]and any n.
Let
t=KT + %I(x D +Tax+1) tE€k—mT, T+2T] (4329)
Yo = DeTin = > el (4.3.30)
i=0 i=0

 ten fen - - Tan] [6D]
folk — D Ty — 1) - -« P = pn ||| J P IDE 2

otk = D) Ty =D - - - Ttk =wD|{en] |0 - D

where n < u. Therefore, the standard least-square method can be applied to eq. (4.3.31)
1o find the best approximation. After ¢;(i=1,2,..., n) is computed, we can calculaie y(r)

using eq. (4.3.32).
2
= el (43.32)
i=0
The approximation precision is related to » and u.

Of these three methods, the direct multistep approximation method and the polyno-
mial interpolation method are computationally more efficient. However, the least—squares
Chebyshev approximation method is more robust to high measurement noise, especially

when there are outliers.

Choosing any one of the above three methods, we can obtain a sufficiently accurate

. . . ., dy (K . .
estimation of the input—output Jacobian matrix 3)’171&(]{_7) Therefore, the direct adaptive neu-

rocontrol problem of unknown nonlinear systems is solved.

107

For multi-input systems, this scheme can only be used for off-line training since
only one input is allowed to act on the systems at a time. These formulae are also useful in

estimating velocity and acceleration signals with high precision.
4.3.3 DANC Using Optimization Without Using Derivatives

Besides the input—output Jacobian matrix estimation approach, there is another ap-
proach to backprop—based direct adaptive neurocontrol which does not require the input—
output Jacobian martrix, i.e., the random searching scheme (Spall and Cristion, 1992). A sim-
ilar approach is the reinforcement learning scheme (Sutton, Barto and Williams, 1992). The
random searching and the reinforcement learning algorithms are simple, and no derivative
information is required to train the neurocontrollers. However, they are slow in conver-
gence, asis well known. Inthe following, the existing optimization algorithms without using
derivatives are introduced to train the direct adaptive neurocontrollers and achieve fast learn-

ing convergence. The problem is formulated as follows.

The nonlinear systems considered here can be approximated by the sampled—data in-
put—output model (4.2.11). All the assumptions about the nonlinear systems are the same
as those in section 4.2,1, The direct adaptive neurocontroller is designed to approximate eq.
(4.2.19), and its input vector is defined by eq. (4.2.21). For the direct adaptive neurocontrol-

ler shown in fig. 4.9 or 4.10, we define the following performance index:

i
E@) = % I [e()TQe() + u(r)Ru(x) | dr (4.3.33)
0

e(r) = x4 — y) (4.3.34)
where e(r) is the output tracking error vector; y,(f) is the desired output vector; y(r) is the

actual output vector, which is independently—ontrollable; u(r) is the control input vector to

the plant; Q and R are positive definite matrices.

108

If the neurocontrol algorithms are implemented on digital computers and based on

sampled data, we can discretize eq. (4.3.33) into the following:

k
E(h) = %2{ (T Qe(iT) + uiT)TRuGT) 1 (4.3.35)
=0

where T is the sampling period. e(iT) and u(iT) are both the functions of the neurocontroller
weights W. Similar to what was stated in section 4.2, the structure of the neurocontrotler

has to ensure the existence of the optimal weights for the given tracking control problem.

Then the modified Powell algorithm (Brent, 1973) can be applied to the index
(4.3.35) to train the neurocontroller in fig. 4.9 or 4.10. Due to the fast convergence property

of the modified Powell algorithm, better control performance can be achieved.
4.3.4 Enhancing Conventional Controllers

Similarly, the backprop—based direct adaptive neurocontrol schemes can be used to
enhance the control performance of conventional controllers for both structural and para-

metric uncertainty in the controlled plant (fig. 4.11).

Reference! ¥, ~o™
MOdCl ‘ e
Yd Neuro— | U Plant _‘y
Controller -
| Conventional
Controller

Fig. 4.11 Conventional controller enhanced by direct adaptive neuroconirol
44 SUMMARY

This chapter presents some new extensions and theoretical justifications of the back-
prop-based indirect and direct adaptive neurocontrol approaches. The invertibility of anon-

linear system is shown clearly by its input—output models. Based on the input-output mod-

109

els, the structure of the indirect and direct adaptive neurocentrol schemes is determined

theoretically for the first time, and can ensure the stabilizability of the neurocontrol systems.

The localized polynomial networks are introduced to realize the neurocontrollers.
Faster learning convergence is achieved, compared with existing schemes using sigmoidal

neural networks and the backpropagation algorithms.

Three different numerical formulae are presented to estimate the input—output Jaco-
bian matrix of a nonlinear system with high precision. Then a new backprop-based direct
adaptive neurocontrol scheme is formulated based on the input—output Jacobian matrix.

This scheme is a good and practical choice for single input nonlinear systems.

A new direct adaptive neurocontrol scheme based on optimization algorithms with-
out using derivatives is also proposed. The new scheme possesses faster learning conver-

gence compared with the random search scheme.

As stated at the beginning of the chapeer, all the learning algorithms for backprop-
based neurocontrol schemes are locally convergent, and it is difficult to prove their system
stability. It was observed from the thesis research that the stability of neurocontrol systems
is not directly related to the locality of the learning convergence, but to the speed of the learn-
ing convergence. If the learning convergence speed is faster than that of the divergence speed
(dynamic response speed) of the controlled systems, then stable neurocontrol systems can
be obtained. That is why the thesis is also devoted to developing fast learning algorithms
and localized neural networks. The local learning convergence may lead to large control er-

rors. Global learning convergence may imply small or zero control errors.

Similar to adaptive control, the loss of stabilizability/controllability and the mini-
mum-phase property during the learning process may cause problems for the neurocontrol

systems. However, due to their simplicity in concept and implementation, backprop~-based

110

neurocontrol schemes are attractive to practitioners and have found many applications inen-

gineering.

There is amyth in neural learning control: that a neurocontrol system can work well
during learning. This is like asking if a new worker can make high quality products when
he/she has not acquired the skill. Both the neurocontrol system and the new worker have
the learning ability, but this ability does not guarantee that they will not make mistakes. After
a while of learning, both of them may work at the expert level. However, mistakes are un-
avoidable before this stage. In fact, the neurocontrol systems are designed to learn from mis-
takes (errors). Therefore, from a practical point of view, it is better to divide the usage of
neurocontrol systems into a learning stage and an expert working stage. Only after it be-

comes an expert can a neurocontrol system complete quality work.

CHAPTER 5

SELF-TUNING NEUROCONTROL SCHEMES

5.1 INTRODUCTION

There are numerous neurocontrol schemes in the published literature (Miller I11, Sut-
ton and Werbos, 1990, Hunt, Sbarbaro, Zbikowski and Gawthrop, 1992). Their basic prin-
ciples are all based on the universal approximation ability and learning ability of neural net-
works. According to their design modes and the adaptation ability, neurocontrollers may be
classified into: (1) on-line wrained neurocontrollers, (2) off-line trained neurocontrollers,
and (3) hybrid off-line and on-line trained neurocontrollers, although they all have a learn-

ing stage and a working stage (section 4.4).

On-line trained neurocontrollers refer to those developed by pure on-line leaming
with little a priori knowledge about the controlled systems. Therefore, they are more attrac-
tive and more robust to systemn and environment changes, just like the adaptive controllers
for linear systems. Global convergence of the adaptation laws, which are the learning algo-
rithms of the neural networks, are crucial for the global stability and successful implementa-
tion of such systems. Off-line trained neurocontrollers refer to those developed off-line us-

ing known system default models. The neurccontrollers with fixed weights are applied to

111

112

the actual systems, after training is completed. Therefore, global convergence of the learn-
ing algorithms for such neurocontrol systems is not necessary, since satisfactory neurocon-
trollers can often be found using available learning algorithms through wrial and error. How-
ever, when the default models of the controlled systems possess high uncertainty, off-line
trained neurocontrollers may not work well for actual systems. The off-line training ap-
proach becomes attractive when theoretical design methods are not available for such non-

linear systems,

Hybrid off-line and on-line trained neurocontrollers are the integrated results of the
above two design methodologies for neurocontrollers. Off-line design is used to determine
the structures and orders of the neurocontrollers, and test their vaiidity. In addition, a priori
knowledge about the controlled systems, e.g., the default models, can be incorporated into
the neurocontrollers. When the neurocontrollers are applied to the actual systems, on-line
learning mechanisms of the neurocontrollers are evoked to adapt the system uncertainty.
The ultimate goal of neurocontrol is to remove all the off-line design work and to achieve

intelligent control by pure on-line learning.

At present, most of the existing neurocontrol schemes are only suitable for off-line
training of neurocontrollers, since the global convergence of the learning algorithms for neu-
rocontrollers, and consequently, the global stability of neurocontrol systems, cannot be guar-
anteed. There are few stability-based neurocontrol schemes at present and they can only be
applied to some feedback linearizable nonlinear systems. In this chapter, a novel self-tuning
neurocontrol scheme (fig. 5.1) for nonlinear systems is proposed. It belongs to the paradigm
of stability-based adaptive neurocontrol schemes, and can be indirect (explicit) and direct
(implicit). It differs from the popular indirect adaptive neurocontrol schemes as shown in
fig. 4.2, whose system stability cannot be proved theoretically at present. As shown in fig.

5.1, the self~tuning controllers are not represented by another neural network as in fig.4.2,

13

Yd S.T. i y

Controller Plant
L1 N
NN | Y ot
Model -
€M

Fig. 5.1 A schematic diagram of the self-tuning neurocontrol systems

but are derived from the identified neural network models of the controlled systems. The
localized polynomial networks with the compeative lateral inhibitory (CLI) cells presented
in section 3.2 are used as the neural network mode! of the controlled system (plant). When
the localized polynomial networks are trained by the adaptive extended Kalman filtering
{AEKF) algorithm with recursive UD factorization, fast and global convergence of neural
network models can be achieved, provided that the plant system order is given. If the local-
ized linear networks are used, then the minimum variance (MV) control scheme, the gen-
eralized minimum variance (GMV) control scheme, the pole/zero placement (P/ZP) control
scheme, the linear—quadratic-Gaussian (LQG) control scheme and the generalized predic-
tive control (GPC) scheme in adaptive control theory (Astrdm and Wittenmark, 1989) can
be applied to the identified neural network models with slight changes. Moreover, all the
modifications developed in the past decade and the robust analysis techniques can be applied
to the self-tuning neurocontrol systems. If localized higher—order polynomial networks are
used, then the MV control scheme, the GMYV control scheme and the GPC scheme can still
be applied to the identified neural neiwork models, by introducing the linear—in—control d-
step-ahead input-output prediction models. Therefore, global stability of these self-tuning
neurocontrol systems is guaranteed under the certainty equi-valence principle, and is not sen-

sitive to the initial setup of the networks.

114

5.2 STRUCTURE OF SELF-TUNING NEUROCONTROL
SYSTEMS

Rewrite the nonlinear system represented by egs. (4.2.1) and (4.2.2) in the following

form:

% = f(x,u) (5.2.1)
y = h(x,u) (5.2.2)

where x € R™, u € R™ and y € R™ are the system state vector, input vector and output
vector, respectively, and (., .) and A(.,.) are unknown. The system expressed by egs. (5.2.1)
and (5.2.2) satisfies the following assumptions:
(1) it is controllable and observable in the working region £ of x and u;
(2) f(.,.) and h(.,.) are continuously differentiable; and

(3) the system orders, ns, my, and rs, are known.

As shown in section 4.2, a class of finite order nonlinear systems (5.2.1) and (5.2.2)
with sampled—data can be approximately discretized into the following d-step-ahead input-
output prediction model:

Yk +) = potkD), ..., Y& =W w&D, ..., w(k-nD)) (2.3)
which is the same as eq. (4.2.12). Here, T is the sampling period determined by the system
dynamics, the bandwidths of the actuators and control performance requirement. 4 and ¥

are determined by the system orders, 15, ms, r's, and the discretization precision requirement.

The r; independently—controllable outputs are expressed as:
itk + D) = Y&, . . ., Yk —)T @D, ..., wk-»D) G249
Eq. (5.2.4) can be used for output tracking control problem. If measurement noise and mod-

eling errors exist (denoted by €,(kT)), eq. (5.2.4) becomes:

yi((k + DT) = kD). . ., Yk = W uED),. . L u(k — T)) + &,k + d)T)
(5.2.5)

115

Assume that the (ry — rj) non-independently—controllable outputs are BIBS
(bounded input bounded state). If the system model represented by eq. (5.2.4) is unknown,
but can be identified with a convergent identification algorithm, then various self-tuning
controllers can be constructed based on the identified model (5.2.4) and the certainty equiva-
lence principle. When the system model (5.2.4) is represented by a neural network, the

dertved controller is called the self-tuning neurocontroller (STNC).

The structure of the self-tuning neurocontrol scheme is shown in detail in fig. 5.2,

Ya(k + AT

T UkT) u(r) y(0) YkT)
ok Plant[~™ A/D -

controller ‘ D/IAT™
l—. [MsD] Y .
l z $LT)

N. N.
-V Mode! : j‘ .
v

L MSD
Fig. 5.2 The specified structure of self-tuning neurocontrol systems

where MSD represents the multi-step delay operations; V represents the vectorization of its
inputs; C represents the constant matrix which selects the independently—controllable out-
puts; A/D represents the analog—to—digital converter; D/A represents the digital-to-analog
converter; and y,((k + d)T) is the desired output vector at ¢ = (k+d)T. The input vector z
to the neural network model, determined by eg. (5.2.4), is
2KT) = Tk — D). . Yk = d = D) uT(k = QD). . Wk~ d =)D
(5.2.6)
In the following, we will present solutions of the self—tuning neurocontroller, based
on the localized polynomial networks with CLI cells, In the first case, localized linear net-
works are used to approximate the system models, and a set of linear self-tuning controllers
for nonlinear systems can be easily derived based on the available adaptive control theory

for linear systems. In the second case, localized higher—order polynomial networks are used

116

to approximate the system models and to achieve similar results with fewer CLI cells and

higher precision.
5.3 STNC USING LOCALIZED LINEAR NETWORKS

As shown in sections 3.2 and 3.4, eq. (5.2.4) can be approximated by the localized

linear networks with sufficient number of CLI cells. Since the order of the polynomial net-

works is equal to one in this case, @(x) in eq. (3.2.3) becomes (1 z(kD))7. The whole work-
ing region £ of the controlled system (5.2.1) and (5.2.2) is divided by the receptive fields
of the CLI cells into sub-regions: £,,. . ., ;. When the j-th CLIcell is excitatory, model

(5.2.4) can be approximated by a biased linear system (BLS) corresponding to the j~th sub—

linear network:
M ¥
Yk + DT = ©;+ > Atk — D) + D Btk = DD) + 1k + T) (5.3.1)
i=0 i=0
= WiP(z(k + d)) + &y((k + A)T) (5.3.2)
where z(kT) € £;; O;is the bias vector of the j-th sub-linear network and distinguishes the
proposed scheme from the conventional linear system control; Aj; € R” 1% and
Bj; € R"*™: are the coefficient matrices; and
T = 1pT T T
W, =[0;A0... Ay By ... Bi)=16; ... Bj,,] (5.3.3)
&,((k+d)T) is the measurement noise and modeling error vector and is bounded, with zero

means. To guarantee that the computed u(kT) is bounded, B is constrained to be of full

row-rank.

Therefore, within a sub-region or receptive field £, the system models can be repre-

sented by biased linear systems, and the well-developed model reference adaptive control

theory and self-tuning regulator theory can be applied to solve the adaptive control problem

117

within each receptive field .Qj. The overall controller consists of J sub—controllers, which

have uniform structures and are integrated automatically by the CLI cells. This reflects the

significance of the localized linear network models for nonlinear systems.

In the following, we only give the basic format of the GMV self-tuning neurocon-
trollers for nonlinear systems. Its modifications and other self—tuning control schemes can

be easily derived by following the same procedure.

To determine a GMV controller, we select the following tracking error variance in-
dex:
1= E{[|PAg™ itk + AT) = REGg™ ok + D) | +] Q' (g™ kD) |I*) (5.3.4)
where E(.} is the mathematical expectation operator; || x |2= x"x; and

T, 1, T,
Pla™h =2 Pi™ RaTH= D RgT QfaTH=) 0 (539

=0 i=0 i=0
where P; € R"*", R; € R and Q; € R™>™ are constant matrices determined by

1

the designers. ¢~ " is the backward shift operator. Py = /. Properly selecting P, R, Qji

and the step numbers, 7, = d — 1, ,, 75can make the self-tuning controller perform better

and applicable to non-minimum phase nonlinear systems (Astrdm and Wittenmark, 1989).
To make the tracking error variance index / minimal, let
oy = 2EWBRIP g™ (G + D) = Rig ™ + D) +2 Q40" (g™ kD)

= 2B7[P{g ™51k + D) = Ria ™ War(tk + D] + 2 QpQ'(g ™ HulkT) = 0

where j‘:l((k + d)T) is the optimal d-step ahead prediction of the biased linear system (3.7)

and can be expressed as:

H v
$ilk+ D) = @, + 3 Atk — DD + Y Bk = 1)) (5.3.6)
] i=0

i=0

118

Define the following auxiliary vector:
ok + AT) = Pg~ "y ((k + AT) = Rig ™ ya(k + O + Qg™ HulkT)
= ¢k + dT) + £y(tk + d)T) (5.3.7)
where
Qg™ ") = (BB 1BQHQ (4™ (53.8)
Sk + T) = Pig™ W5k + dT) = R{g™ Wtk + T) + Q)(g™HukT) (5.3.9)

£k + d)T) = PLg~Dey(k + DT (3.3.10)

Therefore, the minimization problem (5.3.4) can be solved by setting

Pk + T =0 (5.3.11)

and the optimal control u(kT) can be determined from eq. (5.3.11).

The unknown parameters in eq. (5.3.11) can be identified using either eq. (5.3.1) or
eq. (5.3.7). The scheme derived using the parameters of identified model (5.3.1) is called
the indirect self-tuning neurocontrol scheme. The scheme derived using the parameters of

identified model (5.3.7) is called the direct self—tuning neurocontrol scheme.

For the indirect self-tuning neurocontrol scheme, when z{((T) € Qj, the parameter
matrix W;in eq. (5.3.2) can be identified using AEKF with recursive UD factorization, and
used in eq. (5.3.11) to determine the control vector w(kT). The resultant identification algo-
rithm and control algorithm form the self-tuning neurocontrol algorithm. For the direct
self-tuning neurocontrol scheme, z(kT) has to be changed to account for the effect of

Riq~ l)ydl((k + d)T) in eq. (5.3.9). A similar self-tuning neurocontrol algorithm can be

derived.

It can be seen that the main difference between the self—tuning neurocontrol scheme

for general nonlinear systems and the self-tuning regulation schemes for linearly parame-

119

trizable systems is the number of sets of parameter matrices to be stored and their validity
regions. For the linear regulation schemes, there is only one parameter matrix W, which is
valid in the whole working region £. For the self-tuning neurocontrol scheme, W;(j =1,
2,...,J)1s valid only in its corresponding receptive field £2 ;(fig. 5.3). Thus W;can only
be estimated and used to determine the control vector u(kT) when z(kT) € e In the neuro-

control scheme, memory is introduced to save the learned input—output system dynamics.
In conventional self—tuning regulation schemes, such information is lost as system states

change from one sub-region to another if the system dynamics are not strictly linear,

Input space

»
*
’
L

STNC.J},

/

yd
S
4 7 7

2(kT) RN \%
\

STNC3[%

AN :
: STNC 4———+—F
N

P

STNC 2|/

AN STNC 1}

Fig. 5.3 A schematic diagram of the self—tuning neurocontrol systems

There are many available estimation algorithms to identify the parameter matrix W;
besides AEKF, such as the recursive least squares (RLS) algorithm in square—root form, the
recursive maximum likelihood algorithm, the projection algorithm and the stochastic
approximation algorithm. To guarantee the parameter matrix W10 be convergent, ®(z) in

eq. (5.3.2) has to satisfy the persistent excitation condition. Moreover, to guarantee all the

120

parameter matrices W;(j=1,2,...,J) 10 be convergent, the input—output data used to train
the localized linear networks have to be representative of the system model (5.2.1) and
(5.2.2). This requirement distinguishes the unstructured system identification from the
structured one. To control a nonlinear systemn with time—varying parameters, forgetting—fac-
tors can be introduced into the above estimation/leaming algorithms for the localized net-
works. When measurement noise, input noisé, external disturbance, and neural network
modeling errors exist, the normalized filtering, projection, leakage and dead-zone tech-
niques (Inannou and Sun, 1988) can be adopted to prevent the network parameter learning

from drifting and bursting, and increase the robustness of the self-tuning neurocontrol sys-

tems.

Besides the GMV control scheme, the well-developed P/ZP control scheme, LQG
control scheme and GPC scheme can also be adopted to achieve better control performance
and better robustness to unmodeled dynamics, disturbance and noises. Detailed extensions

are beyond the scope of this thesis.

In conclusion, the new self—tuning neurocontrol scheme with the localized linear net-
works makes the linear adaptive control theory applicable to general nonlinear systems.
Thus the existing robust adaptive control schemes can be easily extended to the new scheme
to improve its performance further. The global stability of the new self—tuning neurocontrol

scheme can be proved similarly, as done by Ydstie (1991).

54 STNC USING LOCALIZED HIGHER-ORDER POLYNOMIAL
NETWORKS

The localized linear networks approximate well and the receptive field £;of the j/~th

sub-linear network can be extended by introducing forgetting factors into the estimation al-

gorithms which make the network estimators able to track time-varying parameter changes

i |

and therefore enlarge the validity region of the BLS (5.3.1). However, many CLI cells, cor-
responding to the division number of the working region £, are still needed to guarantee high
approximation precision. If the localized higher—order polynomial networks are used, then
the number of CLI cells can be reduced under the same high approximation precision. The

higher the order of the localized polynomial networks is, the fewer CLI cclls are needed.

Due to the nonlinearity of the localized higher—order polynomial networks, P/ZP and
LQG control schemes are not applicable. Nevertheless, MV, GMV, and GPC control
schemes are still valid. Similarly, we present the basic format of the GMV self-tuning neuro-
controliers using localized higher-order polynomial networks to represent nonlinear sys-
tems. @(x) in eq. (3.2.3) is defined according to the network order L. When

2k +) € 2 5 the network model can be expressed as:

Nk + DT) = Yy GURD), . . Yk = T u®D),. . ultk = V)T) + &,k + d)T)

= WPtk + d) + &,(k + O)T) (5.4.1)
where chontains more terms than Wj, defined by eq. (5.3.3), does. Ifeq. (5.4.1) is used

directly to derive GMV (or MV) control schemes, then some nonlinear equations have 10 be

solved on-line to determine u(kT), which may result in multi-solutions and increase on-line

cornputation.

If system (5.2.1) and (5.2.2) can be approximated by localized linear networks, it
should be approximated by the following modified localized higher—order polynomial net-

works representing the linear—in-control d-step-ahead input—output prediction model:
yi(tk + d)T) = ByukT) + 9 (yKT), . . ., y(tk —)T); u((k — 1)T),
Uk = 1) + gk + d)T) (5.4.2)
= WGk + d) + €\((k +) Ak +) EQ; (54.3)

where ¥, A *)is afunction to be determined, and B, € R71*™s is a constant matrix with

122

its rank = r;. &,((k + d)T) contains the representation error and the output measurement

noise.

It is worth mentioning that the modified localized higher-order polynomial networks
are still universal approximators. Due to their locality, eq. (5.4.2) is valid only in the local
receptive field £, which can be adjusted by controlling the number of the CLI cells. Howev-
er, if global instead of localized networks are adopted, using model (5.4.2) does mean losing
of their répresemation ability. For exaraple, u2(kT) cannot be well approximated by au(kT)
for u(kT) € [-100, 100], but can be for u(kT) belonging to any small interval (a is a parameter

to be determined).

The optimal d-step ahead prediction y;((k + d)T) of system (5.4.2) can be ex-

pressed as:

$1(tk + D) = BukT) + Py 0k, . .30 — Tk = DD,y sk = 9)D)

= WGk + d)) (5.4.4)

Define:
g P O, Ly = T u(k = DT, . L u(k =)D) =

Pk = DT, - Yk —p = D), w(k — 1= 0D, . ultk —v = 07))
Then using the same tracking error variance index (5.3.4) and the same auxiliary vector
@((k + d)T) as defined in eq. (5.3.7), the optimal controi u(kT) can be determined in a simi-
lar manner from eq. (5.3.11). The previous discussion about the estimation/learning algo-

rithms is also applicable here.

If the localized neural network model with the specified structure can approximate
the controlled plant model (5.2.1) and (5.2.2), the stability of the self-tuning neurocontrol

systems can be guaranteed and the new scheme worlks for non-minimum-phase NLS. The

123

more knowledge there is about the controlled plant model, the more confident we are in de-

termining the structures of the localized polynomial network models.

As a special case, let P{q~ 1y Rj(q‘l) =l,and Q' (g~ 1y=0. Then we can obtain
the MV control scheme by determining u(kT) from eq. (5.4.5).

)A’}((k + AT —yulk+d)T) =0 (5.4.5)

5.5 SELF-TUNING SLIDING NEUROCONTROL SCHEME

In the previous section, we have applied the existing adaptive control schemes for
linear systems to self-tuning neurocontrol of nonlinear systems. In this section, we present
a self—tuning sliding neurocontro! scheme using localized polynomial networks, since its

controller parameters are easy to determine and the system stability is easy to analyze.

For the given desired output trajectory y (k) (k=1,2,...),define the tracking error
vector of the r; independently-controllable outputs as follows:
e (k) = y (k) — (k) (5.5.1)

When z(k) € £;, the tracking error model of a nonlinear system represented by eq. (5.3.2)

or (5.4.4) is:
e1k) = yutk) — WIP@k) — £,(k) (5.5.2)
The sliding surface for the tracking error model (5.5.2) can be defined as:
stk) = e,(k) — Cey(k — d) (5.5.3)
or u+d
sk) = ey (k) — > Ceylk =) (5.5.4)
i=d

where C or C; are chosen to satisfy the following two conditions: 1) making s(k) = 0 an as-
ymptoticaily stable motion; and 2) ensuring that the derived sliding control laws are realiz-
able, even when system (5.2.1) and (5.2.2) is non-minimum phase. Theoretically, both egs.

(5.5.3) and (5.5.4) are feasible. However, eq. (5.5.3) comresponds to a reduced-order system

124

response and requires more control effort to achieve such a result. Eq. (5.5.4) corresponds
to the system response with the same order as the system has and requires less control effort

to achieve such effect, but it is complex.

If egs. (5.3.2) or (5.4.4), realized by localized polynomial networks, can approximate
system (5.2.1) and (5.2.2) with bounded small errors, then the approaching law of the sliding
control scheme can be simply chosen as:

stk + d) = K s(k) (5.5.5)
and K = diag{K;, . .., K, }with K} < 1. Obviously, the approaching law itself is as-

ymptotically stable.

From eqs. (5.4.4) and (5.5.4), we have:

B
stk +d) = ey(k +d) — > Cey(k — i)

i=0
n
= yulk + d) — Bu(k) — P k) — > Cek—i) — gk +d) (55.6)
i=0

Substituting eq. (5.5.6) into eq. (5.5.5) and solving for u(k), we have:
‘ H
u(k) = BRIBBLI "y atk + d) — Fyz0) ~ > Cerlk — i) — K s(k) — £,k +)
i=0 (5.5.7)
where El(k + d) isthe estimation of the mean values of ¢,(k + 4). If noa priori information

about £,(k + d) is given, simply set £,(k + d)=0.

By properly designing the localized polynomial network structure, it is easy to make
|| €,¢k + d) || less than a specified small constant M. Therefore, it can be proved that the
neurocontrol law (5.5.7) makes the tracking error vector, e, (k), of the r;independently—con-
trollable outputs globally converge to the neighborhood of zero. The “static” tracking errors

are proportional to M, and can, therefore, be reduced to a specified level. Due to the modu-

125

lar and additive structure of localized polynomial networks, the self-tuning neurocontrollers
can be extended easily to new input space without affecting the learned input—output rela-

tions, and they degrade gracefully when there is a sub-network failure.

5.6 SIMULATION TEST

In this section, the preceding theoretical development is applied to the following sys-

tem (Mukhopadhyay and Narendra, 1993) as an example:

y(k)
1+ y(k)

ik + 1) = —=8 {y(k)}

3 — w2l
I+ snZ 0] + sin (y(k)} exp { — y“(0)} +

+ u(k) (5.6.1)

where u(k) is the input variable, and y(k) is the output variable. Assume that we do not know
the system model (5.6.1) except for its order and delay steps. To simplify the simulation,
we assume that the linear-in—control structure of the system is known. Now the problem
is to find the following input—output model to represent the input—output relation of the actu-
al system:

¥k + 1) = N[y(k), utk) 1 = N[y(k)) + butk) (5.6.2)

where N[.] is realized by a localized polynomial neural network with CLI cells.

Let the order of each sub-network be L = 2, and the number of the CLI cells be J
=5, The centers of the CLI cells are randomly distributed in the interval {4, 4]. The number
of hidden neurons in each sub—polynomial neural network is p = 4, which corresponds to a
modest computation at each iteration. Before training, the initial weights and thresholds are

set randomly between —1 and 1. The desired output trajectory is
- oo (2Tk in (21k
Y£k) = 0.25(sin { 10 } + sin{ 25 hH (5.6.3)
Fig. 5.4 shows the transient time response profile of the self—tuning neurocontrol sys-

tem. Off-line training of the localized network was not needed. It can be seen that after 100

iterations of on-line learning, the tracking error e(k) = y (k) — y(k)convergestothe neigh-

126

borhood of zero. Increasing the number of CLI cells can further decrease the size of this
neighborhood. Setting different initial values of y(k), weights and thresholds give similar

results. This verifies the fast and global convergence of the new self-tuning neurocontrol

scheme.

If the same control task of system {5.6.1) is performed using the popular indirect
adaptive neurocontrol scheme as shown in fig. 4.2, and sigmoidal neural networks or local-
ized higher—order polynomial networks are used as the neurocontroller and system model,

then only local stability of the control system can be achieved.

v

- x‘\
yk) .. f i I8
‘| ff\ﬂ DAY fAVp AUSVINE L OV
\I' v ﬁ T ; — 7 t AR B £Y ¥ Y
L J T \1‘ V'\/ TARUTIRY UYRRVARUTERYARYY

s 'f

[E B
o -y FaYa) an 20 1 - e 210 Zan FXdsl b talnd

i\’ - sy

| ‘ /i l/ V\/ v

ey]

[E I

L

(3] ~e LX) o 1P O 1RO EREz) Ay) EYalsl

A 0

‘\ | \
2 o oo

Fig. 5.4 The control system time responses under trajectory (5.6.3)

Let the conditions set for the previous simulation remain the same, except that the

desired output trajectory is changed to:

vl = 2sin () + sin (ZE) (5.6.4)

which means a larger working region for the control system. Similar good results were also
obtained, as shown in fig. 5.5. This clearly shows that the self—tuning neurocontrollers can
be extended easily to new input space without affecting the learned input-output relations,
due to the modular and additive structure of the localized polynomial networks. Therefore,
with the network structure determination algorithm given in section 3.2, it should not be a
concern whether the system states go beyond the pre—defined working region or not, since

the new self-tuning neurocontrol scheme with localized polynomial networks also possesses

self-organizing ability.

3 Ao f\ I .\ A hoo A

3 ! ! i i i] i

z:ll . Likl I‘I\!{t‘ ,\r‘lll. /,\l'tr" pz’li JH\')H”l j1f\ |‘|' j\p‘ A;El
= YTV AT TV n T F Y AT g 7T !
?,QQN\&!\V 'J\j 'uJ\\‘ \-’L\;il V‘U{\! Vi ‘/U v U\J /i f\! 'J\J v V Vi,

0 30 60 90 120 . 150 180 20 240 2v0 S0C

Fig. 5.5 The control system time responses under trajectory (5.6.4)

128

5.7 SUMMARY

This chapter presents a novel seif-tuning neurocontrol scheme for nonlinear sys-
tems. It makes the self-tuning neurocontrol of nonlinear systems closely related to the ma-
turing adaptive control theory for linear systems. If the localized linear networks are used
to model the controlled nonlinear systems, then the well-known MV, GMV, LQG, P/ZP and
GPC schemes can be directly applied to the design of self~tuning neurocontrollers. If the
localized higher—order polynomial networks are used to model the controlled nonlinear sys-
tems, then the MV, GMV, and GPC schemes can still be applied to designing self-tuning neu-
rocontrollers. A sliding neurocontroller version of this scheme is also presented. Due to the
modular and additive structure of localized polynomial networks, the self-tuning neurocon-
trollers can be extended easily to new input space without affecting the learned input—output
relations, and they degrade gracefully when there is a sub—network failure. Due to the un-
known structures of the controlled systems and the neural networks with finite neurons, there
still exist some small bounded unmodeled dynamics in the system models. Therefore, the
adaptive neurocontrol systems must be robust to such model errors and all the available mod-
ifications of the adaptive control laws developed in the last decade can be used here to further

improve the performance of the self-tuning neurocontrol systems. Simulation results con-

firm the above theory.

CHAPTER 6

GLOBALLY STABLE ADAPTIVE NEURO-
CONTROL

6.1 INTRODUCTION

As indicated in previous sections, there are few stability-based adaptive neurocon-
trol schemes currently available. The existing schemes can only be applied to some feedback
linearizable nonlinear systems (e.g., Chen, 1991, Sanner and Slotine, 1992). The reason is

that there are few available control schemes for nonlinear systems.

Feedback linearization (e.g., Isidori, 1989) represents a major approach in the non-
linear control field. Its main idea is to find a nonlinear diffeomorphism that transforms a
nonlinear system into a linear system. Recently, the idea of feedback linearization has been
extended to transform a nonlinear system into another nonlinear system (the so—called ca-
nonical form) that is solvable in control design. Also, their robust control (e.g., Spong and
Vidyasagar, 1989) and adaptive control modifications (e.g., Sastry and Isidori, 1989, Mari-
no, Kanellakopoulos, and Kokotovic, 1989) have been proposed to account for modeling er-

rors and to improve control performance. Only a small class of nonlinear systems can be

129

130

transformed into linear systems. Those systems are called feedback linearizable nonlinear
systems. For high-order nonlinear systems, the outer-loop linear feedback gains, which be-
come the coefficients of system characteristic polynomials, are too large torealize if fastcon-
vergent error dynamics are required. This is because the canonical form of equivalent linear
systems is in cascaded integrator form. Also, the inverse nonlinear transformation may not
be global. The requirement that nonlinearities in system dynamics must be infinitely differ-
entiable, or form the so—called “smooth vector field”, excludes most of the practical nonlin-

ear systems which contain dead—zones, saturation, hystereses, backlash, etc.

In this chapter, the variable index control approach for general nonlinear systems is
proposed. It guarantees the global stability of the control systems for both stabilization and
tracking problems. It possesses inherent robustness to system model uncertainty. The ro-
bustness is due to the worst—case approaching laws, not sign functions of the sliding func-
tions as in variable structure systems. It does not impose any growth conditions and infinite
differentiability assumptions on the system nonlinearity. It can be applied to nonlinear sys-
tems that are not feedback—-linearizable, and uncertain linear systems with time-varying and
state-dependent parameters. The control actions are chatter—free. The variable index con-

trol approach can be used to derive stability—based adaptive neurocontrol schemes.

Compared with variable structure control (VSC) (Utkin, 1976, 1977, Asada and Sio-
tine, 1986), the variable index control approach does not suffer from: a) possible chattering
during sliding motion, or b) the difficulty in determining a feasible sliding surface for gener-
al nonlinear multivariable systems that guarantees global stability of the closed-loop sys-
tems. In fact, these two problems of VSC motivated our research on variable index control.
Compared with the backstepping approuach (Kanellakopoulos, Kokotovic and Morse, 1991),
the variable index control approach can solve more general problems that cannot be solved

by backstepping. The Lyapunov-based control approach can provide a nonlinear control

131

law with proven system stability. For a given nonlinear system, constructing a feasible Lya-

punov function is challenging work.

The rest of this chapter is organized as follows. Section 6.2 presents the variable in-
dex control theory. The global stability of the variable index control systems is proved. Ex-
amples and simulations are presented to demonstrate the design procedure. Section 6.3 ex-
tends it to general nonlinear systems. Section 6.4 derives a global stable adaptive
neurocontrol scheme for general nonlinear systems. Section 6.5 summarizes the contribu-

tions of this chapter.
6.2 VARIABLE INDEX CONTROL THEORY

6.2.1 Preliminaries

Consider a general affine nonlinear system
x() = A(x(0)) + B(x(r)) u(r) (6.2.1)
where x(.) € R" is the system state vector; u(.) € R™ is the control vector; and B(x)
€ R™,; nand m are known. The definitions of A(x) and B(x) are assumed to guarantee the

existence of solutions of the differential equations (6.2.1).

The assumptions about the nonlinear system (6.2.1) are:
a) Itis stabilizable/controllable (Isidori, 1989);
b) The state—variable measurements are available;
¢) A(0)=0, and B(x) # 0 for Vx € R",
d) B(x) = Bo(x) is known, where B is an n X m constant matrix, and g(x)
is an m X m invertible matrix for Vx € R"; and

e) The system model (6.2.1) is of bounded uncertainty in A(x):

au(x) = a,-(x) = GU"(X) fori=1...n (6.2.2)

132

where g;(x) is the i—th entry of A(x), and a;,(x) and a;{x) are known and

bounded functions as long as || x || is bounded.

Most of the nonlinear control approaches, including feedback linearization, require
the first three assumptions in addition to other assumptions. Assumption d) represents a re-
striction on B(x). However, it will be shown in section 6.3 that general nonlinear system
x = f(x, u) can be transformed into the form with B(x)=B. Assumption e) gives the defini-
tion of the system uncertainty, which is not required to satisfy any matching condition. In
section 6.3, B(x) is also allowed to be uncertain. Thus, the proposed variable index control
imposes the least strict assumptions about the controlled nonlinear systems, so it can be ap-

plied to more general nonlinear systems.

Define a function set 96 as follows:

Y={a()la: Rt — R, continuous, strictly increasing with a(0)=0 }
Lemma 6.2.1:

Given vectors a=[a,, . . ., an)? and b(p)= [121¢) N bn(p))?, where bip)isa
function of vector p and a;is not. The entries of b(p) satisfy the following constraints for
any possible p:

bt < byp) =< bY for i=1,...,n (6.2.3)

Then the upper bound of a™h as a function of p is a™h. That is,
n
"Bra’b = a'b = Y (Y + bDa; + 26! - 5D)/2 (6.2.4)
i=1

where b = [51. ey E,,]T and:

bY if a;20

T o= pt L U_ sl =Jd7 -
b; = [by + by + sgn(a)(b; b)1/2 {bf‘ if a,<0 i=1,..., (6.2.5)

=

Proof: the proof is straightforward.

133

Lemma 6.2.1 is important in deriving the variable index control laws.
6.2.2 The worst—case approaching control strategy

It is well known that (1) variable structure control laws are robust to bounded uncer-
tainty, and (2) the robustness is attributed to the sign function of a sliding function. There
is a sliding motion after the system states remain on sliding surfaces. However, generating
sliding motion is not the only way to achieve robustness. Actually, due to the introduction
of the sliding motion, chattering is unavoidable when pure sign function is used. In the fol-
lowing we introduce the worst—case approaching control sirategy. The robustness of the
control systems using the worst—case approaching control strategy comes from the upper

bound estimation of the time derivative of error index functions. The stabilization problem

is considered first.

Let 4 = {afx), i = 1,2,...,n) represent the uncertainty of the system model
(6.2.1). Let the error index s(x) be a continuously differentiable positive definite function,

s(x) = a(| x|}), where a(.) € %. For s(x), we have:

§(x) = [%]T i= [g—;]TA(x) + [%]7 B(X) u (6.2.6)

The problem now is to determine a control law # = u(x,s) under system uncertainty 4

which makes § < 0 for Vx € R" and x =0. If such a control law exists, then we can prove

the system global stability easily, by choosing V=5 as the Lyapunov candidate.

To account for the system uncertainty, we propose the following worst—case ap-
proaching control law for the chosen error index:

"Wss ~fs) <0 (6.2.7)

where f(s) determines the convergent speed of 5. Following are some feasible choices of /(s):

a. f(s) =k k > 0 is a constant (6.2.8)

134

b. f(s) = ks k > 0 is a constant or a function of s (6.2.9)

c. f(s) =ks+ szs(x) dt ki, kp >0 (6.2.10)

From egs. (6.2.2), (6.2.6) and lemma 6.2.1 we know that:

T
"0 = [L] A + Beou (62.11)
where:
AQ) = [@,) . . . 3N (6.2.12)
g0 = layx) + agx) + sgnf as Hay) — ag;()1}1/2 (6.2.13)

and sgn(.) is the sign function. It is worth pointing out that although eq. (6.2.13) contains

sgni as }, :he right hand side of eq. (6.2.11) does not, due to the multiplication of gs and

A(x). As a special case, if aLj(x) = - auj(x) in eq. (6.2.2), eq. (6.2.13) becomes:

ax) = sgnf as Jayx) and lai0)l < ayx) (6.2.14)
Let:
[%]Th'(x) + [g—fc]r BX) u = — f(s) (6:2.15)
or
Qx)u = R(x,s) (6.2.16)
where . .
o= [E] B Rwo= - [£] A0 - 19 (6:2.17)

Notice that Q(x) € R1*™. When m > 1, eq. (6.2.16) has multiple solutions of u.
Therefore, a suitable solution of u can always be derived from eq. (6.2.16), especially when

the designers know the dynamics of the systems well. In the foliowing, a least square solu-

135

tion of eq. (6.2.16) is given. Define || Q(x) |= ‘/Q(x)Q(x)T. When 11Q(0)1 > 0, we can ob-
tain:

u = 0% [2K) QTW)] ! R(x,s) (6.2.18)
Eq. (6.2.18) is called the least—squares variable index control law. Itis robust to both large

system structural and paramerric uncertainty.

Since Q(x) is a function of x € R" which is changing all the time, there may exist
a set in R" such that lIQ(x)Il=0. Define this set as:
={x11IgXI=0 x&R"} (6.2.19)
Q2is called the singularity set of O(x). When x € £, ucannot be determined by eq. (6.2.18).

This problem will be solved later by introducing feasible multiple error indices.

As long as x & 2, we can prove that the least—squares variable index control law

(6.2.18) makes || x || decrease uniformly under uncertainty A, by choosing V =s(x) as the

Lyapunov candidate.
Property 6.2.1:
Let f(s) be a continuous function of s. If a; (x) and ay{x), the upper and lower bounds

of a;(x), are continuous functions of x, then R(x, s} is a continuous vector function of x. Con-

trol law (6.2.18) is also a continuous vector function for x & £.

Proof:

R(x,s) is a scalar function. From eq. (6.2.17), we know:

n

R(,5) = - Z{%}]ajm - fs)

j=1

where 7;(x) is defined by eq. (6.2.13). Thus,

R(x,s) = = Zf;%[auj(x) + a (0] + (;"—jj [agx) — ay(0)11/2 = £(s)
=

136

Since s(x) is continuously differentiable, gf- and its absolute value are both continuous func-
J

tions of x. Therefore, R(x, s) is a continuous function of x, using the given assumptions.
Since Q(x) is a continuous function matrix of x, control law (6.2.18) is also a continuous vec-

tor function for x & .

The continuity of control inputs is a desirable feature, since it ensures smooth con-

trol.
6.2.3 Existence of feasible multiple error indices:

As indicated above, the variable index control law (6.2.18) is not defined when
x € Q. Since 2 could be a large setin R®, | Q(x) |=0 does not imply that x =0 or x is in
the neighborhood of the origin. This means that control law (6.2.18) with one error index
may not stabilize system (6.2.1) if x € . To eliminate the singularity set £, the concept
of feasible multiple error indices is introduced. It will be proved in the following that there
always exists a set of feasible multiple error indices for B(x) = Bo(x) which makes the vari-

able index control law (6.2.18) well defined in the whole sfaﬁce R™

Let the error indices s;(x), . .., Su(x}beasetof continuously differentiable posi-
tive definite functions. s.x) = a(|| x ||), where a(.) € 9. The corresponding Q(x,s;) and

R(x,s) (i=1,...,u) are defined similar to eq. (6.2.17), and are rewritten in the following
for convenience:

T T
a i d il =
Qx,5) = [a—i] Bx) R(xs) = - {[a—i] A +fls)) (62.20)

where A(x) is defined similar to eq. (6.2.12), and f{(s) can be chosen from eqs.
(6.2.8)-(6.2.10). The singularity set is:

Q={x1]|0xs)|=0 x€R") (6.2.21)

137

The corresponding variable index control algorithms are:

u = Q(x,5)"R(x,5)/10(x, s)Qx, 5)] if x & & (6.2.22)
As indicated by Property 6.2.1, u is a continuous vector function of x for each index. When
| Qx,sp [| > Oforanyi=1,...,u, control law (6.2.22) can be applied to the system (6.2.1)
and make || x || decrease all the time. When || O(x,s) |=0foralli=1,..., u, u constraints
on state vector x are acquired as follows:
jot,spll=0, ..., |Q&xs) =0 (6.2.23)
Eq. (6.2.23) is equivalent to the following:
Oy = [Qx,5)). . . Ox,5))7 = 0 € RemX1 (6.2.24)
For a given number g, if x =0 is the unique solution of eq. (6.2.24), then 5100 oy 3uX)
are called a set of feasible error indices with respect to B(x) = Bo(x). If u is the minimum

number for 5,(x),. . . ,5.(x) to be feasible, then 5,(x),. . . ,s,(x) are also called indepen-

dent.

The minimum number of feasible multiple error indices required for a given system
1s dependent on B(x), the number of control inputs and the number of state variables. It is
worth pointing out that the choice of feasible multiple error indices is not relevant to A(x).
In the following, we will show the existence of feasible multiple error indices for nonlinear
systems (6.2.1), and prove that s(x) = xTPEx (i=1,2,...,u)are feasible multiple error
indices for B(x) = Bo(x), and thatu can be determined analytically. Here P;is a symmetric

positive definite matrix.

Substituting s,(x) = xTP,-x and B(x) = Bo(x) into eq. (6.2.20) gives:

T
Qx,s;) = [a”:;ix)] B(x) = 2x"P Bo(x) (6.2.25)

To make a set of error indices feasible, we have to ensure that x =0 is the unique solution

138

of eq. (6.2.24), i.e., the following equations:

10, s)|=0 or Qx,s) =0 foralli=12,... ¢ (6.2.26)
Since
0w, s) = 2PBo(x) =0 < xPB=0 (6.2.27)
we obtain:
x’P\B =0

fe or [PB...PuB|x=0x=0 (6.2.28)
xP,B =0
It can be seen that if rank(Q.) =n, then x=0 is the unique solution of eq. (6.2.28), thus of
eq. (6.2.24). There are many ways to make rank(Q.) = n, because we can choose P; (i= i,
2,...,u) freely. For example, let G be a symmetric positive definite matrix, and {G, B}
be controllable. Let:

P,=1 P,=G, ...,P,=G""] (6.2.29)
where u is equal to the controllability index. It is easy to prove that rank(Q.) =n for the
above choice. If the structure information about matrix B is utilized, then even better choices

of P;(i=1,2,...,u)can be obtained.

In summary, s;(x) = xTP,-x (i=1,2,...,u)are feasible multiple error indices for
nonlinear system (6.2.1) with B(x) = Bo(x). If x # 0, there always exists an index i such
that || @(x,5)) | > 0, which guarantees that the control vector defined by eq. (6.2.22) exists

in the whole space R" except where x=0. Also, 2,n2,Nn- - - NQ,={0}.

6.2.4 Stability theorem of variable index control systems

Since we can always find a set of feasible error indices for nonlinear system (6.2.1),
the proposed variable index control approach can be applied to system (6.2.1). The overall

result is summarized in the following theorem.

139

Theorem 6.2.1:

Under the given assumptions a)—e)about the noglinearsystem (6.2.1), the variable index
control law (6.2.22 }witha selected sequence of indexesfromi=1,2,...,u guarantees that:
1) the control signals are uniformly bounded, 2) x= 0 is a globally and asymptotically stable

motion of system (6.2.1), and 3) the control system is robust to model uncertainty.

Proof:

There always exists a set of feasible error indices s5;(x) = x'P x@=12,...,u)for
nonlinear systems with B(x) = Ba(x). If x # 0, there always exists an index i such that
| QCx,s) | > O for x & £, which guarantees that the control vector defined by eq. (6.2.22)
exists and is bounded for x € £, Let the Lyapunov function candidate be V=
5{x) = xXTPx= a;| x ||, where a;is a positive constant. Therefore, V is globally positive

definite. The time derivative of V is

T
V=§(x= [2—2] [A(x) + B(x)u]

-
ds

= | 52| [A® + BWQ, s)"R(x, 5100 5300, 5)")

-

I, ,
9s; . fas 1 _
B % AR — 0(x,5)Q0x)" /10 500, S:)"]{[g}'] Ax) + [{s))

'as,-'T _
= Lﬁf [A(x) — Af0)] — fi(s)

It is easy to prove that:

as T
[a_x'] [AG) —AQ)]) <0 if x=0

using Lemma 6.2.1. Therefore,

140

T
. as; _
Y= [a_i] (A — A — fis) = —fils) = —fiN <0 f x=0

From the Lyapunov theorem, we know that the variable index control law (6.2.22) with in-
dex i can make V, thus || x ||, decrease for x & £, as long as the index i is selected. Also,
|| || is uniformly bounded as long as || x || is bounded and x 0. Therefore, by selecting a
sequence of indices from i=1, 2, . . . , #, we can guarantee that || x [| decreases for
x & 2,n0Q,n - - - nQ,={0}. Thisimplies that || x || decreases globally aslong asx =0,

for any given initial state vector xo € R" and model uncertainty.

Since there is switching in the variable index control law (6.2.22) due to the index
selection, the control action smoothness and system stability during switching have to be in-
vestigated. They are both relevant to the definitions of s,(x) = x'Px (i=1,2,...,4)and

the switching frequency.

The control actions are smooth if there is infrequent switching, and the values of
51(x),. . . ,Su(x) are of the same order of magnitude for a given x. The variable index con-
trol systems are stable during switching if there are no limit cycles and frequent switching,
i.e., no chattering. Limit cycles may occur when control law switching does not resultin a
decrease of || x ||, even if the switching is not frequent. The limit cycles can be eliminated
if the decreasing rate of || x || is not too slow. The frequent switching can be eliminated by
choosing the next index i in. eq. (6.2.22) such that the distance between the current system

state vector x and the ith singularity set £2;is furthest in the measurement of Euclidian dis-

tance, and keeping this index as long as || Q(x,s;)) | > 0. In summary, the control action
smoothness and system stability during switching can be guaranteed by making the values
of 5,(x),. . . ,S5u(x) in the same order of magnitude for a given x, and selecting a proper in-

dex sequence and fi(s) (i=1,2,...,1).

141

Therefore, the variable index control law (6.2.22) with a selected sequence of indices
fromi=1,2,...,u makes x=0 a global asymptotical stable motion of system (6.2.1), and

the control system robust to model uncertainty.

The boundedness of control u is proved in the following. For || x || >0, A(x) and B(x)
are bounded for bounded || x ||. From egs. (6.2.20) and (6.2.25), we know | Q(x,s)) || and
"l R(x,5,) || are also bounded for bounded || x {|. Thus,|j « || is always bounded if || x || > 0.

The boundedness of || u || for x=0 can be proved using its limit.

Notice that A, £0)=0, and B(0) 0. Egs. (6.2.20) and (6.2.25) ensure that when x is

in the small neighborhood of zero, the following inequalities hold:
1410 | = ao | x| | RGes) | ay [l x| (6.2.30)

a, || x[|=]| Qx,s) | = as i x || [0, 5)0)17 =] 0, 5) |72 (62.3D)

where g; is a positive constant (j=0, 1, 2, 3}. Therefore,

lim |l u||= lim | 0, s)TR(x, s)/1Q(x, 5)Qx,)" |
< lim | Qo) | Q05D 172 1RG5 |
< lim gy || x]|a;* |}~y |x|* =0

When x 0, || u || is always bounded. From the continuity of u defined by eq. (6.2.22) for
a given index i and the above limit of u, we can set 4 =0 when x = 0. For tracking problems,
A0,1) 0,and a;(j=0, 1) are positive time functions. Similarly, we can prove that [l

is bounded. Therefore, || | is uniformly bounded as long as || x || is bounded.

Since the system stability is proved under the given model uncertainty (6.2.2), the

control system is also robust. This proves the theorem.

142

Remark 6.2.1: Although different error indices are needed for different systems, there al-
ways exists a set of feasible error indices for nonlinear system (6.2.1) with B(x) = Bo(x).
Therefore, the variable index control approach can solve the control problem of system
(6.2.1). This characteristic remedies the problem facing variable structure control, that is,
how to choose a feasible sliding surface to guarantee the stability of sliding motions for gen-

eral nonlinear systems.

Remark 6.2.2; The variable index control law (6.2.22) is highly robust to system model un-

certainty. The robustness is due to mAax $(x), not sgn(s(x)). This is a major difference be-
tween the variable index control and variable structure control. Since we do not need todrive
sysiem states to any specified surfaces except x=0, there is no sliding motion. Since we do
not need to maintain the system states on any specified surfaces and infrequent switching can
be guaranteed, there is no chattering. This result shows that generating sliding motion is not

the only way to achieve robustness.

Remark 6.2.3: The variable index control law (6.2.22) is given in state regulation form.
Let e = x — x,, where x, is the desired coordinated trajectory of the state vector x. Let
si(e),. . ., sule) be a set of feasible error indices based on e. Then control law (6.2.22)
can be extended directly to the tracking control problems with a few notation changes. It
is worth pointing out that the number of states which can be designed to track arbitrary trajec-
tories is less than or equal to the number of control inputs. The rest states have to track coor-

dinated trajectories derived based the independent trajectories.

Remark 6.2.4: Selecting different sequences of indices may lead to different control perfor-
mances. This is an interesting topic which requires further elaboration. In the following,

we introduce a small constant & (say, 107} into eq. (6.2.22), and propose a simple index

selection algorithm.

143

u = 00t s)"R(x, 5)/1Q0, 5)0, 5)T + 6] if x & Q (62.32)
where i i: determined by the following index selection algorithm:
For a given error constant &,
a. if | Qs> €, theni=1;

b. if | Q(x,s,) ||< & for k < j < p and IQ(x,s) ||> &, then i = j;
c. if |Q@s)llse forall k=1, ..., g, then decrease £ and go to step a.

Example 6.2.1: Consider the following third—order nonlinear system:
jcl = Xy + 91¢1(x1,x2,x3) -+ ¢2(II,X2,13)
xz = X3
Xy = 0(x), X0, X3)u + O 3(x 1, X2, X3)
where ¢,(x;, X2, X3) (i=1,3) and 0(x}, X5, x3) #0 are known. 6;(i=1,3) and @,(x;, X9, X3)
_ 3 3
are unknown. However, 8; < 8; < 6, (i=1,3), and Zg;x,- < Po(x1. X, X3) < Zﬂix,-,
i=1 i=1
where the bounds and the parameters are known. @(x;,X,X3) and ¢,(x, X5, X4) must be

defined to ensure global controllability of the system. ¢£0)=0 (=1, 2,3).

In summary, the system is of bounded parametric and structural uncertainties. It is
difficult to apply the popular backstepping method to this system, since it1s not in either the
strict—feedback form or the pure—feedback form (Kanellakopoulos, and Kokotovic, 1989).

The generality of ¢; (i = 1, 2, 3) and o may make the system not feedback linearizable. Only

the stabilization problem is considered.
Let x = [x; x5 x3]T, a=la; a, Q3]T and 7 = (&, @, E3IT. Comparing ¢q.
(6.2.1), we know that B(x)={00 O']T. The bounds of A(x) in eq. (6.2.2) are:
ay(x) = Xy + 019, + ¢y ap(0) = x + (@ +)¢, — @, — 8)k11/2 + a'x

agp(x) = xp + [0 + 0@, + B, — 8))p,11/2 + ax

144

a,(x) = apo(x) = ayy(x) = x3
a3(0) = 0393 a0 = (85 + B3lgs — B3 — E3)511/2

%) = (03 + 83)p3 + (B — By)lp;11/2
Unlike other robust control approaches, the bounds are easy to estimate, especially when one

knows the physical interpretation of the terms.

The multiple error indices are chosen as 5,(x) = x7Px (i=1, 2, 3), where:

200 200 201
P1= 020 P2= 021 P3= 021
002 012 112

to make them feasible. Let f(s;) = &s; k> 0. Therefore,
Q(x,5) = 2TPB(x) = 2xTP z0(x) i=1,2 3
P3=1002T Py=[0127 Py=1[112"

Therefore, | Q(x,s;) | =0foralli=1, 2, 3 if and only if || x | =0. Similarly,
Rix,s) = —2TPA() —ks; =123

where A (x) is determined as follows:

AW = [@w @ adw’ i=1,2,3

aix) = i=123

auj(x) lf xTP,-j =0
a(x) if x'P;<0

u= —(2'PA) + ks;}/[2xTP z0(x)] (6.2.33)
Thus the variable index control law (6.2.33) with the index selection algorithm can make the

system globally stable at x=0 in spite of the existence of model uncertainty.

Example 6.2.2: It is difficult to define a feasible conventional sliding surface for
general linear systems using variable structure control approach. However, there always ex-

ist feasible multiple error indices for uncertain linear systems. Therefore, the robust control

145

problem of general uncertain linear systems can be solved without chattering using the pro-
posed variable index control approach. To make the statement simple and explain the result

graphically, we design a variable index controller for a second order system. Extension to

higher order systems is trivial.

The equations of a general second order linear system can be expressed as follows:
Xy=a,x ta + bu
{ 1 11%1 12%2 T 0y (6.2.34)
Xg = Q91X + AqnXs + bzu
where b, # 0 and b, # 0 are known, and a; is nonlinear, time-varying and uncertain,

Their bounds are defined as follows:

af™ < ai(x,1) < af™, forall x € R* and t € [t;,] (6.2.35)

where a}}’i“ and ag-"“ are known constants or functions of x. The system is assumed to be

controllable,

Since n=2 and m= 1, two error indices are required to ensure global system stabil-

ity. Let by=1and b,=2, and 5;(x) = x"Px (i=1, 2), where

20 1 -1
S R Y

Let fi(s;) = 2s;. Therefore,

Qx,5)) = 4(x; + x,) Q(x,57) = 2(— x; + 3x,) (6.2.36)
Therefore, || Q(x,s;) |=0 for both i=1, 2 if and only if | x || =0. Similarly,

R(x,s;) = — 2Qx, @} (x) + x,@3(x)) —~ 25, (6.2.37)

R(x,s9) = = 2[(x; - xz)a_f(x) + (x) = sz)ﬁ'%(x)] - 23, (6.2.38)

where EJ‘,: (f, /=1, 2) can be determined according to the bounds of a j- The variable index

146

control law is:

(6.2.39)

R(x,5,)/Q(x,5,) if 10, sl = 4bx; + x50 >0
=R, s)/0®, 59 if 0@ sy =21 —x) + 35yl > 0

The singularity sets are defined by 2; = { x | | @(x,s) |= €, x € R? }, and
£2,n8,={0}. Thiscan be seen clearly from fig. 6.1. The first option in eq. (6.2.39) is not
defined on x; + x, = 0 and the second option of eq. (6.2.39) is not defined on
— x; + 3x, = 0. However, there is always one well-defined option for x #0, and u = 0
for x =0. By switching between these two options, the variable index control law (6.2.39)

can make the system states converge to the origin.

1‘ X2
x1+x2=0

- X
% 1

Fig. 6.1 Illustration of the singularity sets of example 3

For sampled—data control systems, the probability of the sampled system states fal-

ling on the singularity sets is almost zero. Therefore, there are actually few switches when
| x [} is 1arge. When | x || is very small, frequent switches may occur, but they have little in-
fluence on || u || These switches can be eliminated by introducing a small dead—zone, or us-

ing the hybrid variable index and linear control scheme (Liang and EIMaraghy, 1994a).
6.2.5 Simulation example

In order to test the variable index control laws by simulation, a two-link planar flex-

ible joint manipulator is considered. Its dynamical equations are:

147

(Al + A2 + 2A3C2)él + (A?_ -+ ABCZ)&Z - A3q2(2¢1 + qz)SZ -+ Kl(ql - pl) = 0(62.40)

(Ag + A3y + Agliy + Asge 5, + Kylgy — p) = 0 (6.2.41)
IpyPy + Bpby + Fpy sat(py) — Ki(q; — p) =y, | (6.2.42)
Igby + Bpgpy + F oy sat(p,) — Ky(g, — py) = uy (6.2.43)

where 5; = sing;, ¢; = cosg; and sat(.) is the saturation function; g;and p;are the i—th link

angle and motor angle.
A, =557 kgm* A, =085 kgm® Ay = 1.05 kgm?

1, = 194 kgm® B, = 1.10 Nms/rad F,, =02 Nm K, = 790 Nm/rad

0.25 kgm? B,

Il

1o 0.22 Nms/rad F,, = 02 Nm K, = 610 Nm/rad

The multiple error indices are chosen as s;(x) = xTP,-x, where P, (i=1,...,4)are

chosen as follows:

Py 0 0 Py,
0 Py 0 P, Py =Py =d

P. = ; | € R?

i 0 0 Py P = -
piT pil 3 P34 Py =Py =2
14 P24 P34 Pas

and

- 1 —pl —pl —

=1, Pla = Py =Py =1

- 2 . 2 - p? —

i=2, P2, =0, P =Pl =1

- I - p3 = 3

1=, Pla =Py =0, Py =1

. 4 - pd = pd =

=4, Pla= Py =Py =0

It can be seen that P; is always positive definite.

Simulation 1: This simulation was designed to test the robustness of the variable

index control under parametric uncertainty: joint stiffness uncertainty. Assume that:
Kin < K, < KM% for i =1, 2

where

148

K0 = 500Nm/rad KT = 800Nm/rad
All other parameters assume their nominal values given above. Assume thatset point control

is required with g, = 1.5rad and q=-0.5rad. f(s;) = 0.8s;.

angle of link 1 . o
[rad] U
n H H 1
1 - i i i i
angle of link 2 E N
Lrad] S S S S ———
q L . . -
2 ; -
angle of motor 1 - : ;
[rad) R
JE
1p - !
angle of motor 2 g o \
| rad) . E : \/—
= :
control torque 1 ' ‘: : ?
[Nm] a0k ; T
2
control torque 2 : o P — A

{Nm]

Q 1 2 a 4 s] 7] 9 1%
time (sec)

Fig. 6.2 Time responses of the two-link robot under joint stiffness uncertainty

Fig. 6.2 shows the simulation results with sampling period 7 = 0.01 5. The control
performance is satisfactory. This verifies the robustness of the variable index control law

to parametric uncertainty.

The effects of unknown load on the robot control systern can also be examined. For

example, let 0 = m, < 10kg. Results similar to those shown in fig. 6.2 can be obtained.

Simulation 2: This simulation was designed to test the robustness of the variable
index control under structural uncertainty: link dynamic uncertainty. Assume that the struc-
tures and parameters of egs. (6.2.40) and (6.2.41) are unknown, but egs. (6.2.42) and (6.2.43)

are completely known. The maximum angular accslerations of link 1and 2 are alt estimated

140

as G, =2 rad/sec?. ‘The results are shown in fig. 6.3. They are similar to those shown in

&

angle of link 1 a ! i
[rad] o :
2 = i
angle of link 2 s SE -
[rad} °oet !
-5 !
15 5 -
angleofmotor1 p L.
(rad) Tosg
o E ;
9
angle of motor2 § "
[rad] i:]
3
= i
control torque 1~ ¥ 1: : AAAA %
[Nm] 3 RTAAAI Vv;v T
«10
°F !
control torque2 ¢ J\ i
[Nm] Ve acaans
- 0 1 2 3

4 F)
time {uec)

Fig. 6.3 Time responses of the two-link robot under link dynamic uncertainty

fig.6.2. This verifies the robustness of variable index control law to structural uncertainty.

Simulation 3: This simulation was designed to perform trajectory tracking control.
Fig. 6.4 shows the time history of the tracking response, where g4 =sin(mi/2.5),
qsn = 1 — g4, and sampling period T=0.01 5. The control results are satisfactory. This

verifies that the variable index control law is applicable to tracking control problems, if the

desired trajectories are given.

These simulations verify the correctness of the theory. Detailed design of the vari-
able index control laws for flexible joint rohots can be found in Liang and ElMaraghy

(1994a).

150

anglcof ik 1, | 3
[rad)

angleof link 2
{rad] 2

angle tracking

error of link 1 H
[rad}

angle trackin
error of link
[rad)

control torque 1
{Nm]

-5

cantrol torque 2
[Nm]

ne

o 1 -4 3 7 L] -] 10

4 -]
time (asc)

Fig. 6.4 Trajectory tracking responses of the two-link robot

6.3 EXTENSION TO GENERAL NONLINEAR SYSTEMS

Consider the general nonlinear systems described by:

x = f(x,u) 6.3.1)
where f10,0) =0, x and u have the same definitions as before. f(x,u) is assumed to guarantee
the existence of solutions of the differential equations (6.3.1). Nonlinear system (6.3.1) 1s
assumed to be stabilizable/controllable. The systemmodel (6.3.1)is of bounded uncertainty
in flx,u):

frix u) < flxuw) < fyilx, u) fori=1 ..., n (6.3.2)
where fi(x, u) is the i-th entry of flx,u), and f;;(x,u) and fy;(x, u) are known and bounded
functions as long as || x || and || u || are bounded. Obviously, system (6.3.1) includes eq.

(6.2.1) as a special case, even with general B(x).

151

There are two approaches to show the existence of feasible multiple error indices for

general nonlinear system (6.3.1). The first approach is by introducing dynamic compensa-

...........................

...........................

Fig. 6.5 General nonlinear systems with stable dynamic compensators

tors (see fig. 6.5) to system (6.3.1). That s, let:
u=GEyv or u=Eu+Fv (6.3.3)
where v € R™ is the new control input vector to be designed, and G(s) = (s/ — E)™ 1Fis

a designer—chosen stable and minimum-phase transfer function matrix. Then system (6.3.1)

can be transformed into the following:

: = f(z) + Bv (6.3.4)

where z = [xT ¥T)]T € R**™ and
) = [f %;t“)] B= [2] (6.3.5)

Since eq. (6.3.4) fits the assumptions for eq. (6.2.1), feasible multiple error indices exist for
system (6.3.4), i.e., the compensated nonlinear system (6.3.1). Thus, the variable index con-
trol law (6.2.22) with an index selection algorithm can make x =0 a global asymptotically

stable motion of the nonlinear system (6.3.1), in spite of the existence of the uncertainty

(6.3.2).

Introducing filter-like dynamic compensators to system dynamics is desirable for
many applications, since smoother control actions can be achieved. A useful choice of the

dynamic compensators is that G(s)= al/(s+a), i.e., E=-al, F=al, wherc a > 0.

The second approach is by using nonlinear diffeomorphism to transform eq. (6.3.1)

into the following:

152

7 = f(z) + Bo(2)u (6.3.6)
where z=T(x) is the new system coordinates. T(x) can be determined from a nominal model
of system (6.3.1). The uncertainty in eq. (6.3.1) can be regarded as the uncertainty of f(z)

if || u |} is uniformly bounded by a constant (this is true in practical implementation).

The second approach is useful when increasing system order is not desirable. Al-
though not all of the systems represenied by eq. (6.3.1) can be transformed into eq. (6.3.6),
the nonlinear systems that can be transformed into eq. (6.3.6) belong to a larger class of non-
linear systems than the class of feedback linearizable nonlinear systems do. We do not re-
quire a nonlinear system be transformed into a linear system. Instead, we transform a nonlin-
ear system iato another nonlinear systers that is solvable. Therefore, this class of nonlinear

systems includes those that may not be feedback linearizable.

Remark 6.2.5: Assume that the uncertainty in B(x) of eq. (6.2.1) can be expressed as:
bfm S byx) S byx) fori=1,..,mj=1...m (6.3.7)

where b,-j(x) is the ij—th entry of B(x), and bL,-j(x) and b U,-j(x) are known and bounded func-

tions as long as || x || is bounded. Then the above shows that the variable index control law

(6.2.22) also works by introducing dynamic compensators. If || u || is uniformly bounded
by a constant (this is true in practical implementation), variable index control law (6.2.22)

can ensure the robustness of the control system under the uncertainty in A(x) and B(x).

In conclusion, the variable index control approach can ‘>z applied to general nonlin-
ear system (6.3.1), since a set of feasible error indices for compensated nonlinear sysiem

(6.3.1) can always be found.

6.4 ADAPTIVE NEUROCONTROL OF GENERAL SYSTEMS

In this section, a new global stable adaptive neurocontrol scheme for general nonlin-

ear system (6.3.1) is derived based on the variable index control approach. It greatly extends

153

the current stability-based neurocontrol approach to more general control problems.
Compared with the conventional approaches, the new adaptive neurocontrol scheme does
not require the controlled nonlinear systems to be feedback linearizable, and the uncertain

parameters to be linearly parameterizable.

6.4.1 Neural network representation

As indicated in section 3.4, the nonlinear system (6.3.1) can be represented by a neu-
ral network. In the following, single-hidden layer neural networks are used to represent the
nonlinear system (6.3.1). These neural networks can be RBF networks, sigmoidal networks
(Liang and EIMaraghy, 1994b), or polynomial networks. The structural design of these neu-
ral networks should ensure that a given nonlinear system is well approximated. In other
words, the span of function bases (g,(x, 1), g8,(x,4),. . . ,g.(x, u)} defined by the hidden
neurons should contain f(x,u). If this is true, the following approximation can be obtained:

flxu) = WTd(x,u) + d) (6.4.1)

where d(z) stands for the representation error vector of the neural network; W € RE*Misthe
unknown hidden—output connection weight matrix of the neural network; and ®(x, u) is the
oucput vector of the hidden neurons and is known for given z = xT a'}! € R™7. d(x,u)

1s defined as:

D, u) = [g,0c, 1)y 86w)s « - .. gL’ (6.4.2)

Assume that the nonlinear system (6.3.1) is time—invariant or slowly time—varying.

Then W € RL*%can be regarded as an unknown constant weight matrix to be learned. Let

the estimated W be W, and the estimation error vector be W = W — W. By proper neural

network structural design, the entries of d(f) can be bounded by any specified small constint

154

Id,e)l < ¢ i=1,...,n (6.4.3)

6.4.2 The new adaptive neurocontrol algorithm

The adaptive regulation problem is considered. The state measurement x(f) is as-
sumed to be available. If the desired coordinated state trajectory of nonlinear system (6.3.1)
is known, the result is easily extended to the tracking control problem. For convenience,

equations (6.3.4) and (6.3.5) are rewritten in the following form:

= fz) + Bv (6.4.4)

7o) = [f fé‘;")] = [9] (6.4.5)

where E and F are known matrices.

Let 5(z) = zTPl-z/Z (i=1,...,u) beaset of feasible error indices, where P;is a
symmetric positive definite matrix, and
P,- -— [p“ P:‘Z] c R(n+m)x(n+m) P“ e R(u+m)><n P:‘Z = R(n+m)><m (6.4.6)

Fori=1,2,..., u,define:

Q(z,s5) = 2'P,F (6.4.7)

A _ N

R(z,s) = — 2P, [d(t) + W D(x,u)] — 2P Eu — ks(2) (6.4.8)
where

d@r) = [dy(t) . . .dO17 d(1) = ¢ - sgn{z"Py) (6.4.9)

The weight matrices V'Vl and Wz are computed from the following learning algorithms:

W = Ié, P, (6.4.10)

where I" € RL*L is a chosen positive definite matrix that determines the learning rate.

155

Applying the variable index control approach given in section 6.2, we can obtain:

v = 07, s)RE 5)/10G.5) QT(z5)) if Q&I > 0 (6.4.11)
Thus, the control input vector can be determined as follows:
u= Gy or = Eu+Fv (6.4.12)

where G(s) = (s] — E) ~'F is a stable and minimum-phase transfer function matrix.

Then the robust adaptive neurocontrol law (6.4.12) and (6.4.11) with eq. (6.4.10) as
the adaptation/learning algorithm can make all the signals in the adaptive neurocontrol sys-
tem uniformly bounded, and the system state vector x of eq. (6.3.1) will asymptotically con-

verge to zero.

6.4.3 Global stability proof

To prove the global stability of the adaptive neurocontrol system, let us consider the

following Lyapunov function candidate:

V() = s + 1V T7I) (6.4.13)

for a selected error index s,(z) with || Q(e, s)It > 0. Therefore,
. . =T I Tos -T -1 A
V@) = s + (W I'™'W) = 2'Pz + r(W I'™°W)

= 2Py WT @0 u) + d)] + 2 Pp(Eu + Fv) + tr[WT¢(x, Wz P,

A

TP IW T O(x, 1) + d)] + 2TPpEu + Qz,s5)v + z7'1°,.1WT¢(x,)

TP (W Tk, u) + d0)] + 2P oEu + R(z,5) + TP, W &(x,u)

= —ksf(2) =0 (using eq. (6.4.8)) (6.4.14)

Because eq. (6.4.14) is valid for all ¢t = 0, z = [xT 47} and W are bounded uni-

formly if their initial values are bounded. The uniform boundedness of x(z) and u(r) ensures

that x(z) and D(x, u) are also uniformly bounded if x(0) and u(0) are bounded. Thus, W(t)

156

is uniformly bounded. The network structure design guarantees that the entries of the opti-

mal weight matrix W is bounded, and W = W — W. Therefore, W(z) is also uniformly
bounded. As proved in Theorem 6.2.1, v(#) is uniformly bounded, because Q(z,s;) and

R(z,s,) are uniformly bounded, and there always exists an index i such that || Q(z,s) | > 0.
This proves that all the signals in the adaptive neurocontrol system are uniformly bounded

if their initial values are bounded.

To prove the asymptotic convergence of x, we apply Barbalat’s lemma to the follow-
ing continuous nonnegative function:

1

V() = V() - J[V(r) + ks(2)]dr
0

with V(&) = — ks((2) and V,(9) = — kz"Pz. Therefore, V() — 0, thus x(:) = 0 as
t —» o, The same arguments given in the proof of theorem 6.2.1 regarding the switching
of V among diffenent s,(z) apply to this proof, as well. Therefore, the system state vector

x of eq. (6.3.1) asymptotically converges to zero. This concludes the global stability proof.

Remark 6.4. 1: The index selection algorithm introduced in section 6.2 can be used in the

adaptive neurocontrol algorithm.

Remark 6.4.2: The leaming algorithm (6.4.10) can be changed into the following least—

squares learning algorithm to achieve better learning performance:
W = I(nd(x, w2’ P, (6.4.15)
I = = @, wd(x, u)r() (6.4.16)
If eq. (6.3.1) is of some time-varying factors, then eq. (6.4.16) can be modified into:

) = = AOF@ — Feyd, wyd (x, wle) (6.4.17)

where A() > 0 is the forgetting factor. If @(x,u) satisfies the persistent excitation condition,

157

A
then W(r) — Was 1 — «, ie., the neurocontroller converges to the best performance it can
achieve under the given structure. Otherwise, the neural network weights converge to

constants that are feasible for the given control inputs.

Remark 6.4.3: 1Itis worth indicating that in conventional robust adaptive control, the un-
modeled system dynamics determine the lower bounds of the control precision. These
bounds are irreducible, unless better system models are used, or internal models are included
in the control design. In the new robust adaptive neurocontrol, however, if the unmodeled
system dynamics are observable through system outputs, the modeling error bounds can al-
ways be reduced by proper neural network structure design, owing to the universal approxi-

mation ability of neural networks.

Remark 6.4. 4: In practice, there is always some a priori information about the nonlinear
system (6.3.1), e.g., the partial structure of j{x, 1), or a nominal model of eq. ‘£.3.1). ltis
easy to incorporate this into the adaptive neurocontrol system design, to reduce on-line com-
putation. For instance, if f(x, u) can be expressed as:

flouw) = f0cu) + folx, u) (6.4.18)
where f;(x, u) is completely known, f,(x,u)is unknown, Then f,(x, u) can be used directly
in eqs. (6.4.8) and (6.4.11). Only f,(x, u) is required to be approximated using neural net-

works, so the neural network design is simplified.

Liang and ElMaraghy (1994d) have applied the above theory to the trajectory control

of flexible joint robots with success.

6.5 SUMMARY

In this chapter, the variable index control approach is proposed to solve the robust
centrol problem of general nonlinear systems with bounded parametric or structural uncer-

tainties. Itis applied to derive stability—based adaptive neurocontrol schemes for unknown

158

nonlinear systems. The variable index control approach guarantees the global stability of
the control systems. It possesses inherent robustness to system model uncertainty, which is
not required to satisfy any matching condition. Therobustness of variable index control laws
is due to the worst—case approaching control strategy. Itdoes not impose any growth condi-
tions and infinite differentiability assumptions on the system nonlinearity. It can be applied
to nonlinear systems that are not feedback-linearizable, and uncertain linear systems with
time—varying and state—dependent parameters. As there is no sliding motion and the system
is stable during switching, the control actions are chatter-free. The approaches presented
in this chapter represent a breakthrough in both robust contro! of nonlinear systems and the

stability-based adaptive neurocontrol.

The theory has been applied to trajectory control of flexible joint robots, and the re-
sults are also useful in the control of rigid robots when actuator dynamics are considered.
Simulation shows that the theory is feasible and the resultant control systems are robust to

bounded model errors.

1t is assumed throughout this chapter that the system states are measurable. If this
is not true, system state observers have to be constructed. If the variable index controllers
are implemented using digital computers, the measurement noise and sampling errors must
also be considered. It is better to implement a large scale neurocontroller using neural net-

work hardware; otherwise, intensive computation is unavoidable.

CHAPTER 7

ROBUST ADAPTIVE NEUROCONTROL OF
FLEXIBLE-JOINT ROBOTS

7.1 INTRODUCTION

By neglecting link flexibility, joint stiffness nonlinearity, external disturbance and
coupling between link dynamics and motor dynamics, an n-link flexible~joint robot manip-
ulator with a free end—effector can be approximately modeled (Spong, 1989) as follows:

M(g) ¢ + H(q,q) + Ks (g-p) = 0 (7.1.1)

ImP+Bpp+ FnKs (g-p) = u (7.1.2)
where g = [g; ... gn]7 is the vector of the joint angles; M(q) is the positive definite inertia
matrix; H(g,q) is the vector of centrifugal, Coriclis and gravitational terms;
P = 1Py pn]T is the vector of rotational angles of actuator rotors; I, = diagll,, ..., 1p),
where [; is the moment of inertia of the ith rotor; B, = diag[B,, ,, ..., Bp], where B,
is the viscous friction coefficient of the ith joint; Fy = [F,.;, ..., Fmn]” , Where F, is the

friction torque acting on the ith rotor; K = diag[Ky , .. , K], where K is the elastic

constant of the ith joint; and u is the vector of driven torques applied to the actuator rotors.

159

160

Asindicated in section 1.3.1, joint flexibility of robots is a practical problem in many
industrial and aerospace robots. Due to the existence of modeling errors, most conventional
control schemes for flexible—joint robots have limited control precisions. The control prob-
lem of flexible—joint robots (FIR) with uncertain dynamic models attracted great interest
from both academia and industry. Different control approaches have been proposed for flex-
ible—joint robots in the past decade. They can be classified into: 1) the exact model-based
control approach, 2) robust control approach, 3) adaptive control approach, 4) iterative

learning control approach, 5) fuzzy control approach and 6) neurocontrol approach.

The exact model-based control approach, which dates back to the early 1980s, in-
cludes the paradigms of the singular perturbation schemes (e.g., Ficola, Marino and Nico-
sia,1983), feedback linearization schemes and inverse dynamics scheme (e.g., DeLuca, Isi-
dori and Nicolo, 1985; Bortoff and Spong, 1987; Jankowski and ElMaraghy, 1991),
invariant manifold scheme (e.g., Khorasani and Spong, 1985), etc. Since these schemes re-
quire exact knowledge of the robot parameters, studying the robustness of these control sys-
tems is necessary. The robust control approach allows the robotic system models to possess
some bounded structural and parametric uncertainty (e.g., Canudas and Lys, 1988; Lin,
1991; Liang and EIMaraghy, 1993f; Qx, 1993). This approach can usually guarantee global
stability of robotic systems and does not need measurement of accelerations and jerks, al-
though it often results in non—optimal or conservative solutions, especially when the uncer-
tainty is large. For ordinary variable structure controllers, it is difficult to choose a proper
sliding surface to guarantee the existence of asymptotically stable sliding motion, if accel-

eration and jerk signals are not available.

The adaptive control approach allows the existence of small structural and large para-
metric uncertainty in system models. The schemes given by Ghorbel, Spong and Hung

(1989), Spong (1989), and Khorasani (1991) are based on the use of the singular perturba-

161

tion technique, and linear parameterization techniques. They can be applied to robots with
high joint stiffness. Lozano and Brogliato (1992), Mrad and Ahmad (1992) and Han (1992)
reported new adaptive trajectory control schemes for arbitrary joint stiffness and without the
use of link accelerations and jerks. Most of these schemes deal with parametric uncertainty
only. Some of them further assume that the actuator parameters and joint stiffnesses are
known, Although there may be large transient responses before parameter adaptation con-
verges, this approach is promising in solving some practical problems. There are also itera-

tive learning control schemes (e.g. Miyazaki et al, 1986) that deal with the flexible-joint ro-

bot control problem.

Recently, the fuzzy control approach and neurocontrol approach have been attracting
more interest due to their potential in dealing with large structural and large parametric un-
certainty. Compared with the exact model-based control approach, robust control approach
and adaptive control approach, the neurocontrol approach needs the least a priori informa-
tion about the controlled flexible—joint robotic systems, and is therefore more robust to mod-
eling errors (e.g., friction and link flexibility). Itis also easy to incorporate a priori informa-
tion about the robotic systems into neurocontroller design, if it is available. In general, the
iterative leaming conirol approach, fuzzy control approach and neurocontrol approach toler-
ate modeling errors better than the exact model-based control approach, robust control ap-
proach and adaptive control approach. Compared with the iterative learning control ap-
proach, the neurocontrol approach does not need the desired trajectories to be repetitive.
Unlike the fuzzy control approach, the neurocontrol approach does not need a set of fuzzy
control rules, obtained by either summarizing previous operating experience or performing

fuzzy model identification, and can be applied to more general nonlinear systems.

However, the neurocontrol approach is relatively new, and there are fewer theoreticil

results and less practical implementation experience available. The main existing problems

162

in the neurocontrol approach are: (1) how to ensure the global convergence of the learning
processes, and (2) how to determine the neural netwozk structure for a given problem. At
present, most existing backprop-based neurocontrol schemes are only suitable for off-line
training of neurocontrollers (Psaltis, et al., 1987a, Narendra and Parthasarathy, 1990, Liang
and EIMaraghy, 1993a), since there are several methods and heuristics to solve the above
mentioned problems by off-line training. The existing stability—based neurocontrol
schemes (e.g., Sanner and Slotine,1992) canbe used for on-line training of neurocontrollers,
but are difficult to apply to flexible—joint robots. Few published papers deal with the neuro-
control problem of flexible-joint robots, due to their higher order dynamics. The scheme
presented by Zeman, et al. (1989) was among the first attempts to deal with this problem,
and it belongs to the backprop-based neurocontroller catalog. To the best of our knowledge,
there is no stability-based adaptive neurocontrol scheme for flexible-joint robots in the pub-

lished literature.

Theoretically, all the neurocontrol schemes proposed in the previous chapters can be
applied to the control of flexible—joint robots. However, using a priori information about

the dynamics of flexible—joint robots, simpler neurocontrol schemes can be derived.

This chapter aims at developing stable robust adaptive neurocontrollers for general
flexible—joint robots. The feedback signals are the joint and motor angular positions and ve-
locities. Measurements of accelerations or jerks are not required. It is proved that all the
signals in the closed-loop adaptive neurocontrol systems can be made bounded and the out-
put tracking errors can be guaranteed to be globally convergent to zero. Since the new adap-
tive neuroconirol systems are robust to neural network representation errors, the structure
design of the neural networks can be simplified. Unlike the conventional adaptive control-
lers, the proposed adaptive neurocontrol schemes allow the flexible—joint robots to possess

a general structure and unknown disturbances, and need the least a priori information about

163

the dynamics. Any observable dynamics, some of which were regarded as unmodeled in
conventional approaches, can be modeled by neural networks. The modeling errors are re-
ducible by proper network structure design, which guarantees that the output tracking errors

satisfy the control requirement.

The rest of this chapter is organized as follows. Section 7.2 presents a direct adaptive
neurocontrol scheme for flexible—joint robots with proved stability. Section 7.3 presents a
new model reference adaptive neurocontrol scheme for general flexible-joint robots. Sec-

tion 7.4 gives the summary and discussions of the contributions.

7.2 THE DIRECT ADAPTIVE NEUROCONTROL SCHEME

7.2.1 The neurocontrol algorithm

The practical dynamic mode! given by egs. (7.1.1) and (7.1.2) for an n-link flexible--
joint robot manipulator usually contains structural and parametric uncertainty. The paramet-
ric uncertainty may come from load changes, irregular geometric shapes of the robotic com-
ponents, non—uniform materials, an unsymmetrical motor or transmission installation, or
part worn-out.. The structural uncertainty may come from the internal moving parts, friction,
backlash, and unsymmetrical or unparalleled motor axes and joints. Sudden control action
may excite the unmodeled high frequency characteristics, such as link flexibility. The un-
symmetrical motor axes result in coupling between link dynamics and motor dynamics.
Based on these facts, the following general model for an n-link flexible—joint robot manipu-
lator is proposed:

Mg g + f1(q.9) = Klg—p) p (7.2.1)
Im p + fr{q.p.p) = u (7.2.2)
where the variable definitions are the same as in egs. (7.1.1) and (7.1.2); M(g) and /,, are

the symmetric positive definite inertia matrices with unknown structures and parameters;

164

fi(q, @) and fy(q, p, p) are unknown function vectors; and K(g-p) is the unknown symmetric
positive definite joint stiffness matrix and is nonlinear in ¢-p, and K; < K; = K, with the

boundary matrices known.

Obviously, the control problem for the unknown robotic system (7.2.1) and (7.2.2)
is more difficuit than that for the known robotic system (7.1.1) and (7.1.2). Assume that the

desired trajectory of the end—effector of a robot manipulator is expressed in joint coordinates

as q,€ C*, and the corresponding desired trajectory of the rotational angles of actuator ro-
torsis expressed as py, P, P g whicharetobe determined. Only the measurements of g(z),

g(t), p(1), and p(r) are available.

Define the tracking error vectors as:
e=q—q; O=p-—py (7.2.3)
Lets; = é + A,eand s, = 8 + A,0. Therefore,
s51=49-4, with q, = q,— A€ (7.2.4)
S, =p—p, with p, = py — A0 (7.2.5)
where g,and p, are called the reference trajectories and are computable from measured sig-

nals; A, and A, are diagonal positive definite matrices. With the new notions, the general-

ized error equations of the flexible—joint robotic systems can be expressed as follows:

M(@)s, + IM(@)g, + f1(q,9)] = Kp (7.2.6)
Im$y + U, + fo{g,p,P)] = u (7.2.7)

where M(q) , I, and K and the terms in the square brackets are unknown.

Define new supplementary vectors of s; with dead-zone 4, as follows:

SA‘- = [SAil e Sdin]T i=l,2 (7'2-8)

165

. S..
with Sg5 = S— 4 ,-sar(ﬁ) j=1,2,....n (7.2.9)
i

where sat(.) is the saturation function.

Let
810,94, 521 = @4, + £1@ @] = 3M@s 1 (7.2.10)
8X4.0:0,9,) = Inp, + f2(q,P.D) (7.2.11)
g3q—p) =1[Ky« - Ky o Ky * 0 Knal” (7.2.12)

where K; is the i{j—th entry of K(g—p). Then eqs. (7.2.6) and (7.2.7) become:

M@, + SM@s 41 = Kp = 8,@,4:4,54) (1.2.13)
Ims;z =u-—- 82(‘1,Papsﬁr) (7-2“14)

Although g,(9,4.4,.54,), 8,(q.p.D.P,) and g4(¢ — p) are unknown, neural net-
works can be used to learn and approximate them. Assume that the corresponding approxi-

mation error vectors of the neural networks with finite number of neurons are d;(¢), dy(#)

and dx(1). Then g,(4,4,4,,54,) 82(q.p,P,p,) and g3(g — p) can be expressed as:

£1(4:4.4,541) = 8n(9.4,4,,541) + d1() (7.2.15)
8204:0:0,8,) = gna(q. P, P, D)) + do1) (7.2.16)
83(q —) = gna(q — p) + d5(D) (7.2.17)
K(g —p) = Kn(g — p) + Ky(0) (7.2.18)

where gy(+) (i=1,2,3) are realized by neural networks; Kp(g — p) and K ,(¢) are formulated
from ga(+) and d5(¢) according to eq. (7.2.12). By proper neural network design, d,(1),
d,(t) and d;(z) are reducible and can be confined to be bounded by any specified small
constant €.

ld; (0} < & i=1,2, j=1,...,n (7.2.19)

ld3 (1)) < &5 j=1,2,...,n (7.2.20)

166

A priori information about the structure of functions g,(4. ¢, §,.p) and g,(¢, p, b, ,)
can be used to simplify the neural network structure. For example, 8,(¢,4. 4, p) defined by
eq. (7.2.10) can be approximated by three sub—neural networks as follows:

gm(‘]: é: q.risdl) = MN(Q)Q; +fN1(Q9Q) - gNl](q,q: SAI) (7.2.21)

with

En1(d:9:541) = %MN(Q)SM (7.2.22)

In principle, all the existing neural networks, such as sigmoidal neural networks,
RBF networks, CMAC, polynomial networks, and wavelet networks, can be adopted to rep-
resent £,(9,4.4,.54,) 8,(q,p.p,p,) and g3(q — p). However, using different neural net-
works will result in different approximation precisions and computation complexity. Here,
two-layer neural networks, e.g., the localized polynomial networks with CLI cells, are
adopted due to the possibility of deriving global convergent learning algorithms. Using lin-

ear parameterization, we can express gy;(*) (i = 1, 2, 3) as follows:

gNl(q’ 4’, fl.'r’sdl) = ¢1(q: q: qlps‘dl)TG] (7.223)
Enala DD B,) = PG, DB P60, (7.2.24)
gnld — p) = @4(q —)6, (7.2.25)

where 8, (i = 1, 2, 3) is the unknown output weight vector of the networks; and &(-) is de-
fined according to the structure of the used neural networks. Assume that the flexible—joint
robotic system (7.2.1) and (7.2.2) are time-invariant or slowly time-varying. Then 6;(i=

1, 2, 3) can be regarded as unknown true constant parameter vectors to be learned. Let the

estimated 6; be éi, and the estimation error vector be 8; = : ; — 0;0=1,2,3). The outputs

of the neural networks at time instant 7 can be expressed as:

B4y 540 = PG4, 54)70,(0) (7.2.26)

16T

8@ 0.5 B,) = @o(q,p. 1, Y 0,() (12.27)
8aalq — P) = D5(g — P)163() (7.2.28)

Thus, the following direct adaptive neurocontrol algorithm is proposed:

U= — D252 + §N2(4,P’p,ﬁr) (7229)

A _1 A . -
pd = KN [— Dlsl + gN1(q,q,qp3m)} (72'30)

where D, and D, are diagonal positive definite matrices; K n is derived from egs. (7.2.12)

and (7.2.28). Define:

di(H) = KOp — di(D (7.2.31)
By the property of the control task, Ip] < c;. Therefore,

i

n n
Ia—“(f)l = IZ(Kdij(t)pj - du(t)' = Z IKd!j(t)"pjl + Idll(f)I = ZS-_;UC,- + 81‘- = E“
j=1 j=1 j=

(7.2.32)
Let:
max . _ max)
4, ;& + 812;']/Dljj] 4y =" [52j/D2ﬁ} =4n (7.2.33)
where nooL max
ey =4y) Ryblds A ="] (er/Dyy) (7.2.34)

i=1
A A
and K; is the ji-th entry of the estimated stiffness matrix K and their upper boundaries
can be estimated from the robot design, since K; < K; < K; with the boundary matrices

known; 4,; is the i—th diagonal entry of matrix A,. If the network weights are updated as

0) = —I'P(4.9,4,.541)51 (7.2.35)
0, = — IyPy(@, 0,555 1 (7.2.36)
0, = IyPa(q — P)53(541:P) (7.2.37)

wi.ere I'; (i = 1, 2, 3) are symmetric positive definite matrices; and 55(s 4, p) is defined from

168

re-crdering the right-hand side of the following equation:

23(q — P)53(5,4.p) = sh,K(q — p)p (7.2.38)

For example, wiien n =2, 54(s4;,P) can be easily determined as follows:

r Ky Kp2|[P1 r :
siiK@ — o = G SaallK,, Ky || P2| = 839 — P) 536541.P) (7.2.39)

with
g3(q — p) = [K; KK (7.2.40)

$3400) = [sgupy SarP1 + SauP2 SaPal” (7.241)

Here, the symmetry of K(g-p) is utilized to reduce the dimension of 55(s4;.P)-

Theorem 7.2.1: :

Assume that @, and P in egs. (7.2.35) and (7.2.37) satisfy the persistent excitation
(PE) condition. The neurocontrol law (7.2.29) and (7.2.30) with egs. (7.2.35) —(7.2.37) as
the adaptationtlearning algorithm can make all the signals in the adaptive neurocontrol sys-

tem uniformly bounded, and the tracking errors will asymptotically converge to a small

neighborhood of zero.
Proof: The proof an be found in appendix A.1.

Remark 7.2.1: To compute control vector u(f) by eq. (7.2.29), we need p,anc p, which

are related to 5,, p, and p,. Differentiating eq. (7.2.30), we have:

A1 g . . A

Py = Kn 1833 4. 4,.541) — D18 — Kppal (7.2.42)
Al oy - . A ;

Pa = Kn [n19.4:Gp541) — D15) — 2Knpy — Knpyl (7.243)

where K v can be directly determined from egs. (7.2.12), (7.2.25) and (7.2.37), while K ycan

be determined from differentiating eq. (7.2.12) which is related to eq. (7.2.37) through egs.

(7.2.17),(7.2.25) and (7.2.28). Thus, K wis a function matrix of g, p, 5 4;, P 4and their deriva-

169
tives. Also,
gANl(qo f;’, érs sAl) = él(Qv q.s &p SA I)TG]_(I) + (pl(q’ q: (‘jr, SA I)Tel(r) (7-2-44)

§N1(Qs G JS4) = @l(q,q,ij,.,sm)rﬂl(t) + 24.51(4, d’,érasm)ral(f)

+ D,(¢,G» i 541)70,) (7.2.45)

where él(t) is determined by eq. (7.2.35); él(:) can be determined from differentiating eq.
(7.2.35); D,(¢,4>G,»54,)2nd & (g, 4, 4,5 4,) are function matrices of 4, ¢, §,, 5 41 and their
first and second order derivatives; §, and §;,thus 54, and §,, are related to g and g%, which

can be estimated as follows, by solving and differentiating eqgs. (7.2.13) and (7.2.21):

§; = My(@) "MK — (@ 4.d,) + £, (7.2.46)

§) = My(q) ™[~ Mp(@)5, + Ryp + Knp — hyy(@.4.6) + 6,01 (7.2.47)
where

h(a.4.4,) = 81(4:¢.G,.547) *+ %M(q)sm = M(@)4, + f1(9.9) = hyi(q.4.4,) + h[)
(7.2.48)

£,(t) = [My(q) — M1, + (KD = Rylp + hyi(4,4:4)) — 1) (7.2.49)
and &,(¢) and &,(s) reflect the estimation errors. M (1), K (1), and h,(f) are the neural net-
work representation errors of their corresponding terms, which can be constrained to be uni-
formly bounded by any small constants. Since ¢, and @, in egs. (7.2.35) and (7.2.37) are
assumed to satisfy the persistent excitation (PE) condition, then 6 {(1), and thus the terms with
~in eq. (7.2.49), will tend to zero. Therefore, £,(z) and &,(z) can be confined to have small
norms. Finally, and ¢*® can be computed as:

g =8 +q,— A8 (7.2.50)

q(3) =§ + q?) ~AyG = Gy {7.2.51)

170

In conclusion, by using egs. (7.2.42) - (7.2.51), p,and pscan be computed with the

measurements of g, ¢, p, and p only, and the desired trajectory g (1) € C* Their computa-
tion errors come from the unknown &, (f) and &,(f) only. Moreover, it is easy to prove that
the estimation errors of p and p,affect the output tracking precision, but do not affect the
system stability, as long as the estimation errors (regara ! sakind of modeling errors) are

uniformly bounded. The dead—zone 4; (i = 1, 2) is enlarged accordingly.

Remark 7.2.2: Fromeq. (7.2.31), we know that a good approximation to the stiffness matrix
K(g-p) is more important in minimizing asymptotic tracking errors. This should be reflected
in the network design. The larger 4,;and A,are, the smaller the tracking errors are, and the
larger the control actions are. Here, the estimations of the tracking error boundaries, as

shown in egs. (A.1.9) and (A.1.11), are conservative and simple to use.

Remark 7.2.3: In the proof of the theorem, we observed that the motor angle tracking error
vector &(f) converges to a neighborhood of zero before the link angle tracking error vector
e(?) does. This is the inherent feature of flexible—joint robotic dynamics, or cascaded dynam-
ic systems. Only after p(r) produces desired torsicnal torques can the links be forced to fol-
low desired angle trajectories. However, arbitrary joint stiffness is allowed in this neurocon-
trol scheme, which is different from the singular perturbation approach (e.g., Ghorbel,

Spong and Hung, 1989).

Remark 7.2.4: The e;—modification (leakage) or parameter projection techniques (Naren-
dra and Annaswamy, 1989) can be applied to egs. (7.2.35) - (7.2.37) to further prevent pa-

rameter adaptation from divergence.

Remark 7.2.5: ltis worth indicating that in conventional iobust adaptive control, the unmo-
deled system dynamics determine the lower boundaries of the tracking control precision.

This boundaries are irreducible, unless better system modeis are used, or intern~! -nodels are

171

included in the control design. In adaptive neurocontrol, however, if the unmodeled system
dynamics are observable through system outputs, the modeling error boundaries can always

be reduced by proper neural network structure design, owing to the universal approximation

ability of neural networks.
A
qq
Qq 44 9,4 Direct Adaptive u Flexible -
—— = Neurocontroller » Joint
(3) L) —
q;" 4, T Robot .
pp

Fig. 7.1 Block diagram of the direct adaptive neurocontrol system

The new direct adaptive neurocontrel system for flexible—joint robots can be illus-
trated by fig. 7.1. The neurocontrol algorithm consists of the following steps: (1) error signal
computing; (2) neural network weight updating; (3) desired motor trajectory estimation;

and {4) control torque computing.
7.2.2 Simulation tests

In order to evaluate the proposed control algorithms, simulations were performead
based on the dynamic model of the FMS flexible—joint robot. The terms ineqs. (7.1.1) and

(7.1.2) are determined as follows:

(@, + 2a;c5) (ay + #4C5)
M(q) = [(a2 + 0302) a2 (7252)
_ = 0345(29; + g, t+ leﬂh-l
h(g.q) = [4’ 53 + Bty (7.2.53)

A set of nominal values of the parameters (Massoud and EIMaraghy, 1993) are

a, = 2087 a,=0084 a;=0216

172

1. = 01224 kgm®> B,, = 1.254 Nms[rad K,

125.56 Nm/rad

ml
I, = 00168 kgm*> B,, = 0.119 Nms/rad K, = 31.27 Nm/rad
Bj = 2.041 Nmsfrad Bp = 0242 Nms/rad
l,=040m I,=035m d,=0018m
F,y = 3.5 sgn(p,) Nm F,, = 1.2 sgn(p,) Nm
The relation between the joint angles and the end—effector position is:
x = licos(qy) + lycos(q, + g;) (7.2.54)

y = Lisin(g,) + lsin{qy + q5) (7.2.55)

In the following, we assume that the model and the above parameters of the flexible—
joint robot are unknown. The adaptive neurocontrol laws (7.2.29) and (7.2.30) with eqgs.
(7.2.35)—(7.2.37) as the learning algorithms are applied to control the end-effector trajecto-
ry. Due to their simplicity, the Gaussian RBF networks are used to model the robot dynamics.
Some a priori information about the structure of functions g,(¢, ¢, 4,.p) and g,(q,p.p.p,)
is used to simplify the neura! network structure design. To ensure the approximation preci-

sion and task space coverage, 2000 neurons are used in the neurocontroller.

As indicated before, p,and p, are required to compute control vector u(?) by eq.
(7.2.29). Toestimate p jand j,using eqs. (7.2.42)~(7.2.51), @) (i=1,2,3) hasto satisfy
the persistently exciting conditions. However, it is difficult to verify if @(-) ((=1,2,3)
is persistent excitation or not for a given desired trajectory. Notice that the estimation errors
of pand p,affect the output tracking precision, but do not affect the system stability as long
as the estimation errors are uniformly bounded (EtMaraghy and Liang, 1993). Thus, we use
¢ 4toreplace ¢ and ¢ to replace g, in order to eliminate the PE requirement. With this

modification, the neurocontrol law is greatly simplified, but at the cost of tracking precision.

173

Simulation 7.2.1: The first simulation is conducted based on the following straight

line trajectory:
xy = 0.6 m (7.2.56)
¥q = 03sin(wt — x/2) m (7.2.57)

The corresponding ¢, & C*can be calculated off-line using the inverse kinematics formula.
The sampling period is 2 ms. The actual end—effector trajectory of the robot during the leamn-

ing stage is plotted in fig. 7.2. After about 1000 steps of learning, the tracking error becomes

0.618

0.615-] a e

0.609 \1 .
!

I
0.506—_-] -

0.603 31+ \I,\ e o el .
I i L e e

0.594-:

0.591]

0.588—: SN I S

0.585 . ; ; ; : ;
8] 1 2 X 4 5 6 7 5] 3 10

Fig. 7.2 Straight line trajectory tracking: learning stage

less than 1.5 mm. After the learning converges, the tracking error remains small as shown

in fig. 7.3.

Simulation 7.2.2: The second simulation is conducted to track the following circle

trajectory:
xg = 0.64 + 0.8cos(wr) m (7.2.58)
yq = 08sin{wt) m (7.2.59)

The sampling period is 2 ms. The actual end—effector trajectory of the robot during the learn-

174

o
EN
~ =

_0_3.:.‘ -

0.3 0.35 0.4 Q.45 0.5 0.55 0.6 0.865 0.7

Fig. 7.3 Straight line trajectory tracking: working stage

ing stage is plotted in fig.7.4. After about 1400 steps of learning, the tracking error becomes
less than 3 mm. After the learning converges, the tracking error remains small as shown in

fig. 7.5.

Simulation 7.2.3: The third simulation is conducted to track the rectangle trajectory
with its four vertices as (0.7,0.2), (0.55,0.2), (0.55,-0.2), (0.7, -0.2). The sampling period
is 2 ms. The actual end—effector trajectory of the robot during the learning stage is plotted
in fig.7.6. After about 2000 steps of learning, the tracking error becomes less than 2 mm.

After the learning converges, the tracking error remains smail as shown in fig. 7.7.

The simulation results show that the direct adaptive neurocontrol scheme is feasible
and robust to the neural network representation errors. In the simulation, the number of the
RBF neurons is fixed. The adaptation algorithm proposed in section 3.3 can be applied here

to determine the optimal number for the given problem.

175

0.06

-~
003

-0.03

-0.06

] -1 S LIS A A Sasana
052 056 055 058 06 062 064 066 068 07 072 074
X

Fig. 7.4 The circle trajectory tracking: learning stage

0.1

0.084 -~

0.064 - -

0.044

0024 - -

~0.021
-0.04~
=0.06
-0.08

¢34 056 058 06 062 064 066 068 07 072 074
%

Fig. 7.5 The circle trajectory tracking: working stage

0.25

0.2

0.154

0.1

0.05+

0

—0.057

-0.14

=015

-0,24

-0.25

0.48

0.9 0.54 0.57 0.8 0.63 0.6 0.6%
x

0.72

Fig. 7.6 The rectangle trajectory tracking: learning stage

176

177

025

0 -

DIS—] — —rmem e i e e e

o e

0.0

-0.15

1
i ...

-0.21

—0.25 . . r r . r r .
054 05 058 05 062 084 066 088 07 072
x

Fig. 7.7 The rectangle trajectory tracking: working stage

7.3 MODEL REFERENCE ADAPTIVE NEUROCONTROL
SCHEME

7.3.1 Re-formulating the dynamic model of flexible~joint robots

A widely studied model of an n-link flexible—joint robot manipulator is given by egs.
(7.1.1)and (7.1.2). Inorder to obtain the direct input—output relation between the joint angle

vector ¢ and control vector u, we differentiate eq. (7.1.1) and have:
M(@)q® + M@ + H(g,9) + K@ - p) =0 (7.3.1)

M(g)q® + 2M(q)q® + M(@)¢ + H(g.§) + K@G—p) = 0 (13.2)
From eqgs. (7.1.1), (7.1.2) and (7.3.1), we know that:

= — M@ H@q.9 + Kg — p)l = - £1(¢:.4:P) (7.3.3)

p=15'u~Bnp + K(g — P)] = I'u = £,(q.p,P) (7.3.4)

178

g% = - M@)"IM(g)j + H(q,q) + K(q = P)] = — [3(@.4.p.p) (13.5)
Substituting eqs. (7.3.3)(7.3.5) into eq. (7.3.2) gives:

Mg + hp(q,6,p.P) = Rmit (7.3.6)

or

q® + h(g.4.p,p) = RiQu (7.3.7)
where R(q) = M(q) "R, = M(q) ~'KlI,; 1 isinvertible, but not necessarily positive definite.
Also, | R(g) || < Ry, where Ry is a positive constant. Eq. (7.3.7) is called the input—output
model of a flexible—joint robot, with eq. (7.1.2) or (7.3.4) as its internal dynamics. Assume

that g, §, p, and p are measurable. It can be seen that if k(g,g, p,p) € R" and R(g) € R"*"

are known, then eq. (7.3.7) is state feedback linearizable.

In practice, the dynamic model of an n-link flexible—joint robot manipulator, de-
scribed by eqgs. (7.1.1) and (7.1.2), usually contains structural and parametric uncertainty,
as stated in section 1.3.1. The terms M(q), H(q,9), K, I», and B, ineqs. (7.1.1) and (7.1.2)
may be determined using common identification procedures. Hnowever, these procedures
imply a lot of off-line work and the validity of the model is to be tested. For multi-link ro-
bots, they represent a great amount of computation, which may be implemented using neural
network hardware. Therefore, from both the modeling and computation viewpoints, the
neurocontrol approach has some advantage. In the following, we assume that h(g.q,p, p) and
R(q) are unknown, and are approximated using single-hidden layer neural networks, such

as sigmoidal neural networks and RBF networks. We have
a,4,p.p) = WiP4(q.4.0.D) + dy(0) (7.3.8)
R(@)=[R(@) - ..R:@) with R{g)= WD) +df) (7.3.9)
where W, € REX” and W, € RL*" are the unknown neural network weight matrices;

®,(¢,4,p.p) E RLand P (q) € RE:are the output vectors of the hidden layer neurons of the

179

corresponding neural networks; L and L; are the numbers of the hidden neurons; and d,(1)

and d(7) are the neural netwr.x representation error vectors.

In the following, the input-output model (7.3.7) with unknown h(g,4.p, p) and R(q)

is used to derive a model reference adaptive neurocontrol scheme.
7.3.2 Model reference adaptive reurocontrol algorithm

For the input—output model (7.3.7) with relative degree 4, we define the following

reference model:

AmD)q =r (7.3.10)
where D = %is the differential operator; g, is the reference output vector of the joint angle

vector g; r is the external input vector; and A (D) is ihe desired monic Hurwitz polynomial

chosen by designers, and can be in the following forms:
AmD) = D* + @, ;D + a,uD? + Q3D + @y = D + A)A (D) (7.3.11)
or ApD) = (D + 9% = (D + A D) Ay > 1/2 (7.3.12)
Assume that the desired trajectory of the end-effector of a robot manipulator is expressed
in the joint coordinates as g,€ C*N L. Then
1) = AnD)40) = PO + agPW) + 8pdgt) + el f0) + apg) (7.3.13)
Set ¢)(0) = qg)(O) for i=0, . .., 4. Then the reference model (7.3.10) guarantees that

qf-i)(t) - qg)(t) for l=0a DR | 4.

Let (¢, Ag, b) be a minimal realization of A,,4(D) ™" in state space, i.e.:
(s — Ag) T1h = A,0(8) ! (7.3.14)
Let E(D) be a given monic Hurwitz polynomial of degree 3. Then F(D), a monic polynomial
of degree 3, and G(D), a polynomial of degree 3, can be determined uniquely from the fol-

lowing Bezout equation with chosen E(D) and Am(D):

180

F(D)D* + G(D) = E(D)An{(D) (7.3.15)
Let (c,, A}, by) be a minimal realization of [F(D) — E(D)]/E(D). Notice that
(F(D)Y-E(D)] is a polynomial of degree 2.

Define the following error vectors:

€E=q—q4 =4~ 4y (7.3.16)
g=e+1y (7.3.17)
EA = [-édl ot EAH]T with Edi = E" - ASGI(?E/A) (7.3.18)

where 4stands for the dead—zone, or the upper boundary of the tracking errors Z;0r ;. It
A
is determined by the approximation precision of neural networks. Let W, be the estimation

of W, and W; be the estimation of W,. Their estimation error matrices are W, and W, re-

spectively. Thus,

W, =W, -w, W,=W,-W, G(=1...,n (7.3.19)
w=WIwh? with Wi =wl- .. wh) (7.3.20)
W=w-w (7.3.21)

For h(g,q.p, p) and R(q) represented by eqs. (7.3.8) and (7.3.9), we have

A Al

h4q,¢,p,p) = Wx®P,(q.4.p,D) (7.3.22)

R@)=R(@) ... Ralq@)] with Riq)=W;T®Lq) (7.3.23)
or Rg)=WrTd, with &y = diag{®(q). . . Pa(g)} (7.3.24)

we give the following model reference adaptive neurocontrol law:

A _ G D A _— A
u= R r- E—ED—;-q + W, Td, — Wi T(c,0"] (7.3.25)

where

— _F®» L
P, = E&;—%fﬁh(q, 4,p,P) (7.3.26)

181
U=A{U +bu'dh (7.3.27)
The learning algorithm of weight matrix »' is:

W= — WEE (7.3.28)
7o in eq. (7.3.17) and y are determined by the following filters:

7 = AgZ + bP(g,4,p.p,u)T (7.3.29)
wl=¢z (7.3.30)
. a.p.pou) = [By, — U — uldL |7 (7.3.31)
X =AX- 7o (7.3.32)
o= = Agfg + X7 (7.3.33)

Theorem 7.3.1:

The model reference adaptive neurocontrol law (7.3.25} with eq. (7.3.28) as the
learning algorithm of the weight matrix W ensures that all the signals in the adaptive neuro-
control system are uniformly bounded, provided that their initial values are bounded. More-
over, we have:

:l_lbrg z24m=0 ,‘_‘.‘2 oty =0 ,1_1.12 Xn=20 ‘1_1.11; le{) < 4 (7.3.34)
This implies that the end—effector of the controlled FIR with unknown dynamics can track
any given trajectory with user-specifiedprecision. p and p are uniformly bounded. The con-

troller is also robust to the represcatation errors of the neural networks and bounded distur-

bances.
Proof: The proof of theorem 7.3.1 can be found in Appendix A.2.

Remark 7.3.1: Since there is some a priori information about the structures and parameters

of h(q.q.p.p) and R(q), it can be incorporated into the neurocontroller design to achieve bet-

ter generalization, as indicated before.

182

Remark 7.3.2: The tracking error e and the neural network representation error d{r) are cor-
related through eq. (A.2.6), where the filtered error vector d(f) = A _4(D) ~'d(z) is much
smoother than d(r). Thus, ld)| < A4 imposes milder conditions on d(f) due to the filter-
ing. For the same precision requirement of neural network approximation, the larger 4, is,

the smaller 4 is, and the smaller the tracking errors are. 4, is upper-limited by the response

speed of actuators and the lowest elastic mode of the links.

Remark 7.3.3: A flexible—joint robot can also be represented by the following task space
model:

x® + f(x,%,p,p) = O (7.3.35)
where x = [x,, s Xm)7 stands for the position vector of the robot end-effector in the task/
world space (1 = m =< 6). The definitions of p and u remain the same. Then the model

reference adaptive neurocontrol approach presented here can be applied directly 1o eq.

(7.3.35) with some notation changes only.

Remark 7.3.4: Unlike the direct adaptive neurocontrol law presented in section 7.2, the per-
sistent excitation condition is not necessary for the model reference adaptive neurocontrol

law (7.3.25) with eq. (7.3.28) as the learning algorithm.

7.4 SUMMARY

This chapter presents a novel direct adaptive neurccontrol scheme and a model refer-
ence adaptive neurocontrol scheme for general flexible—joint robots. The former requires
the PE condition, while the latter does not. Both of them require little a priori information
about the dynamics of the controlled flexible—joint robots, and are applicable to robots with
arbitrary joint flexibility and the measurements of link and motor angles and velocities only.
Unlike many existing neurocontrol schemes, the presented adaptive neurocontrol schemes

can guarantee the global stability of the robotic control systems. The neurocontrollers are

183

robust to the representation errors of the neural networks with a finite number of neurons
and bounded additive external disturbances. These schemes show the close relationship be-

tween the matured adaptive control theory and the emerging neurocontrel theory.

Liang and EIMarghy (1994d) introduced another stability—based adaptive neurocon-
trol scheme using the variable index control approach, which can be regarded as the applica-
tion of the theory presenied in section 6.4. To the best of our knowledge, the neurocontrol
schemes presented in this chapterare the firstones to produce globally stable adaptive neuro-

control systems for flexible—joint robuts.

As indicated before, stability-based neurocontrollers can be developed using on—
line learning. The backprop-—based neurocontrollers are usually developed using off-line
learning. However, for both of them, the usage of the neurocontrollers can be divided into
alearning stage and a working stage. The working stage is defined as the time when the neu-
rocontrollers have performed the control tasks well, and is always on-line. The control per-
formance of neurocontrollers are usually unacceptable during the learning stage, whether
on-line or off-line. Only when the neurocontrollers reach the working stage can they really

accomplish the desired control tasks.

CHAPTER 8

EXPERIMENTAL TESTS

8.1 INTRODUCTION

The purpose of conducting experiments is to test the real-time features, and numeri-
cal characteristics of the proposed neurocontrol schemes. Also, there are more uncertain fac-
tors in physical setups than found in simulation models, which often present challenges to

many model-based control approaches.

There are some experimental results of neurocontrol schemes (e.g., Yegerlehner and
Meckl, 1993) in the published literatures. However, we are not aware of any experimental

results on neurocontrol of flexible-joint robots.

The general procedure of control systems development involves the following steps:
(a) control task and precision definition; (b) control system hardware setup; (c) modeling,
parameter identification and model verification; (d) system dynamic analysis; (e) control
scheme selection and simulation test; (f) real-time control code progiramming and imple-

mentation; and (g) control system testing and modification.

Since the FMS two-link flexible—joint robot has been set up already and the new neu-

rocontrol schemes have been developed and tested by simulation, only steps (f) and (g) re-

184

185

main to be done. For the neurocontrol approach, it is not necessary to conduct step (c), be-

cause a first—principle dynamic model of the controlled system is not required.

The rest of this chapter is organized as follows. Section 8.2 gives a brief description
of the experimental robot, including its structure, dynamic model and the system precision
of the experimental setup. Section 8.3 presents the neurocontrol algorithms used in the ex-

periments. Section 8.4 presents the experimental results and discussions.
8.2 EXPERIMENTAL ROBOT DESCRIPTION

8.2.1 Structure of the experimental robot

The FMS experimental robot is shown in fig. 8.1. It has two links which are driven

Fig. 8.1 The overall structure of the experimental robot

by twodirectdrive motors. The links and the motors are connected through torsional springs
to introduce low joint stiffness, i.e., high joint flexibility. The two-link robot forms a four—

degrees—of—freedom system—two for the link positions and two for the motor rotations (fig.

186

8.2 and 8.3). The measured signals are the two link angles from incremental optical encod-

| joint 1 encoder| motor 2

{ joint 2 encoder

Fig. 8.2 The mechanical composition of the experimental robot

joint 1 friction and I
. Miinkc1s Jtink1 !1’10!01‘ 2
spring constant | link1, Jlink impedance

J motorl l

motor 1

impedance

joint 2 friction
and spring
rrr7 /77 constant

Miink2, Jlink2

Fig. 8.3 The mechanical relationship of the experimental robot

€rs, two motor rotor angles from the encoders, and the two motor rotor angular velocities
from the motor servo—systems. The motor encoders are built in, while the link encoders are
mounted on the stator shafts. The control algorithm is executed on the dSpace DSP proces-
sor. The outputs of the controller and the inputs to the motors are the control voltages, which
are transformed into contro! torques by the direct drive motor servo—systemns. The overall

control system setup of the experimental robot is illustrated in fig, 8.4.

187

7% Sensors

DSP
Computer

D/A Actuators|& 2

Host

Computer
Eaa

Fig. 8.4 The control system setup of the experimental robot

8.2.2 Experimental system modeling

The dynamic model of the experimental robot is the same as defined by egs. (7.1.1)

and (7.1.2). The nominal parameters of the robots are given in section 7.2.2.

There are both parametric and structural uncertainties in the model. The nominal
parameters were obtained through both parameter identification using MATRIX, and es-
timation using I-DEAS solid modeling. There are estimation errors in the parameters. The
structural uncertainty comes from: (1) neglecting the servo~motor dynamics, (2) non-ideal
alignment of the joints due to the torsional spring connection, (3) inaccurate modeling of

friction, and (4) pulling torque from the power and signal cables.

The recommended tansfer functions of the motor dynamics from the producer are

nonlinear voltage—to-torque gains. In the experiments, the gains are regarded as constants.

The friction torques affect both link dynamics and motor dynamics. Assume

that f;(¢) is the link friction torque vector, and is simply modeled as:

f{@) = By (8.3.1)

188

Let By, = diag[B,,; B,;,l, where B, is the viscous friction coefficient of the ith
Joint. Let a; be Coulomb friction torque magnitude, (aq+a,;) be the break-away friction
torque magnitude, and p; be a contact surface related constant. Then the friction torque
exerted on the i—th motor rotor can be approximated as:
Fo; = (ag; + aye~@/Po¥)sgn(p) + B,.p, (8.3.2)
The sign function can be approximated by the following:

sgn(x) = lﬂi p € is a small positive constant (8.3.3)

The relation between the joint angles and the end—effector position (fig. 8.4) is:
x = licos(q;) + l,cos(q, + q,) (8.3.4)
y = lysin(q) + lsin(qy + q,) (8.3.5)

and the Jacobian matrix is:
— sy =Ly =Dy,
J(q) = [llcl -+ 12C12 126‘12 (836)
Therefore,
de[(J(Q)) = - (Ilsl + 12512)12012 + [2312(!](«'1 + 12612) = [1[2&'2 (8.3.7)

It can be seen that the Jacobian matrix is invertible except when sin(4)=0,0r g,=km (k

can be any integer).

The desired trajectory of an end-effector x; € C*is usually given in the task space.
To find the desired trajectory in the joint angular coordinates, the inverse kinematics rela-

tions are required. The desired joint angles can be determined from the desired end—effector

position as follows:

q, = arcsin[(x® + y* + 12 = B)/Q21, [x* + yD)] - ¢ (8.3.8)

q, = arccos[(x* + y? — B — 1B)/(21,1,)] (8.3.9)

¢ = arctan(x/y) (8.3.10)

189

which gives one configuration to be used in the experiments. The continuity of ¢;is used

to determine the actual angle ¢ in the above equations.

The desired joint angle derivatives can be determined as follows:

dq = Ha) %4 | (8.3.11)
Gy = Ja) "y — a4, (8.3.12)
¢ = Jg) 7' — 27qiy — Ja2)d) (8.3.13)
g% = Jg) X - 31 e — 3/@Hdy — TV Dd) (8.3.14)

8.2.3 System precision of the experimental setup

For any control system, the overall control precision which can be achieved is always
confined by the precision of their components. In the experimental robots, the precision of
the angular measurements from the encoders is very high. The resolution of the encoder at-
tached to motor 1 is 1,024,000 pulses/rev; the resolution of the encoder attached to motor
2 is 655,360 pulses/rev; the resolutions of the encoders attached to both link 1 and 2 are
32,000 pulses/rev. Therefore, the maximum angular measurement error is +0.01225 deg.
Since the encoder readings are directly counted, there is no other source of error in the angu-

lar measurements,

The angular velocities of two motor rotors are fed into the dSpace board through

16-bit A/D converter. The velocity signals are very noisy. The A/D conversion error for
the velocity of motor 1is £1.92 X 104 rad/s or +0.011 deg/s, and the A/D conversion

error for the velocity of motor 2 is +3.84 X 104 rad/s or £0.022 deg/s. The controller

outputs computed in the DSP board are converted into control voltage by the 12-bit D/A

converter. The D/A conversion error of controlinput 1 is + 100/ 211= +0.0488 (Nm), and

190

the D/A conversion error of control input 2 is £30/2!!= +0.0146 (Nm). The steady state
joint angle control errors due to the limited word length of the D/A converter are
+0.0488/K, = £3.89 X 10~ rad for link 1, and £0.0146/K,= +4.67 X 10~*rad for

link 2, without considering the friction effect.

Calibration of flexible—-joint robots is more difficult than that of rigid ones, because
the initial motor angles are not easy to set, and there may be joint pre-~deformation. The en-
coders provide only relative angle measurements, and there is also task space coordinate set-
up error. These factors all contribute to calibration errors in the control system. In addition
to affecting the actual trajectory control precision, calibration errors also introduce structural

uncertainty of the robot dynamics.

These errors will limit the control precision of the experimental robots for any con-
trol algorithms, The maximum velocity of motor 1 is 6.28 rad/sec. This means that this mo-

tor can easily become overloaded.

8.3 CONTROL ALGORITHMS

In the experiments, the direct adaptive neurocontro! scheme derived in section 7.2
is adopted in this chapter to conduct the experimental test. The feasibility of the neurocontrol

algorithm was demonstrated by simulation in section 7.2.2.

The direct adaptive neurocontrol scheme is summarized in the following:

= = Dy5y + Enyq.p.PsP,) (8.3.1)
A -1 A . an

Pa= Ky [— D5 + 8ni(9.4,4,.54))) (8.3.2)
51 g . . A

Py = Ky [8n1(9:9.4,541) — D13y — Kpp,] (8.3.3)

a1 & - ; L A
Ps =Ky [gyi(9.4.4,,84)) — D1$; — 2Kppy — Kyp) (8.3.4)
with egs. (7.2.35)~(7.2.37) as the learning algorithm.

191

To satisfy the persistent excitation condition, we either use the random trajectory dur-
ing the training stage, or use §toreplace ¢ and qg’) toreplace g“*in eqs. (8.3.3) and (8.3.4)

which eliminate the PE requirement.

Egs. (8.3.1) and (8.3.2) can be enhariced into the following:

U= - ‘0252 - A2Sgn(S2) + éNz(Qspsﬁ,ﬁ,) (8.3.5)

A1 A .
pa = Kn [— Dy5y — Aysgn(sy) + ni(@: 4.4, 541)) (8.3.6)
where A, and A, are positive definite diagonal matrices; sgn(.) means applying the sign
function to every entry of vectors s, and s,. This modification makes the neurocontrol algo-

rithm robust to the neural network modeling errors.

Similarly, Gaussian RBF networks are used torealize the neurocontroller. The tested
desired trajectories are (1) a straight line, (2) a circle and (3) a rectangle, as defined in section

7.2.2.

The real-time control code was programmed in C language. The code was compiled
to obtain the object modules. These modules were then downloaded to the DSP board. A
brief description of the experimental procedure can be found in Joseph (1992) or Massoud

(1993).
8.4 EXPERIMENTAL RESULTS

The following different experimental strategies were tested by applying the direct
adaptive neurocontrol law summarized in section 8.3: (a) using pure neurocontroller direct-
ly to control the robot without any off-line training; (b) using pure neurocontroller with off—
line training to determine good initial values of the weights; and (c) using the robust neuro-
controller with off-line trained initial weights and structure information about the motor

dynamics.

192

For strategy (a), it was difficult to complete the leaming processes of the neurocon-
troller due to the poor initial control responses and the motor servo-system overloading, The
link I angle was confined within (—80°, 80°). The link 2 angle was confined within (-90°,
90°). The robot cannot work if the angles are out of the range. The frequent source of trouble
was the motor 1 servo-system overloading. Sometimes, the experiment just could not be

started due to the high initial angular velocity response.

For strategy (b), the neurocontroller could complete the learning processes. Howev-
er, there was a computation time and control precision problem. In the simulation results
presented in section 7.2.2, 2000 RBF neurons were used to guarantee high approximation
precision. If the same number of neurons are used in the real-time implementation, then
about 0.2 sec of computation time is required in each updating step. This means that the sam-
pling period has to be larger than 0.2 sec. Since the direct adaptive neurocontrol law (8.3.1)-
(8.3.6) with learning algorithm (7.2.35) — (7.2.37) is presented in the continuous time do-
main, a sampling period that is too large greatly reduces the control precision, and may even
make the system unstable. If fewer neurons are used, the computation time can be decreased,

but the neural network approximation precision, and thus the control precision, is lowered.

This observation shows that for real-time applications, large scale neural networks
have to be implemented on neural net hardware to utilize their parailelism fully for fast com-
puting. Otherwise, the so—called advantage of massively parallel processing cannot be ob-

tained using conventional digital computers.

Strategy (c) was conducted with success. Since the structure of the motor dynamics
was assumed to be known, g ~2(@.p, P, P,) in eq. (8.3.5) assumed a very simple form, The
structure information about g,(4, ¢, §,. 5 4,) defined in eq. (7.2.10) was further used to sim-

plify the neural network design for £,(¢.4.4,.54;). Finally, 200 neurons were used to

193

approximate g,(q, d, §,, 5 4,) with the computation time being about 5.6 ms per step. The

sampling period was set to 6 ms.

The neurocontroller was first trained using the nominal model of the experimental
robot given in section 7.2.2. Then the off-line learned weights were used in the robust neuro-
control algorithm (8.3.3) — (8.3.6) to control the robot. Three different trajectories were
tested: (1) a straight line, (2) a circle and (3) a rectangle. All the trajectories were repetitive
so that the experiment can continue for any time period. One block in “ ™ shape (with its
mass about 1 kg) could be attached anywhere on the second link (with its mass about 1.8 kg)
of the robot. It was used to change the dynamics of the experimental robot and test the robust-

ness of the neurocontrol law.

The following experimental results are based on strategy (c). The two-layer Gaus-
sian RBF networks are used to represent the neurocontroller. There are 200 neurons in the

hidden layer.

0.2%

0.154 - -

0.05-

~0.059 - -
—0.14 -
-0.154]

-0.2

~0,25]

Fig. 8.5 The actual tip trajectory of the experimental robot (line)

194

Experiment 1. A straight line trajectory tracking control was conducted. Fig. 8.5
shows the actual tip trajectory of the experimental robot under the robustdirect adaptive neu-
rocontrol law. Due to the off-line training and the robustness, the control performance is
consistent, in spite of the continuing learning. The maximum tracking error of the desired
straight line is 5 mm or 0.0061 rad in joint angles, and the average tracking error is 0.78 mm.

The average tip velocity is 400 mm/s, which was faster than those in other reported experi-

ments.

When the < block was attached to the second link at any position, the same control

precision was obtained (fig. 8.6). The neurocontrol system was always stable. This shows

0.25

0.054

o]

L [

-0.25

o] 0:1 0.2 0.3 0.4 0.5 Q.6 0.7 0.8
X

Fig. 8.6 The actual tip trajectory of the experimental robot with block (line)

that the neurocontrol law is robust to dynamic or load changes of the robot. The load change
is dramatic in this experiment, since the experimental robot is light and the mass of the C
shape block (about 1 kg) is approximately half of that of the second link (about 1.8 kg) of
the robot. The performance of robots which use conventional controllers deteriorates greatly

when subjected to such a load change.

195

01

O.Ua_
0.06
Y.TH PR
0.02
- 0
b Ll
5 A ! i : : N 3
YTH B NN
005
-0.06-
-0.1 ;

0.54 0.56 0.58 0.6 0.62 T.E# 0.56 Q.68 0y 0.72 0.74
[ld.:!

Fig. 8.7 The actual tip trajectory of the experimental robot (circle)

Experiment 2: A circle trajectory tracking control was conducted. Fig. 8.7 shows
the actual tip trajectory of the experimental robot under the robust direct adaptive neurocon-
trol law. The maximum tracking error of the desired circle is 15 mm or 0.018 rad in joint
angle, and the average tracking error is 1.34 mm or 0.016 rad in joint angle. The average

tip velocity is 252 mmy/s.

When the < block was attached to the second link at any position, the same control
precision was obtained (see fig. 8.8) and the actual tip trajectory looks similar to fig. 8.7.
The initial tracking error was larger compared with fig. 8.7 due to the attachment of the
block and then converged. The neurocontrol system was always stable. This shows again

that the neurocontrol law is robust to dynamic or load changes of the robot.

196

A

0.08

0.06-

0.04 ok
0.02d ~ e _'Z-" S

0

[ydy]

-0.02

-0.04

-0.06

~0.08

=01 L] s ¥ l l
054 056 058 0.6 0.62[“‘ ’]0.54 0.66 0.68 0.7 072 oM

Fig. 8.8 The actual tip trajectory of the experimental robot with < block (circle)

Experiment 3: A rectangle trajectory tracking control was conducted. Fig. 8.9
shows the actual tip trajectory of the experimental robot under the robust direct adaptive neu-
rocontrol law. The maximum tracking error of the desired rectangle is 15 mm or 0.021 rad
in joint angle, and the average tracking error is 1.12 mm. The average tip velocity is 200
mm/s. When the c block was attached to the second link at any position, the same control
precision was obtained (see fig. 8.10) and the actua! tip trajectory looks similar to fig. 8.9.

The ininal tracking error was larger compared with fig. 8.9 due to the attachment of the
block and then converged. The robustness of the neurocontrol law to dynamic or load

changes of the robot is demonstrated once more.

The control precision and average tip moving speed of all the three experimental re-

sults are summarized in table 8.4.1.

167

desired experimental

0.3 0.4 0.5 0.6 0.7 0.8
X

Fig. 8.2 The actual tip trajectory of the experimental robot (rectangle)

PRS- VAU PR S I SR P S SR

t T T
0.3 0.3% 0.4 Q.43 0.5

Fig. 8.10 The actual tip trajectory of the experimental robot with < block (rectangle)

The experimental results are compared with the simulation results presented in Sec-
tion 7.2, and summarized in Table 8.4.2. It can be seen that the trajectory tracking precision
of the experimental results is lower than that of the simulation results. The major reason is

because the number of neurons is greatly limited by the real-time computation requirement

198

Table 8.4.1 Summary of the experimental results

Trajectory Max. Position Error Aver. tip speed
5mm /0.35 deg 400 mmy/s
O 15mm/ 1.05 deg 252 mm/s
15mm/1.22 deg 200 mm/s

Table 8.4.2 Comparison of the experimental and simulation results

Traiect Maximal Tracking Error
rajecto
jectory Experiment Simulation
5 mm 1.5 mm
O 15 mm 3.0mm
15 mm 2.0 mm

for the actual experiments. The signal measurement noise and larger sampling period also

lower the tracking precision.

The experimental results presented here are compared with other available results in
the following. Since experimental results for trajectory control of flexible joint robots iden-
tical to our setup was not found, similar work is compared here. Carusone, Buchan and D’E-
leuterio (1993) presented their experimental results for the square and circle tracking control
of arigid—joint flexible-link robot. Linear control law was developed for the trajectory con-
trol, therefore the robot could only move slowly. The experimental results are summarized
in Table 8.4.3. It can be seen that the results obtained in this research are better regarding
precision with faster moving speed. The control of a rigid—joint flexible-link robot is more

difficult than that of a rigid-link flexible—joint robot (Spong and Vidyasagar, 1989).

199

Table 8.4.3 Experimental results from Carusone, et al.

)) Tracking E
Trajectory | Max. Tracking Error | Max. tip speed atr ?::orrl:egrlsg:tr
39.5 mm 125 mnys 69.7 mm
O 353 mm 157 mmys 51.8 mm

The next comparison is based on the experimental results presented in Tarmn et al.
(1991). A PUMA 560 was used and a circle trajectory was tested, The PUMA 560 can be
regarded as a rigid—link rigid—joint robot, at low working speed. A feedback linearization
method was used to design the trajectory control law. The experimental results are summa-

rized in Table 8.4.4. They compared the results obtained by considering the motor dynamics

Table 8.4.4 Experimental results from: Tarn, et al.

O Max. Pos. Error Max. tip speed
2nd order
model 30 mm 170 mm/s
3rd order
model 7 mm 170 mm/s

in the controller design (3rd order model) with those obtained by neglecting the motor dy-
namics in the controller design (2nd order model). The results in this thesis correspond to
the case of neglecting the motor dynamics in the controller design (2nd order model). Itcan
be seen that this thesis results are better than those obtained by Tarn et al. vsing the 2nd order
model and worse than those obtained using 3rd order model, and faster in moving speed.
The control of a rigid—joint rigid-link robe: is easier than that of a rigid link flexible joint
robot.

200

The third comparison is based on the experimental results presented in An et al,
(1989). The MIT serial link direct drive arm, which can be regarded as a rigid-link rigid—
joint robot, was used at a low working speed. The desired trajectory was a smooth position
change. Computed torque control law was applied to control the robot. The experimental

results are summarized in Table 8.4.5. Anetal. investigated the effect of digital computing

Table 8.4.5 Experimental results from An, et al.

—~" | Max. Angle Errors Ours
Analog
SeIVO 0.33,0.64, 1.4 deg. N/A
Digital
Servo 2.20, 2.00, 4.0 deg. 0.35—1.22deg

on the control precision, using both an analog servo controller and a digital servo controller.

The experimental results in this thesis are comparable with theirs.

The last comparison is based on the experiments conducted by S. Yu of department
of mechanical engineering at McMaster University in 1994. A flexible—joint flexible-link
experimental robot was built and used in the experiments. A model reference adaptive con-
trol law based on the linear model of the robot was tested for end-effector position control,
which is much easier than trajectory control. Trajectory control was not achieved in his
work. The results of this thesis were applied to both trajectory and position control with suc-

Cess.

In summary, the control precision of the experiments is acceptable and the motion
of the robot is faster compared with other reported experiments. Since the sampling period
is larger and the number of neurons used is smaller, the control precision in the experimental
test is lower than that in the numerical simulation shown in section 7.2.2. This problem can
be solved by using neural net hardware. The robust modification expressed by egs. (8.3.5)

and (8.3.6) can ensure good transient responses and require fewer neurons.

201

The experimental results show that incorporating a priori information about the sys-
tem dynamics can simplify neurocontroller design. They also show thatitis possible to make
the robots light, move fast and accurately, and carry heavier loads compared to their own

weight.
8.5 DISCUSSIONS

Through experimental testing, it was found that the neurocontrol approach can be
used to control a system without detailed modeling and parameter identification of the sys-
tem dynamics. Compared with the exact model-based control (EMC) schemes, the adaptive
neurocontrol (ANC) schemes require the least a priori information about the system dynam-
ics. If an accurate model of a system were available, EMC schemes would give the best per-
formance. ANC schemes are able to improve their performance and approach the best re-
sults. If there are uncertainties andfor time—varying factors (which are difficult to model),

EMC schemes usually deteriorate.

There is always a lower bound of control precision which can be achieved using mod-
el-based control schemes due to the existence of uncertainty as analyzed before. For neuro-
control schemes, this bound can be made very small through proper neural network structure
design. The generality of neurocontrol schemes is acquired at the cost of computation com-

plexity. Using neural network hardware can resolve this computation complexity problem.

If the model reference adaptive neurocontrol scheme presented in section 7.3 is ap-
plied experimentally, better results can be expected, since the persistent excitation signals
are not required. As stated in Chapter 3, the generalization is not guaranteed outside the
learning space. Therefore, the input space of a neurocontroller should cover the whole work-

ing space of the robot.

CHAPTER 9

CONCLUSIONS

In chapter 2, we reviewed the state—of—the-art of neural networks in control and its
existing problems. Throughout this thesis, new contributions have been made to the neuro-
control field. These contributions are summarized in section 9.1. Section 9.2 presents dis-
cussions of the achievements. Some important issues which are still to be solved in future

research are outlined in section 9.3.
9.1 SUMMARY OF CONTRIBUTIONS

Almost all dynamic systems in reality are nonlinear, Itis often difficult, if not impos-
sible, to obtain accurate dynamic systern models. Flexible-joint robot systems belong to
highly coupled nonlinear dynamic systems, and using linear control approaches usually pro-
duce poor control performance. There are few nonlinear control design approaches available
to date, most of which can only be applied to feedback linearizable nonlinear systems. The
neurocontrol approach opens a new area that may present general solutions to nonlinear con-
trol systems. Based on the preliminary level of development of the neurocontrol approach,

the following research was conducted:

202

203

(a) a search for better learning algorithms and neural network architectures suitable

for nonlinear system modeling and neurocontroller formulation;

(b) the construction of new adaptive neurocontrol schemes with better learning per-

formance and guaranteed system stability;

(c) the derivation of adaptive neurocontrol schemes for general flexible—joint robots

to achieve better performance under large modeling errors.

Three major contributions in the neural network area, four major contributions in the
neurocontrol area and three major contributions in the neurocontrol of flexible-joint robots

were achieved in this thesis. These are:
In the neural network area:

(1) A localized neural network concept was proposed and tested. The localization

can speed up the learning processes and reduce computation.

(2) A new multistep localized adaptive learning algorithm for RBF networks with
about ten times faster learning convergence and reduced computation requirement was

derived and verified.

(3) New neural network models of nonlinear systems with different representations,

with and without measurement noises, were formulated and tested by numerical simulation,

In the neurocontrol area:

(4) Theoretical issues related to the popular backprop-based indirect and direct adap-
tive neurocontrol schemes were clarified for the first time from the viewpoint of the control

theory.

(5) A new backprop-based indirect adaptive neurocontrol algorithm with faster con-

vergence was derived, as a result of using localized polynomial networks. Also, a global

204

asymptotically stable indirect adaptive neurocontrol scheme was proposed and tested by nu-

merical simulation, using localized linear networks.

{6) New direct adaptive neurocontrol schemes with faster leamning convergence were
proposed. They are based on input—output Jacobian matrix estimation and the optimization

algorithms without using derivative information.

(7) New self-tuning neurocontrol schemes were proposed, mathematically proved

and tested by numerical simulation. They extend the adaptive control theory for linear sys-

tems to nonlinear systems,

(8) The variable index control theory was introduced, mathematically proved and

tested by numerical simulation.

(9) A stable robust adaptive neurocontrol scheme based on the variable index control
theory was derived. Its robustness and stability were mathematically proved. It can be ap-

plied to general nonlinear systems, which are not necessarily feedback-linearizable.
In the neurocontrol of flexible-joint robots:

(10) A new direct adaptive neurocontrol scheme with proven stability for general

flexible joint robots was derived, theoretically proved and tested by both numerical simula-

tion and experiments.

(11) A model reference adaptive neurocontrol scheme was derived for general flex-

ible joint robots. The global stability was proved theoretically.

(12) A robust and stable adaptive neurocontrol scheme for general flexible joint ro-
bots was derived based on the variable index control theory. The system global stability was

proved theoretically.

Based on these contributions, the following conclusions were reached:

205

. The localized neural networks can be applied to neurocontrol with faster leamning
convergence and less computation burden. The benefit is tremendous for complex

high order nonlinear systems, especially for real-time control applications.

The adaptive extended Kalman filtering learning algorithm with UD factorization

provides good learning performance for many neural networks.

. The four new neural network models of nonlinear systems, introduced in this thesis,

are useful for neurocontroller design.

The input-outpur determination, for stabilizability, of the backprop-based adaptive

neurocontrollers was solved.

The new backprop—based adaptive neurocontrol schemes are about ten times faster

in learning convergence than the existing ones published previously.

Compared with the backprop-based adaptive neurocontro! schemes, the stability—-
based adaptive neurocontrol schemes perform much better in learning and stability.

For the latter, it is easy to set the initial values of the weights.

The self-tuning neurocontrol schemes extend the stability-based neurocontrol
schemes to discrete time and/or sampled—-data nonlinear systems. This makes fast

and globally convergent learning possible.

. The variable index control approach and the corresponding stable and robust adap-
tive neurocontrol scheme can be applied to general continuous—time nonlinear sys-
tems. These nonlinear systems are not necessarily feedback linearizable and the
nonlinearities are not necessarily differentiable. For the adaptive neurocontrol
scheme, linear parameterization of unknown parameters, the common assumption
in conventional adaptive control of nonlinear systems, is notrequired. These results

are significant in the control field.

206

9. The self-tuning neurocontrol schemes and the other stability-based adaptive neuro-
control schemes are significant, because they show close resemblance to the matur-
ing linear adaptive control theory. The dynamic behavior differences between the

linear systems and nonlinear systems were also clearly revealed in this research.

10. All three adaptive neurocontrol schemes for general flexible joint robots are innova-
tive. They can solve the control problem of general flexible joint robots with large

modeling errors. The proposed methodologies are also applicable and useful to

non-neurocontrol approaches.

11. Incorporating a priori information about the controlled systems can simplify the

neural network design and reduce on-line computation.

12. The experimental tests show that the neurocontrol schemes can produce high control

precision. The neural networks can be used to compensate the modeling errors.

9.2 DISCUSSIONS

9.2.1 Utilizing a priori information

In most existing neurocontrol schemes, it is assumed that the models of the controlled
dynamic systems are unknown. This assumption shows the power of the neurocontro! ap-
proach. However, in practice, there is always some a priori information about the controlled
dynamic systems, especially for those which have been studied for many years. For exam-
ple, simplified dynamic models and kinematics of robotic systems have been investigated
for more than 20 years. The a priori information includes the dynamic order, the structure,
the nominal model, and even existing conventional controllers of a controlled system. The
thesis shows that all of these can be incorporated into the neurocontroller design (sections
4.2,4.3,6.4,7.2 and 7.3). The more we know about a controlled system, the better the neuro-

controller with the information incorporated will be.

207

There may be problems in neurocontrol approach with pure neural network models.
First, the structure of a neural network for a given control system is difficult to determine
uniquely. Secondly, there are many weights to be tuned at the learning stage, which, if the
neural networks start learning from scratch, makes the initial dynamic responses unpredict-
able and with large control errors. Thirdly, neurocontrol algorithms require intensive com-
putation for complex multivariable control systems. These problems can be partially solved
by incorporating a priori information about the controlled systems into the neurocontroller
design, as shown in the thesis. Also, it helps to use localized neural networks to reduce the
number of weights to be updated, and to pre—train the neurocontrollers off-line. Interesting
applications of neurocontrol approach are the hybrid neural and conventional control, or us-

ing neural networks as internal models of the dynamic systems.
9.2.2 Neurocontroller implementation

At present, the generality of neurocontrollers is achieved at the cost of computing
complexity. Massive neurons performing simple and uniform parallel computation were
claimed to be an advantage of neural networks. If the neural networks are implemented on
conventional digital computers, the parallelism cannot be utilized. Itis difficult to achieve
fast computation of large-scale neural networks using a sequential processing computer. For
real-time control applications, the number of neurons that can be used is greatly limited by
the sampling frequency requirement and the computer speed. This was observed in the ex-

perimental test.

Historically, any new control theory is accompanied with new hardware innovation.
As we know, classical controllers were implemented by analog circuits. Adaptive control-
lers are realized by digital processors. Therefore, it can be predicted that the real power of

neurocontrol theory will be fully realized when neural network hardware comes into use.

9.2.3 Neurocontroller structure determination

208

For single-input single—output control problems, most neurocontrol schemes work
well. Forlarge scale nonlinear systems, proper structure design of neurocontrollers is cructal

to successful neurocontrol.

There are two structures to be determined in a neurocontrol system: the overall neu-
rocontrol system structure and the neurocontroller strucwre. The former is completely de-
termined if one neurocontrol scheme is adopted. It also distinguishes one neurocontrol
scheme from another and determines the system stability. The latter determines the model-

ing precision and control precision, and is related to the structure design of neural networks.

In general, it is difficult to determine an optimal neural network structure for a given
control problem, especially in real time. However, it is reasonable in practice to determine
a feasible neural network structure, through trial and error, for a given problem that is not
very complex. If the number of used neurons is less than the optimal one, an approximation
error may exist. If the number of used neurons is larger than the optimal one, a generaliza-
tion error may also exist. In reality, if the number of used neurons is not far away from the

optimal one, acceptable performance in engineering can often be obtained.

The structure determination algorithms proposed in sections 3.2 and 3.3 are useful
in finding a suboptimal number for a given problem in real-time, due to their simplicity.
Locality is an inherent feature of biological neural networks, and can be applied to artificial

neural networks to simplify the structure design.

For complex control problems with a high dimension of inputs to the neurocontrol-
lers, the number of neurons required for universal approximation ability increases dramati-
cally. This is the so—called curse of dimensionality. However, if we drop the requirement
of universal approximation ability, much fewer neurons are required for many practical
problems, especially when some a priori information about the smoothness of the approxi-

mated nonlinearity and the working region are known,

209

9.2.4 Neural network model vs. first—principle model

As indicated in section 3.4, neural network models for nonlinear systems are not
structured first-principle models. The first—principle model of a nonlinear system is the best
for either analysis, or prediction and control. Its structure and parameters are unique. How-

ever, first-principle models are difficult to obtain for many problems.

Neural network models represer:t an unstructured approach. The models are usually
over-parameterized and the neurons and weights are redundant, which gives the neural net-
work models some universal approximation ability. At the same time, the over—parameter-

jzation and the redundancy cause problems of over—generalization and multiple solutions.

To avoid such problems, the training data have to be representative and persistent ex-
citation (section 3.4). Similarly, incorporating a priori information about a given problem

will reduce the over—parameterization and the redundancy.

Although the functional structures of artificial neural networks resembles some bio-
logical neural networks, the scales, connectivity and learning mechanisms are quite different
from each other at present. More research work with collaboration among different disci-
plines has to be done in the future. Sooner or later, people will not regard neural networks
as a magic, but rather as efficient Al and mathematical tools that can be applied to solve many

cognitions, complex mappings and nonlinear problems in many fields.
9.2.5 Neurocontrol and adaptive control

As indicated in section 7.4, the usage of neurocontrollers can be divided into a learn-
ing stage and a working stage. The control performance of neurocontrollers are usually un-
acceptable during the learning stage, whether on-line or off-line. The same claim applies

to conventional adaptive control, too. This is because both of them are based on the learn—

210

by-mistake (error} principle. If there were no control errors, the neurocontrollers and adap-

tive controllers could not learn or adapt.

This analysis shows the importance of classification of the learning stage and the
working stage. The learning stage belongs to the continuing design of the controllers. Un-

awareness of this fact may lead to problems in practical systems.

Another issue is about the necessity of the persistent excitation (PE) requirement.
For both neurocontrol and adaptive control, some schemes require PE to guarantee system
stability, while some schemes do not. However, if the PE requirement is not satisfied, the
parameters will certainly not converge to their optimal values in both cases. This raises a

question: if the parameters have not converged, what is the effect of continuing learning?

As discussed previously, continuing leamning or adaptation occurs only if there are
control and/or modeling errors. If the parameters have not converged, these parameters may
work only for some desired control tasks. Therefore, when there is a control task change,
the current parameters may not fit and control and/or modeling errors may appear. Continu-
ing learning or adaptation switches the controlled system from a working stage to a new

learning stage, and deteriorated control performance may appear during this period.

In the thesis, some robust control schemes are combined with the neurocontrol

schemes to alleviate this problem and to achieve more consistent control performance.

9.3 FUTURE WORK

Most of the results in the thesis apply to deterministic dynamic systems. Further re-

search should consider stochastic dynamic systems, since there is always measurement noise

in the feedback signals.

For the backprop-based neurocontrol schemes and the self—tuning neurocontrol

schemes proposed in the thesis, the feedback signals are the measurable outputs of the con-

211

trolled systems. For the rest of stability—based neurocontrol schemes presented in the thesis,
the feedback signals are the system states. Since system states may not be available in many

practical systems, constructing neuro—observers is an interesting topic for further research.

Most stability-based neurocontrol schemes are given in continuous time domain.
They have to be implemented on digital computers. Therefore, the sampling effects of these
control algorithms have to be further investigated. Asshown in the experiments, larger sam-

pling periods lead to control precision reduction.

Similar to linear adaptive control, the issues related to possible loss of stabilizability
and controllability of adaptive neurocontrol schemes during the learning stage are yet to be
solved. Itis desirable to extend the thesis results to the case when dynamic order uncertainty

exists in system dynamics.

In the thesis, most of the carried out work relates to the trajectory control of robots.
Further extensions to force control and constrained motion control is another interesting top-

ic for research.

Due to the powerful mapping ability of neural networks, the proposed neurocontrol
schemes for robots can be enhanced with neural networks performing computer vision-to-
task space position and orientation mapping, desired trajectory formulation, and collision

avoidance.

BIBLIOGRAPHY

[1] Al-Ashoor, R.A,, Patel, R.V. and Khorasani, K. (1993), “Trajectory following
robust adaptive control of flexible-joint manipulators”, IEEE Trans. Syst., Man,

and Cybern., Yol. 23, pp. 589-602.

[2] Albus, J.S. (1979), “Mechanisms of planning and problem solving in the brain”,
Mathematical Biosciences, Vol. 45, pp. 247-293.

[3] Albus, J. (1975), “A new approach to manipulator control: The cerebellar mode!l
articulation controller (CMAC)”, J. Dynamic Systems, Measurement, and Control,

Vol. 97, Sept., pp. 220-227.

[4] An, CH,, Atkeson, C.G., Griffiths, J.D. and Hollerbach, J.M. (1989),
“Experimental evaluation of feedforward and computed torque control”, /EEE

Trans. on Robotics and Automation, Vol. 5, No. 3, pp. 368-373.

[5) Anthony, M. and Biggs, N.L. (1992), Computational Learning Theory: An

Introducrion, Cambridge University Press, Cambridge, UK.

[6] Antsaklis, P.J. (1992), “Neural networks for control systems”, IEEE Control
Systems Magazine, Vol. 12, April, pp. 8-10.

[71 Asada, H. and Liu, S. (1991), “Transfer of human skills to neural net robot
controller”, Proc. IEEE Int. Conf. on Robatics and Automation, Sacramento, CA,

pp. 2442-2448.

[8] Asada, H. and Slotine, J.-J.E. (1986), Robot Analysis and Control, John Wiley and
Sons, New York.

212

[9}

(10

(11}

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

213

Astrom, K.J. (1991), “Where is the intelligence in intelligent control”, JEEE

Control Systems Magazine, Vol. 11, No.1, pp. 37-39.
Astrom, K J. and Wittenmark, B. (1989), Adaptive Control, Addison—Wesley.

Bar-Kana, I. and Guez, A. (1990), “Neuromorphic computing architecture for

adaptive control”, Proc. IJCNN’90, Washington, D.C., pp. II: 323-326.

Bassi, D.F. and Bekey, G.A. (1989), “High precision position control by cartesian
trajectory feedback and connectionist inverse dynamics feedforward”, Proc.

IJCNN’ 89, Washington, D.C., pp. II: 325-331.

Bavarian, B. (1988), “Introduction to neural networks for intelligent control”,

IEEE Control Systems Magazine, Vol. 8, No. 3, Apr., pp. 3-7.

Bortoff, S.A. and Spong, M.W. (1987), “Feedback linearization of flexible joint
manipulators”, Proc. 1987 IEEE Conf. on Decision and Control, pp. 1357-1362,

Braess, D. (1986), Nonlinear Approximation Theory, Springer—Verlag.

Brent, R. P. (1973), Algorithm for Minimization without Derivatives, Prentice-Hall,

Inc.

Canudas De Wit, C. and Lys, O. (1988), “Robust control and parameter estimation
of robots with flexible joints™, Proc. 1988 IEEE Int. Conf. on Robotics and
Automation, Philadelphia, PA, pp. 324-329.

Carusone, J., Buchan, K.S. and D’Eleuterio, G.M.T. (1993), “Experiments in
end-effector tracking control for structurally flexible space manipulators”, IEEE

Trans. on Robotics and Automation, Vol. 9, No. 5, pp. 553-560.

Chen, F-C. (1991), “A dead—zone approach in nonlinear adaptive control using
neural networks”, Proc. IEEE Conf. on Decision and Control, Brighton, UK, pp.
156-161.

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

214

Chen, S. Billings, S.A. and Grant, P.M. (1992), “Recursive hybrid algorithm for
nonlinear system identification using radial basis function networks”, Int. J. of

Control, Vol. 55, No. 5, pp. 1051-1070.

Cotter, N.E. (1990), “The Stone-Weierstrass theorem and its application to neural

networks”, [EEE Trans. on Neural Networks, Vol. 1, No. 4, pp. 290-295.

Cui, X. and Shin, K.G. (1991), “Design of an industrial process controller using

neural networks”, Proc. ACC’ 90, pp. 2466-2471.

Cybenko, G. (1989), “Approximation by superpositions of a sigmoidal function”,
Math. Control, Signals, and Systems, Vol. 2, pp. 303-314,

Dufty, J. (1990), “The fallacy of modern hybrid control theory™, Int. J. Robotics
Systems, Vol. 7, No. 2, pp. 139-144.

Eckmiller, R. Beckmann, J., Werntges, H. and Lades, M. (1989), “Neural

kinematics net for a redundant robot arm”, Proc. IJCNN’89, Washington, D.C., pp.
II: 333-339.

ElMaraghy, H.A. and Liang, F. (1993), “Integrated mechanical and control design
for well-designed flexible joint robots”, Proc. 1993 DND Workshop on Advanced

Technologies in Knowledge Based Systems and Robotics, Ottawa, Nov. 1993,

Fadali, M.S., Aguirre, E.J. and Egbert, D.D. and Tacker, E.C. (1990),
“Minimum-—time control of robotic manipulators using a back propagation neural

network”, Proc. ACC, San Diego, CA, pp. 2997-3000.

Fukuta, T., Shibata, T., Kosuga, K., Arai, F,, Tokita, M. and Mitsuoka, T. (1991),
“Neuromorphic sensing and control - application to position, force and impact

control for robotic manipulators”, Proc. IEEE CDC, Brighton, UK, pp. 162-167.

Fukuta, T. and Shibata, T. (1991), “Adaptation and learning for hierarchical

(30

[31]

[32]

[33]

[34]

{35}

[36]

137

(38)

215

intelligent control”, Proc. IJICNN’91, Baltimore, MD, pp. I: 269-274,

Ficola, A., Marino, R. and Nicosia, S. (1983), “A singular perturbation approach
to the control of elastic joints”, Proc. 21st Ann. Allerton Conf. on

Communications, Control and Computing, Monticello, IL, pp. 220-225.

Ghorbel, F., Spong, M. and Hung, J. (1989), “Adaptive control of flexible joint
manipulators”, Proc. 1989 IEEE Int. Conf. on Robotics and Automation, Phoenix,

AZ, pp. 1188-1193.

Gu, Y.-L. (1990), “On nonlinear system invertibility and learning approaches by
neural networks”, Proc. 1990 American Control Conference, San Diego, CA, pp.

3013-3018.

Guez, A., and Ahmad, Z. (1989), “Accelerated convergence in the inverse
kinematics via multilayer feedforward networks”, Proc. IJCNN'89, Washington,

D.C., pp. 1I: 341-344.

Guez, A., Eilbert, J. and Kam, M., (1988), “Neural network architecture for

control”, IEEE Control Systems Magazine, Vol. 8, No.3, pp. 22-25.

Guo, J. and Cherkassky, V. (1989), ““A solution to the inverse kinematic problem in
robotics using neural network processing”, Proc. IJCNN'89, Washington, D.C., pp.

11: 299-304.

Han, Y. (1992), Adaptive Tracking Control Of Feedback Linearizable Nonlinear
Systems, Ph.D thesis, McMaster University, Hamilton, ON.

Handelman, D.A., Lane, S.H. and Gelfand, J.J. (1989), “Integration of
knowledge-based system and neural network techniques for autonomous learning

machines”, Proc. IJCNN’ 89, Washington, D.C., pp. I: 683-688.

Haykin, S. (1994), Neural Networks, A Comprehensive Foundation, Macmillan

[39]

[40]

[41]

[42)

[43]

[44]

[45]

[46]
[47]

[43]

[49]

216

College Publishing Company, Inc.
Hebb, D.O. (1949), The Organization of Behavior, Wiley, New York.

Herve, J.-Y., Sharma, R. and Cucka, P. (1991), “Toward robust vision-based
control: hand/eye coordination without calibration”, Proc. IEEE Symp. Intell.

Conir., Arlington, VA, pp. 457-462.

Ho, T.T.,, Ho, H.T., Bialasiewicz, J.T. and Wall, E.T. (1991), “Stochastic neural
direct adaptive control”, Proc. IEEE Int. Symp. Intell. Contr., Artlinton, VA, pp.
176-179.

Hosogi, S. (1990), “Manipulator control using layered neural network model with

self-organized mechanism”, Proc. I/JCNN’ 90, Washinton, D.C., pp. I1: 217-220.

Hunt, K.J,, Sbarbaro, D., R. Zbikowski and Gawthrop, P.J. (1992), “Neural

networks for control systems — a survey”, Auromatica, Vol. 28, No. 6, pp.

1083-1112.

Hunt, K.J., Sbarbaro, D. (1991), “Neural networks for nonlinear internal model

control”, /EE Proc. D, Vol. 138, No. 5, pp. 431-438.

loannou, P. and Sun, J. (1988), “Theory and design of robust direct and indirect

adaptive control schemes”, Int. J. Control, vol. 47, pp.775-813.
Isidori, A. (1989), Nonlinear control systems, Springer—Verlag, New York.
Ito, M. (1984), The Cerebellum and Neural Control, Raven Press, New York,

Jankowski, K.P. and ElMaraghy, H.A. (1991), “Dynamic decoupling for hybrid
control of rigid/ flexible joint robots interacting with the environment”, Proc. 1991

IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, pp. 1226 - 1231.

Joseph, 8. (1992), “Experimental robot dSpace hardware/software”, FMRD
19-01-92, McMaster University, Hamilton, ON,

{50]

[51]

[52]

[53]

154

[55]

[56]

(57]

[58]

217

Jordan, M.L and Jocobs, R.A. (1989), “Learning to control an unstable system with
forward modeling”, in Advances in Neural Information Processing Systems 1,

Morgan Kaufmann Publishers, Inc., pp. 29-39.

Kanellakopoulos, I., Kokotovic’, P.V. and Morse, A.S. (1991), “Systematic design
of adaptive controllers for feedback linezrizable systems”, JEEE Trans. Automatic

Control., Vol. AC-36, pp. 1241-1253.

Kasparian, V. and Batur, C. (1992), “Neural network structure for process control
using direct and inverse process model”, Proc. 1992 American Contr. Conf.,

Chicago, IL, pp. 562-566.

Keeler, J.D. (1991), “A dynamical system view of cerebellar function”, in S.

Forrest (ed.), Emergent Computation, MIT Press, Cambridge, MA, pp. 396-410.

Khorasani, K. (1991), “Adaptive control of flexible joint robots”, Proc. 1991 IEEE

int. Conf. on Robotics and Automation, Sacramento, CA, pp. 2127-2134.

Khorasani, K. and Spong, M.W. (1985), “Invariant manifolds and their application
to robot manipulators with flexible joints”, Proc. 1985 IEEE Int. Conf. Robotics
and Automation, St. Louis, MO, 1983,

Kodrtoff, Y. and Michalski, R. (1990), Machine Learning: An Artificial

Intelligence Approach, Vol. 3, Morgan Kaufmann Publishers, Inc.

Kosmatopoulos, E.B., Chassiakos, A.K. and Christodoulou, M.A. (1991), “Robot
identification using dynamic neural networks”, Proc. IEEE CDC, Brighton, UK,
pp. 2934-2935.

Kuperstein, M. and Rubinstein, S. (1989), “Implementation of an adaptive neural
controller for sensor-motor coordination”, Proc. IJCNN'89, Washington, D.C., pp.

I1: 305-316.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

218

Lane, S.H., Handelman, D.A. and Gelfand, J.J. (1990), “Can robot learning like
people do?”, Proc. SPIE, Vol. 1294, pp. 296-309.

Leahy, Jr. M.B., Johnson, M.A. and Rogers, S.K. (1991}, “Neural network payload
estimation for adaptive robot control”, JEEE Trans. Neural Networks, Vol. 2, No.

1, pp. 91-100.

LeCun, Y. (1986), “Learning processes in an asymmetric threshold network”,
Disordered Systems and Biological Organization, E. Beinestock, Fogelman Souli,

and G. Weisbuch (eds.), Springer, Berlin.

Lee, D.M.A. and ElMaraghy, W.H. (1992), *“A neural network solution for bipedal
gait synthesis”, Proc. IJCNN’92, Baltimore, Maryland, pp. II: 763-768.

Leung, T.P.,, Zhou, Q.-J. and Pei, H.-L. (1992}, “A robust neural network
controller”, Proc. ACC’92, Chicago, IL, pp. 983-986.,

Leshno, M., Lin, V.Ya,, Pinkus, A. and Schocken, S. (1993), “Multilayer
feedforward networks with a non—polynomial activation function can approximate

any function”, Neural Networks, Vol. 5, pp. 1248-1256.

Levin, E.G. and Inbar, G.E. (1991}, “Neural network architecture for adaptive

system modeling and control”, Neural Networks, Vol. 4, pp. 185-191.

Levin, A.U. and Narendra, K. (1992), “Stabilization of nonlinear dynamical
systems using neural networks”, Proc. ICNN’92, Baltimore, MD, Vol. I, pp.
275-280.

Liang, F. and E]Maraghy, H.A. (1995), “Robust and global stabilization of

nonlinear systems”, to appear in Proc. 1995 American Control Conference, Seattle,

WA,

Liang, F. and ElMaraghy, H.A. (1994a), “Pseudo—sliding control and its

[69]

[70]

(71

[72)

[73]

[74]

[75]

219

application to robots”, accepted by Trans. ASME Journal of Dynamic Systems,

Measurement and Control.

Liang, F. and EIMaraghy, H.A. (1994b), “Model reference adaptive neurocontrol of
flexible joint robots”, Proc. 1994 IEEE Int. Conf. on Neural Networks, Orlando,
FL, pp. 2765-2770.

Liang, F. and ElMaraghy, H.A. (1994c), “Direct adaptive neurocontrol of flexible
joint robots using localized pclynomial networks”, Proc. 1994 IEEE Int. Conf. on

Robotics and Automation, San Diego, CA, pp. 3186-3191.

Liang, F. and EIMaraghy, H.A. (1994d), “Globally stable adaptive neurocontrol of
flexible joint robots™, Proc. 1994 Int. Symp. Robotics and Manufacturing, Maui,
HI, Aug.

Liang, F. and ElMaraghy, H.A. (1994e), “Self-tuning neurocontrol using localized
polynomial networks with CLI cells”, Proc. 1994 American Control Conference,

Baltimore, MD, June, pp. 2148-2152.

Liang, F. and EiMaraghy, H.A. (1993a), “Indirect adaptive neurocontrol using
localized polynomial networks with CLI cells”, Proc. 1993 Int. Joint Conf. on

Neural Networks, Nagoya, Japan, Oct. 1993, pp. 657-660.

Liang, F. and ElMaraghy, H.A. (1993b), “Localized polynomial neural networks
with fast global learning convergence”, Proc. 1993 World Congress on Neural

Nerworks, Portland, OR, July 1993,

Liang, F. and EIMaraghy, H.A. (1993c), “Localized pi-sigma networks with
competitive lateral inhibitory cells”, in G. Rzevski, J. Pastor and R.A. Adey (eds.),
Application of Artificial Intelligence in Engineering VI, Vol. 1: Design, Methods

and Techniques, Computational Mechanics Publications and Elsevier Applied

[76]

[77]

[78]

[79]

[80]

[81]

(82]

[83]

220

Science, July, pp. 407-421.

Liang, F. and ElMaraghy, H.A. (1993d), “Multistep localized adaptive learning
RBF networks for nonlinear system identification”, Proc. of 1993 European

Control Conference, Groningen, the Netherlands, June, pp. 111-116.

Liang, F. and ElMaraghy, H.A. (1993e), “Integrated mechanical and control design
for well-designed flexible joint robots”, Proc. 1993 DND Workshop on Advanced

Technologies in Knowledge Based Systems and Robotics, Ottawa, ON, Nov. 1993,

Liang, F. and EIMaraghy, H.A. (1993f), “Robust control of flexible joint robots”,
Proc. 1993 Canadian Conf. on Electrical and Computer Engineering, Vancouver,

BC, Sept. 1993, pp. 127-130.

Liang, F. and EIMaraghy, H.A. (1991a), “Sliding mode control without chattering
and its application to robotic manipulators”, Flexible Manufacturing Centre Report

FMRD 18-01-1991, McMaster University, Hamilton, ON, May 1991.

Liang, F. and EIMaraghy, H.A. (1991a), “Discrete sliding mode control of robots”,
Flexible Manufacturing Centre Report FMRD 18-02-1991, McMaster University,
Hamilton, ON, May 1991.

Liang, F.,, Zhang, L. and Li, C. (1988), “The Equivalent System Method for

Evaluating Flight Qualities of Aircraft”, Acta Aeronautica et Astronautica Sinica,

Vol.9, No.11, Nov.

Lin, L.-C. (1991), “State feedback H . control of manipulators with flexible joints
and links”, Proc. 1991 IEEE Int. Conf. on Robotics and Automation, Sacramento,

CA, pp. 218-223.

Lozano, R. and Brogliato, B. (1992), “Adaptive control of robot manipulators with

flexible joints”, IEEE Trans. on Automatic Control, Vol. AC-37, pp. 174-181.

[84]

[85]

[86]

[87]

188)

189]

[90]

191]

(92}

[93]

221

Ljung, L. and Soderstrom, T. (1983), Theory and Practice of Recursive
Identification, MIT Press.

Marino, R., Kanellakopoulos, I. and KoKotovic’, P.V. (1989), “Adaptive tracking
for feedback linearizable SISO systems”, Proc. 28th IEEE Conf. on Decision and
Control, Tampa, FL, pp. 1002-1007.

Massoud, A. and EIMaraghy, H.A. (1993), “Design, dynamics, and identification
of a flexible joint robot manipulator”, The IASTED Int. Conf. on Robotics and
Manufacturing, Oxford, UK, pp. 72-75.

Massoud, A. (1994), “User’s manual for the experimental robot real-time control

system”, FMRD Report, McMaster University, Hamilton, ON.

Michie, D. and Chambers, R.A. (1968), “BOXES: An experiment in adaptive
control”, in E. Dale and D. Michie (eds.), Machine Learning 2, Oliver and Boyd,
London, pp. 137-152.

Miller I, W.T., Sutton, R.S. and Werbos, PJ. (1990), Neural Networks for
Control, M.L.T. Press.

Miyazaki, F., Kawamura, S., Matsumori, M. and Arimoto, S. (1986), “Learning
control scheme for a class of robot systems with elasticity”, Proc. 25th CDC,

Athens, Greece, pp.74-79.

Moody, J. and Darken, C. (1988), “Leaming with localized receptive fields”, in D.
Touretzky, G. Hinton, and T. Sejnowski (eds.), Proc. of the 1988 Connectionist
Summer School, Morgan Kaufmann, San Mateo, CA, pp. 133-143,

Mrad, F.T. and Ahmad, S. (1992), “Adaptive control of flexible joint robots using
position and velocity feedback”, Int. J. Control, Vol. 55, No. 5, pp. 1255-1277.

Mukhopadhyay, S. and Narendra, K.S. (1993), “Disturbance rejection in nonlinear

3]
[
3%]

systems using neural networks”, IEEE Trans. on Neural Networks, Vol. 4, No. 1,

pp- 63-72,

[94] Narendra, K.S. and Annaswamy, A. (1989), Stable Adaptive Systems, Prentice
Hall, Englewood Cliffs.

[95] Narendra, K.S. and Mukhopadhyay, S. (1992), “Intelligent control using neuza!
networks”, IEEE Control Systems Magazine, Vol. 12, No. 3, pp. 11-18,

[96] Narendra, K.S. and Parthasarathy, K. (1990), “Identification and control of

dynamical systems using neural networks”, IEEE Trans. Neural Networks, Vol. 1,

No. 1, March, pp. 4-27.

[97] Narendra, K.S. and Parthasarathy, K. (1988), “Neural networks in dynamical
systems”, IEEE Control Systems Magazine, Vol. 8, No. 3, pp. 230-241.

[98] Osbum, P.V., Whitaker, H.P. and Kezer, A. (1961), “New developments in the

design of model reference adaptive control systems”, Proc. of the IAS 29th Annual

Meeting, New York.

[99] Parker, D. (1985), “Learning logic”, TR-87, Center for Computational Research in

Economics and Management Science, MIT Press, Cambridge, MA.

[100] Pei, H.-L., Leung, T.P,, and Zhou, Q.-J. (1992), “Backward construction — a
decomposed learning method for robot force/position control”, Proc. ICNN'92,

Baltimore, MD, Vol. I, pp. 293-298.

[101] Poggio, T. and Girosi, F. (1990), “‘Networks for approximation and learning”,
Proc. of the IEEE, Vol. 78, pp. 1481-1497.

[102] Polak, E. (1971), Computational Methods in Optimization, Academic Press, New
York.

[103] Psaliis, D., Sideris, A. and Yamamura, A.A. (1987a), “A multilayered neural

223

network controller”, IEEE Int. Conf. on Neural Nerworks, San Diego, CA, June,
reprinted in IEEE Control Systems Magazine, Vol. 8, Apr. 1988, pp. 17-21.

[104] Psaltis, D., Sideris, A. and Yamamura, A.A. (1987b), “Neural controllers”, JEEE

Int. Conf. on Neural Networks, San Diego, CA, June.

{105] Qu, Z. (1993), “Input-output robust control of flexible joint robots”, Proc. I 993
IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, Vol. 3, pp. 1004-1010.

[106] Rabelo, L.C. and Avula, X.J.R. (1991), “Hierarchical neurocontroller architecture
for intelligent robotic manipulation”, Proc. IEEE Int. Conf. on Robotics and

Automation, Sacramento, CA, pp. 2656-2661.

[107] Readman, M.C. and Belanger, P.R. (1992), “Stabilization of the fast modes of a
fl=xible joint robot”, Int. J. Rob. Res., Vol. 11, April.

[108] Rosenbilatt, F. (1958), “The perceptron: a probabilistic model for information

storage and organization in the bain”, Psych. Review, Vol. 65, pp. 386-408.

[109] Rumelhart, D.E. and McClelland, J.L. and the PDP Research Group (1986),

Parallel Distributed Processing: Exploration in the Microstructure of Cognition,

Vol. 1, MIT Press.

[110] Sanner, R.M. and Slotine, J.-J. E. (1992), “Gaussian networks for direct adaptive

control”, IEEE Trans. on Neural Nerworks, Vol. 3, No. 6, pp. 837-863.

[111] Saridis, G.N. (1983), “Intelligent robotic control”, IEEE Trans. on Automatic
Control, Vol. 28, No. 5, pp. 547-557.

[112] Sastry, S.S. and Isidori, A. (1989), “Adaptive control of linearizable systems”,
1EEE Trans. Automat. Control, Vol. AC-34, No. 11, pp. 1123-1131.

[113] Shirai, Y. and Tsujio, J. (1985), Artificial Intelligence: Concepts, Techniques and
Applications, John Wiley & Sons.

[114] Singhal, S. and Wu, L. (1989), “Training multilayer perceptrons with the extended
Kalman filter algorithm”, in Advances in Neural Information Processing Systems

1, Morgan Kaufmann Publishers, Inc., pp. 133-140.

[115] Slotine, J.-J.E. and Li, W. (1991), Applied Nolinear Control Systems,
Prentice~Hall.

[116) Sontag, E.D. (1992), “Feedback stabilization using two-hidden-layer nets”, IEEE
Trans. on Neural Networks, Vol. 3, pp. 981-990.

[117] Sontag, E.D., (1990), Mathematical Contro! Theory: Deterministic Finite

Dimensional Systems, Pringer, New York.

[118] Sontag, E.D. and Sussmann, H.J. (1991), “Backpropagation seperates where
perceptrons do”, Neural Nerworks, Vol. 4, pp. 243-249.

[119] Spall, J.C. and Cristion, J.A. (1992), “Direct adaptive control of nonlinear
stochastic systems using neural networks and stochastic approximation”, Proc. of

the 31st IEEE Conf. on Decision and Control, Tucson, AZ, pp. 878-883.

[120] Spong, M.W. (1989), “Adaptive control of flexible joint manipulators”, Systems
and Control Letters, Vol. 13, pp. 15-21.

[121] Spong, M.W. and Vidyasagar, M. (1989), Robot Dynamics and Control, John
Wiley & Sons, New York, 1989,

[122] Sutton, R.S., Barto, A.G. and Williams, R.J. (1992), “Reinforcement learning is

direct adaptive optimal control”, IEEE Control Systems Magazine, Vol. 12, Apr.,
pp. 19-22,

[123] Tao, J.M. and Luh, J.Y.S. (1993), “Application of neural network with real--time
training to robust position/force control of multiple robots”, Proc. 1993 IEEE Int.

Conf. on Robotics and Automation, Atlanta, GA, Vol. 1, pp. 142-148.

225

[124] Tarn, T.-J., Bejczy, A.K., Yun, 2. and Li, Z. (1991), “Effect of motor dynamics on
nonlinear feedback robot arm control”, JEEE Trans. on Robotics and Automation,

Vol. 7, No. 1, pp. 114-122,

{125] Tseng, H.C. and Hwang, V.H. (1991), “Neural networks for nonlinear
servomechanism”, Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento,

CA, pp. 2414-2417.

[126] Tsutsumi, K, and Matsumoto, H. (1987), “Neural computation and learning
strategy for manipulator position control”, IEEE Int. Conf. on Neural Networks,

San Diego, CA, June.

{127] Ungar, L.H. and Narendra, K.S. (1992), Neural Networks in Control Systems,

lecture notes of Workshop No. 8, American Control Conf., Chicago, IL.
[128] Utkin, V.1. (1976), Control systems of variable structure, Wiley, New York.

[129] Utkin, V.L. (1977), “Variable structure systems with sliding modes”, JEEE Trans.
Automat. Contr., Vol. AC-22, No. 2, pp. 212-222.

[130] Werbos, P.J. (1989), “Neural networks for control and system identification™, Proc.

28th CDC, Tampa, FL, pp. 260-265.

[131] Werbos, P.J. (1974}, Beyond regression: new tools for prediction and analysis in

the behavioral science, Ph.D dissertation, Harvard University, Cambridge, MA.

[132] White, D.A., and Sofge, D.A. (1992), Handbook of Intelligent Control: Neural,
Fuzzy and Adaptive Approaches, Van Nostrand Reinhold, New York,

[133] Widrow, B. (1990), “Adaptive inverse control”, Proc. SPIE, Vol. 1294, pp. 12-21.

[134] Widrow, B. and Hoff, M.E. (1960), “‘Adaptive Switching Circuits”, Institute of
Radio Engincers, Western Electronic Show and Convention, Convention Board,

Part 4, pp. 96-104.

[135] Widrow, B. and Smith, F. (1963), “Pattern recognizing control systems”, Proc.
Comput. Inform. Sci. (COINS) Symp., Spartan Brooks, Washington, DC.

{136] Wong, Y.-F. and Sideris, A. (1992), “Learning convergence in the cerebellar model
articulation controller”, IEEE Trans. on Neural Networks, Vol. 3, No. 1, pp.
115-121.

[137] Wu, Q.H,, Irwin, G.W. and Hogg, B.W. (1991), “A neural network regulator”,
Proc. IEE Int. Conf. on Control, Edinburgh, UK, pp. 145-150.

[138] Xu, I.-X., Donne, J. and Ozguner, U. (1991), “Synthesis of feedback linearization
and variable structure control with neural net compensation”, Proc. 1EE Int. Symp.
on Intelligent Control, Arlington, VA, pp. 184-189.

(139] Yegerlehner, J.D. and Meckl, PH. (1993), “Experimental implementation of neural
network controller for robot undergoing large payload changes”, Proc. 1993 IEEE
Int. Conf. on Robotics and Automation, Atlanta, GA, Vol. 2, pp. 744-749.

[140] Ydstie, B.E. (1991), “Stability of the direct self—tuning regulator”, in Kokotovic’,
P.V. (ed.), Foundations of adaptive control, Springer—Verlag, pp. 201-238.

[141] Zeman, V., R.V. Patel, and K. Khorasani (1989), “A neura! network based control

strategy for flexible—joint manipulators”, Proc. 28th IEEE Conf. on Decision and

Control, Tampa, FL, pp. 3025-3027.

APPENDIX A

THEOREM PROOFS

A.1 THE PROOF OF THEOREM 7.2.1

To prove theorem 7.2.1, consider the following Lyapunov function candidate:

-T - T = -T -
V= %[sle(q)sM + 0,710, + 037703 + sholms gy + 627510,] =V + V,

(A1)
where
T - T -
Vi = 2055 M(@)s gy + BiTT16, + 6375 165) (A.1.2)
-T -

Egs. (7.2.13) and (7.2.14) can be regarded as a large scale nonlinear system with two inter-

connected sub-systems. V, and V, are their corresponding Lyapunov function candidates.
Differentiating eq. (A.1.1) and using eqs. (7.2.13) and (7.2.14) gives:
. . . % N =T 1%) T .=
V= st Mgs, + %sle(q)sm + 61 T8, + 037510, + sTln8, + 6,176,
T P ”T -1 A -T _1’;
= sd][Kp - 81(qaq,qrv541)] + 9II‘] 91 + 63r3 63
T . =T 12
+ sq9lu — g20q. 0,5, 51 + 02175 76,

227

Since
Kp — 81(@:4,4,.54) = Ky ~ K + KO = gn1 (@424, 5.01) — dy®)
= Kp0 + Kypy — Kp — gny(@:6:G,p527) + 410
U — g82(q.p. B, = — Dysy + Polq. p. . 505 — dy(t)
Using adaptation laws (7.2.35)-(7.2.37), we have:
. A _ _ T A
V=5 Ky = Dysy — Rp + d(0)] — s5,[Dg8, + dy(0) + 637516,
and
T o T4 T -T
— 5, Kp + 0315°0; = — 03@P43(q — p)sy(sy,p) + 03P3(q — plsyls.p) = 0

o V= = shiDs, — 01 + 5T,k — sT,ID,s, + dy(0)]

— T = T
= =5y D1sq — Z[Dlﬂdllsdljl — S41d(0) + s01Kp0
j=
n
T
= 5402540 — Z[‘D2jjA 25 42] + S4212{0)]
j=1

T 5 T . &
< = shDisg +) logy) [10 = DAy + s Kyd
j=1

n
— s1.DyS 40 + Z!s 42 1 10 = Dyyly]
j=1

n

n
T % — _ T)
S —syDisy + Z'Smﬂ [EIKszdil DAl = 540254,
i=1 iz1

by using the relations (7.2.19), (7.2.32), (7.2.33), and (7.2.34). Therefore,
- n n A
Vi< = sDisg + 0 Iy} [Kyidi — Dyl (A.1.4)
j=1 i=1

Vz = - S;2D2S42 (A.IS)

229

Since eq. (7.2.14) is decoupled from eq. (7.2.13) under neurocontrol algoiithm
(7.2.29) and (7.2.30), we can examine the convergence of signal s 4, first. Under neurocon-
trol algorithm (7.2.29), eq. (7.2.14) becomes:

In$y + Dos; = 95@,p,5,5)70, — dy(t) (A.L6)
Because eq. (A.1.5)is valid forall t = 0, 54, and 52 are bounded forall + = 0if 5 ,,(0) and
52(0) are bounded. Since s, is uniformly bounded and s, = é+ A,0, 6(r) is also bounded
forall r = Qif 3(0)is bounded. To prove the asymptotic convergence of 5 4,, we apply Bar-

balat’s lemma to the following continuous nonnegative function:

t

Vo) = Vo) - J [Vo(T) + 54(0) D8 45(D))dr (A.L7)
) |
with Vol®) = = s4,Das 45 Vylt) = = 255,D284 (A.1.8)

By definition, $ 4, is either 0 or §,. By neural network design, ®,(q,p.p.P,) and d,(1r) are
uniformly bounded. Therefore, $,, given by eq. (A.1.6), is bounded for all z = 0, which
proves that V.(¢) is uniformly bounded. Hence, V() is a uniformly continuous function
of time. Using Barbalat’s lemma proves that Vzl(t) — 0, thus 54,(t) > 0as 1 — oo, This
means that the inequality of Is,(f)! = 4, is obtained asymptotically, and the tracking error
&(?) is asymptotically bounded as:

B! = A,/Aq; (A.1.9)
where A,; is the i~th diagonal entry of 4,. |

Before 8(f) converges, 54, may converge to or diverge from zero temporarily, de-

pending on the sign of Vl. This features the characteristics of interconnected dynamics. Af-

ter O(t) converges to a neighborhood of zero, as shown in eq. (A.1.9), we have

IKnidil — Dy sl

n
' — ol
Vis ~syDisgy + E lsmji [
] i=1

n
J=1 1=

n n
=< — shDisy + ledljl [Z Kl o/Ag; = Dy)
j=1 i=1

< - shDisy (A.1.10)

Similarly, we can prove that 54, e(r), 51 and 53 are bounded for all 1 = 0 if their

initial values are bounded. By design, () € C*is uniformly bounded, and 60, and 6, are

constants, hence g(t), ¢(?), él and 53 are uniformly bounded. Eq. (7.2.30) confirms that
p ?) is uniformly bounded. Thus p(t) is bounded due to eq. (A.1.9). u(f) is also uniformly

bounded. Inconclusion, all the signals in the adaptive system are uniformly bounded if their

initial values are bounded.

Noticing that §,, given by eq. (A.1.12), is bounded. We conclude that the tracking
error e(t) is asymptotically bounded as:
le0)l < A,/Ay; (A.1.11)
where 4,; is the i~th diagonal entry of 4.

M@$, + D5y + AM@s gy = K6 = Rypy + 91(0.6:G,,0,54)"8, + T,0) (A112)
The theorem 7.2.1 is proved.

A2 THE PROOF OF THEOREM 7.3.1

Theorem 7.3.1 is proved in the following. Due to the inherent global boundedness
of the sigmoidal basis functions and Gaussian basis functions, the certainty-equivalence ap-
proach can be applied to derive the control law. As usual, the first step of the certainty-equiv-
alence design is to find a dynamic feedback control Jaw that guarantees the specified stability

and tracking performances when the weight matrix W is known. Then the unknown W is

231

A . .
replaced with its estimate Wand the so called “certainty—equivalence” control law is imple-
mented. The boundedness of the signals in the system and the tracking convergence are

proved using the Lyapunov method.

Using the stable filter F(D)/E(D) to filter eq. (7.3.7) gives:

FOD* _ _FD) F(D)
ED) 17 E(D)h(q,qppH E(D)R(q)u (A.2.1)

Substituting eqgs. (7.3.15), (7.3.8) and (7.3.9) into eq. (A.2.1), and regarding W, and W, (i

=1, ..., n) as constant matrices, we have:
A D)g = ggg; _ Wﬁgg; &, + Widau + wTF(—D)E(ﬁ;iD—)@Ru) +d
Eg;q ~ W, + Wi + Whie,U)T + d(© (A2.2)
where
d0) = R 1y -+ o] = 0) (A23)

and || d() || can be uniformly bounded by any user—specified small constant, if || u(?) || is uni-
formly bounded. Substituting eq. (7.3.25) into eq. (A.2.2) generates:

AnD)g = r+WTD +d (A.2.4)
Noticing the reference model (7.3.10), we have:
AnD)e = WT@ + d() (A.2.5)
or e = An(D) MW TD] + (D + Ap) ~[d() + e} (A.2.6)
where £(r) stands for the exponentially decaying tracking error caused by the mismatch of

the initial values of ¢®(0) and g®(0); d(t) = A,o(D) ~'d().

Next, we apply the well-known swapping technique to transform the tracking error

equation (A.2.6) into a strictly positive real form. Let

ha
w
tJ

1 T “1F] 4 Fn -
€= Ao{w [A,0D) " 1D] + d(t) + (1))
1 -1 Tad — wT -1
+5 '”-0{ A D)W @)l = WA (D)™ D]) (A2.7)
_ 1 o T = _
S o WY A0 + 20} - o (A.2.8)

where 7, defined by eq. (7.3.33), is obtained from eq. (A.2.7) using the swapping lemma.

From egs. (7.3.17) and (A.2.8), we know that

1
D+4,

(WTy + di) + e()} (A2.9)

o

Assume that the i—th entry of d(1) satisfies Id;(t}) < AA. Consider the following Lyapunov

function candidate:

o

= %[E;e‘d +y e (WTW) + J e(r) e(r)dr] (A.2.10)

t

We have:
V=gelg, +y - lr(WTW) - %s(r)Ts(t)
=elg +y i (WTW) - %s(t)rs(t)

=gh[- A+ WTy + d) + e)] — r(W Tyl - %a(:)"'"e(:)

= D &l — g + AD] + E5e(0) ~ 3e@Te(®

i=1

= D[Ag#h; — Adlesd + 2, Z0) + 32524 — 5[e) — Z,@11e(0) — 24(0)]
i=1

< = (g - PTe, — 51e® — Z,OTe) — 240) (A.2.11)

It can be seen that if 45>1/2, or after &(f) = 0, V < 0.

233

Assume tha. the initial values of all the signals in the neurocontrol system are
bounded. Eqs. (A.2.10) and (A.2.11) ensure that &, thus &, W are uniformly bounded.
Therefore, W, Wh, Pf/i, and WR are all uniformly bounded, because their true values exist

and are bounded. Since g®(0) is bounded, g?) (i=0, 1, . . .,3) is bounded at least in the

finite time interval (0, 1p, due to their continuity. @,(q,4,p, p) and P(q) are related to the

outputs of the hidden layer neurons, and are uniformly bounded for any variables, which re-

flects the advantage of neural network approach. If necessary, special techniques such as
pseudo-inverse, or adding ul to ﬁ'(q) (u is a small positive constant), can be adopted to en-

sure that ﬁ(q) ~1is always bounded for any estimate WR. Egs. (7.3.25) and (7.3.27) make

sure that matrix U is bounded in the finite time interval (0, #p. All of these guarantee that
control vector u is bounded at least in (0, rf). In practice, hard limits on the control magnitude

can guarantee that # is uniformly bounded.

As long as u(f) is bounded, eq. (7.3.31) guarantees that &(q, 4, p, b,) is bounded.
Since the filter defined by eqgs. (7.3.29) and (7.3.30) is BIBO, Z and ¥ are also bounded.

Noticing that d(), e(¢) and £(¢) are always bounded, we conclude from eq. (A.2.9) that &(z)
and &(¢) are bounded. Similarly, the boundedness of V'i.‘/, X, and 5, can be consequently con-
cluded from egs. (7.3.28), (7.3.32) and (7.3.35). Therefore, e!Xr) is bounded for : €(0, 7)
andi=0,1,...3, derived from egs. (7.3.17) and (A.2.6). Because ¢,€ C*NLw, ¢¥%)
is bounded ({ =0, 1,...,3), and the interval (0, tj) can be extended to (0, 2tf) in which q(‘)(t)
(i=0,1,...3)is bounded. Recursively, the time interval is extended to (0, o).

The internal states p and p are determined by eq. (7.1.2) or (7.3.4). Because u(r) and
q(¢) are uniformiy bounded and eq. (7.1.2) or (7.3.4)is BIBO, p, p,and p are also uniformly

234

bounded. We can conclude that all the above signals in the adaptive system are uniformly
bounded, in spite of the existence of representation errors of neural networks.

Using Barbalar’s lemma gives that lime,(H = 0. Hence, lim W() = 0,
—w

[

lim X(#) = 0,and Hm n4(:) = 0. lim le)l < 4 (i=0, 1,.. ., n).
{—® {—o

=

Unlike conventional adaptive control schemes, the tracking error boundary 4 can
be reduced to any small number by proper neural network structure design. Thus, the end-
effector of the controlled FIR with unknown dynamics can track any given trajectory with

user—specified precision. This concludes the proof.

