SYNTHESIS, CHARACTERIZATION AND PROPERTIES OF SOME ## XENONIUM(II) SALTS CONTAINING Xe-O AND Xe-N BONDS Ву Joseph Marc Whalen ## A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University December 1994 SYNTHESIS, CHARACTERIZATION AND PROPERTIES OF SOME XENONIUM(II) SALTS CONTAINING Xe-O AND Xe-N BONDS ಗಿನ್ನಾ " DOCTOR OF PHILOSOPHY (1994) McMASTER UNIVERSITY (Chemistry) Hamilton, Ontario TITLE: Synthesis, Characterization and Properties of Some Xenonium(II) Salts Containing Xe-O and Xe-N Bonds AUTHOR: Joseph Marc Whalen, B.Sc. (Dalhousie University) SUPERVISOR: Professor G.J. Schrobilgen NUMBER OF PAGES: xxiv, 364 ### **ABSTRACT** This Thesis describes the syntheses and spectroscopic characterization of noble-gas compounds containing xenon(II)-nitrogen and xenon(II)-oxygen bonds in solution by multinuclear magnetic resonance (multi-NMR) and in the solid state by low-temperature Raman spectroscopy. The key synthetic approach for the preparation of novel xenon(II) compounds containing xenon-nitrogen and xenon-oxygen bonds involved the HF elimination reactions of XeF_2 with the AsF_6^- salts of several protonated oxygen and nitrogen bases in HF and BrF_5 solvents at low temperatures. In particular, $CF_3C(OH)NH_2^+AsF_6^-$, $F_5TeNH_3^+AsF_6^-$, and $FO_2SNH_3^+AsF_6^-$ reacted with XeF_2 by HF elimination to give $CF_3C(OXeF)NH_2^+AsF_6^-$, $F_5TeN(H)-Xe^+AsF_6^-$ and $FO_2SN(H)-Xe^+AsF_6^-$. The latter two salts are examples of a rare class of compounds in which xenon(II) is directly bonded to formally sp^3 -hybridized nitrogen atoms. Their characterization in solution by multi-NMR was facilitated by preparing the xenon compounds with ^{15}N -enriched (99.5 atom %) starting materials, i.e., $F_5TeNH_3^+AsF_6^-$ and $FO_2SNH_3^+AsF_6^-$. This allowed for the observation of the one-bond $^{129}Xe_2^{-15}N$ scalar couplings in the ^{129}Xe and ^{15}N NMR spectra. The salts, CF₃C(OH)NH₂⁺AsF₆, F₅TeNH₃⁺AsF₆, and FO₂SNH₃⁺AsF₆, were prepared for the first time, and were characterized in the solid state by Raman spectroscopy, and in solution by ¹³C, ¹⁹F, ¹H and ¹²⁵Te NMR spectroscopy. The assignments of the Raman spectra of F₅TeNH₃⁺AsF₆ and FO₂SNH₃⁺AsF₆ were facilitated by recording the spectra of the natural abundance and 99.5 atom % ¹⁵N-enriched salts, resulting in ^{14/15}N isotopic shifts for bands that involved vibrational motions of the nitrogen centers. The compounds, F₅TeN(H)-Xe⁺AsF₆⁻ and CF₃C(OXeF)NH₂⁺AsF₆⁻, were isolated in the solid state and characterized by low-temperature Raman spectroscopy. Assignment of the Raman bands associated with the vibrational motions of the nitrogen atom in F₅TeN(H)-Xe⁺AsF₆⁻ were facilitated by recording the Raman spectrum of the ¹⁵N-enriched compound and observing the ^{14/15}N isotopic shifts. The compound, FO₂SN(H)-Xe⁺AsF₆⁻, was too unstable to be isolated from solution and therefore was not characterized by Raman spectroscopy. The compounds, CF₃C(OXeF)NH₂⁺AsF₆⁻, F₅TeN(H)-Xe⁺AsF₆⁻ and FO₂SN(H)-Xe⁺AsF₆⁻, were characterized in solution by use of ¹²⁹Xe, ¹²⁵Te, ¹⁵N, ¹⁹F, ¹H and ¹³C NMR spectroscopy. The assignment of the ¹H NMR resonances for CF₃C(OH)NH₂⁺ and CF₃C(OXeF)NH₂⁺ were facilitated by performing two dimensional heteronuclear (¹H-¹⁹F) NOESY experiments, providing the first use of this technique in noble-gas chemistry. The decomposition of $F_5\text{TeN}(H)\text{-Xe}^+\text{As}F_6^-$ in HF and $\text{Br}F_5$ solvents has been studied in detail, primarily by ^{19}F NMR spectroscopy. The primary decomposition product, $F_5\text{TeN}F_2$, results from nucleophilic fluorination of $F_5\text{TeN}(H)\text{-Xe}^+$, and has been characterized for the first time by use of ^{15}N and ^{19}F NMR spectroscopy. The compound, $F_5\text{TeN}F_2$, was shown to react with $F_5\text{TeN}H_3^+\text{As}F_6^-$ in $\text{As}F_5\text{-acidified HF}$ to give $\text{FN}\equiv\text{N}^+\text{As}F_6^-$ and $\text{Te}F_6$ by ^{19}F NMR spectroscopy. ### LIST OF ABBREVIATIONS AND SYMBOLS eV electron volt FEP perfluoroethylene / perfluoropropylene copolymer INEPT insensitive nuclei enhanced by polarization transfer IP ionization potential Kel-F chlorotrifluoroethylene polymer LCAO linear combination of atomic orbitals NOESY nuclear Overhauser effect spectroscopy NMR nuclear magnetic resonance PFA perfluoroalkoxy polymers ppm parts per million SA shielding anisotropy Teflon (PTFE) tetrafluoroethylene polymer γ rocking motion (vibrational spectroscopy) δ in-plane bend (vibrational spectroscopy) δ chemical shift in ppm from a reference compound (NMR spectroscopy) π out-of-plane bend (vibrational spectroscopy) ρ_r rocking motion (vibrational spectroscopy) τ torsional motion (vibrational spectroscopy) v stretching motion (vibrational spectroscopy) wagging motion (vibrational spectroscopy) ### **ACKNOWLEDGEMENTS** I wish to thank Dr. G.J. Schrobilgen for his guidance and invaluable lessons in perseverence, scientific writing, the importance of paying attention to experimental details, and the value of hard work. The interest and help offerred by Dr. J.S. Hartman and Dr. C.J.L. Lock, who both served on my Ph.D. supervisory committee, is gratefully acknowledged. I gratefully acknowledge Dr. D.W. Hughes and Mr. B. Sawyer for their assistance with the operation of the NMR spectrometers. I am also grateful to the many people who have offerred their friendship and emotional support during my stay at McMaster. In particular, I wish to thank Dr. Bill Casteel, Linda Simpson and my sister, Karen Whalen, for their special friendship. An extra special thanks is due to my parents, Joe and Ethel Whalen, who gave of themselves without reservation so that I could grow and develop. Their love is the foundation upon which my life has been built. To realize that our knowledge is ignorance, This is a noble insight. To regard our ignorance as knowledge, This is mental sickness. Only when we are sick of our sickness Shall we cease to be sick. The Sage is not sick, being sick of sickness; This is the secret of health. Tao Teh Ching ## TABLE OF CONTENTS | | | F | age | |------|-------------------|--|-----| | CHAP | <u>TER 1: IN</u> | TRODUCTION | 1 | | GENE | RAL BAC | KGROUND | 1 | | (A) | REPLAC | EMENT OF F IN XcF ₂ WITH ELECTRONEGATIVE | | | | POLYAT | OMIC ANIONS | 3 | | (B) | LEWIS A | ACIDITY AND OXIDATIVE FLUORINATING | | | | ABILITY | OF THE XeF ⁺ CATION | 9 | | (C) | SPECIES | CONTAINING XENON-CARBON BONDS | 15 | | (D) | PURPOS | E AND GENERAL SYNTHETIC STRATEGIES | | | | UNDERP | PINNING THE PRESENT WORK | 18 | | | | | | | CHAP | ΓER 2: <u>E</u> X | PERIMENTAL SECTION | 21 | | (A) | VACUUN | M TECHNIQUES | 21 | | | (i) | Vacuum Systems and Inert Atmosphere Systems | 21 | | | (ii) | Preparative Apparatus and Sample Vessels for | | | | | Raman and NMR Spectroscopy | 24 | | (B) | PREPAR | ATION AND PURIFICATION OF STARTING MATERIALS | 26 | | | (i) | HF, BrF ₅ and SO ₂ ClF Solvents | 26 | | | (ii) | CHCl ₃ , CH ₂ Cl ₂ , (CH ₃ CH ₂) ₂ O, CH ₃ C≡N and | | | | | CF ₂ ClCF ₂ Cl Solvents | 27 | | | (iii) | Purification of SbF ₅ and Preparation of AsF ₅ and TeF ₆ | 31 | | | (iv) | Preparation of XeF ₂ and XeF ⁺ AsF ₆ | 31 | | | (V) | Preparation of F ₅ 1eOH, B(O1eF ₅) ₃ , As(O1eF ₅) ₅ | | |-----|---------|---|----| | | | and Xe(OTeF ₅) ₂ | 31 | | | (vi) | Preparation of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ | 32 | | | (vii) | Preparation of the First-Stage Graphite Intercalate C ₁₀ AsF ₅ | 33 | | | (viii) | Preparation of trans-N ₂ F ₂ and Investigation of cis-/trans-N ₂ F ₂ | | | | | Isomerization at Low Temperature in AsF ₅ -Acidified HF Solvent | 35 | | | (ix) | Purification of Ammonia | 37 | | | (x) | Preparation of ¹⁵ N-Enriched (99.5 atom %) Ammonia | 37 | | | (xi) | Preparation of 99.5 atom % ¹⁵ N-Enriched [(CH ₃) ₃ Si] ₂ NH | 40 | | | (xii) | Preparation of F ₅ TeNHSi(CH ₃) ₃ | 41 | | | (xiii) | Preparation of F ₅ TeNH ₂ and F ₅ Te ¹⁵ NH ₂ | 44 | | | (xiv) | Preparation of F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ and F ₅ Te ¹⁵ NH ₃ ⁺ AsF ₆ ⁻ | 45 | | | (xv) | Preparation of F ₅ TeNH ₃ ⁺ As(OTeF ₅) ₆ | 46 | | | (xvi) | Sulfur trioxide | 47 | | | (xvii) | Preparation of S ₂ O ₅ F ₂ | 47 | | | (xviii) | Preparation of 99.5 atom % ¹⁵ N-Enriched FO ₂ SNH ₂ | 50 | | | (xix) | Preparation of FO ₂ SNH ₂ | 53 | | | (xx) | Preparation of Natural Abundance and 99.5% | | | | | ¹⁵ N-Enriched FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ | 57 | | (C) | PREPAR | ATION OF THERMALLY UNSTABLE XENON-NITROGEN | | | | AND XE | NON-OXYGEN BONDED CATIONS | 57 | | | (i) | Preparation and Isolation of CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ | 58 | | | (ii) | Preparation of NMR Samples of CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ | 59 | | | | | | | | (iii) | Preparation and Isolation of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ ·XcF ₂ -xHF | 59 | |---------|------------|---|----| | | (iv) | Preparation and Isolation of F ₅ TeN(H)-Xe ⁺ AsF ₆ and | | | | | [¹⁵ N]F ₅ TeN(H)-Xe ⁺ AsF ₆ | 60 | | | (v) | Preparation of NMR Samples of F5TeN(H)-Xe+AsF6- and | | | | | [¹⁵ N]F ₅ TeN(H)-Xe ⁺ AsF ₆ | 63 | | | (vi) | Attempted Preparation of NMR Samples of F ₅ TeN(H)-Xe-F | 64 | | | (vii) | Preparation of NMR Samples of F ₅ TeN(H)-Xe ⁺ As(OTeF ₅) ₆ | | | | | in SO ₂ CIF Solvent | 65 | | | (viii) | Preparation of NMR Samples of FO ₂ SN(H)-Xe ⁺ AsF ₆ ⁻ and | | | | | [¹⁵ N]FO ₂ SN(H)-Xe ⁺ AsF ₆ | 66 | | (D) | NUCLE | AR MAGNETIC RESONANCE SPECTROSCOPY | 66 | | | (i) | Instrumentation | 66 | | | (ii) | NMR Sample Preparation | 70 | | (E) | RAMAN | N
SPECTROSCOPY | 70 | | | (i) | Instrumentation | 70 | | | (ii) | Raman Sample Preparation | 74 | | OV. 4 V | | | | | CHAI | | YNTHESIS AND CHARACTERIZATION OF CF3C(OXeF)NH2+ | | | | <u>A</u> 1 | ND CF3C(OH)NH2+AsF6-AND CF3C(OH)NH2+AsF6-XcF2-xHF | | | | <u>S</u> 2 | ALTS USING RAMAN SPECTROSCOPY | 76 | | INTR | ODUCTIO | N | 76 | | RESU | ILTS AND | DISCUSSION | 78 | | (A) | SYNTHESES AND ISOLATION OF CF3C(OH)NH2+AsF6-XeF2xHF, | |-------------|--| | | CF ₃ C(OXcF)NH ₂ ⁺ AsF ₆ ⁻ AND CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ 78 | | (B) | CHARACTERIZATION OF CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ BY ¹ H, ¹³ C AND | | | ¹⁹ F NMR SPECTROSOPY AND BY TWO DIMENSIONAL (¹ H- ¹⁹ F) | | | NOESY EXPERIMENTS80 | | (C) | CHARACTERIZATION OF CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ by ¹ H, ¹³ C, ¹⁹ F | | | AND 129Xe NMR SPECTROSCOPY AND BY TWO DIMENSIONAL | | | (¹ H- ¹⁹ F) NOESY EXPERIMENTS87 | | (D) | CHARACTERIZATION OF CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ BY | | | LOW-TEMPERATURE RAMAN SPECTROSCOPY99 | | (E) | CHARACTERIZATION OF CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ BY LOW- | | | TEMPERATURE RAMAN SPECTROSCOPY105 | | (F) | CHARACTERIZATION OF CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ ·XcF ₂ ⁻ xHF BY | | | LOW-TEMPERATURE RAMAN SPECTROSCOPY111 | | (G) | NATURE OF THE BONDING IN CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ 116 | | | | | <u>CHAP</u> | TER 4: CHARACTERIZATION AND COMPARISON OF THE | | | BONDING IN F5TeNH2 AND F5TeNH3+AsF6 | | | USING ¹⁹ F NMR AND RAMAN SPECTROSCOPY122 | | INTRO | DDUCTION122 | | (A) | REVIEW OF THE SYNTHESIS, CHARACTERIZATION AND BONDING | | | OF THE ACIDS F_5 XOH AND THE SALTS M^+ OX F_5^- (X = S, Se, Te)122 | | (B) | SYNTHESIS AND CHARACTERIZATION OF F ₅ XNH ₂ (X = S, Te) | | RESU | JLTS AND DISCUSSION | 134 | |------------|--|-----| | (A) | PREPARATION AND ISOLATION OF F5TeNH2, F5TeNH3+ASF6 AND | | | | THE 99.5% ¹⁵ N-ENRICHED ANALOGS | 134 | | (B) | CHARACTERIZATION OF F5TeNH2 IN THE SOLID STATE BY | | | | LOW-TEMPERATURE RAMAN SPECTROSCOPY | 136 | | (C) | CHARACTERIZATION OF F5TeNH2 AND [15N]F5TeNH2 IN | | | | SOLUTION BY ¹⁹ F AND ¹ H NMR SPECTROSCOPY | 152 | | (D) | CHARACTERIZATION OF F5TeNH3+AsF6+ AND | | | | $[^{15}\mathrm{N}]\mathrm{F_5}\mathrm{TeNH_3}^+\mathrm{AsF_6}^-$ IN SOLUTION BY $^{19}\mathrm{F}$, $^{1}\mathrm{H}$, $^{15}\mathrm{N}$ AND $^{125}\mathrm{Te}$ | | | | NMR SPECTROSCOPY | 156 | | (E) | CHARACTERIZATION CF F5TeNH3+AsF6+ AND | | | | [¹⁵ N]F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ IN THE SOLID STATE BY RAMAN | | | | SPECTROSCOPY | 166 | | (F) | ASSESSMENT OF THE BONDING IN F5TeNH2 AND THE F5TeNH3+ | | | | CATION USING RAMAN AND ¹⁹ F NMR SPECTROSCOPY | 177 | | (G) | CONCLUSION | 183 | | | | | | CHA | PTER 5: [PENTAFLUOROTELLURIUM(VI)AMIDO] XENONIUM(II) | | | | HEXAFLUOROARSENATE; F5TeN(H)-Xe+AsF6 | 184 | | INTR | ODUCTION | 184 | | RESU | JLTS AND DISCUSSION | 186 | | (A) | PDEDADATION AND ISOI ATION OF F TANICH YOTAGE | 186 | | (B) | CHARACTERIZATION OF NATURAL ABUNDANCE AND | | |------|--|-----| | ÷ | ¹⁵ N-ENRICHED F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ BY ¹²⁹ Xe, ¹²⁵ Te, ¹⁹ F, | | | | ¹⁵ N AND ¹ H NMR SPECTROSCOPY | 187 | | (C) | CHARACTERIZATION OF F5TeN(H)-Xe+As(OTeF5)6- IN | | | | SO ₂ CIF SOLVENT BY ¹²⁹ Xe and ¹⁹ F NMR SPECTROSCOPY | 210 | | (D) | CHARACTERIZATION OF F5TeN(H)-Xe+AsF6- BY LOW- | | | | TEMPERATURE RAMAN SPECTROSCOPY | 214 | | (E) | NATURE OF THE BONDING IN THE F5TeN(H)-Xe+ CATION | 229 | | | | | | CHAI | PTER 6: STUDY OF THE DECOMPOSITION OF F5TeN(H)-Xe+AsF6 AND | | | | CHARACTERIZATION AND DECOMPOSITION OF F5TeNF2 | | | | IN SOLUTION. | 239 | | INTR | ODUCTION | 239 | | RESU | ILTS AND DISCUSSION | 240 | | (A) | ¹⁹ F NMR SPECTROSCOPIC STUDY OF THE DECOMPOSITION | | | | OF F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ IN HF SOLVENT | 240 | | (B) | RELATIONSHIP OF THE BONDING AND THE MODE OF | | | | DECOMPOSITION OF F5TeN(H)-Xe+ IN SOLUTION | 248 | | (C) | CHARACTERIZATION OF F5TeNF2 BY 15N AND 19F NMR | | | | SPECTROSCOPY | 249 | | (D) | ¹⁹ F NMR SPECTROSCOPIC STUDY OF THE DECOMPOSITION | | | _ | OF F.Tenf, IN HF SOLVENT ACIDIFIED WITH AsF, | 259 | | <u>CHAPI</u> | ER 7: CHARACTERIZATION OF FO ₂ SNH ₂ AND FO ₂ SNH ₃ +AsF ₆ | | |--------------|---|-----| | | USING 19F AND 1H NMR AND RAMAN SPECTROSCOPY AND | | | | COMPARISION OF THE BONDING IN FO2SNH2 AND THE | | | | FO ₂ SNH ₃ ⁺ CATION | 271 | | INTRO | DUCTION | 271 | | RESUL | TS AND DISCUSSION | 273 | | (A) | PREPARATION AND ISOLATION OF NATURAL ABUNDANCE | | | | FO ₂ SNH ₂ AND FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ AND THE 99.5% ¹⁵ N-ENRICHED | | | | ANALOGS | 273 | | (B) | CHARACTERIZATION OF NATURAL ABUNDANCE AND 99.5% | | | | ¹⁵ N-ENRICHED FO ₂ SNH ₂ AND FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ BY | | | | H AND ¹⁹ F NMR SPECTROSCOPY | 275 | | (C) | RAMAN SPECTROSCOPIC STUDY OF NATURAL ABUNDANCE | | | | AND 99.5% ¹⁵ N-ENRICHED FO ₂ SNH ₂ | 279 | | (D) | CHARACTERIZATION OF NATURAL ABUNDANCE AND 99.5% 15N- | | | | ENRICHED FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ BY RAMAN SPECTROSCOPY | 288 | | (E) | COMPARISON OF THE BONDING IN FO ₂ SNH ₂ AND THE FO ₂ SNH ₃ ⁺ | | | | CATION BY RAMAN SPECTROSCOPY | 298 | | | | | | CHAPT | ER 8: [FLUOROSULFURYLAMIDO]XENONIUM(II) | | | | HEXAFLUOROARSENATE; FO2SN(H)-Xc+AsF6 | 303 | | INTRO | DUCTION | 303 | | PESIII | rs and discussion | 304 | | (A) | PRE | PARATION OF FO ₂ SN(H)-Xe ⁺ AsF ₆ ⁻ IN HF AND BrF ₅ | | |------------|-------------------|---|-----| | | SOL | VENTS | 304 | | (B) | СНА | RACTERIZATION OF FO ₂ SN(H)-Xe ⁺ AsF ₆ ⁻ BY ¹²⁹ Xe, ¹ H AND | | | | ¹⁹ F 1 | NMR SPECTROSCOPY | 305 | | (C) | NAT | URE OF THE BONDING IN THE FO ₂ SN(H)-Xe ⁺ CATION | 319 | | <u>CHA</u> | PTER 9 | SUMMARY, CONCLUSIONS AND DIRECTIONS | | | | | FOR FURTHER RESEARCH. | 326 | | (A) | SUM | MARY | 326 | | | (i) | Preparation and Characterization of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ | 327 | | | (ii) | Preparation and Characterization of CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ | | | | | and CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ ·XeF ₂ ×HF | 328 | | | (iii) | Preparation and Characterization of F ₅ TeNH ₂ and | | | | | F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | 331 | | | (iv) | [Pentafluorotellurium(VI)amido]xenonium(II) | | | | | Hexafluoroarsenate; F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ | 332 | | | (v) | Decomposition of F ₅ TeN(H)-Xe ⁺ in Solution and | | | | | Characterization and Decomposition of F ₅ TeNF ₂ | 334 | | | (vi) | Preparation and Characterization of FO ₂ SNH ₂ and | | | | | FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ | 335 | | | (vii) | Preparation of [Fluorosulfurylamido]xenonium(II) | | | | | Hexafluoroarsenate; FO ₂ SN(H)-Xe ⁺ AsF ₆ | 336 | | | (viii) | Nature of the Bonding in CF ₃ C(OXeF)NH ₂ ⁺ , F ₅ TeN(H)-Xe ⁺ and | | |------|--------|--|-----| | | | FO ₂ SN(H)-Xe ⁺ , and the Relative Electronegativities of the | | | | | F ₅ TeN(H)- and FO ₂ SN(H)- Ligand Groups | 338 | | (B) | CON | CLUSIONS | 340 | | (C) | DIRE | ECTIONS FOR FURTHER RESEARCH | 342 | | | (i) | Preparation of New Amines from the Reaction of | | | | | F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ with Nucleophiles | 342 | | | (ii) | Preparation of Substituted Hydrazines and / or Diazenes | 343 | | | (iii) | Further Characterization of FO ₂ SN(H)-Xe ⁺ AsF ₆ ⁻ | | | | | by ¹²⁹ Xe and ¹⁵ N NMR | 344 | | | (iv) | Proposed Preparation of F ₂ P(O)N(H)-Xe ⁺ AsF ₆ ⁻ | 345 | | | | | | | REFE | RENCI | <u> </u> | 347 | ## LIST OF TABLES | Table | | Page | |-------|---|------| | 3.1 | Raman Frequencies and Assignments for CF ₃ C(O)NH ₂ , CF ₃ C(OH)NH ₂ ⁺ | | | | AsF ₆ , CF ₃ C(OH)NH ₂ ⁺ AsF ₆ -XeF ₂ xHF and CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ | 106 | | 3.2 | Selected Raman and NMR Spectroscopic Data of Some L-Xe-F | | | | Derivatives (L = 0, N) | 118 | | 4.1 | Raman and ¹⁹ F NMR Spectroscopic Data for F ₅ XOH and the Salts, | | | | [M] ⁺ [F ₅ XO] ⁻ (X = S, Se, Te) | 128 | | 4.2 | Raman Frequencies and Assignments for F ₅ TeNH ₂ and [¹⁵ N]F ₅ TeNH ₂ | 142 | | 4.3 | Calculated and Observed $^{14/15}N$ Isotopic Shifts, $\Delta\lambda/\lambda^{\circ}$, of | | | | $v_{sym}(NH_2)$ and $v_{asym}(NH_2)$ for F_5TeNH_2 | 151 | | 4.4 | NMR Spectral Data for F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ and [¹⁵ N]F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | 164 | | 4.5 | Raman Frequencies and Assignments for F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ and | | | | [¹⁵ N]F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | 172 | | 4.6 | Vibrational Frequencies and Assignments for F ₅ TeO ⁻ , F ₅ TeOH, | | | | F ₅ TeNH ₂ and F ₅ TeNH ₃ ⁺ | 179 | | 4.7 | ¹⁹ F NMR Parameters for F ₅ TeNH ₂ and F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | 180 | | 5.1 | NMR Spectroscopic Parameters for F ₅ TeN(H)-Xe ⁺ AsF ₆ | 192 | | 5.2 | Raman Assignments and Frequencies for F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ | | | | and [15N]F ₅ TeN(H)-Xe ⁺ AsF ₆ | 224 | | 5.3 | Raman Frequencies and Assignments for AsF ₆ in F ₅ TeN(H)-Xe ⁺ AsF ₆ , | | | | XcF ⁺ AsF ₆ ⁻ and HC≡NXeF ⁺ AsF ₆ ⁻ | 227 | | 5.4 | Comparison of the Raman and NMR Spectroscopic Parameters of Some | | |-----|---|-----| | | Xenon(II) Compounds | 237 | | 7.1 | Raman Frequencies and Assignments for FO ₂ SNH ₂ and [¹⁵ N]FO ₂ SNH ₂ | 286 | | 7.2 | Raman Frequencies and Assignments for FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ | | | | and [15N]FO2SNH3+AsF6- | 296 | |
7.3 | Selected Vibrational Frequencies and Bond Lengths of | | | | Some Sulfur(VI) Oxoacid Derivatives | 301 | | 8.1 | Comparison of ¹²⁹ Xe NMR Chemical Shifts and One-Bond | | | | Xenon-Nitrogen Reduced Coupling Contants of Some Compounds | | | | Containing Xenon(II)-Nitrogen Bonds | 311 | ## LIST OF FIGURES | Figure | | Page | |--------|---|------| | 2.1 | Glass vacuum line | 22 | | 2.2 | Metal vacuum line | 23 | | 2.3 | Apparatus for the storage and vacuum transfer of anhydrous HF | 28 | | 2.4 | Apparatus for the storage and vacuum transfer of BrF ₅ | 29 | | 2.5 | Apparatus for the storage and vacuum transfer of SO ₂ CIF | 30 | | 2.6 | Glass H-vessel | 34 | | 2.7 | Glass apparatus for the preparation of anhydrous ammonia | 38 | | 2.8 | Glass dual trap apparatus for the preparation of [(CH ₃) ₃ Si] ₂ NH | 42 | | 2.9 | FEP T-vessel for the preparation of S ₂ O ₅ F ₂ | 48 | | 2.10 | One-piece glass distillation apparatus for the preparation | | | | of FO ₂ SNH ₂ | 52 | | 2.11 | Glass micro-distillation apparatus for the preparation of FO ₂ SNH ₂ | 54 | | 2.12 | FEP vessel for the isolation of solid F ₅ TeN(H)-Xe ⁺ AsF ₆ | 61 | | 2.13 | Apparatus for low-temperature Raman spectroscopy | 72 | | 3.1 | ¹ H NMR spectrum of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ in BrF ₅ solvent recorded | | | | at -55.4 °C | 82 | | 3.2 | Heteronuclear (¹ H- ¹⁹ F) NOESY spectrum of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ | | | | in BrF ₅ solvent recorded at -58.9 °C | 85 | | 3.3 | 129Xe NMR spectrum of a mixture of XeF ₂ and CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ | | | | in BrF ₅ solvent, recorded at -53.0 °C | 89 | | 3.4 | ¹⁹ F NMR spectrum [F-on-Xe(II) region] of a mixture of | | |-----|---|-----| | | CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ , XeF ₂ and HF in BrF ₅ solvent, | | | | recorded at -54.0 °C | 91 | | 3.5 | ¹ H NMR spectrum of a mixture of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ , CF ₃ C(OXeF)NH ₂ ⁺ | | | | AsF ₆ and HF in BrF ₅ solvent, recorded at -55.0 °C | 94 | | 3.6 | Heteronuclear (¹ H- ¹⁹ F) NOESY spectrum of a mixture of | | | | CF ₃ C(OH)NH ₂ ⁺ AsF ₆ and CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ in BrF ₅ solvent | | | | recorded at -55.0 °C | 96 | | 3.7 | Raman spectrum of CF ₃ C(OXeF)NH ₂ ⁺ AsF ₆ ⁻ recorded at -165 °C | 100 | | 3.8 | Raman spectrum of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ recorded at -165 °C | 109 | | 3.9 | Raman spectrum of CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻ ·XeF ₂ -xHF recorded at -165 °C | 112 | | 4.1 | Raman spectrum of F ₅ TeNH ₂ recorded at -160 °C | 137 | | 4.2 | Raman spectra of natural abundance (lower traces) and 99.5 atom % | | | | ¹⁵ N-enriched (upper traces) F ₅ TeNH ₂ , recorded at -160 °C; | | | | (a) 150 - 800 cm ⁻¹ region and (b) 1000 - 1050, 1450 - 1550 | | | | and 3250 - 3400 cm ⁻¹ regions | 139 | | 4.3 | Normal modes of vibration for pseudo-octahedral XY ₅ Z species of | | | | C ₄ , point group symmetry | 146 | | 4.4 | ¹ H NMR spectra of (a) natural abundance and (b) 99.5 atom % | | | | ¹⁵ N-enriched F ₅ TeNH ₂ in CD ₂ Cl ₂ solvent recorded at 30 °C | 154 | | 4.5 | ¹ H NMR spectra of (a) natural abundance F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | | | | (-53 °C) and (b) 99.5 atom % ¹⁵ N-enriched F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | | | | (-56 °C) in BrF ₅ solvent | 157 | | 4.6 | ¹⁹ F NMR spectrum of F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ in BrF ₅ solvent recorded at | | |------|--|-----| | | -44 °C | 158 | | 4.7 | ¹²⁵ Te NMR spectrum of 99.5 atom % ¹⁵ N-enriched F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ in HF | | | | solvent recorded at -45 °C; (a) entire multiplet, (b) expansion of the | | | | central portion of the multiplet | 160 | | 4.8 | ¹⁵ N NMR spectrum of 99.5 atom % ¹⁵ N-enriched F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | | | | in HF solvent recorded at -40 °C | 163 | | 4.9 | Raman spectrum of natural abundance F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ recorded at ambient | | | | temperature | 167 | | 4.10 | Raman spectrum recorded at ambient temperature of natural | | | | abundance (lower trace) and 99.5 atom % ¹⁵ N-enriched (upper trace) | | | | F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ | 169 | | 4.11 | ¹⁹ F NMR spectra of (a) F ₅ TeNH ₂ in BrF ₅ solvent (-44 °C) and | | | | (b) F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ in BrF ₅ solvent (-50 °C) | 181 | | 5.1 | (a) ¹²⁹ Xe NMR spectrum of natural abundance F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ | | | | in HF solvent (45 °C) with an external magnetic field strength | | | | of 11.7440 T; (b) 129 Xe NMR spectrum of 99.5 atom % 15 N-enriched | | | | F_5 TcN(H)-Xe ⁺ As F_6 in HF solvent (-45.0 °C) at 11.7440 T; (c) 129 Xc | | | | NMR spectrum of 99.5 atom % ¹⁵ N-enriched F ₅ TeN(H)-Xe ⁺ AsF ₆ in HF | | | | solvent (-38.8 °C) at 7.0463 T | 190 | | 5.2 | (a) ¹²⁹ Xe NMR spectrum of 99.5 atom % ¹⁵ N-enriched F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ | | | | in HF solvent (-38.8 °C) at 7.0463 T; (b) Resolution enhancement of | | | | 129Xe NN spectrum depicted in (a) | 195 | | 5.3 | (a) ¹²⁹ Xe NMR spectrum of 99.5 atom % ¹⁵ N-enriched F ₅ TeN(H)-Xe ⁺ AsF ₆ | | |-----|---|-----| | | in HF solvent (-38.8 °C) at 7.0463 T; (b) ¹²⁹ Xe- ¹ H INEPT of 99.5 | | | | atom % ¹⁵ N-enriched F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ in HF solvent (-38.8 °C) | | | | at 7.0463 T | 197 | | 5.4 | ¹⁵ N NMR spectrum of 99.5 atom % ¹⁵ N-enriched F ₅ TeN(H)-Xe ⁺ AsF ₆ in | | | | HF solvent (-40.0 °C) | 199 | | 5.5 | ¹ H NMR spectra of (a) natural abundance (-55.5 °C) and (b) 99.5 atom % | | | | ¹⁵ N-enriched F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ (-44.2 °C) in BrF ₅ solvent | 202 | | 5.6 | (a) 125 Te NMR spectrum of the equilibrium mixture resulting from the | | | | reaction of XeF ₂ and F ₅ TeNH ₃ ⁺ AsF ₆ ⁻ in HF solvent (-34.1 °C); | | | | (b) expansion showing the multiplet assigned to F ₅ TeN(H)-Xe ⁺ ; | | | | (c) expansion of the F ₅ TeN(H)-Xe ⁺ multiplet | 204 | | 5.7 | ¹⁹ F NMR spectrum of the mixture resulting from the reaction of | | | | Xe(OTeF ₅) ₂ and F ₅ TeNH ₃ ⁺ As(OTeF ₅) ₆ ⁻ in SO ₂ ClF solvent recorded at | | | | -115.4 °C | 211 | | 5.8 | Raman spectrum of solid natural abundance F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ | | | | recorded at -165 °C | 215 | | 5.9 | Raman spectra of natural abundance (lower trace) and 99.5 atom % | | | | ¹⁵ N-enriched (upper trace) F ₅ TeN(H)-Xe ⁺ AsF ₆ ⁻ recorded at -165 °C; | | | | (a) 200 - 800 cm ⁻¹ region and (b) 1200 - 1350 and 3100 - 3200 cm ⁻¹ | | | | regions | 217 | | 6.1 | ¹⁹ F NMR spectrum [F-on-Te(VI) region] of natural abundance F ₅ TeNH ₂ | | | | and XeF ⁺ AsF _c in HF solvent at -40.9 °C | 241 | | 6.2 | ¹⁹ F NMR spectrum [F-on-Te(VI) region] of natural abundance F ₅ TeNH ₂ | | |-----|--|-----| | | and XeF ⁺ AsF ₆ ⁻ in HF solvent at -33.3 °C | 243 | | 6.3 | ¹⁹ F NMR spectrum (F-on-N region) of 99.5 atom % ¹⁵ N-enriched F ₅ TeNF ₂ | | | | in BrF ₅ solvent at -44.4 °C | 252 | | 6.4 | ¹⁹ F NMR spectrum [F-on-Te(VI) region] of 99.5 atom % ¹⁵ N-enriched | | | | F ₅ TeNF ₂ in BrF ₅ solvent at -44.4 °C | 254 | | 6.5 | ¹⁵ N NMR spectrum of 99.5 atom % ¹⁵ N-enriched F ₅ TeNF ₂ in BrF ₅ solvent | | | | at -57.7 °C | 257 | | 6.6 | ¹⁹ F NMR spectrum of natural abundance F ₅ TeNH ₂ and XeF ⁺ AsF ₆ ⁻ in | | | | HF solvent after warming to -20 °C for five minutes (recorded at | | | | -36.4 °C) | 260 | | 7.1 | (a) ¹ H and (b) ¹⁹ F NMR spectra of natural abundance FO ₂ SNH ₂ | | | | in BrF ₅ solvent recorded at -61.4 °C | 276 | | 7.2 | (a) ¹ H and (b) ¹⁹ F NMR spectra of 99.5 atom % ¹⁵ N-enriched | | | | FO ₂ SNH ₂ in acctonitrile solvent recorded at 30 °C | 277 | | 7.3 | Raman spectrum of neat liquid natural abundance FO ₂ SNH ₂ | | | | recorded at 25 °C | 280 | | 7.4 | Raman spectra (300 - 1000 cm ⁻¹ region) of neat liquid 99.5 atom % | | | | ¹⁵ N-cnriched (upper trace) and natural abundance (lower trace) | | | | FO ₂ SNH ₂ | 282 | | 7.5 | Raman spectrum of solid natural abundance FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ | | | | recorded at 25 °C | 289 | | 7.6 | Raman spectra (300 - 750 cm ⁻¹ region) of solid 99.5 atom % | ₹. | |-----|--|-----| | | ¹⁵ N-enriched (upper trace) and natural abundance (lower trace) | | | | FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ recorded at 25 °C | 291 | | 8.1 | ¹²⁹ Xe NMR spectra of (a) natural abundance FO ₂ SN(H)-Xe ⁺ AsF ₆ ⁻ | | | | in BrF ₅ solvent (-57.7 $^{\circ}$ C) and (b) 99.5 atom % 15 N-enriched | | | | FO ₂ SN(H)-Xe ⁺ AsF ₆ ⁻ in BrF ₅ solvent (-61.0 °C) | 307 | | 8.2 | ¹ H NMR spectrum of the equilibrium mixture resulting from the | | | | reaction of natural abundance FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ and XcF ₂ in BrF ₅ | | | | solvent recorded at -57.8 °C | 314 | | 8.3 | ¹ H NMR spectrum of 99.5 atom % ¹⁵ N-enriched FO ₂ SN(H)-Xe ⁺ | | | | recorded at -59.9 °C in BrF ₅ solvent | 316 | | 8.4 | ¹⁹ F NMR spectrum of the equilibrium mixture resulting from the | | | | reaction of natural abundance FO ₂ SNH ₃ ⁺ AsF ₆ ⁻ and XeF ₂ in BrF ₅ | | | | solvent recorded at -57.8 °C | 317 | #### CHAPTER 1 ### INTRODUCTION #### GENERAL BACKGROUND The potential for the Group VIII (18) elements of the Periodic Table to form compounds with other elements had been debated since the discovery of argon in 1894 by Ramsay and Rayleigh. Early attempts to isolate compounds of Group VIII elements, also known as the noble gases and "inert" gases, were unsuccessful. In particular, shortly after the discovery of argon, Moissan² attempted to form a noble-gas compound by reaction of argon and elemental fluorine without success. Berthelot³ claimed to have
formed a compound of helium with carbon disulfide and benzene by combining these materials in an electric discharge. However, R.J. Strutt⁴ was unable to repeat this result. Researchers such as Oddo⁵ and von Antropoff⁶ were proponents of noble-gas reactivity, and argued on the basis of periodic trends in valence and ionization potentials, that krypton and xenon should form compounds with the most electronegative element, fluorine. Kossel⁷ also predicted the existence of a xenon and a krypton fluoride. Pauling⁸ noted that main-group oxoacids could be seen as consisting of a central atom surrounded by as many oxygens as could fit around it. From the consideration of ionic radii, he reliably predicted coordination numbers of the central atom of a series of main-group oxoacids, including that of antimonic acid, HSb(OH)6, with which the paper dealt obstensibly. On the basis of this simple argument, Pauling predicted coordination numbers of four and six for krypton and xenon, respectively, proposed the formula H₄XeO₆ for xenic acid, and predicted that salts of the form Ag₄XeO₆ and AgH₃XeO₆ might be isolable. With the encouragement of Pauling, Yost and Kaye¹ attempted in 1932 and 1933 to react xenon and fluorine in an electric discharge, but no xenon fluorides were isolated.⁹ By the mid-1930's, the electronic theory of valence, particularly as first proposed by Lewis¹⁰ and Kossel,⁷ was recognized for rationalizing much of the chemical behavior of the elements. A key principle of this theory was that the noble-gas valence-electron configuration was the configuration to which most elements tended in their chemical behavior of the theory proposed by Lewis and Kossel rationalized most of the known chemical behavior of the elements, examples of chemical species which violated the noble-gas configuration by having more than an octet of valence electrons, so-called hypervalent species, such as Tc(OH)₆ and IO(OH)₆, were considered as exceptions to the theory. This theory predicted unreactivity of the noble-gases resulting from the stability of the noble-gas valence-electron configuration. This concept was reinforced by the repeated failures to combine the noble-gases chemically with other elements, particularly those of Yost and Kaye; ^{1,9} no further attempts to form compounds with the noble-gases were made until the 1960's. In 1962, Bartlett^{11,12} successfully oxidized xenon gas with PtF₆, resulting in a salt, then formulated as "Xe⁺PtF₆-", demonstrating for the first time that it was possible to form noble-gas compounds. Shortly after the isolation of "Xe⁺PtF₆-", the first covalent derivatives of xenon were isolated and characterized, namely XeF₂, ¹³ XeF₄ ¹⁴ and XeF₆, ¹⁵ from the reactions of xenon and elemental fluorine. There are several synthetic routes to oxides and oxofluorides of xenon. Examples are XeO₃ ¹⁶ (Xe (VI)), XeOF₄ ¹⁷ and XeO₂F₂ ¹⁸ (Xe(VI)), and XeOF₂ ¹⁹ (Xe(IV)). No xenon(II) oxides have been isolated and characterized. Several excellent reviews detailing the developments in the chemistry of the noble gases up to 1992 are available. ²⁰⁻²⁶ The bulk of synthetic xenon chemistry to date involves xenon in the +2 oxidation state, and the present Thesis is involved primarily with the chemistry of xenon(II) as well. ## (A) <u>REPLACEMENT OF F IN XeF₂ WITH ELECTRONEGATIVE POLYATOMIC</u> <u>ANIONS</u> The thermodynamic stability of the xenon fluorides with respect to the elements is derived from the high electron affinity $(-333 \pm 0.4 \text{ kJ mol}^{-1})^{27}$ and small size of the fluorine atom, as can be seen in a thermochemical cycle for XeF_2 in the gas phase.²⁸ The experimentally determined exothermicity of equation $(1.1)^{29}$ can be rationized by summing equations (1.2) through (1.6), where I(Xe) is the first ionization potential of xenon,²⁸ EP is the electron pair energy for $$Xc(g) + 2 F(g) \longrightarrow F-Xe-F(g)$$ $\Delta H = -272 \text{ kJ mol}^{-1}$ (1.1) $$Xc(g) \longrightarrow Xe^{+}$$ $I(Xe) = 1176 \text{ kJ mol}^{-1}$ (1.2) $$Xc^{+}(g) + F(g) \longrightarrow Xc - F^{+}(g)$$ EP = -201 kJ mol⁻¹ (1.3) $$F(g) \longrightarrow F(g)$$ $E(F) = -335 \text{ kJ mol}^{-1}$ (1.4) $$Xe-F^+(g) + F \longrightarrow F-Xe^+F$$ $\Delta H(electrostatic)$ (1.5) $$F-Xe^+F^- < \longrightarrow F-Xe-F^+$$ resonance energy (1.6) XeF⁺³⁰ and E(F) is the electron affinity of fluorine. The reaction represented by equation (1.1) is exothermic because the large ionization potential of xenon is countered by the large electron affinity of fluorine and the sum of the EP, Δ H(electrostatic) and resonance energy terms, which all favor a chemically bound species. The sum of the last two terms is -912 kJ mol⁻¹ since all other values are known. The small size of the fluorine atom contributes to a large value of Δ H(electrostatic), and the electronegativity of fluorine also ensures that F-Xe⁺F is stable with respect to F-Xe and F, and that Xe-F⁺ is stable with respect to Xe and F⁺. The thermochemical data above indicate that ligands which are capable of replacing fluorine in XeF₂ must be highly electronegative. It should be noted that ΔH (electrostatic) will be less favorable for any atom or ligand group which replaces fluorine, because of the increase in size and the 1/r dependence of the electrostatic energy. Electron pair bonds [cf., EP above] involving fluorine are among the most energetically favorable bonds known, and replacement of fluorine with another ligand group is expected to lower the exothermicity of the electron pair energy (EP). These factors are well illustrated for XeCl₂(g), which is an unstable species that has been observed only at low temperatures by Mössbauer^{31,32} and matrix isolation infrared spectrocopy.^{33,34} The lower expected EP value for XeCl⁺ than XeF⁺ is reflected in the bond energies for ICl and IF (240 and 280 kJ mol⁻¹, respectively).^{35,36} Further, the chlorine atom and chloride ion are much bigger than their fluorine counterparts,³⁶ so that ΔH(electrostatic) is less exothermic than in the fluoride case. Although the electron affinity of chlorine is 12 kJ mol⁻¹ greater than for fluorine,³⁵ all other terms are less favorable for chlorine than fluorine. Bartlett²⁸ has shown that the chlorine analog of equation (1.1) is approximately 142 kJ mol⁻¹ less favorable than for fluorine, in agreement with the instability of XeCl₂. In the context of the above argument it is apparent that a polyatomic ligand, L, which is capable of replacing fluorine in XeF₂ to give isolable derivatives, FXeL and XeL₂, must be highly electronegative. The conjugate bases of several strong oxygen and nitrogen acids are capable of replacing fluoride in XeF_2 . Although the large electron affinities of these polyatomic groups favor stable species, their large sizes significantly reduce ΔH (electrostatic); for this reason, the ligand derivatives of XeF_2 are kinetically stable rather than thermodynamically stable. Decomposition, which is often explosive, occurs near room temperature in most cases.²⁰ Several strong oxoacids are capable of replacing F in XeF₂ in HF elimination reactions represented by equations (1.7) and (1.8). In general, isolation of pure products requires low reaction temperatures and removal of the evolved HF under vacuum. $$XcF_2 + HL \longrightarrow F-Xe-L + HF$$ (1.7) $$XcF_2 + 2 HL \longrightarrow L-Xc-L + 2 HF$$ (1.8) The fluorosulfate anion, FSO_3 , is highly electronegative and is capable of stabilizing xenon(II). The mono- and bis-fluorosulfate derivatives of xenon(II) were synthesized^{28,37,38} from the reaction of fluorosulfuric acid with XeF_2 as shown in equations (1.9) and (1.10). $$XcF_2 + HSO_3F \xrightarrow{-75 °C} FXeOSO_2F + HF$$ (1.9) Other strong oxoacids which have yielded covalent derivatives of xenon(II) are HNO₃,²³ HClO₄,^{28,37} HSO₃CF₃²⁸ and HOC(O)CF₃.³⁹⁻⁴¹ Xenon(II) derivatives containing the ligands, - OIOF₄⁴² and -OPOF₂⁴³ are not isolated from the reactions of XeF₂ with the parent acids. The mono- and bis- derivatives are formed according to equations (1.11) and (1.12). $$XcF_2 + x P_2O_3F_4 \xrightarrow{CFCl_3} x P(O)F_3 + F_{2-x}Xc(OPOF_2)_x$$ (1.11) $$XeF_2 + (IO_2F_3)_2 \xrightarrow{SO_2CIF} F_{2-x}Xe(OIOF_4)_x + IOF_3 + x/2 O_2$$ (1.12) Mono- and bis- xenon(II) derivatives of the ligands -OScF₅^{44,45} and -OTcF₅^{41,46-51} have been studied extensively. The -OTeF₅ group is exceeded only by fluorine and oxygen in its ability to stabilize the various oxidation states of xenon. This is attributed to its high effective group electronegativity resulting from the inductive effect of five fluorines on tellurium, ⁵² and is demonstrated by the existence of moderately stable -OTeF₅ analogues of XcF_4 , ⁵¹ $XcOF_4$, ⁵³ and XcF_6 . Salts of $Xc-OTcF_5$ with AsF_6 and Sb_2F_{11} anions are known; $XcOTcF_5$ as AsF_6 is prepared from the fluoride abstraction reaction of AsF_6 with AsF_5 , and AsF_5 , and AsF_6 in resistant nitrogen bases with $XeOMF_5^+AsF_6^-$ (M = Te, Se)²⁶ as shown in equation (1.13). All of the adducts are unstable at room temperature except $s-C_3F_3N_2N-XeOMF_5^+AsF_6^-$ (M = Se, Te). $$XcOMF_5^+AsF_6^- + D \longrightarrow D-XcOMF_5^+AsF_6^-$$ $$(D = s-C_3F_3N_2N, F_3S=N, CH_3C=N, C_5F_5N)$$ The number of nitrogen acids which undergo HF elimination reactions with XeF₂ is far less than the number of oxygen acids. The strong nitrogen acid, HN(SO₂F)₂, reacts with XeF₂ in a fashion which is analogous to that of the oxygen acids discussed above. The first Xe-N bonded species, ⁵⁶ FXeN(SO₂F)₂, was synthesized and partially characterized in 1974 by LeBlond and DesMarteau. Complete characterization by use of X-ray crystallography by Sawyer *et al.*⁵⁷ followed. Since then the bis- compound Xe[N(SO₂F)₂]₂, ^{58,59} and the cations XeN(SO₂F)₂+⁶⁰ and F[XeN(SO₂F)₂]₂ + ^{58,59,60} have been characterized. The utility of the -N(SO₂F)₂ ligand to form stable bonds to xenon arises from the highly electron withdrawing groups bonded
to nitrogen, resulting in a ligand which is resistant to oxidative fluorination. The compounds FXeN(SO₂F)₂ and Xe[N(SO₂F)₂]₂ wer: synthesised according to equation (1.14). The ligand transfer reagent, (CH₃)₃SiN(SO₂CF₃)₂, prepared as in equation (1.15), was used to prepare Xe[N(SO₂CF₃)₂]₂ in a (CH₃)₃SiF elimination reaction with XeF₂ [equation (1.16)]. ⁶¹ The first reported xenon-nitrogen $$\times HN(SO_2F)_2 + XeF_2 \xrightarrow{CF_2Cl_2} \times HF + F_{(2-x)}Xe[N(SO_2F)_2]_x$$ (1.14) $(x = 1 \text{ or } 2)$ -196 to 22 °C (CH₃)₃SiH + (CF₃SO₂)₂NH $$\xrightarrow{-196}$$ to 22 °C (CH₃)₃SiN(SO₂CF₃)₂ + H₂ (1.15) $$2 (CH3)3SiN(SO2CF3)2 + XeF2 = -22 to 10 °C CF2Cl2 > Xe[N(SO2CF3)2]2 + 2 (CH3)3SiF (1.16)$$ adduct with a Lewis acid possessed the stoichiometry $FXeN(SO_2F)_2$ -As F_5 and was postulated to have the ionic formulation $XeN(SO_2F)_2$ +As F_6 [see equation (1.17)], although it was not isolated.⁵⁸ Subjecting the salt to dynamic vacuum at room temperature resulted in the isolation $$FXeN(SO_2F)_2 + AsF_5 \xrightarrow{-78 \text{ °C}} XeN(SO_2F)_2^+ AsF_6^-$$ (1.17) of the AsF₆⁻ salt of the bridging cation, $F[XeN(SO_2F)_2]_2^{+,60}$ according to equation (1.18). The species $XeN(SO_2F)_2^{+}AsF_6^{-}$ was later isolated, although it is thermally unstable at room temperature.⁶⁰ A crystal structure of $XeN(SO_2F)_2^{+}Sb_3F_{16}^{-}$ was obtained⁶⁰ using crystals grown after dissolving $F[XeN(SO_2F)_2]_2^{+}AsF_6^{-}$ in SbF_5 solvent [equation (1.19)]. 2 XeN(SO₂F)₂⁺AsF₆⁻ $$\frac{23 \text{ °C}}{\text{vacuum}}$$ > F[XeN(SO₂F)₂]₂⁺AsF₆⁻ + AsF₅ (1.18) $$F[XeN(SO_2F)_2]_2^+AsF_6^- + 3 SbF_5 \xrightarrow{SbF_5} 2 XeN(SO_2F)_2^+Sb_3F_{16}^- + AsF_5$$ (1.19) ## (B) <u>LEWIS ACIDITY AND OXIDATIVE FLUORINATING ABILITY OF THE XeF</u> <u>CATION</u> The valence bond⁶² and molecular orbital⁶³ descriptions of XeF_2 indicate semi-ionic Xe-F bonds, with considerable negative charge on the fluorine atoms; the charge distribution may be described as $F^{-1}Xe^{+1}F^{-1}e^{-2.5}$ The valence-bond description of XeF_2 incorporates the notion of Xe-F bond polarity through the resonance contributions $F-Xe^+F^-$ <---> $FXe-F^+$. Owing to the Xe-F bond polarity, XeF_2 behaves as a fluoride ion donor towards many strong Lewis acids, yielding compounds of the form $XeF_2 \times MF_5$ (x = 1/2, 1, or 2; $MF_5 = Lewis$ acid).²¹ The compounds cannot be given a purely ionic formulation (i.e., $XeF^+M_xF_{5x+1}$) since fluorine bridges between xenon and a fluorine of the "anion" indicate covalent character in the bonding. Single crystal X-ray diffraction studies of these adducts reveal that the bridging Xe-F bond lengths increase with decreasing lengths of the terminal Xe-F bonds and increasing fluoride ion acceptor ability of MF_5 , indicating increased ionic character. For example, in $XeF_2 \cdot RuF_5$, the terminal Xe-F and bridging Xe-F bond lengths are 1.87(2) and 2.18(2) Å, respectively.⁶⁴ The corresponding bond lengths in $XeF_2 \cdot 2SbF_5$ are 1.84 and 2.35 Å.^{65,66} The latter has the shortest terminal Xe-F bond length for an adduct of XeF_2 , providing the closest approximation to a salt of XeF^+ . This is a result of the very weak basicity of the Sb_2F_{11} anion. The Raman and infrared spectra of solid adducts of XeF_2 with Lewis acids complement the crystal data. They are best interpreted in terms of ionic formulations $XeF^+MF_6^-$ and $XeF^+M_2F_{11}^-$, but modes associated with the bridging $Xe\cdots F$ and $M\cdots F$ stretches and F- $Xe\cdots F$ bends confirm the presence of fluorine bridges. In the case of $XeF^+MF_6^-$, the number of bands and selection rules for the infrared and Raman spectra indicate a symmetry lower than O_h , resulting in part from the fluorine bridge interaction with XeF^+ . 21,67-69 Fluorine bridging of the XeF⁺ cation, to a fluorine of a weakly basic fluoroanion indicates that XeF⁺ has substantial Lewis acid character. Schrobilgen *et al.*²⁶ have exploited the Lewis acid character of XeF⁺ by reacting XeF⁺AsF₆⁻ with various oxidatively resistant nitrogen bases (D), resulting in Xe-N bonds [see equation (1.20)]. Because of the strong oxidizing power of XeF⁺ $$D + XeF^{\dagger}AsF_6^{-} \longrightarrow D-XeF^{\dagger}AsF_6^{-}$$ (1.20) (estimated electron affinity 10.9 eV), 26 only oxidatively resistant bases form stable adduct cations with XeF⁺. Nitrogen bases whose first adiabatic ionization potentials are greater than or equal to the electron affinity of XeF⁺ are often resistant to oxidation by XeF⁺, allowing the isolation of D-XeF⁺AsF₆⁻ at low temperatures. The first example of a nitrogen base to form an adduct with XeF⁺ was HC \equiv N, whose first adiabatic ionization potential has been determined to be 13.80 eV from photoionization studies. To In addition, a series of nitriles RC \equiv N form the adducts RC \equiv N-XeF⁺AsF₆⁻, which have been characterized in solution (R = H, CH₃, CH₂F, C₂H₅, C₂F₅, C₃F₇ and C₆F₅)⁷¹⁻⁷³ and in the solid state (R = H, Me). A detailed study which expands the ligand series has been carried out. The general synthesis for these adducts involves the reaction of XeF⁺AsF₆⁻ or Xe₂F₃⁺AsF₆⁻ with the appropriate nitrile as shown in equations (1.21) and (1.22), resulting in the first examples of xenon bonded to an *sp*-hybridized nitrogen atom. $$XeF^{+}AsF_{6}^{-} + RC\equiv N: \xrightarrow{HF} RC\equiv N-XeF^{+}AsF_{6}^{-}$$ $$-20 \text{ to } -10 \text{ }^{\circ}C$$ $$(1.21)$$ $$Xe_2F_3^+AsF_6^- + RC=N: \xrightarrow{HF} RC=N-XeF^+AsF_6^- + XeF_2$$ (1.22) 7- The fluoro(perfluoropyridine)xenon(II) cations, $4\text{-RC}_5F_4\text{N-XeF}^+$ (R = F or CF₃)⁷⁵ have been formed in HF solvent according to equation (1.23) and equilibria (1.24) and (1.25) at -30 to -20 °C. An alternative synthesis involves the reaction of $4\text{-RC}_5F_4\text{NH}^+\text{AsF}_6^-$ with XeF₂ in BrF₅ and HF solvents at -30 °C as in equation (1.25). As expected, the equilibrium favors a larger $$\begin{array}{ccc} & \text{HF} \\ 4 - RC_5 F_4 N & \longrightarrow & 4 - RC_5 F_4 N H^+ (HF)_n^- \end{array} (1.23)$$ $$4-RC5F4NH+(HF)n + XcF+AsF6 = RC5F4NH+AsF6 + XcF2 + n HF$$ (1.24) $$4-RC5F4NH+AsF6 + XcF2 = 4-RC5F4N-XcF+AsF6 + HF$$ (1.25) proportion of the xenon(II) cation in BrF_5 solvent, enabling the salts to be isolated by removal of the BrF_5 solvent under vacuum at -30 °C. The first adiabatic ionization potential of C_5F_5N (10.08 \pm 0.05 eV)⁷⁶ is approximately the same as that of the electron affinity of XeF^+ , in accordance with the criterion for a stable adduct. The first ionization potential (11.50 eV)⁷⁶ of s-trifluorotriazine, s- $C_3F_3N_3$ and the existence of C_5F_5N - $XeF^+AsF_6^-$ suggested that the adduct s- $C_3F_3N_2N$ - XeF^+ should also exist. This compound has been synthesized according to equation (1.26) by the reaction of $XeF^+AsF_6^-$ with excess s-trifluorotriazine at room temperature for three hours followed by removal of excess s- $C_3F_3N_3$ under vacuum.⁷⁵ The resulting salt is unique in that it is the only salt of the series which is stable indefinitely at room temperature. $$XeF^{+}AsF_{6}^{-} + s-C_{3}F_{3}N_{3} \longrightarrow s-C_{3}F_{3}N_{2}N-XeF^{+}AsF_{6}^{-}$$ (1.26) The ligand, $F_3S\equiv N$ (first IP, 12.50 eV), ⁷⁷ was also allowed to react with XeF⁺AsF₆ in BrF₅ solvent at -60 °L giving the adduct $F_3S\equiv N$ -XeF⁺, ²⁶ which has been characterized by ¹⁹F and ¹²⁹Xe NMR spectroscopy at -60 °C [equation (1.27)]. Solvolysis of $F_3S\equiv N$ -XeF⁺AsF₆ occurs at -20 °C in HF solvent and results in addition of HF across the S-N triple bond, followed by HF elimination to give $F_4S=N$ -Xe⁺ [equation (1.28)]. The expected intermediate cation, $F_4S=N(H)$ -XeF⁺, that results from HF addition to $F_3S\equiv N$ -XeF⁺, is not observed. Addition of HF across the S-N double bond of $F_4S=N$ -Xe⁺ results in the $F_5SN(H)$ -Xe⁺ cation, which is the first example of an sp³-hybridized nitrogen bonded to xenon [equation (1.29)]. $$F_3S \equiv N + XeF^{\dagger}AsF_6 \xrightarrow{BrF_5} F_3S \equiv N - XeF^{\dagger}AsF_6 \xrightarrow{(1.27)}$$ $$F_3S=N-XeF^+ + HF \longrightarrow [F_4S=N(H)-Xe-F^+] \xrightarrow{-HF} F_4S=N-Xe^+$$ (1.28) $$F_4S=N-Xe^+ + HF \longrightarrow F_5S-N(H)-Xe^+$$ (1.29) The only known examples of krypton-nitrogen bonds arise from the reaction of $HC \equiv NH^+AsF_6^-$ with KrF_2 in BrF_5 solvent at ca. -60 °C, resulting in $HC \equiv N-KrF^+AsF_6^-$, 78 and from the reaction of the adducts $R_FC \equiv N-AsF_5$ ($R_F = CF_3$, C_2F_5 , $n-C_3F_7$) with KrF_2 in BrF_5 solvent at ca. -60 °C, resulting in $R_FC \equiv N-KrF^+AsF_6^-$. The krypton cations are acid-base adducts, similar to the xenon(II) cations discussed above. The estimated electron affinity of KrF^+ (13.2 eV)²⁶ is greater than XeF^+ (see above), indicating that it is a stronger oxidizer. As expected, the nitrile adducts with KrF^+ are less thermally stable than the xenon(II) analogs. The oxidative fluorinating power of XeF+ is well established. Bartlett and Sladky⁷⁹ noted that XeF_2 was incapable of oxidizing I_2 in acctonitrile solution, but addition of trace amounts of the Lewis acids SO_2 , HF, or BF_3 resulted in the immediate oxidation of I_2 to IF_5 , with formation of xenon gas. This suggested that XeF^+ was formed from the interaction of the Lewis acid with XeF_2 [equation (1.30)], and that the oxidizing ability of XeF^+ greatly surpassed that of XeF_2 . $$A + XeF_2 = AF + XeF^{\dagger}$$ (1.30) (A = Lewis acid) Since the work of Bartlett and Sladky, ⁷⁹ salts of XeF⁺ have been used as chemical reagents to oxidatively fluorinate other species. The reaction of XeF⁺MF₆⁻ (M = As, Sb) with a variety of reagents in HF solvent at low temperatures (ca. -80 to -40 °C) has demonstrated the oxidative fluorinating ability of the XeF⁺ cation, as well as its significant Lewis acid strength. The reaction of XeF⁺MF₆⁻ with sulfur(II) species such as the disulfides CF₃S-SCF₃, ⁸⁰ CF₃S-SCH₃⁸⁰ and
CH₃S-SCH₃, ⁸⁰ resulted in MF₆⁻ salts of the thermally unstable fluorosulfonium cations according to equation (1.31). The sulfanes (C_6F_5)₂S, ⁸¹ CF₃SCH₃, ⁸² (CH₃)₂S, ^{82,83} CF₃SH⁸⁴ and CH₃SH⁸⁴ are likewise oxidatively fluorinated by XeF⁺MF₆⁻, resulting in thermally unstable MF₆⁻ salts of fluorosulfonium cations [equation (1.32)]. It is interesting that the reaction of the sulfuranes [sulfur(IV)] (CF₃)_nSF_{4-n} ⁸⁵ (n = 0 - 2) with XeF⁺MF₆⁻ in HF solvent resulted in fluoride abstraction rather than oxidative fluorination, indicating the strong Lewis acid strength of the XeF⁺ cation [equation (1.33)]. ⁸⁵ The fluoride transfer was attributed to the weak axial S-F bonds in the R-S-S-R' $$XcF^{\dagger}MF_6$$ ' ----> RS-S(F)R' $^{\dagger}MF_6$ ' + Xe (1.31) R-S-R' + $$XeF^{\dagger}MF_{6}^{-}$$ ---> R-S(F)R' $^{\dagger}MF_{6}^{-}$ + Xe (1.32) $$(CF_3)_nSF_{4n} + XeF^+MF_6 \longrightarrow (CF_3)_nSF_{3n}^+MF_6 + XeF_2$$ (1.33) sulfuranes⁸⁵ and their resulting fluoride ion donor ability. The XeF_2 produced is a substantially weaker oxidative fluorinator than XeF^+ and is incapable of oxidatively fluorinating the compounds $(CF_3)_nSF_{4-n}$ (n=0-2). In the case of $CF_3S(O)F$, a labile fluoride is not present, and reaction with $XeF^+MF_6^-$ results in oxidative fluorination to give $CF_3S(O)F_2^+MF_6^{-.85}$ It was postulated that the xenon-oxygen bonded species, $CF_3S(OXeF)F^+MF_6^-$, is an intermediate which decomposes by transfer of " F^+ " to sulfur with elimination of xenon gas. A similar adduct cation, Cl_2S-XeF^+ , has been proposed as an intermediate in the oxidative fluorination reaction of SCl_2 by $XeF^+MF_6^{-.86}$ at low temperature [equation (1.34)]. Evidence for such an intermediate has been provided by the $$Cl_2S + XcF^+ \longrightarrow [Cl_2S-XcF^+] \longrightarrow Cl_2S-F^+ + Xc$$ (1.34) low-temperature isolation of $(CF_3)_2SO-XeF^+SbF_6^-$ from HF solvent, which indeed contains a xenon-oxygen bond. Oxidative fluorination of H_2O^{87} and H_2S^{88} by $XeF^+MF_6^-$ in HF at low temperatures (ca. -78 °C) results in the salts $H_2OF^+MF_6^-$ and $H_2SF^+MF_6^-$, respectively. The oxidative fluorination of H_2O at low temperature, in spite of its high ionization potential (12.6 eV). demonstrates the powerful oxidative fluorinating ability of $XeF^+MF_6^-$. Oxidative fluorination of $AsCl_3$ with $XeF^+AsF_6^-$ in HF solvent at -78 °C also resulted in the isolation of $AsCl_3F^+AsF_6^-$. As discussed above, there is a growing number of examples of the use of XeF+ as an oxidative fluorinating agent, and there is now a large number of salts of adduct cations, D-XeF⁺, where D is a nitrogen base.²⁶ Although Minkwitz⁸⁶ has postulated an adduct cation Cl₂S-XeF⁺ as an intermediate in the oxidative fluorination of SCl₂ by XeF⁺MF₆⁻, there are no reported examples of an isolated and definitively characterized salt of an adduct cation, D-XeF⁺, which decomposes by oxidative fluorination of the base [equation (1.35)]. Further work is required to establish the existence of D-XeF⁺ cations as intermediates in the oxidative fluorination of bases. D-XeF⁺MF₆⁻ $$\longrightarrow$$ D-F⁺MF₆⁻ + Xe (1.35) (M = As, Sb) #### (C) SPECIES CONTAINING XENON-CARBON BONDS The first reported example of a xenon-carbon bonded species was $Xe(CF_3)_2$, which was prepared from the reaction of XeF_2 with plasma generated CF_3 radicals.⁹¹ The resulting waxy solid, assumed to be $Xe(CF_3)_2$, decomposes with a half-life of ca. 30 minutes at room temperature according to equation (1.36). Characterization of the material claimed to be $Xe(CF_3)_2$ is incomplete and the synthesis has not been confirmed. $$Xe(CF_3)_2 \longrightarrow XeF_2 + C_nF_m$$ (1.36) The stability of cations containing xenon-carbon bonds was established by determination of the xenon-carbon bond energy of CH_3 -Xe⁺ in the gas phase by ion cyclotron resonance. The Xe-C bond energy was determined to be 180 ± 33 kJ mol⁻¹ ⁹² and more recently, 231 ± 10 kJ mol⁻¹. These values are similar to those observed for the Xe-F bonds of XeF₂ (132 kJ mol⁻¹)⁹⁴ and XeF⁺ (201 kJ mol⁻¹),⁹⁴ indicating that isolation of salts containing cations with xenon-carbon bonds is feasible. A number of structurally well-characterized compounds containing Xe-C bonds are, in fact, now known. In all cases they occur as colorless salts of xenonium cations, R-Xe⁺ (R = fluorophenyl or alkynyl group). The formation of the pentafluorophenylxenon(II) cation, $C_6F_5Xe^+$, in CH_2CI_2 (-30 °C) and $CH_3C\equiv N$ (0 °C) solutions, with the anions $B(C_6F_5)_3F^-$, $B(C_6F_5)_2F_2^-$ and $B(C_6F_5)_7^-$ has been established. 95-100 The salts are typically formed by the reaction of XeF_2 with the ligand transfer reagent, $B(C_6F_5)_3$, in methylene chloride solvent [equation (1.37)]. The X-ray crystal structure of $[CH_3C\equiv N-XeC_6F_5]^+$ $[(C_6F_5)_2BF_2]^-$, isolated from acctonitrile solution, shows that the xenon atom of C_6F_5 -Xe⁺ is weakly coordinated to the nitrogen atom of a $CH_3C\equiv N$ $$XcF_2 + B(C_6F_5)_3 \longrightarrow Xc-C_6F_5^+B(C_6F_5)_2F_2^-$$ (1.37) molecule (Xe-N, 2.681(8) Å; Xe-C, 2.092(8) Å). 100 The salt decomposes slowly at 14 °C. Reaction of $[CH_3C\equiv N-Xe-C_6F_5]^+[(C_6F_5)_2BF_2]^-$ with AsF_5 in $CH_3C\equiv N$ solution results in $[CH_3C\equiv N-Xe-C_6F_5]^+AsF_6^-$. Solutions of this compound in $CH_3C\equiv N$ are stable for up to one day at room temperature. 97 The reactions of XeF_2 with the boron ligand transfer reagents $B(m-CF_3C_6H_4)_3$ and $B(p-FC_6H_4)_3$ in CH_2CI_2 solution at -45 to -50 °C result in the formation of the white solids $[m-CF_3C_6H_4Xe]^+[m-CF_3C_6H_4BF_3]^-, ^{96}$ and $[p-FC_6H_4Xe]^+[(p-FC_6H_4)_2BF_2]^-, ^{96}$ The former compound is stable for up to one hour in $CH_3C\equiv N$ at -41 °C, whereas the latter compound decomposes below -40 °C when attempting to dissolve it in the coordinating solvent, $CH_3C\equiv N$. The most stable xenonium salt presently known is $[Xe(2,4,6-F_3C_6H_2)]^+[BF_4]^-, ^{98}$ which is prepared by the reaction of $B(C_6H_2F_3)_3$ thf and XeF_2 in the presence of BF_3 -O(CH_3)2 in CH_2CI_2 solution at -40 °C. It is stable for up to 21 days at room temperature in dry air and hydrolyzes slowly over 7 days in aqueous CH₃C=N solution. Examples of alkynyl xenonium tetrafluoroborates are known and are prepared by reaction of lithium acetylides or triphenylsilyl acetylenes with XeF₂ and BF₃-O(CH₃)₂ at low temperatures (-78 to -40 °C) in CH₂Cl₂ solvent. The known alkynyl derivatives are (CH₃)₃C-C=C-Xe⁺BF₄, (CH₃)₃Si-C=C-Xe⁺BF₄, CH₃CH₂-C=C-Xe⁺BF₄ and CH₃CH₂-C=C-Xe⁺BF₄; all of these species decompose in solution or as solids below 0 °C, 101 but none have been characterized in the solid state. It is interesting to note that, of all the known species containing xenon-carbon bonds, no neutral species of the form R-Xe-F have been characterized (R = fluorophenyl or alkynyl). This may be rationalized by considering the semi-ionic nature of the bonding in hypervalent compounds of the form R-Xe-F, which is best described in valence-bond terms by the resonance contributors R⁻ Xe-F⁺ <----> R-Xe⁺ F; ¹⁰² the relative weightings of each contributor depends on the electronegativities of F and R. The carbon ligands used to form the cations R-Xe⁺ are undoubtedly among the least electronegative ligands which have ever been used as ligands with xenon. For this reason, the resonance contribution, R-Xe⁺ F, essentially accounts for the bonding. Confirmation of the ionic character of the Xe-F bonds in solution is provided by the absence of observed one-bond ¹²⁹Xe-¹⁹F scalar couplings attributable to Xe-F linkages in the ¹⁹F and ¹²⁹Xe NMR spectra. As well, the ¹²⁹Xe NMR chemical shifts (ca. -3760 ppm for C₆F₅-Xe⁺ in acetonitrile solution)^{95,96} are the most shielded for chemically bound xenon. ⁹⁵⁻¹⁰⁰ This is consistent with an ionized Xe-F bond and an Xe-C bond of high covalent character, since the ¹²⁹Xe chemical shifts of xenon(II) compounds containing Xe-N, Xe-O and Xe-F bonds are known to decrease (i.e., become more shielded) with increasing ionic character of the Xe-F bond. ^{26,103,104} # (D) PURPOSE AND GENERAL SYNTHETIC STRATEGIES UNDERPINNING THE PRESENT WORK The overall purpose of the present work is to extend the chemistry of the noble gases and, more specifically, to prepare and characterize compounds containing novel covalent bonds between xenon and nitrogen or oxygen. One route to Xe-N bonded species is through the interaction of XeF⁺AsF₆* with selected nitrogen bases in solution. Given the oxidizing strength of XeF⁺, nitrogen bases were selected on the basis of their resistance to oxidation.²⁶ It was found that nitrogen bases whose first adiabatic ionization potentials (IP1), when known, were greater than or equal to the estimated electron affinity of XeF (10.9 eV), were often resistant to oxidative attack by XeF+ at low temperatures. This method of base selection preceded the successful preparation of AsF₆ salts of the adduct cations RC=N-XcF⁺, (R = alkyl, 72,74 fluoroalkyl, 71,72,74 C₆F₅, 72,74 H^{72-74}), $C_3F_3N_2N-XeF^{+,71}$ and the pyridine adducts, $C_5F_5N-XeF^{+,74,75}$ and $4-CF_3C_5F_4N-YeF^{+,71}$ XeF⁺.^{74,75} All of these cations involve ligands in which the nitrogen atoms bonded to xenon are formally sp- or sp²-hybridized. Except for the partially characterized salt, F₅SN(H)-Xc⁺AsF₆^{-,26} there are no known examples of formally sp^3 -hybridized nitrogen bonded to xenon(II). In the present study, the AsF6 salts of several cations containing Xe-N and Xe-O bonds have been prepared and characterized; the atoms directly bonded to xenon in the novel cations are formally sp^3 -hybridized, contributing significantly to the chemistry of xenon(II). The importance of ligand electronegativity in stabilizing compounds of xenon(II) was discussed in Section (A) of this Chapter. The synthesis of xenon compounds in which the ligand atom bonded to xenon
is sp³hybridized is significant because the electronegativity of a ligand group decreases as the %s character of the valence hybrid orbitals decreases. 105 Thus the ligands studied in the present work, namely CF₃C(O)NH₂, F₅TeNH₂ and FO₂SNH₂, are among the least electronegative nitrogen- or oxygen-donor ligands to ever form compounds with xenon(II). The low electronegativity of these ligands is reflected in the thermal instability of the resulting xenon(II) compounds, which are among the least stable xenon(II) derivatives known. The ligands studied in the present work, namely, CF₃C(O)NH₂, F₅TeNH₂ and FO₂SNH₂, are isoelectronic with the strong oxoacids, CF₃C(O)OH, F₅TeOH and FO₂SOH, all of which form xenon(II) compounds [see Section (A)] which are stable at or near room temperature. Trifluoroacetamide, CF₃C(O)NH₂, was chosen as a potential base for adduct formation with XeF⁺ on the basis of its first adiabatic ionization potential (10.77 eV), ¹⁰⁶ which is similar to the estimated electron affinity for XeF⁺ (10.9 eV), ²⁶ so that it might be resistant to oxidative attack by the noble-gas cation. The IP₁-values of F₅TeNH₂ and FO₂SNH₂ are not known; their potential as ligands in novel xenon(II) compounds is based solely on the electronic similarity of these ligands to F₅TeOH and FO₂SOH. Although CF₃C(O)NH₂, F₅TeNH₂ and FO₂SNH₂ are not strong acids, it was possible to protonate these species, either *in situ* from the reaction with HF acidified with an equimolar amount of XeF⁺AsF₆⁻ [equations (1.38) and (1.39)], or from the reaction with excess AsF₅ in HF, to give the isolable salts, CF₃C(OH)NH₂⁺AsF₆⁻, F₅TeNH₃⁺AsF₆⁻ and FO₂SNH₃⁺AsF₆⁻ [equation (1.40)]. Ammonium cations generated *in situ* [equations (1.38) and (1.39)] or isolated as AsF₆⁻ salts [equation (1.40)], react with XeF₂ by HF elimination to give $$XcF^{\dagger}AsF_6^{} + HF \Longrightarrow XcF_2 + H_2F^{\dagger}AsF_6^{}$$ (1.38) $$H_2F^{\dagger}AsF_6^{} + D \Longrightarrow DH^{\dagger}AsF_6^{} + HF$$ (1.39) (D = CF₃C(O)NH₂, F₅TeNH₂, FO₂SNH₂) $$D \xrightarrow{HF / AsF_5} DH^{\dagger}AsF_6^{-}$$ $$(1.40)$$ $$(D = CF_3C(O)NH_2, F_5TeNH_2, FO_2SNH_2)$$ Xe-N and Xe-O bonded cations, and are analogous to the reactions of strong oxoacids with XeF_2 [equation (1.7)]. The oxygen ligands $CF_3C(O)O$ -, F_5TeO - and FO_2SO - are more electronegative than the analogous nitrogen ligands $CF_3C(O)NH_2$, $F_5TeN(H)$ - and $FO_2SN(H)$ -, which have been used as ligands in compounds of xenon(II) in the present work. A comparison of the xenon(II)-oxygen derivatives with the novel xenon(II) compounds prepared in this Thesis provides the material for a systematic study of the effect of ligand electronegativity on the bonding and stability of compounds containing Xe(II)-O and Xe(II)-N bonds. #### CHAPTER 2 #### EXPERIMENTAL SECTION #### (A) VACUUM TECHNIQUES #### (i) Vacuum Systems and Inert Atmosphere Systems The compounds used in the course of this work are moisture sensitive or were used as precursors for moisture sensitive materials. It was therefore necessary to rigorously dry all precursors and apparatus. All manipulations were carried out under rigorously anhydrous conditions in glass or metal vacuum systems or in the oxygen and moisture free (< 0.1 ppm) inert nitrogen atmosphere of a Vacuum Atmospheres Model DLX drybox. The drybox was equipped with a cryogenic well which was cooled to -196 °C for the manipulation of thermally unstable materials under anhydrous conditions. Volatile reagents and solvents were manipulated by vacuum transfer using two vacuum lines. Volatile materials which were noncorrosive towards glass in the absence of water such as organic solvents [e.g., CH₂Cl₂, CHCl₃, (CH₃CH₂)₂O], F₅TeOH and S₂O₃F₂ were manipulated using a vacuum line constructed of Pyrex with grease-free 6-mm J. Young glass stopcocks equipped with FEP barrels (Figure 2.1). Volatile materials which attack glass, such as HF and BrF₅ solvents, were manipulated by vacuum transfer on a vacuum line constructed from nickel and 316 stainless steel valves and fittings (Autoclave Engineers, Inc.), Teflon, FEP, and Kel-F (Figure 2.2). Pressures were measured at ambient temperature using an Glass vacuum line; (A) mercury manometer, (B) dry nitrogen inlet, (C) liquid nitrogen trap, (D) greasefree glass 6-mm J. Young stopcock with FEP barrel. Figure 2.1 vacuum pump (Edwards, E2M8) - hard vacuum, (B) outlet to soda lime and liquid nitrogen traps followed by a two stage direct drive rotary vacuum pump (Edwards, E2M8) - rough vacuum, (C) dry nitrogen inlet, (D) fluorine inlet, (E) 0 - 1500 Torr Bourdon gauge (F) MKS Model PDR-5B pressure transducers (0 - 1100 Torr), (G) MKS Metal vacuum line; (A) outlet to liquid nitrogen and charcoal traps followed by a two stage direct drive rotary Model PDR-5B pressure transducer (0 - 1 Torr), (H) 3/8-in. 316 SS high pressure valve (Autoclave Engineers, 30VM6071), (I) 316 SS tee, (J) 316 SS cross, (K) 316 SS L, (L) nickel connectors Figure 2.2 MKS Model PDR-5B power supply and digital readout in conjunction with pressure transducers having inert wetted surfaces constructed of Inconel. Two transducers of different dynamic pressure ranges were used, 0 to 1100 Torr and 0 to 1 Torr. The pressures were accurate to \pm 0.5% of scale. Vacuum on the glass line and metal line was attained by using Edwards two stage E2M8 direct drive high vacuum pumps. Two vacuum pumps were used on the metal vacuum line; one, a roughing pump, was used for the removal and disposal of volatile reactive fluorinated compounds by pumping through and entrapment on a bed of soda lime, which consisted of a copper tube (ca. 60 cm length, 15 cm dia.) packed with soda lime absorbent (Fisher Scientific, 4-8 mesh). The second vacuum pump provided the high vacuum source for the manifold (ca. 10⁻⁴ Torr). In the construction of the glass and metal vacuum lines, traps cooled to -196 °C were attached immediately before the vacuum pumps to prevent the passage of condensible volatile materials into the pumps. ## (ii) Preparative Apparatus and Sample Vessels for Raman and NMR Spectroscopy All synthetic procedures were performed in apparatus constructed from 304 and 316 stainless steel, glass, Kel-F or FEP. Stainless steel cylinders (Whitey) of 40 mL volume equipped with 316 stainless steel valves (Whitey ORM 2) were used in preparations requiring high pressures. Prior to use, these vessels were passivated by treatment with ca. 800 Torr of fluorine gas overnight, followed by vacuum removal of all volatiles at room temperature. Vessels constructed from glass were dried under vacuum on a glass vacuum line for at least 12 h prior to use. Sample preparations involving materials which attack glass were carried out in tubes fashioned from lengths of 14-in. (7 mm), 12-in. (14 mm), and 14" (21 mm) o.d. FEP tubing (Furon) which were heat sealed at one end and heat-flared (45° SAE) at the other. The tubes were then attached to Kel-F valves encased in aluminum housings by flare fittings. All vessels constructed in this way were dried by first pumping on a glass vacuum line for at least 5 h followed by passivation on a metal vacuum line with ca. 800 Torr of fluorine gas overnight. All volatiles were then removed under vacuum, and the vessel pressurized with 760 Torr of dry N_2 gas. Nuclear magnetic resonance (NMR) spectra were recorded on samples prepared in FEP tubes (9-mm and 4-mm o.d.). The 9-mm o.d. FEP NMR tubes were fabricated from lengths of 3/8-in. (9.5-mm) o.d. FEP tubing by reducing their diameter to 9-mm o.d. in a heated brass cylindrical form with mechanical pressure. One end of the tube was heat-sealed by pushing it into the end of a thin-walled 10-mm o.d. glass NMR tube previously heated in a Bunsen flame. The other end was heat flared (45° SAE) for direct attachment to a Kel-F valve. The 4-mm o.d. FEP tubing had one end heat sealed by pushing the tube into the end of a thin-walled 5-mm o.d. NMR tube and the other end was heat flared (45° SAE) for direct attachment to a Kel-F valve. The sample tubes used for recording the NMR spectra were heat sealed using a small diameter nichrome wire resistance furnace. Raman spectra at room temperature were recorded on samples in Pyrex melting point capillaries. Before use, the melting pointing capillaries were heated under dynamic vacuum for 24 h at 200 °C and then stored in a dry nitrogen-filled drybox where they were loaded with the appropriate materials. The ends of the loaded melting point capillaries were filled with Kel-F grease before removal from the drybox. The capillaries were then immediately sealed using a miniature oxygen-natural gas torch. Raman spectra at low temperatures were recorded on samples in FEP or glass tubes. FEP tubes of 7-mm or 4-mm o.d. were heat-sealed at one end and heat flared at the other end (45° SAE) for direct attachment to Kel-F valves. The tubes were fluorinated as above prior to addition of solid materials. Glass tubes for low temperature Raman spectroscopy ` : were constructed from medium wall 3-mm o.d. glass tubes that were heat scaled at one end and glassblown onto ca. 5-cm lengths of 4-in. o.d. glass tubing on the other end. The 4-in. o.d. end of each glass tube was attached to a 4-mm J. Young glass stopcock with a Teflon barrel and dried overnight under high vacuum. The appropriate materials were loaded into each tube in a drybox, followed by heat sealing below the stopcock using an oxygen-natural gas torch. Ξ: Vessels were attached to vacuum lines using Teflon, FEP and/or Kel-F adaptors. All tubing was connected using 4-in. Teflon unions (Swagelok) and Teflon compression fittings (back and front ferrules, Hoke Controls). The fluoroplastic valves and connectors have been described in greater detail elsewhere. 107 ### (B) PREPARATION AND PURIFICATION OF STARTING MATERIALS #### (i) HF, BrF₅ and SO₂ClF Solvents Hydrogen fluoride and BrF₅ solvents were
transferred on a metal vacuum line through all fluoroplastic connections. Anhydrous hydrogen fluoride (Harshaw Chemical Co.) was purified by treatment with 5 atm. of F₂ gas in a nickel can for a period of 1 month, converting residual water to HF and O₂ gas. The anhydrous HF was then vacuum distilled into a dry Kel-F storage vessel equipped with a Kel-F valve and stored at room temperature until used. Hydrogen fluoride was transferred into reaction vessels by vacuum distillation on a metal vacuum line through connections constructed of Teflon, Kel-F and FEP as shown in Figure 2.3. Bromine pentafluoride (Ozark-Mahoning Co.) was purified as described earlier, ¹⁰⁷ and stored over dry KF in a 4-in. o.d. Kel-F storage tube equipped with a Kel-F valve. Bromine pentafluoride solvent was transferred into reaction vessels by vacuum distillation on a metal line through connections constructed of Teflon, Kel-F and FEP as shown in Figure 2.4. Sulfuryl chloride fluoride, SO_2ClF (Aldrich) was purified according to the literature method ¹⁰⁸ and stored over KF in a glass vessel equipped with a 6-mm glass J. Young stopcock equipped with a glass barrel. Transfers of SO_2ClF were performed under vacuum using a vacuum line and tubing constructed of glass as shown in Figure 2.5. Fluorine-19 NMR indicated the presence of a trace of SO_2F_2 impurity $[\delta(^{19}F) = 32.4 \text{ ppm}]$ in the solvent. # (ii) CHCl₃, CH₂Cl₂, (CH₃CH₂)₂O, CH₃C \equiv N and CF₂ClCF₂Cl Solvents Chloroform, CHCl₃ (Caledon Reagent Grade), CH₂Cl₂ (Caledon Reagent Grade) and CD₂Cl₂ (Isotech Inc.) were dried by combining the solvent with Davison Type 3A molecular sieves (Fisher Scientific) for 3 days followed by vacuum distillation into a dry glass bulb equipped with a 4-mm glass J. Young stopcock equipped with a Teflon barrel. The molecular sieves were dried under dynamic vacuum for 24 h at 120 °C prior to use as a drying agent. Acctonitrile, CH₃C=N (Caledon HPLC Grade) was purified according to the literature procedure. 109 Diethyl ether (Fisher Scientific) was refluxed over sodium wire with benzophenone indicator under a dry nitrogen atmosphere until the solution turned blue (ca. 2 h). Refluxing was continued for an additional 10 h, and the ether was then distilled under atmospheric pressure onto fresh sodium wire in a glass vessel equipped with a greaseless 6-mm glass J. Young stopcock equipped with a Teflon barrel. After several days, the ether was vacuum distilled into a similar vessel which had been previously dried under vacuum. Freon-114, CF₂ClCF₂Cl (Aldrich), was purified according to the literature method¹¹⁰ and was transferred under vacuum using all glass apparatus. Figure 2.3 Apparatus for the storage and vacuum transfer of anhydrous HF solvent; (A) 250 mL Kel-F HF container equipped with a Kel-F valve, (B) Kel-F Y-connector, (C) FEP tube reactor, (D) Kel-F valve with aluminum casing. Figure 2.4 Apparatus for the storage and vacuum transfer of BrF₅ solvent; (A) ¾-in. o.d. Kel-F storage vessel containing BrF₅ over KF, (B) Kel-F Y-connector, (C) FEP tube reactor, (D) Kel-F valve in aluminum casing. Figure 2.5 Apparatus for the storage and vacuum transfer of SO₂ClF solvent; (A) 250 mL glass bulb equipped with a 6-mm glass J. Young stopcock with glass barrel containing SO₂ClF over KF, (B) glass Y-connector, (C) FEP tube reactor, (D) 6-mm J. Young glass stopcock with FEP barrel, (E) Kel-F valve with aluminum casing. ### (iii) Purification of SbF₅ and Preparation of AsF₅ and TeF₆ Antimony pentafluoride, SbF₅ (Ozark-Mahoning Co.) was purified by the literature method¹¹¹ and stored in a glass vessel. Subsequent transfers of SbF₅ were performed using an all glass syringe in the inert atmosphere of a glove bag which had been previously purged with dry nitrogen for 12 h. Arsenic pentafluoride was prepared according to the literature method 112 by the fluorination of AsF_3^{113} in a nickel can. The AsF_5 was distilled into a nickel storage cylinder from which it was used without further purification. Tellurium hexafluoride was prepared from the fluorination of TeF₄, which was prepared according to the literature method, ¹¹⁴ in a monel reactor using a 50 mol% excess of elemental fluorine under autogeneous pressure at 250 °C for 4 h. Crude TeF₆ was purified by condensation onto a dry sample of NaF in a stainless steel Whitey cylinder at -196 °C and stored at room temperature for several days prior to use. ### (iv) Preparation of XeF₂ and XeF⁺AsF₆ Xenon difluoride was prepared from elemental xenon and fluorine by the thermal method described in the literature. The salt XeF⁺AsF₆ was prepared from the reaction of XeF₂ and AsF₅ in HF solvent as described earlier. Both reagents were stored in Kel-F tubes in the inert nitrogen atmosphere of a dry box. All transfers of the solids XeF⁺AsF₆ and XeF₂ were made from their Kel-F storage vessels inside the drybox. # (v) Preparation of F₅TeOH, B(OTeF₅)₃, As(OTeF₅)₅, and Xe(OTeF₅)₂ Pentafluoroorthotelluric acid, F₅TeOH, 115 B(OTeF₅)₃, 116 As(OTeF₅)₅, 117 and $Xe(OTeF_5)_2^{48}$ were prepared and purified according to the literature procedures. The compounds, $B(OTeF_5)_3$ and $As(OTeF_5)_5$, were stored in an FEP tube and a PFA jar, respectively, in the inert nitrogen atmosphere of a drybox, and transfers of the solids were performed inside the drybox. The compound, $Xe(OTeF_5)_2$, was stored at -78 °C in a ½-in. o.d. FEP vessel equipped with a Kel-F valve under ca. 1300 Torr of dry nitrogen gas. Transfers of $Xe(OTeF_5)_2$ into reaction vessels was done in the inert nitrogen atmosphere of a drybox. The compound, F_5TeOH , was stored in a ¼-in. o.d. FEP vessel equipped with a Kel-F valve back-filled with ca. 1300 Torr of dry nitrogen gas at room temperature. Transfers of F_5TeOH were carried out by vacuum sublimation in an all glass apparatus. # (vi) Preparation of CF₃C(OH)NH₂⁺AsF₆ In a typical purification procedure, 1.2860 g (11.377 mmol) of 2,2,2-trifluoroacetamide (Aldrich) was purified by recrystallization from 224 g of anhydrous CHCl₃ in one arm of an H-vessel (Figure 2.6). The arms of the H-vessel were constructed from 2.5-cm o.d. medium wall glass tubing. The arms of the H-vessel were separated by a medium porosity sintered glass frit. The crystals were isolated by filtration through the frit followed by drying under dynamic vacuum for 12 h at room temperature; 0.6255 g (48.6% yield) of CF₃C(O)NH₂ was isolated, indicating some degree of volatility of the compound at room temperature. The salt, CF₃C(OH)NH₂⁺AsF₆⁻, was prepared from the reaction of CF₃C(O)NH₂ and AsF₅ in HF solvent according to equations (2.1) and (2.2) $$CF_3C(O)NH_2 + (x + 1) HF \longrightarrow CF_3C(OH)NH_2^+F(HF)_x^-$$ (2.1) $$CF_3C(OH)NH_2^+F(HF)_x^- + AsF_5 \longrightarrow CF_3C(OH)NH_2^+AsF_6^- + x HF$$ (2.2) In a typical preparation of CF₃C(OH)NH₂⁺AsF₆⁻, CF₃C(O)NH₂ (1.2708 g, 11.242 mmol) was loaded into a 12-in. o.d. FEP tube attached to a Kel-F valve and dissolved in 4 mL of anhydrous HF at -78 °C, giving a yellow solution. Arsenic pentafluoride was metered from a nickel storage can into a dry 0.4005 L preweighed glass bulb. The AsF₅ was condensed onto the CF₃C(O)NH₂ solution at -196 °C. Weighing of the glass bulb before and after the transfer indicated that 2.5086 g (14.764 mmol) of AsF₅ was condensed onto the frozen solution. Warming to -78 °C resulted in a dark orange precipitate and a yellow supernatant. The precipitate dissolved on warming to -50 °C, resulting in a colorless solution. The solvent was removed *in vacuo* at -42 °C leaving a white microcrystalline material. After pumping for 0.5 h at -42 °C and 3.5 h at -10 °C, 3.3820 g of CF₃C(OH)NH₂⁺AsF₆⁻ (99.3% yield) was recovered. Decomposition with liquefaction was observed after one month at room temperature, however indefinite storage without decomposition was possible at -78 °C. The salt was stored in the reaction vessel at -78 °C under *ca.* 1300 Torr of dry nitrogen gas. Transfers of CF₃C(OH)NH₂⁺AsF₆⁻ were carried out directly from the storage vessel inside a nitrogen-filled drybox. #### (vii) Preparation of the First-Stage Graphite Intercalate C₁₀AsF₅ Graphite powder was intercalated with AsF₅ using a modified version of the method described by Chun-Hsu *et al.*¹¹⁸ Graphite rod (Ultra Carbon; Spectrographic analysis grade) was ground to a fine powder with a mortar and pestle and dried by heating under vacuum at 150 °C for 24 h. In a nitrogen-filled glove bag, 0.9003 g (74.96 mmol carbon) of the graphite powder was 0 Glass H-vessel; (A) arm of H-vessel connstructed from 2.5-cm o.d. medium wall Pyrex glass, (B) Teflon-coated magnetic stir bar, (C) 6-mm J. Young glass stopcock with FEP barrel, (D) medium porosity sintered glass frit, (E) 4-in. o.d. glass tubing. Figure 2.6 loaded into a passivated :-in. o.d. FEP tube equipped with a Kel-F valve. Approximately 1500 Torr of AsF₅ gas was expanded from its nickel storage container into the manifold of the metal vacuum line and the reaction vessel containing the graphite powder (-196 °C). With constant agitation of the reaction vessel, the absorption of AsF₅ by the graphite was monitored by observing the pressure in the manifold. Complete absorption of the AsF₅ was observed upon warming the sample to ambient temperature after *ca*. 10 min. The partially intercalated graphite was blue in color and the volume had increased. This procedure was repeated until no more AsF₅ was absorbed by the graphite. The blue powder was pumped for *ca*. 1 min. at room temperature to remove any unreacted AsF₅. The sample was then placed under static vacuum and the pressure was monitored. No increase in pressure was observed, indicating the absence of a significant amount of unreacted AsF₅. The mass of the resulting blue powder (2.1398 g) corresponded closely to that expected for a quantitative preparation of C₁₀AsF₅ (2.1740 g). The C₁₀AsF₅ was stored under *ca*. 1000 Torr of dry nitrogen gas and was used without further characterization.
(viii) Preparation of trans-N₂F₂ and Investigation of cis-/trans-N₂F₂ Isomerization at Low Temperature in AsF₅-Acidified HF Solvent The *trans*-isomer of difluorodiazene, N_2F_2 was selectively prepared without the formation of a detectable amount of the *cis*-isomer from the reaction of N_2F_4 and the first stage graphite intercalate $C_{10}AsF_5$ using the method of Munch and Selig¹¹⁹ according to equation (2.3). In a nitrogen-filled glove bag, 0.3969 g (1.368 mmoi) of $C_{10}AsF_5$ was transferred to a vessel constructed from a fluorinated $\frac{1}{2}$ -in. o.d. FEP tube equipped with a Kel-F valve. $$C_{10}AsF_5 + N_2F_4 \longrightarrow C_{10}AsF_7 + trans-N_2F_2$$ (2.3) Tetrafluorohydrazine, $N_2F_4^{120}$ (1.312 mmol) was expanded into the manifold of a metal vacuum line and condensed onto the $C_{10}AsF_5$ at -196 °C. The reaction vessel was slowly warmed to room temperature with periodic agitation. The vessel was allowed to sit for 2 days with periodic shaking. The vessel was pumped under dynamic vacuum at -196 °C. The *trans*- N_2F_2 produced in this manner was allowed to remain over the AsF_5 intercalated graphite at room temperature. Transfers of *trans*- N_2F_2 were carried out by allowing the gas to expand from the reaction vessel at room temperature into the manifold of a metal vacuum line. The *trans*- N_2F_2 was then condensed into the appropriate reaction vessel at -196 °C. The purity of the *trans*- N_2F_2 was confirmed from the ¹⁹F NMR spectrum at room temperature in Freon-114 solvent (*ca.* 0.5 M), and consisted of the characteristic AA'XX' spectrum centered at $\delta(^{19}F) = 92.2$ ppm, as expected. ¹²¹ The ¹⁹F NMR resonance of the *cis*- isomer of N_2F_2 was not observed at *ca.* $\delta(^{19}F) = 133.7$ ppm, ¹²¹ indicating the selectivity of the reaction. The possibility of AsF₅-assisted isomerization of *trans*-N₂F₂ in HF was investigated at low temperature. The *trans*-isomer of N₂F₂ was expanded into the volume calibrated manifold (0.019 L) of a metal vacuum line at ambient temperature. Using the ideal gas approximation and the measured pressure, the quantity of *trans*-N₂F₂ in the manifold was determined to be 0.0882 mmol. The contents of the manifold was condensed into a 4-mm FEP tube containing approximately 0.4 mL of HF at -196 °C. Arsenic pentafluoride (0.808 mmol) was likewise expanded into the manifold and condensed into the FEP sample tube at -196 °C. The tube was warmed to -20 °C, whereupon a clear colorless solution was formed. The sample was kept at -20 °C for 5 min., and was then heat sealed at -196 °C under dynamic vacuum. Only *trans*-N₂F₂, HF and AsF₆⁻ were observed in the ¹⁹F NMR spectrum at -37 °C, indicating that *cis/trans*-N₂F₂ isomerization did not occur under these conditions. #### (ix) Purification of Ammonia_ Ammonia gas, NH₃ (Canadian Liquid Air, Ltd. or Matheson) was condensed from a gas cylinder into an ammonia drying tube at -78 °C containing freshly cut sodium metal (0.3 - 0.4 g; BDH Chemicals). Liquid ammonia (100 - 200 mL) was stored at -78 °C in a dry ice-acetone bath for at least one week prior to use. Transfers of ammonia gas directly from the storage vessel were performed under vacuum using all glass apparatus. ## (x) Preparation of ¹⁵N-Enriched (99.5 atom %) Ammonia The apparatus shown in Figure 2.7, which was modified from the literature, ¹²² was dried under vacuum for 12 h and back-filled with nitrogen gas. Nitrogen-15 enriched NH₃ was prepared according to equation (2.4). A solution of 99.5 atom % ¹⁵NH₄Cl (1.2083 g; MSD Isotopes or $$^{15}NH_4Cl + xs KOH \xrightarrow{H_2O} KCl + ^{15}NH_3$$ (2.4) Isotech, Inc.) in 10 mL of distilled water was prepared and pipetted into the round bottom flask of the apparatus. The apparatus was sealed using \(\frac{1}{2}\)-in. Teflon unions (Swagelok) as shown in Figure 2.7 and the pressure above the solution was decreased to 450 Torr of dry nitrogen with the U-trap immediately following the reflux column cooled to -196 °C. The stopcock immediately following the -196 °C U-trap was closed and the aqueous solution was gently heated with a heat gun to initiate gentle reflux, which slowly leached the KOH pellets (13.47 g) situated on platform B directly above the reaction flask into the solution, whereupon \(^{15}\)NH₃ gas was evolved from the aqueous solution and collected in the U-trap at -196 °C. After the reflux subsided, additional NH₃ Figure 2.7 Glass ammonia generator, (A) Approximately 50 mL round bottom flask, (B) platforms with 3 - 3.5 mm diameter holes to support KOH pellets, (C) condenser, (D) 3/8-in. Teflon unions (Swagelok) equipped with 3/8-in. Teflon compression fittings (Swagelok), (E) sections of 3/8-in. o.d. glass tubing, sealed at one end, (F) 6-mm glass J. Young stopcock with FEP barrel, (G) 4-in. Teflon unions (Swagelok) equipped with 4-in. Teflon compression fittings (Swagelok), (H) 120 or 300 mL glass flask. gas was liberated from the aqueous solution by cooling the solution to -78 °C and evacuating the vessel by quickly opening and closing the stopcock immediately following the 196 °C U-trap. Warming the solution until liquefaction resulted in condensation of additional ¹⁵NH₃ gas into the -196 °C U-trap. This was repeated until condensation of additional ¹⁵NH₃ was no longer observed in the -196 °C U-trap. The U-trap was warmed to -78 °C and the ¹⁵NH₃ was slowly condensed over *ca*. 3 h under static vacuum into a second U-trap at -196 °C. The second trap was warmed to -78 °C and the ¹⁵NH₃ was condensed under static vacuum into a preweighed 120 mL glass bulb at -196 °C. The glass bulb was warmed to room temperature and weighed; 0.3949 g of ¹⁵NH₃ was isolated (98.83 % yield). # (xi) Preparation of 99.5 atom % ¹⁵N Enriched [(CH₂)₃Si]₂NH The method of Sauer, 123 was modified for the synthesis of $[(CH_3)_3Si]_2^{15}NH$ from $^{15}NH_3$ gas and $(CH_3)_3SiCl$ using Freon-114 as solvent, according to equation (2.5) $$3^{15}NH_3 + 2 (CH_3)_3SiC1 \longrightarrow [(CH_3)_3SiJ_2^{15}NH + 2^{15}NH_4C1]$$ (2.5) Chlorotrimethylsilane (Aldrich) was purified by vacuum distillation into a dry glass bulb equipped with a grease-free 4-mm glass J. Young stopcock equipped with a Teflon barrel. By vacuum distillation, 1.6144 g (14.86 mmol) of (CH₃)₃SiCl was transferred into a dry glass H-vessel equipped with a medium porosity sintered glass frit between the two arms of the vessel (Figure 2.6). Freon-114 (16.3 g) was distilled onto the (CH₃)₃SiCl at -196 °C. A clear colorless solution resulted on warming to room temperature. Nitrogen-15 enriched NH₃ (0.3949 g, 21.92 mmol) was vacuum transferred onto the frozen solution of (CH₃)₃SiCl and Freon-114 (-196 °C). The vessel was allowed to warm slowly to ambient temperature with stirring. Upon liquefaction of the solvent, a white precipitate formed. After stirring for 7 days, the contents of the arm containing the white precipitate was cooled to -60 °C. With the other arm at -60 °C, the mixture was filtered, giving a clear colorless filtrate. The white precipitate was washed three times by repeated back-distilling of solvent (with the appropriate arms of the vessel at -40 and -60 °C) followed by filtration as above. The bulk of the solvent was back-distilled onto the residue after the last filtration, and the resulting clear liquid was distilled through a one-piece glass dual-trap apparatus (Figure 2.8), with the U-traps cooled to -40 and -196 °C. Pure $[(CH_3)_3Si]_2^{15}NH$ was collected in the -40 °C U-trap (1.0345 g, 87.2 % yield). The 1H NMR parameters are similar to those reported by Cowley *et al.* 124 (neat liquid at 25 °C): $\delta(^1H) = -0.61$ ppm (CH_3) , $^2J(^1H-^{29}Si) = 6.6$ Hz; $\delta(^1H) = 0.52$ ppm (NH), $^1J(^1H-^{15}N) = 63.1$ Hz. The -196 °C trap contained freon-114 (CF_2CICF_2CI) , $(CH_3)_3SiCI$, and a trace of $[(CH_3)_3Si]_2^{15}NH$. ## (xii) Preparation of F₅TeNHSi(CH₂)₃ The compound, F_5 TeNHSi(CH₃)₃, was prepared using the method of Seppelt *et al.*¹²⁵ with modifications, according to equation (2.6). In a typical preparation, [(CH₃)₃Si]₂NH $$TeF_6 + [(CH_3)_3Si]_2NH \longrightarrow F_5TeNHSi(CH_3)_3 + (CH_3)_3SiF$$ (2.6) (1.79946 g, 11.149 mmol; Aldrich) was vacuum distilled into a 40 mL Whitey 304 stainless steel cylinder equipped with a Whitey ORM 2 valve, cooled to -196 °C. The cylinder was passivated with fluorine gas (ca. 1000 Torr) prior to use. Tellurium hexafluoride was expanded into the volume calibrated (0.019 L) manifold of a metal vacuum line equipped with a 1.976 L nickel Figure 2.8 Glass dual U-trap apparatus; (A) glass H-vessel (see Figure 2.6), (B) ¹4-in. Teflon unions (Swagelok) equipped with ¹4-in. Teflon compression fittings (Swagelok), (C) 6-mm glass J. Young stopcock with FEP barrel, (D) 304 SS 40 mL cylinder (Whitey) equipped with a 316 SS valve (Whitey ORM 2). ballast can at ambient temperature (total volume, 1.995 L). The pressure of TeF₆ was converted to moles using the ideal gas approximation. A total pressure of 134 Torr (14.4 mmol) of TeF₆ was transferred into the cylinder, which was cooled to -196 °C. The cylinder was allowed to warm slowly to ambient temperature and then shaken mechanically for 1 week. Excess TeF₆ and (CH₃)₃SiF were pumped off at -50 °C. After no vapor pressure was detected, the cylinder was warmed to room temperature and subjected to vacuum distillation using a one-piece glass dual U-trap apparatus (Figure 2.8); the first trap (-30 °C) contained 2.365 g (68.2 % yield) of pure F₅TeNHSi(CH₃)₃ (checked by ¹⁹F and ¹H NMR). The explosive *cis*-F₄Te[N(H)Si(CH₃)₃]₂. ¹²⁵ which is often a minor product in the synthesis, was not observed in the ¹⁹F NMR spectra. The second trap (-196 °C) contained (CH₃)₃SiF, [(CH₃)₃Si]₂NH, and some products which were not identified. Seppelt¹²⁵ noted that the successful synthesis of F_5 TeNHSi(CH₃)₃ free from significant amounts of explosive cis- F_4 Te[N(H)Si(CH₃)₃]₂ required that the stainless steel reaction vessel be rinsed with
concentrated nitric acid between runs and the reaction be carried out at room temperature. In the present work, concentrated hydrochloric acid was substituted for nitric acid as the rinsing agent. # (xiii) Preparation of F₅TeNH₂ and F₅Te¹⁵NH₂ The compounds, F_5TeNH_2 and $F_5Te^{15}NH_2$, were prepared by a modification of the published synthesis. Typically $[(CH_3)_3Si]_2NH$ (0.7485 g, 4.637 mmol; Aldrich) and TeF_6 (6.056 mmol) were combined in a 40 mL Whitey 304 stainless steel cylinder for 1 week followed by vacuum distillation of all volatiles at -50 °C, as outlined above for the preparation of $F_5TeNHSi(CH_3)_3$. The compound, $F_5TeNHSi(CH_3)_3$, was allowed to react with HF in an (CH₃)₃SiF elimination reaction according to equation (2.7). Anhydrous HF (0.1705 g, 8.505 $$F_5$$ TeNHSi(CH₂)₃ + HF \longrightarrow F_5 TeNH₂ + (CH₃)₃SiF (2.7) mmol) was transferred by vacuum distillation into the cylinder at -196 °C. The cylinder was allowed to warm to ambient temperature and was mechanically agitated overnight. Volatiles were removed under vacuum at -78 and at -40 °C. The cylinder was warmed to 40 °C and the remaining material was sublimed under vacuum into a 4-in. o.d. FEP vessel cooled to -196 °C. A sticky white solid was isolated, identified by ¹⁹F NMR spectroscopy as F₅TeNH₂ (0.5688 g; 51.41% yield). ¹²⁵ The synthesis of F₅Te¹⁵NH₂ was identical to that of F₅TeNH₂, except that 99.5 atom % ¹⁵N enriched [(CH₃)₃Si]₂NH was used in the preparation of the former. The ¹⁵N enriched [(CH₃)₃Si]₂NH isolated in the -40 °C U-trap [see Section (B), Part (xi)] was condensed into the 40 mL stainless steel vessel attached to the dual trap apparatus depicted in Figure 2.8. The remainder of the procedure for the preparation of [¹⁵N]F₅TeNH₂ was identical to that for F₅TeNH₂. The compounds, F₅TeNH₂ and F₅Te¹⁵NH₂, were stored in FEP tubes inside the drybox. Transfers of the reagents were made from the FEP storage vessels inside the drybox. # (xiv) Preparation of F₅TeNH₃⁺AsF₆⁻ and F₅Te¹⁵NH₃⁺AsF₆⁻ The salt, F_5 TeNH₃⁺AsF₆⁻, was prepared from the reaction of F_5 TeNH₂ with excess AsF₅ in anhydrous HF solvent according to equations (2.8) and (2.9). In a typical preparation, $$F_5 TeNH_2 + (x + 1) HF \longrightarrow F_5 TeNH_3^+ F(HF)_x^-$$ (2.8) $$F_5 \text{TeNH}_3^+ F(\text{HF})_x^- + \text{AsF}_5 \longrightarrow F_5 \text{TeNH}_3^+ \text{AsF}_6^- + x \text{ HF}$$ (2.9) 1.1873 g (4.9758 mmol) of F₅TeNH₂ was placed in a ½-in. o.d. FEP tube which was flared (45° SAE) and connected by means of compression fittings to a Whitey ORM 2 316 stainless steel valve. Anhydrous HF (4 mL) was distilled onto the F₅TeNH₂ (-196 °C). Warming to -78 °C resulted in a colorless solution. Arsenic pentafluoride (6.1 mmol) was condensed onto the frozen solution at -196 °C. Warming to -55 °C resulted in a colorless solution. Excess AsF₅ was removed under vacuum at -78 °C. The HF solvent was removed under vacuum at -40 °C until 2.0442 g of a white powder remained (96% yield), with no detectable vapor pressure at this temperature. The salt, F₅TeNH₃⁺AsF₆⁻, is stable indefinitely under anhydrous conditions at room temperature and hydrolyzes rapidly in the presence of water. The preparation of $F_5Te^{15}NH_3^+AsF_6^-$ was identical to that described for $F_5TeNH_3^+AsF_6^-$ using $F_5Te^{15}NH_2$ as the starting material. The salts were stored at room temperature in $\frac{1}{2}$ -in. or $\frac{1}{2}$ -in. o.d. FEP tubes inside a nitrogen-filled drybox. Transfers of the salts were made directly from the storage vessels inside the drybox. # (xv) Preparation of F_5 TcNH₃⁺As(OTcF₅)₆⁻ In a '4-in. o.d. FEP tube equipped with a Kel-F valve, F_5 TeOH (0.09635 g, 0.4021 mmol) was combined with As(OTe F_5)₅ (0.49494 g, 0.39037 mmol) and F_5 TeNH₂ (0.10858 g, 0.45504 mmol) at -196 °C. The solvent, SO₂CIF, was vacuum distilled onto the reagents at -196 °C, giving a clear colorless solution on warming to -78 °C. (ca. 0.7 M). The SO₂CIF solvent was removed at -32 °C under vacuum, leaving a sticky white precipitate. A finely divided white powder resulted on further vacuum pumping at -45 °C for 2 h. #### (xvi) Sulfur trioxide Sulfur trioxide, SO₃ (Sulfan B; Allied Chemical) was heated to ca. 65 °C for 2 h to effect depolymerization. ¹²⁶ The liquified SO₃ was then poured into a dry evacuated round bottom flask equipped with a greaseless 6-mm glass J. Young stopcock equipped with a Teflon barrel and used without further purification. #### (xvii) Preparation of S₂O₅F₂ The anhydride of fluorosulfuric acid, S₂O₅F₂, was prepared, with modification, using the method of Gillespie and Rothenbury, ¹²⁷ by the reaction of excess SO₃ with SbF₅. The reactions were conducted in the vessel depicted in Figure 2.9. Two 3/8-in. o.d. FEP tubes were sealed at one end and fused to lengths of ½-in. o.d. FEP tubing. The tubes were joined using a ½-in. Teflon T-piece union (Swagelok) with Teflon compression fittings (Swagelok). A Kel-F valve was attached as shown in Figure 2.9. In a typical preparation, SbF₅ (12.0880 g, 0.0557713 mol) was syringed into the FEP tube to be attached at 90° to the Kel-F valve inside a dry nitrogen-filled glove bag. Sulfur trioxide (*ca.* 16 mL) was vacuum sublimed through an all glass apparatus into the FEP tube to be attached at 180° to the Kel-F valve. The SbF₅ was gently heated with a heat gun and poured onto the SO₃ at 50 °C. After 5 h at 50 °C with intermittent shaking, a clear liquid below a white solid resulted. The liquid was vacuum distilled into a dry ½-in. o.d. FEP tube equipped with a Kel-F valve containing approximately an equal volume of H₂SO₄ (>99%, Fisher Scientific) to remove excess SO₃. The white solid, reported to consist mainly of antimony oxides, ¹²⁷ did not Figure 2.9 FEP T-vessel for preparation of S₂O₅F₂; (A) 3/8-in. o.d. FEP tubing, heat-scaled at one end, (B) 3/8-in. Teflon T (Swagelok) equipped with Teflon 3/8-in. compression fittings (Swagelok), (C) 3/8-in. FEP tubing drawn down to 4-in. o.d. using a Bunsen flame for attachment by a flare fitting (45° SAE) to a Kel-F valve, (D) Kel-F valve in aluminum casing. transfer under vacuum. Two liquid phases resulted after 1 h at 55 °C. Some white solid (assumed to be SO_3) was observed at the interface of the two liquids. After mixing intermittently at 55 °C for several hours, the volatile contents of the tube were vacuum distilled onto a second approximately equal volume of >99% H_2SO_4 . After mixing at 55 °C for several hours, the white solid at the liquid interface had dissolved, leaving two liquid phases. The volatile layer (low density phase) was vacuum distilled into a dry ½-in. o.d. FEP tube equipped with a Kel-F valve and shown to be pure $S_2O_5F_2$ (8.3798 g; 33% yield based on SbF_5) from the gas phase infrared spectrum 128 (3 Torr pressure, 1 dm pathlength, AgCl windows). # (xviii) Preparation of 99.5 atom% ¹⁵N Enriched FO₂SNH₂ The compound, $FO_2S^{15}NH_2$, was prepared by the reaction of $^{15}NH_3$ and $S_2O_5F_2^{-129}$ at low temperature in diethyl ether solvent according to equation (2.10). In a typical preparation, $$2^{15}NH_3 + S_2O_5F_2 \longrightarrow FO_2S^{15}NH_2 + {}^{15}NH_4 + SO_3F$$ (2.10) S₂O₅F₂ (3.9559 g, 21.722 mmol) was vacuum distilled into an arm of a glass H-vessel (Figure 2.6). Diethyl ether (34 mL) was vacuum distilled onto the S₂O₅F₂ at -196 °C. A colorless solution resulted on warming to room temperature. Under static vacuum, 99.5 atom % ¹⁵N enriched NH₃ (0.7890 g, 43.80 mmol) was condensed into the empty arm of the H-vessel at -196 °C. Both arms of the H-vessel were cooled to -78 °C for 3 days. The arm containing the ether/S₂O₅F₂ solution was warmed to -60 °C and the arm containing the ¹⁵NH₃ was warmed to -45 °C. The middle stopcock was opened and with constant stirring by means of a magnetic stir bar and intermittent opening and closing of the middle stopcock, the ¹⁵NH₃ had essentially completely reacted after ca. 0.5 h, as indicated by the almost complete consumption of the pool of liquid $^{15}\mathrm{NH_3}$ in the -45 °C arm. This was accompanied by the development of a white precipitate in the ether solution. The other solution was then frozen at -196 °C to condense any unreacted ¹⁵NH₃ gas into the arm containing the frozen ether solution, and the middle stopcock was closed. The ether solution was warmed to -60 °C for an additional 0.5 h with constant stirring. The empty arm of the H-vessel was cooled to -78 °C, and with the arm containing the ether solution at room temperature, the middle stopcock was opened and the ether solution was filtered through the medium porosity sintered glass frit; however, filtration was slow. It was necessary to slightly warm the frit with a heat gun to prevent freezing of the FO₂S¹⁵NH₂ (m.p., 8 °C)¹²⁹ upon evaporation of the diethyl ether from the frit. Filtration required ca. 2 h to complete. The white precipitate was washed by back-distilling diethyl ether into the arm. This was facilitated with a -79 / 25 °C temperature gradient. After washing the precipitate, four additional filtrations and washings were performed using the conditions described above. After an additional filtration, the ether solution was pipetted into a one-piece glass distillation vessel (Figure 2.10) in a dry nitrogen-filled glove bag. Most of the diethyl ether was removed under vacuum at 0 °C, leaving a yellow viscous liquid. The liquid was distilled under static vacuum while heating the liquid gently with a heat gun and cooling the distillate receptacle to -196 °C. A clear liquid distillate was isolated, leaving behind a solid yellow residue. The distillate was then pumped at 0 °C for 2 h under dynamic vacuum, and redistilled at room temperature under dynamic vacuum in a micro-distillation apparatus (Figure 2.11); 0.6859 g of a colorless liquid was isolated. ¹H NMR (CD₃C≡N solution): doublet of doublets, $\delta(^{1}\text{H}) = 6.79 \text{ ppm}, \ ^{1}J(^{1}\text{H}-^{15}\text{N}) = 86.7 \text{ Hz}, \
^{3}J(^{1}\text{H}-^{19}\text{F}) = 6.1 \text{ Hz}. \text{ Multiplets at } \delta(^{1}\text{H}) = 1 - 5 \text{ ppm}$ indicated the presence of residual organic material (ca. 5 - 10%). ¹⁹F NMR: triplet of doublets, $\delta(^{19}\text{F}) = 56.78 \text{ ppm}, ^2J(^{19}\text{F}-^{15}\text{N}) = 2.7 \text{ Hz}, ^3J(^{19}\text{F}-^{1}\text{H}) = 6.3 \text{ Hz}.$ The Raman spectrum (neat متية Figure 2.10 Glass distillation apparatus used to fractionate FO₂SNH₂ and ¹⁵N-enriched FO₂SNH₂; (A) 250 mL round bottom flask, (B) Teflon-coated magnetic stir bar, (C) entrance for stir bar after annealing of glass apparatus (now sealed), (D) 6-mm glass J. Young stopcock with FEP barrel, (E) ¹4-in. o.d. glass tubing, (F) receptacle arm tapered to allow removal of distillate by pipet. liquid) was similar to the infrared spectrum of $FO_2SNH_2^{130}$ with residual organic impurities containing ether groups. Raman bands of impurity (relative intensities): 2991.9 (5.2), 2952.4 (10.0), 2941.8 (6.2), 2910.6 (2.3), 2885.7 (2.3), 2735.0 (0.4), 1458.1 (1.7), 1449.2 (1.6), 1104.2 (1.6), 1074.8 (1.2), 1061.4 (0.6), 1050.3 (0.3), 689.0 (0.6), 658.9 (0.4), 594.8 (0.7), 577.3 (0.9), 408.1 (1.5), 395.0 (2.1), 336.3 cm⁻¹ (3.1). Multiple distillations did not remove the residual organic impurity. #### (xix) Preparation of FO₂SNH₂ Natural abundance $FO_2SNH_2^{133,134}$ was prepared according to equations (2.11) and (2.12) $$ClC_2SNCO + NaF \longrightarrow NaCl + FO_2SNCO$$ (2.11) $$FO_2SNCO + H_2O \longrightarrow [FO_2SN(H)C(O)OH] \xrightarrow{\Delta} FO_2SNH_2 + CO_2$$ (2.12) In a typical preparation, chlorosulfuryl isocyanate, ClO₂SNCO (14.0027 g; Aldrich) was pipetted into a 250 mL glass distillation vessel (Figure 2.10) in a dry nitrogen-filled glove bag. Dry acetonitrile (50 mL) was vacuum distilled onto the ClO₂SNCO at -196 °C. A clear solution resulted at room temperature, which turned pale yellow after 1 h. Dry NaF (4.4496 g; J.T. Baker) was added to the solution under a dry nitrogen atmosphere with stirring by means of a magnetic stir bar. The solution immediately became intense yellow. The vessel was closed and the reaction mixture was heatc-1 at 70 °C for 2.5 h. The contents of the vessel were frozen at -78 °C and 1.782 g of distilled water was added to the empty arm of the reaction vessel with a pipet. Figure 2.11 Glass micro-distillation apparatus used to fractionate FO₂SNH₂; (A) 50 mL round bottom flask, (B) Teflon coated stir bar, (C) 4-mm glass J. Young stopcock with FEP barrel, (D) ¼-in. o.d. glass tubing, (E) condenser, (F) thermocourle inlet for temperature determination, (G) B19 ground glass joint, lubricated with Apiczon "N" grease, (H) ¼-in. Teflon unions (Swagelok) equipped with ¼-in. Teflon compression fittings (Swagelok), (I) glass tapered receiving tubes. With both arms of the vessel cooled to -78 °C, the reaction vessel was evacuated. The acetonitrile solution was cooled to -196 °C and the arm containing the water was warmed to room temperature. The water sublimed to the walls immediately above the frozen acetonitrile solution, where it immediately froze. The vessel was back-filled with approximately 760 Torr of nitrogen gas and the arm of the vessel containing the reagents was allowed to slowly warm to room temperature. The pressure of the system was monitored by leaving the vessel open to the mercury manometer of a glass vacuum line. As the water melted, immediate bubbling with an increase in pressure of 10 Torr occurred each time a drop of water was added to the stirred yellow reaction mixture. The pressure increase resulting from the evolution of CO2 gas upon decomposition of the unstable carbamic acid, FO₂SN(H)C(O)OH, according to equation (2.12), was released by opening the stopcock to the vacuum line until the total pressure of the reaction vessel was reduced to ca. 760 Torr. Shortly after the addition of the water was complete, the large increases in pressure ceased. The pressure was monitored and occasionally adjusted to ca. 760 Torr while the solution was heated to 70 °C with constant stirring for 2 h. No significant increase in pressure was observed during this time. The vessel was cooled to 0 °C and most of the CH₃C≡N solvent was removed under dynamic vacuum. After ca. 1 h, a yellow mixture of liquid and solid material remained. The empty arm of the vessel was cooled to -196 °C while under static vacuum and the yellow material was gently warmed with a heat gun. A colorless liquid distillate was collected, leaving behind a yellow powder. The colorless distillate was redistilled under dynamic vacuum at room temperature using the micro-distillation apparatus depicted in Figure 2.11. Pure FO₂SNH₂ (4.3908 g, 45% yield based on FO₂SNCO) was obtained. ¹H NMR (neat liquid): $\delta(^1H) = 5.41$ ppm (singlet). ¹⁹F NMR (neat liquid): 56.52 ppm (singlet). The FO₂SNH₂ was stored in a 4-in. o.d. FEP vessel in the drybox. Transfers of FO₂SNH₂ were carried out by pipetting the colorless liquid directly from the FEP storage vessel inside the drybox. # (xx) Preparation of Natural Abundance and 99.5 % 15N-Enriched FO₂SNH₃+AsF₆- The natural abundance and 99.5 % 15 N-enriched salts, FO₂SNH₃⁺AsF₆⁻, were prepared from the reaction of AsF₅ with FO₂SNH₂ or FO₂S¹⁵NH₂ in HF solvent at -40 °C [equation (2.13)] $$FO_2SNH_2 + HF + AsF_5 \longrightarrow FO_2SNH_3^+AsF_6^-$$ (2.13) In a typical preparation, natural abundance FO_2SNH_2 (0.3056 g, 3.084 mmol) was pipetted into a '4-in. o.d. FEP tube equipped with a Kcl-F valve. Approximately 0.6 mL of anhydrous HF was condensed onto the FO_2SNH_2 at -196 °C. Warming to -78 °C resulted in a clear colorless solution. The contents of the tube were cooled to -196 °C and 3700 Torr of AsF_5 was expanded into the manifold of a metal vacuum line (manifold volume = ca. 19 mL). The AsF_5 was condensed into the tube at -196 °C (3.8 mmol AsF_5 transferred using the ideal gas approximation). Upon warming to -78 °C with constant agitation of the reaction tube, a white precipitate formed with a colorless supermatant. The HF was pumped off at -40 °C over 2 h, resulting in a finely divided white powder (0.7923 g; 88.91% yield). # (C) PREPARATION OF THERMALLY UNSTABLE XENON-NITROGEN AND XENON-OXYGEN BONDED CATIONS The xenon-nitrogen bonded cations FO₂SN(H)-Xe⁺ and F₅TeN(H)-Xe⁺ were prepared by combining stoichiometric amounts of FO₂SNH₂ or F₅TeNH₂ with XeF⁺AsF₆⁻ in HF solvent at -196 °C followed by warming to -50 to -30 °C to effect reaction and dissolution. Alternatively, the xenon-nitrogen bonded cations $FO_2SN(H)-Xe^+$ and $F_5TeN(H)-Xe^+$ and the xenon-oxygen bonded cation $CF_3C(OXeF)NH_2^+$ were prepared by combining the hexafluoroarsenate salts of the protonated ligands, namely $FO_2SNH_3^+AsF_6^-$, $F_5TeNH_3^+AsF_6^-$ and $CF_3C(OH)NH_2^+AsF_6^-$ with stoichiometric amounts of XeF_2 in BrF_5 solvent at -196 °C followed by warming to -65 to -50 °C to effect reaction and dissolution. The cation $F_5TeN(H)-Xe^+$ was also prepared by combining stoichiometric amounts of $F_5TeNH_3^+As(OTeF_5)_6^-$ and $Xe(OTeF_5)_2$ in SO_2ClF solvent at -196 °C followed by warming to -60 °C to effect reaction and dissolution. The xenon-nitrogen and xenon-oxygen bonded cations were characterized in solution by ^{129}Xe , ^{15}N , ^{19}F , ^{1}H , ^{125}Te and ^{13}C NMR spectroscopy and in the solid state by Raman spectroscopy. ### (i) Preparation and Isolation of CF₃C(OXeF)NH₂⁺AsF₆⁻ Solid samples of CF₃C(OXeF)NH₂⁺AsF₆⁻ were prepared and characterized by low-temperature Raman spectroscopy. In a typical preparation, 0.1987 g (1.758 mmol) CF₃C(O)NH₂ was dissolved in ca. 1 mL of anhydrous HF at -50 °C in a prefluorinated reaction vessel constructed from a ¹4-in. o.d. FEP tube equipped with a Kel-F valve. The tube was cooled to -196 °C and 0.5970 g (1.760 mmol) of XeF⁺AsF₆⁻ was added. The sample was warmed to -50 °C with agitation, whereupon approximately 95% of the white solid material dissolved. The supernatant was pale yellow. It was necessary to remove the HF solvent under vacuum very slowly to prevent precipitation of the CF₃C(OH)NH₂⁺AsF₆⁻XeF₂xHF adduct [see Part (iii) of this Section]. The sample was slowly pumped under dynamic vacuum, reducing the solvent volume by ca. 75% after 3 h. At this point all of the solid dissolved, and the solution was pale yellow. After a further 3 h of pumping under dynamic vacuum, a free flowing white powder remained. The Raman spectrum indicated the presence of solvated HF from the broad peaks at 3150, 3175, and 3299 cm⁻¹, assignable to HF hydrogen bonded to the amido group. This assignment was made by analogy with bands at 3250, 3393 and 3526 cm⁻¹ observed in the infrared ectrum of CF₃C(O)NH₂ and HF condensed on a CsI window at 12 K.¹³⁵ The HF was removed by pumping at -50 °C for 14.5 h using a glass vacuum line and an intermediate copper U-trap (-196 °C) for HF trapping. Removal of HF was confirmed by the absence of the peaks attributable to hydrogen bonded HF in the low temperature Raman spectrum. # (ii) Preparation of NMR Samples of CF₃C(OXcF)NH₂⁺AsF₆⁻ The CF₃C(OXeF)NH₂⁺ cation was characterized in BrF₅ solution by ¹H, ¹³C, ¹⁹F and ¹²⁹Xe NMR spectroscopy. The salt, CF₃C(OH)NH₂⁺AsF₆⁻, (0.01668 g, 0.05504 mmol) was transferred into a 4-mm o.d. FEP tube; the tube was cooled to -196 °C and XeF₂ (0.00985 g, 0.0582 mmol) was added. Bromine pentafluoride (0.3 mL) was condensed onto the walls of the tube above the reagents at -196 °C. The BrF₅ slowly melted upon warming the tube to -60 °C. After agitating for approximately 10 min. at -55 °C, a pale yellow solution resulted. A similar procedure was followed using a 9-mm o.d. FEP tube, and the amounts of reagents were 0.13405 g (0.44250 mmol) CF₃C(OH)NH₂⁺AsF₆⁻, 0.0840 g (0.496 mmol) XeF₂ and 1.7 mL of BrF₅. The tubes were heat sealed under dynamic vacuum at -196 °C and stored at this temperature prior to recording their NMR spectra at -60 to -50 °C. # (iii) Preparation and Isolation of CF₃C(OH)NH₂⁺AsF₆⁻:XcF₂
xHF In a typical preparation, $CF_3C(OH)NH_2^+AsF_6^-$ (0.0919 g, 0.303 mmol) and XeF_2 (0.0516 g, 0.305 mmol) were combined in a 4-mm o.d. FEP tube at -196 °C and dissolved in ca. 0.4 mL of anhydrous HF at -50 °C, following the same procedure as was used in the preparation of CF₃C(OXeF)NH₂⁺AsF₆⁻ [see Part (i) of this Section]. Alternatively, the reaction of equimolar amounts of CF₃C(O)NH₂ and XeF⁺AsF₆⁻ resulted in the isolation of the same product. The solvent was rapidly pumped off at -50 °C, resulting in the isolation of a free flowing white powder after 1 h. The Raman spectrum (-160 °C) was consistent with the formulation CF₃C(OH)NH₂⁺AsF₆⁻·XeF₂×HF. The sample was further pumped for 28 h at -50 °C using a glass vacuum line with an intermediate copper U-trap (-196 °C). The Raman spectrum (-160 °C) was still consistent with the formulation, CF₃C(OH)NH₂⁺AsF₆⁻·XeF₂·xHF. Anhydrous HF was then condensed onto the white solid at -196 °C, giving a pale yellow solution after periodic agitation for 15 min at -50 °C (0.55 mL volume). After slow removal of the solvent under dynamic vacuum for 4 h, a white free flowing powder was isolated. The low temperature Raman spectrum was consistent with the formulation CF₃(OXeF)NH₂⁺AsF₆⁻. # (iv) Preparation and Isolation of F₅TeN(H)-Xe⁺AsF₆⁻ and [¹⁵N]F₅TeN(H)-Xe⁺AsF₆⁻ A typical preparation involved combining XeF_2 (0.0660 g, 0.390 mmoi) and $F_5TeNH_3^+AsF_6^-$ (0.1716 g, 0.3995 mmol) in a 4-mm o.d. FEP tube fused to a '4-in. (7-mm) o.d. T-piece with a Kel-F valve (Figure 2.12). The 4-mm o.d. tube was maintained at -196 °C to prevent reaction of the solids. Anhydrous HF (0.5 mL) was vacuum distilled onto the reagents, resulting in a colorless solution at -40 °C. The solution was warmed to -36 °C, resulting in a pale yellow solution after 5 minutes. The yellow color is attributed to the formation of the $F_5TeN(H)$ - Xe^+ cation in solution. Alternatively, stoichiometric amounts of $XeF^+AsF_6^-$ and F_5TeNH_2 combined in HF solvent as described above result in the generation of the $F_5TeN(H)$ - Xe^+ cation in solution. After 40 minutes, a deposit of orange crystals with a pale yellow supernatant was present. The sample was cooled to -40 °C, resulting in the precipitation of more crystals of the Figure 2.12 FEP vessel for isolation of F₅TeN(H)-Xe⁺AsF₆; (A) 4-mm o.d. FEP tube scaled at one and heat-fused to 4-in. (7-mm) o.d. FEP tubing at the other, (B) 4-in. (7-mm) o.d. FEP tubing, (C) T connection formed by heat-fusing three 4-in. o.d. FEP tubes, (D) end heat-scaled, (E) Kel-F valve in aluminum casing. same morphology and color after 10 minutes. Samples were not cooled below -40 °C since pale yellow and white crystalline materials began to precipitate. The '4-in. o.d. FEP T-piece was cooled to -78 °C, and the yellow supernatant was decanted into the '4-in. o.d. tube. Care was taken to prevent warming of the orange crystals above -40 °C, since decomposition occurred. Both ends of the FEP apparatus were cooled to -196 °C, and the tube containing the supernatant was separated from the apparatus using a heat seal. The crystalline precipitate was pumped on at -50 °C for 20 h using a glass vacuum line with an intermediate copper U-trap cooled to -196 °C to remove any remaining HF solvent. Raman spectra were obtained by insertion of the 4-mm o.d. reaction vessel containing the yellow-orange solid directly into the laser beam at low temperature. Violent photodegradation occurred on a sample using a 514.5-nm laser power of 250 mW with the sample at -140 °C. Routine spectra were obtained without decomposition at -160 to -165 °C using laser powers of ≤ 210 mW. Attempts to mount crystals of F_5 TeN(H)-Xe⁺As F_6 ⁻ in glass or quartz capillaries at low temperature failed due to their thermal instability; rapid decomposition occurred above -30 °C. Identical procedures were used for the preparation and characterization of the F_5 TeN(H)-Xe⁺As F_6 ⁻ and [15 N] F_5 TeN(H)-Xe⁺As F_6 ⁻ salts. # (v) Preparation of NMR Samples of F_5 TeN(H)Xe⁺As F_6 and $[^{15}N]F_5$ TeN(H)Xe⁺As F_6 Identical conditions were used to prepare NMR samples of F₅TeN(H)-Xe⁺AsF₆⁻ and [¹⁵N]F₅TeN(H)-Xe⁺AsF₆⁻ for characterization by ¹⁹F, ¹H, ¹²⁵Te, ¹²⁹Xe and ¹⁵N NMR spectroscopy. Samples for NMR in HF solvent typically were prepared by combining stoichiometric amounts of F₅TeNH₂ (0.02567 g, 0.1076 mmol) with XeF⁺AsF₆⁻ (0.03630 g, 0.1070 mmol) in a 4-mm o.d. FEP tube at -196 °C, followed by vacuum distillation of HF (ca. 0.2 mL) into the tube. A sample prepared in a 9-mm o.d. FEP tube typically contained 0.1428 g (0.5984 mmol) of F_5 TeNH₂ and 0.2010 g (0.5926 mmol) of $XeF^+AsF_6^-$ combined with ca. 1.5 mL of HF solvent. The tubes were sealed under vacuum at -196 °C, and warming to -35 °C for ca. 50 minutes effected reaction are dissolution, resulting in pale yellow solutions which often contained white and yellow crystalline precipitates. Spectra were typically run at temperatures between -45 and -32 °C. Samples of identical composition were prepared by combining similar molar quantities of F_5 TeNH₃⁺AsF₆⁻ and XeF_2 in HF solvent under the same conditions. Samples for NMR spectroscopy in BrF₅ solvent were prepared by combining at -196 °C similar molar amounts of F₅TeNH₃⁺AsF₆⁻ and XeF₂ as used in the preparations of the 4- and 9-mm o.d. FEP samples in HF solvent (see above, this Section). Approximately 0.3 and 1.5 mL volumes of BrF₅ solvent were then vacuum distilled into the 4-mm and 9-mm o.d. FEP tubes, respectively, at -196°C. After sealing under dynamic vacuum at -196 °C, the tubes were warmed to -40 °C for 10 min., resulting in pale yellow solutions. NMR spectra were run at temperatures between -58 and -44 °C. Complete decomposition of the BrF₅ solutions of F₅TeN(H)-Xe⁺ had occurred after several hours at -44 °C, as determined by ¹⁹F NMR spectroscopy, resulting in pale purple colored solutions. #### (vi) Attempted Preparation of NMR Samples of F₅TeN(H)-Xc-F (a) Reaction of XeF_2 and F_5TeNH_2 . Xenon difluoride (0.01570 g, 0.09274 mmol) and F_5TeNH_2 (0.02074 g, 0.08692 mmol) were combined at -196 °C in a 4-mm. o.d. FEP tube equipped with a Kel-F valve. Sulfuryl chlorofluoride solvent was distilled in at -196 °C and the tube was heat sealed under dynamic vacuum. The sample was warmed to -25 °C, whereupon the XeF₂ remained undissolved, and ¹⁹F NMR indicated no F_5Te - group present except that of F_5 TeNH₂. Warming to -12 °C resulted in dissolution of the XeF₂ to give a colorless solution. Fluorine-19 NMR indicated the presence of unreacted F_5 TeNH₂ and XeF₂. No change in the ¹⁹F NMR spectrum was observed after warming the sample to 0 °C for 10 minutes. The absence of TeF₆ in the ¹⁹F NMR indicated that no fluorination of the F_5 TeNH₂ by the solvent or XeF₂ occurred in this temperature range. Further warming of the sample was not attempted. (b) Reaction of F_5 TeNHSi(CH₃)₃ and XeF_2 . The compound F_5 TeNHSi(CH₃)₃ (0.05346 g, 0.1076 mmol) was pipetted into a 4-mm o.d. FEP tube equipped with a Kel-F valve. The tube was cooled to -196 °C and XeF_2 (0.01898 g, 0.1121 mmol) was added. Sulfuryl chlorofluoride solvent was distilled into the tube at -196 °C, and the tube was heat sealed under vacuum as above. The ¹⁹F NMR spectrum indicated no reaction upon warming to -12 °C, and resulted in a colorless solution. The absence of TeF_6 and $(CH_3)_3$ SiF in the ¹⁹F NMR spectrum indicated that F_5 TeNHSi(CH₃)₃ was stable to fluorination by XeF_2 and the solvent at -12 °C. Further warming of the sample was not attempted. ## (vii) Preparation of NMR Samples of F₅TeN(H)Xe⁺As(OTeF₅)₆ in SO₂ClF Solvent In a typical preparation, 0.11810 g (0.067637 mmol) of F₅TeNH₃⁺As(OTeF₅)₆⁻ was loaded into a 4-mm o.d. FEP tube equipped with a Kel-F valve. The vessel was cooled to -196 °C and 0.03902 g (0.06413 mmol) of Xe(OTeF₅)₂ was added. Sulfuryl chloride fluoride solvent was vacuum distilled into the vessel at -196 °C. The FEP tube was heat sealed under dynamic vacuum at -196 °C followed by warming to -78 °C, which resulter 'n a clear colorless solution (*ca.* 0.2 M). The ¹⁹F, ¹H, and ¹²⁹Xe NMR spectra were initially obtained at -61 °C. Although the solution was initially colorless at this temperature, after 2 h the solution became pale yellow in color. Exchange in the F-on-Te(VI) region complicated the interpretation of the ¹⁹F NMR spectra; however, cooling to -115 °C substantially slowed the exchange without precipitation of the reagents, allowing the assignment of most of the resonances. # (viii) Preparation of NMR Samples of FO₂SN(H)-Xc⁺AsF₆⁻ and [¹⁵N]FO₂SN(H)-Xc⁺AsF₆⁻ The FO₂SN(H)-Xe⁺ cation was generated in BrF₅ solvent and characterized by ¹²⁹Xe, ¹⁹F, and ¹H NMR spectroscopy. Samples were typically prepared by combining 0.0563 g (0.195 mmol) of FO₂SNH₃⁺AsF₆⁻ and 0.0377 g (0.223 mmol) of XeF₂ at -196 °C in a 4-mm o.d. FEP tube equipped with a Kel-F valve. Bromine pentafluoride was vacuum distilled onto the reagents at -196 °C and the sample tube was sealed under vacuum at -196 °C. Warming to -56 °C resulted in the formation of a pale yellow solution (*ca.* 1 M). Dissolution of the XeF₂ crystals required agitation for *ca.* 10 min. at this temperature. NMR spectra were recorded at -58 to -60 °C. Samples in 9-mm o.d. FEP tubes were prepared by combining 0.1219 g (0.4218 mmol) of FO₂SNH₃⁺AsF₆⁻ and 0.0713 g (0.421 mmol) of XeF₂ in BrF₅ solvent (*ca.* 0.27 M) under identical conditions. #### (D) NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY #### (i) <u>Instrumentation</u> All NMR spectra were recorded unlocked (field drift < 0.1 Hz h⁻¹) with the use of Bruker AC-200 (4.6975 T), AC-300 (7.0463 T), and AM-500 (11.7440 T) spectrometers equipped with Aspect 2000 or 3000 computers. Spectra were recorded on samples in heat sealed 9-mm o.d. or 4-mm o.d. FEP NMR tubes as described below. The FEP sample tubes were placed inside 10-mm o.d. or 5-mm o.d. Wilmad precision thin wall glass NMR tubes
before being placed in the probe of the NMR spectrometer. The ¹²⁹Xe, ¹⁵N, ¹²⁵Te and ¹³C NMR spectra were recorded at 11.7440 T in 9-mm o.d. FEP sample tubes (HF, BrF₅ and SO₂ClF solvents) using a 10-mm VSP probe (broad-banded over the frequency range 23 - 202 MHz) tuned to 139.051 (¹²⁹Xe), 50.698 (¹⁵N), 157.795 (¹²⁵Te) or 125.760 (¹³C) MHz, respectively. Xenon-129 and ¹H NMR spectra of the FO₂SN(H)-Xe⁺ and F₅TeN(H)-Xe⁺ cations were also recorded at 7.0463 T in 9-mm FEP tubes (HF solvent) on a 10-mm VSP probe (broad-banded over the frequency range 14 - 121 MHz) tuned to 83.445 (¹²⁹Xe) and 300.144 MHz (¹H) to reduce SA broadening effects which are observed at 11.7440 T. Fluorine-19 (470.599 MHz) and proton (500.138 MHz) spectra were generally recorded at 11.7440 T in 4-mm o.d. FEP tubes (HF, BrF₅ and SO₂ClF solvents) using a 5-mm dual ¹H/¹⁹F probe, except for the ¹H NMR spectra of F₅TeNH₂ and [¹⁵N]F₅TeNH₂, which were recorded at 4.6975 T (200.133 MHz) in 4-mm o.d. FEP sample tubes (CD₂Cl₂ solvent) using a 5-mm ¹H probe. Xenon-129 NMR spectra at 11.7440 T were recorded using 16 - 64 K data points with a spectral width of 50 - 100 kHz and with acquisition times of 0.333 - 0.164 s and data point resolutions of 3.0 - 6.1 Hz/pt (1500 - 21,000 scans). Xenon-129 NMR spectra recorded at 7.0463 T were acquired using 8 K data points with a spectral width of 8474 Hz, an aquisition time of 0.483 s and a data point resolution of 2.1 Hz/pt (19,573 scans). Fluorine-19 NMR spectra were recorded using 1 - 64 K data points with spectral width settings of 2 - 125 kHz, acquisition times of 0.256 - 0.262 s, and data point resolutions of 3.8 - 3.9 Hz/pt (4500 - 11,000 scans). Carbon-13 NMR spectra were recorded using 32 K data points, a spectral width of 50 kHz, an acquisition time of 0.328 s, and a data point resolution of 3.1 Hz/pt (11,475 - 57,000 scans). Proton spectra at 11.7440 T were recorded using 16 - 32 K data points, spectral widths of 10 kHz, acquisition times of 1.638 - 0.820 s and data point resolutions of 0.61 - 1.22 Hz/pt (200 - 400 scans). Proton NMR spectra at 4.6975 T were recorded using 4 - 32 K data points, spectral widths of 3 - 5 kHz, acquisition times of 0.684 - 1.638 s and data point resolutions of 0.3 - 1.5 Hz/pt (140 - 230 scans). Nitrogen-15 NMR spectra were recorded using 32 K data points, a spectral width of 25 kHz, an acquisition time of 0.655 s and a data point resolution of 1.52 Hz/pt (300 - 500 scans). Tellurium-125 NMR spectra were recorded using 32 - 64 K data points, a spectral width range 25 - 50 kHz, an acquisition time of 0.333 - 0.655 s, and a data point resolution of 1.5 - 3.0 Hz/pt (7000 - 40,850 scans). Proton-fluorine heteronuclear 2D NOESY spectra of CF₃C(OH)NH₂⁺AsF₆⁻ and CF₃C(OXeF)NH₂⁺AsF₆⁻ in BrF₅ solvent were recorded in the absolute value mode using the pulse sequence reported by Yu and Levy. ¹³⁶ Spectra were acquired in 16 scans for each of the 128 free induction decays that contained 2K data points in F2 (¹⁹F dimension) over a 5 kHz spectral width. The ¹⁹F 90° pulse width was 14.3 μs while the ¹H 90° pulse width through the decoupler channel was 9.0 μs. A 1.0 s relaxation delay was employed between aquisitions. A mixing time of 0.25 s was used. Zero-filling in the F1 (¹H) dimension produced a 1K x 2K data matrix with a digital resolution of 7.1 Hz/pt in F2 and 3.5 Hz/pt in F1. During 2D Fourier transformation, a sine-bell squared window function shifted by π/2 was applied to both dimensions. The transformed data were not symmetrized. Xenon-129 INEPT spectra of [15 N]F₅TeN(H)-Xe⁺AsF₆⁻ in HF solvent were recorded at 83.468 MHz using a 10 mm VSP probe (broad-banded over the frequency range 14 - 121 MHz). The spectra were acquired over a 15 kHz spectral width in 2K data points (0.682 s acquisition time and a data point resolution of 1.5 Hz/pt). Spectra were obtained using the INEPT pulse sequence with a 129 Xe 90° pulse width of 14.0 μ s. The 1 H 90° pulse width through the decoupler channel was 20.0 μ s. The fixed delay in the INEPT pulse sequence (0.25{ 1 /[2 /(129 Xe- 1 H)]}) was 0.01086 s with a relaxation delay of 1.0 s. The free induction decays were zero-filled to 8K data points and processed using Gaussian multiplication for resolution enhancement (line broadening, - 2.5; Gaussian broadening, 0.35) before Fourier transformation. Pulse widths corresponding to bulk magnetization tip angles of ~90 ° were 18 (11.7440 T) and 14 (7.0463 T) (¹²⁹Xe), 1 (¹⁹F), 6 (¹³C) and 5 (11.7440 T) and 7 μs (4.6975 T) (¹H). Line broadening parameters used in exponential multiplication of the free induction decays were set equal to or less than their respective data point resolutions or the natural line widths of the resonances. All line shape functions were Lorentzian unless specified, where the free induction decays were multiplied by Gaussian functions for resolution enhancement on Fourier transformation. No relaxation delays were applied except for ¹⁵N, where relaxation delays of 20 - 120 s were applied. The respective nuclei were referenced externally to neat samples of XeOF₄ (¹²⁹Xe), CFCl₃ (¹⁹F), natural abundance CH₃NO₂ (¹⁵N), Tc(CH₃)₂ (¹²⁵Te) and (CH₃)₄Si (¹³C and ¹H) at 30 °C. Positive chemical shifts were assigned to resonances occurring to high frequency of the reference substance. For variable temperature measurements, samples were kept cold (-196 or -78 °C) until immediately prior to their placement in the NMR probe. They were generally warmed only enough to liquify and solubilize the contents and were then quickly placed in the precooled probe. Prior to data accumulation, the tubes were allowed to equilibrate in the probe for periods of several minutes while spinning. Temperatures were periodically checked by placing a copper constantan thermocouple into the sampling region of the probe. Temperatures were considered to be accurate to within ±1 °C. 2 #### (ii) NMR Sample Preparation All NMR samples were prepared in sample tubes constructed from 4-mm and 9-mm o.d. FEP tubes. Low volatility compounds such as XeF₂, XeF⁺AsF₆, F₅TeNH₂, F₅TeNH₃⁺AsF₆, FO₂SNH₂, FO₂SNH₃⁺AsF₆ CF₃C(O)NH₂ and CF₃C(OH)NH₂⁺AsF₆ were transferred into preweighed FEP sample tubes inside the dry box. The FEP sample tubes were cooled to -196 °C inside the drybox using a cryowell cooled with liquid nitrogen from the outside of the drybox prior to combining reactive reagents. The FEP sample tubes were rapidly removed from the drybox and placed inside a -78 °C temperature bath prior to addition of solvent. The solvents HF and BrF₅ were vacuum distilled into the FEP sample tubes through all fluoroplastic connections using a metal vacuum line. Solvents which do not attack glass in the absence of water vacuum distilled into the reaction tubes using all glass connections. FEP sample tubes were sealed by immersing the sample in liquid nitrogen and causing the tube to collapse under dynamic vacuum by heating with a small cylindrical electrical tube furnace near the top of the sample tube. The FEP tubes were inserted into thin-walled glass Wilmad NMR tubes prior to placement in the probe of the NMR spectrometer. #### (E) RAMAN SPECTROSCOPY #### (i) <u>Instrumentation</u> Raman spectra were recorded on a Jobin-Yvon Mole S-3000 triple spectrograph system equipped with a 0.32-m prefilter, adjustable 25-mm entrance slit, and a 1.00-m monochromator. Holographic gratings were used for the prefilter (600 grooves mm⁻¹, blazed at 500 nm) and monochromator (1800 grooves mm⁻¹, blazed at 550 nm) stages. The 514.5-nm line of an Ar⁺ ion laser was used for excitation of the samples. The spectra of microcrystalline samples of CF₃C(O)NH₂, F₅TeNH₃+AsF₆, [¹⁵N]F₅TeNH₃+AsF₆ FO₂SNH₂ and [¹⁵N]FO₂SNH₂, which were scaled in a baked-out Pyrex melting point capillaries, were recorded at ambient temperature. The Raman spectra of the microcrystalline salts CF₃C(OH)NH₂⁺AsF₆⁻, CF₃C(OXeF)NH₂⁺AsF₆⁻, CF3C(OH)NH2+AsF6-XcF2xHF (in 9-mm or 6-mm o.d. FEP tubes), F5TeN(H)Xe+AsF6- and $[^{15}\mathrm{N}]\mathrm{F_5}\mathrm{TeN}(\mathrm{H})\mathrm{Xc}^+\mathrm{AsF_6}^-$ (in 4-mm o.d. FEP tubes), $\mathrm{FO_2}\mathrm{SNH_3}^+\mathrm{AsF_6}^-$ and $[^{15}\mathrm{N}]\mathrm{FO_2}\mathrm{SNH_3}^+\mathrm{AsF_6}^-$ (in 3-mm medium wall glass tubes) were recorded at -160 to -165 °C in the macro-sample chamber of the instrument. The low temperatures were achieved by flowing dry nitrogen gas, chilled by passing through a 50 L tank of liquid nitrogen, along the outside of the sample tube, which was mounted vertically in an open-ended unsilvered glass Dewar jacket [Figure (2.13)]. The angle between the sample tube and the laser beam was 90° and Raman scattered radiation was observed at 90° to the incident laser beam and at 90° to the sample tube. The temperature was measured using a copper-constantan thermocouple (error \pm 0.8 °C). The spectra were recorded by signal averaging using a Spectraview-2D CCD detector equipped with a 25-mm chip (1152 x 298 pixels). The laser powers measured at the samples were 90 (CF₃C(OXeF)NH₂⁺AsF₆⁻ and $CF_3C(O)NH_2$), 190 ($CF_3C(OH)NH_2^+AsF_6^-$), 120 ($CF_3C(OH)NH_2^+AsF_6^-$:XeF₂:xHF), 240 $(F_5TeNH_2 \text{ and } [^{15}N]F_5TeNH_2)$, 260 $(F_5TeNH_3^+AsF_6^- \text{ and } [^{15}N]F_5TeNH_3^+AsF_6^-$, 210 (F₅TeN(H)Xe⁺AsF₆⁻ and [¹⁵N]F₅TeN(H)Xe⁺AsF₆⁻), 240 (FO₂SNH₂ and [¹⁵N]FO₂SNH₂) and 260 mW (FO₂SNH₃⁺AsF₆⁻ and [¹⁵N]FO₂SNH₃⁺AsF₆⁻). Slit settings corresponded to a resolution of 0.5 - 1 cm⁻¹. A total of 20 - 30 reads having 10 - 40 s integration times were summed for each of the Raman spectra. Unless otherwise specified, Raman frequencies involving $^{14/15}$ N isotopic studies are estimated to be accurate to ± 0.5 cm⁻¹. As a result $^{14/15}$ N isotopic shifts less than 0.5 cm⁻¹ in the Figure 2.13 Apparatus for low temperature Raman spectroscopy; (A) Kel-F valve flare-sealed (45° SAE) onto FEP tube, (B) rubber septum, (C) unsilvered glass vacuum jacket, (D) copper-constantan thermocouple, (E) glass ball and socket joint, (F)
steel mount for adjustment of the sample tube in the laser beam, (G) cold nitrogen gas stream (≥ -170 °C) generated by passing room temperature nitrogen gas into a 50 L tank of liquid nitrogen. Raman spectra of the natural abundance and 99.5 atom. % ¹⁵N enriched samples of F₅TeNH₂, F₅TeNH₃⁺AsF₆⁻, F₅TeN(H)Xe⁺AsF₆⁻, FO₂SNH₂ and FO₂SNH₃⁺AsF₆⁻ were considered to be insignificant. The Raman spectra of natural abundance and 99.5% ¹⁵N-enriched samples of a givencompound were recorded on the same day using identical conditions in order to minimize systematic errors. Raman spectra obtained in FEP sample tubes contained lines resulting from the FEP sample tube. The frequencies and intensities of the Raman lines at -154 °C are: 203 (0.2), 278 (0.6), 294 (4.5), 309 (0.9), 381 (3.6), 387 (2.6), 579 (1.3), 598 (0.3), 734 (10.0), 752 (0.9), 1217 (1.2), 1310 (1.6) and 1385 (3.3) cm⁻¹. The prominence of these lines in the Raman spectra depended on the scattering efficiency of the sample and where the laser beam was focussed. In the present work, lines arising from FEP have been subtracted out of the spectra reported in the Tables but not in the Figures. The Raman spectrometer was calibrated using the 1018.3 cm⁻¹ line of vacuum distilled neat liquid indene in a sealed glass melting point capillary at ambient temperature.¹³⁷ #### (ii) Raman Sample Preparation The Raman sample vessels constructed from \(\frac{1}{4}\)-in. (7-mm) o.d. FEP tubing were heat sealed at one end by pushing the tube into the end of a flame heated piece of glass tubing that had been previously stretched to approximately 0.5-mm at one end using an oxygen torch. Vessels constructed from 4-mm o.d. tubing were heat sealed similarly at one end by pushing the end into a flame heated 5-mm thin-walled glass NMR tube. The other ends of the Raman vessels were heat flared (45° SAE) for direct attachment to a Kel-F valve. All Raman sample vessels were pressurized with dry nitrogen gas (ca. 1300 Torr) at -78 °C prior to obtaining the Raman spectrum at -160 to -165 °C. Low-temperature Raman samples of materials which do not attack glass were run in vessels constructed of 3-mm o.d. medium wall glass tubing. The tubing was flame sealed at one end and attached to a length of 4-in. o.d. glass tubing at the other. The tubing was then attached using a 4-in. Teflon union (Swagelok) with Teflon compression fittings (Swagelok) to a glass 4-mm J. Young stopcock equipped with a Teflon barrel. The vessel was vacuum dried and flamed out. Samples were loaded into the tube inside the dry box. The loaded 3-mm o.d. vessels were then flame sealed under vacuum while cooling the sample to -78 or -196 °C. The Raman spectra were obtained directly on the samples contained in the sealed glass tubes at -160 to -165 °C. Samples run at room temperature were loaded into glass melting point capillaries in the drybox and plugged with Kel-F grease. The capillaries were then removed from the drybox and immediately sealed with an oxygen-natural gas microtorch. The sample tubes were stored at -78 °C prior to running the Raman spectra. #### **CHAPTER 3** # SYNTHESIS AND CHARACTERIZATION OF CF₃C(OXeF)NH₂⁺ AND CF₃C(OH)NH₂⁺AsF₆⁻ AND CF₃C(OH)NH₂⁺AsF₆⁻ XeF₂ xHF SALTS USING MULTI-NMR AND RAMAN SPECTROSCOPY #### INTRODUCTION The noble-gas cations NgF⁺ (Ng = Xe, Kr) have long been known to exhibit Lewis acid character in their salts with weakly fluorobasic anions such as AsF₆, SbF₆ and Sb₂F₁₁ where the NgF+ cation interacts with the fluoroanion in the solid state by means of a fluorine bridge.²¹ Recently, the Lewis acidities of NgF⁺ (Ng = Kr, Xe) cations have been exploited to synthesize novel adduct cations containing Xe-N and Kr-N bonds. 26,71-73,75,78 A variety of oxidatively resistant organic nitrogen bases have now been shown to form adducts with XeF+, alkylnitriles,⁷² perfluorobenzenenitrile,⁷² hydrogen cyanide, 72.73 including perfluoroalkylnitriles, 71,72 perfluoropyridines 75 and s-trifluorotriazine. 71 Adducts of the strong oxidant cation, KrF+, with hydrogen cyanide⁷⁸ and perfluoroalkyl nitriles,⁷¹ have also been stabilized at low temperatures to give the $R_EC=N-KrF^+$ ($R_E=CF_3$, C_2F_5 , $n-C_2F_7$) and $HC=N-KrF^+$ KrF+ cations, and provide the only examples of Kr-N bonds presently known. The Ng-N bonds in the cations have been shown by ¹⁹F and ¹²⁹Xe NMR spectroscopy to have high degrees of ionic character. 26,73 The ability of a base to resist oxidation by the strongly oxidizing NgF+ cations correlates well with the first adiabatic ionization potential (IP1) of the nitrogen base. It has been shown that a base having an IP₁-value that is similar to or greater than the estimated electron affinities of XeF⁺ (10.9 eV) and KrF⁺ (13.2 eV) may be sufficiently resistant to oxidation by NgF⁺ to form kinetically stable Ng-N bonds at low temperatures.²⁶ Where possible, the general preparative strategy has been straight forward and has entailed the interaction of the appropriate base with an NgF⁺ salt in HF solvent. In instances where the protonated form of the base predominates in HF solvent, or when the base is readily oxidized by the noble-gas cation, NgF₂ is allowed to react with the oxidatively more resistant protonated nitrogen base cation in the strongly oxidizing solvent, BrF₅. Equilibrium displacement of HF from the protonated base by the difluoride occurs to a significant extent in BrF₅ solvent at the low temperatures usually required to stabilize the adduct cations. These synthetic approaches are illustrated by the NgF⁺ adducts of HC=N. Hydrogen cyanide (IP₁ = 13.80 eV)¹³⁸ forms the adduct cation HC=N-XeF⁺ upon reaction of HC=N with XeF⁺AsF₆ or Xe₂F₃⁺AsF₆ in HF solution at -20 to -10 °C, ^{72,73} whereas the powerful oxidizing ability of KrF⁺ requires the reaction of HC=NH⁺AsF₆ with KrF₂ in BrF₅ solvent near the melting point of the solvent to prepare the krypton analog, HC=N-KrF⁺AsF₆. A third synthetic approach, which also avoids the use of the strong oxidant NgF⁺ cations, is exemplified by the perfluoroalkyl nitriles R_FC=N (R_F = CF₃, C₂F₅, n-C₃F₇) and relies upon the reaction of the adducts R_FC=N-AsF₅ and KrF₂ to form the R_FC=N-NgF⁺ (Ng = Kr, Xe) adduct cations at low temperatures in BrF₅ solvent. ⁷¹ Oxygen electron-pair donors have not been investigated to any significant extent as bases towards NgF⁺ cations. Only one example of a cation containing the O-Xe-F linkage, namely $(CF_3)_2S=0$ -XeF⁺, has been reported.⁸⁵ This cation was prepared by reaction of the sulfurane, $(CF_3)_2S=0$, with XeF⁺SbF₆⁻ in HF at -65 °C over a 12 h period; the solid decomposes explosively above -78 °C if mechanically shocked. The present work describes the second example of an adduct cation containing the O-Xe-F linkage, namely, CF₃C(OXeF)NH₂⁺ and its characterization in the solid state by low-temperature Raman spectroscopy and in solution by ¹⁹F, ¹H, ¹³C and ¹²⁹Xe NMR spectroscopy. #### RESULTS AND DISCUSSION (A) <u>SYNTHESES</u> AND <u>ISOLATION</u> OF <u>CF₃C(OH)NH₂⁺AsF₆⁻·XeF₂·xHF,</u> <u>CF₃C(OXeF)NH₂⁺AsF₆⁻ AND CF₃C(OH)NH₂⁺AsF₆⁻</u> The first adiabatic ionization potential of 2,2,2-trifluoroacetamide (10.77 eV)¹⁰⁶ is similar to the estimated electron affinity of the XeF⁺ cation (10.9 eV),⁷³ suggesting that it is potentially resistant to oxidation by XeF⁺ under suitable solvent conditions and at low temperature, enabling an Xe-O bonded adduct cation to be formed. The CF₃C(OXeF)NH₂⁺ cation results from the HF elimination reaction of the conjugate acid of CF₃C(O)NH₂, namely CF₃C(OH)NH₂⁺, with XeF₂. The strong electrophilic characters of XeF⁺ and BrF₅ solvent and nucleophilicities of the oxygen and nitrogen base sites were mitigated by protonation of CF₃C(O)NH₂ under superacid conditions by reaction of the amide with excess AsF₅ in HF solvent. Upon removal of the solvent, CF₃C(OH)NH₂⁺AsF₆⁻ was isolated as a white microcrystalline powder in quantitative yield according to equation (3.1), and underwent slow decomposition at room temperature. $$CF_3C(O)NH_2 + AsF_5 \xrightarrow{HF} CF_3C(OH)NH_2^+AsF_6^-$$ (3.1) $$CF_3C(OH)NH_2^+AsF_6^- + XeF_2 = \frac{BrF_5}{-62 \text{ to } -55 \text{ °C}}$$ $$CF_3C(OXeF)NH_2^+AsF_6^- + HF \qquad (3.2)$$ $$CF_3C(O)NH_2 + XeF^+AsF_6^- \xrightarrow{HF}$$ $$CF_3C(OH)NH_2^+AsF_6^- + XeF_2 \qquad (3.3)$$ The salt $CF_3C(OH)NH_2^+AsF_6^-$ was characterized in solution by multi-NMR using BrF_5 as solvent at low temperature. The slow reaction of the $CF_3C(OH)NH_2^+$ cation with BrF_5 solvent at -55 °C is indicated by the presence of broad resonances at $\delta(^1H) = 5.2$, 3.3 and 2.6 ppm in the 1H NMR spectrum, which likely result from the rapidly exchanging H-on-N environments of NH_4^+ , N_2H_4 and HN_3 . A doublet at $\delta(^1H) = 5.1$ ppm $[^1J(^1H_2^{-19}F) = 535$ Hz] indicated the presence of HF. Combining stoichiometric amounts of CF₃C(OH)NH₂⁺AsF₆⁻ with XeF₂ in BrF₅ solvent at -62 to -55 °C [equation (3.2)] resulted in the formation of the xenon cation, CF₃C(OXeF)NH₂⁺. The HF elimination reaction represented by equation (3.2) is directly analogous to the reaction of CF₃C(O)OH and XeF₂ to give the neutral species CF₃C(O)OXeF.^{39,41,139} The ¹⁹F and ¹²⁹Xe NMR spectra show that the reaction between CF₃C(O)NH₂ and XeF⁺AsF₆⁻ does not proceed to any measurable extent in anhydrous HF solvent owing to solvolysis of the reagents; XeF⁺ is a strong fluoride ion acceptor in HF solvent and CF₃C(O)NH₂ is protonated according to equation (3.3). However, slow removal of HF solvent at -50 °C under dynamic vacuum displaces equation (3.2) toward the right, yielding a pale yellow viscous solution which, after continued pumping, yielded CF₃C(OXeF)NH₂⁺AsF₆⁻ as a white microcrystalline solid. The ¹²⁹Xe and ¹⁹F NMR spectra of solutions of this material in BrF₅ solvent (-60 °C) confirm the presence of the $CF_3C(OXeF)NH_2^+$ cation. In the solid state, $CF_3C(OXeF)NH_2^+AsF_6^-$ decomposes rapidly with gas evolution and liquefaction at temperatures approaching 0 °C. In contrast,
rapid removal of HF solvent from a solution of $XeF^+AsF_6^-$ and $CF_3C(O)NH_2$ under dynamic vacuum at -50 °C results in immediate precipitation of the solvated adduct, $CF_3C(OH)NH_2^+AsF_6^ XeF_2$ XHF, as a white powder [equation (3.4)]; no $CF_3C(OXeF)NH_2^+AsF_6^-$ was observed in the solid by Raman $$CF_{3}C(OH)NH_{2}^{+}AsF_{6}^{-}_{(HF)} + XeF_{2(HF)} \xrightarrow{-HF} >$$ $$CF_{3}C(OH)NH_{2}^{+}AsF_{6}^{-}XeF_{2}xHF_{(s)}$$ (3.4) spectroscopy. Elimination of HF from $CF_3C(OH)NH_2^+AsF_6^-XeF_2$ xHF did not occur after pumping under dynamic vacuum for 28 h at -50 °C; however, redissolution of the adduct in HF at -50 °C followed by slow removal of the solvent under vacuum resulted in the isolation of pure $CF_3C(OXeF)NH_2^+AsF_6^-$ [see Section (D), below]. The adduct, $CF_3C(OH)NH_2^+AsF_6^-$ XeF2 xHF, is considered to be an intermediate in the HF elimination reaction of $CF_3C(OH)NH_2^+$ and $CF_3C(OH)NH_$ (B) CHARACTERIZATION OF CF₃C(OH)NH₂+AsF₆- BY ¹H, ¹³C AND ¹⁹F NMR SPECTROSCOPY AND BY TWO DIMENSIONAL (¹H-¹⁹F) NOESY EXPERIMENTS Since the CF₃C(OXeF)NH₂+ cation is in equilibrium with CF₃C(OH)NH₂+ in BrF₅ solvent [equation (3.2)], unambiguous NMR characterization of the $CF_3C(OXeF)NH_2^+$ cation required a detailed NMR study of $CF_3C(OH)NH_2^+AsF_6^-$ in BrF_5 solution. Although $CF_3C(O)NH_2$ is potentially an ambident base, the ¹H NMR spectrum of $CF_3C(OH)NH_2^+$ AsF_6^- in BrF_5 solvent at -55.4 °C (Figure 3.1) confirms that protonation occurs exclusively at the oxygen and that the oxygen site is more basic (cf. resonance Structures 3.1 and 3.2). $$F = C - C$$ C$$ $$F = C - C$$ $$F = Figure 3.1 1 H NMR spectrum (500.138 MHz) at -55.4 $^{\circ}$ C of CF₃C(OH)NH₂⁺AsF₆⁻ (0.25 M) in BrF₅ solvent; (A) proton on oxygen of the protonated carbonyl group, (B) two singlets of equal intensity arising from the chemically inequivalent amido protons, (C) HF. Previous work has shown that amides are protonated at oxygen in strong acid and superacid media. 143-149 The 1H NMR resonance of the protonated carbonyl group of the CF3C(OH)NH2+ cation is a singlet at $\delta(^1H) = 11.61$ ppm, $\Delta v_{1/2} = 20$ Hz, in agreement with the value reported for the protonated carbonyl group of the FC(OH)NH₂⁺ cation $[\delta(^{1}H) = 11.07 \text{ ppm}, HSO_{3}F/SO_{2}]$ solution at -80 °C]. 149 Similar ¹H chemical shifts have been reported for O-protonated acetamide $[\delta(^{1}H) = 10.72 \text{ ppm, -80 }^{\circ}C]$, ¹⁴⁵ formamide $[\delta(^{1}H) = 10.81 \text{ ppm, -85 }^{\circ}C]$, ¹⁴⁵ and benzamide $[\delta(^{1}\text{H}) = 10.14 \text{ ppm}, -85 ^{\circ}\text{C}]^{144} \text{ in HSO}_{3}\text{F solvent. The NH protons of the CF}_{3}\text{C}(OH)\text{NH}_{2}^{+} \text{ cation}$ are inequivalent on the NMR time scale (Figure 3.1), giving two broad singlets ($\Delta v_{1/2} = 61$ Hz) of equal intensity at 8.75 and 8.38 ppm. The large line widths are primarily attributed to residual one-bond scalar coupling between the protons and ^{14}N (I = 1). The chemical inequivalence of the NH protons is attributed to hindered rotation about the C-N bond, and is consistent with the large barriers to C-N bond rotation found for neutral [15 N]CF₃C(O)NH₂ in dioxan (E[‡] = 76.5 ± 2.9 kJ mol^{-1}) and methyl propyl ketone (E[‡] = 77.8 ± 2.5 kJ mol⁻¹) solvents. Oxygen coordination of amides has been shown to substantially increase the barrier to rotation about the C-N bond by increasing the C-N double bond character relative to that of the free amide. 143 Examples of increases in C-N bond rotational barriers resulting from O-coordination have been extensively studied by NMR spectroscopy and include O-protonation of dimethyl formamide, N-methyl formamide and N-methyl acetamide in 100% $H_2SO_4^{146}$ and O-coordination of BF3 in sym- and unsym-dimethylureas¹⁵¹ and of BX_3 in tetramethylurea (X = Br, Cl, F). ¹⁵² In all cases, resonance structures can be drawn, representing "amide-like" linkages containing C-N double bonds which dominate the bonding when oxygen is coordinated to a Lewis acid. Resonance Structure 3.2 represents π-donation from nitrogen to carbon, and is expected to be the dominant contributing structure for the CF₃C(OH)NH₂⁺ cation [see Section (E) below]. Hindered rotation in protonated primary amides in acidic solution has been observed in a variety of acidic media and at different temperatures by ¹H NMR spectroscopy. The relative shieldings of the amido proton resonances in the CF₃C(OH)NH₂+ cation cannot be unambiguously assigned by comparison with previously reported examples. 153 However, definitive assignments of the amido protons in the CF₃C(OH)NH₂⁺ cation were obtained from a two-dimensional heteronuclear (¹H-¹⁹F) NOESY experiment performed on a sample of CF₃C(OH)NH₂⁺ AsF₆⁻ dissolved in BrF₅ solvent at -58.9 °C (Figure 3.2). A correlation was observed between the ¹⁹F NMR resonance of the CF₃ group and both the low-frequency proton-on-nitrogen resonance and the proton-on-oxygen resonance. This experiment utilizes the nuclear Overhauser effect (nOe), which results from a through-space dipolar interaction between nuclei. 154 This effect rapidly diminishes with internuclear distance, so that correlations are only observed for nuclei which are close to one another. The presence of a correlation between the CF3 group and the low-frequency proton-on-nitrogen resonance indicates that this ¹H resonance arises from the proton cis to the CF₃ group (cf. resonance Structures 3.1 and 3.2). A correlation is also observed between the proton-on-oxygen resonance and the fluorine resonance of the CF3 group, indicating that intermolecular exchange involving the proton on oxygen is slow relative to dipolar relaxation induced by the fluorine atoms of the CF3 group. The ¹⁹F NMR spectrum of the CF₃C(OH)NH₂⁺ cation in BrF₅ solvent at -55.4 °C consisted of a singlet at -75.6 ppm assigned to the CF_3 resonance. A value of ${}^4J({}^{19}F_-{}^{1}H) = 1.8$ Hz was observed by Akiyama et al. 155 for the scalar coupling between the NH proton trans to the carbonyl group and the fluorines of the CF₃ group in CF₃C(O)NH₂ at -40 °C in tetrahydrofuran, using ¹⁹F NMR spectroscopy. The large line width ($\Delta v_{1/2} = 32$ Hz) observed in the ¹⁹F NMR spectrum of the CF₃C(OH)NH₂⁺ cation precluded resolution of the ⁴J(¹⁹F-¹H) scalar coupling. The quadrupole collapsed ¹⁹F NMR resonance of the AsF₆⁻ anion occurs at -60.7 ppm ($\Delta v_{1/2} = 284$ Hz), as Figure 3.2 Heteronuclear [¹H (500.138 MHz)-¹9F (470.599 MHz)] NOESY spectrum at -58.9 °C of CF₃C(OH)NH₂+AsF₆⁻ (0.48 M) in BrF₅ solvent; one-dimensional ¹H and ¹9F NMR spectra are displayed along the vertical and horizontal axes, respectively; (A) proton on oxygen environment of the protonated carbonyl group, (B) amido proton trans to the CF₃ group, (C) amido proton cis to the CF₃ group, (D) fluorine on carbon environment of the CF₃C(OH)NH₂+ cation. The continuous horizontal line of peaks running through the two-dimensional plot is an axial peak artifact along F1 = 0.¹82 previously observed for AsF_6^- in BrF_5 solvent at low temperature.⁷³ The carbon-13 spectrum of $CF_3C(OH)NH_2^+AsF_6^-$ (-56.2 °C) in BrF_5 solvent consists of two binomial quartets at $\delta(^{13}C) = 166.2 \ [^2J(^{13}C^{-19}F) = 46 \ Hz]$ and at 114.0 ppm $[^1J(^{13}C^{-19}F) = -284 \ Hz]$, which are assigned to the COH and CF_3 resonances, respectively, and are similar to those reported for related compounds containing the $CF_3C(O)$ - moiety. ¹⁵⁶ # (C) CHARACTERIZATION OF CF₃C(OXeF)NH₂+AsF₆* BY ¹H, ¹³C, ¹⁹F AND ¹²⁹Xe NMR SPECTROSCOPY AND BY TWO-DIMENSIONAL (¹H-¹⁹F) NOESY EXPERIMENTS The structure of the $CF_3C(OXeF)NH_2^+$ cation was established in solution by 1H , ^{13}C , ^{19}F and ^{129}Xe NMR spectroscopy, and is consistent with resonance Structures 3.3 and 3.4. The ¹²⁹Xe NMR spectrum of the $CF_3C(OXeF)NH_2^+$ cation consists of a doublet centered at -1578 ppm (-53.0 °C, BrF_5 solvent) arising from ${}^1J({}^{129}Xe^{-19}F) = 5991$ Hz, in the region expected for xenon(II) covalently bonded to fluorine (Figure 3.3). The magnitude of ${}^1J({}^{129}Xe^{-19}F)$ is comparable to other directly bonded ${}^{129}Xe^{-19}F$ couplings. The 103,104,108 The 104,108 10 In the ¹⁹F NMR spectrum, a singlet at $\delta(^{19}F) = -183.1$ ppm with a satellite doublet $[^{1}J(^{19}F^{-129}Xe) = 6012 \text{ Hz}]$ is assigned to the F-on-Xe(II) of the CF₃C(OXeF)NH₂⁺ cation (Figure 3.4). The ¹⁹F resonance centered at -187.5 ppm with accompanying ¹²⁹Xe satellites $[^{1}J(^{129}Xe^{-19}F) = 5650 \text{ Hz}]$ is assigned to XeF₂. A doublet centered at -193.1 ppm $[^{1}J(^{19}F^{-1}H) = 534 \text{ Hz}]$ is assigned to HF formed according to equation (3.2). The ¹⁹F NMR resonance of the CF₃ group of the CF₃C(OXeF)NH₂⁺ cation consists of a singlet at $\delta(^{19}F) = -74.4$ ppm (-54.0 °C, BrF₅ solvent). The CF₃ group of the CF₃C(OH)NH₂⁺ cation occurs at $\delta(^{19}F) = -75.6$ ppm. Integration of the ¹²⁹Xe NMR spectrum and F-on-Xe(II) region of the ¹⁹F NMR spectrum gave values of 0.29 and 0.30^{157} for the ratio [CF₃C(OXeF)NH₂⁺]/[XeF₂] (initial molar ratios were CF₃C(OH)NH₂⁺AsF₆⁻/XeF₂ = 0.892 and 0.946; initial [XeF₂] = 0.29 and 0.20 M), respectively. Integration of the CF₃ group resonances gave a value of 0.32^{157} for the ratio [CF₃C(OXeF)NH₂⁺]/[CF₃C(OH)NH₂⁺] (initial molar ratio CF₃C(OH)NH₂⁺AsF₆-/XeF₂ = 0.946; initial [XeF₂] = 0.20 M), in good Figure 3.3 129 Xe NMR spectrum (139.051 MHz) at -53.0 °C of $CF_3C(OXeF)NH_2^+AsF_6^-$ (0.26 M) and XeF_2 (0.29 M) dissolved in BrF₅ solvent; (A) doublet arising from the one-bond coupling $^1J(^{129}Xe^{-19}F)$ in the $CF_3C(OXeF)NH_2^+$ cation, (B) triplet arising from the one-bond coupling $^1J(^{129}Xe^{-19}F)$ in XeF_2 . Figure 3.4 ¹⁹F NMR spectrum (470.599 MHz) at -54.0 °C of CF₃C(OXeF)NH₂⁺AsF₆⁻ (0.18 M) and XeF₂ (0.19 M) dissolved in BrF₅ solvent; only the F-on-Xe(II) region is shown; (A) CF₃C(OXeF)NH₂⁺ cation, (B) singlet arising from the fluorine
environment of XeF₂, (C) HF. Lower case letters denote ¹²⁹Xe satellites. agreement with values obtained from the ¹²⁹Xe NMR spectrum and from the ¹⁹F NMR spectrum of the F-on-Xe(II) region. The 13 C NMR spectrum of the CF₃C(OXeF)NH₂⁺ cation (-59.4 °C, BrF₅ solvent) consisted of two binomial quartets at -165.7 ppm [2 J(13 C- 19 F) = 42 Hz] and at -113.7 ppm [1 J(13 C- 19 F) = 285 Hz], which were assigned to the CO and CF₃ carbons, respectively. Satellites arising from 2 J(13 C- 129 Xe), were not observed in the 13 C NMR spectrum due to a low signal-to-noise ratio. The ¹H NMR spectrum of an equimolar mixture of CF₃C(OXeF)NH₂⁺AsF₆⁻ and XeF₂ in BrF₅ solvent at -55.0 °C (Figure 3.5) was consistent with equation (3.2). The two broad peaks of equal intensity at 7.88 and 7.71 ppm were assigned to the chemically inequivalent proton-on-nitrogen resonances of the CF₃C(OXeF)NH₂⁺ cation arising from hindered rotation about the C-N bond. This is consistent with an O-Xe-F linkage, since an N-Xe-F linkage would result in free rotation about the C-N bond, and the observation of only one proton-on-nitrogen resonance in the ¹H NMR spectrum. The proton-on-oxygen resonance of the CF₃C(OH)NH₂⁺ cation was observed at 12.04 ppm, and was deshielded by 0.41 ppm relative to that of CF₃C(OH)NH₂⁺AsF₆ in BrF₅ solvent at the same temperature (Figure 3.1). The two equalintensity singlets at 8.48 and 8.39 ppm were assigned to the amido protons of the $\mathrm{CF_3C(OH)NH_2}^+$ cation (Figure 3.5); the separation of the peaks is 135 Hz less than that observed for pure CF₃C(OH)NH₂⁺AsF₆⁻ in BrF₅ solvent (Figure 3.1), and is consistent with partial coalescence of the amido protons of the CF₃C(OH)NH₂⁺ cation arising from proton exchange between the CF₃C(OH)NH₂+ cation and HF, which is present in the system according to equation (3.2). Exchange was confirmed by recording the ¹H NMR spectrum of CF₃C(OH)NH₂⁺AsF₆⁻ in the presence of HF (1.83 molar equivalents of anhydrous HF in BrF₅ solvent at -57.6 °C). Complete collapse of the proton-on-nitrogen resonance to a broadened singlet resulted $[\delta(^{1}H) = 8.59 \text{ ppm}]$, Figure 3.5 ¹H NMR spectrum (500.138 MHz) at -55.0 °C of CF₃C(OH)NH₂⁺ AsF₆⁻ (0.18 M) and XeF₂ (0.19 M) dissolved in BrF₅ solvent; (A) proton on oxygen of CF₃C(OH)NH₂⁺, (B) protons on nitrogen of CF₃C(OH)NH₂⁺, (C) protons on nitrogen of CF₃C(OXeF)NH₂⁺, (D) HF. Figure 3.6 Heteronuclear [¹H (500.138 MHz)-¹9F(470.599) MHz)] NOESY spectrum at -57.6 °C of CF₃C(OH)NH₂+AsF₆⁻ (0.35 M) and XeF₂ (0.38 M) dissolved in BrF₅ solvent; portions of the one-dimensional ¹H and ¹9F NMR spectra are displayed along the vertical and horizontal axes, respectively; (A) and (B) are the proton on nitrogen resonances of CF₃C(OH)NH₂+, (C) and (D) are the protons on nitrogen which are cis and trans to the CF₃ group, respectively, in CF₃C(OXeF)NH₂+, (E) CF₃ group resonance of CF₃C(OXeF)NH₂+, (F) CF₃ group resonance of CF₃C(OH)NH₂+. $\Delta v_{1/2} = 88$ Hz] with retention of the proton-on-oxygen resonance [$\delta(^1H) = 11.68$ ppm]. Coalescence of the amido proton peaks can arise from two possible mechanisms: deprotonation to give the amidic acid, CF₃C(OH)=NH, [equation (3.5)], and N-protonation to give the CF₃C(OH)NH₃²⁺ dication [equation (3.6)]. Both equilibria would account for retention of the proton-on-oxygen resonance. Equation (3.5) can be discounted since the amidic acid mechanism has been shown to be inhibited by strong acid (H_2SO_4), and contributes to proton exchange only in dilute aqueous acid. ¹⁴⁷ The transient diprotonated cation, $CF_3C(OH)-NH_3^{2+}$ [equation (3.6)], could undergo free rotation about the C-N bond, resulting in partial collapse of the amido proton doublet with retention of the proton on oxygen resonance. The protons on nitrogen of $CF_3C(OXeF)NH_2^+$ were assigned by performing a two-dimensional heteronuclear ($^1H_2^{-19}F$) NOESY experiment in BrF_5 solvent at -57.6 °C (Figure 3.6). A correlation was observed between the ^{19}F NMR resonance of the CF_3 group and the high-frequency [$\delta(^1H) = 7.88$ ppm] proton on nitrogen resonance of the $CF_3C(OXeF)NH_2^+$ cation, implying that the high-frequency 1H NMR resonance arises from the proton cis to the CF_3 group (trans to the OXeF group). It is interesting that the relative shieldings of the proton-on-nitrogen resonances for the $CF_3C(OXeF)NH_2^+$ cation are opposite to those observed for the $CF_3C(OH)NH_2^+$ cation. The change in relative shieldings may result from differences in electronic anisotropy resulting from the different moieties bonded to oxygen in the $CF_3C(OXeF)NH_2^+$ and CF₃C(OH)NH₂⁺ cations. The CF₃ group in the CF₃C(OH)NH₂⁺ cation correlates with both the cis and trans protons of the amido group (Figure 3.6). This is attributed to insufficient resolution of the partially coalesced proton on nitrogen resonances for the CF₃C(OH)NH₂⁺ cation resulting from exchange with HF (see above). ## (D) <u>CHARACTERIZATION OF CF₃C(OXeF)NH₂+AsF₆- BY LOW-TEMPERATURE RAMAN SPECTROSCOPY</u> Assignments for the $CF_3C(OXeF)NH_2^+$ cation (Table 3.1 and Figure 3.7) were based on the Raman spectra of $CF_3C(O)NH_2^{-161}$ and related compounds containing the O-Xe-F linkage. ^{41,42,85,140,158} Assignments for the AsF_6^- anion were made by comparison with those of $XeF^+AsF_6^{-,158}$ $HC\equiv NXeF^+AsF_6^{-,73}$ and $O_2^+AsF_6^{-,159}$ Evidence for the O-Xe-F linkage is provided by the characteristic bands arising from O-Xe-F stretching and bending fundamentals. Five bands are observed in the v(Xe-O) and v(Xe-F) regions. The intense bands at 543 and 530 cm⁻¹ are assigned to v(Xe-F) by comparison with the assigned Xe-F stretches in related xenon(II) compounds: FO₂SOXeF (539, 532, 527, 521 cm⁻¹), ¹⁵⁸ cis- and trans-F₄OIOXeF (527 cm⁻¹), ⁴²F₅TeOXeF (520 cm⁻¹), ⁴¹ CF₃O₂SOXeF (534 cm⁻¹), ¹⁴⁰ and (CF₃)₂S=OXeF⁺SbF₆⁻ (552 cm⁻¹). ⁸⁵ The bands at 508, 502 and 476 cm⁻¹ are assigned to v(Xe-O) by comparison with the assigned Xe-O stretches in FO₂SOXeF (434 cm⁻¹), ¹⁵⁸ cis- and trans-F₄OIOXeF (488, 438 cm⁻¹), ⁴²F₅TeOXeF (457 cm⁻¹), ⁴¹ CF₃O₂SOXeF (369 cm⁻¹), ¹⁴⁰ and (CF₃)₂S=OXeF⁺SbF₆⁻ (494 cm⁻¹). ⁸⁵ The splitting of the v(Xe-F) and v(Xe-O) bands may result from vibrational coupling of two or more cations in the unit cell (factor-group splitting), but cannot be confirmed without knowledge of the crystal structure of CF₃C(OXeF)NH₂⁺AsF₆. Site-symmetry effects can be eliminated as the source of the splitting since the highest possible point- Figure 3.7 Raman spectrum of microcrystalline CF₃C(OXeF)NH₂⁺AsF₆⁻ (-165 °C) recorded in an FEP sample tube using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines. group symmetry for the $CF_3C(OXeF)NH_2^+$ cation is C_s , which does not possess any degenerate irreducible representations. Similar band splittings for modes assigned to v(Xe-F) are observed in the Raman spectra of $HC\equiv N-XeF^+AsF_6^{-,73}FO_2SOXeF_1^{158}$ and $XeF^+MF_6^-$ salts $(M=Ru, Pt, Ir).^{67}$ It is interesting to compare the v(Xe-O) and v(Xe-F) stretching modes of the $CF_3C(OXeF)NH_2^+$ cation with those of the $(CF_3)_2S\equiv OXeF^+$ cation, since these are the only reported examples of cations containing the O-Xe-F linkage. The v(Xe-F) and v(Xe-O) Raman bands in the structurally related $(CF_3)_2S\equiv O-XeF^+$ cation were observed at 552 and 494 cm⁻¹, respectively. So The average of the bands assigned to v(Xe-O) for the $CF_3C(OXeF)NH_2^+$ cation, 495 cm⁻¹, is very similar to v(Xe-O) in the $(CF_3)_2S\equiv O-XeF^+$ cation, and the average of the bands assigned to v(Xe-F) for the $CF_3C(OXeF)NH_2^+$ cation, 536 cm⁻¹, is 16 cm⁻¹ lower than v(Xe-F) for the $(CF_3)_2S\equiv O-XeF^+$ cation. Raman spectroscopic trends in the terminal Xe-F stretches of xenon(II) compounds indicate a more ionic Xe-F bond in the $CF_3C(OXeF)NH_2^+$ cation than in the $(CF_3)_2S\equiv O-XeF^+$ cation [see Section (G) of this Chapter]. The bands at 141 and 292 cm⁻¹ are assigned to the O-Xe-F and C-O-Xe bending modes, respectively. Comparable values for $\delta(O-Xe-F)$ and $\delta(X-O-Xe)$ are observed in structurally related xenon(II) compounds containing the O-Xe-F linkage. The band at 3335 cm⁻¹ in the Raman spectrum of $CF_3C(OXeF)NH_2^+AsF_6^-$ is assigned to an NH stretching mode. Two bands are usually observed in the vibrational spectra of primary amides arising from the symmetric and asymmetric NH_2 stretches.¹⁶⁰ Although peaks observed at 3174 and 3337 cm⁻¹ can be assigned to $v_{sym}(NH_2)$ and $v_{asym}(NH_2)$, respectively, in the Raman spectrum of solid trifluoroacetamide,¹⁶¹ it is not possible to assign the NH stretch of $CF_3C(OXeF)NH_2^+AsF_6^-$ to a particular symmetry species since the bands observed in this region for O-complexed amides are often not directly comparable to the bands of the free amide.^{162,163} The out-of-plane wag of the NH_2 group, $\omega(NH_2)$, is assigned to the band at 672 cm⁻¹ by comparison with $CF_3C(O)NH_2$ (666 cm⁻¹), ¹⁶¹ and the frequency increase (6 cm⁻¹) is attributed to O-coordination of $CF_3C(O)NH_2$ to the XeF^+ cation and an attendant increase in C-N double bond character. This mode is observed at 639 cm⁻¹ in matrix isolated $CF_3C(O)NH_2$, and complexation with HF by bridging of the HF molecule between oxygen and an NH proton results in an increase of 17 cm⁻¹. ¹⁶⁴ The fundamental arising from the torsional motion of the NH_2 group, $\tau(NH_2)$, is tentatively assigned to the band at 810 cm⁻¹ by analogy with solid $CF_3C(O)NH_2$ (796 cm⁻¹). ¹⁶¹ The increase in $\tau(NH_2)$ (14 cm⁻¹) is attributed to an increase in C-N double bond character resulting from O-coordination. The rocking motion fundamental, $\gamma(NH_2)$, is not observed in the Raman spectrum of $CF_3C(O)NH_2^+AsF_6^-$, but is observed as a weak band at 1199 cm⁻¹ in the Raman spectrum of solid $CF_3C(O)NH_2^+AsF_6^-$, but is observed as a weak band at 1199 cm⁻¹ in the Raman spectrum of solid $CF_3C(O)NH_2^-$ The band at
1623 cm⁻¹ has been assigned primarily to the in-plane bending mode, $\delta(NH_2)$, which is 6 cm⁻¹ lower than that observed for $CF_3C(O)NH_2^-$. This mode is relatively insensitive to complexation, as observed for several primary amides and their HF complexes. ¹⁶⁴ The bands at 1543, 1562 and 1745 cm⁻¹ result from the v(CO) and v(CN) stretching modes. Although vibrational coupling of these modes is likely, v(CO) is formally assigned to the bands at 1543 and 1562 cm⁻¹ (Table 3.1) following the method of assignment for amidium salts, ¹⁶⁵ which are electronically similar to the $CF_3C(OXeF)NH_2^+$ cation. The CO stretching frequency is expected to be lower than that of uncomplexed $CF_3C(O)NH_2$ because the double-bond character of the C-O linkage is significantly reduced upon O-coordination. This implies dominance of resonance Structure 3.4 in the bonding of the $CF_3C(OXeF)NH_2^+$ cation. Correspondingly, the C-N stretch is expected to increase significantly and is assigned to the band at 1745 cm⁻¹, which is close to the observed range for v(CN) in the infrared spectra of O-protonated and O-alkylated amides ¹⁶⁶ (ca. 1600 - 1730 cm⁻¹). Unambiguous evidence for the reversal of v(CO) and v(CN) frequencies upon O-protonation of amides has been provided by Cook, 167 who compared the infrared spectra of N-acyltrialkylammonium halides and O-protonated N,N-dicyclohexylacetamide hydrohalide salts. Since the former are isoelectronic with the hypothetical N-protonated amides, a direct comparison of the infrared spectra of these salts with those of the neutral compounds aided in the assignment of the $\nu(CO)$ and $\nu(CN)$ bands. Following previously published assignments, 161 the bands at 1706 and 1460 cm-1 in the Raman spectrum of CF₃C(O)NH₂ are assigned to $\nu(CO)$ and $\nu(CN)$, respectively. When compared to $CF_3C(OXeF)NH_2^+AsF_6^-$, these values show a decrease in v(CO) of 154 cm⁻¹ and an increase in v(CN) of 285 cm⁻¹ in the xenon cation. Similar values of v(CO) and v(CN) have been reported from the infrared spectra of protonated amides; for example, v(CO) for the O-protonated salt of N,N-dimethylacetamide, CH₃C(OH)N(CH₃)₂+SbCl₆-,¹⁶⁵ is observed at 1401 cm⁻¹ and that of N,N-dimethylacetamide vapor is observed at 1651 cm⁻¹ [$\Delta v(CO) = 250 \text{ cm}^{-1}$], ¹⁶⁸ whereas the value of v(CN) increases to 1680 cm $^{-1}$ (average of three bands) upon O-protonation of N,N-dimethylacetamide, 165 compared to 1492 cm⁻¹ for the amide vapor $[\Delta v(CO) = 188 \text{ cm}^{-1}]$. An incomplete report of the infrared spectrum of CF₃(O)NH₂·BF₃ provides a value of 1760 cm⁻¹ for v(CO). 169 If CF₃(O)NH₂·BF₃ is indeed O-bonded, it is likely that $\nu(CO)$ has been misassigned in light of the well established trends noted above for v(CO) and v(CN). The in-plane (δ) and out-of-plane (π) OCN bends are tentatively assigned to the peak at 596 cm⁻¹ by analogy with CF₃C(O)NH₂, ¹⁶¹ assuming that they are similar in the CF₃C(OXeF)NH₂⁺ cation. The CF₃ group modes of CF₃C(OXeF)NH₂⁺ are assigned by analogy with those in Raman spectrum of solid CF₃C(O)NH₂: 1073 [ν_{asym} (CF₃)], 747 [δ_{sym} (CF₃)], 523 [δ_{asym} (CF₃)] and 432, 419 cm⁻¹ [γ (CF₃)]. The symmetric stretch, ν_{sym} (CF₃), is not observed in the Raman spectra of CF₃C(O)NH₂ and CF₃C(OXeF)NH₂⁺, but is observed at 1340 cm⁻¹ in the infrared spectrum of CF₃C(O)NH₂. The symmetric stretch of the CF₃ group is not observed in the Raman spectrum of the CF₃C(OXeF)NH₂⁺ cation, because it is too weak and/or because it coincides with an FEP sample tube band at 1384 cm⁻¹. A total of 21 bands are assigned to the AsF₆ anion, and are derived from the six normal modes for AsF₆ under O_h point symmetry. Since only three bands [$v_1(A_{1g})$, $v_2(E_g)$, and $v_5(F_{2g})$] are Raman active for O_h symmetry, a reduction of anion symmetry is apparent. A symmetry of C_{2v} or C_s would account for the observation of 15 normal modes, since all mode degeneracies would then be removed. The apparent reduction in anion symmetry may result in part from a low site symmetry for the AsF₆ anion in the unit cell, or from a true distortion of the molecular geometry of the anion due to hydrogen bonding interactions with the protons of the cation, as observed in the SbF₆ and AsF₆ salts of $OH_3^{+,171}$ $SH_3^{+,172}$ and $NF_2H_2^{+,173}$ The observation of more than 15 bands is attributed to intermolecular vibrational coupling within the crystallographic unit cell. This is likely since low site symmetry alone cannot account for the splitting of the non-degenerate $v_1(A_{1g})$ mode for AsF_6^{-} (647, 683 cm⁻¹). A crystal structure is required, however, to confirm these assignments (factor group analysis). ## (E) CHARACTERIZATION OF CF₃C(OH)NH₂⁺AsF₆⁻ BY LOW-TEMPERATURE RAMAN SPECTROSCOPY The assignments for the Raman spectrum of $CF_3C(OH)NH_2^+AsF_6^-$ were made by analogy with those of $CF_3C(O)NH_2^{161}$ and $CF_3C(OXeF)NH_2^+AsF_6^-$ (Table 3.1 and Figure 3.8). The v(CO) and v(CN) modes are assigned to the bands at 1519 and 1767 cm⁻¹, indicating greater double-bond character for the C-N bond than for the C-O bond and are similar to those of $CF_3C(OXeF)NH_2^+$. <u>Table 3.1.</u> Raman Frequencies^a and Assignments for $CF_3C(O)NH_2$, $CF_3C(OH)NH_2^+AsF_6^-$, $CF_3C(OH)NH_2^+AsF_6^-$. $CF_3C(OXeF)NH_2^+AsF_6^-$. | CF ₃ C(O)NH ₂ ^b | CF ₃ C(OH)NH ₂ ⁺
AsF ₆ ^{-c} | CF ₃ C(OH)NH ₂ ⁺ AsF ₆ ⁻
·XeF ₂ xHF ^c | CF ₃ C(OXeF)NH ₂ ⁺
AsF ₆ ^{-c} | Assignments | |--|---|---|---|--| | 3337 (7) | | 3336 (0.2)° | | v _{asym} (NH ₂) | | | 3227 (3) ^d | | 3355 (1) ^d | | | 3174 (11) | 3211 (3) ^d | 3205 (0.9) ^f | | $v_{sym}(NH_2)$ | | | | 3090 (1.5) | | ν _{sym} (HF) | | 1706 (40) | 1519 (3) | 1549 (2) | 1562 (1)
1543 (1) | ν(CO) | | 1629 (5) | f | 1631 (0.4) | 1623 (0.5) | $\delta(NH_2)$ | | 1460 (31) | 1767 (5) | 1750 (1.5) | 1745 (2) | v(CN) | | | 1276 (5) | 1262 (3) | | δ(ΟΗ) | | | | 1232 (4) | | | | 1199 (4) | 1197 (3) | 1202 (1) | đ | γ(NH ₂) | | f | 1314 (11) or | 1182 (2) | 1204 (1) | · (CE) | | • | 1384 (19)8 | 1308 (0.5) or
1385 (1) ^g | 1304 (1) or
1384 (4) ⁸ | $v_{sym}(CF_3)$ | | 1135 (100) | 1218 (7) ^g | 1064 (6) | 1073 (3) | $v_{asym}(CF_3)$ | | 796 (45) | 806 (3) | 827 (0.6) | 810 (8) | τ(NH ₂) | | 806 (7) | | | | | | f | 734 (8) ^g | 742 (0.7) | 747 (5) | $\delta_{\text{sym}}(\text{CF}_3)$ | | | 720 (23) | 719 (2) | 724 (sh) | $v_3(AsF_6)^h$ | | | | 714 (sh) | 702 (3) | | | | | 703 (0.7) | 693 (2) | · | | | 691 (100) | 688 (13) | 683 (19) | ν ₁ (AsF ₆ ⁻) ^h | | | | 680 (2) | 647 (6) | | | 666 (11) | 670 (15) | 646 (2) | 672 (1) | EQUITE) | | 666 (11) | 070 (13) | 674 (6)
669 (2) | 672 (1) | 可(NH ₂) | | 591 (10) | 600 (23) | 610 (1) | 596 (5) | δ(OCN) + | | | | 605 (1) | 5,5 (5) | π(OCN) | | | | 600 (3) | | | | | 578 (15) | 589 (2) | 589 (2) | ν ₂ (AsF ₆ ⁻) ^h | | | | 583 (5) | 577 (2) ⁸ | - • | | | | 578 (1) | | | | | | 571 (0.8) | | | | | | 560 (3) | | | | | | | 543 (29)
530 (100) | $v_{asym}(OXeF)$ | |----------------------|----------------------|-----------------------------|-----------------------------------|--| | | | | 508 (18)
502 (34)
476 (23) | $v_{sym}(OXeF)$ | | 513 (2) | 547 (13)
513 (8) | f | 523 (4) | $\delta_{asym}(CF_3)$ | | | | 515 (100)
511 (79) | | $v_{sym}(FXeF)$ | | 430 (30)
415 (39) | 434 (13)
412 (13) | 436 (2)
409 (2) | 432 (8)
419 (3) | γ(CF ₃) | | (42) | 389 (25)8 | f
f | 409 (0.3)
405 (0.3) | $v_4(AsF_6)^h$ | | | 372 (18)
363 (15) | 398 (0.8)
394 (0.8) | 398 (3)
393 (8) | v ₅ (AsF ₆ ⁻) ^h | | | • • | 363 (0.4)
343 (0.4) | 390 (6)
385 (14) ⁸ | | | | | 343 (0.4) | 379 (14) ⁸ | | | | | | 371 (9)
366 (12) | | | 20. 40. | | | 363 (12)
292 (12) ⁱ | δ(COXe) | | 291 (8)
266 (23) | 273 (6) | 274 (0.8)
261 (1) | 255 (10) | γ(C-C) | | | 251 (9) | 248 (0.1)
242 (0.3) | 277 (1)
265 (3)
247 (2) | v ₆ (AsF ₆) ^h | | 168 (9) | 167 (1) | f | 239 (2)
f | τ(C-C) | | | 139 (50) | 157 (3) | 141 (9) | δ(OXcF)
H-bonding and | | 100 (3) | 78 (4) | 152 (5)
141 (2) | | lattice modes | | 119 (6) | | | | | | ., | | 112 (6)
97 (2)
81 (7) | | | | | | 70 (4)
58 (3) | | | ^aValues in parentheses denote relative intensities; sh denotes a shoulder. ^bRecorded at room temperature in a glass sample tube; this work. Assignments have been taken from ref. (161). ^cRaman spectra were recorded in FEP sample tubes at -165 °C. Raman lines due to the FEP sample tube have been omitted from the table unless overlap with a sample tube band is likely. Data are given for the spectra depicted in Figures 3.7 - 3.9. ^dThe symmetries of the N-H stretches cannot be assigned from the available data. ^oThe broadness of the $v_{asym}(NH_2)$ and $v_{sym}(NH_2)$ bands is attributed, in part, to hydrogen bonding involving solvated HF. ^fBands not observed in the Raman spectrum. ^gBand may overlap with an FEP sample tube band. ^hNotation provided for the fundamental modes of the AsF₆ anion is that for O_h symmetry. The splitting of degenerate modes may be attributable to low site symmetry in the solid state or vibrational coupling within the unit cell. ⁱThe band assigned to the δ(COXe) bend in the CF₃C(OXeF)NH₂ cation is coincident with an FEP band at 292 cm⁻¹. This is indicated by the increased intensity of this band relative to the most intense FEP band at 734 cm⁻¹. Figure 3.8 Raman spectrum of microcrystalline CF₃C(OH)NH₂⁺AsF₆⁻ (-165 °C) recorded in an FEP sample tube using 514.5-nm excitation.
Asterisks (*) denote FEP sample tube lines. A dagger (†) denotes an artifact characteristic of the instrument. The bands attributed to $\omega(NH_2)$ (670 cm⁻¹), $\tau(NH_2)$ (806 cm⁻¹) and $\gamma(NH_2)$ (1197 cm⁻¹) are also similar to those observed in the Raman spectra of CF₃C(O)NH₂ and CF₃C(OXeF)NH₂⁺AsF₆⁻. A band attributable to $\delta(NH_2)$ was not observed, and is likely the result of the inherent low Raman intensity of this band.¹⁷⁴ The band at 1276 cm⁻¹ has been tentatively assigned to $\delta(OH)$ of the protonated carbonyl group. Infrared spectra of the related salts $CH_3C(OH)NH_2^+X^-$ (X = SbCl₆, NO₃, Cl), ¹⁶² [CH₃C(OH)NH₂+]₂X²⁻ (X = SnCl₆, PtCl₆)¹⁶² and CH₃C(OH)N(CH₃)₂+X⁻ (X = Cl, Br, I, SbCl₆)¹⁶⁵ exhibit bands at 1333-1368 and 1040-1192 cm⁻¹, respectively, which are assigned to $\delta(OH)$. Bands attributable to $\gamma(OH)$ and $\nu(OH)$, which, like $\delta(NH_2)$, usually have very low Raman intensities, ¹⁷⁴ and were too weak to be observed. Seven bands have been assigned to the AsF_6^- anion, as opposed to three bands expected for AsF_6^- with O_h symmetry. Again, hydrogen bonding between cation and anion, as in the salt, $CF_3C(OXeF)NH_2^+AsF_6^-$, may contribute to symmetry lowering of the anion. Low site symmetry in the solid may also give rise to the splitting of the v_5 band and observation of v_3 (720 cm⁻¹) and v_6 (251 cm⁻¹), both of which are formally Raman forbidden for octahedral XY_6 species. All bands are assigned except v_4 (ca. 420 cm⁻¹). This can be accounted for by considering the low intensity of this band in the Raman spectrum of $HC=NXeF^+AsF_6^{-,73}$ combined with the presence of bands in this region due to the FEP sample tube. #### (F) CHARACTERIZATION OF CF₃C(OH)NH₂⁺AsF₆⁻·XeF₂·xHF BY LOW-TEMPERATURE RAMAN SPECTROSCOPY A white microcrystalline powder precipitates upon rapid removal of the HF solvent under vacuum from a solution containing stoichiometric amounts of CF₃C(0)NH₂ and XeF⁺AsF₆⁻, or Figure 3.9 Raman spectrum of microcrystalline CF₃C(OH)NH₂⁺AsF₆·XeF₂·XHF (-165 °C) recorded in an FEP sample tube using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines. A dagger (†) denotes an artifact characteristic of the instrument. CF₃C(OH)NH₂⁺AsF₆⁻ and XeF₂. The Raman spectroscopic results (Table 3.1 and Figure 3.9) are consistent with the formulation CF3C(OH)NH2+AsF6-XeF2xHF. The Raman spectrum resembles that expected for a mixture of polycrystalline XeF₂ and CF₃C(OH)NH₂⁺AsF₆⁻. However, the average of the very intense peaks at 511 and 515 cm⁻¹, assigned to $v_{sym}(Xe-F)$ of XeF₂ incorporated in the adduct, is 17 cm⁻¹ higher in frequency than the symmetric Xe-F stretch for polycrystalline XeF₂ (495 cm⁻¹). ^{175a} The interaction of XeF₂ with fluoroacids as in XeF⁺AsF₆ , 176 XeF+Sb₂F₁₁- 69 and XeF₂-XeF₅+AsF₆- 177 results in elongation of one Xe-F bond (Xe-F bridge bond) in complexed XeF2, accompanied by a shortening of the remaining (terminal) Xe-F bond. This results in bands which are assignable to a bridging Xe--F stretch and a terminal Xe-F stretch, that are lower and higher in frequency, respectively, than $v_{sym}(Xe-F)$ [496 cm⁻¹]^{175b} and $v_{asym}(Xe-F)$ [547 cm⁻¹]^{175c} in uncoordinated XeF₂, from which they are formally derived. The latter mode is Raman forbidden for XeF_2 under $D_{\infty h}$ point symmetry. The absence of a relatively intense band assignable to vasym(Xe-F) at approximately 550 cm⁻¹ in the Raman spectrum of CF₃C(OH)NH₂⁺AsF₆⁻·XeF₂ xHF indicates that the Xe-F bonds in coordinated XeF₂ are essentially symmetric. The frequency of $v_{sym}(Xe-F)$ is also inconsistent with an XeF_2 molecule containing significantly different Xe-F bond lengths (see above). The observation of two peaks for $v_{sym}(Xe-F)$ is attributed to vibrational coupling of XeF_2 molecules within the unit cell of CF₃C(OH)NH₂⁺AsF₆⁻XeF₂ xHF. By analogy with known adducts containing symmetric XeF₂, ¹⁷⁸ it is probable that the fluorine ligands of XeF₂ interact with the positive centers of the CF₃C(OH)NH₂⁺ cation in the adduct CF₃C(OH)NH₂⁺AsF₆⁻-XeF₂-xHF, namely the hydroxyl and amido protons, through hydrogen bonding. Structures 3.5 - 3.7 illustrate possible hydrogen bonding interactions of XeF2 and CF3C(OH)NH2+ in which the local molecular point symmetry of XeF2 does not deviate significantly from D. Further evidence for the assigned structure of the solvate $CF_3C(OH)NH_2^+AsF_6^-XeF_2\pi HF$ was obtained by comparing bands in the amide region of the Raman spectrum with those of $CF_3C(O)NH_2$ and $CF_3C(OH)NH_2^+AsF_6^-$. The bands at 1767 and 1549 cm⁻¹ are assigned to v(CN) and v(CO), respectively. This is consistent with an increase of 262 cm⁻¹ for v(CN) and a decrease of 157 cm⁻¹ for v(CO) relative to $CF_3C(O)NH_2$ and with the changes in C-N and C-O bond order anticipated upon O-protonation of amides. The bands at 1262 and 1232 cm⁻¹ are assigned to the bending mode, $\delta(OH)$, and are similar to the value assigned for $CF_3C(OH)NH_2^+AsF_6^-$ (1276 cm⁻¹). As in the Raman spectrum of $CF_3C(OH)NH_2^+AsF_6^-$, modes arising from v(OH) and v(OH) are presumably too weak to be observed. Evidence for solvation by HF is provided by the presence of a broad band at 3090 cm⁻¹ which is assigned to $v_{sym}(HF)$, and is similar to that observed in the infrared spectra of hydrogen-bonded complexes of HF with $CF_3C(O)NH_2$. ¹⁶⁴ A total of 17 bands are attributed to the AsF_6^- anion, and have been assigned using arguments similar to those already presented for $CF_3C(OH)NH_2^+AsF_6^-$ and $CF_3C(OXeF)NH_2^+AsF_6^-$. #### (G) NATURE OF THE BONDING IN CF3C(OXeF)NH2+ The bonding in the CF₃C(OXeF)NH₂⁺ cation can be assessed using trends for xenon(II) compounds that are well established from Raman and NMR spectroscopy. Previous NMR studies of xenon(II) derivatives containing XeF groups bonded to oxygen or fluorine have shown that the ¹⁹F and ¹²⁹Xe NMR parameters can be used to assess the relative covalent characters of the Xe-O, Xe---F bridge and terminal Xe-F bonds in compounds of the type F-Xe-L (L = ligand atom). ^{26,103,104,108} In general, as the ionic character of the Xe-L bond increases, the covalent character of the terminal Xe-F bond increases, increasing the formal charge on xenon. This trend is paralleled by increasing values of $\delta(^{129}\text{Xe})$ and $^1J(^{129}\text{Xe}-^{19}\text{F})$, and decreasing values of $\delta(^{19}\text{F})$ for the terminal Xe-F group. The pattern observed in the ^{19}F and ^{129}Xe NMR spectra is complemented by measurements of $\nu(\text{Xe-F})$ provided by Raman spectroscopy, which signify increased covalent character of the Xe-F bond with shifts to higher frequency, and $\nu ice \ \nu ersa.^{26}$ Table 3.2 lists the relevant NMR and Raman spectroscopic data for the CF₃C(OXeF)NH₂⁺ cation and some related Xe-O, Xe-N and Xe-F bonded compounds of Xe(II) arranged in approximate order of increasing ionic character of the Xe-F bond. Xenon difluoride and XeF⁺Sb₂F₁₁, in which the XeF⁺ cation is fluorine bridged to the weakly fluorobasic Sb₂F₁₁ anion, ⁶⁹ provide the upper and lower limits, respectively, of the terminal Xe-F bond ionic character. The charge distribution for XeF₂ may be represented as F⁻²Xe⁺F⁻², indicating a high degree of Xe-F bond ionic character. ¹⁷⁹ The low basicity of the Sb₂F₁₁ anion in XeF⁺Sb₂F₁₁ provides the closest approximation to a free XeF⁺ cation, where the Xe-F bond order approaches one. Consistent with the valence bond Structures 3.8 and 3.9, the degree of Xe-F bond ionic character in L-Xe-F depends upon the basicity of the ligand L. ²⁶ As can be inferred from L-Xe⁺F $$\langle -- \rangle$$ L'Xe⁻F $\langle -- \rangle$ L'Xe²⁺ F 3.8 3.9 3.10 L- $$Xe^{2+}$$ F \longleftrightarrow L Xe^{-F+} \longleftrightarrow L Xe^{2+} F 3.11 3.12 3.13 19 F and 129 Xe NMR shielding trends, the magnitude of $^{1}J(^{19}$ F- 129 Xe) and terminal Xe-F stretching frequencies (Table 3.2), the Xe-O bond in the CF₃C(OXeF)NH₂⁺ cation is significantly more Table 3.2. Comparison of Chemical Shifts, One Bond Xe-F Coupling Constants and v(Xe-F) of Some L-Xe-F Derivatives | | | Z | NMR Parameters | | | | |--|-------------------------------|--|--|-----------------------------|----------|-----------------| | Species | v(Xc-F), ^b
cm·i | ¹ J(¹²⁹ Xe- ¹⁹ F),
Hz | 8(¹²⁹ Xe), ^c
ppm | 8(19F), ^d
ppm | T, °C | Joz . | | FloSbzFXcF+ e | 619 | 7230 | -574 | -290.2 | 23 | 66,69,108,111 | | F-XeFXe-F ⁺ | 593 | 6740 | -1051 | -252.0 | -62 | 69,108,111 | | (CF ₃) ₂ S=OXeF ⁺ SbF ₆ . | 552 | 6343 | -1679 | | -30 | 85 | | F ₃ S≡NXeF⁺AsF ₆ | 554 | 6248 | -1661 | -180.5 | ş | 180 | | HCBNXcF ⁺ AsF ₆ . | 564 | 6181 | -1569 | -198.4 | .58 | 72,73 | | CH ₃ C≡NXeF ⁺ AsF ₆ ·8 | 560 | 6020 | -1708 | -185.5 | -10 | 72 | | CF3C(OXeF)NH2+AsF6 | 536 | 5991 | -1578 | -183.1 | \$ | £ | | 4-(CF3)C5F4NXeF7AsF6 | 524 | 5963 | -1853 | -144.6 | <u>ئ</u> | 75 | | C ₅ F ₅ NXeF ⁺ AsF ₆ . | 528 | 5926 | -1922 | -139.6 | -30 | 75 | | s-C3P3N2NXeF*AsF6 | 548 | 5932 | -1862 | -145.6 | S | 71 | | cis-F ₄ OIOXeF | 527 | 5803 | -1824 | -161.7 ⁱ | 0 | 42 | | trans-F4010XeF | 527 | 5910 | -1720 | -170.1 ⁱ | 0 | 42 | | FO ₂ SOXeF | 528 | 5830 | -1666 | | 8 | 108,111,140,158 | | P ₅ TeOXeF ⁱ | 520 | 2670 | -2051 | -151.0 ^k | 52 | 180,181 | | (FO ₂ S) ₂ NXeF | 206 | 5586 | -1977 | -126.1 | -58 | 57,59 | | CF3C(0)OXeF | 510 | 5550 | -2176 | | -30 | 39,139 | | XeP ₂ | 495 | 5621 | -1685 | -184.3 | -52 | 71,175a | ^aSpectra were recorded in BrF₅ solvent unless otherwise indicated. The NMR parameters of the XeF group, in particular $\delta(^{129}\text{Xe})$, are very sensitive to solvent and temperature conditions; it is therefore important to make comparisons in the same solvent medium and at the same or nearly the same temperature. Table entries
refer to the terminal fluorine on the xenon atom. ^bVibrational data refers to terminal Xe-F stretches. ^cReferenced with respect to the neat liquid XeOF₄ at 30 °C. ^dReferenced with respect to the neat liquid CFCl₃ at 30 °C. ^cNMR parameters recorded in SbF₅ solvent. ^fδ(¹⁹F) measured in anhydrous HF solvent at -10 °C. ^gNMR parameters measured in HF solvent. ^hThis work. ⁱδ(¹⁹F) measured in SO₂ClF solvent at -40 °C. ^jNMR parameters measured in SO₂ClF solvent at -50 °C. ¹Vibrational spectrum obtained using infrared spectroscopy in acetonitrile solvent at ambient temperature. NMR parameters obtained in CD₃C≡N solvent at -30 °C. covalent than those of the Xe-N bonded cations $F_3S=N-XeF^+$, $HC=N-XeF^+$ and $CH_3C=N-XeF^+$, which have been shown to have highly ionic Xe-N bonds. 26 Based on 1/(129Xe-19F) and v(XeF). the Xe-F bond in the CF₃C(OXeF)NH₂+ cation is more ionic than the Xe-F bond in (CF₃)₂S=O-XeF⁺, implying a more covalent Xe-O bond in the former cation. The δ(¹²⁹Xe) values are, however, opposite in direction to the trend established above, but the difference in the solvents and temperatures used, and the large influence that these factors are known to have on the ¹²⁹Xe NMR chemical shifts of Xe(II) compounds, 103,108 renders this parameter unreliable for assessing Xe-F bond ionicity in the present case. One possible factor contributing to the ionic character of the Xe-O bonds in the $(CF_3)_2S=O-XeF^+$ and $CF_3C(OXeF)NH_2^+$ cations is the formal hybridization on oxygen. In general, a greater s-contribution to the hybridization of the ligand donor atom is expected to increase its effective electronegativity, 105 resulting in a more ionic Xe-L bond. This is illustrated in the series of cations containing Xe-N bonds, where the Xe-N bonds in cations containing formally sp-hybridized nitrogen (e.g., F3S=N-XeF+, RC=N-XeF+) are consistently more ionic than the Xe-N bonds in the cations containing formally sp^2 -hybridized nitrogen (e.g., 4- $CF_3C_5F_4N-XeF^+$, $C_5F_5N-XeF^+$, $s-C_3F_3N_2N-XeF^+$). The oxygen of the $(CF_3)_2S=OXeF^+$ cation is formally sp^2 -hybridized, whereas resonance Structure 3.4 for the $CF_3C(OXeF)NH_2^+$ cation indicates π -donation from nitrogen to carbon, which effectively lowers the s-contribution to hybridization on oxygen so that it is intermediate between sp^2 and sp^3 , resulting in a more covalent Xe-O bond in the CF₃C(OXeF)NH₂⁺ cation. It is also apparent from Table 3.2 that cationic L-Xe-F⁺ compounds exhibit spectroscopic properties which are consistent with more ionic Xe-L bonds than the structurally analogous neutral compounds. This can be rationalized using a simple valence bond description. Resonance Structures 3.8 - 3.10 represent the bonding in the neutral molecules L-Xe-F, whereas 3.11 - 3.13 represent the corresponding cationic species L-Xe- Ξ F⁺. For the neutral species L-Xe-F, resonance Structure 3.10 contributes least to the bonding as a result of the dipositive charge on xenon. The relative weights of 3.8 and 3.9 depend on the group electronegativity of the ligand L, with a greater contribution from Structure 3.8 for lower electronegativity of L. For the L-Xe-F⁺ cations, resonance Structures 3.11 and 3.13 have reduced weights relative to 3.12 as a result of the high charge localization. Thus, resonance Structure 3.12, which represents a purely ionic interaction of the ligand L and XeF⁺, is expected to dominate the bonding in CF₃C(OXeF)NH₂⁺ and related O- and N-bonded xenon(II) cations. ### CHAPTER 4 # CHARACTERIZATION AND COMPARISON OF THE BONDING IN F₅TeNH₂ AND F₅TeNH₂+AsF₆- USING ¹⁹F NMR AND RAMAN SPECTROSCOPY #### INTRODUCTION ## (A) REVIEW OF THE SYNTHESIS, CHARACTERIZATION AND BONDING OF THE ACIDS F_5XOH AND THE SALTS $M^+OXF_5^-$ (X = S, Sc, Tc) The ligands F_5 : O- (X = S, Se, Te) are bulky, highly electronegative and are second only to fluorine in their ability to stabilize high oxidation states of metals and nonmetals. 52,183,184 The first compounds containing the F_5 XO- group were prepared from the direct fluorination of the chalcogens in the elemental state or the oxides, yielding hypofluorites F_5 XOF (X = S, 185 Se 186), peroxides F_5 XO-OXF₅ (X = S, 187 Se 186) and F_5 TeOTeF₅. 188 The synthetic potential of the F_5 XO-group increased dramatically in 1964 with the discovery of the acid, HOTeF₅ 189 from the reaction of BaTeO₄ with HSO₃F in an attempt to prepare TeO₂F₂ by analogy with the preparation of SeO₂F₂ from BaSeO₄ and HSO₃F. 190 Failure to prepare TeO₂F₂ in this way reflects the propensity of hexavalent tellurium to adopt coordination number six. 52 The compound HOTeF₅ is best prepared according to equation (4.1) $$Te(OH)_6 + 5 HSO_3F \longrightarrow 5 H_2SO_4 + HOTeF_5$$ (4.1) The preparation of HOSeF₅, first reported in 1972 by Seppelt, ^{142,191} involves the reaction of SeO₂F₂ and HF with an increase in coordination number of selenium(VI) according to equation (4.2), which illustrates the tendency for coordination numbers four and six to exist in the same system for hexavalent selenium. $$3 ScO_2F_2 + 4 HF 2 HOScF_5 + H_2ScO_4$$ (4.2) In contrast to SeO_2F_2 , SO_2F_2 is extremely inert showing no tendency to increase its coordination number to six. The preparation of $HOSF_5$ therefore requires a more indirect route, involving the reaction of SOF_4 with CIF to give the hypochlorite $CIOSF_5$ as an intermediate, followed by reaction with HCI (equation 4.3). 192,193 $$SOF_4 + CIF \xrightarrow{CsF} > CIOSF_5 \xrightarrow{HCl} + HOSF_5$$ (4.3) The thermal stabilities of HOSF₅, HOScF₅ and HOTeF₅ vary considerably: 193 $$HOSF_5 \xrightarrow{-60 \, ^{\circ}C} > HF + SOF_4$$ (4.4) $$HOScF_5 \xrightarrow{290 \, ^{\circ}C} HF + 1/2 O_2 + ScF_4$$ (4.5) $$HOTeF_5 > \frac{310 \, ^{\circ}C}{} + F + (TeOF_4)_n + TeF_4 + TeF_6 + ...$$ (4.6) Below -60 °C, HOSF₅ is only kinetically stable with respect to reduction of coordination number, limiting its use as a synthetic reagent. The selenium analog, HOSeF₅, decomposes at 290 °C with reduction of selenium from the +6 to the +4 oxidation state. The tendency to undergo reduction is reflected in the powerful oxidizing power of HOSeF₅. As a result, HOSeF₅ is the strongest oxidizer among the three HOXF₅ compounds. The high thermal decomposition temperature of HOTeF₅ and the uncharacteristic distribution of products indicates the stability of hexacoordinate tellurium (VI) with respect to reduction of coordination number and oxidation state. Thus, most of the chemistry of the F₅XO- ligand has involved HOTeF₅ as the starting material. The chemistry of the F₅SeO- ligand is less extensive, and few examples of the F₅SO- ligand are known owing to the instability of HOSF₅. The inductive effect resulting from the accumulation of fluorine atoms results in high group electronegativities for the F_5XO - ligands, enabling them to stabilize high oxidation states that are only otherwise stabilized by the most electronegative element, fluorine. Examples include $W(OTeF_5)_6$, 194 $U(OTeF_5)_6$, $^{195.196}$ $O=Xe(OTeF_5)_4$, $^{51.53.181}$ $Br(OSeF_5)_3$, 45 and $Kr(OTeF_5)_2$. 197 Several methods have been used to establish the electronegativities of the F_5TeO - and F_5SeO -groups relative to fluorine and the other halogens. The 1H NMR chemical shift of the methyl protons of CH_3OSeF_5 relative to those of CH_3X (X=F, CI, Br, I) has indicated that the F_5SeO -group has an electronegativity which is greater than that of fluorine. 198 Although the electronegativity of the F_5TeO - group relative to fluorine has been debated. 52 the weight of evidence indicates that fluorine is more electronegative. Using the difference in the 1H NMR chemical shifts of the methyl and methylene protons in the compounds CH_3CH_2X ($X=OTeF_5$, F, CI, Br, I), 181 a value of 3.88 has been obtained for the electronegativity of the F_5TeO - group, as compared to 3.98 for fluorine (Pauling scale). A study involving ^{127}I and ^{129}Xe Mössbauer and 129 Xe and 125 Te NMR spectroscopic measurements on a series of xenon and iodine compounds containing F and F₅TeO- as ligands also indicate that the electronegativity of the F₅TeO- group is less than that of fluorine. 181 As expected from the high electronegativity of the F_5 TeO- and F_5 SeO- groups, the compounds HOTe F_5 and HOSe F_5 are strong acids. The acid strength of HOTe F_5 has been found to lie between those of HNO₃ and HCl by spectrophotometric measurements in acetic acid solution.²⁰⁰ The high acidity is also reflected in the large variety of known F_5 XO⁻ salts.⁵² Salts of the F_5 XO⁻ anions (X = Tc, Se) may be obtained directly from HOTe F_5 and HOSe F_5 by reaction with nitrogen bases [equations (4.7) and (4.8)]:²⁰¹⁻²⁰⁴ $$HOTeF_5 + D \longrightarrow DH^+OTeF_5^-$$ (4.7) $(D = C_5H_5N, NH_3, C_{14}H_{18}N_2, N(CH_2CH_3)_3)$ $$HOScF_5 + D \longrightarrow DH^+OScF_5(D = NH_3)$$ (4.8) The salts $NR_4^+OTeF_5^-$ (R = $CH_3^{,205}$ $CH_3CH_2CH_2CH_2^{-203}$) have been prepared from the HCl elimination reaction of $HOTeF_5$ with NR_4Cl . Alkali metal derivatives of F_5TeO^- may be prepared from $HOTeF_5$ and MCl (M = K, Rb, Cs) with the evolution of $HCl.^{201,206}$ Syntheses of the analogous $M^+OSeF_5^-$ salts requires the use of MF (M = Li, Na, K, Rb, Cs) producing $HF_5^{,204}$ since chloride is oxidized by selenium(VI), giving chlorine gas. The salts, $Na^+OXF_5^-$, (X = Se, Te) 207 may be prepared from the reaction of a siloxane $R_3OSi-OXF_5$ with $NaOSiR_3$ [equation (4.9)] and $Li^+OTeF_5^{-207}$ is prepared from the reaction of $LiOCH_3$ and $HOTeF_5$ [equation (4.10)]. Other derivatives include $NO_2^+OSeF_5^{-208}$ and $NO^+OTeF_5^{-209}$ which both have covalent formulations $$Na^+OXF_5^- + R_3SiOSiR_3$$ (X = Se, Te) (4.9) $$HOTeF_5 + LiOCH_3 \longrightarrow HOCH_3 + Li^+OTeF_5$$ (4.10) in the gas phase, and the salt Ag^+OTeF_5 , 206 for which a partially covalent interaction between
the cation and anion has been observed in acetonitrile solution. Because of the instability of $HOSF_5$ above -60 °C. 192,193 salts of the OSF_5 anion can not be prepared from the parent acid. The salt, Cs^+OSF_5 , is prepared from the addition reaction of CsF and SOF_4 . 210,211 The OXF₅^{*} anions all exhibit molecular geometries having $C_{4\nu}$ point symmetry in solution and in the solid state. Structural characterization of these anions has been obtained by ¹⁹F NMR spectroscopy, which exhibits typical AB₄ spectra, and infrared and Raman spectroscopy. Because of orientational disorder resulting from the essentially spherical shape of the OXF₅^{*} anions and the similarities of the covalent and van der Waals radii of oxygen and fluorine atoms, the salts are not suitable for detailed single crystal X-ray analysis. Only one salt F₅XO^{*} salt, namely [1,8-bas(dimethylamino) naphthalenium] OTeF₅^{*}, has been published in which the oxygen and fluorine atoms are not disordered. The wealth of vibrational and 19 F NMR spectroscopic data on compounds containing F₂XO- grows has made it possible to compare the bonding in F₅XO-M (X = S, Se, Te) compounds as M is varied. 52,83,84 It has been noted that increasing ionic character of the O-M bond results in a strengthening of the O-X bond, and a weakening of the X-F bonds. Further, the stand X-F bond is weakened more than the equatorial X-F bonds, a well established "trans effect". This is adequately illustrated by comparing the acids $HOXF_5$ (M = H) with salts of the form M⁺OXF₅, where the ionic characters of the M-O bonds in the latter compounds are significantly greater than in the former. Table 4.1 lists the ¹⁹F NMR and vibrational data for HOXF₅ and the OXF_5^- anions (X = S, Se, Te). As shown in the vibrational data, deprotonation of the acids $HOXF_5$ to give OXF_5^- results in a lowering of the $v(X-F_{ax.})$ and $v_{sym}(X-F_{eq.})$ stretching frequencies and an increase in the v(XO) stretching frequencies. The axial X-F stretches are decreased more than the equatorial X-F stretching frequencies, consistent with the expected changes in bond strengths described above. The X-O bond orders in the F5XO anions have been estimated from the force constants obtained from normal coordinate calculations to lie between one and two for $X = Se^{206}$ and $Te;^{206}$ an S-O bond order of 1.5 has been calculated for the $F_5SO^$ anion.²¹⁰ Structural evidence for partial double bond in the F₅TeO is present in the single crystal X-ray structure of [1,8-(dimethylamino)naphthalenium] OTeF5, 202 where the Te-O bond length [1.803(3) Å] is significantly shorter than a Te-O single bond [cf., Te(OH)₆, Te-O = 1.908(1) Å]. The X-O bond orders are indicative of partial double bonds resulting from π -donation from oxygen to the F₅X- group. Valence bond theory has been used by several authors (c.f., resonance Structures 4.1 - 4.3) to represent the bonding in the OXF₅ anions (X = S, Se, Te)^{206,210,213,214} without explicitly identifying the orbitals on the hypervalent chalcogen center which accept π electron density from oxygen. The weaker axial X-F bonds are represented by greater weighting of resonance Structure 4.3. Strauss et al. have stated that vacant d-orbitals on the chalcogen center function as acceptor orbitals for the π -electron density from oxygen $(d_{\pi}-p_{\pi})$ bonding). 203 Oberhammer and Seppelt²¹⁵ also provide evidence for d_{π} - p_{π} bonding in the oxides F_5XOXF_5 (X = S, Se, Te) from the energetically unfavorable eclipsed geometries of the equatorial fluorine ligands, the nearly constant X-O-X bond angles (ca. 140°) and the short X-O bond lengths. With regard to the bonding in the OXF₅⁻ anions, Seppelt²¹⁵ has stated that resonance Structures 4.1 - Table 4.1. Comparison of Raman and ¹⁹F NMR Spectroscopic Data for the Acids F₅XOH and Some of the Salts, [M]*[F₅XO]⁻ (X = S, Se, Te). | | Ram | Raman Frequencies,
cm ⁻¹ a | | ¹⁹ F NMR Chemical Shifts,
ppm ^b | Chemical Shifts,
ppm ^b | | |---|------------------------|--|--------|--|--------------------------------------|-------------| | Compound | v(X-F _{ax.}) | v _{sym} (X-F _{eq.}) | v(X-0) | SA C | S _B C | Ref | | F ₅ TcOH | 735 | 685 | 735 | -44.3 | 46.6 | 214,220 | | $[N(n-Bu)_4]^+OTeF_5^{-d}$ | 576 | 645 | 198 | -19.0 | -36.8 | 202,203 | | N(CH ₃) ₄ +OTeF ₅ · ° | 583, 650 | 583, 650 | 868 | -19.1 | -36.9 | 205 | | F ₅ ScOH ^f | 625 | 685 | 753 | 82.7 | 64.8 | 214,215 | | K ⁺ OSeF ₅ · 8 | 559 | 649 | 616 | 121.1 | 78.4 | 204,214,215 | | F ₅ SOH ^{h,i} | 610, 635 | 761 | • | 71.8 | 67.0 | 192,193 | | Cs ⁺ OSF ₅ · J | 722 | 269 | 1153 | 138.3 | 94.9 | 211 | ### Table 4.1 (continued) ^a Raman spectra were performed on the neat compounds at ambient temperatures unless otherwise specified. ^b ¹⁹F NMR spectra were recorded at ambient temperatures unless otherwise specified and positive (negative) chemical shifts are deshielded (shielded) relative to CFCl₃ standard. ^c δ_A and δ_B refer to the axial and equatorial ¹⁹F NMR resonances, respectively. ^d ¹⁹F NMR spectra recorded in CH₂Cl₂ solvent. ^e ¹⁹F NMR spectra recorded in CH₃C≡N solvent at -10 °C. ^f ¹⁹F NMR spectra recorded in CH₃C≡N solvent. ^h Raman spectra recorded at -160 °C. ⁱ ¹⁹F NMR spectra recorded at -70 °C in CHClF₂ solvent. ^j ¹⁹F NMR spectra recorded in DMSO solvent. $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ F \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X \\ Y \\ Y \end{cases}$$ $$F = \begin{cases} F \\ X F$$ 4.3 imply hyperconjugation. This is a misnomer since hyperconjugation implies donation of electron density from a σ orbital to a π^* orbital. In these anions, negative hyperconjugation²¹⁶ may contribute significantly to the bonding, where π electron density from the p-orbitals on oxygen donate electron density into σ^* orbitals of the F_5Te - group. Recent SCF ab initio calculations using natural population analysis²¹⁶ on molecules containing hypervalent main-group centers such as CH₃SO₂Cl, F_3 CO and the hypothetical F_3Te C anion indicate that the primary acceptor orbitals on the hypervalent centers are σ^* , constructed mainly from valence s and p orbitals and that valence s orbitals play only a minor role. The lengthening of the X-F bonds (X = S, Se, Te) upon deprotonation of HOXF₅ to give OXF₅ is predicted, since $\pi_O \to \sigma^*$ (X-F) donation increases the population of X-F antibonding orbitals. The "trans effect" described above indicates that $\pi_O \to \sigma^*$ (X-F_{ax}) > $\pi_O \to \sigma^*$ (X-F_{eq}), which may be confirmed by performing the appropriate calculations. An explanation for the observed behavior of the 19 F NMR chemical shifts (Table 4.1) of the HOXF₅ / OXF₅⁻ pairs (X = S, Se, Te) cannot be made with certainty, but may be related to the effect of negative hyperconjugation discussed above. Table 4.1 illustrates that both the axial and equatorial fluorine resonances of the OXF₅⁻ anions are deshielded relative to those of the acids, HOXF₅. In particular the axial fluorine resonances are deshielded by 18 to 25 ppm (X = Te), 38 ppm (X = Se) and 66 ppm (X =
S). The equatorial resonances are deshielded by 4 to 10 ppm (X = Te), 14 ppm (X = Se), and 30 ppm (X = S). This qualitatively resembles the trend observed in the X-F force constants derived from the vibrational data, where the axial X-F bond is affected more by changes in the X-O bond order, which has been attributed to $\pi_0 \to \sigma^*$ (X-F) negative hyperconjugation. In the presence of a magnetic field, mixing of lower energy orbitals with higher unoccupied orbitals, which are termed "excitations", results in paramagnetic currents which may deshield (negative paramagnetic contribution) or shield (positive paramagnetic contribution) the nucleus. ^{218,219} It is possible that the population of the σ^* (X-F) orbitals resulting from negative hyperconjugation deshields the fluorine nuclei by altering the paramagnetic circulations involving σ^* (X-F) as the higher energy orbital. Further speculation is unwarranted without a detailed knowledge of the electronic states of the OXF₅ anions. ### (B) SYNTHESIS AND CHARACTERIZATION OF F_5XNH_2 (X = S, Te) The chemistry of the nitrogen analogues, F_5XNH_2 (X = S, Se, Te), is less developed than that of the oxygen acids $HOXF_5$ (X = S, Se, Te). Although preceded by several examples of α -fluoro secondary amines R_fNHR_f , where R_f and R_f , have been either perfluoroalkyl or pentafluorosulfur groups, 221-225 the preparation of the α -fluoro primary aminosulfur(VI) pentafluoride was first reported in 1965, by Clifford and Duncan²²⁶ by addition of HF across the SN triple bond of $F_3S=N$ [equation (4.11)]. $$F_3S=N + 2 HF \longrightarrow F_5SNH_2$$ (4.11) The compound, F_5SNH_2 , dissociates slowly at room temperature and more rapidly at 45 °C to give HF and $F_3S\equiv N$. However, F_5SNH_2 is much more stable than F_5SOH , which decomposes to give SOF_4 and HF at -60 °C. ^{192,193} As a result, the chemistry of F_5SNH_2 has been investigated to a greater extent. In spite of the electron withdrawing effect of the F_5S - group, F_5SNH_2 has some degree of basic character, since 1:1 adducts are formed with PF₅ and BF₃ that are both stable at room temperature. ²²⁷ Of the heavier analogues, i.e., F_5SeNH_2 and F_5TeNH_2 , only the latter is known. The preparation of F_5TeNH_2 was preceded by the preparation of the dialkylamino derivatives, $F_5TeN(CH_3)_2$, 228,229 $F_5TeN(CH_2CH_3)_2$, 229 and $F_5TeN(C_4H_8)$. These species were prepared from the appropriate dialkylaminotrimethylsilane and TeF_6 in silicon-nitrogen cleavage reactions [equation (4.12)]. The thermodynamic driving force for the reactions is the formation of the very $$R_2NSi(CH_3)_3 + TeF_6 \longrightarrow R_2NTeF_5 + FSi(CH_3)_3$$ (4.12) strong Si-F bond. The primary amine, F₅TeNH₂,²³⁰ was prepared in 1973 in a two-step siliconnitrogen cleavage reaction [equations (4.13) and (4.14)]. Aminotellurium(VI) pentafluoride, as expected by analogy with HOTeF₅, exhibits no tendency to undergo HF elimination or reduce its $$TeF_6 + (CH_3)_3SiNHSi(CH_3)_3 \longrightarrow$$ $$F_5TeNHSi(CH_2)_3 + (CH_2)_3SiF \qquad (4.13)$$ $$F_5$$ TeNHSi(CH₃)₃ + HF \longrightarrow F_5 TeNH₂ + (CH₃)₃SiF (4.14) coordination number at ambient temperatures, and decomposes only when heated to 150 °C. Unlike the sulfur analogues, cis-disubstituted products may be produced in the preparation of the compounds F_5TeNRR^* [R, R' = alkyl; R = H, R' = Si(CH₃)₃]. Of the alkyl derivatives studied, only the reaction of $(CH_3)_3SiN(CH_3)_2$ with $TeF_6^{228,229}$ produces a stable cis-disubstituted product, namely cis- $F_4Te[N(CH_3)_2]_2$, which is formed along with $F_5TeN(CH_3)_2$. In the preparation of $F_5TeNHSi(CH_3)_3$ cited above, reaction conditions must be carefully controlled to prevent the formation of cis- $F_4Te[NHSi(CH_3)_3]_2$, which is known to be explosive. ^{230,125} The formation of cis- $F_4Te[NHSi(CH_3)_3]_2$ is believed to be favored for kinetic reasons since the trans isomer, being less sterically hindered, should be thermodynamically more stable. ¹²⁵ The basicity of the nitrogen center in F_5TeNH_2 was investigated by attempting to prepare adducts with the Lewis acids AsF_5 and BF_3 . 230 A 1:1 adduct is formed with AsF_5 which is stable at room temperature, whereas the 1:1 adduct formed with the weaker Lewis acid, BF_3 , decomposes reversibly above -60 °C. The fact that the F_5TeNH_2 · BF_3 adduct is less thermally stable than F_5SNH_2 · BF_3 (stable at room temperature)²²⁷ has been interpreted as an indication of the weaker basicity of F_5TeNH_2 relative to that of F_5SNH_2 . The electron withdrawing power of the F_5Te group results in some acid character for F_5TeNH_2 , however, it is only marginally acidic. In contrast to the strong acid $HOTeF_5$, 52 no definite products result from the reaction of F_5TeNH_2 and nitrogen bases such as pyridine and triethylamine. 230 No reaction is observed between F_5TeNH_2 and CsF, rather an unstable salt assumed to be $Cs^+NHTeF_5^-$ is isolated according to equation (4.15). 230 The resulting $Cs^+HNTeF_5^-$ salt decomposes in most solvents, and has exploded $$F_5$$ TeNHSi(CH₃)₃ + CsF \longrightarrow Cs⁺HNTeF₅ + (CH₂)₃SiF (4.15) in the laser beam of a Raman spectrometer. 230 The weaker basicity of the nitrogen lone pair in F_5 TeNH₂ relative to that in F_5 SNH₂ was attributed by Seppelt²³⁰ to result from Te-N p_{π} - d_{π} bonding. As mentioned above for the OXF₅-anions, the acceptor orbitals may largely consist of σ^* (Te- F_{ax}) and σ^* (Te- F_{eq}) antibonding orbitals, with only a minor contribution from vacant d-orbitals. In describing the bonding in F_5 TeNH₂, a direct comparison can be made with the OTeF₅-anion [Section (A) of this Chapter]. Protonation of F_5 TeNH₂ to give the acid cation, F_5 TeNH₃+, is expected to result in a reduction in the Te-N π -bonding and a strengthening of the Te-F bonds, by analogy with the changes in bonding which occur upon protonation of the OTeF₅-anion. The present Chapter investigates the synthesis and characterization of F_5TeNH_2 and the corresponding novel acid cation, $F_5TeNH_3^+$, as the AsF_6^- salt to investigate the effect of protonation of F_5TeNH_2 on the bonding of the F_5TeN - group, using ^{19}F and ^{1}H NMR and Raman spectroscopy. The salt, $F_5TeNH_3^+AsF_6^-$, has been characterized for the first time by Raman spectroscopy and ^{19}F , ^{15}N , ^{1}H and ^{125}Te NMR spectroscopy. ### RESULTS AND DISCUSSION ## (A) PREPARATION AND ISOLATION OF F₅TeNH₂, F₅TeNH₃⁺AsF₆ AND THE 99.5 % 15N-ENRICHED ANALOGS Aminotellurium(VI) pentafluoride, F_5 TeNH₂, was prepared according to the method of Seppelt [equations (4.13) and (4.14)]. The amine is a volatile white solid at room temperature, subliming easily under vacuum, and is consistent with the physical properties observed by Seppelt. The physical properties of F_5 TeNH₂ are similar to those observed for F_5 TeOH, also a volatile solid at room temperature,⁵² and are consistent with the essentially spherical structures of these molecules. The 99.5% ¹⁵N enriched compound was prepared using a similar procedure, however, [¹⁵N]hexamethyldisilazane was prepared from ¹⁵N enriched NH₄Cl [equations (4.16) and (4.17)]. $$^{15}NH_4Cl + KOH \longrightarrow ^{15}NH_3 + KCl + H_2O$$ (4.16) $$3^{15}NH_3 + 2(CH_3)_3SiCl \longrightarrow 2^{15}NH_4Cl + [(CH_3)_3Si]_2^{15}NH$$ (4.17) Identical procedures were used for the preparation of the salts $F_5TeNH_3^+AsF_6^-$ and $[^{15}N]F_5TeNH_3^+AsF_6^-$ from the amines, F_5TeNH_2 and $[^{15}N]F_5TeNH_2$. The basicity of F_5TeNH_2 was previously demonstrated from the formation of the 1:1 adducts $F_5TeNH_2 \cdot BF_3$ and $F_5TeNH_2 \cdot AsF_5$ by reaction of F_5TeNH_2 and the Lewis acid in CH_2Cl_2 . Only the adduct with the stronger Lewis acid, namely, $F_5TeNH_2 \cdot AsF_5$, is stable with respect to dissociation into the starting materials at room temperature. In light of the stability of this adduct, the ability of F_5TeNH_2 to behave as a protic base in HF/AsF_5 superacid solution ($H_0 \approx -20$) was investigated. The compound, F_5TeNH_2 , was dissolved in HF solvent at -78 °C. A 20 mole % excess of AsF_5 was condensed onto the frozen solution at -196 °C. On warming to -78 °C, a white precipitate formed which was isolated after removal of the solvent and excess AsF_5 at -55 °C under vacuum. The resulting white powder has been shown by mass balance, multinuclear NMR spectroscopy in solution and Raman spectroscopy in the solid state to be $F_5TeNH_3^+AsF_6^-$, formed according to equation (4.18) in near quantitative yield (96%). The salt hydrolyses very $$F_5 \text{TeNH}_2 + HF + AsF_5 \xrightarrow{-78 \text{ to } -55 \text{ }^{\circ}\text{C}} > F_5 \text{TeNH}_3^+ AsF_6^-$$ (4.18) rapidly in the presence of air, but can be stored indefinitely at room temperature under a dry nitrogen atmosphere. ## (B) CHARACTERIZATION OF F₅TeNH₂ IN THE SOLID STATE BY LOW TEMPERATURE RAMAN SPECTROSCOPY The low temperature Raman spectra of natural abundance and 99.5 atom % 15 N-enriched F_5 TeNH₂ were obtained at -160 °C, both of which are microcrystalline solids at this temperature. Figure 4.1 illustrates the Raman spectrum of F_5 TeNH₂ and the $^{14/15}$ N isotopic shifts in the Raman spectra of F_5 TeNH₂ and $[^{15}$ N] F_5 TeNH₂ are shown in Figure 4.2, and the frequencies are listed in Table 4.2, along with those of the related F_5 TeOF, F_5 TeO and F_5 TeOH compounds. Although F_5 TeNH₂ was characterized by infrared and Raman spectroscopy in methylene chloride solution in the paper which reported the original synthesis, 230 a more thorough assignment of the bands is presented here. This has been facilitated by observing the $^{14/15}$ N isotopic shifts of bands which arise from modes that involve the motion of the nitrogen atom by comparison of
the Raman spectra of natural abundance F_5 TeNH₂ (99.63% 14 N) and 99.5 atom % 15 N-enriched F_5 TeNH₂. The isotopic shifts, $\Delta v(^{14/15}$ N), are given as the difference in the frequencies (cm⁻¹), $v(^{14}$ N) - $v(^{15}$ N). Isotopic shifts are often quoted as the ratio $\Delta \lambda(^{14/15}$ N)/ $\lambda(^{14}$ N) as defined in references (73) and (232), where λ refers to a normal mode. This convention has not been used here, however, since the likely occurrence of vibrational coupling prevents the direct assignment of each band in the Raman spectra to a particular vibrational mode of F_5 TeNH₂ (see below). A total of 3N - 6 = 21 normal modes are expected for F_5 TeNH₂. There are several Figure 4.1 Raman spectrum of solid natural abundance F_5 TeNH $_2$ recorded at -160 $^{\circ}$ C by use of 514.5-nm excitation. INTENSITY, cts s $^{-1}$ x 100 3.5° Figure 4.2 Raman spectra of solid natural abundance (lower traces) and 99.5 atom % ¹⁵N-enriched (upper traces) F_5 TeNH $_2$ recorded at -160 °C by use of 514.5-nm excitation; (a) 150 - 800 cm⁻¹ region and (b) 1000 - 1050, 1450 - 1550 and 3250 - 3400 cm⁻¹ regions. $\boldsymbol{\omega}$ to the second second second Table 4.2. Vibrational Frequencies and Assignments for F₅TeNH₂ and [¹⁵N]F₅TeNH₂, and Comparison with F₅TeOF, F₅TeOF, | F ₅ TeOH ^a | | | | | | | |----------------------------------|----------------------------------|----------------------------------|---|---|--------------------------------------|---| | F ₅ TeOF ^b | F ₅ TeO' ^c | F ₅ TcOH ^c | F ₅ TcNH ₂ ⁸ | [¹⁵ N]F ₅ TcNH ₂ ⁸ | Δν(^{14/15} N) ^h | Assgnt and Approx
Mode Description | | | | | :
: | | | * | | 721 (1.6) | 584 (30) | 735 | (01) 2 (10) | (01) 6 225 | 9 | A _l v _l , v(Te-F _{at.}) | | (10) 699 | 652 (100) | 685 | 619.6 (8.42) | 619.4 (7.62) | 0 | v ₂ , v ₅ m(TeF ₄) | | (5.6) | 808 (41) | CC/ | 761.0 (1.03) | 752.9 (0.59) | -8.1 | v_3 , $v(1e-A)$
asym $\left\{v_1 + v_3\right\}$ | | 301 (0.5) | 319 ^d | 319 | 300.7 (3.36) | . 298.8 (2.76) | -1.9 | v4. S _{sym} (TeF4) umbrella | | 660 (0.3) | 584 (30) | 652 | 628.6 (sh) | 628.0 (sh) | -0.6 | B ₁ v ₅ , v _{sym} (TeP ₄) out-of-phase | | n.o. | n.o. | n.o. | n.o. | n.o. | Ç | V6. Spucker(TeF4) | | 309 (1.0)
738 sh | 283 (6)
636 ⁴ | 733.5 | 326.8 (2.06)
689.1 (7.14) | 326.5 (1.75)
688.5 (6.90) | 0.0
0.0 | B ₂ ν ₇ , Δ _{tcits} (TeF ₄) in-plane
E ν ₆ , ν ₂₂₂₂ (TeF ₄) | | | · | | 680.4 (4.38) | (861.0 (3.98) | -0.6 | o asym, | | 325 sh | 346 (6) | | 336.8 (2.29) | 336.6 (1.91) | -0.2 | v ₉ , &(FTeP ₄) | | 309-325 | 328 (40) | | 286.7 (2.41) | 283.1 (2.27) | -3.6 | v ₁₀ . &(XTeF4) | | 279 (0.2) | 196 (3) | 168 | 210.4 (0.21) | 210.0 (0.14) | 6.4 | VII. Sasym(TeF4) | | | | 143 | 194.0 (0.40) | 174.0 (0.51) | 5 | | | | | | | | | ਂ | | | | | 3280.1 (0.28)
3297.2 (7.58) | 3275.8 (0.25)
3292.9 (5.72) | 4 4
13 13 | A' v ₁₂ , v _{sym} (NH ₂) | :تة: | ν ₁₄ , δ(NH ₂)
ν ₁₃ , δ _{59m} (SNH)
Α" ν ₁₅ , ν _{45m} (NH ₂)
ν ₁₆ , δ _{45m} (SNH) | lattice modes and/or
hydrogen-bonding
interactions | |---|--| | 4.9
3.6
-9.2
-1.7 | | | 1509.3 (0.12)
1024.8 (0.13)
3376.1 (1.28)
717.6 (0.11) | 42.0 (0.35)
67.5 (0.31)
91.0 (0.16) | | 1514.2 (0.10)
1028.4 (0.16)
3385.3 (1.65)
719.3 (0.17) | 41.2 (0.75)
67.5 (0.23)
91.0 (0.14) | ^aData obtained from Raman spectra unless otherwise specified. Assignments for the modes of the F_5 TeX groups have made assuming C_{4v} symmetry using the mode species descriptions from ref (233). All frequencies are reported in cm⁻¹. ^bRef (233); liquid at -55 °C. ^cRef (205); solid $N(CH_3)_4^+OTcF_5^-$ at 25 °C. v_1 and v_2 have been described as antisymmetric and symmetric combinations of $v_{sym}(TcF_4)$ and $v(Te-F_{ax.})$, respectively. ^dObtained from the infrared spectra at 25 °C. ^cRefs (220) and (203); Raman spectrum of the liquid, recorded at room temperature. ^fObtained from the gas phase infrared spectrum, ref (220). ^gThis work; Raman spectra recorded at -150 °C using 154.4-nm excitation. ^hIsotopic shifts $\Delta v(^{14/15}N) = v(^{15}N) - v(^{14}N)$, where the frequencies of the bands v are given in cm⁻¹. possibilities for the molecular point symmetry. In the presence of a planar nitrogen center, which may result from Te-N π bonding, C_{2v} point symmetry is expected if the NH₂ group is staggered or eclipsed with respect to the equatorial fluorines of the F₅Te- group. A pyramidal nitrogen center would result in C_s point symmetry for the staggered and eclipsed conformations. All modes are Raman active under these symmetry designations. Due to the large difference in mass of the atoms in the F₅TeN- and -NH₂ groups, the vibrational frequencies associated with these two moieties are well separated from each other. As a result, it is possible to assign the modes of each moiety separately, allowing for the comparison of the vibrational modes of each moiety with those of simpler molecules. Precedent for this approximation was established in the assignment of the vibrational spectra of F₅TeOCl and F₅TeOF.²³³ All bands attributable to the F_5 TeN- group have been successfully assigned to the 3N - 6 = 15 normal modes under C_{4v} point group symmetry to provide direct comparision with the large body of published vibrational data for the F_5 TeX group (X = $O^{-,205,206}$ OH, 220 OF, 233 OCl, 233 and Cl²³⁴). Comparisons are made with F_5 TeO-, F_5 TeOF, F_5 TeOH in Table 2. Under C_{4v} symmetry, the normal modes belong to the irreducible representations 4 A_1 + 2 B_1 + B_2 + 4 E and are shown in Figure 4.3, all of which are Raman active. The bands at 582.7 and 761.0 cm⁻¹ both have large isotopic shifts, and therefore have contributions from the Te-N stretching mode. The bands are tentatively assigned to the symmetric and asymmetric $v(N-Te-F_{ax})$ stretching modes $(v_1 + v_3)$, respectively. This assignment is in accord with the rule of thumb that an asymmetric stretch is usually higher in frequency than the associated asymmetric stretch. As expected in the Raman, the intensity of the symmetric stretch is greater than that for the asymmetric stretch (see Table 4.2). The strong coupling of the v_1 and v_3 modes supports Seppelt's hesitation to make a distinction between the Te-F and Te-N stretching Figure 4.3 Normal modes for pseudo-octahedral species, XY_5Z , of $C_{4\nu}$ point symmetry. vibrations in the original assignment of the infrared and Raman spectra for F₅TeNH₂ in methylene chloride solution. 230 Strong coupling of v_1 and v_3 was observed in the calculation of a modified valence force field for the analogous F₅SO⁻ anion.²¹⁰ The range of frequencies assigned to Te-N stretching modes for the related dialkylamino derivatives F_5 TeNR₂ (538 -629 cm⁻¹)²²⁹ is in agreement with the present study. The $^{14/15}N$ isotopic shift of the band at 300.7 cm $^{-1}$ [$\Delta v(^{14/15}N)$ = -1.9 cm⁻¹] indicates that this band arises from the symmetric umbrella motion (out of plane bend) of the equatorial fluorines, $\delta_{svm}(TeF_4)$, since this mode undoubtedly couples with v(Te-N), as observed in the vibrational spectra of F_sTeOX (X = Cl, F).²³³ The isotopic dependence of the band at 286.7 cm⁻¹ [$\Delta v(^{14/15}N = -3.6 \text{ cm}^{-1})$] in the Raman spectrum of F₅TeNH₂ provides evidence for its assignment to the $\delta(NTeF_{\Delta})$ mode. The frequency is also similar to those observed for $F_5 TeOF$ (309 - 325 cm⁻¹),²³³ and $F_5 TeO^-$ (328 cm⁻¹).^{205,206} The assignments of bands to $v_{sym}(TeF_4)$ (A₁) and $v_{asym}(TeF_4)$ (E) have been made on the basis of intensity, since $v_{sym}(TeF_4)$ is consistently the most intense band in the Raman spectra of F5TeCl, 234 F5TeOF, 233 and F_5 TeOCl. 233 and the assumption that an asymmetric stretch is in general higher in frequency than the corresponding symmetric stretch. The $v_{asym}(TeF_4)$ (E) band is split, and may result from vibrational coupling of adjacent molecules within the unit cell of the microcrystalline solid, or from site symmetry effects in the solid state, since the Raman spectrum for $F_5 TeNH_2$ in CH_2Cl_2 solution,²³⁰ where solid state interactions are alleviated, exhibits a single band at 684 cm⁻¹, the average of the solid state bands attributed to $v_{asym}(TeF_4)$. The small isotopic shifts of both of the bands attributed to $v_{asym}(TeF_4)$ [$v(^{14/15}N) = -0.6$ cm⁻¹] are assumed to result from vibrational coupling with the $\delta(NTeF_4)$ mode of the same symmetry (E). The assignment of bands to v_7 [δ_{sciss} (TcF₄) in plane], v_9 [δ (FTcF₄)] and v_{11} [δ_{asym} (TeF₄)] is straightforward by comparison with F₅TeOF,²³³ F₅TeOH,²²⁰ and F₅TeO^{-,205,206} since these bands are relatively constant for different substituents X in F_5 TeX compounds, as shown in Table 4.2. The band attributed to the $v_{sym}(TeF_4)$ mode of B_1 symmetry (v_5) exhibits a small $^{14/15}N$ isotopic shift ($\Delta v^{14/15}N = -0.6 \text{ cm}^{-1}$). The accuracy of the isotopic shift is dubious, however, since the band is observed as a shoulder on the more intense band at 619.6 cm^{-1} . Under C_{4v} point group symmetry, this mode is not expected to couple with v(Te-N) (v_3) or $\delta(NTeF_4)$ (v_{10}) because it does not belong to the E or A_1 irreducible representations. This selection rule for vibrational coupling of modes, and thus
for the observation of isotopic dependences, may not apply since the true point group symmetry of F_5TeNH_2 is C_{2v} or C_s (see above) and the assumption of C_{4v} symmetry is only an approximation applied to the F_5TeN- group. If one considers that C_{2v} and C_s are subgroups of C_{4v} , correlation tables²³⁵ indicate that $v_{sym}(TeF_4)$ may couple with v(Te-N) or $\delta(NTeF_4)$. For example, the irreducible representation of symmetry E, assignable to $\delta(NTeF_4)$ under C_{4v} point group symmetry correlates with A' + A'' under C_s . The mode $v_{sym}(TeF_4)$ belongs to the B_1 irreducible representation under C_{4v} which correlates with A' under C_s , allowing it to couple with $\delta(NTeF_4)$. Similarly, v(Te-N) belongs to the A' irreducible representation under C_s point group symmetry. Under C_{2v} point group symmetry, $v_{sym}(TeF_4)$ may couple with v(Te-N) since they both belong to the A_1 irreducible representation. As shown in Table 4.2, the frequencies of the bands attributed to Te-F stretching modes in F_5 TeNH₂, in particular v(Te-F_{ax.}) [cf., symmetric combination of $v_1 + v_3$], are significantly lower than those of F_5 TeOH and F_5 TeOF. The Te-F stretching frequencies are, however, similar to those of the F_5 TeO anion. The lowering of these bands relative to their equivalents in F_5 TeOH has been attributed, by analogy with IOF₅, ²³⁶ to an increase in donation of electron density from oxygen to tellurium, which increases the ionic character, and thus weakens the Te-F bonds. ²⁰⁶ As discussed in Section (A) of this Chapter, a more accurate model may involve donation of π -electron density from oxygen to $\sigma^*(\text{Te-F})$ orbitals in $F_5\text{TeO}^-$. Population of these antibonding orbitals accounts for the weakening of the Te-F bonds. The weakness of the axial Te-F bond compared to the equatorial Te-F bonds may result from the fact that $\pi_O \to \sigma^*(\text{Te-F}_{ax.}) > \pi_O \to \sigma^*(\text{Te-F}_{eq.})$. Resonance Structures 4.4 - 4.6 may be proposed for $F_5\text{TeNH}_2$, which are analogous to those proposed to describe the bonding in the $F_5\text{TeO}^-$ anion²⁰⁶ [see Section (A) of this Chapter]. Greater weighting of resonance Structure 4.6 reflects the weaker axial Te-F bond. A band attributable to v_6 , $\delta(\text{TeF}_4)$ is not observed in the Raman spectrum of $F_5\text{TeNH}_2$, presumably owing to an inherently low intensity and is likewise too weak to be observed in the vibrational spectra of $F_5\text{TeCl}$, 234 $F_5\text{TeOCl}$, 233 $F_5\text{TeOF}$, 233 $F_5\text{TeOH}$, 220 $F_5\text{IO}^{236}$ and $F_5\text{TeO}^{-206}$. A value of 275 cm⁻¹ has been estimated for $F_5\text{IO}^{236}$ from an infrared combination band. A value of v_6 for $F_5\text{TeCl}$ (199.1 cm⁻¹) has been calculated from the force constants obtained using the Wilson F/G matrix method. 234 The 3N - 6 = 6 modes for the $TeNH_2$ group may be assigned to the irreducible representations 4 A' + 2 A'' under C_s point group symmetry assuming a nonplanar nitregen geometry, or to 3 $A_1 + B_1 + 2 B_2$ under $C_{2\nu}$ point group symmetry for a planar nitrogen center. The latter may result from N \rightarrow Te π -donation, by analogy with amides, where substantial N \rightarrow C π -donation results in a planar nitrogen center.²³⁷ By analogy with a vibrational study of aniline, 232 it is possible to estimate the degree of the planarity of the nitrogen center from the $^{14/15}\mathrm{N}$ isotopic frequency dependence of the bands associated with the NH₂ group on the HNH bond angle (θ) . The quantitative dependence of the isotopic shift on the HNH bond angle (θ) is derived from the isotopic dependence of the G matrices for 14N and 15N aniline which are calculated for different geometries of the NH₂ group.²³² The degree of vibrational coupling of the symmetric and asymmetric stretching modes of the NH₂ group with other vibrational modes in aniline is negligible, 232 and therefore the bands assignable to the $v_{sym}(NH_2)$ and $v_{asym}(NH_2)$ modes are more reliable than the other bands assigned to the NH_2 group for estimating θ , since these latter bands may have contributions from several modes. Assuming similar vibrational purity of the bands assigned to $v_{sym}(NH_2)$ and $v_{asym}(NH_2)$ in F_5TeNH_2 , Table 4.3 compares observed values of $\Delta\lambda/\lambda^{\circ}$ for $v_{sym}(NH_2)$ and $v_{asym}(NH_2)$ with calculated values of $\Delta\lambda/\lambda^{\circ}$ as a function of θ , for [14N]F₅TeNH₂ and [15N]F₅TeNH₂. The results do not indicate a rigorously planar nitrogen center, where $\theta = 120^{\circ}$, since there is not a close correspondence of the calculated and observed values of $\Delta\lambda\lambda^{\circ}$ for $v_{sym}(NH_2)$ and $v_{asym}(NH_2)$ [see Table 4.3]. This provides evidence against a pure Te-N π -bond of bond order 2, which would result in a planar nitrogen center. Possibly a Te-N bond order of less than two is present, as has been observed from calculation of X-O force constants for IOF₅, F₅TeO⁻ and F₅SeO^{-,206} In addition, $\pi_N \to \sigma^*$ negative hyperconjugation as a mechanism for π -donation from nitrogen to the F₅Te- group does not require a planar nitrogen geometry. This has been illustrated in geometric optimizations for FCH2NH2, 238 which indicate maximum negative hyperconjugation when the plane defined by the NH2 group is 144.6° with Table 4.3. Calculated and Observed 14/15N isotopic shifts, Δλλ°, of ν_{sym}(NH₂) and ν_{asym}(NH₂) for F₅TeNH₂. | | | ed valu | es of AMA° a | | 3/1-1-2 | | |-------------------------------------|--------------------------|--------------------------|----------------------------|---------------|---|---------| | Symmetry | Planar | Planar | Pyramidal | Ubserved AAA~ | rrequency, (cm ') | | | Coordinate | $(\theta = 120^{\circ})$ | $(\theta = 107^{\rm o})$ | $(\theta = 109.5^{\circ})$ | | (14N)F ₅ TeNH ₂ (15N)F ₅ TeNH ₂ | . e . l | | v _{sym} (NH ₂) | -0.00230 | -0.00322 | -0.00304 | -0.00261 | 3297.2 3292.9 | | | vasym(NH2) | -0.00645 | -0.00566 | -0.00582 | -0.00543 | 3385.3 3376.1 | | $^{a}\Delta\lambda\lambda^{0}=[\lambda(^{15}N)-\lambda(^{14}N)]\lambda^{14}N;$ $\lambda=4\pi^{2}c^{2}v^{2},$ where c= velocity of light. Values for $\Delta\lambda\lambda^{0}$ were calculated from G matrices in ref (232), $^{b}\theta$ = HNH bond angle. c This work; frequencies obtained from Raman spectra of [14 N]F₅TeNH₂ and [15 N]F₅TeNH₂ recorded at -150 °C using 514.5-nm excitation. respect to the N-C bond axis, indicating a pyramidal nitrogen geometry. The bands attributable to the TeNH₂ group have therefore been assigned under the modes of C_s symmetry as shown in Table 4.2 (v_{12} to v_{16}). One of the A' modes has been omitted since it is the same mode as v_1 [v(Te-N)] of the F₅TeN- group. All modes associated with the TeNH₂ group exhibit ^{14/15}N isotopic shifts. The band associated with δ (TeNH) has been assigned by comparison to the infrared spectrum of F₅TeOH (1023.8, 1014.8 cm⁻¹).²²⁰ Comparison with the infrared spectrum of matrix isolated FNH₂²³⁹ and aniline in dilute solution²³² allowed for the assignments of v_{sym} (NH₂), v_{asym} (NH₂), δ_{sym} (SNH), and δ (NH₂). The ^{14/15}N isotopic dependence and the process of elimination allowed for assignment of the band at 719.3 cm⁻¹ in the Raman spectrum of F₅TeNH₂ to the wagging mode, ω (NH₂), referred to as v_{16} [δ_{asym} (SNH)] in Table 4.4, which occurs at 700 cm⁻¹ in the infrared spectrum of liquid aniline.²³² Bands observed at 91.0, 67.5 and 41.2 cm⁻¹ exhibit no measurable shifts on ¹⁵N substitution and have been assigned to hydrogen bonding and/or lattice modes. ## (C) CHARACTERIZATION OF F₅TeNH₂ AND [15N]F₅TeNH₂ IN SOLUTION BY 19F AND 1H NMR SPECTROSCOPY The ¹⁹F NMR spectrum for F₅TeNH₂ was investigated in CD₂Cl₂ solvent at 30 °C, and is similar to that reported by Seppelt.²³⁰ The $C_{4\nu}$ point symmetry of the F₅TeN- group is apparent from the characteristic AB₄ pattern, where δ_A = -37.3, and δ_B = -41.2 ppm. The two-bond coupling constant ² $J(^{19}F_A^{-19}F_B)$ = 170 Hz. The couplings ¹ $J(^{19}F_B^{-125}Te)$ = 3519, ¹ $J(^{19}F_B^{-123}Te)$ = 2944, and ¹ $J(^{19}F_A^{-125}Te)$ = 3284 Hz were also resolved. The couplings ¹ $J(^{19}F_A^{-123}Te)$, ² $J(^{19}F_A^{-123}Te)$, ² $J(^{19}F_B^{-15}N)$, ³ $J(^{19}F_A^{-1}H)$ and ³ $J(^{19}F_B^{-1}H)$ were not resolved in the ¹⁹F NMR spectrum of [¹⁵N]F₅TeNH₂. The ¹⁹F NMR spectra are consistent with observations made for dialkylaminotellurium pentafluorides F_5 TeNR₂ (R = CH_3 , 228,229 CH_2 CH₃, 229 C_4 H₈ 229) and F_5 TeNH₂. () The ¹H NMR spectrum of F₅TeNH₂ in CD₂Cl₂ solvent at 30 °C (Figure 4.4a) exhibits a broad singlet ($\Delta v_{1/2} = 79$ Hz) centered at $\delta(^{1}H) = 4.30$ ppm, arising from the protons directly bonded to nitrogen. The large line width and the absence of any resolved couplings results from fast relaxation of ${}^{1}H$ due to interactions with the directly bonded quadrupolar ${}^{14}N$ nucleus (I = 1). The effects of quadrupolar broadening of the proton resonance are alleviated in the ¹H NMR spectrum of [15N]F₅TeNH₂ in CD₂Cl₂ solvent at 30 °C (Figure 4.4b), and a doublet centered at $\delta(^{1}H) = 4.29$ ppm arising from $^{1}J(^{1}H-^{15}N) = 71$ Hz is observed (reduced coupling constant $^{1}K(H-^{15}N) = 71$ Hz is observed. N) = $5.8 \times 10^{20} \text{ NA}^{-2}\text{m}^{-3}$). Each peak of the doublet is flanked by a low intensity satellite doublet arising from ${}^2J({}^1H^{-125}Te) = 42$ Hz. The magnitude of ${}^1J({}^1H^{-15}N)$ is directly comparable to that observed for related $R^{15}NH_2$ compounds where $R = (CF_3)_2P_2$, $(CF_3)_2As_2$,
CF_3S_2 . Several attempts have been made to arrive at an empirical relationship between the magnitude of ¹J(¹H-¹⁵N) and the 2s character in the nitrogen bonding orbitals^{240,241} with the aim of evaluating the hybridization at nitrogen. The fundamental assumption in attempting to correlate the magnitude of a directly bonded coupling constant with the nature of the bond hybridization is that the Fermi contact term is the dominant contribution to the coupling mechanism. This statement is usually assumed to be valid if one of the coupled nuclei is a proton.²⁴² Equation (4.19) is a simplified expression for the Fermi contact contribution to the one bond ¹⁵N-¹H coupling constant. Here $${}^{1}J({}^{15}N_{-}{}^{1}H) \propto \chi({}^{15}N)\chi({}^{1}H)(\Delta E)^{-1}(\alpha_{N})^{2}(\alpha_{H})^{2}|\psi_{N(2s)}(0)|^{2}|\psi_{H(1s)}(0)|^{2}$$ (4.19) $\chi^{(15}N)$ and $\chi^{(1)}H$) are the gyromagnetic ratios of the coupled nuclei, ΔE is the average excitation The state of the second energy: $(\alpha_N)^2$ and $(\alpha_N)^2$ are the s characters of the hybrid orbitals which make up the N-H bond, and the $|\psi(0)|^2$ terms represent the magnitudes of the indicated valence s orbitals at the appropriate nuclei. Birisch et al.²⁴⁰ published an empirical equation (4.20) based on the $$\mathcal{L}_{N} = 0.43[^{1}J(^{15}N^{-1}H)] - 6$$ (4.20) proportionality of \$1(15)N-1H) and the s characters of the hybrid orbitals which make up the N-H bond as shown in equation (4.19). This has been used to assess the hybridization at nitrogen (i.e., % is characters of \$0.0, 33.3, and 25.0 correspond to up, up and up! nitrogen valence orbital hyperdirations, respectively). This information might in turn be used to assess the nature of the miningers between the for measure, as of valence orbital hybridization for necessin would stiply a prigonal planar geometry and the presence of a filled p orbital on narogen, with the possibility for 4. Acouston from manager to the detectly bonded beneform Equation (4.20) was tes intedeste due establica and transfe est maine, parque, est disegée telesses whitestall plants recovering expensioning the fact has been been about to be a soul feet hereat execute each is FRCNET, and CNGCNET (2) Using regulation of 20% the observed value of $(N^{12}N)^2H_0 = 21$ Hz AN FIRSTER, SHEREIN ETE E BUREAU OF THE SAN THE METOGER EMPRE BY THE CHARLES AND CARRE the the suppose argume and the time and the time and the time is supposed the time. growing a though where there we make a manuscut " - " - " s - there of the states of the states as makes The applicability of application of \$30 to the proper excepts, while Cambre of the best presented Printed that the account totals from when the appropriate paying the terraneous besides to otherspie in Significantly Affereits, from that of captum. Round ain the Lots analysis, it is now possible a southern the hydrogonation is supplyed in \$1,270m. Somethy managing of \$1.50 miles and the presence or absence of p_{π} - d_{π} bonding between nitrogen and tellurium cannot be commented upon. 7. # (D) CHARACTERIZATION OF F₅TeNH₃⁺AsF₆. AND [¹⁵N]F₅TeNH₃⁺AsF₆. IN SOLUTION BY ¹⁹F, ¹H, ¹⁵N, AND ¹²⁵Te NMR SPECTROSCOPY Bromine pentafluoride and anhydrous HF solvents were found to be suitable for obtaining the NMR spectra of F₅TeNH₃*AsF₆*, and the parameters obtained from the multinuclear NMR spectra are listed in Table 4.4. The ¹H NMR spectrum of F₅TeNH₃*AsF₆* in BrF₅ solvent at -53 °C (Figure 4.5a) consists of a broad singlet centered at 7.45 ppm ($\Delta v_{1/2} = 28$ Hz). The broadening and absence of resolved couplings results from the fast relaxation of the directly bonded quadrupolar nitrogen center (I = 1). The ¹H NMR spectrum of [15 N]F₅TeNH₃*AsF₆* in BrF₅ solvent at -56 °C (Figure 4.5b) illustrates a doublet arising from $^{1}J(^{1}H-^{15}N) = 76$ Hz (reduced coupling constant $^{1}K(N-H) = 6.2 \times 10^{20}$ NA- ^{2}m - 3) centered at 7.43 ppm. The magnitude of the one-bond reduced N-H scalar coupling constant is comparable to that observed for similar compounds containing formally sp^{3} hybridized, positively charged natrogen centers (cf., NH₄*AsF₆*, 244 $^{1}K(N-H) = 6.2 \times 10^{20}$ NA- ^{2}m - 3 ; CH₃NH₃*CT, 240 $^{1}K(N-H) = 6.2 \times 10^{20}$ NA- ^{2}m - 3). The ¹⁹F NMR spectrum of the salt F_3 TeN H_3 *As F_6 at \rightarrow 4 °C in Br F_3 solvent (Figure 4.6) consists of a typical AB₄ pattern confirming the C_{44} symmetry of the F_3 TeN- group, where $\delta (^{19}F_A) = .55$ 6 ppm and $\delta (^{19}F_B) = .30.2$ ppm. The parameters obtained from the ^{19}F NMR spectrum are lessed in Table 4.4. Assignments of the chemical shifts and coupling constants are made by analogy with F_3 TeN H_3 (see above). The peak at .53.2 ppm results from Te F_6 and the broad resonance connected at -60 ppm is analoged to the As F_6 axion. Broadening of this resonance Figure 4.5 ¹H NMR spectra (500.138 MHz) of (a) natural abundance F₅TeNH₃*AsF₆* (-53 ^oC: BrF₅ solvent) and (b) 99.5 atom % ¹⁵N-enriched F₅TeNH₃*AsF₆* (-56 °C: BrF₅ solvent). Astensks (*) denote ¹²⁵Te satellites. ¹⁹F NMR spectrum (470.599 MHz) of natural abundance F₅TeNH₃⁺AsF₆⁻ in BrF₅ solvent (-44 °C); (A) resonance of equatorial fluorine atoms bonded to tellurium, (B) resonance of axial fluorine atom bonded to tellurium, (C) unidentified resonance, (D) TeF6, (E) AsF6. Asterisks (*) denote 125 Fe satellites. Figure 4.6 is due to the rapid quadrupole relaxation of 75 As (I = 3/2). The broad resonance at -52.0 ppm is attributed to a decomposition product, but the lack of coupling information prevents the assignment of this resonalice. No additional couplings were observed in the 19 F NMR spectrum of [15 N]F₅TeNH₃⁺AsF₆⁺ in HF or BrF₅ solvents. The ¹²⁵Te NMR spectrum of [15 N]F₅TeNH₃*AsF₆* in HF solvent at -45.0 °C is shown in Figures 4.7a and 4.7b, and the ¹²⁵Te NMR chemical shift [δ (125 Te) = 588 ppm] is consistent with that expected for the F₅Te- group (cf., F₅TeOH, δ (125 Te) = 601 ppm in CH₃C=N solvent²⁴⁸). All possible scalar couplings involving ¹²⁵Te are observed, and are listed in Table 4.4. The ¹²⁵Te NMR resonance is split into a doublet from the one-bond coupling ^{1}J (125 Te- 19 F_A) = 3801 Hz. Each line of the doublet is further split into a quintet from the scalar coupling of tellurium with four equivalent equatorial fluorines [^{1}J (125 Te- 19 F_B) = 3651 Hz]. These couplings are consistent with those observed in the 19 F NMR spectra. Each line of this multiplet is further split into a doublet of quartets from the scalar coupling of tellurium with nitrogen [^{1}J (125 Te- 15 N) = 48 Hz] and with the three equivalent protons of the -NH₃* group [^{2}J (125 Te- 1 H) = 25 Hz]. The magnitude of ^{2}J (125 Te- 1 H) is consistent with that observed for the same coupling in the 1 H NMR spectrum of the F₅TeNH₃* cation. The observation of well defined quartets corresponding to the two-bond scalar coupling with the protons on nitrogen indic: **Characteristics** **Character The ^{15}N NMR spectrum of $[^{15}N]F_5TeNH_3^+AsF_6^-$ (Figure 4.8) at $^{-40}$ °C in HF solvent consists of a quartet centered at $^{-317.1}$ ppm. The quartet structure arises from the one-bond scalar coupling of nitrogen and the three equivalent protons $[^{1}J(^{15}N^{-1}H) = 76 \text{ Hz}]$. The magnitude of the coupling is consistent with $^{1}J(^{1}H^{-15}N)$ observed in the proton ^{1}H NMR spectrum. Each line of the quartet is flanked by low intensity satellites arising from $^{2}J(^{15}N^{-125}Te) = 48 \text{ Hz}$, which is جج؟ Figure 4.7 125 Te NMR spectrum (157.795 MHz) of 99.5 atom % 15 N-enriched F_5 TeNH $_3$ +AsF $_6$ in HF solvent (-45 °C); (a) entire multiplet, dagger (†) denotes a peak of the TeF $_6$ multiplet (not shown in full), and (b) expansion of the central region of the multiplet attributed to F_5 TeNH $_3$ +. Œ : 2 ¹⁵N NMR specirum (59.698 MHz) of 99.5 atom % F₅TeNH₃ + AsF₆ in HF solvent (-40 °C). Asterisks (*) denote ¹²⁵Te Figure 4.8 satellites. <u>Table 4.4.</u> 19 F, 1 H, 125 Te and 15 N NMR Chemical Shifts and Coupling Constants for F_5 TeNH₃⁺AsF₆⁻ and $[^{15}$ N]F₅TeNH₃⁺AsF₆⁻. | <u>Chemical</u> | Shifts (ppm) ^a | Coupling Constants | Hz | |-----------------------------|---------------------------|--|------| | $\delta(^{19}F)^b$ | -55.6 (δ _A) | $^{2}J(^{19}F_{ax.}^{-19}F_{eq})$ | 162 | | | -30.2 (δ _B) | $^{1}J(^{19}F_{eq.}-^{123}Te)$ | 3024 | | $\delta(^1H)^c$ | 7.45 | ¹ J(¹ H- ¹⁵ N) | 76 | | $\delta(^{125}\text{Te})^d$ | 588 | $^{1}J(^{125}\text{T.e-}^{19}\text{F}_{ax.})$ | 3801 | | $\delta(^{15}N)^c$ | -317.1 | $^{1}J(^{125}\text{Te-}^{19}\text{F}_{eq.})$ | 3651 | | | | $^{1}J(^{125}\text{Te}^{-15}\text{N})$ | 48 | | | | $^2J(^{125}\text{Te}^{-1}\text{H})$ | 25 | in HF solvent. ^a The ¹⁹F, ¹H, ¹²⁵Te, and ¹⁵N NMR spectra were referenced to external neat CFCl₃, (CH₃)₄Si, Te(CH₃)₂ and CH₃NO₂ at 30 °C, respectively, with positive (negative) shifts denoting high (low) frequency resonances with respect to the standards. ^bRecorded at -44 °C in BrF₅ solvent. ^c Recorded at -53 °C in BrF₅ solvent. ^d Recorded at -45 °C in HF solvent. ^e Recorded at -40 °C consistent with that observed in the 125 Te NMR spectrum. The 15 N NMR chemical shift is intermediate between those observed for NH₄⁺AsF₆⁻ in HF (-369.6 ppm)²⁴⁴ and FNH₃⁺O₃SCF₃⁻ in HF (-252.1 ppm). The trend in the 15 N NMR chemical shifts is explained by an approximate formulation of the local paramagnetic term, restricted to electronic circulations on observed atom N bonded to other atoms [equation (4.21)]. In this equation, σ_p^{NN} is the local paramagnetic $$\sigma_{\rm p}^{\rm NN} = [-\mu_{\rm o}\mu_{\rm B} < r^3]_{2p} / 2\pi(\Delta E)][Q_{\rm NN} + \sum_{N \neq X} Q_{\rm NX}]$$ (4.21) contribution to the shielding of nitrogen, and an increase in the absolute magnitude of σ_p^{NN} deshields the
nucleus; μ_0 is the permeability of a vacuum, μ_B the Bohr magneton, and $<^{-3}>_{2p}$ the average radius of the valence p electrons on nitrogen. The ΣQ term expresses the imbalance of electronic charge that allows the paramagnetic circulation in the magnetic field. The Q_{NN} part depends on the 2p orbital populations on nitrogen, whereas ΣQ_{NX} is a multiple bond term. The fact that the ^{15}N NMR resonance of the FNH_3^+ cation is deshielded by 117 ppm relative to the NH_4^+ cation can be attributed to the σ fluoro effect (electron withdrawal by the electronegative fluorine atom) which contracts the nitrogen 2p orbitals, increasing $< r^{-3}>_{2p}$. Also, the substitution of one hydrogen in NH_4^+ with fluorine to give FNH_3^+ increases the Q_{NN} term by reducing the valence orbital symmetry around nitrogen. Both of these effects increase the magnitude of the paramagnetic contribution to the nitrogen shielding (σ_p^{NN}) thus deshielding the nitrogen nucleus in FNH_3^+ relative to NH_4^+ . The less shielded ^{15}N NMR resonance of the $F_5TeNH_3^+$ cation relative to NH_4^+ is expected following the same arguments as for the FNH_3^+ cation since the F_5Te - group is undoubtedly more electronegative than H. Although a subject of debate, 52 the larger body of evidence indicates that the group electronegativity of F_5TeO_- is less than that of fluorine.¹⁸¹ Although the group electronegativity of the F_5 Te- group has not been estimated, by analogy with F_5 TeO- the electronegativity of the F_5 Te- group is probably less than that of fluorine. As a result, the σ withdrawing effect of the F_5 Te- group in the F_5 TeNH₃⁺ cation is assumed to be less than that of fluorine in the FNH₃⁺ cation, resulting in a smaller $\langle r^{-3} \rangle_{2p}$ term on nitrogen in the former and a smaller value of σ_p^{NN} . ## (E) CHARACTERIZATION OF F₅TeNH₃+AsF₆- AND [15N]F₅TeNH₃+AsF₆- IN THE SOLID STATE BY RAMAN SPECTROSCOPY The ambient temperature Raman spectra of the white microcrystalline product isolated from the reaction of natural abundance F_5 TeNH₂ with excess AsF₅ in HF solvent are shown in Figure 4.9. Figure 4.10 illustrates the regions of the Raman spectra of the natural abundance and 99.5 atom % ¹⁵N enriched salts which exhibit ^{14/15}N isotopic shifts and frequencies obtained from both Raman spectra are listed in Table 4.5. The Raman spectra are consistent with the formation of $F_5TeNH_3^+AsF_6^-$ in the solid state. The $F_5TeNH_3^+$ cation is expected to give rise to 3N - 6 = 24 normal modes. The lowest energy conformation, where the NH_3 protons are staggered with respect to the equatorial fluorines of the F_5Te - group, results in C_s point symmetry for the $F_5TeNH_3^+$ cation. The modes of this point symmetry belong to the irreducible representations 14 A' + 10 A'', and all are Raman and infrared active. In Table 4.5, the modes for the $F_5TeNH_3^+$ cation have been assigned by considering the F_5TeN - $(C_{4\nu})$ and $TeNH_3$ $(C_{3\nu})$ groups separately. This has been done primarily to allow for direct comparison of modes of the F_5TeN - group with the large body of vibrational data available for F_5TeX - compounds [see Section (B) of this Chapter]. This is reasonable since the infrared and Raman selection rules are not altered by this approximation, and the large frequency difference Figure 4.9 Raman spectrum of natural abundance F_5 TeNH $_3$ ⁺AsF $_6$ ⁻ recorded at ambient temperature by use of 514.5-nm excitation. ... INTENSITY, cts $s^{-1} \times 100$ Figure 4.10 Raman spectra of natural abundance (lower trace) and 99.5 atom % 15 N-enriched (upper trace) F_5 TeN H_3 ⁺As F_6 ⁻ recorded at ambient temperature by use of 514.5-nm excitation. INTENSITY, ${\rm ds}~{\rm s}^{-1} \times 100$ between modes of the F5TeN- and -TeNH3 groups minimizes vibrational coupling. All 3N - 6 = 15 modes of the F_5 TeN- group of the F_5 TeNH₃⁺ cation have been assigned under $C_{4\nu}$ point symmetry. The large isotopic shift of the band at 566.5 cm⁻¹ [$\Delta v(^{14/15}N) = -15.7$ cm⁻¹] indicates that it may be assigned to v(Te-N) (A₁). Similarly, the band at 276.3 cm⁻¹ which also exhibits a large isotopic shift [$\Delta v(^{14/15}N) = -3.4$ cm⁻¹], is assigned to $\delta(\text{NTeF}_4)$ (E). Comparisons with the band attributable to $\delta(\text{OTeF}_4)$ in the vibrational spectra F_5 TeOF (309-325 cm⁻¹), ²³³ F_5 TeOCl (316 cm⁻¹), ²³³ and F_5 TeO⁻ (328 cm⁻¹) ^{205,206} provide further evidence for the assignment. The peaks at 730.2 and 682.2 cm⁻¹ are assigned to the $v(\text{Te-F}_{ax})$ and $v_{sym}(\text{TeF}_4)$ modes of A_1 symmetry by comparison with $F_5\text{TeOF}$, 233 $F_5\text{TeCl}$, 234 $F_5\text{TeOCl}$, 233 and $F_5\text{TeOH}$. The intensity of the peak at 682.2 cm⁻¹ also supports its assignment to $v_{sym}(\text{TeF}_4)$ since bands attributed to this mode are invariably the most intense in the Raman spectra of the related $F_5\text{TeX}$ compounds (Table 4.5). As expected, $^{14/15}\text{N}$ isotopic shifts are observed for the bands attributed to $v(\text{Te-F}_{ax})$ [$\Delta v(^{14/15}\text{N}) = -0.9$ cm⁻¹] and $v_{sym}(\text{TeF}_4)$ [$\Delta v(^{14/15}\text{N}) = -0.7$ cm⁻¹]. The assignment of all other modes associated with the F_5Te - group are made by analogy with related compounds (Table 4.5). An $^{14/15}N$ isotopic shift is observed for the band at 315.7 cm⁻¹ assigned to v_4 , $\delta_{sym}(TeF_4)$, although the band overlaps with the peak assigned to v_4 , $\delta_{sym}(TeF_4)$ at 320.4 cm⁻¹ in the Raman spectrum of $[^{15}N]F_5TeNH_3^+AsF_6^-$. Therefore the isotopic shift cannot be determined accurately. A mass dependence of the band attributed to v_4 , $\delta_{sym}(TeF_4)$ has been observed in the Raman and infrared spectra of F_5TeOF and F_5TeOCl , 233 which has been attributed to vibrational coupling of v(Te-O), v(O-X) [X=Cl,F], and $v_{sym}(TeF_4)$. The small $^{14/15}N$ isotopic shift $[\Delta v(^{14/15}N) = -0.7 \text{ cm}^{-1}]$ observed for the band attributed to v_9 , $\delta(FTcF_4)$ (E) may result from coupling of the v_9 mode with v_{10} , $\delta(NTcF_4)$, which also belongs Table 4.5. Raman Frequencies and Assignments for F₃TeNH₃ +AsF₆ and [¹⁵N]F₃TeNH₃ +AsF₆ and the Related F₃TeOF, F₃TeOH and P₃TeO | | | frequency, cm.1 a | a [| | | | | |----------------------------------|----------------------------------|--------------------|--|---|--------------------------------------|------------------|--| | F ₅ TeOF ^b | F ₅ TeO·° | F₅тсОН с | F ₅ TeNH ₃ ⁺
AsF ₆ ·8 | (¹⁵ NJF ₅ TeNH ₃ *
AsF ₆ · ⁸ | Δν(^{14/15} Ν) ^Δ | | approx mode
description | | | | | | | | *5 | | | 721 (1.6) 669 (10) | 584 (30
652 (100)
868 (47) | 735
685
735 | 730.2 (13.66)
682.9 (100)
566.5 (18.26) | 729.3 (13.07)
682.2 (100)
550.8 (18.35) | .0.9
.0.7
.15.7 | ν. | v ₁ , v(Te-F _{ar.})
v ₂ , v _{ym} (TeP ₄)
v ₃ , v(Te-N) | | 301 (0.5) | 3194 | 319 | 315.7 (6.03) | 310 sh | | | v4. Ssym(TeP4) | | 660 (0.3) | 584 (30) | 652 | 671.6 (23.94) | 671.5 (21.88) | | Bı | vs. vsm(TeF4) | | n.o.
309 (1.0) | п.о.
283 (6) | n.o. | n.o.
311.1 (19.60) | 310.2 (16.84) | 6.0- | 6 7 1 | v ₇ , 5 _{ccks} (TeF ₄) | | 738 (sh)
325 (sh) | 636 ^d
346 (6) | 733.5 ¹ | 752.4 (4.30)
321.1 (8.13) | 751.6 (2.81)
320.4 (6.42) | 6.0.
0.7 | ਸ | vs. 5(FIeF4) | | 309-325
279 (0.2) | 328 (40)
196 (3) | 168 | 276.3 (5.64)
203 (0.63) | 272.9 (5.19)
203 (0.59) | -3,4 | | v ₁₀ . &(Nief4)
v ₁₁ . δ _{45/m} (TeF4) | | | | 145 | | | | ڗٛۜ | | | | | | 3018.0 (1.20) 1396.0 (0.40) | 3017.8 (1.05) | .5.7 | ۲ <mark>۰</mark> | v ₁₂ · v _{sym} (NH ₃)
v ₁₃ · δ _{sym} (NH ₃) | | | | | 1405.7 (0.86)
3110.1 (1.92)
1539.7 (0.59) | 1399.8 (0.50)
3110.0 (1.75)
1531.6 (0.59) | .5.9
1.8- | ដា | v14. vaym(NH3)
v15. δaym(NH3) | | | 0, | | |--------------------------|----------|--| | 743 (2.92) | Tu | v3 (AsF ₆) | | 739 (2.46) | | | | 5) | A.E. | v ₁ (AsF ₆ ')
v ₂ (AsF ₆ ') | | 585 (9.59)
557 (8.29) | • | | | (9)
(0) | T | v4 (AsF ₆ ') | | () | <u> </u> | v _e (AsF _e ') | | . 4) | 200 | | | (6) | | | | <u>e</u> | | | | 355 (1.95) | į | ; | | | nl l | V ₆ (ASF ₆) | #### Table 4.5 (continued) ^aData obtained from Raman spectra unless otherwise specified. Assignments for the modes of the F_5 TeX groups have made assuming $C_{4\nu}$ symmetry using the mode species descriptions from ref (233). Assignments for the NH₃ group of the F_5 TeNH₃⁺ cation have been made under approximate $C_{3\nu}$ symmetry. All frequencies are reported in cm⁻¹. ^bRef (233); liquid at -55 °C. ^cRef (205); solid N(CH₃)₄⁺OTeF₅⁻ at 25 °C. ν_1 and ν_2 have been described as antisymmetric and symmetric combinations of ν_{sym} (TeF₄) and ν_2 have been described as antisymmetric and spectra at 25 °C. ^cRefs (220) and (203); Raman spectrum of the liquid, recorded at room temperature. ^fObtained from the gas phase infrared spectrum, ref (220). ^gThis work; Raman spectra recorded at 25 °C using 154.4-nm excitation. ^hIsotopic shifts $\Delta\nu(^{14/15}N) = \nu(^{15}N) - \nu(^{14}N)$, where the frequencies of the bands ν are given in cm⁻¹. to the E symmetry species. The band at 311.1 cm⁻¹ assigned to v_7 , $\delta_{sciss}(TeF_4)$ has an observed isotopic shift $[\Delta v(^{14/15}N) = -0.9 \text{ cm}^{-1}]$ that is forbidden under C_{4v} point symmetry since the symmetry species for v_7 (B₂) is neither A₁ nor E, which are the symmetry
species for v_3 , v(Te-N) and v_{10} $\delta(NTeF_4)$, respectively. However, vibrational coupling of v_7 and v_{10} is possible if one considers the point symmetry for the entire $F_5TeNH_3^+$ cation (C_s). The E representation of the point group C_{4v} correlates with A' + A" of the C_s point group. Likewise, the B₂ representation in C_{4v} correlates with A' or A" in C_s . Under the lower point symmetry, the modes belong to the same representations, and thus can couple. Similarly, the observed isotopic shift ($\Delta v^{14/15}N = -0.8 \text{ cm}^{-1}$) of the band assigned to v_8 , $v_{sym}(TeF_4)$ (E) can be explained by vibrational coupling with v_3 , v(Te-N) (A₁) since the A₁ representation correlates with A' in C_s . As for F_5 TeNH₂, a band attributable to v_6 , δ (TeF₄) is not observed in the Raman spectrum of F_5 TeNH₃⁺AsF₆, presumably owing to an inherently low intensity [see Section (B) of this Chapter]. All of the bands attributable to the TeNH₃ group have been assigned to symmetry species of the $C_{3\nu}$ point group. A total of 3N - 6 = 9 normal modes belonging to the irreducible representations $3 A_1 + 3 E$ are expected under $C_{3\nu}$ symmetry. One A_1 mode [ν (Te-N)] is the same as ν_3 of the F_5 TeN- group and is therefore not repeated. The remaining $2 A_1 + 3 E$ modes and the corresponding bands (ν_{12} to ν_{16}) observed in the Raman spectra of F_5 TeNH₃⁺AsF₆⁻ are listed in Table 4.5. The very broad bands at 3018 and 3110 cm⁻¹ have been assigned to v_{12} [v_{sym} (NH₂)] and v_{14} [v_{asym} (NH₂)], from the expected NH stretching frequency range for compounds containing an NH₃⁺ group (3030 - 3130 cm⁻¹).²⁴⁹ It is noteworthy that the NH stretches for F₅TeNH₂ occur at considerable higher frequency [3280.1, 3297.2, 3385.3 cm⁻¹; see Section (B) of this Chapter]. This is consistent with the higher frequency range expected for neutral primary amines (3300 - 3500 cm⁻¹).²⁵⁰ No significant ^{14/15}N isotopic shifts are observed for the NH stretching vibrations. This has been attributed to the broadness of the bands, making the shifts undetectable. The symmetric bend, $\delta_{sym}(NH_3)$, has been assigned to the bands at 1396.9 and 1405.7 cm⁻¹, which exhibit ^{14/15}N isotopic shifts of -5.7 and -5.9 cm⁻¹, respectively. The band assigned to v_{15} , $\delta_{asym}(NH_3)$ is observed at 1539.7 cm⁻¹ and exhibits an ^{14/15}N isotopic shift of -8.1 cm⁻¹. Assignment of $v_{sym}(NH_3)$ and $\delta_{asym}(NH_3)$ has been made by comparison with the vibrational spectra of salts of the FNH₃⁺ cation²³⁹ and FCH₃.⁶⁷ By comparison with F_5 TeOH, 220 v_{16} [δ_{sym} (TeNH)] is expected to occur at approximately 1000 cm⁻¹. Since no bands are observed in this region, it is assumed that the band has a very weak Raman intensity. It is worth noting that δ (TeOH) is too weak to be observed in the Raman spectrum of F_5 TeOH; the band was observed in the infrared gas phase spectrum. A total of 15 bands are assigned to the AsF_6^- anion in the Raman spectrum of $F_5TeNH_3^+AsF_6^-$. For undistorted AsF_6^+ of O_h point symmetry, only three Raman-active bands are expected. The bands have been assigned to the modes of O_h point symmetry in Table 4.5 although a reduction in symmetry is apparent. Possible sources of deviation from O_h point symmetry are solid state effects such as a low site-symmetry in the solid and intermolecular vibrational coupling, which gives rise to factor group splitting; the effects of both may be predicted from a knowledge of the crystallographic unit cell. Also, interactions between cation and anion may result in an authentic distortion of the anion symmetry, such as the reduction of AsF_6^- symmetry to $C_{4\nu}$ upon fluorine bridge formation with the XeF^+ 67,68 and KrF^+ 69 cations. An anion site symmetry of $C_{2\nu}$ or lower, where all mode degeneracies are removed, would result in the observation of all 3N - 6 = 15 bands in the Raman spectrum, since no selection rules forbid the vibrational activity of any of the modes. It is possible that a low site-symmetry for the AsF_6^- anion results from H-F hydrogen-bonding interactions with the $F_5TeNH_3^+$ cation. Christe et al. 171 have explained the observation of v_1 through v_5 and the splittings of the bands in the Raman spectrum of $OH_3^+AsF_6^-$ at -120 °C in terms of weak H-F cation-anion interactions that dominate at low temperature in a rigid lattice containing AsF_6^- anions in a non-octahedral field (i.e., a low site symmetry). The Raman spectrum at 25 °C resembles that for octahedral AsF_6^- ; the weak cation-anion interactions are assumed to be overcome by thermal motion, thus resulting in an effective increase in the AsF_6^- site symmetry. It is possible that the lattice in $F_5TeNH_3^+AsF_6^-$ is rigid at room temperature, resulting in a sufficiently low AsF_6^- site-symmetry to account for the number of observed bands. A reduction in AsF_6^- site symmetry from O_h to $C_{2\nu}$ or lower by weak cation-anion interactions or simply by a the existence of a low site symmetry for AsF_6^- in the solid state would result in the removal of all O_h degeneracies. As seen in Table 4.5, the number of bands in the Raman spectrum of $F_5TeNH_3^+AsF_6^-$ which correlate with v_2 (E_g) and v_5 (T_{2g}) are greater than can be accounted for by simple removal of degeneracies through a reduction of AsF_6^- symmetry. Intermolecular coupling may account for the additional splitting, and could possibly be confirmed by factor-group analysis if X-ray structural data were available. ## (F) ASSESSMENT OF THE BONDING IN F₅TeNH₂ AND THE F₅TeNH₃⁺ CATION USING RAMAN AND ¹⁹F NMR SPECTROSCOPY In Table 4.6 the vibrational frequencies associated with the modes of the F_5 TeX- groups in F_5 TeNH₂ and the F_5 TeNH₃⁺ cation are compared with those of F_5 TeOH and the F_5 TeO⁻ anion. As can be seen, the trends observed in a comparison of the vibrational spectra of F5TeOH and F₅TeO are also present in F₅TeNH₂ and the F₅TeNH₃ cation. The deprotonation of F₅TeOH to give the F₅TeO anion results in a shift to high frequency of v(TeO) by 133 cm⁻¹ resulting from an increase in the Te-O bond order.²⁰⁶ Accompanying the increase in v(TeO) is a decrease of the Te-F stretching modes. The largest effect is observed for v(TeFax.), which is 151 cm⁻¹ lower for the F₅TeO⁻ anion than for F₅TeOH. The weakening of the Te-F bonds and strengthening of the Te-O bond in the F₅TeO anion (and similarly for F₅SeO and F₅SO) relative to the parent acids has been attributed to donation of electron density from oxygen to the X-F bonds (X = S, Se, Te)as discussed in Section (A) of this Chapter. A close parallel is observed in a comparison of the Raman spectra of the acid/base pairs F₅TeOH/F5TeO* and those of the F₅TeNH₃* cation and F₅TeNH₂. Deprotonation of the F₅TeNH₃⁺ cation results in an increase in the Te-N bond order, which is reflected in the low value of v_3 [v(Te-N)] for F_5 TeNH₃⁺ compared to the band at 761.0 cm⁻¹ in the Raman spectrum of F₅TeNH₂, which has a component from the Te-N stretching mode. This accompanied by an increase in the Te-F stretching force constants, particularly that for Te- F_{ax} . This is reflected in the high frequency of v_1 [v(Te- F_{ax})], 730.2 cm⁻¹, for F_5 TeNH₃⁺. Although strong vibrational coupling of the $\nu(\text{Te-N})$ and $\nu(\text{Te-F}_{ax})$ stretching modes prevents the assignment of v(Te-F_{ax.}) to a particular band, it contributes strongly to the band at 582.7 cm⁻¹. which is significantly lower than the band assigned to v(Te-F_{ax.}) in F₅TeNH₃⁺. These observations are consistent with a close parallel in the bonding of the acid/base pairs F5TeOH/F5TeO and F₅TeNH₃⁺/F₅TeNH₂. The ¹⁹F NMR spectra of F₅TeNH₂ and F₅TeNH₃⁺AsF₆⁻ are shown in Figure 4.11 and the ¹⁹F NMR chemical shifts are listed in Table 4.7. As can be seen, protonation of F₅TeNH₂ Table 4.6. Vibrational Frequencies and Assignments for F5TeO', F5TeOH, F5TeNH2 and F5TeNH3⁺ and | F5TeO' ^d | F ₅ ТеОН | ΔV | F ₅ TeNH ₂ ^h | F ₅ TeNH ₃ + i | ۷ν | Assgnt and Approx Mode Decription | |---------------------|---------------------|------|---|--------------------------------------|----------------|--| | 584 (30) | 735 | 151 | VOI7 E C03 | 730.2 (13.66) | | $A_1 v_1$, $v(\text{Te}.F_{a_1})$ | | 652 (100) | 685 | 33 | 619.6 (8.42) | 682.9 (100)
566.5 (18.35) | 63.6 | v2. v ₂ , v ₃ m(TeF ₄)
v ₄ , v(Te-X) | | 319° | 319 | 0 | 761.0 (1.03)
300.7 (3.36) | 315.7 (6.03) | 15 | asym $[v_1 + v_3]$
v_4 , $\delta_{sym}(TeF_4)$ umbrella | | 584 (30) | 310
652 | 89 | 628.6 (sh) | 671.6 (23.94) | 43 | B1 V5. V3ym(TeF4) out-of-phase | | n.o.
283 (6) | п.о. | | n.o.
326.8 (2.06) | 311.1 (19.60) | -15.7 | V6. Opucker(16F4) B2 V7. Ascits(TeF4) in plane | | 636 | 733.58 | 97.5 | 680.4 (4.38)
689.1 (7.14) | 752.4 (4.30) | 72 | Ε ν ₈ , ν _{ωym} (TcF ₄) | | 346 (6) | | | 336.8 (2.29) | 321.1 (8.13)
276.3 (5.64) | -15.7
-10.4 | v ₉ , 6(FTcF ₄)
v ₁₀ , 6(XTcF ₄) | | 728 (40)
196 (3) | 168
145 | -28 | 194.6 (0.46)
210.1 (0.21) | 203 (0.63) | 8.4 | vii. Saym(TeF4) | *Data obtained from Raman spectra unless otherwise specified. Assignments for the modes of the F₅TeX group have made assuming C₄, symmetry using the mode species descriptions from ref (233), bRef (233); liquid at -55 °C. 'Ref (234); liquid at ambient temperature. dRef (29); N(CH3)4 OTeF5 at 25 °C. v1 and v2 have Raman spectrum of the liquid, recorded at room temperature. *Obtained from the gas phase infrared spectrum. *This work; recorded at -150 °C using 514.5-nm excitation. 179 been described as asymmetric and symmetric combinations of v_{sym}(TeF₄) and v(Te-F_{ax.}), respectively. *Obtained from the
infrared spectra at 25 °C. ⁽Ref (220) and (203); This work; recorded at ambient temperature using 514.5 nm excitation. Table 4.7. ¹⁹F NMR Parameters for F₅TeNH₂ and F₅TeNH₃⁺AsF₆⁻. | Compound | ¹⁹ F NMR C | Themical Shifts a | |--|-----------------------|-------------------| | F ₅ TeNH ₂ b | δ_{A} | -37.8 | | | δ_{B} | -42.8 | | F ₅ TcNH ₃ ⁺
AsF ₆ ^{- c} | $\delta_{\!A}$ | -55.6 | | M2L6 | $\delta_{ m B}$ | -30.2 | $^{^{}a}$ 19 F NMR spectra referenced with respect to neat external CFCl₃ at 30 °C. Negative chemical shifts indicate low frequency resonances with respect to CFCl₃. Recorded in BrF₅ solvent. b -44 °C. c -50 °C. Figure 4.11 (a) ¹⁹F NMR spectrum (470.599 MHz) of F₅TeNH₂ in BrF₅ solvent (-44 °C); (A) multiplet assigned to the axial fluorine atom bonded to tellurium, (B) resonance of equatorial fluorine atoms bonded to tellurium, (C) TeF₆. (b) ¹⁹F NMR spectrum (470.599 MHz) of F₅TeNH₃⁺AsF₆⁻ in BrF₅ solvent (-50 °C); (A) resonance of equatorial fluorine atoms bonded to tellurium, (B) resonance of axial fluorine atom bonded to tellurium, (C) unidentified resonance, (D) TeF₆, (E) AsF₆⁻. Asterisks (*) in both spectra denote ¹²⁵Te satellites. significantly alters the ^{19}F NMR shieldings of the axial and equatorial fluorines of the F_5Te - group. The axial fluorine resonance (δ_A) is shielded by 18.5 ppm on protonation, whereas the equatorial resonance (δ_B) is deshielded by 5.2 ppm. The greater shift for the axial fluorine resonance is consistent with the trans effect observed in the ^{19}F NMR spectra of the acid/base pairs F_5XOH/F_5XO^- for X=S, Se, Te [see Section (A) of this Chapter]. #### (G) CONCLUSION The differences in bonding reflected in the Raman and ^{19}F NMR spectral parameters for the acid/base pair $F_5TeNH_3^+/F_5TeNH_2$ are analogous to those observed for F_5TeOH and F_5TeOT anion. The Te-N bond order in F_5TeNH_2 is greater than in the $F_5TeNH_3^+$ cation, indicating some degree of π -donation from the lone pair on nitrogen to acceptor orbitals of the F_5Te^- group, possibly $\sigma^*(Te^-F)$. The presence of electron density in these antibonding orbitals reduces the strengths of the Te-F bonds. The greater weakening of the axial Te-F bond is attributed to the fact that $\pi_N \to \sigma^*(Te^-F_{ax}) > \pi_N \to \sigma^*(Te^-F_{eq})$. Protonation of the nitrogen in F_5TeNH_2 reduces the strength of the Te-N bond since the nitrogen lone pair is no longer available for Te-N π bonding. The depopulation of the $\sigma^*(Te^-F)$ orbitals results in an increase in the strength of the Te-F bonds. #### CHAPTER 5 ### [PENTAFLUOROTELLURIUM(VI)AMIDO] XENONIUM(II) HEXAFLUOROARSENATE; F_Ten(H)-Xe⁺AsF_- #### INTRODUCTION While many examples of xenon bonded to oxygen or fluorine and of xenon bonded to other highly electronegative ligands through oxygen were synthesized immediately following the discovery of noble-gas reactivity, 25 over a decade had elapsed before an example with a ligating atom other than oxygen and fluorine, namely nitrogen, was synthesized, 56 and two decades before the Xe-N bond in FXeN(SO₂F)₂ was definitively characterized in the solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy. 57 Other imidodisulfurylfluoride derivatives containing Xe(II)-N bonds have since been characterized primarily by use of NMR spectroscopy, namely, Xe[N(SO₂F)₂]₂, 58,59 F[XeN(SO₂F)₂]₂, 58-60 XeN(SO₂F)₂+AsF₆. 60 and XeN(SO₂F)₂+Sb₃F₁₆. 60 The compound Xe[N(SO₂CF₃)₂]₂ has also been prepared and characterized and is the most thermally stable of the imido derivatives of xenon. More recently, the significant Lewis acidity of the XeF⁺ cation, as seen from the propensity of XeF⁺ to form fluorine bridges in the solid state, ²¹ has been utilized to form species with Xe(II)-N bonds from the reaction of oxidatively resistant bases with the XeF⁺ cation [equation (5.1)]. ²⁶ $$D: + XcF^{+} \longrightarrow D-XcF^{+}$$ (5.1) Reactions of XeF⁺ with hydrogen cyanide, ^{72,73} alkylnitriles, ⁷² pentafluorobenzenenitrile, ⁷² and perfluoroalkylnitriles^{71,72} form the adduct cations RC=N-Xe-F⁺. Perfluoropyridines⁷⁵ and strifluorotriazine⁷¹ likewise react with XeF⁺, resulting in cations in which xenon is bonded to a formally sp^2 hybridized nitrogen atom incorporated in the aromatic ring. With the exception of the adduct with s-trifluorotriazine, s-C₃F₃N₂N-XeF⁺, ⁷¹ all of the adduct cations are only kinetically stable below room temperature. More recently the krypton(II) adduct cations, $HC = N - KrF^{+78}$ and $R_FC = N - KrF^{+}$ ($R_F = CF_3$, C_2F_5 , $n - C_3F_7$)⁷¹ have also been characterized in this laboratory as the AsF_6^{-} salts, all of which are unstable above ca. -40 °C. In the present paper the HF elimination reaction of XeF_2 with the novel ammonium salt $F_5TeNH_3^+AsF_6^-$ has been shown to result in the formation of the $F_5TeN(H)-Xe^+$ cation, which represents the second example of xenon(II) bonded to a formally sp^3 hybridized nitrogen. The first example, $F_5SN(H)-Xe^+$, was formed by solvolysis of $F_3S\equiv N-XeF^+$ in HF solvent. The salt, $F_5TeN(H)-Xe^+AsF_6^-$, has been characterized in the solid state by Raman spectroscopy and in solution by 1H , ^{129}Xe , ^{125}Te , ^{15}N , and ^{19}F NMR spectroscopy. Assignment of vibrational bands in the Raman spectra and elucidation of scalar couplings to nitrogen in the NMR spectra have been aided by preparation of ^{15}N -enriched (99.5 atom %) $F_5TeN(H)-Xe^+AsF_6^-$. #### RESULTS AND DISCUSSION ### (A) PREPARATION AND ISOLATION OF F₅TeN(H)-Xe⁺AsF₆ The $F_5TeN(H)-Xe^+$ cation was prepared in solution by the reaction of stoichiometric amounts $XeF^+AsF_6^-$ and F_5TeNH_2 in anhydrous HF solvent with warming to -45 to -35 °C to effect reaction and dissolution. The base, F_5TeNH_2 , was protonated in HF acidified with the strong Lewis fluoroacid, $XeF^+AsF_6^-$, according to equations (5.2) and (5.3). The ammonium cation $F_5TeNH_3^+$ underwent an HF elimination reaction with XeF_2 , and produced the $F_5TeN(H)-Xe^+$ cation [equation (5.4)]. The salt, $F_5TeNH_3^+AsF_6^-$, which was prepared by reaction of F_5TeNH_2 $$XeF^{\dagger}AsF_6^{-} + HF \longrightarrow XeF_2 + H_2F^{\dagger}AsF_6^{-}$$ (5.2) $$F_5TeNH_2 + H_2F^+AsF_6^- \longrightarrow F_5TeNH_3^+AsF_6^- + HF$$ (5.3) $$F_5 \text{TeNH}_3^+ \text{As} F_6^- + \text{Xe} F_2 \rightleftharpoons F_5 \text{TeN(H)-Xe}^+ \text{As} F_6^- + 2 \text{ HF}$$ (5.4) with excess AsF_5 in HF solvent (Chapter 4), underwent an HF elimination reaction with XeF_2 according to equation (5.4) in both HF (-45 to -35 °C) and BrF_5 (-62 to -45 °C) solvents to give $F_5TeN(H)-Xe^+AsF_6^-$. The $F_5TeNH_3^+$ and $F_5TeN(H)-Xe^+$ cations were both observed in HF and BrF_5 solvents by 1H , ^{19}F , ^{15}N and ^{125}Te NMR spectroscopy, which indicated that the HF elimination depicted in equation (5.4) was an equilibrium. The $F_5TeN(H)-Xe^+$ cation was completely decomposed after several hours in HF solution at -20 °C. Decomposition was rapid (*ca.* 1 minute) in HF solution at -1 °C and is discussed in Chapter 6. A pale orange microcrystalline solid, which crystallized from anhydrous HF at -40 °C, was isolated by decanting the supernatant from the solid followed by pumping under vacuum for 20 h at -50 °C. The Raman spectrum of the solid (-165 °C) is consistent with F_5 TeN(H)- $Xe^+AsF_6^-$ contaminated with F_5 TeNH₃⁺AsF₆⁻, which arises according to equation (5.4), and $Xe_2F_3^+AsF_6^-$. The salt, $Xe_2F_3^+AsF_6^-$, is believed to result primarily from the reaction of XeF_2 and AsF_5 produced in the decomposition of F_5 TeN(H)- $Xe^+AsF_6^-$ in HF solvent (see Chapter 6). The pale orange color of the solid, which is attributed to F_5 TeN(H)- $Xe^+AsF_6^-$, decomposed rapidly at -30 °C. The F_5 TeN(H)-Xe⁺ cation was also generated in SO_2 ClF solution from the reaction of stoichiometric amounts of F_5 TeNH₃⁺As(OTeF₅)₆⁻ and Xe(OTeF₅)₂ at -61 °C in an HOTeF₅ elimination reaction according to equation (5.5), which is directly analogous to the HF elimination reaction depicted in equation (5.4). The reagents were soluble down to -115 °C, because of the large size of the anion, resulting in low lattice energies for F_5 TeN(H)-Xe⁺As(OTeF₅)₆⁻ and F_5 TeNH₃⁺As(OTeF₅)₆⁻. $$F_5$$ TeNH₃⁺As(OTeF₅)₆⁻ + Xe(OTeF₅)₂ === F_5 TeN(H)-Xe⁺As(OTeF₅)₆⁻ + 2 HOTeF₅ (5.5) (B) <u>CHARACTERIZATION OF NATURAL ABUNDANCE AND ¹⁵N-ENRICHED</u> <u>F₅TeN(H)-Xe⁺AsF₆⁻ by ¹²⁹Xe, ¹²⁵Te, ¹⁹F, ¹⁵N, AND ¹H NMR SPECTROSCOPY</u> Every element in the F₅TeN(H)-Xe⁺ cation possesses at least one nuclide which is suitable for observation by NMR spectroscopy, namely, the spin-½ nuclei ¹H, ¹⁵N, ¹²⁵Te, ¹²⁹Xe and ¹⁹F, and the spin-1 nuclide ¹⁴N. The multinuclear magnetic resonance spectra in BrF₅ and HF solvents for all five spin-½ nuclei are consistent with Structure 5.1 for the F₅TeN(H)-Xe⁺ cation in solution (see Table 5.1). The ¹²⁹Xe NMR spectra of natural abundance F₅TeN(H)-Xe⁺ consist of a broad singlet at -2840 ppm in HF solvent (-45.0 $^{\circ}$ C; Figure 5.1a) and at -2903 ppm in BrF₅ solvent (-48.3 $^{\circ}$ C). The absence of xenon-fluorine scalar coupling indicates that the Xe-F bond is ionized in solution [cf., XeF_2 (BrF₅ solvent, -52 °C): ${}^1J({}^{19}F^{-129}Xe) = 5621$ Hz]. The failure to observe the xenonnitrogen scalar coupling is attributed to quadrupolar collapse resulting from fast relaxation of the ^{14}N nucleus (I = 1). In prior studies of the imidodisulfurylfluoride derivatives of xenon(II), the low symmetry and resultant large electric field gradient (efg) at the ^{14}N nucleus (I = 1) in the trigonal planar -N(SO₂F)₂ group resulted in quadrupolar collapse of the xenon-nitrogen scalar couplings in $FXeN(SO_2F)_2$, 57 $XeN(SO_2F)_2^{+,60} Xe[N(SO_2F)_2]_2$, 59 and
$F[XeN(SO_2F)_2]_2^{+,60}$ in SbF₅, BrF₅, and SO₂ClF solvents. Nitrogen-15 enrichment (30%) facilitated the observation of the xenon-nitrogen scalar couplings. It was also necessary to prepare the ¹⁵N-enriched HC≡N-XeF⁺ cation to observe all possible scalar couplings. 73 Similarly, the lone pair of electrons and the unsymmetrical geometry at the formally sp³-hybridized nitrogen center in F₅TeN(H)-Xe⁺ results in a large efg at nitrogen, so that ¹⁴N undergoes rapid relaxation, which prevents the observation of scalar couplings to nitrogen. The Xe(II)-N scalar coupling, ¹J(¹²⁹Xe-¹⁵N), was observed on ¹⁵N-enrichment, confirming the xenon-nitrogen linkage. The 129 Xe NMR spectra of 99.5% 15 N-enriched F_5 TeN(H)-Xe⁺As F_6 ⁻ recorded at 11.7440 T consists of a doublet centered at -2840 ppm in HF solvent at -45.0 °C, 1 J(129 Xe- 15 N) = 138 Hz (Figure 5.1b), and at -2902 ppm in Br F_5 solvent at -45 °C, 1 J(129 Xe- 15 N) = 142 Hz. The magnitude of 1 J(129 Xe- 15 N) is comparable to directly bonded 129 Xe- 15 N scalar couplings of related xenon(II)-nitrogen bonded compounds such as (FO₂S)₂N-Xe⁺ (91.7 Hz)⁶⁰ and 5.1 Figure 5.1 (a) ¹²⁹Xe NMR spectrum (139.051 MHz) of natural abundance F₅TeN(H)-Xe⁺AsF₆ in HF solvent (-45.0 °C) with an external magnetic field strength of 11.7440 T. (b) ¹²⁹Xe NMR spectrum (139.051 MHz) of 99.5% ¹⁵N-enriched F₅TeN(H)-Xe⁺AsF₆ in HF solvent (-45.0 °C) with an external magnetic field strength of 11.7440 T. (c) ¹²⁹Xe NMR spectrum (83.445 MHz) of 99.5% ¹⁵N-enriched F₅TeN(H)-Xe⁺AsF₆ in HF solvent (-38.8 °C) with an external magnetic field strength of 7.0463 T. $\underline{\text{Table 5.1}}$ NMR Chemical Shifts and Spin-Spin Coupling Constants for the $F_5\text{TeN(H)-Xe}^+$ Cation. | Chemica | al Shifts (ppm) ^a | τ, ℃ | |-----------------------------|--|---------------| | δ(¹²⁹ Xe) | -2841 | -38.8 | | | (-2902) | -45.0 | | | -2832 ^b | -61.2 | | $\delta(^{125}\text{Te})^c$ | 598 | -34.1 | | $\delta(^{19}F)^d$ | -51.6 (-51.9), F _{ax.}
-43.4 (-43.2), F _{eq.} | -31.2 (-44.0) | | $\delta(^{15}N)^c$ | -268.0 (-266.3) | -40.0 (-45.0) | | $\delta(^1H)^c$ | (6.90) | (-44.2) | | | Coupling Con | stants, Hz ^e | | |---|--------------|--|--------| | ¹ J(¹²⁹ Xe- ¹⁵ N) | 138 (142) | $^{1}J(^{123}\text{Tc}-^{19}\text{F}_{\text{cq}})$ | (3113) | | $^{2}J(^{129}Xe^{-1}H)$ | 24 | $^{1}J(^{15}N_{-}^{1}H)$ | 62 | | $^{3}J(^{129}Xe^{-19}F_{eq})$ | 6 | $^{2}J(^{19}F_{ax}-^{19}F_{eq})^{d}$ | 166 | | $^{1}J(^{125}\text{Te-}^{19}\text{F}_{ax.})$ | 3578 | $^{1}J(^{125}\text{Te}^{-19}\text{F}_{eq})$ | 3766 | | $^{1}J(^{125}Te^{-15}N)$ | 333 | $^2J(^{125}Te^{-1}H)$ | 46 | ## Table 5.1 (continued) - Samples were referenced externally at 30 °C with respect to the neat liquid references; XeOF₄ (¹²⁹Xe), (CH₃)₂Te (¹²⁵Te), CFCl₃ (¹⁹F), CH₃NO₂ (¹⁵N) and (CH₃)₄Si (¹H). A positive chemical shift denotes a resonance occurring to high frequency of the reference compound. The values in parentheses have been measured in BrF₅ solvent. All other values have been measured in HF solvent unless otherwise specified. - b Value obtained from the reaction of F₅TeNH₃⁺As(OTeF₅)₆⁻ and Xe(OTeF₅)₂ in SO₂CIF solvent. - c Obtained from a 99.5% ¹⁵N-enriched sample of F₅TeN(H)-Xe⁺AsF₆. - All ¹⁹F spectra in HF solvent displayed a broad saddle-shaped feature at *ca.* -68 ppm arising from the partially quadrupole collapsed ¹J(⁷⁵As-¹⁹F) of the octahedral AsF₆^{*} anion. In BrF₅ solvent, the resonance at *ca.* -68 ppm was completely quadrupole collapsed, resulting in a broad singlet. Values obtained from natural abundance samples of F₅TeN(H)-Xe⁺AsF₆^{*} in HF and BrF₅ solvents. FO₂SN(H)-Xe⁺ (107 Hz; see Chapter 8). The magnitude of the Xe-N scalar coupling is also discussed in Section (E) of this Chapter. Because of the large linewidth ($\Delta v_{1/2} = 80$ Hz) of each peak of the doublet, the long range couplings to xenon, namely, ${}^2J(^{129}Xe^{-1}H)$, ${}^2J(^{129}Xe^{-125}Te)$, ${}^3J(^{129}Xe^{-19}F_{aX})$ and ${}^3J(^{129}Xe^{-19}F_{eq})$, were not observed in the ${}^{129}Xe$ NMR spectra of $F_5Te^{15}N(H)$ -Xe⁺ at 11.7440 T. The large linewidth presumably results from line broadening caused by shielding anisotropy (SA) relaxation of the ${}^{129}Xe$ nucleus, which is field dependent and is significant for xenon. This is exemplified in the field dependence of the ${}^{129}Xe$ linewidth for the 30% ${}^{15}N$ -enriched (FO₂S)₂N-Xe⁺ cation in SbF₅ solvent, 60 which is proportional to the inverse of the spin-lattice relaxation time constant, T_1 . At an external field strength of 5.8719 T, the linewidth of the ${}^{129}Xe$ resonance for (FO₂S)₂N-Xe⁺ was 139 Hz, and the ${}^{129}Xe^{-15}N$ scalar coupling was not resolved. However, at 2.3488 T, the linewidth was significantly reduced and the ${}^{129}Xe^{-15}N$ scalar coupling was resolved. The contribution to spin-lattice relaxation (T_1) arising from SA is inversely proportional to the square of the external magnetic field B_o and is given by equation (5.6), where ϖ is the resonance frequency, γ is the gyromagnetic ratio, τ_c is the molecular $$T_1 = [15(1 + \omega^2 \tau_c^2)] / [\gamma^2 B_o^2 \Delta \sigma^2 2\tau_c]$$ (5.6) correlation time for isotropic tumbling in solution, and $\Delta\sigma$ refers to the anisotropy of the ¹²⁹Xe shielding tensor. ²⁵¹ As B_o increases, one can see that T_1 decreases. The relaxation rate $(1/T_1)$ is therefore increased and the resonance line is broadened. As expected, the SA broadening of the ¹²⁹Xe resonance for F_5 TeN(H)-Xe⁺ was significantly reduced at 7.0463 T in HF solvent at -38.8 °C, as shown in Figure 5.1c. The ¹²⁹Xe resonance is centered at $\delta(^{129}\text{Xe}) = -2841.5$ ppm and consists of a doublet of doublet of quintets. Figure 5.2b illustrates a resolution enhancement of Figure 5.2 (a) ¹²⁹Xe NMR spectrum (83.445 MHz) of 99.5% ¹⁵N-enriched F₅TeN(H)-Xe⁺AsF₆⁻ in HF solvent (-38.8 °C) with an external magnetic field strength of 7.0463 T. (b) Resolution of ¹²⁹Xe spectrum enhanced by application of a Gaussian function to the free induction decay before Fourier transformation. the ¹²⁹Xe resonance obtained by the application of a Gaussian function to the free induction decay before Fourier transformation. The largest doublet splitting arises from $^{1}J(^{129}\text{Xe}^{-15}\text{N}) = 136$ Hz, which was the only resolved coupling in the ¹²⁹Xe NMR spectrum at 11,7440 T (Figure 5.1b). At 7.0463 T (Figure 5.2b), each line of the doublet is further split into a doublet arising from $^2J(^{129}\text{Xe-}^1\text{H})$ 24 Hz. The quintet splitting arises from the scalar coupling of xenon with the four chemically equivalent equatorial fluorine atoms bonded to tellurium $[^3J(^{129}Xe^{-19}F_{eq}) = 6 \text{ Hz}]$. The magnitude of ${}^3J({}^{129}\text{Xe-}{}^{19}\text{F}_{eq.})$ is smaller than that observed for the related ${}^5\text{TeO-Xe}$ cation (18.5) Hz), 54 F₅TeOXcF (30 Hz) 141 and Xe(OTcF₅)₂ (31 Hz). 141 A coupling corresponding to 2 J(129 Xe-¹²⁵Te) is not observed in the ¹²⁹Xe or the ¹²⁵Te NMR spectrum of F₅TeN(H)-Xe⁺ (see below). The scalar coupling of ¹²⁹Xe with the axial fluorine bonded to tellurium is not resolved. This coupling was also not resolved in the 129Xe NMR spectra of F₅TeO-Xe⁺, 54 F₅TeO-XeF¹⁴¹ and Xc(OTcF₅)₂. ¹⁴¹ There is a potential ambiguity in the ¹²⁹Xe NMR spectrum of F₅TeN(H)-Xe⁺ at 7.0463 T, since one could argue that the doublet splitting of 24 Hz assigned to ${}^2J({}^{129}\text{Xe-}{}^{1}\text{H})$ may arise from ${}^3J({}^{129}\text{Xe}{}^{-19}\text{F}_{ax})$ as opposed to ${}^2J({}^{129}\text{Xe}{}^{-1}\text{H})$. However, the assignment of this coupling to $^2J(^{129}Xe^{-1}H)$ was confirmed by an $^{129}Xe^{-1}H$ INEPT experiment, 252 with ^{129}Xe as the observed nucleus. In the ${}^{1}H$ pulse sequence, a fixed delay of $(4J)^{-1}$ was used in which J is the magnitude of the coupling assigned to ${}^2J({}^{129}Xe^{-1}H)$. After completion of the INEPT experiment, the quintets of the ¹²⁹Xe resonance which are separated by J Hz are out of phase (see Figure 5.3b). This indicates polarization transfer from ¹H to ¹²⁹Xe and confirms that the coupling of 24 Hz results from ${}^{2}J({}^{129}Xe^{-1}H)$ and not from ${}^{3}J({}^{129}Xe^{-19}F_{ax})$. The 15 N NMR spectrum of the 99.5 atom % 15 N-enriched F_5 TeN(H)-Xe⁺ cation in HF solvent at -40 °C (Figure 5.4), consists of a doublet centered at -268.0 ppm, $^1J(^{15}\text{N}-^1\text{H}) = 62$ Hz. Satellite doublets are also observed, corresponding to $^1J(^{15}\text{N}-^{129}\text{Xe}) = 138$ Hz (natural abundance Figure 5.3 (a) ¹²⁹Xe NMR spectrum (83.445 MHz) of 99.5% ¹⁵N-enriched F₅TeN(H)-X2*AsF₆ in HF solvent (-38.8 °C) with an external magnetic field strength of 7.0463 T. Resolution enhanced by Gaussian multiplication before Fourier transformation of the free induction decay. (b) ¹²⁹Xe-¹H INEPT of 99.5% ¹⁵N-enriched F₅TeN(H)-Xe*AsF₆ in HF solvent at (-38.8 °C) with an external field strength of 7.0463 T. Resolution enhanced by applying a Gaussian function to the free induction decay before Fourier transformation. Asterisks (*) denote 129 Xe satellites arising from 1/(15 N-129 Xe). The inner peak of each satellite doublet overlaps with ¹⁵N NMR spectrum (50.698 MHz) of 99.5% ¹⁵N-enriched F₃TeN(H)-Xe⁺AsF₆ in HF solvent (-40.0 °C). a peak of the higher intensity doublet. Figure 5.4 ¹²⁹Xe, 26.44%; I = 1/2). The inner peaks of each satellite doublet are coincident with the central doublet peaks and therefore are not observed. The scalar coupling ${}^{1}J({}^{15}N_{-}{}^{129}Xe) = 138$ Hz was calculated by subtracting the ${}^{1}J({}^{15}N_{-}{}^{1}H) = 62$ Hz from the frequency separation of the visible satellite peaks. A similar ${}^{15}N$ NMR spectrum is observed in BrF₅ solvent at -45 °C centered at -266.3 ppm, ${}^{1}J({}^{15}N_{-}{}^{1}H) = 62$ Hz,
but because of insufficient signal-to-noise, the satellite peaks arising from ${}^{1}J({}^{15}N_{-}{}^{1}H) = 62$ Hz, but because of insufficient signal-to-noise, the satellite peaks arising from ${}^{1}J({}^{15}N_{-}{}^{129}Xe)$ were not observed. The ${}^{15}N$ chemical shift is similar to those observed for the related ${}^{15}N$ enriched compounds, FXeN(SO₂F)₂ (-247.9), 57 Xe[N(SO₂F)₂]₂ (-232.5) 59 and XeN(SO₂F)₂ + (-243.0 ppm). 60 The ${}^{15}N$ NMR resonance of the F₅TeN(H)-Xe+ cation is significantly deshielded relative to the F₅TeNH₃+ cation [δ(${}^{15}N$) = -317.1 ppm], which is present in samples containing the F₅TeN(H)-Xe+ cation according to equation (5.4). The more deshielded ${}^{15}N$ resonance observed for the F₅TeN(H)-Xe+ cation is expected from examination of the factors contributing to the local paramagnetic shielding term for nitrogen, σ_p^N [equation (5.7)]. 244 The greater inductive effect of the Xe+ group is expected to increase the radial factor < r^{-3} >2p, $$\sigma_{\rm p}^{\rm N} = -[\mu_{\rm o} \mu_{\rm B}^2 < r^{-3} >_{2p} \Sigma Q] / [2\pi(\Delta E)]$$ (5.7) lower the σ^* LUMO relative to the nonbonding orbital on nitrogen, thus reducing ΔE for paramagnetic $n_N \to \sigma^*$ circulations, and increase ΣQ , the charge-imbalance term for the valence electrons of the nitrogen atom. All of these terms reinforce each other, thus contributing to an increase in the magnitude of σ_P^N , that deshields the nitrogen nucleus. In a comparison of $HN(SO_2F)_2$ and $FXeN(SO_2F)_2$, ⁵⁷ the ¹⁵N chemical shifts were observed to be almost the same (-249.2 and -250.4 ppm, respectively). Since inductive effects through the σ framework predict a deshielding of $FXeN(SO_2F)_2$ relative to $HN(SO_2F)_2$, it was argued that since the nitrogen lone pair of electrons is part of the π framework of the -N(SO₂F)₂ group, σ_P^N is dominated by the deshielding of the nitrogen atom by the $n_N \to \pi^*$ circulation of the nitrogen lone-pair electrons in π^* orbitals of the sulfur-nitrogen bonds. There is little influence from the inductive effects of XeF and H, which act primarily through the σ framework.⁵⁷ In the present case, σ inductive effects appear to dominate. This is reasonable, since the absence of a free lone pair dictates that Te-N π -bonding is not possible for the F_5 TeNH₃⁺ cation. It is possible that some degree of Te-N or Xe-N π -bonding contributes to the bonding in the F_5 TeN(H)-Xe⁺ cation, which would deshield the nitrogen atom through $n_N \to \pi^*$ circulations of the nitrogen atom lone-pair of electrons in π^* orbitals of the Te-N and Xe-N bonds. Evidence for Te-N π -bonding in F_5 TeNH₂ has been given in Chapter 4. Xenon-nitrogen π -bonding in the F_5 TeN(H)-Xe⁺ cation is reasonable by analogy with the R-Xe⁺ cations (R = C_6F_5 , 95.99 2.4.6- $F_3C_6H_2$, 98 2.6- $F_2C_6H_3$, 253 2- FC_6H_4 and 4- FC_6H_4 253), where the deshielding of the aryl fluorine ¹⁹F and aryl carbon ¹³C NMR resonances in the 2, 4 and 6 positions on the aryl ring was consistent with Xe-C π -bonding. The 1 H NMR spectrum of natural abundance F_{5} TeN(H)-Xe⁺ consists of a singlet at 6.90 ppm; no coupling to nitrogen is observed, as a result of the fast relaxation of the quadrupolar nitrogen nucleus (quadrupolar collapse), but a satellite doublet that arises from $^{2}J(^{1}\text{H}-^{125}\text{Te})=46$ Hz is observed (Figure 5.5a). The failure to observe the scalar coupling $^{2}J(^{1}\text{H}-^{129}\text{Xe})$ is attributed to SA broadening of the ^{129}Xe satellites at the high field strength (11.7440 T) used to obtain the ^{1}H NMR spectra. The one-bond proton-nitrogen coupling, $^{1}J(^{15}\text{N}-^{1}\text{H})=62$ Hz, is observed in the ^{1}H NMR spectrum of the 99.5% ^{15}N -enriched $F_{5}\text{TeN}(\text{H})$ -Xe⁺ cation in BrF₅ solvent at -44.2 °C (Figure 5.5b). Satellite peaks arising from $^{2}J(^{1}\text{H}-^{125}\text{Te})$ are visible but not well resolved because of insufficient signal-to-noise. The 125 Te NMR spectrum of an equimolar mixture of 99.5% 15 N-enriched F_5 TeNH $_2$ and Figure 5.5 ¹H NMR spectra (500.138 MHz) of (a) natural abundance (-55.5 °C) and (b) 99.5% ¹⁵N-enriched F_5 TeN(H)-Xe⁺As F_6 ⁻ (-44.2 °C) in Br F_5 solvent. Asterisks (*) denote ¹²⁵Te satellites arising from ² $J(^1$ H-¹²⁵Te). Figure 5.6 (a) ¹²⁵Te NMR spectrum (157.795 MHz) of equilibrium mixture resulting from the reaction of 99.5% ¹⁵N-enriched F₅TeNH₃*AsF₆* and XeF₂ in HF solvent at -34.1 °C; (A) center of multiplet assigned to F₅TeNH₃*, (B) center of multiplet assigned to F₅TeN(H)-Xe*, (C) center of multiplet assigned to TeF₆. (b) ¹²⁵Te NMR spectrum (157.795 MHz) of 99.5% ¹⁵N-enriched F₅TeN(H)-Xe*AsF₆* in HF solvent at -34.1 °C; peaks labelled (A) are part of the multiplet assigned to F₅TeN(H)-Xe*; an asterisk (*) denotes a peak of the TeF₆ multiplet; all other peaks arise from the F₅TeNH₃* multiplet. (c) Expansion of a portion of the F₅TeN(H)-Xe* multiplet; peaks labelled (A) and (B) arise from F₅TeNH₃* and TeF₆, respectively. XeF⁺AsF₆ in HF solvent (-34.1 °C) is shown in Figure 5.6a. The ¹⁵N-enriched F₅TeN(H)-Xe⁺ cation is unambiguously assigned to the multiplet centered at 598 ppm, since the two other resonances, centered at 543 and 607 ppm, are attributable to TeF₆ and the ¹⁵N-enriched F₅TeNH₃⁺ cation (Chapter 4), respectively. The presence of the F₅TeNH₃⁺ cation in the ¹²⁵Te spectrum is consistent with equation (5.4). A detailed analysis of the solution equilibria and decomposition of F₅TeN(H)-Xe⁺AsF₆ in HF and BrF₅ solvents will be discussed in Chapter 6. The ¹²⁵Te NMR resonance of ¹⁵N-enriched F₅TeN(H)-Xe⁺ consists of a first order multiplet centered at 598 ppm (Figure 5.6b), and is consistent with Structure 5.1. The ¹²⁵Te chemical shift is comparable to that observed for the isoelectronic F₅TeO-Xe⁺ cation (576 ppm). ⁵⁴ The resonance is split into a quintet arising from ¹J(¹²⁵Te-¹⁹F_{eq}) = 3766 Hz. Referring to the expansion in Figure 5.6c, a doublet splitting arises from ¹J(¹²⁵Te-¹⁹F_{ax}) = 3578 Hz, and two further doublet splittings arise from ¹J(¹²⁵Te-¹⁵N) = 333 Hz and ²J(¹²⁵Te-¹H) = 46 Hz. As expected, ²J(¹²⁵Te-¹²⁹Xe) is not observed, because of the relatively low receptivity of ¹²⁵Te (2.24 x 10⁻³)²⁵⁴ and ¹²⁹Xe (5.69 x 10⁻³)²⁵⁴ relative to ¹H, and the low concentration of ¹⁵N-enriched F₅TeN(H)-Xe⁺ in solution. The ¹⁹F NMR spectrum of the F₅TeN(H)-Xe⁺ cation in HF solvent at -31.2 °C and in BrF₅ solvent at -44.0 °C each consist of a typical AX₄ pattern and the spectral parameters are listed in Table 5.1. The axial fluorine resonance is split into a quintet at -51.6 ppm in HF solvent (-51.9 ppm in BrF₅) arising from the two-bond scalar coupling to the four chemically equivalent equatorial fluorine atoms bonded to tellurium $\{^2J(^{19}F_{ax},^{-19}F_{eq}) = 166 \text{ Hz}\}$. The equatorial fluorine resonance is likewise split into a doublet centered at -43.4 ppm in HF (-43.2 ppm in BrF₅). Of the four possible couplings to 125 Te, only $^1J(^{19}F_{eq},^{-125}$ Te) = 3767 Hz (HF or BrF₅ solvent) is observed because of the low concentration of the F₅TeN(H)-Xe⁺ cation in solution. The cation, since the same coupling is observed in the 125 Te NMR spectrum of F_5 TeN(H)-Xe⁺ (see above). The scalar coupling, $^1J(^{19}F_{eq},^{-123}Te)=3113$ Hz, is also resolved from satellite peaks which flank the $^{19}F_{eq}$ resonance. Long range scalar couplings to 129 Xe, 1 H and 15 N were not observed in the ^{19}F spectra of natural abundance or 99.5% 15 N-enriched F_5 TeN(H)-Xe⁺As F_6 . A resonance attributable to the As F_6 anion is observed at ca. -68 ppm in the ^{19}F spectra in HF solvent (-40 $^{\circ}$ C). The resonance is saddle-shaped ($\Delta v_{1/2}=2588$ Hz) because of the partially quadrupole collapsed scalar coupling $^1J(^{75}As^{-19}F)$. In Br F_5 (-60 $^{\circ}$ C) solvent a similar ^{19}F resonance is observed for the As F_6 anion, without a saddle-shaped structure ($\Delta v_{1/2}=617$ Hz). Resonances arising from the $F_5TeNH_3^+$ cation are also observed in the ^{19}F , ^{125}Te , and ^{1}H NMR spectra in HF and Br F_5 solvents and are consistent with equation (5.4). In a sample that had initial XeF_2 and $F_5TeNH_3^+AsF_6^-$ concentrations of 0.38 and 0.36 M, respectively, in Br F_5 solution, the relative concentrations $[F_5TeNH_3^+]: [F_5TeN(H)-Xe^+]$ were determined to be 1.0: 1.2 in the ^{19}F NMR spectrum recorded at -60 °C after warming to the sample -40 °C for 10 minutes. In HF solvent at -33.3 °C, the same ratio was determined to be 1.0: 0.3 with initial $XeF^+AsF_6^-$ and F_5TeNH_2 concentrations of 0.71 M. The lower relative amount of $F_5TeN(H)-Xe^+$ in HF solvent is reasonable since the presence of excess HF is expected to drive the HF elimination reaction depicted in equation (5.4) towards the starting materials. The observation of XeF_2 in the ^{19}F and ^{129}Xe spectra is also consistent with equation (5.4). The XeF_2 resonance in the ^{19}F NMR spectrum in BrF_5 solvent (-58 $^{\circ}C$) is observed at -184.1 ppm $[^{1}J(^{19}F_-^{-129}Xe) = 5621$ Hz]. A doublet assignable to HF is observed at -192.8 ppm $[^{1}J(^{19}F_-^{-129}Xe) = 527$ Hz]. The observation of scalar couplings in the ^{19}F NMR spectrum indicate that XeF_2 and HF are not undergoing fast intermolecular exchange in BrF_5 solution at this temperature. In HF solvent at -41 °C, the ^{19}F NMR resonance of XeF_2 is observed at -199.7 ppm, similar to the value of -199.6 ppm for pure XeF_2 in HF at -68 °C, ¹¹¹ and is significantly broadened ($\Delta v_{1/2} = 386$ Hz). The presence of XeF_2 is consistent with solvolysis of $XeF^+AsF_6^-$ according to equation (5.2). The absence of peaks in the ¹⁹F NMR spectra assignable to F_5TeNH_2 (see Chapter 4) or XeF^+ indicated that the reactions
represented by equations (5.2) and (5.3) went essentially to completion in HF solvent. The absence of solid material in the sample was also consistent with solvolysis of $XeF^+AsF_6^-$ represented by equation (5.2), since it was reported to be insoluble in HF at low temperatures. ¹¹¹ ## (C) CHARACTERIZATION OF F₅TeN(H)-Xe⁺As(OTeF₅)₆ IN SO₂CIF SOLVENT BY 129Xe AND 19F NMR SPECTROSCOPY The reaction of equimolar amounts of the salt $F_5TeNH_3^+As(OTeF_5)_6^-$ and $Xe(OTeF_5)_2$ in SO_2ClF solvent at -61.2 °C resulted in a complex equilibrium mixture. The ¹²⁹Xe NMR spectrum consisted of two singlets assignable to $Xe(OTeF_5)_2$ [$\delta(^{129}Xe = -2271 \text{ ppm}; \Delta v_{1/2} = 126 \text{ Hz}]$ and the $F_5TeN(H)$ -Xe⁺ cation [$\delta(^{129}Xe = -2832 \text{ ppm}; \Delta v_{1/2} = 61 \text{ Hz}]$. No long range couplings, such as $^3J(^{129}Xe^{-19}F_{ax})$, $^3J(^{129}Xe^{-19}F_{eq})$ and $^2J(^{129}Xe^{-1}H)$, were resolved for either compound. In a sample having initial $Xe(OTeF_5)_2$ and $F_5TeNH_3^+As(OTeF_5)_6^-$ concentrations of 0.23 and 0.24 M, respectively, integration of the ^{129}Xe NMR resonances indicates a ratio [$Xe(OTeF_5)_2$]: [$F_5TeN(H)$ - Xe^+] of 1.7: 1.0. The ¹⁹F NMR spectrum (470.599 MHz) indicated rapid exchange of F_5 TeO- and F_5 TeN-groups at -61.2 °C, that prevented analysis of the spectrum. Cooling to -115.4 °C resulted in substantial slowing of the exchange on the ¹⁹F NMR time scale as shown in Figure 5.7. The doublet at $\delta(^{19}F) = -30.73$ ppm (A) and the quintet at $\delta(^{19}F) = -52.57$ ppm (K) are assigned to the equatorial and axial fluorine resonances of F_5 TeNH₃⁺, respectively [$^2J(^{19}F_{eq.},^{-19}F_{sx.}) = 163$ Figure 5.7 19F NMR spectrum (470.599 MHz) of the equilibrium mixture resulting from the reaction of F₅TeNH₃*As(OTeF₅)₆ and Xe(OTeF₅)₂ recorded at -115.4 °C in SO₂ClF solvent; (A) equatorial fluorine atom peaks of F₅TeNH₃*, (a) ¹²⁵Te satellites, (B) equatorial fluorine atom peaks of two unidentified F₅Te- groups, (b) ¹²⁵Te satellites, (C) unidentified species, (D) equatorial fluorine atom peaks of F₅TeN(H)-Xe*, (E) equatorial fluorine atom peaks of As(OTeF₅)₅, (F) second order AB₄ spectrum of As(OTeF₅)₆*, (f) ¹²⁵Te satellites, (G) equatorial fluorine atom peaks of Xe(OTeF₅)₂, (H) equatorial fluorine atom peaks of HOTeF₅, (h) ¹²⁵Te satellites, (I) axial fluorine atom peaks of F₅TeNH₃*. Hz]. Doublets at -38.55 (D), -38.65 (E), -45.48 (G) and -47.28 (H) ppm are assignable to the equatorial fluorines of F_5 TeN(H)-Xe⁺, As(OTeF₅)₅. 255 Xe(OTeF₅)₂. 255 and HOTeF₅, 255 respectively. The quintet at -48.02 ppm (I) is assigned to the axial fluorines of As(OTeF₅)₅. 255 The axial fluorine resonances of HOTeF₅ (ca. -44.5 ppm)²⁵⁵ and Xe(OTeF₅)₂ (ca. -41.5 ppm)²⁵⁵ are obscured by the AB₄ pattern of As(OTeF₅)₆ at ca. -44 ppm¹¹⁰ (F) and several unidentified exchange-broadened species in the region from -39 to -44 ppm. The singlet at -51.6 ppm (J) exhibiting 125 Te satellites (j) is assigned to TeF₆ and is expected to overlap with the low intensity resonance of the axial fluorine atom of F_5 TeN(H)-Xe⁺ (ca. -52 ppm). The species present in solution are consistent with the HOTeF₅ elimination reaction represented by equation (5.5). The presence of As(OTeF₅)₅ is not attributed to dissociation of As(OTeF₅)₆ according to equation (5.8) since there is no evidence for OTeF₅ or the bridged species, H(OTeF₅)₂ . 203 resulting from the reaction of HOTeF₅ and the OTeF₅ anion [equation (5.9)] in the 19 F NMR spectrum. Dissociation of F_5 TeNH₃+As(OTeF₅)₆ according to equation (5.10) also does not occur since the $$As(OTcF_5)_6 \longrightarrow OTcF_5 + As(OTcF_5)_5$$ (5.8) $$HOTeF_5 + OTeF_5 = [F_5TeO-H-OTeF_5]$$ (5.9) $$F_5$$ TeNH₃⁺As(OTeF₅)₆⁻ F_5 TeNH₂ + HOTeF₅ + As(OTeF₅)₅ (5.10) free base, F₅TeNH₂, was not observed in the ¹⁹F NMR spectrum (see Chapter 4 for ¹⁹F NMR parameters). This is consistent with the stability of N(CH₃)₄⁺As(OTeF₅)₆⁻ with respect to dissociation to give $N(CH_3)_4^+OTeF_5^-$ and $As(OTeF_5)_5$ in SO_2ClF solvent at 30 °C. The presence of $As(OTeF_5)_5$ in the reaction mixture cannot be accounted for with the available data. The two doublets at -33.67 $[^2J(^{19}F_{ax}.^{-19}F_{eq}.) = 178 \text{ Hz}]$ and -33.96 ppm $[^2J(^{19}F_{ax}.^{-19}F_{eq}.) = 178 \text{ Hz}]$ (B) exhibit ^{125}Te satellites (b) and result from unidentifiable $F_5\text{Te}$ - groups. The broad resonance at -24.5 ppm and the doublets centered at -32.86 and -36.18 ppm (C) are not assigned. Broad resonances at -2.8, -11.1, -13.5 and -22.2 ppm are also unidentified. ## (D) CHARACTERIZATION OF F₅TeN(H)-Xe⁺AsF₆⁻ BY LOW-TEMPERATURE RAMAN SPECTROSCOPY The low-temperature Raman spectrum (-165 °C) of the pale orange microcrystalline solid isolated from the reaction of equimolar amounts of natural abundance F_5 TeN H_3^+ As F_6^- with Xe F_2 in anhydrous HF solvent is shown in Figure 5.8. The observed frequencies along with their assignments are listed in Table 5.2. The 99.5 atom % 15 N-enriched salt was prepared in order to aid in the assignments of modes of vibration that involve the displacement of an X-N bond (X = Tc, Xe). The Raman frequencies for 99.5% 15 N-enriched F_5 TeN(H)-Xc $^+$ As F_6^- are also listed in Table 5.2, and regions of the Raman spectra of natural abundance and 99.5% 15 N-enriched F_5 TeN(H)-Xc $^+$ As F_6^- that exhibit $^{14/15}$ N isotopic shifts are shown in Figure 5.9. The isotopic shifts, $\Delta v(^{14/15}$ N), are given as $[v(^{15}$ N) - $v(^{14}$ N)] where v is the observed Raman frequency. The Raman spectra are consistent with the formation of $F_5TeN(H)-Xe^+AsF_6^-$ in the solid state. Impurities present in the solid have been identified from the known Raman spectra as $F_5TeNH_3^+AsF_6^-$ (see Chapter 4) and $Xe_2F_3^+AsF_6^-$, which have been crystallized from the HF solution of $F_5TeN(H)-Xe^+AsF_6^-$. Attempts to remove the contaminants by washing with HF or recrystallization resulted in thermal decomposition of the $F_5TeN(H)-Xe^+$ cation. A peak of low Figure 5.8 Raman Spectrum of natural abundance F₅TeN(H)-Xe⁺AsF₆, recorded at -165 °C with use of 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines, a dagger (†) denotes an artifact characteristic of the Raman instrument; (A), Xe₂F₃*AsF₆, (B), F₅TeNH₃*AsF₆, (C), unidentified impurities or decomposition products. Έ Raman spectra of natural abundance (lower trace) and 99.5% 15N-enriched (upper trace) F3TeN(H)-Xe⁺AsF₆ recorded at -165 ^oC by use of 514.5-nm excitation (200 - 800 cm⁻¹ region; asterisks (*) denote FBP sample tube lines; (A) Xe₂F₃⁺AsF₆⁻; (B) F₅TeNH₃⁺AsF₆., (C) unidentified impurities or decomposition products. Figure 5.9a Figure 5.9b Raman spectra of natural abundance (lower trace) and 99.5% ¹⁵N-enriched (upper trace) F₅TeN(H)-Xe⁺AsF₆⁻ recorded at -165 °C with use of 514.5-nm excitation (1200 - 1350 and 3100 - 3200 cm⁻¹ regions); an asterisk (*) denotes an FEP sample tube lines. intensity centered at 511 cm⁻¹ and two peaks at 656.9 and 661.6 cm⁻¹ (see Figures 5.8 and 5.9) have not been assigned and are attributed to minor impurities or decomposition products. The intensities of the peaks assigned to impurities, including $Xe_2F_3^+AsF_6^-$ and $F_5TeNH_3^+AsF_6^-$, varied from sample to sample relative to those of $F_5TeN(H)-Xe^+AsF_6^-$. The Raman spectrum of the F_5 TeN(H)-Xe⁺ cation has been assigned by the assumption of sp^3 hybridization at the nitrogen atom, and a staggered conformation of the N-Xe group with respect to the equatorial fluorine atoms of the F_5 Te- group, by analogy with the isoelectronic F_5 TeO-Xe⁺ cation. The resulting C_I point symmetry is expected to give rise to 3N - 6 = 21 normal modes belonging to irreducible representations of symmetry species A. All 21 modes are predicted to be infrared and Raman active, and since no modes are degenerate, 21 bands are expected in the Raman spectrum. However, 16 bands have been assigned to the F_5 TeN(H)-Xe⁺ cation. In Table 5.2 the modes of the F_5 TeN-Xe group of the F_5 TeN(H)-Xe⁺ cation have been assigned with the assumption of C_s point symmetry, so that a direct comparison could be made with the modes of the F_5 TeO-Xe⁺ cation. Should be analogy with similar molecules, without consideration of point symmetry. Assignments for the F_5 TeN(H)-Xe⁺ cation have been aided by comparison with the vibrational frequencies of F_5 TeOCl, 233 F_5 TeOF, 233 F_5 TeO-Xe⁺As F_6 , 54 F_5 TeNH₃⁺As F_6 (see Chapter 4) F_2 NH²⁵⁶ and Cl₂NH. 257 Assignments for the As F_6 anion have been made by comparison with those of XeF⁺As F_6 , 73 HC=NXeF⁺As F_6 , 73 and O₂⁺As F_6 . 159 The band assigned to v(NH) is observed at 3145.9 cm⁻¹ and exhibits an ^{14/15}N isotopic shift of -7.1 cm⁻¹. The presence of one band in the NH stretching region is consistent with the vibrational spectra of secondary amines, R_2NH . The NH stretch is comparable to those observed in the related compounds difluoramine, F_2NH (3193 cm⁻¹)²⁵⁶ and Cl_2NH (3279.0 cm⁻¹)²⁵⁷ although the anomolously high value for Cl_2NH likely arises from reduced intermolecular hydrogen bonding in the gas phase.²⁵⁸ Although two NH bending modes are expected, only one is observed at 1270.8 cm⁻¹, exhibiting an $^{14/15}$ N isotopic frequency dependence [$\Delta v(^{14/15}N) = -2.6$ cm⁻¹]. By comparison with F_2 NH [δ (NH) = 1307 (a'), 1424 cm⁻¹ (a")] 256 and Cl_2 NH [δ (NH) = 1002 (a'), 1295 cm⁻¹ (a")], 257 it is possible that a band arising from the second NH bending vibration overlaps with one of the relatively intense FEP bands at 1217, 1310, or 1385 cm⁻¹. Because of the larger masses of the groups attached to the nitrogen atom in the F_5 TeN(H)-Xe⁺ cation, it is also possible that the second NH bend occurs at lower frequency than in F_2 NH and Cl_2 NH, but is too low in intensity to be observed. The band observed at 444.1 cm⁻¹ has been assigned
to the asymmetric and symmetric (Te-N-Xe) stretching modes, because of the large isotopic shift $[\Delta v(^{14/15}N) = -10.9 \text{ cm}^{-1}]$ and similar frequency to that observed in the related $F_5TeO-Xe^+$ cation (see Table 5.2). Although a band assigned to v(Te-N) is observed at 566.5 cm⁻¹ in the Raman spectrum of $F_5TeNH_3^+AsF_6^-$ (see Chapter 4), a shift to lower frequency is expected in $F_5TeN(H)-Xe^+$ because of the mass effect of xenon. The only intense band at lower frequency than 566.5 cm⁻¹ which has an $^{14/15}N$ isotopic dependence is at 444.1 cm⁻¹. The observation of only one band in this region indicates that v(Te-N) and v(Xe-N) are strongly coupled, as stated above. The bands in the Raman spectrum of $F_5TeO-Xe^+AsF_6^-$ assigned to $v_{sym}(Xe-O-Te)$ [492 (16), 483 (14) cm⁻¹] and $v_{asym}(Xe-O-Te)$ [476 sh, 470 (18) cm⁻¹] were close together in frequency, so it is possible by analogy that bands due to $v_{asym}(Te-N-Xe)$ and $v_{sym}(Xe-N-Te)$ are not resolved in the Raman spectrum of $F_5TeN(H)-Xe^+AsF_6^-$. The known range of Xe-F stretching frequencies for compounds of xenon(II) containing the X-Xe-F linkage (X = F, N, O) is defined by XeF_2 [$v_{sym}(Xe-F) = 496$ cm⁻¹], ^{175b} which exhibits the most ionic Xe(II)-F bond, and $XeF^+Sb_2F_{11}^-$ [v(Xe-F) = 619 cm⁻¹], ⁶⁸ where the terminal Xe-F bond is substantially more covalent, because of the weak basicity of $Sb_2F_{11}^-$. Since the Xe-F stretching vibration involves a large polarizability change, the bands are usually the most intense in the Raman spectra. The absence of an intense band between 494 and 619 cm⁻¹ that could be assigned to v(Xe-F) in the Raman spectrum of $F_5TeN(H)-Xe^+AsF_6^-$ is consistent with the absence of a covalent Xe-F bond. By analogy with the AsF₆ salts of F₅TeO-Xe⁺, ⁵⁴ XeF⁺, ⁶⁸ and KrF⁺, ⁶⁹ it is possible that a fluorine-bridge interaction between the cation and anion in F₅TeN(H)-Xe⁺AsF₆ exists (e.g., F₅TeN(H)-Xe⁺···F-AsF₅). However, the band attributable to v(Xe - F) in the Raman spectra of F₅TeO-Xe⁺AsF₆ (365 cm⁻¹), ⁵⁴ XeF⁺AsF₆ (339 cm⁻¹), ⁶⁸ and α -KrF⁺AsF₆ (328 cm⁻¹), ⁶⁹ was usually more intense than the $v_4(AsF_6)$ and $v_5(AsF_6)$ modes which occurred in the same region. Such a band is not observed in the Raman spectrum of F₅TeN(H)-Xe⁺AsF₆. Bands observed between 307 and 330 cm⁻¹ in the Raman spectrum of F₅TeN(H)Xe⁺AsF₆ have been tentatively assigned to bending modes of the F₅Te-group, although one of these bands might be assigned to v(Xe - F). The band assigned to v(Xe - F) in the Raman spectrum of F₅TeO-Xe⁺AsF₆ is twice as intense as the F₅Te-bending modes, allowing a distinction to be made between them. For F₅TeN(H)-Xe⁺AsF₆, all modes in the F₅Te-bending region are similar in intensity, and given the established regularity of these bending mode frequencies, ²³³ none are assigned to v(Xe - F). The absence of a band in the 300 - 370 cm⁻¹ region which may be attributed to v(Xe - F), or alternatively, the reduced intensity of this band relative to that observed in the Raman spectrum of F₅TeO-Xe⁺AsF₆, may be explained by comparing the bonding in the F₅TeO-Xe⁺ and F₅TeN(H)-Xe⁺ cations. The lower electronegativity of F₅TeN(H)- than the F₅TeO- group [see Section (E) of this Chapter] is expected to result in a lower Lewis acidity for F₅TeN(H)-Xe⁺ than for F₅TeO-Xe⁺. As a result, the Xe···F bridge bond in the former cation may be substantially more ionic than in the latter, if not completely ionic. The small polarizability change associated with the vibration of a predominantly ionic bond is expected to result in a low Raman intensity. Support for this statement was provided by George *et al.*, ²⁵⁹ who calculated the Raman intensity for the first vibrational transition for a purely electrostatic linkage in Tl⁺OH⁻. Comparison with the vibrations of covalent linkages indicated that the Raman intensities from vibrations of purely electrostatic linkages are 10^2 to 10^5 lower than those from covalent linkages. Assignment of the band at 273.8 cm⁻¹ to $\delta(\text{NTeF}_4)$ was made by comparison to $F_5\text{TeNH}_3^+$ (Chapter 4). This is confirmed by the $^{14/15}\text{N}$ isotopic shift (-0.8 cm⁻¹) of the band. The in-plane (δ) and out-of-plane (τ) Te-N-Xe bends have been assigned to the bands at 201.6 and 186.8 cm⁻¹ by comparison with $F_5\text{TeO-Xe}^+\text{AsF}_6^-$ (see Table 5.2), but it was not possible to assign each of these bands to a particular mode. The assignment of the modes of the F_5Te - group for $F_5TeN(H)$ - Xe^+ have been made by comparison with the Raman spectrum of F_5TeO - $Xe^+AsF_6^{-,54}$ with the assumption that the stretching and bending force constants of the F_5Te - moieties in F_5TeO - Xe^+ and $F_5TeN(H)$ - Xe^+ are not significantly different. This assumption is true for compounds of the form F_5TeX , where X is an electronegative group such as CI_5^{-233} F_5^{-233} OH_5^{-220} OXe^+ . Comparison with F_5TeO^{-205} and F_5TeNH_2 (Chapter 4) is not possible since electron donation from the lone pairs on the oxygen and nitrogen atoms to the tellurium atom results in a significant decrease in the axial and equatorial Te-F bond force constants. All modes associated with the F_5Te - group have been assigned to bands in the Raman spectrum, except for the asymmetric out-of-plane bend, $\delta_{\rm asym}({\rm TeF_4})$. This mode correlates with v_6 (b_1) for compounds of the form $F_5{\rm TeX}$ ($X={\rm Cl.}^{234}$ OH. 220 OF. 233 OCl 233) under C_{4v} point symmetry, and is not observed in the vibrational spectra of these compounds. A value of v_6 for $F_5{\rm TeCl}$ (199.1 cm⁻¹) was calculated from the force constants obtained by use of the Wilson F and G matrix method. 234 The bands assigned to the out-of-phase $v_{sym}(TeF_4)$ (672.3 cm⁻¹) and the $v_{sym}(TeF_4)$ breathing (653.8 cm⁻¹) modes exhibit large ^{14/15}N isotopic shifts. This provides evidence for vibrational coupling of these modes and v(Te-N). This is likely since these vibrational modes all involve displacement of the tellurium atom, and under the true point symmetry of $F_5TeN(H)-Xe^+$ (C_1), all modes belong to the same irreducible representation, A, and all modes could in theory couple. The octahedral AsF₆ anion is expected to give rise to three Raman active bands under O_h symmetry, namely, $v_1(a_{1g})$, $v_2(e_g)$ and $v_5(t_{2g})$. The presence of F_5 TeNH₃+AsF₆ and Xe_2F_3 +AsF₆ in the solid prevents a rigorous assignment of the anion bands of F_5 TeN(H)-Xe+AsF₆. The amount of F_5 TeNH₃+AsF₆ in the natural abundance sample is small, and only the band at 682.1 cm⁻¹ [v_{sym} (TeF₄); labelled (B) in Figure 5.8], which is the most intense band in the Raman spectrum of F_5 TeNH₃+AsF₆ (see Chapter 4), is assigned to this impurity. This band is also coincident with v_1 (a_{1g}) of the AsF₆ anions of all three species. Overlap of the v_2 (e_g) and v_5 (t_{2g}) AsF₆ bands for F_5 TeN(H)-Xe+AsF₆ and Xe_2F_3 +AsF₆ is also expected. Bands at 686.6 and 690.8 cm⁻¹ and at 397.3 and 401.5 cm⁻¹ are assigned to the split $v_3(t_{1u})$ and $v_4(t_{1u})$ AsF₆ modes. Since these bands are not observed in the Raman spectrum of Xe_2F_3 +AsF₆, ¹⁷⁶ they must arise from F_5 TeN(H)-Xe+AsF₆. The observation of v_3 and v_4 in the Raman spectrum indicates an AsF₆ point symmetry which is lower than O_h . A point symmetry of C_{4v} or lower would account for the Raman activity of the v_3 and v_4 modes, and lowering of the AsF₆ point symmetry may Table 5.2. Raman Frequencies and Assignments for [14N]F₅TeN(H)-Xe⁺AsF₆⁻ and [15N]F₅TeN(H)-Xe⁺AsF₆⁻, Compared to Those of F5TeO-Xe+AsF6. | frequency, | cy, cm ^{-) a} | | frequency, cm.1 b | | |--|--|--------------------------------------|---|--| | F ₅ TcN(H)-Xc ⁺ AsF ₆ - | 1 ¹⁵ NJF ₅ TeN(H)-Xe ⁺ AsF ₆ | Δν(^{14/15} Ν) ^c | F ₅ TcO-Xc ⁺ AsF ₆ | assignt and approx
mode description | | 3145.9 (6.2) | 3138.8 (8.5) | -7.1
-2.6 | | v(NH)
&(NH) | | 750.1 (18.6) | 751.0 (22.0) | i | 739 (6) | a", vasym(TeF4), asym | | | | | 775 (20) | a', v _{asym} (TeF4), sym | | 719 6 (24 8) | 719.3 (25.8) | | 713 (34) | a', v(Te-Fax,) | | 672.3 (90.1) | 666.1 (100.0) | -6.2 | 663 (58) | a', v _{sym} (TeF ₄) | | 653.8 (100.0) | 644.6 (67.2) | -9.2 | (001) 899 | a", v _{sym} (TeF ₄) | | | | | 492 (16) | a', v _{sym} (Xe-O-Te) | | 444.1 (85.7) | 433.2 (76.1) | -10.9 | | a', v _{sym} (Xe-N-Te) +
v(Xe-N-Te) | | | | | 476 sh
470 (18) | a', vasym(Xe-O-Te) | | | | | 365 (15) | v(Xe···F) | | 320.6 (9.6) | 321.2 (20.1) | | 333 (2) | a", &(FTeF4),
out of Te-X-Xe plane | | 316.7 (13.0) | 318.1 (22.2) | | 320 (7) | a', &(FTeF4), | | in Te-X-Xe plane a', $\delta_{\text{sym}}(\text{TeF}_4)$, out of TeF, plane | a', $\delta_{sciss}(TeF_4)$,
in Te-X-Xe plane | a', S _{asym} (TeF4),
sym to Te-X-Xe plane | a", δ _{asym} (TeF ₄), asym to Te-X-Xe plane | a", $\delta(XTeF_4)$, out of Te-X-Xe plane | a', δ(XTcF ₄),
in Tc-X-Xc plane | a", t(Tc-X-Xe) or a',
δ(Tc-X-Xe) | |--|---|---|--|---|--|-------------------------------------| | 312 (8) | 295 (3) | 252 (25) | | 205 (1) | (5) 161 | 174 (32) | | | | | | -1,4 | | | | 330.4 (8.6) | 310.2 (39.2) | 250.9 (22.4) | | 273.0 (32.0) | | 202.4 (4.8)
186.5 (2.7) | | 329.8 (4.6) | 310.1 (19.2) | 250.3 (19.2) | | 274.4 (20.9) | | 201.6 (5.7)
186.8 (2.6) | ^aThe Raman data
for $F_5TcN(H)-Xe^+AsF_6^-$ were obtained at -165 °C in an FEP sample tube by use of 514.5-nm excitation. The estimated precision of each value is \pm 0.6 cm⁻¹. Although the point symmetry of the $F_5TeN(H)-Xe^+$ cation is C_I , assignments of modes have been made for the $F_5Te-N-Xe$ group under C_s symmetry to allow direct comparison with the modes of the $F_5TeO-Xe^+$ cation [see reference (54)]. The modes of the NH group are assigned by analogy with similar molecules, without consideration of molecular point symmetry. ^bRaman data for $F_5TeO-Xe^+AsF_6^-$ were recorded at -196 °C in a glass sample tube at -196 °C by use of 514.5-nm excitation [reference (54)]. Low frequency lattice or bending modes reported in reference (54) have been omitted from the present table. ^cIsotopic shifts $\Delta v(^{14/15}N) = v(^{15}N) - v(^{14}N)$, where the frequencies of the bands v are given in cm⁻¹. Isotopic shifts less than the estimated error are not considered to be significant. Table 5.3 Raman Frequencies and Assignments for AsF₆, Compared to Those of XeF⁺AsF₆ and HC=NXeF⁺AsF₆. | | frequency, cm ⁻¹ | | assignt and approx mode description | prox mode ion | |---|--|-----------------------------|---|------------------| | F ₅ TeN(H)-Xe ⁺ AsF ₆ ^a | XeF ⁺ AsF ₆ · ^b | HC≡NXeF⁺AsF ₆ -b | O _h (AsF ₆ ⁻) | ű | | 690.8 (20.3) | 735 (20) | | t _{lu} , V3 | -
ca | | 686.6 (25.0) | 723 (13) | 707 (2) | | ੌ લ ૈલ | | 682,1 (68.0) | 681 (56) | 680 (49) | alg, V ₁ | ਤ ਿ ਚ | | 573.7 sh
570.6 sh | 582 (12)
577 (5) | | 68, V ₂ | . ස | | 543.2 (6.6) | 465 (3) | | v(AsF) | | | 401.5 (10.5) | 421 (11) | 419 (<1)
415 (1) | t _{lu} , V4 | ੌ ਲ | | 397.3 (4.1) | 406 (1) | | | ੰ ਜ਼ -ੌਜ਼ | | | 386 (14) | 397 (1)
392 (<1) | t ₂₈ , V ₅ | ĈŒ | | 363.2 sh | 378 (5) | 372 (15)
370 (10) | | " e | | 366.5 (20.3) | | | | 227 | | 113.9 (6.7) 104.7 (2.8) 83.4 (3.6) 68.9 (3.6) 56.0 (10.3) | 369.6 sh | 244 (1) | ^t 1u° V6 | ້ ສື ສື ສື | |---|---|---------|-------------------------------|----------------------| | | 113.9 (6.7)
104.7 (2.8)
83.4 (3.6)
68.9 (3.6)
56.0 (10.3) | | lattice modes
hydrogen bon | and/or
ding modes | of Xe₂F₃ +AsF₆ [reference (176)] and F₅TeNH₃ +AsF₆ (Chapter 4) and do not reflect those of pure F₅TeN(H)-Xe⁺AsF₆. ^aThis work; Raman spectrum obtained at -165 ^oC in an FEP sample tube by use of 514.5-nm excitation. The estimated precision of each value is ± 0.6 cm⁻¹. The Raman intensities and multiplicities of v₁, v₂ and v₅ are affected by the presence ^bRaman spectra recorded at -196 ^oC by use of 514.5-nm excitation [see reference (73)]. arise from a low crystallographic site symmetry. Confirmation of this statement would require a crystal structure of the pure compound. Although it is not possible to assess the site symmetry from the Raman data, the bands of the AsF_6^- anion have been assigned to modes under C_s point symmetry by correlating the representations of O_h with C_s (Table 5.10). The assignments for AsF_6^- must remain tentative since the bands assigned to v_1 (a_{1g}), v_2 (e_g) and v_5 (t_{2g}) overlap with those of $Xe_2F_3^+AsF_6^-$. A similarity of modes is observed upon comparison of $F_5TeN(H)-Xe^+AsF_6^-$ with $XeF^+AsF_6^{-73}$ and $HC\equiv NXeF^+AsF_6^{-73}$ Although two bands are reported for $v_2(e_g)$ under O_h symmetry in the Raman spectrum of $F_5TeN(H)-Xe^+AsF_6^-$, further bands may be obscured by the FEP sample tube band at 579 cm⁻¹. A band assignable to a derivative of $v_6(t_{1g})$ under O_h symmetry is not observed. #### (E) NATURE OF THE BONDING IN THE F₅TeN(H)-Xe⁺ CATION Previous NMR studies of xenon(II) derivatives containing Xe-F groups bonded to oxygen or fluorine atoms have shown that the NMR parameters measured in ¹⁹F and ¹²⁹Xe spectra could be used to assess the relative covalent characters of the Xe-O, Xe-F bridge, and Xe-F terminal bonds. ^{103,104,108} Schrobilgen²⁶ recently extended this work to include derivatives with xenon(II)-nitrogen bonds. In general, as the covalent character of the Xe-L (L = ligand atom) bond increases, the terminal Xe-F bond becomes more ionic, decreasing the formal charge on xenon. These trends are paralleled by increased shielding of the ¹²⁹Xe resonance, a decrease in the magnitude of ¹J(¹²⁹Xe-¹⁹F), and increased ¹⁹F chemical shifts for the terminal Xe-F greup. The ¹²⁹Xe chemical shift is therefore a powerful tool for estimating the relative covalent characters of the Xe-L bond for a series of xenon(II) compounds, and is used to assess qualitatively the bonding in F₅TeN(H)-Xe⁺ in the following discussion. Table 5.3 lists the ¹²⁹Xe chemical shifts and reduced scalar couplings ${}^{1}K(Xe-N)$ for a number of compounds containing xenon(II)-nitrogen bonds. NMR data for the XeF+ cation in SbF₅ solvent are included for comparison since the ¹²⁹Xe chemical shift and ¹J(¹²⁹Xe-¹⁹F) are representive of uncoordinated XeF⁺, because of the very weak basicity of SbF₅ solvent and the polymeric Sb_nF_{5n+1} anion in solution. The compounds are listed approximately in order of increasing Xe-N bond covalent character. The HC=N-XcF+ and F₃S≡N-XeF⁺ cations have the most ionic Xe-N bonds in Table 5.3. This is apparent from the 129Xe NMR resonances, which are deshielded relative to the other compounds containing Xe(II)-N bonds. As also shown in Table 5.3, the ¹²⁹Xe resonances become increasingly shielded as the scharacter of the nitrogen valence hybrid orbitals decreases. This is consistent with decreasing electronegativity of the ligand group, 105 resulting in a race covalent Xe-N bond. Thus the highly shielded ¹²⁹Xe NMR resonance indicates that the F₅TeN(H)-Xe⁺ cation, with formal sp³ hybridization at the hitrogen atom, has one of the most covalent Xe-N bonds known and that the Xe-N bond covalent characters of the F₅TeN(H)-Xe⁺ and F₅SN(H)-Xe⁺ cations are similar. Examination of Table 5.3 reveals that the magnitude of ${}^{1}K(Xe-N)$ decreases as the % s-character of the nitrogen valence orbitals decreases. This is predicted by the Fermi contact mechanism which is usually the dominant mechanism for scalar couplings that involve heavy nuclei.²⁶⁰ In a formalism developed by Pople and Santry, 242 the Fermi contact mechanism is proportional to the product of the valence s-electron densities at the coupled nuclei, so that decreased s-character in the nitrogen valence hybrid orbitals on moving down Table 5.3 predicts a decrease in the magnitude of ¹K(Xe-N). A scalar coupling model which assumes dominance of the Fermi contact term for Xe(II)-N bonds has been used to assess the hybridization at nitrogen in the HC=N-XeF+ cation. This was achieved by comparing the magnitude of the Xe-N scalar coupling with that in (FO₂S)₂N-XeF, which was shown to contain a formally sp²-hybridized nitrogen center from the short S-N bond lengths [1.628(3) and 1.623(3) Å] and trigonal planar geometry at nitrogen by Xray crystallography. 57 The use of the xenon-nitrogen scalar coupling to determine the hybridization at the nitrogen atom assumes that the s-electron density at the xenon atom is approximately the same in HC≡N-XeF+ and (FO₂S)₂N-XeF. The successful prediction of sp hybridization at the nitrogen atom in HC=N-XeF+ indicated that this assumption was valid. In attempting to evaluate the hybridization at the nitrogen atom in the F5TeN(H)-Xe+ cation, a species which could be assumed to have a similar s-electron density at xenon is the (FO₂S)₂N-Xe⁺ cation. The crystallographically determined trigonal planar geometry and short S-N bond lengths [1.68(1) and 1.70(1) Å] for the $(FO_2S)_2N-Xe^+$ cation indicated formal sp^2 hybridization at the nitrogen atom.⁶⁰ Thus, with the assumption that the Xe-N scalar coupling is dominated by the Fermi contact term, it should be possible to estimate the hybridization at the nitrogen atom in F₅TeN(H)-Xe⁺ with use of the values of ${}^{1}K(Xe-N)$, but problems arise in this treatment. If the hybridization of the nitrogen atom is sp^3 in $F_5TeN(H)-Xe^+$, one would expect a lower value of ${}^1K(Xe-N)$ than in $(FO_2S)_2N-$ Xc+, which is opposite to the observed values. Resonance Structures 5.4 and 5.5 indicate the potential for N \rightarrow Te π -donation in F_5 TeN(H)-Xe⁺, which was established for F_5 TeNH₂ in Chapter 4, and may increase the nitrogen valence s-character in the Xe-N bond. However, it is unlikely that the nitrogen atom is formally sp2-hybridized, since a normal coordinate analysis of the related OTeF₅ anion²⁰⁶ indicated that the Te-O bond is intermediate between a single and a double bond. Therefore a formal nitrogen atom hybridization which is intermediate between sp^2 and sp^3 may be closer to reality. It is likely that S-N π -bonding in $(FO_2S)_2N$ -Xe⁺ surpasses the degree of Te-N π-bonding in F₅TeN(H)-Xe⁺, given the planarity of the nitrogen center in the former cation, and the short S-N bond lengths (see above). Thus it is not possible to use X-N π bonding (X = S, Te) to rationalize the magnitudes of ${}^{1}K(Xe-N)$. An alternative approach, which , F 5_ TP also assumes dominance of the Fermi contact term, is derived from a study of ${}^{1}J({}^{15}N_{-}{}^{1}H)$ in nitrogen-15 enriched main group compounds of the form XNH2 and X2NH, by Cowley and Schweiger, 124 which relied on the so-called isovalent hybridization hypothesis. 261 This hypothesis, applied to nitrogen, states that the nitrogen atom valence s-character concentrates in the bonds directed toward electropositive substituents. It was observed that in most cases ¹J(¹⁵N-¹H) increases as the electronegativity of X increases for XNH2 and X2NH compounds. 124 Since it
is clear from the ¹²⁹Xe chemical shifts of (FO₂S)₂N-Xe⁺ and F₅TeN(H)-Xe⁺ that the (FO₂S)₂Ngroup is more electronegative than the F5TeN(H)- group, the isovalent hypothesis predicts greater valence s-character in the Xe-N bond of (FO2S)2N-Xe+. It follows that this model also incorrectly predicts a greater value of 1K(Xe-N) in (FO₂S)₂N-Xe⁺. The failure to predict the relative magnitudes of ¹K(Xe-N), by solely considering the contribution of the Fermi contact term to the scalar coupling, indicates that the dipolar or orbital contributions to the xenon-nitrogen scalar coupling may be important. Although the Fermi contact term is expected to be the largest contributor to the Xe-N scalar coupling,260 it may be similar for the F5TeN(H)-Xe+ and $(FO_2S)_2N-Xe^+$ cations. The presence of Xe-N π bonding in the $F_5TeN(H)-Xe^+$ and $(FO_2S)_2N-Xe^+$ cations, which is represented by resonance Structures (5.3) and (8.11), respectively, may give rise to a significant orbital contribution, K^2_{AB} . Factors contributing to the magnitude of K^2_{AB} are described in equation (5.11), which uses an average energy approximation in an LCAO $$K^{2}_{AB} = \mu_{o}(\mu_{B})^{2} < r_{A}^{-3} >_{p} < r_{B}^{-3} >_{p} (^{3}\Delta E)^{-1}$$ $$x \left[2(P_{\sigma}^{2} + P_{\pi}^{2} + P_{\pi}^{2}) + 3(P_{\sigma}P_{\pi} + P_{\sigma}P_{\pi} + P_{\pi}P_{\pi}) \right]$$ (5.11) framework.²⁵¹ The terms μ_0 and μ_B are the permittivity of a vacuum and the Bohr magneton, respectively, $\langle r_A^{-3} \rangle_p$ and $\langle r_B^{-3} \rangle_p$ are the inverse cube radial distributions of the valence p orbitals for the coupled nuclei, ${}^3\Delta E$ is the average excitation energy, and P_σ , P_π and P_π , are the σ and π bond orders for the bonding between nuclei A and B. In comparing $F_5 TeN(H)$ -Xe⁺ and $(FO_2S)_2N$ -Xe⁺, an argument for a greater Xe-N π -bonding contribution in the former could be made, which in turn rationalizes the relative magnitudes of ${}^1K(Xe-N)$. The greater electronegativity of $(FO_2S)_2N$ - than $F_5 TeN(H)$ - is expected to result in a greater Xe-N π -bonding contribution in the $F_5 TeN(H)$ -Xe⁺ cation. A larger Xe-N π -bonding contribution in $F_5 TeN(H)$ -Xe⁺ is expected to result in larger values of P_π and P_π . in equation (5.11), thus increasing ${}^1K(Xe-N)$ relative to $(FO_2S)_2N$ -Xe⁺. The possibility of Xe(II)-N π -bonding is proposed by analogy with the xenon(II)-carbon bonded cations R-Xe⁺ (R = fluorophenyl).²⁵³ The absence of detectable amounts of the neutral compound F₅TeN(H)-XeF in BrF₅, SO₂CIF and HF solvents is consistent with the NMR parameters for the series of compounds, shown in Table 5.3. As mentioned at the beginning of this Section, increasing covalent character of the Xe-L bond (L = N, F, O ligand atom) results in increasing Xe-F bond ionic character. This is seen in the magnitude of ¹J(¹²⁹Xe-¹⁹F), which decreases as the Xe-F bond ionic character increases on moving down Table 5.3, towards increasing Xe-L bond covalent character. The cations F₅TeN(H)-Xe⁺, F₅SN(H)-Xe⁺, FO₂SN(H)-Xe⁺ and F₄S=N-Xe⁺ form a series whose ¹²⁹Xe resonances are significantly shielded relative to all other known compounds containing Xe(II)-N bonds. This shielding indicates that these Xe(II)-N bonds are highly covalent. In agreement with the ¹²⁹Xe and ¹⁹F NMR trends discussed at the beginning of this section, the Xe-F bonds are completely ionized in solution as a result of the covalent character of the Xe-N bonds. The relationship of Xe-F bond ionization in compounds of the form L-Xe-F and electronegativity of the ligand L is made explicit by a comparison of F_5 TeO-Xe-F and the F_5 TeN(H)-Xe⁺ cation, since F_5 TeO- and F_5 TeN(H)- are isoelectronic. Structures 5.6 and 5.7 are the canonical forms that describe the relative ionic characters of the Xe-O and Xe-F bonds in the known compound, F_5 TeO-XeF, and the analogous canonical forms of the hypothetical neutral compound, F_5 TeN(H)-Xe-F, are shown in Structures 5.8 and 5.9. The significant Xe-F bond $$F_5$$ TcO-Xc⁺ F <---> F_5 TcO Xc-F⁺ 5.6 5.7 $$F_5$$ TeN(H)-Xe⁺ F <----> F_5 TeN(H)⁻ Xe-F⁺ 5.8 5.9 covalent character in F_5 TeO-Xe-F is reflected in the ¹²⁹Xe NMR chemical shift, -2051 ppm, which is similar to that for XeF_2 . -1913 ppm in the same solvent and at the same temperature $(SO_2ClF, 26 \, ^{\circ}C)$. ¹⁸¹ The scalar coupling $^1J(^{129}Xe^{-19}F)$ for F_5 TeO-XeF is 5743 Hz, which is 122 Hz larger than the corresponding value for XeF_2 (5621 Hz). ¹⁸¹ The NMR data are consistent with a greater weighting of Structure of 5.7 over 5.6, and reflects the greater electronegativity of F than F_5 TeO-. ¹⁸¹ However, the F_5 TeO- group is sufficiently electronegative that the F_5 TeO-Xe⁺ cation has significant Lewis acid character. This is reflected in the fact that ionization of the Xe-F bond of F_5 TeO-XeF required the use of the strong Lewis acids AsF_5 or SbF_5 to form F_5 TeO-Xe⁺ AsF_6 and F_5 TeO-Xe⁺ Sb_2F_{11} . ⁵⁴ The significant Lewis acid strength of the F_5 TeO-Xe⁺ cation was also evident from the presence of a band that was attributed to a covalent fluorine bridge interaction between the cation and anion in the Raman spectrum of solid F_5 TeO-Xe⁺As $F_6^{-.54}$ The Lewis acid strength of the F_5 TeO-Xe⁺ cation is also reflected in the formation of the Lewis acid-base adducts B-Xe-OTe F_5^+ (B = C_5F_5N , s- $C_3F_3N_2N$, CH₃C \equiv N) upon reaction of F_5 TeO-Xe⁺As(OTe F_5)₆ with the appropriate nitrogen base in SO₂ClF solvent.²⁶ The ionization of the Xe-F bond of the hypothetical neutral compound F_5 TeN(H)-XeF in HF, Br F_5 and SO₂ClF solution indicates that resonance Structure 5.8 contributes essentially 100% to the bonding. The Lewis acidity of F_5 TeN(H)-Xe⁺ is expected to be low relative to F_5 TeO-Xe⁺, resulting from the lower electronegativity of F_5 TeN(H)- than F_5 TeO-. The relative electronegativities of these ligands is reflected in the acid characters of F_5 TeNH₂ and F_5 TeOH. The former is basic, being quantitatively protonated in HF (see Chapter 4). The latter, F_5 TeOH, is a strong acid, having an acidity lying between those of HNO₃ and HCl, ²⁰⁰ and there is no evidence of protonation of F_5 TeOH in HF acidified with As F_5 . ¹⁸⁰ Further evidence for the low Lewis acid strength of F_5 TeN(H)-Xe⁺ is indicated by the absence of a band that could be attributed to the Xe···F bridge stretch in the Raman spectrum of solid F_5 TeN(H)-Xe⁺ As F_6 . The instability of F_5 TeN(H)-XeF relative to F_5 TeN(H)-Xe⁺ is evident from unsuccessful attempts to isolate the neutral compound F_5 TeN(H)-XeF from the reaction of F_5 TeNH₂ or F_5 TeN(H)-Si(CH₃)₃ with XeF₂ in SO₂ClF solvent according to equation (5.12). No reaction was $$F_5$$ TeN(H)-R + XeF₂ \longrightarrow F_5 TeN(H)-XeF + RF (5.12) [R = H, (CH₃)₃Si] observed on warming the samples to 0 °C (R = H) and -12 °C (R = Si(CH₃)₃), well above the temperature at which F_5 TeNH₃⁺AsF₆⁻ and XeF₂ reacted to give the F_5 TeN(H)-Xe⁺ cation. | | δ(¹²⁹ Χε),
(ppm) | Hybridization
at Nitrogen | ¹ J(¹²⁹ Xe. ¹⁹ F),
Hz | ¹ <i>K</i> (Xe·N)
(10 ²² NA· ² m· ³) | T (°C) | Ref. | |--|---------------------------------|------------------------------|--|--|-----------|------| | XcF ⁺ ···FSb ₂ F ₁₀ | -574 | | 7594 | | 25 | 801 | | HC∈N-XcF [†] AsF ₆ | .1555 (-1570) | ds | 6181 | 1.381 ^b | -10 (-58) | 73 | | F ₃ S=N-XcF†AsF ₆ | -1661 | sp | 6248 | 1.435 | 99- | 26 | | s-C ₃ F ₃ N ₂ N-XcF ⁺ AsF ₆ | -1808 (-1863) | sp^2 | 5932 | 1.013 | -5 (-50) | 71 | | C ₅ F ₅ N-XcF†AsF ₆ ' | -1872 (-1922) | sp^2 | 5926 | 0.983 | -30 (-30) | 75 | | (FO ₂ S) ₂ N-XcF ^c | -2009 | sp^2 | 5586 | 0.913 ^b | 40 | 59 | | XcF ₂ | -1685 | | 5621 | | -52 | 71 | | (FO ₂ S) ₂ N-Xe ⁺ Sb _n F _{5n+1} | -1943 | sp^2 | | 0.272 ^b | 25 | 8 | | FO ₂ SN(H)-Xe ⁺ AsF ₆ - | -2616 (-2660) | sp^2 or sp^3 | | 0.322 ^b | -61 | ပ | | F ₄ S=N-Xc ⁺ AsF ₆ | -2672 | sp^2 | | | -20 | 26 | | F ₅ TcN(H)-Xc ⁺ AsF ₆ | -2840 (-2902) | sp^3 | | 0.401 ^b | -45 | This | | F _s SN(H)-Xe ⁺ AsF ₆ | -2886 | sp^3 | | | -20 | 56 | * 129Xe NMR parameters, unless otherwise indicated, were determined in HF and in BrF5 (in parentheses) solvent. ^b Recorded for the ¹⁵N enriched cation. ^e Measured in SO₂CIF solvent. ^d Measured in SbF₅ solvent. ^e Chapter 8 of this work. 22 #### CHAPTER 6 ### STUDY OF THE DECOMPOSITION OF F5TeN(H)-Xe+AsF6 #### AND #### CHARACTERIZATION AND DECOMPOSITION OF F5TeNF, IN SOLUTION #### INTRODUCTION As discussed in Chapter 5, the F_5 TeN(H)-Xe⁺ cation was generated as the AsF_6^- salt from the reaction of $XeF^+AsF_6^-$ and F_5 TeNH₂ in HF solvent or from the reaction of XeF_2 and F_5 TeNH₃⁺AsF₆⁻ in HF or BrF_5 solvents. The salt, F_5 TeN(H)-Xe⁺AsF₆⁻, was isolated from HF solvent at -40 °C, and the Raman spectrum at -165 °C indicated the presence of F_5 TeNH₃⁺AsF₆⁻ and $Xe_2F_3^+AsF_6^-$. It was not possible to isolate F_5 TeN(H)-Xe⁺AsF₆⁻ as a pure material for two reasons: (1) F_5 TeN(H)-Xe⁺ is in equilibrium with XeF_2 and F_5 TeNH₃⁺ in HF solvent [see equation (5.4)], and small amounts of F_5 TeNH₃⁺AsF₆⁻ crystallized with F_5 TeN(H)-Xe⁺AsF₆⁻; (2) F_5 TeN(H)-Xe⁺ decomposes slowly at the temperatures which also maximized the yield of F_5 TeN(H)-Xe⁺ in solution. The presence of $Xe_2F_3^+AsF_6^-$ can be traced to the decomposition of F_5 TeN(H)-Xe⁺AsF₆⁻ in HF solvent. In the present Chapter, the composition of the HF solution from which F_5 TeN(H)-Xe⁺AsF₆⁻ was isolated and the decomposition of F_5 TeN(H)-Xe⁺AsF₆⁻ in HF solvent. In HF solvent were primarily investigated by F_5 NMR spectroscopy.
RESULTS AND DISCUSSION # (A) 19F NMR SPECTROSCOPIC STUDY OF THE DECOMPOSITION OF F_Ten(H)-Xe⁺AsF_ IN HF SOLVENT The formation and decomposition of F_5 TeN(H)-Xe⁺As F_6 ⁻ in HF solvent which resulted from the reaction of equimolar amounts of XeF⁺As F_6 ⁻ and F_5 TeNH₂ was followed by ¹⁹F NMR spectroscopy in the range of -40.9 to -1.2 °C. Figure 6.1 shows the ¹⁹F NMR spectrum at -40.9 °C of an equimolar mixture of XeF⁺AsF₆ and F₅TeNH₂ in HF solvent, which was previously warmed to -35 °C for five minutes, which resulted a pale yellow solution, before it was placed in the NMR probe. Integration of the NMR resonances indicated that the ratio F₅TeNH₃⁺: F₅TeN(H)-Xe⁺: TeF₆ was 1.00: 0.03: 0.06. A trace of the primary decomposition product, F₅TeNF₂, prepared for the first time, was also observed. A singlet assigned to HF solvent was observed at δ (¹⁹F) = -195.0 ppm (Δ v_{1/2} = 47 Hz). A singlet at δ (¹⁹F) = -199.8 ppm assigned to XeF₂ was also observed (Δ v_{1/2} = 386 Hz) on the low frequency shoulder of the solvent resonance; the high-frequency ¹²⁹Xe satellite was not observed because of overlap with the HF resonance. Although the initial reactants were XeF⁺AsF₆⁻ and F₅TeNH₂, the absence of a pale yellow precipitate indicative of XeF⁺AsF₆⁻ or Xe₂F₃⁺AsF₆⁻, which are both sparingly soluble in HF at low temperature. ¹¹¹ and the presence of a resonance assigned to XeF₂ indicated that solvolysis of XeF⁺AsF₆⁻ occurred according to equation (5.2). This was also confirmed by the absence of a ¹⁹F NMR resonance attributable to F₅TeNH₂ (see Figure 4.11). The sample was then warmed to -33.3 °C, and after ca. one hour, an intense yellow solution and a pale yellow precipitate resulted. As shown in Figure 6.2, the amount of F_5 TeN(H)- Xe^+ increased relative to F_5 TeNH₃⁺. The formation of F_5 TeN(H)- Xe^+ was accompanied by Figure 6.1 19F NMR spectrum (499.599 MHz) of the fluorine-on-tellurium(VI) region of an equimolar mixture of natural abundance F₅TeNH₂ and XeF⁺AsF₆⁻ in HF solvent, warmed to -35 °C for 5 minutes before accumulating at -40.9 °C; (A) equatorial fluorine resonance of F₅TeNH₃⁺, (a) and (a') ¹²⁵Te and ¹²³Te satellites, respectively, (B) overlapping resonances of TeF₆ and axial fluorine of F₅TeNH₃⁺, (b) ¹²⁵Te satellites, (C) equatorial fluorine resonance of F₅TeN(H)-Xe⁺, (D) axial fluorine resonance of F₅TeNF₂. The broad saddle-shaped resonance at *ca.* -68 ppm results from AsF₆⁻. Figure 6.2 ¹⁹F NMR spectrum (499.599 MHz) of the fluorine-on-tellurium region of an equimolar mixture of natural abundance F₅TeNH₂ and XeF⁺AsF₆⁻ in HF solvent, after 1 hour at -33.3 °C before accumulating the spectrum at the same temperature; (A) equatorial fluorine resonance of F₅TeNH₃⁺, (a) and (a') ¹²⁵Te and ¹²³Te satellites, respectively, (B) axial fluorine resonance of F₅TeNH₃⁺, (C) equatorial fluorine resonance of F₅TeN(H)-Xe⁺, (c) and (c') ¹²⁵Te and ¹²³Te satellites, respectively, (D) axial fluorine resonance of F₅TeN(H)-Xe⁺, (E) equatorial fluorine-on-tellurium resonance of F₅TeNF₂, (F) TeF₆, (f) ¹²⁵Te satellites. The broad saddle-shaped resonance at *ca.* -68 ppm arises from AsF₆⁻. decomposition, as evidenced by the increased amounts of $F_5\text{TeNF}_2$ and TeF_6 . From integration of the ¹⁹F NMR resonances, the ratio $F_5\text{TeNH}_3^+$: $F_5\text{TeN(H)-Xe}^+$: $F_5\text{TeNF}_2$: TeF_6 was found to be 1.00: 0.26: 0.02: 0.28. The decomposition of $F_5TeN(H)-Xe^+AsF_6^-$ to give F_5TeNF_2 is consistent with nucleophilic fluorination of $F_5TeN(H)-Xe^+$ with liberation of xenon gas, which was observed in the ¹²⁹Xe NMR spectrum at $\delta(^{129}Xe) = -5306$ ppm (HF solvent; -37.0 °C). Atomic xenon can be envisaged as a very good leaving group, producing a transient divalent nitrenium ion [equation (6.1)]. Nucleophilic attack of the nitrenium ion by a fluoride ion donor, M-F, is expected to result in the monofluoramine, $F_5TeN(H)$ -F [equation (6.2)]. Likely fluoride ion donors are HF solvent $$F_5\text{TeN(H)-Xe+M-F} \longrightarrow F_5\text{TeN(H)+M-F} + Xe$$ (6.1) $$(M = H^+, AsF_5)$$ $$F_5 \text{TeN(H)}^+ \text{M-F}^- \longrightarrow F_5 \text{TeN(H)}^- \text{F} + M$$ (6.2) $(M = H^+, AsF_5)$ or AsF₆⁻. The mode of decomposition of F₅TeN(H)-Xe⁺AsF₆⁻ is similar to that observed for salts of the phenylxenon(II) cations, R-Xe⁺ (R = C₆F₅, 96,99,262 m-CF₃C₆H₉₆ and p-FC₆H₉₆) which contain xenon(II) bonded to a carbon of the aromatic ring. The reaction of [C₆F₅-Xe]⁺[(C₆F₅)₂BF₂]⁻ with the nucleophiles X⁻ (X = Br, I) lead to the formation of halogenopentafluorobenzenes, C₆F₅X, 95 and interaction of [C₆F₅-Xe]⁺[C₆F₅BF₃]⁻ with C₆F₅X and (p-CF₃C₆H₄)₃P resulted in the formation of [(C₆F₅)₂X]⁺[C₆F₅BF₃]⁻ 95 and C₆F₅(p-CF₃C₆H₄)₃P⁺[C₆F₅BF₃]⁻, 95 respectively. Reaction of [C₆F₅-Xe]⁺[(C₆F₅)₂BF₂]⁻ with species containing acidic C-H protons, such as $(C_6H_5)CH_2CN$, $(C_6H_5)_3CH$ and $C_6H_5CF_3$ resulted in replacement of an acid proton by the C_6F_5 group. 96,263,264 Naumann and Tyrra 99 also prepared $[(C_6F_5)_3Te]^+[B(C_6F_5)_3F)]^-$ and $[(C_6F_5)_2I]^+[B(C_6F_5)_3F)]^-$ from the reaction of $Te(C_6F_5)_2$ and C_6F_5I with $[C_6F_5Xe]^+[B(C_6F_5)_3F)]^-$. All of these reactions are consistent with the generation of electrophilic $^*C_6F_5^{+**}$ and atomic xenon, and nucleophiles present in the system react with the aryleation. ---- Although F_5 TeN(H)-F is expected to be the primary product resulting from the nucleophilic fluorination of F_5 TeN(H)-Xe⁺, the observed product is F_5 TeN F_2 . This may be explained by considering the effect of the decomposition of F_5 TeN(H)-Xe⁺ on the fluoroacidity of the medium. It is clearly seen that fluoride donation from AsF_6^- will increase the fluoroacidity of the solution by generating AsF_5 . If the HF solvent is the primary fluoride donor towards F_5 TeN(H)-Xe⁺, H_2 F⁺ is formally generated, which will also increase the fluoroacidity of the medium through equilibrium (6.3). Increased fluoroacidity of the medium generates cationic xenon(II) species [equations (6.4) and (6.5)], which are substantially stronger oxidative fluorinators $$H_2F^+ + AsF_6^- \Longrightarrow 2 HF + AsF_5$$ (6.3) $$AsF_5 + XeF_2 \Longrightarrow XeF^+AsF_6$$ (6.4) $$XeF^{\dagger}AsF_6^{} + XeF_2^{} = Xe_2F_3^{}AsF_6^{}$$ (6.5) than XeF₂,⁷⁹ which is present in the system according to equilibrium (5.1). The generation of cationic xenon(II) species was indicated by the precipitation of pale yellow crystals, which were shown to be $Xe_2F_3^+AsF_6^-$ by comparing the crystallographically determined unit cell parameters of a single crystal with the previously published data.²⁶⁵ The salt $Xe_2F_3^+AsF_6^-$ was also observed as an impurity in the Raman spectrum of solid $F_5TeN(H)-Xe^+AsF_6^-$ (Chapter 5). The cationic xenon(II) species present in solution are assumed to rapidly oxidize $F_5TeN(H)-F$ to $F_5TeN(H)F_2^+$ [equation (6.6)], and the electron withdrawing effect of the three highly electronegative ligands is expected to result in deprotonation of $F_5TeN(H)F_2^+$ [equation (6.7)], by analogy with NF_3 , 173 $$F_5$$ TeN(H)-F + XeF⁺AsF₆ \longrightarrow F₅TeN(H)F₂⁺AsF₆ + Xe (6.6) $$F_5 TeN(H)F_2^+ AsF_6^- + HF \longrightarrow F_5 TeNF_2 + H_2 F^+ AsF_6^-$$ (6.7) which is too weakly basic to be protonated in HF / SbF₅ solution. In Equation (6.4), the XeF⁺ cation is formally behaving as an "F⁺" donor. Similar behavior has been observed in the reaction of XeF⁺MF₆⁻ (M = As, Sb) with the sulfur (IV) species CF₃S(O)F, which results in the formation of CF₃S(O)F₂⁺MF₆^{-.85} Sulfur (II) species such as the disulfane CF₃SSCF₃⁸⁰ are also oxidized by XeF⁺MF₆⁻ to give CF₃SS(F)CF₃⁺MF₆⁻. The possibility that F_5TeNF_2 might arise from the reaction of HF with F_5TeNH_2 was investigated by observing the ¹⁹F and ¹H NMR spectra of F_5TeNH_2 in HF solvent at -33.3 °C. The ¹⁹F NMR spectrum indicated the presence of $F_5TeNH_3^+$ and TeF_6 ; integration of the ¹⁹F NMR resonances indicated that the ratio $F_5TeNH_3^+$: TeF_6 was 1.00 : 0.08. In the ¹H NMR spectrum, a 1 : 1 : 1 triplet at $\delta(^1H) = 5.67$ ppm¹⁷³ [$^1J(^1H_2^{-14}N) = 54$ Hz]²⁴⁴ indicated the presence of NH_4^+ . These observations are consistent with the slow displacement of NH_4^+ from $F_5TeNH_3^+$ by HF solvent at -33.3 °C [equation (6.8)], and that F_5TeNF_2 arises solely from the oxidative fluorination of F₅TeN(H)-Xe⁺AsF₆. $$F_5 \text{TeNH}_3^+ \text{AsF}_6^- + \text{HF} \longrightarrow \text{TeF}_6 + \text{NH}_4^+ \text{AsF}_6^-$$ (6.8) ## (B) RELATIONSHIP OF THE BONDING AND THE MODE OF DECOMPOSITION OF F-Ten(H)-Xe⁺ IN SOLUTION The similar decomposition modes of F₅TeN(H)-Xe⁺ and the phenylxenon(II) cations, R-Xe⁺ (R = fluorinated phenyl group), are unique for compounds of xenon(II). Previous studies on compounds containing Xe(II)-N and Xe(II)-O bonds have indicated radical decomposition mechanisms as shown in equations (6.9) and (6.10).²⁰ The radicals L· may dimerize or undergo further reactions. Detailed studies have indicated radical mechanisms for the decompositions of $$XeL_2 \longrightarrow Xe + 2L$$ (6.9) F-Xe-L $$\longrightarrow$$ XeF₂ + Xe + 2 L· (6.10) $Xe[N(SO_2CF_3)_2]_2$, ⁶¹ $Xe[N(SO_2F)_2]_2$, ⁵⁸ $FXe(NSO_2F)_2$, ⁵⁸ $Xe[OP(O)F_2]_2$, ⁴³ $FXeOP(O)F_2$, ⁴³ $Xe[OSO_2F]_2$, ²⁸ $FXeOSO_2F$, ²⁸ $Xe[OTeF_5]_2$, ¹⁴² $Xe[OSeF_5]_2$, ¹⁴² $FXeOTeF_5$, ⁴¹ $FXeOC(O)CF_3^{39,41}$ and $Xe[OC(O)CF_3]_2$. ^{28,39,41} The radical decomposition of the neutral xenon(II) derivatives XeL_2 and FXe-L mentioned above are analogous to the radical decomposition of XeF_2 , to give fluorine radicals and xenon at temperatures above 500 $^oC^{20}$ [equation (6.11)]. The similarity of the $$XeF_2 \longrightarrow Xe + 2F$$ (6.11) decomposition of XeF_2 , FXcL and XeL_2 is related to the fact that the electronegativities of the ligands L approach that of fluorine, so that the
ionic characters of the Xe-F and Xe-L bonds are similar, resulting in homolytic cleavage of the Xe-F and Xe-L bonds upon decomposition. For $F_5TeN(H)$ -Xe⁺ and the phenylxenon(II) cations such as C_6F_5 -Xe⁺, the Xe-N and Xe-C bonds are much more covalent than in the class of compounds FXeL and XeL_2 mentioned above, which results from the lower electronegativities of the $F_5TeN(H)$ - and C_6F_5 - ligands. The lower electronegativities of these ligands are reflected in the ¹²⁹Xe NMR resonances for $F_5TeN(H)$ -Xe⁺ (-2902 ppm; Chapter 5) and C_6F_5 -Xe⁺ (-3763 ppm), ^{95,96} which are significantly more shielded relative to the values observed for the neutral Xe(II) derivatives. The relationship of ligand electronegativity and ¹²⁹Xe chemical shift is discussed in Chapter 5. Representative ¹²⁹Xe NMR chemical shifts for the class of neutral xenon(II) derivatives are XeF_2 , ¹⁰⁸ -1708 ppm (BrF₅ solvent; -40 °C), FXeOSO₂F, ¹⁰⁸ -1613 ppm (BrF₅ solvent; -40 °C), FXeOSO₂F, ¹⁰⁸ -1613 ppm (BrF₅ solvent; -40 °C), FXeOSO₂F, ¹⁰⁸ -1613 ppm (BrF₅ solvent; -40 °C), FXeOSO₂F, ¹⁰⁸ -2257 ppm, (SO₂CIF solvent; -40 °C). Owing to the covalent character of the Xe-N and Xe-C bonds in the F_5 TeN(H)-Xe⁺ and R-Xe⁺ cations (R = fluorophenyl group), the most favorable decomposition pathway involves complete transfer of the Xe-N or Xe-C bond electron pair to xenon, giving xenon gas and a transient, highly electrophilic cation, such as F_5 TeN(H)⁺ or C_6 F₅⁺, which is immediately attacked by a nucleophile in solution. ### (C) CHARACTERIZATION OF F-TeNF, BY 15N AND 19F NMR SPECTROSCOPY Difluoraminotellurium(VI) pentafluoride, F_5 TeN F_2 , is the primary decomposition product resulting from the nucleophilic fluorination of F_5 TeN(H)-Xe⁺ in HF and Br F_5 solvents [see Section (A) of this Chapter]. The structure of F_5 TeN F_2 in solution was determined from the ¹⁹F and ¹⁵N NMR spectra of the natural abundance and 99.5% ¹⁵N-enriched compounds in HF and BrF₅ solvents and were consistent with Structure 6.1. The best NMR spectra of F₅TeNF₂ were obtained in BrF₅ solvent, and these spectra are discussed below. The fluorine-on-nitrogen resonance in the ¹⁹F NMR spectrum of natural abundance F_5 TeN F_2 in Br F_5 solvent (-60.1 °C) consists of a singlet at 64.2 ppm ($\Delta v_{1/2} = 209$ Hz) which results from quadrupole collapse of the one-bond scalar coupling to ^{14}N (I = 1). The chemical shift is comparable to that observed for other difluoramino compounds such as F₅SNF₂²⁶⁶ (68.2 ppm) and F₂N-NF₂²⁶⁷ (60.4 ppm). The fluorine-on-nitrogen region of the ¹⁹F NMR spectrum of 99.5% 15 N-enriched F_5 TeN F_2 consisted of a broad doublet centered at 64.2 ppm (Figure 6.3; Br F_5 solvent, -44.4 °C). The doublet arises from the one-bond scalar coupling ${}^{1}J({}^{19}F_{N}-{}^{15}N)=165$ Hz, and is flanked by satellite doublets attributed to the two-bond scalar coupling ${}^2J({}^{19}F_{N}^{-125}Te) =$ 1025 Hz. Gaussian multiplication of the free induction decay before Fourier transformation resulted in the resolution of quintet structure arising from the scalar coupling of the fluorine-onnitrogen environment with the four chemically equivalent fluorines directly bonded to tellurium $[{}^{3}J({}^{19}F_{N^{-}}{}^{19}F_{ca}) = 15$ Hz]. The scalar coupling of the fluorine-on-nitrogen environment with the axial fluorine is not resolved. In general, three-bond couplings with the axial fluorine-on-tellurium in F₅TeO- and F₅TeN- derivatives are not resolved. Examples include the inability to resolve the three-bond scalar couplings ${}^3J({}^{129}\text{Xe-}{}^{19}\text{F}_{ax})$ in XeOTeF₅+,54 Xe(OTeF₅)₂,141 FXeOTeF₅141 and F₅TeN(H)-Xe⁺ (see Chapter 5). The fluorine-on-tellurium(VI) region of the ¹⁹F NMR spectrum (470.599 MHz) of 99.5% ¹⁵N-enriched F₅TeNF₂ (BrF₅ solvent; -44.4 °C) consists of a typical AB₄ pattern (Figure 6.4). Figure 6.3 19 F NMR spectrum (470.599 MHz) of the fluorine-on-nitrogen environment (F_N) of 99.5% 15 N-enriched F₅TeNF₂ in BrF₅ solvent at -44.4 $^{\circ}$ C: Asterisks (*) denote 125 Te satellites arising from the scalar coupling 2 J(19 F_N- 125 Te) = 1025 Hz; (A) resolution of central doublet enhanced by Gaussian multiplication of the free induction decay before Fourier transformation. Figure 6.4 ¹⁹F NMR spectrum (470.599 MHz) of the fluorine-on-tellurium environment of 99.5% ¹⁵N-enriched F₅TeNF₂ in BrF₅ solvent at -44.4 °C, the asterisk (*) and dagger (†) denote a ¹²⁵Te and a ¹²³Te satellite, respectively, that arise from the scalar couplings ¹J(¹⁹F-¹²⁵Te) and ¹J(¹⁹F-¹²³Te) of TeF₆ present in the sample. 12 TE From the ratio ${}^2J({}^{19}F_{ax}.^{19}F_{eq})/v_o\delta({}^{19}F_{ax}.^{19}F_{eq}) = 0.125$, resolution of the individual transitions in the B₄ portion of the spectrum of the F₅Te- should be possible. This was shown in the ${}^{19}F$ NMR spectrum of XeOTeF₅+,54 where ${}^2J({}^{19}F_{ax}.^{-19}F_{eq})/v_o\delta({}^{19}F_{ax}.^{-19}F_{eq}) = 0.1497$, and the individual transitions of the AB₄ pattern were well resolved. This comparison is based on the fact that the appearance of the AB₄ spin system depends solely on this ratio. However, in the AB₄ spectrum of F₅TeNF₂, the individual transitions of the B₄ portion (centered at *ca.* -59.5 ppm) were not resolved because of the scalar couplings ${}^2J({}^{19}F_{eq}.^{-15}N) = 11$ Hz (obtained from the ${}^{15}N$ NMR spectrum, see below) and ${}^3J({}^{19}F_{N}.^{-19}F_{eq}) = 15$ Hz, which further split each transition of the B₄ subspectrum into a triplet of doublets, resulting in two broad envelopes. The NMR parameters of the AB₄ spin system of natural abundance F₅TeNF₂ were obtained using the method of Harris and Packer²⁶⁸ and the LAOCOON simulation program. The ${}^{19}F$ chemical shifts for the axial and equatorial fluorine resonances were determined to be -57.0 and -59.5 ppm, respectively, and the two-bond scalar coupling, ${}^2J({}^{19}F_{ax}.^{-19}F_{eq})$, was determined to be 148 Hz. The ^{15}N NMR spectrum of 99.5% ^{15}N -enriched F_5TeNF_2 in BrF_5 solvent at -57.3 °C (Figure 6.5) consists of a triplet of quintets centered at $\delta(^{15}N) = -11.1$ ppm. The quintet structure arises from the scalar coupling of ^{15}N with the four chemically equivalent fluorine atoms bonded to tellurium(VI), $^2J(^{15}N^{-19}F_{eq.}) = 11$ Hz. The unresolved scalar coupling, $^2J(^{15}N^{-19}F_{ax.})$, of ^{15}N and the axial fluorine on tellurium is consistent with the inability to resolve two- and three-bond couplings with the axial fluorine in NMR studies of compounds containing F_5TeN - or F_5TeO -groups 54,141 (see also Chapters 4 and 5). The triplet splitting arises from the one-bond scalar coupling of ^{15}N with the fluorines on nitrogen, $^1J(^{15}N^{-19}F_N) = 165$ Hz, confirming the coupling observed in the ^{19}F NMR spectrum (Figure 6.3). The ^{15}N NMR chemical shift of F_5TeNF_2 is deshielded relative to 99.5% ^{15}N -enriched $F_5TeNH_3^+$ (-317.9 ppm) and $F_5TeN(H)$ -Xe⁺AsF₆. ¹⁵N NMR spectrum (50.698 MHz) of 99.5% ¹⁵N-enriched F₅TeNF₂ in BrF₅ solvent (-57.3 °C). Figure 6.5 (-266.1 ppm), which were present in the solution. The deshielding can be rationalized from a consideration of the factors contributing to an approximate version²⁴⁴ of the local paramagnetic shielding term^{269,270} for nitrogen, σ_P^N [equation (6.12)]. A negative value for the local $$\sigma_{P}^{N} = -\left[\mu_{o}\mu_{B}^{2} \langle r^{-3} \rangle_{2p}\right] / 2\pi(\Delta E) [Q_{NN} + \Sigma_{N \neq X} Q_{NX}]$$ (6.12) paramagnetic contribution to the shielding of nitrogen, $\sigma_P^{\ N}$, deshields the nitrogen nucleus; μ_o and μ_B are the permittivity of a vacuum and the Bohr magneton, respectively, and $< r^{-3} >_{2p}$ is the inverse cube of the average radius of the valence p electrons on nitrogen. The ΣQ term expresses the imbalance of electronic charge that allows the paramagnetic circulation in the magnetic field. The Q_{NN} part of this term depends on the 2p orbital populations on nitrogen, whereas ΣQ_{NX} is a multiple bond term. The term ΔE refers to the average energy for promotion of electrons to excited states that result in paramagnetic circulations. For molecules where the lone-pairs are strongly linked to the σ framework, such as the molecules discussed in the present Chapter, the electronic circulations deshielding nitrogen are all of $\sigma \to \sigma^*$ and $n_N \to \sigma^*$ type, where n_N represents a nitrogen lone-pair.²⁴⁴ The greater deshielding of ¹⁵N in F₅TeNF₂ relative to F₅TeN(H)-Xe⁺ and F₅TeNH₃⁺ results mainly from σ fluoro effects.²⁴⁴ The replacement of hydrogen by fluorine is expected to remove electron density from nitrogen, increasing the radial term $< r^{-3} >_{2p}$ and thus deshielding ¹⁵N by increasing σ_p^N . This argument qualitatively explains the deshielding of nitrogen in NF₃ relative to NH₃ [$\Delta\delta(^{15}N) = 370$ ppm] and NF₄⁺ relative to NH₄⁺ $[\Delta\delta(^{15}N) = 280 \text{ ppm}]$, since for these two pairs $< r^3 >_{2p}$ decreases by 17 and 20%, respectively.²⁴⁴ It is noteworthy that the ¹⁵N chemical shifts of NF₃ [δ (¹⁵N) = -14 ppm]²⁷¹ and F₅TeNF₂ are similar, which relects, in part, the high electronegativity of the F₅Te- group. A resonance assignable to F_5TeNF_2 was not observed in the ¹²⁵Te NMR spectrum of the mixture resulting from the reaction of F_5TeNH_2 and $XeF^+AsF_6^-$ in HF solvent. This was attributed to the low concentration of F_5TeNF_2 in the decomposition of $F_5TeN(H)-Xe^+$ in HF solvent, as shown in the ¹⁹F NMR spectrum at -33.3 °C (Figure 6.2). # (D) 19F NMR SPECTROSCOPIC STUDY OF THE DECOMPOSITION OF F₅TeNF₂ IN HF SOLVENT ACIDIFIED WITH ASF₅ The sample of an equimolar mixture of F_5TeNH_2 and $XeF^+AsF_6^-$ in HF solvent studied in Section (A) of this Chapter was warmed to -20 °C for 5 minutes, and the resulting ¹⁹F NMR spectrum of the fluorine-on-tellurium(VI)
region is shown in Figure 6.6 (-36.4 °C). Resonances assignable to $F_5TeNH_3^+$, $F_5TeN(H)-Xe^+$ and TeF_6 were observed. A 1:1:1 triplet centered at 96.8 ppm [$^1J(^{19}F^{-14}N) = 335 \text{ Hz}$] is assigned to $FN\equiv N^+$ by comparison with the published ^{19}F NMR data for $FN\equiv N^+AsF_6^-$ in HF solvent at room temperature [$\delta(^{19}F) = 103 \text{ ppm}$; $^1J(^{19}F^{-14}N) = 328 \text{ Hz}$]. Resonances assignable to AsF_6^- and F_5TeNF_2 were not observed (see below). It should be noted that careful sample warming was required in order to observe FN=N⁺ by ¹⁹F NMR spectroscopy. This is expected since FN=N⁺ is a powerful oxidative fluorinator, ^{272b} capable of fluorinating xenon gas in HF solvent at 25 °C according to equation (6.13). ²⁷³ It is likely that FN=N⁺ is capable of oxidatively fluorinating several species present in the system, $$FN=N^{+}AsF_{s}^{-} + Xe \longrightarrow Xe-F^{+}AsF_{s}^{-} + N=N$$ (6.13) including xenon gas formed in the decomposition of F₅TeN(H)-Xe⁺. Taking care not to warm samples above the temperatures at which the ¹⁹F NMR spectra were recorded sufficiently slowed Figure 6.6 19F NMR spectrum (499.599 MHz) of the fluorine-on-tellurium(VI) region of an equimolar mixture of natural abundance "5TeNH2 and XeF*AsF6" in HF solvent, warmed for 5 minutes at -20 °C before accumulating the spectrum at -36.4 °C; (A) equatorial fluorine resonance of F5TeNH3*, (a) and (a') 125Te and 123Te satellites, respectively, (B) axial fluorine resonance of F5TeNH3*, (C) equatorial fluorine resonance of F5TeN(H)-Xe*, (c) 125Te satellites; (D) unassigned resonance, (E) axial fluorine resonance of F5TeN(H)-Xe*, (F) TeF6, (f) 125Te satellites. the oxidative fluorination reactions so that FN \equiv N⁺ could be observed in the ¹⁹F NMR spectra. Evidence for the reaction of FN \equiv N⁺ was provided by the observation of a peak $[\delta(^{15}N) = -73.0 \text{ ppm}]$ in the ¹⁵N NMR spectra of the 99.5% ¹⁵N-enriched system which is assignable to nitrogen gas²⁷⁴ dissolved in HF solvent. From the integrations of the ¹⁹F NMR resonances (Figure 6.6), the ratio $F_5\text{TeNH}_3^+$: $F_5\text{TeN}(H)\text{-Xe}^+$: TeF_6 : $FN\equiv N^+$ was found to be 1.00:0.03:0.44:0.03, and resonances due to AsF_6^- and $F_5\text{TeNF}_2$ were not observed (see below). The presence of $FN\equiv N^+$ and the increased amount of TeF_6 relative to $F_5\text{TeNH}_3^+$ when compared to the observed ratio prior to warming to $-20\,^{\circ}\text{C}$ [see Section (A) of this Chapter] is consistent with the decomposition of $F_5\text{TeNF}_2$ to TeF_6 and $FN\equiv N^+$. The HF resonance $[\delta(^{19}F)=-191.4~\text{ppm}]$ is shifted to high frequency by 3.7 ppm relative to that observed before warming of the sample to $-20\,^{\circ}\text{C}$. The HF resonance was also significantly broadened $[\Delta v_{1/2}=3450~\text{Hz}]$ and the XeF_2 resonance was no longer observed. The absence of a resonance assignable to AsF_6^- and the high frequency shift of the HF resonance is consistent with AsF_5 formation and the resulting exchange equilibrium (6.3) with HF. Since a large amount of $F_5\text{TeNH}_3^+$ is still present in solution, the XeF_2 has not completely reacted and is believed to undergo exchange with AsF_5 generated in the decomposition of $F_5\text{TeN(H)-Xe}^+$ according to equilibria (6.4) and (6.5). The decomposition of F_5TeNF_2 in AsF_5 -acidified HF solution to give TeF_6 and $FN\equiv N^+$ appeared to indicate that a Lewis acid induced intramolecular regox decomposition of F_5TeNF_2 had occurred. A detailed study of this process was published by Christe *et al.* for the difluoramino compounds R-NF₂ (R = Cl, F_3C , F_5S , F_3CO , F_5SO). Difluoramino compounds are in general thermodynamically unstable, and their stability results from a kinetic barrier to decomposition. Suitable catalysts such as the strong Lewis acids, SbF_5 and AsF_5 , lower the energy barrier to decomposition, resulting in multiply bonded nitrogen species such as F-N=N-F and N \equiv N, and more highly fluorinated byproducts. Christe *et al.*²⁷⁵ showed by Raman spectroscopy that ClNF₂ forms an adduct with AsF₅ at -78 °C which is best interpreted as a fluorine-bridged adduct, ClN(F)--F-AsF₅, which decomposed on warming via the Lewis acid induced intramolecular redox decomposition process mentioned above. This indicated that the initial step in the decomposition of difluoramine compounds, RNF₂, involved fluoride abstraction from nitrogen by the Lewis acid. MF₅ (M = As, Sb). It has been proposed that the fluorine-bridged adduct decomposes according to equation (6.14), producing fluoronitrene, F-N, which dimerizes to give $$R = N$$ $$F = M$$ =$$ cis- and trans- isomers of F-N=N-F. The cis-isomer of N_2F_2 behaves as a fluoride ion donor towards the strong Lewis acid, MF_5 (M = As, Sb), forming $FN \equiv N^+MF_6^-$, but the trans-isomer of N_2F_2 is not a fluoride ion donor.²⁷⁶ The decomposition of F_5TeNF_2 in the present system may, in fact, be catalyzed by AsF_5 , which is produced in the nucleophilic fluorination of $F_5TeN(H)-Xe^+$ [see Section (A)]. It is, however, unlikely that the source of $FN \equiv N^+$ results from the dimerization of fluoronitrene radicals as in the study of Christe et al.²⁷⁵ since no trans- N_2F_2 was observed in the reaction mixture after complete decomposition of F_5TeNF_2 ; dimerization of fluoronitrene is expected to give a mixture of cis- and trans-isomers.^{275,277} It was postulated that the absence of trans- N_2F_2 in the present system might result from the isomerization of the cis- and trans-isomers, with cis- N_2F_2 acting as a sink for $FN\equiv N^+$ formation in the presence of AsF_5 [equation (6.15)]. However, isomerization of trans- N_2F_2 is very slow, and attempts to increase the rate at elevated temperatures result in low yields due to decomposition of N_2F_2 to N_2 and F_2 - 278 Christe *et al.*²⁷³ were able to obtain an 80% yield of $FN\equiv N^+AsF_6$ by combining trans- N_2F_2 with an excess of AsF_5 at 70 °C, however, the process was slow, requiring three days. The possibility of HF $$trans-N_2F_2 \longrightarrow cis-N_2F_2 + AsF_5 \longrightarrow FN=N^+AsF_6$$ (6.15) solvent acting as a catalyst for trans/cis isomerization at -20 °C was investigated in the present study by combining equimolar amounts of trans-N₂F₂ and AsF₅ in HF at -196 °C. The sample was warmed to -20 °C for five minutes, similar to the conditions under which FN \equiv N⁺ was formed in the reaction of F₅TeNH₂ and XeF⁺AsF₆⁻ in HF solvent, and the ¹⁹F NMR spectrum was observed at -37 °C. Only trans-N₂F₂ was observed [δ (¹⁹F) = 89.01 ppm], ¹²¹ which indicated that isomerization of trans-N₂F₂ did not occur. The second reason to discount fluoronitrene dimerization as the major source of FN \equiv N⁺ is apparent when one considers the low concentration of F₅TeNF₂ relative to the F₅TeNH₃⁺ cation in HF solvent before warming the sample to -20 °C [see Section (A) and Figure 6.2], and there is precedent in the literature for the reaction of fluoronitrene with primary amines. ^{279,280} It is very unlikely that fluoronitrene is sufficiently unreactive towards F₅TeNH₂ to react solely by dimerization, given the slow fluoronitrene dimerization kinetics expected from the low concentration of fluoronitrene in solution. In considering this, it is important to realize that nitrenes are highly reactive species, usually requiring trapping agents to infer their existence. ²⁸¹ Primary amines undergo deamination reactions with difluoramine, HNF₂, or isopropyl N,N,-difluorocarbamate, which behaves as a source of HNF₂, ¹²¹ as shown in equation (6.16). ^{279,280} It was postulated that the initial step involved $$3 RNH_2 + HNF_2 \longrightarrow 2 RNH_3^+F^- + N_2 + R-H$$ (6.16) the reaction of the primary amine with fluoronitrene to give RNH₂⁺NF⁻ [equation (6.17)], followed by rearrangement to give a substituted hydrazine, from which elimination of HF resulted in the $$RNH_2 + NF \longrightarrow RNH_2^+NF^- \longrightarrow$$ $$RN(H)N(H)F \xrightarrow{-} RN=NH \xrightarrow{-} R-H$$ (6.17) unstable diazene, RN=NH, which eliminated N_2 to give R-H. Bumgardner and Liebman²⁸² have proposed an alternative mechanism for the reaction of primary amines with HNF₂, in which the first step is the bimolecular displacement of fluoride from HNF₂ by RNH₂, without inference of fluoronitrene formation [equation (6.18)] $$RNH_2 + HNF_2 \longrightarrow R-NH_2-N(H)F^+ + F^-$$ (6.18) A mechanism for the formation of TeF_6 and $FN\equiv N^+$ from the Lewis acid-catalyzed reaction F_5TeNF_2 and $F_5TeNH_3^+$ in HF solvent is proposed and supported by literature analogies in the following discussion. The generation of fluoronitrene as an intermediate in the reaction of F_5TeNH_2 and F_5TeNF_2 in the present study cannot be addressed; however, by analogy with the AsF₅-catalyzed decomposition of CINF₂, 275 it is likely that the interaction of AsF₅ with a fluorine atom on nitrogen in F₅TeNF₂ facilitates the reaction [equation (6.19)]. This process is analogous to the bimolecular addition depicted in equation (6.18). Equilibria (6.3) and (6.20) are expected $$F_{5}Te \xrightarrow{N} : N \xrightarrow{F} : N \xrightarrow{F} F$$ $$F \xrightarrow{N} : F \xrightarrow{K} F$$ $$F \xrightarrow{K} : F \xrightarrow{K} F$$ $$F_{5}Te - N - N - TeF_{5} AsF_{6}$$ (6.19) $$F_5 \text{TeNH}_3^+ \text{AsF}_6^- \longrightarrow F_5 \text{TeNH}_2 + \text{HF} + \text{AsF}_5$$ (6.20) 1 to facilitate the reaction of F_5TeNH_2 and F_5TeNF_2 to give the protonated hydrazine, <u>1</u>. The presence of AsF_5 also results from the nucleophilic fluorination of $F_5TeN(H)-Xe^+$ in the same system [see equation (6.2)]. The cationic xenon(II) species, XeF^+ and $Xe_2F_3^+$, are present from the increased
fluoroacidity of the solution as discussed in Section (A) of this Chapter. The deprotonation equilibrium (6.21) to give <u>2</u> is expected to precede oxidative fluorination by XeF^+ , resulting in 3 [equation (6.22)]. Evidence for the oxidative fluorinating ability of the $$F_5$$ Te $N - N - TeF_5 + H_2F^+AsF_6$ (6.21) $$F_{5}Te \xrightarrow{N} \xrightarrow{N} -TeF_{5} + XeF^{+}AsF_{6} \xrightarrow{\longrightarrow} F$$ $$\frac{2}{F_{5}Te} \xrightarrow{N} \xrightarrow{N} -TeF_{5} AsF_{6} + Xe \qquad (6.22)$$ $$\frac{3}{F_{5}Te} \xrightarrow{N} \frac{1}{F_{5}Te} \xrightarrow{\longrightarrow} F$$ solution is provided by the fact that the monofluoramine, F5TeN(H)-F, was not observed as the initial product of the nucleophilic fluorination of F_5 TeN(H)-Xe⁺ [Section (A) of this Chapter]. This has been attributed to the immediate oxidative fluorination of the monofluoramine to the difluoramine, F_5 TeN F_2 , by XeF⁺. By analogy with the weak basicity of N(CF₃)₃²⁸³ and the inability to protonate NF₃¹⁷³ in superacid (HF / SbF₅) solution, species 3 is expected to be deprotonated, giving 4 in the AsF₅-acidified HF solution [equation (6.23)]. In the presence of AsF₅, 4 may undergo Lewis acid induced intramolecular redox decomposition by analogy with difluoramino compounds²⁷⁵ [equation (6.24)]. The short-lived nitrene, 5, is expected to have some 1,1-diazene character (6) due to π -donation from the tricoordinate nitrogen.²⁸¹ Resonance contributor 6 is electronically similar to F_2 N=N, which has been proposed by Christe et al.²⁷³ as the intermediate in the formation of cis-N₂F₂ from the reaction of FN=N⁺ and the fluoride ion donor, FNO [equation (6.25)]. Although F₂N=N rearranges by α -migration of fluorine to give cis- $$F_5$$ Te \longrightarrow $N \longrightarrow N \longrightarrow TeF_5$ $AsF_6^- + HF \longrightarrow F$ \longrightarrow 3 $$F_5$$ Te $-N - TeF_5 + H_2F^+AsF_6$ (6.23) $$F_{5}Te \xrightarrow{F} F \xrightarrow{F} F \xrightarrow{N} F_{5}Te \xrightarrow{N} N :$$ $$F \xrightarrow{F} F \xrightarrow{N} \xrightarrow$$ $$F_5$$ Te $\stackrel{F}{\longrightarrow}$ N: \longrightarrow F_5 Te $\stackrel{F}{\longrightarrow}$ N: $\stackrel{}{\underline{\bullet}}$ $$F-NO + F-N = N^+ \longrightarrow NO^+ + [F_2N=N] \longrightarrow cis-N_2F_2$$ (6.25) N_2F_2 , the more favorable process in the case of the transient species $\underline{6}$ may involve elimination of "TeF₅" in the presence of XeF⁺ to give the stable species TeF₆, xenon, and FN \equiv N⁺ according to equation (6.26). It is also possible that a second decomposition process occurs. By analogy with $F_2N=N$, $\underline{6}$ may rearrange by α -migration of fluorine to give the diazene, F_5 Te-N=N-F, which then eliminates the stable species N₂ and TeF₆ [equation (6.27)]. This is analogous to the formation $$F_5$$ Te(F)N=N + XeF⁺AsF₆ \longrightarrow TeF₆ + FN=N⁺AsF₆ + Xe (6.26) $$F_5Te(F)N=N \longrightarrow F_5Te-N=N-F \longrightarrow TeF_6 + N=N$$ (6.27) of RH, N_2 and HF in the reductive deamination of primary amines by HNF₂, which is believed to involve a similar short-lived diazene, R-N=N-H²⁷⁹ [equation (6.17)]. Evidence for N_2 formation is provided by the observation of a resonance attributable to molecular nitrogen dissolved in HF $[\delta(^{15}N) = -73.0 \text{ ppm}; -45 \text{ }^{\circ}\text{C}]^{274}$ in the ^{15}N NMR spectrum of the analogous 99.5% ^{15}N enriched materials. It is noteworthy that, although the F_5TeNF_2 is completely reacted after warming to -20 °C for five minutes, a small amount of $F_5TeN(H)$ -Xe⁺ is still present in solution. This may result from the increased fluoroacidity of the HF solution, which decreases the nucleophilicity of the solvent medium, thus decreasing the rate of nucleophilic fluorination of $F_5TeN(H)$ -Xe⁺ according to equation (6.1). On warming the sample to -1.2 °C, ¹⁹F NMR indicated that all but a trace of $F_5TeN(H)$ -Xe⁺ was decomposed. Also, a resonance assignable to $FN\equiv N^+$ was not observed. The only F-on-Te(VI) environments observed were those of $F_5TeNH_3^+$ and TeF_6 (relative integrated ratio = 1.00 : 0.50). The broad saddle-shaped resonance for AsF_6^- (ca. -68 ppm) was also not observed. Separate resonances for AsF_6^- , HF and XeF_2 were coalesced to a broad peak ($\Delta v_{1/2}$ = 386 Hz) at -188.9 ppm, which indicated exchange of these three species according to equilibria (6.3) to (6.5) in the AsF_5 -acidified HF solution. ### CHAPTER 7 ## CHARACTERIZATION OF FO₂SNH₂ AND FO₂SNH₃⁺AsF₆⁻ USING ¹⁹F AND ¹H NMR AND RAMAN SPECTROSCOPY AND ### COMPARISON OF THE BONDING IN FO, SNH, AND THE FO, SNH, + CATION ### **INTRODUCTION** The synthesis of fluorosulfuryl amide, FO_2SNH_2 , was first reported in 1958 by two different routes, namely, fluorination of CIO_2SNH_2 with KF in boiling acctonitrile¹³³ [equation (7.1)] and fluorination of chlorosulfuryl isocyanate with NaF followed by careful hydrolysis¹³⁴ $$ClO_2SNH_2 + KF \longrightarrow KCl + FO_2SNH_2$$ (7.1) [equations (7.2) and (7.3)]. The preparation of FO₂SNH₂ from the reaction of disulfuryl fluoride, $$ClO_2SNCO + NaF \longrightarrow NaC! + FO_2SNCO$$ (7.2) $$FO_2SNCO + H_2O \longrightarrow FO_2SNH_2 + CO_2$$ (7.3) S₂O₅F₂, and NH₃ at low temperature was reported in 1961¹²⁹ [equation (7.4)] Fluorosulfuryl amide is a colorless liquid at room temperature (m.p. 8 °C) and is soluble in organic solvents such $$S_2O_5F_2 + 2 NH_3 \longrightarrow FO_2SNH_2 + NH_4^+OSO_2F^-$$ (7.4) as acetonitrile, ether and chloroform. Unlike ClO₂SNH₂, which reacts explosively with water to give sulfamic acid and HCl,²⁸⁴ FO₂SNH₂ is soluble in water and hydrolyzes slowly, producing sulfamic acid and HF [equation (7.5)]. The compound, FO₂SNH₂, is isoelectronic with O₃SNH₂ $$FO_2SNH_2 + H_2O \longrightarrow O_3SNH_3 + HF$$ (7.5) and has similar bonding properties. For instance, the similar SN bond lengths in K⁺O₃SNH₂⁻ [1.60(1) Å]²⁸⁵ and FO₂SNH₂ [1.61(3) Å],²⁸⁶ that were determined by X-ray crystallography and electron diffraction, respectively, are significantly shorter than a typical S-N single bond, such as that in O₃SNH₃ [1.7714(3) Å],²⁸⁷ indicating the presence of S-N π bonding in FO₂SNH₂ and O₃SNH₂: 130.288 Sulfur-nitrogen π -bonding in O₃SNH₃ is not possible since the lone pair on nitrogen is not available for π -donation to the acceptor orbitals on sulfur. Recent *ab initio* SCF calculations utilizing natural population analysis²¹⁷ for the related molecules SO₂Cl₂, SO₂(CH₃)Cl and SO₂(CH₃)₂ indicate that the hybrid acceptor orbitals on sulfur, that are predominantly 3 μ in character, arise from π (O) $\rightarrow \sigma$ *(SX) negative hyperconjugation with a minor contribution (19 - 27%) from sulfur 3 μ orbitals. It seemed reasonable therefore to stress the importance of π (N) μ corrections of the sulfur sulfur sulfur 3 μ orbitals. It seemed reasonable therefore to stress the importance of π (N) μ corrections of the sulfur Semmoud and Vast¹³⁰ have used infrared spectroscopy to investigate the effect of deprotonation on the S-O, S-N and S-F symmetric stretching frequencies (and hence the bond orders) for the acid/base pairs FO_2SNH_2/FO_2SNH_2 and AgO_3SNH_2/Ag_3O_3SN . They have shown that the S-N bonds are strengthened through increased S-N π -bonding at the expense of the S-O and S-F bonds when lone pairs on nitrogen become available for S-N π -bonding upon deprotonation of FO_2SNH_2 and O_3SNH_2 . The present work involved a more detailed vibrational study of FO₂SNH₂ with use of ^{14/15}N isotopic shift information obtained from the Raman spectra of the natural abundance and 99.5% ¹⁵N-enriched compounds. As well, the FO₂SNH₃⁺ cation was prepared for the first time as the AsF₆ salt. Assignments of the Raman spectra of natural abundance and 99.5% ¹⁵N-enriched FO₂SNH₃⁺AsF₆ completed the study of Semmoud and Vast, ¹³⁰ by allowing a comparison of the S-O, S-F, and S-N symmetric stretching frequencies for the series FO₂SNH₉, FO₂SNH₂ and FO₂SNH₃ with the isoelectronic sulfuramide series O₃SNAg₃, O₃SNH₂Ag, and O₃SNH₃. #### RESULTS AND DISCUSSION ## (A) PREPARATION AND ISOLATION OF NATURAL ABUNDANCE FO₂SNH₂ AND THE 99.5% ¹⁵N-ENRICHED ANALOGUES Natural abundance FO_2SNH_2 was prepared by the fluorination of CIO_2SNCO with NaF [equation (7.6)] followed by reaction with a stoichiometric amount of H_2O in acetonitrile solution [equation (7.7)] by modifying the literature procedure.¹³⁴ The unstable carbamic acid, $$CIO_2SNCO + NaF \longrightarrow NaCl + FO_2SNCO$$ (7.6) $$FO_2SNCO + H_2O \longrightarrow [FO_2SN(H)C(O)OH]$$ $$\longrightarrow FO_2SNH_2 + CO_2 \qquad (7.7)$$ $FO_2SN(H)C(O)OH$, is believed to be an intermediate in the hydrolysis of FO_2SNCO . The 99.5% ¹⁵N-enriched compound FO_2SNH_2 was prepared from the stoichiometric reaction of $S_2O_5F_2$ and 99.5% ¹⁵N-enriched NH₃ in diethyl ether solution at -45 °C by following the literature method ¹²⁹ [equation (7.8)] $$S_2O_5F_2 + [^{15}N]NH_3 \longrightarrow [^{15}N]FO_2SNH_2 + [^{15}N]NH_4SO_3F$$ (7.8) The natural abundance and ¹⁵N-enriched salts FO₂SNH₃⁺AsF₆⁻ are finely divided white powders that were prepared from the reaction of AsF₅ with FO₂SNH₂ or [¹⁵N]FO₂SNH₂ in HF solvent at -40 °C according to equation (7.9) followed by vacuum removal of the HF solvent at $$FO_2SNH_2 + HF + AsF_5 \longrightarrow FO_2SNH_3^+AsF_6^-$$ (7.9) the same temperature. The white powder is indefinitely stable at room temperature under anhydrous conditions, but hydrolyses rapidly with fuming and liquefaction in the presence of moist air. # (B) CHARACTERIZATION OF NATURAL ABUNDANCE AND 99.5% ¹⁵N ENRICHED FO₂SNH₂ AND FO₂SNH₃⁺AsF₆⁻ BY ¹H AND ¹⁹F NMR SPECTROSCOPY The ¹⁹F and ¹H NMR spectra of neat liquid FO₂SNH₂ at ambient temperature consist of broad singlets at $\delta(^{19}F) = 56.51$ and $\delta(^{1}H) = 5.41$ ppm. The ¹⁹F NMR resonance was consistent with the FO₂SN- group. ²⁸⁹ The scalar
couplings are not resolved because of quadrupolar broadening from the presence of natural abundance nitrogen (I = 1). The ¹H and ¹⁹F NMR spectra in BrF₅ solvent at -61.4 °C do not indicate any reaction of FO₂SNH₂ with the solvent and consisted of a broad doublet [$\delta(^{1}H) = 4.68$ ppm; Figure 7.1a] and a triplet [$\delta(^{19}F) = 56.91$ ppm; Figure 7.1b]. The multiplet structures arise from $^{3}J(^{1}H-^{19}F) = 6.3$ Hz. The collapse of the scalar coupling, $^{1}J(^{1}H-^{14}N)$, which is estimated to be 61.8 Hz from equation (7.10) (see below), results from scalar relaxation of the second kind, ²⁹⁰ when the tranverse relaxation rate of the quadrupolar $${}^{1}J({}^{1}H^{-14}N) = [\gamma({}^{14}N)/\gamma({}^{15}N)] \times {}^{1}J({}^{1}H^{-15}N)$$ (7.10) ^{14}N , $_{1}/T_{2}(^{14}N)$, is much greater than the magnitude of the scalar coupling to the proton. The coupling $^{1}J(^{1}H^{-14}N)$ is completely quadrupole collapsed, but is sufficiently narrow to allow resolution of $^{3}J(^{1}H^{-19}F)$. All possible scalar couplings between spin- $\frac{1}{2}$ nuclei are observed in the 1 H and 19 F NMR spectra of 99.5% 15 N-enriched FO₂SNH₂ in acctonitrile solution (30 $^{\circ}$ C). The 1 H NMR spectrum consists of a doublet of doublets [$\delta(^{1}$ H) = 6.79 ppm; Figure 7.2a] arising from $^{3}J(^{1}$ H- 19 F) = 6.1 and $^{1}J(^{1}$ H- 15 N) = 86.7 Hz, and the 19 F NMR spectrum consists of a triplet of doublets [$\delta(^{19}$ F) = 56.78 ppm; Figure 7.2b] arising from $^{2}J(^{19}$ F- 15 N) = 2.7 and $^{3}J(^{19}$ F- 1 H) = 6.3 Hz. (a) ¹H NMR (500.138 MHz) and (b) ¹⁹F (470.599 MHz) NMR spectra of natural abundance FO₂SNH₂ in BrF₅ solvent recorded at -61.4 °C. Daggers (†) denote F-on-34S(VI) environment. Figure 7.1 (a) ¹H NMR (500.138 MHz) and (b) ¹⁹F (470.599 MHz) NMR spectra of 99.5% ¹⁵N-enriched FO₂SNH₂ in acetonitrile recorded at 30 °C. Asterisks (*) denote impurities. Figure 7.2 The 1 H NMR resonance of natural abundance FO₂SNH₃+AsF₆⁻ in BrF₅ solvent at -57.0 °C is a broad quadrupole collapsed singlet at $\delta(^1\text{H}) = 7.26$ ppm. The ^1H chemical shift is deshielded by 2.58 ppm relative to FO₂SNH₂, as expected upon protonation [cf., F₂NH:²⁹¹ $\delta(^1\text{H}) = 7.2$ ppm; F₂NH₂+:¹⁷³ $\delta(^1\text{H}) = 14.2$ ppm]. The ^1H NMR spectrum of 99.5% ^{15}N -enriched FO₂SNH₃+AsF₆⁻ in BrF₅ at -57.0 °C [$\delta(^1\text{H}) = 7.30$ ppm] consists of a doublet arising from the scalar coupling $^1J(^1\text{H}-^{15}\text{N}) = 72$ Hz. The magnitude of $^1J(^1\text{H}-^{15}\text{N})$ is comparable to that observed in other inorganic amine derivatives, 124 and indicates protonation of FO₂SNH₂ at nitrogen but not at oxygen, since the magnitude of the resulting three-bond $^{15}\text{N}-^{1}\text{H}$ coupling would be significantly smaller. The long-range coupling, $^3J(^1\text{H}-^{19}\text{F})$, was not resolved. The ^{19}F NMR resonances in BrF₅ solvent (-57.0 °C) of natural abundance and 99.5% ^{15}N enriched FO₂SNH₃+AsF₆⁻ are singlets at $\delta(^{19}\text{F}) = 56.47$ and 56.25 ppm, respectively, with no resolution of the scalar couplings $^2J(^{19}\text{F}-^{15}\text{N})$ and $^3J(^{19}\text{F}-^{14}\text{H})$. Significant decomposition of the salt $FO_2SNH_3^+AsF_6^-$ was observed in BrF_5 solvent at -57.0 °C. Singlets observed in the ¹⁹F NMR spectra at $\delta(^{19}F) = 32.08$ and 70.47 ppm are attributed to decomposition products containing FO_2S - groups. The former singlet is assignable to SO_2F_2 , and the latter has not been identified. Integration of the ¹⁹F NMR resonances at -57.0 °C indicates that the ratio $FO_2SNH_3^+:SO_2F_2:X$ (X = unidentified product) is 1.00:0.63:0.73. The decomposition is believed to involve radical formation since a purple color was initially formed, which faded on mixing to give a clear colorless solution. The NMR resonances were not observed until the unidentified purple material was quenched. The AX_4 pattern of BrF_5 solvent is not exchange broadened. The ¹H NMR spectrum at -57.0 °C in BrF_5 solvent indicates the presence of several additional exchange broadened lines at $\delta(^1H) = 5.6$, 5.2, 3.4, 2.9 and 2.3 ppm. The broad resonance at 5.6 ppm is attributed to HF, and the peak at 5.2 ppm is assigned to FO_2SNH_2 , indicating deprotonation of FO₂SNH₃⁺. The resonances at 3.4, 2.9 and 2.3 ppm are assigned to H-on-N environments of oxidation products of the FO₂SNH₃⁺ cation, where BrF₅ is the oxidizing agent. It is not possible to identify the nitrogen-containing oxidation products from the ¹H NMR resonances since no couplings are observed and exchange may affect the ¹H chemical shifts. By analogy with the decomposition of F₅TeNH₃⁺ in BrF₅ (Chapter 6), likely nitrogen-containing decomposition products include NH₄⁺, N₂, HN₃, N₂H₄, and N₂H₂. Deprotonation of the FO₂SNH₃⁺ cation may involve proton exchange equilibria with the nitrogen-containing decomposition products [equation (7.11)] $$FO_2SNH_3^+ + N_xH_v \Longrightarrow FO_2SNH_2 + N_xH_{v+1}^+$$ (7.11) ### (C) RAMAN SPECTROSCOPIC STUDY OF NATURAL ABUNDANCE AND 99.5% 15N-ENRICHED FO₂SNH₂ The Raman spectra of liquid natural abundance and 99.5% 15 N-enriched FO₂SNH₂ were obtained at room temperature. Figure 7.3 depicts the Raman spectrum of FO₂SNH₂, and the frequencies are listed in Table 7.1. A total of 3N - 6 = 15 modes are expected for FO₂SNH₂. Without making assumptions about the orbitals involved in the S-N bond, the mutual orientation of the FO₂S- and -NH₂ groups could not be predicted. Therefore, in Table 7.1 the bands were assigned by treating the FO₂SN- and -SNH₂ groups as separate entities of C_s point symmetry, each having 9 and 6 vibrational modes, respectively, and by analogy with a previous infrared study of FO₂SNH₂ by Semmoud and Vast. Since the highest symmetry for FO₂SNH₂ is C_s , all modes are infrared and Raman active. The nine vibrational modes of the FO₂SN- group belong to the irreducible representations Figure 7.3 Raman spectrum of neat liquid natural abundance FO₂SNH₂ recorded at 25 °C by use of 514.5-nm excitation. Figure 7.4 Raman spectrum (300 - 1000 cm⁻¹ region) of neat liquid 99.5% ¹⁵N-enriched (upper trace) and natural abundance (lower trace) FO₂SNH₂ recorded at 25 °C by use of 514.5-nm excitation. 6 A' + 3 A" and were assigned to bands observed in the Raman spectrum of FO₂SNH₂ (Table 7.1); however, all of the bands in the Raman spectrum of [¹⁵N]FO₂SNH₂, except those assigned to the symmetric S-O (v₁) and asymmetric S-O (v₇) stretching modes (1205.5 and 1417.1 cm⁻¹, respectively) are shifted to lower frequency relative to those in the Raman spectrum of natural abundance FO₂SNH₂ (see Figure 7.4 and Table 7.1). The ^{14/15}N isotopic shifts of these bands indicate vibrational coupling of modes that was not implied in the assignments of Semmoud and Vast. ¹³⁰ This justified a revision of their assignments. Firstly, the bands at 964.5 and 797.2 cm⁻¹ were assigned to symmetric S-N and S-F stretching modes in the infrared spectrum of FO₂SNH₂, ¹³⁰ but because both Raman bands exhibit large ^{14/15}N isotopic shifts, it is clear that both bands have contributions from the S-N stretching mode. Thus, the bands at 964.5 and 797.2 cm⁻¹ were assigned to asymmetric and symmetric combinations of the S-N and S-F stretching modes. Crow and Lagemann²⁹² reported a similar coupling of v(S-Br) and v(S-F) in the infrared spectrum of FO₂SBrF, referring to asymmetric and symmetric Br-S-F stretches. Gillespie and Robinson¹²⁸ chose to treat the S-F and S-Br bonds separately in their assignment of the vibrational spectrum of SO₂BrF. The low frequency bands (360 - 560 cm⁻¹) have also been reassigned in light of the observed $^{14/15}N$ isotopic shifts. The Raman band at 361.0 cm⁻¹ [$\Delta v(^{14/15}N) = -4.3$ cm⁻¹] is attributed to the A" torsional mode, which involves torsional motion of the entire FSO₂N- group and is therefore expected to have an $^{14/15}N$ isotopic dependence. Similar frequencies have been assigned for SO₂F₂¹²⁸ (360 cm⁻¹) and SO₂Cl₂ (388 cm⁻¹). The Raman band at 560.0 cm⁻¹ [$\Delta v(^{14/15}N) = -3.1$ cm⁻¹] was assigned to the in-plane F-S-N bend by analogy with SO₂F₂¹²⁸ ($\delta(SF_2) = 545$ cm⁻¹). The bands at 501.4 [$\Delta v(^{14/15}N) = -1.2$] and 534.5 [$\Delta v(^{14/15}N) = -1.7$] cm⁻¹ are attributed to bending and rocking modes of the FSO₂N- group by analogy with SO₂F₂ (545) cm⁻¹)¹²⁸ and SO₂BrF (497 - 608 cm⁻¹).^{128,292} Of these two bands, the band at 534.5 cm⁻¹ has the greater ^{14/15}N isotopic shift and is, therefore, tentatively assigned to the A' rocking mode $[\rho_r(FO_2SN-)]$ since this mode involves motion of the entire FO₂SN- group. The v_2 [$\delta_{sym}(SO_2)$] and v_3 [ρ_r (SO₂)] modes are tentatively assigned to the band at 501.4 cm⁻¹. The six modes of the -SNH₂ group of FO₂SNH₂ belong to the irreducible representations 4 A' + 2 A" and all but one are assignable to bands in the Raman spectrum (Figure 7.3 and Table 7.1), by analogy with the vibrational assignments for FNH_2^{239} , $CINH_2^{257}$ and aniline $C_6H_5NH_2^{232}$. The S-N stretch is identical with v_3 of the FO₂SN- group and is not repeated. The symmetric (v_{10}) and asymmetric (v_{13}) stretches of the NH₂ group are assigned to the broad bands at 3422 and 3298 cm⁻¹, which are characteristic for primary amines. The symmetric NH₂ bend (v_{12}) and the symmetric S-N-H bend (v_{11}) are observed at 1553.6 and 1088.1 cm⁻¹, respectively. An $^{14/15}N$ isotopic shift is not observed for v_{11} because of the presence of bands from organic impurities in this region of the Raman spectrum of 99.5% ^{15}N -enriched FO₂SNH₂ (see Chapter 2). A band attributable to the NH₂ wag, v_{14} [δ_{asym} (SNH)] was not observed although it is expected at ca. 1200 cm⁻¹ by analogy with FNH₂ (1233 cm⁻¹). A band attributable to this mode is not observed in the infrared spectrum of ClNH₂. - Table
7.1. Raman Spectra and Assignments for [14NJFO2SNH2 and [15NJFO2SNH2.* | frequer | frequency, cm.1 | | | | | |---|---|-------------------------|--------------------|----------------|--| | [¹⁴ NJFO ₂ SNH ₂ ^b | (15NJFO ₂ SNH ₂ b | Δν(^{14/15} Ν) | Molecular
Group | Point
Group | Assgnt and Approx Mode
Description | | | | | FO,S. | ు | | | 1417.1 (5.7) | 1419.4 (6.3) | 2.3 | 4 | , | | | 1205.5 (100.0) | 1206.1 (100.0) | 9.0 | | | V1. Vsym(SO ₂) | | 964.5 (26.9) | 947.6 (24.0) | -16.9 | | | Vasym [V3, V(SN) + V4 | | 797.2 (25.6) | 786.9 (36.2) | -10.3 | | | | | 560.0 (19.3) | 556.9 (22.8) | -3.1 | | | | | 534.5 (22.1) | 532.8 (26.1) | -1.7 | | | | | 501.4 (10.1) | 500.2 (13.9) | -1.2 | | | | | 361.0 (14.9) | 356.7 (18.8) | 4.3 | | | A" v_8 , $\rho_r(SO_2)$
A" v_9 , FO_2SN - torsion | | | | | -SNH, | ౮ | | | 3422 (5.8)° | 3404 (2.4) | -18 | ı | • | A' V ₁₀ , V _{sym} (NH ₂) | | 3298 (26.6)° | 3295 (10.3) | | | | | | 1553.3 (3.9) | (4.0) | -1.0 | | | | | 1000.1 | 9 6 | | | | | | ,
, | | | | | | #### Table 7.1 (continued) Assignments for the modes of the FO₂SN- group have been made assuming C_s symmetry with use of the mode descriptions from reference (292). The assignments for the modes of the -SNH₂ group have been made by assuming C_s symmetry and with use of the mode descriptions from reference (293). Only five of the six normal modes have been tabulated for the SNH₂ group since the sixth, v(SN) is the same as v_3 for the FO₂SN- group. ^b Raman spectra obtained at room temperature with use of 514.5-nm excitation. ^cBecause of the broadness of the bands attributed to asymmetric and symmetric NH₂ stretching modes, the accuracy of the reported frequencies is estimated to be ± 1 cm⁻¹. ^dPeaks caused by organic impurities are observed in this region. ### (D) CHARACTERIZATION OF NATURAL ABUNDANCE AND 99.5 % 15N-ENRICHED FO₂SNH₃+AsF₆* BY RAMAN SPECTROSCOPY The Raman spectra of natural abundance and 99.5 % 15 N enriched FO₂SNH₃⁺AsF₆⁻ were obtained at room temperature. Figure 7.5 depicts the Raman spectrum of FO₂SNH₃⁺AsF₆⁻, and the frequencies are listed in Table 7.2. A total of 3N - 6 = 18 modes are expected for the FO₂SNH₃⁺ cation; the highest possible point symmetry is C_s , so that all modes are both infrared and Raman active. Assignments for the FO₂SNH₃⁺ cation have been aided by observing the $^{14/15}$ N isotopic shifts in the Raman spectrum of 99.5% 15 N-enriched FO₂SNH₃⁺AsF₆⁻ (Table 7.2 and Figure 7.6). Following the procedure for FO₂SNH₂, assignments for the FO₂SNH₃⁺ cation have been made by treating the FO₂SN- (C_s) and the -SNH₃⁺ (C_{3s}) groups separately. The nine modes of the FO₂SN- group have been assigned following the method used for FO₂SNH₂ (see above). The band at 1503.4 cm⁻¹ has been assigned to v_7 , $v_{asym}(SO_2)$ by analogy with SO_2F_2 (1502 cm⁻¹)¹²⁸ and SO_2BrF (1460 cm⁻¹).^{128,292} Similarly, comparison with these compounds allows the assignments of the bands at 1270.3, 1259.1 and 1254.8 cm⁻¹ to $v_{sym}(SO_2)$ (cf., SO_2F_2 : 1269 cm⁻¹;¹²⁸ SO_2BrF : 1228 cm⁻¹ ^{128,292}). The presence of three bands assigned to $v_{sym}(SO_2)$ may arise from factor group splitting. The only band assigned to the SO_2 stretching modes which exhibits a measurable ^{14/15}N isotopic shift is the most intense band attributed to $v_{sym}(SO_2)$ at 1259.1 cm⁻¹. The value of the shift (-0.6 cm⁻¹) is at the detection limit for the ^{14/15}N frequency shifts. Therefore these bands do not contain significant contributions from modes that involve the motion of the nitrogen center. The S-F stretch has been assigned to the band at 862.3 cm $^{-1}$ [cf., SO $_2$ F $_2$: 128 885 cm $^{-1}$], which does not have an $^{14/15}$ N isotopic shift. The bands at 709.9 and 677.2 cm $^{-1}$ exhibit large $^{14/15}$ N isotopic shifts (-5.1 and -2.1 cm $^{-1}$, respectively) and are similar to v(SN) for FO $_2$ SNH $_2$ and Figure 7.5 Raman spectrum of solid natural abundance FO₂SNH₃⁺AsF₆⁻ recorded at 25 °C by use of 514.5-nm excitation. Figure 7.6 Raman spectrum (300 - 750 cm⁻¹ region) of solid 99.5% ¹⁵N-enriched (upper trace) and natural abundance (lower trace) FO₂SNH₃⁺AsF₆⁻ recorded at 25 °C by use of 514.5-nm excitation. ~ thus are both assigned to v_3 [v(S-N)]. The presence of two bands is attributed to solid state effects. The band at 521.4 cm^{-1} has the largest $^{14/15}\text{N}$ isotopic shift (-5.69 cm $^{-1}$) of the bands attributable to the bending modes; by analogy with FO_2SNH_2 it is assigned to v_6 , the in-plane F-S-N bend. The bands at 479.7 and 496.9 cm⁻¹ are assigned to the bending modes of the FSO₂N-group, namely v_2 [δ_{sym} (SO₂)], v_5 [ρ_r (FO₂SN-); in-plane FSN rock] and v_8 [SO₂ asymmetric rock]. The rocking motion of the FO₂SN- group is assigned to the band at 496.9 cm⁻¹ which has the larger ^{14/15}N isotopic shift [-1.1 cm⁻¹] since this mode involves motion of the nitrogen atom. The SO₂ rocking modes, v_8 [δ_{asym} (SO₂)] and v_2 [δ_{sym} (SO₂)] are assigned to the band at 479.7 cm⁻¹ although these modes may also contribute to the band at 496.9 cm⁻¹. The ^{14/15}N isotopic shifts of the bands at 479.7 and 496.9 cm⁻¹ imply some vibrational coupling of the SO₂ asymmetric rock and symmetric bending modes with the FO₂SN- rocking and F-S-N bending modes. An exact description of the vibrational coupling would require a normal coordinate analysis, which is not necessary for the assignment of the Raman spectra in the present study. The band at 334.6 cm⁻¹ is assigned to the torsional mode of the FO₂SN- group, which is similar to that observed in FO₂SNH₂ (361.0 cm⁻¹) and SO₂F₂ (388 cm⁻¹). 128 The nine modes of the -SNH₃ group belong to the irreducible representations 3 $A_1 + 3$ E ($C_{3\nu}$ point symmetry), all of which are infrared and Raman active. All nine modes have been assigned to bands in the Raman spectrum of FO₂SNH₃⁺AsF₆⁻ (Figure 7.5) and are listed in Table 7.2. The S-N stretching mode is identical to v_3 of the FO₂SN- group and is not repeated. Fluorescence prevented the observation of the low-intensity bands associated with the -SNH₃ group in the Raman spectrum of 99.5% ¹⁵N-enriched FO₂SNH₃⁺AsF₆⁻, so that ^{14/15}N isotopic shift data are not available to confirm the bands in the Raman spectrum of the natural abundance $FO_2SNH_3^+AsF_6^-$. However, assignments other than those given are unlikely. The asymmetric stretching modes are assigned to the peaks at 3168, 3100 and 3024 cm⁻¹, by analogy with FNH₃+SO₃F^{-294,295} [v_{asym} (NH₂) = 3000 cm⁻¹, v_{sym} (NH₂) = 2735 cm⁻¹]. Since three peaks are observed, it is not possible to assign the peaks rigorously to the asymmetric and symmetric stretching modes, although v_{asym} (NH₂) is usually greater than v_{sym} (NH₂). The bending modes $\delta_{sym}(NH_3)$ [v_{11}] and $\delta_{asym}(NH_3)$ [v_{13}] are assigned to the bands at 1438.6 and 1503.4 cm⁻¹, respectively, by analogy with FCH₃²⁹⁶ [$\delta_{sym}(CH_3)$ = 1460 cm⁻¹; $\delta_{asym}(CH_3)$ = 1468 cm⁻¹] and the FNH₃⁺ cation in FNH₃⁺CF₃SO₃⁻²⁹⁵ [$\delta_{sym}(NH_3)$ = 1523 cm⁻¹; $\delta_{asym}(NH_3)$ = 1585 cm⁻¹]. The rocking mode v_{14} [$\rho_r(SNH)$] is assigned to the band at 1040.5 cm⁻¹ by analogy with FCH₃ (1183 cm⁻¹)²⁹⁶ and the FNH₃⁺ cation (1262 cm⁻¹).²⁹⁵ The somewhat lower value of $\rho_r(NH_3)$ in the FO₂SNH₃⁺ cation is expected since the mass of the FO₂S- group is much greater than F in FCH₃ and FNH₃⁺. A total of six bands can be attributed to the AsF₆⁻ anion (Figure 7.5 and Table 7.2). These bands are best assigned modes which belong to the irreducible representations $A_{1g} + E_g + T_{2g} + 3$ T_{1u} under O_h point symmetry by comparison with M⁺AsF₆⁻ salts. (M = O_2 . ¹⁵⁹ Cs. ²⁹⁷ and OH₃. ¹⁷¹ Bands in the Raman spectrum of FO₂SNH₃⁺AsF₆⁻ are attributable to all modes of AsF₆⁻ except v_6 (T_{1u}), which is often not observed ^{159,171} although it is expected at ca. 252 cm⁻¹. The totally symmetric v_1 (A_{1g}) mode, which usually gives rise to the most intense AsF₆⁻ band in the Raman spectra of AsF₆⁻ salts, is believed to overlap with v(S-N) of the FO₂SNH₃⁺ cation at 709.9 cm⁻¹. From the number of bands observed, it is clear that the symmetry of the AsF₆⁻ anion in FO₂SNH₃⁺AsF₆⁻ is lower than O_h , since under O_h symmetry only v_1 , v_2 and v_5 are Raman active. However, lowering of the AsF₆⁻ site symmetry to C_{2v} or lower would result in the observation of bands attributable to all modes. The lowering of the AsF_6^- symmetry in the solid may result from interactions with the cation through fluorine bridging or from a low site symmetry for AsF_6^- within the unit cell. Of the doubly or triply degenerate modes, v_5 (T_{2g}) is split with unequal intensities and v_2 (E_g) is broad, indicating that the degeneracy has been removed but the peak separation has not been resolved. Qureshi and $Aubke^{298}$ reported a similar splitting of v_5 in the hexafluoroarsenate salts of several nitrogen cations (ONF_2^+ , $N_2F_3^+$, NO^+ , NO_2^+) and noted that this mode appeared to be particularly sensitive to site symmetry lowering effects. The low intensity peak at 83.8 cm⁻¹ is attributed to a lattice mode vibration. <u>Table 7.2.</u> Raman Spectra and Assignments for [¹⁴N]FO₂SNH₃⁺AsF₆⁻ and [¹⁵N]FO₂SNH₃⁺AsF₆⁻. | frequency, cm-1 | y, cm.1 | | | | | |--|---|-------------------------|--------------------|----------------|--| | (14NJFO ₂ SNH ₃ +
AsF ₆ -b | (^{L5} NJFO ₂ SNH ₃ +
AsF ₆ · ^b | Δν(^{14/15} N) |
Molecular
Group | Point
Group | Assgnt and approx mode description | | 10 07 1 0031 | | | FO ₂ S- | 3 | | | 1503.4 (3.8) | | | | | A" v ₂ , v ₂ ,(SO ₂) | | 1270.3 (sh) | n.o. | | | | | | 1259.1 (48.1) | 1258.5 (40.0) | -0.6 | | | | | 1254.8 (sh) | n.o. | | | | (200) m(s) 11 | | 862.3 (16.5) | 862,1 (17.5) | | | | | | (100.0) | _ | -5.1 | | | | | 677.2 (23.1) | _ | .2.1 | | | | | 521.4 (35.5) | 515.7 (29.9) | -5.7 | | | | | 496.9 (17.9) | | = | | | | | 479.7 (14.4) | 479.1 (12.6) | 90- | | | V2. Osym(| | • | | ì | | | | | 334.6 (21.0) | 332.2 (19.1) | -2.4 | | | A' vo. FO.SN- tortion | | | | | | | A" v. 8(NSF) | | | | | -SNH, | ť | | | 3167.9 (2.3) | | | c : | * | | | 3100.4 (6.0) | | | | | E V ₁₂ , V _{asym} (NH ₃) | | 3024.4 (0.9) | | | | | | | 15034 (3.8) | | | | | | | 1438 6 (1.9) | | | | | | | 1040 € (2.0) | | | | | A ₁ ν ₁₁ , δ _{sνπ} (NH ₃) | | 1040.5 (5.0) | | | 1 | | | | () () () () () () () () () () | | | AsF ₆ | ŏ | • | | 738.6 (5.6) | | | • | : | | | 709.9 (100.0) | | | | | | | 565.6 (13.7) | | | | | E | | 410.3 (4.2) | | | | | | | | | | | | | 297 >, T₂₈ T 371.9 (25.0) 368.1 (18.0) * Assignments for the modes of the FO₂SN- group have been made by assuming C₃ symmetry and with use of the mode descriptions from references (130), (292), and (299). Assignments for the -SNH₃ group have been made by assuming C_{3} , symmetry, and with use of the mode description of reference (300). Only five of the six normal modes of the -SNH3 group have been tabulated; the sixth is identical to v3 for the FO2SN- group [v(SN)]1. b Raman spectra obtained at room temperature by use of 514.5-nm excitation. The totally symmetric v1 (A1g) mode is presumed to overlap with the intense band at 709.9 cm⁻¹ assigned to v₃ [v(SN)] of the FO₂SNH₃ ⁺ cation. ^dBecause of broadness, the errors associated with the bands assigned to v₁₀ [v_{ssym}(NH₃)] and v_{12} [$v_{sym}(NH_3)$] are estimated to be \pm 1 cm⁻¹. ## (E) <u>COMPARISON OF THE BONDING IN FO₂SNH₂ AND THE FO₂SNH₃⁺ CATION BY RAMAN SPECTROSCOPY</u> The bonding in FO₂SNH₂ and the mercury salt HgNSO₂F was investigated using infrared spectroscopy by Semmoud and Vast. ¹³⁰ Differences in the S-O, S-F, and S-N bond orders of FO₂SNH₂ and FO₂SNHg, as reflected in the corresponding symmetric infrared stretching frequencies, was investigated and compared with several sulfur(VI) oxyacid derivatives. The present Raman spectroscopic study of FO₂SNH₂ and the FO₂SNH₃⁺ cation provides information that allows the bonding changes resulting from protonation of FO₂SNH₂ to be assessed and related to the work of Semmoud and Vast. ¹³⁰ Semmoud and Vast¹³⁰ have shown that deprotonation of FO₂SNH₂ to give FO₂SNHg results in decreases in $v_{\text{sym}}(S\text{-O})$ and v(S-F) by 46 and 37 cm⁻¹, respectively and an increase in v(S-N) by 70 cm⁻¹, as shown in Table 7.3. This has been explained by invoking $(p\text{-}d)\pi$ bonding involving vacant 3d orbitals on sulfur and filled 2p orbitals on oxygen and nitrogen. The S-N bond length in FO₂SNH₂, as determined by electron diffraction²⁸⁶, was 1.60(1) Å, which is significantly shorter than the single bond in H₃NSO₃ [1.7714(3) Å]. The 3 287 and has been interpreted as evidence for S-N π bonding. Deprotonation of FO₂SNH₂ increases the availability of 2p orbitals on the nitrogen atom for π -bonding to the sulfur atom, resulting in an increase in the S-N bond order, which is reflected in the increase in v(S-N). The S-O bonds are weakened since the same 3d orbitals on sulfur $(dx^2\cdot y^2)$ and dx^2 are used to form S-O π -bonds. The decrease in v(S-F) may result from an increase in the S-F bond ionic character or a decrease in the S-F π -bonding. As noted by Semmoud and Vast, v(S-N) similar effects are observed for the isoelectronic compounds AgO₃SNH₂ and Ag₃O₃SN. The existence of S-N π -bonding in O₃SNH₂ is evidenced by the S-N bond length [1.60(1) Å], v(S-N) which is substantially shorter than the S-N single bond in H₃NSO₃²⁸⁷ (see above). As shown in Table 7.3, deprotonation of the $H_2NSO_3^-$ anion to give NSO_3^{-3} results in a decrease in $v_{sym}(S-O)$ by 38 cm⁻¹ and an increase in $v_{sym}(S-N)$ by 134 cm⁻¹, again a result of increased S-N π -bonding. The higher $v_{sym}(S-O)$ frequencies for the H_xNSO_2F derivatives relative to the analogous H_xNSO_3 (x = 0, 2, 3) species in Table 7.3 may be explained by use of the resonance structures proposed by Gillespie and Robinson³⁰¹ to describe the covalent and ionic contributions to the bonding of sulfuryl compounds (resonance Structures 7.1 and 7.2). The covalent resonance Structure 7.1 predominates in the presence of a highly electronegative ligand (L) which increases the electronegativity of sulfur. The greater electronegativity of F compared to O⁻ therefore results in increased S-O bond orders and correspondingly higher $v_{sym}(S-O)$ frequencies. In accordance with this, the values of $v_{sym}(S-O)$ for SO_2F_2 (1269 cm⁻¹)¹²⁸ and F_2NSO_2F (1250 cm⁻¹)¹³⁰ are among the highest values known.³⁰¹ The Raman data for $FO_2SNH_3^+AsF_6^-$ extends the comparison of the sulfuryl amides H_xNSO_3 and the fluorosulfuryl amides H_xNSO_2F (x = 0, 2, 3) of Semmoud and Vast. ¹³⁰ The similarity of $v_{sym}(S-N)$ for H_3NSO_3 (680 cm⁻¹) and the $FO_2SNH_3^+$ (709.9 cm⁻¹) indicate similar S-N bond orders (i.e., SN single bonds). The larger value of $v_{sym}(SO)$ for $FO_2SNH_3^+$ than for H_3NSO_3 is predicted by the dominance of resonance Structure 7.1 over 7.2 (see above). ³⁰¹ As shown in Table 7.3, protonation of FO_2SNH_2 to give the $FO_2SNH_3^+$ cation lowers v(S-N) by 254.6 cm⁻¹, while v(S-F) and $v_{sym}(S-O)$ are increased by 65.1 and 53.6 cm⁻¹, respectively. The changes in the stretching frequencies are consistent with weakening of the S-N bond and strengthening of the S-O and S-F bonds and are expected since the nitrogen atom lone pair is no longer available for S-N π -bonding upon protonation. Reduction of the S-N π bond order is accompanied by an increase in the S-O π bond order. Fluorine is not expected to be a good π donor to sulfur, thus S-F π bonding is not an appropriate explanation for the increase in v(S-F). However, protonation of nitrogen is expected to increase the electronegativity of the sulfur center, thus reducing the ionic character and strengthening the S-F bond. The trends observed in $v_{sym}(S-O)$ and $v_{sym}(S-N)$ for the FO_2SNH_2 / $FO_2SNH_3^+$ pair parallel those observed for $H_2NSO_3^-$ / H_3NSO_3 , indicating that similar bonding changes occur upon protonation of FO_2SNH_2 and $H_2NSO_3^-$. Table 7.3. Selected Vibrational Frequencies and Bond Lengths of Some Sulfur(VI) Oxyacid Derivatives. | | Vibra | Vibrational Frequencies, cm ^{-1 a} | ies, cm ^{-1 a} | BC | Bond Lengths, A b | 4 | | |--|-----------------------|---|-------------------------|------------|------------------------|----------|---------| | | v _{sym} (SO) | v _{sym} (SN) | V _{sym} (SF) | r(SO) | r(SN) | r(SF) | sja | | H ₃ NSO ₃ | 1065 | 089 | | 1.4389(3)- | 1.7714(3)
1.4440(3) | | 130,287 | | H ₂ NSO ₃ · c | 1038 | 96L | | 1.43(1) | 1.60(1) | | 130,285 | | Ag ₃ NSO ₃ | 1000 | 930 | | | | | 303 | | H ₃ NSO ₂ F ^{+ d} | 1259.1 | 709.9 | 862.3 | | | | | | H ₂ NSO ₂ F ^{d,e} | 1205.5 | 964.5 | 797.2 | 1.412(3) | 1.61(3) | 1.56(2) | 286 | | HgNSO ₂ F | 1160 | 1035 | 760 | | | | 130 | | $\mathrm{SO_2F_2}^{\mathrm{f}}$ | 1269 | | 848 | 1.405(3) | | 1.530(3) | 128,302 | | F_2NSO_2F | 1250 | 715 | 850 | | | | 130 | ^a Vibrational data obtained from infrared spectra unless otherwise specified. ^b Bond lengths obtained from single crystal X-ray diffraction unless otherwise specified. ^c Vibrational data obtained from infrared spectra of AgH₂NSO₃, ref (130). Bond lengths obtained from single crystal X-ray analysis of KH₂NSO₃, ref (285). ^d Vibrational frequencies obtained from Raman spectra; this work. ^e Bond lengths obtained from electron diffraction [ref (286)]. ^f Bond lengths obtained from microwave data [ref (302)]. #### CHAPTER 8 ## [FLUOROSULFURYLAMIDO]XENONIUM(II) HEXAFLUOROARSENATE FO₂SN(H)-Xe⁺AsF_x- #### INTRODUCTION While many examples of compounds containing xenon bonded to oxygen or fluorine and of xenon bonded to other highly electronegative inorganic ligands through oxygen were synthesized immediately following the discovery of noble-gas reactivity,25 over a decade had elapsed before an example with a ligating atom other than oxygen or fluorine, namely nitrogen, was synthesized⁵⁶ and two decades before the Xe-N bond in FXeN(SO₂F)₂ was definitively characterized in the solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy.⁵⁷ Other imidosulfurylfluoride xenon-nitrogen bonded species have since been synthesized and characterized primarily by use of NMR spectroscopy, namely $Xc[N(SO_2F)_2]_2,^{58,59}F[XcN(SO_2F)_2]_2^{+,58-60}XcN(SO_2F)_2^{+}AsF_6^{-,60} \ and \ XcN(SO_2F)_2^{+}Sb_3F_{16}^{-,60}$ the last salt has also been characterized by single-crystal X-ray diffraction. The compound, Xe[N(SO₂CF₃)₂]₂,61 has also been prepared and characterized and is the most stable imido derivative of xenon presently known. Recently the scope of xenon-nitrogen chemistry has been dramatically expanded by taking advantage of the Lewis acid properties of noble-gas cations.²⁶ A significant number of oxidatively resistant nitrogen bases (D) have been shown to form xenonnitrogen bonded Lewis acid-base adduct cations with XeF+ of the form D-XeF+, such as alkylnitriles, and perfluoroalkylnitriles, 5-trifluorotriazine, 51 HC≡N, 72,73 pentafluorobenzenenitrile, 72 and perfluoropyridines. 75 The krypton(II) adduct cations, HC≡N- KrF^{+} and $R_FC\equiv N-KrF^{+}$ ($R_F=CF_3$, C_2F_5 , $n-C_3F_7$)⁷¹ have also been synthesized and characterized in this laboratory and provide the first
examples of krypton bonded to an element other than fluorine. The present Chapter describes the synthesis and characterization of the [fluorosulfurylamido] xenonium(II) cation, FO₂SN(H)-Xe⁺, at low temperature in BrF₅ and HF solvents. The natural abundance and 99.5% ¹⁵N-enriched salts, FO₂SN(H)-Xe⁺AsF₆⁻, have been synthesized in BrF₅ and HF solvents and characterized by ¹⁹F, ¹H, and ¹²⁹Xe NMR spectroscopy. #### RESULTS AND DISCUSSION #### (A) PREPARATION OF FO, SN(H)-Xe+AsF, IN HF AND BrF, SOLVENTS The reaction of $FO_2SNH_3^+AsF_6^-$ with XeF_2 was carried out according to equation (8.1) by combining stoichiometric amounts of the reactants in BrF_5 solvent and warming to -62 to -58 °C to effect reaction and dissolution, and gave a pale yellow solution. The $FO_2SN(H)-Xe^+$ $$FO_2SNH_3^+AsF_6^- + XeF_2 \longrightarrow FO_2SN(H)-Xe^+AsF_6^- + 2 HF$$ (8.1) cation was significantly decomposed at this temperature. Alternately, FO₂SN(H)-Xe⁺AsF₆⁻ was generated according to equation (8.2) by combining stoichiometric amounts of FO₂SNH₂ and $$FO_2SNH_2 + XeF^+AsF_6 = FO_2SN(H)-Xe^+AsF_6 + HF$$ (8.2) XeF⁺AsF₆⁻ in HF solvent and warming to -50 °C to effect reaction. A pale yellow solution above white and yellow solids was present at this temperature; complete decomposition of the FO₂SN(H)-Xe⁺ cation occurred after ca. 1 hour. Warming of reaction mixtures to -35 °C resulted in complete decomposition within ca. 30 seconds. Decomposed samples invariably consisted of a colorless supernatant and a white precipitate. As a result of the instability and relatively low concentration of FO₂SN(H)-Xe⁺AsF₆⁻ in BrF₅ and HF solvents, no attempt was made to isolate the salt. # (B) CHARACTERIZATION OF FO₂SN(H)-Xe⁺AsF₆⁻ BY ¹²⁹Xe, ¹H AND ¹⁹F NMR SPECTROSCOPY The ¹²⁹Xe, ¹H and ¹⁹F NMR spectra of the natural abundance and 99.5% ¹⁵N-enriched FO₂SN(H)-Xe⁺ cation in solution are consistent with the xenon-nitrogen bonded structure illustrated in Structure 8.1. The 129 Xe NMR spectrum of the FO₂SN(H)-Xe⁺ cation in BrF₅ solvent (-57.7 °C) consists of a singlet at -2663 ppm ($\Delta v_{1/2} = 222$ Hz) as shown in Figure 8.1a. The 129 Xe resonance was observed at $\delta(^{129}$ Xe) = -2616 ppm ($\Delta v_{1/2} = 183$ Hz) in HF solvent at -48.9 °C, but the presence of undissolved material in the HF sample resulted in an irregular line shape. Attempts to dissolve the solid material by warming the HF sample to -35 °C resulted in rapid (ca. 30 seconds) decomposition of the FO₂SN(H)-Xe⁺ cation, as shown by the disappearance of the 129 Xe resonance. As a result, all further work was performed in BrF₅ solvent, in which the reagents were soluble at lower temperatures. The absence of any resolved couplings in the 129 Xe NMR spectra is consistent with the absence of an Xe-F bond, since the range of the one-bond scalar couplings, $^{1}J(^{129}$ Xe- 19 F), for xenon(II) is 7594 (XeF⁺ in SbF₅ solvent, 25 °C) 108 to 5621 Hz (XeF₂ in BrF₅ solvent, -52 °C), 71 which is much greater than the line widths of the 129 Xe resonances for the 8.1 Figure 8.1 129 Xe NMR spectra (139.051 MHz) of (a) natural abundance FO₂SN(H)-Xe⁺ AsF₆⁻ recorded at -57.7 °C and (b) 99.5% 15 N-enriched FO₂SN(H)-Xe⁺AsF₆⁻ recorded at -61.0 °C in BrF₅ solvent. FO₂SN(H)-Xe⁺ cation. The ¹²⁹Xe NMR chemical shift is similar to that observed for xenon(II)-nitrogen bonded cations in which the group electronegativity of the ligand is relatively low [see Section (C) of this Chapter]. Examples include F₅TeN(H)-Xe⁺ [δ (¹²⁹Xe) = -2902 ppm; see Chapter 5], F₅SN(H)-Xe⁺ [δ (¹²⁹Xe) = -2886 ppm], ^{26,180} and F₄S=N-Xe⁺ [δ (¹²⁹(Xe) = -2672 ppm]. ^{26,180} The Xe-F bonds for all of these species are ionized in solution. The one-bond Xe-N scalar coupling is not observed in the ¹²⁹Xe NMR spectra of natural abundance FO2SN(H)-Xe+AsF6 in HF and BrF5 solvents because of quadrupolar collapse of the Xe-N scalar coupling caused by the rapid relaxation of the directly bonded ^{14}N nucleus (I = 1) in an asymmetric electric field. The geometry at nitrogen in FO₂SN(H)-Xe⁺ may be pyramidal or planar depending on the relative contributions of resonance Structures 8.2 - 8.4. Resonance Structure 8.2 represents a pure o contribution to Xe-N and S-N bonding. Dominance of this resonance structure implies formal sp^3 -hybridization with a pyramidal nitrogen geometry. The presence of a lone pair of electrons is expected to result in a significant efg at the nitrogen nucleus. Resonance Structures 8.3 and 8.4 represent Xe-N and S-N π bonding contributions, which imply a trigonal planar, formally sp²-hybridized nitrogen center. Evidence in favor of xenon(II)ligand π -bonding is provided in the ¹⁹F and ¹³C NMR spectra of the xenon-carbon bonded cations R-Xe⁺ (R = C_6F_5 -Xe⁺, 95,99 2,4,6- $F_3C_6H_2$ -Xe⁺, 98 2,6- $F_2C_6H_3$ Xe⁺, 253 2- FC_6H_4 -Xe⁺ 253 and 4-FC₆H₄-Xe^{+ 253}), where the deshieldings of the aryl fluorine ¹⁹F and aryl carbon ¹³C NMR resonances in the 2, 4 and 6 positions on the aryl ring are consistent with xenon-carbon π bonding. 98,253 Resonance Structure 8.4 represents the contribution of sulfur-nitrogen π -bonding. which may be significant by analogy with the (FO₂S)₂NXe⁺Sb₃F₁₆ cation,⁶⁰ in which the trigonal planar nitrogen geometry and the S-N bond lengths [1.68(1) - 1.70(1) Å] that are significantly less than S-N single bonds [cf., O₃SNH₃: S-N = 1.7714(3) Å]²⁸⁷ indicate substantial S-N π -bonding and formal sp^2 -hybridization at the nitrogen atom. The trigonal planar nitrogen geometries in the related imidofluorosulfuryl xenon(II) compounds $FXeN(SO_2F)_2$, 57 $XeN(SO_2F)_2$ 60 and Xe[N(SO₂F)₂]⁵⁹ all have significant electric field gradients at nitrogen, resulting in rapid relaxation of the ¹⁴N nuclei so that the ¹⁴N NMR chemical shifts and the xenon-nitrogen scalar couplings were not observed. Nitrogen-15 enrichment was necessary to observe the xenon-nitrogen scalar couplings in these compounds. In the present study ¹⁵N-enrichment of the FO₂SN(H)-Xe⁺ cation was also required to observe the xenon-nitrogen scalar coupling. The ¹²⁹Xe NMR spectrum of 99.5% ¹⁵N-enriched FO₂SN(H)-Xe⁺AsF₆⁻ in BrF₅ solvent at -61.0 °C (Figure 8.1b) consists of a doublet arising from ${}^{1}J({}^{129}\text{Xe-}{}^{15}\text{N}) = 109 \text{ Hz} \ [{}^{1}K(\text{Xe-N}) = 0.322 \times 10^{22} \text{ NA-}{}^{2}\text{m}{}^{-3}]$ centered at $\delta(^{129}\text{Xe}) = -2660$ ppm [$\Delta v_{1/2} \approx 63$ Hz]. As shown in Table 8.1, the value of the reduced coupling constant, ¹K(Xe-N), for FO₂SN(H)-Xe⁺ is similar in magnitude to those observed in related cations containing xenon-nitrogen bonds [cf., F_5 TeN(H)-Xe⁺ (see Chapter 5): 0.401 x 10^{22} $NA^{-2}m^{-3}$; $(FO_2S)_2N-Xe^+$: 60 0.272 x 10^{22} $NA^{-2}m^{-3}$). The alternative xenon-oxygen bonded structure for the cation, namely FO(NH)SO-Xc+, is shown in Structure 8.5, and may be discarded because the magnitude of the xenon-nitrogen scalar coupling is similar to known values of ¹K(Xe-N). The magnitude of ${}^2K(Xe-N)$ in the hypothetical xenon-oxygen bonded cation is expected to be less than that observed. Although no two bond xenon-nitrogen coupling constants are known for comparison, the one- and two-bond xenon-carbon coupling constants observed for (CH₃)₃CC≡C-Xe^{+ 101} are 120 and 79 Hz, respectively, illustrating the expected decrease in magnitude. The hypothetical xenon-oxygen bonded cation is also unlikely since all xenon(II) derivatives of HN(SO₂F)₂ contain exclusively xenon-nitrogen bonds in solution [cf., $FXeN(SO_2F)_2$, 57,58 $Xe[N(SO_2F)_2]_2^{58,59}$ and $XeN(SO_2F)_2^{+60}$]. The line width of the ¹²⁹Xe Table 8.1. Comparison of ¹²⁹Xe NMR Chemical Shifts and One-Bond Xenon-Nitrogen Reduced Coupling Constants of Some Compounds Containing Xenon(II)-Nitrogen Bonds.* | Species | &(¹²⁹ Xc),
(ppm) | Hybridization
at Nitrogen | ¹ K(Xc-N)
(10 ²² NA ⁻² m ⁻³) | T (°C) | Ref. | |---|---------------------------------|------------------------------|--|-----------|-----------| | HC≡N-XcF⁺ | -1555 (-1570) | ds | 1.381 ^b | -10 (-58) | 72,73 | | s·C ₃ F ₃ N ₂ N·XeF ⁺ | -1808 (-1863) | sp^2 | 1.013 | -5 (-50) | 11 | | C ₅ F ₅ N-XeF ⁺ | -1872 (-1922) | sp^2 | 0.983 | -30 (-30) | 75 | | (FO ₂ S) ₂ N-XeF° | -2009 | sp^2 | 0.913 ^b | -40 | 59 | | (FO ₂ S) ₂ N-Xc ^{+ d} | -1943 | sp^2 | 0.272 ^b | 25 | 99 | | FO ₂ SN(H)-Xc ² | -2616 (-2660) | sp^2 or sp^3 | 0.322 ^b | -61 | This work | | F ₄ S=N·Xe ⁺ | -2672 | sp^2 | | -20 | 26,180 | | F ₅ TeN(H)-Xe ⁺ | -2840 (-2902) | sp^3 | 0.401 ^b | 45 | မ | | F ₅ SN(H)-Xe ⁺ | -2886 | sp^3 | | -20 | 26,180 | | • | | | | | | ^a 129 Xe NMR parameters, unless otherwise indicated, were determined in HF and in BrF₅ (in parentheses) solvent. ^b Recorded for the ¹⁵N enriched cation. c Measured in SO2CIF solvent. d Measured in SbF5 solvent. c Chapter 5 of this work. 8.5 resonance is larger than previously known examples of the long range couplings ${}^2J({}^{129}\text{Xe-}{}^{1}\text{H})$ [cf., F₅TeN(H)-Xe⁺ (Chapter 5), 24 Hz] and ${}^3J({}^{129}\text{Xe-}{}^{19}\text{F})$ [cf., FXeN(SO₂F)₂, ⁵⁸ 18 Hz], so that they are not resolved. The large line width of the 129 Xe NMR resonance for the FO₂SN(H)-Xe⁺ cation results primarily from SA induced relaxation of 129 Xe, and is analogous to the (FO₂S)₂N-Xe⁺ cation in SbF₅ solvent. ⁶⁰ The SA broadening is proportional to B_o², where B_o is the strength of the external magnetic field used in the NMR experiment. Since the present 129 Xe NMR experiments were conducted with use of an 11.7440 T magnet, the SA broadening is significant. This is exemplified by the magnetic field dependence of the 129 Xe NMR line width for 30% 15 N-enriched (FO₂S)₂NXe⁺ in SbF₅ solvent. ⁶ At an external field strength of 5.8719 T, the linewidth of the 129 Xe resonance was 139 Hz, and the 129 Xe- 15 N scalar
coupling was not resolved. At 2.3488 T, the linewidth was significantly reduced and the 129 Xe- 15 N scalar coupling was resolved. Resolution of $^{2}J(^{129}$ Xe- 14 H) and $^{3}J(^{129}$ Xe- 19 F) in the 129 Xe NMR spectrum of 99.5% 15 N-enriched FO₂SN(H)-Xe⁺ may be attained by use of a lower field strength. The field dependence of the 129 Xe NMR line width for the related F₅TeN(H)-Xe⁺ cation is discussed in Chapter 5. The 1H NMR spectrum of the equilibrium mixture resulting from the reaction of equimolar amounts of natural abundance $FO_2SNH_3^+AsF_6^-$ and XeF_2 in BrF_5 solvent at -57.8 °C is shown in Figure 8.2. The initial concentrations of XeF_2 and $FO_2SNH_3^+$ were 1.12 and 0.974 M, respectively. The $FO_2SN(H)$ - Xe^+ cation is assigned to the quadrupole collapsed singlet at $\delta(^1H) = 7.95$ ppm. It is deshielded by 0.58 ppm relative to the $FO_2SNH_3^+$ cation, which is also a quadrupole collapsed singlet, observed at $\delta(^1H) = 7.37$ ppm. The presence of both $FO_2SNH_3^+$ and $FO_2SN(H)$ - Xe^+ is consistent with equilibrium (8.1). Integration of the 1H NMR resonances indicates that the ratio $[FO_2SNH_3^+]$: $[FO_2SN(H)Xe^+]$ is 8:1. The singlets observed at 9.35 and Figure 8.2 ¹H NMR spectrum (500.138 MHz) of the equilibrium mixture arising from the reaction of natural abundance FO₂SNH₃⁺AsF₆⁻ and XeF₂ in BrF₅ solvent recorded at -57.8 °C; (A) unidentified singlets, possibly divalent nitrenium ions, RR'N:⁺, (B) FO₂SN(H)-Xe⁺, (C) FO₂SNH₃⁺, (D) HF. 8.77 ppm cannot be definitely assigned but may arise from small amounts of divalent nitrenium ions³⁰⁴ such as $FO_2SN(H)$:⁺, which are likely decomposition products in the elimination of xenon gas from the $FO_2SN(H)$ -Xe⁺ cation (see decomposition of $F_5TeN(H)$ -Xe⁺ in Chapter 6). No NMR data has been obtained for nitrenium ions in solution, but one would expect that the ¹H NMR resonance for $FO_2SN(H)$:⁺ would be highly deshielded. Other resonances observed in the ¹H NMR spectrum include a broad singlet attributed to exchanging HF at 6.03 ppm [$\Delta v_{1/2} = 146$ Hz], and broad resonances without fine structure at 4.94, 3.31 and 2.58 ppm, which are attributed to rapidly exchanging H-on-N environments resulting from oxidative attack on the FO_2SNH_3 + cation by BrF₅ solvent (see Chapter 7). The ¹H NMR spectrum of 99.5% ¹⁵N-enriched FO₂SN(H)-Xe⁺AsF₆⁻ in BrF₅ at -59.9 °C consists of a doublet arising from ¹ $J(^{1}\text{H}^{-15}\text{N}) = 72$ Hz centered at $\delta(^{1}\text{H}) = 7.48$ ppm (Figure 8.3). The magnitude of $^{1}J(^{1}\text{H}^{-15}\text{N})$ for the ¹⁵N-enriched FO₂SN(H)-Xe⁺ cation is comparable to other ¹⁵N-enriched inorganic amines, such as $[(CH_3)_3Si]_2^{15}NH$ (66.5 Hz)¹²⁴ and $[CF_3S]_2^{15}NH$ (99.1 Hz).¹²⁴ A value of $^{1}J(^{1}\text{H}^{-15}\text{N}) = 62$ Hz is also observed in the related F₅Te¹⁵N(H)-Xe⁺ cation (Chapter 5). Satellite peaks arising from $^{2}J(^{1}\text{H}^{-129}Xe) = 16$ Hz were also observed in the ¹H NMR spectrum of the FO₂S¹⁵N(H)-Xe⁺ cation, as seen in Figure 8.3 [cf., F₅Te¹⁵N(H)-Xe⁺ (Chapter 5): $^{2}J(^{129}Xe^{-1}\text{H}) = 24$ Hz]. The ¹⁹F NMR spectrum of the identical sample used to obtain the ¹H NMR spectrum of natural abundance FO₂SN(H)-Xe⁺ in BrF₅ solvent at -57.8 °C is shown in Figure 8.4. The singlets at 57.45 and 56.25 ppm are attributed to the fluorine-on-sulfur(VI) resonances of FO₂SN(H)-Xe⁺ and FO₂SNH₃⁺, respectively. Integration of these resonances indicates a ratio [FO₂SNH₃⁺]: [FO₂SN(H)-Xe⁺] of 8: 1. The ¹⁹F integrations are in agreement with those from the ¹H NMR spectrum (see above), so that the number of hydrogens and fluorines is consistent with the ¹H NMR spectrum (300.144 MHz) of 99.5% ¹⁵N-enriched FO₂SN(H)-Xe⁺ recorded at -59.9 °C in BrF₅ solvent. Asterisks (*) denote ¹²⁹Xe satellites. Figure 8.3 ¹⁹F NMR spectrum (470.599 MHz) of the equilibrium mixture arising from the reaction of FO₂SNH₃ ⁺AsF₆ and XeF₂ in BrF₅ solvent recorded at -57.8 °C; (A) FO₂SN(H)-Xe⁺, (B) FO₂SNH₃ ⁺. Figure 8.4 assignment of the resonances to the FO₂SN(H)-Xe⁺ and FO₂SNH₃⁺ cations. The ¹⁹F NMR spectra of the 99.5% ¹⁵N-enriched FO₂SNH₃⁺ and FO₂SN(H)-Xe⁺ cations consists of singlets without resolution of the long range couplings ²J(¹⁹F-¹⁵N) and ³J(¹⁹F-¹H). A broad singlet at δ (¹⁹F) = -61.5 ppm [$\Delta v_{1/2}$ = 858 Hz] is attributed to the partially quadrupole collapsed AsF₆⁻ anion. Peaks from XeF₂ are observed in the ¹⁹F and ¹²⁹Xe NMR spectra in BrF₅ solvent, consistent with equilibrium (8.1). The XeF₂ triplet in the ¹²⁹Xe NMR spectrum is observed at δ (¹²⁹Xe) = -1623 ppm, and is exchange broadened ($\Delta v_{1/2}$ = 1604 Hz). The ¹⁹F NMR resonance of XeF₂ is centered at δ (¹⁹F) = -186.5 ppm, ¹J(¹⁹F-¹²⁹Xe) = 5670 Hz, and is also exchange broadened ($\Delta v_{1/2}$ = 392 Hz). The ¹⁹F NMR resonance for XeF₂ is shielded by *ca.* 2 ppm relative to pure XeF₂ in BrF₅ at -52 °C⁷¹ [δ (¹⁹F) = -184.3 ppm], indicating exchange with HF at δ (¹⁹F) = -192.5 ppm. The HF resonance is a singlet, $\Delta v_{1/2}$ = 301 Hz, and the absence of doublet structure arising from ¹J(¹⁹F-¹H) confirms intermolecular exchange. The broadening of the XeF₂ resonances in the ¹²⁹Xe and ¹⁹F NMR spectra may also be attributable to exchange of XeF₂ with H₂F⁺ and AsF₅, producing trace amounts of XeF⁺ and Xe₂F₃⁺ according to equations (8.3) to (8.6). The presence of AsF₅ $$2 \text{ HF} + \text{AsF}_5 \implies \text{H}_2\text{F}^+ + \text{AsF}_6^-$$ (8.3) $$XeF_2 + AsF_5 \Longrightarrow XeF^+ + AsF_6^-$$ (8.4) $$XeF_2 + H_2F^+ \Longrightarrow XeF^+ + 2 HF$$ (8.5) $$XeF_2 + XeF^+ \longrightarrow Xe_2F_3^+$$ (8.6) is expected from the decomposition of $FO_2SN(H)-Xe^+AsF_6^-$ by analogy with the decomposition of $F_5TeN(H)-Xe^+AsF_6^-$ (Chapter 6), with HF arising from equilibrium (8.1) and from the oxidation of $FO_2SNH_3^+$ by BrF_5 solvent (see Chapter 7). ### (C) NATURE OF THE BONDING IN THE FO2SN(H)-Xe+ CATION Previous NMR studies of xenon(II) derivatives containing XeF groups bonded to oxygen or fluorine have shown that the NMR parameters measured in the ¹⁹F and ¹²⁹Xe NMR spectra can generally be used to assess the relative covalent characters of the Xe-O, Xe-F bridge and Xe-F terminal bonds. 103,104,108 In general, as the covalent character of the Xe-L (L = ligand atom) bond increases, the terminal Xe-F bond becomes more ionic, decreasing the formal charge on xenon. These trends are paralleled by increased shielding of the 129Xe resonance and decreases in both ${}^1J({}^{129}\text{Xe-}{}^{19}\text{F})$ and $\delta({}^{19}\text{F})$ for the terminal Xe-F group. Recently, Schrobilgen 26 extended the trend to include neutral and cationic species containing xenon(II)-nitrogen bonds. Table 8.1 lists the 129 Xe NMR chemical shifts and reduced coupling constants $^{1}K(Xe-N)$ for a number of representative xenon(II)-nitrogen bonded compounds for comparison with FO2SN(H)-Xe+. The FO₂SN(H)-Xe⁺ cation has one of the most shielded ¹²⁹Xe NMR resonances for a compound containing a xenon-nitrogen bond. Compounds whose 129Xe resonances are similar to that of the $FO_2SN(H)-Xe^+$ cation are $F_4S=N-Xe^+$ (-2672 ppm), $^{26,180}F_5TeN(H)-Xe^+$ (-2841 ppm; Chapter 5) and F₅SN(H)-Xe⁺ (-2886 ppm). ^{26,180} Assuming the validity of the NMR spectroscopic trends mentioned above, the highly shielded ¹²⁹Xe NMR resonance of FO₂SN(H)-Xe⁺ indicates a very covalent Xe-N bond, which arises from the relatively low electronegativity of the FO₂SN(H)ligand. From the highly shielded ¹²⁹Xe NMR resonance for the FO₂SN(H)-Xe⁺ cation, a high degree of Xe-F bond ionic character is expected, and this is manifested in the absence of a xenon- fluorine scalar coupling in the 129 Xe NMR spectra, indicating complete Xe-F bond ionization in solution. The same argument can be applied to $F_4S=N-Xe^+$, $F_5TeN(H)-Xe^+$ and $F_5SN(H)-Xe^+$, since the Xe-F bonds are also ionized in solution. The remaining xenon-nitrogen bonded compounds in Table 8.1 involve ligands of higher electronegativity, resulting in Xe-F bonds with considerable covalent character. In agreement with the above trends, the ¹²⁹Xe resonances of these compounds are between 600 and 1100 ppm more deshielded than those observed for FO2SN(H)- Xe^+ , $F_5XeN(H)-Xe^+$ (X = S, Te), and $F_4S=N-Xe^+$. An apparent anomaly in Table 8.1 is the $(FO_2S)_2N-Xe^+$ cation, for which $\delta(^{129}Xe)=-1943$ ppm, since according to the above trends, the 129Xe resonance is expected to be much more shielded as a result of the ionized Xe-F bond. However, the high electronegativity of the (FO₂S)₂N- ligand results in substantial Xe-F bond covalent character in (FO₂S)₂NXeF. The crystallographically determined Xe-F and Xe-N bond lengths are similar [1.967(3) and 2.200(3) Å, respectively],57 and a determination of the Xe-F and Xe-N bond orders using the bond order-bond length relationship of Pauling³⁰⁵ indicates that the valence bond formulation (FO₂S)₂N⁻ Xe-F⁺ dominates over the formulation (FO₂S)₂N-Xe⁺ F⁻ by 59:41.57 As expected, the Xe-F bond is not ionized in BrF₅ solvent.56-58 Ionization of the Xe-F bond in solution to give $(FO_2S)_2N-Xe^+$ requires the use of the strong fluoride acceptor SbF_5 as solvent.60 The effect of ligand electronegativity on the 129 Xe chemical shift and Xe-F bond ionization is further illustrated by comparing resonance structures for the hypothetical compound, $FO_2SN(H)$ -Xe-F, with those for the neutral fluorosulfate derivative, FO_2SO -Xe-F, since FO_2SO -and $FO_2SN(H)$ - are isoelectronic. The electronegativity of FO_2SO - is undoubtedly greater than that of $FO_2SN(H)$ -, since FO_2SOH is a strong acid $(H_o = -15.1)^{306}$ and FO_2SNH_2 is a nitrogen base FO₂SN(H)-Xe⁺ F⁻ $$\longleftrightarrow$$ FO₂SN(H)⁻ Xe-F⁺ \otimes FO₂SO-Xe⁺ F⁻ \Leftrightarrow FO₂SO-Xe⁺ F⁻ \otimes 8.8 which can be protonated in HF solvent acidified with AsF₅ (see Chapter 7). The ionization of the Xe-F bond for FO₂SN(H)-Xe-F in solution is
represented by dominance of resonance Structure 8.6 to the exclusion of Structure 8.7. The Xe-F bond in FO₂SO-Xe-F is not ionized in solution, since ${}^{1}J({}^{129}\text{Xe}^{-19}\text{F}) = 5830$ Hz is observed in the ${}^{129}\text{Xe}$ NMR spectrum in BrF₅ solvent. 108 This indicates substantial Xe-F bond covalent character in FO₂SOXeF. The crystallographically determined Xe-F [1.940(8) Å] and Xe-O [2.155(8) Å] bond lengths for FO₂SOXeF have been used to assess relative covalent characters of the Xe-F and Xe-O bonds using the bond order-bond length relationship of Pauling. 38 This relationship indicates that the canonic form FO₂SO·Xe-F⁺ (Structure 8.8) has a 63:37 dominance over the canonical form FO₂SO-Xe⁺ F (Structure 8.9). As expected from the substantial Xe-F bond covalent character, the ${}^{129}\text{Xe}$ NMR resonance of FO₂SOXeF [$\delta({}^{129}\text{Xe}) = -1666$ ppm] 108 is much more deshielded than the FO₂SN(H)-Xe⁺ cation. The magnitude of the reduced coupling constant ${}^{1}K(Xe-N)$ for the FO₂SN(H)-Xe⁺ cation (0.322 x 10^{22} NA⁻²m⁻³) may be used to gain insight into the bonding by comparison with other xenon(II)-nitrogen bonded compounds (see Table 8.1). In a previous study, ⁷³ the hybridization at nitrogen in the HC=N-XeF+ cation was determined to be sp by comparing the magnitude of ${}^{1}K$ (Xe-N) (1.389 x 10^{22} NA ${}^{-2}$ m ${}^{-3}$) for the HC≡N-XeF⁺ cation with that of (FO₂S)₂N-XeF (0.949 \times 10²² NA⁻²m⁻³).⁵⁷ The use of ${}^{1}K(Xe-N)$ to assess the hybridization at nitrogen assumes that the Fermi contact term is the dominant mechanism for the xenon-nitrogen nuclear spin-spin coupling, which is generally true for spin-spin coupling involving heavy nuclides.²⁶⁰ Assessment of the hybridization at nitrogen in Xe-N bonded compounds uses a formalism developed by Pople and Santry²⁴² for Fermi contact-dominated scalar couplings, which states that the magnitude of the scalar coupling between two nuclei is proportional to the product of the valence s-electron densities at the coupled nuclei. The use of the magnitude of ${}^{1}K(Xe-N)$ to assess the hybridization at nitrogen in HC≡N-XeF+ depended on the assumption that the s-electron density at xenon in HC≡N-XeF+ was essentially the same as in (FO₂S)₂NXeF, and the difference in the nitrogen hybridization in the two compounds accounted for the different magnitudes of ${}^{1}K(Xe-N)$. Thus the hybridization at nitrogen in the HC≡N-XeF+ cation could be determined, since the formal hybridization at nitrogen in (FO₂S)₂NXeF is considered to be sp², as evidenced by the short S-N bond lengths [1.628(3) and 1.623(3) Å], indicating S-N π -bonding, and the trigonal planar nitrogen geometry.⁵⁷ The same treatment cannot be used to assess the nitrogen hybridization in the FO₂SN(H)-Xe⁺ cation since the Xe-F bond is ionized in solution, and therefore the s-electron density at xenon cannot be assumed to be the same as in HC≡N-XeF+ or (FO₂S)₂N-XeF. A comparison of the reduced coupling constants of FO2SN(H)-Xe+ and (FO2S)2N-Xe+ would seem reasonable for assessing the nitrogen atom hybridization of the FO₂SN(H)-Xe⁺ cation, but the magnitudes of ${}^{1}K(Xe-N)$ are opposite to what is expected. The single crystal X-ray structure of (FO₂S)₂N-Xe⁺Sb₃F₁₆⁻⁶⁰ shows that the nitrogen center is trigonal planar in the (FO₂S)₂N-Xe⁺ cation, and the S-N bond lengths [1.68(1) to 1.70(1) Å] are significantly shorter than S-N single bonds [cf., O₃SNH₃: S-N = 1.7714(3) Å], 287 indicating substantial S-N π bonding and formal sp^2 hybridization at nitrogen. The FO₂SN(H)-Xe⁺ cation is related to (FO₂S)₂N-Xe⁺ by replacement of one FO_2S - group with a hydrogen atom, so that the degree of S-N π bonding in the former can be assumed to be reduced relative to the latter since only half the number of resonance structures involving S-N π bonding can be drawn [compare resonance Structures 8.10 - 8.13 with Structures 8.2 - 8.4]. As a result, the s-character of the nitrogen valence orbitals is expected to be lower (i.e., greater p character) in the FO₂SN(H)-Xe⁺ cation. Assuming dominance of the Fermi contact mechanism for the Xe-N bond, a greater magnitude of 1K(Xe-N) is expected, opposite to the measured values of ${}^{1}K(Xe-N)$. An alternative analysis of ${}^{1}K(Xe-N)$ in the FO₂SN(H)-Xe⁺ and (FO₂S)₂N-Xe⁺ cations, which also assumes dominance of the Fermi contact term, is derived from a study of the magnitudes of ${}^{1}J({}^{15}N-{}^{1}H)$ in main group compounds of the form $X^{15}NH_{2}$ and X₂¹⁵NH by Cowley and Schweiger, 124 which relied on the so-called isovalent hybridization hypothesis.²⁶¹ This hypothesis states that s-character concentrates in the bonds which are directed toward electropositive substituents. It was observed that increasing electronegativity of X resulted in increasing magnitudes of ${}^{1}J({}^{15}N-{}^{1}H)$, which implied that nitrogen 2s character was progressively diverted into the NH bonds with increased electronegativity of X. As expected from the Fermi contact term, in most cases the value of ${}^{1}J({}^{15}N-{}^{1}H)$ increased in proceeding from the XNH_2 to the X_2NH compound. Once again, the opposite trend is observed in the $FO_2SN(H)-Xe^+$ and (FO₂S)₂N-Xe⁺ cations since the (FO₂S)₂N- group is expected to be more electronegative than the $FO_2SN(H)$ - group. The failure to qualitatively predict the relative magnitudes of ${}^1K(Xe-N)$ by only considering the Fermi contact term may indicate that the dipolar and orbital contributions²⁵¹ to the xenon-nitrogen scalar coupling may be important. Although the Fermi contact term is expected to be the largest contributor to the Xe-N scalar coupling,260 it may be similar for the FO₂SN(H)-Xe⁺ and (FO₂S)₂NXe⁺ cations. The presence of Xe-N π -bonding in the FO₂SN(H)-Xe⁺ and (FO₂S)₂N-Xe⁺ cations, which is represented by resonance Structures 8.3 and 8.11, respectively, may give rise to a significant orbital contribution, K^2_{AB} to the scalar Xe-N coupling. Factors contributing to the magnitude of K^2_{AB} are described in equation (8.7) using an average $$K^{2}_{AB} = \mu_{o}(\mu_{B})^{2} \langle r_{A}^{-3} \rangle_{p} \langle r_{B}^{-3} \rangle_{p} (^{3}\Delta E)^{-1}$$ $$\times \left[2(P_{\sigma}^{2} + P_{\pi}^{2} + P_{\pi}^{2}) + 3(P_{\sigma}P_{\pi} + P_{\sigma}P_{\pi}^{2} + P_{\pi}P_{\pi}^{2}) \right]$$ (8.7) energy approximation in a LCAO framework. The terms μ_o and μ_B are the permittivity of a vacuum and the Bohr magneton, respectively, $\langle r_A^{-3} \rangle_p$ and $\langle r_B^{-3} \rangle_p$ are the inverse cube radial distributions of the valence p orbitals for the coupled nuclei, $(^3\Delta E)$ is the average excitation energy and P_σ . P_π and P_π are the σ and π bond orders for the bonding between the coupled nuclei, A and B. In comparing $FO_2SN(H)-Xe^+$ and $(FO_2S)_2NXe^+$, an argument for a greater Xe-N π -bonding contribution in the former can be made by examining resonance Structures 8.2 to 8.4 and 8.10 to 8.13, which in turn rationalizes the relative magnitudes of $^1K(Xe-N)$. The greater electronegativity of $(FO_2S)_2N-$ than $FO_2SN(H)-$ and the greater proportion of resonance contributors involving S-N π -bonding in the $(FO_2S)_2N-Xe^+$ cation both contribute to a smaller degree of Xe-N π -bonding in the $(FO_2S)_2N-Xe^+$ cation than in the $FO_2SN(H)-Xe^+$ cation. A larger Xe-N π -bonding contribution in $FO_2SN(H)-Xe^+$ is expected to result in larger values of P_π and P_π . in the orbital contribution to the Xe-N scalar coupling, thus increasing $^1K(Xe-N)$ relative to $(FO_2S)_2N-Xe^+$. #### CHAPTER 9 ### SUMMARY, CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH #### (A) <u>SUMMARY</u> The present work represents a significant extension of noble-gas chemistry, in particular, the synthesis of several compounds containing xenon-nitrogen and xenon-oxygen bonds. This has been achieved by HF elimination reactions of the salts, CF₃C(OH)NH₂⁺AsF₆⁻, F₅TeNH₃⁺AsF₆⁻ and $FO_2SNH_3^+AsF_6^-$ with XeF_2 in HF and BrF_5 solvents, resulting in the preparation of $AsF_6^$ salts of the novel cations, CF₃C(OXeF)NH₂⁺, F₅TeN(H)-Xe⁺ and FO₂SN(H)-Xe⁺. The HF elimination reactions are analogous to the reaction of the strong oxoacids CF₃C(O)OH, F₅TcOH and FO₂SOH with XeF₂, which result in the neutral xenon(II) derivatives, CF₃C(O)O-XeF, F₅TeO-XeF and FO₂SO-XeF which were prepared in the decade which followed the discovery of noble-gas reactivity (see Chapter 1). The ligands used in the present studies are among the least electronegative ligands known to form isolable xenon(II) derivatives. Since high ligand electronegativity is central to the stabilization of xenon(II) derivatives (see Chapter 1), the low stability of these compounds is to be expected. The salts CF₃C(OXeF)NH₂⁺AsF₆⁻ and F₅TeN(H)-Xe⁺AsF₆ isolated from solution decompose rapidly at 0 and -30 °C, respectively, whereas FO₂SN(H)-Xe⁺AsF₆⁻ could not be isolated from solution owing to decomposition above ca. -40 °C. Prior to this work, only one example of xenon(II) bonded to an sp3-hybridized nitrogen center was known, namely F₅SN(H)-Xe⁺AsF₆. 26 In the F₅TeN(H)-Xe⁺ and FO₂SN(H)-Xe⁺ cations, xenon(II) is bonded to nitrogen centers which are formally sp^3 -hybridized, providing two new examples of a rare class of compounds. The salts, CF₃C(OH)NH₂⁺AsF₆⁻, F₅TeNH₃⁺AsF₆⁻ and FO₂SNH₃⁺AsF₆⁻, which are starting materials for the preparation of the xenon cations, represent the first reported examples of the protonated forms of CF₃C(O)NH₂, F₅TeNH₂ and FO₂SNH₂. The natural abundance salts and 99.5% ¹⁵N-enriched F₅TeNH₃⁺AsF₆⁻ and FO₂SNH₃⁺AsF₆⁻ have been fully characterized by ¹⁹F, ¹³C, ¹H, ¹⁵N and ¹²⁵Te NMR spectroscopy in HF and/or BrF₅ solvents. They have also been characterized in the solid state by Raman spectroscopy, and the assignments for the Raman spectra of F₅TeNH₃⁺AsF₆⁻ and FO₂SNH₃⁺AsF₆⁻ were aided by obtaining the Raman spectra
of the 99.5% ¹⁵N-enriched salts and observing the ^{14/15}N isotopic shifts of bands associated with the vibrational motions of the nitrogen atom. The NMR and Raman spectral data for the unprotonated compounds, CF₃C(O)NH₂, F₅TeNH₂, and FO₂SNH₂ were compared with the data for the salts of the protonated compounds, and the effect of protonation on the bonding in these ligands was assessed. ## (i) Preparation and Characterization of CF₃C(OH)NH₂⁺AsF₅⁻. The CF₃C(OXeF)NH₂⁺ cation was best prepared in BrF₅ solvent from the HF elimination reaction of the conjugate acid, CF₃C(OH)NH₂⁺, with XeF₂ [equation (3.2)]. As well as facilitating the HF elimination reaction, protonation of CF₃C(O)NH₂ made the ligand more resistent to electrophilic attack by BrF₅ solvent. Xenon difluoride is also a weaker oxidative fluorinator than XeF⁺, which reduced the rate of ligand oxidation. Attempting the reaction of XeF⁺AsF₆⁻ and CF₃C(O)NH₂ in BrF₅ solvent resulted in extensive oxidative decomposition of CF₃C(O)NH₂. The salt, CF₃C(OH)NH₂+AsF₆, was prepared by reacting CF₃C(O)NH₂ with an excess of AsF₅ in anhydrous HF solvent at -50 °C. The resulting white powder decomposed slowly (ca. one month) with liquefaction at room temperature under anhydrous conditions, but was indefinitely stable at -78 °C. The solution structure of CF₃C(OH)NH₂⁺ was determined by obtaining the ¹⁹F, ¹H and ¹³C NMR spectra of CF₃C(OH)NH₂⁺AsF₆ in BrF₅ solvent. The ¹H NMR spectrum indicated chemical inequivalence of the amido protons resulting from hindered rotation of the C-N bond which possesses considerable double bond character, a proton resonance attributable to the protonated carbonyl group was also observed. The NMR data were consistent with resonance Structures 3.1 and 3.2. The assignment of the chemically inequivalent amido protons in the ¹H NMR spectrum was facilitated by use of a two-dimensional heteronuclear (¹H-¹⁹F) NOESY experiment. The Raman spectrum (-165 °C) of $CF_3C(OH)NH_2^+AsF_6^-$ was consistent with resonance Structures 3.1 and 3.2. O-protonation was evident from the increase and decrease, respectively, of the bands assigned to v(C-N) and v(C-O), relative to those for $CF_3C(O)NH_2$, since O-protonation is expected to increase and decrease, respectively, the C-N and C-O double bond characters. A band attributable to $\delta(OH)$ was observed but bands attributable to $\gamma(OH)$ and v(OH) were not observed. The characteristic low intensity of the vibrations of small atoms was assumed to be responsible for the unobserved $\gamma(OH)$ and v(OH) bands. Bands attributable to AsF_6^- were also observed. ## (ii) Preparation and Characterization of CF₃C(OXeF)NH₂+AsF₅ and CF₃C(OH)NH₂+AsF₅-XeF₂xHF The first adiabatic ionization potential (IP₁) of $CF_3C(O)NH_2$ (10.77 eV)¹⁰⁶ is similar to the observed electron affinity of XeF^+ (10.77 eV),²⁶ suggesting that it may be resistent to oxidation by XeF^+ at low temperature. The reaction of equimolar amounts of $CF_3C(O)NH_2$ and XeF⁺AsF₆⁻ in HF solvent did not result in measurable amounts of CF₃C(OXeF)NH₂⁺AsF₆⁻ (monitored by 19 F and 129 Xe NMR spectroscopy), owing to protonation of CF₃C(O)NH₂ to give CF₃C(OH)NH₂⁺ in the XeF⁺-acidified HF solvent [equation (3.3)]. However, slow removal of HF solvent under vacuum at -50 °C resulted in a white powder. The Raman spectrum (-165 °C) was consistent with the formulation, CF₃C(OXcF)NH₂⁺ AsF₆⁻. The solid decomposed with gas evolution and liquefaction at temperatures approaching 0 °C. The 129Xe and 19F NMR spectra of the undecomposed white powder dissolved in BrF₅ solvent at -60 °C confirmed that the material was CF₃C(OXeF)NH₂⁺AsF₆⁻. The solution structure of CF₃C(OXeF)NH₂⁺AsF₆⁻ was determined by dissolving equimolar amounts of CF₃C(OH)NH₂⁺AsF₆⁻ and XeF₂ in BrF₅ solvent at -60 °C and obtaining the 129Xe, 19F, 1H and 13C NMR spectra. The NMR spectra indicated an HF elimination equilibrium, resulting in the formation of CF₃C(OXeF)NH₂⁺AsF₆⁻ [equation (3.2)]; the ratio $[CF_3C(OH)NH_2^+]$: $[CF_3C(OXeF)NH_2^+]$ was determined to be 3:1 from integration of the NMR resonances. The CF3C(OXeF)NH2+ cation can be thought of as an adduct cation, where CF₃C(O)NH₂ behaves as an oxygen-donor towards the Lewis acid cation, XeF+; the synthesis of CF₃C(OXeF)NH₂⁺ represents the second reported example of an adduct of XeF⁺ with an oxygen donor ligand; the first to be reported was the thermally unstable SbF6 salt of the sulfurane adduct, $(CF_3)_2S=O-XeF^+SbF_6^{-.85}$ The 1H NMR spectrum of $CF_3C(OXeF)NH_2^+$ in BrF_5 solvent indicated chemical inequivalence of the amido protons, resulting from hindered rotation about the C-N bond. The hindered rotation results from substantial C-N double bond character, as depicted in resonance Structures 3.3 and 3.4. Assignment of the chemically inequivalent amido protons in the ¹H NMR spectrum was facilitated by use of a two-dimensional heteronuclear (19F-1H) NOESY experiment. The NOESY technique is well established as a very important tool for determining the spatial orientation of organic molecules in solution. This work represented the first use of a NOESY experiment to facilitate the NMR assignments of a thermally unstable noble-gas compound in solution. Combining stoichiometric amounts of CF₃C(OH)NH₂⁺AsF₆⁻ and XeF₂ in HF solvent at -50 °C resulted in pale yellow solutions. As described above, slow removal of HF under vacuum over four hours resulted in completion of the HF elimination reaction depicted in equation (3.2), resulting in the isolation of essentially pure CF₃C(OXeF)NH₂⁺AsF₆⁻. If the HF solvent was removed rapidly under vacuum at -50 °C, a white solid precipitated after removal of approximately half of the solvent. After complete removal of the solvent, the Raman spectrum (-165 °C) of the resulting white powder was consistent with a hydrogen-bonded solvate, which was formulated as CF₃C(OH)NH₂⁺AsF₆⁻-XeF₂xHF. This indicated that the faster rate of HF removal resulted in the precipitation of a hydrogen-bonded solvate [see equation (3.4)] The Raman spectrum (Figure 3.9) exhibits two intense peaks at 515 and 511 cm⁻¹, which are best described as the factor group split symmetric F-Xe-F stretch of hydrogen-bonded XeF2. The absence of a band assignable to the asymmetric F-Xe-F stretch indicates that the local $D_{\infty h}$ symmetry of XeF₂ in the solvate is preserved, since the asymmetric F-Xe-F stretch (Σ_{u}^{+} symmetry) is Raman forbidden for $D_{\infty h}$ symmetry. Bands were observed which were consistent with the presence of CF₃C(OH)NH₂⁺ and AsF₆. It is likely that XeF₂ is hydrogen-bonded to the protons of $CF_3C(OH)NA_2^+$ in a fashion that conserves the local $D_{\infty h}$ symmetry of XeF_2 . Possible arrangements of XeF₂ in the solid are shown in Structures 3.5 - 3.7. The variation in products which resulted from the reaction of CF₃C(OH)NH₂⁺AsF₆⁻ and XeF₂ in HF solvent depended on the rate of HF removal. This illustrates the need to closely monitor the reaction conditions used for the preparations of xenon compounds. This is a reiteration of the same statement made by Bartlett *et al.*,²⁸ concerning the carefully controlled conditions required to properly conduct HF elimination reactions of strong oxoacids such as HSO₃F, CF₃C(O)OH and HClO₄ with XeF₂. #### (iii) Preparation and Characterization of F₅TeNH₂ and F₅TeNH₃⁺AsF₅⁻ == : The importance of F₅TeNH₃⁺AsF₆⁻ in this work lies primarily in its use as a precursor for the preparation of F₅TeN(H)-Xe⁺AsF₆⁻ in BrF₅ and HF solvents. This Thesis also reports the first isolation of the protonated form of F₅TeNH₂. The salt, F₅TeNH₃⁺AsF₆⁻, was prepared by reaction of F₅TeNH₂ and excess AsF₅ in HF solvent at -55 °C, which resulted in a white powder that was indefinitely stable at room temperature in the absence of moisture. The solution structures of natural abundance and 99.5% ¹⁵N-enriched F₅TeNH₃⁺AsF₆⁻ were determined by ¹⁹F, ¹H, ¹⁵N and ¹²⁵Te NMR spectroscopy in HF and/or BrF₅ solvents. The Raman spectra at ambient temperature of natural abundance and 99.5% ¹⁵N-enriched samples were obtained, and with the aid of ^{14/15}N isotopic shifts of bands associated with the vibrations of the nitrogen center, detailed assignments of all vibrational modes were made. The vibrational assignments for F_5 TeNH₂, although previously published.²³⁰ were reassigned using additional information provided from the ^{14/15}N isotopic shifts in the Raman spectra of the natural abundance and 99.5% ¹⁵N-enriched samples. A comparison of the Raman and ¹⁹F NMR spectra of natural abundance and 99.5% ¹⁵N-enriched F_5 TeNH₃⁺AsF₆⁻ with those of natural abundance and 99.5% ¹⁵N-enriched F_5 TeNH₂ indicated that the Te-N bond order decreases on protonation of F_5 TeNH₂. This implied some degree of Te-N π -bonding in F_5 TeNH₂, which decreased upon incorporation of the nitrogen lone pair in an electron-pair bond with H⁺ in F_5 TeNH₃⁺. The Raman spectra and ¹⁹F NMR spectra also indicated that protonation increases the Te-F bond orders, particularly the axial Te-F bond. The trends observed on protonation of $F_5 TeNH_2$ to give $F_5 TeNH_3^+$ are consistent with a reduction in Te-N π -bonding, and are directly analogous to the changes in the bonding of $F_5 XO^-$ upon protonation to give $F_5 XOH$ (X = S, Se, Te). ⁵² #### (iv) [Pentafluorotellurium(VI)amido]xenonium(II) Hexafluoroarsenate; #### F₅TeN(H)-Xe⁺AsF₆ The amine, F_5 TeNH₂, is valence isoelectronic with F_5 TeOH, which is known to undergo HF elimination reactions with XeF₂ to give FXeOTeF₅ and Xe(OTeF₅)₂. Although the resistence of F_5 TeNH₂ to oxidation by XeF⁺ could not be estimated in the absence of photoionization studies for this compound, it is reasonable to assume that the inductive effect of five fluorines on tellurium, by analogy with F_5 TeOH, might result in considerable oxidative resistence. The basicity of F_5 TeNH₂²³⁰ was confirmed by the stability of the F_5 TeNH₂-AsF₅ adduct at room temperature.
Prior to this study, a considerable number of cations with Xe-N bonds were prepared from the reaction of the Lewis acid XeF⁺ with oxidatively resistent nitrogen bases, D, such as the nitriles, RC=N (R = alkyl, C_6F_5 , fluoroalkyl, H) the pyridines C_5F_5 N and 4-CF₃C₅F₄N and s-C₃F₃N₃ [equation (9.1)]. All of the ligands mentioned above contain sp- or sp^2 -hybridized nitrogen $$D + XeF^{\dagger}AsF_{6}^{-} \longrightarrow D-XeF^{\dagger}AsF_{6}^{-}$$ (9.1) centers, and prior to this work, no attempt was made to react an oxidatively resistent amine $(sp^3$ -hybridized nitrogen center) with XeF⁺ with the aim of preparing a cation of the form R-NH₂-XeF⁺. It was shown in Chapter 5 that the reaction of F_5 TeNH₂ and XeF⁺AsF₆⁻ in HF solvent or the reaction of F_5 TeNH₃⁺AsF₆⁻ and XeF₂ in BrF₅ solvent resulted in the formation of F_5 TeN(H)-Xe⁺AsF₆⁻. The F_5 TeN(H)-Xe⁺ cation was not the expected product from the simple adduct formation of the base F_5 TeNH₂ and the Lewis acid, XeF⁺. The anticipated cation, F_5 TeNH₂-XeF⁺, was not observed and it was postulated that F_5 TeNH₂-XeF⁺ eliminated HF according to equation (9.2). The F_5 TeN(H)-Xe⁺ cation was characterized in solution by ¹⁹F, ¹H, ¹²⁹Xe and ¹²⁵Te NMR $$F_5 \text{TeNH}_2 - \text{XeF}^+ \longrightarrow F_5 \text{TeN(H)} - \text{Xe}^+ + \text{HF}$$ (9.2) spectroscopy in BrF₅ and HF solvents. Quadrupolar collapse of the 129 Xe- 14 N scalar coupling prevented the use of NMR to definitively characterize the Xe-N bond in solution. It was possible to observe the 129 Xe- 15 N scalar coupling, however, by preparing the 99.5% 15 N-enriched 15 TeN(H)-Xe⁺ cation. This also facilitated the observation of the 15 N NMR spectrum of 15 TeN(H)-Xe⁺. A dominant relaxation mechanism for 129 Xe is shielding anisotropy, which results in significant line broadening at high field strengths. This was demonstrated in the 129 Xe NMR spectrum of 99.5% 15 N-enriched F_5 TeN(H)-Xe⁺ with an external magnetic field strength of 11.7440 T; only the one-bond scalar coupling 1 J(129 Xe- 15 N) was resolved. However, all possible spin-spin couplings were observed in the 129 Xe NMR spectrum at 7.4630 T, except the three-bond scalar coupling of 129 Xe with the axial fluorine-on-tellurium(VI). This posed the possibility of a misassignment in the 129 Xe NMR spectrum, since 2 J(129 Xe- 1 H) might have been the unresolved coupling, as opposed to 3 J(129 Xe- 1 9F_{ax}). The unresolved coupling was confirmed to be 3 J(129 Xe- 1 9F_{ax}) by performing a (1 H- 1 29Xe) INEPT experiment; this was the first example of the use of the well-established INEPT pulse sequence for the characterization of a noble-gas compound. The salt F_5 TeN(H)-Xe⁺As F_6 ⁻ was isolated as an orange microcrystalline powder by precipitation from HF solvent at -40 °C. The salt decomposed rapidly in the solid state at -30 °C. Natural abundance and 99.5% ¹⁵N-enriched samples of F_5 TeN(H)-Xe⁺As F_6 ⁻ were characterized by Raman spectroscopy at -165 °C. The ^{14/15}N isotopic shifts associated with the vibrations of the nitrogen atom allowed for the assignments of bands attributable to the asymmetric and symmetric stretches of the Xe-N-Te linkage, the NH stretches and bends, and vibrations of the F_5 TeN- group. Minor amounts of the salts, Xe_2F_3 ⁺As F_6 ⁻ and F_5 TeNH $_3$ ⁺As F_6 ⁻, were also detected in the Raman spectra, and arise from decomposition reactions (Chapter 6) and equilibrium (5.4), respectively. ## (v) <u>Decomposition of F₅TeN(H)-Xe⁺ in Solution and Characterization and Decomposition of F₅TeNF₂</u> Chapter 6 describes the decomposition of $F_5TeN(H)-Xe^+$ in HF and BrF_5 solvents, using primarily ^{19}F NMR spectroscopy. Slow decomposition of $F_5TeN(H)-Xe^+AsF_6^-$ in BrF_5 (-40 °C) and HF (-33 °C) solvents resulted in the formation of the difluoamino compound, F_5TeNF_2 . This species was unknown prior to this study. Natural abundance and 99.5% ^{15}N -enriched F_5TeNF_2 have been characterized in HF and BrF_5 solvents by ^{19}F and ^{15}N NMR spectrocopy. The decomposition of $F_5TeN(H)-Xe^+AsF_6^-$ was postulated to involve nucleophilic fluorination of nitrogen with elimination of xenon gas and AsF_5 [equations (6.1) and (6.2)]. This mode of decomposition is similar to that observed for the phenylxenonium(II) cations, $R-Xe^+$ ($R=C_6F_5$, $m-CF_3C_6H_4$, $p-FC_6H_4$), as dicussed in Chapter 6. The nucleophilic fluorination of $F_5TeN(H)-Xe^+$ represents the first complete study of a non-radical decomposition mechanism for a compound containing a xenon(II)-nitrogen bond. The complete decomposition of F_5TeNF_2 to $FN\equiv N^+$ and TeF_6 in HF solvent at -20 °C was observed by ¹⁹F NMR spectroscopy; some $F_5TeN(H)$ -Xe⁺ was still observed. The decomposition of difluoramino compounds, RNF_2 ($R=F_5S$, Cl, F_3C , F_3CO , F_5SO)²⁷⁵ in the presence of Lewis acids such as SbF_5 and AsF_5 indicates that transient fluoronitrenes, NF, may be produced. In the present system, an alternative mechanism for the formation of the decomposition products was proposed [see equations (6.16) to (6.27)]. It was postulated that $F_5TeNH_3^+$, which was present in HF solution according to equilibrium (5.4), reacted with F_5TeNF_2 . The strong Lewis fluoroacid, AsF_5 , which was generated from the decomposition of F_5 TeN(H)-Xe⁺AsF₆⁻ (see above), likely catalyzed the reaction by abstraction of fluoride from F_5 TeNF₂ [equation (6.19)]. The reaction of F_5 TeNH₃⁺ and F_5 TeNF₂ is directly analogous to the well-established reactions of primary amines with difluoramine, HNF₂. One result of the decomposition of F_5 TeNF₂ was the increased fluoroacidity of the HF solution. Evidence for this was provided by the coalescence of the AsF₆⁻, HF and XeF₂ ¹⁹F NMR resonances, which resulted from exchange of these species with AsF₅ according to equations (6.3) to (6.5). #### (vi) Preparation and Characterization of FO₂SNH₂ and FO₂SNH₃+AsF₆ The amides, FO₂SNH₂ and FO₂SNH₃+AsF₆, were prepared primarily for their use as ligands for the preparation of $FO_2SN(H)-Xe^+AsF_6^-$. The salt, $FO_2SNH_3^+AsF_6^-$, was prepared by reaction of FO₂SNH₂ and excess AsF₅ in anhydrous HF solvent at -40 °C. Although preparations of FO₂SNH₂ were previously reported (see Chapter 7) no attempts to protonate FO₂SNH₂ have been published. Therefore a detailed Raman and NMR (¹H and ¹⁹F) spectrocopic study of natural abundance and 99.5% 15N-enriched FO₂SNH₂ and FO₂SNH₃+AsF₅ was performed. The vibrational spectrum of FO₂SNH₂ was reported by Semmoud and Vast; 130 however, the assignments were improved in the present Raman spectrocopic study with the aid of $^{14/15}N$ isotopic shifts of bands associated with vibrations of the nitrogen center. In general, the assignments of Semmoud and Vast underestimate the degree of vibrational coupling of modes in FO₂SNH₂. This was evidenced by the fact that all bands in the Raman spectrum of FO₂SNH₂, except for those assigned to the symmetric and asymmetric S-O stretching modes, had an ^{14/15}N isotopic dependence. Assignments for the bands observed in the Raman spectra of FO₂SNH₃⁺AsF₆⁻ were also aided by the measurement of ^{14/15}N isotopic shifts. Comparing the Raman spectra of FO₂SNH₂ and FO₂SNH₃⁺AsF₆⁻ indicated changes in the bonding of the FO₂SNgroup on protonation of FO₂SNH₂ to give FO₂SNH₃⁺. Protonation of FO₂SNH₂ resulted in increased values for the S-F and S-O stretches, and a decrease in the S-N stretch. This was consistent with S-N π -bonding in FO₂SNH₂, which is reduced upon protonation of the nitrogen center by making the nitrogen lone pair of electrons unavailable for S-N π -donation. In a previous vibrational study, ¹³⁰ a similar reduction in S-N π -bonding was noted on protonation of NSO₂F²⁻ to give H₂NSO₂F. A similar reduction in S-N π -bonding was also reflected in the vibrational spectra and crystallographically determined bond lengths for the series, NSO₃³⁻, H₂NSO₃⁻ and H₃SO₃, and the analogous behavior in NSO₂F²⁻ and H₂NSO₂F was noted. The present work completes the comparison of the sulfurylamides and the fluorosulfurylamides ¹³⁰ by providing detailed vibrational assignments for FO₂SNH₂ and FO₂SNH₃⁺, which are isoelectronic with H₂NSO₃⁻ and H₃NSO₃. # (vii) <u>Preparation of [Fluorosulfurylamido]xenonium(II) Hexafluoroarsenate;</u> FO₂SN(H)-Xe⁺AsF₆⁻ Fluorosulfuryl amide, FO₂SNH₂, is isoelectronic with fluorosulfuric acid, FO₂SOH. Since the latter is known to undergo HF elimination reactions with XeF₂ to give FXeOSO₂F and Xe(OSO₂F)₂, it was postulated that FO₂SNH₂ might be sufficiently electronegative to form a compound containing a xenon(II)-nitrogen bond. Although no ionization potential data allowing an estimate of the oxidative resistence of FO₂SNH₂ was available, the success in the use of F₅TeNH₂ as a ligand for xenon(II) by analogy with F₅TeOH provided the incentive to attempt the analogous reactions with FO₂SNH₂. It was found that the reaction of equimolar amounts of FO₂SNH₂ and XeF⁺AsF₆⁻ in HF at -50 °C resulted in a yellow solution above white and yellow precipitates. The ¹²⁹Xe NMR spectrum was consistent with the preparation of FO₂SN(H)-Xe⁺, however, the resonance was broadened, and had an irregular shape (non-Lorentzian) due to the large amount of solid present in the sample. Complete decomposition of FO₂SN(H)-Xe⁺ had occurred within one hour. Warming of a similar sample to -35 °C in an attempt to dissolve the solids resulted in complete decomposition of FO₂SN(H)-Xe⁺ within 30 seconds. Protonation of FO₂SNH₂ in HF solvent in the presence of an excess amount of AsF₅ resulted in the N-protonated salt, FO₂SNH₃⁺AsF₆. Reaction of FO₂SNH₃⁺AsF₆⁻ with XeF₂ at -58 °C in BrF₅ solvent resulted in an HF elimination reaction to give FO₂SN(H)-Xe⁺ [equation (8.1)]. The ¹²⁹Xe NMR resonance (-2663 ppm) was a singlet; the failure to observe the one-bond 129Xe-14N coupling was attributed to quadrupolar collapse
resulting from the rapid relaxation of the quadrupolar ^{14}N (I = 1) nucleus. This was confirmed by preparing 99.5% ^{15}N -enriched FO₂SN(H)-Xe⁺; the ¹²⁹Xe NMR spectrum consisted of a doublet arising from the one-bond scalar coupling, ${}^{1}J({}^{129}Xe^{-15}N) = 109$ Hz. The scalar couplings ${}^{2}J({}^{129}Xe^{-1}H)$ and ${}^{3}J({}^{129}Xe^{-19}F)$ were not resolved. This was assumed to result from SA broadening of the ¹²⁹Xe NMR resonance, since broadening of this nature is proportional to the square of the external magnetic field strength, and the ¹²⁹Xe NMR spectrum was recorded using a very strong magnetic field (11.7440 T). A broad ¹²⁹Xe NMR resonance was also observed for ¹⁵Nenriched F₅TeN(H)-Xe⁺ at 11.7440 T; a significant reduction in the ¹²⁹Xe linewidth was observed at lower field. Natural abundance and 99.5% ¹⁵N-enriched samples of FO₂SN(H)-Xe⁺ cation were also characterized by ¹⁹F and ¹H NMR spectroscopy. The ¹H NMR spectrum of 99.5% ¹⁵N-enriched FO₂SN(H)-Xe⁺ consisted of a doublet arising from the one-bond scalar coupling, ¹J(¹H-¹⁵N). The ¹⁹F NMR spectrum consisted of a singlet, and the scalar couplings ${}^2J({}^{19}F_{-}{}^{15}N)$ and ${}^3J({}^{19}F_{-}{}^{1}H)$ were not resolved. Xenon-129 satellite peaks arising from ${}^3J({}^{19}F^{-129}Xe)$ and ${}^2J({}^{1}H^{-129}Xe)$ were not observed in the ${}^{19}F$ and ¹H NMR spectra, respectively. This was rationalized by considering the low concentration of FO₂SN(H)-Xe⁺ in BrF₅ solvent; integration of the ¹⁹F and ¹H NMR resonances indicated that the ratio $[FO_2SNH_3^+]$: $[FO_2SN(H)-Xe^+]$ was 8:1. The low equilibrium concentration of $FO_2SN(H)-Xe^+AsF_6^-$ in BrF_5 solvent and its thermal instability indicated that it was not feasible to attempt to isolate $FO_2SN(H)-Xe^+AsF_6^-$ in the solid state. The $FO_2SN(H)-Xe^+$ cation is certainly the most unstable xenon(II)-nitrogen bonded species to have been characterized in solution. (viii) Nature of the Bonding in CF₃C(OXeF)NH₂⁺, F₅TeN(H)-Xe⁺ and FO₂SN(H)-Xe⁺, and the Relative Electronegativities of the F₅TeN(H)- and FO₂SN(H)-Ligand Groups Previous NMR studies of xenon(II) derivatives containing Xe-F groups bonded to oxygen or fluorine have shown that the ¹⁹F and ¹²⁹Xe NMR parameters can be used to assess the relative covalent characters of the Xe-O, Xe-F bridge and terminal Xe-F bonds. In general, as the ionic character of the Xe-F bond increases, the ¹²⁹Xe NMR resonance becomes more shielded. This accompanied by decreasing magnitudes of ¹J(¹²⁹Xe-¹⁹F) and deshielded ¹⁹F NMR resonances. In compounds of the form R-Xe-F, increased Xe-F bond ionic character results from decreased electronegativity of the ligand, R. Therefore it is possible to qualitatively rank compounds of the form R-Xe-F according to the relative ionic characters of the Xe-R and Xe-F bonds based on the ¹⁹F and ¹²⁹Xe NMR parameters. The Raman data for compounds of the form R-Xe-F complements the bonding information obtained from the NMR parameters. In general, increased ionic character of the terminal Xe-F bond results in a decrease in the Xe-F stretching frequency. Table 3.2 was used to assess the relative ionic characters of the Xe-O and Xe-F bonds in CF₃C(OXeF)NH₂⁺ by comparing the ¹⁹F and ¹²⁹Xe NMR chemical shifts, $^{1}J(^{129}Xe^{-19}F)$ and v(Xe-F) for a series of compounds of the form R-Xe-F. The compounds have been ranked in order of increasing Xe-F bond ionic character; the magnitude of ${}^{1}J({}^{129}\text{Xe-}{}^{19}\text{F})$ has been used to rank the species since the ${}^{19}\text{F}$ and ${}^{129}\text{Xe}$ chemical shifts for xenon(II) compounds often vary depending on the temperature and solvent, and v(Xe-F) is often determined from the average of several peaks. The magnitude of ${}^{1}J({}^{129}\text{Xe}^{-19}\text{F})$ indicates that the Xe-F bond in $\text{CF}_3\text{C}(\text{OXeF})\text{NH}_2^+$ is more ionic than those in the recently characterized xenon-nitrogen bonded adduct cations, $F_3S \equiv N-XeF^+$ and $HC \equiv N-XeF^+$. It follows that the Xe-O bond is more covalent than the xenon-nitrogen bonds of those cations. It is interesting to compare the spectroscopic parameters of CF₃C(OXeF)NH₂⁺ and (CF₃)₂S=O-XeF⁺, since these are the only known examples of adduct cations containing xenon-oxygen bonds. Using similar arguments, it is clear that the Xe-O bond in CF₃C(OXeF)NH₂⁺ is more covalent. This is reasonable when one considers that π -donation from nitrogen to carbon in $CF_3C(OXeF)NH_2^+$ (see resonance Structures 3.3 and 3.4) may result in a formal oxygen hybridization that is intermediate between sp^2 and sp^3 . No such resonance contributors can be drawn for $(CF_3)_2S=O-XeF^+$, and the formal oxygen hybridization is sp^2 , which is expected to contribute to a higher ligand electronegativity due to the higher valence s-character of the oxygen hybrid orbitals. The ¹²⁹Xe NMR chemical shifts of F₅TeN(H)-Xe⁺ and FO₂SN(H)-Xe⁺ are among the most shielded ¹²⁹Xe NMR resonances for xenon(II) compounds containing xenon-nitrogen bonds (see Table 5.3). Only two other cations containing xenon(II)- nitrogen bonds have similar 129 Xe NMR chemical shifts, namely, F_4 S=N-Xe⁺ and F_5 SN(H)-Xe⁺. The 129 Xe NMR chemical shifts of all other compounds containing xenon(II)-nitrogen bonds are deshielded by 600 to 1000 ppm relative to the xenon(II)-nitrogen bonded cations mentioned above. The absence of Xe-F bonds in these cations is consistent with the highly shielded 129 Xe NMR resonances. As mentioned above, increasing Xe-F bond ionic character in R-Xe-F compounds is accompanied by increased shielding of the 129 Xe NMR resonances. The cations F_5 TeN(H)-Xe⁺, F_2 SN(H)-Xe⁺ may be considered as compounds of the form R-Xe-F, where the Xe-F bond is completely ionic. Ionization of the Xe-F bonds therefore results from the relatively low electronegativity of the nitrogen ligands and largely accounts for the highly shielded 129 Xe NMR resonances. Since the 129 Xe NMR chemical shifts for xenon(II) compounds are directly related to the covalent character of the xenon-ligand bonds, it is possible to qualitatively estimate the relative electronegativities of the F_5 TeN(H)- and FO_2 SN(H)- ligands. The 129 Xe NMR chemical shifts of F_5 TeN(H)-Xe⁺ (-2902 ppm) and FO_2 SN(H)-Xe⁺ (-2660 ppm) indicate that FO_2 SN(H)- is more electronegative than F_5 TeN(H)-. This is in accordance with the greater electronegativity of FO_2 SO- than F_5 TeO-, as indicated in a 129 Xe NMR study of the mixed derivatives XeL₂ and FXeL (L = cis-OIOF₄, trans-OIOF₄, -OTeF₅, -OSO₂F). 42 #### (B) CONCLUSIONS Significant progress has been made in noble-gas chemistry by preparing and investigating the spectroscopic properties of xenon(II) compounds containing novel xenonnitrogen and xenon-oxygen bonds. The first ionization potential of CF₃C(O)NH₂ has been used as a measure of its resistence to oxidation by the XeF⁺ cation. Bases whose first adiabatic ionization potentials are equal to or greater than the estimated electron affinity of XeF⁺ are potentially resistent to oxidation by XeF⁺. The successful preparation of CF₃C(OXeF)NH₂⁺AsF₆⁻ at low temperature further illustrates the utility of this method of selecting appropriate bases for preparing adduct cations of XeF⁺ which are stable at low temperatures. The overall significance and impact of this work is summarized below: - (1) The preparation of CF₃C(OXeF)NH₂⁺AsF₆⁻ represents the second example of an adduct cation containing the O-Xe-F linkage, thus contributing to a rare class of compounds. - (2) The use of the two-dimensional heteronuclear (¹H-¹⁹F) NOESY technique to determine the assignments for the amido protons in the ¹H NMR spectrum of CF₃C(OXeF)NH₂⁺AsF₆⁻ represents the first use of this well-established technique to facilitate the characterization of a thermally unstable noble-gas compound. - (3) The preparation of F₅TeNH₃⁺AsF₆ and FO₂SNH₃⁺AsF₆ represents the first attempts to protonate the electronegative armines, F₅TeNH₂ and FO₂SNH₂, and the Raman spectroscopic study of these amines and their ammonium salts has improved the vibrational characterization of the previously reported amines, and has probed the effect of protonation on the bonding in the F₅TeN- and FO₂SN-groups. - (4) The preparation of F₅TeN(H)-Xe⁺AsF₆⁻ and FO₂SN(H)-Xe⁺AsF₆⁻ has provided two new examples of xenon(II)-nitrogen compounds in which the nitrogen center is sp³-hybridized. Previous to this work, only one example of this class of compounds was known, namely, F₅SN(H)-Xe⁺AsF₆⁻. - (5) The nucleophilic fluorination of F₅TeN(H)-Xe⁺ to give F₅TeNF₂ represents a mode of decomposition not previously observed for compounds containing xenon(II)-nitrogen bonds. - (6) The preparation of F₅TeNF₂ from the decomposition of F₅TeN(H)-Xe⁺AsF₆⁻ is significant in that it represents the first report of this difluoramino compound, although the sulfur analog, F₅SNF₂, has been known since 1963.³⁰⁷ The decomposition of F₅TeNF₂ in AsF₅-acidified HF solvent indicates that the chemical behavior of this compound is similar to other known difluoramino compounds. ## (C) <u>DIRECTIONS FOR FURTHER RESEARCH</u> (i) Preparation of New Amines from the Reaction of F₅TeN(H)-Xe⁺AsF₆ with Nucleophiles The decomposition of F_5 TeN(H)-Xe⁺As F_6 ⁻ resulted in the formation of F_5 TeN F_2 in HF and Br F_5 solvents. The decomposition of F_5 TeN(H)-Xe⁺As F_6 ⁻ necessarily increases the As F_5 concentration in solution, which probably catalyzes the decomposition of F_5 TeN F_2 (see Chapter 6). Isolation of the novel monofluoramine, F_5 TeN(H) F_7 , may be possible by preparing F_5 TeN(H)-Xe⁺As F_6 ⁻ in a non-acidic solvent such as $CH_3C\equiv N$ or CH_2Cl_2 . Addition of an excess of a fluoride source such as $N(CH_3)_4$ ⁺F⁻ may facilitate the nucleophilic fluorination of F_5 TeN(H)-Xe⁺As F_6 ⁻ without generation of As F_5 [equation (9.3)]. In the absence of As F_5 , the ionization of Xe
F_2 to give the powerful oxidative $$F_5 \text{TeN(H)-Xe}^+ \text{AsF}_6^- + \text{N(CH}_3)_4^+ \text{X}^- \longrightarrow$$ $$F_5 \text{TeN(H)X} + \text{Xe} + \text{N(CH}_3)_4^+ \text{AsF}_6^- \qquad (9.3)$$ $$(X = F, Br, I)$$ fluorinator XeF⁺ will not occur, and F_5 TeN(H)F, which was assumed to be oxidatively fluorinated by XeF⁺ in Chapter 6, may be observable by ¹⁹F and ¹H NMR spectroscopy. Addition of $(CH_3)_4$ N⁺I⁻ or $(CH_3)_4$ N⁺Br⁻ may also result in nucleophilic attack on the nitrogen center, by analogy with the analogous reactions of these halide sources with $[C_6F_5Xe^+][C_6F_5BF_3^-]$ to give C_6F_5X (X = Br, I) and xenon gas. ⁹⁵ In this way it may be possible to prepare the hitherto unknown compounds, F_5 TeN(H)Br and F_5 TeN(H)I. ### (ii) Preparation of Substituted Hydrazines and/or Diazenes The decomposition of F_5TeNF_2 in the presence of an excess of $F_5TeNH_3^+AsF_6^-$ in AsF_5 -acidified HF solvent (Chapter 6) is postulated to involve the nucleophilic attack of F_5TeNF_2 by $F_5TeNH_3^+$, with AsF_5 acting as a catalyst. While the decomposition of the difluoramino compounds, RNF_2 ($R = CF_3$, F_5S , Cl, F_5SO , CF_3O), in AsF_5 -acidified HF has been investigated, 275 the reaction of these difluoramines with primary amines has not been investigated. As discussed in Chapter 6, reductive deamination of primary and secondary amines results upon reaction with HNF_2 [equations (6.16) and 6.17)]. It would be interesting to attempt the same reactions with the series of difluoramino compounds mentioned above [equation (9.4)]. In the absence of an oxidative fluorinating agent (e.g., XeF^+), $[R-NH_2-N(F)-R']^+AsF_6^-$ may be isolable. Elimination of HF [equations (9.5) and (9.6)] may result in the diazenes, R-N=N-R'. Although the compounds, R-N=N-H (R= ÷., $$R-NH_2 + R'-NF_2 + AsF_5 \longrightarrow [R-NH_2-N(F)-R']^+AsF_6^-$$ (9.4) (R = alkyl, fluoroalkyl; R' = CF₃, F₅S, Cl, etc.) $$[R-NH_2-N(F)-R']^+AsF_6^- \rightleftharpoons R-N(H)-N(F)-R' + H^+AsF_6^-$$ (9.5) $$R-N(H)-N(F)-R' \longrightarrow R-N=N-R' + HF$$ (9.6) alkyl), are not stable, decomposing to give R-H and N_2 , the electronegative substituents in R-N=N-R' above may stabilize the diazene in the same way that fluorine stabilizes F-N=N-F, whereas H-N=N-H is not an isolable species. ## (iii) Further Characterization of FO₂SN(H)-Xe⁺AsF₅ by ¹²⁹Xe and ¹⁵N NMR The 129 Xe, 1 H and 19 F NMR parameters for natural abundance and 99.5% 15 N-enriched FO₂SN(H)-Xe⁺ have been obtained at low temperatures (see Chapter 8). Only the one-bond scalar coupling $^{1}J(^{129}$ Xe- 15 N) was observed in the 129 Xe NMR spectrum using an external magnetic field strength of 11.7440 T. Similarly, only ${}^{1}J({}^{129}\text{Xe}{}^{-15}\text{N})$ was observed in the ${}^{129}\text{Xe}$ NMR spectrum of $F_5\text{TeN(H)}\text{-Xe}^+$ at 11.7440 T. Obtaining the ${}^{129}\text{Xe}$ NMR spectrum at 7.4630 T significantly reduced the linewidths of $F_5\text{TeN(H)}\text{-Xe}^+$ resulting from SA broadening (see Chapter 5), and all possible scalar couplings were observed except ${}^{3}J({}^{129}\text{Xe}{}^{-19}F_{ax})$, the scalar coupling of ${}^{129}\text{Xe}$ with the axial fluorine bonded to tellurium(VI). By analogy it may be possible to reduce the line width of the ${}^{129}\text{Xe}$ NMR resonance for $FO_2\text{SN(H)}\text{-Xe}^+$ by performing the NMR experiment at 7.4630 T, enabling the scalar couplings, ${}^{2}J({}^{129}\text{Xe}{}^{-1}\text{H})$ and ${}^{3}J({}^{129}\text{Xe}{}^{-19}\text{F})$ to be resolved. Conditions must be optimized so that the ¹⁵N NMR spectrum of FO₂SN(H)-Xe⁺ can be obtained. Due to the low concentration of this species in BrF₅ solvent at *ca*. -60 °C and the thermal instability of FO₂SN(H)-Xe⁺ upon warming samples above this temperature, it was not possible to obtain a satisfactory ¹⁵N NMR spectrum. Since the magnitude of the one-bond coupling, ¹J(¹H-¹⁵N), is known from the ¹H NMR spectrum, it should be possible to perform an INEPT experiment with ¹⁵N as the observed nucleus; polarization transfer from ¹H to ¹⁵N will significantly improve the signal-to-noise and the rate of acquisition of the ¹⁵N NMR spectrum, thus enabling the ¹⁵N NMR spectrum of 99.5% ¹⁵N-enriched FO₂SN(H)-Xe⁺ to be obtained. # (iv) <u>Proposed Preparation of F₂P(O)N(H)-Xe⁺AsF₆</u> The ligand $F_2P(O)O$ - was shown to stabilize xenon(II) in the compounds $FXeOP(O)F_2$ and $Xe[OP(O)F_2]_2$ from the reaction of μ -oxo-bis(phosphoryl difluoride), $P_2O_3F_4$, and XeF_2 at 22 °C in $CFCl_3$ solution.⁴³ By analogy with FO_2SNH_2 and F_5 TeNH₂, the amine, F_2 P(O)NH₂, may also stabilize xenon(II) in the form of a cation at low temperature [equation (9.7)] in BrF₅ or HF solvents. The compound, F_2 P(O)NH₂, has $$F_2P(O)NH_3^+AsF_6^- + XeF_2 \longrightarrow F_2P(O)N(H)-Xe^+AsF_6^- + 2 HF$$ (9.7) been prepared from the reaction of NH₃ with $F_2P(O)$ -O- $P(O)F_2$ [equation (9.8)], ³⁰⁸ and it may be possible to protonate $F_2P(O)$ NH₂ as well [equation (9.9)] in AsF₅-acidified HF. $$F_2P(O)-O-P(O)F_2 + 2 NH_3 \longrightarrow NH_4^+PO_2F_2^- + F_2P(O)NH_2$$ (9.6) $$F_2P(O)NH_2 + HF + AsF_5 \longrightarrow F_2P(O)NH_3^+AsF_6^-$$ (9.7) The method of synthesis of $F_2P(O)NH_2$ will allow for a relatively simple synthesis of the ^{15}N -enriched analog, which will probably be required to observe the scalar Xe-N coupling in the ^{129}Xe NMR spectrum. #### REFERENCES - 1. P. Laszlo and G.J. Schrobilgen, Angew. Chem., Int. Ed. Engl., 27, 479 (1988). - 2. H. Moissan, Bull. Soc. Chim. Fr., 13, 976 (1895). - 3. M. Berthelot, Ann. Chim. Phys., 11, 15 (1897). - 4. R.J. Strutt, Proc. Roy. Soc. London (A), <u>87</u>, 381 (1913). - 5. G. Oddo, Gazz. Chim. Ital., <u>63</u>, 380 (1933). - 6. A. von Antropoff, Z. Angew. Chem., <u>37</u>, 217 (1924). - 7. W. Kossel, Ann. Phys. (Leipzig) Serie 4, 49, 229 (1916). - 8. L. Pauling, J. Am. Chem. Soc., <u>55</u>, 1895 (1933). - 9. D.M. Yost and A.L. Kaye, J. Am. Chem. Soc., 55, 3891 (1933). - 10. G.N. Lewis, J. Am. Chem. Soc., <u>38</u>, 762 (1916). - 11. N. Bartlett and D.H. Lohmann, Proc. Chem. Soc., 115 (1962). - 12. N. Bartlett and D.H. Lohmann, J. Chem. Soc., 5253 (1962). - R. Hoppe, W. Dahne, H. Mattauch and K.M. Rodder, Angew. Chem., Int. Ed. Engl., 1, 599 (1962). - 14. H.H. Claassen, H. Selig and J.G. Malm, J. Am. Chem. Soc., <u>84</u>, 3593 (1962). - J. Slivnik, B.S. Brčić, B. Volavšek, J. Marsel, V. Vrščaj, A. Šmalc, B. Frlec and A. Zemljič, Croat. Chem. Acta., 34, 253 (1962). - 16. D.F. Smith, J. Am. Chem. Soc., <u>85</u>, 816 (1963). - 17. D.F. Smith, Science, 140, 899 (1963). - 18. J.L. Huston, J. Phys. Chem., <u>71</u>, 3339 (1967). - 19. R.J. Gillespie and G.J. Schrobilgen, J. Chem. Soc., Chem. Commun., 595 (1977). - K. Seppelt and D. Lentz, In "Progress in Inorganic Chemistry", S.J. Lippard, Ed.; John Wiley & Sons, Inc.: New York, 1982, Vol. 29, pp. 167 202. - 21. H. Selig and J.H. Holloway, In "Topics in Current Chemistry", F.L. Bosche, Ed.: Springer-Verlag: New York, 1984, pp. 33 90. - 22. H.H. Claassen, "The Noble Gases", D.C. Heath and Company: Boston, 1966. - 23. J.H. Holloway, "Noble-Gas Chemistry", Methuen & Co.: Bungay, Suffolk, 1968. - 24. "Noble-Gas Compounds", H.H. Hyman, Ed.; The University of Chicago Press: Chicago, 1963. - N. Bartlett and F.O. Sladky, In "Comprehensive Inorganic Chemistry", J.C. Bailar, H.J. Emelcus, R. Nyholm and A.F. Trotman-Dickenson, Eds.; Pergamon Press: New York, 1973, Vol. 1, Chapt. 6. - G.J. Schrobilgen, In "Synthetic Fluorine Chemistry", G.A. Olah, R.D. Chambers andG.K.S. Prakash, Eds.; John Wiley & Sons, New York, 1992, pp. 1 30. - 27. R.S. Berry and C.W. Reimann, J. Chem. Phys., 38, 1540 (1963). - 28. M. Wechsberg, P.A. Bulliner, F.O. Sladky, R. Mews and N. Bartlett, Inorg. Chem., 11, 3063 (1972). - 29. M. Karplus, C.W. Kern and D. Lazdins, J. Chem. Phys., 40, 3738 (1964). - 30. J. Berkowitz and J. Chupka, Chem. Phys. Lett., <u>7</u>, 447 (1970). - 31. J.G. Perlow and H. Yoshida, J. Chem. Phys., 49, 1474 (1968). - 32. B. Jaselskis and J.P. Warriner, Anal. Chem., 38, 563 (1966). - 33. H. Meinert, Z. Chem., 6, 71 (1966). - 34. W.F. Howard, and L. Andrews, J. Am. Chem. Soc., <u>96</u>, 7864 (1974). - 35. (a) Nat. Bur. Stand. (U.S.), Tech. Note, No. 270-3 (1968). (b) Nat. Bur. Stand. (U.S.), - Tech. Note, No. 270-4 (1969). - L. Pauling, "Nature of the Chemical Bond", Cornell University Press: Ithaca, N.Y.; 3rd Edition, 1960. - N. Bartlett, M. Wechsberg, F.O. Sladky, P.A. Bulliner, G.R. Jones and R.D. Burbank, J. Chem. Soc., Chem. Commun., 703 (1969). - 38. N. Bartlett, M. Wechsberg, G.R. Jones and R.D. Burbank, Inorg. Chem., 11, 1124 (1972). - 39. M. Eisenberg and D.D. DesMarteau, Inorg. Chem., 6, 29 (1970). - 40. J.I. Musher, J. Am. Chem. Soc., 90, 7371 (1968). - 41. F. Sladky, Monatsh. Chem., 101, 1571 (1970). - 42. R.G. Syvret and G.J. Schrobilgen, Inorg. Chem., 28, 1564 (1989). - 43. M. Eisenberg and D.D. DesMarteau, Inorg. Chem., 11, 1901 (1972). - 44. K. Seppelt, Angew. Chem. Int. Ed. Engl., 11, 723 (1972). - 45. K. Seppelt, Chem. Ber., <u>106</u>, 157 (1973). - 46. F.O. Sladky, Angew. Chem., Int. Ed. Engl., 8, 373 (1969). - 47. F.O. Sladky, Angew. Chem., Int. Ed. Engl., <u>8</u>, 523 (1969). - 48. F.O. Sladky, Monatsh. Chem., 101, 1559 (1970). - 49. D. Lentz and K. Seppelt, Angew. Chem., Int. Ed. Engl., 15, 66 (1976). - 50. D. Lentz and K. Seppelt, Angew. Chem., Int. Ed. Engl., 17, 356 (1978). - 51. E. Jacob, D. Lentz, K. Seppelt and A. Simon, Z. Anorg. Allg. Chem., 472, 7 (1981). - 52. K. Seppelt, Angew. Chem., Int. Ed. Engl., 21, 877 (1982). - 53. D. Lentz and K. Seppelt, Angew. Chem., Int. Ed. Engl., 18, 66 (1979). - 54. N. Keller and G.J. Schrobilgen, Inorg. Chem., <u>20</u>, 2118 (1981). - 55. F. Sladky, Monatsh. Chem., 101, 1578 (1970). - 56. R.D. LeBlond and D.D. DesMarteau, J. Chem. Soc., Chem. Commun., 555 (1974). - 57. J.F. Sawyer, G.J. Schrobligen and S.J. Sutherland, Inorg. Chem., 21, 4064 (1982). - D.D. DesMarteau,
R.D. LeBlond, S.F. Hossain and D. Nöthe, J. Am. Chem. Soc., <u>103</u>, 7734 (1981). - 59. G.A. Schumacher and G.J. Schrobilgen, Inorg. Chem., 22, 2178 (1983). - 60. R. Faggiani, D.K. Kennepohl, C.J.L. Lock, and G.J. Schrobilgen, Inorg. Chem., 25, 563 (1986). - 61. J. Foropoulos and D.D. DesMarteau, J. Am. Chem. Soc., 104, 4260 (1982). - 62. C.A. Coulson, J. Chem. Soc., 1442 (1964). - 63. G.C. Pimentel, J. Chem. Phys., 19, 446 (1951). - 64. N. Bartlett, M. Gennis, D.D. Gibler, B.K. Morrell and A. Zalkin, Inorg. Chem., 12, 1717 (1973). - 65. V.M. McRae, R.D. Peacock and D.R. Russell, J. Chem. Soc., Chem. Commun., 62 (1969). - J. Burgess, C.J.W. Fraser, V.M. McRae, R.D. Peacock and D.R. Russell, J. Inorg. Nucl. Chem., Suppl., 183 (1976). - 67. F.O. Sladky, P.A. Bulliner and N. Bartlett, J. Chem. Soc. (A), 2179 (1969). - 68. R.J. Gillespie and B. Landa, Inorg. Chem., 12, 1383 (1973). - 69. R.J. Gillespie and G.J. Schrobilgen, Inorg. Chem., 15, 22 (1976). - 70. V.H. Dibeler and S.K. Liston, J. Chem. Phys., 48, 4765 (1968). - 71. G.J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1506 (1988). - 72. A.A.A. Emara and G.J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1644 (1987). - 73. A.A.A. Emara and G.J. Schrobilgen, Inorg. Chem., <u>31</u>, 1323 (1992). - 74. A.A.A. Emara, Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada (1991). - 75. A.A.A. Emara and G.J. Schrobilgen, J. Chem. Soc., Chem. Commun., 257 (1988). - 76. C.R. Brundle, M.B. Robin and N.A. Keubler, J. Am. Chem. Soc., <u>94</u>, 1466 (1972). - 77. D.B. Beach, W.L. Jolly, R. Mews and A. Waterfield, Inorg. Chem., 23, 4080 (1984). - 78. G.J. Schrobilgen, J. Chem. Soc., Chem. Commun., 863 (1988). - 79. N. Bartlett and F.O. Sladky, Chem. Commun., 1046 (1968). - 80. R. Minkwitz and G. Nowicki, Inorg. Chem., 30, 4426 (1991). - 81. R. Minkwitz, G. Nowicki and H. Preut, Z. Anorg. Allg. Chem., 611, 23 (1992). - 82. R. Minkwitz and A. Werner, Z. Naturforsch., 43b, 403 (1988). - 83. A.M. Forster and A.J. Downs, J. Chem. Soc., Dalton Trans., 2827 (1984). - 84. R. Minkwitz and G. Nowicki, Inorg. Chem., <u>31</u>, 225 (1992). - 85. R. Minkwitz and W. Molsbeck, Z. Anorg. Allg. Chem., 612, 35 (1992). - 86. R. Minkwitz and G. Nowicki, Z. Naturforsch., <u>44b</u>, 1343 (1989). - 87. R. Minkwitz and G. Nowicki, Angew. Chem., Int. Ed. Engl., 29, 688 (1990). - 88. R. Minkwitz, G. Nowicki, B. Bäck and W. Sawodny, Inorg. Chem., 32, 787 (1993). - H.M. Rosenstock, K. Draxl, B.W. Steiner and J.T. Herron, J. Phys. Ref. Data, Suppl. No. 1, 6 (1977). - 90. R. Minkwitz and W. Molsbeck, Z. Anorg, Allg. Chem., 607, 175 (1992). - 91. L.J. Turbini, R.E. Aikman and R.J. Lagow, J. Am. Chem. Soc., 101, 5833 (1979). - 92. D. Holtz and J.L. Beauchamp, Science, 173, 1238 (1971). - 93. J.K. Hovey and T.B. McMahon, J. Am. Chem. Soc., <u>108</u>, 528 (1986). - 94. Reference (25), p. 254. - 95. H.J. Frohn and S. Jakobs, J. Chem. Soc. Chem. Commun., 625 (1989). - 96. H.J. Frohn, S. Jakobs, and C. Rossbach, Eur. J. Solid State Inorg. Chem., 29, 729 (1992). - 97. H.J. Frohn and A. Klose, J. Fluorine Chem., 64, 201 (1993). - 98. H. Butler, D. Naumann, and W. Tyrra, Eur. J. Solid State Inorg. Chem., 29, 739 (1992). - 99. D. Naumann and W. Tyrra, J. Chem. Soc., Chem. Commun., 47 (1989). - 100. H.J. Frohn, S. Jakobs and G. Henkel, Angew. Chem. Int. Ed. Engl., 28, 1506 (1989). - 101. V.V. Zhdankin, P. Stang, and N.S. Zefirov, J. Chem. Soc., Chem. Commun., 578 (1992). - 102. Reference (25), p. 226. - 103. G.J. Schrobilgen, In "NMR and the Periodic Table", R.K. Harris and B.E. Mann, Eds.; Academic Press: London, 1978, Chapter 14, pp. 439 475. - C.J. Jameson, In "Multinuclear NMR", J. Mason, Ed.; Plenum Press: New York, 1987, Chapter 18, pp. 463 475. - 105. J.E. Huhcey, In "Inorganic Chemistry, Principles of Structure and Reactivity", Harper & Row: New York, 1983, 3rd Edition, Chapter 3. - 106. U.H. Mölder, I.A. Koppel, R.J. Pikver and J.J. Tapfer, Organic Reactivity, 25, 255 (1988). - 107. T.R.G. Syvret, Ph.D. Thesis, McMaster University, Hamilto ntario, Canada (1987). - 108. G.J. Schrobilgen, J.H. Holloway, P. Granger and C. Brevard, Inorg. Chem., 17, 980 (1978). - 109. K.O. Christe and W.W. Wilson, J. Fluorine Chem., <u>47</u>, 117 (1990). - H.P.A. Mercier, J.C.P. Sanders and G.J. Schrobilgen, J. Am. Chem. Soc., <u>116</u>, 2921 (1994). - 111. R.J. Gillespie, A. Netzer and G.J. Schrobilgen, Inorg. Chem., 13, 1455 (1974). - 112. H.P.A. Mercier, J.C.P. Sanders, G.J. Schrobilgen and S.S. Tsai, Inorg. Chem., 32, 386 (1993). - 113. C.J. Hoffman, Inorg. Synth., 4, 150 (1953). - 114. K. Seppelt, Inorg. Synth., <u>20</u>, 33 (1980). - 115. F. Sladky, Inorg. Synth., 24, 33 (1986). - 116. H. Kropshofer, O. Leitzke, P. Peringer and F. Sladky, Chem. Ber., 114, 2644 (1981). - 117. M. J. Collins and G.J. Schrobilgen, Inorg. Chem., 24, 2608 (1985). - L. Chun-Hsu, H. Selig, M. Rabinowitz, I. Agranat and S. Sarig, Inorg. Nucl. Chem. Lett., 601 (1975). - 119. V. Munch and H. Selig, J. Fluorine Chem., 15, 253 (1980). - 120. Obtained from K.O. Christe, Rocketdyne Int., Canoga Park, California. - 121. J.H. Noggle and J.D. Baldeschweiler, J. Chem. Phys., 37, 182 (1962). - 122. P.W. Schenk, In "Handbook of Preparative Inorganic Chemistry", G. Brauer, Ed.; Academic Press: New York, 1963, Vol. 1, 2nd Ed., pp. 461 463. - 123. R.O. Sauer and R.H. Hasek, J. Am. Chem. Soc., 66, 1706 (1944). - 124. A.H. Cowley and J.R. Schweiger, J. Am. Chem. Soc., 95, 4179 (1973). - 125. H. Hartl, P. Huppmann, D. Lenz and K. Seppelt, Inorg. Chem., 22, 2183 (1983). - M. Schmidt and W. Siebert, In "Comprehensive Inorganic Chemistry", J.C. Bailar, Jr., H.J. Emeléus, R. Nyholm and A.F. Trotman-Dickenson, Eds.; Pergamon Press: New York, Volume 2, Chapter 23, 1973. - 127. R.J. Gillespie and R.A. Rothenbury, Can. J. Chem., 42, 416 (1964). - 128. R.J. Gillespie and E.A. Robinson, Can. J. Chem., 39, 2179 (1961). - 129. R. Appel and G. Eisenhauser, Z. Anorg. Allg. Chem., 310, 90 (1961). - 130. A. Semmoud and P. Vast, Rev. Chim. Min., 16, 80 (1979). - 131. F.F. Bentley, L.D. Smithson and A.L. Rozek, "Infrared Spectra and Characteristic - Frequencies", John Wiley & Sons: New York, 1968, p. 337. - 132. "Sadtler Standard Spectra", Stadtler Research Laboratories: Philadelphia, 1969, p. 1333. - 133. R. Appel and W. Senkpiel, Angew. Chem., 70, 572 (1958). - 134. H. Jonas and D. Voigt, Angew. Chem., 70, 572 (1958). - 135. R.B. Bohn and L. Andrews, J. Phys. Chem., <u>93</u>, 5684 (1989). - 136. C. Yu and G.C. Levy, J. Am. Chem. Soc., 106, 6533 (1984). - 137. D.P. Strommen and K. Nakamoto, "Laboratory Raman Spectroscopy", John Wiley & Sons: New York, 1984. - 138. V.H. Dibeler and S.K. Liston, J. Chem. Phys., 48, 4765 (1968). - 139. B. Cremer-Lober, H. Butler, D. Naumann and W. Tyrra, Z. Anorg. Allg. Chem., 607, 34 (1992). - M. Wechsberg, P.A. Bulliner, F.O. Sladky, R. Mews and N. Bartlett, Inorg. Chem., 11, 3063 (1972). - 141. K. Seppelt and H.H. Rupp, Z. Anorg. Allg. Chem., 409, 338 (1974). - 142. K. Seppelt and D. Nothe, Inorg. Chem., 12, 2727 (1973). - 143. W.E. Stewart, and T.H. Siddall, III, Chem. Rev., 70, 517 (1970). - 144. T. Birchall and R.J. Gillespie, Can. J. Chem., <u>41</u>, 2642 (1963). - 145. R.J. Gillespie and T. Birchall, Can. J. Chem., 41, 148 (1963). - 146. G. Fraenkel, and C. Franconi, J. Am. Chem. Soc., 82, 4478 (1960). - 147. C.L. Perrin and E.R. Johnston, Can. J. Chem., <u>59</u>, 2527 (1981). - 148. M. Liler, J. Chem. Soc., Perkin II, 71 (1974). - 149. G.A. Olah, J. Nishimura and P. Kreienbühl, J. Am. Chem. Soc., <u>95</u>, 7672 (1973). - 150. H. Akiyama, M. Tachikawa, T. Furuya and K. Ouchi, J. Chem. Soc., Perkin II, 771 (1973). - 151. J.S. Hartman and G.J. Schrobilgen, Can. J. Chem., <u>51</u>, 99 (1972). - 152. J.S. Hariman and R.R. Yeiman, Can. J. Chem., <u>54</u>, 1130 (1976). - Hindered rotation was observed in the ¹H NMR spectra of O-protonated carbamyl fluoride, FC(OH)NH₂⁺, in HSO₃F/SO₂ solution, resulting in two unassigned resonances for the chemically inequivalent NH protons at δ(¹H) ≈ 8.5 ppm [reference (149)]. The ¹H NMR spectrum of ¹⁵N-enriched O-protonated benzamide in HSO₃F or 100% H₂SO₄ solvent shows two peaks of equal intensity at 8.36 and 7.94 ppm, at temperatures below 65 °C. The high-frequency peak was assigned to the proton trans to the protonated carbonyl group [reference (148)]. Birchali and Gillespie [reference (145)] reported protonon-nitrogen resonances at 8.36 and 8.24 ppm for O-protonated acetamide in HSO₃F solvent at -80 °C; the high-frequency resonance was assigned to the proton cis to the protonated carbonyl group. Using the nOe difference technique, the proton cis to the carbonyl group was assigned to the high-frequency ¹H NMR resonance in the structurally related protonated trichloroacetimidate cation, CCl₃C(OCH₃)NH₂+, in 95% H₂SO₄ solution [reference (147)]. - D. Neuhaus and M.P. Williamson, In "The Nuclear Overhauser Effect in Structural and Conformational Analysis"; VCH Publishers, Inc.: New York, 1989. - 155. H. Akiyama, F. Yamauchi and K. Ouchi, J. Chem. Soc. (B), 1014 (1971). - 156. H.-O. Kalinowski, S. Berger and S. Braun, "Carbon-13 NMR Spectroscopy"; John Wiley and Sons: New York, 1988; pp. 12 200. - 157. The errors associated with integration of NMR resonances are estimated to be \pm 10%. - 158. R.J. Gillespie and B. Landa, Inorg. Chem., 12, 1383 (1973). - 159. C. Naulin and R. Bougon, J. Chem. Phys., <u>64</u>, 4155 (1976). - 160. P.J. Krueger and D.W. Smith, Can. J. Chem., <u>45</u>, 1611 (1967). - 161. E.K. Murthy and G.R. Rao, J. Raman Spectrosc., 19, 359 (1988). - 162. W. Kutzelnigg and R. Mecke, Spectrochim. Acta, 18, 549 (1962). - 163. W. Gerrard, M.F. Lappert, H. Pyszora and J.W. Wallis, J. Chem. Soc., ∠144 (1960). - 164. R.B. Bohn and L. Andrews, J Phys. Chem., 93, 5684 (1989). - 165. D. Cook, Can. J. Chem., 42, 2721 (1964). - 166. R. Mercnyi, In "Advances in Organic Chemistry"; H. Böhme and G.E. Viehe, Eds.; John Wiley and Sons: New York, 1976; Vol. 9, pp. 23-105. - 167. D. Cook, Can.
J. Chem., 40, 2362 (1962). - 168. R.L. Jones, J. Mol. Spectrosc., 11, 411 (1963). - 169. W. Maringgele and A. Meller, Chem. Ber., 112, 1595 (1979). - 170. K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds"; John Wiley and Sons: New York, 1986, 4th ed.; pp. 147-148. - 171. K.O. Christe, C.J. Schack and R.D. Wilson, Inorg. Chem., 2224, 14 (1975). - 172. K.O. Christe, Inorg. Chem., 14, 2230 (1975). - 173. K.O. Christe, Inorg. Chem., 14, 2821 (1975). - 174. J. Terpiński, In "Laser Raman Spectroscopy Analytical Applications"; H. Barańska, A. Labudzińska and J. Terpiński, Eds.; John Wiley and Sons: New York, 1987; p. 81. - (a) v_{sym}(Xe-F) = 495 cm⁻¹ in the Raman spectrum measured at -165 °C; this work. (b) D.F. Smith, In "Noble Gas Compounds"; H.H. Hyman, Ed.; University of Chicago Press: Chicago and London, 1963; p. 295. (c) Ibid., J.J. Turner and G.C. Pimentel, p. 101. - 176. A. Zalkin, D.L. Ward, R.N. Biagioni, D.H. Templeton and N. Bartlett, Inorg. Chem., 17, 1318 (1978). - 177. B. Žemva, A. Jesih, D.H. Templeton, A. Zalkin, A.K. Cheetham and N. Bartlett, J. Am. Chem. Soc., 109, 7420 (1987). - Examples of molecular adducts containing symmetric XeF₂ (D_{∞h} point symmetry) include XeF₂·IF₅ [G.R. Jones *et al.*, Inorg. Chem., 9, 2264 (1970)], XeF₂·XeOF₄ [N. Bartlett and M. Wechsberg, Z. Anorg. Allg. Chem., 385, 5 (1971)], XeF₂·2XeF₆·2AsF₅ [reference (177)], XeF₂·XeF₄ [J.H. Burns, *et al.*, Acta Cryst., 18, 11 (1965)] and Ag(XeF₂)₂AsF₆ [R. Hagiwara, *et al.*, Eur. J. Solid State Inorg. Chem., 28, 855 (1991)]. ____ The Raman spectra of these adducts are essentially reproduced by summing the spectra of the starting materials and are consistent with negligible changes in the bonding of the constituent molecules in the adducts. The adducts XeF2.2XeF6.2AsF5 and Ag(XeF₂)₂AsF₆ are the only previously reported examples of symmetrical XeF₂ coordinated to cations. The Raman spectrum of the former shows a prominent peak at 498 cm⁻¹ that is assigned to $v_{sym}(Xe-F)$ for XeF_2 in the adduct, which is not significantly different from that observed for crystalline XeF₂, at 496 cm⁻¹ [reference (175b)]. The bands attributed to $v_{sym}(Xe-F)$ in $Ag(XeF_2)_2AsF_6$ occur at 501 and 508 cm⁻¹, indicating an average increase of 8 cm⁻¹ relative to crystalline XeF₂. The crystal structures of XeF₂·2XeF₆·2AsF₅ and Ag(XeF₂)₂AsF₆ indicate that the fluorine ligands of XeF₂ are weakly coordinated to the cations (central Xe atom of XeF5+ and Ag+, respectively), and the Xe-F bond lengths are 2.01(2) and 1.979(3) Å that are not significantly different from the Xe-F bond length in crystalline XeF₂ (2.00(1) Å) [H.A. Levy and P.A. Agron, J. Am. Chem. Soc., 85, 241 (1963)]. This is consistent with little alteration of the bonding of XeF₂ in these adducts; the intermolecular bonding in these adducts may be attributed primarily to the electrostatic interaction of the cation and the fluorine atoms of XeF2. which contain partial negative charge due to a high degree of Xe-F bond polarity [also see reference (25), p. 259]. - 179. Reference (25), pp. 223 228. - 180. J.C.P. Sanders and G.J. Schrobilgen, unpublished work. - 181. T. Birchall, R.D. Myers, H. deWaard and G.J. Schrobilgen, Inorg. Chem., 21, 1068 (1982). - 182. R.R. Ernst, G. Bodenhausen and A. Wokaun, In "Principles of Nuclear Magnetic Resonance in One and Two Dimensions"; Clarendon Press: Oxford, 1987; p. 288. - 183. A. Engelbrecht, F. Sladky, Adv. Inorg. Chem. Radiochem., 24, 189 (1981). - 184. K. Seppelt, Acc. Chem. Res., <u>12</u>, 211 (1979). - 185. F.B. Dudley, G.H. Cady, and D.F. Eggers, Jr., J. Am. Chem. Soc., 78, 1553 (1956). - 186. G. Mitra and G.H. Cady, J. Am. Chem. Soc., <u>81</u>, 2646 (1959). - 187. R.B. Harvey and S.H. Bauer, J. Am. Chem. Soc., <u>76</u>, 859 (1954). - 188. A. Engelbrecht, W. Loreck and W. Nehoda, Z. Anorg. Allg. Chem., 360, 88 (1968). - 189. A. Engelbrecht, and F. Sladky, Angew. Chem. Int. Ed. Engl., 3, 383 (1964). - 190. A. Engelbrecht and B. Stoll, Z. Anorg. Allg. Chem., 292 20 (1957). - 191. K. Seppelt, Angew. Chem. Int. Ed. Engl., 11, 630 (1972). - 192. K. Seppelt, Angew. Chem. Int. Ed. Engl., 44, 15, (1976). - 193. K. Seppelt, Z. Anorg. Allg. Chem., 428, 35 (1977). - P. Huppmann, J. Labischinski, D. Lentz, H. Pritzkow and K. Seppelt, Z. Anorg. Allg. Chem., 487, 7 (1982). - 195. K. Seppelt, Chem. Ber., 109, 1046 (1976) ÷. - 196. L.K. Templeton, D.H. Templeton, N. Bartlett and K. Seppelt, Inorg. Chem.,15, 2720 (1976). - 197. J.C.P. Sanders and G.J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1576 (1989). - 198. P. Huppmann, D. Lentz and K. Seppelt, Z. Anorg. Allg. Chem., <u>472</u>, 26 (1981). - 199. F. Sladky and H. Kropshofer, Inorg. Nucl. Chem. Lett., 8, 195 (1972). - 200. W. Porcham and A. Engelbrecht, Monatsh. Chem., <u>102</u>, 333 (1971). - 201. A. Engelbrecht and A. Sladky, Inorg. Nucl. Chem. Lett., 1, 15 (1965). - P.K. Miller, K.D. Abney, A.K. Rappé, O.P. Anderson and S.H. Strauss, Inorg. Chem., <u>27</u>, 2255 (1988). - 203. S.H. Strauss, K.D. Abney and O.P. Anderson, Inorg. Chem., 25, 2806 (1986). - 204. K. Seppelt, Chem. Ber., 105, 243 (1972). - 205. K.O. Christe, D.A. Dixon, J.C.P. anders, G.J. Schrobilgen and W.W. Wilson, Inorg. Chem., 32, 4089 (1993). - 206. E. Mayer and F. Sladky, Inorg. Chem., 14, 589 (1975). - 207. K. Scppelt, Z. Anorg. Allg. Chem., 406, 287 (1974). - 208. K. Seppelt, Chem. Ber., <u>106</u>, 1920 (1973). - 209. J.S. Thrasher and K. Seppelt, Z. Anorg. Allg. Chem., <u>529</u>, 85 (1985). - K.O. Christe, C.J. Schack, D. Pilipovich, E.C. Curtis and W. Sawodny, Inorg. Chem., 12, 620 (1973). - 211. O. Linquist and M.C. Lehman, Acta. Chem. Scand., 27, 85 (1973). - 212. M. Lustig and J.K. Ruff, Inorg. Chem., <u>6</u>, 2115 (1967). - 213. W.C. Smith and V.A. Englehardt, J. Am. Chem. Soc., <u>82</u>, 3838 (1960). - 214. K. Seppelt, Z. Anorg. Allg. Chem., 399, 65 (1973). - 215. K. Seppelt, Z. Anorg. Allg. Chem., 399, 87 (1973). - 216. H. Oberhammer and K. Seppelt, Inorg., Chem., 17, 1435 (1978). - 217. A.E. Reed and P. Schleyer, J. Am. Chem. Soc., 112, 1434 (1990). - 218. J. Mason, Adv. Inorg. Chem. Radiochem., 18, 197 (1976). - 219. J. Mason, Adv. Inorg. Chem. Radiochem., 22, 199 (1979). - 220. H. Bürger, Z. Anorg. Allg. Chem., 360, 97 (1968). - 221. O. Ruff and W. Willenburg, Chem. Ber., 73, 724 (1940). - 222. D.A. Barr, and R.N. Hazeldine, J. Chem. Soc., 2533 (1955). - 223. J.A. Young, S.N. Tsoukalas and R.D. Dresdner, J. Am. Chem. Soc., 80, 3604 (1958). - 224. R.E. Banks, W.M. Cheng, and R.N. Hazeldine, J. Chem. Soc., 2485 (1964). - 225. C.W. Tullock, D.D. Coffman and E.L. Muetterties, J. Am. Chem. Soc., <u>86</u>, 359 (1964). - 226. A.F. Clittord and L.C. Duncan, Inorg. Chem., <u>5</u>, 692 (1966). - 227. A.F. Clifford and G.R. Zeilenga, Inorg. Chem., <u>8</u>, 1789 (1969). - 228. G.W. Fraser, R.D. Peacock and P.M. Watkins, Chem. Commun., 1248 (1967). - 229. G.W. Fraser, R.D. Peacock and P.M. Watkins, J. Chem. Soc. (A), 1125 (1971). - 230. K. Seppelt, Inorg. Chem., 12, 2837 (1973). - 231. R.J. Gillespie and J. Liang, J. Am. Chem. Soc., <u>110</u>, 6053 (1988). - 232. M. Tsuboi, Spectrochim. Acta, 16, 505, (1960). - 233. C.J. Schack, W.W. Wilson, and K.O. Christe, Inorg. Chem., 22, 18 (1983). - 234. W.V.F. Brooks, M. Eshaque, L. Clement, J. Passmore, Can. J. Chem., <u>54</u>, 817, (1976). - 235. E.B. Wilson, Jr., J.C. Decius and P.C. Cross, "Molecular Vibrations", Dover Publications: New York, 1955, pp. 333 - 340. - 236. D.F. Smith and G.M. Begun, J. Chem. Phys., <u>43</u>, 2001 (1965). - 237. T. Ottersen, Acta. Chem. Scand., 29A, 939 (1975). - 238. P. Schleyer and A.J. Kos, Tetrahedron, <u>39</u>, 1141, (1983). - 239. R. Minkwitz and R. Naß, Z. Naturforsch., 43b, 1478, (1988). - G. Binsch, J.B. Lambert, B.W. Roberts and J.D. Roberts, J. Am. Chem. Soc., <u>86</u>, 5564 (1964). - 241. A.J.R. Bourn and E.W. Randall, Mol. Phys., <u>8</u>, 567 (1964). - 242. J.A. Pople and D.P. Santry, Mol. Phys., 8, 1 (1964). - 243. G.A. Olah and T.E. Kiovsky, J. Am. Chem. Soc., <u>90</u>, 4666 (1968). - 244. J. Mason and K.O. Christe, Inorg. Chem., 22, 1849 (1983). - 245. P. Lazzeretti, E. Rossi, F. Taddei and R. Zanasi, J. Chem. Phys., 77, 408 (1982). - 246. L. Burnett and A.H. Zeltmann, J. Chem. Phys., <u>56</u>, 4695 (1972). - 247. G. Balimann, P.S. Pregosin, J. Magn. Res., 26, 283 (1977). - 248. W. Tötsch, P. Peringer and F. Sladky, J. Chem. Soc., Chem. Commun., <u>16</u>, 841 (1981). - 249. L.J. Bellamy, "Infrared Spectra of Complex Molecules", John Wiley & Sons: New York, 1954, p. 202. - 250. Reference (249), p. 213. - 251. G.A. Webb, In "NMR and the Periodic Table", R.K. Harris and B.E. Mann, Eds.; Academic Press: New York, 1978, Chapter 3, pp. 49 84. - 252. J.K.M. Sanders and B.K. Hunter, "Modern NMR Spectroscopy, A Guide for Chemists"; Oxford University Press: 1990, Chapt. 3, pp. 81 84. - 253. D. Naumann, H. Butler, R. Gnann and W. Tyrra, Inorg. Chem., <u>32</u>, 861 (1993). - 254. R.K. Harris, "Nuclear Magnetic Resonance Spectroscopy", John Wiley & Sons: New York, 1991, p. 236. - 255. G.J. Schrobilgen, unpublished results. - 256. H.E. Dubb, R.C. Greenough and E.C. Curtis, J. Chem. Phys., 38, 461 (1963). - 257. G.E. Moore and R.M. Badger, J. Am. Chem. Sec., 74, 6076 (1952). - 258. Reference (249), p. 215 216. - 259. J.H.B. George, J.A. Rolfe and L.A. Woodward, Trans. Faraday Soc., 49, 375 (1953). - (a) C.J. Jameson, In "Multinuclear NMR", J. Mason, Ed.; PLenum Press: New York, 1987, Chapter 4, pp. 116-118. (b) C.J. Jameson and H.S. Gutowsky, J. Chem. Phys, 51, 2790 (1969). (c) R.W. Kunz, Helv. Chim. Acta, 63, 2054 (1980). (d) J. Mason, Polyhedron, 8, 1657 (1989). (e) B. Wrackmeyer and K. Horschler, In "Annual Reports on NMR Spectroscopy", G.A. Webb, Ed.; Academic Press, London, 1989; Vol. 22, p.261. - 261. H.A. Bent, Chem. Rev., <u>61</u>, 276 (1961). - 262. H.J. Frohn, A. Klose and V.V. Bardin, J. Fluorine Chem., <u>64</u>, 201 (1993). - 263. H.J. Frohn, S. Jakobs and C. Rossbach, J. Fluorine Chem., 54,
8 (1991). - 264. H.J. Frohn and S. Jakobs, J. Fluorine Chem., <u>45</u>, 11 (1989). - N. Bartlett, B.G. DeBoer, F.J. Hollander, F.O. Sladky, D.H. Templeton and A. Zalkin, Inorg. Chem., 13, 780 (1974). - 266. E.C. Stump, Jr., C.D. Padjett and W.S. Brey, Jr., Inorg. Chem., 2, 648 (1963). - 267. C.B. Colbuin, F.A. Johnson and C. Haney, J. Chem. Phys., 43, 4526 (1965). - 268. R.J. Harris and K.J. Packer, J. Chem. Soc., 4736 (1961). - 269. A. Saika and C.P. Slichter, J. Chem. Phys., 22, 26 (1954). - 270. J.A. Pople, Mol. Phys., 7, 301 (1964). - 271. A.M. Qureshi, J.A. Ripmeester and F. Aubke, Can. J. Chem., 47, 4247 (1969). - 272. (a) D. Moy and A.R. Young, II, J. Am. Chem. Soc., <u>87</u>, 1889 (1965). (b) K.O. Christe and D.A. Dixon, J. Am. Chem. Soc., <u>114</u>, 2978 (1992). - K.O. Christe, R.D. Wilson, W.W. Wilson, R. Bau, S. Sukumar and D.A. Dixon, J. Am. Chem. Soc., <u>113</u>, 3795 (1991). - 274. W. Witanowski, L. Stefaniak and G.A. Webb, In "Annual Reports on NMR Spectroscopy", G.A. Webb, Ed.: Academic Press: New York, 1977, p. 211. - 275. K.O. Christe, W.W. Wilson, C.J. Schack and R.D. Wilson, Inorg. Chem., <u>24</u>, 303 (1985). - 276. "Gmelin Handbook of Inorganic Chemistry, Fluorine"; Springer-Verlag: Berlin, 1986,Volume 4, Supplement F, pp. 385 403. - 277. D.L. Klopotek and B.G. Hobrock, Inorg. Chem., <u>6</u>, 1750 (1967). - 278. A.V. Pankrotov and O.M. Sokolov, Russ. J. Inorg. Chem., 11, 943 (1966). - 279. D.L. Klopotek, B.G. Hobrock, P. Kovacic and M.B. Jones, J. Org. Chem., <u>45</u>, 1665 (1980). - 280. C.L. Bumgardner, K.J. Martin, J.P. Freeman, J. Am. Chem. Soc., <u>85</u>, 97 (1963). - 281. R.S. Atkinson, In "Azides and Nitrenes, Reactivity and Utility", E.F. Scriven, Ed.; Academic Press: Orlando, 1984, pp. 247 295. - 282. C.L. Bumgardner and J.F. Liebman, J. Fluorine Chem., 65, 7 (1993). - 283. DesMarteau, W.Y. Lam, B.A. O'Brien and S. Chang, J. Fluorine Chem., 25, 387 (1984). - 284. M. Becke-Goehring, In "Advances in Inorganic Chemistry and Radiochemistry", H.J. Emeléus and A.G. Sharpe, Eds., Academic Press: New York, Vol. 2, 1960, p.159. - 285. G.A. Jeffrey and H.P. Stadler, J. Chem. Soc., 1467 (1951). - J. Brunvoll, M. Kolonits, C. Bliefert, K. Seppelt and I. Hargittai, J. Mol. Struct., 78, 307 (1982). - 287. J.W. Bats, P. Coppens and T.F. Koetzle, Acta. Cryst. <u>B33</u>, 37 (1977). - 288. D.J.W. Cruickshank, J. Chem. Sec., 5486 (1961). - 289. C.H. Dungan and J.R. van Wazer, "Compilation of Reported F¹⁹ NMR Chemical Shifts", John Wiley & Sons: New York, 1970. - 290. J.C.P. Sanders and G.J. Schrobilgen, In "A Methodological Approach to Multinuclear Magnetic Resonance in Liquids and Solids Chemical Applications"; P. Granger and R.K. Harris. Eds., Kluwer Academic Publishers: Dordrecht, 1990, pp. 157 186. - 291. A. Kennedy and C.B. Colburn, J. Am. Chem. Soc., 81, 2906 (1959). - 292. T.T. Crow and R.T. Lagemann, Spectrochim. Acta, 12, 143 (1958). - 293. K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds", John Wiley & Sons: New York, 1978, 3rd Ed., 1978, p. 126. - 294. R. Minkwitz, A. Liedtke and R. Naß, J. Fluorine Chem., 35, 307 (1987). - 295. R. Minkwitz and R. Naß, Z. Naturforsch., 37b, 1558 (1982). - 296. A.J. Barnes, J. Chem. Soc., Faraday Trans. II 69, 738 (1973). - 297. G.M. Begun and A.C. Rutenberg, Inorg. Chem., <u>6</u>, 2212 (1967). - 298. A.M. Qureshi and F. Aubke, Can. J. Chem., 48, 3117 (1970). - 299. Reference (293), p. 145. - 300. Reference (293), p. 144. - 301. R.J. Gillespie and E.A. Robinson, Can. J. Chem., <u>41</u>, 2074 (1963). - 302. D.R. Lide and R.M. Fristrom, J. Chem. Phys., 26, 734 (1957). - 303. R. Prietzold, K. Dosteil and A. Ruzieka, Z. Anorg. Allg. Chem., 348, 1 (1966). - 304. R.A. Abramovitch and R. Jeyaraman, In "Azides and Nitrenes, Reactivity and Utility", E.F.V. Scriven, Ed.; Academic Press, 1984, Chapter 6, p.297. - L. Pauling, "Nature of the Chemical Bond", 3rd Edition; Cornell University Press: Ithaca, New York, 1960, p.255. - 306. G.A. Olah, G.K.S. Prakash and J. Sommer, In "Superacids", John Wiley & Sons: New York, 1985, p. 35. - 307. A.L. Logothetis, G.N. Sausen and R.J. Schozda, Inorg. Chem., 2, 173, (1963). - 308. S. Kongpricha and W.C. Preusse, Inorg. Chem., <u>6</u>, 1915 (1967).