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ABSTRACT

The flow of non-Newtonian fluids in both concentric and
eccentric annuli was investigated in this thesis. The model for
generalized Bingham (Herschel-Bulkley) fluids was used in the
studies, which included fully developed flow, entrance flow, start-
up fiow and ﬁﬁlsating flow in a concentric annulus and start-up
flow in an eccentric annulus. A set of mathematical formulations
has been developed for fully developed flow of generalized Bingham
fluids in a concentric annulus. Velocity profiles are presented by
using a numerical scheme to solve the equations. The position of
the unsheared plug in the annulus may be determined by the
solutions. The equatinns of motion for entrance flow and unsteady
flow of generalized Bingham fluids in a concentric annulus have
been derived with a group of dimensionless variables. A control
volume based finite difference technique was used to solve the
governing equations. The effects of generalized Bingham number P1,
flow index n and radius ratio s on velocity profiles and pressure
drop in the annulus are presented. Velocity profiles of start-up
flow of generalized Bingham fluids in an eccentric annulus were
obtained from finite difference solutions of the equation of motion
after transformation into bipolar coordinates. The effects of

eccentricity were also considered.
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CHAPTER 1

INTRODUCTION

Non-Newtonian fluids are found everywhere in the
industrial world: examples of such non-Newtonian materials are
polymer solutions and melts, various slurries and suspensions,
cement, greases, oils, petroleum preparations, drilling mud,
pastes, paper pulp, paints, and many food products such as
tomato sauces and margarine. Such non-Newtonian behaviour is
characterized by the shear stress being not linearly related
to the rate of strain. In many cases non-Newtonian behaviour
is time-independent. Non-Newtonian fluids are classified
according to their response to the application of shear
stress. The most common classification is:

I) power law fluids;

II) ideal Bingham fluids;

III) generalized Bingham (Herschel-Bulkley) fluids.
Figure 1.1 shows the behaviour of flowing materials by

means of flow curves, that is, plots of shear stress versus

strain rate. The curve (A) represents Newtonian behavior



whereas curves (B)-

2

(E) depict various non-Newtonian fluids.
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The study of flow of non-Newtonian fluids in pipes and

annuli is of importance because of various engineering

applications in chemical,
processes.

process of polymer melts,

petroleum, biomedical and food

Examples that may be cited are the extrusion

blood circulation in the human

cardiovascular system, and coal-water slurry transportation.

Studies have found that entry region in a concentric annulus



3
has significant effects on the so called " Shark Skin" problem
in polymer product manufacturing. Another typical example from
the petroleum industry of non-Newtonian fluid flow in
eccentric annuli is drilling mud and cement slurry flowing
between the drillpipe and the casing in an oilwell. 2An
understanding of the characteristics of non-Newtonian fluid
flow in an annulus is of considerable interest in many areas
of science and engineering. Knowledge of the velocity
distribution during flow is necessary to predict the pressure
drop required to obtain a desired flow rate, and to determine
the rates of heat and mass transfer accompanying such flow.
The trend towards a more scientific approach to engineering
design has brought about the need for fundamental information
concerning the behaviour of non-Newtonian fluids in motion.
One of the main objectives of the present study is to present
more detailed information about the behaviocur of non-Newton an
fluids flowing in both concentric and eccentric annuli.

In the present work, the non-Newtonian fluids which we are
dealing with are time-independent generalized Bingham fluids
{Herschel-Bulkley fluids) whose rheological behaviour can be

described by the equation:

vetek [ 17

where r is the shear stress, 7, is the yield stress, k is the



4
consistency factor, 4 is the shear rate and 4 = du/dr, n is
the flow behaviour index. ™ + ™ is for ¥ > 0 and " - " is for
¥ < 0. The engineering reality of the yield stress has been
discussed by many researchers (Astarita, 1990) . The behaviour
of a generalized Bingham fluid is an empirical combination of
an ideal Bingham plastic and power-law behaviour. If 7, = 0
and n # 1, it reduces to a power-law fluid. If 7, 0 and n =
1, an ideal Bingham plastic fluid results. Generalized Bingham
fluids are also referred to as yield power law fluids.
Although the model of generalized Bingham fluids can be used
to represent most viscous non-Newtonian flows, very little has
been reported in the literature on developing and unsteady
flows of fluids for this model in ducts.

Because of the nonlinear relationship between shear stress
and shear rate, the equations of motion of non-Newtonian
fluids are nonlinear. Therefore, in the majority of cases of
interest it is impossible to find exact analytical solutions,
and numerical methods have to be used to solve such problems.
The primary concerns of the present work are the numerical
solutions of both entrance developing flow and unsteady flow
of non-Newtonian fluids in annuli. A contrel volume based
finite difference marching integration technique was used to
solve the nonlinear equations of motion. For Bingham fluids

flowing in a <concentric annulus, because of the
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characteristics of the yield stress, there exists an unsheared
plug floewing in the annulus. The location of the plug is not
symmetric between the inner and outer walls of the annulus and
the inner and outer radii of the unsheared plug should be
obtained as the boundary conditions for both the entrance
developing flow and the unsteady flow. Therefore, a numerical
procedure was developed to calculate the fully developed flow
of generalized Bingham fluids in concentric annuli and the
inner and outer boundary radii can be determined from the
results. Because the flow in an eccentric annulus is not
axisymmetric, the geometry of the eccentric annulus is
described by wusing a bipolar coordinate system. The
transformation from rectangular to bipolar coordinates allows
the eccentric annulus to be mapped into a rectangular region,
therefore a finite difference method can be applied to solve
the problenms.

In Chapter 4, a general method for the practical
calculation of the fully developed flow of generalized Bingham
fluids in a concentric annulus is presented. The analysis is
worked for Newtonian fluids, power-law fluids, ideal Bingham
fluids and generalized Bingham fluids, but it is readily
extended to other rheological models. Dimensionless Velocity
profiles, volumetric flow rates and the inner and outer
boundary radii of the unsheared plug for the Bingham fluids

can be obtained from the numerical calculation.
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In Chapter 5, a control volume based finite difference
marching integration technique is used to solve the two
dimensional boundary layer equations which represent the
entrance flow of generalized Bingham fluids in a concentric
annulus. The velocity profiles and pressure drop profiles in
the entrance region are presented.

Chapter 6 provides detailed information about the
unsteady flow of generalized Bingham fluids in concentric
annuli, which includes start-up flow and pulsating flow. The
governing egquations derivation, dimensiocnal analysis,
numerical calculating procedures and results are presented.
The effects of radius ratio, fluid properties and flow
parameters are discussed.

Unsteady flow of generalized Bingham fluids in an
eccentric annulus is studied in chapter 7. Details of the
transformation of momentum equation from rectangular to
bipolar coordinates are presented. A finite difference method
is developed to obtain the velocity profiles. The effects of
eccentricities, radius ratio and fluid properties are

discussed in this study.



CHAPTER 2

LITERATURE REVIEW

2.1. Fully developed flow in a concentric annulus

Calculations on fully developed, laminar, axial flow of
non-Newtonian fluids through a concentric annulus are commonly
needed in many industrial situations such as the design of
equipment handling non-Newtonian fluids, and they are
important references for studies of more complicated flows.
For instance, in this study, from the calculations of the
fully developed flow of Bingham fluids, the inner and outer
boundary radii of the unsheared plug in the annulus were
obtained, which were used in the calculations of entrance flow
and unsteady flow in concentric annuli as boundary conditions
that simplified the numerical procedures.

For non-Newtonian fluid flow in concentric annuli,
Fredrickson and Bird (1958) analyzed fully developed flow of
ideal Bingham and power law fluids in a concentric annulus.
The relationship between flow rate and frictional pressure
gradient was published in theform of a set of plots. Rotem

7
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(1962) , McEachern (1966), Mishra and Mishra (1976), Hanks and

Larsen (1979) have theoretically analyzed fully developed
laminar flow of power law fluids. An analytical expression for
the volume rate of flow of a power law non-Newtonian fluid

through a concentric annulus was found by Hanks and Larsen as:

_ nr raa ( dp / dzr 1 n+1 n-1 n+l

Q=G (=) "(1-A%) 7 -5 B (A%-s%) 7] 2.1

where n is flow behaviour index, r, outer radius, k is
consistency factor, s is ratio of radius of inner cylinder to
that of outer cylinder s=r;/r,, A=r'/r, , at r=r' the shear
stress T = 0. Figure 2.1 shows the schematic representation
of coordinates describing axial flow in a concentric annulus.

In 1979, Hanks published results for the fully developed
flow of generalized Bingham fluids in a concentric annulus,
and gave useful engineering design charts to make practical
calculations quite easy. Fordham, Bittleston and Tehrani
(1991) presented the calculations of fully developed flow in
a concentric annulus with Casson, Herschel-Bulkley and

Robertson-Stiff rheological models.



VAV

Figure 2.1 Schematic representation of
coordinates describing axial flow in a
concentric annulus.

Pressure drop and velocity profiles from given volumetric flow
rates were presented. Gucuyener and Mehmetoglu (1992) further
developed the method of Hanks. They analyzed and calculated
the fully developed flow of generalized Bingham fiuids (called
Yield-pseudo-plastic fluids in the paper) in a concentric
annulus. An analytical solution for the volumetric flow rate
of the fluids was presented. Practical examples were provided
to give insight into the use of their development.

In this study, the governing equations of the fully

developed flow of generalized Bingham fluids are wmade
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dimensionless with the same nondimensional variables used in
developing flow and unsteady flow, so that the results of
calculations are consistent with such flows. A similar

numerical method to Fordham’s was used in this study.

2.2. Entrance and developing flow in ducts

When a fluid enters a duct in laminar flow through an
abrupt contraction, it undergoes a change in flow pattern from
an initial condition close to a flat velocity profile at the
inlet, to a fully developed condition at a certain distance
downstream. This is commonly known as entrance flow or
developing flow. The distance from the inlet to the point
where the maximum velocity is 98% of its fully developed value
is defined as the entrance length. The length of the entrance
region depends on the geometry of the duct, the Reynolds
number and the rheological characteristics of the fluid. In
many practical applications, the flow may not become fully
developed and the effect of the entrance region may be
significant. Therefore, a knowledge of the entrance flow of
noen-Newtonian fluids in ducts is important in order to predict
the pressure drop required to obtain a desired flow rate and
to determine the rates of heat and mass transfer accompanying
such flow. Flow in the entrance region of ducts constitutes a
problem of fundamental interest in engineering applications

such as in heat exchange devices and in polymer processing
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industries. The bhehaviour of the fluid in the entrance region
mzy play a significant part in the total length of the duct
and the pressure drop may be markedly greater than for the
case where the flow is regarded as fully developed throughout
the duct. Many industrial applications of non-Newtonian fluids
are described in a review by Bird, Dai and Yarusso(1983).

For entrance flow (developing flow) in a pipe or an
annulus, the flow field is taken to be composed of the two
regions: a boundary layer region and an inviscid core region.
As the flow proceeds, the thickness of the boundary layer
region-where the viscous effects dominate-increases and
correspondingly the inviscid@ core thickness decreases.
Therefore, for high Reynolds numbers (greater than 200, Gupta
and Garg 1981, Mehrotra and Patience 1%90), the steady,
laminar entrance flow problem is often treated as a two
dimensional boundary layer problem, and instead of using
Navier-sStokes equations, Prandtl’s boundary layer eguations
are used to solve the problem (e.g. Mckillop et al. 1870, Liu
and Shah 1975, Lin and Shah 1978, Gupta and Garg 1981, Matras
and Nowak 1982, Gupta 1987, Batra and Jena 1990, Cho and Eyun
1990) .

A number of authors have studied entrance flow of non-
Newtonian fluids in ducts. The entrance region flow of power-
law fluids in pipes was investigated by Bogue (1959), Collins

and Schowalter (1963), Matras and Nowak (1983) and Mehrotra
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and Patience (1990). Using different approximation methods,
the velocity and pressure profiles in the entrance region as
well as the entrance lengths were obtained. Chen, Fan and
Hwang (1970), Shah and Soto (1975) and Nowak and Gajdeczko
(1983) studied the entrance flow of ideal Bingham fluids in
pipes. The effects of the yield stress on the velocity
profiles and the pressure drop in the entrance region were
also investigated. Soto and Shah (1976), Batra and Kandasamy
(1990) studied the entrance flow of generalized Bingham fluids
in pipes. However, in Batra and Kandasamy’s solution, the
inertia terms in the governing equation were neglected. Non-
Newtonian blood flow in the entrance region of a tube was
investigated by Shah and Soto (1974). The flow characteristics

of blood were assumed to obey Casson’s stress-strain relation

VT +VET ] 2.2

Tiu and Bhattacharya (1973, 1974) presented both numerical
calculations and experimental results for developing flow of
power law fluids in a concentric annulus. Mishra and Mishra
(1977) employed a linearized approach for predicting loss
coefficients in entrance region flows of power law fluids in
a concentric annular duct. Entrance flow of ideal Bingham

fluids in a concentric annulus was studied by Mishra, Kumar
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and Mishra (1985). Results were obtained for dimensionless
boundary layer thickness, center core velocity, pressure drop
and the entrance length. Liu and Shah (1975), and Batra and
Jena (1990) investigated the entrance region flow of blood and
Casson fluids in concentric annuli. To our knowledge,
developing laminar flow and fully developed flow of
generalized Bingham fluids (Hershel- Bulkley fluids) in
concentric annuli has not been reported in the literature.

For an incompressible, steady, laminar, isothermal,
axisymmetric entrance flow, the conservation eguations of
continuity and motion in a pipe or an annulus may be expressed

as:

du, 0o _
-634-1_8 (rv) =0 2.3
and
du, Bu__1dp_ 1 8
U3z ar e dz or ar(”) 2-4

where x and r are the coordinates in the axial and radial
directions respectively, u and v are the axial and radial
components of velocity, @ is the density of the fluid, p is
the pressure.

The governing differential ecuations 2.3 and 2.4 for

entrance flow are nonlinear; no exact analytical solutions
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have been obtained even for Newtonian fluids. Many approximate
methods for entrance developing flow in ducts have been
developed, in which the momentum integral method and finite
difference methods are most used.

The momentum integral method for the entrance region flow
of a Newtonian fluid was first developed by Schiller (1922).
He assumed a parabolic velocity profile in the boundary layer
with a thickness é§(x) and a uniform velocity profile outside
the boundary layer. The pressure gradient was related to the

velocity outside the boundary layer by

where U is a function of x. Integrating the equation of motion
with these assumptions and after further numerical procedures,
the velocity and pressure profiles could be obtained. This
method was used by Bogue (1959) for the entrance flow of
Power-law fluids in pipes, Tiu and Bhattacharyya (1973) for
the entrance flow of power-law fluids in annuli, Mishra and
Kumar (1985) for the entrance region flow of ideal Bingham
fluids in concentric annuli, and Batra and Jena (1990) for the
entrance flow of blood in concentric annuli.

The major drawback of the momentum integral method is the

assumption of an inviscid core of fluid outside the boundary
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layers. The calculation of pressure drop is done simply from
inviscid flow considerations. This assumption may be valigd
near the entry where the viscous effect is important only in
the regions near the walls, but becomes unrealistic in the
downstream region near the fully developed flow region.
Campbell and Slattery (1963) first modified the classical
momentum integral method for the entrance flow problem of
Newtonian fluids in circular tubes by using the macroscopic
momentum balance eguation and incorporating the overall
macroscopic mechanical energy balance to account for the
viscous dissipation within the boundary layers.

The macroscopic momentum balance equation may be written

d 1d
E 2Idl’+ 0 dp Idl’"‘ [rrz] lr-R 2.6

The macroscopic mechanical energy balance equation may be

written as:

1 3pgp_ 1 2 -1 2
zgj:u rdr 49U§R +pf:urdr 5 PoUoR

+uj:f:(-g—§)2rdrdz=0
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Using the assumption of the parabolic velocity profile in the
boundary layers, Egns. 2.6 and 2.7 can be solved numerically,
and the velocity and pressure profiles in the entrance region
can be obtained. This method was employed by Chen, Fan and
Hwang (1970) for the entrance region flow of ideal Bingham
fluids in a circular pipe and by Tiu and Bhattacharyya (1973)
for the entrance region flow of power-law fluids in annuli.
One of the drawbacks of these integration methods is the
assumption of a velocity profile -~ this can introduce some
error into the results. With the development of computer and
numerical computing techniques, finite difference methods were
developed for the problem of the entrance flow. Using finite
difference methods to solve the problem of the entrance region
flow; velocity and pressure distributions may be obtained
directly without assuming the form of velocity profile within
the boundary layer. The finite difference method was first
developed by Bodoia and Osterle (1961) for the entrance flow
of Newtonian fluids between two parallel plates. Without
linearizing assumptions for the original difference equations
of fluid motion, the governing equations for the developing
flow were directly solved by a finite difference marching
procedure. The velocity and pressure profiles in the entrance
region were obtained. This method was also used by Hornbeck
(1954) for the entrance flow of Newtonian fluids a pipe, and

very good results obtained. ©Patankar and Spalding (1968,
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1570) developed a similar finite difference marching-
integration procedure based on the control volume approach to
solve the general two dimensional boundary equations. In their
method, the governing equations were expressed in finite
difference forms by the integration of a control wvolume at
every step, the nonlinear inertia terms in the governing
equations were evaluated from the upstream values of the
control volume. Therefore, the velocities and pressure at any
axial position were determined by using values upstream from
the position. By step-wise repetition of this basic operation,
the whole region could be investigated. Because the finite
difference marching-integration technique is very convenient
for dealing with the nonlinear terms in the governing
equations, this method was popularly used by many
investigators to solve the problem of developing flow of
Newtonian fluids and extended to the non-Newtonian fluids flow
in the entrance region. Shah and Farnia (1974), Gupta and Garg
(1981) used the finite difference procedure of Patankar and
Spalding for the entrance flow of Newtonian fluids in a
concentric annulus. Shah and Farnia presented some values of
local and apparent friction factors in figures for the
entrance region. Gupta and Garg provided the velocity and
pressure profiles for developing flow through annular ducts.
Soto and Shah (1975, 1976) employed the finite difference

method of Patankar and Spalding for the problems of developing
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flow of ideal Bingham fluids and yield-power law fluids in
pipes. The values of local friction factor, apparent friction
factor and center line velocity were determined and presented
graphically. The effects of vyield stress and the flow
behaviour index on the velocity and friction factors profiles
were alsc investigated. Liu and Shah (1975) using Patankar and
Spaléing’s finite difference method obtained the numerical
solution of the entrance flow in an annular tube for a non-
Newtonian fluid obeying the Casson’s relation. The effects of
yield stress on friction factors were presented and results
for entrance flow of Newtonian fluids in annuli presented.
Mehrotra and Patience (1990) using the Patankar (1980) control
volume approach investigated entrance flow of power law fluids
in pipes. A staggered grid block system was used, in which the
primaxry variables of radial velocity, axial velocity and
pressure were evaluated at different locations in each grid
block. Center line velocity profiles and entry lengths were
obtained.

Matras and Nowak (1983) introduced an approach called a
"transformation method" for predicting changes in pressure
drop in laminar isothermal entry flow of power-law fluids in
circular tubes. In their method, a "pseudo-Newtonian" fluid
model was adopted to describe the power law fluid model by
introducing some transformation variables. The behaviour of

power law fluids in the entrance region of circular tubes was
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obtained by studying a hydrodynamical analogy of Newtonian
fluids. Use of the integral forms of equations of motion with
an appropriate velocity distribution led to simple expressions
boundary layer and pressure distribution in the developing
region. Gupta (1987, 1990) using a similar method investigated
laminar power law fluid flow development in a straight
channel.

In the present program, the finite difference marching
integration approach will be used to solve the entrance region

flow of generalized Bingham fluids in pipes and in annuli.

2.3. Unsteady flow of non-Newtonian fluids in ducts

In brth industry and nature, the time-dependent unsteady
motion of fluids as part of some process is quite common.
Three aspects of unsteady, laminar motion of non-Newtonian
fluids in ducts are considered by many investigators. These
are:

(a) start-up flow --- in a duct following the sudden
application of an axial pressure gradient to a fluid at rest.

(b) Oscillatory flow --- in which the fluid is subjected
to a periodic pressure gradient having a mean value of zero.
There is no net flow of fluid in the duct. The fluid merely
oscillates backward and forward.

(c) Pulsating flow -—- in which the fluid is subjected to

a periodic pressure gradient having a non-zero mean value and
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there is a net flow of fluid through the duct.

Actually, start-up flow and oscillatory flow are special
cases of pulsating flow. The pressure gradient for a

sinusoidal pulsating flow may be written as:

az =(== )+(§§)s:.n(mt) 2.8

where (dp/dx), is the steady component of the pressure
gradient, and (dp/dx), is the oscillatory component. If
(dp/dx) =0, we get the condition for start-up flow. If
(dp/dx),=0, the problem reduces to oscillatory flow. For all
three types of unsteady flow in long pipes or annuli where

entry and exit effects are negligible, the equation of motion

may be written as:

du__dp_1 0
Qat dz ror

(rT) 2.9
The treatment of non-linear partial differential
equations of unsteady flow of non-Newtonian fluids generally
leads to the use of numerical methods.
Because the unsteady flow of non-Newtonian fluids in
ducts has many practical applications, considerable

investigations have been made in this field. Barnes, Townsend
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and Walters (1969) have presented experimental data on the
pulsating flow of power law fluids. Under a pulsating pressure
gradient, it was observed that the addition of oscillations
increased the mean flow rate above that given by the steady
pressure gradient along. They also presented a theoretical
analysis of pulsating flow of power law fluids in pipes. The
predicted increases in flow rate showed the same trends as the
experiment results. Edwards, Nellist and Wilkinson (1972)
studied the unsteady laminar flow of power law fluids in
pipes. Start-up flow, oscillatory flow and pulsating flow were
considered and a finite difference technigue was developed to
solve the equation of motion; typical velocity profiles were
presented. The effects of +the major parameters which
influenced these flows were demonstrated. Duggins (1972)
studied the start-up flow of ideal Bingham fluids in pipes.
Velocity profiles for start-up flow of ideal Bingham fluids
were derived by using Patankar and Spalding’s finite
difference methods. The pulsating flows of solid-liquid
suspensions in pipelines were studied by Round (1974, 1981);
Round, Latto and Lau (1976); Round and El-Sayed (1985, 1986).
The possibility for large energy saving in slurry pipelines by
the superposition of low frequency regular pulses on a steady
flow was investigated. Experiments were carried out using
laboratory-scale pipelines involving flow systems using

periodic total interruption of flow and an air pulsing device.
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Ly and Bellet (1976) developed a technique for dealing
with the time-dependent pipe flow of power-law fluids called
the "multiviscous" approximation. This method breéks the flow
field into N distinct layers of fluid with N different
constant Newtonian viscosities. The constant viscosity values
were obtained from approximating the non-Newtonian shear
stress/shear rate curve by N straight lines. The momentum
equations expressed in terms of shear stress were then solved
consecutively across the layers. The velocity profiles for
oscillatory flow and pulsating flow were obtained. The results
were concordant compared with other numerical procedures.
Several different numerical methods were used for
unsteady flows of non-Newtonian fluids by Balmer and Fiorina
(1980), Gorla and Madden (1984), Nakamura and Sawada (1987,
1990). Balmer et al. studied the unsteady flow of power law
fluids in a tube. The momentum equations were solved
numerically using an implicit finite difference technique for
the time-dependent velocity profiles for both start-up and
pulsating pressure gradients. Dimensionless curves were
presented showing the velocity profile development and phase
angle variation for a variety of power-law index values. Gorla
et al. adopted a semi-direct variational method of Kantovorich
to analyze the unsteady flow of power=-law fluids in a circular
tube. The results were reported on the effect of a triangular

pressure pulse on the development and transient response of
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the flow field of a power-law fluid. Laminar pulsatile flow of
slurries was studied numerically by Nakamura and Sawada (1587)
with the slurry being described as a ideal Bingham fluid. The
Crank-Nicolson method was adopted to solve the governing
equations of motion. The flow enhancement rates, the extra
power required to pulsate the flow were investigated. Nakamura
and Sawada also investigated unsteady blood flow through a
stenosis. The two-dimensional starting and stopping flows of
the non-Newtonian fluids through an axisymmetric stenosis were
calculated using the finite element method.

Laminar pulsating flow of a clay slurry in a circular
pipe was studied experimentally by Kajiuchi and Saito (1984).
The flow behaviour of the slurry was approximated as that of
an ideal Bingham fluid. The addition of sinusecidal pulsating
fluctuation to a steady pressure gradient resulted in
enhancement of the flow rate, because of the non-Newtonian
behaviour of the slurry. The enhancement increased with the
following conditions: (1} an increase in pulsating amplitude,
(2) a decrease in pulsating frequency and (3) a decrease in
the mean pressure gradient. An experiment on the pulsatile
flow of ideal Bingham fluids in a high Reyneolds number region
was carried out by Nakamura and Sawada (1990).

It appears that there is nothing published in the open
literature on the unsteady flow of non-Newtonian (power law,

ideal Bingham and generalized Bingham) fluids in a concentric
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annulus, and few papers have been published on the unsteady
flow of generalized Bingham fluids in pipes.

In the present program, the finite difference marching
integration approach will be adopted to deal with the unsteady
flow of non-~-Newtonian fluids (including generalized Bingham

fluids) in pipes and in annuli.

2.4. Non-Newtonian fluid flow in an eccentric annulus

Fluids flow through an annular space is an often-
encountered engineering problem. For most of the cases, it is
treated as a concentric annular flow. However, in some cases
the annular space is not concentric but eccentric, i.e., the
axes of inner and outer tubes do not coincide with each other.
For example, in the petroleum industry, during a drilling
operation, the drillpipe is usually positioned eccentrically
in the wellbore, especially in a deviated wellbore where the
drillpipe has a strong tendency to offset toward the low side
because of gravitational effects.

A bipolar coordinate system is often adopted to describe
the geometry of eccentric annuli. In bipolar coordinates, the
eccentric annulus is represented by two coordinates, which are
two sets of orthogonal circles. This coordinate system is
obviously useful, since the walls of the eccentric annulus are
represented by two constant values in one coordinate. The

transformation from rectangular to bipolar coordinates allows
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the eccentric annulus to be a rectangular region. Using
bipolar coordinate system and Green’s function, Heyda (1959)
presented analytical solutions for Newtonian fluids flow in an
eccentric annulus. Heyda obtained the velocity profile in the
form of an infinite series. Redberger and Charles (1962)
applied bipolar coordinates and the finite difference method
to solve the differential equation of motion for the velocity
profiles, and the flow rates was obtained as a function of the
pPressure gradient and conduit geometry of Newtonian fluids in
an eccentric annulus. Their velocity profile agreed with
Heyda’s analytical solution. Snyder and Goldstein (1965) also
analyzed Newtonian fluid flow in an eccentric annulus using a
technique similar to Heyda’s. From the solution of velocity
profile, they developed expressions for shear stress at the
inner and outer surface of the annulus and related these to
friction factoer calculations.

For non-Newtonian fluid flow in an eccentric annulus,
there are only limited number of studies having been carried
out. Mitsuishi and Aoyagi (1973) presented a comparison of the
experimental data with the conventional variational method
analysis for fluid flow in an eccentric annulus, using the
Sutterby model as a non-Newtonian model. An equation was given
to predict the relation between flow rate and pressure drop in
an eccentric annulus in terms of experimental fluid flow data

in a circular tube. Guckes (1975) investigated the laminar
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flow of power-law fluids and ideal Bingham fluids in eccentric
annuli. The volumetric flow rate for the steady flow was
presented as a series of dimensionless plots. The plots
covered a broad range of fluid properties, pipe diameters,
eccentricity and pressure drop. These relationships were
obtained by numerically integrating the velocity profile
resulting from a finite difference solution of the eguations
of continuity and motion after transformation into bipolar
coordinates.

Although the bipolar coordinate methods were adopted to
solve the problem of eccentric flow, it is still very
complicated. Some simple approximate methods were developed to
solve the problem of eccentric flow. One approximate solution
to predict the relationship between volume flow rate and
pressure drop for steady-state laminar flow of non-Newtonian
fluids in an eccentric annulus was described by Iycho and Azar
(1581). An eccentric annulus was modeled as a slot of variable

height (see Figure 2.2). They derived a complete equation for
the variable slot height:

h=(r2-€*c?sin%@)¥/2-r.+ec cosb 2.10

where c=r, -
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Figure 2.2 Slot equivalent of eccentric
annuli

Using the velocity equation for a channel flow, the velocity
profiles of power law fluids in eccentric annuli were solved
with different eccentricity. However, they calculated the
volume rate of flow by using the modified version of the
formula given by Skelland (1967) in which the eccentricity was
not taken into account. Uner, Ozgen and Tosun (1987) alsc used
the slot flow approximation. A solution to predict the
relationship between volume rate of flow and pressure drop for
steady state laminar flow of power law and ideal Bingham

fluids in an eccentric annulus was described as a function of
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eccentricity and radius ratio. The accuracy of the solution
was limited only for the radius ratio larger than 0.5. Walton
and Bittleston (1991) presented a similar method analyzed the
axial flow of a ideal Bingham fluid in a narrow eccentric
annulus. Analytical solutions were obtained by expanding in
power of §, the ratio of the difference in radii of the
bounding cylinders to their mean. Noting that the slot model
is in essence a modified model for flow between parallel
plates, which will result in unrealistic symmetric profiles of
the shear-stress/ shear-rate magnitudes and the velocity, Luo
and Peden (1990) developed another approximate method for the
flow of non-Newtonian fluids through eccentric annuli. In
their method, an eccentric annulus is treated as being
composed of an infinite number of concentric annuli with

variable outer radii, which were described as:

r,%=ecosf+/r 2-[esinf]?2 2.11

Instead of using the velocity equation of channel, the
velocity profiles for the concentric annuli flow were used in
this method to approximate the flow. The solutions for the
shear stress, shear rate, velocity profiles and volumetric
flow rate/pressure were obtained. Power-law fluids and ideal
Bingham fluids were considered.

However, both the slot model and the model presented by
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Luo and Peden failed to give accurate solutions of velocity
profileé even for Newtonian fluids flowing in an eccentric
annulus, because the equation of motion they used could not
correctly describe the flow situation in an eccentric annulus.
The greater the eccentricity, the greater the error. Using a
bipolar coordinate system would here give more accurate
solutions. Using this technique to solve the problem of flow
in eccentric annuli is even more complicated for non~Newtonian
fluids.

Haciislamoglu and Langlinais (1990) first presented
studies dealing with fully developed flow of generalized
Bingham fluids ( named yield-power law fluids in their paper)
in eccentric annuli by adopting a bipolar coordinate system
and a finite difference technigue. The velocity profiles,the
viscosity profiles, and the flow rate versus frictional
pressure loss gradient relationship were demonstrated for
different eccentricities. In their numerical procedure, a non-
uniform grid point distribution in bipolar coordinates was
introduced, which could give a more realistic distribution of
grid points in physical coordinates.

It appears that, there is no literature published for
either entrance flow or unsteady flows of non-Newtonian fluids

in an eccentric annulus.



CHAPTER 3

SCOPE OF INVESTIGATION

The literature review in Chapter 2 has indicated that the
flow of non-Newtonian fluids in concentric or eccentric annuli
has considerable industrial applications. However, as a
typical non-Newtonian fluid, generalized Bingham fluids, where
behaviour is an empirical combination of ideal Bingham fluids
and power law fluids, have not been given enough attention. aAs
mentioned in Chapter 2, fully developed flow and developing
flow of generalized Bingham fluids ( Herschel-Bulkley or Yield
povwer law fluids) in concentric annuli have not been reported
in the literature, and it appears that there is nothing
published in the open literature on the unsteady flow of non-
Newtonian fluids ( power law, ideal Bingham and generalized
Bingham fluids) in concentric or eccentric annuli. These
effects have prompted the present research, which includes
following:

1. Fully developed flow of generalized Bingham fluids in

30
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a concentric annulus. Equations of velocity and flow rate were
derived. A numerical procedure was developed to solve the
velocity profiles. The locatior of the unsheared plug was
determined.

2. Entrance flow of generalized Bingham fiuids in a
concentric annulus. The equation of motion for generalized
Bingham fluids in the entrance region was numerical solved by
a finite difference method. Velocity and pressure drop
profiles were obtained.

3. Unsteady flow of non-Newtonian fluids in a concentric
annulus. The equation of motion of non-Newtonian fluids was
solved for both start up flow and pulsating flow. Velocity
profiles were obtained.

4. Unsteady flow of non-Newtonian fluids in an eccentric
annulus. Bipolar coordinate system and finite difference
technique were used to solve the equation of motion for the
start up flow in an eccentric annulus. Velocity profiles were

obtained.



CHAPTER 4

FULLY DEVELOPED FLOW OF GENERALIZED BINGHAM FLUIDS IN

CONCENTRIC ANNULI

4.1. Derivation of governing equations

For Bingham
fluid flow in a
concentric annulus,
because of the
yield shear stress
Tos (see Figure
4.1), the pressure
gradient has to be
sufficient to
overcome the yielad
stress 7, so that
the fluid can flow;

where |7(x)]| > 7,

T
T a+tky
T
b
Figure 4.1 T~ ¢ ©relation for a

generalized Bingham fluid

an unsheared plug flow region with two yield boundaries r, and

32
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r, (vhere r; < r, < r, < r,) exists in the concentric annular
flow and the inmmer and outer yield boundary radii are
determined by the condition |7(r)|= 7, at r= r, and at r= r,.
Figure 4.2 shows a sketch of the characteristic velocity
distribution for Bingham fluid axial laminar flow in a
concentric annulus. In the region of r; < r <r,; ¥ > 0, and
in the region of r, < r < r,; ¥ < 0. The values of r, and r,

can be determined by calculating the fully developed flow

situation.
L L L LSS S S S
flow
L/ NS L L L LY Y/
&) rs T Fe
SIS RN SO E— | centre line
Figure 4.2 Nomenclature for Bingham fluid flow in

concentric annulus

Notice that the shear rate ¥ = - du/dr, equation 1.1 for
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generalized Bingham fluids may be expressed as:

= @ n-l_gl_l
T=Ty2 k]| Brl o 4.1

forr;srs<rx, and r,srsr,

and

du
or

for r,<r<r
where r; and r, are respectively the inner and outer radii of
the annulus.
For the fully developed flow of incompressible fluids
through a concentric annulus, the egquation of motion can be

integrated in cylindrical coordinates to yield:

d

T+ Ti.ﬁ:c 4.3

(VY=

where C is an integration constant, and dp/dx is the pressure
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gradient in the annulus (dp/dz < 0). Substituting of the
boundary conditions,
T=To at r=r,
=T, at r=r,
into the Egn. 4.3, and we obtain
T,I, 1 do, L
g=—02_10dD("2_n 4.4
r 2dz r
r, S r<r,
4.5

2
=L R+ ( -y
r 2 dz( r )
r, <rsr,

after substituting of Egn. 4.4 and Eqn. 4.5 into Egn. 4.1
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respectively and integrating the equations, the expressions of

the velocity for generalized Bingham fluid flow in a

ceoncentric annulus can be written as:

2
u(r)= [ (”1) k%(r_;—:)]lfnd: 4.6

rnsr

IA
H

* -1 do Iz_ /n .
u(z)=["132(1-22)- L B (Tp _g)jaingr 4.7

Note: because of the existence of the unsheared plug flow in
the annulus,
for r,srs<r

u(r) = u(r;) = u(r,) = constant

The velume rate of flow for the generalized Bingham fluid in
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the annulus can be expressed by integrating the velocity

distribution over the annulus region:

o=2x [ " u(z) rdr 4.8

Xy

substituting of Egns. 4.6, 4.7 into Egn. 4.8 and using the
condition of the unsheared plug flow in the annulus, the

volume rate of flow expression becomes:

o= [ (z2-r) 132 (Z2-1) - L 4

e~ 1/
2kdz( r” bdr

2
+n(r=-:=)f (52 (=2-1) - zlkggc%-r)llfndr

2_.2 o p_l dp p 1/n 4.9
+7 :p(l' ~rg) [ (1--=E) 2kdz( -r)1*2dr

To calculate the thickness of the unsheared plug in the
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annulus, the force balance equation gives:

I -r = _2%0_
P =3  dp/dz

4.2. Dimensional analvsis
Equations. 4.6, 4.7, 4.9 and 4.10 are made dimensionless

by defining the following nondimensional variables:

Re:___._e dbnﬁz—n Pl:_rodba f:—ip___._dh
k ka® dz p32/2

where Re and Pl are respectively defined as a generalized
Reynolds number and a generalized Bingham number, f is the
Darcy-Weisbach friction factor, G is the average velocity of

the annulus, d, is the hydraulic diameter of the annulus.

dh=2(ro-rl)

In terms of these nondimensional variables, Eqns. 4.6 and 4.7
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beconme:

~® Pl Rn_ fRe n i/n .
U(R)-fgi[?(? N+Z (F-RIYEGR 4

R <RSR,

U(R) f (1 i)+fﬁf(—£ ~R) 1¥/2dR 4.12

R, <R S R,

The dimensionless form of Egn. 4.9 results in the equation:

_p2=fR_par Pl fRe , R2 1/
R2-R3 f& R [4::‘12 ")+ (F-RI1MAdR

f °R2[ Pl 1 (1- —E) fRe(—e -R)]¥adR  4.13

4n+2

The dimensionless form of Egn. 4.10 becomes
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8Pl
R -R = 4.
P "% fRe 14

4.3. Numerical procedures

Equations 4.11, 4.12 and 4.13 are the basic results of
the flow analysis, which illustrate nondimensional velocity
and volume rate of flow of generalized Bingham fluid flow in
a concentric annulus. In these equations, the boundary radii
of the unsheared plug R, and R, are unknown. In order to obtain
the details of the velocity profiles and volume rate of flow
in the annulus, the values of R, and R, have to be determined
first. To get the values of R and R,, Egns. 4.11, 4.12 and

4.13 have to be solved by using numerical integration and

iteration methods.

According to the conditions

U(R) = U(R),

and R, = Ry+(8P1)/(fRe),

a function of R,, F,{R)), can be obtained by substituting these
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conditions into Egns. 4.11 and 4.12 and subtracting Eqn. 4.12

from Eqn. 4.311:

Ra. Pl , R fRe , R
k)= 2 G 28 v

[Pl _Rpy fRe Ry ovyim 4.15
fn, (55 (1-2) + 255 (E-R) 1 ¥/°dR

In Egn. 4.15, for a specific fluid, if the pressure drop along
the : anulus is given, the values of the generalized Bingham
number Pl and flow index n are known and the product of the
Reynolds number and the friction factor £ is a constant.
However, the value of f is unknown. To sclve Egn. 4.15 to get
the value of R,, we have to find the value of f. Therefore,
another equation is needed. From Egn. 4.13, a function of f
can be obtained by subtracting the left side of the Egn. 4.13

from the right side of the equation:
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—p2_ Rapor P1, Ry fRe , R2
F,(f) -Ri Ri'*‘ RiRz [—4;(% 1)"‘45*2 (—R—n'R)]llndR

_fRop2 Pl  _Rp . fRe R __ 2/ 4.16
prR [4n(1 R)+4n*2(R R) J*#dR

Now, the computational problem reduces +to finding
simultaneously the zeroes of two functions. Let F,(R))=0, and
F,{£)=0, using an interval-chopping algorithm, the radii of
the unsheared plug R, and R,, and the friction factor f can be
determined through iteration of the three simultaneous
equations 4.14, 4.15 and 4.16. The numerical procedures are:
first, an initial guess of friction factor f is provided in
equation 4.15 to calculate R, by using an interval-chopping
root finding method, and using equation 4.14 to calculate R,;
then the current values of R, and R, are substituted into
equation 4.16 to calculate £ by using same root finding
algorithm. Comparing the updated value of f (f*) with the
value of £ at the last step (£f™), if f°-f*! > ¢ , (where € <<

1), then go back to the first step with the new updated value
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of £ and repeat the procedures; if f£f-f*! < ¢, then stop the
calculation. The final values of f°, RS, R’ are the desired
results. Substituting these results into equations 4.11 and
4.12, the velocity profiles of generalized Bingham fluids in

a centric annulus are obtained

4.4 Results and discussion

According to the numerical procedures derived previously,
a computer program has been developed for fully developed flow
of non-Newtonian fluids in concentric annuli. Velocity
profiles were obtained for different radius ratios s, power
law indices n, and generalized Bingham numbers Pl. Figures 4.3
to figure 4.6 show velocity profiles of radius ratios s =
0.02, 0.2, 0.4 and 0.6 with n = 0.7 and Pl = 10. When the
radius ratio s is decreased, the maximum velocity ( i.e. the
velocity of the unsheared plug ) in the annulus is increased.
The position of the unsheared plug is not symmetric between
the inner and outer wall of the annulus, and it is closer to
the inner wall. With the radius ratio s decreasing, the
unsheared plug is shifted towards the inner wall. When s = 0,
the unsheared plug will be very close to R=0, and becomes an
unsheared core with a radius R, = 8Pl/fRe as in pipe flow.
Figure 4.7 shows the velcocity profiles of different
generalized Bingham number with n=0.7 and s=0.2. With Pl
increasing, the maximum velocity in the annulus is decreased,

and the unsheared plug region is increased. The accuracy of
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the computing was indirectly checked by comparing the results

of Newtonian fluids in a concentric annulus with the analytic
solutions, which gave very good agreement.

When the boundary radii of the unsheared plug are
determined, it will be easier to do further calculations on
developing flow or unsteady flow of generalized Bingham fluids

in a concentric annulus.

R

1.8
= a*0.2 n~0.7 PI=10
1.2+
08
0.4r
° 1 1 il
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R

Figure 4.3 Velocity profile of fully developed flow
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CHAPTER S

DEVELOPING FLOW IN CONCENTRIC ANNULI

5.1 Dimensional analysis

For entrance flow (developing flow), in a pipe or an
annulus, the flow field is taken to be composed of the two
regions: the boundary layer region and the inviscid core
region. As the flow proceeds, the thickness of the boundary
layer region-where the viscous effects dominate-increases and
correspendingly the inviscid core thickness decreases.
Therefore, for high Reynolds numbers (greater than 200, Gupta
and Garg 1981, Mehrotra and Patience 1990), the steady,
laminar entrance flow problem is often treated as a two
dimensional boundary layer problem.

For an incompressible, laminar, axisymmetric steady flow,

the conservation equations of continuity and motion are:

_aE+_..§_ (zv) =0 5.1

0z rxor
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for generalized Bingham fluids(Bird, 1960)

t:==—(-;—:-+kl'2”'1) (2. 2¢

T.=~ —+2k1‘2"'1) ( )

f::-" (——+2kI ﬂ-l) (T
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where

I,= IJz( )h(?u"l’ +2(ZT)22(2)7)

For the sake of simplicity, we use a group of
nondimensiona) variables as follows for the dimensional
analysis of equations 5.1, 5.2 and 5.3. These nondimensional

variables are defined as:

u v r
== V=——R Ree—
u, u, ° d,/4
p-p
Z=—mr—  p= =0
(d,/4) Re 9112
Iy 2=
Re= 04, "l p1="e%
k ku,®

where Re and Pl are respectively defined as a generalized
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Reynolds number and a generalized Bingham number, d, is the

hydraulic diameter of the annulus

dh=2( ro-ri)

In terms of these nondimensional variables, and substitute

egns 5.4, 5.5 and 5.6 into Egns. 5.1, 5.2 and 5.3, the

governing equations become:

U, 3
0z RBR(RV) =0 2.7
au, . du,_
U3z VR
ap 1 0 Pl 1 v
"3z RBR{R[( I (52 wiaz) )
5.8
T {(Pl =) (4Y

Ref+1 0z I,
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Uugv, VvV av,
Re? aZ Re® OR

o°P, 2 Pl 455 5.9
3z RZRT{R[( )( )]}

1 21 wn-1 aU 1 ov
T Re? ezaz“ L) (Rt aar 9z !

where

24 aU av 2 24
3= I\IZ( 5) 3 (SR =) 2 (2 2 (o)

When the Reynolds number is very large, the terms in the
governing equations with 1/Re, 1/Re’ and 1/Re**! orders of
magnitude are considered much smaller than other terms in the
equations. The momentum equations 5.8 and 5.9 can now be

simplified by neglecting the terms which have 1/Re, 1/Re? and
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1/Re**! orders of magnitude:

U, 8V, _8P_1 3

a aU n
5% V" 5z RaR{R[Plﬂ( 1} 5.10

or
OR

Equations 5.7, 5.10 and 5.11 can also be derived from the two
dimensional boundary layer equations. Therefore, for a very
large Reynolds numbexr, the entrance flow in an annulus can be
simplified by using two dimensional boundary layer equations
instead of using formal Navier-Stokes equations. Previous
studies on entrance flow have shown that a higher order of
approximation, including the radial momentum flux but not
second derivatives of velocity in axial direction, does not
give significantly different results from the boundary layer
type of model for Reynolds numbers greater than 200. (Gupta
and Garg 1981, Mehrotra and Patience 1990). Since large
Reynolds number situations are considered in present studies,

a boundary layer model is adopted for the analysis.
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For an incompressible, laminar, axisymmetric steady flow,

the boundary layer equations are:

du., 0 _
3z 7oz (T =0 5.12
and
du,du__1dp_1 48
Uz "Ver o dz erdr v 2-13

The boundary conditions for a concentric annulus flow are:
u(r, 0)= u, u(r;, x}=u(r,, x)= 0
v(r, 0)= v(r;, x)= v(r,, %)= 0, P(0)=p,

where u and v are the axial and radial components of velocity,
Q is the density of the fluid, p is the pressure, u, and p, are
respectively the velocity and pressure at the inlet section,

r; and x, are respectively the inner and outer radii of the

annulus.
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Equation 1.1 for generalized Bingham fluids may be

expressed as:

T=TxK| % ln‘l% 5.14

forr;y£<rsr, and r,srsr,

du _
37 5.15

The values of the boundary radii r, and r, are determined from

the results of the fully developed flow.
Substituting of Egn. 5.14 into Egn. 5.13, and the equation

of motion becomes:
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+v__-_._-

vz Var e dz g.r er

au du__1dp | l(’"” Bu

+[12(n-1)] k] |‘n Y a””

where " - " is for r; < r <r,, and " + " is forr,<r < r,.

Since the pressure gradient in the entrance region is not a

constant, the flow rate continuity equation is needed:

o=2x[ “ulr) rdr=const. 5.17
Iy

Equations 5.12, 5.16 and 5.17 are made dimensionless by
defining the same nondimensional variables used in section
$.1. In teras of these nondimensional variables, Eqns. 5.12,

%.16 and 5.17 beconme:



U,V _0ov_

az R 3R =0 5.18

59U, ,8U__ dP_ PI 4n|_|-1au

6Z OJOR dZ R R

U 2y

+47[1+ (n-1}] 5.19
I OR?
where " - " is for R < R <R, and " + " is for R, < R < R,.
and
RO
2| "U(R)RdR=1 5.20

Ry

The boundary conditions are

U(R, X)= U(R,, X)= V(R, X)= V( R,, X)=0

U(R, 0)= 12, V(R, 0)=0 P(0)= 0

dU/dR= O for R, SR SR,

5.3. Finite difference approach

For entrance flow in an annulus, the u-velocity compecnent

in the axial direction is much larger than the v-velocity
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component in the radial direction. The u-velocity component
has significant influence on downstream conditions. The
conditions at a point in the region are then affected largely
by the upstream conditions. A control-volume based upon a
finite difference marching integration technique was used in
this study to solve the two dimensional boundary 1layer
equations (Egqns. 5.18 and 5.19). This numerical technique was
first developed by Patankar and Spalding (1970). Many studies
adopted this method to solve entrance flow problems, such as
Shah and Soto (1975) for the entrance flow of Bingham fluids
in a pipe, and Gupta and Garg (1981) for the developing flow
of Newtonian fluids in a concentric annulus. The
discretization methods and the solutions of the algebraic
equations used in the computer program are also made with
reference to the book of "Numerical Heat Transfer and fluid
Flow" from Patankar (1983). Because flow in a concentric
annulus is axisymmetric to the center line, only half section
area along the axis needs to be calculated. Figure 5.1 shows
the network of the grid peints.

An upwind-difference scheme is applied to each control
volume which surrounds a grid point. The values of velocities
at each interface of the control velume in axial direction are
determined by the values of upstream grid points. Therefore,
the momentum equation for each control volume is discretized
by using the values of four grid points (see Fig. 5.1). The

values of v velocity component in the eguation of motion are
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flow

aR

aZ

R,

=%t
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Figure 5.1 Finite difference network

also determined by the values at the upstream station.

The finite difference representations used for various

terms in Egns. 5.18, 5.19 at a grid point (i, j) are:

OU_Us,37Usg,4
oz AZ



ouU_
U-&—Z-—

Ve—=V.

oR

U; +~U;.
Ui—]_‘j [ i,ZAZi 1:1 ]

Ui- - _Ui, -
i-llj[ j;m j 1]

op_PrPyy
0z AZ

pPl_PI
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1 |@| -1 oU_ 1 = U1, 3017 Ui-g, 31 ln-:. Ui, 301704, -1
R'OR' TR R, 2aR 2aR

1 ouU |n 1320 _ | Ujog, 3+1 Ui, 31 I’H Ui, yea=2U0;, 34Uy, 501
OoR? 2AR AR?

The veariables with (i-1) subscript are assumed known as the
values at upstream station, while those with (i) subscript are

unknown. Using these representations, Egns. 5.18 and 5.19

become:

2AR

v V ZAR
Rj i‘j

Vi,j—:. 1,341~ (Uj-l Ei Ui j) 5.21

and

74 2
Vi, KB Kz)Uirl (Ui-1j+ K

.
2aR  2RAR AR? aZ 2) Uy



+( V.i‘lpj_ & - & )Ui -1+_Pi
28R 2RAR g2’ 1IN Az

Yy, Pia_ Pl
AZ AZ Rj

where

U -U -1
aan| Yi-1,4+17 V51,92
Ky =247 2R |

1

Ui jv:l.“'Ui-:. 4-1 ("
- n — , ’
K,=+47[1x(n-1)1]| > |

The finite difference form of Egn. 5.20 may be written as:

N N
zRfUi.f X RUs,,;
J= J=1
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Combining Eqns. 5.22 and 5.23, a set of simultaneous linear

equations of U;; and P; are obtained for a group of grid points
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aleng one cross stream line in the entrance region. After
solving these equations, egn. 5.21 may be solved for V; by
using updated results of the u velocity component. Starting
from the inlet of the entrance region, the two dimensional
boundary layer equations are computed by marching in the axial
direction. The velocity and pressure profiles in the whole
entrance region of an annulus can be cbtained by a sﬁep-by—

step continuation of the process downstreamn.

5.4. Results and discussion

Numerical solutions were obtained for different fluids in
annuli with different radius ratios. Figures 5.2 and 5.3 show
the developing velocity distributions of the generalized
Bingham fluid with generalized Bingham number Pl=10 and power
law index n=0.7 for radius ratio, s=0.02 and 0.6. It is
observed from these figures that the velocity profiles are
changed from symmetry about the mid point between the inner
and outer walls at the inlet to asymmetry in the entry region.
As the radius ratio s decreases, the asymmetry intensifies,
and the unsheared plug shifts closer to the inner wall. The
velocity at any point between the inner wall and the unsheared
Plug is greater than that at a point equidistant from the
outer wall. Figure 5.3 shows the developing Qélocity profiles
for P1=15 with n=0.7 and s=0.2 at several axial locations in
the entry region. The region of the unsheared plug is

propbrtional to Pl. Figures 5.5 and 5.8 show the development

21
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of maximum velocity (the velocity of the plug) and the
pressure profiles in the entrance region for P1=10, n=0.7 with
the radius ratios s=0.02, 0.2, 0.4, 0.6. It can be seen from
these figures as s is increased, the values of the maximum
velocity and the entry length are decreased,'and the values of
pressure drop are increased. Figures 5.6, 5.7, 5.9 and 5.10
compare results of the developing velocity of the unsheared
plug and pressure drop profiles for n=0.7, 1, and 1.2 with
P1=10 and s=0.2; and for Pl=5, 10, 15 with n=0.7 and s=0.2. It
is obvious that when n is increased, the values of the
velocity of the unsheared plug, entrance length and pressure
drop are also increased. When Pl is increased, the values of
the velocity of the unsheared plug and the entrance length are
decreased, and the pressure drop in the entry region is
increased. The results presented were obtained by using
successively small mesh sizes until a sufficient degree of
convergence was obtained. The basic mesh sizes used for most
of the flow field were aR=0.025, and aZ=0.001. The comparison
of velocities at X - ® with the results of fully developed

flow shows that the differences are less than 2%.



z=(,1
zm=0.01

2={.003

* Fully developad flow

] L] L] 1

.02 0218 0412 082 0.804 1

Figure 5.2 Entrance flow in a concentric annulus, velocity
profiles ¥21=10 n=0.7 s=0.02

ulr)

z={,1

A S P S BB BN 800 P OSSN,

1.2 ”:-‘_— zu (3,004 -

x={0.002

* Fully developed flow
t L N i
0.7 G.B8 0.8 1
r

Figure 5.3 Entrance flow in a concentric annulus, velocity
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plug velocity profiles Pl=10 n=0.7 with different radius
ratio s= r;/r,



66

Uc
15
net2
14
n=10
13F
n=07
1.2
11
' H H L L
[+ 0.02 004 0.08 Q.08 0.1
Z
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Figure 5.8 Entrance flow in a concentric annulus, pressure
drop profiles Pl=10 n=0.7 with different radius ratio
S=ri/ Lo

Figure 5.9 Entrance flow in a concentric annulus, pressure
drop profiles Pl=10 s=0.2 with different power law index n
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Figure 5.10 Entrance flow in a concentric annulus, pressure
drop profiles n=0.7 s=0.2 with different generalized
Bingham number P1l



UESTEADT FLOW IN CONCENTRIC AMNULI

¢.1 DRerivation of governing equations

Por an incompressible, laminar, unsteady, axisymmetric
flow, ignoring the effects of entry and exit, the momentunm
equation of generslized Binghanm fluids in a concentric annulus

asy be written as:

witlh

TRTL2K, 'é" ¥ e %

L

for s, 3522, and T, ST ST,

3
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ou _ 6.3
EE?—O

for r,srsr,

The pressure gradient is given by:

_9p_dpy, APy
3 (dz);(dz)asm(mt) 6.4

where (dp/dx), is the steady component of the pressure
gradient, and (dp/dx), is the oscillatory component. Equation.

6.4 can also be written as:

--ggagg‘(l*:sin{wt)) 6.5

vhere ¢ = (dp/ax),/{dp/dx),
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The boundary conditions for unsteady flow are:
u(r,0)=0, u(r;, t)=u(r,,t)=0

Substituting Egn. 6.2 into Egn. 6.4, the momentum equation for

unsteady flow of generalized Bingham fluids becomes:

p 29D _To, k| du D Bu
dt 0z r r'or or

{(n-1) 2y

t[lx(n—l)]kl%[ e

where " - " is for r;<r<r, and " + " is for r, < r < r,.

6.2. Dimensional analvsis

Equation. 6.6 can be made dimensionless by defining the

following nondimensional variables:
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40 o) %ed”  ,_dp

Re= —_
k k= dz . 0a2/2

for start-up flow

T._.4n4-1 tu
‘d,Re

for pulsating flow

wt
Te—=
27

where Re and Pl are respectively defined as a generazlized
Reynolds number and a generalized Bingham number, f is the
friction factor, u is the average velocity of the annulus, 4,
is the hydraulic diameter of the annulus. d, = 2( r, - r; )
In terms of these nondimensional variables, Eqn. 6.6

becomes:

for start-up flow

i oU_ 1 fRe- _l_ﬂtllgglalaf]

45»1 aT_ 225"’3 481 R
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UEt Fu
+ 1+ (n-1 _— 6.7
[ )1192) —
for pulsating flow
1 oU_ 1 1 IZL ﬂ’-aU'
E4m1 57 223*3fRe(1+es1n(21:T)) | [
o=l 3217
+[1x(n-1)] _— 6.8
I l R
where
w d
=———RF
: 2% 3 ©
and " - " is for R < R <R, and " + " is for R, < R < R,.

6.3. Numerjcal procedures

A control-volume based upon a finite difference marching
integration technique is used to solve the eguation of motion
(Egns. 6.7 and 6.8). Fig. 6.1 shows the finite difference
network grid for the unsteady flow problem. The grid in the i

direction in the network represents the different time
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intervals.

R, J=N#1
Je1
J

&R
J-1
aT
H; J=1
[ S B P
Figure 6.1 Finite di: ance network

An upwind-difference scheme is applied to each control volume
which surrounds a grid point. The value of velodity at each
interface of the control volume in i direction is determined
by the value of velocity at the grid corresponding to the last
half time interval. The finite difference calculating
procedure is similar to that used for the developing flow. For
the network of grid points shown in figure 6.1, the finite
difference representations used for various t2rms in Egns.

6.7, 6.8 at a grid point (i, j) are:
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oU_ Uy, 17Uiq, 5

oT AT
PI_PI
R Rj

1 Ig_qlm@:i[ Ui-1,5-17Ui-3, 51 In-l U, 3+1~Us, 91
R'OR OR R, 2AR 2AR

l@IH 82U=| Ui-1,3e1=Us-1, 91 In_l Ui, 3017205, 34Uy, 5
OR oR?2 2aR AR?

The variables with (i~1l) subscript are assumed known while
those with (i) subscript are unknown. Using thezz

representations, Eqns. 6.7 and 6.8 become:
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for start-up flow

5 K 12K kK
(2RJAR VUi pat gt age) P R2aR ag?) ¥

Yy, 1 pp.  PI 6.9
477 22873 47R,

where

1 Ti-1, 7027 Usg, 32 772

K,=+[1(n-1)]| ity Ui'lJ'll

2AR
for pulsating flow
5 K L E 2K kK
- - U
(ZRjAR ARz)Uijvl (4"*1AT ARZ) 1,47+ RN ARZ) 1,5
=E Uiny , fRe(1+esin (2miaT)) -EL 6.10

43*1AT 221:"3 4nRj
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From the Egn. (39) or (40), a set of simultaneous linear
equations of velocity U; can be obtained on the grids across
the annulus. Solving these equations step-by-step continually, '-

the velocity p:ofile development with time will be obtained.

6.4. Results and discussion

Velocity profiles of start-up flow and pulsating flow of
generalized Bingham fluids in a concentric annulus were
obtained by using finite difference methods. Figures 6.2 to
6.6 show velocity profiles of generalized Bingham fluids with
generalized Bingham number ?l=5, 10, 15, and radius ratio
s=0.2, 0.4 and 0.6 at different time intervals and finally
steady state. Figure 6.7 shows the velocity distributions of
the unsheared plug in the annulus with different generalized
Bingham number P1=5, 10 and 15 during the start-up flow. A
comparison among the velocity distribution curves illustrates
the effect of Pl on the time of flow from start to the steady
state. The larger the generalized Bingham number, the shorter
is .2 time interval to achieve steady state. The reason for
this is that a higher value of yield stress makes the fluids
behave like solid material. Once it starts moving, it quickly
becoming fully developed flow. Figure 6.8 illustrates the
effect of radius ratio s on the start-up flow. Velocity
distributions of s=0.2, 0.4 and 0.6 show that the time of the
flow from start to steady state is shorter when the radius

ratio s is increased. A significant effect of flow index n on
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time of the start-up flow from start to the steady state could

be observed in fig 6.9. The velocity distributions show that
when n is increased from less than unity ( i.e. the fluid is
much more shear thinning) to larger than unity ( i.e. the
fluid is much more shear thickening), the time of flow from
start to steady flow reduces greatly. The accuracy of the
numerical solutions was checked by comparing the velocity
profiles at T - «» with the results of fully developed flow
with the same conditions. Figure 6.10 shows the velocity
distributions of start-up flow with different mesh size in the
radial direction. Grid refinement brings the numerical
soluticns closer to the value of velocity of unsheared plug of
fully developed flow in a concentric annulus. Figures 6.11 and
6.12 show the velocity distributions of pulsating flow of
unsheared plug in a concentric annulus with generalized
Bingham number Pl = 5, 10, 15 and flow index n = 0.7, 1.0 and
1.2. The results indicate that both Pl ar_1d n have effects on
the velocity profile and the peak value of velocity. However,
their effects on the average velocity (or flow rate) are
limited. Fiqure 6.13 shows velocity distributions of pulsating
flow with different pressure amplitude parameter €. It can be
observed that when € increases, the peak value of velocity of
unshearec plug increases, and the average velocity also
increases. That means the addition of pulsating fiuctuation to
a steady pressure gradient will result in enhancement of the

flow rate. These results are similar to the results of
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previous investigations by Kajiuchi and Saito (1984) on the
laminar pulsating flow of an ideal Bingham fluid in a circular
pipe. However, if the pressure amplitude is larger than a
certain value, flow reversal occurs, Figure 6.14 shows the
velocity distributions of pulsating flow with different
frequency parameter £{. When { increases, the velocity peak
value decreases. The effect of ¢ on average velocity is

limited.
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Figure 6.2 Start-up flow in a concentric annulus, velocity
profiles Pl=5 n=0.7 s=0.2
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Figure 6.6 Start-up flow in a concentric annulus, velccity
profiles Pl=15 n=0.7 s=0.2
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Figure 6.7 Start-up flow in a concentric annulus,
unsheared plug velocity profiles n=0.7 s=0.2 wlth
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Figure 6.9 Start-up flow in a concentric annulus,
unsheared plug velocity profiles P1l=10 s=0.2 with
different flow index n
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Figure 6.10 Start-up flow in a concentric annulus,
unsheared plug velocity profiles Pl=10 n=0.7 s=0.2 with
different finite difference grid sizes aR
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Figure 6.11 Pulsating flow in a concentric annulus,
unsheared plug velocity distributions n=0.7 €=0.5 {=1
with different generalized Bingham number Pl
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Figure 6.12 Pulsating flow in a concentric annulus,
unsheared plug velocity distributions P1l=10 s=0.2 €=0.5
{=1 with different flow index n
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Figure 6.13 Pulsating flow in a concentric annulus,
unsheared plug velocity distributions Pl=10 s=0.2 {=1
with different pressure amplitude €
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Figure 6.14 Pulsating flow in a concentric annulus,
unsheared plug velocity distributions P1=10 n=0.7 s=0.2
€=0.5 with different frequency parameter §
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CHAPTER 7

UNSTEADY FLOW OF NON-NEWTONIAN PLUIDS IN

AN ECCENTRIC ANNULUSB

- 7.1. Derivation of governing equations
Figure 7.1 shows the

geometry of an eccentric
annulus: where r, is the
outer cylinder radius, r; is

o
the inner cylinder radius,

-]
]

and e is the distance between {

-/
ol

the centres of the inner and

N

outer cylinders. Because the

flow in an eccentric annulus

is not axisymmetric, it
. . Figure 7.1 Eccentric annulus
wecomes a three dimensional

problem. For simplicity, a Cartesian coordinate system will be

86
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used to develop the governing equation of motion. Ignoring the
influence of the effect of entry and exit regions, the
momentum equation of an incompressible, laminar, unsteady
axial flow of a generalized Bingham fluid in an eccentric

annulus is given as:

du_op, @
3t oz ax(“ =2 “‘ 2) 7.1

where viscosity, g, is a2 function of strain rate ¥ and defined

as:

2|«

for generalized Bingham fluids, the viscosity may be expressed

as:
=20 4 jeymet 7.2
Y

The definition of strain rate, ¥, in Cartesian ccordinates is:

. ou du 7.3
y—l\/(a)h(-a;)ﬂ
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For unsteady flow, the pressure gradient is a function of
time. In this chapter, only start-up flow is discussed.
The boundary com.’.‘lt:'fons for the flow in an eccentric annulus
are the velocity at the inner and outer‘_gylinders is equal to
zero. However, it is verv difficult to give an expression of
the boundary conditions in Cartesian coordinates, it is

preferable to use a bipolar coordinate system.

7.2. imensi analysis
Equation 7.1 can be made dimensionless by introducing the

following nondimensional variables:

U:_E =£ Y:l
u d, dy
= 1 R = To =€
i7d,/4 ° 'd,/4 d,

k kun

__dp 9y _ tu

—_— T
dz s pii?/2 d,Re
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where Re and Pl are generalized Reynolds number and

generalized Bingham number, £ is the friction factor, G is the
average velocity’in the annulus, d, is the hydraulic diameter
of the annulus. 4, = 2(r,~r;)

In terms of these nondimensional variables, equation 7.1

becomes:

oU_1
57 sze (p ) (51 ) 7.4

where the dimensionless viscosity may be written as:

1
Pl [( )2+( )212

" 1202+ (202 7

7.3. Bipolar coordinate transformation

It was mentioned previously that the boundary conditions
of the flow in an eccentric annulus are very difficult to
handle when expressed in Cartesian coordinates. The geometry
of an eccentric annulus, shown in Figure 7.1, is described
most easily using the bipolar coordinate system shown in
Figure 7.2. In bipolar coordinates, the eccentric annulus is

represented by two orthogonal families of circles, § and 7.



g0

x=0 n=0
£-0
Figure 7.2 Bipolar coordinate system
The { axis is perpendicular to the { - 7 plane. This

coordinate system is obviously useful, because the walls of
the eccentric annulus are represented by two constant values
¢, and §; (Figure 7.3). The trarnsformation from Cartesian

coordinates to bipolar coordinates is given by (Guckes, 1975):

_ asinh (k)
cosh(E) -cos(n) 7.6
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- -asin(n)
cosh (£} -cos (n) 7.7
z2 =17 7.8
where a = R, sinh{;, = R, sinh £, 7.9
! n=x2
n=x/4
n =253 n-x0
n=x n=0

Figure 7.3 Eccentric annulus in  bipolar coordinate
system
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The definitions of §; and £, are given by:

1- (Ri/Ro)z‘(E/Ro)zl
?..Ri/RoE/RO 7.10

;=cosh™[

1-(R;/R,)2+(E/R,)?

- -1
£,=cosh™[ 2E/R, ] 7.11

The transformation of the equation of motion into bipolar
coordinates is given by equation 7.12. Details of the

transformation are provided in Appendix A.

(2): 802 re( 2y 2+ (G + £ B ED) 7.12

for 0<snpsn and &, 5§ <&,
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where
0= pl Wyn-2p(OUy2, OUy2 22
i 1[(9'9)2+(ﬂ-’)21+(a) (5522 (57 713
a o on
and
¥=cosh(§) -cos(n) 7.14

The boundary conditions are:

At £ =¢% and ¢, U=0

At 1

0 and w, dU/dn =0

7.4. Finite difference approach

A control volume based upon a finite difference
calculation technique was used to solve the momentum eguation
7.12. In an eccentric annulus, the velocity profile is
symmetric about the axis which goes through the centres of the
inner and outer cylinders. Therefore, only one half of the
annulus need be calculated. Figure 7.4 shows the network of

the grid points in transformed coordinates. The region of the



network is:
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0sg<m
and Ei < E = Eo
¢ |
&
i, 1+
. 2
i1, i,] 1, j
—y——@
L 4
L
§o [~
l
0

Figure 7.4 Finite difference network in the transformed

coordinates
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The finite difference representations used for various terms

in equation 7.12 at a grid point (i,3) are:

oU_ Us, =0y, 5*
oT AT

2

3 )=

mlm
gy

AEZ [[J-i j-‘-iUi g+ (pi J"‘l+pij 1‘Ui j+pij :'Uijl]

LA

d ,~0U,_ 1
a11(pa“) A

2 ,§Uie1,5” (ﬁi¢%,j+ﬁj_%'j) Ui,j"'ﬁi-_;'jUi_,_,j]

Where UX*! represents the velocity at current time, and U¥
represents the velocity at the previous time interval.

The discretization of the equation of motior (Egn. 7.12)

becones:

'Ai jUi -1, j+Bi jUK.l j+ci jUKj-1+Di jUf*}*l-FE.‘[ jUKt?:FLJ 7.15
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where

B2

2'j

A == An?

=——

B;j An? Bil,;

1 ~
Ci,j-- AEZ pi'J-_
— 1 -
Dl.j- Aszpi' -t%
2
1,5° za -A; 7Bi,37Ci,37 D1, 5
¥i, ;AT

F Ui 1 rpe) 22
= L
1,5 (x7 * 5 £ke) ¥2

According to the equation 7.13, a set of discretization
equations for the dimensionless viscosity js in each

coefficient are expressed by the values of velocity at the
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faces of the control veolume surrounding the grid point (see

Figure 7.5).

—
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Figure 7.5 Grid point control volume
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1"1._-;:3

U, 2 U, 2 3
(B 52 UG L (G000l

z1
G EAIS SHFRLS SR A

where

Ely, +U; 400=U. ~Us,j-1)
-1 -] 1,3+ I-1,75-1 i3-1
of; 1 ¥ E I ? ’

S 1 " TAE Vet U3 Un 3 Upen )

by
+
Y [
e
m

_g_'flfi 3 4An (Ugoa, 32+ Ura,5~Usma, 32~ Vo2, 5)

g'rtlj 1,3 1— 4An (Utag, 5*Usea, o2~ Use1, 57 Uta, joa)



ou = Ui.fUi.z-z
aE i.j-% AE

auU Ui, 3.27Us,4
13 _i,j..% Ag
U 2 Ui,37Us 4

The boundary conditions are:

at £ =§, j=1 and £, J=N+1,

U(i,1) = U(i,N+1) = 0O

At =0 i=1 and 7w i=M+1,

U(i=-1,3j) = U(i+1,3j) and U(M+2,3)

= U(M,J)
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where M and N are the numbers of grid network on 7 and §
respectively.

For a non-Newtonian fluid, the viscosity is not a
constant but a function of velocity. To solve equation 7.15,
an iterative method was used. In iterative calculations, a set
of velocities in the network were calculated first by using
the viscosity values at a previous time step, then the values
of the velocities were used to calculate the viscosities at
the current time interval. Velocities were again calculated by
using these values of viscosities. These procedures were
repeated until the difference between the new and old value of
the velocity at every grid point was less than a prescribed
small value (in this study: 0.001). The calculations were then
repeated at the next time step. Thus the velocity profile

development with time was obtained.

7.5 Results and discussion

Velocity profiles of start-up flow of generalized Bingham
fluids in an eccentric annulus were obtained using the finite
difference method mentioned previously in this chapter. The
results are presented on a generalized basis in terms of the
ratio of radii of inner and outer cylinders of the annulus, s,
and the distance between the centres of the two cylinders.
Figures 7.6, 7.9 and 7.12 show the start-up flow velocity
profile development of a generalized Bingham fluid (P1=10,

n=.7) with different radius ratio s and eccentricity e.



i01
Comparing with flow in a concentric annulus, when the annﬁlus
becomes slightly eccentric, the velocity profile changes
considerably. The velocity in the narrowing part of the
annulus (y = 7) is decreased, and the velocity in the widening
part (p = 0) is increased. The reason being that the
resistance to flow is increased as the gap between the two
cylinders is reduced. The results show that the difference
between the n = 0 and 7 = 7 is increased when eccentricity e
increases or radius ratio s increases. Figures 7.7, 7.10 and
7.13 show the maximum velocity distribution of a generalized
Bingham fluid (Pl=10, n=0.7) at different angle n in a start-
up flow, which represents velocity distributions at different
locations in the annulus. Figures 7.8, 7.11, and 7.14 show the
three-dimensional velocity profiles of generalized Bingham
fluids in an eccentric annulus at steady state. Because the
flow is symmetric about the axis which goes through the
centres of inner and outer cylinders, the Figures show only
one half of the profiles. The effect of generazlized Bingham
number P1 on the velocity distribution in an eccentric annulus
may be observed in Figure 7.15. When Pl increases, start-up
flow reaches steady state more gquickly, and the maximum
velocities at both the narrow and wider parts in the annulus
are smaller. Figure 7.16 shows the comparison of velocity
distributions with different eccentricity e. It can be seen
that when the eccentricity e increases, the velocity

distribution at narrow part (n = w) of the annulus achieves
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steady state more quickly; in the wider part (n = 0) it takes
more time to become steady. The accuracy of this numerical
program was verified by comparing the results of velocity
profiles of a Newtonian fluid in an eccentric annulus at
steady state ( Figure 7.17 ) with the analysis of Heyda
(1959) . Using Heyda’s equation, for an eccentric annulus with
s=0.2 and e=0.2, the ratioc of maximum velocities at =% and
7=0 is 0.63. In this program, that ratio is 0.645. The
agreement is good. If the finite difference network had been

further refined, the results would have been even better.

]
2.5
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2 -
T=0.08
1.8+
T=LE
1k T+0.08
T=0.08
T-0.02
u -
T=0.01
T=0.01
: L0 . . nx
o 0
1 0.1 0s 1
R

Figure 7.6 Start-up flow in an eccentric annulus, velocity
profiles Pl=10 n=0.7 s=0.2 e=0.3
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Figure 7.7 Start-up flow in an eccentric annulus, maximum
velocity distrikbutions at different angle y Pl=10 n=0.7
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Figure 7.8 Start-up flow in an eccentric annulus, 3-D
velocity profile at steady state Pl=10 n=0.7 s=0.2 e=0.3
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Figure 7.9 Start-up flow in an eccentric annulus, velocity
profiles P1=10 n=0.7 s=0.6 -e=0.1
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Figure 7.10 Start-up flow in an eccentric annulus, maximum
velocity distributions at different angle g P1=10 n=0.7
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Figure 7.11 Start-up flow in an eccentric annulus, 3-D
velocity profile at steady state Pl=10 n=0.7 s=0.6 e=0.2
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Figure 7.12 Start-up flow in an eccentric annulus, velocity
profiles P1=10 n=0.7 =0.6 =0.3
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Figure 7.13 Start-up flow in an eccentric annulus, maximum
velocity distributions at different angle » P1=10 n=0.7
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Figure 7.14 Start-up flow in an eccentric annulus, 3-D
velocity profile at steady state Pl=10 n=0.7 s=0.6 e=0.1
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1. Conclusions

The study that has been presented in previous chapters
gives a certain number of important results on the flow of
non-Newtonian fluids in both concentric and eccentric annuli.
Fully developed flow, unsteady state flow and entrance flow of
generalized Bingham fluids in a concentric annulus and
unsteady flow in an eccentric annulus were investigated. The
following general conclusions can be drawn:

1. Previous studies of non-Newtonian fluid flow did not
cover unsteady state flow and entrance flow of generalized
Bingham fluids in both concentric and eccentric annuli.

2. A set of mathematical formulations have been
developed for fully developed flow of generalized Bingham
fluids in a concentric annulus. A numerical scheme was used to
treat the equations governing the flow.

3. Typical velocity profiles are presented for fully
developed flow of generalized Bingham fluids in a concentric
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annulus for values of flow index n=0.7, generalized Bingham
number P1=5, 10, 15 and radius ratio s=0.02, 0.2, 0.4 and
0.6.- The influences of the major variables were demonstrated.
An unsheared plug existed in the annulus because of the
characteristics of yield stress of generalized Bingham fluids.

4. The position of the unsheared plug may be determined
by solving the governing eguations numerically. It is not
symmetric between the inner and outer wall of the annulus, and
it is closer to the inner wall. With the radius ratio s
decreasing, the plug is shifted further towards the inner
wall. The region of the unsheared plug is proportional to the
generalized Bingham number Pl. The boundary radii of the plug
may be used as boundary conditions to solve entrance flow and
unsteady flow problems in a concentric annulus.

5. The equation of motion of entrance flow of
generalized Bingham fluids in a concentric annulus has been
derived with a set of dimensionless variables. A control
volume approach based upon an up-winding finite difference
technique was used to solve the governing equations. Velocity
and pressure profiles in the entrance region were presented
for values of n=0.7, 1.0, and 1.2, P1=5, 10 and 15, s=0.02,
0.2, 0.4, and 0.6.

6. A graphical summary of the solutions indicates that
the entrance length in a concentric annulus increases when

radius ratio s or generalized Bingham number Pl decreases.
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However, when flow index n increases, the entrance length
increases. The pressure drop in the entrance region exhibits
similar behaviour to the entrance length with the variables s,
n and Pl. The value of maximum velocity (the velocity of the
unsheared plug) in a concentric annulus is proportional to n,
and is inversely proportional to s and Pl.

7. Mathematical models for start-up flow and pulsating
flow have been developed to analyze the flow behaviour of
generalized Bingham fluids in a concentric annulus. A set of
dimensionless variables were used to derive the equation of
motion. A control volume based finite difference marching
integration method was used to treat the equations governing
the flows. Velocity profiles for start-up flow and pulsating
flow are presented with s=0.2, 0.4 and 0.6, n=0.7, 1.0 and
1.2, P1=5, 10 and 15, pressure amplitude €=0.2, 0.5 and 1 and
frequency parameter (=1, 4 and 10.

8. Start-up flow in a concentric annulus will quickly
become fully developed flow for generalized Bingham fluids.
The greater the generalized number Pl,the shorter the time
from start to steady state. The radius ratio s has the same
effect as Pl. The time of flow from start to steady state is
shorter when s is increased. As the flow index n increases
from less than unity to larger than unity, the time of flow
from start to steady state reduces greatly.

9. Graphical results of pulsating flow of generalized
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Bingham fluids in a concentric annulus show that generalized
Bingham number Pl and flow index n have marked effects on the
velocity profiles and the peak value of velocity. However,
their effects on the average velocity are limited. That means
changing Pl and n has little effect on the change of flow rate
in a pulsating flow. '

10. Graphical results of pulsating flow of generalized
Bingham fluids in a concentric annulus indicate that the
pressure amplitude parameter € and pressure frequency
parameter { have significant effects on the velocity profiles
and the peak value of velocity in pulsating flow. When €
increases, the average velocity also increases. That means the
addition of a pulsating fluctuation to a steady pressure
gradient could result in enhancement of the flow rate in a
concentric annulus.

1l. The equation of motion for the start-up flow of
generalized Bingham fluids in an eccentric annulus has been
developed with a set of dimensionless variables. The use of a
transform in conjunction with bipolar coordinates enables use
of a control volume based finite difference method to solve
the three dimensional equation governing the flow.

12. Typical velocity profiles of start-up flow in an
eccentric annulus are presented for flow indices n=0.7,
generalized Bingham number P1=10, 15, radius ratio s= 0.2, 0.6

and eccentricity e=0.1, 0.2, and 0.3. When an annulus becomes
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slightly eccentric, the velocity profiles are changed
dramatically. The wvelocity in the narrowing part of the
annulus is decreased, and the velocity in the widening part is
increased. The difference between the narrow part and the
wider part increases when eccentricity e increases, or when
radius ratio s increases.

13. Graphical results of start-up flow in an eccentric
annulus show that when eccentricity e increases,the velocity
distribution at the narrow part of an annulus achieves steady
state quicker than the wider part. When generalized Bingham
number Pl increases, the flow also achieves steady state more
quickly.

14. Several computer programs have been developed to
carry out the numerical analysis and calculations of the
above studies. Good agreements was found with results from

previous studies.

8.2. Recommendations

1. The present study is quite general and sufficiently
comprehensive to deal with any non-Newtonian fluid flow in an
annulus. The main focus was on the theoretical investigation
and numerical analysis. Experiments should be conducted to
verify the numerical results.

2. For flow in an eccentric annulus, this study only

involved the problem of start-up flow, which is a specific
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situation in application. For many industrial applications,
the governing equations are even more complicated, therefore,
further theoretical investigation and numerical analysis needs
to be done.

3. For practical applications, the parameters presented
in these studies, such as: flow index n and generalized
Bingham number P1l, should be used specifically according to
the situation. Some experiments may be necessary.

4. The theoretical investigation and numerical analysis
reported here may be modified to include problems of heat
transfer which have potential applications in many areas of

industry.



REFERENCES

Astarita, G. "Letter to The Editor: The engineering reality of
the yield stress"™ J. Rheol 34(2) Feb. (1990)

Balmer, R.T. and Fiorina, M.A., “Unsteady Flow of an Inelastic
Power-Law Fluid in a Circular Tube", J. Non-Newtonian Fluid
Mech. 7, 189-198 (1980)

Barnes, H.A., Townsend, P. and Walter, K., "Flow of Non-
Newtonian Liquids under a Varying Pressure Gradient", Nature,
224, 585-587 (1969)

Batra, R.L. and Jena, B, "Entrance Region Flow of Blood in
Concentric Annulus", Int. J. Eng. Sci. Vol. 28, No. 5, 407-419
(1990)

Batra, R.L. and Kandasamy, A., "Entrance Flow of Herschel-
Bulkley Fluids in a Duct", Fluid Dynamics Res. 6, 43-50 (1990)

Bhattacharyya, S. and Tiu, c., "Developing Pressure Profiles
for Non-Newtonian Flow in an Annular Duct™, AIChE. J. 20, No.
1, 154-158 (1974)

Bird, R.B. and Dai, G.C., "The rheology and flow of

115



viscoplastic materials™, Reviews in Chem. Eng. I, 1-70 (1583).

Bodoia, J.R. and Osterle, J.F., "Finite Difference Analysis of
Plane Poiseuille and Couette Flow Development", Appl. Sci.
Res. 10, 265-276 (1961)

Bogue, D.C., "Entrance Effects and Prediction of Turbulence in
Non-Newtonian Flow", Indus. Eng. Chem. 51, No. 7, 874-878
(1959)

Campbell, W.D. and Slattery, J.C., "Flow in the Entrance of a
Tube", J. Basic Eng. 41-46 March (1963)

Carlson, G.A. and Hornbeck, R.W., "A Numerical Solution for
Laminar Entrance Flow in a Square Duct", J. Appl. Mech. 25-30
March (1973)

chen, S.S., Fan, L.T. and Hwang, C.L., "Entrance Region Flow
of the Bingham Fluid in a Circular Pipe", AIChE. J. 16, No. 2,
293-299 March (1970)

Cho, H.W. and Hyun, J.M., "Numerical Solutions of Pulsating
Flow and Heat Transfer Characteristics in a Pipe", Int. J.
Heat and Fluid Flow, 11, No. 4, 321-330 Dec. (1990)

Coilin, M. and Schowalter, W.R., "Behaviour of Non-Newtonian
Fluids in the Entry Region of a Pipe", AIChE. J. 804-809 Nov.
(1963)

Duggins, R.K., "The commencement of Flow of a Bingham Plastic
Fluig", Chem. Eng. Sci. 27, 1991-1996 (1972}

Edwards, #.F., Nellist, D.A. and Wilkinson, W.L., "Unsteady,

1le



117

Laminar Flows of Non-Newtonian Fluids in Pipes", Chem. Eng.
Sci. 27, 2%6-306 (1972)

Edwards, M.F., Nellist, D.A. and Wilkinson, W.L., "Pulsating
Flow of Non-Newtonian Fluids in Pipes", Chem. Eng. Sci. 27,
545-553 (1972)

Elkouh, A.F., "Approximate Solution for Pulsatile Laminar Flow
in a Circular Rigid Tube", J. Fluids Eng. 100, 131-133 March
{1978)

Fargie, D. and Martin, B.W., "Developing Laminar Flow in a
Pipe of Circular Cross-Section", Proc. Roy. Soc. Lond. A. 321,
461-476 (1971)

Fordham, E.J., Bittlesten, S.H. and Tehrani, M.A.,
"yiscoplastic Flow In Centered Annuli, Pipes, and Slots" Ind.
Eng. Chem. Res. 19591,30, 517-524

Fredrickson, A.G. and Bird, R.B., "“Non-Newtonian Flow in
Annuli", Indus. Eng. Chem. 50, No. 3, 347-352 March (1958)

Gorla, R.S.R. and Madden, P.E., "A Variational Approach to
Non-Steady Non-Newtonian Flow in a Circular Pipe", J. Non-

Newtonian Fluid Mech. 16, 251-265 (1984)

Guckes, T.L., "Laminar Flow of Non-Newtonian Fluids in an
Eccentric Annulus", J. Eng. Indus. ASME 498-506 May (1975)

Gupta, R.C., "Laminar Flow in the Entrance of a Tube", Appl.
Sci. Res. 33, 1-10 February (1877)

Gupta, R.C., "Laminar Two-Dimensional Entrance Region Flow of



118

Power-Law Fluids II", Acta Mechanica 84, 209-215 (1990)

Gupta, R.C., "Laminar Two-Dimensional Entrance Region Flow of
Power-Law Fluids", Acta Mechanica 67, 129-137 (1987)

Gupta, S.C. and Garg, V.K., "Developing Flow in a Concentric
Annulus", Computer Methods in Appl. Mech. and Eng. 28, 27-35
(1981)

Giicuyener, H.I. and Mehmatoglu, T. "Flow of Yield-Pseudo-
Plastic Fluids through a Concentric Annulus" AIChE Journal
Vol. 38, No. 7, July (1992)

Haciislamoglu, M. and Langlinais, J., "Non-Newtonian Flow in
Eccentric Annuli", 115-123 (159%0)

Hanks, R.W., "The Axial Laminar low Of Yield-Pseudoplastic
Fluids In a Concentric Annulus” Ind. Eng. Chem. Process Des.
Lev., Vol. 18, No. 3, (1979)

Hanks, R.W. and Larsen, K.M., "The Flow of Power-Law Non-
Newtonian Fluids in Concentric Annuli", Ind. Eng. Chem.
Fundam. 18, No. 1, 33-35 (1979)

Hornbeck, R.W, "Laminar Flow in the Entrance Region of a
Pipe", Appl. Sci. Res. Section A, 13, 224-232 (1964)

Iyoho, A.W. and Azar, J.J., "An Accurate Slot-low Model for
Non-Newtonian Fluid Flow Through Eccentric Annuli" Society of
Petroleum Engineers Journal V. 21, 1981 565-572

Kajiuchi, T. and Saito, A., "Flow Enhancement of laminar
Pulsating Flow of Bingham Plastic Fluids", J. Chem. Eng.



119
Japan, 17, No. 1, 34-38 (1984)

Lin, T. and Shah, V.L., "Numer:cal solution of heat transfer
to yield power-law fluids flowing in the entrance region",
Proc. VI Intern. Heat Transfer Conf. 5, 317~ 322 (1978)

Liu, J. and Shah, V.L.. "Numerical Solution of a Casson Fluid
Flow in the Entrance Region of Annular Tubes", Appl. Sci. Res.
31, 213-221 Oct. (1975)

Lundgren, T.S., Sparrow, E.M. and Starr, J.B., "Pressure Drop
Due to the Entrance Region in Ducts of Arbitrary Cross
Section", J. Basic Eng. 620- 626 Sep. (1964)

luo, Y. and Peden, J.M., "Flow of Non-Newtonian Fluids through
Eccentric Annuli", SPE Produc. Eng. 91-91 Feb. (1990)

Ly, D.P. and Bellet, D., "The Study of Time-dependent Pipe
Flows of Inelastic Non-Newtonian Fluids Using a Multiviscous
Approximation", J. Non-Newtonian Fluid Mech. 1, 287-304 (1976)

Masliyah, J.H. and Shook, C.A., "Laminar Transient Flow in
Pipes", Canadian J. Chem. Eng. 53, 469-475 Oct. (1975)

Matras, 2. and Nowak, Z., "Laminar Entry Length Problem foxr
Power-Law Fluids"Y, Acta Mechanica 48, 81-90 (1983)

McEachern, D.W., "2xial Laminar Flow of a Non-Newtonian Fluid
in an Annulus," AICHE J., 12, 328 (1966)

Mckillop, A.A., Harper, J.C., Bader, H.J. and Korayem, A.Y.,
nyariable Viscosity Entrance Region Flow of Non-Newtonian
Liquids", Int. J. Heat Mass Transfer Vol. 13, 901-909 (1970)



120

Mehrotra, A.K. and Patience G.S., "Unified Entry Length for
Newtonian and Power-Law Fluids in Laminar Pipe Flow", The
Canadian J. Chem. Eng. 68, 529-533 Aug. (1990)

Mishra. P. and Mishra, I. "Flow Behaviour of Power-Law Fluids
in an Annulus", AIChE. J. 22, No. 3, 617-619 May (1976)

Mishra, I.M. and Mishra, P., "Linearized Approach for
Predicting Loss Coefficients in Entrance Region Flows of
Purely Viscous Non-Newtonian Fluids in an Annular Duct", Chem.
Eng. J. 14, 41-47 (15977)

Mishra, I.M., Kumar, S. and Mishra, P., "Entrance Region Flow
of Bingham Plastic Fluids in Concentric Annulus", Indian J.
Tech. 23, 81-87 March (1985)

Mitsuishi, N. and Aoyagi, Y., "Non-Newtonian Fluid Flow in an
Eccentric Annulus", J. Chem. Eng. Japan 6, No. 5, 402-408
(1973)

Nakamura, M. and Sawada, T., "Numerical Study on the Unsteady
Flow of Non-Newtonian Fluid", J. Biomech. Eng. 112, 100-103
Feb. (1990)

Nakamura, M. and Sawada, T., "An Experiment on the Pulsatile
Flow of Bingham Plastic Fluids in a High Reynolds Number
Region", JSME Inter. J. series II, 33, No. 1, 56-62 (1990)

Nakamura, M. and Sawada, T., "Numerical Study on the Laminar
Pulsatile Flow of Slurries", J. Non-Newtonian Fluid Mech. 22,
191-206 (1987)



121

Nowak, Z. and Gajdeczko, B., "Laminar Entrance Region Flow of
the Bingham Fluid", Acta Mechanica 49, 191-200 (1983)

Otis, D.R., "Laminar Start-Up Flow in a Pipe", J. Appl. Mech.
52, 706-711 Sep. (1985)

Patankar, S.V. and Spalding, D.B., "Heat and Mass Transfer in
Boundary Layers", Intertext Bock, 2nd Ed., London, (1970)

Patankar, S.V., "Numerical Heat Transfer and Fluid Flow",
McGRAW-HILL Book (1980) Patience, G.S. and Mehrotra, A.K.,
"Laminar Start-Up Flow in Short Pipe Lengths", Canadian J.
Chem. Eng. 67, 883-888 Dec. (1989)

Patience, G.S. and Mehrotra, A.K., "Laminar Start-Up Flow In
a Pipe", J. Appl. Mech. 54, 243-244 March (1987)

Phan-Thien, N. and Dudek, J., "Pulsating Flow of a Plastic
Fluid", Nature, 296, 843-844 April (1982)

Phan-Thien, N. and Dudek, J., "Pulsating Flow Revisited", J.
Non-Newtonian Fluid Mech. 11, 147-161 (1982)

Redberger, P.J. and Charles, M.E., Axial Laminar Flow in a
circular Pipe Containing a Fixed Eccentric Core™, Canadian J.
Chem. Eng. 148-151 August (1962)

Rotem, Z., "Non-Newtonian Flow in Annuli,"” J. Appl. Mech., 29,
421 (1962)

Round, G.F., "Pulsed Slurry Flow in Pipelines", 1, 307-318
(1981)




st
\.\

122

Round, G.F. and Ei-Sayed, E., "Pulsating Flows of Solid/Liquid
Suspensions. I. Bentonite-Clay/Water Suspensions", J.
Pipelines, 5, 95-106 (1985)

Round, G.F. and Ei-Sayed, E., "Pulsating Flows of Solid/Liquid
Suspensions. II. Coal/Water Slurries", J. Pipelines, 6, 105-
116 (1587)

Schlichting, H. "Boundary-Layer Theory" McGraw-Hill Publishing
Company, (1980)

Scott, P.S., Mirza, F. and Vlachopoulos, J. "Finite Element
Simulation of Laminar Viscoplastic Flows With Regions of
Recirculation" J. Rheology, 32(4) 387-400 (1988)

Shah, V.L. and Farnia, K., "Flow in the Entrance of Annularx
Tubes", Computers and Fluids, 2, 285-294 {1974)

Shah, V.L. and Soto, R., "Non-newtonian Blood Flow in the
Entrance Region of a Tube", Computers and Fluids, 2, 273-284
(1974)

Sbah, V.L. and Soto, R.J., "Entrance Flow of a Bingham Fluid
in a Tube", Appl. Sci. Res. 30, 271-278 Feb. (1975)

Snyder, W.T. and Goldstein, G.A., "An Analysis of Fully
Developed Laminar Flow in an Eccentric Annulus",AIChE. J. 11,

No.3, 462~467 May (1965)

Soto, R.J and Shah, V.L., "Entrance Flow of a Yield-Power Law
Fluids", 2Appl. Sci. Res. 32, 73-85 March (1975)

Sparrow, E.M. and Lin, S.H., "The Developing Laminar Flow and



123

Pressure Drop in the Entrance Region of Annular Ducts", J.
Basic Eng. 827-834 Dec. (1964)

Tan, K.L. and Tiu, C., "Entry Flow Behaviour of Viscoelastic
Fluids in an Annulus", J. Non-Newtonian Fluid Mech 3, 25-40
(1977/1978)

Tiu, C. and Bhattacharyya, S., "Flow Behaviour of Power-Law
Fluids in the Entrance Region of Annuli", Canadian J. Chem.
Eng. 51, 47-54 Feb. (1973)

Tosun, I., "Axial Laminar Flow in an Eccentric Annulus: an
Approximate Solution", AIChE. J. 30, No. 5, 877-878 Sep.
(1984)

Uner, D., Ozgen, C. and Tosun, I., "An Approximate Solution
for Non-Newtonian Flow in Eccentric Annuli", Ind. Eng. Chem.
Res. 27, 698-701 (1988)

Walton, I.C. and Bittleston, S.H., "The Axial Flow of a
Bingham Plastic in a Narrow Eccentric Annulus", J. Fluid Mech.
222, 39-60 (1991)



APPENDIX A

TRANSFORMATION OF THE EQUATION OF MOTION TO BIPOLAR

COORDINATES

The dimensionless equation of motion of generalized

Bingham fluids in Cartesian coordinates is:

U_1 oy ~ 93U
a7 2 2Re (" =) *ov P oy A1

where the dimensionless viscosity may be written as:

Pl U2, [ OUy2q F
[caU)2+( 21213/ e e A-2

i=

The transformation from Cartesian coordinates to bipolar
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coordinates are given by (Guckes, 1975):

X= asinh(t)
cosh (§) -cos(n) A.3
V= -asin(n)
cosh (&) -cos(n) A.4
2=9 A.5
where a = R; sinhf. = R, sinh £ A.6

Taking the derivatives of equations A.3 and A.4 we can get:

8x_a(1l-cosh(E)cos(n))
08 (cosh(f)-cos(n))?

8x___asinh(§)sin(n)
on  (cosh(&)-cos(n))?




It can be found:

and

asinh(&)sin(y)

&  (cosh(E)-cos(n))?

9Y_a(l-cosh(E)cos(n))

8Xy2_
an

(cosh(E) -cos(n))?

.ﬁ-{-ﬂ:O
%2 on?

Py, @Y
3tz am?

=0

(cosh(E)-cos(n))?
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A.1l2

A.13

A.l4
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Yy2, (%2, a2
(35) + a\'l) (cosh(E)-cos(n))? A-16

#u, PU_ _(cosh(E)-cos(n))2 U, FU
az + 357 = [ D + 3112] A.17

dp 3y, 8p 8U_ (cosh(E)-cos(n))? [_a_“g_ag.,_g% u, A.18

39X 3X oY oY a2 9E OF ED)

Substituting equations A.7, to A.1l8, we can get the

dimensionless eguation of motion of generalized Binghan

fluids in bipolar coordinates:

A.19

E_ziq_:i a2 0 ,~ 0oU 3 ,~0oU
(lll) 37 2fRe(¢) +aE(IlaE)+an(|.lan)

for 0<psw and & <& 5§




128

where

i-i= Pl 4_(1)11-1[(_?2)2.;(_?2)2]%&

¥ (Y)2e ()2 2 ® e B
a 0§ on

and

Y=cosh (§)-cos(n) a.21
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APPENAIX B

COMPUTER PROGRAM FOR GENERALIZED BINGHAM FLUIDS FULLY
DEVELOPED FLOW IN CONCENTRIC ANNULI

THIS PROGRAM CALCULATES THE VELOCITY PROFILE OF FULLY
DEVELOPED FLOW OF GENERALIZED BINGHAM FLUIDS IN ANNULI.
IT ALSO DETERMINDS THE BOUNDARY RADII OF UNSHEARED PLUG.

DIMENSION V(401),V1(401)

OPEN (UNIT=6,FILE=/ANL.DAT')

WRITE(*,*)’ INPUT EN, R., R2, PL, RE,N‘

READ (*, *) EN,R1,R2,PL,RE,N

WRITE(6,11)EN,R1,R2,PL,RE,N

FORMAT (10X, *EN=*,F5.3,3X, ‘RI=/,F5.3,3X, 'RO=/,
Fs.3,3X,//,10%X, 'PL=’,F5.2,3X, 'RE=’,F7.2,3X,’N=’,12//)

EN........FLOW INDIX

Ri, R2....INNER AND OUTER RADII OF THE ANNULUS
PL........GENERALIZED BINGHAM NUMBER
RE......+.REYNOLDS NUMBER

Neeeseos. NOMBER OF GRID

Fl........FRICTION FACTOR

RN1,RQ1...INNER AND OUTER BOUNDARY RADII OF UNSHEARED
PLUG

Veaueooss . VELOCITY

NQ=0

RI=2*R1/(R2-R1)

RO=2*R2/ (R2-R1)

RN=0.0

A=0.01

B=0.102

EPS=0.0000001

N1=1

XX=1.0E10

YY=1.0E10

XA=A

XB=B

CALL TT(NQ,XA,EN,RI,RO,RT,PL,RE,RN,RQ)
CALL TV1(Xa,EN,RI,RO,RT,PL,RE,RN,RQ,FA)
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30

50

71

72

73

100

76

111

YA=FA

CALL TT(NQ,XB,EN,RI,RO,RT,PL,RE,RN,RQ)
CALL TV (XB,EN,RI,RO,RT,PL,RE,RN,RQ,FB)
YB=FB

XC=XA-YA* (XA-XB) / (YA-¥B)

CALL TT(NQ,XC,EN,RI,RO,RT,PL,RE,RN,RQ)
CALL TV1(XC,EN,RI,RO,RT,PL,RE,RN,RQ,FC)
YC=FC

IF(YA*YC.GT.0.0)THEN

XA=XC

YA=YC

ELSE

XB=XC

YB=YC

END IF

DX=ABS (XC-XX)

DY=ABS (YC-YY)
IF(DX.LT.EPS.AND.DY.LT.EPS)GO TO 50
XX=XC

YY=YC

GO TO 30

F1=XC

FRE=F1*RE

T0=8*PL/ (F1*RE)

WRITE(6,71)RI,RO,RN,RQ

FORMAT (10X, RI=’,F5.3,3X, 'RO=/ ,F5.3,3X,

+ ’RN=’,F5.3,3X,'RQ=',F5.3//)

WRITE(6,72)RN1,RQ1,F1

FORMAT (10X, /RN1=',F5.3,3X, ‘RQ1=/,F5.3,3X/£=',£7.4//)
WRITE(6,73)SLMDA,TO, FRE

FORMAT (10X, LMDA=/ ,F5.3,3X, /T0=',F5.3,

3X, f f*Re=’ ,F10.5,//)

NQ=1

DER=(RO-RI) / (N-1)

V(1)=0.0

V(N)=0.0

DO 100 I=1,N-2

RR=RI+I*DER

IF (RR.GE.RQ.OR.RR.LE.RN) CALL UU(EN,F1,RR,RI,RO,RT,PL,
RE,RN,RQ,U)

IF (RR.GT.RN.AND.RR.LT.RQ) CALL UU(EN,F1,RQ,RI,RO,RT,PL,
RE,RN,RQ,U)

V(I+1l)=U

V1(I+1)=-F1*RE/128.0%* (RR*RR-RO*RO

- (RO*RO-RI*RI) *LOG (RR/RO} / LOG(RO/RI))

CONTINUE

DO 111 I=1,N

RR=R1+( (R2-R1)/ (N-1) )} *(I-1)
WRITE(6,76)I,RR,I,V(I),I,V1(I)

FORMAT (10X, ‘RR(’,I2,’)=,F5.3,3X,'V(’,I2,’)=',F8.4,3X,
v1(’,I2,7)=',F8.4/)

CONTINUE

130



100

200

201
300

400

500

STOP
END

SUBROUTINE UU(EN,X,RR,RI,RO,RT,PL,RE,RN,RQ,U)
F1(R)=ABS (A1+B1/R+C1*R) ** (1/EN)
F2 (R) =ABS (A2+B2 /R+C2*R) ** (1/EN)
A1=-PL/ (X*RE) / (4**EN)

A2=-21

Cl=-1.0/4%* (EN+2)

c2=C1
B1=RN*RN/4** (EN+2) +PL*RN/ (X*RE) / (4**EN)
B2=RQ*RQ/4** (EN+2) ~PL*RQ/ (X*RE) / (4 **EN)
EPS=0.000001

N=1

P=1.0E10

IF(RR.GE.RQ) GO TO 201
T1=(F1(RI)+F1(RR)) /2
Hi=(RR-RI) /N

S1=T1

DO 200 K=0,N-1

S1=S1+F1 (RI+K*H1)

CONTINUE

IF(ABS(P-S1) .LT.EPS) GO TO 500
P=S1

N=N+N

IF(N.GT.10000) GO TO 500

GO TO 100

T2=(F2 (RO)+F2 (RR) ) /2
H2=(RO-RR) /N

$2=T2

DO 400 K=0,N-1

S2=52+F2 (RR+K*H2)

CONTINUE

S1=52

H1=H2

1F (ABS(P-51) .LT.EPS) GO TO 500
pP=S1

N=N+N

IF(N.GT.10000)GO TO 500

GO TO 300

U= (X*RE) ** (1/EN) *S1*H1

RETURN

END

SUBROUTINE TV(NQ,RR,EN,X,RI,RO,RT,PL,RE,RN,V)
F1(R)=ABS (A1+B1/R+C1#R) ** (1/EN)

F2 (R) =ABS (A2+B2 /R+C2*R) ** (1/EN)
RQ=RN+8*PL/X/RE

IF (RQ.GE.RO) RO=RO-0.1*RO

IF (RN.LE.RI)RN=RI+0.1*RI

IF (NQ.EQ.0) RR=RN

Al=-PL/ (X*RE) / (4**EN)
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100

200

500

30

A2=-A1

Clm==1.0/4%* (EN+2)

c2=C1
B1=RN*RN/4 ** (EN+2) +PL*RN/ (X*RE) / (4**EN)
B2=RQ*RQ/4** (EN+2) ~PL*RQ/ (X*RE) / (4 **EN)
EPS=0.000001

N=1

P=1.0E10

T1=(F1(RR)+F1(RI)) /2
T2=(F2 (RO) +F2 (RQ) ) /2
Hl=(RR-RT) /N

H2=(RO-RQ) /N

S1=T1

S2=T2

DO 200 K=0,N-1

S1=S1+F1 (RI+K*H1)

S2=52+F2 (RQ+K*H2)

CONTINUE

F=S1*H1+S2*H2

IF (ABS(P-F).LT.EPS) GO TO 500
P=F

N=N+N

IF(N.GT.10000)GO TO S00

GO TO 100

IF(EN.EQ.1)EE=1.0

V=ABS (X*RE) ** (1/EN) * (S2*H2-S1*H1)
V1=ABS (X*RE) %% (1/EN) *S1*H1
V2=ABS (X*RE) ** (1/EN) *S2%H2
IF(NQ.EQ.1)V=V1

RETURN

END

SUBROUTINE TT(NQ,X,EN,RI,RO,RT,PL,RE,RN,RQ)
IF (RN.LE.RI) XA=RI

IF (RN.GT.RI) XA=RN

XB=RI+(RO-RI)/2

RR=0.0

EPS=0.000001

XX=1.0E10

YY=1.0E10

CALL TV(NQ,RR,EN,X,RI,RO,RT,PL,RE,XA,FFA)
YA=FFA

TF(YA.EQ.0.0) GO TO S3

CALL TV(NQ,RR,EN,X,RI,RO,RT,PL,RE,XB,FFB)
YB=FFB

IF(YB.EQ.0.0) GO TO 55

XC=XA-YA* (XA-XB) / (YA-YB)

CALL TV(NQ,RR,EN,X,RI,RO,RT,PL,RE,XC,FFC)
YC=FFC

IF(YA*YC.GT.0.0) THEN

XA=XC

YA=YC
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53

55
50

100

200

500

ELSE

XB=XC

YB=YC

END IF

DX=ABS (XC-XX)
DY=ABS (YC-YY)

IF (DX.LT.EPS.AND.DY.LT.EPS) GO TO S0
XX=XC

YY=YC

GO TO 30

XC=XA

GO TO 50

XC=XB

RN=XC

RQ=8+PL/ (X*RE) +RN
RETURN

END

SUBROUTINE TV1(X,EN,RI,RO,RT,PL,RE,RN,RQ,Q)
F(R)=(R*R*ABS (A1+B1/R+C1¥R) ** (1/EN))
D(R)=(R*R*ABS (A2+B2 /R+C2*R) ** (1/EN) )
Al==PL/ (X*RE) / (4 **EN)

A2=-21

B1=RN*RN/4** (EN+2)+PL*RN/ (X*RE) / (4% *EN)
B2=RQ*RQ/4** (EN+2) ~PL*RQ/ (X*RE) / (4 **EN)
Cl=-1. /4** (EN+2)

c2=C1

EPS=0.000001

N=1i

P=1.0E10

T1=(F (RN)+F(RI)) /2.0
T2=(D(RO)+D(RQ}) /2.0

Hi=(RN-RI) /N

H2=(RO-RQ) /N

$1=T1

52=T2

DO 200 X=0,N-1

S1=S1+F(RI+K+*H1)

$2=82+D (RQ+K*H2)

CONTINUE

FF=-S1*H1+S2*H2

IF (ABS(P-FF).LT.EPS) GO TO 500

P=FF |

N=N+N

IF(N.GT.10000)GO TO 500

GO TO 100

CONTINUE

Q== (RC*RO-RI*RI) / (ABS (X*RE) ** (1/EN) } -S1*H1+52*H2
Q1=(S2*H2-S1*H1) * (ABS (X*RE) ** (1/EN) )
RETURN

END
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APPENDIX C

COMPUTER PROGRAM FOR GENERALIZED BINGHAM FLUIDS
DEVELOPING FLOW IN CONCENTRIC ANNULI

THIS PROGRAM CALCULATES THE VELOCITY AND PRESSURE PROFILES
OF DEVELOPING FLOW OF GENERALIZED BINGHAM FLUIDS IN ANNULI

DIMENSION U(151),V(151),U0(151),V0(151),D(151),RR(151),
P(150,151) ,B1(150)

OPEN (UNIT=6, FILE=/ANL1.DAT’ ,STATUS='NEW’)

OPEN (UNIT=7,FILE='ANL2.DAT’ ,STATUS='NEW')

WRITE(*,*)’ INPUT RN,PL,EN’

READ (S, *)RN, PL,EN

WRITE(6,77)RN,PL,EN

77 TFORMAT(/////.35X, USING FINITE DIFFERENCE METHOD TO
+ CALCULATE’,//,30X,’DEVELOPING FLOW OF NON-NEWTONIAN

78

~J
T

NOONOOOO0N

-+
-+
e

+ +

+

FLUIDS IN A PIPE’,/////.,40X,’REYNOLDS NUMBER=’,F6.0,//,

40X, "PLASTICITY NUMBER=’,F4.0,//,

40X, ' NON-NEWTONIAN INDEX=',F4.1,//)

WRITE(*, *)/INPUT DELX,DELR, IW, IR, XMAX,NR,W,R1,R2,F1’

READ (5, *) DELX,DELR, IW, IR, XMAX,NR,W,R1,R2,F1

DELR=(R1-R2) / (NR-1)

WRITE(G,73)DELX,DELR,IW,IR,XMAX,NR

FORHAT(zox,'DELX=',F5.5,5X,’DELR=',F5.4,5X,
rIW=',I4,5X,’IR=’',1I2
,Sx,'XMAX=',F3.2,5x,'NR;',I4,/[)

WRITE(*,*)’INPUT RP,RQ’

READ(5,*)RP,RQ

WRITE(6,79)RP,RQ,R1,R2

FORHAT(ZOX,'RP=',F5.3,5X,'RQ=’,F5.3,5X,'R1=',F5.3,5x,
fR2=',F5.3,//)

EN.ccos...FLOW INDIX

R1, R2....INNER AND OUTER RADII OF THE ANNULUS
PlL..oo....GENERALIZED BINGHAM NUMBER
RE........REYNOLDS NUMBER

Neceseoann NUMBER OF GRID

Fl........FRICTION FACTOR

RN1,RQl...INNER AND OUTER BOUNDARY RADII OF UNSHEARED
PLUG

Veeesssss.VELOCITY
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DO 50 I=1,NR,IR
50 RR(I)=R1-(I-1)*DELR
WRITE(6,2) (RR(I),I=1,NR,IR)

2 FORMAT(///,35X, VELOCITY PROFILE OF DEVELOPING FLOW’,

///f,15%,11(5X,’R=/,F3.1),/,10(5X, 'R=’,
F3.1),/,10(5X,’R=',F3.1)

,/,10(5X%, 'R=/,F3.1),/,11(5X,'R=' ,F3.1),//)
RATIO=8*PL/RN/F1
DO 100 I=1, NR
U0 (I)=NR/ (NR-2)
v0(I)=0.0
U(I)=0.0
V(I)=0.0
D(I)=0.0
100 CONTINUE
U0(1)=0.0
U0 (NR)=0.0
P0=0.0
J=0
MC=0
X=0.0
UT=20.0
IM=0

300 J=J+1
MC=MC+1
X=J*DELX
IF(IM.EQ.1) GO TO 900
IF(X.GT.XMAX) GO TO 900
CALL DEVL1(F1,RN,PL,PO,EN,NR,RP,RQ,DELR,DELX,

+ D,E,U0,V0,U,V,RATIO,P1,IM,W,R1)

PO=P1
UM=0.0
DO 400 I=1,NR
U0 (I)=U(I)
VO (I)=V(I)
IF(U(I).GT.UM)UM=U(I)

400 CONTINUE
IF (MC.NE.IW) GO TO 300
MC=0
WRITE(6,3)X,P0, (U(I),I=1,NR,IR)

3  FORMAT(3X,’X=’,6F8.4,5X,‘Pl=',F8.4,/,8X,
'U(R)=’,5X,10(F8.4,2X),/
,10(F8.4,2X),/,10(F8.4,2X),/,11(F8.4,2X),//)

UT=U (NR)

U1=0.0

GO TO 300

900 STOP

END

+ o+ +

+ +

SUBROUTINE DEVL1(F1,RN,PL,P0,EN,NR,RP,RQ,DELR,DELX,
+ D,E,U0,V0,0,V,RATIO,P1,IM,W,R1)
DIMENSION UO0(151),VO0(151),U(151),V(151),D(151),
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+ W1(151),W2(151) ,P(150,151),B1(150) ,R(151),01(151),V1(151),
+ U11(201)

30

11
17

10

20

12

14

18

21

29

33

DO 5 I=1,NR-1

DO 5 J=1,NR

P(I,J)=0.0

CONTINUE

PP=0.0

IF(PL.EQ.0.0)RATIO=0.0

IF (PL.NE.0.0) RATIO=8%PL/ (RN*F1)

DO 20 I=1,NR

R(I)=R1-(I-1)*DELR

IF (ABS (RP-R(I)) .LE. (0.5*DELR) ) I1=I
IF (ABS (RQ-R(I)) .LE. (0.5*DELR) ) I2=I
PP=PP+U0 (I) *R(I)

CONTINUE

IF(RP.EQ.RQ) I2=I1

U(1)=0.0

V(1)=0.0

U(NR)=0.0

V(NR)=0.0

DO 11 I=1,NR

U1(I)=U0(I)

V1(I)=V0(I)

CONTINUE

D(1)=(U1(1)-U1(2))/DELR

D (NR)=(U1(NR-1) -U1(NR) ) /DELR

DO 20 I=2,NR-1
D(I)=(U1(I-1)-U1(I+1))/(2*DELR)
CONTINUE

DO 21 I=1,NR

IF(EN.EQ.1.0) GO TO 12
IF(EN.NE.1.0.AND.D(I).EQ.0.0) GO TO 14
IF(EN.NE.1.0.AND.D(I).NE.0.0) GO TO 18
W1(I)=4.0

W2(I)=4.0

GO TO 21

W1(I)=0.0

W2(I)=0.0

GO TO 21

W1 (I)=4**EN*ABS (D(I))** (EN-1)

W2 (I) =4 **EN*ABS (D(I))** (EN-1) * (1+(EN-1))
CONTINUE

RR=0.0

DO 33 I=I1,I2

RR=RR+R (I)

CONTINUE

I0=I2-I1

TI=NR-I2

NI=NR

I3=NR

IF(PL.EQ.0.0) GO TO 44

DO 40 I=1,T1-1



40

41

43

44

45

49

50

€9

-+
3

+
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P(1,I)=R(I+1)

P(I+1,I)=Ul(I+1) /DELX+2*W2 (I+1)/(DELR*DELR)

IF (I+2.LT.I1+1) P (I+2,I)=-W1(I+2)/ (2*DELR*R(I+2))
+V1 (I+2) / {(2*DELR) -

W2 (I+2) / (DELR*DELR)
P(I+1,I+1)==V1(I+1)/(2*DELR)+W1(I+1)/(2*DELR*R(I+1))~
W2 (I+1) / (DELR*DELR)

P(I+1,I3-1)=1/DELX
P(I+1,I3)=P0/DELX+U1 (I+1)*U0 (I+1)/DELX-PL/R(I+1)
CONTINUE

P(1,I3)=PP

DO 41 I=I1,I2-1

P(1,I)=R(I+1)

P(I+1,I-1)=1

P(I+1,I)=-1

CONTINUE

DO 43 I=I2,I3~2

P(1,I)=R(I+1)
IF(I+1.LE.I3-1)P(I+1,I-1)=-W1(I+1)/(2*DELR*R(I+1))+

V1(I+1)/(2*DELR)-W2 (I+1)/(DELR*DELR)

IF (I+1.LE.I3-1)P(I+1,I)=U1(I+1)/DELX+2*W2 (I+1)/(DELR*DELR)
IF(I+1.LE.I3-2) P(I+1,I+1)==V1(I+1)/(2*DELR)+WL (I+1)/

(2*DELR*R(I+1) ) -W2 (I+1) / (DELR*DELR)
IF(I+1.LE.I3-1)P(I+1,I3-1)=1/DELX
IF(I+1.LE.I3-1)P(I+1,1I3)=P0/DELX+U1(I+1)*U0(I+1)/DELX

+PL/R(I+1)

CONTINUE

GO TO 49

DO 45 I=1,I3-2

P(1,I)=R(I+1)
P(I+1,I)=U1(I+1)/DELX+2*W2(I+1)/(DELR*DELR)
P(I+1,T+1)=-V1(I+1)/ (2*DELR)+W1(I+1)/(2*DELR*R(I+1))~

W2 (I+1) / (DELR*DELR)

P(I+1,I3-1)=1/DELX
P(I+1,I3)=P0/DELX+U1(I+1)*U0{I+1)/DELX-PL/R(I+1)
CONTINUE

P(1,I3)=PP

CALL SIN2(I3-1,P,Bl)
DU=0.0

DO 50 I=2,I3-1
U(I)=B1(I-1)

DU1=ABS (U(I)-U0(I))
IF (DU.LT.DU1)DU=DU1
CONTINUE
P1=B1(I3-1)

PP1=0.0

§5=0.0

DO 69 I=1,NR+1

DO 69 J=1,NR+1
P(I,J)=0.0

CONTINUE

I4=NR-3-I0
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Do 70 I=1,I1-2
IF(I+2.LT.I1)P(T,I+1)=-1.0
IF(I+2.LT.I1)P(I+1,I)=1.0
IF(I+2.LE.I1)P(I,I)=2*DELR/R(I+1)

 P(I,I4+1)=DELR*(U0(I+1)-U(I+1))/DELX
70 CONTINUE
DO 71 I=T1-1,I4
P(I,I)=2*DELR/R{I+1+I0)
P(I,I+1)=-1.0
P(i+1,I)=1.0
P(I,T4+1)=DELR* (U0 (I+1+%0)-U(I+1+I0))/DELX
71 CONTINUE
CALL SLN2(I4,P,Bl)
DO 77 I=2,I1-1
V(I)=B1(I-1)
77 CONTINUE
DO 78 I=I1,I2
V(I)=0.0
78 CONTINUE
DO 79 I=I1-1,I4
V(I+II+2)=B1(I)
79 CONTINUE
1001 RETURN
END

SUBROUTINE SLN2(N,A,X)
DIMENSION A(150,151),X(151)
DO 111 K=1,N
$=0.0
DO 222 I=K,N
IF (ABS(A(I,X)).GT.ABS(S)) THEN
s=A(I,K)
10=I
ENDIF
222 CONTINUE
IF(I0.EQ.K) GO TO 888
DO 777 J=K,l+1
T=A(K,J)
A(X,J)=A(I0,J)
A(I0,J)=T
777 CONTINUE
888 S=1/S
DO 100 J=K+1,N+1
. A(K,J)=A(K,J)*S
100 CONTINUE
DO 333 I=K+1,N
DO 333 J=K+1,N+1
A(I,J)=A(I,J)-A(I,K)*A(K,J)
333 CONTINUE
111 CONTINUE
DO 555 K=N,1,~-1
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C=A(K,N+1)
DO 444 J=K+1,N
C=C-A (K, J) *X(J)
444 CONTINUE
X (K)=C
555 CONTINUE
RETURN
END
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APPENDIX D

COMPUTER PROGRAM FOR GENERALIZED BINGHAM FLUIDS
UNSTEADY FLOW IN CONCENTRIC ANNULI

PROGRAM PULSATING FLOW OF NON-NEWTONIAN FLUIDS

DIMENSION U(141),U0(141),D(141),RR(141)

OPEN (UNIT=6,FILE=/UANL.DAT’)

OPEN (UNIT=8,FILE=/U0.DAT’)

WRITE(*,*) INPUT RN,PL,EN,F1’

READ (5, *)RN,PL,EN,F1
WRITE(6,*)RN,PL,EN,F1
FORMAT(/////.35X, USING FINITE DIFFERENCE
METHOD TO CALCULATE’,

//,30X, ’PULSATING FLOW OF NON-NEWTONIAN
FLUIDS IN ANNULI’,

/7111 ,40X, "REYNOLDS NUMBER=',F6.0,//,

40X, 'PLASTICITY NUMBER=',F4.0,//,

40X, ' NON-NEWTONIAN INDEX=',F4.1,//,

40X, 'FRICTION FACTOR=',F8.5,//)

WRITE(*,*) INPUT R1,R2,RP,RQ’

READ (5, *)R1,R2,RP,RQ

WRITE(*,*)R1,R2,RP,RQ
WRITE(*,*) f INPUT DELT,IW,IR,TMAX,NR,W,NCO,AMP,OM,XI’

READ (S,*) DELT,IW,IR,TMAX,NR,W,NCO,AMP,OM,XI

DELR=(R1-R2) / (NR-1)

WRITE (6, *) DELT,DELR, IW, IR, TMAX, NR, NCO, AMP, OM, XI
FORMAT (20X, ' DELT=/ ,F6.5, 5X, DELR=",F7.5,5X,
'IW=',14,5X,"IR=',12,/

,5X, *TMAX=’,F5.3,5X, 'NR=',I3,3X, /NCO=",I2,
7AMP=',F5.3,OM=’ ,F5.3,'XI=/,F5.3//)

EN..... .+.FLOW INDIX

R2, Rl....INNER AND OUTER RADII OF THE ANNULUS
PL..e.... .GENERALIZED BINGHAM NUMBER
RN........REYNOLDS NUMBER

N.eeeeses .NUMBER OF GRID

Fleeee..s.FRICTION FACTOR

RQ,RP.....INNER AND OUTER BOUNDARY RADII OF UNSHEARED
PLUG

Vieeoseses VELOCITY
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141
DO 50 I=i,NR,IR

50 RR(I)=R1=-(I-1)*DELR
WRITE(6,*) (RR(I),I=1,NR,IR)
2 FORMAT(///,35X, fVELOCITY PROFILE OF PULSATING FLOW
+ TIN ANNULI’,
+ //}//,15%,11(5%,"R=',F3.1),//)

RATTO=8*PL/RN/F1
PI=4*ATAN(1.0)
DO 100 I=1, NR
T0(I)=0.0
U(1)=0.0
D(I)=0.0

100 CONTINUE
T0(1)=0.0
U0 (NR)=0.0
J=0
MC=0
T=0.0
UT=20.0
IM=0

300 J=J+1
MC=MC+1
P=JF*DELT
IF(IM.EQ.1) GO TO 900
IF (T.GT.TMAX) GO TO 900
IF(NCO.EQ.0)B=1.0
IF(NCO.EQ.1)B=1+AMP*SIN (2*PI*OM*T)
CALL DEVL1(B,F1,RN,PL,EN,NR,RP,RQ,DELR,DELT,

+ D,UO0,U,RATIO,IM,W,R1,XI)

DO 400 I=1,NR
U0 (I)=U(I)

400 CONTINUE
IF(MC.NE.IW) GO TO 300
MC=0
WRITE(6,*)T, (U(I),I=1,NR+1,IR)
UT=U (NR}
U1=0.0
GO TO 300

900 STOP
END

SUBROUTINE DEVL1(B,F1,RN,PL,EN,NR,RP,RQ, DELR, DELX,

+ D,U0,U,RATIO,IM,W,R1,XI)
DIMENSION UO(141),U(141),D(141),

+ W1(141),W2(141),P(140,141),B1(141),R(141),U1({141)
DO 5 I=1,NR-1
DO 5 J=1,NR
P(I,J)=0.0

5 CONTINUE

IF(PL.EQ.0.0)RATIO=0.0
W=1.0
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IF (PL.NE.0.0)RATIO=8*PL/ (RN*F1)

DO 30 I=1,NR

R(I)=R1l-(I-1)*DELR

IF (ABS (RP-R(I)) -LE. (0.5*DELR) ) I1=I
IF (ABS(RQ-R(I)).LE. (0.5*DELR) ) I2=I
CONTINUE

IF(RP.EQ.RQ)I2=I1

U(1)=0.0

U(NR)=0.0

DO 11 I=1,NR

U (I)=U0(I)

CONTINUE

D(1)=(U1(1)-UL(2))/DELR

D (NR) = (U1 (NR-1) -U1 (NR) ) /DELR

DO 20 I=2,NR-1
D(I)=(U1(I-1)-Ul(I+1))/(2*DELR)
CONTINUE

DO 21 I=1,NR

IF(EN.EQ.1.0) GO TO 12
IF(EN.NE.1.0.AND.D(I).EQ.0.0) GO TO 14
IF(EN.NE.1.0.AND.D(I).NE.0.0) GO TO 18
W1(I)=1.0

W2(I)=1.0

GO TO 21

W1(I)=0.0

W2(I)=0.0

GO TO 21

W1(I)=ABS(D(I))**(EN~1)

W2 (I)=ABS(D(I})**(EN-1)* (1+(EN-1))
CONTINUE

RR=0.0

I0=I2-I1

II=NR-I2

I3=NR

IF (PL.EQ.0.0) GO TO 44

DO 40 I=1,I1-1
P(I,I)=XI/(DELX*4%%* (EN+2))+2*W2 (I+1)/ (DELR*DELR)
IF(I+2.LT.T1+1)P(I+1,I)=-W1(I+2)/(2*DELR*R(I+2))
—W2 (I+2)/ (DELR*DELR)
P(I,I+1)=W1(I+1)/(2*DELR*R(I+1))~-
W2 (I+1) / (DELR*DELR)
P(I,I3-1)=F1*RN*B/ (2%* (2*EN+3))
+XI*UO0 (I+1)/ (DELX*4*+* (EN+2))
=PL/R(I+1) / (4**EN)

CONTINUE

DO 41 I=I1,I2-1

P(I,I-1)=1

P(I,I)=-1

CONTINUE

DO 43 I=I2,I3-2
IF(I+1.LE.I3-1)P(I,I~1)=-W1(I+1)/(2*DELR*R(I+1))
-W2 (I+1)/ (DELR*DELR)
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IF (I+1.LE.I3-1)P(I,I)=XI/ (DELX*4** (EN+2))

+2%W2 (I+1) / (DELR*DELR)
IF(I+1.LE.I3-2)P(I,I+1)=W1(I+1)/

(2*DELR*R (I+1) ) -W2 (I+1) / (DELR*DELR)
IF(I+1.LE.I3-1)P(I,I3~1)=XI*U0 (I+1)/(DELX*4** (EN+2))
+PL/R(I+1) / (4**EN)

+F1*RN*B/ (2%* (2*EN+3))

CONTINUE

GO TO 49

DO 45 I=1,I3-2
P(I,I)=XI/DELX/ (4** (EN+1))+2%W2(I+1)/(DELR*DELR)
IF (I+2.LT.I3) P (I+1,I)=-W1(I+2)/ (2*DELR*R(I+2))~
W2 (I+2)/ (DELR*DELR)
P(I,I+1)=W1(I+1)/(2*DELR*R(I+1))~

W2 (I+1) / (DELR*DELR)
P(I,I3-1)=XI*UO(I+1)/DELX/(4%* (EN+1))
+F1*RN*B/ (2%* (2*EN+3) )

CONTINUE

CALL SIN2(I3-2,P,B1)

DU=0.0

DO 50 I=1,I3-2

U(I+1)=B1(I)

DU1=ABS (U(I)=U0(I))

IF (DU.LT.DU1)DU=DU1

CONTINUE

RETURN

END

SUBROUTINE SLN2(N,A,X)
DIMENSION A(140,141),X(141)
DO 111 K=1,N

$=0.0

DO 222 I=K,N

IF (ABS (A(I,K)).GT.ABS(S)) THEN
S=A(I,K)

10=1

ENDIF

CONTINUE

IF(I0.EQ.K) GO TO 888

DO 777 J=K,N+1

T=Aa (K, J)

A(K,J)=A(I0,J)

A(I0,J)=T

CONTINUE

S=1/S

DO 100 J=K+1,N+1
A(K,J)=A(K,J)*S

CONTINUE

DO 333 I=K+1,N

DO 333 J=K+1,N+1
A(I,J)=A(I,J)-A(I,K)*A(K,J)
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CONTINUE
CONTINUE

DO 555 K=N,1,-1
C=A (K, N+1)

DO 444 J=K+1,N
c=C-A(K,J) *X(J)
CONTINUE

X (K)=C
CONTINUE
RETURN

END
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APPENDIX E

COMPUTER PROGRAM FOR GENERALIZED BINGHAM FLUIDS

UNSTEADY FLOW IN ECCENTRIC ANNULI

PROGRAM UNSTEADY FLOW IN ECCENTRIC ANNULI

DIMENSION A(30,30),B(30),00(30,30),U(30,30)
,U1(30,30),X(30,30),Y(30,30),FI(30,30),DX1(30,30),
DY1(30,30) ,DX2(30,30) ,D¥2(30,30),
Dx3(30,30),DY3(30,30),DX4(30,30),DY4(30,30),UX1(30,30),
UY1(30,30),UX2(30,30),UY2(30,30),XH1(30,30),YM1(30,30),
FX1(30,30),FY1(30,30),FX2(30,30) ,FY2(30,30),
UA(30,30),UB(30,30),UC(30,30),
UE(30,30),UD(30,30),UF(30,30)

OPEN(8,FILE='YF.DAT’)

OPEN(9,FILE='X.DAT’)

OPEN (10,FILE='Y.DAT’)

OPEN(11,FILE='U.DAT’}

WRITE(*,*)’ INPUT RE,PL,EN,F1,DELT,TMAX,N,
RI,RO,E,IN,IW/

READ(S, *)RE,PL,EN,F1,DELT, TMAX,N,

RI,RO,E,IN,IW

WRITE(8,1)

FORMAT (//5X,’FD SOLUTION OF THE ECCENTRIC FLOW L D
WRITE(8,2)RE,PL,EN,F1,RI,RO,E,DELT,N,IN

FORMAT (//

sX,’RE=’,F7.2,5X,'Pi~=’,F5.2,//

5X,'EN=’/ ,F5.2,5X,’F1=/,F7.3,//
5X,’RI=’,F5.2,5X,’RO=’,F5.2,//
5X,’E=’,F5.2,5X,/DELT=',F6.4,//
5X,’N=',13,5X,'IN=’,13,//]//)

R1=2%*RI/ (RO-RI)

R2=2%R0O/ (RO-RI)

E=2*E/ (RO-RI)

XX1=(1-R1*R1/R2/R2-E*E/R2/R2)}/ (2*E*R1/R2/R2)
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Xx2=(1-R1%R1/R2/R2+E*E/R2/R2) / (2*E/R2)

X1=1.0G (XX1+SQRT (XX14XX1-1))

X2=L,0G (XX2+SQRT (XX2#XX2-1) )

WRITE(*,*) ’X1=,X1, 'X2=" X2

¥1=0.0

Y2%3.1415926 )

Al=R1* (EXP (X1) -EXP(-X1))/2

WRITE(*,*) ‘Al=',Al

FLOATN=N

DELY=(Y2-Y1) /N

DELX=(X1-X2) /N

DO 10 J=1,N+1

DO 10 I=1,N+1

X(X,J)=X2+DELX* (I-1)

¥Y(I,J)=Y1+DELY* (J-1)
FI(I,J)=(EXP(X(I,J))+EXP(-X(I,J)))/2-COS(¥(I,J))
FX1(I,J)=(EXP(X(I,J)+0.5*DELX)+EXP (-X(I,J)~0.5*DELX)) /2
-COS (Y (I,T))

FX2 (I,J)=(EXP(X(I,J)-0.5*DELX)+EXP (-X(I,J)+0.5*DELX)) /2
-COS (Y (I,J))

IF(I.EQ.1) FX2(I,J)=FI(I,J)
IF(I.EQ.N+1)FX1(I,J)=FI(I,J)
FY1(I,J)=(EXP(X(I,J)})+EXP(~X(I,J)
FY2(I,J)=(EXP(X(I,J))+EXP (=X (I,J)
A(I,J)=0.0

B(I)=0.0

U(I,J)=0.0

vo(I,3)=0.0

U1(I,J)=0.0

CONTINUE

T=0.0

IP=0

VIS=0.01

MT=0

MM=0

IM=0

DUOM=0.0

N1=0

T=T+DELT

MM=MM+1

MT=MT+1

TM=0

IF(T.GT.TMAX) GO TO 1000
IM=IM+1

DUM=0.0

DIM=0.0

DO 21 J=1,N+1

Do 21 I=2,N
IF(PL.EQ.0.0.AND.EN.EQ.1.0)GOTO 18
DX1(I,J)=(U1(I+1,J)-U1(I,J))/DELX
DX2 (I,J)=(U1(I,J)-U1(I~1,J))/DELX
IF(J.NE.1.AND.J.NE.N+1) THEN

}) /2-C0S (¥ (I,J)+0.5*DELY)
)/

)
) /2~COS (¥ (I,J)-0.5%DELY)
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DX3 (I,J)=(UL1(I+1,J)+UL(I+1,J+1)-01(I-1,J)
-U1(I-1,J+1))/4/DELX

DX4 (I,J)=(UL(I+1,J-1)+UL(I+1,T)~U1(I-1,J-1)
-U1(I-1,3))/4/DELX
DY1(I,J)=(UL(I+1,J+1)+01(I,J+1)~U1(I,J-1)
-U1(I+1,3-1))/4/DELY
DY¥2(I,J)=(ULl(I,J+1)+U1(I-1,J+1)-U1(I,J-1)
-U1(I-1,J-1))/4/DELY
DY3(X,J)=(U1(I,J+1)-U1(X,J)) /DELY

DY4 (I,J)=(U1(I,J)-U1(I,J-1))/DELY

ENDIF

IF(J.EQ.1) THEN

DX3 (I,J)=(UL(I+1,J)+UL(I+1,J+1)-U1(I-1,J)
~U1(I-1,J+1)) /4/DELX

DX4 (I,J)=(UL(I+1,J+1)+U1(I+1,J)~U1(I-1,T+1)
-U1(I-1,J))/4/DELX

DY1(I,J)=0.0

DY2(I,J)=0.0
DY3(I,J)=(U1(I,J+1)-U1(I,J)) /DELY

DY4 (I,J)=(U1(I,J)-U1(I,J+1))/DELY

ENDIF

IF(J.EQ.N+1) THEN
DX3(I,J)=(Ul(I+1,J)+U1(I+1,T-1)-U1(I-1,J)
-U1(I-1,J-1)) /4/DELX

DX4 (I,J)=(UL(I+1,J-1)+U1(I+1,J)~U1(I~1,J~1)
-U1(I-1,J)) /4 /DELX

DY1(I,J)=0.0

DY2(I,J)=0.0
DY3(I,J)=(U1(I,J-1)~U1(I,J))/DELY
DY4(I,J)=(U1(X,J)~U1(I,3-1)) /DELY

ENDIF

DDX1=SQRT (DX1(I,J) *DX1(I,J)+DY¥1(I,J) *DY1(I,J))
IF(DDX1.LE.VIS)THEN

UX1(I,J)= :

ABS (PL*A1/FX1(I,J)/1.0)+ABS (FX1(I,J) /A1) ** (EN-1)*
VIS** (EN-1)

ELSE

UX1(I,J)=ABS(PL*A1/FX1(I,J)/1.0)

+(ABS (FX1(I,J) /A1) ) ** (EN-1) *DDX1%* (EN-1)

ENDIF

DDX2=SQRT (DX2 (I,J) *DX2 (I,J)+DY¥2 (I,J) *DY2(I,J))
IF(DDX2.LE.VIS)THEN

Ux2(I,J)=

ABS (PL*A1/FX2(I,J) /1.0)+ABS (FX2(I,J) /A1) ** (EN~1) *
VIS** (EN-1)

ELSE

UX2(I,J)=ABS(PL*A1/FX2(I,J)/1.0)

+(ABS (FX2(I,J) /A1) ) ** (EN~1) *DDX2%* (EN-1)

ENDIF
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DDY1=SQRT (DX3 (I,J) *DX3(I,J)+DY3(I,J)*DY¥3 (I,J))
IF(DDY1.LE.VIS)THEN

UYL(I,J)=

ABS (PL*A1/FY1(I,J)/1.0)+ABS(FY1(XI,J) /A1) ** (EN-1) %
VIS** (EN-1)

ELSE

UY1(I,J)=ABS(PL*A1/FY1(I,J)/1.0)

+(ABS (FY1(I,J) /A1) ) ** (EN-1) *DDY1** (EN-1)

ENDIF

DDY2=SORT (DX4 (I,J) *DX4 (I,J)+DY4 (I,J)*DY4 (I,J))
IF(DDY2.LE.VIS) THEN

UY2(I,J)=

ABS (PL*A1/FY2(I,J)/1.0)+ABS (FY2(I,J) /A1) ** (EN-1)*
VIS*#* (EN-1)

ELSE

UY2 (I,J)=ABS(PL*Al/F¥2(I,J)/1.0)

+(ABS (FY¥2 (I,J) /A1) ) ** (EN-1) *DDY2%* (EN-1)

ENDIF

IF(PL.EQ.0.0.AND.EN.EQ.1.0) THEN

UX1(I,J)=1.0

UX2(I,J3)=1.0

UY1(I,J)=1.0

UY2(I,J)=1.0

ENDIF

UA(I,J)=-UX2(I,J)/ (DELX*DELX)
UB(I,J)=-UX1(X,J)/(DELX*DELX)
uc(I,J)=-UY2(I,J)/ (DELY*DELY)
UD(I,J)=-UY1(I,J)/(DELY*DELY)
UE(I,J)=A1%Al/(FI(I,J)*FI(I,J))*(1/DELT)
-UA(I,J)-UB(I,J)-UC(I,J)-UD(I,J)
UF(I,J)=(U0(I,J) /DELT+F1*RE/2)*A1*ALl/ (FI(I,J)*
FI(I,J))

CONTINUE

DO 100 J=1,N+1

DO 30 I=1,N-1

A(I,I)=UE(I+1,J)
IF(I+1.LT.N)A(I,I+1)=UB(I+1,J)
IF(I+1.LT.N)A(I+1,I)=UA(I+2,J)
IF(J.NE.1.AND.J.NE.N+1)A(I,N)=-UC(I+1,J)*U1(I+1,J-1)
-UD (I+1,J)*U1 (I+1,3+1)+UF(I+1,J)
IF(J.EQ.1)A(I,N)==(UC(I+1,JT)+UD(I+1,J))*U1(I+1,T+1)+
UF(I+1,J)
IF(J.EQ.N+1)A(I,N)==(UC(I+1,J)+UD(I+1,J))*ULl(I+1,T-1)
+UF (I+1,J)

IF(I.NE.1.AND.I.NE.N-1) THEN
IF(A(I,I+1).EQ.0.0)THEN

A(I,I)=1.0

A(I,I-1)=-1.0

A(I,N)=0.0

ENDIF

ENDIF
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CONTINUE

CALIL. SIN(N-1,A,B)
DO 50 I=1,N-1
T(I+1,J)=B(I)

DU=ABS(U(I,J)-UL(I.J))

DUO=ABS (U(I,J) -U0(I,J))

IF (DUO.GT.DUOM) DUOM=DUO

IF (DU.GT.DUM) DUM=DU

CONTINUE

CONTINUE

DO 60 J=1,N+1

DO 60 I=2,N+1

1F (ABS (U(I,J)-U(I-1,J)}.LT.0.02)U(I,J)=U(I-1,J)
U1(I,J)=U(I,J)

CONTINUE

WRITE(*,*) ’IM=',IM, 'DUM=/,DUM
IF(DUM.GT.0.01)GOTO 700

DO 210 I=1,N+1

DO 210 J=1,N+1

vo(XI,J)=U(I,J)

CONTINUE

IF(MT.NE.IN) GO TO 800

MT=0

WRITE(8,295)T

FORMAT (//,5X,F6.4)

DO 300 J=1,N+1,5 ¥
WRITE(*,*) (U(I,J),I=1,N+1)

WRITE(8,297) (U(I,J),I=1,N+1)
FORMAT(//,5X,6(F7.4,2X),//,5X,5(F7.4,2X))
CONTINUE

IF (DUOM.LT.0.000001)}GOTO 1000

GOTO 800

DO 1100 I=1,N+1,IW

DO 1100 J=1,N+1,IW
XM1(I,J)=A1*SINH(X(I,J))
YM1(I,J)=-A1*SIN(Y(I,J))
CONTINUE

DO 1200 I=1,N+1,IW

DO 1200 J=1,N+1,IW
WRITE(S,*)XM1(I,J),YM1(I,J),U(I,T)
CONTINUE

STOP

END

/ (COSH(X(I,J))-COS(Y(I,T))
/ (COSH(X(I,J))-COS(Y(I,T))

SUBROUTINE SLN(N,TT,B)

DIMENSION TT(30,30), B(30)

DO 333 K=1,N-1

DO 333 I=K+1,N

DO 333 J=K+1,N+1

T (I,J)=TT(I,J)~TT(I,K)*TT(K,JT)/TT(K,K)
CONTINUE

B(N) =TT (N, N+1) /TT (N, N)

}
)
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iso0

DO 555 K=N-1, 1, -1

C1=0.0

DO 444 J=K+1,N

C1=C1+TT (K, J) *B(J)
444 CONTINUE

B(K)=(TT (K,N+1)-Cl) /TT(K,K)
555 CONTINUE

RETURN

END



