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Abstract

In this thesis, the problem of product quality control is addressed. The primary
goal of many processes is to produce a consistent product, that is, to minimize the
variability in the product quality. This thesis addresses two particular quality control
problems, with the focus being on the second issue. First, the problem of incorporating an
approximate fundamental model into an online feedback quality control scheme is
addressed. The second problem investigated in the thesis relates to the dimensionality
issues in product quality control. The issue of controlled and manipulated variable
selection while minimizing the overall variability in the product quality is addressed.

In the first part of the thesis, control of the full molecular weight distribution
(MWD) in a semi-batch polymerization reactor is considered. A new batch-to-batch
optimization methodology for producing a desired MWD using an approximate
fundamental model is presented. The optimization approach is also extended for use as an
on-line control method by incorporating a multivariable statistical process control
(MSPC) monitoring scheme. The combined MSPC/batch-to-batch optimizer is
demonstrated on a simulated semi-batch polystyrene reactor and is shown to be very
effective in reacting to large process upsets. Despite significant process/model mismatch,
the batch-to-batch optimizer is able to adjust the process and produce the desired MWD
within several batches following a process upset.

In the remainder of the thesis, dimensionality issues in product quality wn&ol are
addressed. First, indirect control of the full MWD by directly controlling only the average
of the distribution is illustrated. It is shown that the choice of manipulated variables has
an important impact on the controller performance when the full MWD is considered, and
controlling a single average chain length sometimes causes the MWD to degrade. A
simple analysis tool, called the Disturbance Inflation Factor (DIF), is introduced to
evaluate which controlled and manipulated variables result in the best overall control of
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the full MWD. It is shown that with prudent choices of manipulated and controlled
variables, simple single variable control can provide significant improvements in the full
MWD. Controlling new linear combinations of the original inputs and outputs is also
shown to be a feasible option for minimizing the overall effect of the disturbances.

The dimensionality ideas raised when controlling the MWD are then generalized.
A framework for selecting controlled and manipulated variables that minimize the
variability in the overall product quality is derived. Given the disturbance directions and
process gain matrix, expressions for the optimal directions for control are derived. The
role of the number of independent disturbances in determining the number of controlled
variables, and the structure of the resulting reduced dimension controller is clearly shown.
The framework is then applied to a simulated dynamic Kamyr digester. Two single input,
single output Reduced Dimension Controllers (RDCs) are proposed and compared to a
Dynamic Matrix Controller (DMC) that controls all outputs and manipulates all inputs.
The RDCs performed very well at the conditions for which they were designed and
showed only modest degradation when the process operating point was changed. Despite
their much simpler structure, their performance is very close to that of the DMC.

Finally, the thesis concludes with a critical review and unification of existing
methods for Reduced Dimension Control. It was found that due to the different industries
from which the applications originate, there is little or no comparison of similar
approaches, thus there is the need for a unification. The existing approaches are
characterized as either data based or model based for the discussion. Each of the general
methods are discussed, then illustrated with specific published examples. Where
appropriate, the methods and examples were placed within the context of the RDC
framework derived earlier in the thesis, and the situations in which the methods are
expected to perform well or be unreliable are discussed. An overall approach to dealing
with RDC problems using a combination of the methods is also discussed.
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1. Introduction

In this thesis, the problem of product quality control is addressed. For many
processes, the final product quality is of paramount importance. The primary goal of
many such processes is to operate within specifications while minimizing the variability
in the product quality. This thesis addresses two particular quality control problems, with
the focus being on the second issue. First, the problem of incorporating an approximate
fundamental model into an online quality control scheme is addressed. In particular,
control of the full molecular weight distribution in a semi-batch polymerization reactor is
addressed. The second problem investigated in the thesis relates to the dimensionality
issues in product quality control. Specifically, product quality is often characterized by
numerous, highly correlated quality variables, and these variables usually outnumber the
variables available for manipulation. The issue of controlled and manipulated variable
selection while minimizing the overall variability in the product quality is addressed in
the thesis.

In Chapter 2, achieving acceptable product quality in the absence of complete
fundamental models is investigated. Approximate models are often available, and it could
be beneficial to incorporate these into a control scheme. To this end, a batch-to-batch
optimization methodology for producing a desired molecular weight distribution (MWD)
in a polymerization reactor using an approximate fundamental model is developed. The
method uses fundamental polymer knowledge in order to simplify an otherwise
complicated optimization problem and provide significant freedom in manipulated
variable selection. The optimization approach is also extended for potential use as an on-
line control method. A multivariable statistical process control (MSPC) monitoring
scheme is implemented in conjunction with the optimizer for deciding when a new batch
correction is required. The optimizer remains on, but dormant while the desired MWD is



being produced, and re-optimizes the process if the process changes and poor quality
polymer is produced. The combined MSPC/batch-to-batch optimizer is demonstrated on a
simulated semi-batch polystyrene reactor.

Directly controlling the full MWD requires substantial process information. Due
to the lack of sufficient process knowledge, indirect control of the full MWD, for
example by controlling an average of the distribution, is often practiced in industry
instead. In Chapter 3, indirect control of the full MWD, by controlling the average of the
MWD, is addressed. Unfortunately, good control of the distribution average does not
necessarily result in a better distribution (and hence better polymer quality). In Chapter 3,
it is shown that as a controller eliminates a disturbance in the controlled variables (for
example, the average chain length), it transfers and can possibly inflate the disturbance in
the remaining quality variables (the full MWD). Therefore, while it may appear that good
control is being achieved (the average is at its target), the polymer quality has in fact
degraded. A simple steady state analysis tool, called the Disturbance Inflation Factor
(DIF), is introduced to quantify this effect and provide guidance in selecting controlled
and manipulated variables. The DIF is used to predict which manipulated variables result
in the best control of the full MWD while acting only on a single measured variable such
as the weight-average chain length. It is further applied to evaluate if control of the full
distribution may be improved by considering other controlled variables, such as the
number-average chain length, or other manipulated variables, such as combinations of the
existing manipulated variables. The ideas are illustrated on the same simulated
polystyrene reactor.

The final two chapters of the thesis deal more generally with the dimensionality
issues that are raised in the third chapter. Often, when product quality is characterized by
numerous, highly correlated variables, a choice is made to control a subset of the
variables, in order to improve the overall product quality. However, the choice of the
variables to control and manipulate is critical to improving the overall product quality. In
Chapter 4, a framework for the optimal reduction of the dimension of the controlled



system is derived from minimum variance theory. The framework for Reduced
Dimension Control (RDC) shows explicitly how process and disturbance directions
impact the selection and required number of controlled and manipulated variables.
Furthermore, the framework highlights the assumptions that are made about the process
when selecting the subsystem for control. The framework is then demonstrated on a
simulated, dynamic Kamyr digester for controlled and manipulated variable selection.
The digester was selected for the case study since it is an example of a process that
violates many of the framework assumptions. Therefore, the impact of applying the RDC
framework under these circumstances is evaluated using the digester.

In Chapter 5, a unification of existing applications in the area of Reduced
Dimension Control is given. Quite often, RDC approaches are application driven and
therefore solutions for controlled and manipulated variable selection have been
independently proposed by researchers in many different fields. In order to increase
awareness and understanding in this promising field, Chapter 5 provides a unifying view
of the existing methodologies and applications of reduced dimension control. Existing
methods are characterized as either Data Based or Model Based Approaches. Data based
approaches use plant data directly, whereas Model based approaches require the
identification of a plant model first (usually in transfer function form). The methods are
discussed generally, then illustrated with specific examples from the literature. Where
appropriate, each method is placed within the framework of Chapter 4 in order to provide
insight into the method and evaluate the effectiveness. Situations in which a method is
expected to be unreliable are also discussed. The Chapter concludes by discussing a
comprehensive approach to RDC and process dimensionality analysis.

Concluding remarks and contributions of the thesis are outlined in the final
chapter.



2. Optimization of Molecular Weight Distribution Using Batch-to-Batch
Adjustments

2.1 Introduction

Research can often be broadly classified as either optimization or control. In batch
process optimization, one wishes to calculate the optimal set of initial conditions and
manipulated variable trajectories for a non-time varying situation, subject to process
constraints. In contrast, batch process control implies some form of feedback to adjust for
time varying disturbances and process changes. The two approaches are complementary,
and the distinction between them is often somewhat artificial.

The two areas can be further subdivided. Most batch reactor control approaches
can be classified into two areas: Within-batch control and batch-to-batch control. Within-
batch control includes any action taken during the operation of the batch, for the purpose
of controlling the quality of the final polymer from that batch. This may involve
continuous on-line control (Kozub and MacGregor (1992), Soroush and Kravaris (1992))
or mid-batch corrections based on intermittent quality measures (Yabuki and MacGregor
(1996), Tsen et al (1996)). Batch-to-batch control implies any correction made for the
next batch, based on the results of previous batches. Two such examples may be found in
Box and Jenkins (1976) and Vander Wiel et al (1992).

Batch optimization can also be broken down into two main areas: classic
approaches and batch-to-batch optimization. The classic approach to batch reactor
optimization, often referred to as optimal control, involves the use of fundamental models
and constrained optimization methods in an off-line optimization (e.g. Cawthon and
Knaebel (1989), Choi and Butala (1991)). The optimization criterion is typically some
function of average molecular weight, polydispersity, batch time and/or final conversion
and the result is one or more trajectories that are to be implemented in open-loop fashion



during the batch. The limitation of optimal control methods is that a very good process
model is required. The direct implementation of the optimal trajectory calculated off-line
will not result in the expected polymer if there is any process/'model mismatch or
unmeasured disturbances. The emergence of the second area, batch-to-batch optimization,
which is the focus of this work, is a direct result of this deficiency. The general idea is to
use the best available knowledge (reasonable model and results from previous batches),
and converge to a good set of operating conditions using the iterative nature of batches.
Several applications have appeared in the literature and these are briefly discussed below.

Filippi-Bossy et al (1989) applied the concept of tendency models (as introduced
in previous papers by this research group) to optimize batch reactors. They assumed that
the kinetics of the process are not well-known, and proposed a structure that could
approximate the kinetics. By alternately solving an optimization algorithm for a
manipulated variable trajectory and updating the model parameters based on the actual
batch results, they arrive at a good manipulated variable trajectory within several batches.
Optimization objectives considered are maximizing a certain product while minimizing
batch time. Recent work by this group looks at assigning confidence regions to tendency
models (Fotopoulos (1996)).

The optimization approach published by Zafiriou and Zhu (1990) and Dong et al.
(1996) uses batch data (trajectories and endpoint) in the gradient calculation of the
optimization scheme. The idea is based on an analogy between numerical optimization
and batches and was first demonstrated by Zafiriou and Zhu (1990) with a first principles
model. In that paper, the authors replaced the model with the actual plant for the forward
integration step of the gradient calculation and the model was used only for the solution
of the adjoint equations. The method was applied to a bulk polystyrene polymerization
process in which the batch temperature profile is adjusted to maximize an objective
function of number and weight averages and conversion. In the more recent work, an
empirical NNMPLS model was incorporated in order to predict the values of the states
(during the batch ) required for the gradient calculation. Furthermore, the use of the



empirical model allowed for an analytical gradient calculation. In the latter paper, two
case studies are presented. First, the polystyrene example in Zafiriou and Zhu (1990) was
repeated. Second, the feedrate of a reagent is optimized to maximize the production of a
certain product in a bio-reactor.

Another nice application of batch-to-batch optimization for polymerization
processes is that of Gugliotta et al (1995). The objective was to produce a
compositionally uniform copolymer in the minimum batch time. The monomer feed was
available to manipulate. Using a simple model and heat release data from the last batch,
the feedrate profile for the next batch was calculated. In the experimental example shown,
an ‘optimal’ feed profile was obtained after only four batches.

In this chapter, a novel batch-to-batch optimization methodology for producing a
desired MWD using an approximate model is presented. The method uses fundamental
polymer knowledge in order to simplify an otherwise complicated optimization problem
and to provide significant freedom in manipulated variable selection. A measurement of
the MWD at the end of the batch is used to update manipulated variable trajectories for
the next batch, thus iterating into a good operating policy. The MWD has long been
recognized as a desirable variable to control. Recently, some attempts have been made to
estimate or control the full MWD in batch reactors (Takamatsu et al. (1988), Chang and
Lai (1992), Ellis et al (1994) and Crowley and Choi (1997), Yoon et al (1998), Chang and
Liao (1999)). All applications require a detailed polymerization model and consider linear
polymers, however none have attempted to incorporate batch-to-batch corrections.
Instead, all rely on the soundness of their models to calculate the required manipulated
variable trajectories correctly the first time.

The chapter is structured as follows: in the second section, an overview of the
strategy is presented. This will include the division of all linear polymers into two general
classes. In the third section, the methodology is outlined for one class of linear polymers.
A case study, using a polystyrene simulation, is also presented. The fourth section
presents the method and a case study for the second class of linear polymers. Initially the



method is demonstrated with noise-free MWD measurements. However, in the fifth
section, realistic noise is added to the true MWD in order to simulate an industrial
environment and a combined monitoring and batch-to-batch optimization scheme is
presented. Finally, a discussion of the methodology and the results may be found in the
final section.

2.2 Overview of Strategy

Many polymer reactor control problems are demonstrated using the well known
polymethylmethacrylate system. PMMA is just one of many linear polymers, all of which
have certain characteristics that allow the MWD problem to be simplified significantly.
Specifically, once a linear polymer is formed, it remains ‘dead’ until the end of the batch.
Because of this fact, the MWD at the end of the batch is simply a weighted average of the
MWD of the polymer formed at each instant during the batch:

W) comuinive = 2 WT) «f, @1

formed in instant i
where f; is the fraction of the polymer made at instant ‘i’
The instantaneous MWD distribution of linear polymers is characterized by at most two
parameters (Hamielec and Tobita (1992)). These parameters, t and B, are ratios of the
various kinetic rates. For the most general linear polymer (notation is provided at the end
of the chapter):
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Therefore, the distributions made at each instant during the batch can be characterized by
the values of only two parameters, T and B. The trajectories of these two parameters
during the batch (along with a knowledge of f) are enough to describe the final
(cumulative) MWD. If t and B are held constant for the entire batch, the cumulative
MWD (2.1) will be the same as the instantaneous one (2.3). An extension of this idea
forms the basis for the proposed methodology: if one could ‘control’ t and B at a few
desired levels during the batch, one has the ability to control the shape of the MWD that
results.

With this in mind, the overall strategy can be viewed as a series of three steps:
1/ Decompose the (cumulative) desired MWD into a series of instantaneous
distributions, each given by (2.3) and characterized by a particular choice of t and B.
This will provide initial trajectories of T and B to be implemented during the first batch.
2/ Implement the specified T and P trajectories in the batch reactor and measure the
cumulative MWD of the final polymer produced.
3/ Compare the measured MWD to the desired distribution and update the t and B
trajectories accordingly. Repeat steps 2/ and 3/ until the distribution being produced is
sufficiently close to the desired one.

For many linear polymers, one of the parameters is much larger than the other.
The first class of polymers considered in this paper are those in which one parameter
dominates the MWD. The second class are those in which both parameters are significant.

2.3 Methodology for Linear Polymers
The three step methodology for linear polymers will first be discussed for a
system in which B is much larger than t. The results are easily extended to systems in

which t >> B but are not shown in order to conserve space.



2.3.1 Decomposition of the Desired MWD (Step 1)
As discussed in the previous section, the distribution at the end of the batch is a
weighted sum of all the distributions formed instantaneously:

W) cumutative desired. = Z f, x W,(r,B ;) 2-4)

The LHS of (2.4) is specified: it is the desired distribution. The RHS is unknown;
we do not know what weighted sum will equal the desired distribution. However, the
desired MWD can usually be approximated by a finite number of instantaneous
distributions. Equation (2.4) becomes:

W(I) cumutative desired = £1 X W(6B) + £, x W, (6,8, )+ .+, x W, (r,B,) 2.5)

Rewriting (2.5) in vector form:

wp = W,f (2.6)

The vector wy, contains the specified values of W(I)  muarive gesied at @ finite number
of chain lengths r. Each column of the W, matrix contains an instantaneous MWD (that is
characterized by a single value of ). Both W, and f are unknown. However, since the
desired distribution (wp) is known, it is very easy to generate a group of instantaneous
distributions that, summed together, could approximate the desired MWD. One could
generate as many as 10 or 15 instantaneous distributions using (2.3) with T = 0 (at
equispaced values of B, for example) for the columns of the W, matrix. Then, a very
simple optimization can be performed to calculate the weight fractions f; associated with
each instantaneous distribution:
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mrin (wp — Wif)?

2.7
subject ttoi =landf, >0 Vi

The optimization returns a value for the vector f. Distributions in W, with an
associated non-zero value of f; are constituent distributions. Any distribution in W, that
does not contribute will have an associated fraction that is very small or even equal to
zero. Distributions with small fractions can be eliminated (delete the associated column in
W) and the optimization (2.7) repeated with the new W, matrix. In this way, the number
of instantaneous distributions that must be made can be minimized. Furthermore, since
each instantaneous distribution is characterized by a single value of 3, the decomposition
provides the ‘n’ levels of B at which the process must be sequentially operated in order to
produce the desired MWD.

Of course, the solution to the decomposition is not unique and will depend on the
set of instantaneous distributions one starts with, and the instantaneous distributions one
chooses to eliminate. Different sets of distributions (different W, matrices) should be
attempted in order to find the best approximating set of constituent distributions.

exv0* Consider as an example the
25t distribution shown in Figure 2.1 (dashed

— — — — desired ‘ line). This distribution is part of a
r approximate

published data set (Dube and Penlidis,
1995), and thus represents an arbitrary
distribution. Assume this is the desired
MWD and the polymer is one for which

-

molecular weight distribution
&

0 02 04 08 08 t 12 14 18 18 z. B >> 1. The desired WCight average
chain length X1 ) ) ]
chain length is approximately 3350, and

Fi 2.1.D ition of the desired MWD .
eure ccomposiiion of e des so a good range of instantaneous
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distributions are those characterized by p; values from 0.0004 to 0.0022.

The first W, matrix had 10 columns, for the instantaneous distributions
characterized by § = 0.0004, B = 0.0006, ... B = 0.0022 (the columns were generated
using (2.3) with © = 0). After the first optimization, the vector f had several elements that
were very small. The associated columns in W, were deleted and the calculation
(Equation (2.7)) repeated. After several trial and error attempts, a good fit was found.
Table 2.1 contains the results of the final attempt.

Table 2.1. Decomposition of example distribution

Set of instantaneous distributions Result of optimization
(specified by B value) ®

B, =0.0006 0.1551

B, =0.0008 0.2421

B, =0.001 0.3084

B, =0.002 0.2984

The operating policy calculated by the optimization indicates that 15.5% of the
polymer should be made while operating at a constant § value of 0.0006, 24.2 % of the
polymer made while operating at a constant B value of 0.0008, and so on. Perfect
implementation of this operating policy would give the distribution shown as a solid line
in Figure 2.1.

Note that the optimization does not specify the order in which the instantaneous
distributions should be produced. With respect to making the desired distribution, the
order does not matter. Other factors, such as ease of implementation, ability to execute

changeovers, batch time or final conversion will dictate which order is appropriate.
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2.3.2 Production of Constituent Distributions (Step 2)

The second step in the methodology involves producing the instantaneous
distributions (or equivalently, operating at the associated 3 values) that were calculated in
the first step. The desired B trajectory will consist of ‘n’ constant sections, such as those
shown in Table 2.1 (with a step change between each section). To implement this desired
trajectory, one option is to estimate the value of B online (during the batch), and
manipulate a variable such as a flowrate or temperature so that the estimated value f8
follows the desired trajectory. Recall the expression for f:

R, __KeRJ _k,[Ri]
R, K,MR] k,[M]

B®) = 2.8)

In order to estimate P online, the following information is needed: values of k; and k,., an
estimate of the monomer concentration ([M]) and estimate of the radical concentration
([Re]). It is expected that approximate (not exact) values of k;, and k,. are known. It is
unlikely that the monomer concentration is measured online, however it is reasonable to
expect an online measurement of the heat released (Q,). Therefore, the monomer
concentration can be estimated using an online mole balance:

dem = F Qr,mmed

dt moacamer — [ (2.9)
Mot = Mot / V

where H, is the heat of propagation per mole of monomer. Furthermore, the measured
value of the heat released can be used to infer radical concentration:
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Qr = RpVHr = kp[M][R’]VHr

Q r,measured

* ] esti = 2.10
Substituting these expressions into (2.8):
kthr.masmed
) t) = 2.11
Bmm:d() (kp[M]cﬁmm)ZVHr ( )

Equation (2.11) provides an online estimate of B during the batch. To control B s 2
standard feedback controller can be implemented. The desired B trajectory calculated
from the decomposition step (consisting of the ‘n’ constant values of B) is the setpoint for
this controller. Depending on the process, a variable such as batch temperature, monomer
flowrate or initiator flowrate can be used as the manipulated variable for the controller.
The control algorithm can be as simple as the classic PID, or more complex as the
application demands.

If there is no model mismatch and no measurement error in Q,, then the estimated
value of B (calculated from (2.11)) will be exactly equal to the true value of B in the
process (2.8). Furthermore, if perfect control is achieved (B.;nueq iS maintained at its
setpoint without deviation), then the measured molecular weight distribution at the end of
the first batch will be the desired distribution. However, this is never the case and
therefore the third step in the methodology is a procedure for modifying the operating
conditions for the next batch based on the measured MWD at the end of the current batch.

2.3.3 Batch-to-Batch Updating (Step 3)

Of course, the trajectory that the true value of B follows will not be exactly equal
to the estimated B trajectory due to process/model mismatch and the effect of
measurement errors. The result is that the MWD at the end of the first batch will not be
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the desired one. Therefore, the methodology must provide some mechanism for
modifying the B, trajectory for the next batch.

One modification that can be easily made from batch-to-batch is to adjust the
individual levels of the ‘n’ values of B in the desired B trajectory. Consider a Taylor series
expansion of the molecular weight distribution about the setpoint trajectory (the ‘n’
constant segments [B, B, ...B,]) from the B® batch in a sequence of batches:

AB,
W) camiveo =W(r)mm8+[ (2;:' ("a)BZ“'-" .| a8, 2.12)

where an expression for the derivative can be derived from (2.3), assuming that only the
level of the setpoint (not the mass fraction of polymer made at each condition) is
adjusted:

Mﬂﬂm._’_=f XM=

3
B, ‘ B, i

£ G

~ D)W, B,) e (2.13)

The derivation of (2.13) may be found in Appendix 2.1 at the end of this Chapter. A
similar expression can be derived for polymers with t>> B .
Rewriting the expressions in (2.12) and (2.13) as vectors and matrices:

wg, =W +DAPB (2.149)
Feedback is introduced into (2.14) by using the measured molecular weight distribution

(from batch ‘B’) for wy. The derivative matrix (D) is evaluated using (2.13) assuming
perfect setpoint tracking. The MWD for batch ‘B+1° is specified as the desired MWD
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(Wg.; = Wp) and (2.14) can be solved for the changes in the setpoint trajectory (AB) so that
the MWD produced in the next batch is the desired distribution.

In (2.14), the MWD for the next batch is specified as the desired MWD. However,
this could result in unacceptably large changes for the next batch, especially if the error in
the MWD is large. Furthermore, model error may result in overcompensation (and
oscillations in AP over many batches). For both these situations, a tuning factor, d,, can

be included to moderate the corrections:

d,(wp —wg)=DAB d, <1 (2.15)

Thus, the third step in the methodology calculates a new setpoint trajectory for the
feedback controller. The modified setpoint is implemented in the next batch, using the
feedback controller described in step 2. Again, because of process/model mismatch and
the simplifying assumptions of (2.14), the calculated change may not be exactly correct.
Therefore, the MWD at the end of the next batch may not be the desired one (although
one would expect it has improved). Steps 2 and 3 are repeated until a MWD sufficiently
closed to the desired one is being produced.

2.3.4 Case Study: Polystyrene
2.3.4.1 Description of the Process Simulation

The full methodology will be demonstrated on a simulated polystyrene semi-batch
reactor. The kinetics are as follows: termination occurs by combination only, and no
chain transfer to solvent or an external agent occurs. A small amount of transfer to
monomer occurs. An unknown but constant disturbance, impurities entering the batch
with the monomer, is present. This leads to chain transfer to impurities as a source of

chain termination. For this system’s kinetics, § dominates the MWD development
(B>>71).
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The simulation equations are the mole balances for each of the species (monomer,
initiator, solvent, and impurities). The quasi-stationary state hypothesis is assumed for the
radical population. Kinetic parameters used for the process simulation are summarized in
Appendix 2.2. The gel effect is simulated with a gel factor (K g cfreee = 8¢k, With g, < 1)
based cn the free volume theory (Marten and Hameliec, 1992). Reaction volume
shrinkage is also included in the simulation. Normally distributed random noise is added
to the heat release measurement.

Calculation of the true molecular weight distribution is as follows. At regular
small intervals (At) in the simulation, the values of the parameters p and t (2.2) and mass
of polymer produced in the interval MW, R, VA?) are calculated. The cumulative MWD
is evaluated at the end of the batch by calculating the instantaneous distributions from the
values of B and t (2.3) and then taking a weighted sum using the mass of polymer
produced in each instant. The MWD is assumed to be measured at 100 equispaced chain
length values.

2.3.4.2 Application of the Methodology

Several case studies have been simulated, however only one representative case
will be discussed here. The decomposition step will be omitted in this example since the
method was previously demonstrated. It is assumed that T = 0 in the decomposition (this
is equivalent to assuming that chain transfer to monomer and impurities are negligible).
The steps followed for decomposing the desired distribution are exactly as described in
the previous section and will not be repeated here. Table 2.2 summarizes the operating
policy for the first batch.

Due to the assumption that t = 0, the initial decomposition will provide incorrect
instantaneous distributions even if B inue = Beue and perfect setpoint tracking is achieved.
A second source of error is introduced with kinetic parameter mismatch. There is a 20%
error in the value of the k, rate constant used for estimating B online (2.11). As well,
changes in the radical termination rate due to the gel effect in the process are not exactly
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known. A crude approximation to the gel effect is included in the parameter k. (used to

calculate B muxeq)- These two forms of parameter mismatch cause B.g;..4 to deviate from

Burue-

Table 2.2. Results of Decomposition for the Polystyrene Example

Set of instantaneous distributions Mass fraction of
(specified by P value) Polymer

B, =0.005 0.4

B,=0.015 0.6

The decomposition provides the setpoint trajectory for the first batch (Table 2.2).
Before proceeding, several operating decisions must be made. First, the order in which
the B’s will be implemented must be specified. Since B is inversely proportional to
monomer concentration, all batches will be operated from low f, to high B, to maximize
conversion. Second, the manipulated variable must be selected. The choice of a
convenient manipulated variable depends on the specific process. For this system, the
batch will be operated isothermally (T = 75 °C) with only the monomer and initiator
flowrates available as manipulated variables. Note that the choice of manipulated variable
is a process specific decision. If it is preferred to operate in pure batch mode, the
temperature could be used as the sole manipulated variable.

The flowrate of monomer was selected as the primary manipulated variable to
control the value of B. However, in order to execute the changeover from f,, = 0.005 to
B, = 0.015, monomer concentration must decrease. Since monomer flowrate has a
physical lower limit of zero, the transition may be too slow. Therefore, the flowrate of
initiator will be used to execute the transition between the two 3 levels. This amounts to
adding a slug of initiator once 40% of the polymer has been made.

The third decision that must be made is the mass of polymer to be produced.
Fundamentally, the final distribution will depend on the fraction of the polymer made at
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each condition. Changeovers (between B levels) are executed based on the mass fraction

of polymer made (which is estimated using the online heat released measurement). For

this example, a total polymer mass of 400 kg is desired (final conversion of around 85%)

therefore the changeover between setpoint levels will be executed after 160 kg are made.

The initial monomer and initiator charges are 5.5 and 0.03 mol/L, respectively. The initial

reaction volume is SO0L.

Parameter Profiles
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Figure 2.2. Selected profiles from the first batch

A geometric nonlinear controller
(Appendix 2.3) is used to control B mseq
using the flowrate of monomer (Soroush
and Kravaris (1992); Clarke-Pringle and
MacGregor (1997)). While a PI
controller has also been used
successfully, the nonlinear controller
provides an eloquent solution for this
system. Its main advantage is its easy
implementation; only one set of tuning
parameters are needed, and these are set
based on the desired closed loop
response. -

The initiator flowrate is adjusted
using a simple banded Proportional-only
controller. If the error (B,-B) exceeds a
certain preset value, the Proportional-
only controller gives a shot of initiator.

In this manner, large negative deviations

are eliminated and the changeovers are executed quickly and efficiently.

Figure 2.2 shows some selected profiles from the first batch. The true value of f is

time varying due to the gel effect, and the noise on Q, ., is visible in the estimated value
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of B. Note that the selected reactor charge does not give the desired value of B initially
(this is another source of error that must be compensated for). Final conversion (not

shown) is around 85%.

O 200 400 600 800 1000 1200 1400 1800 1800 2000

chainlength

ozoomeooooowouimuooimuoozdoo

chainlength

beta setpoints

batch number

Figure 2.3. Results of batch-to-batch updating
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Figure 2.3 shows the MWD from a number of successive batches. The top plot
shows the MWD after the first and second batches, as well as the desired MWD. Clearly,
due to the various errors, the MWD after the first batch is very different from the desired
distribution. Using this MWD, the batch-to-batch optimizer calculates new values for the
two B levels (AB from (2.14)), thus providing a new setpoint trajectory for the second
batch. The MWD from the second batch shows much improvement, however there is still
some error and so another batch correction is calculated. After only five batches, the
MWD being produced is very close to the desired MWD, and the batch-to-batch
corrections are small. Figure 2.3 also shows the batch-to-batch adjustments of the two B,,
segments (shown for 10 batches).

A second interesting case that was simulated will be briefly discussed here.
Perhaps a conversion higher than 85% is desired, however it is difficult (if not
impossible) to achieve while feeding monomer. An alternative policy may be as follows.
Operate as described above (manipulate monomer and initiator feeds so that B_mueq
follows the desired trajectory). However, once the required trajectory is finished, instead
of ending the batch, turn the monomer and initiator feeds off and run the reactor until the
desired conversion is achieved. This action introduces further error in the final MWD.
The batch-to-batch optimizer was implemented, successfully, to correct for this type of
error. The methodology’s success can be attributed to the fact that it is based on a very
approximate model, therefore it is able to compensate for a wide range of observed errors

in the MWD, regardless of their source.

2.4 Methodology for Linear Polymers with Two Dominant Parameters
2.4.1 Decomposition

The methodology for the second class of linear polymers is an extension of that
for the first class. Once again, the desired MWD can be decomposed as a series of
instantaneous distributions. The constituent distributions are now functions of both t and

B:
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W(T) cumutative desiet. = £1 X Wi (1,8 1,7,) + £, x W, (x,B 1T )+, x W (r,B,,.T,) (2.16)

More degrees of freedom are introduced when t is significant and the optimization

becomes more general:

min(WD —Zn:fiwi(ti,Bi))

{8 im]
2.17)
s.t Zfi=l, t,B;>0

The number of constant segments must be pre-specified. The optimization returns the
values of f, t and P that provide the best set of constituent distributions. Different
numbers of segments (n = 2, 3, ...) can be attempted to obtain the best decomposition.

Consider again as a brief example the distribution that was decomposed in the
third section. Table 2.3 summarizes the results when the optimization finds the best T and
B trajectories to achieve the desired distribution:

Table 2.3. Decomposition of MWD for Linear Polymer with Two Parameters

Number of Optimal Converged Converged Value of
Intervals (preset) | fractions value of © value of B Optimization
Criteria
2 0.398 0.0002813 0.0001211 1.0E4
0.602 0.0009675 0.0001

This optimization exhibits many local minima. As a result, starting point and
lower and upper bounds will affect the ‘optimal’ solution. Prior to arriving at the numbers
in Table 2.3, many different starting points were attempted. When more than two
intervals were preset in the optimization, at least one fraction converged to zero.




Therefore, this distribution is best represented by only two constituent distributions.
Figure 2.4 shows the desired distribution (dashed) and that from Table 2.3 (solid):

] A

0 02 04 06 08 1 12 14 16 18 2

chain length x1d
Figure 2.4. Decomposition of desired MWD for
two parameter polymer

2.4.2 Production of Constituent Distributions
When both t and B are significant, there are two control loops to implement. This
is a direct extension of the one parameter method. For example, flowrate of monomer can

be used to control B ..« and the flowrate of chain transfer agent can control Ty eq-

2.4.3 Batch-to-Batch Updating
The third step is batch-to-batch updating. Either the t,, or B, trajectories, or both,
can be updated. If 1, is updated:

w(r)cumulﬁve.nﬂ = w(r)muln've,B +[ atl atz ATZ

[ JS

B WD) comtmve. @ WU it ] A

(2.18)



and solve for At. If B, is updated:

0 W(T) cumutative © W(I) cumutative

W(I) cumatative.8+1 = WT) cumutative B '*'[ B, B,

and solve for APB. If both are updated:

W(I) cumutative B+1 = W(T) comatative s +

0 W(I) cumutative . o w(r)_m.M_‘_‘W
aﬁl tcoastant o !

Bconstant :llﬂv.r
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(2.19)

4B,
AB,
Ar,

At

(2.20)

and solve for [AP At]". Expressions for the derivatives can be easily derived from (2.3)

and are given in Appendix 2.4.

Although any of the three options for updating are possible, simulations have

indicated that updating only one of the B, or 7, trajectories at a time is preferable. Since

the model is only approximate, in most cases it is difficult to extract enough good

information to update both setpoint trajectories simultaneously.

The methodology for a polymer with two dominant parameters is illustrated with

a case study in the next section.
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2.4.4 Case Study: Polystyrene with Significant Chain Transfer to Solvent

The same polystyrene system will be used to demonstrate the two-parameter
methodology. The kinetics of the system are those described earlier, but now significant
chain transfer to solvent is added to the simulation equations. Flowrate of chain transfer
agent is now available as another manipulated variable. The structures of the two true

parameters are:

Re +Rg +Rﬁmp + R
= R

p

Re
B= R, T .21
Assume for this example that the desired distribution can be decomposed into two
constituent distributions:

W) commutative desiced = 0-6% W, (1,8 = 0.001, = 0.001) + 0.4+ W, (r,B = 0.004, 7 = 0.001)
(222)

Therefore, the initial operating policy is: make 60% of the polymer while controlling B at
0.001 and < at 0.001, and make 40% of the polymer with § = 0.004 and © = 0.001. The
total amount of polymer to be made is 500 kg.

The same nonlinear controller is used to control B.yn..s Using the flowrate of
monomer, and initiator is used for the changeovers. The B, trajectory is implemented
from low to high B (again, to maximize conversion).

The flowrate of chain transfer agent is the logical choice for controlling T . ;maeq:

_Re+Rp Ry kea[CTA] (2.23)

’ » k,[M]
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The online heat released measurement is used to estimate monomer concentration. It is
assumed that little will be known about the kinetics of chain transfer to solvent (other
than it exists), and so a constant ratio of R,/R, = 0.0005 is used to calculate T ymycq
online. It is assumed that some information about k¢,/k, and [CTA] is available.

A PI controller (K, = 1000 mol, 1, = 5 min™) is used to control ;.. The
process/model mismatch considered for the case study is as follows: the impurities are
unknown and chain transfer to monomer is assumed negligible; the expression for B.ipues
contains an approximate empirical gel effect: g, ...k, Where g, s = 1 - 2.5¢"%; there is a
30% error in the kinetic parameter k,; the ratio R./R, is set to a constant value (0.0005) in
Tewimated While its true value varies from 0.0004 to 0.0008 over the course of the batch; a
30% error in the value of T.yn.g iS included to simulate error in various kinetic

parameters. That is,

R +R. +R,+R K [CTA
T % I T o= 13 i"[fl— +0.005 (2.24)
R, k,[M]

Other mismatch includes an incorrect initial reactor charge; the selected charge does not
give B = 0.001 or T = 0.001. Normally distributed random measurement noise is added to
the heat released term.

Figure 2.5 shows some selected profiles from the first batch. True and estimated
values of t and B, along with the desired trajectories, are shown. The effect of
process/model mismatch is clearly seen in the difference between the true and estimated
trajectories of the parameters. Both controllers do a good job of tracking the t,, and B,,
trajectories.

Final conversion is just above 60%. Figure 2.6 shows the results of the batch-to-
batch updating if the B,, trajectory is updated. By the third batch, the MWD being
produced is close to the desired and by the fifth batch, it is almost perfect. The B, updates
level off nicely. Figure 2.7 shows the results of updating the t,, trajectory. Again the third
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batch MWD is good, with small improvements up to the fifth batch. Note the MWD
resulting from updating the t,, trajectory is slightly inferior to that resulting from
updating B,. This is not surprising given that there is more error in B ;p..q than in T peq
Therefore, this method can provide some insight into where the process/model mismatch

occurs, and perhaps an improved model can eventually result.
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Figure 2.5. Parameter profiles for the two parameter
polymer, first batch
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Figure 2.6. Results of batch-to-batch updating for two
parameter polymer when beta is updated
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Figure 2.7. Resuits of batch-to-batch updating when tau
is updated

Finally, Figure 2.8 shows an attempt at updating both the f,, and t,, trajectories
simultaneously. After 3 batches, the method has converged to an incorrect distribution.
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Figure 2.8. Results of batch-to-batch updating, when both
tau and beta parameters are updated

This result is typical of the case studies simulated when both the f,, and 1,
trajectories are updated. Given the freedom to update more variables, the optimization in
effect is misled by the model. That is, there is not enough information in the approximate
model to correctly update both trajectories simultaneously, and as a result the

optimization converges to a local minimum.

2.4.5 Simulation of Realistic MWD Measurement Noise

In the case studies presented above, there was no measurement noise on the
MWD. This will never be the case in practice, and therefore the realistic generation of
noise error on the MWD measurements must be addressed.

Noise on a MWD measurement is correlated noise, that is, it has structure. One
cannot simply add independent random error to the molecular weight measurements at
each chain length ‘r’. The noise has a structure that depends on the instrument providing
the measurements.

In order to realistically simulate MWD noise, replicate GPC data were obtained
from Dube and Penlidis (1995). Principal Components Analysis (Wold et al (1987)) was
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used to analyze the replicate MWD data and uncover the underlying noise structure. One
hundred points at equally spaced chain length values were extracted from each of thirty
two replicate distributions. Therefore, the matrix to be analyzed with PCA is 32x100. The
data was mean centered but not scaled. The first five principal components explained
97% of the variation in the data. Table 2.4 summarizes the analysis.

Table 2.4. Summary of PCA analysis of MWD data

Principal Component | Eigenvalue % Variation explained (cumulative)
1 8.1662 E-14 | 51.6
2 48736 E-14 | 825
3 1.5783 E-14 | 924
4 52331 E-15 |95.7
5 2.7489 E-15 | 979

At the end of each simulated batch, noise with the a structure similar to that
observed in the above real data must be added to the simulated MWD. New MWD noise
is generated as follows. Recall that PCA decomposes a given matrix (here, the noise
matrix) into two smaller matrices:

PIT

T
X=TPT+E=[t, t, .. t,]P* |+E (2.25)

T

P.

where a = S for this data. Each row in X will have an associated row in the score matrix
(T). New rows of X (i.e. noise for the MWD of new batches) can be simulated by
generating new scores using a random number generator, and using the structure

established by the principal components (p, vectors). Since the eigenvalues from the PCA
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(M) are the variances of the scores, new noise model scores can be easily generated as

ty new ~ N(0,A,). Then

xuew = tl.ncwplr+t2.ncwp2.r+' - +t$.ncwp5T (2'26)

In this manner, realistic noise can be added to the MWD. If one wishes to increase or
decrease the absolute value of noise being added, the RHS of (2.26) can be multiplied by
an amplification factor.

Figure 2.9 shows sixteen of the
replicate GPC MWD data (Dube and
Penlidis (1995)) and sixteen simulated
replicate MWDs. The simulated MWDs
were obtained by adding sixteen

[
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different noise realizations, each xid® —r ki

calculated with (2.26) as described
above, to a constant MWD. The

Simulated MWD MWD data (Dube)

O = N W »

underlying noise structure appears to
have been modeled well. All the
following case studies in this paper will
have noise added to the simulated MWD

in this manner.
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Figure 2.9. Generation of correlated MWD noise

2.5 Online Batch-to-batch Control of the MWD
2.5.1 Supervisory Statistical Process Control

In the above case studies, the process was considered optimized when the
measured MWD was arbitrarily close to the desired MWD (error close to zero), and the
trajectory updates leveled off. With noise on the MWD measurements, there will always
be error in the MWD, and, without modification, the batch-to-batch optimization
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methodology will react to the noise. This is an undesirable situation given that the noise
is unpredictable from batch to batch. Attempting to correct for it will only introduce more
variability into the MWD. Here, a multivariable statistical process control (MSPC)
system is implemented to decide whether a given error is significant, and if a batch
correction is required.

Kourti and MacGregor (1995) provide an overview of MSPC, with emphasis on
problems with correlated multivariable data. A multivariable control chart based on
Hotelling’s T? statistic is implemented here.

Recall that the MWD is measured at several different chainlengths (for example,
100 for the first polystyrene case study). However, clearly these are not 100 independent
variables. The true variance-covariance matrix will be of much lower dimension (rank
<<100). Because of the correlated data, it is more meaningful to monitor only the
significant linear combinations (scores) of the 100 MWD variables. Significant linear
combinations are established by doing a Principal Components Analysis on mean-
centered ‘representative noise data’ (the selection of representative data is discussed in
more detail in the next sub-section). This analysis provides a reduced dimensional noise
model against which future MWD measurements can be tested. Note that scaling of the
representative data is not required since all MWD variables are assumed to have the same
relative importance.

PCA provides the ‘q’ largest directions of variance in the data (loadings). At the
end of each batch, the new MWD observation is projected onto the plane defined by the
loadings to obtain the score values (t,, t, ...t)) for the batch. The Hotelling T? statistic is
calculated for each batch from the batch scores:

q

tzi
=35 27
iml i

where s? is the estimated variance of t.. The upper control limit for T? is given by:
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T2 . = (n—-1)(n+1)q
UcL =
n(n-q)

F.(q,n-q) (2.28)

where n is the number of observations used to calculate the score variances, q is the
number of variables being monitored and F,(q,n-q) is the upper 100a % point of the F-
distribution with q and n-q degrees of freedom. Selection of the a value is discussed in
the next sub-section.

By monitoring the T? statistic, we are checking whether the batch scores lay
within an elliptical region on the plane defined by the PCA loadings. However, we must
also continue to monitor the other dimensions. This is done by evaluating the squared
prediction error (SPE) of the PCA model relative to a pre-set upper bound. This amounts
to monitoring the squared perpendicular distance between the MWD observation and the
plane defined by the PCA loadings. The SPE is defined as:

k
SPE 8 =Z(Yi,bud:b - S;i.bdd:b )2 (2.29)

=l

where k is the number of variables (k = 100 for MWD example), y; is the observed MWD
variable and y, is the value predicted by the PCA model, for batch ‘b’. An approximate
distribution, and corresponding upper control limit, for the SPE was derived by Jackson
and Mudholker (1979). The upper control limit is given by (2.30), where z, is the normal
variable with the same sign at h, and A; are the eigenvalues of the variance covariance
matrix of the representative noise data. Jackson and Mudholker (1979) provide an

expression for accurately calculating these eigenvalues.
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i=q+l
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20 0 ,
30,2

(2.30)

o =1-

The supervisory SPC is implemented over the batch-to-batch optimizer. The
following steps are executed at the end of each batch:
1/ Measure the MWD at the end of batch ‘b’, subtract the mean (calculated from the

representative noise data) and project the observation vector onto the PCA loadings:

toatchr = PTYIuld:b (2.31)

2/ Calculate the SPE for batch ‘b’:

2
SPE = Z(Yuu b~ 5'5-@5)
= (2.32)

= i(Ywd- b~ Pthtdnb)z

3/ Calculate the Hotelling’s T? for the batch ‘b’ scores:
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, © t2; pach b
T =) — (2:33)

4/ Compare the SPE and T2 for batch ‘b’ to the control limits Q, and T?;, respectively.
If either SPE > Q, or T? > T%,q, the error in the MWD is more than common cause
variation and an adjustment is calculated for batch ‘b+1". If SPE < Q, and T? < T?yq_no
adjustment for the next batch is made.

2.5.2 Implementation of a Combined SPC and Batch-to-batch Optimizer.

In an industrial setting, it is expected that things will change periodically. For
example, after several batches, the feedstock may suddenly be switched to a new feed
tank. This introduces a new disturbance (e.g. impurity concentration) into the process.
The advantage of the combined SPC/optimization is that the optimizer does not need to
be turned off. While the desired product is being produced, the observed MWD will not
be different from common cause variation. If a new disturbance occurs that causes an
error in the MWD, the SPC scheme will indicate that a significant error has occurred and
that a batch correction is in order. In this section, the combined SPC/optimizer will be
demonstrated on the f-dominant polymer shown earlier.

To implement the combined scheme, the PCA model and the control limits for T2
and SPE must be obtained from historical data which represent common cause variation.
For the example in this section, the representative data is generated by simulating 50
batches in which the B, trajectory is constant (i.e. not updated between batches). Noise
on the Q, measurements is added during the batch, and correlated measurement noise is
added to the MWD after the batch. Therefore, the variation in the data from these 50
batches represents variation due to MWD measurement error and common cause process
variation. In practice, the SPC charts would have to be based at first on whatever data
were available that were representative of ‘good’ operation in the past, and then updated

once sufficient data were collected under the new control scheme.
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A PCA of the representative data set described above (50 simulated batches) show
two significant directions. Therefore, only two scores are monitored. A decision must
also be made for the significance level (a) used for the control limits on the T? and SPE
charts. A larger significance level (a = 0.05 vs. 0.01) implies that one is taking a larger
chance in deciding to make a correction when none is needed. At the same time, one is
reducing the probability of not calling for a correction when one is needed. The choice
obviously depends upon the current circumstances. If one is in an optimization phase, one
may prefer to accept a few unnecessary corrections in order to ensure that one gets close
to the optimum. However, once the process is optimized, and one is in monitoring mode,
it is preferable not to make unnecessary corrections. These ideas are summarized below
in the steps for implementing the combined SPC/optimization scheme:

1/ Start with a = 0.05 (optimization mode);

2/ If either of the control charts exceed the upper control limit, update the B,

trajectory for the next batch;

3/ If three sequential batches call for no correction, indicating the process is close

to its optimum, adjust the a value to 0.01 (monitoring mode);

4/ If a batch with a significant error occurs, recommence the optimization phase

and reset the o value to 0.05. Repeat steps 2-4.

SPE

§ 10 15 20 25 230 35 40 45 S0
batch number

Figure 2.10. Combined SPC/optimization scheme
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The previous case study for polystyrene with 8 >> t is used here to illustrate the
combined SPC/optimization strategy. Measurement noise is now added to the MWD.
Fifty successive batches are simulated, and after batch 24, the feedstock is changed to a
new monomer feed tank with a different level of impurities, thus introducing a new
disturbance into the system. Figure 2.10 shows the SPE, T? and their limits for the 50

bt | [ A batches. The first batch shows
significant error due to the initial

B2

g oorf ] process/model mismatch. Within nine
[=]
g batches, both the SPE and T? indicate
£

only common cause variation, and after

B, ‘
\/“'—\v_— twelve batches, the control limits

increase (a goes from 0.05 to 0.01). No

[} L] 10 15 20 25 30 I 40 45 S0

batch number batch-to-batch adjustments are made
Figure 2.11. Setpoint adjustments using SPC/optimizer  from batches 12 to 24. At batch 25,

the feedstock is changed. This new disturbance is clearly seen in the two plots. By batch
32, the process is once again optimized and the control limits increase after batch 38.
Figure 2.11 show the batch-to-batch B, trajectory updates.

2.6 Discussion of Results

In this chapter, a new batch-to-batch optimization methodology for producing a
desired MWD has been presented. The advantages of the proposed batch-to-batch
optimization methodology are its simplicity and flexibility. Fundamental polymerization
knowledge is used to simplify the optimization problem, thereby avoiding the need for a
complex on-line numerical optimization routine and issues relating to its convergence.
The approach shows that for linear polymers, any desired MWD can be approximated by
a combination of a few constituent distributions. Each of these component distributions
can be produced by controlling one (or possibly two) parameters (t,) representing the
ratios of kinetic rates. The method allows for great flexibility in choosing the variables to
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manipulate (batch temperature, monomer or initiator flowrates) since any combination of
them can be used to achieve a desired value of T or B. These decisions can therefore be
made with the specific process and its constraints in mind. Furthermore, this method has
many desirable features when compared to other batch-to-batch optimization or MWD
control applications: only an approximate fundamental model is required; historical plant
test data is not needed and on-line (within batch) measurements of the full MWD are not
required.

For the case studies presented, only two constant segments are discussed, however
up to four has been simulated successfully. Extension to more is not expected to be a
problem.

With respect to process/model mismatch, the robustness of the adjustments to
model mismatch decreases with increasing level changes in the t and/or § setpoint
trajectory. That is, to make a bimodal distribution (e.g. two very different 8 levels), a
better model is needed to converge to the desired MWD. Transitions must be very sharp
and clear (for example, one may want to manipulate two variables, such as temperature
and flowrate of initiator, to achieve a sharp transition).

When decomposing the desired MWD, it was assumed that all parts of the
distribution are equally important. Perhaps for a given process, it is critical to match the
long tail, and less important to match the short chains. To account for this in the
methodology, one can weight the various chainlengths accordingly. The optimization
would have the general form:

min (S (W, - W,1))
2.349)

s.t. Zf, =1

where S is a diagonal weighting matrix. More important sections of the MWD would
have a higher weight. This is extended to the updating by:
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Se = SDAB (2.35)

Therefore if it was important to have a significant tail and the small chains were less
critical, one could weight the distribution accordingly in order to focus the batch-to-batch

corrections.

2.7 Concluding Remarks

In this chapter, a new approach to controlling the MWD of linear polymers in
batch and semi-batch reactors is presented. The approach combines a new method for
batch-to-batch optimization with a multivariable statistical process control (MSPC)
scheme. The methodology is shown, through case studies, to efficiently return the process
to the desired MWD within a few batches for a wide range of process/model mismatch.

By combining the batch-to-batch optimization with a multivariate SPC
monitoring scheme, the optimizer can always be ready, but used only when a significant
deviation from the desired MWD is detected. The SPC scheme is developed specifically
to handle realistic, highly correlated measurement errors typically observed in MWD
measurements, and avoids unnecessary batch-to-batch corrections in response to process
noise and measurement errors. The combined SPC/optimization methodology is
demonstrated on a system with realistic MWD measurement errors. The SPC scheme is
shown to easily detect both when a re-optimization is needed and when the optimization

can be terminated.

2.8 Nomenclature

D: derivative matrix

E: PCA modeling error matrix
F L ooomee = flowrate of monomer, moles/min

f = mass fraction of polymer
g, = gel effect factor



H, = heat of propagation (cal/mole)

[I] = initiator concentration (mole/L)

k, = propagation rate constant (L/min mol)

k, = initiator decomposition rate constant (min™")

k.. = radical termination by combination rate constant (L/mol min)
k,, = radical termination by disproportionation rate constant (L/mol min)
Kgmp = chain transfer to impurities rate constant (L/mol min)
[M] = monomer concentration (mole/L)

M = total moles of monomer (moles)

MW, . = molecular weight of the monomer (g/mol)

P = principal component matrix

p; = principal component

Q, = total heat released (cal/min)

r = chain length

[Re] = radical concentration (moles/L)

R = universal gas constant (= 1.987 cal/mol K)

R, = rate of propagation (mol/L. min)

R,, = rate of chain transfer to monomer (mol/L min)

R,, = rate of chain transfer to solvent (mol/L. min)

R,, = rate of termination by disproportionation (mol/L. min)
R,. = rate of termination by combination (mol/L min)

Rg,,p, = rate of chain transfer to impurity (mol/L min)

R, = rate of chain transfer to a small molecule (mol/L min)
SPE = squared prediction error

s;2 = estimated variance of variable ‘i’

T = temperature ( °C)

T = score matrix

T? = Hotelling’s T? statistic
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t = time (min)

t, = score vector

t, = value of score i

V = reaction volume (L)

X = MWD data matrix

W(r) = mass fraction of polymer of length r

wp = vector of molecular weight distribution values from batch B
wp, = vector of desired molecular weight distribution values
W, = matrix of instantaneous distributions

f: dimensionless kinetic parameter

1: dimensionless kinetic parameter

a: significance level

40
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Appendix 2.1. Derivation of Derivative Term

If B >> T, the instantaneous distribution for any given value of j; is:

W, ()= ﬁ; (r—l)r(l:BJ (A.1)

The cumulative distribution is a sum of ‘n’ instantaneous distributions:

W(T) cmatative = f1 X Wi (1,8 ) + £, x W, (r,B)+..+f, x W, (r,B,) (A.2)
Therefore,
OW() i _ o OW(EB )
oB; S 8B,
r+l
l 6(1 +1B ) 1 r+l
=£2G@-Dr B 55 +(1+Bi) (B Y (A3)

1 1 r+2 1 r+l )
=fi5(r—l)l{—|3i3(r+l)(17ﬂ—i-) +(1+BJ (3B, )J

Rearranging, with (r+1) ~ (r-1) and (r+2) ~ (r+1) when r is large,
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1 ; 1 r+2 1 r+l ,
=fi'2-(r—1)l{—[3i (r+l)(l-+-ﬁ-] +(1+Bi) 3B, )J

i
3

B, L Y™). (3, L )"(Es
-see-o{- A ern{igi)” Je o e n{i) (3]

3
= £t~ D(-W,(r,p ) + fi[;)wi(r,ﬁ )

(A.4)

= fi(g—.—(r— 1))Wi(r,[3 i)

A similar expression results when t >> .



Appendix 2.2. Summary of Simulation Parameters, Polystyrene
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Parameter Value
K s0c 8700 L/mol min (1)
E, 6.4 kcal/mol (1)
initiator efficiency 0.5@)
| kagsooc 8.5x 10° min™ (1)
E, 29.5 kcal/mol (1)
K60 +c 6 x 10° L/mol min (3)
ky 0
E, 1 kcal/mol (3)
Komp 10k Jeo
ke, 1 L/mol/min (2)
Eq. 6.36 kcal/mol (2)
H, 17 kcal/mol (1)

1. Hameleic, A.E. and Friis, N., Introduction to Chain Polymerization Kinetics, Short
Course Notes, Department of Chemical Engineering, McMaster University, 1975.

2. Marten, F.L.; Hameliec, A.E; High-Conversion Diffusion-Controlled Polymerization
of Styrene I, J. of App. Poly. Sci, 1982, 27, 489.

3. Zhy, S., Chemical Engineering Course notes, CHEE 6B3, 1993




Appendix 2.3. Derivation of Nonlinear Controller

This system is relative order one, meaning that the first derivative, dP snu.s/dt =
f(F 1oaomer)- Therefore, an appropriate expression for the closed loop behavior of the system
is given by:

de

it +d,e+d, Iedt =0

(C.D)

where e =B _, — B Limaed

To derive the controller equation for the flowrate of monomer, an expression for de/dt

must be obtained:

de dB . —B cimued) dB cgimated
dt dt T (€-2)

Recall the expression for Bginaed:

gtmoddku:Qr,mas

Pesiones =1 TR VH,

(C.3)

So, assuming isothermal operation,
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gtm Qr,mels
B ke TPV

dt  k,’H, dt

(C4)

After a long but straightforward derivation, using the expressions in (C.5), one can write

the derivative (C.4) as a function of the flowrate of monomer.

dV F MW r,meas 1
dt p monomer Hr p polymer P monomer
4Qu e _ Qi = Qi

dt At

dg, neda gtmodel|t+l - gummllt

da At (C.5)

Plugging the full expression for the derivative into (C.1) and rearranging for Fpoomer

gives:
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F =

monomer

1 [—(V[M]Z)’[ k,’H,

(die+d, fedt
(2[1\“4]—[101]’ —hiw"m'm“) i

BemoderKec

_( k(c )( Qr,mw )(dgtmodd) _ 1 er,meu +2[M]Qr,m
k,2H, )\ (V[IMT*) dt VIM]? dt H,

+[M]’(—Q§“Mwmmm,(pl —— D]

(C.6)

Although the expression is cumbersome, no information beyond that required to
estimate B online is used. The parameters d, and d, are the tuning parameters and are set
according to the desired closed loop response. They are constant during the batch and so
tuning the controller is very simple. An equivalent PI may require different sets of tuning
parameters to achieve the same level of control for the entire batch.

It is assumed that the heat released is measured every minute, therefore the
controller executes once a minute (At = 1min). The values of d, and d, used in the

simulations are 0.02 and 0.0001 respectively.
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Appendix 2.4. Expressions for the Derivatives

OW,(r,B;,7 )| _ WirB;,1))
o1 GRS

—(+D)W,(r,B;,T,)

! |B|eouslant

Bi l r+l
e@reo1s e “Mm*)
(D.1)
a“’i(r’Bi’ti)I wi(raBi’ti)

oB; =W—(ti+1)(r+1)wi(raBi’Ti)

t, constant

| 1 r+l
+r(t; + ﬁi)(%’*B i)(r - D(WJ
D.2)



3. Polymer Product Quality Control in Reduced Dimensional Spaces

3.1 Introduction

Control of the full MWD was addressed in the previous chapter and has been the
subject of several publications. The approaches can be categorized into two groups:
explicit and implicit control of the MWD. As is evident by the names, the former
classification implies that the full distribution is controlled directly, and typically
involves measuring or estimating the full MWD. Implicit control of the MWD involves
controlling the full distribution indirectly, by acting on one or more averages and/or the
polydispersity.

Control of the full MWD (or equivalently, the entire quality variable space) is not
a trivial problem, although some solutions have been proposed, as discussed in the last
chapter. Many proposed solutions require a detailed mechanistic model, and treat the
simplest problem of linear polymers. Furthermore, while it would be desirable to control
the full MWD, it is not desirable to measure it online. Measurements such as the average
or breath of the distribution are much easier to obtain. Implicit control of the MWD
therefore is the most common approach in industry, and has been the subject of many
publications (Hicks et al (1969); Choi and Butala (1991); Ellis et al (1994); Houston and
Schork (1987)) . The effect of the many choices that must be made for implicit control of
the MWD is the subject of this chapter.

While control of a distribution average is a common approach for controlling the
MWD, good control of the average does not necessarily result in good control of the full
distribution. In fact, it can sometimes result in a less desirable distribution. It is shown in
this chapter that as a controller eliminates a disturbance in the controlled variables (for
example, the weight average chain length), it transfers and can possibly inflate the
disturbance in the remaining quality variables (e.g. the full MWD). Therefore, while it
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may appear that good control is being achieved (the controlled average is maintained
close to its target), the polymer quality has in fact degraded as a result of control. A
simple analysis tool, called the Disturbance Inflation Factor (DIF), is introduced to
quantify this effect. The DIF is used to predict which manipulated variable results in the
best control of the full MWD while acting only on a single measured quality variable
such as the weight-average chain length. It is further applied to show how control of the
full distribution may be improved by considering other controlled variables, such as the
number-average chain length, or other manipulated variables, such as a ratio of variables.
The layout of the chapter is as follows. First, batch-to-batch control of the weight-
average chain length will be considered as an illustrative example. The Disturbance
Inflation Factor is then derived for a single disturbance, and applied to explain the results
of the example. Interpretation of the DIF and its application to the selection of effective
manipulated and controlled variables is illustrated. The results are fully generalized to
multiple disturbances and controlled variables, and the impact of scaling on the analysis

is discussed.

3.2 Batch-to-Batch Control of the Weight-Average Chain Length

Consider batch-to-batch control of the molecular weight distribution of a polymer
produced in a batch/semi-batch reactor and subject to a batch-to-batch disturbance.
Measuring and controlling the full MWD is not a trivial problem and so the weight
average chain length (p,,), is used as the controlled variable instead. The weight-average
chain length is controlled by adjusting the initial reactor conditions (e.g. monomer or
initiator charge) or the isothermal temperature at which the batch operates. This reduces a
complicated multivariable problem to a simple single-input single-output (SISO)
problem.

The example system is polystyrene produced in a simulated solution semi-batch
reactor. The simulation equations are the mole balances for each of the species

(monomer, initiator, solvent, and impurities). The quasi-stationary state hypothesis is
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assumed for the radical population. The gel effect is simulated with a gel factor based on
the free volume theory. Reaction volume shrinkage is also included in the simulation.
Calculation of the full MWD is based on the instantaneous method, for linear polymers
(Hameliec and Tobita (1992)). Information regarding the simulation equations and
parameters was given in the previous chapter.

The reactor is operated as follows: monomer, initiator and solvent are initially
charged (nominal values are 5.5 mol/L, 0.01 mol/L and 3.459 mol/L respectively). The
batch is operated isothermally (nominal value 60 °C) and monomer is fed to the reactor
using a pre-specified flowrate profile. The same monomer flowrate profile is
implemented for every batch (note that the flowrate profile was determined via the
optimization method given in the last chapter). At the end of the batch, a polymer sample
is removed and weight average chain length determined. In the absence of batch-to-batch
disturbances (variations), the same polymer would be produced in every batch. However,
this is rarely the case. In this example, batch-to-batch variations are observed due to
changes in the impurities. Impurities enter the system with the monomer charge and the
monomer feed (simulated as: molsimpurities = f x mols monomer ); the impurities
fraction (f) changes from batch-to-batch in a random walk. Figure 3.1 (top plot, dashed
line) shows the variation in the weight-average chain length due to impurities for 50
simulated batches when no control action is taken (variation is also observed in the full
MWD however only the average is shown).

In order to reduce the variability in the MWD, batch-to-batch control of the
weight average is considered. At the end of each batch, the weight average is measured.
Adjustments for the next batch are made on the basis of this measurement. There are
three potential manipulated variables: the initial monomer charge, the initial initiator
charge and the constant temperature at which the batch operates. Alternatively, charge of
chain transfer agent could also be considered as another manipulated variable, however
we limit the illustration to the former three options.

SISO batch-to-batch control is straightforward. There are no ‘dynamics’ to



51

consider (the initial conditions and batch temperature affect the weight average of the
current batch only, not of future batches). To calculate the controller parameters, the gain
between the weight average and each manipulated variable is required. These can be
identified from a model, or from an identification experiment on the plant. For this
example, simple identification experiments were simulated (the manipulated variables
were perturbed independently) and the process gains estimated. These identification
experiments also confirmed that the relationships between the manipulated variables and
the weight-average are approximately linear, therefore linear controllers should suffice.
Table 3.1 summarizes a series of batches with step changes in the inputs to identify the 3

input-output models:

Table 3.1. Summary of Process Gain Identification Batches

Ml Mo Toacn weight average chain | process gain
(mol/L) | (mol/L) [ (oC) length

5.5 0.01 60 1790 (base case) -

6.5 0.01 60 2094 305

4.5 0.01 60 1540 249

5.5 0.014 60 1610 - 45000

5.5 0.006 60 1992 - 50500

5.5 0.01 65 1461 - 65

5.5 0.01 55 2224 -87

The resulting batch-to-batch controllers are:
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1
M5 tateh ik +1= Mo batenx + ﬁ(pwdmmd —Puwx)

1

(i, batch k+1— mo batch,k m(pwd&md - pw,k) 3E.1)

1

Tbamh,k«’-l = Tww.k - 75-(pw,ddred - pw,k)

where the controller parameters (e.g. 1/275) are the inverse of the process gain. Note that

the algorithms in (3.1) are pure integral controllers and are optimal (in a minimum

variance sense) for a random walk disturbance.

b A A A

-

wgt avg chain length
Eidsddg

A S
1
\ Vi
1680 - — — — no control / \\f v
1 5 10 15 20 25 30 35 40 45 0
batch number

Figure 3.1. Control of the weight-average chain length

Figure 3.1 shows the batch-to-
batch control of the weight-average
chain length by adjusting initial
monomer concentration. The setpoint for
the weight-average chain length is 1755
(this is the weight-average for the
desired MWD) and is also shown on the
plots. The weight-average chain length
plots for the other two control schemes
(using initiator and temperature) are not
shown but give essentially identical
results.

Therefore, all three manipulated variables are capable of good control of the

weight-average chain length; each achieves the theoretical lower bound of minimum

variance. In terms of controlling the weight average chain length, all three are equivalent.
However, the three manipulated variables are not equivalent if the full MWD is
considered. Assume that the MWD from the simulated batches was also measured, at 100
different chain lengths, and the desired distribution (whose weight-average is 1755) is

known.
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The root mean squared error in the molecular weight distribution from the batches

can then be plotted:

172
MWD error = (Z (WD) g “W(@) mm)z) (3.2)

One may prefer to use a weighted error, or a relative error (Crowley and Choi
(1997)), to emphasize critical parts of the MWD, and this can be incorporated using
scaling (this will be discussed in a later section). Figure 3.2 shows the error in the MWD

plotted against batch number, when the

weight-average molecular weight is

being controlled, using each of the
manipulated variables. While all three
manipulated variables control the

average well, in this case only the

Error in the MWD

initiator reduces the variability in the full
distribution. Manipulating monomer and

temperature actually inflates the effect of
batch number the disturbance on the MWD and leads
Figure ﬁwifg‘;;&f;gﬁfmmﬂe controlling to increased variability. Clearly, it would
be very desirable to predict this result a
priori so that the appropriate manipulated variable is used and poor quality polymer is not
produced.
In order to understand what is happening, consider first a generic system with two

output variables y, and y,. These can be viewed as in Figure 3.3, with the origin as the
desired values of these variables. Also shown in Figure 3.3 are the gain vectors associated
with two manipulated variables (u, and u,) and the direction of a disturbance (d) (in this
example the ‘gain vector’ of u, = [1 2]7, implying that a unit change in u, causes a change
of 1 in y, and a change of 2 in y,. Each manipulated variable will have its own
characteristic gain vector).
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If a control loop with integral action is implemented between y, and u,, the
controller will adjust the process until y, = 0. The manipulated variable u; can move the
process only in the direction of its gain vector, assuming a linear system. The dashed line
shows the path that this controller will take in controlling y, in response to the
disturbance. The result of this action is to reduce the error in y, to zero but leave an error
d. in y,.

Since ||d, [|<|d|| there is an overall effect of reducing the magnitude of the error in
the (y,,y,) space. If, however, a control loop is set up between y, and u,, the controller
still reduces the error in y, to zero but actually inflates the effect of the disturbance (d,;) in
the space of y,. Both appear to be functioning well if only y, is considered.

Y2

fom o ——

wl|/ ~ - —»m

v

Figure 3.3. Illustrative Example

To illustrate that this is what has happened in the polystyrene system, a Principal
Components Analysis on the MWD data can be performed (Wold et al (1987)). Fifty
batches, with a random walk disturbance in the impurities and some independent random
perturbations on [M],, [I], and T,,, are simulated and the MWD measured at 100
different chain lengths for each batch. A PCA analysis of the MWD data (centered about
the desired distribution) indicates that 93% of the variation falls in the first two
dimensions. Therefore, one can gain an approximate understanding of the process by

looking only at this 2-D plane.
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Figure 3.4 shows the two dimensional plane, with the axes being the first two
principal components of the MWD data. Since the data was centered by subtracting the
desired MWD from each measured MWD, the origin represents the desired location and
the distance from the origin is the magnitude of the error. The manipulated variable gain
vectors and the disturbance direction are also shown on the figure (these are actually
projections of these vectors onto the plane of the process). In this example, the controlled
variable is the weight average molecular weight, which must be represented
geometrically:

W(r,)

pw=ZrW<r)=[rl r, - wgrz) 33)

=r'y

The weight-average chain length is a linear combination of the MWD variables. Note that
since the data is centered about the desired MWD, the dot product is actually equal to the
error in the average (rpeY = Pw-Pwsetpoin)- From the geometric interpretation of the dot
product, the error in the weight average chain length is the projection of the observed
MWD vector (y) onto the defining vector r,. Since the process varies primarily in the

{p1,P:} plane, the projection of r, into

{p1,p2} is shown in Figure 3.4. This
vector defines the axis for the chain
weight (just as [1 0] defined the axis for

the variable y, in the earlier example).

o1 An axis perpendicular to r, is also
M included in Figure 3.4. If the process is

at any point along this perpendicular

Pyy axis, p, is at its setpoint (r,sy = 0).

Figure 3.4. The plane of the process
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However, the desired MWD is produced only if the process is at the origin.

As in the earlier y,-y, example, each p, controller moves the process to the p,,
setpoint, in a direction parallel to the gain vector of its manipulated variable, with the
movements of the controllers shown as dashed lines. The error in the MWD after
controlling the weight-average chain length is given by the length of the residual
disturbance vector along the axis perpendicular to r,. From the figure, in this study it is
clear that using the initiator as the manipulated variable reduces the effect of the
disturbance while using the temperature and monomer inflate the effect, with temperature
being the worst. This is exactly what was observed in the simulation study, and what
would be desirable to predict.

Of course, not all processes can be approximated by a plane that can be analyzed
visually. A generalization of the ideas presented above is discussed in the next section.

3.3 The Disturbance Inflation Factor for a Single Disturbance
3.3.1 The Disturbance Inflation Factor

In this section, the Disturbance Inflation Factor (DIF) will be formally introduced
for a single disturbance and single controlled variable. Extensions to higher dimensions
are considered later. Using disturbance direction, manipulated variable gain vector
directions and knowledge of the controlled variable, the DIF can be calculated. The DIF
predicts the impact of controlling one variable on the full quality space (e.g. the effect of
controlling the weight-average on the full MWD). To calculate the DIF, the effects of the
manipulated variables and disturbance on the full MWD (i.e. the entire quality space)
must be known. This implies that extra measurements may be temporarily required in
order to analyze the process. However, a detailed mechanistic model is not required; all
the information can be obtained from plant data.
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Consider a process with ‘n’ important
v3 quality variables. Figure 3.5 shows
visually the case where n = 3. A PCA of
disturbance data provides the

disturbance direction; in this case, it is a

single direction represented by a vector

(d). The normalized gain vector, m, of

an arbitrary manipulated variable is also

Figure 3.5. Visual interpretation of the DIF shown. To visually simplify the

situation, assume that the variable y, is

the controlled variable, represented by the axis vector ¢ = [0 0 1]7. All variables are
assumed to be centered about their desired values.

In the analysis, the orthogonal complement (OC) space (Golub and Van Loan
(1989)) is very useful. The OC space of a vector (or set of vectors) is the set of all vectors
which are perpendicular to the original set. The orthogonal complement space of ¢, given
above, contains all vectors that are in the plane of {[1 0 0]", [0 1 0]"}. The OC space is
important because any controller (with integral action) acting on ¢ will move the process
to the orthogonal complement space of c. This is a direct extension of the 2-D situation
discussed earlier without introducing vector spaces. The orthogonal complement space
and other key algebraic concepts are reviewed in Appendix 3.1 at the end of this Chapter.

When a disturbance d perturbs the process, the manipulated variable will move its
effect into the orthogonal complement space along the direction of the gain vector (m).
The control action results in y; = ¥3 spoie With an error vector e in the OC space (Figure
3.5). The error vector will be the vector sum of the disturbance and the manipulated

variable move:

e = —[lmf|m +[dld G4
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In order to calculate e, one needs the magnitude of the change in the manipulated

variable, |jm||. The error in the y, due to the disturbance is:

error in y, =[dlicos(B 4) (3-5)

where B, is the angle between the disturbance vector and controlled variable axis. In order

to eliminate the error, the manipulated variable move must be:

Imllcos(P y )=ld]l cos(B 4) (3.6)

where B is the angle between the manipulated variable gain vector and the controlled

variable axis. Solving for ||m|| and substituting into (3.4):

Idllcos(B 4)

e=—m)—m +“d"d
- cos(B )
The Disturbance Inflation Factor is defined as:
cos(B4)
IF = ||/ |ldl| = |— ——— )
DIF = el /] cos(am)“”“‘ 3.8)

The DIF is positive and indicates to what extent a manipulated variable inflates or
deflates the effect of the disturbance in the uncontrolled quality space. A value greater
than one indicates the effect of the disturbance on the quality space is inflated, a value
less than one indicates the effect has been deflated and a value of one means the
manipulated variable simply transfers the disturbance from the controlled variable to the
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uncontrolled quality space. Each manipulated variable will have a characteristic DIF, for
a given controlled variable and disturbance.

Returning to the MWD example, the DIF can be calculated for each manipulated
variable, given only their gain vector directions and the disturbance direction. The

controlled vector ¢ (= r,) (normalized to unit length) is:

¢ =[100 200 300--- 10000]" /|ic] (3.9)

Since there are 100 quality variables, each of the gain vectors and disturbance direction
vectors have a dimension of 100 x 1. Table 3.2 summarizes the Disturbance Inflation
Factors.

The DIF correctly shows that, all other things being equal, the [I], is the best
manipulated variable to control the weight average chain length, if the entire MWD was
important. Note that this is not a general result for polymerization, but only for the
particular polystyrene process and operating policy of this example.

Table 3.2. DIF for MWD example

Manipulated Variable DIF
Initial Initiator Concentration 0.68
Initial Monomer Concentration 1.10
Batch Temperature 1.50

Note that in order to calculate the DIF, all quality variables (e.g. the full MWD)
will need to be measured for a period of time in order to capture the disturbance and
manipulated variable effects in the full quality space. However, once the controller (for
example p,-[I],) has been implemented, the uncontrolled quality variables (e.g. full
MWD) do not need to be measured.

There are two situations that merit attention. First, consider the case where m=d (d
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is ‘in the span of m). In this very special case, DIF = 0. Therefore, it is possible to
completely eliminate the disturbance in all the quality variables (e.g. the full MWD) by
only controlling one (e.g. weight-average chain length). Second, consider the case where
B4 = 90e, that is, the disturbance is perpendicular to the controlled variable vector. The
error vector will be equal to the original disturbance and DIF = 1. This would be an
unfortunate choice of controlled variable to reject this disturbance, since the disturbance
does not affect the controlled variable (it is unobservable in the controlled variable).
These interpretations lead to the key point that an improvement in the full MWD can be
obtained by selecting ‘better’ manipulated and controlled variables, without necessarily

resorting to a more complex controller. This is discussed in the next two sections.

3.3.2 Choice of Manipulated Variable

As indicated above, the DIF provides some insight into selecting a manipulated
variable. The perfect manipulated variable is one that is aligned exactly with the
disturbance. Therefore, for a given controlled variable, the closer a manipulated variable
gain vector is to the disturbance direction, the better it may be expected to perform. To
this end, ratio control is proposed to create ‘new’ manipulated variables from
combinations of existing ones. That is, two or more manipulated variables are adjusted in
a fixed ratio to directly control the weight-average chain length (and indirectly, the full
MWD). The ratio is chosen so that the gain vector of the ‘new’ manipulated variable is
closely aligned to the disturbance. The ideas are illustrated for the polystyrene reactor
presented earlier.

With three adjustable variables ([M],, [I], and T,..), there exists four possible
ratio controllers: [M]y~[I]e» [Mlo-T, [M]o-Tsuer and all three together. The appropriate ratio
for each is calculated by regressing the disturbance direction vector (P,) onto the

manipulated variable gain vectors (M) to obtain a new manipulated variable:

a=M"M)"'MTP, (3.10)
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This regression provides the linear combination of the manipulated variable vectors that
are closest, in the least squares sense, to the disturbance vector. The associated
manipulated variable direction that is most aligned with the disturbance direction is given
by M* = Ma. Table 3.3 summarizes the predicted DIF for the four possible ratio
controllers.

The DIF indicates that if the two manipulated variables, [M], and T,,,,, are used
in the appropriate ratio to control the weight average chain length, the full MWD should
be significantly improved (using all three variables is possible too, although this results in

a more complicated ratio controller, and provides marginal improvement over [M],-T).

Table 3.3. DIF for possible ratio controllers

Manipulated Variable DIF
[M], and [T}, 0.60
[M], and T, 0.26
{I]o and T\ 0.63
Mo, [(T]o and Ty 0.22

For the polystyrene reactor, a = [1;-0.41] when M = [M o, Myl Therefore, for
each temperature increase of one degree, the initial monomer concentration should be
decreased by 0.41 mol/L. Note that to calculate this ratio, the effect of the manipulated
variables and disturbance on the full MWD is needed. However, once the ratio is
calculated, only the weight-average will be measured and controlled. As before, a
deadbeat controller is implemented:
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Toactxet = Toasenc +§(Pwm —Puwx) (3.10)
[M]o batch,k+1 [M]o batch k 0'41(Tbatdx,k+l - Tbud;_k)

In (3.10), the number 32 is the new gain identified between T,,,., and p,,, when the
monomer charge is ratioed to changes in T,,,,. Figure 3.6 shows the error in the MWD
resulting from control of the weight average using the [M],-T,,.., ratio controller. Also
shown for reference is the no control error, and the error from the [T],-p,, batches. Clearly,
ratio control has provided an effective option for improving control over the full MWD,
while retaining the simplicity of a SISO controller.

x 10

Error in the MWD

batch number

Figure 3.6. Ratio control results

3.3.3 Choice of Controlled Variable

A less obvious choice for improving control over the MWD is to select a new
controlled variable. For example, controlling the number-average chain length (instead of
the weight-average) may improve control over the full MWD. This would be particularly
appealing if the number-average measurement is more readily accessible (e.g. through
osmometry). In this section, the DIF is applied first to establish the ’ideal’ control
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variable, and then to provide a guide for the selection of alternative measurable controlled
variables.

Before identifying the ideal control variable, a small note regarding achievable
performance is in order. When dealing with systems of high dimension, there is a lower
bound of achievable performance. A given manipulated variable can eliminate, at best,
the portion of the disturbance that is co-linear with its gain vector. A manipulated
variable whose gain vector is perfectly aligned with a disturbance can completely
eliminate it; a MV whose vector is perpendicular to a disturbance cannot eliminate any of
it. Most manipulated variables fall somewhere in between.

Assume that we are free to select any controlled variable (defined by its associated
axis, ¢, as before) and so select ¢ = m. That is, the controlled variable axis is chosen to be

aligned with the manipulated variable gain vector. Therefore, B, = 0 and (8) becomes:

e=(—cos(B o ldIm +|id]d) (3.11)

Since ¢ = m, B, is also the angle between the manipulated variable and the
disturbance. The coefficient for m in (3.11) is the magnitude of the projection of d onto
m. Therefore, if the controlled variable axis is chosen as above, the manipulated variable
eliminates exactly the portion of the disturbance that is co-linear with its gain vector. That
is, the manipulated variable is achieving its lower bound of performance, for the given
disturbance. It can be concluded that for a given manipulated variable, the ‘ideal’
controlled variable is one whose axis aligns with the manipulated variable gain vector.

In theory, this is very appealing. One can define a new linear combination of the
quality variables, and control this new ‘latent’ variable. The lower bound of achievable
performance (for a given manipulated variable) is attained by simple SISO control of the
latent variable and no advanced control theory or expertise is needed. In practice, latent
variable control may be less appealing because it would require measuring the entire
quality space (i.e. the full MWD). From a MWD measurement, the latent variable is



calculated easily:
t=m" (MWD -MWD___,) (3.12)

where m is the manipulated variable unit gain vector.

If no other feasible alternatives exist, latent variable control is an easily implemented
option (aside from requiring the entire quality space be measured). Table 3.4 summarizes
the DIFs for each manipulated variable for the polystyrene process considered earlier,

assuming that the ideal latent variable is used in each case (¢ = m).

Table 3.4. DIFs for latent variable control

Manipulated Variable DIF
M], 0.72
[l 0.67
Toaten 0.80

Comparing the DIFs in this table with those in Tables 3.2 and 3.3 (in which the
controlled variable was the weight-average chain length) shows that none of the ideal
latent variable controllers significantly out-perform the [I},-p, or [M]/T-p, ratio
controllers. This was also confirmed by simulations. For this system, latent variable
control provides no improvement, and would not be worth implementing since excellent
control possibilities exist by controlling p.,.

Another option for improving control of the full MWD may be to select another
measurable control variable. One possibility is the number-average chain length (p,). As
with the weight-average, the number-average can be expressed as a linear combination of
the MWD variables:
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1 1
P 2] (3.13)

Therefore, the defining axis for number-average is: ¢ = [0.01; 0.005 ...0.0001}/|c||. The
DIF can be calculated for [M],, [I], and T, given the impurities disturbance and
number-average controlled variable (p,, control is included in Table 3.5 for reference).
For all three manipulated variables, SISO control of the number-average improves
the full MWD (DIF < 1). The DIFs for [M], and T,,,; are significantly lower compared to
the case in which the weight-average is controlled. Simulations confirm the numbers.
Furthermore, [I], is the best single manipulated variable, and either the number- or the
weight-average can be used as the controlled variable. On the other hand, if [M], or Ty,
was to be used as the manipulated variable, the number-average must be used as the

controlled variable, not the weight-average chain length.

Table 3.5. DIF for number-average molecular weight control

Manipulated Variable | DIF (p, control) | DIF (p,, control)
I, 0.73 0.68
M], 0.77 1.10
Toaten 0.88 1.50

Unfortunately, none of the number-average controllers outperform the [I],-p.
controller, nor do they approach the performance of the Ty,./[M],-p.. ratio controller. Of
course, these results are process specific, and other systems will have different results.
Furthermore, many other combinations of controllers have not been examined here (for
example, T,../[M];-p. control). However, it is clear from the analysis presented that
significant improvements in the full MWD can be achieved with SISO control, and many

options exist to do so.
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Like well-known tools such as the Relative Gain Array and the Singular Value
Decomposition, the DIF can be used to select controlled and manipulated variable
pairings. However, unlike these tools, the DIF explicitly considers disturbances. In this
sense, the DIF is very similar to another linear analysis tool, the Partial Disturbance Gain
(Havre and Skogestad (1996); Zhao and Skogestad (1997)). Further discussion of the
relationship between the DIF and other disturbance analysis tools may be found in
Appendix 3.2.

3.4 Control of Multiple Disturbances
3.4.1 Characterization of Disturbance Space

In the previous section, the disturbance was characterized by one direction only.
However, many processes have two or more disturbances, and if these have different
directions, the total effect of the (uncontrolled) disturbances may move the process in two
or more dimensions. The first step in characterizing multiple disturbances is to establish
the space in which the uncontrolled disturbances move the process. This can be
approached three different ways (note that these approaches to characterizing the
disturbance space/direction apply for the case in which a single disturbance perturbs the
process as well). These are briefly outlined here, with more detail being provided in
Appendix 3.3 at the end of the Chapter. First, there may exist a database in which MWD
data was collected in the absence of feedback control. In such a case, the data represents
disturbance data, and a Principal Components Analysis of this data will provide the
defining directions of the disturbance space. Second, MWD data may exist for a time
period in which known manipulated variable corrections were made. In this case, an
input/output model could be identified, and the disturbance effect backed out as D = Y-
{effect of input moves}. The reconstructed disturbance effect could then be analyzed by
PCA as before. Finally, one may have a deterministic model (empirical or fundamental)
from which the individual disturbance effects are known. These individual disturbance
gain vectors would be the defining vectors of the disturbance space.
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In the following section, the DIF concept will be extended to handle multiple
disturbance directions. The ideas will first be presented for a single controlled variable.
Simulation results from the polystyrene system will be presented for the case in which
two independent disturbances perturb the process. Extensions to multiple controlled

variables will also be discussed and an example presented.

3.4.2 Single Controlled Variable

When a controller rejects a disturbance, it is reacting to offset in the controlled
variable. Whether this offset is created by one or more disturbances is irrelevant.
Therefore, while a disturbance may be characterized by many directions, the controller
will only react to one realization of the disturbance at a time. The primary difference
between single and multiple disturbance directions is that with multiple directions, the
observed realization of the disturbance can be any linear combination of the defining
disturbance vector directions. With many disturbance directions, the performance of the
manipulated variables depends on the exact realization of the disturbance. Therefore, it is
only possible to calculate the minimum and maximum possible Disturbance Inflation
Factors, and the associated directions of the disturbance.

Consider the general situation in which there are ‘n’ disturbances (defined by the
unit direction vectors {d,, d, ..d,}), one controlled variable (defined by the unit vector ¢)
and one manipulated variable (unit gain vector m). A particular observed realization of
the disturbance will be a linear combination of the individual disturbances:

d =ad, +a,d,+...+a . d, (3.14)

arbitary

The Disturbance Inflation Factor is (for ||d.|[=1):
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DIF temy = [etiom|
where (3.15)
_ (_ O3B axv.

€ titary = m+ d_,. )
arbitrary COSBM arbitrary

Replacing the numerator term with vectors:

', iy
o =g+ S

c'(a,d, +a,d,+...+a,d,)

(3.16)

=aey +a,e,+....4+a €y

a;

a,
= [edl €n "'edn] :

a

Therefore, the error (after control) for any arbitrary disturbance realization can be
expressed as a linear combination of the errors for each of the defining disturbance
vectors. Each of the these errors (e;) can be easily calculated knowing the individual d;’s,
m and c¢. The maximum and minimum Disturbance Inflation Factors (DIF,;, and DIF,,)
correspond to length of the largest and smallest vectors €,y (because of the
assumption that [|d il = 1). The problem of finding DIF,;, and DIF,,, can be stated
mathematically as:
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€ rnry | (3.17)

dyvpieeary| = Dl = 1

max
a

given: e, ., =Ea and subject to:

where D = [d, d, ...d,]. Conceptually, we wish to search all directions in the disturbance
space (all vectors d, i) it order to find the disturbance realizations which result in the
largest and smallest errors (after control).

If the defining disturbance vectors are orthogonal, D is an orthonormal matrix,
|[Daj| = ||a|l, and the constraint simplifies to [laf| = 1. In this case, (3.17) is the
mathematical statement of the singular value decomposition of the error matrix (E) and
therefore an SVD of the matrix [e,, . . . €,] provides the desired information (E = USVT)
(Golub and Van Loan (1989)). The largest and smallest singular values (largest and
smallest elements of S) are equal to the minimum and maximum DIFs. The best and
worst disturbance realizations are given by the corresponding right singular vectors
(columns of V): d,uiraryvet = DVimin a0d d,itracywort = DVane The values of DIF,;, and
DIF,, provide lower and upper bounds for the DIF, given the disturbance space and the
controlled and manipulated variable. The realizations of the disturbance associated with
DIF,, and DIF,,, are the particular directions of the disturbance that are the best and
worst directions, respectively, for the given manipulated variable and controlled variable.

In order to solve (3.17) using the singular value decomposition, the defining
disturbance vectors must be orthogonal. There are two ways in which a set of orthogonal
disturbance direction vectors (i.e. an orthonormal D matrix) can be generated. For
example consider a process with ‘n’ physical disturbances with direction vectors {d,, d,
... d_}. If the disturbance space is characterized by doing a PCA on disturbance data (as
described earlier), the resulting principal component vectors {d,*, d,*, ... d,*} are an
orthogonal basis for the physical disturbance vectors { d,, d; ... d,}. By default, D is
orthonormal. Second, if the physical disturbance directions {d,, d, ...d,} are known (for
example from a model), an orthogonal basis for the space spanned by {d,, d, ...d,} can
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be calculated directly. The new set of orthogonal disturbance vectors, {d,*, d,*, ... d,*},
are used to generate the individual error vectors for the matrix [e,. €g. ... €4,.]. A
singular value decomposition of this error matrix provides the minimum and maximum

DIFs and the best and worst disturbance directions.

3.4.3 Process Example
This ideas can be demonstrated on the same batch polystyrene example presented

earlier. There are now two disturbances perturbing the process: the impurities and the
initiator efficiency vary from batch-to-batch. Assuming the individual direction vectors
are unknown, a PCA of MWD data from 50 uncontrolled batches provides two
orthogonal defining direction vectors (d,* and d,*). Consider again the case in which the
three potential manipulated variables are [I],, [M], and T, and the batch-to-batch
controllers (3.1) are used to control the weight average chain length. Figure 3.7 shows the
error in the full MWD, with no control and control using each of the manipulated
variables. Table 3.6 summarizes the minimum and maximum Disturbance Inflation
Factors for each of the manipulated variables, given the weight-average chain length as
the controlled variable.

Table 3.6. Best and worst disturbance directions with controlled variable p,,

MV Best Disturbance Worst Disturbance DIF,;, DIF,,,
Direction Direction

M], | 0.9978d,*-0.0666d,* 0.0666d,*+0.9978d,* 0.03 1.50

o 0.8478d,*+0.5303d,* 0.5303d,*-0.8478d,* 0.68 1.01

Tou | 0.9774d,*-0.2115d,* 0.2115d,*+0.97744d,* 0.05 1.82
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Figure 3.7. Error in the MWD with multiple disturbances

The information in Table 3.6 can also be represented visually. Figure 3.8 is a plot
of the two dimensional disturbance plane (the plane defined by vectors d,* and d,*).

15

27-35

1}

Y 2 X 164
d1*
Figure 3.8. Best and worst disturbance directions for
initial monomer concentration

The MWD disturbance data (centered
about the desired MWD) from the 50
uncontrolled batches are plotted in the
plane {d,*, d,*} with batch number
indicated beside several points. Also
shown on the plot are the best and worst
directions for the initial monomer
concentration (Table 3.6). It is clear that
many of the disturbance realizations that
occur in the 50 batches align with the
direction for which [M], can compensate

well. Therefore, the DIF predicts

that [M], should perform well for many of the batches, particularly around batch 15.

Weaker performance is expected around batches 27-35. These trends were evident in
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Figure 3.7. Similar plots for initiator and temperature can be constructed.

The information Table 3.6, therefore, can be used to determine which manipulated
variable is best. From this example, the {M], appears most favorable: its best direction is
closely aligned with the largest and most common disturbance realizations and its
minimum DIF is very small. Of course, if it was important to never inflate the

disturbance, [I], would be the prudent choice of manipulated variable.

Table 3.7. Performance of latent variable controllers

MV CV | Best Disturbance Worst Disturbance DIF,, | DIF,,.

Direction Direction
M), |t 0.9976d,*-0.0685d,* 0.0685d,*+0.9976d,* | 0.03 1.00
Io t; 0.8573d,*+0.5148d,* 0.5148d,*-0.8573d,* | 0.67 1.00
Toun |t 0.9827d,*-0.1849d,* 0.1849d,*+0.9827d,* | 0.04 1.00

Many other options exist for further improving MWD control. Consider again
univariate latent variable control. Table 3.7 summarizes the DIFs of the latent variable
controller for each manipulated variable.

Both monomer and temperature show promise for latent variable control. Figure
3.9 shows the error in the MWD when the latent variable t, (=m,"(MWD-MWD,)) is
controlled by the initial monomer concentration. Also shown for reference are the no
control error and the error from the [M], - p,, controller. For this particular system, latent
variable control does provide an effective option for improving control over the full
MWD while retaining the simplicity of a SISO controller. Of course the disadvantage is
that the full MWD must be measured.



73

zsxio

nocomrd.
g 2r .
= -
£15 :
£ -0
[ PR
o
=4 A
T iy W\

v ‘' ' pwM]

batch number
Figure 3.9. Latent variable control results

3.4.4 Many Controlled Variables

The calculation of the DIF can be easily extended to processes in which there are
many controlled and manipulated variables (but still less than the total number of quality
variables). Consider a system with ‘k’ controlled and manipulated variables. As with
single variables, the controller will drive the controlled variables to their setpoints. That
is, the manipulated variables will eliminate the disturbance in the space of the controlled
variables. For a given defining disturbance vector, the change in the manipulated
variables needed will satisfy (3.18):

d* . =Amm, .+ +Am, m, . =M_.Am (3.18)
where d*, ., is the projection of vector d*; into the controlled variable space, and can be
calculated using standard matrix projection algebra. Equation (3.18) can be solved for the
multivariable change in the manipulated variables, Am, required to eliminate the
disturbance. Then, the error vector equation introduced earlier becomes:
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es =—-MAm +[d * [d*, (3.19)

where M = [m, ... m,]. The error after control (e;) can be calculated for each defining
disturbance vector d;*, and the minimum and maximum DIFs, and the corresponding
disturbance directions are then calculated as before.

Consider again the polystyrene process with two disturbances. A second possible
control variable for this process is the number-average chain length. The Disturbance
Inflation Factor can be calculated when both the number- and weight- average chain
lengths are controlled, using two of the three manipulated variables. Table 3.8

summarizes the minimum and maximum DIFs.

Table 3.8. DIF for weight- and number-average control

MVs DIF_;, | DIF,,. | BestDisturbance Worst Disturbance

Direction Direction

[Ml,and (I}, |0.05 |0.85 0.9977d,*-0.0671d,* | 0.0671d,*+0.9977d,*

[Ml,and T, |0.03 |0.52 0.0927d,*-0.1204d,* | 0.1204d,*+0.9927d,*

[, and Ty | 0.02 | 0.83 0.9878d,%-0.1558d,* | 0.1558d,*+0.9878d,*

The Disturbance Inflation Factors indicate that [M], and T, are the best pair of
variables to control p, and p,,. However, examination of the three gain vectors show that
Tiu lies very close to [M],, and therefore some conditioning problems may be
anticipated. Therefore, [M], and [I], are selected as the two most promising manipulated
variables for controlling p, and p, in this system. A multivariable deadbeat controller

(consistent with earlier SISO controllers) is implemented:
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M | ~Lm, |, Tl270 -s0000] \p.., -p. (3:20)

Figure 3.10 shows the results of controlling p,, and p, with [M], and [I],. Also shown for
reference are the no control error and the error from the p,-[M], controller. The numbers
in Table 3.8 accurately represent the performance of the multivariable controller; as
predicted, its performance is better than that of the SISO p,-[M], controller. It is
comparable to that of the SISO latent variable controller (Figure 3.9). Although not

shown, control of the individual averages is very good, and comparable to the results in
Figure 3.1.
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Figure 3.10: Multivariable control results

Therefore there are two feasible options for improving the full MWD using simple
control structures. First, one could measure the full MWD and implement a SISO latent
variable controller. Second, one could measure only the number and weight average chain
lengths, and implement a 2-input, 2-output multivariable controller. If it is easier to

measure the averages, the latter may be the preferred choice.
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3.5 Impact of Scaling on DIF

One issue that plays a role in most processes is scaling. Scaling of quality
variables is done for many reasons, for example if variables have widely different units or
levels of importance. Scaling would be particularly useful for MWD control if one has
some prior information about which part of the distribution predominantly influences
polymer properties. Therefore, the impact of scaling on the calculation of the DIF must be
addressed.

The original disturbance, gain vectors or the calculation of the error vector (e) do
not change when scaling is a factor. Scaling is simply used to incorporate one’s process
knowledge. Instead of taking the ratio of the error vector norm to the original disturbance

norm, it is more meaningful to use:

DIF = §e" (321
[(stara)] '

where ||d||d is the disturbance vector in the unscaled space and S is the scaling matrix.
The DIF now defines the ratio of the scaled error to the scaled disturbance, thus reflecting
the relative importance of each of the quality variables before and after control.
Equivalently, one could scale the output variables (plant data) first, obtain the gain and
disturbance vectors in the scaled space and use the DIF expression presented previously.

3.6 Concluding Remarks

In this chapter, implicit control of the full MWD has been considered. It was seen
that the choice of manipulated and controlled variables have an important impact on the
controller performance when the full MWD is considered. Controlling a single average
chain length can sometimes cause the MWD to degrade. A simple linear analysis tool, the
Disturbance Inflation Factor, was introduced to predict this effect.

The DIF was applied to quickly and effectively predict the impact, on the full
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MWD, of a large number of control options. It was seen that with prudent choices of
manipulated and controlled variables, simple SISO control can provide significant
improvement in the full MWD. Ratio and latent variable control were two options
suggested. Ratio control (in which a ratio of two manipulated variables is used to control
a molecular weight average) was seen to be a feasible option for the polystyrene system
in which one disturbance perturbed the process. Latent variable control was successful for
the process with two disturbances. Also shown was a multivariable controller in which
both number- and weight- averages are controlled. This provided an effective and easily
implemented controller for the implicit control of the full MWD.

It should be noted that while the focus of this chapter has been on the implicit
control of the MWD, the ideas are applicable to any system with many quality variables.
When a process has a lot of quality variables, typically only a small subset is chosen for
control. Others may only be monitored, or not even measured at all. The DIF can be
applied to select the best manipulated and/or controlled variables in this situation. It is
directly applicable to continuous processes as well, since quite often long time delays in
measurements mean that steady state considerations still dominate.

Finally, it was seen that only modest process information (disturbance and
manipulated variable directions) is required to calculate the DIF. Once this information is
obtained, a large number of control schemes can be evaluated quickly and effectively.
Furthermore, excellent insight is gained by looking at process directions using the DIF
methodology, and this may ultimately lead to further process improvements.

3.7 Nomenclature
The following nomenclature was used in this Chapter:

X: vector

X: matrix

lIx||: 2-norm of x (lix]| = (L (x))"?)
C: controlled variable



d: disturbance

e: error

[I]: concentration of initiator

[M]: concentration of monomer

M: manipulated variable

MWD: molecular weight distribution

p: principal component

p.. weight average chain length

r: chain length

S: Scaling matrix

T: temperature

u: manipulated variable

W(r): the mass fraction of polymers with chain length r

y: output variable

f4: angle between controlled variable axis and disturbance vector
By angle between controlled variable axis and manipulated variable vector

A: element in the RGA matrix
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Appendix 3.1. Review of Linear Algebra

Vector Norm. In this paper, the vector norm refers to the 2-norm. The norm of a vector x

is:

Il = (Z(xi )’) i (A.1)

Physically, this is the length of the vector.

Dot Product. The dot product of two vectors is a scalar:
xey=x"y =D xy; (A2)
The dot product can also be calculated by:

xeoy = [x]fy]cos(®) (A3)
where 0 is the angle between x and y.

Vector Spaces. A vector space is usually expressed in terms of a set of basis vectors. For
example, the vector space spanned by {x,, x,} contains all vectors that are linear
combinations of x; and x,. Therefore, this vector space is a plane. Note that the set of

basis vectors describing a vector space is not unique.
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Projection Matrices. For a given space spanned by vectors {v,, v, ... v,}, the projection
matrix is V(V'V)'VT, where V = [v, v, ... v,]. To obtain the projection of any vector onto
the space spanned by {v,, v, ... v, }, pre-multiply this vector by the projection matrix:

X = V(VTV) 'V (A.4)

Similarly, one can also define a projection matrix for the orthogonal complement space
(OC) of {v,, V, ... v,}. By definition, the OC space of {v,, v, ... v,} contains all vectors
that are perpendicular to {v,, v, ... v,}. To obtain the projection of any vector onto the
orthogonal complement space of {v,, v, ... v,}, pre-multiply this vector by

Xprpoc = (I V(VTV)'VT)x (A.5)

Angle Between two Vectors. The definition of the dot product allows for the calculation

of the angle between two given vectors:

x"y = x|l ] cos(6 )
(A.6)

The angle will be in radians, where one radian = 360/2x °.

Angle Between a Vector and a Space. The angle between a vector and a space refers to
the angle between a vector and its projection onto the space. Given a vector x and a space
spanned by {v,, v, ... V,}, one can project x onto the vector space via the methods

explained above. Then, calculate the angle between x and x,,, also as explained above.
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Appendix 3.2. Relationship of DIF to Other Disturbance Analysis Tools

Zhao and Skogestad (1997) consider the problem of partial control of a
continuous bioreactor. Partial control is defined as controlling only a subset of the output
variables, while allowing the others to float. They use the partial disturbance gain to
evaluate the feasibility of the partial control for a 2-input, 2-output system. The partial
disturbance gain is described below and compared to the disturbance inflation factor.

Zhao and Skogestad (1997) consider partitioning a system, where y, contains the
uncontrolled variables, y, contains the controlled variables:

Yi| [Gu Gu]w G
[Yz]_[Gzl Gnqu]+[Gn]d ®-

For one disturbance, G, will be a column vector. The open loop disturbance
effect on y, will be G, (assuming a value of d=1). The closed loop disturbance effect on
y, (that is, y, controlled perfectly with u,):

Py =Gy -GGy Gy ®B.2)

The P,, (the partial disturbance gain) is equal to the original disturbance vector
minus the effect from u, controlling y,. P, is a vector (for one disturbance) and is the
error in the y, space after y, has been perfectly controlled. It is relative to the assumed
value of 1 for d. Clearly, the concept is similar to the DIF, despite the different form.

For the evaluation of partial control, ||P,|l <|/Ggl| is desired. This differs slightly
from how the DIF evaluates the disturbance. Zhao and Skogestad (1997) compare the
post-control error to the original error in y, due to the disturbance. The DIF compares the
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post-control error to the original error in the entire quality space. The reason for the
different comparisons is due to the different reasons for using the tool.

The two main (although minor) distinctions between the DIF and the partial
disturbance gain are:

1. The DIF directly handles the case in which the controlled variable is a linear
combination of the output variable;
2. Because of the assumed value of d=1 for the partial disturbance gain, it implicitly
considers disturbance magnitude as well as direction;

Since Zhao and Skogestad (1997) work with the original variables, there is no
need to project to the controlled space. This is one difference between the DIF and the
partial disturbance gain. The DIF was derived to handle cases in which the controlled
variable is a linear combination of the output variables (e.g. an average). This is
particularly useful for proposing and analyzing latent variable controllers. The DIF
simplifies to the P, expression if a subset of the output variables is considered.

Second, when calculating the PDG values, the results reflect both disturbance
magnitude and direction. The DIF calculation considers only direction; magnitude is
considered in the interpretation (see the section on Multiple disturbances). The DIF
therefore clearly distinguishes between large disturbances and disturbances that occur in
bad directions. This point can be illustrated by comparing the results of the DIF and PDG
for the bioreactor process. For the given matrices (section 4.2, pg 701) and the first MV-
CV pairing considered, Table B.1 summarizes the DIF and the PDG.

The DIF results are expected due to the disturbance - manipulated variable
alignments. The manipulated variable and the three disturbances (denoted with an
asterisk) are well aligned. The two other disturbances (denoted with a double asterisk) are
poorly aligned with the manipulated variable gain vector. The disturbances Yxs and Sg
perturb the process in exactly the same direction, therefore, their DIFs are equal.
However, Yy has an openloop effect that is 3.38 times larger than that of S, therefore,
the PDG for the Yy disturbance is 3.38 times larger. The PDG inflates the effect of the
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Yy disturbance because of its original size in the output space. The DIF considers both
disturbances equal because it only evaluates direction.

Table B.1. Comparison of the DIF and the PDG

Disturbance DIF PDG (table 2, page 702)
B * 0 0

K, * 0.0311 0

Yys ** 9.375 23.75

D, * 0.0414 0

S ** 9.375 7

Another well known disturbance analysis tool is the Relative Disturbance Gain
(Stanley et al. 1985). The RDG considers the impact of a disturbance’s direction on
control loop effectiveness. For a given disturbance, it is defined for controlled variable ‘i’

paired to manipulated variable ‘' as:

RDG AM;; needed to make y; =y, (all other control loops closed)
i~ AM; needed to make y; =¥, , (all other control loops open)

B.3)

The relative disturbance gain is typically calculated for a given disturbance and control
structure. For example, consider the 2x2 distillation column example in Stanley et al
(1985). For the multiloop control scheme x,-L (loop 1) and x5-V (loop 2) and a feed
composition disturbance, the following two RDG values are calculated:

AL needed to make x, = X, , (with x,, perfectly controlled by V)
AL needed to make x, = X, ., (no control over x,)

RDG, =017 =

AV needed to make x, = X, ,, (with x, perfectly controlled by L)
AV needed to make x, = X, , (no control over x,)

RDG, =082 =
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B.4)

The RDG can be used to assess the impact of adding one or more new control loops.
From RDG,, it is clear that controlling x, has a favorable impact on the control of x,, in
terms of manipulated variable actions needed. In this way, the RDG could be used to
assess how many loops are needed.

In order to directly compare the RDG to the DIF, it is illustrative to rearrange it:

RDG AM ; needed to make y; =y;, (all other control loops closed)
“~ AM; needed to make y; =y, (all other control loops open)

(}{( ) e,, (all other control loops closed)
i.j closedloop !
= B.5)
(}{( ) e, (all other control loops open)
i, j openloop !

e,, (all other control loops closed)
“J e, (all other control loops open)

The RDG appears similar in concept to the DIF since both contain ratios of errors.
However, the RDG focuses on the error in one output variable, rather than a norm of the
error in the full quality space. In its original form, the RDG is most useful for assessing
control loop interaction (if one or more extra control loops are advantageous to the
existing loop) or for determining if decoupling or full multivariable control is advised.
This is not the problem addressed by the DIF.
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Appendix 3.3. Discussion of Disturbance Direction

In this appendix, two different approaches for establishing the disturbance
direction(s) will be discussed. One approach relies on plant data, the other uses a model
to establish the disturbance space. It should be noted that regardless of the approach, in
order to calculate the DIF, the effects of the disturbances and manipulated variables on
the entire quality space must be known. This implies that all the quality variables must be
measured for a period of time (if using data) or predicted from a model (if using a model).

Disturbance Directions from Plant Data

Disturbance direction is a key concept in calculating the DIF. In many processes,
the exact disturbance is unknown; it is only observed in the quality variables. There may
be one, two or several disturbances perturbing the process at any given time. For these
reasons, disturbance ‘direction’, rather than disturbance ‘gain’, is a more appropriate term.

In this chapter, processes are classified as having either one or more than one
disturbance direction. Principal Components Analysis is used to establish the dominant
disturbance directions. In this appendix, a brief overview of the use of PCA for
establishing the disturbance directions will be presented. The details of the method can be
found elsewhere (Wold et al (1987)).

To begin, it is assumed that in the historical database of the process there exists
quality data from times in which no moves in the potential manipulated variables are
made (or, data that has had the effect of known manipulated variable moves removed).
That is, data contains only information on how the disturbance(s) are perturbing the plant.
A PCA is performed on the data centered about the desired values, and a significant
number of components are determined using the appropriate cross-validation techniques.

For some processes, one principal component will explain most of the variation.
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Conceptually, the data in the ‘n’ dimension quality space falls in an almost perfect line,
and the idea of a disturbance ‘gain vector’ makes sense. If two or more components are
significant, the disturbance(s) perturb the process in a plane or higher dimensional space.
Then, the principal components form a vector basis describing the disturbance space. A
given realization of the disturbance(s) can be any linear combination of the principal

components.

Disturbance Directions from a Model
A model can also be used to establish the space in which the disturbance moves the

process. If you have some idea of the disturbance(s), these can be simulated and their
effect on the entire quality recorded. That is, several different levels for each the
disturbance can be systematically simulated, and the disturbance effect observed. There
are two options for simulation:

i) simulate the disturbances one at a time

ii) simulate the disturbances simultaneously

Simulating the disturbances one at a time will provide some idea of the individual
gain vectors for each. These gain vectors become the defining vectors for the disturbance
space. For example, if there are two disturbances, the two gain vectors observed by
simulating different disturbances will define a plane in which the process is moved
disturbance (if there is only one disturbance, its gain vector is the disturbance space).

If there is some a priori knowledge about the relative magnitudes of the
disturbances, simulating them simultaneously is advantageous. By simulating them
together, some information about their additive effect is obtained. The data will clearly
show what direction is dominant, that is the direction in which the two or more

disturbances combine to create a large observed disturbance.



4. Reduced Dimension Control of Dynamic Systems

4.1 Introduction

For many processes, quality of the end product is of paramount importance,
therefore the focus of control is product quality. Several common process
characteristics often exist in product quality control situations, regardless of the
specific industry. First, the quality variables often outnumber the variables available
for manipulation. This is particularly true when quality measurements are inexpensive
to obtain (such as in paper making processes), or the product quality is characterized
by a distribution (such as in crystalization or polymerization processes). Second, the
variables that characterize quality are nearly always highly correlated. Similar trends
are often observed in many of the measured quality variables. Furthermore, the
manipulated variables, regardless of their number, often do not have the ability to
move the process in an equal number of independent directions, thus quality control is
often characterized by ill-conditioning. And finally, there are usually a limited
number of disturbances that perturb the process; even for those processes with many
unknown disturbances, it is often observed that they move the process in a much
smaller dimension than the number of disturbances.

These characteristics are related to the dimension of the process, and the
implications for control are best illustrated through several examples. Consider first
the batch-to batch control of the MWD in a semi-batch polymerization reactor, as was
discussed in the previous chapter. The polymer quality is characterized by the full
MWD, which consists of 100 measured points on the distribution. The MWD is
measured at the end of each batch. One can adjust three variables: the initial monomer
charge, the initial initiator charge or the constant temperature at which the batch is
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operated. For each batch, the monomer is fed in a pre-specified feedrate profile that
has been optimized for the given product (Chapter 2).

The main disturbance affecting the MWD is the impurities, which enter into
the batch with the monomer feed. The impurities level drifts in a random walk from
batch-to-batch, and causes variations in the polymer quality from batch-to-batch.
Ideally, one would like to implement batch-to-batch corrections to minimize
variability and produce a more consistent product. A typical batch-to-batch control
scheme involves measuring the MWD at the end of the batch and based on some
measure of MWD error, calculating the change(s) in the adjustable variables for the
next batch using a feedback algorithm.

A dimensional analysis of the process highlights the following issues. There
are 100 output measurements, therefore the measured output space has a dimension of
100. However, plant tests (consisting of independent random perturbations on the
three available inputs) indicate that these variables can effectively move the process
in only two dimensions. The disturbance perturbs the process in a single dimension.
The combined variation of the disturbances and manipulated variables falls primarily
in three dimensions. Therefore, the dimension of the measured outputs is much larger
than the dimension of the output space affected by the manipulated variables and the
disturbances.

Therefore, the true process dimension is much smaller than 100. Clearly, not
all 100 dimensions need to be controlled, since all the observed process variation falls
in only three dimensions. Three potential solutions exist:

1. Attempt to directly control the entire output space (the full MWD);

2. Control a small number of more easily measured, representative variables

(such as the average molecular weight);

3. Control a subspace of the output variables that is representative of the

observed variation in the MWD (e.g. control linear combinations of the MWD

variables that are somehow representative of the observed process variation).
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Therefore, the choice exists to directly control the full output space (option
one) or control a small subspace of the output space (option two or three). There are
several motivating reasons for considering the latter two options. Certainly, it would
be preferable if only some easily measured averages of the MWD were controlled. In
fact, in most cases, good product quality (good control over the full MWD) is
achieved by controlling only the average of the distribution. This is a direct result of
the fact that disturbances and manipulated variables can only affect the MWD in
limited directions.

Alternatively, one could still choose to directly control the full MWD (i.e
contyol 100 output directions) with all three available manipulated variables.
However, there could be robustness problems due to the ill-conditioning. This
particular problem has been observed in both an ill-conditioned paper making system
(Arkun et al. (1998)) and a blown-film process (Featherstone and Braatz (1997)) and
will be discussed briefly here. In the case of the blown-film process, film thickness is
measured in 45 different locations, and there are 45 actuators for adjusting the local
film thickness. However, plant tests indicated that the process variability was
observed in only ten dimensions. This is typical of a process in which extra
measurements (beyond the true process dimension) are being made, simply because
of the availability of sensors and computers.

Featherstone and Braatz (1997) proposed a reduced dimension controller, in
which only ten output directions are controlled and manipulations are made in only
ten input directions. Thus, ten output directions which somehow summarize the
underlying dimension of the process are controlled (this was listed as the third option
above). When compared to the case in which all forty five outputs were directly
controlled (i.e. a full dimension controller), the ten dimension controller led to a lower
overall thickness variability. This was attributed to the lack of controller robustness to
process/model mismatch. The full dimension controller attempts to manipulate the
input variables in directions that are not well known (due to the ill conditioning) and
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the result is an increased output variability. By restricting the controller’s dimension,
and allowing it to move the process only in strong, well identified directions, the
overall output variability is ultimately reduced (Arkun et al (1998), Featherstone and
Braatz (1997)).

Situations such as those described above lead to the idea of ‘reduced
dimension control’ (RDC). In the examples discussed, the manipulated variables and
the disturbances move the process in a much smaller dimension than the measured
output space. In RDC, a distinction is made between the size of the measured output
space, and the size of the true underlying process dimension (the subspace within the
measured output space in which the process varies). With the increasing computer
capability for data acquisition, dimension issues such as these are becoming more
frequent. The reduced dimension control approach is first, to evaluate if the process
operates in a space that has a smaller dimension than the measured output space;
second, to acknowledge that direct control of the full measured output space is not
necessary in such cases; and finally to consider control only in a reduced space.

The practical motivation for controlling a reduced dimension includes ease of
measurement (i.e not all outputs need to be measured online, if certain quality
measurements are more difficult to obtain), controller simplicity, and controller
robustness for ill-conditioned processes.

When considering control in a reduced space, the RDC approach leads to the
following questions:

1. What subset of the original variables should one manipulate and control?

2. Can one select new, representative linear combinations of the original

manipulated and output variables (called latent variables) that one can

manipulate and control to provide better control in the entire quality space?

The choice of the controlled subsystem has a significant impact on the quality
(as characterized by the full quality space). It was observed in the last chapter that if a
poor subsystem for control is chosen, the overall effect can be to degrade product
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quality, rather than improve it. Several solutions have been proposed in the literature
for choosing subsets of the original variables or for choosing linear combinations of
the variables for control. A linear analysis tool called the Disturbance Inflation Factor
was introduced in the last chapter for evaluating the effect of a selected controlled
subsystem (controlled and manipulated variables) on the full quality space. A similar
tool, the Partial Disturbance Gain, was applied to a bioreactor for selecting
appropriate control loops (Zhao and Skogestad (1997)). Other tools for selecting a
subset of the original output variables include the NonSquare RGA (Chang and Yu
(1990)). Reduced dimension control of paper making machines has been addressed by
several research groups (Arkun et al (1998), Featherstone and Braatz (1997)).
Singular Value Decomposition has also been applied for reducing the dimension of
the controlled space (Featherstone and Braatz (1997), Lau et al. (1986)). Finally, data-
based methods of Principal Components Analysis (Roffel et al. (1989), Eek and
Bosgra (1995)) and Canonical Correlations Analysis (MacGregor and Wong (1980))
for selecting controlled and manipulated variables have also been demonstrated and
applied in industry. A more thorough discussion of these methods (and the
relationships among them) is found in Chapter 5.

In this chapter, a mathematical framework for reducing the dimension of the
controlled subsystem is presented, based on minimum variance control theory. Two
expressions are derived:

1. the linear combinations of the inputs and outputs that should be controlled

to minimize the error in the entire output space (that is, an expression for the

optimal controlled subsystem will be derived);

2. the linear combinations of the inputs that should be manipulated to

minimize the error in the overall output space if the controlled variables are set

(for example, if some outputs are more easily measured);



92

The framework shows explicitly the role of the disturbances in determining the
optimal reduced dimension control system. This has not been explicitly discussed
before in the literature.

Based on this framework, a process dimensionality analysis for a simulated
dynamic Kamyr digester is demonstrated and two reduced dimension controllers are
proposed. The performance of the reduced dimension controllers is compared to that
of a full dimension DMC. In comparing the controllers, the emphasis is on the
performance of the reduced dimension controllers when the assumptions on which
they are based are violated.

4.2 A Framework for Dimension Reduction
In this section, a framework for the optimal reduction of the dimension of a

control system is presented. Consider the process represented by:
Y. =GB)u g, + Yq, 4.1)

where y, and u, are (nx1) and (rx1) vectors of outputs and inputs respectively.

Prior to developing the framework for dimension reduction, a disturbance
model (an expression for y, in (4.1)) is needed. For the case of k disturbance sources,
the overall disturbance can be represented by:

Ya. =Padiy +Ppd; +. . +pgud,, 42)

Equation (4.2) indicates that the overall observed disturbance at time ‘t’ is a sum of
all the individual disturbances, each characterized by their own direction vector, pg;,
in the output space. Disturbance dynamics can be represented by a time series model
for each of the individual disturbances, d;,:
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_ e.(B)) (ez(B)) (e.,(B))
Ya, _p‘"((b,(B) a;, +Pg2 L(B) Ayt APy ¢.(B) a, 4.3)

where B is the backwards shift operator (Box and Jenkins (1976)). Substituting (4.3)
into (4.1) gives:

9l B ez B 6,, B
Yy, =G@B)u,.,, +pdl($l—%)al.t +P¢2(¢2§B;)az.z+---+l’dk(¢ EB;)ak.z (4.4)

In practice, it is unlikely that all disturbances are known; only the total effect
of the disturbances is observed. In this case, one can formulate the disturbance model
(equation (4.3)) using principal components analysis of data that contains only the
effects of the disturbances. Such data, referred to as disturbance data, is either open
loop data or data with the effect of known manipulated variable moves removed. In
order to formulate the disturbance model in the form of (4.3), the disturbance data is
first decomposed using Principal Components Analysis (Wold et al (1987)):

Y, =TP," 4.5)

where the disturbance data is contained in the matrix Y, (each column of Y, contains
sequential observations of a single output, y;). The k columns of P, are orthogonal
vectors that form a basis for the k dimensional disturbance space. Each column of the
matrix T (t,) contains sequential observations of new latent variables, where.ti =Y,Pu-
Disturbance dynamics are modeled by fitting a time series model to each latent
variable (t;) individually, resulting in an expression for the disturbance in the form of
(4.3). More details on using PCA to model disturbances may be found in Rigopoulos
et al (1997).
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For the derivation of the framework, the following simplifications are made:

1. the disturbance is assumed to be represented by a single direction, however
the results are later extended to multiple disturbance directions.

2. the deadtime between all inputs and outputs is the same and equal to f
periods of delay.

4.2.1 Control using an optimal linear combination of inputs and outputs

In this case we ask what linear combination of inputs and outputs should be
manipulated and controlled in order to minimize the overall error in the full output
space. Consider the following situation: there are many outputs (n), several inputs (r,
r<n) and one disturbance (k=1). The objective function is to minimize the error in the
full output space (n dimensional). Mathematically, this corresponds to optimizing the
following objective function:

. T
m-ln E(et+f+let+f+l)

4.
where e, =y, -y, (4.6)
given the model for the system:
8(B)
Yeers1t =Pa (¢_(B))at+f+l + G(B)ll‘ (4-7)

Assuming y,, =0, an expression for €.q, €uq,; can be obtained from (4.7) as:

8(B)

a(B) )’
¢(B) LI

YQ+f+ly”f+l =Pq p‘(¢(B) t+r+l ) u, +(G(B)ll‘)T(G(B)Il,)

(4.8)

TG(B)(
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The disturbance model can be expanded into a forecast (terms involving current and

past innovations) and a forecast error (terms involving future innovations):

6(B) L IB)

ﬁaum Y (B)a.c,, + ¢(B) 4.9)

Substituting (4.9) into (4.8), taking expectations on both sides of equation (4.8) and
noting that the autocorrelations (E(a,,;a) = 0 and E(a,;u) = 0, j 21) can be eliminated:

T ? s
PaTPd( B) a:) + pdTpd(lP(B)au-ﬁ-l ) +

T ¢(B)
E(yt+f+IYt+f+l ) = (4. 10)

2 G(B)( ¢$§ ) , +(GBu,) (GBu,)

Taking the derivative of the expectation and setting to zero:

BE(yT : T(B
(ytg‘:n‘yw ) _o= 2G(B)Tp‘( ¢§B; ) +2 G(B)"G(B)u, 4.11)

Solving for the input vector:

B
=-(G(B) 'G(B)"G(B)" Pa( ¢§B; ) (4.12)

Substituting (4.12) into the expression for y,,..,, equation (4.7), expanding the
disturbance term and rearranging:

- T(B
Yotst =Pa¥(Bruc +[Lun ~GB(GB) GB)) ‘G(B)T]p,(ﬁa.) 4.13)
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The second term is a projection matrix; it projects the disturbance direction
vector onto the space that is perpendicular to the space spanned by the process gain
matrix (please refer to Appendix 3.1 for a review of projection matrices).

Therefore, variability in the outputs comes from two sources: the portion of
the disturbance that cannot be corrected for due to process deadtime (first term) and
the portion of the disturbance that is perpendicular to the effect of the process inputs
(the second term). This analysis implies that the output error can be minimized if

control is concentrated only on the space:

GB)(G®)'G®)) 'G®) p, (4.14)

For the general case, this is a polynomial vector. Further insight is gained by
considering the following two cases:

1. Steady State Processes

2. Processes in which all dynamics and deadtimes are the same.
Considering the latter, the gain matrix can be expressed as:

w(B) Bf

15
33 2K (4.15)

G(B) =
Substituting (4.15) into (4.14) and canceling the dynamic terms gives:
Copima = K(K™K) 'K p, (4.16)

Equation (4.16) is the projection of the disturbance vector onto the space spanned by
the columns of K and this is the optimal direction to control. That is, the maximum
benefits of control (minimizing the variability in the full output space) are
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theoretically possible by controlling the linear combination of the outputs given by y,,
= CoplinulTY'

From (4.12) and assuming equal deadtimes and dynamics, it can be easily seen
that the inputs should be adjusted in the direction given by:

Mopu’mal = (KTK)—IKTpd (4'17)

Geometrically, M, sma (4.17) defines a direction, in the input coordinates, in which
the inputs should always be manipulated:

u=M,_, . A (4.18)

optimal
where A is a scalar for one disturbance. For a single disturbance, M, 4uy is a line in
the input space which defines the ratio in which the manipulated variables should
always be adjusted. A new manipulated variable for reduced dimension control can be
defined by the following linear combination of the original inputs:

umv = (Mopﬁ-slTMopﬁ-al)_lMopﬁ-anu (4°19)

The number of independent controlled and manipulated variables required (i.e.
the dimensions of y., and u,,, respectively) will be given by min(rank(K),rank(Py)). In
many cases, particularly in the case of regulation only, the number of potential
manipulated variables often outnumber the independent disturbances, therefore one
should choose to control as many directions as there are independent disturbance
directions. If there are k independent disturbance directions defined by the columns of
P,, then the k-dimensional controlled variable space is defined by C, uea = KK'K)
'K™P,. The inputs should be adjusted in the k-dimensional space defined by M yp =
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K"'K)'K™P,. A more thorough discussion may be found in Appendix 4.1 at the back
of this Chapter.

In order to illustrate the concepts, consider a simple 3-output, 2-input process.
Assume that the outputs are measured infrequently (relative to the process dynamics)
and the process can be modeled by:

1 0 -1
Y.=|2 lp,+| 1
-1 1

1-09B " (420

The single disturbance direction is given by py = [-1;1;1]. This disturbance direction
is 31° from the two dimensional manipulated variable space (characterized by the
columns of the gain matrix). According to the optimal framework, the direction that
- should be controlled is:

—0.18
Copima = KEK'K)'Kp, =| 0.72 4.21)
127

Practically, this means all three outputs should be measured at every control interval,
and the value of the controlled variable, y.,,, calculated:

Yoo =—0.18y,, +0.72y,, +1.27y,, “4.22)

Equation (4.22) is the expression for the controlled variable of the reduced dimension
controller (which will be SISO for this example since there is only one disturbance).
The manipulated variable, u,,, for the reduced dimension controller is defined by the
following linear combination of the original inputs:
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umv = (MopﬁnulTMopﬁnul )-l Mopﬁmalru (4 23)
= —0.1475u, +0.8931u, )

To maintain y_, at its setpoint, the process inputs should be manipulated in the
direction:

-0.18
Moptinul = (KTK)-IKTpd =[ 1.09 ] (4°24)

The relationship between the RDC manipulated variable (u,,,) and the physical inputs
to the process (u) is given by:

ut = Mopﬁnnlumv,t (4°25)

A 1x1 reduced dimension controller would be implemented as follows. A transfer
function model can be identified between u_, and y_, using standard plant tests, for
example a step test or PRBS on the input u,,,. Assume, for illustrative purposes, a step
change of magnitude A=2 is made in the input u_,. This corresponds to a change in
the physical inputs to the plant u,, =-0.36 and u,, = 2.18. The step change response of
Y., is modeled by a transfer function (providing the empirical relationship between u,,,
and y_). A standard SISO feedback controller can then be implemented between y.,
and u,,. The input to the controller is given by (4.22); the output of the controller is
U, (the required value of the new manipulated variable). To implement the
manipulated variable u,,, in the process, the corresponding values of the real process
inputs are obtained using the relationship u, = M, gualny, Figure 4.1 shows the block
diagram of the reduced dimension controller for this process.
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Figure 4.1. Reduced Dimension Controller based
on optimal framework

4.2.2 Control of a fixed output by a linear combination of the inputs

In some cases the choice of quality variables to control is not an option. For
example, perhaps the full MWD cannot be measured on a routine basis but the weight
average molecular weight might be readily available from viscosity measurements.
Here, we ask the question if the controlled variable is fixed, what linear combination
of the inputs should be manipulated in order to minimize the overall error in the full
quality space. Therefore, we have the following situation. There are many outputs (n),
several inputs (r, r<n), one disturbance (k=1) and one controlled variable (defined by
direction c, the controlled variable is y,, = c'y). The objective function is defined by:

. T
m:n(eu-letﬂ )

s.t u, =mu_, (4.26)

The single input direction is defined by the vector m and is unknown. The process

model is:
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= pd(e(B)) a,, +G(B)u,

$(B)
(B) 4.27)
= pd(¢(B))am +G(B) mu,,,
An expression for u,,, can be derived from (4.27) as:
___*°'p, T(B))
umv,( - cT (Gm) (¢(B) at (4‘28)

Here, u,,, is the output of the minimum variance controller for y_, in the presence of
the disturbances given in (4.27). Substituting (4.28) into (4.27):

_ _e@) _ c"py (T(B))
t+! p‘(¢(B) G(B)m cT(G(B)m) ¢(B) at (4'29)

From the above expression, one can derive an expression for E(Y,.;"¥..), With Y=0
assumed. Assuming that the dynamic model is as given in (4.15), taking the
derivative of E(y,"Y,,) With respect to m and setting equal to 0, one gets:

T T T

K'e T
T(Km)+pd (Km) T(Km) (Km) M)(cT(Km))Z K'e

(4.30)

0=K"p, +K'Km

Clearly this is not a simple expression for the direction m. However, even when the
controlled variable is fixed as ¢'y, it was found, through simulated examples, that the
true optimal direction (m, from solving the above equation) is often very close to the
direction given by (4.17), in which the controlled variable was free to be specified.
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4.3 Process Example

In the previous section, several assumptions were made in order to derive the
framework for reducing the dimension of the controller:

1. The process has no dynamics due to the infrequent sampling interval of the

product quality, or, if dynamics are present, all input-output relationships

follow the same dynamics;

2. The deadtimes between all inputs and outputs are the same;

3. The process is linear and non-time varying.

If the assumptions are not valid, equation (4.14) does not simplify to a
constant direction. The implication is that a single linear combination (for one
disturbance) is not optimal if the assumptions are not met. While the assumptions are
approximately true for many product quality control situations with infrequent
sampling, they are usually violated for other process control problems. However, the
reduced dimension control vectors will still be valid at steady state, and the non-
optimality will occur primarily during the transient periods. This suggests that a
reduced dimension control (RDC) approach may still be reasonable even when these
assumptions are violated.

To assess this, an RDC approach based on the framework derived above is
applied to a simulated Kamyr digester whose dynamic and delay structure deviate
greatly from the assumptions listed.

4.3.1 Process Description

A dynamic Kamyr digester simulation will be used as an example of a ‘non-
ideal’ process, in order to illustrate the RDC approach and to assess the effect of the
violation of the RDC assumptions. The dynamic simulation of a Kamyr digester has
been put forth as a test problem for control studies (Kayihan (1998)). Details of the
simulation have been published elsewhere (Kayihan (1997)) and so only the details
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necessary for the current problem are described here. Figure 4.2 shows a schematic of
the digester and the location of the inputs and outputs. The digester has five outputs
that characterize the final pulp quality: three Kappa numbers (x, effectively a measure

of extent of reaction) and two densities (p):

K

mcc

K

Y =] K cook 431
P
| Pa

The Kappa number is measured in three different locations along the
digester; the subscripts indicate the zone of measurement (cook zone (cook), modified
continuous cooking zone (mcc) and extended modified continuous cooking zone
(emcc)). The lower extract density (p,) is measured from a liquor stream leaving the
mcc zone while the upper extract density (p,) is measured from a liquor stream
leaving the cook zone. In practice, only the final Kappa number from the emcc zone
(K.meo) and the two densities are easily measured; the two other Kappa numbers must
be inferred (in the simulated process, however, it is assumed that all five outputs are
measured online).

There are also five manipulated variables (three temperatures and two

flowrates):

{

~

mce

. (4.32)

mcc

e
il
oo g'-i

7
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The temperatures (T o, Tae @0d T.,o) refer to the adjustable temperatures of
three different streams entering the digester. The streams enter the digester in
different zones, indicated by the subscripts (T, is the temperature of the stream
entering the digester cook zone). The flowrates of two streams can also be adjusted:
the upper extract flow (F eum) and the fresh liquor into the mcc zone (F). Five
independent disturbances (chip flowrate and moisture, white liquor density, chip
lignin density and dilution flowrate) cause the five outputs to drift from their desired
values.

The twenty-five process deadtimes are long and very different. They range
anywhere from no deadtime to 300 minutes. The dynamics are also widely varying
and long, with times to steady state ranging from 3 hours to 18 hours. The outputs are
measured every 10 minutes. The digester is also very nonlinear: as the process moves
from the desired output values, the gains and dynamics change.

Before doing a dimensionality analysis of the process, some discussion on
scaling is needed since any numerical analysis is scaling dependent. In this case, the
output variables have different engineering units. We chose to scale using the inverse
of the open-loop standard deviations, so that the disturbance is seen as impacting all
variables equally. The resulting scaling matrix is:

1 0 0 0 O
014 0 0 O

S={0 0 09 0 O (4.33)
0 0 0 49 0
0 0 0 0 87

where y, = Sy. Another equally valid choice for scaling is to scale by the inverse of
the steady state (or mean) values, which results in a matrix that is very close to the
above scaling matrix. For the rest of the chapter and in the figures, it is assumed that
all the outputs are scaled in this manner.
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A dimensionality analysis of the
digester provides some interesting
insight. Figure 4.3 shows the effect of
the five disturbances on the five
uncontrolled outputs. A PCA of this
data indicates that the first principle
of the
variation in the data. The first latent
variable is well modeled by an AR(1)

component explains 98.8%

disturbance is essentially one dimensional and can be represented as:

Yir =

[-0.42]

-038

—051
042
048

/

\1-—

time series model. Therefore the
——-1——) (4.34
099858/ % 349

Therefore, in theory, to minimize the variability in all five outputs, only one
direction (not all five) needs to be controlled.
A dimensionality analysis can also be done on the manipulated variables. The

gain matrix identified from step tests in each of the inputs is:

-

~026 —045 008 —523 —442
~026 -044 —019 —506 —427
K=[-037 o 0 0 -497 (4.35)
005 -038 -015 955 510
-090 0 0 0 950
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Clearly, the effect of the flowrates dominates the matrix because of the different units
of the inputs. Therefore, it is more appropriate to scale the gain matrix, K, to also
reflect the different engineering units of the inputs, K, = KS,, where S, is a diagonal
matrix whose elements are the expected relative changes in the inputs:

300 0 0
030 0 O
S,=|0 05 0 0 (4.36)
0 00 0001 O
0 00 0 0001
(—078 —134 040 —052 —044]
~079 -133 -093 —050 —043
K,=|-1 o0 0 0 -050 (4.37)
-015 -116 -073 096 051
| 27 0 0 0 095

A singular value decomposition of the matrix K, gives the following singular values:
3.2, 2.2,1.6, 0.85, 0.58. Therefore, while the manipulated variables can move the
process more easily in some directions, there are no directions in which they cannot
move. That is, the process is reasonably well conditioned.

Finally, the alignment of the manipulated variable steady state gain vectors
and the disturbance direction is of interest (Table 4.1). The alignment of the
manipulated variable and disturbance directions give an indication of how much of
the disturbance can be eliminated by that particular manipulated variable. If a
manipulated variable is perfectly aligned with the disturbance, then it can (in theory)
eliminate all the disturbance (beyond the process deadtime). Clearly the temperatures
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are NOT well aligned with the disturbance, while the upper extract flowrate shows
excellent alignment.

Table 4.1. Alignment of Disturbance Direction and MV Gain Vectors

Manipulated Variable | Angle to Disturbance Direction
Toce 75
T e 96
T ook 91
Foce 47
Fopextract 16

4.3.2 Latent Variable Control
Using the framework from the previous section, the output direction that
should be controlled (based on steady state considerations) is:

[~ 042]
-038

Copeimu = K(K'K) 'K'p, =| - 051 (4.38)
042
048

This is actually the disturbance vector since the five manipulated variables can
move the process in all five output dimensions (thus the projection of p, onto K is
simply p,). The optimal input direction (i.e. the ratio in which the manipulated
variables should be adjusted) is:
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[ 03049 ]
-0.016
M, uuu = (K'K) K'p, =| —01116 (4.39)
—0.00003
| 0.0008 |

Therefore, based on the framework from the previous section, when T,
increases by 0.3049°, T, should decrease by -0.016°, T, should decrease by
0.1116°, and so forth.

To minimize the overall closed loop error, one could implement a SISO
controller to control the direction C,p4., (i-e. control the linear combination y,, =
C.pima'y) by adjusting the new latent input, Uy, (Uny = Mapimat "Maptma) Moptimar ' 1)-
However, the digester is a full rank process (its inputs can move the process in all
directions in the output space). Therefore, the effect of adjusting the inputs in the ratio
defined by M, 4uu is exactly aligned with the effect of the disturbances. That is, the
gain vector of the new latent input, u_,, is perfectly aligned with the disturbance
direction. It was discussed in the last chapter that for this special case, when the
manipulated variable effect is perfectly aligned with the disturbance effect, one can
control, in theory, ANY output (not just the ideal linear combination) and achieve the
minimum error. This special case arises because the manipulated variables do not
introduce any new directions of variation beyond that of the disturbances.

Therefore, instead of measuring all outputs and controlling a linear
combination of them, one can, in theory, select the most convenient output and
control it. Figure 4.4 shows the dynamic response of the outputs to a step change in
the latent input u,, (physically this corresponds to making adjustments to the real
process inputs in the ratio given above). Two of the Kappa numbers (K u and kg)
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extract density has faster dynamics and
less deadtime, therefore from a dynamic control point of view this variable would be
preferred.

However, the upper extract density has additional dimensionality issues due to
the process nonlinearities. The ratio M, ;au is calculated based on process step
changes about the nominal conditions. At these conditions, the effect of the latent
input u_, is perfectly aligned with the effect of the disturbances. However, as
disturbances perturb the process, the nonlinearities result in changes to the input-
output relationships. After 700 minutes, the effect of u,,, is no longer perfectly aligned
with the disturbance effect, and in fact the gain vector of u,, is 17° from the
disturbance direction.

In order to assess the impact of controlling either the upper or lower extract
density and manipulating the latent input u,,, a Disturbance Inflation Factor (DIF)
analysis can be done. Recall that the DIF is a steady state analysis tool, and requires
only the input direction (gain vector of u,,,) and the disturbance direction. It is a ratio
of two errors: the magnitude of the error after control divided by the magnitude of the
error before control. For DIF = 0, the disturbance is completely eliminated in all
outputs; for DIF < 1, the control actions attenuate the disturbance; for DIF > 1, the
control actions inflate the disturbance; and for DIF = 1, the control actions have only
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transferred the disturbance from the controlled output to the uncontrolled outputs with
no overall reduction in variability. A low DIF is preferred. Table 4.2 summarizes the
Disturbance Inflation Factors for both outputs, assuming u,, is the manipulated
variable. The DIF is calculated at time 0 and at time 700 minutes to evaluate the effect

of process nonlinearities:

Table 4.2. Effect of process nonlinearities on overall output variability

Controlled Variable DIF at t =0 minutes | DIF at t = 700 minutes
o 0 0.29
Pu 0 0.98

Initially, since the gain vector of u_, is perfectly aligned with the disturbance
effects, both outputs have a DIF of zero. However, as the gain vector changes
directions due to the process nonlinearities, the DIF of both controlled variables
increases. From this analysis, it is clear that as the process changes with time,
controlling the upper extract density no longer improves the overall variability.
Simulations confirm that selecting p, as the controlled variable results in offset in the
outputs towards the end of the simulation. Therefore, despite the favorable dynamic
response of p,, the lower extract density is chosen as the controlled variable based on
the above arguments.

4.3.3 Whole Variable Control

Although the ideal manipulated variable is a ratio of all five original variables,
it may be preferable to go with a simpler control structure, such as controlling a single
output with a single manipulated variable. A Disturbance Inflation Factor analysis is
used screen for the best pair. Table 4.3 summarizes the DIF results (a dash indicates a
zero gain between the given input/output pair):
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Table 4.3. Disturbance Inflation Factor Analysis of SISO controllers

MV/CV Konee Kemee Kook o} Pu
T 1.97 1.82 1.78 8.73 1.14
T 1.05 1.03 - 1.44 -
Teree 1.56 1.17 - 1.18 -
F.. 0.79 0.77 - 0.75 -

F specact 0.42 0.37 0.5 0.32 0.39

Due to the excellent alignment of the upper extract flowrate (F,poun) and the
disturbance direction, the DIF for this manipulated variable is low for all controlled
variables. Based on the earlier discussion, the lower extract density (p,) was again
chosen as the controlled variable, despite the more favorable dynamic response of p,.
Note that the lower extract density also has the smallest DIF at the nominal
conditions. Therefore, both the latent variable SISO controller and the SISO with the
single manipulated variable have the same controlled variable. The latent variable
SISO should out-perform the latter since its manipulated variable is better aligned
with the disturbance direction.

4.4 Results

In this section, the two SISO controllers will be implemented on the digester
and compared to a DMC that controls all outputs by manipulating all inputs. Table
4.4 summarizes the controllers:

The two SISO control algorithms are implemented in IMC form. First order
plus deadtime transfer function models were fit between the respective controlled and
manipulated variables, and an IMC with a first order filter was implemented (Marlin
(1995)). Both needed to be detuned; the filter parameters for the latent SISO and the
whole variable SISO are 0.6 and 0.5, respectively (the tuning parameter was
established by starting at 1 and backing off until a stable response was achieved).
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Table 4.4. Summary of controllers

Controller Controlled Manipulated Variable(s)
Variable(s)

Latent variable | p, ratio of manipulated

SISO variables

Whole variable | p, Fopextract

SISO

DMC all five all five

A Dynamic Matrix Controller was also implemented on the process. The

scaling matrices used were:
1 0 0 O 0 ]
010 O 0
Q=I,, W=10000%/]0 0 1 O 0 (4.40)
0 0 0 1000 O
0 0 0 0 1000]

where Q is the output weighting matrix and W is the input weighting matrix. The
matrix Q could have also been chosen to reflect the scaling, however it was found that
the performance of the DMC was fairly insensitive to the output scaling. The relative
input weights were chosen to reflect the different units of the flows and the
temperatures. The multiplication factor (10000) was chosen by starting at one and
increasing until a stable response was observed. All three controllers are executed
every 10 minutes. Figures 4.5 and 4.6 show the results, while Table 4.5 summarizes
the mean squared deviations from target.

The output behavior with all three controllers is much better than without
control. As expected, the performance of the DMC is superior to the reduced
dimension controllers, since it is controlling all the outputs and manipulating all the
inputs. However, both reduced dimension SISO controllers perform very well given
their much simpler structures. The latent variable controller in particular is very close
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in performance to the DMC, despite the fact that it was formulated from steady state

principles. Only the upper extract density shows some offset; the remaining four

outputs are maintained at their setpoints despite the fact that only the lower density is

explicitly controlled. The other SISO controller also does a very good job with only

K.« and the upper extract density showing some offset.

Table 4.5. Controller Performance: mean squared deviation (e;) from target

Controller | k. Kemee Keook o) Pu overall=CZe)"*
DMC 0.18 0.17 0.22 0.14 0.37 1.04
SISO latent | 0.23 0.21 0.69 0.09 1.13 1.54
SISO whole | 0.30 0.18 1.41 0.10 3.55 2.35
no control 14.84 13.18 17.52 12.94 12.43 8.42

It is interesting to point out that since the latent and the whole variable SISO

have the same controlled variables, the difference in the performance is due entirely to

the alignment of the manipulated variable and the disturbance. Since the latent

controller has superior alignment, it does a better job of keeping all variables close to

their setpoints.
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Figure 4.5 Comparison of controller performance

The behavior of the manipulated variables is shown in Figure 4.6. The move
suppression is clearly seen in the temperatures, which was required for DMC
controller stability. The DMC tends to move the flowrates more aggressively than the
latent variable controller.

Despite the better performance of the DMC, it is a much more challenging
controller to implement. It requires 25 dynamic process models and these models
must be reasonably accurate or it was found that the controller could not easily be
stabilized for this process. It is also more difficult to tune since the two weighting
matrices must be specified. Furthermore, all output variables must be measured (two
will be inferred). For the simulations above, all variables were assumed to be
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measured online, therefore the DMC will show some performance degradation when

measurement issues are considered.
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Figure 4.6. Manipulated variable behavior for the three controllers

On the other hand, the SISO controllers required much less process
information. Steady state information only was used to calculate the appropriate ratio
and only one dynamic transfer function was required. One tuning parameter (the filter
time constant) needs to be specified. Due to their simple structure, the SISO
controllers were much easier to implement and tune.

There is also the issue of controller robustness. For ill-conditioned
multivariable systems, the performance of multivariable controllers such as the DMC

is very sensitive to process-model mismatch. This issue was not relevant for the
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digester, however for other poorly conditioned processes one might expect the
reduced dimension controllers to be less sensitive to process-model mismatch due to
their simpler structure. This was indeed shown to be the case in the blown film
process of Featherstone and Braatz (1997) and the paper making process of Arkun
and Kayihan (1998).

To evaluate the robustness of the two reduced dimension control systems,
simulations were also run for different operating conditions. The digester has three
different operating conditions. Of particular interest is the upper operating condition,
since the process directions change significantly (the temperature effects in
particular). The manipulated variable gain vectors do not change much in size, they
mainly change direction. Also of note, is that the effect of the five disturbances does
not change direction (it only changes by about 4 degrees compared to the original
operating point).

The three controllers were implemented, unchanged, at the new operating
point. Figures 4.7 and 4.8 and Table 4.6 show the results. All three controllers
continue to perform satisfactorily. However, some performance degradation for the
reduced dimension controllers is observed (primarily in one output, the upper extract
density). This is not surprising since the structure of the RDCs were chosen based on
the process directions, and when these change, the performance of the RDCs can be
expected to degrade somewhat (although the RDCs do remain surprisingly good). A
similar situation would arise if the disturbance direction changes; therefore if the
disturbance is to be used in the formulation of the controllers, one must be sure that
all representative disturbances are present in the disturbance data. For the digester, the
disturbance effect appears to be fairly constant in direction regardless of the operating

condition.



Table 4.6. Controller Performance: mean squared deviation from target

Controller Kaec Kemee | Keook ) Py overall=(Ze,))"*
DMC 0.18 0.19 0.22 0.08 0.42 1.04
SISO latent 0.15 0.18 0.54 0.16 17.1 4.27
SISO whole | 0.48 0.36 1.31 0.28 5.0 2.72
no control 1148 | 11.29 | 13.54 9.69 13.07 7.69
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Figure 4.7. Comparison of controller performance at the second

operating point
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In summary, the performance of the reduced dimension controllers have been
shown to be very good over a wide range of process operations, despite the widely
ranging deadtimes and dynamics of the Kaymr digester process. This illustrates that
these RDC approaches can be useful even in very non-ideal situations.

4.5 Concluding Remarks

In this chapter, a general framework for reducing the dimension of the control
system was presented. Given the disturbance directions and process gain matrix,
expressions for the optimal directions for control were derived. The role of the
number of independent disturbances in determining the number of controlled
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variables, and the structure of the resulting reduced dimension controllers has been
clearly shown.

In deriving expressions for the optimal controlled and manipulated variables,
several assumptions were made. These included the assumption that the process is
sampled infrequently relative to its dynamics or, equivalently, the process dynamics
from all inputs to all outputs are the same. In order to illustrate the RDC approach and
to evaluate the impact of violating the RDC assumptions, the framework for reducing
the dimension of the control system was applied to a nonlinear, highly non-ideal
dynamic simulation of a Kamyr digester. Two SISO Reduced Dimension Controllers
were compared to a full dimension DMC. The RDCs performed very well at the
conditions for which they were designed and showed only modest degradation when
the process operating point was changed. It is expected, however, that the major
impact on the performance of these RDCs would occur if the disturbance structure
changed significantly. Since the structure of the RDCs is chosen in part based on the
disturbance directions, it is important that all expected disturbances are characterized
in the analysis.

4.6 Nomenclature

The following nomenclature was used in this Chapter:
y: nx1 vector of outputs

u: rx1 vector of inputs

t: time

G(B): process transfer function matrix
yq: nx1 vector of the overall disturbance
P4 disturbance direction vector

Y,: matrix of disturbance data

P,: matrix of disturbance directions

T: score matrix from PCA decomposition



C,puma: Optimal directions for control
M, ima: Optimal directions for manipulation

u,,: new latent input

Y- new latent output

K: process gain matrix

K,: scaled process gain matrix

a,: white noise

m: optimal input direction for a fixed controlled variable
k: number of independent disturbances

k: Kappa number

p: density

T: temperature (K)

F: flowrate (m*/min)

S: output scaling matrix

S,: input scaling matrix

DIF: disturbance inflation factor

Q: output weighting matrix in DMC

W: input weighting matrix in DMC
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Appendix 4.1. Physical representation of the optimal

controlled variable space and corresponding input directions

The matrix C,pumat (& [Croptimat Cioptimst -+ Cioptmul]) defines the optimal
controlled variable space. This is the space that should be controlled in order to
minimize the error in all outputs (not just those being controlled). It is assumed for
convenience that each of the columns of C,4py (i.€. the Vectors €, puma) are scaled to
unit length. Individual controlled variables, y.,;, are defined by the following linear

combinations:

T

Yo.i = Croptima Y

T (A.1)
ch.z = cz,optinu.l y
Rewritten in matrix form:

Yoo = Copima' ¥ (A2)

where the y,, is a kx1 vector of new latent controlled variables and y is the nx1
vector of original outputs.

To drive y,, to its setpoint and achieve the minimum overall error, the inputs
must also be adjusted in a reduced dimension space. This space is spanned by the

columns of the matrix M, gnu (& (M gptmat Mz eptimai ... My optimat]) Where

M.ptinul = (KTK)-IKTpd (A‘3)
The associated input linear combinations (the new latent inputs) are given by:
ullv = (MopﬁnulTMopﬁ-nl)-l Mopd-llT“ (A°4)

Figure A.l gives a schematic of the inputs for the case in which there are 3
inputs and two latent directions. The rectangular plane is the space spanned by the
columns of M, .. Any adjustments to the manipulated variables must remain within
this space, and this will cause a corresponding variation in the outputs that falls in the
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space C,yuma- Furthermore, manipulating the inputs in the direction mypgqy results in
a change in the direction €,y 4m,, in the output space, manipulating the inputs in the
direction m, gpuny results in a change in the direction €, gpgma in the output space, and
so on. The vector u, is one particular example of input adjustments that satisfy the
input structure requirement (i.e. u, is in the space of Mygma)-

Figure A.1 Representation of the optimal input directions



5. Reduced Dimension Control: a Unification of Methods for Product
Quality Control

5.1 Introduction

Reduced Dimension Control (RDC) is a growing field and there has been a
number of published applications that can be classified as RDC, as defined in the
previous chapter. Quite often, a reduced dimension control solution is problem-driven.
Similar dimensionality problems surface in many different industries (for example in
paper making processes and polymerization processes), and several independent solutions
to the specific problems have been proposed. However, the common issues are often
overlooked and therefore new applications are rarely placed within the context of other
methods because of the different areas of application. The result is a number of
apparently different methodologies for selecting subsystems of controlled and
manipulated variables. In order to increase awareness and understanding in this promising
field, this chapter will provide a unifying view of the existing methodologies and
applications of reduced dimension control.

Processes that are candidates for RDC have one common, defining characteristic:
the disturbances and manipulated variables move the process in a much smaller
dimension than the measured output space. Certainly, there is no need to control the full
output space if all the observed process variation falls into a smaller subspace. This was
explicitly shown by the framework derived in the last chapter. However, there are also
practical reasons for choosing to control a small dimensional subspace. For example, one
can chose to control only the easily measured variables, since only some of the outputs
need to be measured for RDC. An example is controlling an average of the MWD
distribution, rather than the full MWD. Good control of the full MWD is a consequence
of controlling a suitable average because of the low dimension of the process. Another
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reason for considering reduced dimension control is improved model-based controller
robustness to process/model mismatch. Full dimension controllers tend to have
robustness problems for ill-conditioned (non-full rank) processes. This was discussed in
the introduction of the last chapter, and will be illustrated through several examples in
this Chapter. Finally, reduced dimension controllers have less complicated structures than
their full dimensional counterparts. This may be more appealing to plant operators and
engineers since they may be more easily maintained and they may prove more reliable in
terms of measurement or actuator failure.

The outline of the Chapter is as follows. First, several RDC concepts will be
discussed. Many of these concepts were introduced informally in earlier Chapters and
will be formalized here. In the body of the Chapter, existing Reduced Dimension Control
methods are divided into two main classes, Data Based Methods and Model Based
Methods. Data Based Methods can be applied directly to plant data for dimension
reduction, whereas Model Based Methods require a plant model (usually in transfer
function form) from which the reduction is calculated. The methods are first discussed
generally, then illustrated with specific process examples. When appropriate, the methods
are related to the RDC framework from the previous Chapter, and situations in which the
methods are expected to be unreliable are discussed. The Chapter concludes with a
discussion on the merits and pitfalls of each of the methods, and an overall approach to
RDC problems is proposed.

5.2 Reduced Dimension Control Concepts
In this section, several important process spaces are formally defined. The
framework from the last chapter is also reviewed with respect to the process spaces.

5.2.1 Manipulated Variable Space
Random perturbations of the manipulated variables move the process in a
subspace of the output space, which will be referred to as the manipulated variable (MV)
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space. Considering only steady state, the manipulated variable space is the space spanned
by the gain vectors of the manipulated variables (the gain matrix K). The manipulated
variable space therefore defines where one can move the process; the set of achievable
setpoints or regulatable disturbances is restricted by the directions and size of the
manipulated variable space: only those setpoints that are in the space are actually
achievable (feasible).

The effect of dynamics on the manipulated variable space is important and should
be pointed out. In the steady state (non-dynamic) case, the dimension of the manipulated
variable space will be less than or equal to the number of manipulated variables.
However, dynamics can inflate the size of the space. For example, consider three output
variables and one manipulated variable. If dynamics from this input to all output variables
are the same, dynamic data (e.g. from a step change in the input) falls on the steady state
gain vector (one dimension). If dynamics are different, two or even three dimensions may
be observed since the dynamics cause the path of data to deviate from the steady state

gain vector.

5.2.2 Disturbance Space

Perturbations due to the disturbances also move the process in a subspace of the
output space. In general, this will differ from the MV space, and will be referred to as the
disturbance space. The disturbance space can be characterized as in the last chapter
(equation 4.2). The disturbance space is the subspace spanned by individual disturbance
direction vectors (P; = [Pai Paz---Paal)- Setpoint changes can also be considered
disturbances; if setpoint changes are to be called for in all the outputs, the corresponding
disturbance space is the full output space (P, =1I).

5.2.3 Controlled Variable Space
Each controlled variable is defined by its controlled variable axis. For example,
take (y;, Y2 ,¥3) as the output variables. If y, is chosen as the controlled variable, the
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controlled variable axis (vector) is [0 1 0]". The span of the controlled variable axes
(vectors) is referred to as the controlled variable space (here, [0 1 0] is the controlled
variable space). If there are two controlled variables, then the controlled variable space is
a plane, if there are more than two controlled variables, the controlled variable space is a
hyperplane.

The following two terms will be used frequently in the paper as well, and must be
defined and explained.

Latent variable: a latent variable is a new variable defined as a combination of the
existing whole variables, which summarizes in some sense the dominant structure or
variation in the output space.

Latent direction: each latent variable has a latent direction associated with it. For
example, say a latent direction P defines the direction of greatest variability in a process,
where P = [0.7 0.2]". The latent variable associated with this latent direction is z = Py =
0.7y,+0.2y,.

5.2.4 Framework for Unification

The framework for discussing the methods was derived in the last chapter and is
summarized briefly here, using the process space terminology from the previous section.
Many of the reduced dimension methods will be related back to this framework.

First, the optimal linear combinations of the inputs and outputs that should be
controlled was derived. That is, an expression for the optimal controlled variable space

was derived as:
C.imu = K(K'K) ' KTP, (5.1)

The optimal controlled variable space is that space spanned by the columns of C, gy For

convenience it is assumed that the columns of C, ., are scaled to unit length. As
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discussed in Chapter 4, the corresponding optimal set of controlled variables is given by
the linear combinations y.,= C,pma'Y-

The corresponding space in which the inputs should be manipulated is given by:
Mopﬁnul = (KTK)_lKTPd (5'2)

In the remainder of the Chapter, the term ‘input directions’ will be used to
describe the space spanned by the columns of the matrix M, .- The associated optimal
set of manipulated variables is defined by the linear combinations u,, = (M, uma Moptims)
lM..,,ﬁ.....Tll-

Therefore, the optimal controlled variable space is a result of projecting the
disturbance directions onto the manipulated variable space. The dimension of the
controlled variable space (the number of independent directions that must be controlled to
minimize the overall error) will be given by either the dimension of the disturbance space
or the dimension of the manipulated variable space, whichever is smaller.

Two special cases arise frequently, and merit some further discussion. First, in
some processes, one may be interested in setpoint changes, rather than disturbance
regulation. Within the framework discussed above, the ‘disturbance’ is the entire output
space, therefore P, = I. The optimal controlled variable space becomes:

Conen = K(K'K) KT (5.3)

optimal
The projection of the identity matrix onto the manipulated variable space is simply the
manipulated variable space itself. Therefore, for the case which setpoint changes are of
interest, the optimal controlled variable space is the manipulated variable space
(characterized by the span of the gain matrix vectors, C,,gmu = K)-

A special note should also be made concerning the calculation of C, yu, for ill-
conditioned processes. When the process is ill-conditioned, K is not full rank and K'K
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cannot be inverted for the calculation. However, the projection operator K(K'K)'K" may
still be defined by replacing K with a full rank matrix whose columns span the same
space as the columns of K. A convenient choice for such a matrix is W,_,,. The matrix
W, is obtained from a singular value decomposition of K (K = WSVT), where W__, are
the first ‘a’ columns of U associated with non zero singular values. The optimal

controlled variable space for ill-conditioned processes can then be calculated:

Copﬁnul = m(mewm )—lmePd (5 4)
=W_W_TP, '
since W_,"W__, = L. Note that replacing K with the matrix W,,, does not change the

interpretation of C, s

5.3 Data Based Methods

In this section, data-based methods for reducing the dimension of the control
structure will be discussed. The methods are grouped into two main classes, or
approaches: Principal Components (PCA) Based Methods and Canonical Variates Based
Methods. The layout of each section is as follows. First, a general description of each
approach will be given first, and then the approach will be discussed and illustrated
through specific applications found in the literature. The approaches are related back to
the optimal framework, and any situations in which these approaches may provide
unreliable results are discussed.

5.3.1 PCA-based Methods

Principal Components Analysis (PCA) is a multivariable statistical method that
finds the directions of greatest variance within the data, and characterizes them with a set
of ‘a’ orthogonal basis vectors (columns of the PCA matrix P, where P is an nxa matrix).
The latent variables associated with these directions are given by t = PTy. PCA is applied
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directly to the plant data with no need to identify a process model first (Wold et al 1987).
The application of PCA for model reduction and possibly control space characterization
was recognized as a potential approach as early as Moore (1981).

Because it focuses on variability within the data, PCA is very effective for
determining the dimension as well as the directions of the process spaces. The ‘a’ vectors
that form the columns of P are a basis for the variation observed in the data. The
dimension of the space that contains significant variation (‘a’, where ‘a’ is less than n, the
number of measured outputs) can be determined using various criteria such as cross
validation (Wold et al (1987)).

There are several types of output data that one can obtain from a process, and
depending on the data, PCA can be used to characterize the different spaces. For example,
if one has pure open loop data (data that contains disturbance information only) then an
PCA of this data will give the reduced dimension disturbance space (P = P,). If data is
available that contains only manipulated variable perturbations, the PCA vectors will
characterize the manipulated variable space (P = K(K"K)"'K"I). If the data are available
from open or closed-loop plant tests, in which test signals are introduced in all the inputs,
and in which representative disturbances are present, a PCA will uncover the union of
disturbance and manipulated variable spaces (P = union(P,, K)). In all three situations,
some very useful information is obtained from a PCA analysis of the data. A final type of
data that is readily available is regular operating data, or pure feedback data in which no
dither signals have been added to the inputs. In this case, there is limited information that
can be extracted from the data. The main variation will appear in the variables that are not
controlled (depending of course on the effectiveness of the feedback action) and will
generally not be indicative of the manipulated variable or disturbance spaces.

As well as providing a method for determining the effective dimension of the
process spaces, Principal Components Analysis can also be applied as a technique for
controlled variable selection. For example, consider a process with ten quality variables.

A PCA of plant test data may indicate only four dimensions of variability. First, this
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implies at most four directions need to be controlled, since all the observed variability
falls in only four dimensions. Two options exist. First, one may choose to control the four
directions that are given by a PCA analysis. This corresponds to controlling the four
latent variables associated with the each of the PCA directions (y., = P"y). Second, one
may choose instead to control four physical variables. Both approaches have been
suggested and will be discussed using examples below.

One comment is in order prior to discussing the examples. In applying PCA for
controlled variable selection, some care must be taken with respect to the data that is
analyzed. For example, if one uses PCA to analyze disturbance data, the space
characterized by PCA is the disturbance space. If one then proceeds to use the analysis
for controlled variable selection, the resulting controlled variable space could be
completely different from the controlled variable space derived within the optimal
framework since no manipulated variable information is contained within the disturbance
data. Therefore, a poor set of controlled variables may result, particularly if a large
portion of the disturbance lies outside the manipulated variable space.

The most common type of data that PCA should be applied to is plant test data or
open loop data with dithers on the inputs. In this case, a PCA analysis gives the union of
disturbance and manipulated variable spaces. While this will not, in most cases, result in
the minimum number of controlled variables expected from the optimal framework, the
controlled space indicated by PCA (C,,= umion(K,Pd)) will contain the optimal
controlled space from the framework (C, 4ua= KK'K)'K'P,).

Two applications that apply PCA for controlled variable selection will be
discussed below. One application uses PCA directly, and proposes to control linear
combinations of the original variables, and one application proposes a modification to

PCA, for selecting a subset of the original variables for control.
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Control of Crystal Size Distribution

Principal Components Analysis was applied for reduced dimension control of the
crystal size distribution (CSD) in a continuous crystallizer (Eek and Bosgra (1995a and
b), Eek et al. (1995, 1996)). The crystal size distribution was characterized by recording
31 locations along the distribution. Three inputs could be varied: fines removal, total heat
input and product removal rate. The motivation for pursuing dimensionality arose
primarily from the desire to avoid using a complicated model based scheme (Eek et al
(1995)), and an awareness that there were clearly limited degrees of freedom in the plant.

To assess the process dimensionality and the potential for dimension reduction, a
PCA of plant data was performed. There were 10 unique data sets, containing plant tests,
startups, shutdowns and regular operations over 4 years. A PCA analysis was performed
on each of the ten data sets. It was found that six dimensions explained between 95 and
99 % of the variation in each of the data sets. These six directions also tended to be fairly
consistent from data set to data set. Therefore, there is definite potential for reduction.

Eek et Bosgra (1995a) then applied PCA for selecting controlled variables. They
proposed that the first principal component be controlled, that is, control the latent
variable z, = p,"y, where p, is the direction of largest variation and y contains the 31
measured values along the CSD. Physically, z, is one particular weighted sum of the CSD
variables, and it was chosen because of its high variability (note that another particular
weighted sum of the CSD is the average crystal size, which is often chosen due to its
physical significance). Following the controlled variable selection, several reduced
dimension control structures were tested: a SISO controller, with the controlled variable
taken as z,, and the manipulated variable taken as the fines removal rate, and a 2x2
MIMO controller (the controlled variables were z, and the slurry density while the
manipulated variables were the fines removal rate and the total heat input). Results were
reported for the controlled variables only and in both cases, good control of the selected
outputs was reported. However, the impact of the control actions on the full CSD wasn’t

explicitly given.



133

In this application, the data analyzed contained both disturbance and manipulated
variable information. However, it covered a very wide range of steady state operations
and some major dynamics due to start up and shutdown. This might very well have
inflated the apparent dimension of the combined disturbance and manipulated variable
spaces. All that is known is that the expected process variation appears in six dimensions.
It is therefore uncertain what variation is captured in the first principal component. It may
be primarily disturbance information or manipulated variable information, or a
combination of both. It is unknown whether the direction p, is going to be close to
optimal controlled space, C, ,sny for this process.

Control of Industrial Polybutadiene Reactor

Roffel et al (1989) used Principal Components Analysis for reducing the
dimension of a multivariable controller for an industrial polybutadiene reactor. In the
butadiene process, three outputs that characterize quality were measured (mooney
viscosity, fluids viscosity, and percent solids). Three inputs could be adjusted (flowrate of
catalyst, flowrate of modifier and flowrate of promoter).

A PCA of plant test data indicated that 96% of the variation was explained by
only two dimensions. Therefore, at most, only two of the three dimensions need to be
controlled. The option certainly exists to control the two linear combinations given by the
PCA analysis, as was illustrated with CSD control. In the CSD control problem, a linear
combination of distribution variables has some physical meaning, being a weighted
average of the CSD. However, a linear combination of different variables, such as
mooney viscosity, fluid viscosity and percent solids is less meaningful. The operators and
engineers opposed controlling linear combinations of the outputs for this reason and
preferred that whole outputs be chosen for control instead.

This is typical of many industrial processes in which it may be preferable to
control whole outputs rather than linear combinations. Roffel et al. (1989) therefore
propose a systematic procedure called Selective Principal Components Analysis (SPCA)
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for choosing subsets of the output variables that are well aligned with the variation
observed in the data. First, a regular PCA of plant data is performed, in order to decide
the number of dimensions that need to be controlled. Then, the output associated with the
largest element in the first principal component (or one of the largest elements) is chosen
as the first controlled variable. This is the output that is best aligned with the direction of
largest variation. After a particular output is chosen as a controlled variable, the data is
deflated prior to selecting the next controlled variable. This is accomplished by regressing
all other output variables on the chosen controlled variable and then taking residuals. All
variation in the chosen variable is removed (corresponding to perfect control) AND all
the variation in all other outputs that is correlated to the chosen variable is therefore also
removed. A PCA is then performed on the residuals and the procedure is repeated until
the desired number of controlled variables have been chosen.

Roffel et al (1989) applied SPCA to plant test data from the polybutadiene reactor,
and the analysis indicated that mooney viscosity and percent solids should be controlled.
The residuals of SPCA show that less than 7% of the variation remains after controlling
these two outputs. Two manipulated variables, the modifier and catalyst flowrates, were
chosen based on the process engineer’s experience. A 2x2 multivariable controller was
implemented on the plant and good overall control (in all three outputs) was reported,
even though only two were directly controlled.

A key advantage of the SPCA method is that the resulting controlled variables are
complementary due to the nature of the deflation. Deflation removes all variation in the
chosen output, as well as variation in the other outputs that is correlated with the chosen
output. By perfectly controlling the chosen output, that variation in the remaining outputs
that is correlated with the chosen output will also be removed. This is accounted for in
SPCA, prior to selecting the next output for control. Therefore, subsequent controlled
variables will be complementary to the ones chosen already.

For illustration, in the polybutadiene example, given that only two output
dimensions needed to be controlled, the plant operators and engineers wanted to control
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the two viscosities, since these were the variables that had the highest variability. The
first principal component of the plant data also indicated that these two variables had the
largest elements in the first principal component. However, SPCA revealed that once the
mooney viscosity was selected as the first control variable, the residual variation in the
fluid viscosity was small. Therefore, it was only necessary to directly control one of the
viscosities, and the percent solids should be chosen as the second controlled variable. The
results of the SPCA were confirmed in practice when the 2x2 multivariable controller
was implemented on the system. It was seen that the variability of the fluid viscosity was
reduced substantially even though it was not directly controlled. Therefore, the SPCA
selected the two most complementary variables for control.

Summarizing, PCA-based methods are effective for evaluating dimensionality and
characterizing process spaces from plant data. Both PCA and SPCA are effective for
choosing complementary sets of controlled variables, and although the methods will not
necessarily result in the theoretical minimum number of controlled variables, some
dimension reduction will result. Furthermore, some insight into the process may be
obtained by interpreting the linear combinations given by the principal components. The
main drawback to PCA based methods is that the data used in the analysis needs to be
chosen with caution and must contain manipulated variable information. No guidance
into manipulated variable selection is provided since causal relationships between the

input and output spaces are not available.

5.3.2 Canonical Variates Based Methods

Canonical Correlation Analysis (CCA) is another multivariate statistical method
closely related to PCA (Box and Tiao (1977)). PCA finds the directions of highest
variability. CCA, on the other hand, finds directions in dynamic data that are most
predictable, and ranks them according to predictability. Box and Tiao (1977) developed

this approach in order to reduce the dimension of multivariate time series data. It was
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then applied by MacGregor and Wong (1980) for obtaining reduced dimension
controllers.

An ideal control application of CCA is disturbance space reduction because CCA
uncovers the most predictable linear combinations. Only the predictable portion of the
disturbances can be eliminated by feedback control. Therefore, CCA can give insight into
the controllable disturbance space if applied to data collected under pure open loop
conditions. Note that this subspace may be different from that obtained by PCA which
obtains the subspace based only on variance regardless of whether it is predictable. Jutan
et al. (1984) applied CCA to reduce the dimension of the disturbance space in a packed
bed reactor system from seven dimensions to three dimensions.

In some cases, particularly in an industrial environment, obtaining disturbance
data is not feasible. However, CCA can still be applied to process output data with
manipulated variable moves present. With respect to characterizing the combined
disturbance and manipulated variable spaces, CCA is perhaps less useful than PCA under
these circumstances. The predictable components will be some combination of the
disturbances and the effects of the manipulated variables and the results of the CCA
analysis will depend on the input signal as well as process characteristics. However, even
in this case CCA can provide useful insight into whether a dimension reduction is
possible.

It should be emphasized that CCA is a ‘dynamic’ tool. In the method, it is
assumed that the original time series can be represented by a multivariable AR(k) model,
that is, the data must have trends or dynamics. If, for example, the process is sampled
infrequently relative to the process dynamic and the inputs are forced by random PRBS
test signals, a CCA analysis provides no insight since all components will be
unpredictable.

MacGregor and Wong (1981) applied CCA to obtain a reduced dimension control
system for a packed bed hydrolysis reactor. The process had three outputs (production
rates of butane, propane and hydrogen) and two inputs (flowrates of butane and
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hydrogen). Since the plant was open loop unstable, quasi-closed loop plant test data was
collected, in which one of the flows was adjusted to maintain the bed hot spot
temperature at a setpoint and test signals were added to both inputs. A CCA analysis
indicated two highly predictable components and one component that was almost entirely
white noise and had a very small variance. The authors chose to control two of the three
production rates, rather than the two linear combinations indicated by CCA, since the
former was more meaningful. Propane and butane production rates were chosen since

they had the highest signal to noise ratio.

5.4 Model Based Methods
5.4.1 Singular Value Decomposition Methods

As a control and analysis tool, Singular Value Decomposition (SVD) was
originally developed to design controllers for interacting square multivariable processes.
However, it is also useful for the analysis of non-square processes and non-full rank
processes due to the insight it provides into the underlying process dimension. In this
section, Singular Value Decomposition will be discussed in the context of reduced
dimension control. First, the general method will be outlined and briefly related to the
RDC framework. Following this, two recent applications will be discussed in order to
illustrate the SVD approach and highlight key results.

The SVD method has been applied by many research groups (for example, Hovd
et al (1996), Zhu et Jutan (1998), Keller and Bonvin (1987), Lau et al (1985)). The
general methodology is based on the singular value decomposition of the input-output

gain matrix (assuming n outputs and r inputs):

y =G(s)u

= W(s)S(s)V(s) u -3
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where W is an nxn orthogonal matrix, V is an rxr orthogonal matrix and S is a diagonal
nxr matrix. In the general case, V and W are frequency dependent (but constant at a
given frequency). However, one of the following simplifications can often be made (Lau
et al (1985)):

1. A particular frequency is established as a “critical frequency’, or most important

for the process for a physically significant reason. Therefore, V(s) and W(s) are

replaced by constant matrices V and W at that frequency.

2. The process is a steady state process; therefore, V and W are constant

3. The process has the same dynamics from all inputs to all outputs; therefore V(s)
and W(s) are the same constant values at all frequencies.

In quality control, one of the last two conditions are often true. For illustrative
purposes, assume that the third condition is met. The singular value decomposition of the
gain matrix becomes:

a(s)
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An inner system is defined between the variables z (= W'y) and m (= VTu). Only
the first r variables in z (at most) are affected by the ‘r’ inputs (z,, where z = [z, z,.]).
Furthermore, since the matrix S is diagonal, the square, inner system between z_ and m is
non-interacting (m; only affects z_)).
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In the context of reduced dimension control, the singular value decomposition is
useful for two reasons. First, it is helpful in characterizing the dimension and directions of
the manipulated variable space due to the physical interpretation of the vectors of SVD.
When the inputs are perturbed along the direction v, in the input space (where v, is the
first column of V), variation is observed in the output space in the direction w, (where w,
is the first column of W). The magnitude of the variation is given by the size of the
associated element in S (the elements in S are traditionally ordered from largest to
smallest). Therefore, the vectors u,, u,... (the columns of the matrix W) are a basis for
the directions in which the inputs can move the process. That is, the columns of the
matrix W span the manipulated variable space (as defined in the section 5.2). The shape
and dimension of manipulated variable space is indicated by diagonal elements of S, s;. If
the s; element is very close to zero, the manipulated variables have limited ability to move
in the associated output direction, w, (indicative of ill-conditioning in the process). The
number of non-zero diagonal elements gives the dimension of the manipulated variable
space. Therefore, SVD is very effective in assessing the manipulated variable dimensions
and directions. Note here that a singular value decomposition of the gain matrix, and a
PCA of data that contains only manipulated variable moves are in fact equivalent ways of
defining the manipulated variable space.

The SVD can also be used for controlled variable selection. As with PCA, one can
use SVD to select linear combinations (new latent variables) to control, or for insight into
which whole variables should be controlled. Both will be discussed, with emphasis on the
former.

Selection of latent variables is very straightforward from the singular value
analysis. New latent controlled variables are defined by z, = W,."y (where the subscript
nxr indicates matrix dimension) and the new latent manipulated variables by m = V'u.
The controlled variable space is given by the first r columns of W (C, 4, = W,,,) and the
input directions (as discussed in section 5.2.4 and Appendix 4.1 from Chapter 4) are
given by the columns of V. Therefore, the controlled variable space resulting from the
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SVD approach is the manipulated variable space. This is exactly equivalent to the optimal
controlled variable space derived within the framework (C, gma> €quation (5.3)) for the
disturbance assumption P,= I (setpoint changes).

The selection of whole variables for control using the SVD is equally
straightforward (Luyben (1989), Smith et al (1981). Once an SVD of the gain matrix is
performed, select as the first controlled variable the output with the largest element in the
vector w,. This corresponds to selecting the whole output that is best aligned with the
largest direction of variation in the manipulated variable space. This output should then
be paired with the input with the largest element in v,. This procedure is repeated for the
other SVD components. Since W is an orthonormal matrix, the columns are
perpendicular to each other, the resulting set of controlled variables should be somewhat
complementary. However, unlike SPCA, the procedure does not explicitly account for the
correlation or interaction effects that controlling a selected output will have on the other
outputs. Lau et al (1985) extend the SVD-based selection approach to include a measure
of interaction when one chooses to pair individual inputs and outputs rather than
controlling and manipulating linear combinations.

Two recent applications will now be discussed to illustrate the SVD method and
highlight important results.

Control of a Blown Film process

An application of SVD to reduced dimension control can be found in Featherstone
and Braatz (1997). The simulated blown film example addressed in this publication is
very typical of observations on large ill-conditioned processes and therefore merits
discussion.

In the blown film process, film thickness is measured at forty-five unique
locations. There are also forty-five actuators available. The dynamics from all inputs to
all outputs is the same. A standard multivariable controller (Quadratic Penality Function
method) is widely used in industrial sheet and film processes, however, poor performance
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of the QPF controllers are often reported. The authors suspected that dimensionality
issues were the root cause and proposed an SVD analysis.

An SVD of 45x45 gain matrix indicated that only ten significant directions (only
ten of the diagonal elements of S were statistically significant). This implies a process
limitation in that the inputs cannot independently control all the outputs since the true
underlying dimension of the manipulated variable space is only ten. Therefore, the
authors proposed that only the ‘significant’ directions be controlled, and a reduced
dimension controller be implemented to control the 10 dominant singular directions of
the output space (w,, W, ... W,,) by adjusting the inputs in the corresponding 10 singular
directions of the input space. That is, the following linear combinations are chosen for the
reduced dimension controller:

_ _ T
Yoo =Zyg = Wesp0' Y

_ _ T
U,y =My5 = Voo U

(5.8)

This example is particularly insightful as it compares the RDC (which acts on
only 10 output directions) to the standard QPF controller (which attempts to directly
control all 45 outputs). It is seen that the performance of the SVD based reduced
dimension controller is significantly better than the full dimensional QPF, when
variability in all the outputs is quantified. This is attributed to that fact that the QPF
attempts to adjust the manipulated variables in all directions in the output space
(including weak ones), and due to the process model mismatch (particularly in weak
directions), deterioration in the overall output performance is seen.

Control of Sheet Forming Processes
Several research groups have also addressed control of paper making machines
using a SVD based approach (Featherstone and Braatz (1997,1998), Arkun and Kayihan
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(1998), Rigopoulos et al (1997)). In this section, the application of Arkun and Kayihan
(1998) to a simulated paper making machine will be discussed.

This paper making process has 125 measurements relating to paper quality and
125 actuators (slice lips) across the sheet of paper, with similar dynamics and deadtimes
from all the actuators to all the measured outputs. Control of such paper making
processes has been a challenging control problem for industry due to the large scale and
ill-conditioned nature of the process. As with the blown film process, the paper making
process is an example of a process in which full multivariable model based controllers
often exhibit poor performance due to a lack of robustness to process/model mismatch.

A dimensionality analysis of the paper making process gave the following insight.
An SVD of the 125x125 gain matrix indicated that the manipulated variable space is only
75 dimensions. Furthermore, a PCA of open loop disturbance data indicated that there
were only 2 disturbance directions (details of the PCA analysis can be found in
Rigopoulous et al (1997)).

Hence, the authors suggested that one need only control two dimensions. Rather
than use the SVD methodology directly (which would result in 75 output directions being
controlled), the authors proposed to reduce the controller dimension further, from 75 to 2,
by incorporating the disturbance directions into the controller. The two disturbance
directions were projected onto the manipulated variable space (defined by the columns of
W 2575 from the SVD of the gain matrix), and the authors proposed to control only these
two directions, with the corresponding input directions. The controller had an additional
online disturbance estimation step (details may be found in the publications) in order to
handle changing disturbance structures. It can also be shown that the controlled variable
space (and corresponding input directions) in this method is equivalent to the controlled
variable space derived with the framework earlier. A more detailed explanation of the
mathematics of the approach and its relationship to the optimal framework may be found
in Appendix 5.1 at the end of this Chapter.
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The two dimension RDC was applied to a simulated paper making process and
compared to a full dimension IMC (that acts explicitly on all 125 outputs). The RDC,
which acted explicitly on only 2 output directions, was shown to outperform a full
dimensional IMC controller, when variability in all the outputs were considered. Again,
this was attributed to the lack of robustness of model based multivariable controllers

when applied to ill-conditioned processes.

5.4.2 Gain Matrix Indices

As was seen in the section on singular value analysis, a lot of information can be
obtained from the input-output matrix. In this section, two indices that are calculated
directly from the gain matrix will be discussed. One index, the Disturbance Inflation
Factor, explicitly considers disturbances, while another, the Non-Square Relative Gain
Array does not.

5.4.2.1 Non-Square Relative Gain Array

In chemical engineering, processes with more outputs than inputs are very
common. Two approaches to controlling non-square processes are possible. One could
implement a non square controller, or one could choose to eliminate some of the outputs
and act on the resulting square process. Process control theory (both the analysis and the
algorithms) historically caters to square systems, therefore it would be desirable to have a
method for paring down the outputs and squaring a non-square system. Chang and Yu
(1990) address this problem by proposing a tool based on the Non-Square Relative Gain
Array (NSRGA).

In Chang and Yu (1990), an index called the Row Sum, based on the NSRGA, is
derived. For details, the reader is refered to Chang and Yu (1990) as only a brief
overview is given below. The row sum (the sum of each row of the NSRGA) is calculated

from the steady state gain matrix and is evaluated for each output. Those outputs with the
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largest row sums are chosen for control. Geometrically, the row sum is the norm of the

projection of each output axis (y;) onto the manipulated variable space:
rs; = [KEK) 'Ky, (5.9)

where K is the steady state gain matrix. The proof of equation (5.9) can be found in
Appendix 5.2.

The larger the row sum, the closer the associated output is to the manipulated
variable space. Therefore, the row sum is a method for selecting those outputs that are
best aligned with the manipulated variable space. Selecting outputs based on the row sum
should provide a subsystem that results in a low overall error.

The implicit assumption in calculating the NSRGA and the row sum is that the
manipulated variables have already been selected, and a square system is desired.
Therefore, the object is to chose as many controlled variables as there are manipulated
variables. No insight into the ‘true’ process dimension is given. Disturbances are not
considered (it is assumed that the primary interest is setpoint changes).

Clearly, the concept of finding outputs based on their alignment with the
manipulated variable space is very similar to that of Selective Principal Components
Analysis. However, the row sum is very much a ‘univariate’ tool rather than a
multivariate tool like SPCA. To illustrate this point, consider the MWD example from
Chapter 3. Recall there are 100 MWD (output) variables and 3 input variables
(temperature, monomer charge and initiator charge). Using the gain matrix identified
between the full MWD (100 outputs) and the three inputs, the row sums can be
calculated. Figure 5.1 shows the row sum for each of the outputs.
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For this set of manipulated

CV=3,4and5 . g
variables, the row sum indicates that

variables 3, 4 and 5 should be controlled
(these are the outputs with the largest

0 2 40 0 & 10 1 associated row sums). Since variables 3,
MWD variable

Figure 5.1. Selection of controlled variables using 7 204 3 are three adjunct points on the
the Row Sum MWD, the row sum approach has
essentially selected the same wvariable
three times. In reality, perfectly controlling variable 3 would likely result in near perfect
control of variables 4 and 5 as well. From a practical standpoint, the result is that the
subsystem with variables 3, 4 and 5 as the outputs would be very ill-conditioned. This
type of result was also pointed out in Chang and Yu (1990), although no explanation was
given.

Compare this result to that from SPCA, which also selects a set of the outputs, but
is designed to provide complementary outputs. MWD data is generated in which there are
only manipulated variable perturbations (this data also allows a more appropriate
comparison to the NSRGA, which uses only manipulated variable information in the
selection of controlled variables).

An SPCA analysis indicates that output 16 should be chosen as the first controlled
variable, followed by output 41. Note that by perfectly controlling 16, many of the
surrounding locations on the MWD will also be partially controlled, therefore it would
make little sense for variables 17 or 15 to also be directly controlled. In fact, an analysis
of the SPCA residuals (after variable 16 is removed, or, perfectly controlled) shows that
over 99% of the variation is also removed from variables 17 and 15. Variable 41 is far
from location 16 and is the next best variable to control given that variable 16 has already
been chosen.

While the NSRGA is a fast method for picking outputs based on their alignment

with the manipulated variable space, it is clearly a univariate tool, in that it selects
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controlled variables without considering the controlled variables already selected. This
can lead to ill-conditioned systems.

The NSRGA could be modified so that the choice of controlled variables is
reflected in future controlled variable decisions. Assume y; is chosen as the first
controlled variable. The gain matrix can be deflated in a manner similar to SPCA. The
notation is:

le
sz

K= (5.10)

k. T
Each row in the gain matrix (k") is regressed on the i* row of the gain matrix
(k7). Then, the residuals are taken, leaving only that portion of k;" that is perpendicular
(uncorrelated) to k;":

k'k, k'k K™k |
K“ =K_ i 1 i 2 . i I] kiT (5.11)

Each element in the i* row of K, is zero, and the portion of the other rows co-linear
with the first row of K__, is subtracted to reflect the effect of perfectly controlling y,. The
row sum can then be applied to K, to select the next controlled variable. The deflation
procedure is repeated after each selected variable. Using this modified procedure, which
now explicitly considers correlation between output variables, the row sum indicates that

output 4, followed by 9 and 20 should be chosen as the controlled variables.

5.4.2.2 The Disturbance Inflation Factor
The Disturbance Inflation Factor (seen earlier in Chapter 3) was derived to
address the problem of MWD control, although it is generally applicable to all reduced
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dimension control problems. The DIF evaluates whether controlling a subspace of the
output space will have a positive effect on the overall output space (disturbance is
attenuated in the uncontrolled space) or negative effect on the overall output space
(disturbance is inflated in the uncontrolled space). It is calculated for a given set of
controlled and manipulated variables, for a particular disturbance structure. The numbers
are straightforward to interpret. If the DIF is less than one, the control actions attenuate
the disturbance in the overall output space; if the DIF is greater than one, the control
actions inflate the disturbance; if the DIF=I, the control actions simply transfer the
disturbance from the controlled variables to the uncontrolled output variables. A DIF of 0
means the disturbance is completely eliminated in all outputs while explicitly controlling
the given subsystem. A low DIF is preferable.

For the MWD example in the Chapter 3, the DIF was used to evaluate which of
the three manipulated variables were best for controlling the average of the distribution,
in terms of the overall effect on the MWD. Specific linear combinations of the MWD
variables were also tested as potential control variables, to evaluate the potential for
improvement. Furthermore, ratios of the manipulated variables were also proposed and
tested using the DIF.

Unlike the NSRGA, the DIF considers disturbances. However, since the DIF
analysis considers specific disturbances, all representative disturbances should be
included in the analysis. Furthermore, because the DIF must be recalculated for each
subsystem, a DIF analysis is ideal only for those problems in which there is a limited
number of potential control structures (less than 10 were evaluated for the MWD
problem). The DIF analysis would also be particularly useful as a post-screening tool.
Promising subsets of variables could be chosen based on any of the methods outlined
earlier, and then the performance of the various subsystems for expected disturbance
structure evaluated using the DIF.
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5.4.3 Partial Control Methodology

The situation addressed in partial control is consistent with the reduced dimension
control problem outlined earlier: there are many outputs and few inputs, and the control
structure must be determined (Arbel et al (1996)). Partial control has been discussed in
many different papers such as Arbel et al (1996), Havre and Skogestad (1996), Zhao and
Skogestad (1997), Kothare et al (1998), Tyreus (1999). The concept of partial control will
be explained in the context of the Fluidized Catalytic Cracking Unit (FCCU) example of
Arbel et al (1996). Then, two other examples of partial control will be briefly discussed.
Empbhasis will be on the dimensionality aspects of partial control.

Partial control is an approach rather than a tool or algorithm. In partial control, the
control structure consists of primary and secondary controllers. The primary loop acts on
process variables such as temperatures or pressures, and operates quickly. The secondary
loop acts on quality variables and adjusts more slowly. The setpoints for the primary loop
are set by the secondary loop. Ideally, one wishes to choose ‘dominant’ outputs for the
primary loop. Controlling a ‘dominant’ output in the primary loop results in partial
control of many of the other (uncontrolled) outputs, such as those in the secondary loop.
In this manner, many of the product specifications or constraints are met without directly
controlling those output variables.

In the FCCU process addressed by Arbel et al (1996), well over fifteen different
output variables were available, including quality variables such as conversion and yield
and operating variables such as process temperatures. Operating variables are typically
considered for the primary (fast) loop, while quality variables are relegated to the
secondary (slow) loop. At least seven inputs could be adjusted in the FCCU; four could
be adjusted very quickly (for example catalyst flowrate) and three could be adjusted
infrequently (for example catalyst type). Arbel et al (1996) address the problem of
selecting appropriate operating variables (inputs and outputs) for the primary loop.

In order to maintain many of the outputs within process specifications, a few key
process variables will be controlled. Based on current practice in industry and literature, a
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limited number of potential control structures (sets of controlled and manipulated
variables) was proposed. Through an exhaustive analysis (e.g. time scale of responses,
controller stability, input multiplicities, effect on uncontrolled variables when a
disturbance occurs, non-linearities), a single control structure (in which two process
temperatures were controlled, and two flowrates adjusted) was ultimately chosen for the
FCCU.

The key to partial control is the identification and control of dominant outputs. If
one controls a dominant output, many of the remaining outputs will be partially
controlled. The dominance of an output is clearly related to process dimensions and
directions and is determined by the alignment of the output, the disturbance and the
manipulated variable spaces. Many outputs are strongly correlated to a dominant process
variable, thus directly controlling the dominant output partially controls the others.

In Arbel et al (1996), no tools were provided to help identify potential dominant
variables, instead they relied on process knowledge and experience. Recent publications
by Tyreus (1999a, 1999b) provide insight into dominance by applying energy balances to
uncover sets of potential dominant outputs, particularly when process knowledge is
lacking. The approach is illustrated on the Tennessee Eastman plant. In Havre and
Skogestad (1996), a tool directly related to dimensionality and output dominance is
derived. An ill-conditioned distillation column is considered for control, and the question
posed is whether partial control (i.e. direct control of only one of the two compositions)
will maintain both compositions within specifications in the face of certain disturbances.
A tool called the Partial Disturbance Gain (PDG) is introduced to aid in the selection; as
discussed in an Appendix to Chapter 3, the Partial Disturbance Gain and the Disturbance
Inflation Factor are closely related. The PDG was used to evaluate which composition
was most ‘dominant’ and therefore should be controlled.

To summarize, the ideas of partial control are closely related to those of reduced
dimension control. In fact, output dominance, as defined in partial control, is a direct
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result of high correlation among the process output variables, which arises when the true

process dimension is less than the size of the measured space.

5.4.4 Modal Methods
Modal analysis was originally proposed as a multivariable controller design
method for processes in which there are many more state variables than inputs

(Rosenbrock, 1962). It is based on state space representation of the process:

x(t) = Ax(t) + Bu(t
-G 612

A general overview of modal methods and their relationship to reduced dimension
control will be given here. For more details the reader is referred to a modal review paper
by Bonvin and Mellichamp (1982).

Modal analysis involves the eigen-decomposition of the dynamic matrix (A) in
the state space model to give new linear combinations of the states (called modes). The
modes are ordered according to their open loop speed, which is given by the associated
eigenvalue. Control is applied only to the slowest modes in order to speed up the closed
loop process response.

The main difference between modal methods and many of the other methods
discussed above is that modal analysis is primarily concerned with the dynamics of the
closed loop response. It requires a full dynamic state space model (which would not
typically be available in quality control situations) and does not specifically address the
reduced rank nature of the input/output space when selecting the modes for control.
Selection of modes (linear combinations) for control is based on the dynamic response of
the system.

The reduced rank nature of the process could be incorporated into the modal
method approach by using subspace identification techniques in the identification of the
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state space model to be analyzed. Viberg (1995) and Ljung and McKelvey (1996) provide
good overviews of the subspace based identification methods. By applying such methods
in the identification of the state space representation of the process, the reduced rank
nature of the problem is captured prior to the modal analysis. The standard modal
analysis could then be applied to uncover the slowest modes and to further reduce the
dimension of the system using dynamic considerations.

5.5 Discussion

In this Chapter, many different methods and approaches for reducing the
dimension of the output space have been discussed. Clearly, many of them have the same
objectives, and one may be tempted to ask ‘which method is best’? The best method
depends on the specific problem, and certainly no method comprehensively addresses all
the problems. Table 5.1 summarizes the information from this chapter, outlining the
methods, the ideal problem for each method and the associated warnings.

Despite the individual methodologies available, a combined approach is probably
the most thorough and effective manner of approaching an RDC problem. First, the
dimensionality of the process should be evaluated to determine if an RDC situation
exists. Does the observed plant variability fall in a space that is much smaller than the
measured output/quality space? Has correlation been observed among many of the quality
variables? The data-based methods are very effective, and efficient, for evaluating
dimensionality on various types of plant data and identifying immediately whether a
reduction is possible.

It is also important to establish the type of plant. Most RDC tools either explicitly
or implicitly make the assumption of equal deadtimes and dynamics, or infrequent
measurements. Are the dynamics and deadtimes different? While a Reduced Dimension
Controller may still perform well when the plant has non ideal dynamics (as was
observed with the digester in Chapter 4) this type of situation should still be noted. Is the
process highly non-linear? The structure of the RDC may change at different operating
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regions or the plant may be very nonlinear, and this must be addressed in the reduction. Is
the process ill-conditioned? Ill-conditioned plants exhibit robustness problems with full
model-based multivariable controllers, therefore RDC has shown a lot of potential for
these types of plants. Does the disturbance structure change frequently? If yes, one may
wish to consider methods that do not explicitly incorporate disturbances. Are certain
measurements less reliable or difficult to obtain regularly? One may wish to avoid
controlling linear combinations of the outputs if this is true.

Table 5.1. Summary of RDC Approaches

Method Ideal Problem Warning

Non Square RGA | Selection of a group of outputs for Outputs are not
control assuming the manipulated complementary; could end
variables are pre-specified up with ill conditioned

subsystem

PCA/SPCA Characterization of process spaces Data must contain input
Selection of complementary set of information
controlled variables (linear
combinations or whole variables)

CCA Selecting the controllable Must have open loop or
disturbance subspace disturbance data

DIF/PDG Evaluation of a small number of Must include all
potential controlled subsystems representative disturbances

in analysis

SVD and SVD- | Input/output dimension reduction for | Must measure all outputs if

PCA ill-conditioned processes and if the linear combinations are
disturbance dimension is low controlled

Partial Control Selection of a small number of inputs | Limited tools available
and outputs when strong correlation
exists between process variables and
process/product specifications

Modal Analysis Dimension reduction using dynamic | Does not explicitly consider
considerations reduced dimension spaces

Depending on the data available, it may be possible to characterize the disturbance
and manipulated variable spaces independently using PCA directly from the data.
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Otherwise, an SVD of the process gain matrix (if available) provides a basis for the
manipulated variable space. If one can separate the spaces by removing known
manipulated variable adjustments from the data, useful process insight is obtained by
determining if the disturbance and manipulated variable spaces overlap. If a portion of the
disturbance space lays outside the manipulated variable space, this immediately signals a
process limitation with respect to the ability to eliminate all the disturbances. It is also of
interest to note whether the disturbance space is much smaller than the manipulated
variable space; this indicates increased potential for reduction. If disturbance data is
available, PCA and CCA can be used to evaluate the variability and predictability and
how much of the disturbance is predictable and therefore controllable.

Once a preliminary evaluation of the process has been completed, a quantitative
dimension reduction can begin. Plant test data (data with manipulated variable
information) is required regardless of which method is used. It may exist from past plant
tests, or new plant tests will need to be run. Once the data is available, there are many
options. One can apply PCA or SPCA directly to the data to select linear combinations or
whole variables for control. Or, one can use the data to identify a process model, and then
apply one of the other methods, such as SVD or the Non Square Relative Gain Array. A
prudent approach would be to generate several alternative control structures using the
different methods and compare the results to see if they are consistent. Prior to settling on
one structure, it would be useful to analyze each potential candidate using the
Disturbance Inflation Factor or Partial Disturbance Gain for specific disturbances, so that
the performance in the overall quality space is confirmed.

5.6 Concluding Remarks

In this Chapter, a unification of many of the Reduced Dimension Control methods
was presented. The approaches were characterized as either data based (for example,
PCA, SPCA and CCA) or model based (for example, SVD, DIF, NSRGA and Modal
Analysis) for the discussion. Each of the general methods were discussed and then
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illustrated with specific published examples. Where appropriate, the methods and
examples were placed within the context of the RDC framework from Chapter 4. The
examples, and their relationship to the framework, were chosen in part to highlight the
issues or shortcomings of each of the approaches. For example, it was seen that the data
used in the data-based methods must contain manipulated variable information. It was
also illustrated that the model based method of the NSRGA did not chose complementary
output variables for control, and as a result an ill-conditioned subsystem could result.

In general, all methods for reducing the dimension of the controlled variable space
make the same dynamic assumptions as the framework, but this was rarely stated
explicitly in any of the publications. Many of the methods implicitly assumed setpoint
changes for the disturbance space; only a minority of methods explicitly consider the
disturbances.

The Chapter concluded with a discussion on an overall RDC approach. It was
discussed that a combined approach is the most effective and comprehensive way of
addressing dimension problems within a process. It was suggested that the data based
methods be used first to assess the process dimensionality, after which the model based
methods could be used to propose potential control structures. Specific analysis tools
such as the Disturbance Inflation Factor or Partial Disturbance Gain could then be used to
evaluate performance for expected disturbances.

5.7 Nomenclature

The following nomenclature was used in this Chapter:
C,ptimar Optimal controlled variable space

pq: disturbance direction

K: gain matrix

M, 6ma: Optimal input directions

W: left singular matrix from SVD

S: diagonal matrix from SVD



V: right singular matrix from SVD

P: PCA loading matrix

Y- latent controlled variable

u,,: latent manipulated variable

y: vector of outputs

u: vectors of inputs

G(s): process transfer function gain matrix

IS row sum

155



156

Appendix S.1. Relationship between SVD-PCA approach and the

Optimal Framework

The notation of Arkun and Kayihan (1998) is used in this Appendix. The first step
in the method of Arkun and Kayihan (1998) is an SVD of the process steady state gain
matrix (K=UZV?"). The columns of U are independent orthonormal vectors that define the
manipulated variable space, in the full output space. The size of U for the paper making
process is 125 x 75.

Second, a dimensionality analysis of the disturbance data is performed. The
disturbance varies in two dimensions, represented here by the matrix P; (= [py Pal),
where the size of P, is 125x2. Open loop disturbance data transformed:

Pyoans = U'P, (B.1)

The size of Py, is 75 X 2. Next, the authors define a matrix @, which is an
orthonormal basis for U'P, (size of ® is 75 x 2). In practice, it is obtained by doing a
principal components analysis of the transformed disturbance data. In terms of
mathematics, @ is obtained from an SVD on U'P,;:

U'P, = OZ¥"
D= UTPd (Z\PT)-I (B.2)
From the controller description, the outputs that are controlled are given by the following
expression:
=@ o) @'UT
icszf)’y ! ' ®-3)

where y is the 125x1 full measurement vector

Therefore the controlled variable space is defined by:
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C,. =U0

=UUTP,(Z¥")™ B.4)

= C pptimat (E¥ )™
where the size of the matrix Z¥7 is 2x2

Therefore, the controlled variable space (spanned by the columns of C,_,) in this

method is simply the optimal controlled variable space (C,puma), rotated. That is, the
controlled variable spaces defined by C,, and C, ., are equivalent. The corresponding
input directions are calculated by inverting the process. A similar analysis to that above
can be used to show that the method’s input directions are equivalent to the optimal input
directions given by (5.2).
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Appendix 5.2. Relationship of the row sum to the manipulated variable

space

It will be shown in this Appendix that the row sum is the magnitude of the
projection of each output vector onto the manipulated variable gain space. The expression

for the projection of an arbitrary output, defined by its vector axis y;, is:
Yors = G(GTG) ' Gy, C.1)

The norm of the projection is:

[yosl” = (G(G7G)'GTy)T(G(GTG)'GTy,)

=v7G((G"G)") Gy, (C2)
=y,"G(G'G)"' Gy,

The pseudo-inverse of the gain matrix, G*, is defined as:
G* =(G"G)'Gy, (C.3)

Therefore,

2
“y(.pujll =y,"GG"y,
y,"(i® column of GG*) (C.9
=ii® element of GG*

In the Appendix of Chang and Yu (1990), it is shown that rs; =ii® element of GG*.
Therefore, the row sum for a given output is equal to the norm of the projection of that

output’s vector onto the manipulated variable gain space. This result was also confirmed
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by calculating the norm for the example processes and comparing it to the reported row
sums in Chang and Yu (1990).



6. Summary and Conclusions

In this thesis, several issues associated with the control of product quality have
been addressed. First, the problem of incorporating an approximate fundamental model
into an online feedback quality control scheme was addressed. The second problem
investigated in the thesis related to the dimensionality issues in product quality control.
The issue of controlled and manipulated variable selection while minimizing the overall
variability in the product quality was addressed. The major conclusions and the main
contributions of this thesis are outlined in this chapter.

In the second chapter, a new batch-to-batch optimization methodology for
producing a desired MWD has been presented. The advantages of the proposed batch-to-
batch optimization methodology are its simplicity and flexibility. Fundamental
polymerization knowledge was used to simplify the optimization problem, thereby
avoiding the need for a complex on-line numerical optimization routine and issues
relating to its convergence. The approach showed that for linear polymers, any desired
MWD can be approximated by a combination of a few constituent distributions. Each of
these component distributions can be produced by controlling one (or possibly two)
parameters (t,) representing the ratios of kinetic rates. The method allowed for great
flexibility in choosing the variables to manipulate (batch temperature, monomer or
initiator flowrates) since any combination of them can be used to achieve a desired value
of T or B. These decisions can therefore be made with the specific process and its
constraints in mind. Furthermore, this method has many desirable features when
compared to other batch-to-batch optimization or MWD control applications: only an
approximate fundamental model is required; historical plant test data is not needed and
on-line measurements of the full MWD are not required. The methodology is shown,
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through simulated case studies, to efficiently return the process to the desired MWD
within a few batches for a wide range of process/model mismatch.

The optimization approach was then extended for use as an on-line control
method. To achieve this, it was necessary to address the modeling of highly correlated
measurement error typically observed in the MWD measurements. Principal Components
Analysis was used to analyze replicate GPC data and formulate a MWD noise model
consistent with the structure found in the real MWD data. A multivariable statistical
process control (MSPC) monitoring scheme was then applied for deciding when a new
batch optimization was required. The optimizer remained on, but dormant while the
desired MWD was being produced, and re-optimized the process quickly if the process
changed and poor quality polymer was produced. The combined MSPC/batch-to-batch
optimizer was demonstrated on a simulated semi-batch polystyrene reactor. It was seen
that the optimizer was able to distinguish between measurement error and process upsets,
and corrections were made only in response to process upsets. The optimizer responded
quickly to process upsets and was able to re-optimize the process within several batches,
despite process/model mismatch and measurement error.

The contributions from Chapter 2 are as follows. First, a new batch-to-batch
optimization methodology for obtaining manipulated variable trajectories for producing a
desired MWD in batch/semi-batch reactors was developed. Second, a method for
modeling the correlated multivariable noise typically found on real MWD measurements
was presented. Finally, the batch-to-batch optimization methodology was combined with
a multivariable statistical method in order to handle noisy MWD measurements.

In the third chapter, indirect control of the full MWD by directly controlling the
weight-average chain length of the distribution was investigated. When the full MWD
was considered, it was shown that the choice of manipulated variable was critical when
controlling the average. For the polystyrene semi-batch reactor, only one of the three
potential manipulated variables actually improved the full MWD while directly
controlling the average. A new steady state analysis tool, the Disturbance Inflation Factor
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was derived to quantify the observed results. To calculate the DIF, the dominant
disturbance directions and process gain matrix in the full output space was needed.

The DIF was then applied to quickly and effectively predict the impact, on the full
MWD, of a large number of potential control options. It was seen that with prudent
choices of manipulated and controlled variables, simple single variable controllers can
provide significant improvement in the full MWD. Ratio and latent variable control were
two options suggested. Ratio control (in which a ratio of two manipulated variables was
used to control the molecular weight average) was seen to be a feasible option for the
polystyrene system in which one disturbance perturbed the process. The ratio was chosen
so that the gain vector of the new manipulated variable was aligned with the disturbance
direction. Excellent disturbance attenuation in the full MWD was achieved. When the
disturbance was characterized by two or more directions, the concept of best and worst
disturbance directions was introduced. Single variable latent variable control (in which a
linear combination of the MWD variables is controlled) was successful for the
polystyrene process with two disturbances. Also investigated was a multivariable
controller in which both number- and weight- averages are controlled. The multivariable
controller provided an effective and easily implemented control strategy for implicit
control of the full MWD, when more than one disturbance direction was observed.

The contributions from Chapter 3 are as follows. First, a linear analysis tool for
controlled and manipulated variable selection, the Disturbance Inflation Factor, was
derived. Second, a methodology, whereby the disturbance and process directions are used
for predicting the impact on the full MWD when controlling an average or polydispersity
was presented. The method can be applied to any process with many quality variables
(not just the MWD) for selecting effective controlled and manipulated variables. Finally,
the application of Principal Components Analysis (PCA) for the characterization of
dominant disturbance directions was presented.

In Chapter 4, the issues related to dimension and control were generalized. A
framework for reducing the dimension of the controlled subsystem was derived based on
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minimum variance control theory. Two cases were considered. First, expressions for the
linear combinations of the inputs and outputs that should be manipulated and controlled
in order to minimize the overall error in the output space was derived. Second, an
expression for the linear combination of the inputs that should be manipulated to
minimize the overall error in the output space when the controlled variable is fixed was
derived. The role of the number of independent disturbances in determining the number
of controlled and manipulated variables, and the structure of the resulting reduced
dimension controllers was clearly illustrated in the framework.

It was shown that several assumptions were made in the derivation of the optimal
directions for control. These were: the process is sampled infrequently relative to the
process dynamics, or equivalently, the process dynamics from all inputs to all outputs are
the same; there are equal deadtimes from all inputs to all outputs; and the process is linear
and non-time varying. For many product quality control situations in which disturbance
regulation is the primary goal, these assumptions are approximately true. However, there
are processes for which these assumptions are violated. In Chapter 4, the RDC approach
(based on the framework) was applied to a non-ideal dynamic digester to evaluate the
effect of violating the RDC assumptions. Two single variable Reduced Dimension
Controllers, a latent variable controller (that adjusted a ratio of the manipulated variables)
and a whole variable controller (that adjusted a single manipulated variable), were
proposed. The RDCs were compared to a DMC that adjusted all inputs to control all
outputs. At the operating point for which the RDCs were designed, control performance
was very good despite the dynamic non-idealities of the process. Even though its
structure was much simpler, the latent variable controller performance was comparable to
that of the DMC in all outputs but one. When the operating point and process directions
changed, the RDCs showed only modest degradation in controller performance (primarily
in one output). In general, one would expect the performance of the RDCs to be sensitive
to changes in disturbance direction (although this was not an issue for the digester).
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The contributions from Chapter 4 are as follows. First, a new framework for
selecting the optimal directions to control when the overall quality is important was
derived. The framework provided important insight into how the process and disturbance
directions impact the controlled subsystem structure. Second, the framework was applied
to a dynamic process in order to evaluate the feasibility of RDC under non-ideal
circumstances.

In Chapter 5, a unification of existing RDC methods was addressed. The
approaches were characterized as either data based (for example, PCA, SPCA and CCA)
or model based (for example, SVD, DIF, NSRGA and Modal Analysis). Each of the
general methods were discussed then illustrated with specific published examples. Where
appropriate, the methods and examples were placed within the context of the RDC
framework from Chapter 4. The examples, and their relationship to the framework, were
chosen in part to highlight the issues or shortcomings of each of the approaches. For
example, it was seen that the data used in the data-based methods must contain
manipulated variable information. It was also illustrated that the model based method of
the NSRGA did not chose complementary output variables for control, and as a result an
ill-conditioned subsystem could result.

In general, all methods for reducing the dimension of the controlled variable space
made the same dynamic assumptions as the framework, but this was rarely stated
explicitly in any of the publications. It was also seen that many of the methods implicitly
assumed setpoint changes for the disturbance space; only a minority of methods explicitly
consider the disturbances. The Chapter concluded with a discussion on an overall RDC
approach. It was discussed that a combined approach, using many of the methods in
sequence or simultaneously, was the most effective and comprehensive way of addressing
dimension problems within a process.

The primary contribution of Chapter 5 is insight into the area of reduced
dimension control. Because of the different backgrounds of the existing applications, the

common issues are often overlooked and therefore new applications are rarely placed
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within the context of other methods. The result is a number of apparently different
methodologies for selecting subsystems of controlled and manipulated variables. In order
to increase awareness and understanding in this promising field, the contribution of this

chapter was to provide a unifying view of the existing methodologies and applications.
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