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ABSTRACT

This thesis is focused on the topic of tracking multiple moving targets by combining the spatial
and temporal information obtained by 2 passive array. For stationary sources a unified constrained
subspace fitting approach for estimating the DOA’s of spatially close source signals is presented.
The algorithm is based on the Karhunen-Loéve expansion of the covariance matrix of the array
manifold in a sector of interest and searches for an optimal signal subspace over the array manifold
space, which has minimum principal angles with the data signal subspace generated from the array
data. This method is shown to be asymptotically consisten:. Although this algorithm involves only
one-dimensional researches, its performance is comparable to those in which multi-dimensional
optimization is used.

We propose a maximum bkelihood approach for tracking moving targets by passive arrays. A
locally linear model is used for the source target motion dynamics, and the target state is shown
to be strongly observable. An MTS (multiple target state) vector is defined to describe the source
target state. The maximum likelihood estimator is based on a batch of array data. The initial
MTS is estimated as the maximizing point of the likelihood function of a batch of array data, and
the subsequent MTS vectors are predicted by the target dynamics. Since the association problem
is embedded in the estimation problem, the natural ordering of the target state is kept as long as
the initial target DOA’s can be successfully resolved by the array. To cope with difficulties involved
in the nonlinear optimization process a modified Gauss-Newton algorithm is proposed in which
the Hessian is approximated by a positive semi-definite matrix to guarantee that the algorithm is
descent. The asymptotic performance analysis has also been fully investigated. We show that the
ML estimates of the MTS variables are asymptotically consistent. We also derive explicit formulas
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for the asymptotic covariance and the Cramér-Rao bounds for the MTS estimates, and it is found
that the ML estimator is relatively efficient. To show the effectiveness of the ML tracking technique
we compare the asymptotic performance of the ML estimator with that of the extended Kalman
filter (EKF). Its performance is superior to that of the EKF. Numerical results are provided to

demonstrate the performance of the ML tracking technique via computer simulations.
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Glossary

Throughout this thesis, we will use the following notation :

z(3)

0r(7)

0
a(8)
A(©)
a0k (3)]

array data vector.

signal data vector.

sensor noise vector.

half the source signal frequency bandwidth.

central frequency of the source signal.

the mth sensor position vector.

the kth near-field source position vector.

the kth far-field source directional vector.

time delay on the mth sensor induced by the mth far-field source target.
maximum time delay among 7em, for k=1,2,...,Kand m=1,2,..., M.
time delay on the mth sensor induced by the mth near-field source target.
azimuth of the kth source target.

azimuth of the kth moving source target at i.

source DOA parameter set.

source DOA parameter set of the moving source targets at 1.

array steering vector associated with the kth source signal.

array composite steering matrix.

array steering vector associated with the kth moving source signal at :.
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Vi

T%(7)
éx(3)
()

xv

Also denoted as A(%); array composite steering matrix at ¢ for moving source
targets.

constant speed of the kth source moving target.

range of the kth moving target at i.

heading direction of the kth moving tazget.

k(i) = [0:(3), ax(i), )T, where (i) = vi/7i(i); denote the kth target state
vector at i,

a(i) = [ef (3), L (3), . - -,a% ()] is the multiple target state (MTS) vector at i.
denote the locally linear source motion dynamics.

gradient of f(i) with respect to o(1).

gradient of () with respect to (7).

V() = [w1(3), 22(2), - - ., 2x (7))

V(i,3) = [a(i 1)y 2alds 1), - or 2l 5)- |

orthogonal projection matrix onto the column space of A(®).

Pi'(e) = I — Pye); orthogonal projection matrix onto the null space of A(@).
Also denoted as F;; orthogonal projection matrix onto the column space of A(3).
Also denoted as P;*; orthogonal projection matrix onto the null space of A(%).
array data covariance matrix.

source signal covariance matrix.

array sensor noise covariance matrix.

the kth eigen-value of R..

" the kth eigen-vector of R..

Us = [u,,%5,...,2,], where 7 is the number of signal eigen-values.
Un = [tep, Brgzs - s i)

signal subspace or the range space of Us.

orthogonal projection onto Eg.

noise subspace or the range space of Up.

orthogonal projection matrix onto Epy.



A®B
A® B
4 flF
tr{A}
At
vecd

diag(A)

det(A)

array manifold in a sector of interest,

array manifold space.

orthogonal projection matrix onto the array manifold space Sas.
the optimum signal subspace within the array manifold space.
orthogonal projection matrix onto the subspace Sx.

source signal variance.

array sensor noise variance.

denote an estimate of A.

expectation.

conjugate transpose of matrix A.

transpose of matrix A.

direct sum notation.

inner product of matrices A and B.

Hadamard product of matrices A and B.

Kronecker product of matrices A and B.

Frobenius norm of A.

trace of matrix A.

pseudo-inverse of matrix A.

vector function, concatenation of the columns of matrix A.
diagonal function. if A is 2 matrix, diag(A) is a column vector formed from the
diagonal elements of A. If A is a vector, diag(A4) puts A on the main diagonal.
determinant of matrix A.

identity matrix.

all one matrix of size 3 X 3.

gradient operator.

Hessain operator.

variance of a random variable.

covariance matrix of a random vector.

[l
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m 0

Cramér-Rao bound of an estimate.

Fisher information matrix corresponding to a variable.

asymptotic covariance matrix of the MUSIC estimates.

asymptotic covariance matrix of the DML estimates.

asymptotic covariance matrix of the WSF estimates.

deterministic Cramér-Rao bound.

stochastic Cramér-Rao bound.

DML criterion function.

SML criterion function.

criterion function of the MD-MUSIC algorithm.

criterion function of the subspace fitting technique.

criterion function of the noise subspace fitting technique.

criterion function of the ML tracking algorithm.

kimit function of J.

criterion function of the ML tracking algorithm under the assumption
that the source waveforms are known.

limit function of J,.

gradient of J with respect to the MTS vector.

Hessain matrix of J with respect to the MTS vector.

gradient of J, with respect to the MTS vector when the source waveforms
are assumed to be known.

Hessain matrix of J, with respect to the MTS vector when the source
waveforms are assumed to be known.

step-length used in the Gauss-Newton algorithm at the kth iteration.
optimal weighting matrix for the subspace fitting technique.

optimal weighting matrix for the noise subspace fitting technique.
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Chapter 1

Introductions

This thesis is devoted to the direction-of-arrival (DOA) estimation of source targets by passive
arrays, with emphasis given to the DOA tracking of moving source targets. In this chapter, we will

give a brief introduction about array signal processing and provide an outline of the thesis.

1.1 Array signal processing

Sensor array systems have been in use for several decades in many practical applications, such
as radar, sonar, seismic exploration and communications antenna systems. In an array system,
the sensors are spatially distributed in known locations and collect data transmitted by the source
targets in the array’s field of view. There are two kinds of arrcy sensor systems : active and passive.
In the active sensing situation, a2 known waveform of finite duration is transmitted by the array.
It propagates through the medium and is reflected back by the source targets to the array. The
transmitted signals are usually modified by the target characteristics, and the information about
the source targets can thus be extracted from the reflected signals. In the passive context, the sensor
array only receives signal from the source targets. Propeller or engine noise from submarines is
an example in the case of sonar. The received signal at the array is usually random in nature. In
addition to the direct signals from the source targets, the signals received at the array may also

contain clutter, spurious returns from the medium, medium ambient noise, undesired interference
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and intentional jamming signals. Moreover, the multipath effects can create delayed, amplitude-
weighted replicas of thé direct signals at the array and generate coherent interference.

The signals can be classified as narrow-band or wide-band. A narrow-band signal is adequately
characterized by a single frequency, while a wide-band signal occupies 2 significant frequency band.
For reasons of simplicity, wideband signals can usually be transformed into narrow-band signals
at the sensor for processing by applying narrow-band filters. In array processing, the definition of
2 narrow-band signal is given relative to physical size of the array. The source target can also be
defined as far-field or near-field by virtue of the distance between the target and the array. For a
far-field source signal, its wavefronts are well approximated by plane waves, while the propagation
wavefronts of a near-field source signals are better represented by spherical waves.

The practical interest in array signal processing is to extract the source target parameters.
The processing is done for detection and/or estimation. Detection deals with the problem of
determining the number of source targets present, and estimation is more concerned with the
direction-of-arrivals (DOA), signal waveforms, power levels or correlations between source signals.
In many passive array applications, the receivers are subject to a variety of interference and noise,
including natural or manmade signals other than the desired source signal. These signals which may
occupy the same frequency band as the desired signals, can severely degrade the performance of
the array systems. In radar and communications systems, it is necessary to suppress the undesired
signals and interference to enhance the desired source signals. This task can be accomplished
by using digital beamforming techniques. Most often, the desired source signals, undesired source
signals and the ambient interference have time varying characteristics, and the digital beamforming
systems must be devised with quick learning capabilities of the changing scene to maintain optimal
system performance. Adaptation of the array system to the changing environment can be ”blind”
or "non-blind”. Blind adaptation techniques do not require prior knowledge of the desired signal
or interference characteristics, which may be difficult, costly, or simply impossible to obtain in
some applications. Blind adaptation usually results in suboptimal solutions..In contrast, non-blind
techniques usually involve using the desired signal and interference parameters, e.g. the desired

source DOA and the ambient noise covariance matrix. But, they are more robust and perform
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better than blind techniques provided the signal/interference parameters are sufficiently accurately
estimated. In this thesis, we will discuss the problems of estimating the source DOA’s, especially

those of the moving source targets by passive arrays.

1.2 Outline of thesis

This thesis is focused on exploiting the spatial and temporal information contained in the received
array data to estimate the source signal DOA’s by passive arrays. It contains two parts. In the
first part, we propose a unified constrained subspace fitting approach for estimating the DOA’s
of stationary source targets. This technique is based on the Karhunen-Loéve expansion of the
covariance matrix of the array manifold in a sector of interest. When the sources are spatially
close, it is found that the signal subspace is contained in the array manifold subspace of small
dimension than the number of sensors, and the optimal signal subspace is obtained by searching
over the constrained array manifold subspace.

In the second part of the thesis, we deal with the extraction of parameters of moving source
targets. We propose the maximum likelthood (ML) tracking technique based on the locally linear
model of the source target motion dynamics. We define the multiple target state (MTS) vector to
describe the target motion dynamics and show the strong observability of the locally linear motion
model of the target in the context of passive array. We also present a modified Gauss-Newton type
algorithm for optimizing the nonlinear criterion function. The asymptotic performance of the ML
tracking technique has been fully investigated and is compared to that of the extended Kalman
filter (EKF).

Chapter 2 is devoted to the study of passive array structure. In this chapter, we present the
basic narrow-band array signal model and discuss the effects of far- and near-field signals on their
induced time delays on the array. We also study the uniqueness conditions imposed on the array
under which the source parameters can be identified.

Chapter 3 is a review of some of the high resolution DOA estimation techniques, including the
subspace-based methods, deterministic maximum likelihood estimator (DMLE), stochastic max-

imum likelihood estimator (SMLE), multi-dimensional MUSIC (MD-MUSIC) and the subspace
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ﬁ_tting techniques. Different techniques are presented and discussed under a unifying subspace
 fitting framework.

Chapter 4 is devoted to the unified constrained subspace fitting approach for estimatirg the
DOA’s of stationary sources in a limited sector of interest. The geometric explanations for MUSIC,
MD-MUSIC and DMLE are given, and new technique is developed. We also carry out the asymp-
totic performance analysis and provide numerical simulation results to show the effectiveness of the
technique.

In Chapter 5, we present the ML tracking technique for moving source targets. We discuss the
locally linear model for source target motion dynamics and its observability. The multiple target
state (MTS) is defined to describe the source target motion. Lastly, we present the ML criterion
function based on a batch of array data.

Chapter 6 is devoted to the optimization of the ML criterion. A modified Newton-type algorithm
is provided in which the Hessian is approximated by a peositive semi-definite matrix to ensure that
the Newton-type algorithm is descent. We also present a method for estimating the initial MTS from
the consecutive observations of the source target DOA’s. Finally, numerical studies are conducted
for the ML tracking technique via computer simulations.

In Chapter 7, we investigate the asymptotic performance of the maximum likelthood tracking
estimator. We derive analytic formulas for the asymptotic covariance matrix of the MTS estimates
and show the strong consistency of the estimates. This chapter ends with 2 discussion on the
Cramér-Rao bounds of the MT5 estimates.

Chapter 8 is devoted to the asymptotic performance comparisons between the extended Kalman
filter (EKF) and the ML tracking technique. The source waveforms are assumed to be known. The
asymptotic performances are analysed for both the EKF and the ML tracking techniques and
conlusions are drawn.

Finally, in Chapter 9, we summarize the major contributions and describe future research topics.



Chapter 2

The Passive Array Structure

A passive array consists of 2 number of sensors located at different points in the field of interest. Tle
passive array sensors collect the signals transmitted by the source targets in the space and estimates
both the temporal and the spatial structure of the signal field. The array takes on a variety of
different geometries depending on the application of interests, although the most éommon.ly used

configuration is the standard linear array in which the sensors are uniformly spaced with half the
source signal wavelength.

2.1 Array sensor geometry

Assume that the sensors and the source targets are co-planar on the zy plane. Consider an array

of M omni-directional sensors located at {z;,2s,...,2)}, each vector z,, specified by

EZm = [zm,zmy]r, m= 132," '!Mv (21)

where superscript T denotes the transpose operator.
Assume that K point source signals are incident in the array. It is also assumed that the
medium is nondispersive and that the source wavefronts propagate at a constant velocity. Then,

the received data Z, at the mth sensor, can be expressed as 2 sum of the time shifted versions of

the original source signals
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Figure 2.1: The array geometry for near-field source wavefronts.
K
Em(t) = 3 §k(t+ Thm), (2.2)

k=1

where 3;(t) denotes the waveform of the kth source signal and 7xy, is the relative time delay induced
by the kth source signal on the mth sensor with respect to a specified origin of the co-ordinate
system. The time delay 7k depends on the array geometry and the source parameters. It also

depends on the propagation pattern of the source wavefronts.

2.1.1 Near-field source wavefronts

A point source is known to propagate with spherical wavefronts in general. In array processing,
when a source signal is located relatively close to the array, its spherical wavefronts reaching the
array has 2 high degree of curvature. We define such source signals as near-field source signals.
For near-field source signals, the time delay riy is calculated as the time required for the spherical
wavefront to travel from the kth source to the mth sensor. The near-field source wavefronts and
the array sensor geometry are shown in Fig. 2.1. Denote the kth source location as ¢ = [Ck=s k)T,

and the time delay v, can be calculated as



the kth source

the plane wavefronts

the mth sensor

the array sensors

Figure 2.2: The array geometry for far-field source wavefronts.

Tkm = %\/[zm: = Gl + [2my = G2 1SmM M, (23)

where ¢ is the propagation velocity in the medinm.

2.1.2 Far-field source wavefronts

Wher the sources are located at a great distance from the array, the curvature of the spherical
wavefront at the array is very small and can be neglected. The propagation of the source wavefronts

can be well approximated by plane waves. This kind of source signals si usually called far-field.

Define the kth source directional parameter vector &y, as

&5, = [cos(ak), sin(a )7,

where o is the azimuth angle of the kth source signal. From the array geometry shown in Fig,

2.2, the relative time delay Tp; can be obtained as

rk,,;:%gm-g_k m=12,...,.M and £=1,2,... K. (2.4)
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Note that for a far-field signal, the directional parameter vector is sufficient to describe it.
But, for a near-field source signal, its actual location coo-rdinates are required, i.e., the distance

information of the sources must also be included in addition to the directional parameter vectors.

2.2 Assumptions about the source signals

The source signals {3x(t); k£ = 1,2,...,K} are assumed to be narrow-band and wide-sense sta-
tionary with zero mean. Denote the source signal bandwidth as 2Aw,.. A process is said to be a

narrow-band process if its bandwidth is much less than its central frequency wy

200 ¢ 1. (2.5)
wo

In the narrow-band array signal model, the bandwidth of the source is assumed to satisfy

2Aw,e € 27 [ Tmaz, (2.6)

where Tmgz is the maximum time delay induced by the sources
Tmaz = %eﬁc{l Tkm —Ten |, 6=1,2,..., Kim=1,2,...,M}.

Let z7,(t) denote the analytic representation of Z,(t). It can be written as

X
T () = D k(L + Tiem ) exp{jwoTkm }, (2.7)
k=1

where sx(t) denotes tne base-band representation of 5,(¢). From the assumption (2.5), it follows

that si(t) will remain essentially constant over the time duration needed to travel across the array,

Si(t+ Tom) Esi(t), k=1,2,...,K; m=1,2,..., M, (2.8)

and the signal model (2.7) becomes

K
z(t) = z 3x(t) exp{jwoTim }- (2.9)
k=1 _



2.3 Array signal model

The received data are always corrupted by noise. In the presence of additive noise, the mth sensor

data can be written as

K
Tm(t) = T (1) + wm(t) = ; 8k(2 + Tim ) exp{jioTim } + wm(2), (2.10)
=1

where wm(t) denotes the additive noise of the mth array sensor. It includes the sensor thermal noise
and the ambient noise of the medium. Examples of ambient noise are distant ship traffic, ocean
turbulence and thermal noise. The additive sensor noise component is assumed to be wide-sense
stationary with zero mean and uncorrelated with the signals. Assume that the array sensor output
has been sampled with 2 sampling interval of T'. We use index n to denote the nth sampling time

nT. In matrix form, the array signal model (2.10) can be written as

z(n) = A(©)s(n) + 2(n), (2.11)

where

z(n) = [z1(n), z2(a), - .., zae(n)T
s(n) = [31(17.), s2(n),..., 3K(n)]T

w(n) = [wi(n), won),..., wa(n)T

are defined respectively as the array data vector, the signal vector and the noise vector. A(©)is

the array composite steering matrix given by

A(O) = [a(4),a(82),...,a(0K)). (2.12}

Here © is used to represent the source DOA parameters and 6 denotes the kth source DOA. The

kth column of A(®), a(fi), is defined as the array steering vector associated with the kth signal
given by

a(8y) = [exp{jwori1 }, exp{fworkz}, - . ., exp{jworem T . (2.13)
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The array steering vector depends on the array structure and the source parameters. For later
references, we introduce the following definitions. We define the array manifold as the set of
steering vectors, {a()}, over all possible source DOA parameters and the signal subspace as the
K-dimensional subspace spanned by the columns of A(©). Also, a uniqueness condition is applied
to A(@). The array is assumed to be unambiguous, ie. the parameterized A(©) has full rank,
The uniqueness condition is imposed on the array to enable the unique identification of the DOA

parameters, L.e.,

A(G1)T1 = A(@z)Tz == 01 = @2, (2.14)

where Ty and T3 are any full rank matrices of size X x K [1].



Chapter 3

High Resolution DOA Estimation

Techniques

In this chapter, we present a review of some of the most commonly employed high resolution
techniques in array processing. These techniques include the subspace-based techniquesf2]-[9], the
multi-dimensional MUSIC (MD-MUSIC) algorithm [10], the deterministic and stochastic maximum
Likelihood estimators [15](30], and the subspace fitting techniques[1}{53]. These techniques are

discussed within the subspace fitting framework.

3.1 The array data covariance matrix

The second-order statistics of the array data are particularly insightful and useful for the detection
and estimation problems in high resolution array signal processing, From the array signal model

(2.11), the array data covariance matrix can be written as

R = Elz(n)z (n)] = A(O)R,A%(0) + 0% Ry, (3.1)

where E denotes the expectation operator and the superscript H denotes the conjugate transpose
operator. The M x M matrix R,, = E[w(n)w” (n)] and the K x K matrix R, = E(s(n)s"(n)] denote

the covariance matrices of the source and the noise processes respectively. Parameter ¢2, is defined

11
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as the unkrown sensor noise variance and it is assumed that the trace of R,, has been normalized
to M. When the source signals are mutually uncorrelated, the source signal covariance matrix R,
is a non-singular diagonal matrix with each element in the diagonal representing the variance of
source. When the source signals are partially coherent or correlated, R, is non-diagonal, but still
nonsingular. If 2 subset of the source signals are coherent or fully correlated, the covariance matrix
becomes both nondiagonal and singular. Coherency happens when there is a subset of linearly
dependent source signals. Coherent source signals can arise from multipath effects, or they can
be induced by evasive signalling techniques. In practice, the exact array data covariance matrix is
not available and is usually estimated J'c'rom the array data by averaging over the array data vector

samples

- N |
R: = % ngl z(n)z% (n), (3.2)

where N denotes the number of array data samples.

3.2 Subspace-based estimation algorithms

From eigen-decomposition theory, it is known that the generalized eigen-values of the matrix pair

(Rz, Ry) are distributed as {10)

a\l2...2A,>A,-+1=...=.\K=...=AM=O’§,, (3.3)

where r < K, with equality holding for incoherent sources. Define the eigen-values {\g, k& =
1,2,...,7} as the signal eigen-values and their associated eigen-vectors {u, k = 1,2,...,7} as
the signal eigen-vectors. Define {Ax,k = 7+ 1,7+ 2,...,M} as the noise eigen-values and their
associated eigen-vectors {u,k = r+ 1,7+ 2,..., M} as the noise eigen-vectors. For incoherent
source signals, the signal eigen-vectors span the K-dimensional subspace identical to the signal

subspace [10)

span{yy,...,ux} = span{a(br),...,a(fx)},
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and the noise eigen-vectors span the (M — K)-dimensional subspace identical to noise subspace.

Since the noise subspace is the orthogonal complement of the signal subspce, we have the following

() ¥u; =0 i=K+1,...,M and k=1,...,K, (3.4)

which is fundamental to the subspace based techniques. The MUSIC algorithm [3][10] fully exploits
this orthogonality. It determines the source DOA parameters by locating the peaks of a spatial

spectrum formed from the inverse of the norm of the projection of a continuum of steering vectors

onto the noise subspace

Puusic(8) = 2R (0)TnTEa(0)]?, (3-5)

where Un = [& +11++ -3 32ps] denotes the estimate of Up. There are also the Mini-Norm (MN)
estimator [6] and the eigen-vector (EV) method proposed by Johonson and DeGraff [5]. The
spatial spectrum of the MN algorithm is formed by projecting the continuum of steering vectors

onto 2 one dimension subspace

Pun(8) = (o (O)inrnithena(®) ™, (3.6)
where @ty is from the noise subspace with its first element set to unity and has minimum norm
among the vectors in the noise subspace. The MN estimator usually has a higher estimation variance
and resolution capability than the MUSIC algorithm [11]. In the EV method, the projections of

the array steering vector to the estimated noise eigen-vectors are each weighted according to the

amplitudes of their corresponding eigen-values

Pev(6) = [a"(8)Peva(6)]2, (3.7)

where Pgy = UnDyU f\}' and Dy = diag[)'\x.n,...,:\M]. The EV method has higher resolution
than the MUSIC algorithm and is less sensitive to the selection of the number of source signals.
1..e MUSIC estimator is asymptotically efficient when there is only one source signal present.

For multiple source signals, the algorithm is not asymptotically efficient in general. However, it
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approaches asymptotic efficiency when the SNR’s of all sources tend to infinity [12]. The asymptotic
covariance matrix of the MUSIC estimates is given by [13]

%

Crv = 3¢ Hmu © 1] Re{ Hpy © [A7(0)V A(O) }HBEpy 0 1172, (3.8)

where Re rei)resents taking the real part and @ denotes the Hadamard product which is the

element-wise multiplcation of two matrices. In (3.8), Hay is defined as
Hyr = DHPAL(GJ.D,

where D is givenr by
da(8) da(8 da(8
and U is implicitly defined by

AR (@)U A(@) = RTY + 2 BT AH (©)A(O) RS,

where Pi-(e) = I - A(0){45(0)A(0)}-1A¥(©) denotes the orthogonal projector onto the noise

subspace. The diagonal elements of Cy give the variances of the MUSIC estimates.

3.3 The maximum likelihood estimators

The maximum likelihood method is a popular estimation procedure in statistical studies. When
the ML technique is applied to array processing, two classes of estimators are generated depending
on the assumptions about the source waveforms. When the sources are modeled as unknown but
deterministic, the resulting estimator is referred to as the deterministic ML (DML) estimator.
When the sources are modeled as Gaussian random processes, the stochastic ML (SML) estimator

is obtained.

3.3.1 The deterministic maximum likelihood method

In many applications, for example, in radar and radio communication systems, the transmitted

signal waveforms are far from being random, and it is natural to model the source waveforms
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as unknown but deterministic. In (2.11), we assume that sensor noise w(n) is a stationary and
ergodic complex Gaussian process with zero mean and covariance matrix 027, where &2 is an
unknown and I denotes the identity matrix. Assume that {w(n)} are statistically independent.
The conditional probability density function of the array is formed by conditioning on the unknown

source waveforms, noise variance and the source DOA parameters

N
p(z(1),2(2),...,z(N)) = H1 @ exp {—0—13"{2(5) — A(@)s(i)} {=z(5) - A(G)a(i)}} » (3.10)

and the negative log likelihood function, ignoring the constant term, has the following form

1 &, . :

L = —logp= MNlog(roy)+ ;'E i z() - A(@)s() I, (3.11)
v =]

where || - ||z is the Frobenius norm. The principle of the ML estimation is to maximize the
likelihood function with respect to all the unknown parameters [14} and obtain the maximizing
arguments as the corresponding ML estimates. First, by fixing © and s(i) and minimizing [ with

respect to g2, we obtain the noise variance estimate as

N
5% = 5o 3 Il 2i) - A@)s() I3 (3.12)

=1
Substituting &2 back into (3.11) shows that the ML estimates of s(i) and © can be solved from the

following nonlinear least-squares problem

N
[3(), 0] = arg min 3" || 2(5) - A(©)s(3) I} - (3.13)

3().9
Since criterion in (3.13) is quadratic in s(i), fixing © and minimizing the criterion with respect to

5(1) yields

3(3) = {47(©)4(@)} A% (0)z(i). (3.14)

By substituting (3.14) back into (3.13), we obtain the objective function for ML estimator of the

source DOA parameters
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N
owr = 211 2() — Paeyz(d) IF
=1

N
= 2 1| PArheayz(d) IE
=

W4

N
= z;tr{Pi(e,a(i)z”’(i)}, (3.15)

where Pyoy = A(Q){A#(0)A(0)}2A%(0) is the orthonormal projection onto the signal sub-
space. Since !p; may not be bounded and is not well defined when N approaches infinity, we
divide Ip,; by N to obtain an equivalent ML criterion Ipasz so that the DML estimate of © is
given by
. 1 & .

e= a.rgmeinlpML = a.rgmein v g tT{PAL(e)Rz}- (3.16)

The DML estimate © has been shown to be consistent [1]. However, since the dimension of the
unknown source waveform parameter set, S = [s(1),...,s(NV)], grows in proportion to the number
of the array samples, the source waveform estimates 3(i) are not consistent. This inconsistency can

be seen from (3.14),

5 = At(@)x — 5+ Af(@)Ww,, (3.17)

where W), = [w(1),...,2(N)],and Af(G) denotes the pseudo-inverse of A(@). Asymptotically, the
distribution of the DML estimate error vV N(© — ©) converges in distribution to N(0, Cppr) with
Cpmc given by [13]

1
-ﬁCpML = CRBpgT + 2N CRBDErRe{[DHP;{'(e)D] o [47(@)A(@) 7. (3.18)

where CRBpEr is the deterministic Cramér-Rao bound (CRB) given by [13]

2
CRBppr = “2{Re{[D¥ Py, D] © BT} ™. (3.19)

Va



17
In (3.18), since the second term can be shown to be positive semi-definite, we have
1
7 C¢omL > CRBper,

i.e., the asymptotic covariance of the DML estimates does not attain the CRB. Thus, the DML
estimates are not asymptotically efficient. Note that this conclusion is not applicable to those cases
in which the number of parameters does not grow as the number of the measurements increases.
In this latter case, the resulting ML estimates are asymptotically efficient, i.e., their asymptotic
covariance coincides with the CRB under Gaussian assumption.

When R, is diagonal, it can be shown [13] that the covariance of the MUSIC estimates, Carursro
in (3.7) approaches Cpasz in (3.18) asymptotically. This implies that the MUSIC estimator is a
large sample realization of the DMLE when the source signals are uncorrelated. The ML estimator
(3.16) has an appealing geometric interpretation. From array signal model (2.11), it is observed that
{z(n)} stays in the K-dimensional column space of A(©) in the absence of noise and is perturbed
out of the signal subspace by the noise w(n). It follows that the ML estimates are obtained by
searching for the X steering vectors over the array manifold that form the K-dimensional signal
subspace closest to the vectors {z(n)} in the least squares error sense. The closeness is measured

by the sum of moduli of the projections of {z(n)} onto the signal subspace.

3.3.2 The stochastic maximum likelihood estimator

Although in some communications systems the source waveforms turn out be more deterministic
than random, in most passive radar and sonar systems, random modeling is adequate due to the
physical sources responsible for the generation of these processes. Gaussian assumption is usually
used for the distributions of the source waveforms. The Gaussian distribution has the advantage
of mathematical convenience and is often motivated by the central limit theorem. By assuming
independent array samples, the conditional probability density function of the array data vectors

can be written as

N
P22 2V)10, Rood) = [] e {-2RT'20},  (20)

=1
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where | - | denotes a determinant. The negative log likelihood function can be written as (ignoring

the constant terms)

N
Ismr = Nlog| Rz |+ z¥(i) R z(3), (3-21)

=1

and the SML estimates are obtained as

(0, B, &%) = arg o, Ismr. (3.22)

Criterion Isarr, can be further written as

Isper =log| Rz | +tr{RZ1 R}, (3-23)

in which we have used the matrix property tr{AB} = tr{BA} for A and B of appropriate dimen-
sions. Minimizing (3.23) with respect to R, and o2, yields [15]{16],

Ale) &, - #2)aT#(0) (3.24)

&
I

- 1 -

By substituting (3.24) and (3.25) back into (3.22), we obtain the SML estimate for © as

6= argminlsmL, (3.26)

where

Ispr = log | A(Q)R,AF(©)+ 62 1. (3.27)

Note that in minimizing Isasr, we can also include other a-priori information on R,. For ex-
ample, the positive semi-definite assumption on R, leads to 2 potentially different ML estimator
[17]. Somtimes, the rank deficiency condition of R, due to the source coherency can also be taken
into consideration. However, it is found that all these efforts cannot improve the asymptotic statis-

tical properties of the SML estimator but result in a significantly more complicated optimization
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problem. The SML estimator is asymptotically efficient. The asymptotic covariance of the SML
estimates attains the stochastic CRB which is given by [18]

CRBsro = %[Re{[nﬁpj(e)pl @ [R,AF(0)RI'A(O)R, 1L (3.28)

3.4 MD-MUSIC and the subspace fitting techniques

The MD-MUSIC algorithm [1][10j{20] is 2 multi-dimensional extension of the one-dimensional MU-
SIC algorithm. The subspace fitting techniques [1][19] search for the optimal source parameter
estimates that forms a subspace closest (or farthest) in distance from the estimated signal (or noise
subspace). The subspace fitting framework can be usd to obtain a unified derivation of the asymp-

totic properties of the MD-MUSIC algorithm, the DMLE and SMLE, and the weighted subspace
fitting (WSF) method.

3.4.1 Description of the MD-MUSIC algorit':m

The MD-MUSIC algerithm was first reported by Schmidt [10] and formulated by Cadzow [20]
and Viberg and Ottersten [1]. Let U, = [w,2s,-..,2.] and let T, be the estimate from the
eigen-decomposition of the array covariance matrix. It follows that the source parameters can be

estimated by minimizing the following criterion in the least squares sense

L={|U,-A@)Q |Ir, (3.29)

where @ is a full rank matrix of size X x K. Minimizing L with respect to @ yields

Q = l(®)7, (3.30)

By substituting (3.30) back into (3.29), we get

-

© = argmaxiyo, (331

where
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Imp = tT{PA(e) (}s[}?}. (3.32)

The MD-MUSIC algorithm can successfully overcome the deficiency due to source signal co-
herency and provide better performance than the one-dimensional MUSIC algorithm. In the pres-
ence of coherent source signals, it is superior to the DML estimator. But, when the sources are
incoherent it is outperformed by DML estimator. Similar to most nonlinear multi-dimensional op-
timization problems, the MD-MUSIC algorithm requires 2 significant amount of computation and
suffers from the lack of assured global convergence. :

The MD-MUSIC estimator is closely related to the DMLE. To see this, we write the spectral
representation R as

R:=

Mz

I
=

Al (3.33)

and the DMLE criterion in (3.16) becomes

M
Ipmr = A |l Paeyius |I* - (3.34)
i=1
where Iprp can be written as
b= |l Paeyiss I . (3.35)

=1

It shows that MD-MUSIC has included only the estimated signal eigen-vectors while DMLE has
utilized both the estimated signal and the estimated noise eigen-vectors in the algorithm. Also in

DMLE, each projection of the eigen-vector onto the signal subspace is weighted by its corresponding

eigen-value.

3.4.2 The subspace fitting techniques

The subspace fitting technique [1] is a general framework in which the DMLE, SMLE, MD-MUSIC
and the ESPIRIT algorithm {22]-{25] can be formulated. Asymptotically, the subspace fitting

method maximizes the following criterion
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Isp = tr{Pye) U, WT,}, (3.36)
where W is a weighting matrix of dimension r x r. Different choices of W will yield potentially
different estimators. For example, when W = I, isr is identical to the MD-MUSIC criterion (3.31),
and the subspace fitting technique produces the MD-MUSIC estimator. If we choose W = A,~02 ],
where A, = dieg[M,...,A.], then the estimator will have the same asymptotic distribution as the

DML estimator [1]. This can be shown as follows. Let A, = diag[Aryy, ..., Aar) and denote A, as

its estimate. Then, the DMLE criterion in (3.16) can be written as

Ipmr = tT’{PA(Q)ﬁ:} = tT{PA(g)(a’,A,ff? + ﬁﬂﬂnﬁf)}. (3.37)

In [1], it is shown that A, can be replaced by ¢2.I without affecting the asymptotic properties

of the estimator. Thus, Ipasz becomes asymptotically

Ipmr = tT{PA(e)ﬂ'a (As - a‘,f,f ) U f h (3.38)

Again, since the replacement of (A,—o2 1) by (A,—¢2 I) does not change the asymptotic distribution
of the estimates [1], we get the conclusion that the DMLE is asymptotically identical to the subspace
fitting technique with W = A, — ¢2I.

The estimates obtained from maximizing the criterion (3.36) are consistent estimates (1]. The
weighted subspace fitting (WSF) method [1] [53] is defined as the optimal estimator which provides

the minimum variance estimates in the subspace fitting framework. The optimum weighting matrix

for WSF is identified as

Wepe = K207 = A+ 0iATY - 021, (3.39)
where A = A, — 62 I. The WSF method has been shown (1] to be a large sample realization of the
SML estimator, i.e., their asymptotic distributions of the normalized estimation errors coincide.

The subspace fitting technique can also be formulated in the noise subspace when the sources are

incoherent. The criterion is described by the weighted least squares measure of the orthogonality

between the signal and the noise subspaces
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InsF | G a@) I}

tr{UA(0)A¥ (0)0,TH}, (3.40)

where U is a positive semi-definitc X' x K weighting matrix. Similar to the signal subspace fitting
technique, different choices of U will result in estimates with different asymptotic performances.
When U is 2 diagonal matrix, criterion (3.40) decouples, and the estimator becomes the MUSIC
estimator. The signal and the noise subspace fitting techniques are closely reated. When W and
U are related by

U = Al (@)0,wiF atH(0), (3.41)

the resultant respective signal/noise subspace fitting mthods will be asymptotically equivalent. For
example, when U = AT(Q)I},KI:T " A"'(O), the noise subspace fitting technique produces asymptot-
ically the DML estimator. Consequently, the optimal weighting matrix Uop: which minimizes the

estimation error covariance is

Uspe = AT(@)0,W,,.0F a1H(0), (3.42)

It is pointed out that when the source signals are incoherent, both of the weighting matrices
W and U can be replaced by a consistent estimate, and an aymptotically equivalent estimator is
still obtained. However, for coherent source signals, i.e., r < K, the replacement of © in Uope with
2 consistent estimate does affect the asymptotic performance of the estimate. Also, for coherent

source signals, the optimally weighted noise subspace method is not asymptotically equivalent to
the SML estimator.
3.5 Asymptotic performance analysis

Most of the high resolution techniques are based on the eigen-decomposition of the estimated array

data covariance matrix ;. Under the independent Gaussian assumption for the array data vectors
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{z(n)}, the covariance estimate R- in (3.1) can be shown to be consistent, i.e., the elements of
R_ converge with probability one (w.p.1) to those of R,. Assume that the signal eigen-values
{A i=12,.. .,7} are distinct. The following limits hold w.p.1 as ¥ é.pproaches infinity

ik — A k=12,...,7

u — u k=12,...,7 (3.43)

In what follows, we summarize some of the asymptotic performance comparisons between vari-

ous high resolution methods.

A, MUST‘_“: # SMLE It is known that the maximum likelihood estimator satisfies invariance
property {47]. In [50], Sharman claimed that since R is the ML estimate of R, the MUSIC
estimates are also the ML estimates by the invariance principle. Actually, this is not true for
two reasons. First, R: is not the ML estimate of R, even under Gaussian assumptions since the
structure of R has been incorporated in maximizing the likelihood function. Rois usually referred
to as the unstructured ML estimate of R and is ar approximate of the ML estimate. Secondly,
the invariance principle is not completely applicable in this case. By the invariance princople, the

ML estimate, 6 for k = 1,2,..., K, should satisfy the following relationship

[Prusic(6:))™! = 0. (3.44)

In the MUSIC estimator, the source parameters are obtained as the minimizing arguments of
{Prmusic(6)]~!. Although the minimum values could be very small under high SNR and large

sample size, they are never zero as required by the invariant principle (3.44).

B. THE ASYMPTOTIC ERROR DISTRIBUTION The asymptotic distribution of the

estimation error of the general subspace fitting technique is derived as [1]

VN(® - @) € N(0,C), (3.45)

where
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C=V1QV !, (3.46)
and matrices V and Q are given by
V = -2Re{[D"P}e,D]0[41(0)U,WUH ATH (@)}
Q = 20%Re{[D¥ P, D)0 [41(0)U.WA AP WTE ATH ()T, (3.47)

The noise subspace based techniques have the same asymptotic distribution result (3.47) provided
that U is replaced conformally with (3.41). Since the MD-MUSIC estimator is asymptotically iden-
tical to the result of subspace fitting when W is replaced by I in (3.45), the asymptotic covariance
of the MD-MUSIC estimates is given by (3.46) with

<
0

—2Re{{D¥ P}, D] © [A¥(0)A(0)]"T}
Q = 203Re{[D¥ P}, D] 0 {[47(0)4(0)R,47(0)A(0)]™
+02[A7(0)A(0)R,AT(©)A(0)R, 47 (0)A(0)]}}. (3.48)

Similarly, since the replacement of W by A in (3.45) yields asymptotically the DMLE, the asymp-

totic covariance of the DML estimates can be obtained from (3.46) as

C=CRBper +V QV ", (3.49)
where
Q = 20,Re{[D”P3q Dlo (A7 (e)A(e)]jT}, (3.50)

which coincides with the directly obtained covariance (3.18). This reconfirms the conclusion that

the subspace fitting estimator with W = A and DML estimator are asymptotically equivalent.
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C. THE MUSIC AND DML ESTIMATORS In [13][12], it has been shown that the MUSIC
estimates are large sample realizations of the DML estimates when the source signals are uncorre-
lated. This can be further confirmed by observing the DML weighting in the noise subspace fitting
technique

U = aT(@)0,A0F at¥(0) — R,

which implies that the DML weighting matrix U approaches the source covariance matrix with
sufficiently large number of array samples. Since R, is diagonal for uncorrelated source signals, the
resulting noise subspace fitting technique asymptotically approaches the MUSIC method. Thus,

it is rediscovered that MUSIC is 2 large sample realization of the DMLE when the sources are
uncorrelated.

D. THE ASYMPTOTIC EQUIVALENCE BETWEEN WSF AND SMLE When the

source signals are incoherent, the asymptotic distribution of the signal and noise WSF techniques
(3.36) and (3.40) can be obtained from (3.46) as

Copt = Z2(Re{[D" Py D] 0 [R, A% (@RI A@) R, (351)

which coincides with the covariance of the SML estimates (3.28), or CRBsro. This indicates the
fact that the weightings Wy, and U,pe in (3.36) and (3.40) will result in estimators which are
large sample realizations of the SML method. However, as mentioned before, when R, is rank

deficient (coherent sources), the optimal weighting U/, does not produce asymptotically equivalent

estimates to those of the SML estimator.



Chapter 4

DOA Estimation on the Array
Manifold Space

In this chapter, we present 2 high resolution technique for estimating DOA’s of spatially close
source signals. This technique is based on the fact that the array manifold subspace over a sector
of interest can be well approximated by 2 subspace with a dimension smaller than the number
of sensors in the array, and the optimal signal subspace is then sought within this array manifold

space. Asymptotic performance analysis is carried out, and computer simulations are also provided.

4.1 Introduction and preliminaries

High resolution DOA estimation techniques have been exploited in many sensor systems such as
radar, sonar and seismic exploration systems. Subspace-based techniques [2]-{9] constitute some of
the more effective procedures for obtaining quality DOA estimates. The subspace-based techniques
are known to yield, with high resolution, asymptotically unbiased estimates. The MD-MUSIC al-
gorithm is first proposed by Schmidt [10] and formulated by Cadzow [20] and Viberg and Ottersten
{1]. It is statistically robust and effective for coherent source signals. However, the MD-MUSIC

algorithm involves nonlinear optimization problems and requires intensive computation. The DML

26
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estimator is another popular technique in array processing. It provides statistically robust estima-
tion results and outperforms the subspace-based algorithms for uncorrelated source signals. But,
due to the highly nonlinear nature of the criterion, the DMLE requires that nonlinear programming
algorithms be employed and thus, carries a heavy computational burden.

Much effort has been spent to enhance the resolution capability of the subspace-based DOA
estimation techniques. For example, in [21], the authors formulated a constrained least squares
problem and solved for a weight vector which will maintain a flat response over a spatial region
of interest and, at the same time, will remain in the noise subspace. In this chapter, we present a
subspace-based technique for estimating DOA’s of spatially close source signals. The sources are
assumed to lie within a known small sector. We define the array manifold space as the subspace
spanned by all the vectors in the array manifold within the known sector. By using the Karhunen-
Loéve expansion, we show that the array manifold subspace over a limited sector of interest can be
well approximated by a subspace with dimension smaller than the number of sensors in the array.
The technique has a sound geometric interpretation within the framework of constrained subspace
fitting in the least squares sense. This technique searches for the optimal signal subspace over the
array manifold subspace which has a minimum distance to the array data signal subspace in the
sense of a Frobenius norm. The source DOA parameters are then determined from the spatial
spectrum formed from the estimated signal subspace. We examine the quality of the estimates and
demonstrate their consistency. Both theoretical analysis and numerical simulation results show that
the proposed technique is always superior to the MUSIC algorithm in the sense that the estimated
signal subspace is closer in distance to the true signal subspace. Numerical studies also show that
the performance of the proposed technique is comparable to that of the DMLE and the MD-MUSIC

algorithm. However, since it only involves one dimensional optimization, the computation involved

is drastically reduced.

4.2 Array signal model

Consider an array of M omni-directional sensors. Assume that K incoherent narrow-band far-field

source signals are incident on the array. The analytical array signal model is described by (2.11) as



z(n) = A(O)s(n) + w(n). (4.1)

where the array noise vector w(n) is uncorrelated with the source signals. The covariance of w(n)
is denoted by ¢2 I, where o2, is the unknown variance and [ denotes the identity matrix. Denote
the K-dimensional signal subspace as Es and the (M — K)-dimensional noise subspace as Ex. Es
and Ex are orthogonal. The eigen-values of R., the covariance matrix of z(t), are known to be
distributed as

A1 S...AKQAK+1=...=AM=O"2,.

Let u; denote the eigen-vector associated with A;. Let Us = [uy,...,25] 20d Un = [8giny-- - 20
Then, the range spaces of Us and U, are identical respectively to the si_gpa.l subspace Eg and the
noise subspace Ex. Since the signal subspace and the noise subspace are orthogonal, the steering
vectors {a(f); £ = 1,..., K} are orthogonal to the noise subspace. Let &; denote the estimate of

#; from the array data. Let Us and Uy be the estimates of Us and Uy, respectively. Define
Es = range space of Us

as the array data signal subspace and
En= range space of Un

as the array data noise subspace. Subspaces 5 and Ey are orthogonal complements and are

estimates of E, and E,, respectively.

4.3 Geometric interpretations of different algorithms

In this section, we formulate the MUSIC, the DML and the MD-MUSIC algoritkms in a unified
framework of constrained subspace fitting in the least squares sense. This framework is useful for

designing numerical algorithms and obtaining new techniques.
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4.3.1 Constrained subspace fitting in the least squares sense

Consider a constrained subspace fitting problem in which we search a for a K-dimensional subspace

Sx in the constraint subspace S¢ which is closest to a pre-specified subspace Cx in the least squares

€ITOT sense

Sx =atg Jin [ Qc - QsTx i+, Sx C Sc. (4.2)
Cri X

where the columns of Q@5 and Q¢ are each a set of independent vectors from subspace Sx and Cx
and both matrices are of size M x K. T’x is an arbitrary K x K matrix. Fixing Qs and minimizing

the Frobenius norm in (4.2) with respect to R yields the pseudo-inverse solution {29]

Fx = QLQc = (QF0s) Q¥ Qc. (4.3)

where Qg denotes the pseudo-inverse of @s. Substituting (4.3) back into (4.2), we get

Sx = Mg%ixtr{PstcQg}, Sx C S¢. (4.4)

where Ps. = Qs(ng Qs)'ng is the projection operator onto Cs. In (4.4), it is seen that different
constriants S¢ will lead to different solution of Sx. In the context of array processing, we replace

Cs with the array data signal subspace Eg and write (4.4) as

Sx = argr%axtr{Pcsé'sﬂ'g}, Sx C S¢c. (4.5)
X

4.3.2 The DML and the MUSIC algorithm

Let X = [z(1),z(2),...,z(N)]. The DML method [30][27] determines the source DOA parameters
by (for details, see Chapter 2)

® = argmin || X - 4(0)S | - (4.6)

which is equivalent to (4.5) by assigning Qc, = X, Qs = A(@) and Ts = 5 in (4.2). Equation

(4.6) can also be written as
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6= &rsmgxg | Pageyz(i) I*= argmgxtf{PA(e)R:}- (4.7)
The DMLE has a clear geometric interpretation. From the array signal model (2.11), we see
that the array data vector z({) a.b.idei within the K-dimensional signal subspace spanned by the
columns of A(@) in the absence of noise and is perturbed out of the signal subspace by the noise
w(i). It follows that the DML estimates are obtained by searching for the K vectors over the array
manifold which will form the K-dimensional subspace closest to {z(#)} in the least squares error
sense. This closeness is measured by the sum of moduli of the projections of all the vectors {z(i)}
onto this signal subspace as in (4.7).
The geometric interpretation of the MUSIC algorithm is as follows. In the absence of array
sensor noise, the array data vectors are all from the signal subspace. If sensor noise is preseat, the
array data vectors are perturbed out of the signal subspace. Thus, it is natural to estimate the

K-dimensional subspace Ms closest to the vectors {z(z)} by minimizing their projections onto Ms.

Thus,

N
- o A
Ms = argmax 3 | Pura(i) ['= atgmaxtr{Fa Bz}, (4.8)

=1
where Pys denotes the orthogonal projection onto the Ms. Let the columns of Us denote the
orthonormal base vectors of M. Then, Us is of dimension M x K and satisfies the following

orthonormality condition

UVEUs=1. (4.9)

Since the orthogonal projection Py can be written as Py = UsUH, we rewrite (4.8) as

. o
Us= a\.rgng’:uo;sms__‘r tr{U5 R:Us}, (4.10)

in which the problem of finding an optimal subspace has been transformed into the problem of
searching for a set of orthonormal base vectors. By the Rayleigh theorem {29], the orthogonal base

vectors of the estimated signal subspace, s, are identical to the estimated signal eigen-vectors of



31

R.. In other words, they span a subspace identical to that generated by the MUSIC algorithm. In
examining the difference between the DMLE and the MUSIC algorithms, we find that in DMLE,
the opﬁmiiation of the signal subspace is limited by the structure of the array manifold, while in the
MUSIC algorithm, the search for the signal subspace in the M-dimensional space is unconstrained.

4.3.3 MD-MUSIC : subspace fitting in the eigen-vector domain

Usually, the array data covariance matrix has to be estimated from the array data. Thus, the
array data subspace is an estimate of the of the true signal subspace. The MD-MUSIC algorithm
searches for the K vectors over the array manifold spanning a subspace closest to the array data

signal subspace in the least squares sense. The MD-MUSIC estimate is given by

K
O =arg me&xz | Pagoyiti |°= argmaxtr{Pa(e) UsU&}, (4.11)

i=1
in which the criterion function measures the distance between the range space of 4(®) and the array
data signal subspace. The MD-MUSIC algorithm provides better performance than the MUSIC
algorithm and is capable of resolving coherent soure signals. Its estimate is superior to the DML
estimate for coherent signals [20]. The MD-MUSIC algorithm and the DML method are closely
related. To see this, we express the DML estimate using

M
© = arg mg-xz A | Pageytii 12, (4.12)

=1
where 5\,- denotes the ith eigen-value of Rx. It shows that the DML estimate has included both the
estimated signal and the estimated noise eigen-vectors under consideration and that each projection
of the eigen-vector onto the signal subspace is weighted by its associated eigen-value. The eigen-

vector associated with a larger eigen-value will contribute more to the criterion.

4.4 DOA estimation in the array manifold subspace

In the previous section, we discuss the DMLE, the MUSIC ard the MD-MUSIC algorithms from

the viewpoint of constrained subspace fitting. In this section, assuming that the source signals are
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are spatially close, we propose an efficient estimation procedure which is naturally born out of the

constrained subspace fitting framework.

4.4.1 Array manifold space in a sector

Define Qo = {fo; < 8 < 02}, where 6o and g2 are two angle parameters. The array manifold over
the sector Qo, Aar = {a(8); @ € S}, is defined as the set of all array steering vectors over sector
Qo. The array manifold space Sps is defined as the space spanned by all the vectors in the array
manifold Aps. Obviously, since the array steering vectors associated with the sources are from the
array manifold Aps, the signal subspace Es is 2 subspace within the array manifold space Sar. To
observe the limited rank character of the array manifold in sector g, or the limited dimension

characteristics of the array manifold space, consider the array manifold covariance matrix

Ro= [ _a(0)a"(6)de. (4.13)

Dexnote v; and ¢, i = 1,2,...,M as the eigen-values and eigen-vectors of Rg, respectively.
Assume that {y;; ¢=1,2,...,M} are ordered in a monotonically nonincreasing fashion. From
the Karhunen-Loéve (KL) expansion theory [26], we know that the eigen-value -; of Re indicates
the distribution of the variance of projection of a(4) onto the corresponding eigenvector Y. Itis
known that the KL expansion is the most efficient expansion in the mean-square-error sense, ie.,
when each vector in the array manifold is represented as a linear combination of the first d ordered

eigen-vectors,

d
a(8) = > ()¢,

=1

where @;(6) is the expansion coefficient with ¥,, the following truncation error is minimized

M M
(d)= 3 E{le(®)F}= 3 % (4.14)
i=d+1 i=d$l

In the extreme case, when Ro has (M —d) zero eigen-values, the d eigen-vectors associated with the
nonzero eigen-values are sufficient to represent the array manifold without error and the subspace
spanned by these eigen-vectors is identical to the array manifold space. If Rg has d principal eigen-

values, then the array manifold space can be approximated by the the subspace spanned by the
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Table 4.1: The distribution of eigen-values of Rg and the effective dimension of the
array manifold space, Qo = {0y < 8 < fp}

B |1 2 3 4 5 8 Effe. D | Truc. E
5° | 0.9755 | 0.0708 | 0.0008 | 0.0000 | 0.0000 | 0.0000 9.0000

3
12° | 5.5162 | 2.1319 | 0.1855 | 0.0043 | 0.0000 | 0.0000 | 3 0.0043
15° | 1.9010 | 1.0873 | 0.1666 | 0.0066 | 0.0001 | 0.0000 | 4 0.0001
5
8
g

25° | 2.0186 | 1.9180 | 1.0960 | 0.1940 | 0.0092 | 0.0001 0.0002
35° | 2.0935 | 2.0509 | 1.8594 | 1.0594 | 0.1618 | 0.0054 0.0000
55° | 2.4919 | 2.3654 | 2.0997 | 2.0583 | 1.9871 | 0.5166 0.0000

principal eigen-vectors with an error depending on the distribution of the remaining eigen-values.
When all the sources are spatially close, i.e., the sector Qg is relatively small, we find that the array
manifold space can be well approximated by a subspace sapnned by the principal eigen-vectors of
Ro with a dimension smaller than the number of sensors in the array. The following is an example
to show how the array manifold space over a limited sector can be approximated by a subspace of
smaller dimension. Consider a linear equispaced array with eight omni-directional sensors. Table.
4.1 shows the distribution of the eigen-values of Rg. The effective dimension of the array manifold

is defined as the number of non-zero principal eigen-values.

In the table, we see that the eigen-value distribution varies with the size of sector selected.
In general, the wider the sector we choose, the larger are the principal eigen-values. When Qo
is sufficiently wide, all the eigen-values of Rg become significant and the array manifold space
spans the entire M-dimensional space. When the sector is limited, we see that some of the eigen-
values are very small and insignificant compared with the principal eigen-values. It is appropriate
to disregard these trivial eigen-values and use the remairing principal eigen-vectors to represent
the array manifold space. The eigen-values to be eliminated are based on a preset threshold,
which represents a percentage of the trace of Rg. The significant eigen-values are those above the

threshhold, while those below the threshold are neglected.



4.4.2 Optimal signal subspace in the array manifold space

Assume that the source signals are spatially close and that the array marifold space can be 2pprox-
imated by a subspace of limited dimension. Since the signal subspace is 2 subspace in the array
manifold space, it is natural that we let the constraint be the array manifold space in (4.5) and

obtain the estimate as

Sx = arg %axtr{Psx [735?}, Sx CS5m (4.13)

X
in which the estimated optimal signal subspace is obtained by searching the K-dimensional subspace
over the array manifold space, closest to the array data signal subspace. The optimal signal subspace
Sx can be interpreted as a K-dimensional subspace in Sps which has minimum principal angles

with the array data signal subspace. The estimation procedure is summarized as follows.

o 1) Eigen-decompose the matrix R and determine the effective dimension d(d > X). Let
¥y = @1, Yporevns Qd] in which the columns constitute a orthonormal basis of Sar. Us is
obtained from the eigen-decomposition of the array data covariance matrix &-, the columns

of which are orthonormal basis of the array data signal subspace M.

¢ 2) Perform singular value decomposition (SVD) of 5’? ¥4, It follows that if

YHOF 942 = diag(on, 02, ..., 0%), (4.16)
is the SVD of U #94, the principal angle n: and principal vector v, and z; are defined by
(21,22, .., 2g) = ﬁ’SY

(21320 .- 2a] = LY

cos(m)=o0r k=1,2,...,K

and the followings hold

gf’;,- = §;;0i, for i and j< K

y.Hz-=0, for i and 7 > K,

=7
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¢ 3) The columns of Qs = [2;,...,2] will be an orthonormal basis for the estimated signal

subspace.

In the algorithm, the d-dimensional array manifold space is seen to be partitioned into two
orthogonal complementary subspaces Spr; and Spsa, with Spsq having minimum principal angles
with Es. Let Sas be represented as the direct sum of two arbitrary complementary subspaces Sy,
and Siry, SM = Sipy © Sirp- We have Ps, = P + Ps1pr Where Ps;  and Pg, = are orthogonal
projections onto Sis, and Shy,, respectively, and Ps,, denotes the orthogonal projection onto Syy.

We rewrite the criterion in (4.15) as

tr{Ps,,, UsU§ } = tr{Ps, UsU&} - tr{Pg; , UsUF}. (4.17)
Since the first term on the right side of (4.17), tr{Ps, IsUZ}, is a constant and tr{Ps,. UsUEY >
0, the criterion is maximized when tr{P;-w ) ﬁsﬁ'gf } = 0 holds. This is possible only when §, =
Sp2, i.e., the estimated signal subspace is the maximizing argument of {4.15).

The DOA parameters can now be estimated by locating the peak pnsitions of spectrum P(8)

constructed from the estimated signal subspace

P(8) = a"(8)QsQ¥a(8), 6 € Q. (4.18)

In the absence of noise, this measure will provide the exact parameter estimations. When the array
data are perturbed by noise, the parameters obtained will be associated with the array steering

vectors which are most nearly orthogonal to the estimated noise subspace.

4.4.3 Comments on the proposed algorithm

When Qg is widened, the eigen-values of Rg tend to become non-trivial, and the effective dimension
of the array marifold space approaches M. In this case, the optimal signal subspace will be identical
to the array data signal subspace. Since the array data signal subspace is the same 2 the estimated
signal subspace from the MUSIC algorithm, the proposed technique reduces to the conventional
MUSIC algorithm. The algorithm is expected to perform better than the MUSIC algorithm for
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spatially close:sources. However, since the MUSIC algorithm does not require the source signals
to be limited to a specific sector, it is fair to say that the improved performance over the MUSIC
algorithm is extracted from this prior information about the source locations.

4.5 Performance analysis

In this section, we carry out the asymptotic performance analysis of the propesed technique by
measuring the distance between the estimated signal subspace and the actual signal subspace,
when the number of array samples is sufficiently large. We show that the estimated signal subspace

is consistent and is closer to the signal subspace than is the array data signal subspace.

4.5.1 The consistency of the estimated signal subspace
It is known that the eigen-values and eigen-vectors of R are consistent [1] [27] and the following
limits hold with probability ore (w. p. 1) as ¥ — oo,

:\1'_”\:', i= L2,....M

-y, 1=12,..,K

To show the consistency of the estimated signal subspace, cousider an equivalent algorithm which
computes the normalized basis vectors of the estimated signal subspace successively. Let Vilg) =

o q- The basis vectors can also be obtained by
g = argmge-).xV,-(g.), i=1,2... K

subject to:
9€Sum, llgllr=1and gLg,, k=1,2....,i-1

Since &; converges w.p.1 to u;, Vi(q) converges w.p.1, uniformly in g to the limit function Vy(q) =
2f g subject to the constraint |l g llz= 1. Obviously, g, converges w.p.1 to the maximizing argument
of V.-(g). Since the true signal eigen-vectors x; is from the the array manifold space, Vi(g) obtain

its maximum if and only if ¢ = u;. Hence, g; converges w.p.1. to the true signal eigen-vector z;.



4.5.2 The consistency of the DOA estimates

Let § be the DOA estimates determined from the spectral function P(8). Define the limit function
P(6) as

P(9) = a7 (0)UsUZ (). (4.19)

Consider the following difference

A = sup| a"(0)QsQ¥ a(8) - a7 (0)UsUE a(6) |
< Ne®) IF x | @s@F - UsU¥ |ir
An || QsQF - UsUE |IF, (4.20)

where

Am = max || a(6) [7 - (4.21)

Since g, converges w.p.1 to u;, the difference A will tend to zero w.p.1. This indicates that the
spectral function P{6) converges w.p.l, uniformly in é to its imit function P(8). Consequently,
the DOA estimates § converges w.p.1 to the maximizing arguments of F(#). Since Us denotes the
true signal eigen-vectors, the limit function will be maximized when Us = A(8)T holds, where T is
an arbitrary full rank matrix of dimension K X K. However, in view of the uniqueness condition
(2.14), this is possible if and only if # represents the true source DOA’s. This discussion states that

the estimated DOA’s are strongly consistent and asymptotically unbiased.

4.5.3 The quality of the estimated signal subspace

Due to finite observation time of the array data, the estimated signal subspaces Sx and Eg, will
not be identical to the true signal subspace Es. We use the closeness between the estimated and
true signal subspaces to evaluate the quality of the estimates. This closeness is measured by the

distance between the subspaces. An advantage of using the subspace distance as a performance
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criterion in the subspace based algorith:dﬁ:.s:is that it includes all the source signals, array geometry
and other array parameters under consideration and is independent of the search methods used.

The distance between subspaces Sx aad Es is defined as [29]

dist(Sx,Es) =|| Ps, = Pgs | (4.22)
X

where ng and Pg are the orthogonal projection operator onto subspace Sx and Eg, repectively.
The distance between subspace Es and Es is simply dist(Eg, Es) =|| PEs -~ Pgg |ir. Consider the

following difference

Ad =|| Ps, - Pes I} - |l Py, — Pes IF (4.23)

~ From the definition of Frobenius norm, Ad can be written as

Ad

| Ps, = Pes |7 = Il Pg, — Pss IF

= tr{PES(PEs - Psx)}. (4.24)

Since Sy is a subspace in Sy, we can always partition Spr as the orthogonal direct sum Spy =

Sx © Sw. Denote Ps,, as the orthogonal projection onto subspace Sw. We write (4.24) as

Ad = tr{Pgs(Pgz + Psy — Ps, — Psy)}

= tr{PEs(PES + Ps,, — Ps,. )}, (4.25)

where Ps,, = Ps, + Ps,, is the orthogonal projection onto the array manifold subspace. Since Es

is a subspace of Sps, we have tr{Pg,Ps, } = K and (4.25) becomes

Ad= —K +tr{Pgy(Pg_ + Ps, )} = -K + tr{Pg  Pe,,)}. (4.26)

where Cw = Es © Sw is 2 subspace of dimension d and P¢,, is the projection operator onto

subspace Ci. Since d > K, we can partitioned Cw into the direct sum of Cyy and Cwa, where
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Cw: is 2 K-dimensional subspace and Cw2 is a {d — K')-dimensional subspace orthogonal to Es.
It follows that

Ad = —K + tr{Pg Pc,, }- (4.27)

Since the second term in (4.27) reaches its maximum value K only when Cy is identical to E, we

have the property of Ad < 0, or equivalently,

|| Pg, — Pes lF<Il Py = Pes |ir - (4.28)

This inequality indicates that the estimated signal subspace Sx is always closer to the true signal

subspace Es than is the array data signal subspace Eg.

4.6 Numerical simulation results

Computer simulation results are provided to demonstrate the effectiveness of the proposed technique
relative to the MUSIC, the DML ard the MD-MUSIC estimators. An equi-spaced linear array of
six sensors is simulated, with half the source wavelength spacings, and all sensors are assumed to be
omni-directional with unit gain. Two narrow-band source signals of equal power impinge from —6°
and 6° to the normal of the array. Additive sensor noise is assumed to be 2 spatially white Gaussian
process with zero-mean. The selected sector of interest is Qg = {—12° < § < 12°}. The distribution
of eigen-values of Rg is shown in Table.4.1. The effective dimension of the array manifold subspace
in §2p is 3 2nd the mean squares error (MSE) due to truncation is 0.0043 which is 0.055 of the sum of
variances. The MSE’s of the first DOA estimate are calculated both for uncorrelated and correlated
signals. To obtain averaged results, we run 200 independent trials for each point. In each trial, 100
independent snapshots are used. In the simulation, the electrical angle ¢ = wsin 8 is used. Denote
the DOA parameter vector @ = [¢1,...,9k], and the Cramér-Rao Bound is computed according

to (3.19). In all the results, the value of signal-to-noise ratio (SNR.) is taken from —6dB to 14dB
with 2 4dB step.

UNCORRELATED SOURCES Fig.4.1 shows the MSE's of the first DOA estimate versus SNR
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for the MUSIC algorithm and the proposed method compared to the square root of the Cramér-
Rao bound. The proposed method coincides with the Cramér-Rao bound at high SNR. and shows
much better performance than the conventional MUSIC method under lower SNR. Fig.4.2 shows
the MSE's of the first DOA estimate versus SNR for the proposed method compared to the MD-
MUSIC and the MLE methods. The proposed technique is seen to perform almost as well as the
MD-MUSIC and the DML estimators.

CORRELATED SOURCES Fig.4.3 and Fig.4.4 compare the MSE’s of the first DOA estimate
of the proposed method to the MUSIC, the MD-MUSIC, the DMLE and the Cramér-Rao bound
when the source signals are correlated. The source signal used has a covariance matrix Rgs of the

form

R, = BE{s(n)s¥(n)} = [ ' “], (4.29)
a 1

where « is the correlation coefficient between the two source signals. The correlation coefficient
a is chosen is 0.7 and 0.8, respectively, in Fig.4.3 and Fig.4.4. From the simulation results, the
proposed method provides better performance than the MUSIC algorithm at low SNRs. It has the
same performance as the MD-MUSIC algorithm and is just slightly outperformed by the DMLE.

4.7 Conclusions

A subspace-based algorithm for estimating DOA’s of spatially close sources has been presented. It
has been shown both theoretically and numerically that this proposed estimator is consistent and
is always superior to the MUSIC estimator. It is slightly outperformed by the DMLE and the MD-
MUSIC algorithm. However, since it involves only one-dimensional optimization, the computational
burden involved is much less than that of the DMLE and the MD-MUSIC algorithm. Although this
technique relies on prior knowledge regarding the extent of the sector in which the source signals

are to be found, this is not an unreasonable assumption in many practical applications.
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Chapter 5

Maximum Likelihood Estimator for
Tracking the DOA’s of Multiple

Moving Targets

Most high resolution DOA estimation techniques rely on the assumption that the sources are sta-
tionary. However, in many communication system applications, estimation and tracking of DOA’s
of moving targets are of more iuterest. For example, in personal communication systems, the signal
sources are usually satellites moving in orbit or people talking in a moving car. Therefore, the
conventional high resloution techniques are not directly applicable, and it is necessary to develop
effective estimation techniques to track the source target DOA’s accurately. In this chapter, by as-
suming a locally linear motion model for the moving targets, we present a highly efficient maximum

likelihood (ML) tracking algorithm for multiple moving targets by a passive array.

5.1 Introduction

There have been developed many DOA estimation techniques, such as the beamforming method,
subspace based techniques and the nonlinear criterion based approaches including the DMLE and
SMLE [1](6](10}{31][30]. However, these techniques usually fail or have degraded performance in

45
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the presence of moving targets. The tracking of the DOA’s of moving targets is of great interest for
communications, air traffic control, tactical and strategic defense operations. Take the application -
of the Applebaum adaptive array [64] in personal communication systems as an example. The
Applebaum array is an adaptive array which effectively rejects the undesired signals from other
directions and/or spatially spreads the interfering signal with optimum SNR, by forming the op-
timum beam pattern according to the environment. The Applebaum array requires the desired
source target DOA's, which can be generated by a tracking algorithm.

Conventional high resolution techniques exploit the underlying array signal model by temporal
integration. When applied to a moving source targets, their performance deteriorates. Generally
speaking, target motion will spread the array spatial spectrum and result in degraded performance
and poor resolution [33]. The performance worsens as the number of sensors increases. Recently,
several techniques have been developed for estimating tracking slowing varying parameters [33)-[38].
A general procedure in these newly developed techniques is to assume that the source parameters are
stationary during a limited integration time interval. Kumaresan et al. [34] proposed an approach
which can instantaneously track the frequency and amplitude variation of multiple components
signal by using certain nonlinear operators on the signal samples. In [36], [37] and [38), several
tracking algorithms using the sensor outputs have been introduced. These algorithms are focused
on the data association problems of the estimated parameters of moving targets, and the estimates
are still obtained based on a stationary assumption over a limited subinterval of observation. This
class of tracking algorithms does not require knowledge of the target motion dynamics, but, its
performance is far from satisfactory due to the inaccurate parameter estimates from each observa-
tion sub-interval, especially when there are fast-moving source targets. An alternative is to make
the subinterval sufficiently small to provide good stationary approximation. But this will result in
a tremendous computational burden in the very short time subinterval and make real-time imple-
mention difficult. Champaigne [35] exploits the nonstationary nature of the array data for slowly
varying sources and presents a systematic approach to the general problem of optimum space-time

array processing. However, his method can be used only when the array data can be approximated
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as stationary over time intervals on the order of the correlation time of the array processor. An-
other newly developed algorithm is based on the so-called subspace tracking techniques [39] [40]
(41]. These algorithms perform adaptively, and the signal/noise subspace estimates are updated
each time when a new array data sample comes in. However, due to the lack of knowledge of the
moving source parameters, the spread spatial spectrum problem still exists in the updating process,
and the success of these techniques is limited.

There are also the standard approaches to multiple target tracking, such as the extended Kalman
filter (EKF'), the batch filter approach for deterministic systems, the maximum likelihood estimator
and the Baysian estimator as in [42]. These methods assume that the dynamical model for the
moving targets is known and estimate the target trajectories parameters from noisy measurements
provided by the observations. However, these approaches are not appropriate for array processing.
In most array applications, the source waveforms are unknown, and the array model cannot be
directly used in the standard tracking techniques such as the Kalman filtering process. If we
extract the source parameter estimates from small segments of the array data and then apply the
tracking techniques, the spread spatial spectrum problem arises again. Also, Kalman filter requires
the statistical information about the estimates which is usually not available in practice,

In the following chapters, 2 maximum likelihood estimator is provided for tracking the DOA’s of
multiple moving targets by a passive array. The source targets are assumed to be moving smoothly,
. and the target dynamics is modeled as locally linear with unknown local constant speed. The MTS
{multiple target state) variable, including the target DOA state, is defined to decribe the moving
source target. By applying the Sontag Theorem [43], we show that the locally linear dynamies is
strongly locally observable except under some extreme conditions. The source MTS estimates are
obtained by optimizing the Iikel’hood criterion function based on a batch of array data. Since the
source MTS’s are related through the target motion dynamics, the optimization is performed with
respect to the initial MTS, and the subsequent MTS estimates are predicted from the target dy-
namics equations. A modified Gauss-Newton algorithm is proposed for optimizing the ML criterion
function, in which the Hessian is approximated by a positive semi-definite matrix to guarantee that

algorithm is descent. Asymptotic performance analysis is carried out, and it is shown that the MTS



t

IS

48

—

estimates are consistent. We also derive the asymptotic mean-squared errors and the Cramér-Rao
bounds analytically for the maximum likelihood MTS estimates. The ML estimates are shown to
be relatively asymptotically efficient. In the numerical study part, numerical simulation results are
presented to show the effectiveness of the a.lgorifhm, and comparisons with theoretical conclusions
are also provided. In the proposed ML tracki_néa.lgorithm, since target motion dynamics has been
incorperated, the spread spatial spectrum effects. are eliminated completely. Also the subsequent
MTS estimates are predicted from the initial MTS estimate. So they are automatically associated
through their underlying dynamics and there is no further requirenrent for data association. Once
new array data arrive, we form a new batch of data. The estimates from the previous set of data
can be used to start the ML tracking algorithm, and the DOA’s of the moving sources are expected
to be tracked accurately.

5.2 Target motion dynamics and the array model

Assume that the sensors and source targets are coplanar. For a moving source target, its trajectory

in the z-y plane is modeled by

28) | _ | f=(8)]
¥(2) Sly(8)]

(5.1)

in the Cartesian co-ordinate system, where {z(t),y(¢)} denotes the source target position in the
z -y plane, and i(?) and §(t) are the derivatives of z(t) and y(t) with respect to ¢. Functions f(t)
and fy(t) are nonlinear in general. In (5.1}, complete decoupling between the z and y components
is assumed. This decoupling has been shown to be a sufficiently accurate model in target tracking
techniques [42]. We assume that, in the neighbourhood of time tq, t € [to, 20 + AT, the target

trajectory (5.1) is locally linear so that

2(t) | _ | wsla(to)l(t - to) , (5.2)

¥(t) vy[y(2a))(t — to)

where
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vz(to) = fz[z(to)] and (o) = fyly(to)] (5.3)

denote the z and the y components of the velocity of the target at time ¢p5. The approximation errors
can be controlled by selecting an appropriately small finite observation time interval. Note that
(5.3) is a first-order approximation of the target trajectory, or a piece-wise linear approximation
of the trajectory. By contrast, we can verify that the slowly moving target model which has been

used by most tracking techniques is a zero-order approximation of the target trajectory.

5.2.1 Trajectory equations of the source targets

Consider K linearly moving targets in the far-field of the a.rr.a.:,aT For far-field source targets, the
array data are directly associated with the source target DOA’s. The kth target location at time
index n is described in the coordinate system {ri(n),8x(n), x(n)} rather than in the Cartesian
coordinate system. We use 74(n) to denote the range, 6x(n) to denote the target DOA and ¢x(n)
to denote the target’s direction of heading. All target parameters are measured with respect to
a common reference. The array and source target geometry is shown in Fig. 5.1. Let T be the
sampling period and let index n represent the sampling time nT. The first array sensu~ position
is used as the system origin. The source DOA’s are measured to the y-axis, the range is measured
relative to the system origin and the direction of heading is measured against the z-axis. By the

sine law, we can write for the kth source target

_ " _ sin[fx(n + 1) = 8i(n)]
G(n+1) = re(n+1) T cos{f(n) + o] (5.4)
(n) = Yk _ sinffi(n + 1) - 6i(n)] '
Gk r&(n) T cos[@r(n + 1) + 4]
and
_ Vi __ sin[fi(n + 2) = Gi(n)]
q(n+2) = h(n+2) 2T cos[fi(n) + ¢4 (5.5)
(n) = Vi _ sin[fk(n +2) - 8i(n)] - '
v me(n) T~ 2T cos[Bk(n +2) + P4

where v denotes the speed of the kth source target and



50

the (p+1)th location

the nth location

the array sensors

Figure 5.1: The array geometry for the linear moving source targets.

k(i) = arctan {:_=} ) (5.6)

¥
denotes the target’s heading direction. In (5.4) and (5.5), we note that ri(n) and v cannot be

solved separately. Thus, for linearly moving target, its speed v and range rx(n) cannot be resolved
from passive array measurements. However, this will not affect the formulation as far as the source

DOA tracking is concerned. Define the kth target state vector as

g—k(n) = [9}:(71), Qk(n)s ék(n)]r- (5.7)

By the target trajectory equations (5.4) and (5.5), we have

ax(n 1) = F¥ay(n)), (5.8)

where F=[ay(n)] is a column vector given by



51

i sin[6x(n)] £ Tqr(n) cos{r(n)]Y ]
arctan { cos[fi(n)] = q)k(ﬂ-)T sin[ér(n)] }
F{au(n)] = Bz

éx(n)

Equation(3.8) can be applied recursively m times and the result is the kth target states gi(n-+m)

or gp(n—m)

a(ntm)=(E=-E= - F*)aw(n)] = F*"eu(n)], - (510

where

- sin[fk(n)] = mTqi(n) cos[dr(n)] T
arctan { cos[Bk(n)] i(m)Tq:c(n) 5in[¢k(ﬂ)]} ]

' a n —1 —_qk n . -
= | et () + 6nt)] £ I 11

$r(n)

provided n, m and n £ m are bounded by [0, N — 1].

5.2.2 Array signal model

Consider an array consisting of M (KX < M) omni-directional sensors. Assume that the kth array
sensor is located at Z, = [z_.,k,zyk]r in the zy plane. The medium is 2ssumed to be isotropic and
non-dispersive. The source taregts are assumed to be in the far-field of the array. For narrow-band

source signals, each sensor output is the sum of the shifted versions of the original source signals,

z,(n) = i sk(nT + Tem(n)] + wm(n), (5.12)
where wy,(n) is the mth array sensor a’:i_dlitive noise and sg is the kth signal waveform. Parameter
Tem(n) is the relative time delay induced by the kth signal in the mth sensor at time aT with
respect to the selected origin of the co-ordinate system. This time delay is determined by the array

geometry and the source signal DOA’s and is given by
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Tem(n) = %zm a(m) m=12,...M, (5.13)

where x,(n) = [cos 6x(n), sin8x(n)]T is defined as the kth direction vector. Using analytic repre-

sentation, the array signal model can be described in matrix form

z(n) = A[O(n)]s(n) + w(n), (5.14)

where ©(n) denotes the source target DOA parameters at T, and A[O(n)] is defined as the array
composite steering matrix at time instant 2T, For simplicity, we will use A(r) to denote A[@(r)].
The kth column of A(n), g[fx(n)], is the array steering vector associated with the kth signal at

time nT and is given by

albi(n)] = [1, exp{jworia(n)}, . . ., exp{jworkar (n)})7, (5.15)

whére wp is the source signal frequency. Note that, since the time delays are referred to the first
sensor, Txy = 0. In previous chapters, we introduced the signal subspace. Similarly, we define
the signal subspace at time instant »T as the column space of A(n). The signal subspace at
time nT depends on the arrey geometry, time instant and the moving target trajectories. The
unambiguity condition can also be extended to the array tracking model. The array is assumed to

be unambiguous at n, i.e., A(n) has full rank. The unigqueness condition can be stated as

Al01(n)]T1 = A[02(n)]T2 = 01(n) = O1(n), (5.16)
where T} and 7> are any full rank matrices of size K x K. The details of the uniqueness condition
are in [32].

The source signals are assumed to be unknown but deterministic. In communication applica-
tions, the signal wz;.veforms are often far from being the Gaussian random processes which have
been assumed in some literature [10] [15]. The signal waveform sx(n) is regarded as an unknown
parameter to be estimated. The additive sensor noise w(n) is assumed to be jointly Gaussian,

zero mean with covariance matrix ¢2.I, where o2 is the urknown noise covariance and I denotes
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identity matrix. {w(n); n =0,1,...,N — 1}, where N is the number of samples, are assumed to

be statistically independent.

5.2.3 Observability of lo;:ally linear target dynamics

The locally linear dynamics of the kth target are described by (5.9) and (5.11). The question arises
as to whether the states can be determined from the observed array data uniquely. This is related
to both the observability of the target dynamics and the ambiguity of the array signal model. The
ambiguity problem has been solved by imposing the uniqueness condition on the array model. Let’s
discuss the observability of the locally linear model. For far-field source targets, only the source
target DOA states are directly associated with the array data, and the target DOA states can be

written as a mapping from the MTS vector space to the DOA parameter domain as

8x(n) = Flax(n)] = 1,0, 0jex(n), (5.17)

where 8i(n) € R, g(n) € R® and F denotes the mapping operator, R* — R!, from the MTS
state space to the DOA parameter domain. Since we are primarily concerned with the theoretical
aspects of observability, noise-free measurements are considered. Also, because each source target
dynamic forms an independent system, it is sufficient to consider a single target. Henceforth, we
shall omit the subscript k in this section.

The system observability refers to the ability to reconstruct the state space from the measure-
ment space. Here, in the context of source DOA tracking, the measurement space means specifically
the source DOA parameter domain. In a geometric sense, system observability is a functional rela-
tionship between the measurement space and the state space. When applied to the moving target

dynamics here, the definition of observability can be stated as follows [44].

Definition 1 A state g(r) € R is said to be observable if knowledge about measurement sequence
{8(rn+m); m=0,1,...,M,—1} is sufficient to determine the system state a(n) for a finite integer
M,. If state a(n) is observable everywhere on its defined state space, then, the system is said to

be completely observable.
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Generally speaking, if 2 system is observable, the corresponding mapping from the state space
to the measurement space should be one-to-one, and the state space can be reconstructed from the
measurement space. If the system is not observable, sufficient measurement data may be obtained
to ascertain the state of interest over one specific domain but, not over another domain. In [45),
several notions of observa.BiI.ity have been introduced for discrete dynamical systems. A system is
strongly observable or finite time observable at o(n) if M, equals the dimension of the system state
space. The system is strongly observable if it is strongly observable at every point of the system
state space. A system is strongly locally observable at a(n) if there exists a neighbourhood of a(n),
Uqg(m), in which ¢(n) is strongly observable. The system is strongly locally observable if every point
in the state space is strongly locally observable.

The strong local cbservability is an appropriate criterion for testing the observability of the
locally linear model. Besides, strong local observability has the advantage of lending itself to a
simple algebraic test. Define 2 map T, given by

Tola(m)] = {Fla(m)], Fla(m + 1)], Flom + 2]} = [8(m), 8(m + 1), 6(m + 2)]. (5.18)

The system is said to satisfy the observability of rank condition at a(m) if the rank of T}, is 3, and
the system is said to satisfy the observability rank distribution if this is true at every a(n) in the
system state space. Let’s consider an autonomous dynamical system. An autonomous dynamical

system is defined by the following state equations

= f(z) z(t0) = 2o, (5.19)

in which mapping f, also referred to as the vector fieid of the system, is independent of time t.
Obviously, the locally linear target dynamics described by (5.8) represent an autonomous system.
For testing the observability of an autonomous discrete nonlinear system, we introduce the following

theorem by Sontag [43].

Theorem 1 An autonomous discrete nonlinear system is strongly locally observable at a(n) if it

satisfies the obs -vability rank of condition at a(n). If the system satisfies the observability rank
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distribution, then the system is strongly locally observable.
It has been shown {46] that the rank of map T, at a(n) is the rank of the Jacobian matrix of the

local representation of T, using local co-ordinates. From {5.18), we obtain the Jacobian matrix
Ta[a(m)] at o(m) as

L d0(mt1) B8(m+2) ]
) Sb )
m+ m
VI= 10 “agm)  ~agm) (5:20)
o (m+1) 28(m+2)
L o¢(m) - 8¢(m)

In Appendix A, we show that the Jacobian 77, has full rank, and the mapping T, satisfies the
observability rank condition ;_lmost everywhere except for an extreme case in which

8(m) = 7/2 — ¢(m) or 8(m) = —7/2 — ¢(m). (5.21)

This condition happens when the source target DOA and its direction of heading are parallel or
anti-paralle], i.e., the target moves along the line connecting the target and origin of the co-ordinate
system. In this case, consecutive DOA measurements will be identical, and the locally linear target
dynamics have 2 rank deficient Jacobian. The MTS vectors cannot be completely reconstructed
from the source target DOA parameter measeurments due to the non-observability of the system.

For such a scenario, the locally linear target dynamics (5.8) reduce to

f(nt1l) 8(r)
afntl)=| gntl) | =| gn)£ 1T |- (5.22)
HnE1) é(n)

in which the source target DOA compoent 6(n) is v longer related to the other MTS components.
Since the source DOA parameters are the only MTS components which are directly observable from
the array data, we can see that the information on the q and the ¢ components are totally lost when

condition (5.21) prevails. This non-ohservability reduces the tracking 2lgorithm to the conventional

1
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estimation algorithm for stationary source targets since targets moving with their DOA equal to
their heading directionwill appear as stationary targets to the passive array. A possible way to
overcome this rank deficiency of the system Jacobian is to move the co-ordinate origin. If the rank
deficient Jacobian is detected, we can relocate the co-ordinate origin so that the target DOA and
direction of heading in the new co-ordinate system, §(m) and ¢'(m), will satisfy

§'(m) # w/2— ¢'(m) and &(m) # —x/2 - ¢'(m), (5.23)

and the tfa.nsformed locally linear target dynamics will become strongly locally observable in the
new co-ordinate system. E

The strong local observability of the locally linear target dynamics (5.8) indicates that the
source target MTS vectors can be uniquely determined fro:p. the source DOA measurements. Since
the identification of the source ta.nget DOA parameters from the array data is guaranteed by the
array uniqueness condition, it is concluded that the locally linear target states can be uniquely

determined by the passive array data.

5.3 The maximum likelihood estimator

The maximum likelihood method is 2 popular estimation procedure in statistical studies. It works
with the likelihood function of the array data and computes the unknown parameters as the maxi-
mizing arguments of the likelihood function. The ML estimator are consistent and asymptotically
efficient (47]. In this section, we will investigate the possibility of applying the ML approach to
passive array tracking.

5.3.1 Array data likelihood function

Under the Gaussian assumption of the array sensor noise, the conditional density function of 2

batch of N sampled array data is given by

LA | 1., oy Ep g N\
p(z(1),2(2),...,z(N)) =] T oTH &P {—;E-{a(z) - A($)s()} {=(3) - A(‘)ﬁ(‘)}}a (5.24)

=1
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and the negative log likelihood function, ignoring the constant term, has the following form

},=_1°gp MV log(ro3) + LS 2 - AD) 13- (5.25)

Wl—l

5.3.2 Optimizing the likelihcod function

The principle of the maximum likelihocod estizizator is to maximize the likelihood function with
respect to the unkrown parameters [14], and the maximum likelihood estimates are obtained as
the minimizing arguments of (5.25). Fixing ©(7) and s(i) and minimizing the negative log likelihood
function with respect to o2, yields the noise variance estimate

4

= 371 Z I 2(5) - AR)s(i) % - (5.26)

Substitute &2, back into (5.25) and obtain the array signal vector estimate 3(i) and the DOA

estimate O(3) as

(2), 0] = are m()zu 2() - DD [, i = 12,00, V. (5:27)

Since the above criterion function in (5.27) is quadratic in the array signal vector (i), fixing

9(7) and minimizing with respect to s(i) yields the signal waveform estimate

8(1) = {AF (DA} AT (B)2(i). (5.28)

Substituting (5.28) back into (5.27) we obtain the criterion function for the DOA estimate

Jl

N
311 2(3) =~ Pagnz(i) 13

=1

N -
= 21 Pay=() IiF -
i=1
N
= Zt"{P i(qz(i)iﬂ(i)}
i=1
N . N
= Dtr{PipR()} =Y J (5.29)

i=1 i=1



where

'R

* Pagy = ADATH AW} 47 () (5-30)

is the projection operator onto the column space of A() and

Pl =I- P4 (5.31)

denotes the projection operator onto the null space of A(3). The ith component J; is given by

Ji = tr{ P R (i)}, (5.32)

and notation R(3) represents the one-sample estimate of the array data covariance matrix at time

iT and is computed as

Ro(i) = 2()27 (), (5.33)
which is a rank one matrix. Since R,(i) is positive semi-definite Hermitian, J; is nonnegative. We
see that J is not well defined since when N approaches infinity, J/ is not bounded. We divide J
by N and obtain an equivalent likelihood function J given by

= Ly LSNPk Rt (5.34
=5/ = ﬁg"{ A3} 5.34)
which keeps all the properties of the the likelihood function J’ [47]. Then, the maximum likelihood
estimate of the DOA state parameter O(i) is obtained by
1

N
A(i) = inJ = in — L R}, i= ceey V. .
(i) = a.rgg(x‘;)x.f = a.rgxézilg 7 ;§=1 tr{ Py B=(1)}, i=1,2,...,N (5.35)



Chapter 6

An Iterative Algorithm for
Optimizing the Likelihood Function

The source target MTS vectors, including the source DOA p:-.n—umeters can be estimated by optimiz-
ing the criterion function J. This optimization process is non-linear in general. The Gauss-Newton
type method is one of the most efficient optimization methods and is known for its superior conver-
gence rate. In this chapter, a modified Gauss-Newton algorithm is provided. We derive a close form
expression for the gradient of J and approximate the Hessian by a positive semi-definite matrix to

guaraatee that the algorithm is descent.

6.1 An iterative optimization algorithm

The criterion function J is a function of the source DOA states {@(i); i = 1,2,...,N} which are
in turn related to the state variables {gx(%), #«(i); i = 1,2,...,N, k=1,2,...,K} by the source

target dynamics. Define the 3K x 1 multiple target state (MTS) vector at time index i as

Q(i) = [g'{(;)v Qg(i)i oes 123.{(3)]2-
= [al(i)i 91(i)1 ¢1(z)1 92('-'), ‘k(i)v ¢2(i)1 veay BK(i)’ QK(i), ¢K(i)]r' (G‘IJ

Since J is an implicit function of the MTS vectors and one MTS vector can be determined

59
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completely by another through the locally linear target dynamics, we need only to estimate the
initial MTS vector a(1). The subsequent MTS vectors, {a(i); i = 2,3,...,N} can be predicted

from the assumed target dynamics.

6.1.1 The iterative minimization algorithm

The initial ML estimate of a(l) can be obtained as the minimizing argument of J. Analytical
solutions are, in general, not available, and we have to resort to numerical optimization technigues.
Recently, several optimization methods have been applied to array signal processing, including the
alternating projection (AP) method [30], expected maximization (EM) algorithm [48] {49], global
search techniques [50]-[52] and different Newton-type algorithms [53]-[53). It is well-known that the
Newton-type method is one of the most efficient optimization methods. It gives, locally, a quadratic
convergence to the optimizing arguments [56]. -

When a Newton-type algorithm is applied to the optimization problem (5.35), the (k + 1)th

iteration for locating the initial MTS vector a(1) is computed as

a+(1) = 6(1) - weB1G, (6.2)

where p is the kth iteration step-length, H represents the Hessian matrix of the criterion function
with respect to the initial state @(1) and G is the gradient. Both the Hessian and the gradient
are evaluated at &(1). The essentizl steps in deriving 2 Newton-type algorithm involve finding the

gradient and the Hessian.

6.1.2 Computation of gradient G

The criterion J is an explicit function of the DOA state ©(z) and an implicit function of the initial

MTS vector a(1). The gradient of the criterion J with respect to &(1) can be written as
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(1 X& an 1 [ 1 X e es) ]
N« 2 881(1) N § 86,(3) 86, (1)
N.aJ; 96,(3)
N 21 391(1) N ; 861(3) 8qa (1)
N 2 a¢1(1) ¥ ; 96:(3) 961(1)
G= az(Jl) = = |- 5 : (63)
B 1 i aJ; 1<~ _8J; 98k (i)
N £ 88x(1) w§} 805 (1) B0 (1)
1 & 8 8T 98x(d)
w? gk (1) Nzaax(:)aqx(l)
1 & au; 1 A 0% 96x(i)
N § k(1) | | N¢ Z 7 90x(3) 36x(1) |

Let 7J; be the gradient of J; with respect to the DOA state ©(4) given by

[ aJ; 9J; aJ;
861(3) 862(3) """ 86k (3)
(.)__(z) Wnte Ji as J; =|| #(3) ||% 2nd the mth element of 77J; can be written as

Vdi=

g (6.4)

Let 7(3) =

o or(i) )H N P
(i) ~ 2Re{(agm(i) (i) p = 2Re {Tm(l)r(t)}, (6.5)
where rrm(i) = 87(i)/06,,(i). The first derivative of the projection matrix has been derived as
[57](53]

9Py _ 9Py . L
39:((1'}) ~ 0 A(( )) Pj'(i)Am(t)Af(‘) - [Pxs Am(i)A“-(l)]H, (6.6)

where A (i) = 0A4(1)/98m(i) and for the parameterized array composite steering matrix A(%),

Ani) = [o 9albn(9)) o] . (6.7)

T 80m(3) 7

Then, (6.5) can be written as

aJ; ORI
W) 2R‘{(aem(i)) ’(‘)}
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H
m{ 2(3) [39 “(")] P:%(,-)g(i)} _,
= —2Re{z())PLy Am(D) AT (Dz(i)}
= ~2Re{tr[4! (i) R() P Am(D)]} (6.8)

in which we have used AT(i)P;{-m = 0. The gradient \7J; is then

v Ji = ~2Re{diag[A1 () R:(i) P D]}, (6:9)

where diag(X) denotes a vector formed from the diagonal elements of matrix X, and D(i)is defined

as

(i) = [ag[al(in Balfa(i) 32[9K(i)]] = 3" Anli). (6.10)

96,() ' 06,(3) ' 36k (D)

m=1

By (5.11), the kth target DOA state 8i(1) is a non-linear function of the MTS vector g (i).
Denote p,(%) as the gradient of 8x(z) with respect to ¢,(1). It can be computed from (5.11) using

elementary mathematics as

(D) ] T 1+ (i - 1)Tgr(1) sin[8i(1) + e (1)] T
. 1+1—12T221+21- Tax(1 Br(1) 4 ox(1
e Say | | T ey o) 61)
Bt = aqkﬁlg Tl 14— 1)2T2q2(1) + 2(i — 1)Tqr(1) sinffe(1) + ox(1)] |~
98, (i —(t~ 1)%;-,,(1)'.’[‘2 (i — 1)Tai(1) sin[8:(1) + ¢x(1)]
[ 9¢k(1) 1 L 14 (i =1)?T?q§(1) + 2(i -~ 1)Tqx(1) sin[6x(1) + ¢a(1)]
Define the matrix V(i) as
V(E) = [2a(2), (), - - o & (D). (6.12)

and the gradient G can finally be obtained as

= vec{ z V(i)diag(7J;)} = —2vec { 5 ZV(z)Re{I @ [AT (i ;Rz(z)PAmD(z )]}} (6.13)

:_1 =1
where vec stands for the concatenation of the columns of a matrix.
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6.1.3 Computing the Hessian matrix of the criterion J

The Hessian matrix of the criterion function J with respect to a(1) can be partitioned as é. KxK
matrix of 3 X 3 blocks

Hy Hip ... Hix
H= [.ML);;(T)]:’K“K = fn Bz oo e . (6.14)
| HExr ... ... Hyk |
where the 3 X 3 matrix Hy, is defined as
8% 3 FL

B0n(00(T)  Fom(L00(D)  Fomn(1]0%e(D)
a-J; 8*J; 9°J;
0qm(1)30n(1)  Fgm(1)qa(l) Fgm(1)0¢(1
w0 Fenl 2D Fenl1J28:00
L aém(l)aan(l) a¢m(1)aq:|(1) a¢m(1)a¢n(1) J

1 N
=1

The diagonal elements of the submatrix H,, are computed as

8*J; _ 8 [ aJ:  96a(3)
80m(1)06,(1) ~ 86,(1) [36.(:) 88.(1)
8%J; 08 (4) aan(i)] aJ; 3%0,.(%)

= ()98 30m(1) 30D T FO(D)  BOm(T)BONT) ™
8%V _ _»o [ 8J; _aan(i)]
an(l)aQn(l) a%’n(l) 39,,(1’) aQn(l)
_ 97 [36?,,‘(:')'aea,,(i)]_F 8J;  9%6.(3) i
08m(1)00n(3) L0gm (1} Fa(1)) ~ 08a(i) Oqm(1)0Ga(l) ™
8%J; _ a [ aJi a@n(i)]
0¢m(1)0¢n(1) ~ 0dm(l) [36.() 88a(1)

- 2N F 08, (1) 36n(1) aJ; . 826,.(3)
- aam(i)aen(i) [3¢m(1)6¢n(1) 69.“(1:) 3¢m(1)a¢ﬂ(1)6’"ﬂ (6°16)

and the off-diagonal elements are computed as

82J; _ 2] [ aJ; _aa,,.,(i)
06m(1)3¢a(1) ~ 9gn(1) L3Om(i) 08m(1)
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_#x [38,,(1‘) _ Bﬂm(i)] 83 8%8m(i)
= )00 L80a(1) 30 (1) T B PO (D) "
*J; _ 8 [ aJ; _ae,,,(i)]
3m(1)88a(1) ~ B¢n(l) LOm(i) 90m(1) ,
: L [06,() 06.()] . O 826,.(i)
= 30.(96.09) | 36a(L) 68,,.,(1)] 30.0)- B ()0e1) ™"
82, 9 [ 3 96m (1)}
Bgm(1)0¢a(1) 3¢m(i) 00m(1) Ogm(1) .
. _ BT [90a() Ba()]. 8% 0°0m(i) }
= Fm()06.) [3¢n(1) 3an(D)] T 30m()  Bamouyomm (6:17)
where §pmy, is the Kronecker delta defined as
1 fm=n
Smn ={ . (6.18)
0 fm#n

Written in a compact form, the submatrix Hyy, is

1 Y 8% J;
Hen = 37 2 Sominae. ot ()+Nzaa ()A““”"‘“’ m=Laen K (619)
"=1 m n m

where 1,,(7) is defined in (6.11), and Am(i) is the Hessian matrix of the mth target DOA state

8m (1) with respect to the mth initial target state o, (1) given by

329m(i) 3"9,“(1:) 329,,,,(2') i
D50 (D) B D4nD) m06010)
Anli) = | 55 1)'30(1) 3 gl)'fa(;)(l) 3 af)”éﬁ?m
m Im m Im ™
(’ 8°0m(3) 9°0m(1) 6(20m(i)
L 09m(1)88,m(1) 00m(1)0gm(l) Odm(1)0dm(1) ]

(6.20)

Denote the Hessian matrix of J; with respect to the ith DOA state ©(i) by 72J; where

9°J;
V= [W] (6.21)

The Hessian matrix H can then be expressed as
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: N
"B =53 {8 0] 0 [vecV (iJuec V(i) + [diog(vI) 0 IO AD)},  (6.22)
=1 |

where @ denotes the Kronecker product, and A(3) = diag[A;(5), A2(3),. .., Ak(D)]. Ma.trix Oisan

all one matrix of dimension 3 x 3

111
o=|111]. (6.23)
11 1

In (6.22), the Hessian 72J; is calculated by differentiating (6.5) with respect to 8,(3)

2 7.
_aﬂma(i;én(i) = 2Re {rf{(i)ra(i) + ri (D0 ()} (6.24)

6.2 Modifying the algorithm by-approximating the Hessian

The general idea behind the Newton method is to approximate the criterion function locally in the
neighbourhood of the stationary point by a quadratic function. The role of the Hessian can be
seen as 2 modification of the gradient. A negative gradient direction is a descent direction, and the
Newton maethod is 2 descent method only when the Hessian is positive definite at each iteration
(56]. In practice, this positivity cannot be guaranteed, and we usually need to modify the Hessian
to ensure that it remains positive definite at every iteration. One of the most elegant ways was
first proposed by Levenberg [58] and applied to the Newton method by Goldfeld [59]. A constant

¢ is added to all diagonal elements of the Hessian so that the estimate is iteratively calculated as

a*(1) = g1 - w(H + )76, (6.25)

where ¢ is chosen to make [H;(i) + eI] positive definite. This idea is very intuitive, but, the
search process for parameter ¢ is computationally very costly. Another often used technique for

overcoming the non-positive Hessian problem is to use a less complex positive semidefinite matrix to
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approximate the Hessian. Below, the derivation of such a simplified positive semi-definite Hessian
is presented. . ‘

Since the ML estimates {@(i); { = 1,2,..., N} are each 2 consistent estimate, the kth iterate
al®)(1) is expected to be sufficiently close to the optimum value, and the first-order derivative of

J; with respect to ©(i) would be very close to zero,

aJ;
80 ~

Thus, the second term in (6.22) can be neglected and the Hessian is approximated by

= 0. (6.26)

H= -—Z[vz.f ® O] @ [vecV (3)vecFV (i)]. _ (6.27)

1-1
In [57], Golub and Pereyra proposed a variable projection method for separable non-linear least

squares problems. In the variable projection method, the second derivative term is discarded under
the assumption that the residual at the kth iteration is small. For sufficiently large number of
array samples, with a{¥)(1) close to its true value, || 7 || is certainly small, and the term in (6.24)

containing the residual r can be ignored. Thus, the Hessian (6.24) can be approximated by
9% J;
R OTAO R ~2Re{r m(z)r,._(z)} (6.28)

The approximated Hessian (6.28) can be verified to be positive semi-definite and is written as

82J;

80,(3)02(3) = 2Re {t"{[AfH(i)Am(i)P_i‘(,-)An(i)Af(i)

+ P An(i)AT() AN () AB ()P R} ) (6.29)
in which we have used AT ()P4, = P, A1#(i) = 0. Kauffman [60] modified the Newton method
by further dropping the second term in (6.29). A natural motivation for dropping this term is given

in [53], and this is believed to be 2 better approximation of the Hessian. By the same motivation,

we neglect the second term in (6.29) and approximate 2J; as

o 2 2Re{tr[ATH () AZ () P AT () (6:30)
B D) o ' |
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Then in compact matrix form, we have

@* J; = 2Re{{D¥(i) P{; D(i)) @ 4T () Ru(0) APH ()T} (631)
Since DF(i)P4,D(i) and AT(i)R:(:)A1H (i) are both positive semi-definite, T2J; is positive
semi-definite by the property that the Hardamard product of two positive semidefinite matrices is

also positive semi-definite [61] [13]. The following lemma is given for the approximate Hessian K.

Lemma 1 The approximate Hessian matrix H in (6.27) of the criterion J with respect to &(1) is

positive semi-definite.

Proof The approximate Hessian matrix A has the form

N
= %Z[vz.r,- ® 0] @ [vecV (i)vecV(i)], (6.32)

i=1

where the approximation of 72J; is given in (6.31). Since both O and the approximate 2J; are
positive semi-definite, 72J; ® O is positive semi-definite by the properties of Kronecker product.
The outer product [vecV (i)vec? V(1)) is rank one and is obviously positive semi-definite. Thus,
each term in (6.32)
[¥2: ® 0] @ [vecV (3)vecF V(1))

is positive semi-definite, and it follows that the sum of positive semi-definite matrices is also positive

semi-definite. ]

In addtion, the step length parameter 4; can be incorporated to ensure that the Newton algo-
rithm is descent. The parameter u; should be selected such that the convergence of the criterion
to the local minimum will be guaranteed [56]. An often used scheme for the Newton method is to

choose i < 1 and to take pp = g for the smallest integer 7 > 0 that causes sufficient decrease [56).

6.3 The initial estimate computation

The global convergence of the Gauss-Newton algorithm depends on the initial MTS estimate a(*){1).

This initial estimate can be calculated as follows. Assume that a batch of array data of length N
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has been collected. We take three overlapping segments of array data of length No (No < N),
{X;; i = mo,my,mg, }, in which

Xi={§(n+mi); i=0,1,2 n=1s2)--'?N0}! (6'33)

where m; are ordered intergers with mg = 1. For each segment of array data, we assume that
the source ta.rggité; are approximately stationary and estimate the source target DOA states ©(m;)
using the classical high resolution DOA techniques, such the MUSIC and DMLE algorithms. Note
that, if the subspace based techniques are to be used, the length of eiﬁ.ch segment should satisfy
No > K [13).

With the three target DOA estimates {O(m;),i = 0, 1,2}, the initial estimates for g(1) and

¢x(1) can be computed from the target state dynamics (5.4) and (5.5) as

¢x(l) = =—8i(m2)+ arctan{cot[fi(mz) — Ox(m,)]

— sin{dx{m3) — Ox(m1))
sin[Gk(mz) - 9;;(7711)] sin[ak(ma) - Bk(mg)

] 2 (6.34)

and

sin{fx(m3) — Gi(mmy)]
(ma —m)T COS[ak(m;;) + ék(l)],

gr{m1) = (6.35)
respectively, where { = (mz —m;)/(ma—m,). For a given batch of data, the converged initial MTS
estimate (1) is independent of a(%)(1) as long as &(®)(1) is in the region of convergence. Although
this region of convergence is not rigorously defined, a(®)(1) should be close enough to the optimum
&(1). We emphasize that the methods for obtaining the initial MTS eitimate is useful to initialize
the optimization algorithm. Once an optimum estimate for the first batch of ¥ sampled array data
is obtained, it can be used to generate the initial estimate for the next batch of NV sampled array

data, and the initial estimation procedure is no longer repeated.
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6.4 The modified Newton algorithm

When the first batch of NV array data has been collected, we can calculate the initial MTS vector
estimate o{®(1) and start the modified Newton algorithm iteratively as

_c}_(k“)(l) = Q(k)(l) -wATG, (6.36}

where G and H are the gradient and the approximate Hessian of J with re.spf::.t‘ia (1), given
in (6.13) and (6.32) respectively. Both the gradient and the Hessian are evaluated at o(¥)(1). In
the evaluation, the estimated states {(¥(i); i = 2,3, ..., N} can be predicted from 2(*}(1) by the
target state equations. In the algorithm, each iteration involves the computation of the pseudo-
inverse AT(i) and the projection P:. This can be done by QR-decomposition instead of the direct

calculation to reduce the computational burden. Thus,

Raq
0

A(?) = Q@ Rag = [@1,Q2]

and
Al() = R3}Qf, and P = Q:GF,

where matrix Q; is of size M x K, Qzis M x (M -K)and Ry is K x K.
At each iteratjon, the steplength g should be properly selected to make sure that the modified
algorithm is 2 descent algorithm. The iteration continues until some prescribed ending criterion is

satisfied, We give some examples of the criterion

o | H~1G | is within the specified tolerance and H > 0.

* no improvement can be found between two successive iterations. This can be detected by

either of the following phenonmena

1. the distance between consecutively computed estimates | a¥*1)(1) — al¥}(1) £ is less

than a preset tolerance;

2. at the kth iteration, the step-length p is less than a prescribed tolerance.
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o the number of iterations reaches a specified maximum Lmit.

Once the initial MTS estimate &(1) is obtained, the MTS vector at any arbitrary time instant
within the observation time can be computed simgply from the target motion dynamics (5.10). It is
well known that the ML cstimators satisfies the invariance property [47]. Since one MTS véctor can
be reconstructed from another MTS vector uniquely by the target motion dynamics, the estimates
{&(7); =2,3,...,N} thus computed from the ML estimate &(1) are also the ML estimates.

An alternative to estimate the MTS vector o(7) for § = 2,3,..., N is to construct the maximum
likelihood estimator based directly on (j) and obtain the estimate &(7) by. optimizing the criterion
J in (5.34) with respect to @(;). When the Newton-type algorithm is applied to the optimization
procedure, the gradient and the Hessian of the criterion function are both derived with respect to
MTS vector a(7). To evaluate the gradient and the Hessian at each iteration, we need to compute
the gradient of the kth DOA state 8;(7) with respect to the target state a7) where i > j or i < i
Relation (6.11) is valid only for the gradient computation when i > 7. When i < j, we derive the

general expression for the gradient as

C 00, 1 [ )G~ DTl snlfu() + )] ]
aoki } q2(3) + (i = 7)°T2 + 203 - 7)Tqr(3) sinfB(7) + 6x(5)]
86y =(2 = )T cos[8(7) + dx(7)]

8gk(j (@) + (i - )219 +2(i - §)Tqw(5) sin[0:(5) + éx(5)]
38 =(i = 7P°T? — (i — §)Tqe(7) sinl8r(7) + S(5)]
b7 L qi(5) + (i = 72T + 2(i — 5)Tqk(7) sinffx (7) + &(7)]

w(i ) = 7 = . (6.37)

W

\..J
L

Accordingly, the gradient and the approximate Hessian are derived as

G = —2vec{ ZV(: J)Re{IG[Af(z)R,(z)PA(,)D(z)]}}
N

H = & Z[V‘J ® O] © [vecV (i, j)vec?V (4, )], (6.38)
=1

where matrix V(i, j) is defined as

V(i,5) = (3, 5), 22(4, 7). -y 2R (3, 5)]- (6.39)
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Figure 6.1: The array geometry of an equi-spaced linear array.

and both the gradient and the Hessian are evaluated at &(7) in each iteration.

When the (N +1)th array data measurement is available, we form the new data batch {z(i); i =
2,3,...,N +1} and apply the same estimation procedure to obtain the ML estimate of (2). This
time, the initial guess procedure is not necessary, and the initial estimate can be assigned us
a(9(2) = &(2) which is predicted from &(1) by (5.10). Since a(9(2) is the ML estimate a(2) ob-
tained from the preceeding array data batch, the algorithm is expected to converge to the optimum
estimate very quickly when it is applied to the new array data batch. Also, since the estimates a.r§
automatically associated with the previous oncs; the data association problem does not arise. As

new array data continue to arrive, the algorithm is repeated, and the target states including target

DOA state can be successively estimated and tracked.

6.5 Numerical simulation studies

Simulation studies are carried out for an M = 8 sensors equi-spaced linear array with half source
wavelength sensor spacing. The array geometry is sk~ * in Fig. 6.1. In the first part, we study the
effects of the source motion on the array and in the second part, we investigate the performance of

the ML tracking algorithm via computer simulations.



6.5.1 Effects of source motion on array processing

Generally speaking, the source target motion tends to spread the array spatial spectrum in the
spatial domain and result in lower performance in source target dectection and estimation. In the
temporal domain, the target motion makes the received array data non-stationary even though the
source signal themselves may be stationary. Since n;tost high resolution array processing techniques
rely on the stationarity assumption, their applications and performaxnces are limited by the source
moticn effects.

Censider a single linearly moving source target. To show how source motion will affect array

processing, we use the following simplistic model {33] for 2 small observation interval

Sin6(i+m) = sinf(3)+ {cosd(:) — sin6(i) sin(6(i) — ¢(i)]}':—’("ijT-
= sinf(i) + km. (6.40)
where
ki = {cos6(i) — sin 6(i) sin(6(3) — ¢(i)]}%. (6.41)

In (6.40), the locally linear motion model is approrimated by the linear model in sin 8(: + m). Let
t = 0 and (6.40) becomes

sinf(m) = sin (0) + kom. (6.42)

The spread spatial spectrum effects due to target motion can be observed from the asymptotic

array spatial density which is defined by

Pn(8) = E{a"(8)R-a(0)} = a¥(6)R.a(0). (6.43)

By substituting R and ¢(6) into (6.43) and ignoring the constant scaling factor, we get

N-1

Pu() = 3 a¥(8)al8(i))a"(8(i)]a(8)

t=0
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My ] L i -~ N -1, . sin[(m = )7 Nko/2)]

= mz=1 Eacp{-g(m—l):r[smﬂ - sin8(0) ~ —=—ko]} all = I):rko;2)]

K= - inf>
= M_EM +1(M- |m]) exp{~jm{sin § — sin 8(0) — Ng lko]}ss‘;ﬁ'[";i’:;g])].(sm)
For a stationary source signal at §(0), the aéymptotic spatial spectrum is {68]
_ [sin[M7sin(8 - 6(0))/2]1 2

B (6) = { sin[x sin(8 — 6(0))/2] } ) (6:45)

Compared to (6.45), the spatial density (6.44) in the presence of moving target exhibits two effects:
biased peak location and enlarged main lobe. The peak location 8, of Pr(6) is found to satisfy the
following relationship

N-1

sin @, = sin 8(0) + 3

ko, (6.46)

and if we use sin 8 to denote the source DOA paramater, sin B, is seen to have a biase of (V —1)ko/2.
Fig. 6.2 shows the array soatial densities in the presence of stationary and moving source targets.
They are plotted for different numbers of array data samples. The solid line represents the case of
a stationary source target at #(0) = 10°. The dashed lines are the spatial densities for a linearly
moving target with 6(0) = 10° and kp = 0.005. The numbers of the array samples used are
N = 30,100 and 150. From the plot, the bias is observed to increase with the number of array
data. We also observe that the main lobe widens as the array sample aumber is increased.
Furthermore, these effects increase as the array sensor number becomes greater. Fig. 6.3 shows
the variation of the array spatial spectrum with the number of sensors. In the example, the number
of array sample is N = 100. The spatial spectra have the same peak biases. But, the spatial spectra
‘become flatter and their main lobe wider as the number of sensors is increased. This is different
from the case of stationary source where the spectrum becomes narrower and sharper as the number
of sensors increases. The widening and flattening of spatial spectrum in the presence of moving
targets will result in degraded performance in terms of source D7 A resolution and the estimation

variance,

Another important effect of the moving targets on array processing is the increased array

[
e
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data covariance rank. Since most high resolution arTay processing techniques rely on the eigen-
decomposition of the estimated covariance matrix of the array data, the consequences afre source
splitting and false detection of the number of source targets present. For K stationary source sig-
nals, it is known that the array data cova.rianceﬁ:_ggtﬁx has K signal eigenvalues. The source motion
changes the distribution of the eigenvalues and te;1ds to blur the boundary between the signal and
noise eigenvalues, making them difficult to separate. Usually, it will result in a false detection of
higher number of-the source incident on the array, or a higher dimension for the estimated signal

subspace. False detection due to source motion in turn will lead to poor estimation performance.

6.5.2 Tracking th{:‘)OA’S of the moving source targets

In the simulation study, two narrow-band source targets of equal power are used. The array sensor
noise is assumed to be a white Caussian process with unit varizace and be independent between
sensors. The sampling period is normalized to T = 1 and the source powers are normalized to

unity. The array SNR is defined as

SNR = 20log g- = 20logo,, (6.47)
1w

where ¢? denotes the source signal power. At each iteration in the Gauss-Newton type algorithm,
we choose an initial up < 1 and take y = (no)* for the smallest integer ¢ that causes the most

decrease in the criterion function.

LINEAR UNIFORMLY MOVING TARGETS Assume that two strictly linear uniformly moving
source targets with heading directions ¢y(1) = —135° and #2(1) = 30°. The two source targets start
moving at DOA locations 6,(1) = 0° ané f2(1) = —20°. The initial ¢ components of the source MTS
vector areset to g;(1) = 7.4 x 1073 and g5(1) = 5.3 x 10~3, We set SNR=5dB. Fig. 6.4, Fig. 6.5
and Fig. 6.6 show the tracking of the source targets DOA’s when the two sources are uncorrelated,
correlated and coherent. In the correlated case, the correlation coefficient between the two sources
is set to 0.75. When simulating the coherent sources, we COpY one source waveforms from the other

by a complex attenuation factor 0.9¢703!. In all three plots, the source DOA traiectories are seen



to be successfully tracked.

In Fig. 6.8, we compare the ML, tracking results with those obtained from the traditional ML
estimator in which we treat the source targets as stationary in a relatively short data period of
50. Two uncorrelated linearly moving targets are assumed. The total number of array samples is
N = 400, whereas SN R = 5dB. The initial source target parameters are chosen as 6;(1) = 0°,
f2(1) = —20° q1(1) = T.4x 10~ and g2(1) = 5.3x 10~ and the heading directions ¢1(1) = 135° and
$2(1) = 30°. From Fig. 6.8, it is observed that the ML tracking algorithm consistently outperforms
the traditional ML estimator while the latter exihibits a bias from the actual source target DOA
trajectories. This bias is caused by the spread spectrum effects due to target motion. Furthermore,
since the linear motion target model has been assumed, the DOA estimates are automatically
associated with the previous estimates through their underlying assumed target dynamical models,
and no data association problems zrise.

Fig. 6.7 shows the tracking results of multiple linear uniformly moving targets. The number of

source targets present is X = 4 and the initial source parameters are chosen as follows

81(1) =0° q;(l) = 0.0148 ¢1(1) = -135°

62(1) = —20° (1) = 0.0071 ¢(1) = 30°
83(1) = 20° g5(1) = 0.0154 $4(1) = 135°

8a(1) = 40° gq(1) = 0.0114 ¢4(1) = 0°

In Fig. 6.7, the source DOA trajectories are estimated accurately at each point and tracked correctly.

NON-LINEARLY MOVING SOURCE TARGETS We consider non-linearly moving source tar-
gets and examine how the ML tracking algorithm performs when local linear motion is used to
approximate the actual non-linear target trajectories. Two uncorrelated source targets are simu-

lated with their trajectories described by parabolas
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8y

Zi{n) = Z(n-1)+ \/ﬁw

Fi(n) = #(n)/d; i=1,2

zi(n) = zio+ Zi(n)cos¢e; — Fi(n)sing;

%i(n) = o+ Fi(n)sing; + Fi(n) cose;, (6.48)

where [z;(n), yi(n)] denotes the ith source target location at the observation time index 7, [2i0, ¥io]
is the location of the origin of the ith parabola and ¢; denotes the rotation anzle of the trajectory.
In (6.48), parameter d; controls the curvature, and s; represents the line speed of the source
target along its trajectory. In the simulation, the source target parameters are chosen as follows :
(%10, y10] = [-150, 600] 2nd [za0, y20] = [~60,700], 1 = 2 = 0, d; = 4000 and d, = —3400, and
81 = 4.5and s = —4.0. The starting points for the two targets are at z;(1) = —30 and z2(1) = 890.
Fig. 6.9 plots the source target trajectories in the z-y plane. The aray signal-to-noise ratio is set
to SNR=10dB. The length of the data batch is N = 50. A total of 300 array samples is simulated.
The non-linear source target trajectory is approximated by the piece-wise linear uniform motion,
and the maximum likelihood algorithm is then applied in each data batch to track the source DOA
trajectories. Fig. 6.10 shows the tracking results of the ML algorithm, and it is seen that there is
considerable agreement between the actual and the computed target DOA trajectories. It should
be noted that when the ML algorithm is applied to source targets with non-linear trajectories, the
selection of the data batch length N is twofold. On one hand, N should be sufficiently large to
retain the superior performance of the ML estimates. On the other hand, it should be small enough
to provide accurate approximation when locally linear motion model is used. The final tracking

performance usually depends on the underlying non-linear structure of the target trajectories,
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Chapter 7 ~

Asymptotic Performance Analysis

and the Cramér-Rao Bound

In this chapter, an asymptotic performance analysis of the ML tracking algorithm is carried out.
By asymptotic we mean that the number of samples is sufficiently large. An analytic form for the
asymptotic mean-squared error (MSE) of the maximum likelihood MTS estimates is derived, and
the strong asymptotic consistency of the estimates is shown. The Cramér-Rao bound (CRB) on

the estimator is discussed and is shown to be relatively asymptotically efficient.

7.1 Asymptotic consistency of the estimates

One of the most important measures for an estimator is its consistency. A consistent estimate will
converge to the true parameter when the sam(le size tends to infinity. In the following lemma, we

show that the ML estimates, {(:)(i)}; 1=1,2,..., N, are consistent estimates.

Lemma 2 The ML DOA estimate, {O(3); i = 1,2,..., N}, obtzined from (5.35) converges w.p.1
each to {@(i); i = 1,2,..., N} as the number of the array data approaches infinity.

Proof First, we show that the objective function J converges w.p.1, uniformly in parameter © to

its limit function J given by
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- 1 -
=5 21 tr{P5E=(1)}, (7.1)
where
R.(3) = A()R,(i)AR @)+ oll. (7.2)

To simplify notation, we use P;* instead of Pj(‘-). Consider the difference

- 1 ¥ 1 &
| J =71 |7 Yo tr{Prz()z (3]} - 5 Do tr{PFR(i)} |
; =1

=1

N
| % S tr{PHADSRY () + ()T (AT + w6 - 2T} (7.3

i=1

and using triangular inequality, we obtain

N N
17-T1 £ |5 L er{PHADIRTGD + | 5 L PP O ATG) |

s=1

N
+ | g Sotr{PHali) () - 30} (7.4)

=1
For an array noise vector w(i) with Gaussion distribution, we show that [See Appendix C] the

following limits hold w.p.1

N
Jdim =3 e PHAGS( ()]} = 0

=1
N
Jim %gtr{P;*Lw(i)ég(i)AH(i)]} =0
N
Jm, 7 2 {PHe () - A} = . (735)

Consequently, since the difference (7.4) tends to 0 w.p.1, their minimizing arguments of J and J
will certainly coincide w.p.1, i.e., the ML estimate O(f) will converges w.p.1 to the minimizing
argument of J, O(i). Let ©'(:) denote the true parameters. The limit criterion function 7 can be

written as



N
.Tlf 3 tr{PHA)R,(i) AR () + 02 1}

J = .
. :;1 . N .
= ¥ L PHAGRDAT@O) + 5 Y er{PHoA )
i=1 = i=l
N
> 3r{PHA) (7.6)

=1

Since A(3) is of full rank and P/ is an orthogonal projection matrix, we have therefore,

J > d2(M - K). (7.7)

Equality is valid only when PA(Z) = 0 which in turn implies A[Q(i)] = A[O'(£)]T,, where T,
is 2 nonsingular matrix of size K’ X K. By the uniqueness condition of the array model (5.16), this

is possible if and only if ©(3) = ©'(f) for i = 1,2,..., N. This lemma is thus readily established. O

However, the estimated signal waveform {3(3)} and noise variance &2 are not consistent estimates.

Since ©() tends to ©'(f) when N approackes infinity, from (5.26) and (5.28), we have

dm 3 = {A¥(DAEAT(0)z()

lim &2,

N=oo

1 N
s S tr{Pr e ()}, (7.8)

=1

Taking the expectations of the limits of 3(i) and &2 yields

Jim B3] = ()

lim E[&2]
Ne=oo

(7.9)

Thus, the estimated waveform 3() is asymptotically unbiased while the noise variance estimate &2,

is asymptotically biased. Using the array signal model (5.14), we obtain the the following limit

A 3(3) = s(3) + {47 (DA} 47 ()u(d), (7.10)
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which differs from the true signal waveforms even when N tends to infinity. This, in turn, implies
the inconsistency, of the ML estimate 3(i). Although &2 is asymptotically biased, we can still

1
construct an undiased estimate &2
’

s
k|

N
F= = NI =F > tr{Pru()ul (i)}, (7.12)

=1

. M 1

which can be shown to be asymptotically unbiased. The aysmptotic convergence of &2 to the true

o can be verified by using the fact that the following limit holds w.p.1 (see Appendix C)

N
,gx;@mﬁgtr{a*_@(iwcs)}= (M - K)?, (1.12)

Considering the asymptotic consistency of the MTS estimates &(%), we have the following corollary.

Corollary 1 The maximum likelihood MTS estimate &(1) converges w.p.1 to its true value (1)

as the number of array samples tends to infinity.

This can be directly inferred from Lemma 1. For the kth source target, since the corresponding
state vector components {gx(i), #«(i)} in (6.27) and (6.28) are both continuous in {6x(: + m); m =
0,1,2}, they will converge to their true values w.p.1l when the DOA estimates (:)(i) converges to

©(2) w.p.1. Consequently, the maximum likelihood MTS estimate &(1) is asymptotically consistent.

7.2 Asymptotic MSE analysis of the estimates

The consistency of the ML estimates has been shown in the previous section. In this section, we
provide an analysis of MSE of the ML estimates by applying first-order perturbation theory. The
following analysis is based on the assumption that the number of the array samples is sufficiently

latge. Define a perturbed R(i) as

R(3) = R.(3) + OR(). (7.13)

Taking expectation of AR gives



[
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E[A-Rz(z)] = E[fz=(1)] - R(i) =0, _ T.14)

which indicates that R.() is an unbiased estimate of R_(1). Define AJ as the perturbation on the

limiting criterion function J and the criterion J can be written as

J=T7+AJ (7.15)

In (7.15), by invoking the perturbation form of R.(i), we obtain the perturbation on 7 as

N
AT = %Z tr{PLy ARL()}. (7.16)

1=1
Since &(1) is the minimizing argument of the criterion J, it follows that

aJ oy
T l2=0: (717)
where 8J/82a(1) is the gradient of J with respect to ¢(1). Denote the true value of the initial MTS

vector as @'(1). For a consistent estimate &(1), we can write a first-order Taylor series expansion

of 3J/8a(1) around &(1) for sufficiently large N as

aJ 9 . '
0~ mig’u) -+ mlg[n[ﬁ(l) - 2'(1)], (7'18)

where higher order terms in [&(1) — a/(1)] are neglected. The error term [4(1) — &(1)] is written as

Aa(1) = &(1) — &/(1) = Q7 Y[Rz, &' (1)) P[ Rz, 2/ (1)), (1.19)

where matrix functions P and Q are defined as

PlR:, (1)) = -%!gju)
QlR:,2'(1)] = %lg’(n- (7.20)

For convenience, we use the notation R.to represent the matrix set {R,,(i); i=1,2,...,N}

The first-order perturbation of P[R.,a'(1)] and Q[R:,2/(1)] can be written

-_— —



P[Rz, (1)) = P[Rz,a/(1)]+ P[AR:, /(1) =P+ AP
= Q[Bz /(1) + QAR &(1)] = Qo + AQ,

Q[R=, /(1))
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7.21)

where R is used to denote the matrix set {R-(3); i = 1,2,...,N}. By substituting the criterion

function J and the limiting function J, we obtain

__&J |
da(1) a'(1)
7

Qo = m[gu),

Py

and

aaJ
AP = ol
2
AQ = 9*AJ

5Ty =

Since @’(1) is the minimizing argument of J, we have P, = 0 and (7.19) reduces to

Aa(1) = (Qo + AQ)™IAP.

Furthermore, if we expand the inverse matrix in power series as

Aa(1) = (@5 + Q5 AQQ5 + o ARJAP,

we can write Aa(1) {ignoring the higher orders terms in AR as

Ag(1) = Q3 AP + o(AR:).

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

Parameter AP is the perturbation on Py evaluated at the true parameter values and can be written

as
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AP = - 7 2 Z: - 5a l)tr{P*aR-(z)}[a,m (7.27)

Denote pim as the {3(k—1)+m}th element of AP, wherem =1,2,3and k= 1,2,. , K.Itis

easy to see that pyy, is associated with the mth state variable of the kth target state vector. Then,

we have

aP 66;,(:) -
Pim = — v z {ae (1.) aakm(t)ARz( ) |ak (1) ("28)
where af,.(1) denotes the true value of the mth state variable of the kth target state vector at the
initial time. Irn the following, for notational simplicity, the quantities are all evaluated at the true

parameters by default. Using the array signal model (5.14), we can write the perturbation term

AR_(?} in the following form

AR(3) = AD)s(af (1) + w(i)s7 () AT (1) + w()u (5) - o2 1. (7.29)

Define the matrix Bim(3) as

dP+ _ OP: 38i(i)

Bim(1) = 5215 = 80,() derm(1)" (7.30)
Using (7.29) and (7.30), we reduce (7.28) to
Pim = -5 Zt"{Bkm(l)A(z)_(l)_H(t)}
:_1
- Z tr{ Biem ()(3)s” () A7 (3)}
:.-1
-5 Zt"{Bkm(i)[ﬂ(f)&H(i) -3}
=1
= Pim(1) + Pim(2) + Pem(3), (7.31)

where we have defined the three terms in prm 2s Pim(1l), Pim(2) 2nd prm(3). The covariance

between pim and py, is derived as (see Appendix D)
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Covipim,Pen] = E[Pkm(l)r-';n(l)]+E[Pm(2)P;n(2)]+E[Pkm(3)P;u(3)]

= 285 e [ {Ben (DA ROATDBE)]

s-I

+l2tr{3,,m(z)3 1(9)}. (7.32)

Substituting (6.6) into (7.32), and using P A(i) = 0, we get

Cov[pim, Pgn] = 2""’2}2«: [vmk(z)vm(z)tr{P"'Ak(z)R,(:)AH(z)}]

Zt’{Bkm(OB A0} (7.33)

i=1
in which we have used the fact Af(i)A(i) = I. Define Py = E{APAPH}. The £nth element of P;
is given by (7.33), where the integer indices £, m, ¢ 2nd n» with k,¢=1,2,..., K and m,n=1,2,3
are related through the following relationships

§

N

(k=-1)3+m

(g-1)3+n. (7.34)

Denote Q¢n as the £nth element of matrix Qp. Then according to (7.22), it can be written

Q if: ¥ tr{ P R (i
“ N dakm(1)dagn(1) B R=D)

= ii z tr{ P A(DR,(3) AR (i)} + (M = K)o?)

B N i=1 aakm(l)aaqn(l) [7‘ i (2) ’(;) (1)} ( T

= 1 ZN t'-"{ 3219‘,_1_ A(i)R (i)AH(i)} (7.35)
N =1 a&m(l)aaqn(l) * - .

The second-order derivative of the projection matrix with respect t0 cm(1) and aga(1) can be

obtained by the chain rule as
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9Pt . (81’;’- 80:(3)
Batim(1)0gn(l) =~ Bogn(l) \ 90k(%) Faem (1)
0:(3) 06,(i) &*P* + 378i(i) P - 26
0Ctkm(1) Bctgn(1) 00(1)00,(3) = Dotim(1)0aqn(1) B6G). )
and then we have
_ 1 & 00() 6,(3) 8Pt N
U = F 2 Basn(1) Baga(l) ’{aek(i)asq(;)A(‘)R’( A%}
1 & 8%60,() APF . . H. .
+5 g{ or (l)a%(l)zr{ 550 A R(DAZ (D). (7.37)

The first-order derivatives of the projection matrix P;* with respect to 6 (%) and 8,(:) are shown

in (6.6), and the second-order derivative has been derived in [57] [53] as

2pL
;;;eq = Pra)AT()Aai)ATE) + AT () aF () P 4D AT()

- PF A (DALG) - PEAGYAF(DAG)) AF ()P
+P* 4k AT (D) 4,(0) 4T () + (.. ), (7.38)

where (...)7 denotes complex conjugate transposes of all proceding terms. Agg(?) is defined as

L« 8*A%) N
Ap(d) = 36,39, (7.39)
From (6.6) and (7.38), we obtain
% =TT ey anyRer AT O P AR
N
- 1—%_-Zvmk(i)v,,q(i)Re[tr{Af(i)ﬂ"'Ak(i)R,(i)}]. (7.40)

i=1

in which we have used P A(7) = 0 and Af( t)A(1) = I. In matrix form, Qo can be written as



N
Qo= %Z[vecV(i)vecVH(i)]@ Re {{[ DR(i)P-D()]) © BT (i)} ® 0} ) (7.41)

=1

In the following, we summarize the above results by introducing Lemma 3.
Lemma 3 The maxirium likelihood MTS estimate &(1) is asymptotically unbiased, and the asymp-

totic covariance matrix of &(1) is given by

2 4
Covla(n)] = S2C™ + Er:qtﬂc:-h'sac-i, (7.42)

where the £nth element of matrix B is given as

N
Ben = tr{Bim(i)BIE(D)}. (7.43)
=1
and the matrix C is defined as )
N
C = Y [vecV(i)vecVH(i)] © Re {{{DF(5)PF D(i)) © BT (i)} @ O} . (7.44)

i=1

Note that all the matrix functions are evaluated at the true initial target state value &(1).
Proof The asymptotic unbiasedness can be shown by taking expectation of (7.26) and neglecting

high order terms in AR(i)

E{Aa(1)} = E{Q5'AP} =0. (7.43)

Since matrices P; and Qo can be expressed in term of C as

207, ol
Py = F{C + 53
2
QO = w’c9 (7.46)

the covariance matrix of &(1) can then be written as
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Covia(1l)] = E[a1)a"(1)]
Qo E{APAPH} Q¥
U Pl E

Te (-1 4 T8 et poe .
= —2-(0) 1+TC 1pc-1, (7.47)

]

H

Q

In (7.47), it is observed that, when ¢, is sufficiently small, the higher order term in ¢ is
negligible, and the asymptotic covariance matrix of &(1) has a form identical (up to a scaling
factor) to the inverse of the Hessian matrix of the limiting criterion function 7, except that the

covariance matrix is evaluated at the true initial MTS vector value. Define matrix C(i) as,

C(3) = [vecV (i)vecVH ()] © Re {{[pﬁr HPFD() 0 BRI ()} @ 0} . (7.48)

Since (1) is the minimizing argument of the limiting criterion function J and C(%) is the Hessian
of J evaluated at (1) up to 2 scale factor, then, the positivity of C(i) is readily established. Define

a scalar function ¢ as

e(W) = tr{W~1}, W g P3KxeK, (7.49)

where P3K*3X genotes the closed convex set of 3K x 3K positive definite matrices. Then, it has
been shown [62] that (W) is a convex function in the convex region P3X*3K_ Considering the

trace of the covariance matrix Cov[&(1)], we have

tr{Cov[&(1)]} = tr{[— Z cC@H = so[— E C@)l. (7.50)
r—l
For a convex function ¢ and positive C(i), the followmg inequalty holds

cr2 N o Y
oot S Cll < S T elCl (z.51)
i=1

t=1
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Assume that the sequence {¢[C(?)]; i=1,2,...,N}is bounded by a constant ¢,. Then we have

tr{Covl&(1)]} < f"—;‘* ﬁ (7.52)

As N approaches infinity, we have the following limit

lim tr{Coviag(L)]} < lim 225 =g 7.53
N=co = Nooo 2N ~ (7.53)

Since tr{Cov{a(1)]} is the sum of all the variances of the estimated initial MTS vector elements

K
tr{Covl&(1)]} = gm[&k(l)] >0, (7.54)
=1

and var{@(1)] 2 0 for £ = 1,2,...,3K, then,

dim_tr{Cov[a(1)]} =0 = }vﬁ_‘?m var[éx(1)] = 0. (7.55)

Relationship (7.55) indicates that the variance of each component of the MTS estimate tends to
zero when the array data sample number approaches infinity. This also provides an alternative
derivation for the asymptotic consistency of the estimator stated earlier.

The estimates {&(7); 7 = 2,3,...,/V} can be obtained either by the direct maximum likelihood
algorithm or by prediction using the source target dynamics from the ML estimate of &(1). Under
the conditions of large N and sufficiently high SNR, we can write the asymptotic MSE for the

estimated &(j) by similar derivations as in the case for (1)

Covfa(s)) = 2D, 7.56)

where matrix D is given by

N
D = Y [vecV(i,j)vecV (i, )] @ Re {{{D"(3) P+ D(i)] @ RI(i)} ® O} . (7.57)

i=1
and where matrix V'(4,7) is defined in (6.39). Obviously, since &(7) is the ML estimate of the

corresponding target state o7), the asymptotic consistency statement is also true.
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7.3 The Cramér-Rao lower bound (CRB)

It is known that the variance of unbiased estimates provided by any estimator is limited by the
Cramér-Rao lower bound [47]. The comparison between the CRB and the variance of the estimates

will give 2 measure of statistical efficiency of the estimator, which is another important index of

performance.

7.3.1 Derivation of the CRB

The Cramér-Rao lower bound can be derived from the Fisher information matrix [47] defined as
the second derivative of the log likelihood function with respect to the parameters. Let ©'(i), s'(i)”

and o2 denote the true values of the source parameters. From (5.24), the log likelihood function

can be written as

A(O(i),g(i),crf"; i=1, 2,...,N) =

N
logp = —MN log(no) = — > || 2(i) ~ A()sCi) 3 - (7.58)

W o=]
For fixed values of {©(i)}, the maximization of A with respect to {s{i)} can be achieved by
choosing

3(1) = {AR () AG) AR (D)z(d), (7.59)

Substituting (7.39) back into (7.58) gives a reduced expression of the log likelihood function of
o2, and {€(i)} only

we 1 & .
A = -MN log(fra.ﬁ)-a—ZZIz(t)—PA(;)z(z) F
w =1
1 & .
= —MNlog(zol) - ;2-2&{?,{@3,(:')}. (7.60)
W =1

The CRB for the covariance matrix of the estimate (1) and 2 is given by the inverse of the

Fisher informatrix matrix



CRB(fa(i), o3)) = {I(la(i), a2},

and the Fisher information matrix ([a(1),22]) can be partitioned as

I{a(1))sxxsx I(a(1), U'i)axn

I(la(1), o2 ax+1)x(3K+1) = \ \
I(aun Q_(l))j.xa}{ I(aw)IXI

in which the elements of I(a(1),02), I(¢2,a(1)), I{a(1)) and I(02) are defined as

6‘2

I(e(1),00)a = -WE[A] loyoz  §=1,2,..,3K
32
I(el,e(Dhe = —mE[A] e §=Li2...,3K
32
I(g-(l))fﬂ = _3akm(l)8aqn(1)E[A] lg’(l).a':z §&n=1,2,...,3K
62
I(el) =

~Foz50z T Loy

respectively, where indices &, 7, m and n are related by

E=(k-1)3+m and n=(g-1)3+n.

Taking the expectation of the reduced log likelihood function {7.60), we obtain

1 & :
E[A]= =M N log(ro2) - = Do tr{PiaR=()},

¥ =1
and substituting (7.2) into (7.65) yields
0"2 1 N '
E[A] = -MNlog(zal)— —3(M - K) = — 3 tr{Pgy A'())R,() A% (i)}
w wo=1

@ oi=1

2 1<, Hy NP (s
~MN log(r03) — ZH(M — K) - — 3 tr{ A ()P A (DR},
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7.61)

(7.62)

(7.63)

(7.64)

(7.65)

(7.66)

where A’(i) denotes the composite steering matrix A(i) evaluated at @(z). In (7.66), we have used

the property of the trace tr{AB} = tr{BA}. With the expectation E[A], we can demonstrate that
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that the submatrices, I((i),02) and I(c2,a(#)), in the Fisher information matrix corresponding -

to cross terms of1) and o2, are zeros, i.e.,

Ia(i),03) = 0 and I(o2,g(i) =0. (7.67)
We have therefore
Ie(Dlaxxsx O3k
I({e(1), 0 i])(3K+1)x(3K+1) = ) . (7.68)
O1x3x I(eihx

Since the entries of the Fisher information matrix corresponding to a(1) are decoupled from

the entries corresponding to 02, we get the CRB for the variance of the estimate af1) as

CRB[a(1)] = [I{e(1)]7?, (7.69)

where the £nth element of J[a(1)] is computed as

N 2
{orB-latl} = 2 ammcgaaquu)"{A'H(")Pimf*(i)ﬂs(i)} ey (770

Lemma 4 The Cramér-Rao bound for the estimated initial MTS vector ¢(1) is given by

CRB[e(1)] = %C'l, (7.711)

where matrix C is defined in (7.44).

Proof Since the matrix CRB[a(1)] can be written as

=

{CRBla(1)]}™" = —Qo, (7.72)

the result follows immediately from (7.46). Q

€
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7.3.2 Relative efficiency discussions about the ML estimator

In Lemma 3, we have shown that &(1) is an asymptotically unbiased estimate. The Cramér-Rao

inequality for an unbiased estimate &(1) can be stated as

E{[5(1) - 2(1)}[&(1) - o(1)]"} 2 CRB{a(1)]. (7.73)

An estimate is szid to be asymptotically efficient if its covariance achieves the Cramér-Rao
bound when the sample number approaches infinity. Specifically, &(1) is an asymptotically efficient

estimate if

Jim_Cov[a(1)]CRB&(1)] — I. (7.74)

To study the efficiency of the maximum likelihood estimator, we introduce the concept of relative

efficiency. An estimate &(1) is said to be asymptotically relatively efficient if

lim lim Cov[&(1)JCRB~![&(1)] — I. 7.75)

a2—g N—oo

For the maximum likelihood estimator, we are ready to state the following results.

Lemma 5 The ML estimate of (1) obtained from (5.35) is not asymptotically efficient, i.e., its
asymptotic variance does not attain the Cramér-Rao bound. The asymptotic covariance matrix

and the Cramér-Rao bound have the following relationship

Covfa()] = CRBla(1)] + Z2-15Q™, (7.76)

However, the estimate &(1) is relatively asymptotically efficient, i.e., when the array sample

number N approaches infinity and the array noise variance o2, approaches zero, the following limit
holds

lim lim CRB™![g(1)]Cov[&(1)] = I, (7.77)

N—wogl2p
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which means that the covariance matrix of &(1) asymptotically attains the Cramér-Rao bound
when SNR is sufficiently high.

Proof From (7.42) and (7.71), the asymptotic covariance matrix of &(1) can be expressed as

o2 . o o
Cov[&(1)] = —C7 + T‘“C“BC‘“ = CRB{a(1)] + T‘”C"‘BC“. (7.78)

When N approaches infinity, we have

ln f4
C[ Ty C—I Ty C-—ch—Il

Aim_ CRB{a(1)]Cov{a(1))
= I+ T‘”BC“, (7.79)

which, from the definition of the asymptotic efficiency (7.75), shows that the estimate &(1) is not
asymptotically efficient.

Since the first and second terms in Cov[&(1)] are of order two and four in o”,, respectively, for

sufficiently high SNR, the quantity of the second term is much less significant than the first term.

Assuming that ¢, approaches zero, consider the following limit

lim hm CRB'l[g(l)]Cov[g(l)]

Neoo s

I+ lim —BC"'1
g 2=0 2

= I, (7.80)

which indicates the relative asymptotic efficiency of the maximum likelihood estimator. =]

The Cramér-Rao bound for the estimates &(j) for j = 2,3,..., N can be derived as

2

‘2
{crB'[a()]}, = 3';13%(3)30 AT ORI ARG} = 307 (T8D)

where matrix D is given in (7.57). By comparing expressions (7.56) and (7.81), we reach the

conclusion that, the maximum likelihood estimate &(7) is also relatively asymptotically efficient,
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i,e., when both N and SNR are sufficiently large, the asymptotic covariance of the ML estimate

&(7) attains the Cramér-Rao bound.

7.4 Numerical studies

Computer simulations are carried out for evaluating the performance of the maximum likelihood
tracking algorithm. The array is simulated as an equi-spaced linear array of M = 8 sensors with
half source wavelength spacing, as shown in Fig. 6.1. Two narrow-band source targets of equal
power are assumed, with their initial DOA locations #;(1) = 0° and 82(1) = ~20°. Tke initial
q components of the source MTS vector are set to q1(1) = 7.4 x 102 and g(1) = 5.3 x 1073,
respectively. The results are obtained through Monte-Carlo simulations. Fig. 7.1, Fig. 7.2 and
Fig. 7.3 show the variation of the MSE’s of the MTS estimates with the SNR. The comparison is
between the theoretically evaluated MSE’s and that obtained by computer simulations. The SNR
ranges from —4dB to 26dB. For each simulation, 100 array samples were used and each test is
repeated 100 times. In the figure, it is seen that the simulation results agree with the theoretical
results. As the SNR increases, the MSE of the estimates approach the CRB on the estimates, which
confirms the theoretical assertion from Lemma 5 that the estimates are asymptotically relatively
efficient.

Fig. 7.4, Fig. 7.5 and Fig. 7.6 show the variation of MSE's of the source MTS estimates with
the number of array samples. The SNR is chosen at 5dB. The initial source MTS vector is selected
as : 6;(1) = 0° and 62(1) = —20°, q1(1) = 7.4 x 10~% and ¢2(1) = 5.3 x 1073, and the heading
directions of motion ¢;(1) = 135° and ¢2(1) = 30°. Each test is repeated 100 times to obtain the
Monte-Carlo results. Again, the theoretical performance curves are in close agreement with those
obtained by simulations. The consistency of the estimates can be observed as the array sample
number increases, the MSE’s of the estimates both evaluated theoretically and by simulations

approach zero consistently.
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Chapter 8

Asymptotic Performance
Comparisons with the Extended

Kalman Filter

The maximum likelihood estimator is based on a batch of received array data. It estimates the
source parameters by iterating over the same batch of data in attempting to minimize the criterion
function. This algorithm is fundamentally different from some recursive algorithms such as the
extended Kalman filter {63]. As mentioned before, since the array signal model (5.14) contains the
unknown deterministic target signal waveforms, it cannot be used as a measurement model directly
for the Kalman filter process. In this chapter, our analysis is based on the assumption that the
source signal waveforms are known. On one hand, such an assumption is made to provide a fair
comparison between the ML.. and EXF. On the other hand, although such an application does not
usually occur in passive array processing, we do find some applications in communication systems,
such as the packet radio systems currently under study [64]. In packet radio systems, each packet
contains a known pseudo-noise {(PN) code acquisition code preamble. An antenna array is used to

estimate the packet DOA’s, and then to spatially separate colliding packets arriving from different

directions.
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8.1 The maximum likelihood estimator with known source tar-
get waveforms
When the source signal vector s(i) is assumed to be known, the array data likelihood function is

described by (5.24). Fixing ©(i) and minimizing the negative log likelihood function with respect

to o2, yields the estimate

N
%= 3y L 120 = A0SO I (8.1)

Since s(i) is known, there is no need to estimate the source target waveform. By substituting a2

back into (5.25) and ignoring the constant term, we obtain the likelihood function J, as

1 N . -
L= LS 0a- aw) I

=1

N
= Tir‘z tr{{z(i) - AG)s(D)]iz(3) - A)s(DNF}

=1

1 N
= T2 Ju (8.2)

=1
J, is an implicit function of the MTS variables, and the maximum likelihood estimate of the

MTS vector a(j) can be obtained by minimizing the criterion J, with respect to ()

A(5) = in J,. 8.3
&(7) argmin (8.3)

8.1.1 Optimizing the criterion function J,

When a Newton-type algorithm is applied to the optimization process (8.3}, the iteration process

is formulated as

(1) = aB(5) - e HIG, (8.4)

where G’ and H’ are the gradient and Hessian of J, with respect to the MTS vector a7), respec-
tively. The gradient and Hessian, G’ and H’, can be derived as
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o
G = veel 3 V(ii)diag(v i)

=1

N
B = 53 {[7%7:0 010 [oecV i oecV (i, )]+ diog(v 1) 8 O AD},  (85)

= =1

where 7J;; and ?J,; are the gradient and Hessian of J,; with respect to the DOA state (3).
The mth element of 7J,; is computed as

azf(i-) = 2Re{tr{A()s()s" (i) Am(D)] - trlz(i)s” (i) AR ()]}

2Re{tr{[A()s())s" (i) - 2(i)eH (1)) AE ()}, (8.6)

and in matrix form, 7J,; can be written as

Vi = s = 2Reldiag{DFHAGIRL) - 20NN, (8.7

where Ry(i) = s(i)s™(i). Substituting (8.7) into (8.5) yields the expression for the gradient

N
G' = 2vec{x Y. V(i )Re{I © {DH (AR - 2sF DI}}). (8.8)

i=1
When the Newton-type optimzation algorithm is applied, we need to modify the Hessian matrix
to guarantee that the algorithm is descent. In the following, we approximate the Hessian by 2

positive semi-definite matrix. First, we assume that in each iteration, the MTS estimate a(¥)(1) is

close enough to the optimal &(1). Hence, the derivative term is sufficiently small, i.e.,

Vi =0, (8.9)

and the second term in (8.5) can be neglected. The mnth element of ¢2J,; is given by

32.],,- — d { aJ,g
()0~ 30l T

5o {RA AR - 2 AT}
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= 2Re{tr{An(D)R.()AZ ()]}
F2Re{tr[A(i) R,() AT _(3) — ()7 () A (D]} (8.10)

Equation (8.10) can be further simplified as

S = Rt ARG - 2Refirla@ DAL (D)

By taking (8.11) back into (8.5) and ignoring the second term, we get

H = H+H,

N
- % S IV @ O] 0 [vecV (i, j)vecV (3, 5)]

=1

1 & . . .
+5 LAV © 0] 0 [vecV (i, j)vec™V (5, 5)], (812)

=1

where 72J%) and 727 are matrices with their mnth elements defined by

{920} mn
{V2J 3(12 ) }mn

2Re{tr[Am($)R,(1)AH ()]}
—2Re{tr{w()s¥ (1) A ()]}, (8.13)

respectively. In the following, we introduce 2 lemma to show the asymptotic zero covergence of the

elements of H;.

Lemma 6 The elements of matrix H, asymptotically converge to zero, O(1/v/N), with probability

one.

Proof : Denote the pth element of s7(i)AH (i) as p,(mn, i). Then the mnth element of g2J

can be expressed as

(727

—2Re{tr{w(i)s” () AE ()]}

M
= =2 Z RC[Wp(i)Pp(mnv 1)]
p=1
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M
= = > [wp(i)pp(mn, i) + w3 (i)} (mn, i) (8.14)
p=1

Let vgy(i,7) denote the &nth element of vecV (3, j)vec®V (4, ), where £, 1, m and n are related
through relationship (7.34). The £{nth element of H, can be written as

A = -—zz[w,(z)p,(mn,=) + w(E)pp(mm, Yo, ). (8.15)

s—l =1l

The variance of H (2) can be derived as

Ver{BZ) = E{Egz)[E(z)]}

= ¥ Z E E 2 E{[wy(i)pp(mn, i) + wy(i)pp(mn, i)]

i=l¥=1p=1 p

-[w,,,(z Yoy (mn, i ') + wh(i) ppi(mn, o2 (', )}
N N M

= & E 5 Z E{{wy(i)pp(mn, i) + wi(i)ps(mn, )]

=1 '=1p=1 p’
-[w, (: )p,a(mn, i) + wp(")ph(mn, )] }veq(3, 7 )ven(i', 5)

= Z Z ‘Ue.,?(‘l,] )Re[pp(mn, 1)), (8.16)
=1 p=1 ‘.
in which we have applied the results of Appendix B. Assume that each term inside the summation

is bounded by 2 finite constant ¢ and we get

Maolc
Var{AP} ¢ Zoutk .
er{Hg,'} € —5F— (8.17)
which implies that H, ) is of order O(1/v/N) and converges to zero, O(1/v/I), with probability
one, when the array sample number N approaches infinity. o.

Since the elements of H(2) are of order O(1/v/N), when the array sample number is sufficiently

large, H(® can be neglected, and the approximation is of order O(1/v/N). The approximated

Hessian becomes

‘== Z[v’-f.‘}’ ® 0] © [vecV (i, jvecV (i, ), (8.18)

‘l=1



where VZJE ), according to (8.13), can be written in matrix form as

728 = 2Re{[DH(i)D()] © Ro(5)T). (8.19)

The approximated Hessian (8.18) can be verified to be positive semi-definite. When the ap-

proximate Hesslan is uéo_gl, the Gauss-Newton algorithm is guaranteed to be descent.

8.1.2 Covariance of the ML estimates and the Cramér-Rao bound

Under the assumption of known source target waveform, the ML estimator is asmptotically efficient,
i.e, it attains the Cramér-Rao bound when the number of samples is sufficiently large. Thus, the
asymptotic performance of the ML estimator can be examined by the CRB. From (5.24), the log
likelihood function is given by

N
1 . “ s
&, =logp = —~MNlog(zay) — — 3 || 2(i) — A)s(i) liF - (8.20)

W =1

We can show that the Fisher information sub-matrix I[e(7)] corresponding to the MTS vector a(7)

can be decoupled from that that of the noise covariance o2, the CRB on the MTS estimates is

obtained as

CRB[a(7)] = I '[af7)]. (8.21)

The {nth element of the Fisher information matrix I [a(7)] is defined
ffats & 2
fe(f)]= —mf[ﬁal, (8.22)

where the expectation of the likelihood function is

N
E[A] = -MNlog(rol)~ = 3" B{ll 2(3) - A()s(d) I3}

¥ =}

= —-MNlog(xol)~ o‘Lz i {tr[A'(z')R,(i)A'H (i) + 31

W i=1

~2Retr{A'(DR,()AT(3)] + AR AT ()]}  (3.23)
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The {nth element of the Fisher information matrix ITa(7)] is evaluated at the true a(7) as

a2

Uil = &3 g ey AR - 2Retr A (DR

W-x

25 Z aitfg) ;:fdg J) )Retr{A.,(i)R,(i)Af(z‘)}, (8.24)

W og=1

and in matrix form, the Fisher information matrix can be written as

Ta()] = Z[CK(‘*) ® O] © [vecV/ (i, 7)vecV (i, 1)), (8.25)

“’ =1

in which Cx (i) = Re{[DF(:)D(:)] ® RT(%)}.

8.2 The extended Kalman filter

The extended Kalman filter (EKF) is an optimal extension of the Kalman filter to the case of

nonlmea.r ﬁltenng When the source target waveforms are assumed to be known, the EKF cau be

used to estimate and track the MTS vectors. The information model is the locally linear motion

dynamics

a(n+1) = Frla(n)] = {FT[ay(n), 1], Fllea(n), 1], .., Fax(n), 1]}T. (8.26)

and the array signal model can be used as the measurement model directly

a(n) = Fufa(n)] + w(n) = A[O(n)]s(n) + u(n). (8.27)

The EKF performs a recursive operation. Assume that at k, an optimal MTS estimate &(k|k)
kas been obtained based on the array observations {z(i); i = 1,2,...,k}. When the new measure-

ment z(k + 1) arrives, the MTS vector estimate &(k + 1|k + 1) is updated by [65]

&k + 1k + 1) = &(5 + 1) + o P(RIK)Re{H(KY {a(k + 1) - A[O(k + 1)}s(k + 1)}, (8.28)

where &(k + 1]k) is predicted from the information model (8.26) from &(k[k) by
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&(k + 11k) = Frla(k|k)], (8.29)

and H(k) is the measurement Jacobian matrix with respect to the MTS vector defined as

3a(k) (8.30)
The measurement Jacobian matrix H(k) is computed as
H(k) = [s1(k)d[81(k)), 0, O, 52(k)d[62(k)], 0,0, .. ., sxc(k)d[Bxc(k)], 0, 0], (8.31)
where 0 denotes a zero vector of M x 1 and
g _ 0a[6:(3)] .
4[9]:(1)] - 591,(2) Iei(') * (8'32)

Matrix P(klk) = E{[& ~ a(k)][& — a(k)]}®} is the covariance of the MTS estimate &(klk). It is

known [65] that P(k|k) satisfies the EKF inverse covariance matrix propagation equation

P(klk) = {[8(k = 1)P(k = 1k - DBk - 1 + S RMFRIHEN ™, (8:33)

where the shorter standard notation $(k) = @(k,k — 1) denotes the incremental state transition

matrix between a(k) and g(k — 1} defined as

B(k,E—1) = 55{%%’ (8.34)

for the discrete information model. For locally linear target dynamics described by (8.26), the

incremental transition matrix &(k) = ®(k, k ~ 1) is

B(k) = &(k, k — 1) = diag(®;1(k), Bzo(k), ..., Bxxc(k)], (.35)

where each submatrix ®m,m(k) is
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Bn(k)  0n(k) _00n(k)
Fon(k—1) Bga(k—1) Bomlk—1)

brn()= | OB GanB) . BalB)
bm(k—1) Ogm(k ~1) ¢m(k—1)

0 0 1

(.36)

The first row of the matrix ®,,m(k) can be obtained as (%, 7) in (6.37) by assigning 7 = k and

i = j + 1. The second row is computed from the target state equation (5.8) as

[ Bg(k) 1 T =02 (k — 1) cos[fm(k = 1) + dm(k = 1)]
Bk — 1 2.(k — 1) + 2Tqm(k — 1) sin[0(k — e (K — T1}2/3
St || SR D ek Dtk - 1) + fmk T -
Ogm(k —1) | = | {GA(k = 1) +2Tgm(k — 1)sin[f(k — 1) + (k= 1)] + T5125 | ° (8.37)
9gm () =g (k = 1) cos{fm(k — 1} + dm(k — 1)]
L Od(k—1) | | {@(k—1) + 2Tqm(k ~ 1) sin{m(k — 1) + ¢m(k — 1)] + T2}3/3 |

For deterministic nonlinear systems, it has been shown in [66] that the Fisher Information

matrix can be represented in a recursive form as

fa(k)] = (87 (k - DI llak - 1@~k - 1) + - RMF(HGEY),  (8.38)

where I{o(k)] is the Fisher Information matrix corresponding to a(k) based on the first & measure-

ments, and in terms of the Cramér-Rao bound, the recursive form becomes

CRBIa(k)]™ = {2(k - 1)JCRBla(k - 1)]&%(k ~ 1)} + ;1-:36[7'(” (EYH(K)], (8.39)

which is identical to the propagation equation of the inverse covariance matrix (8.33), except that

all quantities in (8.39) are evaluated along the true target state trajectory rather than along the

estimated target state trajectory &(k).

8.3 Numerical simulations

Consider an equi-spaced linear array of M = 8 sensors with half the source wavelength spacing,

as shown in Fig. 6.1. Two narrow-band source targets of equal power are assumed to have known
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waveforms, and their initial MTS components are set to 0;(1) = 0° and 62(1) = -20°, ¢,(1) =
7.4 x 1072 and gz(1) = 5.3 x 10~3, and, ¢;(1) = 135° and #2(2) = 30°. The performances are
evaluated through Monte-Carlo simulations, and each test is repeated 100 times. Fig. 8.1, Fig. 8.2
and Fig. 8.3 demonstrate the variation of the MSE's of the MTS estimates with SNR, when the
MLE and EKF are applied. The SNR ranges from —4dB to 26dB and the comparison is between
the MLE, EKF and the CRB. In this simulation, the array number of samples is ¥ = 100. In
the figures, it is seen that the simulated and theoretically obtained MSE’s coincide 2nd attain the
Cramér-Rao bound, while the simulated MSE’s of the EKF estimate do not. Fig. 8.4 to Fig. 8.6
show the variation of MSE'’s of the EKF estimates with the array number of samples. As the array
sample number increases, the MSE of the EKF estimates approaches the CRB. This agrees with
the theoretical derivation that the EKF is asymptotically efficient, since the MSE and the CRB of

the EKF estimates have identical propagation equations.

8.4 Conclusions

We have presented the ML tracking algorithm when the source waveforms are assumed to be known
and compared it to the EKF. The ML approach has been shown to approach the Cramér-Rao bound
asymptotically. For EKF applications, since the Cramér-Rao bound and the covariance matrix of
the estimates have identical propagation equation, the covariance on the estimates is an approxi-
mation of the Cramér-Rao bound, and at its best, attains the Cramér-Rao bound asymptotically.
The EKF is a computationally efficient algorithm and requires a smaller computational load than
the ML approach. However, the EKF requires a priori known statistical information about the
estimates which, in practice, is usually not available. Although, some of the statistical informa-
tion can be obtained throught measurement, this may lead to increased compuational load, slow

convergence or even failure of the TKF.
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Chapter 9

Summary and Future Research

Directions

This thesis is mainly focused on the tracking of moving source targets by a passive array and
the asymptotic performance analysis. In the following, we summarize our major contributions

throughout the course of this work.

e A high resclution DOA estimation algorithm for spatially close source signals has been pro-
posed. The algorithm is based on the Karhunen-Loéve expansion of the covariance matrix of

the array marifold in a limited sector of interest.

e The asymptotic performance has been analysed. It shows that the proposed technique is
consistent and superior to conventional-subspace based techniques. Theoretical results are

verified via computer simulations.

¢ A maximum likelihood estimator for tracking the DOA’s of multiple moving targets by a
passive array has been presented. The MTS has been defined to describe the state of the
moving source targets. The target motion is modeled as locally linear. We show that the
locally linear motion dynamics are strongly locally observable, and this observability ensures

that the source target parameters can be resolved uniquely.

126
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¢ A modified Gauss-Newton algorithm has been provided for the optimization of the ML cxi-
terion. We have derived a close form expression for the gradient and Hessian of the criterion
function. The Hessian has been successfully approximated by a positive semi-definite matrix

to ensure that the algorithm is descent.

¢ The asymptotic performance of the ML tracking estimator has been provided. We have
derived the analytic forms for the asymptotic covariance and the Cramér-Rao lower bound
for the MTS estimate. We show that the ML estimates of MTS vectors are not asymptotically

efficient, but relatively asymptotically efficient.

¢ The ML tracking algorithm has been compared with the EKF, based on the assumption that
the source target waveforms are known. Their asymptotic performance behaviours have also

been studied.

It should be noted that, although in this thesis, the emphasis has been on co-planar array
configurations, the ML tracking technique is directly applicable to general three-dimensional array
geometries. A useful research topic in the future would be the application of adaptive algorithms
to the ML tracking technique. When there are many batches of data, the ML algorithm based
on 2 batch of data may be ineffectve because the size of the data makes each iteration costly.
An adaptive algorithm updates the estimates each time when a new data point comes in. One
advantage of an adaptive algorithm is that the optimal estimates become available as data are

accumulated, making it suitable for real-time operation.
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Appendix A

Observabiliy of the Locally Linear
Motion Model

Consider the target motion dynamics (5.8) and (5.17). The mapping T, is defined as

Tole(m)] = [6(m), 8(m + 1), 6(m + 2)]. (A.1)

The observability of rank condition is related to the conditioning of the mapping To[a(m)] or

its Jacobian matrix at g(m). The Jacobian matrix 77, has the form given by

38(m+1) 08(m+2) ]
6(m)  _ 06(m)

U =] 0 aa‘;z;-)n aa(:; +)2) : (A2)

(m+1) (m+2)

ag(m)  0e(m)
The full rank coditioning of T,[a(m)] can be determined by computing the determinant of the

1

0

Jacobian matrix. From (5.11), we obtain the the gradient of §(m + i) with respect to a(m) as

(0(m+) ] [ qi(m)+iTq(m)sinf(m)+ é(m)]
a8 2 1272 sin(8
somryy | | I EL R 2elm) salfm) + ¢lm)] s
- 2 272 + %uT ] ) ’
soary | | CAET ,‘}q(m‘)’iﬁfffﬁ)ﬂ’."i(‘;‘f](m)]
T28m)_ | | @) + 7% + 2T g(om) sy + oG]
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where i = 1,2, and the determinant of 7T, can be computed as

30(m+1) 8(m+2)

a0 0
68(115”-:-)1) 39(17(;"-:)2)

] ]
0 aa(gﬂ)l) ae(gr(fi)z)

I d¢(m) 9¢(m)
which by substituting (A.2) can be further simplified as

detgT,] = det (A.4)

88(m +1) 86(m +2) _ 86(m + 2) 86(m + 1)
dg(m)  9¢(m) dg(m)  d¢(m)

det[GT,] = (A.5)

Let variables & (m) and &(m) be

&(m) = g¢*(m)+ T? + 2Tg(m) sin[(m) + ¢(m))
§2(m) g*(m) + 4T + 4Tq(m) sin[§(m) + S(m)], (A.6)

respectively. Equation (A.5) can be written as

=T cos{f(m) + §(m)] =42 — 2Tg(m)sin[6(m) + (m)]
&i(m) §2(m)
2T cosff(m) + ¢(m)] -T2 — Tg(m)sin[f(m) + (m)]
§2(m) §i(m) '

Consider the situations in which the determinant det[(77,] will be zero. Setting det[yT,] = 0 is

det[GT,] =

+

(A.7)

equivalent to

cos(@(m) + ¢(m)] = 0, (A.8)

where we have use the fact that &§(m) and §(m) are positive. Then, it is clear that the determinant
det[7T,] equals zero if and only if 8(m) = /2 — ¢(m) or (m) = —x/2 — ¢(m). In other words,
the locally linear motion dynamics satisfy the observability of rank condition almost everywhere
except when 6(m) = /2 — ¢(m) or 8(m) = =x/2 — ¢$(m).



Appendix B

Calculating the Correlation between

the Analytic Signals

Consider the analytic representations of two stationary signals z(t) and y(t) [13]

z(t) = zo(t) + jo(t)
¥(t) = yo(t) + 790(2),
(B.1)

where Zo(t) and §o(t) are the Hilbert transforms of zo(t) and yo(t), respectively and j = /=1 here.

The cross-covariance between z(t) and y(t) is written as

Elz(t)y(t + 7)]

E[(zo(t) + 720(t))(yo(t + 7) + FH0(t + 7))
El(zot)yo(t + 7)] = E[(2o(t)io(t + 7))
+7 {E[(zo(t}do(t + 7)) + E[(Zo(t)30(t + T)I} - (B2)

H

From the definition of the Hilbert transform, we have

E[(zo(t)go(t+7)] = E[% / * Zolu) 4, [; y—°£-v—-"—1--)-dv]

- I—1u -7
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B 3 f"m(wv %) tudo,
- -l

72 Jco

where r24(7) = Elzo(t)yo(t + 7). Since

e f"" Y= gy w47,

T2 Joo t—u

we have

Elzo(t)yo(t + 7)) = El2o(t)io(t + 7).

and in a similar manner,

Elzo(t)io(t + )] = —ElZo(t)yo(t + 7)}.

By combining (B.5) and (B.6), we prove the assertion that

Elz(t)y(t+ )] =0.

131

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)



Appendix C

Variance of the Likelihood:' Function

Taking expectation of the criterion function J of (7.1) yields

1 < ; 1 & -
E {F 2 tr{P i(.-)R=(i)}} = 7 2 tr{Pip R} =7, (C.1)

i=1 =1
where R is given in (7.2). This means that J is an unbiased estimate of 7. Consider the purter-

bation of 7

AJ=J-1. (C.2)

From (C.2), we know that AJ is zero mean. Using (5.14) and (7.2), we can write AJ as

N N
A7 = S tr{PHAGM O + % o tr{PH@F AR

=1 =1

N
o S (PR - o111}
i=1

= & + 8§ + 8a. (C.3)

It is straightforward that §;, §; and £; are zero mean with

E§) =0, i=1,2,3. (C4) -
Let £(i) = P+ A(4)s(i). Then, §; and §; can be written alternatively as
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0 = N Z Z GM(‘)wm(z)
|—1 m—l
by = ¥ 21 21 m(D)wm(i), (C.5)

respectively, where £,(?) denotes the mth element of £(i). Under Gaussian assumption, the covari-

ance of §; can be written as

28 -

M

M M )
E[6,67] Y Z_;em(i)e;(j)s[w.:,(i)wnu)l

1 m=1

§m(D)En(d)

M= iM=
M= i

m=1

-
0
-

N
= R’;z; S tr{PHAG)RADAF (). (C-6)

i=1 -

Similarly, the covariance of §; is derived as

E[6:63) = N2 z tr{ P A(D)R,())AT(3)} = E[6:67). (C.7)

i=1

Assume that tr{P* A(i)R,(i)A7 ()} is bounded by a limited constant c,. Then, the following holds

E[6:87) < % i=1,2. (C.8)

As N approaches infinity, the covariances of §; and §; tend to zero, O(1/N), which implies that §;
and 6, asymptotically converge to zero, O(1/v/N), with probability one.

The covariance of §3 can be expressed as

=1 i=1

N :
E[6s83] = E [{ Ztr{f’*[_(z)_”m}} { 33 tr{P.-*Lw(i)mH(i)}} } - G4(M - K. (C9)

Let

N

. #= g L rRHEOL). (c10)



Denote p(i) = Pirw(i) and we have

p= —Z Z P (3)P5m (i),

1=1m=1

where pp,(i) is the mth element of p(i). The covariance of z can be written as

Elpp] = ZE Z E Elpm(i)p5n(8)en(3)p3(5))-

i=l j=1 m=1ln=1
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(C.11)

(C.12)

Since p(i) is a linear combination of Gaussian variables of zero mean, it is also Gaussian of zero

mean with covarance E[p(i)p” ()] = o2 P{. Then, we can rewrite (C.12) as [67]

M M
2 Z Elpm(D)pm(D)Elen(3)pa(3)]

[\’Jz

1 N
Elpw’] = 532

=13

}-.

1m

1 N N ;{ M
T3 22 2 X Elen(GIElh(en(s)

i=1j=1m=ln=

oy,
1

H

N M M

¥z S5 S S Elpm(i)onlE()RL()]

i=] j=1m=1n=l

= I +10; + Ia.

we can verify that

1 N M N
m = Ki 33" Blom(i)pn(d)] [FZ 2_: E[Pn(J)Pn(J)]]

=1l m=1

1 X '1 N
= [FZreeoeon] BB 0RO

:=1

= |= itr{o’ P"'}] I:N > tr{ol Pt}
L 3—1 =1
= od(M - K)>

and

1 N M M
o, = FEZE ZE[Pm(‘)Pn(’)]E[Pm(")Pn(‘)]

i=1 m=1n=

(C.13)

(C.14)



2/

1 & ; 2o L > L )12
7 2 Bl O k= 55 2 1 o4 PF IF

=1 =1
_ 1N, iply _ TH(M—K)
= thr{ﬂwﬂ }— ---—N,-—. | (C.15)

For analytic process w(f) with zero mean, it is shown in Appendix B that Ils = 0. Then, the

covariance of §3 becomes

ou(M — K)
N ?
and it follows that the covariance of 83 tends to zero O(1/N) as N — 0. This implies that &3

E[6:83] = (C.16)

asymptotically converges to zero, O(1/+/N), with probability one when the sample number N
approaches infinity.



Appendix D

Covariance between Prm aNd pgn

Consider the covariance between prm and pyn

cOV(Phms Pgn] = ElPimDja]

E{[Prm(1) + prm(2) + Pim (8)}{pgn(1) + Pea(2) + Pia(3)]}

= Elpkm(1)pgn(1)] + E[pem(1)pgn(2)] + Elpim(1)p5n(3)]
+E[pim(2)p5a(1)] + Epim(2)0gn(2)] + E{pim(2)p3a(3)]
+Epim (3)03n(1)] + Elpim(3)pa(2)] + Elpim(3)p5n(3)]; (D.1)

]

where pem (1), Pim(2) 2nd pem(3) are defined as

N
Pen(l) =~ Str{Ben(DAW)LT ()}
=1
N
Pen(2) = =3 D tr{Ben (i) (1)47(5))
i=1
N
2n(3) = —5 3 tr{Ben(ltile? () - o211, (D2)
=1

respectively, and

. _ 9P+ 80.(i)
Bkm(l) = a—a:ti—)-é-;k:—(i)-. _ (D.3)
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It can be shown that pim and pem(?) are zero mean. Denote £(i) = Bim () A(2)8(1) and 7(i) =
Byn(3)A(2)s(). We have

1 NN MM
Epim(L)pen(2)] = 22220 2 2 Elém(Dwn()mm(i)wr(d)]
=1 j=1 m=1ln=1
1 N M M
= =2 3 3 Enli)mali) Elwn (i)} (D-4)

1=]1 m=1n=]

e
o)

Since for the analytic array noise process, E[w},(:)w5(i)] = 0 (see Appendix A), we have

Elpiem(1)pzn(2)} = 0. (D.3)

By similar procedures, we can show that

Elpem(2)pia(1)] = 0. (D.6)
Let Bma(i) be the math element Byn(i). Then, we can write pyn(3) as

Pn(3) = —= Z Z E Brmrwe(i)wn (i) + — I Z Bim(3)c2, (D.7)

:_1 m=1r=1 i=1

and covariance E[pem(1)p5,(3)] can be written as

1 NN MMM
Epim(Pm3)] = 3522 2 2, 2 Blfrebnlieriyom(i)un (i)

i=1 j=1m=1ln=1

1 N M
Z 33 Elo? Bim(D)ealf ()]
i=1 j=1 n=1

= 1+l (D.8)
With Gaussian zero mean assumption about wf(3), it is obvious that E[Il,] = 0. For analytic

process w(i), by a moment theorem for Gaussian processes in [67], we have

Ewi(Dwm(Dwa()]) =0 myn=1,2,..,M,i5=1,2,...,N, (D.9)
and finally
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Elpim(1)p3(3)] = 0; (D.10)

Similarly, we can show that

Elpim(2)p32(3)] = 0 E[pkm(3)pja(2)] = 0
Epiem(3)p7a(1)] = 0. (D.11)

For the covariance between terms with the same index, we obtain

Elpim(1)pgn(1)] = >, Elfm(wn (D307 wn(d)]

M= M=
M=
1M
L=

i
|
n
i

Mz
Mk

Em(l)ﬂu(t)E[wm(t)wn(l)]

M=
Mx

§m(i)7m (%)

e F- -

2 0
1)
|
i

q

= Ng )::r{Bkm(z)A(z)R,(z)A”(z)B (D)} (D.12)
i=1

and

Elpem(2)P3n(2)] = N, 2 tr{ Ban(i)A(i) Ro() A% (i) BEL (D)) (D.13)

=1

For the covariance between pim(3) and pgn(3), we have

Elpen(3)p3a(3)] = NZtr{Bkm(z)[_(z)wH(z)}{ er{Bm(z)[_(z)w”(z)}”
=1 =1
O" N N
75 2 2 tr{Bem(D}tr{Bem(1)}
i=1j=1
= A+ As (D.14)

Denote Ymyn as the mnth element of Bim(i). We expand A; as
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1 NN M MMM
M = = ZI 21 zl Zl 21 21 ElymeBr,wr(i)wy(i)w; (5)wa(5)]
1=l =l mEl n=lrsl s

1’ N M MMM
TR 2 2 2 X tme B Elwn(i)wi () Elwn(wa(s)]

1 N N M MMM
L L L 5 3 Tnela Bl Bl ()]

Il
&
+
:o I'
[ )
+
)
[*~)

(D.15)
The first term ©; can be written directly as
a4 N N

Q= N—‘; ZE tr{Bim () }tr{Ben(7)}, (D.16)

i=1j=1
which is identical to Az. With the analytic assumption about the array sensor noise, we have

Qa=0. (D.17)

We write Q5 as

lNMM

T2 2 2 2 TmeBmy Elwr()w] ()] Elwy,(i)wn(i)]

i=lm=1lr=1

2

N
= %ztr{a,m(z')sg(i)}. (D.18)

=1

Then, the covariance between prm(3) and pyn(3) can be written as

N
Elpmm(I93n(3)} = 22 Y- tr{Bum(D B}, (D.19)

=1

and the covariance between pin and Dy¢n is calculated as

cov[Pkma Pqn] = FE [Pkm(l)P;n(]-)] +E [p;m(2)p;n(2)] +E [Pkm(a)p;ﬂ(s)]
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_ 25
= WXk [tr{Bn(DAG) BADAT () B}

ot & '
+F§tf{3m(i)3§(i)}] : (D.20)
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